Science.gov

Sample records for 4m blanco telescope

  1. A modern approach to upgrading the telescope control system of the CTIO Blanco 4-m telescope

    NASA Astrophysics Data System (ADS)

    Warner, Michael; Cantarutti, Rolando; Schumacher, German; Mondaca, Eduardo; Estay, Omar; Martinez, Manuel; Aguirre, Victor; Alvarez, Rodrigo; Leiva, Rodrigo; Abbott, Timothy M. C.; van der Bliek, Nicole S.

    2012-09-01

    In preparation for the arrival of the Dark Energy Camera (DECam) at the CTIO Blanco 4-m telescope, both the hardware and the software of the Telescope Control System (TCS) have been upgraded in order to meet the more stringent requirements on cadence and tracking required for efficient execution of the Dark Energy Survey1. This upgrade was also driven by the need to replace obsolete hardware, some of it now over half a century old. In this paper we describe the architecture of the new mount control system, and in particular the method used to develop and implement the servo-driver portion of the new TCS. This portion of the system had to be completely rethought, when an initial approach, based on commercial off the shelf components, lacked the flexibility needed to cope with the complex behavior of the telescope. Central to our design approach was the early implementation of extensive telemetry, which allowed us to fully characterize the real dynamics of the telescope. These results then served as input to extensive simulations of the proposed new servo system allowing us to iteratively refine the control model. This flexibility will be important later when DECam is installed, since this will significantly increase the moving mass and inertia of the telescope. Based on these results, a fully digital solution was chosen and implemented. The core of this new servo hardware is modern cRIO hardware, which combines an embedded processor with a high-performance FPGA, allowing the execution of LabVIEW applications in real time.

  2. Speckle Interferometry at the Blanco and SOAR Telescopes in 2008 and 2009

    NASA Technical Reports Server (NTRS)

    Tokovinin, Andrei; Mason, Brian D.; Hartkopf, William I.

    2010-01-01

    The results of speckle interferometric measurements of binary and multiple stars conducted in 2008 and 2009 at the Blanco and Southern Astrophysical Research (SOAR) 4 m telescopes in Chile are presented. A tot al of 1898 measurements of 1189 resolved pairs or sub-systems and 394 observations of 285 un-resolved targets are listed. We resolved for the first time 48 new pairs, 21 of which are new sub-systems in close visual multiple stars. Typical internal measurement precision is 0.3 mas in both coordinates, typical companion detection capability is delta m approximately 4.2 at 0.15 degree separation. These data were obtained with a new electron-multiplication CCD camera; data processing is described in detail, including estimation of magnitude difference, observational errors, detection limits, and analysis of artifacts. We comment on some newly discovered pairs and objects of special interest.

  3. SPECKLE INTERFEROMETRY AT THE BLANCO AND SOAR TELESCOPES IN 2008 AND 2009

    SciTech Connect

    Tokovinin, Andrei; Mason, Brian D.; Hartkopf, William I. E-mail: bdm@usno.navy.mil

    2010-02-15

    The results of speckle interferometric measurements of binary and multiple stars conducted in 2008 and 2009 at the Blanco and SOAR 4 m telescopes in Chile are presented. A total of 1898 measurements of 1189 resolved pairs or sub-systems and 394 observations of 285 un-resolved targets are listed. We resolved for the first time 48 new pairs, 21 of which are new sub-systems in close visual multiple stars. Typical internal measurement precision is 0.3 mas in both coordinates, typical companion detection capability is {delta}m {approx} 4.2 at 0.''15 separation. These data were obtained with a new electron-multiplication CCD camera; data processing is described in detail, including estimation of magnitude difference, observational errors, detection limits, and analysis of artifacts. We comment on some newly discovered pairs and objects of special interest.

  4. 4MOST: 4m Multi Object Spectroscopic Telescope

    NASA Astrophysics Data System (ADS)

    Depagne, Éric

    4MOST (4m Multi Object Spectroscopic Telescope) is a spectroscopic facility that will be installed on ESO's VISTA around 2020. The science rationale of this facility are to be found in the ASTRONET Science Vision for European Astronomy (de Zeeuw & Molster, (eds) A Science Vision for European Astronomy, Astronet 2007. ISBN 978-3-923524-62-4). Specifically fundamental contribution can be made to the Extreme Universe (Dark Energy & Dark Matter, Black holes), Galaxy Formation & Evolution, and the Origin of Stars science cases in the ASTRONET Science Vision. The unique capabilities of the 4MOST facility are due to by its large field-of-view, high multiplex, its broad optical spectral wavelength coverage

  5. The DAG project, a 4m class telescope: the telescope main structure performances

    NASA Astrophysics Data System (ADS)

    Marchiori, G.; Busatta, A.; Ghedin, L.; Marcuzzi, E.; Manfrin, C.; Battistel, C.; Pirnay, O.; Flebus, Carlo; Yeşilyaprak, C.; Keskin, O.; Yerli, S.

    2016-07-01

    Dogu Anatolu Gözlemevi (DAG-Eastern Anatolia Observatory) Project is a 4m class optical, near-infrared Telescope and suitable enclosure which will be located at an altitude of 3.170m in Erzurum, Turkey. The DAG telescope is a project fully funded by Turkish Ministry of Development and the Atatürk University of Astrophysics Research Telescope - ATASAM. The Project is being developed by the Belgian company AMOS (project leader), which is also the optics supplier and EIE GROUP, the Telescope Main Structure supplier and responsible for the final site integration. The design of the Telescope Main Structure fits in the EIE TBO Program which aims at developing a Dome/Telescope systemic optimization process for both performances and competitive costs based on previous project commitments like NTT, VLT, VST and ASTRI. The optical Configuration of the DAG Telescope is a Ritchey-Chretien with two Nasmyth foci and a 4m primary thin mirror controlled in shape and position by an Active Optic System. The main characteristics of the Telescope Main Structure are an Altitude-Azimuth light and rigid structure system with Direct Drive Systems for both axis, AZ Hydrostatic Bearing System and Altitude standard bearing system; both axes are equipped with Tape Encoder System. An innovative Control System characterizes the telescope performance.

  6. Integrated opto-dynamic modeling of the 4m DAG telescope image quality performance

    NASA Astrophysics Data System (ADS)

    Zago, Lorenzo; Guex, Benjamin; Yesilyaprak, Cahit; Yerli, Sinan K.; Keskin, Onur

    2016-08-01

    The Turkish DAG 4-m telescope is currently through the final design stage. It is to be located on a 3170 m mountain top in Eastern Anatolia. The telescope will be a state-of-the art device, alt-az mount with active primary and adjustable secondary and tertiary mirrors. Its optics design is specially aimed at being compatible with advance adaptive optics instrumentation. The ultimate performance of such a telescope results of multiple concurrent effects from many different components and active functions of the complex system. The paper presents a comprehensive integrated (end-to-end) model of the telescope, comprising in one computational sequence all structural, electrodynamics and oactive optics performance that produce the image quality at the focal plane. The model is entirely programmed in Matlab/Simulink and comprises a finite element model of structure and mirrors, dynamics modal reduction, deformation analyses of structural and optical elements, active optics feedback control in the Zernike modal space.

  7. Tolerance analysis during the optical design of 4m class optical telescope

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Muthu Marriappan, C.; Kumar, Brijesh; Gupta, K. G.

    The detailed tolerance analysis has been carried out for the proposed 4 m class (RC) Devasthal Optical Telescope (DOT) using ZEMAX - EE to study system performance and meet the image quality criteria. The latter requires encircled energy (E90) to be concentrated within 0.6 arcsec diameter. The spot diagrams and E80 have been studied with various values of tilt, decenter, surface irregularity and temperature, while the polarization studies are under ess. It has been found that after applying the system tolerances the rms change in the system performance is within the range 4 to 6%.

  8. DOT++: the Dutch Open Telescope with 1.4-m aperture

    NASA Astrophysics Data System (ADS)

    Bettonvil, Felix C.; Hammerschlag, Robert H.; Sütterlin, Peter; Rutten, Robert J.; Jägers, Aswin P.; Snik, Frans

    2004-10-01

    The Dutch Open Telescope (DOT; http://dot.astro.uu.nl) on La Palma is a revolutionary open solar telescope, on an excellent site, on top of a transparent steel tower, and uses natural air flow to minimize local seeing. The aim is long-duration high-resolution imaging with a multi-wavelength camera system. In order to achieve this, the DOT is equipped with a diffraction limited imaging system and uses the speckle reconstruction technique for removing the remaining atmospheric turbulence. The DOT optical system is simple and consists currently of a 0.45m/F4.44 parabolic mirror and a 10x enlargement lens system. We present our plans to increase the aperture of the DOT from 0.45m to 1.4m. The mirror support and telescope top shall be redesigned, but telescope, tower, multi-wavelength camera system and speckle system remain intact. The new optical design permits user selectable choice between angular resolution and field size, as well as transversal pupil shift introducing the possibility to use obstruction free apertures up to 65cm. The design will include a low order AO system, which improves the speckle S/N substantially during moderate seeing conditions.

  9. Agile development approach for the observatory control software of the DAG 4m telescope

    NASA Astrophysics Data System (ADS)

    Güçsav, B. Bülent; ćoker, Deniz; Yeşilyaprak, Cahit; Keskin, Onur; Zago, Lorenzo; Yerli, Sinan K.

    2016-08-01

    Observatory Control Software for the upcoming 4m infrared telescope of DAG (Eastern Anatolian Observatory in Turkish) is in the beginning of its lifecycle. After the process of elicitation-validation of the initial requirements, we have been focused on preparation of a rapid conceptual design not only to see the big picture of the system but also to clarify the further development methodology. The existing preliminary designs for both software (including TCS and active optics control system) and hardware shall be presented here in brief to exploit the challenges the DAG software team has been facing with. The potential benefits of an agile approach for the development will be discussed depending on the published experience of the community and on the resources available to us.

  10. Preliminary optical design for a 2.2 degree diameter prime focus corrector for the Blanco 4 meter telescope

    SciTech Connect

    Kent, S.; Bernstein, R.; Abbott, T.; Bigelow, B.; Brooks, D.; Doel, P.; Flaugher, B.; Gladders, M.; Walker, A.; Worswick, S.; /Fermilab /Cerro-Tololo InterAmerican Obs. /Michigan U. /University Coll. London /Carnegie Inst. Observ.

    2006-04-01

    We describe a five element corrector for the prime focus of the 4 meter Blanco telescope at the Cerro Tololo Inter-American Observatory (CTIO) in Chile that will be used in conjunction with a new mosaic CCD camera as part of the proposed Dark Energy Survey (DES). The corrector is designed to provide a flat focal plane and good images in the SDSS g, r, i, and z filters. We describe the performance in conjunction with the scientific requirements of the DES, particularly with regard to ghosting and weak-lensing point spread function (PSF) calibration.

  11. First lunar occultation results from the 2.4 m Thai national telescope equipped with ULTRASPEC

    SciTech Connect

    Richichi, A.; Irawati, P.; Soonthornthum, B.; Dhillon, V. S.; Marsh, T. R.

    2014-11-01

    The recently inaugurated 2.4 m Thai National Telescope (TNT) is equipped with, among other instruments, the ULTRASPEC low-noise, frame-transfer EMCCD camera. At the end of its first official observing season, we report on the use of this facility to record high time resolution imaging using small detector subarrays with a sampling as fast as several 10{sup 2} Hz. In particular, we have recorded lunar occultations of several stars that represent the first contribution to this area of research made from Southeast Asia with a telescope of this class. Among the results, we discuss an accurate measurement of α Cnc, which has been reported previously as a suspected close binary. Attempts by several authors to resolve this star have so far met with a lack of unambiguous confirmation. With our observation we are able to place stringent limits on the projected angular separation (<0.''003) and brightness (Δm > 5) of a putative companion. We also present a measurement of the binary HR 7072, which extends considerably the time coverage available for its yet undetermined orbit. We discuss our precise determination of the flux ratio and projected separation in the context of other available data. We conclude by providing an estimate of the performance of ULTRASPEC at TNT for lunar occultation work. This facility can help to extend the lunar occultation technique in a geographical area where no comparable resources were available until now.

  12. Lunar Occultations of 18 Stellar Sources from the 2.4 m Thai National Telescope

    NASA Astrophysics Data System (ADS)

    Richichi, A.; Tasuya, O.; Irawati, P.; Soonthornthum, B.; Dhillon, V. S.; Marsh, T. R.

    2016-01-01

    We report further results from the program of lunar occultation (LO) observations started at the 2.4 m Thai National Telescope (TNT) in 2014. We have recorded LO events of 18 stellar sources, leading to the detection of four angular diameters and two binary stars. With two exceptions, these are first-time determinations. We could resolve angular diameters as small as 2 milliarcseconds (mas) and projected separations as small as 4 mas. We discuss the individual results, in the context of previous observations, when available. The first-time angular diameters for o Psc, HR 6196 and 75 Leo are in good agreement with expected values, while that of π Leo agrees with the average of previous determinations but has a higher accuracy. We find a new secondary in o Psc, as previously suspected from Hipparcos data. We also obtain an accurate measurement of the companion in 31 Ari, revealing inconsistencies in the currently available orbital parameters. The TNT, equipped with the fast ULTRASPEC imager, is the leading facility in Southeast Asia for high time resolution observations. The LO technique at this telescope achieves a sensitivity of i‧ ≈ 10 mag, with a potential to detect several hundreds of LO events per year.

  13. Dark Energy Camera for Blanco

    SciTech Connect

    Binder, Gary A.; /Caltech /SLAC

    2010-08-25

    In order to make accurate measurements of dark energy, a system is needed to monitor the focus and alignment of the Dark Energy Camera (DECam) to be located on the Blanco 4m Telescope for the upcoming Dark Energy Survey. One new approach under development is to fit out-of-focus star images to a point spread function from which information about the focus and tilt of the camera can be obtained. As a first test of a new algorithm using this idea, simulated star images produced from a model of DECam in the optics software Zemax were fitted. Then, real images from the Mosaic II imager currently installed on the Blanco telescope were used to investigate the algorithm's capabilities. A number of problems with the algorithm were found, and more work is needed to understand its limitations and improve its capabilities so it can reliably predict camera alignment and focus.

  14. FTS Spectra from the Mayall 4-m Telescope, 1975-1995

    NASA Astrophysics Data System (ADS)

    Pilachowski, Catherine A.; Hinkle, Kenneth H.; Young, Michael; Dennis, Harold; Gopu, Arvind; Henschel, Robert; Hayashi, Soichi

    2017-01-01

    The complete archive of spectra obtained with the Fourier Transform Spectrometers in use at the Mayall 4m telescope at the Kitt Peak National Observatory from 1975 through 1995 is now available to the community. The archive is hosted at Indiana University Bloomington, and includes nearly 10,000 individual spectra of more than 800 different astronomical sources. The FTS produced spectra in the wavelength regime from roughly 0.9 to 5 microns (11,000 to 2000 cm-1), mostly at relatively high spectral resolution. The archive can be searched to identify specific spectra of interest, and the spectra can be viewed online and downloaded in FITS format for analysis. Once a spectrum of interest has been identified, all spectra taken on the same date are provided to allow users to identify appropriate hot star spectra for telluric line division.The archive can be accessed on the web at https://sparc.sca.iu.edu.

  15. Mosaic3: a red-sensitive upgrade for the prime focus camera at the Mayall 4m telescope

    NASA Astrophysics Data System (ADS)

    Dey, Arjun; Rabinowitz, David; Karcher, Armin; Bebek, Chris; Baltay, Charles; Sprayberry, David; Valdes, Frank; Stupak, Bob; Donaldson, John; Emmet, Will; Hurteau, Tom; Abareshi, Behzad; Marshall, Bob; Lang, Dustin; Fitzpatrick, Mike; Daly, Phil; Joyce, Dick; Schlegel, David; Schweiker, Heidi; Allen, Lori; Blum, Bob; Levi, Michael

    2016-08-01

    The Dark Energy Spectroscopic Instrument (DESI) is under construction and will be used to measure the expansion history of the Universe using the Baryon Acoustic Oscillation (BAO) technique and the growth of structure using redshift-space distortions (RSD). The spectra of 30 million galaxies over 14000 sq deg will be measured over the course of the experiment. In order to provide spectroscopic targets for the DESI survey, we are carrying out a three-band (g,r,z ) imaging survey of the sky using the NOAO 4-m telescopes at Kitt Peak National Observatory (KPNO) and the Cerro Tololo Interamerican Observatory (CTIO). At KPNO, we will use an upgraded version of the Mayall 4m telescope prime focus camera, Mosaic3, to carry out a z-band survey of the Northern Galactic Cap at declinations δ>=+30 degrees. By equipping an existing Dewar with four 4kx4k fully depleted CCDs manufactured by the Lawrence Berkeley National Laboratory (LBNL), we increased the z-band throughput of the system by a factor of 1.6. These devices have the thickest active area fielded at a telescope. The Mosaic3 z-band survey will be complemented by g-band and r-band observations using the Bok telescope and 90 Prime imager on Kitt Peak. We describe the upgrade and performance of the Mosaic3 instrument and the scope of the northern survey.

  16. Speckle Interferometry at the Blanco and Soar Telescopes in 2008 and 2009

    DTIC Science & Technology

    2010-02-01

    to predict stellar positions and to study individual systems of astrophysical importance (including those with planetary companions). Multiplicity...constraints on their parameters . The linearity of the detector allows us to here establish reliable detection limits for each observation, through...measurements. We also provide relative photometry of the components. Speckle interferometry at the Southern Astrophysical Re- search (SOAR) telescope

  17. Design and analysis of an active optics system for a 4-m telescope mirror combining hydraulic and pneumatic supports

    NASA Astrophysics Data System (ADS)

    Lousberg, Gregory P.; Moreau, Vincent; Schumacher, Jean-Marc; Piérard, Maxime; Somja, Aude; Gloesener, Pierre; Flebus, Carlo

    2015-09-01

    AMOS has developed a hybrid active optics system that combines hydraulic and pneumatic properties of actuators to support a 4-m primary mirror. The mirror is intended to be used in the Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope) that will be installed by the National Solar Observatory (NSO) atop the Haleakala volcano in Hawaii. The mirror support design is driven by the needs of (1) minimizing the support-induced mirror distortions under telescope operating conditions, (2) shaping the mirror surface to the desired profile, and (3) providing a high stiffness against wind loads. In order to fulfill these requirements, AMOS proposes an innovative support design that consist of 118 axial actuators and 24 lateral actuators. The axial support is based on coupled hydraulic and pneumatic actuators. The hydraulic part is a passive system whose main function is to support the mirror weight with a high stiffness. The pneumatic part is actively controlled so as to compensate for low-order wavefront aberrations that are generated by the mirror support itself or by any other elements in the telescope optical chain. The performances of the support and its adequacy with the requirements are assessed with the help of a comprehensive analysis loop involving finite-element, thermal and optical modellings.

  18. A Lithium Abundance Study of Solar-type Stars in Blanco 1 using the 2.1m McDonald Telescope: Developing Undergraduate Research Experiences.

    NASA Astrophysics Data System (ADS)

    Cargile, Phillip; James, D. J.; Villalon, K.; Girgenti, S.; Mermilliod, J.

    2007-12-01

    We present a new catalog of lithium equivalent widths for 20 solar-type stars in the young (60-100 Myr), nearby (250 pc) open cluster Blanco 1, measured from high-resolution spectra (R 30,000), taken during an observing run on the 2.1m telescope at McDonald Observatory. These new lithium data, coupled with the 20 or so extant measurements in the literature, are used in combination with the results of a recently completed standardized BVIc CCD survey, and corresponding 2MASS near-infrared colors, to derive precise lithium abundances for solar-type stars in Blanco 1. Comparing these new results with the existing lithium dataset for other open clusters, we investigate the mass- and age-dependent lithium depletion distribution among early-epoch (< 1Gyr) solar-type stars, and specifically, the lithium abundance scatter as a function of mass in Blanco 1. Our scientific project is highly synergystic with a pedagogical philosophy. We have instituted a program whereby undergraduate students - typically majoring in Liberal Arts and performing an independent study in Astronomy - receive hands-on research experience observing with the 2.1m telescope at the McDonald Observatory. After their observing run, these undergraduates take part in the reduction and analysis of the acquired spectra, and their research experience typically culminates in writing an undergraduate thesis and/or giving a professional seminar to the Astronomy group at Vanderbilt University.

  19. Spacewatch Astrometry of Asteroids and Comets with the Bok 2.3-m and Mayall 4-m Telescopes.

    NASA Astrophysics Data System (ADS)

    Scotti, James V.; McMillan, Robert S.; Larsen, Jeffrey A.

    2014-11-01

    We use the Bok 2.3-m and Mayall 4-m telescopes on Kitt Peak to improve knowledge of the orbits and magnitudes of high priority classes of Near Earth Objects (NEOs) and other small bodies in need of recovery that cannot be reached with the Spacewatch 0.9-m and 1.8-m telescopes. Targets include NEOs with potential close encounters with Earth (Virtual Impactors; VIs), future targets of radar, NEOs previously detected by NEOWISE with orbits or albedos suggesting potential for cometary activity, potential destinations for spacecraft, returning NEOs with hard-won albedos and diameters determined by NEOWISE, and faint Potentially Hazardous Asteroids (PHAs). Notable targets successfully recovered include the Earth Trojan 2010 TK7 and the faint almost-lost VI 2011 BY24 discovered by NEOWISE. Between 2010 June 6 and 2014 July 23 the MPC accepted 1316 lines of astrometry by us with these telescopes on 207 different NEOs including 84 PHAs. We made 343 observations of PHAs with V>=22. Our average arc extension on large PHAs (with H<=17.75) is 184 days, which is 2x longer than the next most effective observing station. Recently with all four telescopes Spacewatch has made 39% of all the observations of PHAs that were fainter than V=22 at the time of measurement. This count is twice that of the next most productive station in that measure. The faintest V magnitude we have observed so far is 24.4 and the smallest solar elongation angle at which we have observed is 46 degrees. Our work with the Mayall and Bok telescopes has been determined by the Minor Planet Center (MPC) to provide "dramatic improvement" to NEO orbits (T. Spahr, 2014 private communication). Support of Spacewatch was/is from JPL subcontract 100319 (2010-2011), NASA/NEOO grants NNG06GJ42G, NNX11AB52G, NNX12AG11G, NNX13AP99G, NNX14AL13G, and NNX14AL14G, the Lunar and Planetary Laboratory, the Brinson Foundation of Chicago, IL, the estates of R. S. Vail and R. L. Waland, and other private donors. We are also indebted

  20. Polishing and testing of the 3.4 m diameter f/1.5 primary mirror of the INO telescope

    NASA Astrophysics Data System (ADS)

    Korhonen, Tapio; Keinänen, Perttu; Pasanen, Mikko; Darudi, Ahmad; Maxwell, Jonathan

    2016-07-01

    Polishing and testing methods used in the manufacture of the 3.4 m primary mirror of the Iranian National Observatory (INO) telescope are described and the test results of the finished mirror are presented. Mirror lapping and polishing was performed using several rectangular non-rotating tools arranged in a linear array across the mirror radius. Each tool is equipped with two computer controlled force actuators for regulating the surface pressure and removal efficiency during the lapping and polishing operations. The same tool system was used from the lapping phase to the end of the final polishing. The principal optical test method was the interferometric Hartmann test with the aid of a two component null lens in the mirror center of curvature. Mirror measurements were made also with pentaprism test to verify its correct conic constant. The mirror was finished to extremely good surface accuracy and smoothness.

  1. MEGARA: the future optical IFU and multi-object spectrograph for the 10.4m GTC telescope

    NASA Astrophysics Data System (ADS)

    Gil de Paz, A.; Carrasco, E.; Gallego, J.; Sánchez, F. M.; Vílchez Medina, J. M.; García-Vargas, M. L.; Arrillaga, X.; Carrera, M. A.; Castillo-Morales, A.; Castillo-Domínguez, E.; Cedazo, R.; Eliche-Moral, C.; Ferrusca, D.; González-Guardia, E.; Maldonado, M.; Marino, R. A.; Martínez-Delgado, I.; Morales Durán, I.; Mújica, E.; Pascual, S.; Pérez-Calpena, A.; Sánchez-Penim, A.; Sánchez-Blanco, E.; Serena, F.; Tulloch, S.; Villar, V.; Zamorano, J.; Barrado y Naváscues, D.; Bertone, E.; Cardiel, N.; Cava, A.; Cenarro, J.; Chávez, M.; García, M.; Guichard, J.; Gúzman, R.; Herrero, A.; Huélamo, N.; Hughes, D.; Iglesias, J.; Jiménez-Vicente, J.; Aguerri, A. L.; Mayya, D.; Méndez-Abreu, J. M.; Mollá, M.; Muñoz-Tuñón, C.; Peimbert, S.; Peimbert, M.; Pérez-González, P. G.; Pérez Montero, E.; Rodríguez, M.; Rodríguez-Espinosa, J. M.; Rodríguez-Merino, L.; Rosa, D.; Sánchez-Almeida, J.; Sánchez Contreras, C.; Sánchez-Blázquez, Patricia; Sánchez, S.; Sarajedini, A.; Silich, S.; Simón, S.; Tenorio-Tagle, G.; Terlevich, E.; Terlevich, R.; Trujillo, I.; Tsamis, Y.; Vega, O.

    2012-09-01

    In these proceedings we give a summary of the characteristics and current status of the MEGARA instrument, the future optical IFU and MOS for the 10.4-m Gran Telescopio Canarias (GTC). MEGARA is being built by a Consortium of public research institutions led by the Universidad Complutense de Madrid (UCM, Spain) that also includes INAOE (Mexico), IAA-CSIC (Spain) and UPM (Spain). The MEGARA IFU includes two different fiber bundles, one called LCB (Large Compact Bundle) with a field-of-view of 12.5×11.3 arcsec2 and a spaxel size of 0.62 arcsec yielding spectral resolutions between R=6,800-17,000 and another one called SCB (Small Compact Bundle) covering 8.5×6.7 arcsec2 with hexagonally-shaped and packed 0.42-arcsec spaxels and resolutions R=8,000-20,000. The MOS component allows observing up to 100 targets in 3.5×3.5 arcmin2. Both the IFU bundles and the set of 100 robotic positioners of the MOS will be placed at one of the GTC Folded-Cass foci while the spectrographs (one in the case of the MEGARA-Basic concept) will be placed at the Nasmyth platform. On March 2012 MEGARA passed the Preliminary Design Review and its first light is expected to take place at the end of 2015.

  2. Validation and Characterization of K2 Exoplanet Candidates with NIR Transit Photometry from the 4m Mayall and 3.5m WIYN Telescopes

    NASA Astrophysics Data System (ADS)

    Colón, Knicole D.; Barclay, Thomas

    2016-06-01

    We present new ground-based near-infrared (NIR) transit photometry of exoplanet candidates recently discovered by the NASA K2 mission. These observations support the confirmation and characterization of these newly discovered transiting exoplanets, many which are in the super-Earth to mini-Neptune size regime and orbit cool, nearby stars. We specifically used NEWFIRM on the 4m Mayall telescope and WHIRC on the 3.5m WIYN telescope, both located at Kitt Peak National Observatory, to observe several K2 exoplanet candidates in transit. To our knowledge, these facilities have not been tested for such high-precision differential transit photometry before. Follow-up transit photometry with the high spatial resolution NIR cameras installed on the Mayall and WIYN telescopes allows us to confirm the transit host, which is critical given the large pixel scale of the Kepler spacecraft. NIR transit photometry in particular allows us to verify that the transit is achromatic, after comparing the NIR transit depth to the transit depth measured in the optical from K2. Finding a different depth in different bandpasses indicates that the candidate is instead an eclipsing binary false positive. Furthermore, NIR transit photometry provides robust constraints on the measured planet radius, since stellar limb darkening is minimized in the NIR. Finally, the high-precision and high-cadence photometry we achieve allows us to refine the transit ephemeris, which is crucial for future follow-up efforts with other facilities like NASA's James Webb Space Telescope. The capabilities of these ground-based facilities therefore approach those of space telescopes, since we are able use these ground-based observatories to refine transit parameters and constrain properties for the exoplanets that K2 is discovering, all the way down to super-Earth-size planets.

  3. Discovery of two broad absorption line quasars at redshift about 4.75 using the Lijiang 2.4 m telescope

    NASA Astrophysics Data System (ADS)

    Yi, WeiMin; Wu, XueBing; Wang, FeiGe; Yang, JinYi; Yang, Qian; Bai, JinMing

    2015-09-01

    The ultraviolet broad absorption lines have been seen in the spectra of quasars at high redshift, and are generally considered to be caused by outflows with velocities from thousands kilometers per second to one tenth of the speed of light. They provide crucial implications for the cosmological structures and physical evolutions related to the feedback of active galactic nuclei (AGNs). Recently, through a dedicated program of optically spectroscopic identifications of selected quasar candidates at redshift 5 by using the Lijiang 2.4 m telescope, we discovered two luminous broad absorption line quasars (BALQSOs) at redshift about 4.75. One of them may even have the potentially highest absorption Balnicity Index (BI) ever found to date, which is remarkably characterized by its deep, broad absorption lines and sub-relativistic outflows. Further physical properties, including the metal abundances, variabilities, evolutions of the supermassive black holes (SMBH) and accretion disks associated with the feedback process, can be investigated with multi-wavelength follow-up observations in the future.

  4. THE BLANCO COSMOLOGY SURVEY: DATA ACQUISITION, PROCESSING, CALIBRATION, QUALITY DIAGNOSTICS, AND DATA RELEASE

    SciTech Connect

    Desai, S.; Mohr, J. J.; Semler, D. R.; Liu, J.; Bazin, G.; Zenteno, A.; Armstrong, R.; Bertin, E.; Allam, S. S.; Buckley-Geer, E. J.; Lin, H.; Tucker, D.; Barkhouse, W. A.; Cooper, M. C.; Hansen, S. M.; High, F. W.; Lin, Y.-T.; Ngeow, C.-C.; Rest, A.; Song, J.

    2012-09-20

    The Blanco Cosmology Survey (BCS) is a 60 night imaging survey of {approx}80 deg{sup 2} of the southern sky located in two fields: ({alpha}, {delta}) = (5 hr, -55 Degree-Sign ) and (23 hr, -55 Degree-Sign ). The survey was carried out between 2005 and 2008 in griz bands with the Mosaic2 imager on the Blanco 4 m telescope. The primary aim of the BCS survey is to provide the data required to optically confirm and measure photometric redshifts for Sunyaev-Zel'dovich effect selected galaxy clusters from the South Pole Telescope and the Atacama Cosmology Telescope. We process and calibrate the BCS data, carrying out point-spread function-corrected model-fitting photometry for all detected objects. The median 10{sigma} galaxy (point-source) depths over the survey in griz are approximately 23.3 (23.9), 23.4 (24.0), 23.0 (23.6), and 21.3 (22.1), respectively. The astrometric accuracy relative to the USNO-B survey is {approx}45 mas. We calibrate our absolute photometry using the stellar locus in grizJ bands, and thus our absolute photometric scale derives from the Two Micron All Sky Survey, which has {approx}2% accuracy. The scatter of stars about the stellar locus indicates a systematic floor in the relative stellar photometric scatter in griz that is {approx}1.9%, {approx}2.2%, {approx}2.7%, and {approx}2.7%, respectively. A simple cut in the AstrOmatic star-galaxy classifier spread{sub m}odel produces a star sample with good spatial uniformity. We use the resulting photometric catalogs to calibrate photometric redshifts for the survey and demonstrate scatter {delta}z/(1 + z) = 0.054 with an outlier fraction {eta} < 5% to z {approx} 1. We highlight some selected science results to date and provide a full description of the released data products.

  5. The Blanco Cosmology Survey: Data Acquisition, Processing, Calibration, Quality Diagnostics and Data Release

    SciTech Connect

    Desai, S.; Armstrong, R.; Mohr, J.J.; Semler, D.R.; Liu, J.; Bertin, E.; Allam, S.S.; Barkhouse, W.A.; Bazin, G.; Buckley-Geer, E.J.; Cooper, M.C.; /UC, Irvine /Lick Observ. /UC, Santa Cruz

    2012-04-01

    The Blanco Cosmology Survey (BCS) is a 60 night imaging survey of {approx}80 deg{sup 2} of the southern sky located in two fields: ({alpha},{delta})= (5 hr, -55{sup circ} and 23 hr, -55{sup circ}). The survey was carried out between 2005 and 2008 in griz bands with the Mosaic2 imager on the Blanco 4m telescope. The primary aim of the BCS survey is to provide the data required to optically confirm and measure photometric redshifts for Sunyaev-Zel'dovich effect selected galaxy clusters from the South Pole Telescope and the Atacama Cosmology Telescope. We process and calibrate the BCS data, carrying out PSF corrected model fitting photometry for all detected objects. The median 10{sigma} galaxy (point source) depths over the survey in griz are approximately 23.3 (23.9), 23.4 (24.0), 23.0 (23.6) and 21.3 (22.1), respectively. The astrometric accuracy relative to the USNO-B survey is {approx}45 milli-arcsec. We calibrate our absolute photometry using the stellar locus in grizJ bands, and thus our absolute photometric scale derives from 2MASS which has {approx}2% accuracy. The scatter of stars about the stellar locus indicates a systematics floor in the relative stellar photometric scatter in griz that is {approx}1.9%, {approx}2.2%, {approx}2.7% and {approx}2.7%, respectively. A simple cut in the AstrOmatic star-galaxy classifier produces a star sample with good spatial uniformity. We use the resulting photometric catalogs to calibrate photometric redshifts for the survey and demonstrate scatter {delta} z/(1+z)=0.054 with an outlier fraction {eta}<5% to z{approx}1. We highlight some selected science results to date and provide a full description of the released data products.

  6. DEBRIS DISKS OF MEMBERS OF THE BLANCO 1 OPEN CLUSTER

    SciTech Connect

    Stauffer, John R.; Noriega-Crespo, Alberto; Rebull, Luisa M.; James, David; Strom, Steven; Wolk, Scott; Carpenter, John M.; Barrado y Navascues, David; Backman, Dana; Cargile, P. A.

    2010-08-20

    We have used the Spitzer Space Telescope to obtain Multiband Imaging Photometer for Spitzer (MIPS) 24 {mu}m photometry for 37 members of the {approx}100 Myr old open cluster Blanco 1. For the brightest 25 of these stars (where we have 3{sigma} uncertainties less than 15%), we find significant mid-IR excesses for eight stars, corresponding to a debris disk detection frequency of about 32%. The stars with excesses include two A stars, four F dwarfs, and two G dwarfs. The most significant linkage between 24 {mu}m excess and any other stellar property for our Blanco 1 sample of stars is with binarity. Blanco 1 members that are photometric binaries show few or no detected 24 {mu}m excesses whereas a quarter of the apparently single Blanco 1 members do have excesses. We have examined the MIPS data for two other clusters of similar age to Blanco 1-NGC 2547 and the Pleiades. The AFGK photometric binary star members of both of these clusters also show a much lower frequency of 24 {mu}m excesses compared to stars that lie near the single-star main sequence. We provide a new determination of the relation between the V - K {sub s} color and K {sub s} - [24] color for main sequence photospheres based on Hyades members observed with MIPS. As a result of our analysis of the Hyades data, we identify three low mass Hyades members as candidates for having debris disks near the MIPS detection limit.

  7. Clinical applications of Matte Blanco's thinking.

    PubMed

    Sanchez-Cardenas, Michel

    2016-12-01

    Ignacio Matte Blanco (1908-1995) left very few specific indications about the applications of his theoretical notions to his interpretative style. The author shows how he uses Matte Blanco to formulate some of his own interpretations. The first part of the paper uses clinical vignettes to illustrate some of Matte-Blanco's concepts. Their theoretical vocabulary is thus made explicit. Then two psychoanalytic sessions are discussed at greater length, together with one from a therapy, so that the use of Matte-Blanco's notions can be seen clearly, allowing for a fresh perspective on areas of psychoanalytic theory, particularly dreams, psychopathology viewed according to the proportions of asymmetrical and symmetrical functioning in the patient's bi-logical mental system, the multidimensionality of the unconscious, the structural unconscious, the emotion-thought relationship, projective identification, resistance, and negative therapeutic reaction. The practical consequences of all this are elaborated, particularly the ensuing possibility of 'thinking with the patient' in the session. This enables the patient to introject a form of mental functioning in which the asymmetrical mode is not invaded by the symmetric mode (a parallel can be seen here with the Bionian concept of dialogue between the psychotic and non-psychotic parts of the mind).

  8. New depside from Citrus reticulata Blanco.

    PubMed

    Phetkul, Uraiwan; Phongpaichit, Souwalak; Watanapokasin, Ramida; Mahabusarakam, Wilawan

    2014-01-01

    A new depside, named depcitrus A (1), and 31 known compounds were isolated from the peels, leaves and branch barks of Citrus reticulata Blanco. Methylation of the high polarity fractions from the branch barks and peels gave one new methylated compound named depcitrus B (14) and five known compounds. Their structures were established based on spectroscopic evidence. The antioxidant, antimicrobial and cytotoxic activities of some pure compounds were evaluated.

  9. IDENTIFICATION OF THE LITHIUM DEPLETION BOUNDARY AND AGE OF THE SOUTHERN OPEN CLUSTER BLANCO 1

    SciTech Connect

    Cargile, P. A.; James, D. J.; Jeffries, R. D.

    2010-12-20

    We present results from a spectroscopic study of the very low mass members of the Southern open cluster Blanco 1 using the Gemini-N telescope. We obtained intermediate resolution (R {approx} 4400) GMOS spectra for 15 cluster candidate members with I {approx} 14-20 mag, and employed a series of membership criteria-proximity to the cluster's sequence in an I/I - K{sub s} color-magnitude diagram (CMD), kinematics agreeing with the cluster systemic motion, magnetic activity as a youth indicator-to classify 10 of these objects as probable cluster members. For these objects, we searched for the presence of the Li I 6708 A feature to identify the lithium depletion boundary (LDB) in Blanco 1. The I/I - K{sub s} CMD shows a clear mass segregation in the Li distribution along the cluster sequence; namely, all higher mass stars are found to be Li poor, while lower mass stars are found to be Li rich. The division between Li-poor and Li-rich (i.e., the LDB) in Blanco 1 is found at I = 18.78 {+-} 0.24 and I - K{sub s} = 3.05 {+-} 0.10. Using current pre-main-sequence evolutionary models, we determine an LDB age of 132 {+-} 24 Myr. Comparing our derived LDB age to upper-main-sequence isochrone ages for Blanco 1, as well as for other open clusters with identified LDBs, we find good chronometric consistency when using stellar evolution models that incorporate a moderate degree of convective core overshoot.

  10. KOSMOS and COSMOS: new facility instruments for the NOAO 4-meter telescopes

    NASA Astrophysics Data System (ADS)

    Martini, Paul; Elias, J.; Points, S.; Sprayberry, D.; Derwent, Mark A.; Gonzalez, Raymond; Mason, J. A.; O'Brien, T. P.; Pappalardo, D. P.; Pogge, Richard W.; Stoll, R.; Zhelem, R.; Daly, Phil; Fitzpatrick, M.; George, J. R.; Hunten, M.; Marshall, R.; Poczulp, Gary; Rath, S.; Seaman, R.; Trueblood, M.; Zelaya, K.

    2014-07-01

    We describe the design, construction and measured performance of the Kitt Peak Ohio State Multi-Object Spectrograph (KOSMOS) for the 4-m Mayall telescope and the Cerro Tololo Ohio State Multi-Object Spectrograph (COSMOS) for the 4-m Blanco telescope. These nearly identical imaging spectrographs are modified versions of the OSMOS instrument; they provide a pair of new, high-efficiency instruments to the NOAO user community. KOSMOS and COSMOS may be used for imaging, long-slit, and multi-slit spectroscopy over a 100 square arcminute field of view with a pixel scale of 0.29 arcseconds. Each contains two VPH grisms that provide R~2500 with a one arcsecond slit and their wavelengths of peak diffraction efficiency are approximately 510nm and 750nm. Both may also be used with either a thin, blue-optimized CCD from e2v or a thick, fully depleted, red-optimized CCD from LBNL. These instruments were developed in response to the ReSTAR process. KOSMOS was commissioned in 2013B and COSMOS was commissioned in 2014A.

  11. Telescope performance at the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Hill, John M.; Rothberg, Barry; Christou, Julian C.; Summers, Kellee R.; Summers, Douglas M.

    2016-07-01

    The Large Binocular Telescope Observatory is a collaboration between institutions in Arizona, Germany, Italy, Indiana, Minnesota, Ohio and Virginia. The telescope uses two 8.4-m diameter primary mirrors mounted sideby- side on the same AZ-EL mount to produce a collecting area equivalent to an 11.8-meter aperture. Adaptive optics loops are routinely closed with natural stars on both sides for sided and combined beam observations. Rayleigh laser guide stars provide GLAO seeing improvement. With the telescope now in operation for 10 years, we report on various statistics of telescope performance and seeing-limited image quality. Statistics of telescope performance are reported in the areas of off-axis guiding, open-loop mount tracking, active optics and vibration. Delivered image quality is reported as measured by the DIMM and several guide cameras as a function of other parameters such as temperature and wind velocity. Projects to improve image quality and dome seeing are underway.

  12. Mt. Blanco revisited: soil-geomorphic implications for the ages of the upper Cenozoic Blanco and Blackwater Draw Formations

    SciTech Connect

    Holliday, V.T.

    1988-06-01

    Mt. Blanco, on the eastern edge of the Southern High Plains of Texas, contains stratigraphic features significant in interpreting the late Cenozoic history of the region and the vertebrate paleontology of the Great Plains; however, the stratigraphic relations are confused in the literature or are unreported. Mt. Blanco is the type locality for the Blanco Formation and the Blanco Local Fauna, which occurs throughout North America and is the type fauna for the Blancan Land Mammal Age in North America. Here also occur exposures of the Blackwater Draw Formation, an extensive (120,000 km/sup 2/) eolian sheet that is the surficial cover of the region and contains the 1.4 Ma Guaje Ash and several buried soils. A reexamination of the section shows that (1) the Blackwater Draw Formation, an eolian deposit, contains three well-expressed buried soils (5 YR hues, argillic horizons greater than or equal to 1 m thick, Stages III and IV calcic horizons) and the similar regional surface soil (Paleustalf); (2) the Guaje Ash is within the lower Blackwater Draw Formation but is separated from the Blanco Formation, a lacustrine unit, by about 1 m of sediment, including the lowest buried soil; and (3) the lowest buried soil shows a Stage IV calcrete formed at the top of the Blanco Formation and the base of the Blackwater Draw Formation and probably took about 200 ka to form. These new data suggested that deposition of the type Blanco sediments may have ended by about 1.6 Ma or earlier. Since that time, the Blackwater Draw Formation has accumulated episodically; periods of nondeposition are characterized by landscape stability and pedogenesis.

  13. Backwater Flooding in San Marcos, TX from the Blanco River

    NASA Technical Reports Server (NTRS)

    Earl, Richard; Gaenzle, Kyle G.; Hollier, Andi B.

    2016-01-01

    Large sections of San Marcos, TX were flooded in Oct. 1998, May 2015, and Oct. 2015. Much of the flooding in Oct. 1998 and Oct. 2015 was produced by overbank flooding of San Marcos River and its tributaries by spills from upstream dams. The May 2015 flooding was almost entirely produced by backwater flooding from the Blanco River whose confluence is approximately 2.2 miles southeast of downtown. We use the stage height of the Blanco River to generate maps of the areas of San Marcos that are lower than the flood peaks and compare those results with data for the observed extent of flooding in San Marcos. Our preliminary results suggest that the flooding occurred at locations more than 20 feet lower than the maximum stage height of the Blanco River at San Marcos gage (08171350). This suggest that the datum for either gage 08171350 or 08170500 (San Marcos River at San Marcos) or both are incorrect. There are plans for the U.S. Army Corps of Engineers to construct a Blanco River bypass that will divert Blanco River floodwaters approximately 2 miles farther downstream, but the $60 million price makes its implementation problematic.

  14. Effects of thermal inhomogeneity on 4m class mirror substrates

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Kunisch, Clemens; Westerhoff, Thomas

    2016-07-01

    The new ground based telescope generation is moving to a next stage of performance and resolution. Mirror substrate material properties tolerance and homogeneity are getting into focus. The coefficient of thermal expansion (CTE) homogeneity is even more important than the absolute CTE. The error in shape of a mirror, even one of ZERODUR, is affected by changes in temperature, and by gradients in temperature. Front to back gradients will change the radius of curvature R that in turn will change the focus. Some systems rely on passive athermalization and do not have means to focus. Similarly changes in soak temperature will result in surface changes to the extent there is a non-zero coefficient of thermal expansion. When there are in-homogeneities in CTE, the mirror will react accordingly. Results of numerical experiments are presented discussing the impact of CTE in-homogeneities on the optical performance of 4 m class mirror substrates. Latest improvements in 4 m class ZERODUR CTE homogeneity and the thermal expansion metrology are presented as well.

  15. An improved determination of the lithium depletion boundary age of Blanco 1 and a first look on the effects of magnetic activity

    SciTech Connect

    Juarez, Aaron J.; Stassun, Keivan G.; Cargile, Phillip A.; James, David J.

    2014-11-10

    The lithium depletion boundary (LDB) is a robust method for accurately determining the ages of young clusters, but most pre-main-sequence models used to derive LDB ages do not include the effects of magnetic activity on stellar properties. In light of this, we present results from our spectroscopic study of the very-low-mass members of the southern open cluster Blanco 1 using the Gemini-North Telescope, program IDs: GN-2009B-Q-53 and GN-2010B-Q-96. We obtained Gemini Multi-Object Spectrograph spectra at intermediate resolution for cluster candidate members with I ≈ 13-20 mag. From our sample of 43 spectra, we find 14 probable cluster members by considering proximity to the cluster sequence in an I/I – K {sub s} color-magnitude diagram, agreement with the cluster's systemic radial velocity, and magnetic activity as a youth indicator. We systematically analyze the Hα and Li features and update the LDB age of Blanco 1 to be 126{sub −14}{sup +13} Myr. Our new LDB age for Blanco 1 shows remarkable coevality with the benchmark Pleiades open cluster. Using available empirical activity corrections, we investigate the effects of magnetic activity on the LDB age of Blanco 1. Accounting for activity, we infer a corrected LDB age of 114{sub −10}{sup +9} Myr. This work demonstrates the importance of accounting for magnetic activity on LDB inferred stellar ages, suggesting the need to reinvestigate previous LDB age determinations.

  16. ATST telescope mount: telescope of machine tool

    NASA Astrophysics Data System (ADS)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  17. Space Telescope.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    This pamphlet describes the Space Telescope, an unmanned multi-purpose telescope observatory planned for launch into orbit by the Space Shuttle in the 1980s. The unique capabilities of this telescope are detailed, the major elements of the telescope are described, and its proposed mission operations are outlined. (CS)

  18. The large binocular telescope.

    PubMed

    Hill, John M

    2010-06-01

    The Large Binocular Telescope (LBT) Observatory is a collaboration among institutions in Arizona, Germany, Italy, Indiana, Minnesota, Ohio, and Virginia. The telescope on Mount Graham in Southeastern Arizona uses two 8.4 m diameter primary mirrors mounted side by side. A unique feature of the LBT is that the light from the two Gregorian telescope sides can be combined to produce phased-array imaging of an extended field. This cophased imaging along with adaptive optics gives the telescope the diffraction-limited resolution of a 22.65 m aperture and a collecting area equivalent to an 11.8 m circular aperture. This paper describes the design, construction, and commissioning of this unique telescope. We report some sample astronomical results with the prime focus cameras. We comment on some of the technical challenges and solutions. The telescope uses two F/15 adaptive secondaries to correct atmospheric turbulence. The first of these adaptive mirrors has completed final system testing in Firenze, Italy, and is planned to be at the telescope by Spring 2010.

  19. Space Telescopes

    NASA Technical Reports Server (NTRS)

    Clampin, Mark; Flanagan, Kathryn A.

    2012-01-01

    Space telescopes have been a dominant force in astrophysics and astronomy over the last two decades. As Lyman Spitzer predicted in 1946, space telescopes have opened up much of the electromagnetic spectrum to astronomers, and provided the opportunity to exploit the optical performance of telescopes uncompromised by the turbulent atmosphere. This special section of Optical Engineering is devoted to space telescopes. It focuses on the design and implementation of major space observatories from the gamma-ray to far-infrared, and highlights the scientific and technical breakthroughs enabled by these telescopes. The papers accepted for publication include reviews of major space telescopes spanning the last two decades, in-depth discussions of the design considerations for visible and x-ray telescopes, and papers discussing concepts and technical challenges for future space telescopes.

  20. Fawn Creek Government No. 1. Project Rio Blanco. Final report

    SciTech Connect

    Not Available

    1986-08-01

    Project Rio Blanco was a joint Government-industry experiment using nuclear explosives to stimulate the flow of natural gas from low-permeability formations which could not be economically produced through conventional methods. The project consisted of the simultaneous detonation of three nuclear explosives on May 17, 1973, in a 7000-foot well in northwestern Colorado (Fig. 1). Gas production testing and project evaluation continued through June 1976. The site cleanup and restoration planning phase began in December 1975, and was concluded with the issuance of an operational plan, Project Rio Blanco Site Cleanup and Restoration Plan, NVO-173, in May 1976. Actual site restoration activities were conducted during the period from July to November 1976. Project Rio Blanco Site Restoration Final Report, NVO-183, January 1978, summarizes the activities throughout the restoration period and describes the final site status. The subsurface plugging of Fawn Creek Government No. 1 well commenced on July 16, 1986, and was completed on July 17, 1986. The details of the plugging operation are contained in Appendix B and the final status as plugged and abandoned is shown in Figure 3. The general method was to use the in-place gas production tubing as a working string to set a cast iron bridge plug in the 5 1/2 in. casing at 5030 feet, and to pump an 80-foot cement plug on top of the cast iron bridge plug. The casing was then perforated at selected points to place the required cement plugs. A total of about 266 cubic feet of cement slurry was pumped to place the cement plugs. The 10 3/4 in. surface casing and the 5 1/2 in. casing were cut off below the ground level and a steel plate was welded on the top of the 10 3/4 in. casing. A permanent marker was welded to the steel plate.

  1. Letter Report: Rio Blanco Sampling of Proximate Producing Natural Gas Wells

    SciTech Connect

    Clay Cooper; Craig Shirley

    2004-04-01

    Two wells proximate to the Rio Blanco gas stimulation test were sampled and the gas analyzed. The samples from two wells showed no tritium above the detection limit concentrations of 10 and 12.4 (TU), respectively. The analytical results from the gas production wells show no impact from the Rio Blanco nuclear test

  2. Symmetry: Matte-Blanco's theory and Borges's fiction.

    PubMed

    Priel, B

    1994-08-01

    Matte-Blanco's theory reformulates the Freudian unconscious from the perspective of mathematical set theory, pointing to symmetric logic as the distinctive mark of the unconscious. Borges's fictional creations are presented as thematising and dramatising, in the act of reading, Matte-Blanco's main concepts of symmetry, bi-logic and the fundamental antinomy of human beings. This study's main thesis is that aesthetic experiences, such as the reading of Borges's literary creation, may allow for a broader experience of symmetrical being than the one conveyed through everyday language. In this context, the analysis of some of Borge's themes and main stylistic devices seems to shed light on bi-logic, from the perspective of the reader's experience and creation of meaning. Borge's characteristic use of literary allusions, as well as the suggested interchangeability of reader, writer and character, are understood as devices which increase the reader's awareness of relations of resemblance, destroying chronology and differences, uniting the text and the reference. From this perspective, a main effect of Borges's creation stems from an enhanced awareness of the interplay of symmetry and asymmetry, and the problem of the translation of symmetric into asymmetric being. Borges's stories effect in the reader an experience of infiniteness, timelessness, multidimensionality and assimilation of the proper part to the whole, as the background of the theme of (asymmetric) story-telling.

  3. Telescope Equipment

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Renaissance Telescope for high resolution and visual astronomy has five 82-degree Field Tele-Vue Nagler Eyepieces, some of the accessories that contribute to high image quality. Telescopes and eyepieces are representative of a family of optical equipment manufactured by Tele-Vue Optics, Inc.

  4. SNAP Telescope

    NASA Astrophysics Data System (ADS)

    Lampton, Michael L.; Akerlof, Carl W.; Aldering, Greg; Amanullah, R.; Astier, Pierre; Barrelet, E.; Bebek, Christopher; Bergstrom, Lars; Bercovitz, John; Bernstein, G.; Bester, Manfred; Bonissent, Alain; Bower, C. R.; Carithers, William C., Jr.; Commins, Eugene D.; Day, C.; Deustua, Susana E.; DiGennaro, Richard S.; Ealet, Anne; Ellis, Richard S.; Eriksson, Mikael; Fruchter, Andrew; Genat, Jean-Francois; Goldhaber, Gerson; Goobar, Ariel; Groom, Donald E.; Harris, Stewart E.; Harvey, Peter R.; Heetderks, Henry D.; Holland, Steven E.; Huterer, Dragan; Karcher, Armin; Kim, Alex G.; Kolbe, William F.; Krieger, B.; Lafever, R.; Lamoureux, J.; Levi, Michael E.; Levin, Daniel S.; Linder, Eric V.; Loken, Stewart C.; Malina, Roger; Massey, R.; McKay, Timothy; McKee, Shawn P.; Miquel, Ramon; Mortsell, E.; Mostek, N.; Mufson, Stuart; Musser, J. A.; Nugent, Peter E.; Oluseyi, Hakeem M.; Pain, Reynald; Palaio, Nicholas P.; Pankow, David H.; Perlmutter, Saul; Pratt, R.; Prieto, Eric; Refregier, Alexandre; Rhodes, J.; Robinson, Kem E.; Roe, N.; Sholl, Michael; Schubnell, Michael S.; Smadja, G.; Smoot, George F.; Spadafora, A.; Tarle, Gregory; Tomasch, Andrew D.; von der Lippe, H.; Vincent, R.; Walder, J.-P.; Wang, Guobin

    2002-12-01

    The SuperNova/Acceleration Probe (SNAP) mission will require a two-meter class telescope delivering diffraction limited images spanning a one degree field in the visible and near infrared wavelength regime. This requirement, equivalent to nearly one billion pixel resolution, places stringent demands on its optical system in terms of field flatness, image quality, and freedom from chromatic aberration. We discuss the advantages of annular-field three-mirror anastigmat (TMA) telescopes for applications such as SNAP, and describe the features of the specific optical configuration that we have baselined for the SNAP mission. We discuss the mechanical design and choice of materials for the telescope. Then we present detailed ray traces and diffraction calculations for our baseline optical design. We briefly discuss stray light and tolerance issues, and present a preliminary wavefront error budget for the SNAP Telescope. We conclude by describing some of tasks to be carried out during the upcoming SNAP research and development phase.

  5. SNAP telescope

    SciTech Connect

    Lampton, Michael L.; Akerlof, C.W.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Bercovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers Jr., W.C.; Commins, E.D.; Day, C.; Deustua, S.E.; DiGennaro, R.; Ealet, A.; Ellis,R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar,A.; Groom, D.; Harris, S.E.; Harvey, P.R.; Heetderks, H.D.; Holland,S.E.; Huterer, D.; Karcher, A.; Kim, A.G.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Levi, M.E.; Levin, D.S.; Linder, E.V.; Loken,S.C.; Malina, R.; Massey, R.; McKay, T.; McKee, S.P.; Miquel, R.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi,H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto,E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tarle, G.; Tomasch,A.; von der Lippe, H.; Vincent, R.; Walder, J.-P.; Wang, G.; Wang, G.

    2002-07-29

    The SuperNova/Acceleration Probe (SNAP) mission will require a two-meter class telescope delivering diffraction limited images spanning a one degree field in the visible and near infrared wavelength regime. This requirement, equivalent to nearly one billion pixel resolution, places stringent demands on its optical system in terms of field flatness, image quality, and freedom from chromatic aberration. We discuss the advantages of annular-field three-mirror anastigmat (TMA) telescopes for applications such as SNAP, and describe the features of the specific optical configuration that we have baselined for the SNAP mission. We discuss the mechanical design and choice of materials for the telescope. Then we present detailed ray traces and diffraction calculations for our baseline optical design. We briefly discuss stray light and tolerance issues, and present a preliminary wavefront error budget for the SNAP Telescope. We conclude by describing some of tasks to be carried out during the upcoming SNAP research and development phase.

  6. Teaching Telescopes

    ERIC Educational Resources Information Center

    Reid, John S.

    1974-01-01

    Discusses experience of teaching optical experiments with emphasis upon the student's design and construction of refracting and reflecting telescopes. Concludes that the student's interest and acquired knowledge are greatly enhanced through the use of realistic experiments. (CC)

  7. Space Telescopes

    DTIC Science & Technology

    2010-01-01

    the Kirkpatrick–Baez type systems and the focussing colli- mator or ‘ lobster -eye’ systems. 1http://henke.lbl.gov/optical constants/ 176 9. Space...mirror requires a longer telescope. Focussing collimator or ‘ lobster -eye’ telescopes The Wolter and the Kirkpatrick–Baez systems have in common a...9.13: Flat-mirror two-dimensional focussing collimator or detached lobster - eye configuration (Schmidt 1975). within one tube but from adjacent walls a

  8. Seismotectonics of the Blanco Transform Fault Zone (Invited)

    NASA Astrophysics Data System (ADS)

    Braunmiller, J.; Nabelek, J.

    2013-12-01

    The Blanco Transform Fault Zone (BTFZ) forms the Pacific-Juan de Fuca plate boundary offshore Oregon connecting the Juan de Fuca and Gorda ridges. The BTFZ is morphologically characterized by several strike-slip fault segments separated by extensional step overs and a short intra-transform spreading ridge in the central part of the BTFZ. The plate motion rate along the 350-km long transform system is moderate at 56 mm/yr. The combination of tectonically diverse targets and high seismicity make the BTFZ a prime target to study the seismotectonics of an oceanic transform fault system. Using land-based seismic data, we relocated seismicity and obtained seismic moment tensors (fault plane solutions, seismic moment, depth) of earthquakes of magnitude Mw 4.5 and larger. The results reveal a strong contrast in seismic coupling, maximum earthquake size, earthquake frequency-size distribution and width of the active plate boundary zone. The Blanco Ridge transform segment along the eastern BTFZ experiences the largest earthquakes (Mw=6.5), which contribute the bulk of seismic moment release along this fully coupled, geometrically relatively simple segment with narrowly focused seismicity. In contrast, seismicity is more widely distributed along the evolving western BTFZ indicating several active transform fault strands; earthquake size reached Mw=6.0-6.2 and seismicity accounts only for a small percentage of the plate motions suggesting significant aseismic slip or abundant small earthquakes undetected by land seismic networks. Earthquakes within the extensional basins have normal faulting mechanisms, do not exceed about Mw=5.5 and account only for a small percentage of the plate motions. Normal fault trends in the intra-transform spreading ridge are perpendicular to the overall orientation of the BTFZ; in other basins, fault trends are at a 45-degree angle indicating pull-apart deformation. To improve resolution of the tectonics, seismic behavior and structure of the BTFZ

  9. EURO4M: monitoring weather and climate extremes in Europe

    NASA Astrophysics Data System (ADS)

    Klein Tank, A. M. G.

    2010-09-01

    This paper presents a new project called EURO4M: European Reanalysis and Observations for Monitoring (www.euro4m.eu), which is funded under the European Union FP7 programme. The ambitious plans in this project will be illustrated by examples from ongoing work and some early results. EURO4M sets out to develop the capacity for, and deliver the best possible and most complete (gridded) climate change time series and monitoring services covering all of Europe. The focus is on weather and climate extremes. Key questions include: What changes in weather and climate extremes do we observe in Europe over recent decades? How certain are we about these changes? Are our monitoring systems adequate to address these questions? EURO4M addresses the situation of fragmentation and scarcity of long-term climate change monitoring information for Europe. The project will extend, in a cost effective manner, European capacity to systematically monitor climate variability and change on a range of space and time scales. It will do so by combining seamlessly two different but complementary approaches: regional observation datasets of GCOS Essential Climate Variables (ECVs) and newly developed regional reanalysis. EURO4M will reach out with innovative and integrated data products and services to policy-makers, researchers, planners and citizens at European, national and local levels. This will directly address the needs of, for instance, the European Environment Agency for their environmental assessment reports - and even provide online reporting during emerging extreme events. EURO4M intends to become Europe's primary source of timely and reliable information about the state of the climate. The project has the potential to evolve into a future GMES service on climate change monitoring that is fully complimentary and supporting the existing operational GMES services. The EURO4M consortium consists of 9 partners from 8 countries. The project will run from 1 April 2010 until 31 March 2014

  10. Giant Magellan Telescope: overview

    NASA Astrophysics Data System (ADS)

    Johns, Matt; McCarthy, Patrick; Raybould, Keith; Bouchez, Antonin; Farahani, Arash; Filgueira, Jose; Jacoby, George; Shectman, Steve; Sheehan, Michael

    2012-09-01

    The Giant Magellan Telescope (GMT) is a 25-meter optical/infrared extremely large telescope that is being built by an international consortium of universities and research institutions. It will be located at the Las Campanas Observatory, Chile. The GMT primary mirror consists of seven 8.4-m borosilicate honeycomb mirror segments made at the Steward Observatory Mirror Lab (SOML). Six identical off-axis segments and one on-axis segment are arranged on a single nearly-paraboloidal parent surface having an overall focal ratio of f/0.7. The fabrication, testing and verification procedures required to produce the closely-matched off-axis mirror segments were developed during the production of the first mirror. Production of the second and third off-axis segments is underway. GMT incorporates a seven-segment Gregorian adaptive secondary to implement three modes of adaptive-optics operation: natural-guide star AO, laser-tomography AO, and ground-layer AO. A wide-field corrector/ADC is available for use in seeing-limited mode over a 20-arcmin diameter field of view. Up to seven instruments can be mounted simultaneously on the telescope in a large Gregorian Instrument Rotator. Conceptual design studies were completed for six AO and seeing-limited instruments, plus a multi-object fiber feed, and a roadmap for phased deployment of the GMT instrument suite is being developed. The partner institutions have made firm commitments for approximately 45% of the funds required to build the telescope. Project Office efforts are currently focused on advancing the telescope and enclosure design in preparation for subsystem- and system-level preliminary design reviews which are scheduled to be completed in the first half of 2013.

  11. Industrial hygiene sampling at Rio Blanco oil shale facility

    SciTech Connect

    Gonzales, M.; Garcia, L.L.; Vigil, E.A.; Royer, G.W.; Tillery, M.I.; Ettinger, H.J.

    1982-02-01

    The Rio Blanco Oil Shale Company (RBOSC) facility, in its early stages of development, provided the unique opportunity to sample a Modified In-Situ (MIS) operation during the preparation phase of the first retort, during pyrolysis, and during preparation of a subsequent retort. Industrial hygiene measurements were made in the lowest (G) level (835 feet) of the mine, prior to and during the first 30 days of the Retort Zero burn. These measurements were designed to define and characterize potential inhalation exposures associated with the MIS shale oil recovery process. This information, along with bulk samples of oil shale materials and products, was provided for use in laboratory toxicological studies. Gas and vapor samples of the compounds of interest were all much below threshold limit values (TLV) both before and after retort zero ignition although slightly elevated after ignition. Airborne dust concentrations ranged from 0.1 to 2.9 mg/m/sup 3/ at sizes of 0.3- to 5.2-..mu..m mass median aerodynamic diameter and alpha quartz content ranged from 1.1 to 4.4 percent. Polyaromatic hydrocarbons were found in relatively low concentrations with the anthracene/phenanthrene mixture at the highest level of 0.6 ..mu..g/m/sup 3/. The wetness and ventilation in this mine apparently helped control airborne contaminant concentrations below their TLV values.

  12. Evaluating gyrochronology on the zero-age-main-sequence: rotation periods in the southern open cluster Blanco 1 from the Kelt-South survey

    SciTech Connect

    Cargile, P. A.; Pepper, J.; Siverd, R.; Stassun, K. G.; James, D. J.; Kuhn, R. B.

    2014-02-10

    We report periods for 33 members of Blanco 1 as measured from Kilodegree Extremely Little Telescope-South light curves, the first reported rotation periods for this benchmark zero-age-main-sequence open cluster. The distribution of these stars spans from late-A or early-F dwarfs to mid-K with periods ranging from less than a day to ∼8 days. The rotation period distribution has a morphology similar to the coeval Pleiades cluster, suggesting the universal nature of stellar rotation distributions. Employing two different gyrochronology methods, we find an age of 146{sub −14}{sup +13} Myr for the cluster. Using the same techniques, we infer an age of 134{sub −10}{sup +9} Myr for the Pleiades measured from existing literature rotation periods. These rotation-derived ages agree with independently determined cluster ages based on the lithium depletion boundary technique. Additionally, we evaluate different gyrochronology models and quantify levels of agreement between the models and the Blanco 1/Pleiades rotation period distributions, including incorporating the rotation distributions of clusters at ages up to 1.1 Gyr. We find the Skumanich-like spin-down rate sufficiently describes the rotation evolution of stars hotter than the Sun; however, we find cooler stars rotating faster than predicted by a Skumanich law, suggesting a mass dependence in the efficiency of stellar angular momentum loss rate. Finally, we compare the Blanco 1 and Pleiades rotation period distributions to available nonlinear angular momentum evolution models. We find they require a significant mass dependence on the initial rotation rate of solar-type stars to reproduce the observed range of rotation periods at a given stellar mass and are furthermore unable to predict the observed over-density of stars along the upper envelope of the clusters' rotation distributions.

  13. Hubble Space Telescope satellite

    NASA Technical Reports Server (NTRS)

    Mitchell, R. E.

    1985-01-01

    The Hubble Space Telescope, named for the American astronomer Edwin Powell Hubble, will be the largest and most powerful astronomical instrument ever orbited. Placed above the obscuring effects of the earth's atmosphere in a 600-km orbit, this remotely-controlled, free-flying satellite observatory will expand the terrestrial-equivalent resolution of the universe by a factor of seven, or a volumetric factor of 350. This telescope has a 2.4-m primary mirror and can accommodate five scientific instruments (cameras, spectrographs and photometers). The optics are suitable for a spectral range from 1100 angstrom to 1 mm wavelength. With a projected service life of fifteen years, the spacecraft can be serviced on-orbit for replacement of degraded systems, to insert advanced scientific instruments, and to reboost the telescope from decayed altitudes. The anticipated image quality will be a result of extremely precise lambda/20 optics, stringent cleanliness, and very stable pointing: jitter will be held to less than 0.01 arcsecond for indefinite observation periods, consistent with instrument apertures as small as 0.1 arcsecond.

  14. Swift J1822.3-1606: Optical spectroscopy of the counterpart candidates from the 10.4m GTC

    NASA Astrophysics Data System (ADS)

    de Ugarte Postigo, A.; Munoz-Darias, T.

    2011-07-01

    We have performed optical spectroscopy of the two objects (S1 and S2; ATEL #3496, #3502) present within the Swift/XRT error circle of the Soft Gamma-ray Repeater (SGR) candidate, Swift J1822.3-1606 (ATEL #3488, #3489, #3490, #3491, #3493, #3501, #3503). Observations were performed on July 20, 2011 using the OSIRIS spectrograph at the 10.4m Gran Telescopio de Canarias (GTC) telescope in La Palma, Spain.

  15. Why systems engineering on telescopes?

    NASA Astrophysics Data System (ADS)

    Swart, Gerhard P.; Meiring, Jacobus G.

    2003-02-01

    Although Systems Engineering has been widely applied to the defence industry, many other projects are unaware of its potential benefits when correctly applied, assuming that it is an expensive luxury. It seems that except in a few instances, telescope projects are no exception, prompting the writing of this paper. The authors postulate that classical Systems Engineering can and should be tailored, and then applied to telescope projects, leading to cost, schedule and technical benefits. This paper explores the essence of Systems Engineering and how it can be applied to any complex development project. The authors cite real-world Systems Engineering examples from the Southern African Large Telescope (SALT). The SALT project is the development and construction of a 10m-class telescope at the price of a 4m telescope. Although SALT resembles the groundbreaking Hobby-Eberly Telescope (HET) in Texas, the project team are attempting several challenging changes to the original design, requiring a focussed engineering approach and discernment in the definition of the telescope requirements. Following a tailored Systems Engineering approach on this project has already enhanced the quality of decisions made, improved the fidelity of contractual specifications for subsystems, and established criteria testing their performance. Systems Engineering, as applied on SALT, is a structured development process, where requirements are formally defined before the award of subsystem developmental contracts. During this process conceptual design, modeling and prototyping are performed to ensure that the requirements were realistic and accurate. Design reviews are held where the designs are checked for compliance with the requirements. Supplier factory and on-site testing are followed by integrated telescope testing, to verify system performance against the specifications. Although the SALT project is still far from completion, the authors are confident that the present benefits from

  16. Telescopic hindsight

    NASA Astrophysics Data System (ADS)

    Cox, Laurence

    2014-08-01

    In reply to the physicsworld.com blog post "Cosmic blunders that have held back science" (2 June, http://ow.ly/xwC7C), about an essay by the astronomer Avi Loeb in which he criticized, among others, his Harvard University predecessor Edward Pickering, who claimed in 1909 that telescopes had reached their optimal size.

  17. Infrared telescope

    NASA Technical Reports Server (NTRS)

    Karr, G. R.; Hendricks, J. B.

    1985-01-01

    The development of the Infrared Telescope for Spacelab 2 is discussed. The design, development, and testing required to interface a stationary superfluid helium dewar with a scanning cryostate capable of operating in the zero-g environment in the space shuttle bay is described.

  18. Organic solute profile of water from Rio Blanco Retort 1

    SciTech Connect

    Poulson, R.E.; Clark, J.A.; Borg, H.M.

    1985-12-01

    Two water samples were taken from the Rio Blanco Oil Shale Company's Retort 1 more than three years after shutdown of the retort burn. The retort had received considerable flushing. These water samples were screened and profiled chromatographically to ascertain the character of the 20 to 30 ppM total organic carbon remaining in each. The waters were found to contain only organophilic solutes above the one-part-per-billion level. Special detection methods with part-per-billion detection limits for selected hydrophilic indicators proved negative for those indicators. Selected indicators ranged from the most hydrophilic (alkanoic acids, alkylamines, and amides) to the least (phenol). The principal species readily identified by either gas chromatography or reversed-phase liquid chromatography were the light polyalkylpyridines and the polyalkylphenols. The two principal individual compounds detected in each water were 2,4,6-trimethylpyridine and 2,3,5-trimethylphenol. The approximate concentrations of each were 200 ppb for a sample taken from the retort center and 400 ppb for a sample taken from the bottom level. It appears that there is a residual oil reservoir in the retort serving as a source of organophilic solutes. Any organic material now passing out of the retort would be highly organophilic and predisposed to deposit on even slightly hydrophobic surfaces such as oil shale or retorted oil shale. Based on the observations in this report, hydrophilic organic solutes may be presumed to be the key indicators for the interaction between oil shale in situ retort effluent and the surrounding environment. Timely monitoring of such sites and development of highly sensitive detection techniques for this class of materials would permit accurate description of migration pathways. 9 refs., 5 figs., 1 tab.

  19. Selecting Your First Telescope.

    ERIC Educational Resources Information Center

    Harrington, Sherwood

    1982-01-01

    Designed for first-time telescope purchasers, provides information on how a telescope works; major telescope types (refractors, reflectors, compound telescopes); tripod, pier, altazimuth, and equatorial mounts; selecting a telescope; visiting an astronomy club; applications/limitations of telescope use; and tips on buying a telescope. Includes a…

  20. GISOT: a giant solar telescope

    NASA Astrophysics Data System (ADS)

    Hammerschlag, Robert H.; von der Lühe, Oskar F.; Bettonvil, Felix C.; Jägers, Aswin P.; Snik, Frans

    2004-10-01

    A concept is presented for an extremely large high-resolution solar telescope with an aperture of 11 m and diffraction limited for visual wavelengths. The structure of GISOT will be transparent to wind and placed on a transparent stiff tower. For efficient wind flushing, all optics, including the primary mirror, will be located above the elevation axis. The aperture will be of the order of 11 m, not rotatively symmetrical, but of an elongated shape with dimensions 11 x 4 m. It consists of a central on-axis 4 m mirror with on both sides 3 pieces of 2 m mirrors. The optical layout will be kept simple to guarantee quality and minimize stray light. A Coudé room for instruments is planned below the telescope. The telescope will not be housed in a dome-like construction, which interferes with the open principle. Instead the telescope will be protected by a foldable tent construction with a diameter of the order of 30 m, which doesn"t form any obstruction during observations, but can withstand the severe weather circumstances on mountain sites. Because of the nature of the solar scene, extremely high resolution in only one dimension is sufficient to solve many exciting problems in solar physics and in this respect the concept of GISOT is very promising.

  1. Sequences controlling histone H4 mRNA abundance.

    PubMed Central

    Capasso, O; Bleecker, G C; Heintz, N

    1987-01-01

    The post-transcriptional regulation of histone mRNA abundance is manifest both by accumulation of histone mRNA during the S phase, and by the rapid degradation of mature histone mRNA following the inhibition of DNA synthesis. We have constructed a comprehensive series of substitution mutants within a human H4 histone gene, introduced them into the mouse L cell genome, and analyzed their effects on the post-transcriptional control of the H4 mRNA. Our results demonstrate that most of the H4 mRNA is dispensable for proper regulation of histone mRNA abundance. However, recognition of the 3' terminus of the mature H4 mRNA is critically important for regulating its cytoplasmic half-life. Thus, this region of the mRNA functions both in the nucleus as a signal for proper processing of the mRNA terminus, and in the cytoplasm as an essential element in the control of mRNA stability. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:3608993

  2. Metallicity Effects on Stellar Magnetic Activity: Blanco 1 as a Test Case

    NASA Technical Reports Server (NTRS)

    Harnden, F. R., Jr.; Mushotzky, Richard F. (Technical Monitor)

    2003-01-01

    We present X-ray Luminosity Distributions (XLDs) of late-type members (dF, dG, dK, dM) of the Blanco 1 cluster, based on ROSAT-HRI data and new astrometric-photometric membership obtained from the GSC-II project. For the first time we present the XLD of dM stars of this cluster. The high metallicity of Blanco 1 allows us to investigate the role of chemical composition on the coronal emission of late-type stars. Comparison between X-ray Luminosity Distributions of Blanco 1 and Pleiades, NGC2516 and alpha Per suggests a possible metallicity effect in dM stars.

  3. A search for flares and mass ejections on young late-type stars in the open cluster Blanco-1

    NASA Astrophysics Data System (ADS)

    Leitzinger, M.; Odert, P.; Greimel, R.; Korhonen, H.; Guenther, E. W.; Hanslmeier, A.; Lammer, H.; Khodachenko, M. L.

    2014-09-01

    We present a search for stellar activity (flares and mass ejections) in a sample of 28 stars in the young open cluster Blanco-1. We use optical spectra obtained with European Southern Observatory's Visible Multi-Object Spectrograph installed on the Very Large Telescope. From the total observing time of ˜5 h, we find four Hα flares but no distinct indication of coronal mass ejections (CMEs) on the investigated dK-dM stars. Two flares show `dips' in their light curves right before their impulsive phases which are similar to previous discoveries in photometric light curves of active dMe stars. We estimate an upper limit of <4 CMEs per day per star and discuss this result with respect to a empirical estimation of the CME rate of main-sequence stars. We find that we should have detected at least one CME per star with a mass of ≤ 3 × 1017 g depending on the star's X-ray luminosity, but the estimated Hα fluxes associated with these masses are below the detection limit of our observations. We conclude that the parameter which mainly influences the detection of stellar CMEs using the method of Doppler-shifted emission caused by moving plasma is not the spectral resolution/velocity but the flux/mass of the CME.

  4. Robotic Telescopes

    NASA Astrophysics Data System (ADS)

    Akerlof, C. W.

    2001-05-01

    Since the discovery of gamma-ray bursts, a number of groups have attempted to detect correlated optical transients from these elusive objects. Following the flight of the BATSE instrument on the Compton Gamma-Ray Observatory in 1991, a prompt burst coordinate alert service, BACODINE (now GCN) became available to ground-based telescopes. Several instruments were built to take advantage of this facility, culminating in the discovery of a bright optical flash associated with GRB990123. To date, that single observation remains unique - no other prompt flashes have been seen for a dozen or so other bursts observed with comparably short response times. Thus, GRB prompt optical luminosities may be considerably dimmer than observed for the GRB990123 event or even absent altogether. A new generation of instruments is prepared to explore these possibilties using burst coordinates provided by HETE-2, Swift, Ballerina, Agile and other satellite missions. These telescopes have response times as short as a few seconds and reach limiting magnitudes, m_v 20, guaranteeing a sensitivity sufficient to detect the afterglow many hours later. Results from these experiments should provide important new data about the dynamics and locale of GRBs.

  5. United States Atlas of Optical Telescopes. [2nd Edition

    NASA Technical Reports Server (NTRS)

    Meszaros, Stephen Paul

    1987-01-01

    This atlas shows the locations of and gives information about optical telescopes used for astronomical research in the United States as of late 1986. Those instruments with mirror or lens diameters of 3/4 m (approx. 30 inches) and larger are included. These telescopes are concentrated in the Southwest, on the West Coast and on the island of Hawaii.

  6. Holographic telescope

    NASA Astrophysics Data System (ADS)

    Odhner, Jefferson E.

    2016-07-01

    Holographic optical elements (HOEs) work on the principal of diffraction and can in some cases replace conventional optical elements that work on the principal of refraction. An HOE can be thinner, lighter, can have more functionality, and can be lower cost than conventional optics. An HOE can serve as a beam splitter, spectral filter, mirror, and lens all at the same time. For a single wavelength system, an HOE can be an ideal solution but they have not been widely accepted for multispectral systems because they suffer from severe chromatic aberration. A refractive optical system also suffers from chromatic aberration but it is generally not as severe. To color correct a conventional refractive optical system, a flint glass and a crown glass are placed together such that the color dispersion of the flint and the crown cancel each other out making an achromatic lens (achromat) and the wavelengths all focus to the same point. The color dispersion of refractive lenses and holographic lenses are opposite from each other. In a diffractive optical system, long wavelengths focus closer (remember for HOEs: RBM "red bends more") than nominal focus while shorter wavelengths focus further out. In a refractive optical system, it is just the opposite. For this reason, diffractives can be incorporated into a refractive system to do the color correction and often cut down on the number of optical elements used [1.]. Color correction can also be achieved with an all-diffractive system by combining a holographic optical element with its conjugate. In this way the color dispersion of the first holographic optical element can be cancelled by the color dispersion of the second holographic optic. It is this technique that will be exploited in this paper to design a telescope made entirely of holographic optical elements. This telescope could be more portable (for field operations) the same technique could be used to make optics light enough for incorporation into a UAV.

  7. Investigation of charge balance in ion accelerator TEMP-4M

    NASA Astrophysics Data System (ADS)

    Khailov, I. P.; Pak, V. G.

    2014-10-01

    The paper presents the results of a study on the balance of charge in accelerator TEMP-4M operating in double-pulse mode with resistance load and ion diode. Crucially, it was found, that during the switching there is no losses of accumulated charge. It means, that all accumulated charge transferred to the load. However when the charge is transferred from the Marx generator to Blumlein line the half of accumulated charge is lost. Calibration of diagnostic equipment showed a good agreement between the calculated and experimental values of voltage and current. It means, that our diagnostic system is correct for registration parameters of the ion accelerator. A distinctive feature of the ion accelerators with self-magnetically insulated diode is that there is no need to use additional energy source for the creation of an external magnetic field. That's why the efficiency of ion diodes with an external magnetic field is not more than 10-15%. The efficiency of energy conversion in self-magnetically insulated diodes will be determined by not only the efficiency of the diode, but the energy losses in the units of the accelerator. The aim of the researches is the analysis of the balance of charge in units of the ion beams pulsed generator and definition of the most significant channels of energy loss.

  8. BOMBOLO: a Multi-Band, Wide-field, Near UV/Optical Imager for the SOAR 4m Telescope

    NASA Astrophysics Data System (ADS)

    Angeloni, R.; Guzmán, D.; Puzia, T. H.; Infante, L.

    2014-10-01

    BOMBOLO is a new multi-passband visitor instrument for SOAR observatory. The first fully Chilean instrument of its kind, it is a three-arms imager covering the near-UV and optical wavelengths. The three arms work simultaneously and independently, providing synchronized imaging capability for rapid astronomical events. BOMBOLO will be able to address largely unexplored events in the minute-to-second timescales, with the following leading science cases: 1) Simultaneous Multiband Flickering Studies of Accretion Phenomena; 2) Near UV/Optical Diagnostics of Stellar Evolutionary Phases; 3) Exoplanetary Transits and 4) Microlensing Follow-Up. BOMBOLO optical design consists of a wide field collimator feeding two dychroics at 390 and 550 nm. Each arm encompasses a camera, filter wheel and a science CCD230-42, imaging a 7 x 7 arcmin field of view onto a 2k x 2k image. The three CCDs will have different coatings to optimise the efficiencies of each camera. The detector controller to run the three cameras will be Torrent (the NOAO open-source system) and a PanView application will run the instrument and produce the data-cubes. The instrument is at Conceptual Design stage, having been approved by the SOAR Board of Directors as a visitor instrument in 2012 and having been granted full funding from CONICYT, the Chilean State Agency of Research, in 2013. The Design Phase is starting now and will be completed in late 2014, followed by a construction phase in 2015 and 2016A, with expected Commissioning in 2016B and 2017A.

  9. May 2012 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    SciTech Connect

    2012-12-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 9-10, 2012, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outside the site boundaries have not been affected by project-related contaminants.

  10. May 2011 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    SciTech Connect

    2011-12-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 16-17, 2011, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry, and for tritium using the conventional method. Tritium was not measured using the enrichment method because the EPA laboratory no longer offers that service. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outside the boundaries have not been affected by project-related contaminants.

  11. Surface radioactivity at the plowshare gas-stimulation test sites: Gasbuggy, Rulison, Rio Blanco

    SciTech Connect

    Faller, S.H.

    1995-01-01

    A surface soil characterization was conducted at three former underground nuclear test sites: Gasbuggy, New Mexico; Rulison, Colorado; and Rio Blanco, Colorado. The abundances of man-made and naturally occurring radionuclides were determined with their contributions to total exposure rate. CS-137 was the only man-made radionuclide detected in the study and was highest at undisturbed locations with little forest litter cover. The amounts observed are consisted with radiocesium fallout concentration observed in other parts of the United States.

  12. Rio Blanco, Colorado, Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2009

    SciTech Connect

    2009-12-21

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rio Blanco, Colorado, Site, for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 13 and 14, 2009. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectroscopy and tritium using the conventional and enriched methods.

  13. 2015 Long-Term Hydrologic Monitoring Program Sampling and Analysis Results at Rio Blanco, Colorado

    SciTech Connect

    Findlay, Rick; Kautsky, Mark

    2015-12-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rio Blanco, Colorado, Site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 20–21, 2015. This report documents the analytical results of the Rio Blanco annual monitoring event, the trip report, and the data validation package. The groundwater and surface water monitoring samples were shipped to the GEL Group Inc. laboratories for conventional analysis of tritium and analysis of gamma-emitting radionuclides by high-resolution gamma spectrometry. A subset of water samples collected from wells near the Rio Blanco site was also sent to GEL Group Inc. for enriched tritium analysis. All requested analyses were successfully completed. Samples were collected from a total of four onsite wells, including two that are privately owned. Samples were also collected from two additional private wells at nearby locations and from nine surface water locations. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry, and they were analyzed for tritium using the conventional method with a detection limit on the order of 400 picocuries per liter (pCi/L). Four locations (one well and three surface locations) were analyzed using the enriched tritium method, which has a detection limit on the order of 3 pCi/L. The enriched locations included the well at the Brennan Windmill and surface locations at CER-1, CER-4, and Fawn Creek 500 feet upstream.

  14. Arrays vs. single telescopes

    NASA Astrophysics Data System (ADS)

    Johnson, H. L.

    The question of the relative efficiencies of telescope arrays versus an equivalent mirror-area very large telescope is re-examined and summarized. Four separate investigations by Bowen, Johnson and Richards, Code, and Disney all came to the same conclusion: that an array of telescopes is superior, both scientifically and economically, to a single very large telescope. The costs of recently completed telescopes are compared. The costs of arrays of telescopes are shown to be significantly lower than that of a single, very large telescope, with the further advantage that because existing, proven, designs can be used, no engineering 'break-throughs' are needed.

  15. Geologic framework, hydrostratigraphy, and ichnology of the Blanco, Payton, and Rough Hollow 7.5-minute quadrangles, Blanco, Comal, Hays, and Kendall Counties, Texas

    USGS Publications Warehouse

    Clark, Allan K.; Golab, James A.; Morris, Robert E.

    2016-09-13

    This report presents the geologic framework, hydro­stratigraphy, and ichnology of the Trinity and Edwards Groups in the Blanco, Payton, and Rough Hollow 7.5-minute quad­rangles in Blanco, Comal, Hays, and Kendall Counties, Texas. Rocks exposed in the study area are of the Lower Cretaceous Trinity Group and lower part of the Fort Terrett Formation of the Lower Cretaceous Edwards Group. The mapped units in the study area are the Hammett Shale, Cow Creek Limestone, Hensell Sand, and Glen Rose Limestone of the Trinity Group and the lower portion of the Fort Terrett Formation of the Edwards Group. The Glen Rose Limestone is composed of the Lower and Upper Members. These Trinity Group rocks con­tain the upper and middle Trinity aquifers. The only remaining outcrops of the Edwards Group are the basal nodular member of the Fort Terrett Formation, which caps several hills in the northern portion of the study area. These rocks were deposited in an open marine to supratidal flats environment. The faulting and fracturing in the study area are part of the Balcones fault zone, an extensional system of faults that generally trends southwest to northeast in south-central Texas.The hydrostratigraphic units of the Edwards and Trinity aquifers were mapped and described using a classification system based on fabric-selective or not-fabric-selective poros­ity types. The only hydrostratigraphic unit of the Edwards aquifer present in the study area is hydrostratigraphic unit VIII. The mapped hydrostratigraphic units of the upper Trinity aquifer are (from top to bottom) the Camp Bullis, upper evaporite, fossiliferous, and lower evaporite which are interval equivalent to the Upper Member of the Glen Rose Limestone. The middle Trinity aquifer encompasses (from top to bottom) the Lower Member of the Glen Rose Limestone, the Hensell Sand Member, and the Cow Creek Limestone Member of the Pearsall Formation. The Lower Member of the Glen Rose Limestone is subdivided into six informal hydro

  16. SCIENTIFIC EFFICIENCY OF GROUND-BASED TELESCOPES

    SciTech Connect

    Abt, Helmut A.

    2012-10-01

    I scanned the six major astronomical journals of 2008 for all 1589 papers that are based on new data obtained from ground-based optical/IR telescopes worldwide. Then I collected data on numbers of papers, citations to them in 3+ years, the most-cited papers, and annual operating costs. These data are assigned to four groups by telescope aperture. For instance, while the papers from telescopes with an aperture >7 m average 1.29 more citations than those with an aperture of 2 to <4 m, this represents a small return for a factor of four difference in operating costs. Among the 17 papers that have received {>=}100 citations in 3+ years, only half come from the large (>7 m) telescopes. I wonder why the large telescopes do so relatively poorly and suggest possible reasons. I also found that papers based on archival data, such as the Sloan Digital Sky Survey, produce 10.6% as many papers and 20.6% as many citations as those based on new data. Also, the 577.2 papers based on radio data produced 36.3% as many papers and 33.6% as many citations as the 1589 papers based on optical/IR telescopes.

  17. Scientific Efficiency of Ground-based Telescopes

    NASA Astrophysics Data System (ADS)

    Abt, Helmut A.

    2012-10-01

    I scanned the six major astronomical journals of 2008 for all 1589 papers that are based on new data obtained from ground-based optical/IR telescopes worldwide. Then I collected data on numbers of papers, citations to them in 3+ years, the most-cited papers, and annual operating costs. These data are assigned to four groups by telescope aperture. For instance, while the papers from telescopes with an aperture >7 m average 1.29 more citations than those with an aperture of 2 to <4 m, this represents a small return for a factor of four difference in operating costs. Among the 17 papers that have received >=100 citations in 3+ years, only half come from the large (>7 m) telescopes. I wonder why the large telescopes do so relatively poorly and suggest possible reasons. I also found that papers based on archival data, such as the Sloan Digital Sky Survey, produce 10.6% as many papers and 20.6% as many citations as those based on new data. Also, the 577.2 papers based on radio data produced 36.3% as many papers and 33.6% as many citations as the 1589 papers based on optical/IR telescopes.

  18. 46 CFR 153.352 - B/3 and 4 m venting system outlets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false B/3 and 4 m venting system outlets. 153.352 Section 153.352 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES... Cargo Venting Systems § 153.352 B/3 and 4 m venting system outlets. A B/3 or 4 m venting system...

  19. 46 CFR 153.352 - B/3 and 4 m venting system outlets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false B/3 and 4 m venting system outlets. 153.352 Section 153.352 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES... Cargo Venting Systems § 153.352 B/3 and 4 m venting system outlets. A B/3 or 4 m venting system...

  20. A dispersed fringe sensor prototype for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Frostig, Danielle; McLeod, Brian A.; Kopon, Derek

    2017-01-01

    The Giant Magellan Telescope (GMT) will employ seven 8.4m primary mirror segments and seven 1m secondary mirror segments to achieve the diffraction limit of a 25.4m aperture. One challenge of the GMT is keeping the seven pairs of mirror segments in phase. We present a conceptual opto mechanical design for a prototype dispersed fringe sensor. The prototype, which operates at J-band and incorporates an infrared avalanche photodiode array, will be deployed on the Magellan Clay Telescope to verify the sensitivity and accuracy of the planned GMT phasing sensor.

  1. May 2013 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    SciTech Connect

    2013-10-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 14-16, 2013, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location CER #1 Black Sulphur. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods.

  2. The space telescope

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Papers concerning the development of the Space Telescope which were presented at the Twenty-first Annual Meeting of the American Astronautical Society in August, 1975 are included. Mission planning, telescope performance, optical detectors, mirror construction, pointing and control systems, data management, and maintenance of the telescope are discussed.

  3. Telescopes and space exploration

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Maran, S. P.

    1976-01-01

    The necessity for different types of telescopes for astronomical investigations is discussed. Major findings in modern astronomy by ground-based and spaceborne telescopes are presented. Observations of the Crab Nebula, solar flares, interstellar gas, and the Black Hole are described. The theory of the oscillating universe is explored. Operating and planned telescopes are described.

  4. Construction of the Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Rimmele, T. R.; Keil, S.; McMullin, J.; Knölker, M.; Kuhn, J. R.; Goode, P. R.; Rosner, R.; Casini, R.; Lin, H.; Tritschler, A.; Wöger, F.; ATST Team

    2012-12-01

    The 4m Advance Technology Solar Telescope (ATST) will be the most powerful solar telescope and the world's leading ground-based resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun's output. The project has entered its construction phase. Major subsystems have been contracted. As its highest priority science driver ATST shall provide high resolution and high sensitivity observations of the dynamic solar magnetic fields throughout the solar atmosphere, including the corona at infrared wavelengths. With its 4m aperture, ATST will resolve features at 0.″03 at visible wavelengths and obtain 0.″1 resolution at the magnetically highly sensitive near infrared wavelengths. A high order adaptive optics system delivers a corrected beam to the initial set of state-of-the-art, facility class instrumentation located in the Coudé laboratory facility. The initial set of first generation instruments consists of five facility class instruments, including imagers and spectro-polarimeters. The high polarimetric sensitivity and accuracy required for measurements of the illusive solar magnetic fields place strong constraints on the polarization analysis and calibration. Development and construction of a four-meter solar telescope presents many technical challenges, including thermal control of the enclosure, telescope structure and optics and wavefront control. A brief overview of the science goals and observational requirements of the ATST will be given, followed by a summary of the design status of the telescope and its instrumentation, including design status of major subsystems, such as the telescope mount assembly, enclosure, mirror assemblies, and wavefront correction

  5. Discrimination of Citrus reticulata Blanco and Citrus reticulata 'Chachi' by gas chromatograph-mass spectrometry based metabolomics approach.

    PubMed

    Duan, Li; Guo, Long; Dou, Li-Li; Zhou, Chang-Lin; Xu, Feng-Guo; Zheng, Guo-Dong; Li, Ping; Liu, E-Hu

    2016-12-01

    Citri Reticulatae Pericarpium, mainly including the pericarp of Citrus reticulata Blanco and the pericarp of Citrus reticulata 'Chachi', has been consumed daily as food and dietary supplement for centuries. In this study, GC-MS based metabolomics was employed to compare comprehensively the volatile constituents in Citrus reticulata Blanco and Citrus reticulata 'Chachi'. Principal component analysis and orthogonal partial least squares discrimination analysis indicated that samples could be distinguished effectively from one another. Fifteen metabolites were finally identified for use as chemical markers in discrimination of Citri Reticulatae Pericarpium samples. The antimicrobial activity against Gram-negative and Gram-positive bacteria of the volatile oil from Citrus reticulata Blanco and Citrus reticulata 'Chachi' was investigated preliminarily.

  6. Space Infrared Telescope Facility (SIRTF) telescope overview

    NASA Technical Reports Server (NTRS)

    Schember, Helene; Manhart, Paul; Guiar, Cecilia; Stevens, James H.

    1991-01-01

    The Space Infrared Telescope Facility (SIRTF) will be the first true infrared observatory in space, building upon the technical and scientific experience gained through its two NASA survey-oriented predecessors: the Infrared Astronomical Satellite and the Cosmic Background Explorer. During its minimum five year lifetime, the SIRTF will perform pointed scientific observations at wavelengths from 1.8 to 1200 microns with an increase in sensitivity over previous missions of several orders of magnitude. This paper discusses a candidate design for the SIRTF telescope, encompassing optics, cryostat, and instrument accommodation, which has been undertaken to provide a fulcrum for the development of functional requirements, interface definition, risk assessment and cost. The telescope optics employ a baffled Ritchey-Chretien Cassegrain system with a 1-m class primary mirror, an active secondary mirror, and a stationary facetted tertiary mirror. The optics are embedded in a large superfluid He cryostat designed to maintain the entire telescope-instrument system at temperatures below 3 K.

  7. Hubble Space Telescope Optical Telescope Assembly

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This image illustrates the Hubble Space Telescope's (HST's) Optical Telescope Assembly (OTA). One of the three major elements of the HST, the OTA consists of two mirrors (a primary mirror and a secondary mirror), support trusses, and the focal plane structure. The mirrors collect and focus light from selected celestial objects and are housed near the center of the telescope. The primary mirror captures light from objects in space and focuses it toward the secondary mirror. The secondary mirror redirects the light to a focal plane where the Scientific Instruments are located. The primary mirror is 94.5 inches (2.4 meters) in diameter and the secondary mirror is 12.2 inches (0.3 meters) in diameter. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth Orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from the Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The spacecraft is 42.5 feet (13 meters) long and weighs 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  8. Liverpool Telescope and Liverpool Telescope 2

    NASA Astrophysics Data System (ADS)

    Copperwheat, C. M.; Steele, I. A.; Barnsley, R. M.; Bates, S. D.; Clay, N. R.; Jermak, H.; Marchant, J. M.; Mottram, C. J.; Piascik, A.; Smith, R. J.

    2016-12-01

    The Liverpool Telescope is a fully robotic optical/near-infrared telescope with a 2-metre clear aperture, located at the Observatorio del Roque de los Muchachos on the Canary Island of La Palma. The telescope is owned and operated by Liverpool John Moores University, with financial support from the UK's Science and Technology Facilities Council. The telescope began routine science operations in 2004 and is a common-user facility with time available through a variety of committees via an open, peer reviewed process. Seven simultaneously mounted instruments support a broad science programme, with a focus on transient follow-up and other time domain topics well suited to the characteristics of robotic observing. Development has also begun on a successor facility, with the working title `Liverpool Telescope 2', to capitalise on the new era of time domain astronomy which will be brought about by the next generation of survey facilities such as LSST. The fully robotic Liverpool Telescope 2 will have a 4-metre aperture and an improved response time. In this paper we provide an overview of the current status of both facilities.

  9. Surface figure measurements of radio telescopes with a shearing interferometer.

    PubMed

    Serabyn, E; Phillips, T G; Masson, C R

    1991-04-01

    A new technique for determining the surface figure of large submillimeter wavelength telescopes is presented, which is based on measuring the telescope's focal plane diffraction pattern with a shearing interferometer. In addition to the instrumental theory, results obtained using such an interferometer on the 10.4-m diam telescope of the Caltech Submillimeter Observatory are discussed. Using wavelengths near 1 mm, a measurement accuracy of 9 microm, or lambda/115, has been achieved, and the rms surface accuracy has been determined to be just under 30 microm. The distortions of the primary reflector with changing elevation angle have also been measured and agree well with theoretical predictions of the dish deformation.

  10. VizieR Online Data Catalog: NGC 6253 stars equivalent widths (Anthony-Twarog+, 2010)

    NASA Astrophysics Data System (ADS)

    Anthony-Twarog, B. J.; Deliyannis, C. P.; Twarog, B. A.; Cummings, J. D.; Maderak, R. M.

    2012-05-01

    Spectra of 89 stars in NGC 6253 were obtained in 2005, 2006, and 2007 with the Cerro Tololo Inter-American Observatory Blanco 4 m telescope equipped with the HYDRA multi-object spectrograph. (5 data files).

  11. Productivity and Impact of Optical Telescopes

    NASA Astrophysics Data System (ADS)

    Trimble, Virginia; Zaich, Paul; Bosler, Tammy

    2005-01-01

    In 2001, about 2100 papers appearing in 18 journals reported and/or analyzed data collected with ground-based optical and infrared telescopes and the Hubble Space Telescope. About 250 telescopes were represented, including 25 with primary mirror diameters of 3 m or larger. The subjects covered in the papers divide reasonably cleanly into 20 areas, from solar system to cosmology. These papers were cited 24,354 times in 2002 and 2003, for a mean rate of 11.56 citations per paper, or 5.78 citations per paper per year (sometimes called impact or impact factor). We analyze here the distributions of the papers, citations, and impact factors among the telescopes and subject areas and compare the results with those of a very similar study of papers published in 1990-1991 and cited in 1993. Some of the results are exactly as expected. Big telescopes produce more papers and more citations per paper than small ones. There are fashionable topics (cosmology and exoplanets) and less fashionable ones (binary stars and planetary nebulae). And the Hubble Space Telescope has changed the landscape a great deal. Some other results surprised us but are explicable in retrospect. Small telescopes on well-supported sites (La Silla and Cerro Tololo, for instance) produce papers with larger impact factors than similar sized telescopes in relative isolation. Not just the fraction of all papers, but the absolute numbers of papers coming out of the most productive 4 m telescopes of a decade ago have gone down. The average number of citations per paper per year resulting from the 38 telescopes (2 m and larger) considered in 1993 has gone up 38%, from 3.48 to 4.81, a form, perhaps, of grade inflation. And 53% of the 2100 papers and 38% of the citations (including 44% of the papers and 31% of the citations from mirrors of 3 m and larger) pertain to topics often not regarded as major drivers for the next generation of still larger ground-based telescopes.

  12. JWST Pathfinder Telescope Integration

    NASA Technical Reports Server (NTRS)

    Matthews, Gary W.; Kennard, Scott H.; Broccolo, Ronald T.; Ellis, James M.; Daly, Elizabeth A.; Hahn, Walter G.; Amon, John N.; Mt. Pleasant, Stephen M.; Texter, Scott; Atkinson, Charles B.; McKay, Andrew; Levi, Joshua; Keski-Kuha, Ritva; Feinberg, Lee

    2015-01-01

    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. In 2014, a major risk reduction effort related to the Alignment, Integration, and Test (AI&T) of the segmented telescope was completed. The Pathfinder telescope includes two Primary Mirror Segment Assemblies (PMSA's) and the Secondary Mirror Assembly (SMA) onto a flight-like composite telescope backplane. This pathfinder allowed the JWST team to assess the alignment process and to better understand the various error sources that need to be accommodated in the flight build. The successful completion of the Pathfinder Telescope provides a final integration roadmap for the flight operations that will start in August 2015.

  13. The Solar Telescope GREGOR

    NASA Astrophysics Data System (ADS)

    Volkmer, R.

    2008-09-01

    During the last years the new 1.5m solar telescope GREGOR was assembled at Izania on Tenerife, Spain. The telescope is designed for high-precision measurements of the magnetic field in the solar photosphere and chromosphere with a resolution of 70km on the Sun. The telescope concept offers also high resolution stellar spectroscopy. The telescope is build by a consortium of the Kiepenheuer-Institut für Sonnenphysik, the Astrophysikalische Institut Potsdam, the Institut für Astrophysik Göttingen, Max-Plank-Institut für Sonnensystemforschung and additional international Partners. The telescope is a complete open structure with active cooled main mirror. High performance post-focus instruments in the visible and near IR wavelength acquire high resolution spectra with 2 dimensional spatial resolution and polarimetric information. The commissioning of the telescope will start in 2008 to allow first science observations at the end of 2009.

  14. Automated telescope scheduling

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    1988-01-01

    With the ever increasing level of automation of astronomical telescopes the benefits and feasibility of automated planning and scheduling are becoming more apparent. Improved efficiency and increased overall telescope utilization are the most obvious goals. Automated scheduling at some level has been done for several satellite observatories, but the requirements on these systems were much less stringent than on modern ground or satellite observatories. The scheduling problem is particularly acute for Hubble Space Telescope: virtually all observations must be planned in excruciating detail weeks to months in advance. Space Telescope Science Institute has recently made significant progress on the scheduling problem by exploiting state-of-the-art artificial intelligence software technology. What is especially interesting is that this effort has already yielded software that is well suited to scheduling groundbased telescopes, including the problem of optimizing the coordinated scheduling of more than one telescope.

  15. Airborne Infrared Astronomical Telescopes

    NASA Astrophysics Data System (ADS)

    Erickson, Edwin F.

    2017-01-01

    A unique program of infrared astronomical observations from aircraft evolved at NASA’s Ames Research Center, beginning in the 1960s. Telescopes were flown on a Convair 990, a Lear Jet, and a Lockheed C-141 - the Kuiper Airborne Observatory (KAO) - leading to the planning and development of SOFIA: a 2.7 m telescope now flying on a Boeing 747SP. The poster describes these telescopes and highlights of some of the scientific results obtained from them.

  16. Symmetric frenzy and catastrophic change: a consideration of primitive mental states in the wake of Bion and Matte Blanco.

    PubMed

    Lombardi, Riccardo

    2009-06-01

    The author explores the connections between Matte Blanco's notion of symmetric frenzy, i.e. the turbulence characteristic of the deepest levels of mental functioning, and Bion's concept of catastrophic change. For Bion, mental links are retrieved from the formless darkness of infinity. With catastrophic change, emotional violence and the confining nature of representation come into conflict, leaving the subject prey to an explosiveness that paralyses mental resources. Matte Blanco identifies indivisibility as the abyss in which all differentiation ceases; he bases his model on the conflict between symmetry and asymmetry. Infinity, he maintains, is where the first forms of mentalization develop. Both Bion and Matte Blanco emphasize the contrast between the immensity of mental space and the spatio-temporal order introduced by the activation of thinking functions. The author presents clinical material from the analysis of a psychotic patient, stressing the need to encourage both working through the defect of thinking (Bion) and 'unfolding' manifestations of symmetry (Matte Blanco) so as to foster the activation of the resources of thought, meanwhile postponing transference interpretation. He concludes with two later sessions, in which recognition of the analyst in the transference allows the analysand to develop his capacity for containment and asymmetric differentiation.

  17. UV/Visible Telescope with Hubble Disposal

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.

    2013-01-01

    Submission Overview: Our primary objective is to convey a sense of the significant advances possible in astrophysics investigations for major Cosmic Origins COR program goals with a 2.4m telescope asset outfitted with one or more advanced UV visible instruments. Several compelling science objectives were identified based on community meetings these science objectives drove the conceptual design of instruments studied by the COR Program Office during July September 2012. This RFI submission encapsulates the results of that study, and suggests that a more detailed look into the instrument suite should be conducted to prove viability and affordability to support the demonstrated scientific value. This study was conducted in the context of a larger effort to consider the options available for a mission to dispose safely of Hubble hence, the overall architecture considered for the mission we studied for the 2.4m telescope asset included resource sharing. This mitigates combined cost and risk and provides naturally for a continued US leadership role in astrophysics with an advanced, general-purpose UV visible space telescope.

  18. An aerial radiological survey of the project Rio Blanco and surrounding area

    SciTech Connect

    Singman, L.V.

    1994-11-01

    A team from the Remote Sensing Laboratory in Las Vegas, Nevada, conducted an aerial radiation survey of the area surrounding ground zero of Project Rio Blanco in the northwestern section of Colorado in June 1993. The object of the survey was to determine if there were man-made radioisotopes on or near the surface resulting from a nuclear explosion in 1972. No indications of surface contamination were found. A search for the cesium-137 radioisotope was negative. The Minimum Detectable Activity for cesium-137 is presented for several detection probabilities. The natural terrestrial exposure rates in units of Roentgens per hour were mapped and are presented in the form of a contour map over-laid on an aerial photograph. A second team made independent ground-based measurements in four places within the survey area. The average agreement of the ground-based with aerial measurements was six percent.

  19. Subacute toxicity assessment of carotenoids extracted from citrus peel (Nanfengmiju, Citrus reticulata Blanco) in rats.

    PubMed

    Xue, Feng; Li, Chen; Pan, Siyi

    2012-02-01

    The mixture of carotenoids extracted from citrus peel (Nanfengmiju, Citrus reticulata Blanco) was tested for subacute oral toxicity. In this study, dose levels of 0, 200, 500 and 2000 mg/kg body weight/day were administered by gavage to 10 Wistar rats/sex/group for 28 days. No statistically significant, dose-related effect on food consumption, food efficiency, body weight gain, clinical signs or ophthalmoscopic parameters was observed in any treatment group. Urinalysis, hematological, blood coagulation and serum biochemical examination as well as necropsy or histopathology showed that no observed adverse effect was found. These findings suggested that the No-Observed-Adverse-Effect Level for the mixture of carotenoids extracted from citrus peel was at least 2000 mg/kg body weight/day.

  20. The Advanced Technology Solar Telescope: beginning construction of the world's largest solar telescope

    NASA Astrophysics Data System (ADS)

    Rimmele, T. R.; Wagner, J.; Keil, S.; Elmore, D.; Hubbard, R.; Hansen, E.; Warner, M.; Jeffers, P.; Phelps, L.; Marshall, H.; Goodrich, B.; Richards, K.; Hegwer, S.; Kneale, R.; Ditsler, J.

    2010-07-01

    The 4m Advance Technology Solar Telescope (ATST) will be the most powerful solar telescope and the world's leading ground-based resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun's output. The project has successfully passed its final design review and the Environmental Impact Study for construction of ATST on Haleakala, Maui, HI has been concluded in December of 2009. The project is now entering its construction phase. As its highest priority science driver ATST shall provide high resolution and high sensitivity observations of the dynamic solar magnetic fields throughout the solar atmosphere, including the corona at infrared wavelengths. With its 4 m aperture, ATST will resolve features at 0."03 at visible wavelengths and obtain 0."1 resolution at the magnetically highly sensitive near infrared wavelengths. A high order adaptive optics system delivers a corrected beam to the initial set of state-of-the-art, facility class instrumentation located in the coudé laboratory facility. The initial set of first generation instruments consists of five facility class instruments, including imagers and spectropolarimeters. The high polarimetric sensitivity and accuracy required for measurements of the illusive solar magnetic fields place strong constraints on the polarization analysis and calibration. Development and construction of a fourmeter solar telescope presents many technical challenges, including thermal control of the enclosure, telescope structure and optics and wavefront control. A brief overview of the science goals and observational requirements of the ATST will be given, followed by a summary of the design status of the telescope and its instrumentation, including design status of major subsystems, such as the telescope mount assembly, enclosure, mirror assemblies, and wavefront correction

  1. Laramide tectonic evolution of San Juan sag, Colorado: Implications of Animas and Blanco basin formations

    SciTech Connect

    Brister, B.S. )

    1989-09-01

    The lower member of the Animas Formation (McDermott Member) is a volcaniclastic sequence derived from a north-northwest source (San Juan-La Plata area). It consists of purple andesitic debris flows, green fan-delta sandstones and mud rocks, and dark gray conglomerates with clast compositions indicating that the Precambrian core of the source uplift was exposed. The upper member is a sand-dominated alluvial plain sequence deposited by southwest-flowing braided streams. It includes green-gray-brown carbonaceous mudstones and pebbly sandstones containing clasts of mudstone, andesite, and detritus from Precambrian and Mesozoic sources in the Brazos-San Luis uplift to the east and northeast. by the end of Animas deposition, the San Juan sag (then a northeastern extension of the San Juan basin) was a broad, southwest-plunging synclinal downwarp bounded by hogback monoclines to the north and east. An erosional period followed Animas deposition; the greatest thickness of Animas was preserved along the axis of this synclinal feature. Bright-red sandy mudstones and yellow-gray pebbly sandstones and cobble conglomerates comprise the proximal alluvial-fan deposits of the Blanco Basin Formation. They unconformably overlie Precambrian through Paleocene rocks and clast compositions reflect these sources. Renewed uplift and segmentation of the Brazos-San Luis uplift resulted in the shedding of detritus southwestward into the San Juan sag and eastward into a narrow, asymmetrical, north-trending wrench basin within the uplift. Following Blanco Basin deposition, the last Laramide event is represented by the separation of the San Juan sag from the San Juan basin by uplift of the Archuleta anticlinorium.

  2. High resolution telescope

    DOEpatents

    Massie, Norbert A.; Oster, Yale

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activites. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  3. Video Telescope Operating Microscopy.

    PubMed

    Divers, Stephen J

    2015-09-01

    Exotic pet veterinarians frequently have to operate on small animals, and magnification is commonly used. Existing endoscopy equipment can be used with a mechanical arm and telescope to enable video telescope operating microscopy. The additional equipment items and their specifics are described, and several case examples are provided.

  4. Goddard Robotic Telescope

    SciTech Connect

    Sakamoto, Takanori; Donato, Davide; Gehrels, Neil; Okajima, Takashi; Ukwatta, Tilan N.

    2009-05-25

    We are constructing the 14'' fully automated optical robotic telescope, Goddard Robotic Telescope (GRT), at the Goddard Geophysical and Astronomical Observatory. The aims of our robotic telescope are 1) to follow-up the Swift/Fermi Gamma-Ray Bursts (GRBs) and 2) to perform the coordinated optical observations of the Fermi/Large Area Telescope (LAT) Active Galactic Nuclei (AGN). Our telescope system consists of the 14'' Celestron Optical Telescope Assembly (OTA), the Astro-Physics 1200GTO mount, the Apogee U47 CCD camera, the JMI's electronic focuser, and the Finger Lake Instrumentation's color filter wheel with U, B, V, R and I filters. With the focal reducer, 20'x20' field of view has been achieved. The observatory dome is the Astro Haven's 7 ft clam-shell dome. We started the scientific observations on mid-November 2008. While not observing our primary targets (GRBs and AGNs), we are planning to open our telescope time to the public for having a wider use of our telescope in both a different research field and an educational purpose.

  5. Telescope Adaptive Optics Code

    SciTech Connect

    Phillion, D.

    2005-07-28

    The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The default parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST

  6. The solar optical telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Objectives of the Solar Optical Telescope are to study the physics of the Sun on the scale at which many of the important physical processes occur and to attain a resolution of 73km on the Sun or 0.1 arc seconds of angular resolution. Topics discussed in this overview of the Solar Optical Telescope include: why is the Solar Optical Telescope needed; current picture of the Sun's atmosphere and convection zone; scientific problems for the Solar Optical Telescope; a description of the telescope; the facility - science management, contamination control, and accessibility to the instruments; the scientific instruments - a coordinated instrument package for unlocking the Sun's secrets; parameters of the coordinated instrument package; science operations from the Space Shuttle; and the dynamic solar atmosphere.

  7. Networked Automatic Optical Telescopes

    NASA Astrophysics Data System (ADS)

    Mattox, J. R.

    2000-05-01

    Many groups around the world are developing automated or robotic optical observatories. The coordinated operation of automated optical telescopes at diverse sites could provide observing prospects which are not otherwise available, e.g., continuous optical photometry without diurnal interruption. Computer control and scheduling also offers the prospect of effective response to transient events such as γ -ray bursts. These telescopes could also serve science education by providing high-quality CCD data for educators and students. The Automatic Telescope Network (ATN) project has been undertaken to promote networking of automated telescopes. A web site is maintained at http://gamma.bu.edu/atn/. The development of such networks will be facilitated by the existence of standards. A set of standard commands for instrument and telescope control systems will allow for the creation of software for an ``observatory control system'' which can be used at any facility which complies with the TCS and ICS standards. Also, there is a strong need for standards for the specification of observations to be done, and reports on the results and status of observations. A proposed standard for this is the Remote Telescope Markup Language (RTML), which is expected to be described in another poster in this session. It may thus be feasible for amateur-astronomers to soon buy all necessary equipment and software to field an automatic telescope. The owner/operator could make otherwise unused telescope time available to the network in exchange for the utilization of other telescopes in the network --- including occasional utilization of meter-class telescopes with research-grade CCD detectors at good sites.

  8. MROI Array telescopes: the relocatable enclosure domes

    NASA Astrophysics Data System (ADS)

    Marchiori, G.; Busatta, A.; Payne, I.

    2016-07-01

    The MROI - Magdalena Ridge Interferometer is a project which comprises an array of up to 10 1.4m diameter mirror telescopes arranged in a "Y" configuration. Each of these telescopes will be housed inside a Unit Telescope Enclosure (UTE) which are relocatable onto any of 28 stations. EIE GROUP Srl, Venice - Italy, was awarded the contract for the design, the construction and the erection on site of the MROI by the New Mexico Institute of Mining and Technology. The close-pack array of the MROI - including all 10 telescopes, several of which are at a relative distance of less than 8m center to center from each other - necessitated an original design for the Unit Telescope Enclosure (UTE). This innovative design enclosure incorporates a unique dome/observing aperture system to be able to operate in the harsh environmental conditions encountered at an altitude of 10,460ft (3,188m). The main characteristics of this Relocatable Enclosure Dome are: a Light insulated Steel Structure with a dome made of composites materials (e.g. glass/carbon fibers, sandwich panels etc.), an aperture motorized system for observation, a series of louvers for ventilation, a series of electrical and plants installations and relevant auxiliary equipment. The first Enclosure Dome is now under construction and the completion of the mounting on site id envisaged by the end of 2016. The relocation system utilizes a modified reachstacker (a transporter used to handle freight containers) capable of maneuvering between and around the enclosures, capable of lifting the combined weight of the enclosure with the telescope (30tons), with minimal impacts due to vibrations.

  9. Bokeh mirror alignment for Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Mueller, S. A.; Adam, J.; Ahnen, M. L.; Baack, D.; Balbo, M.; Bergmann, M.; Biland, A.; Blank, M.; Bretz, T.; Bruegge, K. A.; Buss, J.; Dmytriiev, A.; Dorner, D.; Einecke, S.; Hempfling, C.; Hildebrand, D.; Hughes, G.; Linhoff, L.; Mannheim, K.; Neise, D.; Neronov, A.; Noethe, M.; Paravac, A.; Pauss, F.; Rhode, W.; Shukla, A.; Temme, F.; Thaele, J.; Walter, R.

    2016-08-01

    Segmented imaging reflectors are a great choice for Imaging Atmospheric Cherenkov Telescopes (IACTs). However, the alignment of the individual mirror facets is challenging. We align a segmented reflector by observing and optimizing its Bokeh function. Bokeh alignment can already be done with very little resources and little preparation time. Further, Bokeh alignment can be done anytime, even during the day. We present a first usage of Bokeh alignment on FACT, a 4m IACT on Canary Island La Palma, Spain and further a first Bokeh alignment test on the CTA MST IACT prototype in Brelin Adlershof.

  10. Two Easily Made Astronomical Telescopes.

    ERIC Educational Resources Information Center

    Hill, M.; Jacobs, D. J.

    1991-01-01

    The directions and diagrams for making a reflecting telescope and a refracting telescope are presented. These telescopes can be made by students out of plumbing parts and easily obtainable, inexpensive, optical components. (KR)

  11. The GREGOR Solar Telescope

    NASA Astrophysics Data System (ADS)

    Denker, C.; Lagg, A.; Puschmann, K. G.; Schmidt, D.; Schmidt, W.; Sobotka, M.; Soltau, D.; Strassmeier, K. G.; Volkmer, R.; von der Luehe, O.; Solanki, S. K.; Balthasar, H.; Bello Gonzalez, N.; Berkefeld, T.; Collados Vera, M.; Hofmann, A.; Kneer, F.

    2012-12-01

    The 1.5-meter GREGOR solar telescope is a new facility for high-resolution observations of the Sun. The telescope is located at the Spanish Observatorio del Teide on Tenerife. The telescope incorporates advanced designs for a foldable-tent dome, an open steel-truss telescope structure, and active and passive means to minimize telescope and mirror seeing. Solar fine structure can be observed with a dedicated suite of instruments: a broad-band imaging system, the "GREGOR Fabry-Perot Interferometer", and the "Grating Infrared Spectrograph". All post-focus instruments benefit from a high-order (multi-conjugate) adaptive optics system, which enables observations close to the diffraction limit of the telescope. The inclusion of a spectrograph for stellar activity studies and the search for solar twins expands the scientific usage of the GREGOR to the nighttime domain. We report on the successful commissioning of the telescope until the end of 2011 and the first steps towards science verification in 2012.

  12. Gemini telescope structure design

    NASA Astrophysics Data System (ADS)

    Raybould, Keith; Gillett, Paul E.; Hatton, Peter; Pentland, Gordon; Sheehan, Mike; Warner, Mark

    1994-06-01

    The Gemini project is an international collaboration to design, fabricate, and assemble two 8 M telescopes, one on Mauna Kea in Hawaii, the other on Cerro Pachon in Chile. The telescopes will be national facilities designed to meet the Gemini Science Requirements (GSR), a document developed by the Gemini Science Committee (GSC) and the national project scientists. The Gemini telescope group, based on Tucson, has developed a telescope structure to meet the GSR. This paper describes the science requirements that have technically driven the design, and the features that have been incorporated to meet these requirements. This is followed by a brief description of the telescope design. Finally, analyses that have been performed and development programs that have been undertaken are described briefly. Only the designs that have been performed by the Gemini Telescope Structure, Building and Enclosure Group are presented here; control, optical systems, acquisition and guiding, active and adaptive optics, Cassegrain rotator and instrumentation issues are designed and managed by others and will not be discussed here, except for a brief description of the telescope configurations to aid subsequent discussions.

  13. Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    An overview of the mission of the Hubble Space Telescope, a joint project between NASA and the European Space Agency which will be used to study deep space, as well as our solar system is presented. The video contains animations depicting the Hubble Space Telescope in orbit, as well as footage of scientists at the Space Telescope Science Institute making real time observations. The images Hubble acquires will be downloaded into a database that contains images of over 19,000,000 celestial objects called the Star Catalog.

  14. Telescopic vision contact lens

    NASA Astrophysics Data System (ADS)

    Tremblay, Eric J.; Beer, R. Dirk; Arianpour, Ashkan; Ford, Joseph E.

    2011-03-01

    We present the concept, optical design, and first proof of principle experimental results for a telescopic contact lens intended to become a visual aid for age-related macular degeneration (AMD), providing magnification to the user without surgery or external head-mounted optics. Our contact lens optical system can provide a combination of telescopic and non-magnified vision through two independent optical paths through the contact lens. The magnified optical path incorporates a telescopic arrangement of positive and negative annular concentric reflectors to achieve 2.8x - 3x magnification on the eye, while light passing through a central clear aperture provides unmagnified vision.

  15. The single mirror small size telescope (SST-1M) of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Bilnik, W.; Borkowski, J.; Cadoux, F.; Christov, A.; della Volpe, D.; Favre, Y.; Heller, M.; Kasperek, J.; Lyard, E.; Marszałek, A.; Moderski, R.; Montaruli, T.; Porcelli, A.; Prandini, E.; Rajda, P.; Rameez, M.; Schioppa, E., Jr.; Troyano Pujadas, I.; Zietara, K.; Blocki, J.; Bogacz, L.; Bulik, T.; Frankowski, A.; Grudzinska, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Lalik, K.; Mach, E.; Mandat, D.; Michałowski, J.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Stawarz, L.; Stodulska, M.; Stodulski, M.; Toscano, S.; Walter, R.; WiÈ©cek, M.; Zagdański, A.

    2016-07-01

    The Small Size Telescope with Single Mirror (SST-1M) is one of the proposed types of Small Size Telescopes (SST) for the Cherenkov Telescope Array (CTA). The CTA south array will be composed of about 100 telescopes, out of which about 70 are of SST class, which are optimized for the detection of gamma rays in the energy range from 5 TeV to 300 TeV. The SST-1M implements a Davies-Cotton optics with a 4 m dish diameter with a field of view of 9°. The Cherenkov light produced in atmospheric showers is focused onto a 88 cm wide hexagonal photo-detection plane, composed of 1296 custom designed large area hexagonal silicon photomultipliers (SiPM) and a fully digital readout and trigger system. The SST-1M camera has been designed to provide high performance in a robust as well as compact and lightweight design. In this contribution, we review the different steps that led to the realization of the telescope prototype and its innovative camera.

  16. Multi-use lunar telescopes

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Hine, Butler; Genet, Russell; Genet, David; Talent, David; Boyd, Louis; Trueblood, Mark; Filippenko, Alexei V. (Editor)

    1991-01-01

    The objective of multi-use telescopes is to reduce the initial and operational costs of space telescopes to the point where a fair number of telescopes, a dozen or so, would be affordable. The basic approach is to develop a common telescope, control system, and power and communications subsystem that can be used with a wide variety of instrument payloads, i.e., imaging CCD cameras, photometers, spectrographs, etc. By having such a multi-use and multi-user telescope, a common practice for earth-based telescopes, development cost can be shared across many telescopes, and the telescopes can be produced in economical batches.

  17. Multi-use lunar telescopes

    NASA Technical Reports Server (NTRS)

    Genet, Russell M.; Genet, David R.; Talent, David L.; Drummond, Mark; Hine, Butler P.; Boyd, Louis J.; Trueblood, Mark

    1992-01-01

    The objective of multi-use telescopes is to reduce the initial and operational costs of space telescopes to the point where a fair number of telescopes, a dozen or so, would be affordable. The basic approach is to develop a common telescope, control system, and power and communications subsystem that can be used with a wide variety of instrument payloads, i.e., imaging CCD cameras, photometers, spectrographs, etc. By having such a multi-use and multi-user telescope, a common practice for earth-based telescopes, development cost can be shared across many telescopes, and the telescopes can be produced in economical batches.

  18. Evaluation of Skin Anti-aging Potential of Citrus reticulata Blanco Peel

    PubMed Central

    Apraj, Vinita D.; Pandita, Nancy S.

    2016-01-01

    Background: The peel of Citrus reticulata Blanco is traditionally used as tonic, stomachic, astringent, and carminative. It is also useful in skin care. Objective: To study the anti-aging potential of alcoholic extracts of C. reticulata Blanco peel using in vitro antioxidant and anti-enzyme assays. Materials and Methods: Plant extracts were obtained by Soxhlation (CR HAE- Hot Alcoholic Extract of Citrus reticulata) and maceration method (CR CAE- Cold Alcoholic Extract of Citrus reticulata). Qualitative and quantitative phytochemical analysis was performed. Further, in vitro antioxidant, anti-enzyme, and gas chromatography-mass spectrometry (GC-MS) analyses were performed. Results: Total phenolic and flavonoid contents of CR HAE were found to be higher than CR CAE. EC50 value of CR HAE and CR CAE for 1,1-Diphenyl-2-picrylhydrazyl, Superoxide anion, and 2, 2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) assays were 250.33 ± 40.16 μg/ml and 254.73 ± 15.78 μg/ml, 221.27 ± 11.25 μg/ml and 354.20 ± 23.79 μg/ml, and 59.16 ± 2.17 μg/ml and 59.12 ± 6.21 μg/ml, respectively. Oxygen radical absorbance capacity values for CR HAE and CR CAE were found to be 1243 and 1063 μmoles 6-hydroxy-2,5,7,8-tetra methylchromane-2-carboxylic acid equivalent/g of substance, respectively. Anti-collagenase and anti-elastase activities were evaluated for both CR HAE and CR CAE. EC50 values of CR HAE and CR CAE for anti-collagenase and anti-elastase were 329.33 ± 6.38 μg/ml, 466.93 ± 8.04 μg/ml and 3.22 ± 0.24 mg/ml, 5.09 ± 0.30 mg/ml, respectively. CR HAE exhibited stronger anti-collagenase and anti-elastase activity than CR CAE. GC-MS analysis of CR HAE was carried out because CR HAE exhibited higher antioxidant and anti-enzyme potential than CR CAE. Conclusion: C. reticulata peel can be utilized in anti-wrinkle skin care formulations. SUMMARY Skin anti-aging potential of Citrus reticulata Blanco peel was evaluated throughIn vitro antioxidant and anti-enzyme assays

  19. Analysis and structural determination of Nd-substituted zirconolite-4M

    SciTech Connect

    Coelho, A.A.; Cheary, R.W.; Smith, K.L.

    1997-03-01

    The structure of a new polytype of zirconolite, zirconolite-4M, has been determined using X-ray and neutron powder diffraction, high resolution transmission electron microscopy, and selected area electron diffraction. Zirconolite-4M occurs when zirconolite is doped with 0.5-0.8 Nd per formula unit. Its structure consists of four hexagonal tungsten bronze (HTB) type layers interleaved laternately with layers of Ca, Zr polyhedra (as in zirconolite-2M) and Ca, Ti polyhedra (as in pyrochlore). Nd substitutes on the Ca and Zr sites. The compositions of the zirconolites were determined using an extrapolation technique based on an analysis of the impurity lines in the diffraction pattern. Cation site occupancies were determined with composition constraints applied and these were consistent with the expected zirconolite-4M cation site occupancies. Observed zirconolite-4M lattice parameters correlated with expected values for a zirconolite and pyrochlore type stacking sequence.

  20. The Experimental plan of the 4m Resonant Sideband Extraction Prototype for The LCGT

    NASA Astrophysics Data System (ADS)

    Kawazoe, F.; Kokeyama, K.; Sato, S.; Miyakawa, O.; Somiya, K.; Fukushima, M.; Arai, N.; Kawamura, S.; Sugamoto, A.

    2006-03-01

    The 4m Resonant Sideband Extraction (RSE) interferometer is a planned prototype of the LCGT interferometer. The aim of the experiment is to operate a powerrecycled Broadband RSE interferometer with suspended optics and to achieve diagonalization of length signals of the central part of the interferometer directly through the optical setup. Details of the 4m RSE interferometer control method as well as the design of the experimental setup will be presented.

  1. The serendipitous observation of a gravitationally lensed galaxy at z = 0.9057 from the Blanco Cosmology Survey: the Elliot Arc

    SciTech Connect

    Buckley-Geer, E. J.; Lin, H.; Drabek, E. R.; Allam, S. S.; Tucker, D. L.; Armstrong, R.; Barkhouse, W. A.; Bertin, E.; Brodwin, M.; Desai, S.; Frieman, J. A.; Hansen, S. M.; High, F. W.; Mohr, J. J.; Lin, Y. -T.; Ngeow, C. -C.; Rest, A.; Smith, R. C.; Song, J.; Zenteno, A.

    2011-11-03

    We report on the serendipitous discovery in the Blanco Cosmology Survey (BCS) imaging data of a z = 0.9057 galaxy that is being strongly lensed by a massive galaxy cluster at a redshift of z = 0.3838. The lens (BCS J2352-5452) was discovered while examining i- and z-band images being acquired in October 2006 during a BCS observing run. Follow-up spectroscopic observations with the GMOS instrument on the Gemini South 8m telescope confirmed the lensing nature of this system. Using weak plus strong lensing, velocity dispersion, cluster richness N200, and fitting to an NFW cluster mass density profile, we have made three independent estimates of the mass M200 which are all very consistent with each other. The combination of the results from the three methods gives M200 = (5.1 x 1.3) x 1014 circle_dot, which is fully consistent with the individual measurements. The final NFW concentration c200 from the combined fit is c200 = 5.4-1.1+1.4. We have compared our measurements of M200 and c200 with predictions for (a) clusters from λCDM simulations, (b) lensing selected clusters from simulations, and (c) a real sample of cluster lenses. We find that we are most compatible with the predictions for λCDM simulations for lensing clusters, and we see no evidence based on this one system for an increased concentration compared to λCDM. Finally, using the flux measured from the [OII]3727 line we have determined the star formation rate (SFR) of the source galaxy and find it to be rather modest given the assumed lens magnification.

  2. THE SERENDIPITOUS OBSERVATION OF A GRAVITATIONALLY LENSED GALAXY AT z = 0.9057 FROM THE BLANCO COSMOLOGY SURVEY: THE ELLIOT ARC

    SciTech Connect

    Buckley-Geer, E. J.; Lin, H.; Drabek, E. R.; Allam, S. S.; Tucker, D. L.; Frieman, J. A.; Armstrong, R.; Barkhouse, W. A.; Bertin, E.; Brodwin, M.; Desai, S.; Ngeow, C.-C.; Hansen, S. M.; High, F. W.; Mohr, J. J.; Zenteno, A.; Lin, Y.-T.; Rest, A.; Smith, R. C.; Song, J.

    2011-11-20

    We report on the serendipitous discovery in the Blanco Cosmology Survey (BCS) imaging data of a z = 0.9057 galaxy that is being strongly lensed by a massive galaxy cluster at a redshift of z = 0.3838. The lens (BCS J2352-5452) was discovered while examining i- and z-band images being acquired in 2006 October during a BCS observing run. Follow-up spectroscopic observations with the Gemini Multi-Object Spectrograph instrument on the Gemini-South 8 m telescope confirmed the lensing nature of this system. Using weak-plus-strong lensing, velocity dispersion, cluster richness N{sub 200}, and fitting to a Navarro-Frenk-White (NFW) cluster mass density profile, we have made three independent estimates of the mass M{sub 200} which are all very consistent with each other. The combination of the results from the three methods gives M{sub 200} = (5.1 {+-} 1.3) Multiplication-Sign 10{sup 14} M{sub Sun }, which is fully consistent with the individual measurements. The final NFW concentration c{sub 200} from the combined fit is c{sub 200} = 5.4{sup +1.4}{sub -1.1}. We have compared our measurements of M{sub 200} and c{sub 200} with predictions for (1) clusters from {Lambda}CDM simulations, (2) lensing-selected clusters from simulations, and (3) a real sample of cluster lenses. We find that we are most compatible with the predictions for {Lambda}CDM simulations for lensing clusters, and we see no evidence based on this one system for an increased concentration compared to {Lambda}CDM. Finally, using the flux measured from the [O II]3727 line we have determined the star formation rate of the source galaxy and find it to be rather modest given the assumed lens magnification.

  3. The serendipitous observation of a gravitationally lensed galaxy at z = 0.9057 from the Blanco Cosmology Survey: the Elliot Arc

    DOE PAGES

    Buckley-Geer, E. J.; Lin, H.; Drabek, E. R.; ...

    2011-11-03

    We report on the serendipitous discovery in the Blanco Cosmology Survey (BCS) imaging data of a z = 0.9057 galaxy that is being strongly lensed by a massive galaxy cluster at a redshift of z = 0.3838. The lens (BCS J2352-5452) was discovered while examining i- and z-band images being acquired in October 2006 during a BCS observing run. Follow-up spectroscopic observations with the GMOS instrument on the Gemini South 8m telescope confirmed the lensing nature of this system. Using weak plus strong lensing, velocity dispersion, cluster richness N200, and fitting to an NFW cluster mass density profile, we havemore » made three independent estimates of the mass M200 which are all very consistent with each other. The combination of the results from the three methods gives M200 = (5.1 x 1.3) x 1014 circle_dot, which is fully consistent with the individual measurements. The final NFW concentration c200 from the combined fit is c200 = 5.4-1.1+1.4. We have compared our measurements of M200 and c200 with predictions for (a) clusters from λCDM simulations, (b) lensing selected clusters from simulations, and (c) a real sample of cluster lenses. We find that we are most compatible with the predictions for λCDM simulations for lensing clusters, and we see no evidence based on this one system for an increased concentration compared to λCDM. Finally, using the flux measured from the [OII]3727 line we have determined the star formation rate (SFR) of the source galaxy and find it to be rather modest given the assumed lens magnification.« less

  4. INO340 telescope control system: software architecture and development

    NASA Astrophysics Data System (ADS)

    Ravanmehr, Reza; Jafarzadeh, Asghar

    2014-07-01

    The Iranian National Observatory telescope (INO340) is a 3.4m Alt-Az reflecting optical telescope under design and development. It is f/11 Ritchey-Chretien with a 0.3° field-of-view. INO340 telescope control system utilizes a distributed control system paradigm that includes four major systems: Telescope Control System (TCS), Observation System Supervisor (OSS), Interlock System (ILS) and Observatory Monitoring System (OMS). The control system software also employs 3-tiered hierarchical architecture. In this paper, after presenting the fundamental concepts and operations of the INO340 control system, we propose the distributed control system software architecture including technical and functional architecture, middleware and infrastructure design and finally the software development process.

  5. The GCT camera for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Brown, A. M.; Abchiche, A.; Allan, D.; Amans, J.-P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Bryan, M.; Buchholtz, G.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Daniel, M. K.; De Franco, A.; de Frondat, F.; Dournaux, J.-L.; Dumas, D.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J.-M.; Jégouzo, I.; Jogler, T.; Kraus, M.; Lapington, J. S.; Laporte, P.; Lefaucheur, J.; Markoff, S.; Melse, T.; Mohrmann, L.; Molyneux, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Sato, Y.; Sayede, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Vink, J.; Watson, J. J.; White, R.; Yamane, N.; Zech, A.; Zink, A.; Zorn, J.

    2016-07-01

    The Gamma-ray Cherenkov Telescope (GCT) is proposed for the Small-Sized Telescope component of the Cherenkov Telescope Array (CTA). GCT's dual-mirror Schwarzschild-Couder (SC) optical system allows the use of a compact camera with small form-factor photosensors. The GCT camera is 0:4 m in diameter and has 2048 pixels; each pixel has a 0:2° angular size, resulting in a wide field-of-view. The design of the GCT camera is high performance at low cost, with the camera housing 32 front-end electronics modules providing full waveform information for all of the camera's 2048 pixels. The first GCT camera prototype, CHEC-M, was commissioned during 2015, culminating in the first Cherenkov images recorded by a SC telescope and the first light of a CTA prototype. In this contribution we give a detailed description of the GCT camera and present preliminary results from CHEC-M's commissioning.

  6. Webb Telescope: Planetary Evolution

    NASA Video Gallery

    Stars and planets form in the dark, inside vast, cold clouds of gas and dust. The James Webb Space Telescope's large mirror and infrared sensitivity will let astronomers peer inside dusty knots whe...

  7. Holographic telescope arrays.

    PubMed

    Lohmann, A W; Sauer, F

    1988-07-15

    A typical job in optical computing is to illuminate an array of small nonlinear optical components, separated by wide gaps to avoid crosstalk. We do this by letting a wide uniform beam fall onto a densely packed array of minifying telescopes. Each telescope produces a narrow bundle of parallel rays which illuminates one of the nonlinear optical components. The holographic telescopes can do more than change the width of the bundles of parallel rays. Their image forming capability allows the transmission of many pixels per channel in parallel. The pair of lenslets of a single holographic telescope (Kepler or Galilean) is produced in rigid coupling. The monolithic production avoids adjusting the two lenslets later on.

  8. Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Mather, John; Stockman, H. S.; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    The Next Generation Space Telescope (NGST), planned for launch in 2009, will be an 8-m class radiatively cooled infrared telescope at the Lagrange point L2. It will cover the wavelength range from 0.6 to 28 microns with cameras and spectrometers, to observe the first luminous objects after the Big Bang, and the formation, growth, clustering, and evolution of galaxies, stars, and protoplanetary clouds, leading to better understanding of our own Origins. It will seek evidence of the cosmic dark matter through its gravitational effects. With an aperture three times greater than the Hubble Space Telescope, it will provide extraordinary advances in capabilities and enable the discovery of many new phenomena. It is a joint project of the NASA, ESA, and CSA, and scientific operations will be provided by the Space Telescope Science Institute.

  9. Telescopes and space exploration

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Maran, S. P.

    1982-01-01

    Progress in contemporary astronomy and astrophysics is shown to depend on complementary investigations with sensitive telescopes operating in several wavelength regions, some of which can be on the Earth's surface and others of which must be in space.

  10. Hubble Space Telescope Assembly

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This photograph shows the Hubble Space Telescope (HST) flight article assembly with multilayer insulation, high gain anterna, and solar arrays in a clean room of the Lockheed Missile and Space Company. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  11. Composite Space Telescope Truss

    NASA Video Gallery

    NASA engineers are recycling an idea for a lightweight, compact space telescope structure from the early 1990s. The 315 struts and 84 nodes were originally designed to enable spacewalking astronaut...

  12. New catadioptric telescope

    NASA Astrophysics Data System (ADS)

    Richter, J. L.

    1981-01-01

    The Acme telescope is a compound telescope that resembles the familiar Cassegrain type except that the main mirror is spherical and the secondary is an achromatic doublet mangin mirror. Three 6-in. aperture f/15 telescope designs are described. With a cemented, all spherical surface achromangin mirror, there is a small amount of coma which can be eliminated by redesigning with an air space between the crown and flint elements of the achromangin mirror, or by cementing them with one of the concave external surfaces of achromangin figured to an hyperboloid. In the examples, the spherical aberration is nil and the chromatic residual is roughly half that of an achromatic objective of the same speed, aperture, and glass types. Readily available crown and flint glasses such as Schott BK-7 and F-2 are entirely satisfactory for the achromangin mirror. Also considered are two examples of Acme-like telescopes with paraboloidal instead of spherical main mirrors.

  13. First light with a carbon fiber reinforced polymer 0.4 meter telescope

    NASA Astrophysics Data System (ADS)

    Wilcox, Christopher C.; Santiago, Freddie; Jungwirth, Matthew E.; Martinez, Ty; Restaino, Sergio R.; Bagwell, Brett; Romeo, Robert

    2014-03-01

    For the passed several years, the Naval Research Laboratory (NRL) has been investigating the use of Carbon Fiber Reinforced Polymer (CFRP) material in the construction of a telescope assembly including the optical components. The NRL, Sandia National Laboratories (SNL), and Composite Mirror Applications, Inc. (CMA) have jointly assembled a prototype telescope and achieved "first light" images with a CFRP 0.4 m aperture telescope. CFRP offers several advantages over traditional materials such as creating structures that are lightweight and low coefficient of thermal expansion and conductivity. The telescope's primary and secondary mirrors are not made from glass, but CFRP, as well. The entire telescope weighs approximately 10 kg while a typical telescope of this size would weigh quite a bit more. We present the achievement of "first light" with this telescope demonstrating the imaging capabilities of this prototype and the optical surface quality of the mirrors with images taken during a day's quiescent periods.

  14. Large Binocular Telescope Project

    NASA Astrophysics Data System (ADS)

    Hill, John M.

    1997-03-01

    The large binocular telescope (LBT) project have evolved from concepts first proposed in 1985. The present partners involved in the design and construction of this 2 by 8.4 meter binocular telescope are the University of Arizona, Italy represented by the Osservatorio Astrofisico di Arcetri and the Research Corporation based in Tucson, Arizona. These three partners have committed sufficient funds to build the enclosure and the telescope populated with a single 8.4 meter optical train -- approximately 40 million dollars (1989). Based on this commitment, design and construction activities are now moving forward. Additional partners are being sought. The next mirror to be cast at the Steward Observatory Mirror Lab in the fall of 1996 will be the first borosilicate honeycomb primary for LBT. The baseline optical configuration of LBT includes wide field Cassegrain secondaries with optical foci above the primaries to provide a corrected one degree field at F/4. The infrared F/15 secondaries are a Gregorian design to allow maximum flexibility for adaptive optics. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4 arcminute diameter field-of-view. The interferometric focus combining the light from the two 8.4 meter primaries will reimage two folded Gregorian focal planes to a central location. The telescope elevation structure accommodates swing arms which allow rapid interchange of the various secondary and tertiary mirrors. Maximum stiffness and minimal thermal disturbance continue to be important drivers for the detailed design of the telescope. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The detailed design of the telescope structure will be completed in 1996 by ADS Italia (Lecco) and European Industrial Engineering (Mestre). The final enclosure design is now in progress at M3 Engineering (Tucson), EIE and ADS Italia

  15. Heinrich Hertz Telescope

    NASA Astrophysics Data System (ADS)

    Baars, Jacob W.; Martin, Robert N.

    1998-07-01

    The Heinrich Hertz Telescope is a radio telescope dedicated to the observation of submillimeter wavelength radiation from celestial sources. It is a Cassegrain telescope with a diameter of 10 m and a reflector accuracy of about 17 micrometer, yielding an excellent performance at 350 micrometer, the shortest wavelength transmitted through the atmosphere. The reflector panels and the backup structure employ carbon-fiber reinforced plastic as basic material to achieve a lightweight, stiff construction with a very small coefficient of thermal expansion. This enables us to maintain full performance of the telescope in day time under solar illumination of the structure. In this paper, we describe the structural and material characteristics of the telescope. We also describe the holographic method which enables a measurement and setting of the reflector panels to an accuracy of 10 micrometer. The telescope is located on Mt. Graham in Eastern Arizona at an altitude of 3250 m, providing good submillimeter observing conditions, especially in the winter months. This is a collaborative effort of the Max-Planck- Institut fur Radioastronomie, Bonn, Germany and Steward Observatory, University of Arizona, Tucson, AZ.

  16. Seismotectonics of the Explorer region and of the Blanco transform fault zone

    NASA Astrophysics Data System (ADS)

    Braunmiller, Jochen

    In this thesis, we present the first detailed, long-term seismotectonic studies of oceanic ridge-transform systems. The proximity of the Juan de Fuca plate to a network of broadband seismic stations in western North America provides a unique synergy of interesting tectonic targets, high seismicity, and recording capabilities. Our main tools are earthquake source parameters, determined by robust waveform modeling techniques, and precise earthquake locations, determined by joint epicenter relocation. Regional broadband data are used to invert for the source moment tensors of the frequent, moderate-sized (M ≥ 4) earthquakes; this analysis began 1994. We include Harvard centroid moment-tensors available since 1976 for larger (M ≥ 5) earthquakes. Two studies comprise the main part of this thesis. In the first, we determine the current tectonics of Explorer region offshore western Canada. Earthquake slip vector azimuths along the Pacific-Explorer boundary require an independent Explorer plate. We determine its rotation pole and provide a tectonic model for the plate's history over the last 2 Ma. Plate motion changes caused distributed deformation in the plate's southeast comer and caused a small piece in the southwest corner to transfer to the Pacific plate. Capture of the plate fragment indicates that preserved fragments not necessary represent entire microplates. In the second study, we investigate seismicity and source parameters along the Blanco Transform Fault Zone (BTFZ). The deformation style---strike slip and normal faulting---correlates well with observed changes in BTFZ's morphology. We infer that Blanco Ridge probably consists of two fault segments, that several parallel faults are active along BTFZ's west part, and that Cascadia Depression possibly is a short spreading center. The slip distribution along the BTFZ is highly variable, although seismicity could account for the full plate motion rate along the entire BTFZ. The final part is a short study

  17. Irradiation effect on α- and β-caseins of milk and Queso Blanco cheese determined by capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Ham, J. S.; Jeong, S. G.; Lee, S. G.; Han, G. S.; Chae, H. S.; Yoo, Y. M.; Kim, D. H.; Lee, W. K.; Jo, C.

    2009-02-01

    Milk and Queso Blanco cheese were exposed to irradiation with doses of 1, 2, 3, 5, and 10 kGy to investigate the irradiation effect on α- and β-casein using a capillary electrophoresis. αS1-Casein to total protein ratio in raw milk was decreased from 19.63% to 8.64% by 10 kGy of gamma irradiation. The ratio of αS1- to αS0-casein was also decreased from 1.38 to 0.53, which showed αS1-casein is more susceptible to gamma irradiation than αS0-casein. Similarly, αS1-casein to total protein ratio in Queso Blanco cheese was decreased from 17.48% to 7.82% and the ratio of αS1- to αS0-casein was decreased from 1.16 to 0.43 by 10 kGy of gamma irradiation. Dose-dependent reduction of βA1-casein was also found. βA1-Casein to total protein ratios in raw milk and Queso Blanco cheese were decreased from 22.00% to 14.16% and from 21.96% to 13.89% after 10 kGy, respectively. The ratios of βA1- to βA2-casein were from 1.10 to 0.64 and 0.93 to 0.57 in milk and Queso Blanco cheese, respectively. However, αS0-, βB-, and βA3-casein increased by irradiation at 10 kGy. The results suggest that αS1-casein and βA1-casein were more susceptible to gamma irradiation, and may be related to the reduction of milk allergenicity caused by gamma irradiation.

  18. The Multiple-Mirror Telescope

    ERIC Educational Resources Information Center

    Carleton, Nathaniel P.; Hoffmann, William F.

    1978-01-01

    Describes the basic design and principle of operating an optical-infrared telescope, the MMT. This third largest telescope in the world represents a new stage in telescope design; it uses a cluster of six reflecting telescopes, and relies on an automatic sensing and control system. (GA)

  19. Numerical simulation of ground-based telescope enclosures

    NASA Astrophysics Data System (ADS)

    Pan, Nian; Ma, Wenli; Huang, Jinlong

    2014-11-01

    In order to choose enclosure for the next generation telescopes, numerical simulation method was used. Firstly, the telescope, two general kinds of enclosures structure and the external flow field model were established, Then CFD(Computational Fluid Dynamics) technology was used to analyze the wind speed, static pressure, turbulence kinetic energy distribution and eddy around the telescope, when the telescope at two different pointing gestures and the external wind speed at 10m/s. The simulation results showed that when the telescope adapt the retractable enclosure, the wind speed of the main optical path between 6.1 m/s and 9.3 m/s, and the average static pressure (gauge pressure) on the primary mirror between 42.9268 Pa and 37.5579 Pa, however when telescope adapt the hemispherical enclosure, the wind speed of the main optical path between 3.4 m/s and 6.8 m/s, the average static pressure (gauge pressure) on the primary mirror between 12.1387 Pa and 11.105 Pa. Although the wind resistance of the retractable enclosure was lower than the hemispherical enclosure, no eddy generated near the main optical path, it provided the telescope a uniform flow field and ensured the quality of the image of a star. So the retractable enclosure would have better performance than the hemispherical enclosure.

  20. Innovative relocation system for enclosures for MROI array telescopes

    NASA Astrophysics Data System (ADS)

    Busatta, A.; Ghedin, L.; Marchiori, G.; Mian, S.; Payne, I.; Pozzobon, M.

    2010-07-01

    Magdalena Ridge Observatory Interferometer (MROI) comprises an array of up to ten (10) 1.4m diameter mirror telescopes. Each of these ten telescopes will be housed inside a Unit Telescope Enclosure (UTE) which can be relocated, with the telescope inside, to any of 28 stations arranged in a "Y" configuration. These stations comprise fixed foundations with utility and data connections. There are four standard array configurations, the most compact of which one has less than 350 mm of space between the enclosures. This paper describes the relocation systems that were evaluated, including a rail based system, wheels or trolley fixed to the bottom of the enclosure, and various lifting mechanisms, all of which were analyzed to determine their performances related to the requirements. Eventually a relocation system utilizing a modified reachstacker (a transporter used to handle freight containers) has been selected. The reachstacker is capable of manoeuvring between and around the enclosures, is capable of lifting the combined weight of the enclosure with the telescope (40tons), and can manoeuvre the enclosure with minimal vibrations. A rigorous testing procedure has been performed to determine the vibrations induced in a dummy load in order to guarantee the safety of optics that must remain on the nasmyth table during the relocation. Finally we describe the lifting system, constituted by hydraulic jacks and locating pins, designed to lift and lower the enclosure and telescope during the precise positioning of the telescopes in the various stations.

  1. Telescopes in education

    NASA Astrophysics Data System (ADS)

    Yessayian, Rick

    Imagine sitting in your classroom with your students and controlling a Research Grade 24 inch telescope. You control where it points, you control the duration of the exposure of a high grade CCD camera, and you control all of this within your school day, on a camera half way around the globe, in real time. You can hear the telescope moving, talk to the operator sitting atop historic Mt. Wilson Observatory in California. You might be looking at comets, asteroids, galaxies, nebulas or a host of other interesting celestial objects. Perhaps you have students that are up to a real challenge -- doing real science! Students in our program have contributed the discovery of a new variable star, to the Pluto Express project, to the search for supernovas, and the collection of images of intersecting galaxies. These are among the many possible projects you might choose from. The age and ability of your students are taken into account when you choose your project. Students from Kindergarten through Grade 12 have participated in this free program. A new robotic telescope was added at Mount Wilson in 1999. The telescope is a Celestron 14" SCT mounted on a Bisque Paramount GT-1100 with an Apogee AP-7 CCD camera (512X512 pixels). In the Spring of 2001, we duplicated the 14" robotic telescope configuration and placed it at the Las Campanas Observatory, Chile (operated by the Carnegie Observatories). I installed the system in late September, 2001, and we began testing. The system requires one more upgrade and some hardware adjustments, which I will complete in June, 2002. We duplicated another 14" robotic telescope, and sent it to Brisbane Australia in January, 2002. The grand opening of the telescope will be in August 2002.

  2. Hubble Space Telescope: The Telescope, the Observations & the Servicing Mission

    NASA Astrophysics Data System (ADS)

    1999-11-01

    the way for other space-based observatories. How the mission was named Hubble Space Telescope is named after Edwin Powell Hubble (1889-1953), who was one of the great pioneers of modern astronomy. Industrial Involvement The ESA contribution to HST included the Solar Panels and the Faint Object Camera (FOC). Prime contractors for the FOC were Dornier (now DaimlerChrysler Aerospace, Germany), and Matra (France); for the Solar Panels British Aerospace (UK). Launch date: April 25, 1990 Launcher: Space Shuttle Discovery (STS-31) Launch mass: 11 110 kg Dimensions Length: 15.9 m, diameter: 4.2 m. In addition two solar panels each 2.4 x 12.1 m. Payload (current) A 2.4 m f/24 Ritchey-Chretien telescope with four main instruments, currently WFPC2, STIS, NICMOS and FOC. In addition the three fine-guidance sensors are used for astrometric observations (positional astronomy). WFPC2 - Wide Field/Planetary Camera 2 is an electronic camera working at two magnifications. It has four CCD detectors with 800 x 800 pixels. One of these (called Planetary Camera) has a higher resolution (<0.1 arcsecond). STIS - Space Telescope Imaging Spectrograph uses so-called MAMAs and CCDs to provide images and spectra. It is sensitive to a wide range of light from UV to Infrared. NICMOS - Near-Infrared Camera and Multi-Object Spectrometer provides images and spectra in the infrared. NICMOS uses cooled HgCdTe detectors. Currently NICMOS is dormant and awaits a new cooler to be provided during Servicing Mission 3B. FOC - Faint Object Camera - a very high resolution camera built by ESA. FOC is no longer in use and will be replaced by the new Advanced Camera for Surveys (ACS) during Servicing Mission 3B. Orbit Circular, 593 km with a 28.5 degree inclination. Operations Science operations are co-ordinated and conducted by the Space Telescope Science Institute (STScI) in Baltimore. Overall management of daily on-orbit operations is carried out by NASA's Goddard Space Flight Center (GSFC) in Greenbelt. Ground

  3. Forensic Hydrological Investigation of the Blanco River Flood May 2015, Wimberley, TX

    NASA Astrophysics Data System (ADS)

    Furl, C.

    2015-12-01

    A forensic hydrological investigation of a major flash flood was conducted for the Blanco River in south-central Texas. The unprecedented flood occurred during the early morning hours of May 24th leaving 12 dead in the towns of Wimberley and San Marcos. Hundreds of homes were damaged or destroyed, two reinforced concrete bridges were washed off their piers, and nearly 100 high water rescues were made the following day. The present work characterizes the meteorological setup leading to the event, describes the flood hydrology using the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model, and reports on an extensive field campaign seeking to document high water marks throughout the 1200 km2 basin. Results indicate high precipitable water values, large CAPE, and strong mid and upper level winds aided in impressive divergence over the region. This allowed for storms to continually produce heavy rainfall over the same areas. Large regions of the catchment received greater than 200 mm across the upper portion of the basin with 24 hr maximums around 330 mm. GSSHA simulations indicate good performance when compared to a stage hydrograph recorded mid-catchment. The remaining USGS gauges failed early on during the rising limb of the hydrograph. Model estimates indicate peak streamflow was approximately 5500 cms with stage values nearing 13 m as the flood wave moved through the town of Wimberley. Approximately 125 locations were examined for high water marks along the mainstem of the river using RTK GPS. Stage values ranged from 12 - 18 m.

  4. Comparative transcriptional survey between self-incompatibility and self-compatibility in Citrus reticulata Blanco.

    PubMed

    Ma, Yuewen; Li, Qiulei; Hu, Guibing; Qin, Yonghua

    2017-04-20

    Seedlessness is an excellent economical trait, and self-incompatibility (SI) is one of important factors resulting in seedless fruit in Citrus. However, SI molecular mechanism in Citrus is still unclear. In this study, RNA-Seq technology was used to identify differentially expressed genes related to SI reaction of 'Wuzishatangju' (Citrus reticulata Blanco). A total of 35.67GB raw RNA-Seq data was generated and was de novo assembled into 50,364 unigenes with an average length of 897bp and N50 value of 1549. Twenty-three candidate unigenes related to SI were analyzed using qPCR at different tissues and stages after self- and cross-pollination. Seven pollen S genes (Unigene0050323, Unigene0001060, Unigene0004230, Unigene0004222, Unigene0012037, Unigene0048889 and Unigene0004272), three pistil S genes (Unigene0019191, Unigene0040115, Unigene0036542) and three genes (Unigene0038751, Unigene0031435 and Unigene0029897) associated with the pathway of ubiquitin-mediated proteolysis were identified. Unigene0031435, Unigene0038751 and Unigene0029897 are probably involved in SI reaction of 'Wuzishatangju' based on expression analyses. The present study provides a new insight into the molecular mechanism of SI in Citrus at the transcriptional level.

  5. DAG Telescope: A New Potential for MOS Observations

    NASA Astrophysics Data System (ADS)

    Alis, S.; Yesilyaprak, C.; Yerli, S. K.

    2016-10-01

    East Anatolian Observatory (aka. DAG) is a national project supported by the Turkish Government for building a 4 m class telescope which will be working in the optical and near-IR domain. As the tender process has been completed and kick-off to the telescope and the mirror production has been initiated, the project team is looking for possible collaborations for the focal plane instrumentation. This contribution is intended to describe the DAG project and to show its opportunities for a state-of-the-art MOS instrument.

  6. Monolithic afocal telescope

    NASA Technical Reports Server (NTRS)

    Roberts, William T. (Inventor)

    2010-01-01

    An afocal monolithic optical element formed of a shallow cylinder of optical material (glass, polymer, etc.) with fast aspheric surfaces, nominally confocal paraboloids, configured on the front and back surfaces. The front surface is substantially planar, and this lends itself to deposition of multi-layer stacks of thin dielectric and metal films to create a filter for rejecting out-of-band light. However, an aspheric section (for example, a paraboloid) can either be ground into a small area of this surface (for a Cassegrain-type telescope) or attached to the planar surface (for a Gregorian-type telescope). This aspheric section of the surface is then silvered to create the telescope's secondary mirror. The rear surface of the cylinder is figured into a steep, convex asphere (again, a paraboloid in the examples), and also made reflective to form the telescope's primary mirror. A small section of the rear surface (approximately the size of the secondary obscuration, depending on the required field of the telescope) is ground flat to provide an unpowered surface through which the collimated light beam can exit the optical element. This portion of the rear surface is made to transmit the light concentrated by the reflective surfaces, and can support the deposition of a spectral filter.

  7. Spectroradiometry with space telescopes

    NASA Astrophysics Data System (ADS)

    Pauluhn, Anuschka; Huber, Martin C. E.; Smith, Peter L.; Colina, Luis

    2015-12-01

    Radiometry, i.e. measuring the power of electromagnetic radiation—hitherto often referred to as "photometry"—is of fundamental importance in astronomy. We provide an overview of how to achieve a valid laboratory calibration of space telescopes and discuss ways to reliably extend this calibration to the spectroscopic telescope's performance in space. A lot of effort has been, and still is going into radiometric "calibration" of telescopes once they are in space; these methods use celestial primary and transfer standards and are based in part on stellar models. The history of the calibration of the Hubble Space Telescope serves as a platform to review these methods. However, we insist that a true calibration of spectroscopic space telescopes must directly be based on and traceable to laboratory standards, and thus be independent of the observations. This has recently become a well-supported aim, following the discovery of the acceleration of the cosmic expansion by use of type-Ia supernovae, and has led to plans for launching calibration rockets for the visible and infrared spectral range. This is timely, too, because an adequate exploitation of data from present space missions, such as Gaia, and from many current astronomical projects like Euclid and WFIRST demands higher radiometric accuracy than is generally available today. A survey of the calibration of instruments observing from the X-ray to the infrared spectral domains that include instrument- or mission-specific estimates of radiometric accuracies rounds off this review.

  8. Towers for Antarctic Telescopes

    NASA Astrophysics Data System (ADS)

    Hammerschlag, R. H.; Bettonvil, F. C. M.; Jägers, A. P. L.; Nielsen, G.

    To take advantage of the exceptional seeing above the boundary layer on Antarctic sites, a high-resolution telescope must be mounted on a support tower. An open transparent tower of framework minimizes the upward temperature-disturbed airflow. A typical minimum height is 30m. The tower platform has to be extremely stable against wind-induced rotational motions, which have to be less than fractions of an arc second, unusually small from a mechanical engineering viewpoint. In a traditional structure, structural deflections result in angular deflections of the telescope platform, which introduce tip and tilt motions in the telescope. However, a structure that is designed to deflect with parallel motion relative to the horizontal plane will undergo solely translation deflections in the telescope platform and thus will not degrade the image. The use of a parallel motion structure has been effectively demonstrated in the design of the 15-m tower for the Dutch Open Telescope (DOT) on La Palma. Special framework geometries are developed, which make it possible to construct high towers in stories having platforms with extreme stability against wind-induced tilt. These geometric solutions lead to constructions, being no more massive than a normal steel framework carrying the same load. Consequently, these lightweight towers are well suited to difficult sites as on Antarctica. A geometry with 4 stories has been worked out.

  9. The Travelling Telescope

    NASA Astrophysics Data System (ADS)

    Murabona Oduori, Susan

    2015-08-01

    The telescope has been around for more than 400 years, and through good use of it scientists have made many astonishing discoveries and begun to understand our place in the universe. Most people, however, have never looked through one. Yet it is a great tool for cool science and observation especially in a continent and country with beautifully dark skies. The Travelling Telescope project aims to invite people outside under the stars to learn about those curious lights in the sky.The Travelling Telescope aims to promote science learning to a wide range of Kenyan schools in various locations exchanging knowledge about the sky through direct observations of celestial bodies using state of the art telescopes. In addition to direct observing we also teach science using various hands-on activities and astronomy software, ideal for explaining concepts which are hard to understand, and for a better grasp of the sights visible through the telescope. We are dedicated to promoting science using astronomy especially in schools, targeting children from as young as 3 years to the youth, teachers, their parents and members of the public. Our presentation focuses on the OAD funded project in rural coastal Kenya.

  10. Robotic and Survey Telescopes

    NASA Astrophysics Data System (ADS)

    Woźniak, Przemysław

    Robotic telescopes are revolutionizing the way astronomers collect their dataand conduct sky surveys. This chapter begins with a discussion of principles thatguide the process of designing, constructing, and operating telescopes andobservatories that offer a varying degree of automation, from instruments remotelycontrolled by observers to fully autonomous systems requiring no humansupervision during their normal operations. Emphasis is placed on designtrade-offs involved in building end-to-end systems intended for a wide range ofscience applications. The second part of the chapter contains descriptions ofseveral projects and instruments, both existing and currently under development.It is an attempt to provide a representative selection of actual systems thatillustrates state of the art in technology, as well as important ideas and milestonesin the development of the field. The list of presented instruments spans the fullrange in size starting from small all-sky monitors, through midrange robotic andsurvey telescopes, and finishing with large robotic instruments and surveys.Explosive growth of telescope networking is enabling entirely new modesof interaction between the survey and follow-up observing. Increasingimportance of standardized communication protocols and software is stressed.These developments are driven by the fusion of robotic telescope hardware,massive storage and databases, real-time knowledge extraction, and datacross-correlation on a global scale. The chapter concludes with examplesof major science results enabled by these new technologies and futureprospects.

  11. The South Pole Telescope

    SciTech Connect

    Ruhl, J.E.; Ade, P.A.R.; Carlstrom, J.E.; Cho, H.M.; Crawford,T.; Dobbs, M.; Greer, C.H.; Halverson, N.W.; Holzapfel, W.L.; Lanting,T.M.; Lee, A.T.; Leitch, E.M.; Leong, J.; Lu, W.; Lueker, M.; Mehl, J.; Meyer, S.S.; Mohr, J.J.; Padin, S.; Plagge, T.; Pryke, C.; Runyan, M.C.; Schwan, D.; Sharp, M.K.; Spieler, H.; Staniszewski, Z.; Stark, A.A.

    2004-11-04

    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10 m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over 4000 degrees for galaxy clusters using the Sunyaev-Zeldovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.

  12. The Nuclear Compton Telescope

    NASA Astrophysics Data System (ADS)

    Boggs, Steven E.; NCT Collaboration

    2011-09-01

    The Nuclear Compton Telescope (NCT) is a balloon-borne soft gamma-ray (0.2-10 MeV) telescope designed to perform wide-field imaging, high-resolution spectroscopy, and novel polarization analysis of astrophysical sources. NCT employs a novel Compton telescope design, utilizing 12 high spectral resolution germanium detectors, with the ability to localize photon interaction in three dimensions. NCT underwent its first science flight from Fort Sumner, NM in Spring 2009, and was partially destroyed during a second launch attempt from Alice Spring, Australia in Spring 2010. We will present an overview of the NCT program, including results from the Spring 2009 flight, as well as status and plans for the NCT program.

  13. Configurable Aperture Space Telescope

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Vassigh, Kenny; Bendek, Selman; Young, Zion W; Lynch, Dana H.

    2015-01-01

    In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide strawman mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible andor UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HST.

  14. Configurable Aperture Space Telescope

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Bendek, Eduardo

    2015-01-01

    In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide straw man mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible and/or UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HST

  15. LSST telescope modeling overview

    NASA Astrophysics Data System (ADS)

    Sebag, J.; Andrew, J.; Angeli, G.; Araujo, C.; Barr, J.; Callahan, S.; Cho, M.; Claver, C.; Daruich, F.; Gressler, W.; Hileman, E.; Liang, M.; Muller, G.; Neill, D.; Schoening, W.; Warner, M.; Wiecha, O.; Xin, B.; Orden Martinez, Alfredo; Perezagua Aguado, Manuel; García Marchena, Luis; Ruiz de Argandoña, Ismael

    2016-08-01

    During this early stage of construction of the Large Synoptic Survey Telescope (LSST), modeling has become a crucial system engineering process to ensure that the final detailed design of all the sub-systems that compose the telescope meet requirements and interfaces. Modeling includes multiple tools and types of analyses that are performed to address specific technical issues. Three-dimensional (3D) Computeraided Design (CAD) modeling has become central for controlling interfaces between subsystems and identifying potential interferences. The LSST Telescope dynamic requirements are challenging because of the nature of the LSST survey which requires a high cadence of rapid slews and short settling times. The combination of finite element methods (FEM), coupled with control system dynamic analysis, provides a method to validate these specifications. An overview of these modeling activities is reported in this paper including specific cases that illustrate its impact.

  16. Ultrathin zoom telescopic objective.

    PubMed

    Li, Lei; Wang, Di; Liu, Chao; Wang, Qiong-Hua

    2016-08-08

    We report an ultrathin zoom telescopic objective that can achieve continuous zoom change and has reduced compact volume. The objective consists of an annular folded lens and three electrowetting liquid lenses. The annular folded lens undertakes the main part of the focal power of the lens system. Due to a multiple-fold design, the optical path is folded in a lens with the thickness of ~1.98mm. The electrowetting liquid lenses constitute a zoom part. Based on the proposed objective, an ultrathin zoom telescopic camera is demonstrated. We analyze the properties of the proposed objective. The aperture of the proposed objective is ~15mm. The total length of the system is ~18mm with a tunable focal length ~48mm to ~65mm. Compared with the conventional zoom telescopic objective, the total length has been largely reduced.

  17. The Discovery Channel Telescope

    NASA Astrophysics Data System (ADS)

    Millis, R. L.; Dunham, E. W.; Sebring, T. A.; Smith, B. W.; de Kock, M.; Wiecha, O.

    2004-11-01

    The Discovery Channel Telescope (DCT) is a 4.2-m telescope to be built at a new site near Happy Jack, Arizona. The DCT features a large prime focus mosaic CCD camera with a 2-degree-diameter field of view especially designed for surveys of KBOs, Centaurs, NEAs and other moving or time-variable targets. The telescope can be switched quickly to a Ritchey-Chretien configuration for optical/IR spectroscopy or near-IR imaging. This flexibility allows timely follow-up physical studies of high priority objects discovered in survey mode. The ULE (ultra-low-expansion) meniscus primary and secondary mirror blanks for the telescope are currently in fabrication by Corning Glass. Goodrich Aerospace, Vertex RSI, M3 Engineering and Technology Corp., and e2v Technologies have recently completed in-depth conceptual design studies of the optics, mount, enclosure, and mosaic focal plane, respectively. The results of these studies were subjected to a formal design review in July, 2004. Site testing at the 7760-ft altitude Happy Jack site began in 2001. Differential image motion observations from 117 nights since January 1, 2003 gave median seeing of 0.84 arcsec FWHM, and the average of the first quartile was 0.62 arcsec. The National Environmental Policy Act (NEPA) process for securing long-term access to this site on the Coconino National Forest is nearing completion and ground breaking is expected in the spring of 2005. The Discovery Channel Telescope is a project of the Lowell Observatory with major financial support from Discovery Communications, Inc. (DCI). DCI plans ongoing television programming featuring the construction of the telescope and the research ultimately undertaken with the DCT. An additional partner can be accommodated in the project. Interested parties should contact the lead author.

  18. The ANTARES neutrino telescope

    NASA Astrophysics Data System (ADS)

    Distefano, Carla

    The ANTARES collaboration has completed in 2008 the construction of an underwater high-energy neutrino telescope in the Mediterranean Sea, located 40 km off the French coast at a depth of 2500 m. The detector consists of 885 optical modules, which are distributed in 12 detector lines, various calibration systems and devices for environmental measurements. With an instrumented volume of about 0.05 km3, ANTARES is the largest Cherenkov neutrino detector currently operating in the Northern hemisphere. A general overview on the ANTARES telescope is given. The preliminary results from the various physics analyses on the collected data will be presented.

  19. Adaptive Optics at the World’s Biggest Optical Telescope

    DTIC Science & Technology

    2010-09-01

    bottom up. The reflective, and deformable, component of each of the LBT’s mirrors is a concave Zerodur shell, 1.6 mm in average thickness and 911 mm in...Physik, 85748 Garching, Germany ABSTRACT The Large Binocular Telescope (LBT) on Mt. Graham, Arizona, comprises two 8.4 m primary mirrors on a...adaptive optics (AO) was incorporated into the design through two adaptive secondary mirrors (ASM), each 91 cm in diameter with 672 actuators, which feed

  20. Inorganic solute profiles of waters related to Rio Blanco oil shale project retort 1

    SciTech Connect

    Poulson, R.E.; Borg, H.M.

    1986-03-01

    Water samples were taken from the Rio Blanco oil shale project retort 1 site approximately three- and one-half years after the shutdown of the oil recovery phase. Intermittent flooding and pumpdown of the retort occurred in the interval between shutdown and sampling for this study. Waters from within the retort and from downgradient and offsite locations were compared using a battery of analyses for inorganic and general water quality parameters. Inorganic solute species were selected as potential key indicator species if the particular species concentration inside the retort was greater than that outside the retort. Six inorganic parameters were found to qualify as potential key indicators for retort water migration from the site: potassium, lithium, ammonia, fluoride, thiosulfate, and boron. Except for ammonia, these indicators differ from those selected by other researchers at other modified in situ retorting sites. Ion chromatographic techniques were shown to be applicable for five of the six potential key indicators - all except boron which was detected spectroscopically. Low part-per-billion ion chromatographic analyses were demonstrated for lithium and ammonia. Fractional part-per-million ion chromatographic analyses were demonstrated for potassium and fluoride. Thiosulfate detection limits were in the low part-per-million range and only allowed detection of this indicator inside the retort. Five of the indicators (all except thiosulfate) were detected at slightly elevated levels in the Mahogany Zone ''B'' groove completion of the downgradient well. However, insufficient historical baseline data are available at the low detection levels required to allow positive identification of communication between this well and the retort. The potential for enhancement of sensitivity of the ion chromatographic methods beyond that already achieved for the selected indicators is discusses. 11 refs., 1 fig., 9 tabs.

  1. Deformation across the forearc of the Cascadia subduction zone at Cape Blanco, Oregon

    USGS Publications Warehouse

    Savage, J.C.; Svarc, J.L.; Prescott, W.H.; Murray, M.H.

    2000-01-01

    Over the interval 1992-1999 the U.S. Geological Survey measured the deformation of a geodetic array extending N880°E (approximate direction of plate convergence) from Cape Blanco on the Oregon coast to the volcanic arc near Newberry Crater (55 and 350 km, respectively, from the deformation front). Within about 150 km from the deformation front, the forearc is being compressed arcward (N80°E) by coupling to the subducting Juan de Fuca plate. Dislocation modeling of the observed N80°E compression suggests that the main thrust zone (the locked portion of the Juan de Fuca-forearc interface) is about 40 km wide in the downdip direction. The transverse (N10°W) velocity component of the forearc measured with respect to the fixed interior of North America decreases with distance from the deformation front at a rate of about 0.03 mm yr-1 km-1. That gradient appears to be a consequence of rigid rotation of the forearc block relative to fixed interior North America (Euler vector of 43.4°±0.1° N, 120.0°±0.4° W, and -1.67±0.17° (m.y.)-1; quoted uncertainties are standard deviations). The rotation rate is similar to the paleomagnetically measured rotation rate (-1.0±0.2° (m.y.)-1) of the 15 Ma lava flows along the Columbia River 250 km farther north. The back arc does not appear to participate in this rotation but rather is migrating at a rate of about 3.6 mm yr-1northward with respect to fixed North America. That migration could be partly an artifact of an imperfect tie of our reference coordinate system to the interior of North America.

  2. Assessment of hydrologic transport of radionuclides from the Rio Blanco underground nuclear test site, Colorado

    SciTech Connect

    Chapman, J.; Earman, S.; Andricevic, R.

    1996-10-01

    DOE is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations used for nuclear testing. Evaluation of radionuclide transport by groundwater is part of preliminary risk analysis. These evaluations allow prioritization of test areas in terms of risk, provide a basis for discussions with regulators and the public about future work, and provide a framework for assessing site characterization data needs. The Rio Blanco site in Colorado was the location of the simultaneous detonation of three 30-kiloton nuclear devices. The devices were located 1780, 1899, and 2039 below ground surface in the Fort Union and Mesaverde formations. Although all the bedrock formations at the site are thought to contain water, those below the Green River Formation (below 1000 in depth) are also gas-bearing, and have very low permeabilities. The transport scenario evaluated was the migration of radionuclides from the blast-created cavity through the Fort Union Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. This modeling was performed to investigate how the uncertainty in various physical parameters affect radionuclide transport at the site, and to serve as a starting point for discussion regarding further investigation; it was not intended to be a definitive simulation of migration pathways or radionuclide concentration values. Given the sparse data, the modeling results may differ significantly from reality. Confidence in transport predictions can be increased by obtaining more site data, including the amount of radionuclides which would have been available for transport (i.e., not trapped in melt glass or vented during gas flow testing), and the hydraulic properties of the formation. 38 refs., 6 figs., 1 tab.

  3. Apollo Telescope Mount Illustration

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Apollo Telescope Mount (ATM) served as the first marned astronomical observatory in space. It was designed for solar research from Earth orbit aboard the Skylab. This image is a cutaway illustration of the ATM canister with callouts and characteristics. The ATM was designed and developed by the Marshall Space Flight Center.

  4. Apollo Telescope Mount Illustration

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The Apollo Telescope Mount (ATM) served as the first marned astronomical observatory in space. It was designed for solar research from Earth orbit aboard the Skylab. This image is a cutaway illustration of the ATM canister. The ATM was designed and developed by the Marshall Space Flight Center.

  5. Apollo Telescope Mount Illustration

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The Apollo Telescope Mount (ATM) served as the first marned astronomical observatory in space. It was designed for solar research from Earth orbit aboard the Skylab. This image is a cutaway illustration of the ATM canister with callouts. The ATM was designed and developed by the Marshall Space Flight Center.

  6. A Simple "Tubeless" Telescope

    ERIC Educational Resources Information Center

    Straulino, S.; Bonechi, L.

    2010-01-01

    Two lenses make it possible to create a simple telescope with quite large magnification. The set-up is very simple and can be reproduced in schools, provided the laboratory has a range of lenses with different focal lengths. In this article, the authors adopt the Keplerian configuration, which is composed of two converging lenses. This instrument,…

  7. The Falcon Telescope Network

    NASA Astrophysics Data System (ADS)

    Chun, F.; Tippets, R.; Dearborn, M.; Gresham, K.; Freckleton, R.; Douglas, M.

    2014-09-01

    The Falcon Telescope Network (FTN) is a global network of small aperture telescopes developed by the Center for Space Situational Awareness Research in the Department of Physics at the United States Air Force Academy (USAFA). Consisting of commercially available equipment, the FTN is a collaborative effort between USAFA and other educational institutions ranging from two- and four-year colleges to major research universities. USAFA provides the equipment (e.g. telescope, mount, camera, filter wheel, dome, weather station, computers and storage devices) while the educational partners provide the building and infrastructure to support an observatory. The user base includes USAFA along with K-12 and higher education faculty and students. Since the FTN has a general use purpose, objects of interest include satellites, astronomical research, and STEM support images. The raw imagery, all in the public domain, will be accessible to FTN partners and will be archived at USAFA in the Cadet Space Operations Center. FTN users will be able to submit observational requests via a web interface. The requests will then be prioritized based on the type of user, the object of interest, and a user-defined priority. A network wide schedule will be developed every 24 hours and each FTN site will autonomously execute its portion of the schedule. After an observational request is completed, the FTN user will receive notification of collection and a link to the data. The Falcon Telescope Network is an ambitious endeavor, but demonstrates the cooperation that can be achieved by multiple educational institutions.

  8. Exploring Galileo's Telescope

    ERIC Educational Resources Information Center

    Straulino, Samuele; Terzuoli, Alessandra

    2010-01-01

    In the first months of 2009, the International Year of Astronomy, the authors developed an educational project for middle-level students connected with the first astronomical discoveries that Galileo Galilei (1564-1642) made 400 years ago. The project included the construction of a basic telescope and the observation of the Moon. The project, if…

  9. The Liverpool Telescope

    NASA Astrophysics Data System (ADS)

    Smith, Robert J.; Bates, S. D.; Clay, Neil R.; Fraser, Stephen N.; Marchant, J. M.; Mottram, C. J.; Steele, I. A.; Tomlinson, M. D.

    2011-03-01

    The Liverpool Telescope (LT) is a fully robotic 2m optical telescope at a world-class observatory site. It runs autonomously without direct human control either on site or remotely. It is not operated primarily for a single science project, but rather is a common-user facility, time allocated by an open, peer-review process and conducting a variety of optical and IR imaging, spectroscopic and polarimetric programs. This paper describes some of aspects of the site infrastructure and instrument suite designed specifically to support robust and reliable unsupervised operations. Aside from the telescope hardware, the other aspect of robotic operations is the mechanisms whereby users interact with the telescope and its automated scheduler. We describe how these have been implemented for the LT. Observing routinely since 2004, the LT has demonstrated it is possible to operate a large, common-user robotic observatory. Making the most of the flexibility afforded by fully robotic operations, development continues in collaboration with both observers and other observatories to develop observing modes to enable new science across the broad discipline of time-domain astrophysics.

  10. Wearable telescopic contact lens.

    PubMed

    Arianpour, Ashkan; Schuster, Glenn M; Tremblay, Eric J; Stamenov, Igor; Groisman, Alex; Legerton, Jerry; Meyers, William; Amigo, Goretty Alonso; Ford, Joseph E

    2015-08-20

    We describe the design, fabrication, and testing of a 1.6 mm thick scleral contact lens providing both 1× and 2.8× magnified vision paths, intended for use as a switchable eye-borne telescopic low-vision aid. The F/9.7 telescopic vision path uses an 8.2 mm diameter annular entrance pupil and 4 internal reflections in a polymethyl methacrylate precision optic. This gas-impermeable insert is contained inside a smooth outer casing of rigid gas-permeable polymer, which also provides achromatic correction for refraction at the curved lens face. The unmagnified F/4.1 vision path is through the central aperture of the lens, with additional transmission between the annular telescope rings to enable peripheral vision. We discuss potential solutions for providing oxygenation for an extended wear version of the lens. The prototype lenses were characterized using a scale-model human eye, and telescope functionality was confirmed in a small-scale clinical (nondispensed) demonstration.

  11. Hubble Space Telescope Assembly

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Engineers and technicians conduct a fit check of the Hubble Space Telescope (HST) Solar Array flight article in a clean room of the Lockheed Missile and Space Company. The Solar Array is 40- feet (12.1-meters) long and 8.2-feet (2.5-meters) wide, and provides power to the spacecraft. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  12. Membrane photon sieve telescopes.

    PubMed

    Andersen, Geoff

    2010-11-20

    We present results of research into the design and construction of membrane photon sieves as primaries for next-generation lightweight space telescopes. We have created prototypes in electroformed nickel as well as diazo and CP-1 polymer films. In two such cases, diffraction-limited imaging performance was demonstrated over a narrow bandwidth.

  13. A Novel Dust Telescope

    NASA Astrophysics Data System (ADS)

    Grün, E.; Srama, R.; Krüger, H.; Kempf, S.; Harris, D.; Conlon, T.; Auer, S.

    2001-11-01

    Dust particles in space, like photons, are born at remote sites in space and time. From knowledge of the dust particles' birthplace and the particles' bulk properties, we can learn about the remote environment out of which the particles were formed. This approach is carried out by means of a dust telescope on a dust observatory in space. A dust telescope is a combination of a dust trajectory sensor together with a chemical composition analyzer for dust particles. A novel dust telescope is described. It consists of a highly sensitive dust trajectory sensor, and a large area chemical dust analyzer. It can provide valuable information about the particles' birthplace which may not be accessible by other techniques. Dust particles' trajectories are determined by the measurement of the electric signals that are induced when a charged grain flies through an appropriately configured electrode systems. After the successful identification of a few charged micron-sized dust grains in space by the Cassini Cosmic Dust Analyzer, this dust telescope has a ten fold increased sensitivity of charge detection (10-16 Coulombs) and will be able to obtain trajectories for sub-micron sized dust grains. State-of-the art dust chemical analyzers have sufficient mass resolution to resolve ions with atomic mass numbers above 100. However, since their impact areas are small they can analyze statistically meaningful numbers of grains only in the dust-rich environments of comets or ringed planets. Therefore, this dust telescope includes a large area (0.1 m2) chemical dust analyzer of mass resolution > 100 that will allow us to obtain statistically significant measurements of interplanetary and interstellar dust grains in space.

  14. Wavefront Analysis of Adaptive Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Hillman, Lloyd

    1997-01-01

    The motivation for this work came from a NASA Headquarters interest in investigating design concepts for a large space telescope employing active optics technology. The development of telescope optical requirements and potential optical design configurations is reported.

  15. A microwave kinetic inductance detector for the DAG telescope

    NASA Astrophysics Data System (ADS)

    Güver, Tolga; Mazin, Benjamin A.; O'Brien, Kieran; Kay, Burak; Aliş, Sinan; Yelkenci, F. Korhan; Yeşilyaprak, Cahit; Yerli, Sinan K.; Erol, Ayşe.; Keskin, Onur

    2016-08-01

    We present the details of a proposed microwave kinetic inductance detector (MKID) for the DAG (Eastern Anatolia Observatory in Turkish) telescope, DAG-MKID. The observatory will have a modern 4m size telescope that is currently under construction. Current plan to obtain the first light with the telescope is late 2019. The proposed MKID based instrument will enable astronomers to simultaneously detect photons in the relatively wide wavelength range of 4000 - 13500 Å with a timing accuracy of μs and spectral resolution R = ⋋/▵ ⋋ =10-25. With a planned field of view of approximately an arcminute, DAG-MKID will mostly be used for follow-up observations of transient or variable objects as well as a robust tool to measure photometric redshifts of a large number of galaxies or other extra-galactic objects.

  16. Overview and status of the Giant Magellan Telescope project

    NASA Astrophysics Data System (ADS)

    Bernstein, Rebecca A.; McCarthy, Patrick J.; Raybould, Keith; Bigelow, Bruce C.; Bouchez, Atonin H.; Filgueira, José M.; Jacoby, George; Johns, Matt; Sawyer, David; Shectman, Stephen; Sheehan, Michael

    2014-07-01

    The Giant Magellan Telescope (GMT) is a 25.4-m diameter, optical/infrared telescope that is being built by an international consortium of universities and research institutions as one of the next generation of Extremely Large Telescopes. The primary mirror of GMT consists of seven 8.4 m borosilicate honeycomb mirror segments that are optically conjugate to seven corresponding segments in the Gregorian secondary mirror. Fabrication is complete for one primary mirror segment and is underway for the next two. The final focal ratio of the telescope is f/8.2, so that the focal plane has an image scale of 1.02 arcsec/mm. GMT will be commissioned using a fast-steering secondary mirror assembly comprised of conventional, rigid segments to provide seeing-limited observations. A secondary mirror with fully adaptive segments will be used in standard operation to additionally enable ground-layer and diffraction-limited adaptive optics. In the seeing limited mode, GMT will provide a 10 arcmin field of view without field correction. A 20 arcmin field of view will be obtained using a wide-field corrector and atmospheric dispersion compensator. The project has recently completed a series of sub-system and system-level preliminary design reviews and is currently preparing to move into the construction phase. This paper summarizes the technical development of the GMT sub-systems and the current status of the GMT project.

  17. Uzaybimer Radio Telescope Control System

    NASA Astrophysics Data System (ADS)

    Balbay, R.; Öz, G. K.; Arslan, Ö.; Özeren, F. F.; Küçük, İ.

    2016-12-01

    A 13 meters former NATO radar is being converted into a radio telescope. The radio telescope is controlled by a system which has been developed at UZAYBİMER. The Telescope Control System(TCS) has been designed using modern industrial systems. TCS has been developed in LabView platform in which works Windows embedded OS. The position feedback used on radio telescopes is an industrial EtherCAT standard. ASCOM library is used for astronomical calculations.

  18. Characterization of Rio Blanco retort 1 water following treatment by lime-soda softening and reverse osmosis

    SciTech Connect

    Kocornik, D.J.

    1985-12-01

    Laboratory research was initiated to evaluate the chemical, physical, and toxicological characteristics of treated and untreated Rio Blanco oil shale retort water. Wet chemical analyses, metals analyses, MICROTOX assays and particle-size analysis were performed on the wastewater before and after treatment by lime-soda softening and reverse osmosis. The reverse osmosis system successfully removed dissolved solids and organics from the wastewater. Based on MICROTOX tests, the water was much less toxic after treatment by reverse osmosis. 8 refs., 7 figs., 8 tabs.

  19. Chemistry and age of groundwater in the Piceance structural basin, Rio Blanco county, Colorado, 2010-12

    USGS Publications Warehouse

    McMahon, Peter B.; Thomas, Judith C.; Hunt, Andrew G.

    2013-01-01

    Fourteen monitoring wells were sampled by the U.S. Geological Survey, in cooperation with the Bureau of Land Management, to better understand the chemistry and age of groundwater in the Piceance structural basin in Rio Blanco County, Colorado, and how they may relate to the development of underlying natural-gas reservoirs. Natural gas extraction in the area has been ongoing since at least the 1950s, and the area contains about 960 producing, shut-in, and abandoned natural-gas wells.

  20. The Primeval Structure Telescope

    NASA Astrophysics Data System (ADS)

    Peterson, J. B.; Pen, U. L.; Wu, X. P.

    2004-12-01

    The Primeval Structure Telescope (PaST) will be used to study early ionization of the universe. The telescope will image and spectrally resolve hyperfine emission of neutral hydrogen at redshifts from about 6 to 20. Recently released data, obtained with the WMAP satellite, indicate that the universe was ionized very early, at around redshift 15. Right now, there is very little information on this ionization, since the WMAP data do not tell us the ionization history or the energy source. If the energy source was emission from collapsed objects, perhaps ultraviolet radiation from the first stars, the ionization did not occur homogenously. Earlier star formation in high-density regions causes these to be ionized first. Just when the ionization was half complete, the large-scale structure of the universe became visible in the ionization pattern. We will use redshifted 21 cm brightness to image the largest of the ionized bubbles in three dimensions, allowing us to determine the redshift of the early ionization. In addition, we will be able to study the evolution and merging of the ionized bubbles. PAST will be a sparse array telescope consisting of 10,000 log periodic antennas, providing over 50,000 square meters of effective collecting area. These antennas will be grouped into 80 phased arrays of 127 antennas. Current plans have these phased arrays fixed, pointed at the North Celestial Pole. Later, we can add electronic beam steering. Signals from the 80 phased arrays will be processed using a correlator built from a network of about 100 PC computers. The telescope will occupy ten square kilometers in the Ulastai Valley, Xin Jiang, China. The telescope will be built almost entirely of inexpensive commercially available off-the-shelf components. A series of tests of prototypes, made on-site, have allowed us to study the performance of the telescope and its components. We will present these results and show sky images obtained with the prototypes. We anticipate that one

  1. Expression of Npas4 mRNA in Telencephalic Areas of Adult and Postnatal Mouse Brain

    PubMed Central

    Damborsky, Joanne C.; Slaton, G. Simona; Winzer-Serhan, Ursula H.

    2015-01-01

    The transcription factor neuronal PAS domain-containing protein 4 (Npas4) is an inducible immediate early gene which regulates the formation of inhibitory synapses, and could have a significant regulatory role during cortical circuit formation. However, little is known about basal Npas4 mRNA expression during postnatal development. Here, postnatal and adult mouse brain sections were processed for isotopic in situ hybridization using an Npas4 specific cRNA antisense probe. In adults, Npas4 mRNA was found in the telencephalon with very restricted or no expression in diencephalon or mesencephalon. In most telencephalic areas, including the anterior olfactory nucleus (AON), piriform cortex, neocortex, hippocampus, dorsal caudate putamen (CPu), septum and basolateral amygdala nucleus (BLA), basal Npas4 expression was detected in scattered cells which exhibited strong hybridization signal. In embryonic and neonatal brain sections, Npas4 mRNA expression signals were very low. Starting at postnatal day 5 (P5), transcripts for Npas4 were detected in the AON, CPu and piriform cortex. At P8, additional Npas4 hybridization was found in CA1 and CA3 pyramidal layer, and in primary motor cortex. By P13, robust mRNA expression was located in layers IV and VI of all sensory cortices, frontal cortex and cingulate cortex. After onset of expression, postnatal spatial mRNA distribution was similar to that in adults, with the exception of the CPu, where Npas4 transcripts became gradually restricted to the most dorsal part. In conclusion, the spatial distribution of Npas4 mRNA is mostly restricted to telencephalic areas, and the temporal expression increases with developmental age during postnatal development, which seem to correlate with the onset of activity-driven excitatory transmission. PMID:26633966

  2. Lunar transit telescope lander design

    NASA Technical Reports Server (NTRS)

    Omar, Husam A.

    1991-01-01

    The Program Development group at NASA's Marshall Space Flight Center has been involved in studying the feasibility of placing a 16 meter telescope on the lunar surface to scan the skies using visible/ Ultraviolet/ Infrared light frequencies. The precursor telescope is now called the TRANSIT LUNAR TELESCOPE (LTT). The Program Development Group at Marshall Space Flight Center has been given the task of developing the basic concepts and providing a feasibility study on building such a telescope. The telescope should be simple with minimum weight and volume to fit into one of the available launch vehicles. The preliminary launch date is set for 2005. A study was done to determine the launch vehicle to be used to deliver the telescope to the lunar surface. The TITAN IV/Centaur system was chosen. The engineering challenge was to design the largest possible telescope to fit into the TITAN IV/Centaur launch system. The telescope will be comprised of the primary, secondary and tertiary mirrors and their supporting system in addition to the lander that will land the telescope on the lunar surface and will also serve as the telescope's base. The lunar lander should be designed integrally with the telescope in order to minimize its weight, thus allowing more weight for the telescope and its support components. The objective of this study were to design a lander that meets all the constraints of the launching system. The basic constraints of the TITAN IV/Centaur system are given.

  3. Lunar transit telescope lander design

    NASA Technical Reports Server (NTRS)

    Omar, Husam A.

    1992-01-01

    The Program Development group at NASA's Marshall Space Flight Center has been involved in studying the feasibility of placing a 16 meter telescope on the lunar surface to scan the skies using visible/ Ultraviolet/ Infrared light frequencies. The precursor telescope is now called the TRANSIT LUNAR TELESCOPE (LTT). The Program Development Group at Marshall Space Flight Center has been given the task of developing the basic concepts and providing a feasibility study on building such a telescope. The telescope should be simple with minimum weight and volume to fit into one of the available launch vehicles. The preliminary launch date is set for 2005. A study was done to determine the launch vehicle to be used to deliver the telescope to the lunar surface. The TITAN IV/Centaur system was chosen. The engineering challenge was to design the largest possible telescope to fit into the TITAN IV/Centaur launch system. The telescope will be comprised of the primary, secondary and tertiary mirrors and their supporting system in addition to the lander that will land the telescope on the lunar surface and will also serve as the telescope's base. The lunar lander should be designed integrally with the telescope in order to minimize its weight, thus allowing more weight for the telescope and its support components. The objective of this study were to design a lander that meets all the constraints of the launching system. The basic constraints of the TITAN IV/Centaur system are given.

  4. Science operations with Space Telescope

    NASA Technical Reports Server (NTRS)

    Giacconi, R.

    1982-01-01

    The operation, instrumentation, and expected contributions of the Space Telescope are discussed. Space Telescope capabilities are described. The organization and nature of the Space Telescope Science Institute are outlined, including the allocation of observing time and the data rights and data access policies of the institute.

  5. Lowell Observatory's Discovery Channel Telescope

    NASA Astrophysics Data System (ADS)

    Hall, Jeffrey C.

    2017-01-01

    Lowell Observatory broke ground on its 4.3-meter Discovery Channel Telescope (DCT) in July 2005 and celebrated first light for the telescope in July 2012. In this overview to this special session, I will discuss the origin and development of the project, the telescope's general specifications and performance, its current operating status, and the initial instrument suite.

  6. The Bionic Telescope

    NASA Astrophysics Data System (ADS)

    Woolf, Neville

    2009-05-01

    Four hundred years after children in a spectacle makers workshop accidentally discovered the telescope, the development of this device has been a continuous replacement of the ``natural'' by the deliberate. The human eye is gone. The lens is gone. The tube is gone. The dome is on the verge of going. The size of the optics are ceasing to be set by transportation limits. Adaptive optics are preferred to stable optics. We deliberately break the Lagrange invariant. We focus on lasers instead of stars, and natural observing environments are being replaced by adaptive environments. The goals for the new ground based telescope encompass the oldest and newest ideas, to find signs of life elsewhere, and to find how all the universe developed.

  7. Origins Space Telescope

    NASA Astrophysics Data System (ADS)

    Cooray, Asantha R.; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. I will summarize the OST STDT, mission design and instruments, key science drivers, and the study plan over the next two years.

  8. Telescopic limiting magnitudes

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.

    1990-01-01

    The prediction of the magnitude of the faintest star visible through a telescope by a visual observer is a difficult problem in physiology. Many prediction formulas have been advanced over the years, but most do not even consider the magnification used. Here, the prediction algorithm problem is attacked with two complimentary approaches: (1) First, a theoretical algorithm was developed based on physiological data for the sensitivity of the eye. This algorithm also accounts for the transmission of the atmosphere and the telescope, the brightness of the sky, the color of the star, the age of the observer, the aperture, and the magnification. (2) Second, 314 observed values for the limiting magnitude were collected as a test of the formula. It is found that the formula does accurately predict the average observed limiting magnitudes under all conditions.

  9. Telescopes of galileo.

    PubMed

    Greco, V; Molesini, G; Quercioli, F

    1993-11-01

    The Florentine Istituto e Museo di Storia delta Scienza houses two complete telescopes and a single objective lens (reconstructed from several fragments) that can be attributed to Galileo. These optics have been partially dismantled and made available for optical testing with state-of-the-art equipment. The lenses were investigated individually; the focal length and the radii of curvature were measured, and the optical layout of the instruments was worked out. The optical quality of the surfaces and the overall performance of the two complete telescopes have been evaluated interferometrically at a wavelength of 633 nm (with a He-Ne laser source). It was found in particular that the optics of Galileo came close to attaining diffraction-limited operation.

  10. Galileo's wondrous telescope

    NASA Astrophysics Data System (ADS)

    Cartlidge, Edwin

    2008-06-01

    If you need reminding of just how wrong the great and the good can be, take a trip to the Museum of the History of Science in Florence, Italy. The museum is staging an exhibition entitled "Galileo's telescope - the instrument that changed the world" to mark the 400th anniversary this year of Galileo Galilei's revolutionary astronomical discoveries, which were made possible by the invention of the telescope. At the start of the 17th century, astronomers assumed that all the planets and the stars in the heavens had been identified and that there was nothing new for them to discover, as the exhibition's curator, Giorgio Strano, points out. "No-one could have imagined what wondrous new things were about to be revealed by an instrument created by inserting two eyeglass lenses into the ends of a tube," he adds.

  11. Telescopic horizon scanning.

    PubMed

    Koenderink, Jan

    2014-12-20

    The problem of "distortionless" viewing with terrestrial telescopic systems (mainly "binoculars") remains problematic. The so called "globe effect" is only partially counteracted in modern designs. Theories addressing the phenomenon have never reached definitive closure. In this paper, we show that exact distortionless viewing with terrestrial telescopic systems is not possible in general, but that it is in principle possible in-very frequent in battle field and marine applications-the case of horizon scanning. However, this involves cylindrical optical elements. For opto-electronic systems, a full solution is more readily feasible. The solution involves a novel interpretation of the relevant constraints and objectives. For final design decisions, it is not necessary to rely on a corpus of psychophysical (or ergonomic) data, although one has to decide whether the instrument is intended as an extension of the eye or as a "pictorial" device.

  12. Nonmechanical bifocal zoom telescope.

    PubMed

    Valley, Pouria; Reza Dodge, Mohammad; Schwiegerling, Jim; Peyman, Gholam; Peyghambarian, N

    2010-08-01

    We report on a novel zoom lens with no moving parts in the form of a switchable Galilean telescope. This zoom telescope consists of two flat liquid-crystal diffractive lenses with apertures of 10mm that can each take on the focal lengths of -50 and +100cm, with a spacing of 50cm and, hence, a zoom ratio of 4x. The lenses are driven using a low-voltage ac source with 1.6V and exhibit millisecond switching times. The spectral characteristic of this diffractive zoom system is evaluated for light sources of various bandwidths. Potential applications for this technology include a zoom lens with no moving parts for camera phones and medical imaging devices.

  13. TAUVEX - UV Space Telescope

    NASA Astrophysics Data System (ADS)

    Topaz, Jeremy; Braun, Ofer; Brosch, Noah

    1993-01-01

    The TAUVEX UV Space Telescope currently under construction by El-Op Ltd. in Israel is designed both for recording images of the sky in the UV region and to serve as the optical monitor for the SODART X-Ray Telescope being built by the Danish Space Research Institute. The two systems, together with several other experiments, will be flown on the S-R-G satellite to be launched by the CIS in 1995. TAUVEX will image a field of about 1 deg simultaneously in three spectral bands. In addition, it will record a selected object in a high-speed time-resolved mode in these bands. The concept and design of TAUVEX is described in this paper.

  14. The Neutrino Telescope ANTARES

    NASA Astrophysics Data System (ADS)

    Hernández, Juan José

    Neutrinos can reveal a brand new Universe at high energies. The ANTARES collaboration [1] , formed in 1996, works towards the building and deployment of a neutrino telescope. This detector could observe and study high energy astrophysical sources such as X-ray binary systems, young supernova remnants or Active Galactic Nuclei and help to discover or set exclusion limits on some of the elementary particles and objects that have been put forward as candidates to fill the Universe (WIMPS, neutralinos, topological deffects, Q-balls, etc). A neutrino telescope will certainly open a new observational window and can shed light on the most energetic phenomena of the Universe. A review of the progress made by the ANTARES collaboration to achieve this goal is presented

  15. [Galileo and his telescope].

    PubMed

    Strebel, Christoph

    2006-01-01

    Galileo's publication of observations made with his newly reinvented telescope provoked a fierce debate. In April 1610 Martinus Horky, a young Bohemian astronomer, had an opportunity to make his own observations with Galileo's telescope in the presence of Antonio Magini and other astronomers. Horky and the other witnesses denied the adequacy of Galileo's telescope and therefore the bona fides of his discoveries. Kepler conjectured Horky as well as all his witnesses to be myopic. But Kepler's objection could not stop the publication of Horky's Peregrinatio contra nuncium sidereum (Modena, 1610), the first printed refutation of Galileo's Sidereus nuncius. In his treatise, Horky adresses four questions: 1) Do the four newly observed heavenly bodies actually exist? Horky denies their existence on various grounds: a) God, as every astronomer teaches, has created only seven moveable heavenly bodies and astronomical knowledge originates in God, too. b) Heavenly bodies are either stars or planets. Galileo's moveable heavenly bodies fit into neither category. c) If they do exist, why have they not already been observed by other scholars? Horky concludes that there are no such heavenly bodies. 2) What are these phenomena? They are purely artefactual, and produced by Galileo's telescope. 3) How are they like? Galileo's "stars" are so small as to be almost invisible. Galileo claims that he has measured their distances from each other. This however is impossible due to their diminutive size and other observational problems. Hence, Galileo's claim is a further proof that he is a fraud. 4) Why are they? For Galileo they are a chance to earn money but for astronomers like Horky they are a reason to offer thanks and honour to God. Horky's treatise was favourably received by the enemies of Galileo. But Kepler's critique was devastating. After calling on Kepler in Prague, Horky had to revoke the contents of his book.

  16. The Large Area Telescope

    SciTech Connect

    Michelson, Peter F.; /KIPAC, Menlo Park /Stanford U., HEPL

    2007-11-13

    The Large Area Telescope (LAT), one of two instruments on the Gamma-ray Large Area Space Telescope (GLAST) mission, is an imaging, wide field-of-view, high-energy pair-conversion telescope, covering the energy range from {approx}20 MeV to more than 300 GeV. The LAT is being built by an international collaboration with contributions from space agencies, high-energy particle physics institutes, and universities in France, Italy, Japan, Sweden, and the United States. The scientific objectives the LAT will address include resolving the high-energy gamma-ray sky and determining the nature of the unidentified gamma-ray sources and the origin of the apparently isotropic diffuse emission observed by EGRET; understanding the mechanisms of particle acceleration in celestial sources, including active galactic nuclei, pulsars, and supernovae remnants; studying the high-energy behavior of gamma-ray bursts and transients; using high-energy gamma-rays to probe the early universe to z {ge} 6; and probing the nature of dark matter. The components of the LAT include a precision silicon-strip detector tracker and a CsI(Tl) calorimeter, a segmented anticoincidence shield that covers the tracker array, and a programmable trigger and data acquisition system. The calorimeter's depth and segmentation enable the high-energy reach of the LAT and contribute significantly to background rejection. The aspect ratio of the tracker (height/width) is 0.4, allowing a large field-of-view and ensuring that nearly all pair-conversion showers initiated in the tracker will pass into the calorimeter for energy measurement. This paper includes a description of each of these LAT subsystems as well as a summary of the overall performance of the telescope.

  17. Metalliferous sediment and a silica-hematite deposit within the Blanco fracture zone, Northeast Pacific

    USGS Publications Warehouse

    Hein, J.R.; Clague, D.A.; Koski, R.A.; Embley, R.W.; Dunham, R.E.

    2008-01-01

    A Tiburon ROV dive within the East Blanco Depression (EBD) increased the mapped extent of a known hydrothermal field by an order of magnitude. In addition, a unique opal-CT (cristobalite-tridymite)-hematite mound was discovered, and mineralized sediments and rock were collected and analyzed. Silica-hematite mounds have not previously been found on the deep ocean floor. The light-weight rock of the porous mound consists predominantly of opal-CT and hematite filaments, rods, and strands, and averages 77.8% SiO2 and 11.8% Fe2O3. The hematite and opal-CT precipitated from a low-temperature (???115?? C), strongly oxidized, silica- and iron-rich, sulfur-poor hydrothermal fluid; a bacterial mat provided the framework for precipitation. Samples collected from a volcaniclastic rock outcrop consist primarily of quartz with lesser plagioclase, smectite, pyroxene, and sulfides; SiO2 content averages 72.5%. Formation of these quartz-rich samples is best explained by cooling in an up-flow zone of silica-rich hydrothermal fluids within a low permeability system. Opal-A, opal-CT, and quartz mineralization found in different places within the EBD hydrothermal field likely reflects decreasing silica saturation and increasing temperature of the mineralizing fluid with increasing silica crystallinity. Six push cores recovered gravel, coarse sand, and mud mineralized variously by Fe or Mn oxides, silica, and sulfides. Total rare-earth element concentrations are low for both the rock and push core samples. Ce and Eu anomalies reflect high and low temperature hydrothermal components and detrital phases. A remarkable variety of types of mineralization occur within the EBD field, yet a consistent suite of elements is enriched (relative to basalt and unmineralized cores) in all samples analyzed: Ag, Au, S, Mo, Hg, As, Sb, Sr, and U; most samples are also enriched in Cu, Pb, Cd, and Zn. On the basis of these element enrichments, the EBD hydrothermal field might best be described as a base

  18. Radionuclide Migration at the Rio Blanco Site, A Nuclear-stimulated Low-permeability Natural Gas Reservoir

    SciTech Connect

    Clay A. Cooper; Ming Ye; Jenny Chapman; Craig Shirley

    2005-10-01

    The U.S. Department of Energy and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability gas reservoirs. The third and final project in the program, Project Rio Blanco, was conducted in Rio Blanco County, in northwestern Colorado. In this experiment, three 33-kiloton nuclear explosives were simultaneously detonated in a single emplacement well in the Mesaverde Group and Fort Union Formation, at depths of 1,780, 1,899, and 2,039 m below land surface on May 17, 1973. The objective of this work is to estimate lateral distances that tritium released from the detonations may have traveled in the subsurface and evaluate the possible effect of postulated natural-gas development on radionuclide migration. Other radionuclides were considered in the analysis, but the majority occur in relatively immobile forms (such as nuclear melt glass). Of the radionuclides present in the gas phase, tritium dominates in terms of quantity of radioactivity in the long term and contribution to possible whole body exposure. One simulation is performed for {sup 85}Kr, the second most abundant gaseous radionuclide produced after tritium.

  19. Analysis of constituents of metal elements and amino acids in new cultivar Citrus reticulata Blanco cv. Ougan fruit from China.

    PubMed

    Chen, Xiangtao; Yuan, Ke; Si, Jinping

    2009-01-01

    The aim of this research is to establish a new kind of simple and rapid method to determine amino acids and metal elements in Citrus reticulata Blanco cv. Ougan fruit. The high-performance liquid chromatography pre-column derivation method was used to test the contents of amino acids found in the cv. fruit. The results showed that there were 17 kinds of amino acids in the fruits of two different mature periods. They could be separated easily within 30 min. The correlation coefficients between the peak area of amino acid and the content of the amino acid were above 0.99. The sample-added recovery rate of amino acids was between 96.0% and 102.4%. Meanwhile, the microwave-aided dissolving procedure was adopted for dissolving of the cv. fruit to determine the 15 metal elements in the cv. fruit under the best conditions of flame atomic absorption spectrophotometry. The results showed that there were high contents of trace elements and amino acids in the fruit of two different ripening periods. The correlation coefficients between the peak areas of amino acids and the concentration of the elements are satisfactory. These results may provide us with the scientific evidence for further studies and the exploitation of C. reticulata Blanco cv. Ougan.

  20. Calculation of the intensity of Touschek electrons in the VEPP-4M storage ring

    SciTech Connect

    Nikitin, S. A. Nikolaev, I. B.

    2012-07-15

    Formulas for calculating the intensity of intrabeam scattering of electrons in the Born approximation for the one- and two-dimensional collision models have been obtained for the nonrelativistic and relativistic cases. The Baier-Katkov-Strakhovenko two-dimensional relativistic model with Coulomb corrections has been analyzed. Formulas in the ultrarelativistic limit have been obtained using this model. Different models have been compared. The intensities of Touschek electrons and the polarization contribution have been calculated under the conditions of the detection of scattered particles at the VEPP-4M storage ring. The calculations have been compared to experimental data.

  1. Comparing NEO Search Telescopes

    NASA Astrophysics Data System (ADS)

    Myhrvold, Nathan

    2016-04-01

    Multiple terrestrial and space-based telescopes have been proposed for detecting and tracking near-Earth objects (NEOs). Detailed simulations of the search performance of these systems have used complex computer codes that are not widely available, which hinders accurate cross-comparison of the proposals and obscures whether they have consistent assumptions. Moreover, some proposed instruments would survey infrared (IR) bands, whereas others would operate in the visible band, and differences among asteroid thermal and visible-light models used in the simulations further complicate like-to-like comparisons. I use simple physical principles to estimate basic performance metrics for the ground-based Large Synoptic Survey Telescope and three space-based instruments—Sentinel, NEOCam, and a Cubesat constellation. The performance is measured against two different NEO distributions, the Bottke et al. distribution of general NEOs, and the Veres et al. distribution of Earth-impacting NEO. The results of the comparison show simplified relative performance metrics, including the expected number of NEOs visible in the search volumes and the initial detection rates expected for each system. Although these simplified comparisons do not capture all of the details, they give considerable insight into the physical factors limiting performance. Multiple asteroid thermal models are considered, including FRM, NEATM, and a new generalized form of FRM. I describe issues with how IR albedo and emissivity have been estimated in previous studies, which may render them inaccurate. A thermal model for tumbling asteroids is also developed and suggests that tumbling asteroids may be surprisingly difficult for IR telescopes to observe.

  2. The Planck Telescope reflectors

    NASA Astrophysics Data System (ADS)

    Stute, Thomas

    2004-09-01

    The mechanical division of EADS-Astrium GmbH, Friedrichshafen is currently engaged with the development, manufacturing and testing of the advanced dimensionally stable composite reflectors for the ESA satellite borne telescope Planck. The objective of the ESA mission Planck is to analyse the first light that filled the universe, the cosmic microwave background radiation. Under contract of the Danish Space Research Institute and ESA EADS-Astrium GmbH is developing the all CFRP primary and secondary reflectors for the 1.5-metre telescope which is the main instrument of the Planck satellite. The operational frequency ranges from to 25 GHz to 1000 GHz. The demanding high contour accuracy and surface roughness requirements are met. The design provides the extreme dimensional stability required by the cryogenic operational environment at around 40 K. The elliptical off-axis reflectors display a classical lightweight sandwich design with CFRP core and facesheets. Isostatic mounts provide the interfaces to the telescope structure. Protected VDA provides the reflecting surface. The manufacturing is performed at the Friedrichshafen premises of EADS-Space Transportation GmbH, the former Dornier composite workshops. Advanced manufacturing technologies like true angle lay-up by CNC fibre placement and filament winding are utilized. The protected coating is applied at the CAHA facilities at the Calar Alto Observatory, Spain. The exhaustive environmental testing is performed at the facilities of IABG, Munich (mechanical testing) and for the cryo-optical tests at CSL Liege. The project is in advanced state with both Qualification Models being under environmental testing. The flight models will be delivered in 2004. The paper gives an overview over the requirements and the main structural features how these requirements are met. Special production aspects and available test results are reported.

  3. Turkey's next big science project: DAG the 4 meter telescope

    NASA Astrophysics Data System (ADS)

    Keskin, O.; Yesilyaprak, C.; Yerli, S. K.; Zago, L.; Jolissaint, L.

    2014-07-01

    The DAG (Turkish for Eastern Anatolia Observatory) 4-m telescope project has been formally launched in 2012, being fully funded by the Government of Turkey. This new observatory is to be located on a 3170 m altitude ridge near the town of Erzurum in Eastern Anatolia. First light is scheduled for late 2017. The DAG team's baseline design of the telescope consists of a Ritchey-Chretien type with alt-az mount, a focal length of 56 m and a field of view up to 30 arcmin. Multiple instruments will be located at the Nasmyth foci. The optical specifications of the telescope are set by DAG team for diffraction limited performance with active and adaptive optics. Modern mirror control technologies will allow defining in a most cost effective way the figuring requirements of the optical surfaces: the low order figuring errors of the combined optical train constituted of M1-M2-M3 are defined in terms of Zernike coefficients and referred to the M1 surface area. The high order figuring errors are defined using the phase structure functions. Daytime chilling of the closed enclosure volume and natural ventilation through suitable openings during observations will be used to ensure optimal mirror and dome seeing. A design of a ground layer adaptive optics (GLAO) subsystem is developed concurrently with the telescope. In this paper, main design aspects, the optical design and expected performance analysis of the telescope will be presented.

  4. Las Cumbres Observatory 1-Meter Global Science Telescope Network

    NASA Astrophysics Data System (ADS)

    Pickles, Andrew; Dubberley, M.; Haldeman, B.; Haynes, R.; Posner, V.; Rosing, W.; staff, LCOGT

    2009-05-01

    We present the optical, mechanical and electronic design of the LCOGT 1-m telescope. These telescopes are planned to go in pairs to each of 6 sites worldwide, complementing 0.4m telescopes and 2-m telescopes at two existing sites. This science network is designed to provide continuously available photometric monitoring and spectroscopy of variable sources. The 1-m optical design is an f/8 quasi-RC system, with a doublet corrector and field flattener to provide good image quality out to 0.8 degrees. The field of view of the Fairchild 4K science CCD is 27 arcmin, with 0.39 arcsec pixels. The mechanical design includes a stiff C-ring equatorial mount and friction drive rollers, mounted on a triangular base that can be adjusted for latitude. Another friction drive is coupled at the Declination axis to the M1 mirror cell, that forms the main Optical Tube Assembly (OTA) structural element. The OTA design includes a stiff carbon fiber truss assembly, with offset vanes to an M2 drive that provides remote focus, tilt and collimation. The tube assembly weighs about 600 Kg, including Hextek mirrors, 4K science CCD, filter wheel, autoguiders and medium resolution spectrograph pick-off fiber. The telescopes will be housed in domes at existing observatory sites. They are designed to operate remotely and reliably under centralized control for automatic, optimized scheduling of observations with available hardware.

  5. Is Your Telescope Tweeting?

    NASA Astrophysics Data System (ADS)

    Atkinson, Nancy

    2009-05-01

    Half of the world's population today was born after the Apollo Moon landings. The best way to reach this generation and get them excited about today's space exploration and astronomy news and events is through online social media, which are technologies that allow anyone to communicate with everyone. Twitter is a growing popular social media tool that uses short, 140 character "Tweets" to quickly and concisely convey updates on what you "are doing." With the right combination of information, personality and fun, telescopes and spacecraft are using Twitter for public outreach, providing important status updates while making the public feel like they are part of the mission.

  6. PIWI homologs mediate Histone H4 mRNA localization to planarian chromatoid bodies

    PubMed Central

    Rouhana, Labib; Weiss, Jennifer A.; King, Ryan S.; Newmark, Phillip A.

    2014-01-01

    The well-known regenerative abilities of planarian flatworms are attributed to a population of adult stem cells called neoblasts that proliferate and differentiate to produce all cell types. A characteristic feature of neoblasts is the presence of large cytoplasmic ribonucleoprotein granules named chromatoid bodies, the function of which has remained largely elusive. This study shows that histone mRNAs are a common component of chromatoid bodies. Our experiments also demonstrate that accumulation of histone mRNAs, which is typically restricted to the S phase of eukaryotic cells, is extended during the cell cycle of neoblasts. The planarian PIWI homologs SMEDWI-1 and SMEDWI-3 are required for proper localization of germinal histone H4 (gH4) mRNA to chromatoid bodies. The association between histone mRNA and chromatoid body components extends beyond gH4 mRNA, since transcripts of other core histone genes were also found in these structures. Additionally, piRNAs corresponding to loci of every core histone type have been identified. Altogether, this work provides evidence that links PIWI proteins and chromatoid bodies to histone mRNA regulation in planarian stem cells. The molecular similarities between neoblasts and undifferentiated cells of other organisms raise the possibility that PIWI proteins might also regulate histone mRNAs in stem cells and germ cells of other metazoans. PMID:24903754

  7. SST dual-mirror telescopes for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Dumas, Delphine; Laporte, Philippe; Sol, Hélène; Pareschi, Giovanni; Canestrari, Rodolfo; Stringhetti, Luca; Catalano, Osvaldo; White, Richard; Greenshaw, Tim; Hinton, Jim; Blake, Simon

    2014-07-01

    The Cherenkov Telescope Array (CTA) is an international collaboration that aims to create the world's foremost very high energy gamma-ray observatory, composed of large, medium and small size telescopes (SST). The SSTs will be the most numerous telescopes on site and will focus on capturing the rarer highest energy photons. Three prototypes of SST are designed and currently under construction; two of them, ASTRI and SST-GATE, have been designed, based on a dual-mirror Schwarzschild-Couder (SC) design which has never been built before for any astronomical observation. The SC optical design allows for a small plate scale, a wide field of view and a lightweight cameras aiming to minimize the cost of SST telescopes in order to increase their number in the array. The aim of this article is to report the progress of the two telescope projects prototyping telescope structures and cameras for the Small Size Telescopes for CTA. After a discussion of the CTA project and its scientific objectives, the performance of the SC design is described, with focus on the specific designs of SST-GATE and ASTRI telescopes. The design of both prototypes and their progress is reported in the current prototyping phase. The designs of Cherenkov cameras, CHEC and ASTRI, to be mounted on these telescopes are discussed and progresses are reported.

  8. SNAP Telescope Latest Developments

    NASA Astrophysics Data System (ADS)

    Lampton, M.; SNAP Collaboration

    2004-12-01

    The coming era of precision cosmology imposes new demands on space telescopes with regard to spectrophotometric accuracy and image stability. To meet these requirements for SNAP we have developed an all reflecting two-meter-class space telescope of the three-mirror anastigmat type. Our design features a large flat annular field (1.5 degrees = 580mm diameter) and a telephoto advantage of 6, delivering a 22m focal length within an optical package length of only 3.5 meters. The use of highly stable materials (Corning ULE glass and carbon-fiber reinforced cyanate ester resin for the metering structure) combined with agressive distributed thermal control and an L2 orbit location will lead to unmatched figure stability. Owing to our choice of rigid structure with nondeployable solar panels, finite-element models show no structural resonances below 10Hz. An exhaustive stray light study has been completed. Beginning in 2005, two industry studies will develop plans for fabrication, integration and test, bringing SNAP to a highly realistic level of definition. SNAP is supported by the Office of Science, US DoE, under contract DE-AC03-76SF00098.

  9. The CCAT Telescope

    NASA Astrophysics Data System (ADS)

    Glenn, Jason; CCAT

    2013-01-01

    CCAT will be a 25 m diameter on-axis Gregory telescope operating in the 0.2 to 2.1 mm wavelength range. It will be located at an altitude of 5600 m on Cerro Chajnantor in northern Chile. CCAT will support cameras and spectrometers with up to 1 field of view at its f/6 Nasmyth foci. The key performance requirements for the telescope are a half wavefront error <12.5 μm rms and pointing error <0.35"/350 μm). CCAT will have an f/0.4 primary with an active surface to compensate gravitational and thermal deformations. The primary will be made of 2 m keystone-shaped segments, each with 16 machined aluminum tiles mounted on a carbon-fiber-reinforced-plastic (CFRP) subframe. The segments will be supported by a CFRP spaceframe truss on an elevation over azimuth mount made of steel. CCAT will be inside an enclosure to reduce wavefront and pointing errors due to wind forces and thermal deformation due to solar illumination.

  10. The Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Jewell, P. R.

    1999-12-01

    The Green Bank Telescope The 100-m NRAO Green Bank Telescope will be completed in early 2000. The GBT has a large number of unique design and performance features that will give it unprecedented scientific capability. This poster display will review those features, which include an offset feed (clear aperture) design, an active surface, a closed-loop laser metrology system for surface figure and pointing control, broad frequency coverage from 100 MHz to 115 GHz, a versatile receiver selection mechanism, and a new multi-input, 256k-channel autocorrelation spectrometer. The status of the project, the commissioning schedule, plans for early operations, the initial instrumentation suite, and plans for future instrumentation will be reviewed. Scientific areas for which the GBT will have a large impact will be discussed, including observations of young galaxies at extreme redshifts, pulsars, HI and molecular spectroscopy, VLBI work, and millimeter-wave spectroscopy and continuum studies. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  11. Magellan Telescopes operations 2008

    NASA Astrophysics Data System (ADS)

    Osip, David J.; Phillips, Mark M.; Palunas, Povilas; Perez, Frank; Leroy, M.

    2008-07-01

    The twin 6.5m Magellan Telescopes have been in routine operations at the Las Campanas Observatory in the Chilean Andes since 2001 and 2002 respectively. The telescopes are owned and operated by Carnegie for the benefit of the Magellan consortium members (Carnegie Institution of Washington, Harvard University, the University of Arizona, Massachusetts Institute of Technology, and the University of Michigan). This paper provides an up to date review of the scientific, technical, and administrative structure of the 'Magellan Model' for observatory operations. With a modest operations budget and a reasonably small staff, the observatory is operated in the "classical" mode, wherein the visiting observer is a key member of the operations team. Under this model, all instrumentation is supplied entirely by the consortium members and the various instrument teams continue to play a critical support role beyond initial deployment and commissioning activities. Here, we present a critical analysis of the Magellan operations model and suggest lessons learned and changes implemented as we continue to evolve an organizational structure that can efficiently deliver a high scientific return for the investment of the partners.

  12. DKIST telescope mount factory testing overview and lessons learned

    NASA Astrophysics Data System (ADS)

    Jeffers, Paul; Trieloff, Todd; Kärcher, Hans; Seubert, Steffen; McBride, William

    2016-07-01

    The Daniel K Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope Mount has proportions similar to an 8 metre class telescope. The Telescope Mount Assembly (TMA) includes both the telescope Mount and the 16m diameter laboratory table or Coudé Rotator. The Coudé Rotator supports the full instrument suite of up to 40 tonnes and has full rotation capabilities similar to the Mount azimuth axis. The TMA has been going through the design, fabrication and assembly process since 2009 with Ingersoll Machine Tool's and this culminated with the Factory Acceptance Testing (FAT). The preparation for the FAT started not long after the Final Design Review was complete and planning continued through the assembly stages. The official Factory Acceptance testing of the Coudé Rotator was conducted during May/Jun 2014 and the Mount in Feb through Apr 2015. This paper provides an overview and discussion of the testing that was carried out. The depth and extent of testing will be described with discussion on what we would do differently next time. Also details of the preparation / process that lead into the testing will be presented. Most importantly the results will be summarized and lessons learned during the testing provided as well as discussion on how this influences the planned site assembly and extent of re-test post assembly.

  13. Adaptive Optics at the World's Biggest Optical Telescope

    NASA Astrophysics Data System (ADS)

    Hart, M.; Esposito, S.; Rabien, S.

    2010-09-01

    The Large Binocular Telescope (LBT) on Mt. Graham, Arizona, comprises two 8.4 m primary mirrors on a common mount. The two apertures will be co-phased to create a single telescope with 110 m2 of collecting area and 22.7 m baseline. From the outset, adaptive optics (AO) was incorporated into the design through two adaptive secondary mirrors (ASM), each 91 cm in diameter with 672 actuators, which feed all of the instruments mounted at the telescope's four pairs of Gregorian foci. The first ASM has now seen first light on sky with natural guide stars. Strehl ratios at 1.6 μm under average seeing are estimated to be ~80%, and diffraction-limited performance is maintained for stars down to magnitude 15. At the same time, pioneering work at the 6.5 m MMT telescope has for the first time shown the compelling benefits of ground-layer AO compensation. This technique relies on the signals from multiple laser beacons to sense and correct aberration arising close to the telescope with the result that near IR seeing is reduced by a factor of 2-3 over a field of many arc minutes. Building on these efforts at both telescopes, a project is underway to enhance the LBT's AO capability by the addition of wavefront sensing with multiple laser guide stars. The Advanced Rayleigh Ground-layer adaptive Optics System (ARGOS) is now in the construction phase. We provide an overview of ARGOS and how it foreshadows AO systems destined for the 30 m class telescopes of tomorrow.

  14. Physical Analysis of the Complex Rye (Secale cereale L.) Alt4 Aluminium (Aluminum) Tolerance Locus Using a Whole-Genome BAC Library of Rye cv. Blanco

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rye is a diploid crop species with many outstanding qualities, and is also important as a source of new traits for wheat and triticale improvement. Here we describe a BAC library of rye cv. Blanco, representing a valuable resource for rye molecular genetic studies. The library provides a 6 × genome ...

  15. Near anastigmatic grazing incidence telescope

    NASA Technical Reports Server (NTRS)

    Korsch, D.

    1984-01-01

    A performance capability assessment is presently conducted for short versus long grazing incidence telescope designs, in view of the observation that the field curvature and astigmatism that are the primary residual aberrations of a Wolter-type incidence telescope can be substantially reduced through mirror length reduction. A major advantage of the short element telescope is that, if sufficiently short, both the paraboloid and hyperboloid surfaces may be fabricated as a single piece; this significantly facilitates the task of alignment.

  16. Cost Modeling for Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2011-01-01

    Parametric cost models are an important tool for planning missions, compare concepts and justify technology investments. This paper presents on-going efforts to develop single variable and multi-variable cost models for space telescope optical telescope assembly (OTA). These models are based on data collected from historical space telescope missions. Standard statistical methods are used to derive CERs for OTA cost versus aperture diameter and mass. The results are compared with previously published models.

  17. Definition of a mobilizing volume of sediment in a valley interested by volcanic eruption: Rio Blanco valley (Chile)

    NASA Astrophysics Data System (ADS)

    Oss-Cazzador, Daniele; Iroumé, Andrés; Picco, Lorenzo

    2016-04-01

    Volcanic explosive activity can strongly affect the riverine environments. Deposition of tephra, pyroclastic and hyperconcentrated flows along both the valley bottom and hillslopes can radically change the environmental morphology. Accumulation and transport of pyroclastic material can increase hazards and risks for anthropic activities. The aims of this research are to evaluate and quantify the amount of erodible sediment that can be transported along a gravel bed river affected by a volcanic eruption. The Rio Blanco valley (Chile) was upset by the plinian-type eruption of Chaiten volcano in 2008. The great amount of tephra released in the initial phase and the subsequent pyroclastic flows, accumulated up to 8 m of sediment over a great portion of the Rio Blanco valley. Using aerial photographs was possible to define the extension of vegetated zones affected by the eruption. The area was interested by a high mortality of vegetation, as confirmed by field surveys. Dendrometric measurements permitted to quantify the volume of wood and observe that renewal and herbal layer are almost absent, determining low soil cohesion and easier erosion by superficial and river erosion processes. Analysis of sediment accumulation allowed quantifying the volume of sediment that can be transported downstream. The analyses were carried out considering 7 km-long a reach, from the river mouth to the confluence between Caldera creek and Rio Blanco. After the eruption, was possible to define as a total area of about 2.19 km2 was affected by tephra deposition, the 40% (0,87 km2) was eroded by flows, while 60% (1,32 km2) is still present and composed by tephra, buried large wood (LW) and dead standing trees. Considering an average high of 5 m, the potential erodible sediment is around 6,5 x 106 m3, moreover there is a potential amount of about 7,3 x 104 m3 of LW that can be transported towards mouth. These analyses can be useful to better define the management plan for the river delta. In

  18. The influence of agitation sequence and ionic strength on in vitro drug release from hypromellose (E4M and K4M) ER matrices--the use of the USP III apparatus.

    PubMed

    Asare-Addo, Kofi; Kaialy, Waseem; Levina, Marina; Rajabi-Siahboomi, Ali; Ghori, Mohammed U; Supuk, Enes; Laity, Peter R; Conway, Barbara R; Nokhodchi, Ali

    2013-04-01

    Theophylline extended release (ER) matrices containing hypromellose (hydroxypropyl methylcellulose (HPMC) E4M and K4M were evaluated in media with a pH range of 1.2-7.5, using an automated USP type III, Bio-Dis dissolution apparatus. The objectives of this study were to evaluate the effects of systematic agitation, ionic strength and pH on the release of theophylline from the gel forming hydrophilic polymeric matrices with different methoxyl substitution levels. Tribo-electric charging of hypromellose, theophylline and their formulated blends containing E4M and K4M grades has been characterised, along with quantitative observations of flow, compression behaviour and particle morphology. Agitations were studied at 5, 10, 15, 20, 25, 30 dips per minute (dpm) and also in the ascending and descending order in the dissolution vials. The ionic concentration strength of the media was also varied over a range of 0-0.4M to simulate the gastrointestinal fed and fasted states and various physiological pH conditions. To study the effect of ionic strength on the hydrophilic matrices, agitation was set at 20 dpm. The charge results on individual components imply that the positively charged particles have coupled with the negatively charged particles to form a stable ordered mixture which is believed to result in a more homogeneous and stable system. The particle shape analysis showed the HPMC K4M polymer to have a more irregular morphology and a rougher surface texture in comparison to the HPMC E4M polymer, possibly a contributory factor to the gelation process. The results showed gelation occurred quicker for the K4M tablet matrices. Drug release increased with increased agitation. This was more pronounced for the E4M tablet matrices. The ionic strength also had more of an effect on the drug release from the E4M matrices. The experiments highlighted the resilience of the K4M matrices in comparison with the E4M matrices. The results thus show that despite similar viscosities of

  19. Gigabit-class optical wireless communication system at indoor distances (1.5 ÷ 4 m).

    PubMed

    Cossu, Giulio; Ali, Wajahat; Corsini, Raffaele; Ciaramella, Ernesto

    2015-06-15

    In this paper we experimentally realized bidirectional optical wireless communication (OWC) link using four channel visible LED board exploiting wavelength division multiplexing (WDM) for the downlink and infrared LED for uplink. We achieved greater than 5 Gbit/s data rate at common indoor distance (1.5 to 4 m) for downlink and 1.5 Gbit/s for uplink using commercially available LEDs. We achieved these results after a careful choice of the LED emission wavelengths and the optical filter spectra. Moreover, we investigate the optimal LED working current and the optimal modulation depth. The bit error ratios of all the channels were maintained lower than the FEC limit (3.8·10(-3)).

  20. The energy transfer in the TEMP-4M pulsed ion beam accelerator

    SciTech Connect

    Isakova, Y. I.; Pushkarev, A. I.; Khaylov, I. P.

    2013-07-15

    The results of a study of the energy transfer in the TEMP-4M pulsed ion beam accelerator are presented. The energy transfer efficiency in the Blumlein and a self-magnetically insulated ion diode was analyzed. Optimization of the design of the accelerator allows for 85% of energy transferred from Blumlein to the diode (including after-pulses), which indicates that the energy loss in Blumlein and spark gaps is insignificant and not exceeds 10%–12%. Most losses occur in the diode. The efficiency of energy supplied to the diode to the energy of accelerated ions is 8%–9% for a planar strip self-magnetic MID, 12%–15% for focusing diode and 20% for a spiral self-magnetic MID.

  1. Measurement of gamma field parameters in core with LEU fuel IRT-4M using TL detectors

    SciTech Connect

    Bily, T.

    2008-07-15

    Thermoluminescent dosimeters represent very useful tool for gamma fields parameters measurements at nuclear research reactors, especially at zero power ones. {sup 7}LiF:Mg,Ti and {sup 7}LiF:Mg,Cu,P type TL dosimeters enable determination of only gamma component in mixed neutron - gamma field. At VR-1 reactor operated within the Faculty of Nuclear Sciences and Physical Engineering at the Czech Technical University in Prague the integral characteristics of gamma rays field were investigated, especially its spatial distribution and time behaviour, i.e. the non-saturated delayed gamma ray emission influence. Measured spatial distributions were compared with monte carlo code MCNP5 calculations. Although MCNP cannot generate delayed gamma rays from fission, the relative gamma dose rate distribution is within {+-} 15% with measured values. The experiments were carried out with core configuration C1 consisting of LEU fuel IRT-4M (19.7 %). (author)

  2. Large space telescope, phase A. Volume 3: Optical telescope assembly

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development and characteristics of the optical telescope assembly for the Large Space Telescope are discussed. The systems considerations are based on mission-related parameters and optical equipment requirements. Information is included on: (1) structural design and analysis, (2) thermal design, (3) stabilization and control, (4) alignment, focus, and figure control, (5) electronic subsystem, and (6) scientific instrument design.

  3. Gamma-Ray Telescopes: 400 Years of Astronomical Telescopes

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.

    2010-01-01

    The last half-century has seen dramatic developments in gamma-ray telescopes, from their initial conception and development through to their blossoming into full maturity as a potent research tool in astronomy. Gamma-ray telescopes are leading research in diverse areas such as gamma-ray bursts, blazars, Galactic transients, and the Galactic distribution of Al-26.

  4. The Travelling Telescope

    NASA Astrophysics Data System (ADS)

    Owen, Daniel

    2015-08-01

    The telescope has been around for over 400 years, yet most people have never looked though one. We invite people outside under the stars to learn about those curious lights in the sky, and have a close encounter with the cosmos.Our main aim is to promote science, technology, engineering, and mathematics to the young minds by inspiring, empowering and engaging them using astronomy and astrophysics tools and concepts. We would like to see Africa compete with the rest of the world and we believe this can happen through having a scientifically literate society. We also work closely wit teachers, parents and the general public to further our objectives. We will present on our recently awarded project to work with schools in rural coastal Kenya, a very poor area of the country. We will also present on other work we continue to do with schools to make our project sustainable even after the OAD funding.

  5. Hubble Space Telescope Image

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Astronomers using the Hubble Space Telescope (HST) have identified what may be the most luminous star known; a celestial mammoth that releases up to 10-million times the power of the Sun and is big enough to fill the diameter of Earth's orbit. The star unleashes as much energy in six seconds as our Sun does in one year. The image, taken by a UCLA-led team with the recently installed Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) aboard the HST, also reveals a bright nebula, created by extremely massive stellar eruptions. The UCLA astronomers estimate that the star, called the Pistol Star, (for the pistol shaped nebula surrounding it), is approximately 25,000 light-years from Earth, near the center of our Milky Way galaxy. The Pistol Star is not visible to the eye, but is located in the direction of the constellation Sagittarius, hidden behind the great dust clouds along the Milky Way

  6. Composite telescope technology

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Rabin, Douglas

    2014-07-01

    We report the development of optical mirrors based on polymer matrix composite materials. Advantages of this technology are low cost and versatility. By using appropriate combinations of polymers and various metallic and nonmetallic particles and fibers, the properties of the materials can be tailored to suit a wide variety of applications. We report the fabrication and testing of flat and curved mirrors made with metal powders, multiple mirrors replicated with high degree of uniformity from the same mandrels, cryogenic testing, mirrors made of ferromagnetic materials that can be actively or adaptively controlled by non-contact actuation, optics with very smooth surfaces made by replication, and by spincasting. We discuss development of a new generation of ultra-compact, low power active optics and 3D printing of athermal telescopes.

  7. Actuated Hybrid Mirror Telescope

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Redding, David; Lowman, Andrew; Cohen, David; Ohara, Catherine

    2005-01-01

    The figure depicts the planned Actuated Hybrid Mirror Telescope (AHMT), which is intended to demonstrate a new approach to the design and construction of wide-aperture spaceborne telescopes for astronomy and Earth science. This technology is also appropriate for Earth-based telescopes. The new approach can be broadly summarized as using advanced lightweight mirrors that can be manufactured rapidly at relatively low cost. More specifically, it is planned to use precise replicated metallic nanolaminate mirrors to obtain the required high-quality optical finishes. Lightweight, dimensionally stable silicon carbide (SiC) structures will support the nanolaminate mirrors in the required surface figures. To enable diffraction- limited telescope performance, errors in surface figures will be corrected by use of mirror-shape-control actuators that will be energized, as needed, by a wave-front-sensing and control system. The concepts of nanolaminate materials and mirrors made from nanolaminate materials were discussed in several previous NASA Tech Briefs articles. Nanolaminates constitute a relatively new class of materials that can approach theoretical limits of stiffness and strength. Nanolaminate mirrors are synthesized by magnetron sputter deposition of metallic alloys and/or compounds on optically precise master surfaces to obtain optical-quality reflector surfaces backed by thin shell structures. As an integral part of the deposition process, a layer of gold that will constitute the reflective surface layer is deposited first, eliminating the need for a subsequent and separate reflective-coating process. The crystallographic textures of the nanolaminate will be controlled to optimize the performance of the mirror. The entire deposition process for making a nanolaminate mirror takes less than 100 hours, regardless of the mirror diameter. Each nanolaminate mirror will be bonded to its lightweight SiC supporting structure. The lightweight nanolaminate mirrors and Si

  8. Geomorphic change along a gravel bed river affected by volcanic eruption: Rio Blanco - Volcan Chaiten (South Chile)

    NASA Astrophysics Data System (ADS)

    Picco, Lorenzo; Ravazzolo, Diego; Ulloa, Hector; Iroumé, Andres; Aristide Lenzi, Mario

    2014-05-01

    Gravel bed rivers are environments shaped by the balance of flow, sediment regimes, large wood (LW) and vegetation. Geomorphic changes are response to fluctuations and changes of runoff and sediment supply involving mutual interactions among these factors. Typically, many natural disasters (i.e. debris flows, floods and forest fires) can affect the river basin dynamics. Explosive volcanic eruptions present, instead, the potential of exerting severe impacts as, for example, filling river valleys or changing river network patterns thanks to massive deposition of tephra and volcanic sediment all over the main channel and over the basin. These consistent impacts can strongly affect both hydrology and sediment transport dynamics, all over the river system, producing huge geomorphic changes. During the last years there has been a consistent increase in the survey technologies that permit to monitor geomorphic changes and to estimate sediment budgets through repeat topographic surveys. The calculation of differences between subsequent DEMs (difference of DEMs, DoD) is a commonly applied method to analyze and quantify these dynamics. Typically the higher uncertainty values are registered in areas with higher topographic variability and lower point density. This research was conducted along a ~ 2.2 km-long sub-reach of the Blanco River (Southern Chile), a fourth-order stream that presents a mainly rainfall regime with winter peak flows. The May 2008 Chaitén volcanic eruption strongly affected the entire Rio Blanco basin. The entire valley was highly exposed to the pyroclastic and fluvial flows, which affected directly a consistent area of evergreen forests. Extreme runoff from the upper Blanco catchment aggraded the channel and deposited up to several meters of tephra, alluvium, and LW along the entire river system. Aims of this contribution are to define and quantify the short term evolution of the Blanco River after the big eruption event and a subsequent consistent

  9. The ash deposits of the 4200 BP Cerro Blanco eruption: the largest Holocene eruption of the Central Andes

    NASA Astrophysics Data System (ADS)

    Fernandez-Turiel, Jose-Luis; Saavedra, Julio; Perez-Torrado, Francisco-Jose; Rodriguez-Gonzalez, Alejandro; Carracedo, Juan-Carlos; Lobo, Agustin; Rejas, Marta; Gallardo, Juan-Fernando; Osterrieth, Margarita; Carrizo, Julieta; Esteban, Graciela; Martinez, Luis-Dante; Gil, Raul-Andres; Ratto, Norma; Baez, Walter

    2015-04-01

    We present new data about a major eruption -spreading approx. 110 km3 ashes over 440.000 km2- long thought to have occurred around 4200 years ago in the Cerro Blanco Volcanic Complex (CBVC) in the Central Andes of NW Argentina (Southern Puna, 26°45' S, 67°45' W). This eruption may be the biggest during the past five millennia in the Central Volcanic Zone of the Andes, and possibly one of the largest Holocene eruptions in the world. Discrimination and correlation of pyroclastic deposits of this eruption of Cerro Blanco was conducted comparing samples of proximal (domes, pyroclastic flow and fall deposits) with distal ash fall deposits (up to 400 km from de vent). They have been characterized using optical and electron microscopy (SEM), X-ray diffraction, particle-size distribution by laser diffraction and electron microprobe and HR-ICP-MS with laser ablation for major and trace element composition of glass, feldspars and biotite. New and published 14C ages were calibrated using Bayesian statistics. An one-at-a-time inversion method was used to reconstruct the eruption conditions using the Tephra2 code (Bonadonna et al. 2010, https://vhub.org/resources/tephra2). This method allowed setting the main features of the eruption that explains the field observations in terms of thickness and grain size distributions of the ash fall deposit. The main arguments that justify the correlation are four: 1) Compositional coincidence for glass, feldspars, and biotite in proximal and distal materials; 2) Stratigraphic and geomorphological relationships, including structure and thickness variation of the distal deposits; 3) Geochronological consistency, matching proximal and distal ages; and 4) Geographical distribution of correlated outcrops in relation to the eruption centre at the coordinates of Cerro Blanco. With a magnitude of 7.0 and a volcanic explosivity index or VEI 7, this eruption of ~4200 BP at Cerro Blanco is the largest in the last five millennia known in the Central

  10. The Metagenomic Telescope

    PubMed Central

    Szalkai, Balázs; Scheer, Ildikó; Nagy, Kinga; Vértessy, Beáta G.; Grolmusz, Vince

    2014-01-01

    Next generation sequencing technologies led to the discovery of numerous new microbe species in diverse environmental samples. Some of the new species contain genes never encountered before. Some of these genes encode proteins with novel functions, and some of these genes encode proteins that perform some well-known function in a novel way. A tool, named the Metagenomic Telescope, is described here that applies artificial intelligence methods, and seems to be capable of identifying new protein functions even in the well-studied model organisms. As a proof-of-principle demonstration of the Metagenomic Telescope, we considered DNA repair enzymes in the present work. First we identified proteins in DNA repair in well–known organisms (i.e., proteins in base excision repair, nucleotide excision repair, mismatch repair and DNA break repair); next we applied multiple alignments and then built hidden Markov profiles for each protein separately, across well–researched organisms; next, using public depositories of metagenomes, originating from extreme environments, we identified DNA repair genes in the samples. While the phylogenetic classification of the metagenomic samples are not typically available, we hypothesized that some very special DNA repair strategies need to be applied in bacteria and Archaea living in those extreme circumstances. It is a difficult task to evaluate the results obtained from mostly unknown species; therefore we applied again the hidden Markov profiling: for the identified DNA repair genes in the extreme metagenomes, we prepared new hidden Markov profiles (for each genes separately, subsequent to a cluster analysis); and we searched for similarities to those profiles in model organisms. We have found well known DNA repair proteins, numerous proteins with unknown functions, and also proteins with known, but different functions in the model organisms. PMID:25054802

  11. The metagenomic telescope.

    PubMed

    Szalkai, Balázs; Scheer, Ildikó; Nagy, Kinga; Vértessy, Beáta G; Grolmusz, Vince

    2014-01-01

    Next generation sequencing technologies led to the discovery of numerous new microbe species in diverse environmental samples. Some of the new species contain genes never encountered before. Some of these genes encode proteins with novel functions, and some of these genes encode proteins that perform some well-known function in a novel way. A tool, named the Metagenomic Telescope, is described here that applies artificial intelligence methods, and seems to be capable of identifying new protein functions even in the well-studied model organisms. As a proof-of-principle demonstration of the Metagenomic Telescope, we considered DNA repair enzymes in the present work. First we identified proteins in DNA repair in well-known organisms (i.e., proteins in base excision repair, nucleotide excision repair, mismatch repair and DNA break repair); next we applied multiple alignments and then built hidden Markov profiles for each protein separately, across well-researched organisms; next, using public depositories of metagenomes, originating from extreme environments, we identified DNA repair genes in the samples. While the phylogenetic classification of the metagenomic samples are not typically available, we hypothesized that some very special DNA repair strategies need to be applied in bacteria and Archaea living in those extreme circumstances. It is a difficult task to evaluate the results obtained from mostly unknown species; therefore we applied again the hidden Markov profiling: for the identified DNA repair genes in the extreme metagenomes, we prepared new hidden Markov profiles (for each genes separately, subsequent to a cluster analysis); and we searched for similarities to those profiles in model organisms. We have found well known DNA repair proteins, numerous proteins with unknown functions, and also proteins with known, but different functions in the model organisms.

  12. Detailed 40Ar/39Ar dating of geologic events associated with the Mantos Blancos copper deposit, northern Chile

    NASA Astrophysics Data System (ADS)

    Oliveros, Verónica; Féraud, Gilbert; Aguirre, Luis; Ramírez, Luis; Fornari, Michel; Palacios, Carlos; Parada, Miguel

    2008-03-01

    The 40Ar/39Ar geochronological method was applied to date magmatic and hydrothermal alteration events in the Mantos Blancos mining district in the Coastal Cordillera of northern Chile, allowing the distinction of two separate mineralization events. The Late Jurassic Mantos Blancos orebody, hosted in Jurassic volcanic rocks, is a magmatic-hydrothermal breccia-style Cu deposit. Two superimposed mineralization events have been recently proposed. The first event is accompanied by a phyllic hydrothermal alteration affecting a rhyolitic dome. The second mineralization event is related to the intrusion of bimodal stocks and sills inside the deposit. Because of the superposition of several magmatic and hydrothermal events, the obtained 40Ar/39Ar age data are complex; however, with a careful interpretation of the age spectra, it is possible to detect complex histories of successive emplacement, alteration, mineralization, and thermal resetting. The extrusion of Jurassic basic to intermediate volcanic rocks of the La Negra Formation is dated at 156.3 ± 1.4 Ma (2 σ) using plagioclase from an andesitic lava flow. The first mineralization event and associated phyllic alteration affecting the rhyolitic dome occurred around 155-156 Ma. A younger bimodal intrusive event, supposed to be equivalent to the bimodal stock and sill system inside the deposit, is probably responsible for the second mineralization event dated at ca. 142 Ma. Other low-temperature alteration events have been dated on sericitized plagioclase at ca. 145-146, 125, and 101 Ma. This is the first time that two distinct mineralization events have been documented from radiometric data for a copper deposit in the metallogenic belt of the Coastal Cordillera of northern Chile.

  13. Kashima 34-m Radio Telescope

    NASA Technical Reports Server (NTRS)

    Sekido, Mamoru; Kawai, Eiji

    2013-01-01

    The Kashima 34-m radio telescope has been continuously operated and maintained by the National Institute of Information and Communications Technology (NICT) as a facility of the Kashima Space Technology Center (KSTC) in Japan. This brief report summarizes the status of this telescope, the staff, and activities during 2012.

  14. Astrometry with Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Benedict, G.; Murdin, P.

    2000-11-01

    In 1990 NASA launched the HUBBLE SPACE TELESCOPE. In addition to cameras and spectrographs usable from the far ultraviolet to the near-infrared, the observatory contains three white-light INTERFEROMETERS. As part of engineering and science support their primary task was telescope guiding; to position and hold science targets within the science instrument apertures with tolerances approaching 0.1'...

  15. Telescopes, Mounts and Control Systems

    NASA Astrophysics Data System (ADS)

    Mobberley, M.; Murdin, P.

    2003-04-01

    The amateur astronomer used to have a relatively basic choice of equipment: a refractor (see REFRACTING TELESCOPES), or a Newtonian reflector (see REFLECTING TELESCOPES); there were few other options. The refractor has always been the stereotype astronomer's instrument: a spy glass, with a lens at one end and an eyepiece at the other. However, in practice, the reflector has always been better aper...

  16. Base-resolution detection of N4-methylcytosine in genomic DNA using 4mC-Tet-assisted-bisulfite- sequencing.

    PubMed

    Yu, Miao; Ji, Lexiang; Neumann, Drexel A; Chung, Dae-Hwan; Groom, Joseph; Westpheling, Janet; He, Chuan; Schmitz, Robert J

    2015-12-02

    Restriction-modification (R-M) systems pose a major barrier to DNA transformation and genetic engineering of bacterial species. Systematic identification of DNA methylation in R-M systems, including N(6)-methyladenine (6mA), 5-methylcytosine (5mC) and N(4)-methylcytosine (4mC), will enable strategies to make these species genetically tractable. Although single-molecule, real time (SMRT) sequencing technology is capable of detecting 4mC directly for any bacterial species regardless of whether an assembled genome exists or not, it is not as scalable to profiling hundreds to thousands of samples compared with the commonly used next-generation sequencing technologies. Here, we present 4mC-Tet-assisted bisulfite-sequencing (4mC-TAB-seq), a next-generation sequencing method that rapidly and cost efficiently reveals the genome-wide locations of 4mC for bacterial species with an available assembled reference genome. In 4mC-TAB-seq, both cytosines and 5mCs are read out as thymines, whereas only 4mCs are read out as cytosines, revealing their specific positions throughout the genome. We applied 4mC-TAB-seq to study the methylation of a member of the hyperthermophilc genus, Caldicellulosiruptor, in which 4mC-related restriction is a major barrier to DNA transformation from other species. In combination with MethylC-seq, both 4mC- and 5mC-containing motifs are identified which can assist in rapid and efficient genetic engineering of these bacteria in the future.

  17. Base-resolution detection of N4-methylcytosine in genomic DNA using 4mC-Tet-assisted-bisulfite-sequencing

    DOE PAGES

    Yu, Miao; Ji, Lexiang; Neumann, Drexel A.; ...

    2015-07-15

    Restriction-modification (R-M) systems pose a major barrier to DNA transformation and genetic engineering of bacterial species. Systematic identification of DNA methylation in R-M systems, including N6-methyladenine (6mA), 5-methylcytosine (5mC) and N4-methylcytosine (4mC), will enable strategies to make these species genetically tractable. Although single-molecule, real time (SMRT) sequencing technology is capable of detecting 4mC directly for any bacterial species regardless of whether an assembled genome exists or not, it is not as scalable to profiling hundreds to thousands of samples compared with the commonly used next-generation sequencing technologies. Here, we present 4mC-Tet-assisted bisulfite-sequencing (4mC-TAB-seq), a next-generation sequencing method that rapidly andmore » cost efficiently reveals the genome-wide locations of 4mC for bacterial species with an available assembled reference genome. In 4mC-TAB-seq, both cytosines and 5mCs are read out as thymines, whereas only 4mCs are read out as cytosines, revealing their specific positions throughout the genome. We applied 4mC-TAB-seq to study the methylation of a member of the hyperthermophilc genus, Caldicellulosiruptor, in which 4mC-related restriction is a major barrier to DNA transformation from other species. Lastly, in combination with MethylC-seq, both 4mC- and 5mC-containing motifs are identified which can assist in rapid and efficient genetic engineering of these bacteria in the future.« less

  18. Wind buffeting of large telescopes.

    PubMed

    MacMynowski, Douglas G; Andersen, Torben

    2010-02-01

    Unsteady wind loads due to turbulence within the telescope enclosure are one of the largest dynamic disturbances for ground-based optical telescopes. The desire to minimize the response to the wind influences the design of the telescope enclosure, structure, and control systems. There is now significant experience in detailed integrated modeling to predict image jitter due to wind. Based on this experience, a relatively simple model is proposed that is verified (from a more detailed model) to capture the relevant physics. In addition to illustrating the important elements of the telescope design that influence wind response, this model is used to understand the sensitivity of telescope image jitter to a wide range of design parameters.

  19. The Large Binocular Telescope's ARGOS ground-layer AO system

    NASA Astrophysics Data System (ADS)

    Hart, M.; Rabien, S.; Busoni, L.; Barl, L.; Bechmann, U.; Bonaglia, M.; Boose, Y.; Borelli, J.; Bluemchen, T.; Carbonaro, L.; Connot, C.; Deysenroth, M.; Davies, R.; Durney, O.; Elberich, M.; Ertl, T.; Esposito, S.; Gaessler, W.; Gasho, V.; Gemperlein, H.; Hubbard, P.; Kanneganti, S.; Kulas, M.; Newman, K.; Noenickx, J.; de Xivry, G.; Qirrenback, A.; Rademacher, M.; Schwab, C.; Storm, J.; Vaitheeswaran, V.; Weigelt, G.; Ziegleder, J.

    2011-09-01

    ARGOS, the laser-guided adaptive optics system for the Large Binocular Telescope (LBT), is now under construction at the telescope. By correcting atmospheric turbulence close to the telescope, the system is designed to deliver high resolution near infrared images over a field of 4 arc minute diameter. ARGOS is motivated by a successful prototype multi-laser guide star system on the 6.5 m MMT telescope, results from which are presented in this paper. At the LBT, each side of the twin 8.4 m aperture is being equipped with three Rayleigh laser guide stars derived from six 18 W pulsed green lasers and projected into two triangular constellations matching the size of the corrected field. The returning light is to be detected by wavefront sensors that are range gated within the seeinglimited depth of focus of the telescope. Wavefront correction will be introduced by the telescope’s deformable secondary mirrors driven on the basis of the average wavefront errors computed from the respective guide star constellation. Measured atmospheric turbulence profiles from the site lead us to expect that by compensating the ground-layer turbulence, ARGOS will deliver median image quality of about 0.2 arc sec in the near infrared bands. This will be exploited by a pair of multi-object near-IR spectrographs, LUCI1 and LUCI2, each with 4 arc minute field already operating on the telescope. In future, ARGOS will also feed two interferometric imaging instruments, the LBT Interferometer operating in the thermal infrared, and LINC-NIRVANA, operating at visible and near infrared wavelengths. Together, these instruments will offer very broad spectral coverage at the diffraction limit of the LBT’s combined aperture, 23 m in size.

  20. Improved immunoelectron microscopic method for localizing cytoskeletal proteins in Lowicryl K4M embedded tissues.

    PubMed

    Loesser, K E; Doane, K J; Wilson, F J; Roisen, F J; Malamed, S

    1986-11-01

    We have modified the Lowicryl K4M low-temperature dehydration and embedding procedure for immunoelectron microscopy to provide improved ultrastructural detail and facilitate the localization of actin and tubulin in isolated rat adrenocortical cells, chick spinal cord with attached dorsal root ganglia (SC-DRG), and cultured dorsal root ganglia (DRG). Cells and tissues were fixed for immunocytochemistry either in a mixture of 2% paraformaldehyde and 0.25% glutaraldehyde (0.1 M PIPES buffer, pH 7.3) or in a mixture of 0.3% glutaraldehyde and 1.0% ethyldimethylaminopropylcarbodiimide (0.1 M phosphate buffered saline, pH 7.3). Dehydration was in ethanol at progressively lower temperatures to -35 degrees C. Infiltration at -35 degrees C was followed by ultraviolet polymerization at -20 degrees C. Comparable samples were fixed in glutaraldehyde and osmium tetroxide and embedded in Epon 812 or Epon-Araldite. Post-embedding immunostaining of thin sections utilized commercially available monoclonal antibodies to tubulin and actin followed by the protein A-gold technique (Roth et al., Endocrinology 108:247, 1981). Actin immunoreactivity was observed at the periphery of mitochondria and between mitochondria and lipid droplets in rat adrenocortical cells and at the periphery of neuronal cell processes of SC-DRG. Tubulin immunoreactivity was associated with microtubules throughout neurites of cultured DRG. Our modified technique allows preservation of ultrastructural details as well as localization of antigens by immunoelectron microscopy.

  1. CHOUGH: implementation and performance of a high-order 4m AO demonstrator

    NASA Astrophysics Data System (ADS)

    Bharmal, Nazim A.; Basden, Alastair G.; Bourgenot, Cyril J.; Black, Martin; Dubbeldam, Cornelis M.; Henry, David M.; Hölck-Santibanez, Daniel; Morris, Timothy J.; Robertson, David J.; Schmoll, Jürgen; Talbot, Robert G.; Younger, Eddy J.; Myers, Richard M.

    2016-07-01

    CHOUGH is a small, fast project to provide an experimental on-sky high-order SCAO capability to the 4.2m WHT telescope. The basic goal has r0-sized sub- apertures with the aim of achieving high-Strehl ratios (> 0:5) in the visible (> 650 nm). It achieves this by including itself into the CANARY experiment: CHOUGH is mounted as a breadboard and intercepts the beam within CANARY via a periscope. In doing so, it takes advantage of the mature CANARY infrastructure, but add new AO capabilities. The key instruments that CHOUGH brings to CANARY are: an atmospheric dispersion compensator; a 32 × 32 (1000 actuator) MEMS deformable mirror; 31 × 31 wavefront sensor; and a complementary (narrow-field) imager. CANARY provides a 241-actuator DM, tip/tilt mirror, and comprehensive off-sky alignment facility together with a RTC. In this work, we describe the CHOUGH sub-systems: backbone, ADC, MEMS-DM, HOWFS, CAWS, and NFSI.

  2. Seismic Imager Space Telescope

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Coste, Keith; Cunningham, J.; Sievers,Michael W.; Agnes, Gregory S.; Polanco, Otto R.; Green, Joseph J.; Cameron, Bruce A.; Redding, David C.; Avouac, Jean Philippe; Ampuero, Jean Paul; Leprince, Sebastien; Michel, Remi

    2012-01-01

    A concept has been developed for a geostationary seismic imager (GSI), a space telescope in geostationary orbit above the Pacific coast of the Americas that would provide movies of many large earthquakes occurring in the area from Southern Chile to Southern Alaska. The GSI movies would cover a field of view as long as 300 km, at a spatial resolution of 3 to 15 m and a temporal resolution of 1 to 2 Hz, which is sufficient for accurate measurement of surface displacements and photometric changes induced by seismic waves. Computer processing of the movie images would exploit these dynamic changes to accurately measure the rapidly evolving surface waves and surface ruptures as they happen. These measurements would provide key information to advance the understanding of the mechanisms governing earthquake ruptures, and the propagation and arrest of damaging seismic waves. GSI operational strategy is to react to earthquakes detected by ground seismometers, slewing the satellite to point at the epicenters of earthquakes above a certain magnitude. Some of these earthquakes will be foreshocks of larger earthquakes; these will be observed, as the spacecraft would have been pointed in the right direction. This strategy was tested against the historical record for the Pacific coast of the Americas, from 1973 until the present. Based on the seismicity recorded during this time period, a GSI mission with a lifetime of 10 years could have been in position to observe at least 13 (22 on average) earthquakes of magnitude larger than 6, and at least one (2 on average) earthquake of magnitude larger than 7. A GSI would provide data unprecedented in its extent and temporal and spatial resolution. It would provide this data for some of the world's most seismically active regions, and do so better and at a lower cost than could be done with ground-based instrumentation. A GSI would revolutionize the understanding of earthquake dynamics, perhaps leading ultimately to effective warning

  3. Moving toward queue operations at the Large Binocular Telescope Observatory

    NASA Astrophysics Data System (ADS)

    Edwards, Michelle L.; Summers, Doug; Astier, Joseph; Suarez Sola, Igor; Veillet, Christian; Power, Jennifer; Cardwell, Andrew; Walsh, Shane

    2016-07-01

    The Large Binocular Telescope Observatory (LBTO), a joint scientific venture between the Instituto Nazionale di Astrofisica (INAF), LBT Beteiligungsgesellschaft (LBTB), University of Arizona, Ohio State University (OSU), and the Research Corporation, is one of the newest additions to the world's collection of large optical/infrared ground-based telescopes. With its unique, twin 8.4m mirror design providing a 22.8 meter interferometric baseline and the collecting area of an 11.8m telescope, LBT has a window of opportunity to exploit its singular status as the "first" of the next generation of Extremely Large Telescopes (ELTs). Prompted by urgency to maximize scientific output during this favorable interval, LBTO recently re-evaluated its operations model and developed a new strategy that augments classical observing with queue. Aided by trained observatory staff, queue mode will allow for flexible, multi-instrument observing responsive to site conditions. Our plan is to implement a staged rollout that will provide many of the benefits of queue observing sooner rather than later - with more bells and whistles coming in future stages. In this paper, we outline LBTO's new scientific model, focusing specifically on our "lean" resourcing and development, reuse and adaptation of existing software, challenges presented from our one-of-a-kind binocular operations, and lessons learned. We also outline further stages of development and our ultimate goals for queue.

  4. Evaluation of the table Mountain Ronchi telescope for angular tracking

    NASA Technical Reports Server (NTRS)

    Lanyi, G.; Purcell, G.; Treuhaft, R.; Buffington, A.

    1992-01-01

    The performance of the University of California at San Diego (UCSD) Table Mountain telescope was evaluated to determine the potential of such an instrument for optical angular tracking. This telescope uses a Ronchi ruling to measure differential positions of stars at the meridian. The Ronchi technique is summarized and the operational features of the Table Mountain instrument are described. Results from an analytic model, simulations, and actual data are presented that characterize the telescope's current performance. For a star pair of visual magnitude 7, the differential uncertainty of a 5-min observation is about 50 nrad (10 marcsec), and tropospheric fluctuations are the dominant error source. At magnitude 11, the current differential uncertainty is approximately 800 nrad (approximately 170 marcsec). This magnitude is equivalent to that of a 2-W laser with a 0.4-m aperture transmitting to Earth from a spacecraft at Saturn. Photoelectron noise is the dominant error source for stars of visual magnitude 8.5 and fainter. If the photoelectron noise is reduced, ultimately tropospheric fluctuations will be the limiting source of error at an average level of 35 nrad (7 marcsec) for stars approximately 0.25 deg apart. Three near-term strategies are proposed for improving the performance of the telescope to the 10-nrad level: improving the efficiency of the optics, masking background starlight, and averaging tropospheric fluctuations over multiple observations.

  5. Overview and status of the Giant Magellan Telescope Project

    NASA Astrophysics Data System (ADS)

    McCarthy, Patrick J.; Fanson, James; Bernstein, Rebecca; Ashby, David; Bigelow, Bruce; Boyadjian, Nune; Bouchez, Antonin; Chauvin, Eric; Donoso, Eduardo; Filgueira, Jose; Goodrich, Robert; Groark, Frank; Jacoby, George; Pearce, Eric

    2016-08-01

    The Giant Magellan Telescope Project is in the construction phase. Production of the primary mirror segments is underway with four of the seven required 8.4m mirrors at various stages of completion and materials purchased for segments five and six. Development of the infrastructure at the GMT site at Las Campanas is nearing completion. Power, water, and data connections sufficient to support the construction of the telescope and enclosure are in place and roads to the summit have been widened and graded to support transportation of large and heavy loads. Construction pads for the support buildings have been graded and the construction residence is being installed. A small number of issues need to be resolved before the final design of the telescope structure and enclosure can proceed and the GMT team is collecting the required inputs to the decision making process. Prototyping activities targeted at the active and adaptive optics systems are allowing us to finalize designs before large scale production of components begins. Our technically driven schedule calls for the telescope to be assembled on site in 2022 and to be ready to receive a subset of the primary and secondary mirror optics late in the year. The end date for the project is coupled to the delivery of the final primary mirror segments and the adaptive secondary mirrors that support adaptive optics operations.

  6. Lunar-based optical telescopes: Planning astronomical tools of the twenty-first century

    NASA Technical Reports Server (NTRS)

    Hilchey, J. D.; Nein, M. E.

    1995-01-01

    A succession of optical telescopes, ranging in aperture from 1 to 16 m or more, can be deployed and operated on the lunar surface over the next half-century. These candidates to succeed NASA's Great Observatories would capitalize on the unique observational advantages offered by the Moon. The Lunar Telescope Working Group and the LUTE Task Team of the George C. Marshall Space Flight Center (MSFC) have assessed the feasibility of developing and deploying these facilities. Studies include the 16-m Large Lunar Telescope (LLT); the Lunar Cluster Telescope Experiment (LCTE), a 4-m precursor to the LLT; the 2-m Lunar Transit Telescope (LTT); and its precursor, the 1-m Lunar Ultraviolet Telescope Experiment (LUTE). The feasibility of developing and deploying each telescope was assessed and system requirements and options for supporting technologies, subsystems, transportation, and operations were detailed. Influences of lunar environment factors and site selection on telescope design and operation were evaluated, and design approaches and key tradeoffs were established. This paper provides an overview of the study results. Design concepts and brief system descriptions are provided, including subsystem and mission options selected for the concepts.

  7. Improved optical design for the Large Synoptic Survey Telescope (LSST)

    NASA Astrophysics Data System (ADS)

    Seppala, Lynn G.

    2002-12-01

    This paper presents an improved optical design for the LSST, an f/1.25 three-mirror telescope covering 3.0 degrees full field angle, with 6.9 m effective aperture diameter. The telescope operates at five wavelength bands spanning 386.5 nm to 1040 nm (B, V, R, I and Z). For all bands, 80% of the polychromatic diffracted energy is collected within 0.20 arc-seconds diameter. The reflective telescope uses an 8.4 m f/1.06 concave primary, a 3.4 m convex secondary and a 5.2 m concave tertiary in a Paul geometry. The system length is 9.2 m. A refractive corrector near the detector uses three fused silica lenses, rather than the two lenses of previous designs. Earlier designs required that one element be a vacuum barrier, but now the detector sits in an inert gas at ambient pressure, with the last lens serving as the gas barrier. Small adjustments lead to optimal correction at each band. Each filter has a different axial thickness, and the primary and tertiary mirrors are repositioned for each wavelength band. Features that simplify manufacturing include a flat detector, a far less aspheric convex secondary (10 μm from best fit sphere) and reduced aspheric departures on the lenses and tertiary mirror. Five aspheric surfaces, on all three mirrors and on two lenses, are used. The primary is nearly parabolic. The telescope is fully baffled so that no specularly reflected light from any field angle, inside or outside of the full field angle of 3.0 degrees, can reach the detector.

  8. Improved Optical Design for the Large Synoptic Survey Telescope (LSST)

    SciTech Connect

    Seppala, L

    2002-09-24

    This paper presents an improved optical design for the LSST, an fll.25 three-mirror telescope covering 3.0 degrees full field angle, with 6.9 m effective aperture diameter. The telescope operates at five wavelength bands spanning 386.5 nm to 1040 nm (B, V, R, I and Z). For all bands, 80% of the polychromatic diffracted energy is collected within 0.20 arc-seconds diameter. The reflective telescope uses an 8.4 m f/1.06 concave primary, a 3.4 m convex secondary and a 5.2 m concave tertiary in a Paul geometry. The system length is 9.2 m. A refractive corrector near the detector uses three fused silica lenses, rather than the two lenses of previous designs. Earlier designs required that one element be a vacuum barrier, but now the detector sits in an inert gas at ambient pressure. The last lens is the gas barrier. Small adjustments lead to optimal correction at each band. The filters have different axial thicknesses. The primary and tertiary mirrors are repositioned for each wavelength band. The new optical design incorporates features to simplify manufacturing. They include a flat detector, a far less aspheric convex secondary (10 {micro}m from best fit sphere) and reduced aspheric departures on the lenses and tertiary mirror. Five aspheric surfaces, on all three mirrors and on two lenses, are used. The primary is nearly parabolic. The telescope is fully baffled so that no specularly reflected light from any field angle, inside or outside of the full field angle of 3.0 degrees, can reach the detector.

  9. SOFIA: Flying the Telescope

    NASA Technical Reports Server (NTRS)

    Asher, Troy; Cumming, Steve

    2012-01-01

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is an international cooperative development and operations program between the United States National Aeronautics and Space Administration (NASA) and the German Space Agency, DLR (Deutsches Zentrum fuer Luft-und Raumfahrt). SOFIA is a 2.5 meter, optical/infrared/sub-millimeter telescope mounted in a Boeing model 747SP-21 aircraft and will be used for many basic astronomical observations performed at stratospheric altitudes. It will accommodate installation of different focal plane instruments with in-flight accessibility provided by investigators selected from the international science community. The Facility operational lifetime is planned to be greater than 20 years. This presentation will present the results of developmental testing of SOFIA, including analysis, envelope expansion and the first operational mission. It will describe a brief history of open cavities in flight, how NASA designed and tested SOFIAs cavity, as well as flight test results. It will focus on how the test team achieved key milestones by systematically and efficiently reducing the number of test points to only those absolutely necessary to achieve mission requirements, thereby meeting all requirements and saving the potential loss of program funding. Finally, it will showcase examples of the observatory in action and the first operational mission of the observatory, illustrating the usefulness of the system to the international scientific community. Lessons learned on how to whittle a mountain of test points into a manageable sum will be presented at the conclusion.

  10. Astronomy with Small Telescopes

    NASA Astrophysics Data System (ADS)

    Paczyński, Bohdan

    2006-12-01

    The All Sky Automated Survey is monitoring the entire sky to about 14 mag with a cadence of about 1 day; it has discovered about 105 variable stars, most of them new. The instrument used for the survey had an aperture of 7 cm. A search for planetary transits has led to the discovery of about a dozen confirmed planets, so-called hot Jupiters, providing information on planetary masses and radii. Most discoveries were done with telescopes with apertures of 10 cm. We propose a search for optical transients covering the entire sky with a cadence of 10-30 minutes and a limit of 12-14 mag, with an instant verification of all candidate events. The search will be made with a large number of 10 cm instruments, and the verification will be done with 30 cm instruments. We also propose a system to be located at the L1 point of the Earth-Sun system to detect ``killer asteroids.'' With a limiting magnitude of about 18 mag, it could detect 10 m boulders several hours prior to their impact and provide warning against Tunguska-like events, as well as provide news about spectacular but more modest, harmless impacts.

  11. Astronomy with Small Telescopes

    NASA Astrophysics Data System (ADS)

    Paczynski, Bohdan

    2006-06-01

    While there are more than a dozen telescopes larger than 10 meters there is plenty of interesting astronomy which can be done with much smaller instruments. Notice that the existing SDSS, and the future PanSTARRS and LSST saturate at 15 mag. An example of interesting science is provided with ASAS (All Sky Automated Survey) which used aperture of 7 cm to discover over 50,000 variable stars brighter than 14 mag, covering almost 3/4 of the sky. Most of these are new discoveries.ASAS like instruments are most likely more efficient in a search for afterglows following gamma-ray bursts (GRB) than CFHT and its Megacam. In fact it should be possible to detect the afterglows without a GRB trigger by imaging all visible sky every 15 minutes down to 16 mag using a number of ASAS-like instruments.Another example of small instruments being essential, is their ability to detect 'killer asteroids' prior to their impact. It will take a number of small instruments, somewhat more powerful than ASAS, to detect boulders as small as 10 - 20 meters at a distance of several days prior to their impact. This will provide time to evacuate a region in case of Tunguska-like event, or to provide news of a spectacular but harmless event in case of a more modest impact.

  12. POST: Polar Stratospheric Telescope

    NASA Astrophysics Data System (ADS)

    Bely, Pierre Y.; Ford, Holland C.; Burg, Richard; Petro, Larry; White, Rick; Bally, John

    1995-10-01

    The tropopause, typically at 16 to 18 km altitude at the lower latitudes, dips to 8 km in the polar regions. This makes the cold, dry and nonturbulent lower stratosphere accessible to tethered aerostats. Tethered aerostats can fly as high as 12 km and are extremely reliable, lasting for many years. In contrast to free-flying balloons, they can stay on station for weeks at a time, and payloads can be safely recovered for maintenance and adjustment and relaunched in a matter of hours. We propose to use such a platform, located first in the Arctic (near Fairbanks, Alaska) and, potentially, later in the Antarctic, to operate a new technology 6-meter, diluted aperture telescope with diffraction-limited performance in the near infrared. Thanks to the low ambient temperature (220 K), thermal emission from the optics is of the same order as that of the zodiacal light in the 2 to 3 micron band. Since this wavelength interval is the darkest part of the zodiacal light spectrum from optical wavelengths to 100 microns, the combination of high resolution images and a very dark sky make it the spectral region of choice for observing the redshifted light from galaxies and clusters of galaxies at moderate to high redshifts.

  13. Operating a heterogeneous telescope network

    NASA Astrophysics Data System (ADS)

    Allan, Alasdair; Bischoff, Karsten; Burgdorf, Martin; Cavanagh, Brad; Christian, Damien; Clay, Neil; Dickens, Rob; Economou, Frossie; Fadavi, Mehri; Frazer, Stephen; Granzer, Thomas; Grosvenor, Sandy; Hessman, Frederic V.; Jenness, Tim; Koratkar, Anuradha; Lehner, Matthew; Mottram, Chris; Naylor, Tim; Saunders, Eric S.; Solomos, Nikolaos; Steele, Iain A.; Tuparev, Georg; Vestrand, W. Thomas; White, Robert R.; Yost, Sarah

    2006-06-01

    In the last few years the ubiquitous availability of high bandwidth networks has changed the way both robotic and non-robotic telescopes operate, with single isolated telescopes being integrated into expanding "smart" telescope networks that can span continents and respond to transient events in seconds. The Heterogeneous Telescope Networks (HTN)* Consortium represents a number of major research groups in the field of robotic telescopes, and together we are proposing a standards based approach to providing interoperability between the existing proprietary telescope networks. We further propose standards for interoperability, and integration with, the emerging Virtual Observatory. We present the results of the first interoperability meeting held last year and discuss the protocol and transport standards agreed at the meeting, which deals with the complex issue of how to optimally schedule observations on geographically distributed resources. We discuss a free market approach to this scheduling problem, which must initially be based on ad-hoc agreements between the participants in the network, but which may eventually expand into a electronic market for the exchange of telescope time.

  14. Space Telescope Systems Description Handbook

    NASA Technical Reports Server (NTRS)

    Carter, R. E.

    1985-01-01

    The objective of the Space Telescope Project is to orbit a high quality optical 2.4-meter telescope system by the Space Shuttle for use by the astronomical community in conjunction with NASA. The scientific objectives of the Space Telescope are to determine the constitution, physical characteristics, and dynamics of celestial bodies; the nature of processes which occur in the extreme physical conditions existing in stellar objects; the history and evolution of the universe; and whether the laws of nature are universal in the space-time continuum. Like ground-based telescopes, the Space Telescope was designed as a general-purpose instrument, capable of utilizing a wide variety of scientific instruments at its focal plane. This multi-purpose characteristic will allow the Space Telescope to be effectively used as a national facility, capable of supporting the astronomical needs for an international user community and hence making contributions to man's needs. By using the Space Shuttle to provide scientific instrument upgrading and subsystems maintenance, the useful and effective operational lifetime of the Space Telescope will be extended to a decade or more.

  15. Ternary fluorides BaMF4 (M = Zn, Mg and Mn) at low temperatures.

    PubMed

    Posse, Jose Maria; Grzechnik, Andrzej; Friese, Karen

    2009-10-01

    Ternary fluorides BaMF4 (M = Zn, Mg, Mn) have been studied in the temperature range from 300 to 10 K using synchrotron and laboratory powder and single-crystal diffraction. The first two compounds are stable down to 10 K, while the third one undergoes a phase transition to an incommensurately modulated structure at approximately 250 K. The modulated phase is stable down to 10 K. The magnetic anomalies at 45 and 27 K observed previously in BaMnF4 are exclusively reflected in the behavior of the gamma component of the q vector, which assumes an irrational value of approximately 0.395 A(-1) at the temperature corresponding to the onset of the magnetic ordering and then stays constant down to 10 K. Mn-Mn distances do not indicate any structural response to the magnetic ordering. The formation of the modulated phase can be explained on the basis of simple geometrical criteria. The incorporation of the large Mn cation in the octahedral sheets implies an increase of the cavity in which the Ba ion is incorporated. This leads to the formation of the modulated structure to adapt the coordination sphere around Ba in such a way that the bond-valence sums can be kept close to the ideal value of two. With further lowering of the temperature, the charge balance around the Ba ion requires an increasingly anharmonic character of the modulation function of Ba, until finally at 10 K a crenel-like shape is assumed for the modulation of this atom.

  16. Geodetic Observatory Wettzell - 20-m Radio Telescope and Twin Telescope

    NASA Technical Reports Server (NTRS)

    Neidhardt, Alexander; Kronschnabl, Gerhard; Schatz, Raimund

    2013-01-01

    In the year 2012, the 20-m radio telescope at the Geodetic Observatory Wettzell, Germany again contributed very successfully to the International VLBI Service for Geodesy and Astrometry observing program. Technical changes, developments, improvements, and upgrades were made to increase the reliability of the entire VLBI observing system. In parallel, the new Twin radio telescope Wettzell (TTW) got the first feedhorn, while the construction of the HF-receiving and the controlling system was continued.

  17. TTL robotic telescopes and Robonet: new possibilities for robotic astronomical observatories

    NASA Astrophysics Data System (ADS)

    Moss, C.

    2003-05-01

    Five TTL (Telescope Technologies Limited, Liverpool J.M. University, U.K.) telescopes, ranging in size from 2m to 2.4m are currently being manufactured and installed at sites worldwide (Hawaii; La Palma; India; China; Australia). These telescopes have been designed to work robotically, i.e. the telescopes will not be supervised either locally or remotely during routine observations. Observation requests from many observers authorised by multiple allocation committees are stored in the telescope database. Actual observations are scheduled using a version of a `dispatch' scheduler which decides in real time the best observation to perform next on the basis of the current telescope state and observing conditions, subject to fairness and efficiency criteria. In this way observations can be matched to local conditions, and rapid response to targets of opportunity is possible. The robotic software includes telescope run-up and run-down, focussing tests, monitoring of observing conditions for optimum scheduling of observations, automated observation of photometric standards and pipeline data reduction. The developing global network of TTL telescopes (`Robonet') is uniquely well suited to a vast range of scientific programs in time domain astrophysics, such as the discovery of Earth-size planets using gravitational lensing, astro-tomography with a resolution of one millionth of an arc second, and continuous 24-hour monitoring of variable objects. Also, uniquely, telescope time may be readily `traded' on the network to enable a single telescope to become effectively a global distributed Observatory, facilitating observations in both northern and southern hemispheres and on a much wider set of instrumentation than is easily available for a single telescope.

  18. Pattern of expression of transforming growth factor-beta 4 mRNA and protein in the developing chicken embryo.

    PubMed

    Jakowlew, S B; Ciment, G; Tuan, R S; Sporn, M B; Roberts, A B

    1992-12-01

    Expression of TGF-beta 4 mRNA and protein was studied in the developing chicken embryo using specific cDNA probes and antibodies for chicken TGF-beta 4. Expression of TGF-beta 4 mRNA was detected by day 4 of incubation (Hamburger and Hamilton stage 22, E4) by RNA Northern blot analysis and increased with developmental age until day 12 of incubation (stage 38, E12) where it was detected in every embryonic tissue examined, with expression being highest in smooth muscle and lowest in the kidney. The steady-state level of expression of TGF-beta 4 mRNA remained relatively constant in most embryonic tissues through day 19 (stage 45, E19). In situ hybridization analysis detected TGF-beta 4 mRNA as early as the "definitive primitive streak" stage (stage 4); during neurulation (stage 10), TGF-beta 4 mRNA was detected in all three germ layers, including neuroectoderm. Following neurulation, TGF-beta 4 mRNA was detected in the neural tube, notochord, ectoderm, endoderm, sclerotome, and myotome, but not dermotome at stage 16. By day 6 of incubation (stage 29, E6), TGF-beta 4 mRNA was localized in several tissues including heart, lung, and gizzard. Immunohistochemical staining analysis also showed expression of TGF-beta 4 protein in all three germ layers as early as stage 4 in various cell types in qualitatively similar locations as TGF-beta 4 mRNA. These results suggest that TGF-beta 4 may play an important role in the development of many tissues in the chicken.

  19. Eastern Anatolia Observatory (DAG): Recent developments and a prospective observing site for robotic telescopes

    NASA Astrophysics Data System (ADS)

    Yesilyaprak, C.; Yerli, S. K.; Keskin, O.

    2016-12-01

    This document (Eastern Anatolia Observatory (DAG) is the new observatory of Turkey with the optical and near-infrared largest telescope (4 m class) and its robust observing site infrastructure. This national project consists of three phases with DAG (Telescope, Enclosure, Buildings and Infrastructures), FPI (Focal Plane Instruments and Adaptive Optics) and MCP (Mirror Coating Plant) and is supported by the Ministry of Development of Turkey. The tenders of telescope and enclosure have been made and almost all the infrastructure (roads, geological and atmospherical surveys, electricity, fiber optics, cable car, water, generator, etc.) of DAG site (Erzurum/Turkey, 3,170 m altitude) have been completed. This poster is about the recent developments of DAG and about the future possible collaborations for various robotic telescopes which can be set up in DAG site.

  20. Planet detection and spectroscopy in visible light with a single aperture telescope and a nulling coronagraph

    NASA Technical Reports Server (NTRS)

    Shao, Michael; Serabyn, Eugene; Levine, Bruce Martin; Beichman, Charles; Liu, Duncan; Martin, Stefan; Orton, Glen; Mennesson, Bertrand; Morgan, Rhonda; Velusamy, Thangasamy; Wallace, J. Kent; Unwin, Stephen

    2003-01-01

    This talk describes a new concept for visible direct detection of Earth like extra solar planets using a nulling coronagraph instrument behind a 4m telescope in space. In the baseline design, a 4 beam nulling interferometer is synthesized from the telescope pupil, producing a very deep theta^4null which is then filtered by a coherent array of single mode fibers to suppress the residual scattered light. With perfect optics, the stellar leakage is less than 1e-11 of the starlight at the location of the planet. With diffraction limited telescope optics (lambda/20), suppression of the starlight to 1e-10 is possible. The concept is described along with the key advantages over more traditional approaches such as apodized aperture telescopes and Lyot type coronagraphs.

  1. DAG telescope site studies and infrastructure for possible international co-operations

    NASA Astrophysics Data System (ADS)

    Yerli, Sinan K.; Yeşilyaprak, Cahit; Keskin, Onur; Alis, Sinan

    2016-07-01

    The selected site for the 4 m DAG (Eastern Anatolian Observatory in Turkish) telescope is at "Karakaya Ridge", at 3170 m altitude (3150 m after summit management). The telescope's optical design is performed by the DAG technical team to allow infrared observation at high angular resolution, with its adaptive optics system to be built in Turkey. In this paper; a brief introduction about DAG telescope design; planned instrumentation; the meteorological data collected from 2008, clear night counts, short-term DIMM observations; current infrastructure to hold auxiliary telescopes; auxiliary buildings to assist operations; the observatory design; and coating unit plans will be presented along with possible collaboration possibilities in terms of instrumentation and science programs.

  2. Design progress of the solar UV-Vis-IR telescope (SUVIT) aboard SOLAR-C

    NASA Astrophysics Data System (ADS)

    Katsukawa, Y.; Ichimoto, K.; Suematsu, Y.; Hara, H.; Kano, R.; Shimizu, T.; Matsuzaki, K.

    2013-09-01

    We present a design progress of the Solar UV-Vis-IR Telescope (SUVIT) aboard the next Japanese solar mission SOLAR-C. SUVIT has an aperture diameter of ~1.4 m for achieving spectro-polarimetric observations with spatial and temporal resolution exceeding the Hinode Solar Optical Telescope (SOT). We have studied structural and thermal designs of the optical telescope as well as the optical interface between the telescope and the focal plane instruments. The focal plane instruments are installed into two packages, filtergraph and spectrograph packages. The spectropolarimeter is the instrument dedicated to accurate polarimetry in the three spectrum windows at 525 nm, 854 nm, and 1083 nm for observing magnetic fields at both the photospheric and chromospheric layers. We made optical design of the spectrograph accommodating the conventional slit spectrograph and the integral field unit (IFU) for two-dimensional coverage. We are running feasibility study of the IFU using fiber arrays consisting of rectangular cores.

  3. Wide Field Infra-Red Survey Telescope (WFIRST) 2.4-Meter Mission Study

    NASA Technical Reports Server (NTRS)

    Content, D.; Aaron, K.; Alplanalp, L.; Anderson, K.; Capps, R.; Chang, Z.; Dooley, J.; Egerman, R.; Goullioud, R.; Klein, D.; Kruk, J.; Kuan, G.; Melton, M.; Ruffa, J.; Underhill, M.; Buren, D. Van

    2013-01-01

    The most recent study of the Wide Field Infrared Survey Telescope (WFIRST) mission is based on reuse of an existing 2.4m telescope. This study was commissioned by NASA to examine the potential science return and cost effectiveness of WFIRST by using this significantly larger aperture telescope. We review the science program envisioned by the WFIRST 2012-2013 Science Definition Team (SDT), an overview of the mission concept, and the telescope design and status. Comparisons against the previous 1.3m and reduced cost 1.1m WFIRST design concepts are discussed. A significant departure from past point designs is the option for serviceability and the geostationary orbit location which enables servicing and replacement instrument insertion later during mission life. Other papers at this conference provide more in depth discussion of the wide field instrument and the optional exoplanet imaging coronagraph instrument.

  4. Lightweighted ZERODUR for telescopes

    NASA Astrophysics Data System (ADS)

    Westerhoff, T.; Davis, M.; Hartmann, P.; Hull, T.; Jedamzik, R.

    2014-07-01

    The glass ceramic ZERODUR® from SCHOTT has an excellent reputation as mirror blank material for earthbound and space telescope applications. It is known for its extremely low coefficient of thermal expansion (CTE) at room temperature and its excellent CTE homogeneity. Recent improvements in CNC machining at SCHOTT allow achieving extremely light weighted substrates up to 90% incorporating very thin ribs and face sheets. In 2012 new ZERODUR® grades EXPANSION CLASS 0 SPECIAL and EXTREME have been released that offer the tightest CTE grades ever. With ZERODUR® TAILORED it is even possible to offer ZERODUR® optimized for customer application temperature profiles. In 2013 SCHOTT started the development of a new dilatometer setup with the target to drive the industrial standard of high accuracy thermal expansion metrology to its limit. In recent years SCHOTT published several paper on improved bending strength of ZERODUR® and lifetime evaluation based on threshold values derived from 3 parameter Weibull distribution fitted to a multitude of stress data. ZERODUR® has been and is still being successfully used as mirror substrates for a large number of space missions. ZERODUR® was used for the secondary mirror in HST and for the Wolter mirrors in CHANDRA without any reported degradation of the optical image quality during the lifetime of the missions. Some years ago early studies on the compaction effects of electron radiation on ZERODUR® were re analyzed. Using a more relevant physical model based on a simplified bimetallic equation the expected deformation of samples exposed in laboratory and space could be predicted in a much more accurate way. The relevant ingredients for light weighted mirror substrates are discussed in this paper: substrate material with excellent homogeneity in its properties, sufficient bending strengths, space radiation hardness and CNC machining capabilities.

  5. Large wood budget assessment along a gravel bed river affected by volcanic eruption: the Rio Blanco study case (Chile).

    NASA Astrophysics Data System (ADS)

    Oss-Cazzador, Daniele; Iroume, Andres; Lenzi, Mario; Picco, Lorenzo

    2016-04-01

    Wood in riverine environments exerts different functions on ecological and geomorphic settings, influencing morphological processes, and increasing risks for sensitive structures. Large wood (LW) is defined as wood material, dead or alive, larger than 10 cm in diameter and 1 m in length. Natural hazards can strongly increase the presence of LW in waterways and flood events can transport it affecting the ecosystem and landscape. This study aims to increase the knowledge of wood budget, considering the effects of two subsequent slight flood events along a sub-reach of the Rio Blanco gravel bed river , in Chilean Patagonia, strongly affected by the eruption of Chaiten volcano in 2008. The volcanic eruption affected almost 3,5 km 2 of evergreen forest on the southern (left) bank, because of primary direct effects from pyroclastic density currents and lahar-floods that caused deposition up to 8 m of reworked tephra, alluvium, and wood on floodplains and terrace along the Rio Blanco. After the eruption, there was a considerable increase of LW into the main channel: into the bankfull channel, volume exceeds 100 m 3 /ha. Field surveys were carried out in January and March 2015, before and after two slight flood events (Recurrence Intervals lower than 1 year). The pre-event phase permitted to detect and analyze the presence of LW into the study area, along a 80 m-long reach of Rio Blanco (7500 m 2 . Every LW element was manually measured and described, a numbered metal tag was installed, and the position was recorded by GPS device. In January, there was a total amount of 113 m 3 /ha, 90% accumulated in LW jams (WJ) and 10% as single logs. The LW was characterized by mean dimensions of 3,36 m height, 0,25 m diameter and 0,26 m 3 volume, respectively. The WJ are characterized by wide range of dimension: volume varies from 0,28 m 3 to 672 m 3 , length from 1,20 m to 56 m, width from 0,40 m to 8,70 m and height from 0,20 m to 3 m, respectively. After the flood events, field

  6. Prism beamswitch for radio telescopes.

    PubMed

    Payne, J M; Ulich, B L

    1978-12-01

    A dielectric prism and switching mechanism have been constructed for beamswitching a Cassegrain radio telescope. Spatially extended radio sources may be mapped without significant confusion utilizing the sensitivity and stability inherent in the conventional Dicke radiometer.

  7. Automated telescope for variability studies

    NASA Astrophysics Data System (ADS)

    Ganesh, S.; Baliyan, K. S.; Chandra, S.; Joshi, U. C.; Kalyaan, A.; Mathur, S. N.

    PRL has installed a 50 cm telescope at Mt Abu, Gurushikhar. The backend instrument consists of a 1K × 1K EMCCD camera with standard UBVRI filters and also has polarization measurement capability using a second filter wheel with polaroid sheets oriented at different position angles. This 50 cm telescope observatory is operated in a robotic mode with different methods of scheduling of the objects being observed. This includes batch mode, fully manual as well as fully autonomous mode of operation. Linux based command line as well as GUI software are used entirely in this observatory. This talk will present the details of the telescope and associated instruments and auxiliary facilities for weather monitoring that were developed in house to ensure the safe and reliable operation of the telescope. The facility has been in use for a couple of years now and various objects have been observed. Some of the interesting results will also be presented.

  8. Anastigmatic three-mirror telescope

    NASA Technical Reports Server (NTRS)

    Korsch, D. G. (Inventor)

    1978-01-01

    A three-mirror telescope for extraterrestrial observations is described. An ellipsoidal primary mirror, a hyperbolic secondary mirror, and an ellipsoidal tertiary mirror, produce an image in a conveniently located finite plane for viewing.

  9. Space Telescope moving target tracking

    NASA Technical Reports Server (NTRS)

    Strikwerda, T. E.; Strohbehn, K.; Fowler, K. R.; Skillman, D. R.

    1985-01-01

    This paper formulates a Space Telescope (ST) moving target tracking algorithm and evaluates a practical implementation. The algorithm is shown to be satisfactory for tracking such moving objects as the moons of Mars.

  10. Large aperture Fresnel telescopes/011

    SciTech Connect

    Hyde, R.A., LLNL

    1998-07-16

    At Livermore we`ve spent the last two years examining an alternative approach towards very large aperture (VLA) telescopes, one based upon transmissive Fresnel lenses rather than on mirrors. Fresnel lenses are attractive for VLA telescopes because they are launchable (lightweight, packagable, and deployable) and because they virtually eliminate the traditional, very tight, surface shape requirements faced by reflecting telescopes. Their (potentially severe) optical drawback, a very narrow spectral bandwidth, can be eliminated by use of a second (much smaller) chromatically-correcting Fresnel element. This enables Fresnel VLA telescopes to provide either single band ({Delta}{lambda}/{lambda} {approximately} 0.1), multiple band, or continuous spectral coverage. Building and fielding such large Fresnel lenses will present a significant challenge, but one which appears, with effort, to be solvable.

  11. Hubble Space Telescope-Illustration

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This illustration depicts a side view of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  12. The Large Binocular Telescope Project

    NASA Astrophysics Data System (ADS)

    Hill, J. M.

    1994-12-01

    The Large Binocular Telescope (LBT) Project has evolved from concepts first proposed in 1985. The present partners involved in the design and construction of this 2 x 8.4 meter binocular telescope are the University of Arizona, Italy represented by the Osservatorio Astronomico di Arcetri and the Research Corporation based in Tucson. These three partners have committed sufficient funds to build the enclosure and the telescope populated with a single 8.4 meter optical train --- approximately 40 million dollars (1989). Based on this commitment, design and construction activities are now moving forward. Additional partners are being sought. The next mirror to be cast at the Steward Observatory Mirror Lab in late fall 1995 will be the first borosilicate honeycomb primary for LBT. The baseline optical configuration of LBT includes wide field Cassegrain secondaries with optical foci above the primaries to provide a corrected one degree field at F/4. The infrared F/15 secondaries are a Gregorian design to allow maximum flexibility for adaptive optics. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4 arcminute diameter field-of-view. The interferometric focus combining the light from the two 8.4 meter primaries will reimage two folded Gregorian focal planes to a central location. The telescope elevation structure accommodates swing arms which allow rapid interchange of the various secondary and tertiary mirrors. Maximum stiffness and minimal thermal disturbance continue to be important drivers for the detailed design of the telescope. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The detailed design of the telescope structure will be completed in 1995 by ADS Italia (Lecco) and European Industrial Engineering (Mestre). The final enclosure design is now in progress at M3 Engineering (Tucson) and ADS Italia. Construction

  13. The Large Binocular Telescope Project

    NASA Astrophysics Data System (ADS)

    Hill, J. M.

    1995-05-01

    The Large Binocular Telescope (LBT) Project has evolved from concepts first proposed in 1985. The present partners involved in the design and construction of this 2 x 8.4 meter binocular telescope are the University of Arizona, Italy represented by the Osservatorio Astrofisico di Arcetri and the Research Corporation based in Tucson. These three partners have committed sufficient funds to build the enclosure and the telescope populated with a single 8.4 meter optical train --- approximately 40 million dollars (1989). Based on this commitment, design and construction activities are now moving forward. Additional partners are being sought. The next mirror to be cast at the Steward Observatory Mirror Lab in spring of 1996 will be the first borosilicate honeycomb primary for LBT. The baseline optical configuration of LBT includes wide field Cassegrain secondaries with optical foci above the primaries to provide a corrected one degree field at F/4. The infrared F/15 secondaries are a Gregorian design to allow maximicrons flexibility for adaptive optics. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4 arcminute diameter field-of-view. The interferometric focus combining the light from the two 8.4 meter primaries will reimage two folded Gregorian focal planes to a central location. The telescope elevation structure accommodates swing arms which allow rapid interchange of the various secondary and tertiary mirrors. Maximicrons stiffness and minimal thermal disturbance continue to be important drivers for the detailed design of the telescope. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The detailed design of the telescope structure will be completed in 1995 by ADS Italia (Lecco) and European Industrial Engineering (Mestre). The final enclosure design is now in progress at M3 Engineering (Tucson) and ADS Italia

  14. Hubble Space Telescope-Illustration

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This is a cutaway illustration of the Hubble Space Telescope (HST) with callouts. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  15. Hubble Space Telescope-Concept

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This is an artist's concept of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  16. Imaging phased telescope array study

    NASA Technical Reports Server (NTRS)

    Harvey, James E.

    1989-01-01

    The problems encountered in obtaining a wide field-of-view with large, space-based direct imaging phased telescope arrays were considered. After defining some of the critical systems issues, previous relevant work in the literature was reviewed and summarized. An extensive list was made of potential error sources and the error sources were categorized in the form of an error budget tree including optical design errors, optical fabrication errors, assembly and alignment errors, and environmental errors. After choosing a top level image quality requirment as a goal, a preliminary tops-down error budget allocation was performed; then, based upon engineering experience, detailed analysis, or data from the literature, a bottoms-up error budget reallocation was performed in an attempt to achieve an equitable distribution of difficulty in satisfying the various allocations. This exercise provided a realistic allocation for residual off-axis optical design errors in the presence of state-of-the-art optical fabrication and alignment errors. Three different computational techniques were developed for computing the image degradation of phased telescope arrays due to aberrations of the individual telescopes. Parametric studies and sensitivity analyses were then performed for a variety of subaperture configurations and telescope design parameters in an attempt to determine how the off-axis performance of a phased telescope array varies as the telescopes are scaled up in size. The Air Force Weapons Laboratory (AFWL) multipurpose telescope testbed (MMTT) configuration was analyzed in detail with regard to image degradation due to field curvature and distortion of the individual telescopes as they are scaled up in size.

  17. BCK Network of Optical Telescopes

    NASA Astrophysics Data System (ADS)

    McGruder, Charles H.; Antoniuk, Krill; Carini, Michael T.; Gelderman, Richard; Hammond, Benjamin; Hicks, Stacy; Laney, David; Shakhovskoy, David; Strolger, Louis-Gregory; Williams, Joshua

    2015-01-01

    The BCK network consists of three research grade telescopes: 0.6m (B) at the Bell Observatory near Western Kentucky University (WKU), 1.3m (C) at the Crimean Astrophysical Observatory and a 1.3m (K) at Kitt Peak National Observatory. The Bell Telescope is operated remotely from WKU while the Robotically Controlled Telescope (RCT) at Kitt Peak possesses an autonomous scheduler. The BCK telescopes are distributed longitudinally over 145º and can be used to observe continuously up to 21.2 hours/day. The network will be chiefly employed to observe variable stars, blazars and unpredictable celestial events.Because celestial objects with ground-based telescopes cannot be observed optically during the daytime, continuous ground-based astronomical observations are only possible via a network of longitudinally distributed telescopes. When the sun rises in Crimea after it sets at Bell, continuous observations are possible. This occurs for about six and ½ months per year - mid September to early April. A network is highly desirable for events that are not predictable for instance the appearance of supernovae, gamma-ray bursts, or undiscovered exoplanetsVariable stars are really only known in significant numbers to about 14 mag. But, as the magnitude increases the number of stars in any field increases very sharply, so there are many variable stars to discover at faint magnitude (m > 14). Discovering new variables makes great undergraduate student projects, a major component of astronomical research at WKU. In addition, pinning down the periods of variable stars is greatly facilitated with a network of telescopes.The BCK telescope network will also be used for monitoring the optical variability of blazars. The network provides increased coverage on daily variability timescales by minimizing interruptions due to weather and or mechanical problems at any one observatory and is used for obtaining continuous (12+ hours) of observations of rapid variability in blazars which would

  18. Detection of and response to a probable volcanogenic T-wave event swarm on the western Blanco Transform Fault Zone

    USGS Publications Warehouse

    Dziak, R.P.; Fox, C.G.; Embley, R.W.; Lupton, J.E.; Johnson, G.C.; Chadwick, W.W.; Koski, R.A.

    1996-01-01

    The East Blanco Depression (EBD), a pull-apart basin within the western Blanco Transform Fault Zone (BTFZ), was the site of an intense earthquake T-wave swarm that began at 1317Z on January 9, 1994. Although tectonically generated earthquakes occur frequently along the BTFZ, this swarm was unusual in that it was preceded and accompanied by periodic, low-frequency, long-duration acoustic signals, that originated from near the swarm epicenters. These tremor-like signals were very similar in character to acoustic energy produced by a shallow-submarine eruption near Socorro Island, a seamount several hundred km west of Baja, California. The ???69 earthquakes and ???400 tremor-like events at the EBD occurred sporadically, with two periods of peak activity occurring between January 5-16 and 27-31. The swarm-like character of the earthquakes and the similarity of the tremor activity to the Socorro eruption indicated that the EBD was undergoing an intrusion or eruption episode. On January 27, six CTD/rosette casts were conducted at the site. Water samples from two of the stations yielded anomalous 3He concentrations, with maxima at ???2800 m depth over the main basin. In June 1994 two camera tows within the basin yielded evidence of pillow-lava volcanism and hydrothermal deposits, but no conclusive evidence of a recent seafloor eruption. In September 1994, deployments of the U.S. Navy's Advanced Tethered Vehicle resulted in the discovery of an active hydrothermal mound on the flanks of a pillow-lava volcano. The hydrothermal mound consists of Fe-rich hydrothermal precipitate and bacterial mats. Temperatures to 60??C were measured 30 cm below the surface. This is the first discovery of active hydrothermal vents along an oceanic fracture zone. Although no conclusive evidence of volcanic activity associated with the T-wave event swarm was found during these response efforts, the EBD has been the site of recent seafloor eruptions. Copyright 1996 by the American Geophysical

  19. Demonstration Telescopes Using "Dollar Optics"

    NASA Astrophysics Data System (ADS)

    Ross, Paul

    2008-05-01

    I propose a poster that illustrates the use of "dollar optics” for experimentation and for the creation of demonstration telescopes. Handling a variety of lenses and mirrors provides an opportunity for discovering practical optics. Some part of this path of exploration must have been traveled by Galileo as he experimented with spectacle lenses. "Dollar optics” include reading glasses (positive meniscus lenses), convex and concave mirrors, Fresnel sheets, magnifying lenses, and eye loupes. Unwanted distance spectacles (negative meniscus lenses) are available at second-hand stores. Galileo telescopes, "long” 17th century telescopes, and useful demonstration models of Newtonian reflectors can be made with "dollar” optics. The poster will illustrate practical information about "dollar optics” and telescopes: magnification, focal length, and "diopters” disassembling spectacles; creating cheap mounts for spectacle lenses; the importance of optical axes and alignment; eyepieces; and focusing. (A table would be useful with the poster to set out a hands-on display of "dollar optic” telescopes.) Educators, experimenters, and those concerned with astronomy outreach might be interested in this poster. Working with "dollar optics” requires facility with simple tools, interest in planning projects, patience, imagination, and the willingness to invest some time and effort. "Dollar optics” may help to foster creativity and hands-on enthusiasm - as did Galileo's work with simple lenses 400 years ago. "Oh! When will there be an end put to the new observations and discoveries of this admirable instrument?” - Galileo Galilei as quoted by Henry C. King, The History of the Telescope.

  20. SLAS Library Telescope Program (Abstract)

    NASA Astrophysics Data System (ADS)

    Small, J. S.

    2016-12-01

    (Abstract only) In the fall of 2014, I submitted to the members of the St. Louis Astronomical Society to take the $1,000 profit we had from a convention we had hosted and use it to purchase three telescopes to modify for a Library Telescope program that was invented by Mark Stowbridge and promoted by the New Hampshire Astronomical Society. I had met Mark at NEAF in 2012 when he was walking the floor demonstrating the telescope. We held meetings with three libraries, the St. Louis County Library system, the St. Louis Public Library system and an independent library in Kirkwood, Missouri. The response was overwhelming! SLCL responded with a request for ten telescopes and SLPL asked for five. We did our first build in October, 2014 and placed a total of eighteen telescopes. Since that time, SLAS has placed a total of eighty-eight telescopes in library systems around the St. Louis Metro area, expanding into neighboring counties and across the river in Illinois. In this talk, I will discuss how to approach this project and put it in place in your libraries!

  1. Concept Design for SOAR Telescope

    NASA Astrophysics Data System (ADS)

    Sebring, T.; Cecil, G.; Krabbendam, V.; Moretto, G.

    1998-12-01

    The Southern Astrophysical Research (SOAR) telescope is a \\$28M collaboration between Brazil, NOAO, Michigan State University, and the University of North Carolina at Chapel Hill. NOAO will operate the telescope for 20 years in exchange for 30 astronomers.) The project is now fully funded. This f/16 telescope is optimized for high-quality images across the isokinetic field (0."17 FWHM degradation from the telescope+facility over a field of 7.5' diameter.) It is being designed to take up to 2 Gemini-class (2100 kg) instruments, or a combination of lighter instruments at 7 Nasmyth and bent Cassegrain foci. The facility is now under construction atop Cerro Pachon, 400m from Gemini-S. First light is currently scheduled for early 2002. Corning Inc. is preparing to fabricate the 4.2m-diameter, 7.5-10 cm thick primary mirror from ULE glass. In early 1999 contacts will be awarded for 2 major subsystems: active optics (which includes optics polishing), and the alt.-az. telescope mount. We will outline the novel strategies that are being used to control project costs while optimizing telescope performance. Instrumentation plans will also be summarized.

  2. SOFIA: Flying the Telescope

    NASA Technical Reports Server (NTRS)

    Asher, Troy A.; Cumming, Stephen B.

    2012-01-01

    and a proof of concept mission for which SOFIA was opportunely positioned is showcased. Success on this time-critical mission to observe a rare astronomical event proved the usefulness of an airborne observatory and the value in waiting for the capability provided by SOFIA. Finally, lessons learned in the test program are presented with emphasis on how lessons from previous aircraft and successful test programs were applied to SOFIA. Effective application of these lessons was crucial to the success of the SOFIA flight test program. SOFIA is an international cooperative program between NASA and the German Space Agency, DLR. It is a 2.5 meter (100-inch) telescope mounted in a Boeing 747SP aircraft used for astronomical observations at altitudes above 35,000 feet. SOFIA will accommodate a host of scientific instruments from the international science community and has a planned operational lifespan of more than 20 years.

  3. Diel Drift Patterns and Spatio-temporal Distribution of Macroinvertebrates in the Blanco River, Texas: A Groundwater Dominated Stream Subject to Intermittent Flow

    NASA Astrophysics Data System (ADS)

    Pendergrass, D. R.; Arsuffi, T. L.

    2005-05-01

    The Blanco River is a relatively pristine karst stream in central Texas and designated a conservation target by The Nature Conservancy. It is fed primarily by groundwater in the upper reaches and dominated by runoff and intermittency downstream. The spatial and temporal structure of macroinvertebrates in the Blanco River was assessed with seasonal Hess and d-net samples during 2003-2004 and three diel drift samples from May to October 2004. Our downstream site showed a 47% drop in diversity, but comparable abundances to up- and mid-stream sites. Ephemeropteran and trichopteran taxa (e.g. Tricorythodes and Cheumatopsyche) comprised about 60% of drift and benthic samples alike, however, non-insect taxa were nearly absent from the drift. Some taxa not present in the benthic samples were present in the drift. Post-dusk and pre-dawn peaks in diel drift were discerned. No strong seasonal patterns were detected which may be attributable to an unusually wet year and asynchronous, multivoltinous life cycles associated with mild seasonality in subtropical regions. The Blanco River's historically variable hydrological regime may be further exacerbated by long-term flow alteration associated with increasing anthropogenic development and could alter the composition and distribution of macroinvertebrate assemblages.

  4. In vivo redox effects of Aspidosperma quebracho-blanco Schltdl., Lantana grisebachii Stuck and Ilex paraguariensis A. St.-Hil. on blood, thymus and spleen of mice.

    PubMed

    Canalis, A M; Cittadini, M C; Albrecht, C; Soria, E A

    2014-09-01

    Argentinian native plants Aspidosperma quebracho-blanco, Lantana grisebachii and Ilex paraguariensis are known to have antiinflammatory and antioxidant properties. We demonstrated it in vivo by the redox changes in murine hemolymphatic tissues after infusive extract intake of these plants as revealed in organic trophism, tissue phenolics, hydroperoxides, superoxide, nitrites and gamma-glutamyltranspeptidase in thymus, blood and spleen. A. quebracho-blanco reduced hydroperoxidation in blood and spleen of both sexes, with gamma-glutamyltranspeptidase negativization in lymphatic organs and thymic nitrosative up-regulation. Males have shown increased phenolic content in blood after treatment. L. grisebachii and I. paraguariensis treatment exhibited incomplete antioxidation and oxidative induction in the studied tissues. Different results according to sex were found in redox response to phenolics and their kinetics, with males showing antioxidant effects, whereas females showed oxidative susceptibility. A. quebracho-blanco exhibited protection of murine tissues against oxidation in both sexes and modulation of their trophism, supporting its therapeutic uses in inflammatory diseases. Also, gender had significant influence in phenolic biodistribution and redox response.

  5. The Carlsberg Meridian Telescope: an astrometric robotic telescope

    NASA Astrophysics Data System (ADS)

    Evans, D. W.

    2001-12-01

    An overview is given of the Carlsberg Meridian Telescope on La Palma, which is one of the oldest robotic telescopes, having started observing on La Palma in 1984. In the spring of 1997, a further stage of automation was made when we converted the telescope to remote operation. Since then, the telescope has been operated over the Internet from Britain, Denmark or Spain. In 1997, a CCD camera, operating in a drift-scan mode, was installed. A year later the telescope underwent a major upgrade and a larger 2k×2k CCD camera was installed, with a Sloan r' filter. With the new system, the magnitude limit is r'=17 and the positional accuracy is in the range 0.03'' to 0.05''. The main task of the project is to map the sky in the declination range -3o to +50o, with the aim of providing an astrometric and photometric catalogue that can accurately transfer the Hipparcos/Tycho reference frame to Schmidt plates. We will release the first data by the end of 2001. Using the photometric information, extinction data for La Palma is also provided.

  6. The Carlsberg Meridian Telescope: An Astrometric Robotic Telescope

    NASA Astrophysics Data System (ADS)

    Evans, Dafydd Wyn

    An overview is given of the Carlsberg Meridian Telescope on La Palma, which is one of the oldest robotic telescopes, having started observing in 1984. In the spring of 1997, a further stage of automation was made when we converted the telescope to remote operation. Since then, the telescope has been operated over the Internet from Britain, Denmark or Spain. Two years ago, the telescope underwent a major upgrade and a 2k×2k CCD camera was installed, with a Sloan r' filter, operating in a drift scan mode. With the new system, the magnitude limit is r'=17 and the positional accuracy is in the range 0.03'' to 0.05''. The main task of the project is to map the sky in the declination range -3o to +50o, with the aim of providing an astrometric and photometric catalogue that can accurately transfer the Hipparcos/Tycho reference frame to Schmidt plates. We will release the first data by the end of the year.

  7. James Webb Space Telescope: large deployable cryogenic telescope in space

    NASA Astrophysics Data System (ADS)

    Lightsey, Paul A.; Atkinson, Charles; Clampin, Mark; Feinberg, Lee D.

    2012-01-01

    The James Webb Space Telescope (JWST) is an infrared space telescope designed to explore four major science themes: first light and reionization, the assembly of galaxies, the birth of stars and protoplanetary systems, and planetary systems and origins of life. JWST is a segmented architecture telescope with an aperture of 6.6 m. It will operate at cryogenic temperature (40 K), achieved via passive cooling, in an orbit about the Earth-Sun second Lagrange point (L2). Passive cooling is facilitated by means of a large sunshield that provides thermal isolation and protection from direct illumination from the Sun. The large size of the telescope and spacecraft systems require that they are stowed for launch in a configuration that fits the Ariane 5 fairing, and then deployed after launch. Routine wavefront sensing and control measurements are used to achieve phasing of the segmented primary mirror and initial alignment of the telescope. A suite of instruments will provide the capability to observe over a spectral range from 0.6- to 27-μm wavelengths with imaging and spectroscopic configurations. An overview is presented of the architecture and selected optical design features of JWST are described.

  8. Buried plastic scintillator muon telescope (BATATA)

    NASA Astrophysics Data System (ADS)

    Alfaro, R.; de Donato, C.; D'Olivo, J. C.; Guzmán, A.; Medina-Tanco, G.; Moreno Barbosa, E.; Paic, G.; Patiño Salazar, E.; Salazar Ibarguen, H.; Sánchez, F. A.; Supanitsky, A. D.; Valdés-Galicia, J. F.; Vargas Treviño, A. D.; Vergara Limón, S.; Villaseñor, L. M.; Auger Collaboration

    2010-05-01

    Muon telescopes have multiple applications in the area of cosmic ray research. We are currently building such a detector with the objective of comparing the ground penetration of muon vs. electron-gamma signals originated in cosmic ray showers. The detector is composed by a set of three parallel dual-layer scintillator planes, buried at fixed depths ranging from 120 to 600g/cm2. Each layer is 4m2 and is composed by 49 rectangular strips of 4cm×2m, oriented at a 90∘ angle with respect to its companion layer, which gives an xy-coincidence pixel of 4×4cm2. The scintillators are MINOS extruded polystyrene strips, with an embedded Bicron BC92 wavelength shifting (WLS) fibers, of 1.5 mm in diameter. Light is collected by Hamamatsu H7546B multi-anode PMTs of 64 pixels. The front-end (FE) electronics works in counting mode and signals are transmitted to the surface DAQ stage using low-voltage differential signaling (LVDS). Any strip signal above threshold opens a GPS-tagged 2μs data collection window. Data, including signal and background, are acquired by a system of FPGA (Spartan 2E) boards and a single-board computer (TS7800).

  9. System concepts for a large UV/optical/IR telescope on the moon

    NASA Technical Reports Server (NTRS)

    Nein, Max E.; Davis, Billy

    1991-01-01

    To assess the systems and technological requirements for constructing lunar telescopes in conjunction with the buildup of a lunar base for scientific exploration and as a waypoint for travel to Mars, the NASA Marshall Space Flight Center conducted concept studies of a 16-m-aperture large lunar telescope (LLT) and a 4-m-aperture precursor telescope, both operating in the UV/visible/IR spectral region. The feasibility of constructing a large telescope on the lunar surface is assessed, and its systems and subsystems are analyzed. Telescope site selection, environmental effects, and launch and assembly scenarios are also evaluated. It is argued that key technical drivers for the LLT must be tested in situ by precursor telescopes to evaluate such areas as the operations and long-term reliability of active optics, radiation protection of instruments, lunar dust mitigation, and thermal shielding of the telescope systems. For a manned lunar outpost or an LLT to become a reality, a low-cost dependable transportation system must be developed.

  10. The Xinglong 2.16-m Telescope: Current Instruments and Scientific Projects

    NASA Astrophysics Data System (ADS)

    Fan, Zhou; Wang, Huijuan; Jiang, Xiaojun; Wu, Hong; Li, Hongbin; Huang, Yang; Xu, Dawei; Hu, Zhongwen; Zhu, Yinan; Wang, Jianfeng; Komossa, Stefanie; Zhang, Xiaoming

    2016-11-01

    The Xinglong 2.16-m reflector is the first 2-m class astronomical telescope in China. It was jointly designed and built by the Nanjing Astronomical Instruments Factory (NAIF), Beijing Astronomical Observatory (now National Astronomical Observatories, Chinese Academy of Sciences, NAOC), and Institute of Automation, Chinese Academy of Sciences in 1989. It is a Ritchey-Chrétien (R-C) reflector on an English equatorial mount and the effective aperture is 2.16 m. It had been the largest optical telescope in China for ˜18 years until the Guoshoujing Telescope (also called Large Sky Area Multi-Object Fiber Spectroscopic Telescope, LAMOST) and the Lijiang 2.4-m telescope were built. At present, there are three main instruments on the Cassegrain focus available: the Beijing Faint Object Spectrograph and Camera (BFOSC) for direct imaging and low-resolution (R ˜ 500-2000) spectroscopy, the spectrograph made by Optomechanics Research Inc. (OMR) for low-resolution spectroscopy (the spectral resolutions are similar to those of BFOSC) and the fiber-fed High Resolution Spectrograph (HRS; R ˜ 30,000-65,000). The telescope is widely open to astronomers all over China as well as international astronomical observers. Each year there are more than 40 ongoing observing projects, including 6-8 key projects. Recently, some new techniques and instruments (e.g., astro-frequency comb calibration system, polarimeter, and adaptive optics) have been or will be tested on the telescope to extend its observing abilities.

  11. LISA Telescope Spacer Design Issues

    NASA Technical Reports Server (NTRS)

    Livas, Jeff; Arsenovic, P.; Catelluci, K.; Generie, J.; Howard, J.; Stebbins, Howard R.; Preston, A.; Sanjuan, J.; Williams, L.; Mueller, G.

    2010-01-01

    The LISA mission observes gravitational waves by measuring the separations between freely floating proof masses located 5 million kilometers apart with an accuracy of - 10 picometers. The separations are measured interferometrically. The telescope is an afocal Cassegrain style design with a magnification of 80x. The entrance pupil has a 40 cm diameter and will either be centered on-axis or de-centered off-axis to avoid obscurations. Its two main purposes are to transform the small diameter beam used on the optical bench to a diffraction limited collimated beam to efficiently transfer the metrology laser between spacecraft, and to receive the incoming light from the far spacecraft. It transmits and receives simultaneously. The basic optical design and requirements are well understood for a conventional telescope design for imaging applications, but the LISA design is complicated by the additional requirement that the total optical path through the telescope must remain stable at the picometer level over the measurement band during the mission to meet the measurement accuracy. We describe the mechanical requirements for the telescope and the preliminary work that has been done to understand the materials and mechanical issues associated with the design of a passive metering structure to support the telescope and to maintain the spacing between the primary and secondary mirrors in the LISA on-orbit environment. This includes the requirements flowdown from the science goals, thermal modeling of the spacecraft and telescope to determine the expected temperature distribution, layout options for the telescope including an on- and off-axis design. Plans for fabrication and testing will be outlined.

  12. Preliminary LISA Telescope Spacer Design

    NASA Technical Reports Server (NTRS)

    Livas, J.; Arsenovic, P.; Catellucci, K.; Generie, J.; Howard, J.; Stebbins, R. T.

    2010-01-01

    The Laser Interferometric Space Antenna (LISA) mission observes gravitational waves by measuring the separations between freely floating proof masses located 5 million kilometers apart with an accuracy of approximately 10 picometers. The separations are measured interferometrically. The telescope is an afocal Cassegrain style design with a magnification of 80x. The entrance pupil has a 40 cm diameter and will either be centered on-axis or de-centered off-axis to avoid obscurations. Its two main purposes are to transform the small diameter beam used on the optical bench to a diffraction limited collimated beam to efficiently transfer the metrology laser between spacecraft, and to receive the incoming light from the far spacecraft. It transmits and receives simultaneously. The basic optical design and requirements are well understood for a conventional telescope design for imaging applications, but the LISA design is complicated by the additional requirement that the total optical path through the telescope must remain stable at the picometer level over the measurement band during the mission to meet the measurement accuracy. This poster describes the requirements for the telescope and the preliminary work that has been done to understand the materials and mechanical issues associated with the design of a passive metering structure to support the telescope and to maintain the spacing between the primary and secondary mirrors in the LISA on-orbit environment. This includes the requirements flowdown from the science goals, thermal modeling of the spacecraft and telescope to determine the expected temperature distribution,layout options for the telescope including an on- and off-axis design, and plans for fabrication and testing.

  13. The toxicity of Rio Blanco Tract C-a groundwater samples before and after the pumpdown of retort 1

    SciTech Connect

    Hill, S.L.

    1986-09-01

    In 1984, the Rio Blanco Oil Shale Company received permission from the US Bureau of Land Management/Oil Shale Projects Office to proceed with retort abandonment activities at its Tract C-a modified in situ retort site. One of the first abandonment activities undertaken was to flood the retort with groundwater to dissolve soluble contaminants associated with the retorting operation. Saline water was then pumped from the retort into evaporation ponds during two pumpdown operations in May of 1985 and June of 1986. The principal objective of the pumpdown operations was to remove contaminated groundwater from the retort area and to prevent the migration of contaminants beyond the retort. A toxicological evaluation of groundwaters collected from within the retort and outside the retort is currently in progress. Acute and chronic toxicity tests have been performed using the freshwater invertebrate Ceriodaphnia affinis/dubia with groundwater samples collected before and after the first pumpdown of the retort. The objectives of these tests have been to evaluate the success of the pumpdown operation, to assess the effect of the pumping operations on groundwater quality both within and outside the retort, and to evaluate the toxicity of groundwater within the retort relative to local groundwater that has not been affected by the retorting operation. This report presents the results of toxicity tests performed before and after the first pumpdown operation. Additional toxicity tests are planned for samples collected after the second pumpdown operation. 15 refs., 2 figs., 9 tabs.

  14. Influence of root-knot nematode infestation on antioxidant enzymes, chlorophyll content and growth in Pogostemon cablin (Blanco) Benth.

    PubMed

    Bhau, B S; Borah, Bitupon; Ahmed, Reshma; Phukon, P; Gogoi, Barbi; Sarmah, D K; Lal, M; Wann, S B

    2016-04-01

    Plants adapt themselves to overcome adverse environmental conditions, and this involves a plethora of concurrent cellular activities. Physiological experiments or metabolic profiling can quantify this response. Among several diseases of Pogostemon cablin (Blanco) Benth. (Patchouli), root-knot nematode infection caused by Meloidogyne incognita (Kofoid and White) Chitwood causes severe damage to the plant and hence, the oil production. In the present study, we identified M. incognita morphologically and at molecular level using sequenced characterized amplified region marker (SCAR). M. incognita was artificially inoculated at different levels of second stage juveniles (J₂) to examine the effect on Patchouli plant growth parameters. Peroxidase and polyphenol oxidase enzyme activity and changes in the total phenol and chlorophyll contents in M. incognita was also evaluated in response to infection. The results have demonstrated that nematode infestation leads to increased peroxidase activities in the leaves of the patchouli plants and thereby, increase in phenolic content as a means of defence against nematode infestation. Chlorophyll content was also found decreased but no changes in polyphenol oxidase enzyme activity.

  15. Biogenic hydrocarbon contribution to the ambient air of selected areas - Tulsa; Great Smoky Mountains; Rio Blanco County, Colorado. Research report

    SciTech Connect

    Arnts, R.R.; Meeks, S.A.

    1980-01-01

    Estimates of volatile hydrocarbon emissions to the atmosphere indicate that biogenic sources are much greater on a global basis than anthropogenic sources. Many assumptions inherent in these estimates, however, introduce a large degree of uncertainty about both inventories. A critical review of the literature reveals nonmethane hydrocarbons in rural and remote areas consist mainly of anthropogenic species, and are composed of less than 10% biogenically-related compounds (i.e., monoterpenes and isoprene). Despite these results, some investigators continue to invoke 'natural hydrocarbon emissions' to explain naturally occurring haze, incorrectly identified gas chromatographic peaks, and high concentrations of total nonmethane hydrocarbons that are measured by indiscriminate (total hydrocarbon-methane) analyzers. In response to the suggestion that biogenic emissions are responsible for the high hydrocarbon concentrations described in several reports, the Environmental Sciences Research Laboratory of the U.S. Environmental Protection Agency initiated short-term sampling as a means of validation. A limited number of whole-air samples were collected in Tedlar bags and analyzed by gas chromatography with flame ionization detection. The areas of study included: Tulsa, Oklahoma; Rio Blanco County, Colorado; and the Great Smoky Mountains in Tennessee. Although the tests were of short duration, the results suggest monoterpenes and isoprene constitute minor components of rural air relative to anthropogenic hydrocarbons.

  16. Is Upregulation of Aquaporin 4-M1 Isoform Responsible for the Loss of Typical Orthogonal Arrays of Particles in Astrocytomas?

    PubMed Central

    Fallier-Becker, Petra; Nieser, Maike; Wenzel, Ulrike; Ritz, Rainer; Noell, Susan

    2016-01-01

    The astrocytic endfoot membranes of the healthy blood-brain barrier—contacting the capillary—are covered with a large number of the water channel aquaporin 4 (AQP4). They form orthogonal arrays of particles (OAPs), which consist of AQP4 isoform M1 and M23. Under pathologic conditions, AQP4 is distributed over the whole cell and no or only small OAPs are found. From cell culture experiments, it is known that cells transfected only with AQP4-M1 do not form OAPs or only small ones. We hypothesized that in astrocytomas the situation may be comparable to the in vitro experiments expecting an upregulation of AQP4-M1. Quantitative Real-time PCR (qRT-PCR) of different graded astrocytomas revealed an upregulation of both isoforms AQP4 M1 and M23 in all astrocytomas investigated. In freeze fracture replicas of low-grade malignancy astrocytomas, more OAPs than in high-grade malignancy astrocytomas were found. In vitro, cultured glioma cells did not express AQP4, whereas healthy astrocytes revealed a slight upregulation of both isoforms and only a few OAPs in freeze fracture analysis. Taken together, we found a correlation between the decrease of OAPs and increasing grade of malignancy of astrocytomas but this was not consistent with an upregulation of AQP4-M1 in relation to AQP4 M23. PMID:27483250

  17. James Webb Space Telescope Optical Telescope Element Mirror Coatings

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva A.; Bowers, Charles W.; Quijada, Manuel A.; Heaney, James B.; Gallagher, Benjamin; McKay, Andrew; Stevenson, Ian

    2012-01-01

    James Webb Space Telescope (JWST) Optical Telescope Element (OTE) mirror coating program has been completed. The science goals of the JWST mission require a uniform, low stress, durable optical coating with high reflectivity over the JWST spectral region. The coating has to be environmentally stable, radiation resistant and compatible with the cryogenic operating environment. The large size, 1.52 m point to point, light weight, beryllium primary mirror (PM) segments and flawless coating process during the flight mirror coating program that consisted coating of 21 flight mirrors were among many technical challenges. This paper provides an overview of the JWST telescope mirror coating program. The paper summarizes the coating development program and performance of the flight mirrors.

  18. An underground cosmic ray muon telescope for observation of cosmic ray anisotropy

    NASA Technical Reports Server (NTRS)

    Lee, Y. W.; Ng, L. K.

    1985-01-01

    A telescope housed in a tunnel laboratory has an overburden of 573 hg cm(-2) and is located under the center of a saddle-shaped landscape. It is composed of triple layers of proportional counters, each layer of area approx. 4m x 2m and their separation 0.5m. Events are selected by triple coincidence and software track identification. The telescope is in operation for over a year and the overall count rate is 1280 hr(-1). The structure and operation of the system is reported.

  19. Design Evolution of the Wide Field Infrared Survey Telescope Using Astrophysics Focused Telescope Assets (WFIRST-AFTA) and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Peabody, Hume L.; Peters, Carlton V.; Rodriguez-Ruiz, Juan E.; McDonald, Carson S.; Content, David A.; Jackson, Clifton E.

    2015-01-01

    The design of the Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA) continues to evolve as each design cycle is analyzed. In 2012, two Hubble sized (2.4 m diameter) telescopes were donated to NASA from elsewhere in the Federal Government. NASA began investigating potential uses for these telescopes and identified WFIRST as a mission to benefit from these assets. With an updated, deeper, and sharper field of view than previous design iterations with a smaller telescope, the optical designs of the WFIRST instruments were updated and the mechanical and thermal designs evolved around the new optical layout. Beginning with Design Cycle 3, significant analysis efforts yielded a design and model that could be evaluated for Structural-Thermal-Optical-Performance (STOP) purposes for the Wide Field Imager (WFI) and provided the basis for evaluating the high level observatory requirements. Development of the Cycle 3 thermal model provided some valuable analysis lessons learned and established best practices for future design cycles. However, the Cycle 3 design did include some major liens and evolving requirements which were addressed in the Cycle 4 Design. Some of the design changes are driven by requirements changes, while others are optimizations or solutions to liens from previous cycles. Again in Cycle 4, STOP analysis was performed and further insights into the overall design were gained leading to the Cycle 5 design effort currently underway. This paper seeks to capture the thermal design evolution, with focus on major design drivers, key decisions and their rationale, and lessons learned as the design evolved.

  20. Design Evolution of the Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA) and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Peabody, Hume; Peters, Carlton; Rodriguez, Juan; McDonald, Carson; Content, David A.; Jackson, Cliff

    2015-01-01

    The design of the Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA) continues to evolve as each design cycle is analyzed. In 2012, two Hubble sized (2.4 m diameter) telescopes were donated to NASA from elsewhere in the Federal Government. NASA began investigating potential uses for these telescopes and identified WFIRST as a mission to benefit from these assets. With an updated, deeper, and sharper field of view than previous design iterations with a smaller telescope, the optical designs of the WFIRST instruments were updated and the mechanical and thermal designs evolved around the new optical layout. Beginning with Design Cycle 3, significant analysis efforts yielded a design and model that could be evaluated for Structural-Thermal-Optical-Performance (STOP) purposes for the Wide Field Imager (WFI) and provided the basis for evaluating the high level observatory requirements. Development of the Cycle 3 thermal model provided some valuable analysis lessons learned and established best practices for future design cycles. However, the Cycle 3 design did include some major liens and evolving requirements which were addressed in the Cycle 4 Design. Some of the design changes are driven by requirements changes, while others are optimizations or solutions to liens from previous cycles. Again in Cycle 4, STOP analysis was performed and further insights into the overall design were gained leading to the Cycle 5 design effort currently underway. This paper seeks to capture the thermal design evolution, with focus on major design drivers, key decisions and their rationale, and lessons learned as the design evolved.

  1. Magnetic properties of RCo4M (R=Y, Nd and Ho; M=B, Al and Ga)

    NASA Astrophysics Data System (ADS)

    Ido, H.; Konno, K.; Ito, T.; Cheng, S. F.; Sankar, S. G.; Wallace, W. E.

    1991-04-01

    Magnetic and crystallographic measurements have been made for the compounds RCo4M (R=Y, Nd, and Ho; M=B, Al, and Ga) to intercompare the magnetic properties of RCo4B, RCo4M (M=Al and Ga) and RCo5. The compounds RCo4B crystallize in the CeCo4B type structure, while RCo4M (M=Al and Ga) in the CaCu5 type. The following main conclusions have been obtained: (1) the Curie temperature and the averaged Co-moment of RCo4M (R=Y, Nd, and Ho; M=B, Al, and Ga) are lower and smaller than those of RCo5, respectively, and 6i-site Co-moment in RCo4B is smaller than the 2c-site Co-moment by the influence of the neighboring B-layer; (2) magnetocrystalline anisotropy of R-sublattice of RCo4B is stronger than that of RCo5, while that of RCo4Al is remarkably weaker than that of RCo5; (3) the Co-sublattice anisotropy constants of YCo4M (M=B and Al) are 20% or less of that of YCo5; and (4) JR-Co and JCo-Co, which are the exchange parameters of the atomic pairs in NdCo4M (M=B and Al), have been estimated to be JR-Co/k ≂ 7 K and JCo-Co/k ≂ 200 K, where k is the Boltzman constant.

  2. Large aperture millimeter/submillimeter telescope: which is more cost-effective, aperture synthesis telescope versus large single dish telescope?

    NASA Astrophysics Data System (ADS)

    Iguchi, Satoru; Saito, Masao

    2016-07-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) consists of 66 antennas with the aperture equivalent to a 91-m diameter antenna. The Green Bank Telescope (GBT) is the world's largest, 100-m diameter telescope in the wavelength range of 3 mm to 30 cm. The Large Millimeter Telescope (LMT) will be the world's largest, 50-m diameter, steerable millimeter-wavelength telescope. The Cerro Chajnantor Atacama Telescope (CCAT) will be the world's largest, 25-m diameter, submillimeter-wavelength telescope. We will investigate advantages and disadvantages of both the aperture synthesis telescope and the large single-dish telescope taking the cost effectiveness into consideration, and will propose the design of antenna structure for a future telescope project at millimeter and submillimeter wavelengths.

  3. The Spitzer Space Telescope Mission

    NASA Technical Reports Server (NTRS)

    Werner, M. W.

    2005-01-01

    The Spitzer Space Telescope, NASA's Great Observatory for infrared astronomy, was launched 2003 August 25 and is returning excellent scientific data from its Earth-trailing solar orbit. Spitzer combines the intrinsic sensitivity achievable with a cryogenic telescope in space with the great imaging and spectroscopic power of modern detector arrays to provide the user community with huge gains in capability for exploration of the cosmos in the infrared. The observatory systems are largely performing as expected, and the projected cryogenic lifetime is about five years. Spitzer is thus both a scientific and a technical precursor to the infrared astronomy missions of the future. This very brief paper refers interested readers to several sets of recent publications which describe both the scientific and the technical features of Spitzer in detail. Note that, until 2003 December, Spitzer was known as the Space Infrared Telescope Facility (SIRTF).

  4. Quantum telescope: feasibility and constraints.

    PubMed

    Kurek, A R; Pięta, T; Stebel, T; Pollo, A; Popowicz, A

    2016-03-15

    The quantum telescope is a recent idea aimed at beating the diffraction limit of spaceborne telescopes and possibly other distant target imaging systems. There is no agreement yet on the best setup of such devices, but some configurations have already been proposed. In this Letter we characterize the predicted performance of quantum telescopes and their possible limitations. Our extensive simulations confirm that the presented model of such instruments is feasible and the device can provide considerable gains in the angular resolution of imaging in the UV, optical, and infrared bands. We argue that it is generally possible to construct and manufacture such instruments using the latest or soon to be available technology. We refer to the latest literature to discuss the feasibility of the proposed QT system design.

  5. Double Compton scatter telescope calibration

    NASA Technical Reports Server (NTRS)

    Dayton, B.; Simone, J.; Green, M.; Long, J.; Zanrosso, E.; Zych, A. D.; White, R. S.

    1981-01-01

    Calibration techniques for a medium energy gamma ray telescope are described. Gain calibration using Compton edge spectra involves comparisons of pulse height spectra with spectra simulated by a Monte Carlo computer code which includes Compton scattering and pair production, plural scattering and variable energy resolution, and cell size. The telescope considered comprises 56 cells of liquid scintillator in four size groups, with a total liquid volume of 325 l; each cell has its own photomultiplier tube. Energy and angular resolutions and the PMT gain calibration procedure are verified with double scatter data for monoenergetic gamma rays at a known location. Detection probabilities for any cell combination in the two telescope arrays are calculated per steradian as a function of the scattering for a number of different energies with a Van de Graaff accelerator.

  6. Feature-based telescope scheduler

    NASA Astrophysics Data System (ADS)

    Naghib, Elahesadat; Vanderbei, Robert J.; Stubbs, Christopher

    2016-07-01

    Feature-based Scheduler offers a sequencing strategy for ground-based telescopes. This scheduler is designed in the framework of Markovian Decision Process (MDP), and consists of a sub-linear online controller, and an offline supervisory control-optimizer. Online control law is computed at the moment of decision for the next visit, and the supervisory optimizer trains the controller by simulation data. Choice of the Differential Evolution (DE) optimizer, and introducing a reduced state space of the telescope system, offer an efficient and parallelizable optimization algorithm. In this study, we applied the proposed scheduler to the problem of Large Synoptic Survey Telescope (LSST). Preliminary results for a simplified model of LSST is promising in terms of both optimality, and computational cost.

  7. Status of mirror segment production for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Martin, H. M.; Burge, J. H.; Davis, J. M.; Kim, D. W.; Kingsley, J. S.; Law, K.; Loeff, A.; Lutz, R. D.; Merrill, C.; Strittmatter, P. A.; Tuell, M. T.; Weinberger, S. N.; West, S. C.

    2016-07-01

    The Richard F. Caris Mirror Lab at the University of Arizona is responsible for production of the eight 8.4 m segments for the primary mirror of the Giant Magellan Telescope, including one spare off-axis segment. We report on the successful casting of Segment 4, the center segment. Prior to generating the optical surface of Segment 2, we carried out a major upgrade of our 8.4 m Large Optical Generator. The upgrade includes new hardware and software to improve accuracy, safety, reliability and ease of use. We are currently carrying out an upgrade of our 8.4 m polishing machine that includes improved orbital polishing capabilities. We added and modified several components of the optical tests during the manufacture of Segment 1, and we have continued to improve the systems in preparation for Segments 2-8. We completed two projects that were prior commitments before GMT Segment 2: casting and polishing the combined primary and tertiary mirrors for the LSST, and casting and generating a 6.5 m mirror for the Tokyo Atacama Observatory.

  8. The Large Binocular Telescope mount control system architecture

    NASA Astrophysics Data System (ADS)

    Ashby, David S.; McKenna, Dan; Brynnel, Joar G.; Sargent, Tom; Cox, Dan; Little, John; Powell, Keith; Holmberg, Gene

    2006-06-01

    The Large Binocular Telescope (LBT) features dual 8.4 m diameter mirrors in a common elevation-over-azimuth mount. The LBT moves in elevation on two large crescent-shaped C-rings that are supported by radial hydrostatic bearing pads located near the four corners of the rectangular azimuth frame. The azimuth frame, in turn, is supported by four hydrostatic bearing pads and uses hydrodynamic roller bearings for centering. Each axis is gear driven by four large electric motors. In addition to precision optical motor encoders, each axis is equipped with Farrand Inductosyn strip encoders which yield 0.005 arcsecond resolution. The telescope weighs 580 metric tons and is designed to track with 0.03 arcsecond or better servo precision under wind speeds as high as 24 km/hr. Though the telescope is still under construction, the Mount Control System (MCS) has been routinely exercised to achieve First Light. The authors present a description of the unique, DSP-based synchronous architecture of the MCS and its capabilities.

  9. LSST telescope and site status

    NASA Astrophysics Data System (ADS)

    Gressler, William J.

    2016-07-01

    The Large Synoptic Survey Telescope (LSST) Project1 received its construction authorization from the National Science Foundation in August 2014. The Telescope and Site (T and S) group has made considerable progress towards completion in subsystems required to support the scope of the LSST science mission. The LSST goal is to conduct a wide, fast, deep survey via a 3-mirror wide field of view optical design, a 3.2-Gpixel camera, and an automated data processing system. The summit facility is currently under construction on Cerro Pachón in Chile, with major vendor subsystem deliveries and integration planned over the next several years. This paper summarizes the status of the activities of the T and S group, tasked with design, analysis, and construction of the summit and base facilities and infrastructure necessary to control the survey, capture the light, and calibrate the data. All major telescope work package procurements have been awarded to vendors and are in varying stages of design and fabrication maturity and completion. The unique M1M3 primary/tertiary mirror polishing effort is completed and the mirror now resides in storage waiting future testing. Significant progress has been achieved on all the major telescope subsystems including the summit facility, telescope mount assembly, dome, hexapod and rotator systems, coating plant, base facility, and the calibration telescope. In parallel, in-house efforts including the software needed to control the observatory such as the scheduler and the active optics control, have also seen substantial advancement. The progress and status of these subsystems and future LSST plans during this construction phase are presented.

  10. EST: The European Solar Telescope

    NASA Astrophysics Data System (ADS)

    Collados, M.

    2008-09-01

    The European Solar Telescope (EST) is a project for a 4 meter-class ground-based telescope, to be located in the Canary Islands. The project is promoted by the European Association for Solar Telescopes (EAST), a consortium formed by research organizations from 15 European countries. EST will be optimized for studies of magnetic coupling between the deep photosphere and upper chromosphere. The project has been approved for funds by the European Union, within the FP-7 framework, to produce the design of all systems and subsystems of the telescope during the next three years. This includes the optical and optomechanical design of the telescope itself and of the instruments and their control. MCAO will be included in the optical path in a natural way to compensate for atmospheric disturbances in an optimum way. The design of EST will strongly emphasize the use of a large number of visible and near-infrared instruments simultaneously which will influence the telescope design from the very beginning. This communication will center mainly on the scientific objectives that EST will address. Generally speaking, they involve understanding how the magnetic field emerges through the solar surface, interacts with the plasma dynamics to transfer energy between different regions, and finally releases it in the form of heat or as violent events in the solar chromosphere and corona. Among the many topics of interest, one may cite, as described in the EST Science Requirements Document: small-scale flux emergence in quiet sun regions, large-scale magnetic structures, magnetic flux cancellation processes, polar magnetic fields, magnetic topology of the photosphere and chromosphere, conversion of mechanical to magnetic energy in the photosphere, wave propagation from photosphere to chromosphere, energy dissipation in the chromosphere at small and large scales, etc. The present status and future perspectives of the project will also be outlined.

  11. Postburn lithology and mineralogy at Rio Blanco Oil Shale Company's Tract C-a retort 1, Rio Blanco County, Colorado. [Core samples from near the in-situ retort

    SciTech Connect

    Trudell, L.G.; Mason, G.M.; Fahy, L.J.

    1986-05-01

    An investigation was conducted to provide basic data on some of the characteristics of a modified in situ (MIS) oil shale retort after processing. Samples of retort contents and overburden were obtained from three core holes drilled into Rio Blanco's Tract C-a retort 1 in the western part of the Piceance Creek Basin, Colorado. The retort operation had been completed nearly four years before the coring, and the cavity and mine workings had been flooded by groundwater for almost one year. Cores were characterized by lithologic description, x-ray diffraction, and optical microscopy. Drilling and logging records indicate as much as 35 to 40 feet of roof rock has collapsed into the retort since the burn was terminated. A water-filled attic cavity 46 to 62 feet high exists at the top of the retort. One core hole penetrated 377 feet of rubble in the retort and floor rock with numerous fractures below the retort. Most of the material recovered from the retort consisted of highly altered, fused and vesicular rock. Lesser amounts of carbonized, oxidized and moderately heated-altered oil shale were recovered from the upper and lower parts. Raw shale roof fall at the top and unretorted oil shale rubble at the bottom are also present. Thermal alteration has produced high-temperature silicate minerals from the original mixtures of carbonate and silicate minerals in the raw oil shale. Adequate material was recovered from the retort contents to provide valuable data on the lithologic, mineralogic, and physical characteristics of the MIS retort. 19 refs., 12 figs., 17 tabs.

  12. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew

    2008-01-01

    The James Webb Space Telescope is being developed by NASA in partnership with the European and Canadian space agencies for launch during 2013. This mission is expected to carry the legacy of discovery of the Hubble Space Telescope through the next decade, and is designed with unique capability to address key questions about formation of the first galaxies after the Big Bang, their subsequelet volution, and the formation of stars and planets within our own galaxy. This talk will present an overview of the mission science objectives and the status of the mission development.

  13. Superconductor lunar telescopes --Abstract only

    NASA Technical Reports Server (NTRS)

    Chen, P. C.; Pitts, R.; Shore, S.; Oliversen, R.; Stolarik, J.; Segal, K.; Hojaji, H.

    1994-01-01

    We propose a new type of telescope designed specifically for the lunar environment of high vacuum and low temperature. Large area UV-Visible-IR telescope arrays can be built with ultra-light-weight replica optics. High T(sub c) superconductors provide support, steering, and positioning. Advantages of this approach are light-weight payload compatible with existing launch vehicles, configurable large area optical arrays, no excavation or heavy construction, and frictionless electronically controlled mechanisms. We have built a prototype and will be demonstarting some of its working characteristics.

  14. Apollo Telescope Mount Spar Assembly

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, served as the primary scientific instrument unit aboard the Skylab. The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This image shows the ATM spar assembly. All solar telescopes, the fine Sun sensors, and some auxiliary systems are mounted on the spar, a cruciform lightweight perforated metal mounting panel that divides the 10-foot long canister lengthwise into four equal compartments. The spar assembly was nested inside a cylindrical canister that fit into the rack, a complex frame, and was protected by the solar shield.

  15. Wide field of view telescope

    DOEpatents

    Ackermann, Mark R.; McGraw, John T.; Zimmer, Peter C.

    2008-01-15

    A wide field of view telescope having two concave and two convex reflective surfaces, each with an aspheric surface contour, has a flat focal plane array. Each of the primary, secondary, tertiary, and quaternary reflective surfaces are rotationally symmetric about the optical axis. The combination of the reflective surfaces results in a wide field of view in the range of approximately 3.8.degree. to approximately 6.5.degree.. The length of the telescope along the optical axis is approximately equal to or less than the diameter of the largest of the reflective surfaces.

  16. The network of INTA telescopes

    NASA Astrophysics Data System (ADS)

    Cuesta, L.

    2008-06-01

    The Spanish Instituto Nacional de Técnica Aeroespacial has a network of three telescopes located at some of the best places for astronomy in mainland Spain. The first is at the Observatorio de Calar Alto in Almeria, at an altitude of more than 2100 m. The second is near Calatayud in Zaragoza, at the summit of a 1400-m high mountain. The last is on the campus of the Instituto Nacional de Técnica Aerospatial (INTA), in Madrid. The three telescopes are either 40 or 50 cm in diameter and will be available for communications and educational projects.

  17. Artificial Intelligence in Autonomous Telescopes

    NASA Astrophysics Data System (ADS)

    Mahoney, William; Thanjavur, Karun

    2011-03-01

    Artificial Intelligence (AI) is key to the natural evolution of today's automated telescopes to fully autonomous systems. Based on its rapid development over the past five decades, AI offers numerous, well-tested techniques for knowledge based decision making essential for real-time telescope monitoring and control, with minimal - and eventually no - human intervention. We present three applications of AI developed at CFHT for monitoring instantaneous sky conditions, assessing quality of imaging data, and a prototype for scheduling observations in real-time. Closely complementing the current remote operations at CFHT, we foresee further development of these methods and full integration in the near future.

  18. LISA telescope spacer design investigations

    NASA Astrophysics Data System (ADS)

    Sanjuan, Josep; Mueller, Guido; Livas, Jeffrey; Preston, Alix; Arsenovic, Petar; Castellucci, Kevin; Generie, Joseph; Howard, Joseph; Stebbins, Robin

    The Laser Interferometer Space Antenna (LISA) is a space-based gravitational wave observa-tory with the goal of observing Gravitational Waves (GWs) from astronomical sources in a frequency range from 30 µHz to 0.1 Hz. The detection of GWs at such low frequency requires measurements of distances at the pico-meter level between bodies separated by 5 million kilo-meters. The LISA mission consists of three identical spacecraft (SC) separated by 5 × 106 km forming an equilateral triangle. Each SC contains two optical assemblies and two vacuum en-closures housing one proof mass (PM) in geodesic (free fall) motion each. The two assemblies on one SC are each pointing towards an identical assembly on each of the other two SC to form a non-equal arm interferometer. The measurement of the GW strain is done by measuring the change in the length of the optical path between the PMs of one arm relative to the other arms caused by the pass of a GW. An important element of the Interferometric Measurement System (IMS) is the telescope which, on one hand, gathers the light coming from the far SC (˜100 pW) and, on the other hand, expands and collimates the small outgoing beam ( 1 W) and sends it to the far SC. Due to the very demanding sensitivity requirements care must be taken in the design and validation of the telescope not to degrade the IMS performance. For instance, the diameter of the telescope sets the the shot noise of the IMS and depends critically on the diameter of the primary and the divergence angle of the outgoing beam. As the telescope is rather fast telescope, the divergence angle is a critical function of the overall separation between the primary and secondary. Any long term changes of the distance of more than a a few micro-meter would be detrimental to the LISA mission. Similarly challenging are the requirements on the in-band path-length noise for the telescope which has to be kept below 1 pm Hz-1/2 in the LISA band. Different configurations (on-axis/off axis

  19. New Information about Old Telescopes

    NASA Astrophysics Data System (ADS)

    Van Helden, Albert

    2016-01-01

    It has long been known that the earliest telescopes were primitive, suffering from a number of defects such as spherical and chromatic aberrations, grinding and polishing errors, and poor quality glass. In the last two decades, much new information has been uncovered by the cooperation between historians and scientists. As a result, we now have a much better, and more complete, history of early telescopes, from spectacle lenses and the invention of the instrument to the demise of long-focus non-achromatic refractors and their replacement by reflectors in the eighteenth century. We can begin to quantify the properties of these early instruments, and the results are often surprising.

  20. Cherenkov telescopes as optical telescopes for bright sources: today's specialized 30-m telescopes?

    NASA Astrophysics Data System (ADS)

    Lacki, Brian C.

    2011-10-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) use large-aperture (3-30 m) optical telescopes with arcminute angular resolution to detect TeV gamma-rays in the atmosphere. I show that IACTs are well suited for optical observations of bright sources (V≲ 8-10), because these sources are brighter than the sky background. Their advantages are especially great on rapid time-scales. Thus, IACTs might study many phenomena optically, including transiting exoplanets and the brightest gamma-ray bursts. In principle, an IACT could achieve millimagnitude photometry of these objects with second-long exposures. I also consider the potential for optical spectroscopy with IACTs, finding that their poor angular resolution limits their usefulness for high spectral resolutions, unless complex instruments are developed. The high photon collection rate of IACTs is potentially useful for precise polarimetry. Finally, I briefly discuss the broader possibilities of extremely large, low-resolution telescopes, including a 10 arcsec resolution telescope and space-borne telescopes.

  1. Serological and Molecular Studies of a Novel Virus Isolate Causing Yellow Mosaic of Patchouli [Pogostemon cablin (Blanco) Benth

    PubMed Central

    Zaim, Mohammad; Ali, Ashif; Joseph, Jomon; Khan, Feroz

    2013-01-01

    Here we have identified and characterized a devastating virus capable of inducing yellow mosaic on the leaves of Patchouli [Pogostemon cablin (Blanco) Benth]. The diagnostic tools used were host range, transmission studies, cytopathology, electron microscopy, serology and partial coat protein (CP) gene sequencing. Evidence from biological, serological and sequence data suggested that the causal virus belonged to genus Potyvirus, family Potyviridae. The isolate, designated as Patchouli Yellow Mosaic Virus (PaYMV), was transmitted through grafting, sap and the insect Myzus persicae (Sulz.). Flexuous rod shaped particles with a mean length of 800 nm were consistently observed in leaf-dip preparations from natural as well as alternate hosts, and in purified preparation. Cytoplasmic cylindrical inclusions, pinwheels and laminar aggregates were observed in ultra-thin sections of infected patchouli leaves. The purified capsid protein has a relative mass of 43 kDa. Polyclonal antibodies were raised in rabbits against the coat protein separated on SDS – PAGE; which were used in ELISA and western blotting. Using specific antibodies in ELISA, PaYMV was frequently detected at patchouli plantations at Lucknow and Bengaluru. Potyvirus-specific degenerate primer pair (U335 and D335) had consistently amplified partial CP gene from crude preparations of infected tissues by reverse transcription polymerase chain reaction (RT-PCR). Comparison of the PCR product sequence (290 bp) with the corresponding regions of established potyviruses showed 78–82% and 91–95% sequence similarity at the nucleotide and amino acid levels, respectively. The results clearly established that the virus under study has close homology with watermelon mosaic virus (WMV) in the coat protein region and therefore could share a common ancestor family. Further studies are required to authenticate the identity of PaYMV as a distinct virus or as an isolate of WMV. PMID:24386278

  2. Low Temperature Induced Changes in Citrate Metabolism in Ponkan (Citrus reticulata Blanco cv. Ponkan) Fruit during Maturation

    PubMed Central

    Lin, Qiong; Qian, Jing; Zhao, Chenning; Wang, Dengliang; Liu, Chunrong; Wang, Zhidong; Sun, Chongde; Chen, Kunsong

    2016-01-01

    Citrate is the most important organic acid in citrus fruit, and its concentration in fruit cells is regulated mainly by the balance between synthesis and degradation. Ponkan (Citrus reticulate Blanco cv. Ponkan) is one of the major citrus cultivars grew in China, and the fruit are picked before fully mature to avoid bad weather. Greenhouse production is widely used to prolong the maturation period and improve the quality of Ponkan fruit by maintaining adequate temperature and providing protection from adverse weather. In this research, Ponkan fruit cultivated in either a greenhouse or open field were used to investigate differences in the expression of genes related to citrate metabolism during maturation in the two environments. The citrate contents were higher in open field fruit, and were mainly correlated with expressions of CitPEPCs, CitCSs, CitAco3 and CitGAD4, which were significantly increased. In addition, the impacts of low temperature (LT) and water stress (WS) on citrate metabolism in Ponkan were investigated during fruit maturation. The citrate contents in LT fruit were significantly increased, by between 1.4–1.9 fold, compared to the control; it showed no significant difference in fruit with water stress treatment compared to the control fruit. Furthermore, the expressions of CitPEPCs, CitCSs, CitAco3 and CitGAD4 were significantly increased in response to LT treatment, but showed no significant difference in WS compared to the control fruit. Thus, it can be concluded that low temperature may be the main factor influencing citrate metabolism during maturation in Ponkan fruit. PMID:27249065

  3. Report on preliminary results of aerosol measurements at the Rio Blanco oil-shale retort, Burn No. 1

    SciTech Connect

    Ondov, J.M.; Stuart, M.L.; Johnson, J.S.; Wikkerink, R.W.

    1982-02-01

    Solid particles and liquid droplets suspended in the treated and untreated off-gas from the Rio Blanco Retort were sampled during a seven-day period beginning August 3, 1981. The purpose of the work was to characterize the major constituents of the aerosol particles and droplets, to determine their distribution with respect to size, to determine their mutagenic activity, and finally to evaluate the performance of inertial collectors for sampling and sizing liquid droplets suspended in the untreated off-gas. The ultimate objective is to characterize potential air emissions, and to identify possible control needs. In this report, the measurements and samples made and collected in August are summarized, and the mass concentrations, particle-size distributions, and basic gas parameters measured in the field are reported. Results show that both the treated and untreated off-gas streams were totally saturated with water vapor at the two sampling locations. Approximately half of the stack emitted particulate material is in the form of hydroscopic salts, that are probably produced by the flue gas scrubber. Estimates of the total aerosol mass discharge to the atmosphere ranged from 5.4 to 16.2 lbs/h. Six of the 8 values reported were less than or equal to 9 lbs/h, expressed as dry particulate weight. Approximately 70% of the particulate mass emitted to the atmosphere resided in particles of submicrometer aerodynamic diameter. Preliminary mutagenic assays indicate that components of the untreated off-gas aerosol contained as much as 18 times more specific mutagenic activity (No. revertants/mg of material tested) than the product oil. The stack emitted aerosol contained very low levels (about 50 times less than the product oil sample) of direct acting mutagens.

  4. LSST Telescope and Site Overview

    NASA Astrophysics Data System (ADS)

    Krabbendam, Victor; Claver, C. F.; Andrew, J.; Barr, J.; Gressler, W.; Kingsley, J.; Neill, D. R.; Olivier, S.; Sebag, J.; LSST Collaboration

    2007-12-01

    The LSST Telescope and Site has been designed to meet the stringent goals of the survey in terms of image quality and throughput. The telescope system delivers 0.25 arc sec FWHM seeing to the overall system image quality error budget. An active optics control system has been identified to measure wavefront quality in the focal plane and use this to reconstruct the figure and alignment errors in the optics. The primary-tertiary monolithic mirror is being fabricated at the Steward Observatory Mirror Lab using their structured borosilicate spin casting technology. Fabrication of the mold is underway, with "high fire” scheduled for spring 2008, and final delivery in late 2011. Baseline designs for active mirror support and optical testing for the monolith and conventional secondary mirror systems have been developed. The telescope is compact, stiff, and agile to maximize observing efficiency. The 300 ton structure can make 3.5 degree moves (at a 30 degree zenith angle) on the sky in less than 5 seconds. The dome will track and slew to follow the telescope pointing with minimal power. The summit facility has been designed to support operations and maintenance for minimal down time

  5. Neutrino telescopes in the World

    SciTech Connect

    Ernenwein, J.-P.

    2007-01-12

    Neutrino astronomy has rapidly developed these last years, being the only way to get specific and reliable information about astrophysical objects still poorly understood.Currently two neutrino telescopes are operational in the World: BAIKAL, in the lake of the same name in Siberia, and AMANDA, in the ices of the South Pole. Two telescopes of the same type are under construction in the Mediterranean Sea: ANTARES and NESTOR. All these telescopes belong to a first generation, with an instrumented volume smaller or equal to 0.02 km3. Also in the Mediterranean Sea, the NEMO project is just in its stag phase, within the framework of a cubic kilometer size neutrino telescope study. Lastly, the ICECUBE detector, with a volume reaching about 1 km3, is under construction on the site of AMANDA experiment, while an extension of the BAIKAL detector toward km3 is under study. We will present here the characteristics of these experiments, as well as the results of their observations.

  6. Hubble Space Telescope prescription retrieval.

    PubMed

    Redding, D; Dumont, P; Yu, J

    1993-04-01

    Prescription retrieval is a technique for directly estimating optical prescription parameters from images. We apply it to estimate the value of the Hubble Space Telescope primary mirror conic constant. Our results agree with other studies that examined primary-mirror test fixtures and results. In addition they show that small aberrations exist on the planetary-camera repeater optics.

  7. Fermi's Large Area Telescope (LAT)

    NASA Video Gallery

    Fermi’s Large Area Telescope (LAT) is the spacecraft’s main scientificinstrument. This animation shows a gamma ray (purple) entering the LAT,where it is converted into an electron (red) and a...

  8. Push-To Telescope Mathematics

    ERIC Educational Resources Information Center

    Teets, Donald

    2012-01-01

    Two coordinate systems are related here, one defined by the earth's equator and north pole, the other by the orientation of a telescope at some location on the surface of the earth. Applying an interesting though somewhat obscure property of orthogonal matrices and using the cross-product simplifies this relationship, revealing that a surprisingly…

  9. POST: a polar stratospheric telescope

    NASA Astrophysics Data System (ADS)

    Ford, Holland C.; Bely, Pierre Y.; Bally, John; Crocker, James H.; Dopita, Mike; Tilley, James N.; Allen, Ronald; Bartko, Frank; White, Richard L.; Burg, Richard; Burrows, Christopher J.; Clampin, Mark; Harper, Doyal A.; Illingworth, Garth; McCray, Richard; Meyer, Stephan; Mould, Jeremy; Norman, Colin

    1994-06-01

    The lower stratosphere in the polar regions offers conditions for observation in the near-infrared comparable to those obtained from space. We describe a concept for a 6-meter, diluted aperture, near-infrared telescope carried by a tethered aerostat flying at 12 km altitude, to serve as a testbed for future space astronomical observatories while producing frontier science.

  10. Zero CTE Glass in the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Wood, H. John

    2008-01-01

    Orbiting high above the turbulence of the Earth's atmosphere, the Hubble Space Telescope (HST) has provided breathtaking views of astronomical objects never before seen in such detail. The steady diffraction-limited images allow this medium-size telescope to reach faint galaxies fainter than 30th stellar magnitude. Some of these galaxies are seen as early as 2 billion years after the Big Bang in a 13.7 billion year old universe. Up until recently, astronomers assumed that all of the laws of physics and astronomy applied back then as they do today. Now, using the discovery that certain supernovae are "standard candles," astronomers have found that the universe is expanding faster today than it was back then: the universe is accelerating in its expansion. The Hubble Space Telescope is a two-mirror Ritchey-Chretien telescope of 2.4m aperture in low earth orbit. The mirrors are made of Ultra Low Expansion (ULE) glass by Corning Glass Works. This material allows rapid figuring and outstanding performance in space astronomy applications. The paper describes how the primary mirror was mis-figured in manufacturing and later corrected in orbit. Outstanding astronomical images taken over the last 17 years show how the application of this new technology has advanced our knowledge of the universe. Not only has the acceleration of the expansion been discovered, the excellent imaging capability of HST has allowed gravitational lensing to become a tool to study the distribution of dark matter and dark energy in distant clusters of galaxies. The HST has touched practically every field of astronomy enabling astronomers to solve many long-standing puzzles. It will be a long time until the end of the universe when the density is near zero and all of the stars have long since evaporated. It is remarkable that humankind has found the technology and developed the ability to interpret the measurements in order to understand this dramatic age we live in.

  11. High-precision robotic equatorial C-ring telescope mounts: design, fabrication, and performance

    NASA Astrophysics Data System (ADS)

    Dubberley, Matthew A.

    2010-07-01

    The performance of the C-ring telescope mount rivals other designs in stiffness, tracking, simplicity, lack of field rotation, mechanical size and operating envelope. Issues relating to cost, fabrication, and complexity have suppressed the prevalence of the C-ring mount. The Las Cumbres Observatory Global Telescope (LCOGT) robotic C-ring telescope mounts, built for its network of 1.0m and 0.4m telescopes, solve many of these issues. The design yields a scalable mount with performance capabilities well suited for telescopes located at the best astronomical sites in the world at a low cost. Pointing has been demonstrated to be under 7 arc-sec RMS. Unguided tracking performance is 0.6 arc-sec for 1 minute and 2 arc-sec for 15 minutes. Slew speeds of 10deg/sec are reliably used with sub-second settling times. The mount coupled with the 1.0m telescope yields a well damped 16 Hz system. Axes are driven with zero backlash direct drive motors with a 0.01 arc-sec resolution. High system bandwidth yields superb disturbance rejection making it ideal for open air operation. Drive and bearings are maintenance free and feature a novel "bug cover" to seal them from wear and damage. Low costs are achieved with the drive/feedback configuration, structure design, and fabrication techniques, as well minimizing operating and maintenance.

  12. Development of Large-Aperture, Light-Weight Fresnel Lenses for Gossamer Space Telescopes

    SciTech Connect

    Sham, D; Hyde, R; Weisberg, A; Early, J; Rushford, M; Britten, J

    2002-04-29

    In order to examine more distant astronomical objects, with higher resolution, future space telescopes require objectives with significantly larger aperture than presently available. NASA has identified a progression in size from the 2.4m aperture objective currently used in the HUBBLE space telescope[l,2], to 25m and greater in order to observe, e.g., extra-solar planets. Since weight is a crucial factor for any object sent into space, the relative weight of large optics over a given area must be reduced[3]. The areal mass density of the primary mirror for the Hubble space telescope is {approx}200 kg/m{sup 2}. This is expected to be reduced to around 15 kg/m{sup 2} for the successor to Hubble--the next generation space telescope (NGST)[4]. For future very large aperture telescopes needed for extra-solar planet detection, the areal mass density must be reduced even further. For example, the areal mass density goal for the Gossamer space telescopes is < 1 kg/m{sup 2}. The production of lightweight focusing optics at >10m size is also an enabling technology for many other applications such as Earth observation, power beaming, and optical communications.

  13. FORCAST Camera Installed on SOFIA Telescope

    NASA Video Gallery

    Cornell University's Faint Object Infrared Camera for the SOFIA Telescope, or FORCAST, being installed on the Stratospheric Observatory for Infrared Astronomy's 2.5-meter telescope in preparation f...

  14. Rangefinder Metrology for the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Goldman, M. A.; Creager, R. E.; Parker, D. H.; Payne, J. A.

    A scanning laser rangefinder metrology system for the 100 meter Green Bank Telescope is described. Use of this system for correction of the primary reflector's shape and pointing of the telescope is described.

  15. Eclipse Photographs Through a Small Telescope

    NASA Astrophysics Data System (ADS)

    Kramer, Bill

    1999-08-01

    Results of previous eclipse photography using a small telescope (Questar 90mm x 1200mm EFL) and camera. During the presentation of images, tips and ideas for getting good pictures through a telescope will be discussed.

  16. Galileo, telescopic astronomy, and the Copernican system.

    NASA Astrophysics Data System (ADS)

    van Helden, A.

    Contents: 1. Introduction. 2. Telescopic discoveries. 3. Sunspots, Copernicanism, and theology. 4. The decree of 1616. 5. The Dialogue. 6. The trial of Galileo. 7. The aftermath of the trial. 8. Telescopic astronomy after Galileo.

  17. Co-Phasing the Large Binocular Telescope:. [Status and Performance of LBTI-PHASECam

    NASA Technical Reports Server (NTRS)

    Defrere, D.; Hinz, P.; Downey, E.; Ashby, D.; Bailey, V.; Brusa, G.; Christou, J.; Danchi, W. C.; Grenz, P.; Hill, J. M.; Hoffmann, W. F.; Leisenring, J.; Lozi, J.; McMahon, T.; Mennesson, B.; Millan-Gabet, R.; Montoya, M.; Powell, K.; Skemer, A.; Vaitheeswaran, V.; Vaz, A.; Veillet, C.

    2014-01-01

    The Large Binocular Telescope Interferometer is a NASA-funded nulling and imaging instrument designed to coherently combine the two 8.4-m primary mirrors of the LBT for high-sensitivity, high-contrast, and high-resolution infrared imaging (1.5-13 micrometer). PHASECam is LBTI's near-infrared camera used to measure tip-tilt and phase variations between the two AO-corrected apertures and provide high-angular resolution observations. We report on the status of the system and describe its on-sky performance measured during the first semester of 2014. With a spatial resolution equivalent to that of a 22.8-meter telescope and the light-gathering power of single 11.8-meter mirror, the co-phased LBT can be considered to be a forerunner of the next-generation extremely large telescopes (ELT).

  18. The Advanced Technology Large Aperture Space Telescope (ATLAST): Science Drivers and Technology Developments

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Brown, Tom; Sembach, Kenneth; Giavalisco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Stahl, H. Phillip; Tumlinson, Jason; Mountain, Matt; Soummer, Remi; Hyde, Tupper

    2011-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8-meter to 16-meter UVOIR space observatory for launch in the 2025-2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including "Is there life elsewhere in the Galaxy?" We present a range of science drivers and the resulting performance requirements for ATLAST (8 to 16 milliarcsecond angular resolution, diffraction limited imaging at 0.5 m wavelength, minimum collecting area of 45 square meters, high sensitivity to light wavelengths from 0.1 m to 2.4 m, high stability in wavefront sensing and control). We also discuss the priorities for technology development needed to enable the construction of ATLAST for a cost that is comparable to current generation observatory-class space missions. Keywords: Advanced Technology Large-Aperture Space Telescope (ATLAST); ultraviolet/optical space telescopes; astrophysics; astrobiology; technology development.

  19. Special configuration of a very large Schmidt telescope for extensive astronomical spectroscopic observation.

    PubMed

    Wang, S G; Su, D Q; Chu, Y Q; Cui, X; Wang, Y N

    1996-09-01

    A special reflecting Schmidt telescope is used to observe celestial objects. The telescope has an aperture of 4m, f ratio of 5, and a 5° field of view. Its optical axis is fixed and tilted 25° to the horizontal that runs from south to north. The celestial objects were observed for 1.5 h as they passed through the meridian. The shape of the reflecting Schmidt plate has to be changed with each different declination δ and in the tracking process. This is achieved with active optics. The sky area to be observed is -10° ≤ δ ≤ +90°. There are plans to place ~4000 optical fibers on the telescope focal surface that will lead to a dozen spectrographs.

  20. A new telescope control system for the Telescopio Nazionale Galileo II: azimuth and elevation axes

    NASA Astrophysics Data System (ADS)

    Ghedina, Adriano; Gonzalez, Manuel; Pérez Ventura, Héctor; Riverol Rodríguez, A. Luis

    2016-07-01

    TNG is a 4m class active optics telescope at the Observatory of Roque de Los Muchachos. In the framework of keeping optimum performances during observation and continuous reliability the telescope control system (TCS) of the TNG is going through a deep upgrade after nearly 20 years of service. The original glass encoders and bulb lamp heads are substituted with modern steel scale drums and scanning units. The obsolete electronic racks and computers for the control loops are replaced with modern and compact commercial drivers with a net improvement in the motors torque ripple. In order to minimize the impact on the number of nights lost during the mechanical and electronic changes in the TCS the new TCS is developed and tested in parallel to the existing one and three steps will be taken to achieve the full upgrade. We describe here the second step that affected the main axes of the telescope, AZ and EL.

  1. A 4-meter wide field coronagraph space telescope for general astrophysics and exoplanet observations

    NASA Astrophysics Data System (ADS)

    Tenerelli, Domenick; Angel, Roger; Burge, Jim; Guyon, Olivier; Zabludoff, Ann; Belikov, Ruslan; Pluzhnik, Eugene; Egerman, Robert

    2010-07-01

    The Wide Field Coronagraph Telescope (WFCT) is a 4-meter space telescope for general astrophysics and exoplanet observations that meets the 2000 Decadal Committee requirements. This paper presents a design for a 4-m diameter, off-axis space telescope that offers high performance in both wide field and coronagraphic imaging modes. A 3.8 x 3.3-m unobstructed elliptical pupil is provided for direct coronagraphic imaging of exoplanets and a 4-m diameter pupil for wide-field imaging from far-ultraviolet (UV) to near-infrared (IR). The off-axis wide-field optics are all reflective and designed to deliver an average of 12 nm wavefront aberrations over a 6 x 24 arcminute field of view (FOV), therefore providing diffraction-limited images down to 300 nm wavelength and 15 mas images down to a wavelength limit set only by the mirror coatings. The coronagraph with phase-induced amplitude apodization (PIAA) provides diffraction suppression around a 360-degree field with high Strehl and sensitivity at the 1e-10 level to an inner working angle of 2 λ/D (or 50 mas at 500 nm wavelength). This paper focuses on the optical design that allows the above imaging features to be combined in single telescope, and gives a preliminary spacecraft design and costing, assuming a distant trailing orbit.

  2. Origins Space Telescope: Telescope Design and Instrument Specifications

    NASA Astrophysics Data System (ADS)

    Meixner, Margaret; Carter, Ruth; Leisawitz, David; Dipirro, Mike; Flores, Anel; Staguhn, Johannes; Kellog, James; Roellig, Thomas L.; Melnick, Gary J.; Bradford, Charles; Wright, Edward L.; Zmuidzinas, Jonas; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey. The renaming of the mission reflects Origins science goals that will discover and characterize the most distant galaxies, nearby galaxies and the Milky Way, exoplanets, and the outer reaches of our Solar system. This poster will show the preliminary telescope design that will be a large aperture (>8 m in diameter), cryogenically cooled telescope. We will also present the specifications for the spectrographs and imagers over a potential wavelength range of ~10 microns to 1 millimeter. We look forward to community input into this mission definition over the coming year as we work on the concept design for the mission. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. We welcome you to contact the Science and Technology Definition Team (STDT) with your science needs and ideas by emailing us at firsurveyor_info@lists.ipac.caltech.edu.

  3. The Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Bely, Pierre-Yves (Editor); Burrows,, Christopher J. (Editor); Illingworth,, Garth D.

    1989-01-01

    In Space Science in the Twenty-First Century, the Space Science Board of the National Research Council identified high-resolution-interferometry and high-throughput instruments as the imperative new initiatives for NASA in astronomy for the two decades spanning 1995 to 2015. In the optical range, the study recommended an 8 to 16-meter space telescope, destined to be the successor of the Hubble Space Telescope (HST), and to complement the ground-based 8 to 10-meter-class telescopes presently under construction. It might seem too early to start planning for a successor to HST. In fact, we are late. The lead time for such major missions is typically 25 years, and HST has been in the making even longer with its inception dating back to the early 1960s. The maturity of space technology and a more substantial technological base may lead to a shorter time scale for the development of the Next Generation Space Telescope (NGST). Optimistically, one could therefore anticipate that NGST be flown as early as 2010. On the other hand, the planned lifetime of HST is 15 years. So, even under the best circumstances, there will be a five year gap between the end of HST and the start of NGST. The purpose of this first workshop dedicated to NGST was to survey its scientific potential and technical challenges. The three-day meeting brought together 130 astronomers and engineers from government, industry and universities. Participants explored the technologies needed for building and operating the observatory, reviewed the current status and future prospects for astronomical instrumentation, and discussed the launch and space support capabilities likely to be available in the next decade. To focus discussion, the invited speakers were asked to base their presentations on two nominal concepts, a 10-meter telescope in space in high earth orbit, and a 16-meter telescope on the moon. The workshop closed with a panel discussion focused mainly on the scientific case, siting, and the

  4. The Hubble Space Telescope: Problems and Solutions.

    ERIC Educational Resources Information Center

    Villard, Ray

    1990-01-01

    Presented is the best understanding of the flaw discovered in the optics of the Hubble Space Telescope and the possible solutions to the problems. The spherical aberration in the telescope's mirror and its effect on the quality of the telescope's imaging ability is discussed. (CW)

  5. World atlas of large optical telescopes

    NASA Technical Reports Server (NTRS)

    Meszaros, S. P.

    1979-01-01

    By 1980 there will be approximately 100 large optical telescopes in the world with mirror or lens diameters of one meter (39 inches) and larger. This atlas gives information on these telescopes and shows their locations on continent-sized maps. Observatory locations considered suitable for the construction of future large telescopes are also shown.

  6. 2m class telescope project at Lijiang

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Wang, Jian-Cheng; Xu, Jun; Zhang, Bai-Rong; Luo, Guo-Quan; Liu, Zhong; Tan, Hui-Song

    Supported by the ministry of science and technology, government of Yunnan Province and Chinese Academy of Sciences, a 2m class telescope project was granted. In this paper, we will first review the site, Gaomeigu, briefly, then give the details of 2m class telescope project, and finally discuss the future plans of this new telescope.

  7. The Baker Observatory Robotic Autonomous Telescope

    NASA Astrophysics Data System (ADS)

    Hicks, L. L.; Reed, M. D.; Thompson, M. A.; Gilker, J. T.

    We describe the Baker Observatory Robotic Autonomous Telescope project. The hardware includes a 16 inch Meade LX-200 telescope, an AstroHaven 7 feet dome, an Apogee U47 CCD camera and filter wheel, a Boltwood Cloud Sensor II, and various other minor hardware. We are implementing RTS2 for the Telescope Control System and incorporating custom drivers for ancillary systems.

  8. Spitzer Space Telescope mission design

    NASA Technical Reports Server (NTRS)

    Kwok, Johnny H.; Garcia, Mark D.; Bonfiglio, Eugene; Long, Stacia M.

    2004-01-01

    This paper gives a description of the mission design, launch, orbit, and navigation results for the Spitzer space telescope mission. The Spitzer telescope was launched by the Delta II Heavy launch vehicle into a heliocentric Earth trailing orbit. This orbit is flown for the first time and will be used by several future astronomical missions such as Kepler, SIM, and LISA. This paper describes the launch strategy for a winter versus a summer launch and how it affects communications. It also describes how the solar orbit affects the design and operations of the Observatory. It describes the actual launch timeline, launch vehicle flight performance, and the long term behavior of the as flown orbit. It also provides the orbit knowledge from in-flight navigation data.

  9. Focusing X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab; Juda, Michael; Kolodziejczak, Jeffrey; Murray, Stephen; Petre, Robert; Podgorski, William; Ramsey, Brian; Reid, Paul; Saha, Timo; Wolk, Scott; Troller-McKinstry, Susan; Weisskopf, Martin; Wilke, Rudeger; Zhang, William

    2010-01-01

    During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  10. Kunlun Dark Universe Survey Telescope

    NASA Astrophysics Data System (ADS)

    Zhu, Yongtian; Wang, Lifan; Yuan, Xiangyan; Gu, Bozhong; Li, Xinnan; Yang, Shihai; Gong, Xuefei; Du, Fujia; Qi, Yongjun; Xu, Lingzhe

    2014-07-01

    Chinese Antarctic Observatory has been listed as National large research infrastructure during twelfth five-year plan. Kunlun Dark Universe Survey Telescope, one of two major facility of Chinese Antarctic Observatory, is a 2.5-meter optic/infrared telescope and will be built at the Chinese Antarctic Kunlun Station. It is intended to take advantage of the exceptional seeing conditions, as well as the low temperature reducing background for infrared observations. KDUST will adopt an innovative optical system, which can deliver very good image quality over a 2 square degree flat field of view. All of parts of it have been designed carefully to endure the extremely harsh environment. KDUST will be perched on a 14.5-meter-high tower to lift it above the turbulence layer. In this paper, preliminary design and key technology pre-research of KDUST will be introduced.

  11. Hubble Space Telescope Servicing begins.

    NASA Astrophysics Data System (ADS)

    1993-12-01

    The day's work began when astronauts Story Musgrave and Jeff Hoffman stepped out into the cargo bay at 9h41 pm CST, Saturday (4h41 am CET, Sunday). They immediately set to work replacing two gyroscope assemblies, known as the Rate Sensor Units, two associated electronics boxes, called Electronic Control Units, and eight electrical fuse plugs. The work was completed ahead of schedule, but the astronauts had trouble closing the doors of the compartment housing the gyros and took over an hour to get them shut. The astronauts also prepared equipment for the replacement of the solar arrays. "The feeling down here is one of great satisfaction for a tremendous job today" said spacecraft communicator Greg Harbaugh in mission control. "We are very proud of the work that you all did and we are very confident in the continued success of the mission. Everything is going great and tomorrow is going to be another great day". ESA astronaut Claude Nicollier played a vital role during the spacewalk moving the astronauts and their equipment around the cargo bay with the shuttle's robot arm. The Hubble Space Telescope servicing mission features more robot arm operations than any other shuttle flight. The telescope's left-hand solar array was rolled up successfully at 6h24 am CST (1h24 pm CET). The 11-tonne observatory was rotated 180 degrees on its turntable before commands were sent to retract the second array at 8h23 am CST (3h23 pm CET). The crew stopped the retraction when it appeared the system may have jammed. Mission control instructed the crew to jettison the array, a procedure that they have trained for. Tomorrow astronauts Kathy Thornton and Tom Akers will make a six-hour spacewalk to jettison the troublesome wing, store the other in the cargo bay, and install two new panels supplied by ESA. The second set of arrays feature thermal shields and a modified thermal compensation system to prevent the flexing that affected the first pair. The Hubble Space Telescope was plucked

  12. THE OPTIMAL GRAVITATIONAL LENS TELESCOPE

    SciTech Connect

    Surdej, J.; Hanot, C.; Sadibekova, T.; Delacroix, C.; Habraken, S.; Coleman, P.; Dominik, M.; Le Coroller, H.; Mawet, D.; Quintana, H.; Sluse, D.

    2010-05-15

    Given an observed gravitational lens mirage produced by a foreground deflector (cf. galaxy, quasar, cluster, ...), it is possible via numerical lens inversion to retrieve the real source image, taking full advantage of the magnifying power of the cosmic lens. This has been achieved in the past for several remarkable gravitational lens systems. Instead, we propose here to invert an observed multiply imaged source directly at the telescope using an ad hoc optical instrument which is described in the present paper. Compared to the previous method, this should allow one to detect fainter source features as well as to use such an optimal gravitational lens telescope to explore even fainter objects located behind and near the lens. Laboratory and numerical experiments illustrate this new approach.

  13. Telescoping Space-Station Modules

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1986-01-01

    New telescoping-space-station design involves module within a module. After being carried to orbit within payload bay of Space Shuttle orbiter, outer module telescopically deployed to achieve nearly twice as much usable space-station volume per Space Shuttle launch. Closed-loop or "race-track" space-station configurations possible with this concept and provide additional benefits. One benefit involves making one of modules double-walled haven safe from debris, radiation, and like. Module accessible from either end, and readily available to all positions in space station. Concept also provides flexibility in methods in which Space Shuttle orbiter docked or berthed with space station and decrease chances of damage.

  14. The Ortega Telescope Andor CCD

    NASA Astrophysics Data System (ADS)

    Tucker, M.; Batcheldor, D.

    2012-07-01

    We present a preliminary instrument report for an Andor iKon-L 936 charge-couple device (CCD) being operated at Florida Tech's 0.8 m Ortega Telescope. This camera will replace the current Finger Lakes Instrumentation (FLI) Proline CCD. Details of the custom mount produced for this camera are presented, as is a quantitative and qualitative comparison of the new and old cameras. We find that the Andor camera has 50 times less noise than the FLI, has no significant dark current over 30 seconds, and has a smooth, regular flat field. The Andor camera will provide significantly better sensitivity for direct imaging programs and, once it can be satisfactorily tested on-sky, will become the standard imaging device on the Ortega Telescope.

  15. Workshop on Mars Telescopic Observations

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III (Editor); Moersch, J. E. (Editor)

    1995-01-01

    The Mars Telescopic Observations Workshop, held August 14-15, 1995, at Cornell University in Ithaca, New York, was organized and planned with two primary goals in mind: The first goal was to facilitate discussions among and between amateur and professional observers and to create a workshop environment fostering collaborations and comparisons within the Mars observing community. The second goal was to explore the role of continuing telescopic observations of Mars in the upcoming era of increased spacecraft exploration. The 24 papers presented at the workshop described the current NASA plans for Mars exploration over the next decade, current and recent Mars research being performed by professional astronomers, and current and past Mars observations being performed by amateur observers and observing associations. The workshop was divided into short topical sessions concentrating on programmatic overviews, groundbased support of upcoming spacecraft experiments, atmospheric observations, surface observations, modeling and numerical studies, and contributions from amateur astronomers.

  16. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes, and is currently the largest scientific project under construction in the United States. It will be a large (6.6m) cold (50K) telescope launched in about 5 years into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. Science with the James Webb Space Telescope falls into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will conclude the talk with a description of recent technical progress in the construction of the observatory.

  17. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes, and is currently the largest scientific project under construction in the United States. It will be a large (6.6m) cold (50K) telescope launched into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. Science with the James Webb Space Telescope falls into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will conclude the talk with a description of recent technical progress in the construction of the observatory.

  18. Opening the Dutch Open Telescope

    NASA Astrophysics Data System (ADS)

    Rutten, R. J.; de Wijn, A. G.; Sütterlin, P.; Bettonvil, F. C. M.; Hammerschlag, R. H.

    2002-10-01

    We hope to "open the DOT" to the international solar physics community as a facility for high-resolution tomography of the solar atmosphere. Our aim is to do so combining peer-review time allocation with service-mode operation in a "hands-on-telescope" education program bringing students to La Palma to assist in the observing and processing. The largest step needed is considerable speedup of the DOT speckle processing.

  19. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes, and is currently the largest scientific project under construction in the United States. It will be a large (6.6m) cold (50K) telescope launched in about 5 years into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. Science with the James Webb Space Telescope falls into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Proto planetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will conclude the talk with a description of recent technical progress in the construction of the observatory.

  20. Building the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Kellermann, Kenneth I.

    2017-01-01

    In a previous presentation, I reported on how the freak collapse of the NRAO 300-ft transit radio telescope led to the inclusion of $75 million for a new radio telescope in the 1989 Congressional Emergency Supplemental Appropriations Act. But, this was only the beginning. NRAO was faced with challenging specifications and an unworkable schedule, but there was no design and no project team. Only one bid was even close to the Congressional appropriation. In an attempt to meet the unrealistic antenna delivery date, the contractor started construction of the foundation and fabrication of antenna members before the design was finished, leading to retrofits, redesign, and multiple delays. The antenna contractor was twice sold to other companies leading to further delays and cost escalation. In order to recoup their mounting losses, the new owners sued NRAO for $29 million for claimed design changes, and NRAO countersued demanding to be reimbursed for added project management costs and lost scientific data resulting from the seven-year delay in the completion of the telescope. Legal fees and a small net award in favor of the contractor left NRAO and the NSF with a nine million dollar bill which NSF handled by an innovative accounting adjustment.

  1. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Nowak, Maria; Eichorn, William; Hill, Michael; Hylan, Jason; Marsh, James; Ohl, Raymond; Sampler, Henry; Wright, Geraldine; Crane, Allen; Herrera, Acey; Quigley, Robert; Jetten, Mark; Young, Philip

    2007-01-01

    The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (approx.40K). The JWST Observatory architecture includes the Optical Telescope Element and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The ISIM optical metering structure is a roughly 2.2x1.7x2.2mY, asymmetric frame that is composed of carbon fiber and resin tubes bonded to invar end fittings and composite gussets and clips. The structure supports the SIs, isolates the SIs from the OTE, and supports thermal and electrical subsystems. The structure is attached to the OTE structure via strut-like kinematic mounts. The ISM structure must meet its requirements at the approx.40K cryogenic operating temperature. The SIs are aligned to the structure s coordinate system under ambient, clean room conditions using laser tracker and theodolite metrology. The ISM structure is thermally cycled for stress relief and in order to measure temperature-induced mechanical, structural changes. These ambient-to-cryogenic changes in the alignment of SI and OTE-related interfaces are an important component in the JWST Observatory alignment plan and must be verified.

  2. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes. It will be a large (6.6m) cold (SDK) telescope launched into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. The science goals for JWST include the formation of the first stars and galaxies in the early universe; the chemical, morphological and dynamical buildup of galaxies and the formation of stars and planetary systems. Recently, the goals have expanded to include studies of dark energy, dark matter, active galactic nuclei, exoplanets and Solar System objects. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Near-Infrared Imager and Slitless Spectrograph will cover the wavelength range 0.6 to S microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. The observatory is confirmed for launch in 2018; the design is complete and it is in its construction phase. Recent progress includes the completion of the mirrors, the delivery of the first flight instruments and the start of the integration and test phase.

  3. Sensitivity of coded mask telescopes

    SciTech Connect

    Skinner, Gerald K

    2008-05-20

    Simple formulas are often used to estimate the sensitivity of coded mask x-ray or gamma-ray telescopes, but these are strictly applicable only if a number of basic assumptions are met. Complications arise, for example, if a grid structure is used to support the mask elements, if the detector spatial resolution is not good enough to completely resolve all the detail in the shadow of the mask, or if any of a number of other simplifying conditions are not fulfilled. We derive more general expressions for the Poisson-noise-limited sensitivity of astronomical telescopes using the coded mask technique, noting explicitly in what circumstances they are applicable. The emphasis is on using nomenclature and techniques that result in simple and revealing results. Where no convenient expression is available a procedure is given that allows the calculation of the sensitivity. We consider certain aspects of the optimization of the design of a coded mask telescope and show that when the detector spatial resolution and the mask to detector separation are fixed, the best source location accuracy is obtained when the mask elements are equal in size to the detector pixels.

  4. QUIJOTE telescope design and fabrication

    NASA Astrophysics Data System (ADS)

    Gomez, Alberto; Murga, Gaizka; Etxeita, Borja; Sanquirce, Rubén; Rebolo, Rafael; Rubiño-Martin, Jose Alberto; Herreros, José-Miguel; Hoyland, Roger; Gomez, Francisca; Génova-Santos, Ricardo T.; Piccirillo, Lucio; Maffei, Bruno; Watson, Robert

    2010-07-01

    The QUIJOTE CMB experiment aims to characterize the polarization of the CMB in the frequency range 10-30 GHz and large angular scales. It will be installed in the Teide Observatory, following the projects that the Anisotropy of the Cosmic Microwave Background group has developed in the past (Tenerife experiment, IAC-Bartol experiment...) and is running at the present time (VSA, Cosmosomas). The QUIJOTE CMB experiment will consist of two telescopes which will be installed inside a unique enclosure, which is already constructed. The layout of both telescopes is based on an altazimuth mount supporting a primary and a secondary mirror disposed in a offset Gregorian Dragon scheme. The use of industrial-like fabrication techniques, such as sand-mould casting, CNC machining, and laser tracker measuring for alignment, provided the required performances for microwave observation. A fast-track construction scheme, altogether with the use of these fabrication techniques allowed designing and manufacturing the opto-mechanics of the telescope in 14 months prior to delivery for final start-up in December 2008.

  5. EUSO-TA prototype telescope

    NASA Astrophysics Data System (ADS)

    Bisconti, Francesca

    2016-07-01

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  6. CMB Telescopes and Optical Systems

    NASA Astrophysics Data System (ADS)

    Hanany, Shaul; Niemack, Michael D.; Page, Lyman

    The cosmic microwave background radiation (CMB) is now firmly establishedas a fundamental and essential probe of the geometry, constituents, and birth ofthe observable universe. The CMB is a potent observable because it can bemeasured with precision and accuracy. Just as importantly, theoretical models ofthe universe can predict the characteristics of the CMB to high accuracy, andthose predictions can be directly compared to observations. There are multipleaspects associated with making a precise measurement. In this chapter, we focuson optical components for the instrumentation used to measure the CMBpolarization and temperature anisotropy. We begin with an overview of generalconsiderations for CMB observations and discuss common concepts used inthe community. We next consider a variety of alternatives available for adesigner of a CMB telescope. Our discussion is guided by the ground- andballoon-based instruments that have been implemented over the years. In thesame vein, we compare the arc-minute resolution Atacama CosmologyTelescope (ACT) and the South Pole Telescope (SPT). CMB interferometersare presented briefly. We conclude with a comparison of the four CMBsatellites, Relikt, COBE, WMAP, and Planck, to demonstrate a remarkableevolution in design, sensitivity, resolution, and complexity over the past30 years.

  7. The NASA Spitzer Space Telescope.

    PubMed

    Gehrz, R D; Roellig, T L; Werner, M W; Fazio, G G; Houck, J R; Low, F J; Rieke, G H; Soifer, B T; Levine, D A; Romana, E A

    2007-01-01

    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991-2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/.

  8. Sensitivity of coded mask telescopes.

    PubMed

    Skinner, Gerald K

    2008-05-20

    Simple formulas are often used to estimate the sensitivity of coded mask x-ray or gamma-ray telescopes, but these are strictly applicable only if a number of basic assumptions are met. Complications arise, for example, if a grid structure is used to support the mask elements, if the detector spatial resolution is not good enough to completely resolve all the detail in the shadow of the mask, or if any of a number of other simplifying conditions are not fulfilled. We derive more general expressions for the Poisson-noise-limited sensitivity of astronomical telescopes using the coded mask technique, noting explicitly in what circumstances they are applicable. The emphasis is on using nomenclature and techniques that result in simple and revealing results. Where no convenient expression is available a procedure is given that allows the calculation of the sensitivity. We consider certain aspects of the optimization of the design of a coded mask telescope and show that when the detector spatial resolution and the mask to detector separation are fixed, the best source location accuracy is obtained when the mask elements are equal in size to the detector pixels.

  9. The Automated Planet Finder telescope's automation and first three years of planet detections

    NASA Astrophysics Data System (ADS)

    Burt, Jennifer

    2016-08-01

    The Automated Planet Finder (APF) is a 2.4m, f/15 telescope located at the UCO's Lick Observatory, atop Mt. Hamilton. The telescope has been specifically optimized to detect and characterize extrasolar planets via high precision, radial velocity (RV) observations using the high-resolution Levy echelle spectrograph. The telescope has demonstrated world-class internal precision levels of 1 m/s when observing bright, RV standard stars. Observing time on the telescope is divided such that ˜80% is spent on exoplanet related research and the remaining ˜20% is made available to the University of California consortium for other science goals. The telescope achieved first light in 2013, and this work describes the APF's early science achievements and its transition from a traditional observing approach to a fully autonomous facility. First we provide a characteristic look at the APF telescope and the Levy spectrograph, focusing on the stability of the instrument and its performance on RV standard stars. Second, we describe the design and implementation of the dynamic scheduling software which has been running our team's nightly observations on the APF for the past year. Third, we discuss the detection of a Neptune-mass planet orbiting the nearby, low-mass star GL687 by the APF in collaboration with the HIRES instrument on Keck I. Fourth, we summarize the APF's detection of two multi-planet systems: the four planet system orbiting HD 141399 and the 6 planet system orbiting HD 219134. Fifth, we expand our science focus to assess the impact that the APF - with the addition of a new, time-varying prioritization scheme to the telescope's dynamic scheduling software - can have on filling out the exoplanet Mass-Radius diagram when pursuing RV follow-up of transiting planets detected by NASA's TESS satellite. Finally, we outline some likely next science goals for the telescope.

  10. Stratigraphy and nahcolite resources of the saline facies of the Green River Formation, Rio Blanco County, Colorado

    USGS Publications Warehouse

    Dyni, John R.

    1974-01-01

    Based on a study of 10 drill cores, a sequence of oil shale and associated nahcolite, nearly 2,000 feet thick, in the lacustrine Green River Formation (Eocene) in the Piceance Creek basin, Rio Blanco County, Colo., was divided in ascending order into zones 1 to 13, B-groove, Mahogany zone (with lower, middle, and upper parts), and A-groove at the top. The odd-numbered zones and the Mahogany zone are mappable subsurface units of relatively thick oil shale and are distinguished from the even-numbered zones and A- and B-grooves which are thinner units of oil shale of lower grade. Large amounts of nahcolite found in zones 5 to 12 occur in (1) coarse-grained crystalline aggregates scattered through oil shale, (2) laterally continuous units of fine-grained crystals disseminated in oil shale, (3) brown microcrystalline beds, and (4) white coarse-grained beds that grade laterally into halitic rocks toward basin center. The original .upper limit of the nahcolite and halitic rocks is not yet completely known, but the present top is marked by a dissolution surface. Above this surface the rocks, extending from zones 11 or 12 upward into the Mahogany zone, form a water-saturated 'leached zone,' a geohydrologic unit in which large amounts of water-soluble minerals probably mostly nahcolite, and halite, were removed by ground-water dissolution. Rocks in the leached zone, mostly oil shale, are commonly broken and fractured and contain crystal cavities and solution breccias. Several solution breccias can be traced laterally into unleached beds of nahcolite and halite. Although evidence of salines is found in rocks above A-groove, the original saline facies that includes most of the bedded deposits extends from zone 5 upward into A-groove. Potentially ruinable beds of white nahcolite as much as 12 feet thick are found at depths of 1,560 or more feet below the surface. Some thicker beds of high-grade nahcolite are believed to be too close to the dissolution surface for safe room

  11. Geographic relations of landslide distribution and assessment of landslide hazards in the Blanco, Cibuco, and Coamo basins, Puerto Rico

    USGS Publications Warehouse

    Larsen, M.C.; Torres-Sanchez, A. J.

    1996-01-01

    Landslide occurrence is common in mountainous areas of Puerto Rico where mean annual rainfall and the frequency of intense storms are high and hillslopes are steep. Each year, landslides cause extensive damage to property and occasionally result in loss of life. Landslide maps developed from 1:20,000 scale aerial photographs in combination with a computerized geographic information system were used to evaluate the landslide potential in the Blanco, Cibuco, and Coamo Basins of Puerto Rico. These basins, ranging in surface area from 276 to 350 square kilometers, are described in this report. The basins represent a broad range of the climatologic, geographic, and geologic conditions that occur in Puerto Rico. In addition, a variety of landslide types were documented. Rainfall-triggered debris flows, shallow soil slips, and slumps were most abundant. The most important temporal control on landslide occurrence in Puerto Rico is storm rainfall. Forty-one storms triggered widespread landsliding about 1 to 2 times per year during the last three decades. These storms were frequently of 1 to 2 days duration in which, on average, several hundred millimeters of rainfall triggered tens to hundreds of landslides in the central mountains. Most of these storms were tropical disturbances that occurred during the hurricane season of June through November. Land use and the topographic characteristics of hillslope angle, elevation, and aspect are the most important spatial controls governing landslide frequency. Hillslopes in the study area that have been anthropogenically modified, exceed 12 degrees in gradient and about 350 meters in elevation, and face the east-northeast are most prone to landsliding. Bedrock geology and soil order seem less important in the determination of landslide frequency, at least when considered at a generalized level. A rainfall accumulation-duration relation for the triggering of numerous landslides throughout the central mountains, and a set of

  12. Fabrication and testing of 4.2m off-axis aspheric primary mirror of Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Oh, Chang Jin; Lowman, Andrew E.; Smith, Greg A.; Su, Peng; Huang, Run; Su, Tianquan; Kim, Daewook; Zhao, Chunyu; Zhou, Ping; Burge, James H.

    2016-07-01

    Daniel K. Inouye Solar Telescope (formerly known as Advanced Technology Solar Telescope) will be the largest optical solar telescope ever built to provide greatly improved image, spatial and spectral resolution and to collect sufficient light flux of Sun. To meet the requirements of the telescope the design adopted a 4m aperture off-axis parabolic primary mirror with challenging specifications of the surface quality including the surface figure, irregularity and BRDF. The mirror has been completed at the College of Optical Sciences in the University of Arizona and it meets every aspect of requirement with margin. In fact this mirror may be the smoothest large mirror ever made. This paper presents the detail fabrication process and metrology applied to the mirror from the grinding to finish, that include extremely stable hydraulic support, IR and Visible deflectometry, Interferometry and Computer Controlled fabrication process developed at the University of Arizona.

  13. Equal-Curvature X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Zhang, William

    2002-01-01

    We introduce a new type of x-ray telescope design; an Equal-Curvature telescope. We simply add a second order axial sag to the base grazing incidence cone-cone telescope. The radius of curvature of the sag terms is the same on the primary surface and on the secondary surface. The design is optimized so that the on-axis image spot at the focal plane is minimized. The on-axis RMS (root mean square) spot diameter of two studied telescopes is less than 0.2 arc-seconds. The off-axis performance is comparable to equivalent Wolter type 1 telescopes.

  14. Cost Modeling for Space Optical Telescope Assemblies

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Henrichs, Todd; Luedtke, Alexander; West, Miranda

    2011-01-01

    Parametric cost models are used to plan missions, compare concepts and justify technology investments. This paper reviews an on-going effort to develop cost modes for space telescopes. This paper summarizes the methodology used to develop cost models and documents how changes to the database have changed previously published preliminary cost models. While the cost models are evolving, the previously published findings remain valid: it costs less per square meter of collecting aperture to build a large telescope than a small telescope; technology development as a function of time reduces cost; and lower areal density telescopes cost more than more massive telescopes.

  15. Wavefront Analysis of Adaptive Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Hillman, Lloyd

    1997-01-01

    The motivation for this work came from a NASA Headquarters interest in investigating design concepts for a large space telescope employing active optics technology. Current and foreseeable launch vehicles will be limited to carrying around 4-5 meter diameter objects. Thus, if a large, filled-aperture telescope (6-20 meters in diameter) is to be placed in space, it will be required to have a deployable primary mirror. Such a mirror may be an inflatable membrane or a segmented mirror consisting of many smaller pieces. In any case, it is expected that the deployed primary will not be of sufficient quality to achieve diffraction-limited performance for its aperture size. Thus, an active optics system will be needed to correct for initial as well as environmentally-produced primary figure errors. Marshall Space Flight Center has developed considerable expertise in the area of active optics with the PAMELA test-bed. The combination of this experience along with the Marshall optical shop's work in mirror fabrication made MSFC the logical choice to lead NASA's effort to develop active optics technology for large, space-based, astronomical telescopes. Furthermore, UAH's support of MSFC in the areas of optical design, fabrication, and testing of space-based optical systems placed us in a key position to play a major role in the development of this future-generation telescope. A careful study of the active optics components had to be carried out in order to determine control segment size, segment quality, and segment controllability required to achieve diffraction-limited resolution with a given primary mirror. With this in mind, UAH undertook the following effort to provide NASA/MSFC with optical design and analysis support for the large telescope study. All of the work performed under this contract has already been reported, as a team member with MSFC, to NASA Headquarters in a series of presentations given between May and December of 1995. As specified on the delivery

  16. Twin-Telescope Wettzell (TTW)

    NASA Astrophysics Data System (ADS)

    Hase, H.; Dassing, R.; Kronschnabl, G.; Schlüter, W.; Schwarz, W.; Lauber, P.; Kilger, R.

    2007-07-01

    Following the recommendations made by the VLBI2010 vision report of the IVS, a proposal has been made to construct a Twin Telescope for the Fundamental Station Wettzell in order to meet the future requirements of the next VLBI generation. The Twin Telescope consists of two identical radiotelescopes. It is a project of the Federal Agency for Cartography and Geodesy (BKG). This article summarizes the project and some design ideas for the Twin-Telescope. %ZALMA (2005). Technical Specification for Design, Manufacturing, Transport and Integration on Site of the ALMA ANTENNAS, Doc. ALMA-34.00.00.00.006-BSPE. Behrend, D. (2006). VLBI2010 Antenna Specs, Data sheet. DeBoer, D. (2001). The ATA Offset Gregorian Antenna, ATA Memo #16, February 10. Imbriale, W.A. (2006). Design of a Wideband Radio Telescope, Jet Propulsion Laboratory and S. Weinreb and H. Mandi, California Institute of Technology. Kilger, R. (2007). TWIN-Design studies, Presentation for the IVS board members (internal document),Wettzell. Kronschnabl, G. (2006). Subject: Memo from Bill Petrachenko, E-mail to the Twin-Working Group (in German), July. Lindgren, ETS-Lindgren (2005). The Model 3164-05 Open Boundary Quadridge Horn, Data Sheet. Niell, A., A. Whitney, W. Petrachenko, W. Schlüter, N. Vandenberg, H.Hase, Y. Koyama, C. Ma, H. Schuh, G. Tucari (2006). in: IVS Annual Report 2005, pg. 13-40, NASA/TP-2006-214136, April. Olsson, R., Kildal, P.-S., and Weinreb, S. (2006). IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, February. Petrachenko, B. (2006). The Case For and Against Multiple Antennas at a Site, IVS Memorandum, 2006-019v01. Petrachenko, B. (2006). IVS Memorandum, 2006-016v01. RFSpin (2004). Double Ridged Waveguide Horn-Model DRH20, Antenna Specifications, Data Sheet. Rohde&Schwarz (2004). SHF Antennas Crossed Log- Periodic Antennas HL024A1/S1, Data Sheet. Rohde&Schwarz (2004). SHF Antennas Log-Periodic Antennas HL050/HL050S1, Data Sheet. Rogers, A.E.E. (2006). Simulations of broadband

  17. Aligning Astronomical Telescopes via Identification of Stars

    NASA Technical Reports Server (NTRS)

    Whorton, Mark

    2010-01-01

    A proposed method of automated, precise alignment of a ground-based astronomical telescope would eliminate the need for initial manual alignment. The method, based on automated identification of known stars and other celestial objects in the telescope field of view, would also eliminate the need for an initial estimate of the aiming direction. The method does not require any equipment other than a digital imaging device such as a charge-coupled-device digital imaging camera and control computers of the telescope and camera, all of which are standard components in professional astronomical telescope systems and in high-end amateur astronomical telescope systems. The method could be implemented in software running in the telescope or camera control computer or in an external computer communicating with the telescope pointing mount and camera control computers.

  18. A NEW REDUCTION OF THE BLANCO COSMOLOGY SURVEY: AN OPTICALLY SELECTED GALAXY CLUSTER CATALOG AND A PUBLIC RELEASE OF OPTICAL DATA PRODUCTS

    SciTech Connect

    Bleem, L. E.; Stalder, B.; Brodwin, M.; Busha, M. T.; Wechsler, R. H.; Gladders, M. D.; High, F. W.; Rest, A.

    2015-01-01

    The Blanco Cosmology Survey is a four-band (griz) optical-imaging survey of ∼80 deg{sup 2} of the southern sky. The survey consists of two fields centered approximately at (R.A., decl.) = (23{sup h}, –55°) and (5{sup h}30{sup m}, –53°) with imaging sufficient for the detection of L {sub *} galaxies at redshift z ≤ 1. In this paper, we present our reduction of the survey data and describe a new technique for the separation of stars and galaxies. We search the calibrated source catalogs for galaxy clusters at z ≤ 0.75 by identifying spatial over-densities of red-sequence galaxies and report the coordinates, redshifts, and optical richnesses, λ, for 764 galaxy clusters at z ≤ 0.75. This sample, >85% of which are new discoveries, has a median redshift of z = 0.52 and median richness λ(0.4 L {sub *}) = 16.4. Accompanying this paper we also release full survey data products including reduced images and calibrated source catalogs. These products are available at http://data.rcc.uchicago.edu/dataset/blanco-cosmology-survey.

  19. Physical analysis of the complex rye (Secale cereale L.) Alt4 aluminium (aluminum) tolerance locus using a whole-genome BAC library of rye cv. Blanco.

    PubMed

    Shi, B-J; Gustafson, J P; Button, J; Miyazaki, J; Pallotta, M; Gustafson, N; Zhou, H; Langridge, P; Collins, N C

    2009-08-01

    Rye is a diploid crop species with many outstanding qualities, and is important as a source of new traits for wheat and triticale improvement. Rye is highly tolerant of aluminum (Al) toxicity, and possesses a complex structure at the Alt4 Al tolerance locus not found at the corresponding locus in wheat. Here we describe a BAC library of rye cv. Blanco, representing a valuable resource for rye molecular genetic studies, and assess the library's suitability for investigating Al tolerance genes. The library provides 6 x genome coverage of the 8.1 Gb rye genome, has an average insert size of 131 kb, and contains only ~2% of empty or organelle-derived clones. Genetic analysis attributed the Al tolerance of Blanco to the Alt4 locus on the short arm of chromosome 7R, and revealed the presence of multiple allelic variants (haplotypes) of the Alt4 locus in the BAC library. BAC clones containing ALMT1 gene clusters from several Alt4 haplotypes were identified, and will provide useful starting points for exploring the basis for the structural variability and functional specialization of ALMT1 genes at this locus.

  20. Provenance of the Eocene Soebi Blanco formation, Bonaire, Leeward Antilles: Correlations with post-Eocene tectonic evolution of northern South America

    NASA Astrophysics Data System (ADS)

    Zapata, S.; Cardona, A.; Montes, C.; Valencia, V.; Vervoort, J.; Reiners, P.

    2014-07-01

    Middle to upper Eocene fluvial strata in the island of Bonaire contain detrital components that were tracked to Precambrian to Triassic massifs in northern Colombia and Venezuela. These detrital components confirm previous hypothesis suggesting that Bonaire and the Leeward Antilles were attached to South American basement massifs (SABM). These are composed of different fragmented South American blocks (Paraguana, Falcon, Maracaibo, Guajira, Perija, and Santa Marta) representing an Eocene, right-laterally displaced tectonic piercing point along the southern Caribbean plate margin. U-Pb LA-ICP-MS from the metamorphic boulders of the Soebi Blanco Formation in Bonaire yield Grenvillian peaks ages (1000-1200 Ma), while detrital zircons recovered from the sandy matrix of the conglomerates contain populations with peaks of 1000 Ma-1200 Ma, 750-950 Ma, and 200-300 Ma. These populations match with geochronological data reported for the northern South American massifs. Thermochronological results from the metamorphic clasts yield Paleocene-middle Eocene ages (65-50 Ma) that confirm a regional-scale cooling event in this time. These data imply a land connection between the SABM and the Leeward Antilles in late Eocene times, followed by a significant strike slip right-lateral displacement and transtensional basin opening starting in latest Eocene times. The succession of Eocene tectonic events recorded by the Soebi Blanco Formation and adjacent basins is a major tracer of the oblique convergence of the Caribbean plate against the South American margin.

  1. CXCR4 mRNA expression in colon, esophageal and gastric cancers and hepatitis C infected liver.

    PubMed

    Mitra, P; Shibuta, K; Mathai, J; Shimoda, K; Banner, B F; Mori, M; Barnard, G F

    1999-05-01

    We have recently demonstrated by Northern blot and RT-PCR that the mRNA expression of the alpha-chemokine hIRH/SDF-1alpha is reduced in hepatocellular carcinoma (HCC), several digestive tract cancers and premalignant colon adenomas, and that its receptor CXCR4 mRNA expression is reduced in HCC. Here we investigate the expression of CXCR4 mRNA expression in several digestive tract cancers and hepatitis C viral (HCV) infected liver, a premalignant condition. There was no difference in the CXCR4 mRNA expression in colon, esophageal or gastric cancers compared to non-cancerous tissues. This is significantly different from the reduced expression we have seen with hepatocellular carcinoma (p<0.05). To better refine regional tumor or hepatic cytokine mRNA analysis within a biopsy sample we describe a micro-isolation technique for RNA extraction from portal and triad areas of liver biopsies or other small malignant or non-malignant biopsy samples suitable for use in RT-PCR and differential display reactions. In HCV liver biopsies, the expression of hIRH and its receptor CXCR4 mRNA, corrected for G3PDH, was not significantly different from that of control non-HCV (steatosis) biopsies. CXCR4 is expressed on leukocytes and its expression was predicted to correlate with hepatic inflammation. CXCR4 receptor mRNA expression did correlate significantly with that of its ligand hIRH/SDF-1alpha (p=0.001), and with the severity of fibrosis (p<0.05), but not with portal inflammation (p<0.10), piecemeal necrosis (p<0.10), lobular inflammation (p>0.10), the presence of lymphoid aggregates (p>0.10), or the total histological activity index (p=0.07). There was no difference in expression of hIRH or CXCR4 between responders and non-responders to interferon (IFN) treatment, while as a control, the responder group of patients did show a higher expression of IFNalpha receptor than the non-responder group (p=0.05).

  2. Preparation and photoluminescence properties of MMoO4 (M = Cu, Ni, Zn) nano-particles synthesized via electrolysis

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Yin, Jiajia; Min, Fanqi; Jia, Lili; Zhang, Daoming; Zhang, Quansheng; Xie, Jingying

    2017-01-01

    Metal molybdate (MMoO4, M = Cu, Ni, Zn) nano-particles were successfully synthesized by electrochemical method in a cation exchange membrane electrolytic cell with Na2MoO4 solution as anolyte, diluted hydrochloric acid (HCl) as catholyte, metal (Cu, Ni, Zn) as anode and stainless steel as cathode. The composition, morphology, structure, microstructure and photoluminescence property of the synthesized MMoO4 were investigated and characterized. The results show that the photoluminescence spectra of electrolytic synthesized MMoO4 have fine structures, which is markedly different from the existing research.

  3. A purely reflective large wide-field telescope

    NASA Astrophysics Data System (ADS)

    Terebizh, V. Yu.

    2008-06-01

    Two versions of a fast, purely reflective Paul-Baker-type telescope are discussed, each with an 8.4-m aperture, 3° diameter flat field and f/1.25 focal ratio. The first version is based on a common, even asphere type of surface with zero conic constant. The primary and tertiary mirrors are 6th order aspheres, while the secondary mirror is an 8th order asphere (referred to here for brevity, as the 6/8/6 configuration). The D 80 diameter of a star image varies from 0″.18 on the optical axis up to 0″.27 at the edge of the field (9.3-13.5 μm). The second version of the telescope is based on a polysag surface type, which uses a polynomial expansion in the sag z, r^2 = 2R_0 z - left( {1 + b} right)z^2 + a_3 z^3 + a_4 z^3 + a_4 z^4 + ldots + a_N z^N instead of the common form of aspheric surface. This approach results in somewhat better images, with D 80 ranging from 0″.16 to 0″.23, using a lower-order 3/4/3 combination of powers for the mirror surfaces. An additional example with 3.5-m aperture, 3°.5 diameter flat field, and f/1.25 focal ratio featuring near-diffraction-limited image quality is also presented.

  4. Broad band imager for the European Solar Telescope

    NASA Astrophysics Data System (ADS)

    Munari, Matteo; Scuderi, Salvo; Cecconi, Massimo

    2010-07-01

    The European Solar Telescope (EST) is a joint project of several European research institutes to design and realize a 4-m class solar telescope. The EST broad band imager is an imaging instrument whose function is to obtain diffraction limited images over the full field of view of EST at multiple wavelengths and high frame rate. Its scientific objective is the study of fundamental astrophysical processes at their intrinsic scales in the Sun's atmosphere. The current layout foresee two observation modes: a maximum field of view mode and a high resolution mode. The imager will have a 2'x2' corrected field of view in the first mode and an angular resolution better than 0.04" at 500nm in the latter mode. The imager will cover a wavelength range spanning from 390nm to 900nm through a number of filters with bandpasses between 0.05nm and 0.5nm. To optimize optical performances and throughput there will be two arms working simultaneously: a blue arm (covering the 380nm - 500nm range) and a red arm (600nm - 900nm). The blue arm will have two channels while the red arm only one. Each channel will be divided in three subchannels: one will host narrow band filters for chromospheric observations, another one, in focus wide band filters used as reference for speckle reconstruction and photospheric observations, and the last one, out of focus wide band filters for phase diversity reconstruction of photospheric observations.

  5. Hubble Space Telescope - New view of an ancient universe

    NASA Technical Reports Server (NTRS)

    Leckrone, David S.; Longair, Malcolm S.; Stockman, Peter; Olivier, Jean R.

    1989-01-01

    Scheduled for a March 1990 Shuttle launch, the Hubble Space Telescope (HST) will give astronomers a tool of unprecedented accuracy to observe the universe: an optically superb instrument free of the atmospheric turbulence, distortion, and brightness that plague all earthbound telescopes. The observatory will carry into orbit two cameras, a pair of spectrographs, a photometer, and fine guidance sensors optimized for astrometry. The diffraction limit for the 2.4-m aperture of the HST corresponds to 90 percent of the radiation from a point source falling within a circle of 0.1 arcsec angular radius at a wavelength of 633 nm. The 15-year mission will make observations in the ultraviolet as well as the optical spectral region, thus, widening the wavelength window to a range extending from the Lyman alpha wavelengnth of 122 nm to just about 2 microns. The observational program that awaits the HST will include the study of planetary atmospheres, in particular the search for aerosols; the study of globular star clusters within the Galaxy; and the determination of the present rate of expansion of the universe. The HST will achieve resolutions of 0.1 arcsec consistently, regardless of observation duration. The HST engineering challenge is also discussed.

  6. A European vision for a ``Polar Large Telescope'' project

    NASA Astrophysics Data System (ADS)

    Abe, Lyu; Epchtein, Nicolas; Ansorge, Wolfgang; Argentini, Stefania; Bryson, Ian; Carbillet, Marcel; Dalton, Gavin; David, Christine; Esau, Igor; Genthon, Christophe; Langlois, Maud; Le Bertre, Thibault; Lemrani, Rachid; Le Roux, Brice; Marchiori, Gianpietro; Mékarnia, Djamel; Montnacher, Joachim; Moretto, Gil; Prugniel, Philippe; Rivet, Jean-Pierre; Ruch, Eric; Tao, Charling; Tilquin, André; Vauglin, Isabelle

    2013-01-01

    The Polar Large Telescope (PLT) project is primarily aimed at undertaking large, wide band synoptic astronomical surveys in the infrared in order to provide critical data to the forthcoming generation of observational facilities such as ALMA, JWST, LSST and the E-ELT, and to complement the observations obtained with them. Sensitive thermal IR surveys beyond 2.3 μm cannot be carried out from any existing ground based observatory and the Antarctic Plateau is the only place on the ground where it can be envisaged, thanks to its unique atmospheric and environmental properties, such as the turbulence profile (image quality), the low opacity and the reduced thermal background emission of the sky. These unique conditions enable high angular resolution wide field surveys in the near thermal infrared (2.3-5 μm). This spectral range is particularly well suited to tackling key astrophysical questions such as: i) investigating the nature of the distant universe, the first generation of stars and the latest stages of stellar evolution, ii) understanding transient phenomena such as gamma ray-bursts and Type Ia supernovae, iii) increasing our knowledge of extra-solar planets. Further instruments may broaden the expected science outcomes of such a 2-4 m class telescope especially for the characterization of galaxies at very large distance to provide new clues in the mysteries of dark matter and energy. Efforts will be made to merge this project with other comparable projects within an international consortium.

  7. The Northwest Indiana Robotic Telescope

    NASA Astrophysics Data System (ADS)

    Slavin, Shawn D.; Rengstorf, A. W.; Aros, J. C.; Segally, W. B.

    2011-01-01

    The Northwest Indiana Robotic (NIRo) Telescope is a remote, automated observing facility recently built by Purdue University Calumet (PUC) at a site in Lowell, IN, approximately 30 miles from the PUC campus. The recently dedicated observatory will be used for broadband and narrowband optical observations by PUC students and faculty, as well as pre-college students through the implementation of standards-based, middle-school modules developed by PUC astronomers and education faculty. The NIRo observatory and its web portal are the central technical elements of a project to improve astronomy education at Purdue Calumet and, more broadly, to improve science education in middle schools of the surrounding region. The NIRo Telescope is a 0.5-meter (20-inch) Ritchey-Chrétien design on a Paramount ME robotic mount, featuring a seven-position filter wheel (UBVRI, Hα, Clear), Peltier (thermoelectrically) cooled CCD camera with 3056 x 3056, square, 12 μm pixels, and off-axis guiding. It provides a coma-free imaging field of 0.5 degrees square, with a plate scale of 0.6 arcseconds per pixel. The observatory has a wireless internet connection, local weather station which publishes data to an internet weather site, and a suite of CCTV security cameras on an IP-based, networked video server. Control of power to every piece of instrumentation is maintained via internet-accessible power distribution units. The telescope can be controlled on-site, or off-site in an attended fashion via an internet connection, but will be used primarily in an unattended mode of automated observation, where queued observations will be scheduled daily from a database of requests. Completed observational data from queued operation will be stored on a campus-based server, which also runs the web portal and observation database. Partial support for this work was provided by the National Science Foundation's Course, Curriculum, and Laboratory Improvement (CCLI) program under Award No. 0736592.

  8. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2007-01-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these four science themes, JWST will be a large (6.6m) cold (50K) telescope launched to the second Earth-Sun Lagrange point early in the next decade. It is the successor to the Hubble Space Telescope, and is a partnership of NASA, ESA and CSA. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In this paper, the status and capabilities of the observatory and instruments in the context of the major scientific goals are reviewed.

  9. The ASTRI SST-2M prototype for the Cherenkov Telescope Array: primary mirror characterization by deflectometry

    NASA Astrophysics Data System (ADS)

    Sironi, Giorgia; Canestrari, Rodolfo

    2015-09-01

    In 2014 the ASTRI Collaboration, led by the Italian National Institute for Astrophysics, has constructed an end-to-end prototype of a dual-mirror imaging air Cherenkov telescope, proposed for the small size class of telescopes for the Cherenkov Telescope Array. The prototype, named ASTRI SST-2M, has been installed at the observing station located at Serra La Nave (Italy). In this project the Brera Astronomical Observatory was responsible for the production and the testing of the primary mirror. The ASTRI SST-2M telescope's primary mirror has an aperture of ~ 4 m, a polynomial design, and consists of 18 individual hexagonal facets. These characteristics require the production and testing of panels with a typical size of ~1 m vertex-to-vertex and with an aspheric component of up to several millimetres. The mirror segments were produced assembling a sandwich of thin glass foils bent at room temperature to reach the desired shape. For the characterization of the mirrors we developed an ad-hoc deflectometry facility that works as an inverse Ronchi test in combination with a ray-tracing code. In this contribution we report the results of the deflectometric measurements performed on the primary mirror segments of the ASTRI SST-2M dual mirror telescope. The expected point spread function and the contributions to the degradation of the image quality are studied.

  10. DAG: a new observatory and a prospective observing site for other potential telescopes

    NASA Astrophysics Data System (ADS)

    Yeşilyaprak, Cahit; Yerli, Sinan K.; Keskin, Onur; Güçsav, B. Bülent

    2016-07-01

    DAG (Eastern Anatolia Observatory is read as "Doğu Anadolu Gözlemevi" in Turkish) is the newest and largest observatory of Turkey, constructed at an altitude of 3150 m in Konaklı/Erzurum provenience, with an optical and nearinfrared telescope (4 m in diameter) and its robust observing site infrastructure. This national project consists of three main phases: DAG (Telescope, Enclosure, Buildings and Infrastructures), FPI (Focal Plane Instruments and Adaptive Optics) and MCP (Mirror Coating Plant). All these three phases are supported by the Ministry of Development of Turkey and funding is awarded to Atatürk University. Telescope, enclosure and building tenders were completed in 2014, 2015 and 2016, respectively. The final design of telescope, enclosure and building and almost all main infrastructure components of DAG site have been completed; mainly: road work, geological and atmospheric surveys, electric and fiber cabling, water line, generator system, cable car to summit. This poster explains recent developments of DAG project and talks about the future possible collaborations for various telescopes which can be constructed at the site.

  11. Hubble Space Telescope battery background

    NASA Technical Reports Server (NTRS)

    Standlee, Dan

    1991-01-01

    The following topics are presented in viewgraph form and include the following: the MSFC Hubble Space Telescope (HST) Nickel-Hydrogen Battery Contract; HST battery design requirements; HST nickel-hydrogen battery development; HST nickel-hydrogen battery module; HST NiH2 battery module hardware; pressure vessel design; HST NiH2 cell design; offset non-opposing vs. rabbit ear cell; HST NiH2 specified capacity; HST NiH2 battery design; and HST NiH2 module design.

  12. A simple solvothermal synthesis of MFe{sub 2}O{sub 4} (M=Mn, Co and Ni) nanoparticles

    SciTech Connect

    Yanez-Vilar, S.; Sanchez-Andujar, M.; Gomez-Aguirre, C.; Senaris-Rodriguez, M.A.

    2009-10-15

    Nanoparticles of MFe{sub 2}O{sub 4} (M=Mn, Co and Ni), with diameters ranging from 5 to 10 nm, have been obtained through a solvothermal method. In this synthesis, an alcohol (benzyl alcohol or hexanol) is used as both a solvent and a ligand; it is not necessary, therefore, to add a surfactant, simplifying the preparation of the dispersed particles. We have studied the influence of the synthetic conditions (temperature, time of synthesis and nature of solvent) on the quality of the obtained ferrites and on their particle size. In this last aspect, we have to highlight that the solvent plays an important role on the particle size, obtaining the smallest diameters when hexanol was used as a solvent. In addition, the magnetic properties of the obtained compounds have been studied at room temperature (RT). These compounds show a superparamagnetic behaviour, as was expected for single domain nanoparticles, and good magnetization values. The maxima magnetization values of the MFe{sub 2}O{sub 4} samples are quite high for such small nanoparticles; this is closely related to the high crystallinity of the particles obtained by the solvothermal method. - Graphical abstract: An adaptation of the solvothermal method allow us to obtain stable suspensions of monodispersed particles of MFe{sub 2}O{sub 4} (M=Mn, Co and Ni), with diameters ranging from 5 to 10 nm, and with good crystallinity.

  13. Multi-modal miniature microscope: 4M Device for bio-imaging applications - an overview of the system

    NASA Astrophysics Data System (ADS)

    Tkaczyk, Tomasz S.; Rogers, Jeremy D.; Rahman, Mohammed; Christenson, Todd C.; Gaalema, Stephen; Dereniak, Eustace L.; Richards-Kortum, Rebecca; Descour, Michael R.

    2005-09-01

    The multi-modal miniature microscope (4M) device to image morphology and cytochemistry in vivo is a microscope on a chip including optical, micro-mechanical, and electronic components. This paper describes all major system components: optical system, custom high speed CMOS detector and comb drive actuator. The hybrid sol-gel lenses, their fabrication and assembling technology, optical system parameters, and various operation modes (fluorescence, reflectance, structured illumination) are also discussed. A particularly interesting method is a structured illumination technique that delivers confocal-imaging capabilities and may be used for optical sectioning. For reconstruction of the sectioned layer a sine approximation algorithm is applied. Structured illumination is produced with LIGA fabricated actuator scanning in resonance. The spatial resolution of the system is 1 μm, and was magnified by 4x matching the CMOS pixel size of 4 μm (a lateral magnification is 4:1), and the extent of field of the system is 250μm. An overview of the 4M device is combined with the presentation of imaging results for epithelial cell phantoms with optical properties characteristic of normal and cancerous tissue labeled with nanoparticles.

  14. Meiotic behavior and H3K4m distribution in B chromosomes of Characidium gomesi (Characiformes, Crenuchidae)

    PubMed Central

    Serrano, Érica Alves; Araya-Jaime, Cristian; Suárez-Villota, Elkin Y.; Oliveira, Claudio; Foresti, Fausto

    2016-01-01

    Abstract Characidium gomesi Travasso, 1956 specimens from the Pardo River have up to four heterochromatic supernumerary chromosomes, derived from the sex chromosomes. To access the meiotic behavior and distribution of an active chromatin marker, males and females of Characidium gomesi with two or three B chromosomes were analyzed. Mitotic chromosomes were characterized using C-banding and FISH with B chromosome probes. Meiocytes were subjected to immunofluorescence-FISH assay using anti-SYCP3, anti-H3K4m, and B chromosomes probes. Molecular homology of supernumeraries was confirmed by FISH and by its bivalent conformation in individuals with two of these chromosomes. In individuals with three Bs, these elements formed a bivalent and a univalent. Supernumerary and sex chromosomes exhibited H3K4m signals during pachytene contrasting with their heterochromatic and asynaptic nature, which suggest a more structural role than functional of this histone modification. The implications of this result are discussed in light of the homology, meiotic nuclear organization, and meiotic silencing of unsynapsed chomatin. PMID:27551347

  15. All-SiC telescope technology: recent progress and achievements

    NASA Astrophysics Data System (ADS)

    Breysse, J.; Castel, D.; Laviron, B.; Logut, D.; Bougoin, M.

    2004-06-01

    Last decade EADS-ASTRIUM and its partner Boostec, has become world leader in the field of Silicon Carbide (SiC) optical paylodads. In the framework of earth and scientific observation, high and very high-resolution optical payloads have been developed. This leadership allowed EADS-ASTRIUM to propose a large and complete range of space-based system for optical observation. Ceramic mirrors and structures are becoming attractive for high precision light weighted opto-mechanical applications. Developments over the past 15 years by EADS-Astrium and by Boostec have demonstrated the feasibility and versatility of the SiC material for numerous applications. The most favorable characteristics of this material are high stiffness, high thermal conductivity and low thermal expansion (CTE). Furthermore, SiC allows relatively quick and cheap manufacturing of components because the components can be shaped with conventional tools in a milling process of the green body material. Through different joining processes, SiC allows for large size applications and systems. Only the scale of the available production facilities, the largest of which currently is 4 m in diameter, limits size of the structures and mirrors that can be manufactured. After a short recall of the SiC material properties, this paper describes recent impressive developments namely the diameter 3.5m primary mirror for Herschel telescope, the diameter 1.5m primary mirror for Aladin telescope and the 1.5m×0.6m mirror demonstrator for the GAIA mission. Main conclusion from the feasibility study of the diameter 3.5m SPICA telescope are also presented.

  16. Large aperture diffractive space telescope

    DOEpatents

    Hyde, Roderick A.

    2001-01-01

    A large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary objective lens functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass "aiming" at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The objective lens includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the objective lens, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets which may be either earth bound or celestial.

  17. TMT telescope structure thermal model

    NASA Astrophysics Data System (ADS)

    Vogiatzis, Konstantinos; Sadjadpour, Amir; Roberts, Scott

    2014-08-01

    The thermal behavior of the Thirty Meter Telescope (TMT) Telescope Structure (STR) and the STR mounted subsystems depends on the heat load of the System, the thermal properties of component materials and the environment as well as their interactions through convection, conduction and radiation. In this paper the thermal environment is described and the latest three-dimensional Computational Solid Dynamics (CSD) model is presented. The model tracks the diurnal temperature variation of the STR and the corresponding deformations. The resulting displacements are fed into the TMT Merit Function Routine (MFR), which converts them into translations and rotations of the optical surfaces. They, in turn, are multiplied by the TMT optical sensitivity matrix that delivers the corresponding pointing error. Thus the thermal performance of the structure can be assessed for requirement compliance, thermal drift correction strategies and look-up tables can be developed and design guidance can be provided. Results for a representative diurnal cycle based on measured temperature data from the TMT site on Mauna Kea and CFD simulations are presented and conclusions are drawn.

  18. ALMA telescope reaches new heights

    NASA Astrophysics Data System (ADS)

    2009-09-01

    of the Array Operations Site. This means surviving strong winds and temperatures between +20 and -20 Celsius whilst being able to point precisely enough that they could pick out a golf ball at a distance of 15 km, and to keep their smooth reflecting surfaces accurate to better than 25 micrometres (less than the typical thickness of a human hair). Once the transporter reached the high plateau it carried the antenna to a concrete pad - a docking station with connections for power and fibre optics - and positioned it with an accuracy of a few millimetres. The transporter is guided by a laser steering system and, just like some cars today, also has ultrasonic collision detectors. These sensors ensure the safety of the state-of-the-art antennas as the transporter drives them across what will soon be a rather crowded plateau. Ultimately, ALMA will have at least 66 antennas distributed over about 200 pads, spread over distances of up to 18.5 km and operating as a single, giant telescope. Even when ALMA is fully operational, the transporters will be used to move the antennas between pads to reconfigure the telescope for different kinds of observations. "Transporting our first antenna to the Chajnantor plateau is a epic feat which exemplifies the exciting times in which ALMA is living. Day after day, our global collaboration brings us closer to the birth of the most ambitious ground-based astronomical observatory in the world", said Thijs de Graauw, ALMA Director. This first ALMA antenna at the high site will soon be joined by others and the ALMA team looks forward to making their first observations from the Chajnantor plateau. They plan to link three antennas by early 2010, and to make the first scientific observations with ALMA in the second half of 2011. ALMA will help astronomers answer important questions about our cosmic origins. The telescope will observe the Universe using light with millimetre and submillimetre wavelengths, between infrared light and radio waves in

  19. Far Ultraviolot Space Telescope (FAUST)

    NASA Technical Reports Server (NTRS)

    Bowyer, S.

    1988-01-01

    The Far Ultraviolet Space Telescope is a compact, wide field-of-view, far ultraviolet instrument designed for observations of extended and point sources of astronomical interest. It was originally used in sounding rocket work by both French and American investigators. The instrument was modified for flight on the space shuttle and flew on the Spacelab 1 mission as a joint effort between the Laboratoire d'Astronomie Spatiale and the University of California, Berkeley. The prime experiment objective of this telescope on the Atmospheric Laboratory Applications and Science (ATLAS 1) NASA mission is to observe faint astronomical sources in the far ultraviolet with sensitivities far higher than previously available. The experiment will cover the 1300 to 1800 A band, which is inaccessible to observers on earth. The observing program during the mission consists of obtaining deep sky images during spacecraft nighttime. The targets will include hot stars and nebulae in our own galaxy, faint diffuse galactic features similar to the cirrus clouds seen by the Infrared Astronomical Satellite (IRAS), large nearby galaxies, nearby clusters of galaxies, and objects of cosmological interest such as quasars and the diffuse far ultraviolet background.

  20. Origins Space Telescope: Community Participation

    NASA Astrophysics Data System (ADS)

    Carey, Sean J.; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. This poster will outline the ways in which the astronomical community can participate in the STDT activities and a summary of tools that are currently available or are planned for the community during the study. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.

  1. Space Telescopes and Orbital Debris

    NASA Astrophysics Data System (ADS)

    Seitzer, Patrick

    2009-01-01

    Almost 12,000 artificial objects orbiting the Earth are currently in the public catalog of orbital elements maintained by the USAF. Only a small fraction of them are operational satellites. The remainder is satellites whose missions have ended, rocket bodies, and parts and debris from larger parent objects. And the catalog only contains the biggest and brightest of the objects in orbit. The Low Earth Orbit (LEO) regime where most of this population concentrates is also a regime of incredible interest to astronomers, since it is where flagship missions such as the Hubble Space Telescope and other Great Observatories operate. I'll review the current state of knowledge of the orbital debris population, how it has grown with time, and how this environment could affect current and future space telescopes. There are mitigation measures which many spacecraft operators have adopted which can control the growth of the debris population. Orbital debris research at the University of Michigan is funded by NASA's Orbital Debris Program Office, Johnson Space Center, Houston, Texas.

  2. Mars Telescopic Observations Workshop II

    NASA Technical Reports Server (NTRS)

    Sprague, A. L. (Editor); Bell, J. F., III (Editor)

    1997-01-01

    Mars Telescopic Observations Workshop E convened in Tucson, Arizona, in October 1997 by popular demand slightly over two years following the first successful Mars Telescopic Observations Workshop, held in Ithaca, New York, in August 1995. Experts on Mars from the United Kingdom, Japan, Germany, and the United States were present. Twenty-eight oral presentations were made and generous time allotted for useful discussions among participants. The goals of the workshop were to (1) summarize active groundbased observing programs and evaluate them in the context of current and future space missions to Mars, (2) discuss new technologies and instrumentation in the context of changing emphasis of observations and theory useful for groundbased observing, and (3) more fully understand capabilities of current and planned Mars missions to better judge which groundbased observations are and will continue to be of importance to our overall Mars program. In addition, the exciting new discoveries presented from the Pathfinder experiments and the progress report from the Mars Global Surveyor infused the participants with satisfaction for the successes achieved in the early stages of these missions. Just as exciting was the enthusiasm for new groundbased programs designed to address new challenges resulting from mission science results. We would like to thank the National Aeronautics and Space Administration as well as Dr. David Black, director of the Lunar and Planetary Institute, and the staff of the Institute's Publications and Program Services Department for providing logistical, administrative, and publication support services for this workshop.

  3. Origins Space Telescope: Study Plan

    NASA Astrophysics Data System (ADS)

    Cooray, Asantha R.; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. This presentation will provide a summary of the OST STDT, the OST Study Team based at NASA Goddard Space Flight Center, study partners, and the advisory panel to the study. This presentation will also summarize recent activities, including the process used to reach a decision on the mission architecture, the identification of key science drivers, and the key study milestones between 2017 and 2020.

  4. JWST Telescope Integration and Test Progress

    NASA Technical Reports Server (NTRS)

    Matthews, Gary W.; Whitman, Tony L.; Feinberg, Lee D.; Voyton, Mark F.; Lander, Juli A.; Keski-Kuha, Ritva

    2016-01-01

    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. The JWST Optical Telescope Element (Telescope) integration and test program is well underway. The telescope was completed in the spring of 2016 and the cryogenic test equipment has been through two optical test programs leading up to the final flight verification program. The details of the telescope mirror integration will be provided along with the current status of the flight observatory. In addition, the results of the two optical ground support equipment cryo tests will be shown and how these plans fold into the flight verification program.

  5. JWST telescope integration and test progress

    NASA Astrophysics Data System (ADS)

    Matthews, Gary W.; Whitman, Tony L.; Feinberg, Lee D.; Voyton, Mark F.; Lander, Juli A.; Keski-Kuha, Ritva

    2016-07-01

    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. The JWST Optical Telescope Element (Telescope) integration and test program is well underway. The telescope was completed in the spring of 2016 and the cryogenic test equipment has been through two optical test programs leading up to the final flight verification program. The details of the telescope mirror integration will be provided along with the current status of the flight observatory. In addition, the results of the two optical ground support equipment cryo tests will be shown and how these plans fold into the flight verification program.

  6. JWST telescope integration and test status

    NASA Astrophysics Data System (ADS)

    Matthews, Gary; Scorse, Thomas; Kennard, Scott; Spina, John; Whitman, Tony; Texter, Scott; Atkinson, Charles; Young, Greg; Keski-Kuha, Ritva; Marsh, James; Lander, Juli; Feinberg, Lee

    2014-08-01

    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. 2014 is an incredible year for the Telescope Alignment, Integration, and Test portion of the program. Long awaited and planned, the two segment Pathfinder telescope will be built and the Optical Ground Support Equipment (OGSE) will be integrated into the large cryo-vacuum chamber at the Johnson Spaceflight Center. The current status of the integration equipment and the demonstrations leading up to the flight-like Pathfinder telescope will be provided as the first step to the final verification of the complex cryo test equipment. The plans and status of bringing the OGSE on-line and ready for a series of risk reduction cryo tests starting in 2015 on the Pathfinder Telescope will also be presented.

  7. Optical aperture synthesis with electronically connected telescopes.

    PubMed

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D

    2015-04-16

    Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths.

  8. Las Cumbres Observatory Global Telescope Network: Keeping Citizen Scientists in the Dark

    NASA Astrophysics Data System (ADS)

    Ross, R. J.

    2012-08-01

    Las Cumbres Observatory Global Telescope Network (LCOGT) is creating a network of telescopes at excellent sites around the world providing 24/7 all sky coverage for astronomical observations. The network of telescopes, ranging in size from 0.4 m to 2.0 m, will be available for both scientific and education users. The LCOGT telescopes are being built quickly and will be deployed soon. The two 2.0 m Faulkes Telescopes, one on Haleakala, Maui (FTN), the other at Siding Spring Observatory, Australia (FTS), are currently in operation. There is also a 0.8 m telescope in the Santa Ynez Valley, California (BOS), which is being used for commissioning and for many local outreach programs. The first 1.0 m telescopes will be heading to Chile and South Africa in 2011 and will each be accompanied by a 0.4 m telescope. Other sites, including Tenerife (Canary Islands, Spain), McDonald Observatory (Texas), Siding Spring (Australia), and Haleakala (Hawaii) will follow, with the possibility of up to two additional sites yet to be selected. The LCOGT education and public outreach effort is transforming into a "Citizen Science" program. Several projects will encompass taking observations through the network, analyzing the data, and sharing the results with other citizen scientists from around the world. The first of these projects, "Agent Exoplanet," will be launched in mid-2011, and will involve analyzing brand-new data to create a light curve of an exoplanet. As the network is not yet complete, this test project will not include actual observing as future ones will. More information about LCOGT and its Citizen Science program can be found online (http://www.lcogt.net). In addition to material to get started in the Citizen Science program, the website also includes resources and content for more hands-on activities using archived data, general astronomy pages, network information, complete access to the public data archive, current news, and recent publications. And don't forget to

  9. Compliant Baffle for Large Telescope Daylight Imaging

    DTIC Science & Technology

    2014-09-01

    Compliant Baffle for Large Telescope Daylight Imaging Steven Griffin, Andrew Whiting, Shawn Haar The Boeing Company Stacie Williams Air Force...not impact wind loading induced jitter on the 3.6 m telescope . Analysis was performed to design a compliant baffle out of a synthetic fabric that...will be a comparison of angular rate sensors and accelerometers mounted on the telescope . 1.0 INTRODUCTION Unsteady wind loading is the largest

  10. Telescope Systems for Balloon-Borne Research

    NASA Technical Reports Server (NTRS)

    Swift, C. (Editor); Witteborn, F. C. (Editor); Shipley, A. (Editor)

    1974-01-01

    The proceedings of a conference on the use of balloons for scientific research are presented. The subjects discussed include the following: (1) astronomical observations with balloon-borne telescopes, (2) orientable, stabilized balloon-borne gondola for around-the-world flights, (3) ultraviolet stellar spectrophotometry from a balloon platform, (4) infrared telescope for balloon-borne infrared astronomy, and (5) stabilization, pointing, and command control of balloon-borne telescopes.

  11. Segmented Mirror Telescope Model and Simulation

    DTIC Science & Technology

    2011-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS SEGMENTED MIRROR TELESCOPE MODEL AND SIMULATION by Travis W. Axtell June 2011 Thesis Co...Mirror Telescope Model and Simulation Travis W. Axtell Naval Postgraduate School Monterey, CA 93943 Department of the Navy Approved for public release...Department of Defense or the U.S. Government. IRB Protocol Number: N/A The Segmented Mirror Telescope (SMT) housed at the Naval Postgraduate School is a

  12. ANTARES: The first undersea neutrino telescope

    NASA Astrophysics Data System (ADS)

    Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; Ameli, F.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Arnaud, K.; Aslanides, E.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Becherini, Y.; Beltramelli, J.; Bersani, A.; Bertin, V.; Beurthey, S.; Biagi, S.; Bigongiari, C.; Billault, M.; Blaes, R.; Bogazzi, C.; de Botton, N.; Bou-Cabo, M.; Boudahef, B.; Bouwhuis, M. C.; Brown, A. M.; Brunner, J.; Busto, J.; Caillat, L.; Calzas, A.; Camarena, F.; Capone, A.; Caponetto, L.; Cârloganu, C.; Carminati, G.; Carmona, E.; Carr, J.; Carton, P. H.; Cassano, B.; Castorina, E.; Cecchini, S.; Ceres, A.; Chaleil, Th.; Charvis, Ph.; Chauchot, P.; Chiarusi, T.; Circella, M.; Compère, C.; Coniglione, R.; Coppolani, X.; Cosquer, A.; Costantini, H.; Cottini, N.; Coyle, P.; Cuneo, S.; Curtil, C.; D'Amato, C.; Damy, G.; van Dantzig, R.; de Bonis, G.; Decock, G.; Decowski, M. P.; Dekeyser, I.; Delagnes, E.; Desages-Ardellier, F.; Deschamps, A.; Destelle, J.-J.; di Maria, F.; Dinkespiler, B.; Distefano, C.; Dominique, J.-L.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drogou, J.-F.; Drouhin, D.; Druillole, F.; Durand, D.; Durand, R.; Eberl, T.; Emanuele, U.; Engelen, J. J.; Ernenwein, J.-P.; Escoffier, S.; Falchini, E.; Favard, S.; Fehr, F.; Feinstein, F.; Ferri, M.; Ferry, S.; Fiorello, C.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatá, S.; Galeotti, S.; Gay, P.; Gensolen, F.; Giacomelli, G.; Gojak, C.; Gómez-González, J. P.; Goret, Ph.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartmann, B.; Heijboer, A. J.; Heine, E.; Hello, Y.; Henry, S.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hogenbirk, J.; Hsu, C. C.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jourde, D.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Karg, T.; Karkar, S.; Karolak, M.; Katz, U.; Keller, P.; Kestener, P.; Kok, E.; Kok, H.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Kulikovskiy, V.; Lachartre, D.; Lafoux, H.; Lagier, P.; Lahmann, R.; Lahonde-Hamdoun, C.; Lamare, P.; Lambard, G.; Languillat, J.-C.; Larosa, G.; Lavalle, J.; Le Guen, Y.; Le Provost, H.; Levansuu, A.; Lefèvre, D.; Legou, T.; Lelaizant, G.; Lévéque, C.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Magnier, P.; Mangano, S.; Marcel, A.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Masullo, R.; Mazéas, F.; Mazure, A.; Meli, A.; Melissas, M.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Neff, M.; Niess, V.; Nooren, G. J. L.; Oberski, J. E. J.; Olivetto, C.; Palanque-Delabrouille, N.; Palioselitis, D.; Papaleo, R.; Păvălaş, G. E.; Payet, K.; Payre, P.; Peek, H.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Piret, Y.; Poinsignon, J.; Popa, V.; Pradier, T.; Presani, E.; Prono, G.; Racca, C.; Raia, G.; van Randwijk, J.; Real, D.; Reed, C.; Réthoré, F.; Rewiersma, P.; Riccobene, G.; Richardt, C.; Richter, R.; Ricol, J. S.; Rigaud, V.; Roca, V.; Roensch, K.; Rolin, J.-F.; Rostovtsev, A.; Rottura, A.; Roux, J.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Sciliberto, D.; Shanidze, R.; Shirokov, E.; Simeone, F.; Sottoriva, A.; Spies, A.; Spona, T.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Streeb, K.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Tasca, L.; Terreni, G.; Tezier, D.; Toscano, S.; Urbano, F.; Valdy, P.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Venekamp, G.; Verlaat, B.; Vernin, P.; Virique, E.; de Vries, G.; van Wijk, R.; Wijnker, G.; Wobbe, G.; de Wolf, E.; Yakovenko, Y.; Yepes, H.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zúñiga, J.

    2011-11-01

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.

  13. Calculating net primary productivity of forest ecosystem with G4M model: case study on South Korea

    NASA Astrophysics Data System (ADS)

    Sung, S.; Forsell, N.; Kindermann, G.; Lee, D. K.

    2015-12-01

    Net primary productivity (NPP) is considered as an important indicator for forest ecosystem since the role of forest is highlighted as a stepping stone for mitigating climate change. Especially rapidly urbanizing countries which have high carbon dioxide emission have large interest in calculating forest NPP under climate change. Also maximizing carbon sequestration in forest sector has became a global goal to minimize the impacts of climate change. Therefore, the objective of this research is estimating carbon stock change under the different climate change scenarios by using G4M (Global Forestry Model) model in South Korea. We analyzed four climate change scenarios in different Representative Concentration Pathway (RCP). In this study we used higher resolution data (1kmx1km) to produce precise estimation on NPP from regionalized four climate change scenarios in G4M model. Finally, we set up other environmental variables for G4M such as water holding capacity, soil type and elevation. As a result of this study, temperature showed significant trend during 2011 to 2100. Average annual temperature increased more than 5℃ in RCP 8.5 scenario while 1℃ increased in RCP 2.6 scenario. Each standard deviation of the annual average temperature showed similar trend. Average annual precipitation showed similarity within four scenarios. However the standard deviation of average annual precipitation is higher in RCP8.5 scenario which indicates the ranges of precipitation is wider in RCP8.5 scenario. These results present that climate indicators such as temperature and precipitation have uncertainties in climate change scenarios. NPP has changed from 5-13tC/ha/year in RCP2.6 scenario to 9-21 tC/ha/year in RCP8.5 scenario in 2100. In addition the spatial distribution of NPP presented different trend among the scenarios. In conclusion we calculated differences in temperature and precipitation and NPP change in different climate change scenarios. This study can be applied for

  14. Preliminary Cost Model for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Prince, F. Andrew; Smart, Christian; Stephens, Kyle; Henrichs, Todd

    2009-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. However, great care is required. Some space telescope cost models, such as those based only on mass, lack sufficient detail to support such analysis and may lead to inaccurate conclusions. Similarly, using ground based telescope models which include the dome cost will also lead to inaccurate conclusions. This paper reviews current and historical models. Then, based on data from 22 different NASA space telescopes, this paper tests those models and presents preliminary analysis of single and multi-variable space telescope cost models.

  15. Robotic telescope observing with the BAA

    NASA Astrophysics Data System (ADS)

    Meadows, P.

    2010-06-01

    Have you ever wished you had access to a telescope that can image down to magnitude 20 from the comfort of your own home? This is now made possible by using the growing number of robotic telescopes around the world that are available for amateur astronomers to acquire such CCD imagery. In 2008, using income derived from the legacy of renowned BAA observer Harold Ridley, the Robotic Telescope Project was started to encourage members to contribute to the various BAA Observing Sections using robotic telescopes, by providing a 50% subsidy on commercial rates (up to a limit per member).

  16. The Dutch Open Telescope on La Palma

    NASA Astrophysics Data System (ADS)

    Rutten, R. J.; Bettonvil, F. C. M.; Hammerschlag, R. H.; Jägers, A. P. L.; Leenaarts, J.; Snik, F.; Sütterlin, P.; Tziotziou, K.; de Wijn, A. G.

    The Dutch Open Telescope (DOT) on La Palma is an innovative solar telescope combining open telescope structure and an open support tower with a multi-wavelength imaging assembly and with synchronous speckle cameras to generate high-resolution movies which sample different layers of the solar atmosphere simultaneously and co-spatially at high resolution over long durations. The DOT test and development phase is nearly concluded. The installation of an advanced speckle processor enables full science utilization including "Open-DOT" time allocation to the international community. Co-pointing with spectropolarimeters at other Canary Island telescopes and with TRACE furnishes valuable Solar-B precursor capabilities.

  17. A New 800 mm Automatic Telescope

    NASA Astrophysics Data System (ADS)

    Andrievsky, S. M.; Molotov, I. E.; Fashchevsky, N. N.; Podlesnyak, S. V.; Zhukov, V. V.; Kouprianov, V. V.; Kashuba, S. G.; Kashuba, V. I.; Mel'nichenko, V. F.; Gorbanev, Yu. M.

    A new automatic telescope, a 800-millimeter main mirror catadioptric anastigmatic aplanat, was constructed by specialists of Odessa National University Astronomical observatory (Ukraine) in cooperation with their colleagues from the ISON project (Russia), and was recently put into operation. The telescope is mounted at Mayaki station in suburb of Odessa. It is equipped with a focal corrector and a professional CCD camera. The telescope is used now for observations of geostationary objects, asteroids, and comets. In addition, this telescope can be used for the high precision photometric observations of faint objects up to 20m.

  18. European Extremely Large Telescope: progress report

    NASA Astrophysics Data System (ADS)

    Tamai, R.; Spyromilio, J.

    2014-07-01

    The European Extremely Large Telescope is a project of the European Southern Observatory to build and operate a 40-m class optical near-infrared telescope. The telescope design effort is largely concluded and construction contracts are being placed with industry and academic/research institutes for the various components. The siting of the telescope in Northern Chile close to the Paranal site allows for an integrated operation of the facility providing significant economies. The progress of the project in various areas is presented in this paper and references to other papers at this SPIE meeting are made.

  19. Status of Technology Development to enable Large Stable UVOIR Space Telescopes

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; MSFC AMTD Team

    2017-01-01

    NASA MSFC has two funded Strategic Astrophysics Technology projects to develop technology for potential future large missions: AMTD and PTC. The Advanced Mirror Technology Development (AMTD) project is developing technology to make mechanically stable mirrors for a 4-meter or larger UVOIR space telescope. AMTD is demonstrating this technology by making a 1.5 meter diameter x 200 mm thick ULE(C) mirror that is 1/3rd scale of a full size 4-m mirror. AMTD is characterizing the mechanical and thermal performance of this mirror and of a 1.2-meter Zerodur(R) mirror to validate integrate modeling tools. Additionally, AMTD has developed integrated modeling tools which are being used to evaluate primary mirror systems for a potential Habitable Exoplanet Mission and analyzed the interaction between optical telescope wavefront stability and coronagraph contrast leakage. Predictive Thermal Control (PTC) project is developing technology to enable high stability thermal wavefront performance by using integrated modeling tools to predict and actively control the thermal environment of a 4-m or larger UVOIR space telescope.

  20. Developing a Telescope Simulator Towards a Global Autonomous Robotic Telescope Network

    NASA Astrophysics Data System (ADS)

    Giakoumidis, N.; Ioannou, Z.; Dong, H.; Mavridis, N.

    2013-05-01

    A robotic telescope network is a system that integrates a number of telescopes to observe a variety of astronomical targets without being operated by a human. This system autonomously selects and observes targets in accordance to an optimized target. It dynamically allocates telescope resources depending on the observation requests, specifications of the telescopes, target visibility, meteorological conditions, daylight, location restrictions and availability and many other factors. In this paper, we introduce a telescope simulator, which can control a telescope to a desired position in order to observe a specific object. The system includes a Client Module, a Server Module, and a Dynamic Scheduler module. We make use and integrate a number of open source software to simulate the movement of a robotic telescope, the telescope characteristics, the observational data and weather conditions in order to test and optimize our system.

  1. Study of the dynamics of nanoparticle sizes in trinitrotoluene detonation using the VEPP-4M synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Rubtsov, I. A.; Ten, K. A.; Pruuel, E. R.; Kashkarov, A. O.

    2016-11-01

    Here we present experimental data on measuring condensed carbon nanoparticle sizes in trinitrotoluene (TNT) detonation. Nanoparticle sizes were determined from measured distributions of small-angle x-ray scattering (SAXS). The work was carried out at the VEPP- 4M (BINP) accelerator complex. In this work, we also carried out a SAXS simulation with a real spectrum on the SYRAFEEMA (Synchrotron Radiation Facility for Exploring Energetic Materials) station (wiggler radiation, TNT absorption, absorption of the DIMEX-3 detector). Comparison of the calculated and measured SAXS distribution allows one to obtain the dynamics of the average sizes of carbon nanoparticles behind the detonation front using a pink synchrotron radiation (SR) beam. The measured particle sizes in the chemical reaction zone are ≈ 2 nm. Carbon nanoparticles with a maximum size of ≈ 4-5 nm are found outside the chemical reaction zone.

  2. Electrical relaxation studies of olivine type nanocrystalline LiMPO4 (M=Ni, Mn and Co) materials

    NASA Astrophysics Data System (ADS)

    Cheruku, Rajesh; Kruthika, G.; Govindaraj, G.; Vijayan, Lakshmi

    2015-11-01

    The olivine type LiMPO4 (M=Ni, Mn and Co) materials were synthesized by solution combustion technique using glycine as fuel. The structural characterizations were explored to confirm the phase formation of materials. The scanning electron microscope was used to identify the morphology of olivine materials. The local structure and chemical bonding between MO6 octahedral and (PO4)3- tetrahedral groups were probed by Raman spectroscopy. Grain and grain boundaries were contributed for ion relaxation and dc conduction in olivine materials. Two orders of enhancement in ionic conductivity was observed in these olivine materials than the reported value. Among all the explored olivine samples, LiMnPO4 showed highest enhancement in conductivity due to weak Li-O bonding and largest unit cell volume.

  3. Arrangement of high-energy neutron irradiation field and shielding experiment using 4 m concrete at KENS.

    PubMed

    Nakao, N; Yashima, H; Kawai, M; Oishi, K; Nakashima, H; Masumoto, K; Matsumura, H; Sasaki, S; Numajiri, M; Sanami, T; Wang, Q; Toyoda, A; Takahashi, K; Iijima, K; Eda, K; Ban, S; Hirayama, H; Muto, S; Nunomiya, T; Yonai, S; Rasolonjatovo, D R H; Terunuma, K; Yamauchi, K; Sarkar, P K; Kim, E; Nakamura, T; Maruhashi, A

    2005-01-01

    An irradiation field of high-energy neutrons produced in the forward direction from a thick tungsten target bombarded by 500 MeV protons was arranged at the KENS spallation neutron source facility. In this facility, shielding experiment was performed with an ordinary concrete shield of 4 m thickness assembled in the irradiation room, 2.5 m downstream from the target centre. Activation detectors of bismuth, aluminium, indium and gold were inserted into eight slots inside the shield and attenuations of neutron reaction rates were obtained by measurements of gamma-rays from the activation detectors. A MARS14 Monte Carlo simulation was also performed down to thermal energy, and comparisons between the calculations and measurements show agreements within a factor of 3. This neutron field is useful for studies of shielding, activation and radiation damage of materials for high-energy neutrons, and experimental data are useful to check the accuracies of the transmission and activation calculation codes.

  4. Polymorphs of Li 3PO 4 and Li 2MSiO 4 (M = Mn, Co) . The role of pressure

    NASA Astrophysics Data System (ADS)

    Arroyo y de Dompablo, M. E.; Amador, U.; Gallardo-Amores, J. M.; Morán, E.; Ehrenberg, H.; Dupont, L.; Dominko, R.

    The behavior of Li 3PO 4 and Li 2MSiO 4 (M = Mn, Co) compounds under high pressure/high temperature is investigated. Pmn2 1-Li 3PO 4 remains stable up to the higher experimental limit of 80 kbar (900 °C). A sample of Li 2MnSiO 4 consisting of a mixture of Pn2 1 and Pmnb polymorphs converts upon high pressure/high temperature treatment into the Pmn2 1 polymorph; the latter being stable at 80 kbar and 900 °C. A sample of Li 2CoSiO 4- P2 1 /n transforms to the denser Pmn2 1 polymorph at 40 kbar/900 °C, but decomposes at higher pressure (60 kbar/900 °C). No evidence on any novel Li 2MSiO 4 polymorph is detected in any of the high-pressure products.

  5. Optical observations of Swift J1822.3-1606 with the 10.4m Gran Telescopio Canarias

    NASA Astrophysics Data System (ADS)

    Rea, N.; Mignani, R. P.; Israel, G. L.; Esposi, P.

    2011-07-01

    We observed the field of the new Soft Gamma-ray Repeater (SGR), Swift J1822.3-1606 (Cummings et al., Atel #3488) with the 10.4m Gran Telescopio Canarias (GranTeCan). Images have been taken with the OSIRIS camera, a two-chip CCD with a nominal 7.8'x7.8' arcmin field of view and a pixel size of 0.125". Observations have been taken in the z-Sloan-band on 2011 July 21st (unfortunately in bright lunar time, with a large sky background and a seeing ranging from 1-2.5") with exposure times of 54-108s.

  6. Mutation in the AP4M1 Gene Provides a Model for Neuroaxonal Injury in Cerebral Palsy

    PubMed Central

    Verkerk, Annemieke J.M.H.; Schot, Rachel; Dumee, Belinda; Schellekens, Karlijn; Swagemakers, Sigrid; Bertoli-Avella, Aida M.; Lequin, Maarten H.; Dudink, Jeroen; Govaert, Paul; van Zwol, A.L.; Hirst, Jennifer; Wessels, Marja W.; Catsman-Berrevoets, Coriene; Verheijen, Frans W.; de Graaff, Esther; de Coo, Irenaeus F.M.; Kros, Johan M.; Willemsen, Rob; Willems, Patrick J.; van der Spek, Peter J.; Mancini, Grazia M.S.

    2009-01-01

    Cerebral palsy due to perinatal injury to cerebral white matter is usually not caused by genetic mutations, but by ischemia and/or inflammation. Here, we describe an autosomal-recessive type of tetraplegic cerebral palsy with mental retardation, reduction of cerebral white matter, and atrophy of the cerebellum in an inbred sibship. The phenotype was recorded and evolution followed for over 20 years. Brain lesions were studied by diffusion tensor MR tractography. Homozygosity mapping with SNPs was performed for identification of the chromosomal locus for the disease. In the 14 Mb candidate region on chromosome 7q22, RNA expression profiling was used for selecting among the 203 genes in the area. In postmortem brain tissue available from one patient, histology and immunohistochemistry were performed. Disease course and imaging were mostly reminiscent of hypoxic-ischemic tetraplegic cerebral palsy, with neuroaxonal degeneration and white matter loss. In all five patients, a donor splice site pathogenic mutation in intron 14 of the AP4M1 gene (c.1137+1G→T), was identified. AP4M1, encoding for the μ subunit of the adaptor protein complex-4, is involved in intracellular trafficking of glutamate receptors. Aberrant GluRδ2 glutamate receptor localization and dendritic spine morphology were observed in the postmortem brain specimen. This disease entity, which we refer to as congenital spastic tetraplegia (CST), is therefore a genetic model for congenital cerebral palsy with evidence for neuroaxonal damage and glutamate receptor abnormality, mimicking perinatally acquired hypoxic-ischemic white matter injury. PMID:19559397

  7. Distinct Carotenoid and Flavonoid Accumulation in a Spontaneous Mutant of Ponkan (Citrus reticulata Blanco) Results in Yellowish Fruit and Enhanced Postharvest Resistance.

    PubMed

    Luo, Tao; Xu, Kunyang; Luo, Yi; Chen, Jiajing; Sheng, Ling; Wang, Jinqiu; Han, Jingwen; Zeng, Yunliu; Xu, Juan; Chen, Jianmin; Wu, Qun; Cheng, Yunjiang; Deng, Xiuxin

    2015-09-30

    As the most important fresh fruit worldwide, citrus is often subjected to huge postharvest losses caused by abiotic and biotic stresses. As a promising strategy to reduce postharvest losses, enhancing natural defense by potential metabolism reprogramming in citrus mutants has rarely been reported. The yellowish spontaneous mutant of Ponkan (Citrus reticulata Blanco) (YP) was used to investigate the influence of metabolism reprogramming on postharvest performance. Our results show that reduced xanthophyll accumulation is the cause of yellowish coloring of YP and might be attributed to the reduced carotenoid sequestration capacity and upregulated expression of carotenoid cleavage dioxygenase genes. Constantly higher levels of polymethoxylated flavones (PMFs) during the infection and the storage stage might make significant contribution to the more strongly induced resistance against Penicillium digitatum and lower rotting rate. The present study demonstrates the feasibility of applying bud mutants to improve the postharvest performance of citrus fruits.

  8. Dual-tracer experiment to investigate pollutant transport, dispersion, and particle dry deposition at the Rio Blanco oil-shale site in Colorado

    SciTech Connect

    Sehmel, G.A.

    1981-06-01

    Atmospheric transport and plume depletion investigations were conducted in August, 1980, with the use of dual-tracers at the Federal Oil Shale Lease Tract C-a operated by Rio Blanco in Colorado. The objectives of the experiment were to simulate pollutant transport, dispersion, and plume depletion by particle dry deposition in site-specific terrain. The tracers were nondepositing SF/sub 6/ gas and depositing lithium-traced particles. This dual-tracer, real-time measurement technique was also directed toward measuring the minimum decrease in respirable airborne particle concentrations with distance. The minimum was measured because of the diameter range used, about 0.5 to 1.5 ..mu..m. Average particle plume depletion at respirable height ranged from 37 to 68% along a down-gulch distance of only 1.2-km.

  9. The radio telescope RATAN 600

    NASA Technical Reports Server (NTRS)

    Schwartz, R.

    1978-01-01

    A six-meter radio antenna having 900 reflector elements arranged on a 579 -meter diameter circle and located in the northern part of the Caucasian Mountains is described. The elements are about 7.4 m by 2 m resulting in a total reflector surface of about 10,000 sq m. Individual elements can be adjusted by changing 260 screws and can be rotated both horizontally and vertically as well as being moved translationally in the radial direction. The circular area is equipped with a grid of tracks where four asymmetric cylindrical paraboloids serving as subreflectors are located. The directional profile or observational direction of the antenna is achieved by shifting the subreflectors and changing the position of the reflecting elements with respect to the subreflectors. Different radio sources can be observed at the same time by using different subreflectors and their associated reflector sectors. Each subreflector is connected to a receiving station. Capabilities for spectroscopic observation are discussed.

  10. SkyView Virtual Telescope:

    NASA Astrophysics Data System (ADS)

    McGlynn, Thomas A.; McDonald, Laura M.; Scollick, Keith A.

    2015-11-01

    The SkyView Virtual telescope provides access to survey datasets ranging from radio through the gamma-ray regimes. Over 100 survey datasets are currently available. The SkyView library referenced here is used as the basis for the SkyView web site (at http://skvyiew.gsfc.nasa.gov) but is designed for individual use by researchers as well. SkyView's approach to access surveys is distinct from most other toolkits. Rather than providing links to the original data, SkyView attempts to immediately re-render the source data in the user-requested reference frame, projection, scaling, orientation, etc. The library includes a set of geometry transformation and mosaicking tools that may be integrated into other applications independent of SkyView.

  11. Diffractive X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Skinner, Gerald K.

    2010-01-01

    Diffractive X-ray telescopes, using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution many orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the super-massive black holes in the center of active galaxies. What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

  12. SLAC Cosmic Ray Telescope Facility

    SciTech Connect

    Va'vra, J.

    2010-02-15

    SLAC does not have a test beam for the HEP detector development at present. We have therefore created a cosmic ray telescope (CRT) facility, which is presently being used to test the FDIRC prototype. We have used it in the past to debug this prototype with the original SLAC electronics before going to the ESA test beam. Presently, it is used to test a new waveform digitizing electronics developed by the University of Hawaii, and we are also planning to incorporate the new Orsay TDC/ADC electronics. As a next step, we plan to put in a full size DIRC bar box with a new focusing optics, and test it together with a final SuberB electronics. The CRT is located in building 121 at SLAC. We anticipate more users to join in the future. This purpose of this note is to provide an introductory manual for newcomers.

  13. Adaptive Optics for Large Telescopes

    SciTech Connect

    Olivier, S

    2008-06-27

    The use of adaptive optics was originally conceived by astronomers seeking to correct the blurring of images made with large telescopes due to the effects of atmospheric turbulence. The basic idea is to use a device, a wave front corrector, to adjust the phase of light passing through an optical system, based on some measurement of the spatial variation of the phase transverse to the light propagation direction, using a wave front sensor. Although the original concept was intended for application to astronomical imaging, the technique can be more generally applied. For instance, adaptive optics systems have been used for several decades to correct for aberrations in high-power laser systems. At Lawrence Livermore National Laboratory (LLNL), the world's largest laser system, the National Ignition Facility, uses adaptive optics to correct for aberrations in each of the 192 beams, all of which must be precisely focused on a millimeter scale target in order to perform nuclear physics experiments.

  14. Compact telescope for free-space communications

    NASA Astrophysics Data System (ADS)

    Draganov, Vladimir; James, Daryl G.

    2002-10-01

    Several types of telescopes are used for free space telecommunications. The most common are Cassegrain and Gregorian telescopes. The main difference between Cassegrain and Gregorian optical systems is that Gregorian telescopes employ a concave secondary mirror located beyond the focus of the primary mirror. This results in longer tube lengths, as the distance between mirrors is slightly more than the sum of their focal lengths, which is the reason Cassegrain systems are the most common. In addition, Gregorian telescopes produce an upright image, while Cassegrain telescopes produce an inverted image. FSONA is presenting a new compact optical system, which can be described as a modified Gregorian telescope. This telescope is ideally suited for free space optical communications but also has many other applications. The compact telescope is created from a standard Gregorian system by flipping the secondary mirror over a folding mirror installed approximately in the middle of the optical path between primary and secondary mirrors. In this manner, the primary mirror is constructed with a concentric "double curved" geometry, and a central obscuring folding mirror which matches the diameter of the smaller curve of the primary is mounted a short distance in front. This "double curved" geometry is easily produced using diamond turning technology, and the result is a compact telescope approximately 1/2 the length of a regular Gregorian telescope and roughly 2/3 the length of a Cassegrain telescope. There are several advantages to using this type of telescope: 1. The system is very compact. Telescope can be as short as 1/7 of the focal length of the system. 2. For Cassegrain and Gregorian systems it is very critical to keep tight tolerances on the centration between primary and secondary mirrors. The modified Gregorian telescope will always have perfect centration because both curved surfaces are machined at the same time on a diamond turning lathe. The folding mirror is flat

  15. The Onsala Twin Telescope Project

    NASA Astrophysics Data System (ADS)

    Haas, R.

    2013-08-01

    This paper described the Onsala Twin Telescope project. The project aims at the construction of two new radio telescopes at the Onsala Space Observatory, following the VLBI2010 concept. The project starts in 2013 and is expected to be finalized within 4 years. Z% O. Rydbeck. Chalmers Tekniska Högskola, Göteborg, ISBN 91-7032-621-5, 407-823, 1991. B. Petrachenko, A. Niell, D. Behrend, B. Corey, J. Böhm, P. Charlot, A. Collioud, J. Gipson, R. Haas, Th. Hobiger, Y. Koyama, D. MacMillan, Z. Malkin, T. Nilsson, A. Pany, G. Tuccari, A. Whitney, and J. Wresnik. Design Aspects of the VLBI2010 System. NASA/TM-2009-214180, 58 pp., 2009. R. Haas, G. Elgered, J. Löfgren, T. Ning, and H.-G. Scherneck. Onsala Space Observatory - IVS Network Station. In K. D. Baver and D. Behrend, editors, International VLBI Service for Geodesy and Astrometry 2011 Annual Report, NASA/TP-2012-217505, 88-91, 2012. H.-G. Scherneck, G. Elgered, J. M. Johansson, and B. O. Rönnäng. Phys. Chem. Earth, Vol. 23, No. 7-8, 811-823, 1998. A. R. Whitney. Ph.D. thesis, Dept. of Electrical engineering, MIT Cambridge, MA., 1974. B. A. Harper, J. D. Kepert, and J. D. Ginger. Guidelines for converting between various wind averaging periods in tropical cyclone conditions. WMO/TD-No. 1555, 64 pp., 2010 (available at \\url{http://www.wmo.int/pages/prog/www/tcp/documents/WMO_TD_1555_en.pdf})

  16. Polymethoxylated flavones, flavanone glycosides, carotenoids, and antioxidants in different cultivation types of tangerines ( Citrus reticulata Blanco cv. Sainampueng) from Northern Thailand.

    PubMed

    Stuetz, Wolfgang; Prapamontol, Tippawan; Hongsibsong, Surat; Biesalski, Hans-Konrad

    2010-05-26

    Polymethoxylated flavones (PMFs) and flavanone glycosides (FGs) were analyzed in hand-pressed juice and the peeled fruit of 'Sainampueng' tangerines ( Citrus reticulata Blanco cv. Sainampueng) grown in northern Thailand. The tangerines were collected from a citrus cluster of small orchard farmers and were cultivated as either agrochemical-based (AB), agrochemical-safe (AS), or organic grown fruits. Juice samples were also measured on contents of carotenoids, ascorbic acid, and tocopherols. The peel-deriving PMFs tangeretin, nobiletin, and sinensetin were found with high concentrations in juice as a result of simple squeezing, whereas amounts of those PMFs were negligibly low in peeled tangerine fruit. In contrast, the mean concentrations of the FGs narirutin, hesperidin, and didymin were several fold higher in peeled fruit than in tangerine juice and significantly higher in organic than AS and AB tangerines. Narirutin and hesperidin in juice from organic produces as well as narirutin in juice from AS produces were significantly higher than respective mean concentrations in juice from AB produces. beta-Cryptroxanthin was the predominant carotenoid beside zeaxanthin, lutein, lycopene, and beta-carotene in tangerine juice. Ascorbic acid concentrations were not predicted by the type of cultivation, whereas alpha-tocopherol was significantly higher in juice from organic than AS produces. In summary, hand-pressed juice of C. reticulata Blanco cv. Sainampueng serves as a rich source of PMFs, FGs, carotenoids, and antioxidants: 4-5 tangerine fruits ( approximately 80 g of each fruit) giving one glass of 200 mL hand-pressed juice would provide more than 5 mg of nobiletin and tangeretin and 36 mg of hesperidin, narirutin, and didymin, as well as 30 mg of ascorbic acid, >1 mg of provitamin A active beta-cryptoxanthin, and 200 microg of alpha-tocopherol.

  17. Aperture Increase Options for the Dutch Open Telescope

    NASA Astrophysics Data System (ADS)

    Hammerschlag, R. H.; Bettonvil, F. C. M.; Jägers, A. P. L.; Rutten, R. J.

    2007-05-01

    This paper is an invitation to the international community to participate in the usage and a substantial upgrade of the Dutch Open Telescope on La Palma (DOT, http://dot.astro.uu.nl). We first give a brief overview of the approach, design, and current science capabilities of the DOT. It became a successful 0.2-arcsec-resolution solar movie producer through its combination of (i) an excellent site, (ii) effective wind flushing through the fully open design and construction of both the 45-cm telescope and the 15-m support tower, (iii) special designs which produce extraordinary pointing stability of the tower, equatorial mount, and telescope, (iv) simple and excellent optics with minimum wavefront distortion, and (v) large-volume speckle reconstruction including narrow-band processing. The DOT's multi-camera multi-wavelength speckle imaging system samples the solar photosphere and chromosphere simultaneously in various optical continua, the G band, Ca II H (tunable throughout the blue wing), and Hα (tunable throughout the line). The resulting DOT data sets are all public. The DOT database (http://dotdb.phys.uu.nl/DOT) now contains many tomographic image sequences with 0.2-0.3 arcsec resolution and up to multi-hour duration. You are welcome to pull them over for analysis. The main part of this contribution outlines DOT upgrade designs implementing larger aperture. The motivation for aperture increase is the recognition that optical solar physics needs the substantially larger telescope apertures that became useful with the advent of adaptive optics and viable through the DOT's open principle, both for photospheric polarimetry at high resolution and high sensitivity and for chromospheric fine-structure diagnosis at high cadence and full spectral sampling. Our upgrade designs for the DOT are presented in an incremental sequence of five options of which the simplest (Option I) achieves 1.4 m aperture using the present tower, mount, fold-away canopy, and multi

  18. Space Infrared Telescope Facility science instruments overview

    NASA Technical Reports Server (NTRS)

    Bothwell, Mary

    1991-01-01

    The Space Infrared Telescope Facility (SIRTF) will contain three cryogenically cooled infrared instruments: the Infrared Array Camera (IRAC), the Infrared Spectrograph (IRS), and the Multiband Infrared Photometer for SIRTF (MIPS). These instruments are sensitive to infrared radiation in the 1.8-1,200 micrometer range. This paper will discuss the three instruments' functional requirements and their accommodation in the SIRTF telescope system.

  19. The development of the Schmidt telescope

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, G.

    2009-06-01

    % Bernhard Schmidt (1879-1935) was born in Estonia. After a few years of studying engineering he ran an optical workshop in Mittweida, Saxonia, between 1901 and 1927. Astronomers appreciated the quality of his telescopes. Starting in 1925, on behalf of the Hamburg Observatory, he developed a short focal length optical system with a large field of view. For this purpose, Schmidt moved his workshop to the observatory. He succeeded in inventing the ``Schmidt telescope'' which allows the imaging of a large field of the sky without any distortions. Schmidt's first telescope (spherical mirror diameter 0.44 m, correction plate 0.36 m diameter, aperture ratio 1:1.75, and focal length 0.625 m) has been used since 1962 at the Boyden Observatory in Bloemfontein/South Africa. Apart from his 0.36 m telescope, Schmidt produced a second larger one of 0.60 m aperture. Shortly after Schmidt's death, the director of the observatory published details on the invention and production of the Schmidt telescope. After World War II, Schmidt telescopes have been widely used. The first large Schmidt telescope, the ``Big Schmidt'' (1.26 m), Mount Palomar, USA, was completed in 1948. The 0.80 m Schmidt telescope of Hamburg Observatory, planned since 1936, finished in 1954, is now on Calar Alto/Spain.

  20. Proposed Integrated Radio-Telescope Network

    NASA Technical Reports Server (NTRS)

    Cohen, M. H.; Ewing, M. S.; Levy, G. S.; Mallis, R. K.; Readhead, A. C. S.; Smith, J. R.; Backer, D. C.

    1982-01-01

    Proposed network of radio telescopes, controlled by a central computer and managed by a single organization, offer potential for research on a scale that could not be matched by present privately and publicly-owned radio telescopes. With 10 antenna sites, network would establish base lines thousands of miles long. Antennas will be linked to computer center by telephone circuits.

  1. A Mechanical Analogue of the Refracting Telescope

    ERIC Educational Resources Information Center

    Vannoni, Maurizio; Molesini, Giuseppe; Sordini, Andrea; Straulino, Samuele

    2011-01-01

    The recent celebration of the discoveries made by Galileo four centuries ago has attracted new attention to the refracting telescope and to its use as an instrument for the observation of the night sky. This has offered the opportunity for addressing in the classroom the basic principles explaining the operation of the telescope. When doing so, a…

  2. Longer-baseline telescopes using quantum repeaters.

    PubMed

    Gottesman, Daniel; Jennewein, Thomas; Croke, Sarah

    2012-08-17

    We present an approach to building interferometric telescopes using ideas of quantum information. Current optical interferometers have limited baseline lengths, and thus limited resolution, because of noise and loss of signal due to the transmission of photons between the telescopes. The technology of quantum repeaters has the potential to eliminate this limit, allowing in principle interferometers with arbitrarily long baselines.

  3. Base-resolution detection of N4-methylcytosine in genomic DNA using 4mC-Tet-assisted-bisulfite-sequencing

    SciTech Connect

    Yu, Miao; Ji, Lexiang; Neumann, Drexel A.; Chung, Dae -Hwan; Groom, Joseph; Westpheling, Janet; He, Chuan; Schmitz, Robert J.

    2015-07-15

    Restriction-modification (R-M) systems pose a major barrier to DNA transformation and genetic engineering of bacterial species. Systematic identification of DNA methylation in R-M systems, including N6-methyladenine (6mA), 5-methylcytosine (5mC) and N4-methylcytosine (4mC), will enable strategies to make these species genetically tractable. Although single-molecule, real time (SMRT) sequencing technology is capable of detecting 4mC directly for any bacterial species regardless of whether an assembled genome exists or not, it is not as scalable to profiling hundreds to thousands of samples compared with the commonly used next-generation sequencing technologies. Here, we present 4mC-Tet-assisted bisulfite-sequencing (4mC-TAB-seq), a next-generation sequencing method that rapidly and cost efficiently reveals the genome-wide locations of 4mC for bacterial species with an available assembled reference genome. In 4mC-TAB-seq, both cytosines and 5mCs are read out as thymines, whereas only 4mCs are read out as cytosines, revealing their specific positions throughout the genome. We applied 4mC-TAB-seq to study the methylation of a member of the hyperthermophilc genus, Caldicellulosiruptor, in which 4mC-related restriction is a major barrier to DNA transformation from other species. Lastly, in combination with MethylC-seq, both 4mC- and 5mC-containing motifs are identified which can assist in rapid and efficient genetic engineering of these bacteria in the future.

  4. Southern Fireworks above ESO Telescopes

    NASA Astrophysics Data System (ADS)

    1999-05-01

    New Insights from Observations of Mysterious Gamma-Ray Burst International teams of astronomers are now busy working on new and exciting data obtained during the last week with telescopes at the European Southern Observatory (ESO). Their object of study is the remnant of a mysterious cosmic explosion far out in space, first detected as a gigantic outburst of gamma rays on May 10. Gamma-Ray Bursters (GRBs) are brief flashes of very energetic radiation - they represent by far the most powerful type of explosion known in the Universe and their afterglow in optical light can be 10 million times brighter than the brightest supernovae [1]. The May 10 event ranks among the brightest one hundred of the over 2500 GRB's detected in the last decade. The new observations include detailed images and spectra from the VLT 8.2-m ANTU (UT1) telescope at Paranal, obtained at short notice during a special Target of Opportunity programme. This happened just over one month after that powerful telescope entered into regular service and demonstrates its great potential for exciting science. In particular, in an observational first, the VLT measured linear polarization of the light from the optical counterpart, indicating for the first time that synchrotron radiation is involved . It also determined a staggering distance of more than 7,000 million light-years to this GRB . The astronomers are optimistic that the extensive observations will help them to better understand the true nature of such a dramatic event and thus to bring them nearer to the solution of one of the greatest riddles of modern astrophysics. A prime example of international collaboration The present story is about important new results at the front-line of current research. At the same time, it is also a fine illustration of a successful collaboration among several international teams of astronomers and the very effective way modern science functions. It began on May 10, at 08:49 hrs Universal Time (UT), when the Burst

  5. Remote secure observing for the Faulkes Telescopes

    NASA Astrophysics Data System (ADS)

    Smith, Robert J.; Steele, Iain A.; Marchant, Jonathan M.; Fraser, Stephen N.; Mucke-Herzberg, Dorothea

    2004-09-01

    Since the Faulkes Telescopes are to be used by a wide variety of audiences, both powerful engineering level and simple graphical interfaces exist giving complete remote and robotic control of the telescope over the internet. Security is extremely important to protect the health of both humans and equipment. Data integrity must also be carefully guarded for images being delivered directly into the classroom. The adopted network architecture is described along with the variety of security and intrusion detection software. We use a combination of SSL, proxies, IPSec, and both Linux iptables and Cisco IOS firewalls to ensure only authenticated and safe commands are sent to the telescopes. With an eye to a possible future global network of robotic telescopes, the system implemented is capable of scaling linearly to any moderate (of order ten) number of telescopes.

  6. Monitoring LMXBs with the Faulkes Telescope

    NASA Astrophysics Data System (ADS)

    Lewis, Fraser; Russell, D. M.; Fender, R. P.; Roche, P.

    The Faulkes Telescope Project is the educational arm of the Las Cumbres Observatory Global Telescope Network (LCOGT). It currently has two 2-metre robotic telescopes, located at Haleakala on Maui (FT North) and Siding Spring in Australia (FT South). It is planned to increase this to six 2-metre telescopes in the future, complemented by a network of 30-40 smaller (0.4 - 1 metre) telescopes providing 24 hour coverage of both northern and southern hemispheres. We are undertaking a monitoring project of 10 low-mass X-ray binaries (LMXBs) using FT North to study the optical continuum behaviour of X-ray transients in quiescence. The introduction of FT South in September 2006 allows us to extend this monitoring to include 17 southern hemisphere LMXBs. With new instrumentation, we also intend to expand this monitoring to include both infrared wavelengths and spectroscopy.

  7. University of California ten meter telescope project

    NASA Astrophysics Data System (ADS)

    Nelson, J. E.

    1982-10-01

    A discussion is presented of the prospective design features of the segmented, 10-m diameter optical-IR range telescope which the University of California is planning to build on Mauna Kea, Hawaii, with attention to the performance levels obtained from prototypes. The telescope primary mirror will be formed by 36 actively controlled mirror segments, which will be polished to their desired shape by stressed mirror polishing. The active control system employs displacement sensors at the edges of the mirror segments to determine their positions, which are then adjusted by three displacement actuators/segment. The telescope overall design is described as a Ritchley-Cretien f/1.75-f/15 system. The telescope's dome is highly compact, and rotates on a stationary building in the manner of conventional telescope domes.

  8. James Webb Space Telescope Project (JWST) Overview

    NASA Technical Reports Server (NTRS)

    Dutta, Mitra

    2008-01-01

    This presentation provides an overview of the James Webb Space Telescope (JWST) Project. The JWST is an infrared telescope designed to collect data in the cosmic dark zone. Specifically, the mission of the JWST is to study the origin and evolution of galaxies, stars and planetary systems. It is a deployable telescope with a 6.5 m diameter, segmented, adjustable primary mirror. outfitted with cryogenic temperature telescope and instruments for infrared performance. The JWST is several times more sensitive than previous telescope and other photographic and electronic detection methods. It hosts a near infrared camera, near infrared spectrometer, mid-infrared instrument and a fine guidance sensor. The JWST mission objection and architecture, integrated science payload, instrument overview, and operational orbit are described.

  9. The Hexa-Pod-Telescope (HPT).

    NASA Astrophysics Data System (ADS)

    Schnur, G. F. O.; Stenvers, K.-H.; Pausch, K.

    The recently completed Hexa-Pod-Telescope (HPT) presents revolutionary new ideas on astronomical telescope design. Six mechanical struts support the HPT. The length of the six struts can be varied to permit the pointing and tracking of the HPT. Supporting the optical structure of the HPT from below allows to avoid superfluous balancing weights of normal telescopes. Compared to a classical telescope of the same mirror diameter the HPT realizes a weight reduction by a factor of 15! The HPT's primary mirror is realized as a hybrid structure consisting of a light-weight Carbon-Fibre-Reinforced Plastic (CFRP) structure permanently fixed to a 55 mm thin Zerodur faceplate, that forms the reflecting surface. Piezoelectrical ceramic positioners serve as active interface between the CFRP-structure and the optical surface. The low weight and extremely good optical quality of the HPT makes it an ideal candidate for larger telescopes in space, the moon and the stratosphere.

  10. Eyeglass. 1. Very large aperture diffractive telescopes.

    PubMed

    Hyde, R A

    1999-07-01

    The Eyeglass is a very large aperture (25-100-m) space telescope consisting of two distinct spacecraft, separated in space by several kilometers. A diffractive lens provides the telescope s large aperture, and a separate, much smaller, space telescope serves as its mobile eyepiece. Use of a transmissive diffractive lens solves two basic problems associated with very large aperture space telescopes; it is inherently launchable (lightweight, packagable, and deployable) it and virtually eliminates the traditional, very tight surface shape tolerances faced by reflecting apertures. The potential drawback to use of a diffractive primary (very narrow spectral bandwidth) is eliminated by corrective optics in the telescope s eyepiece; the Eyeglass can provide diffraction-limited imaging with either single-band (Deltalambda/lambda approximately 0.1), multiband, or continuous spectral coverage.

  11. Eyeglass. 1. Very large aperture diffractive telescopes

    SciTech Connect

    Hyde, R.A.

    1999-07-01

    The Eyeglass is a very large aperture (25{endash}100-m) space telescope consisting of two distinct spacecraft, separated in space by several kilometers. A diffractive lens provides the telescope{close_quote}s large aperture, and a separate, much smaller, space telescope serves as its mobile eyepiece. Use of a transmissive diffractive lens solves two basic problems associated with very large aperture space telescopes; it is inherently launchable (lightweight, packagable, and deployable) it and virtually eliminates the traditional, very tight surface shape tolerances faced by reflecting apertures. The potential drawback to use of a diffractive primary (very narrow spectral bandwidth) is eliminated by corrective optics in the telescope{close_quote}s eyepiece; the Eyeglass can provide diffraction-limited imaging with either single-band ({Delta}{lambda}/{lambda}{approximately}0.1), multiband, or continuous spectral coverage. {copyright} 1999 Optical Society of America

  12. A telescope with augmented reality functions

    NASA Astrophysics Data System (ADS)

    Hou, Qichao; Cheng, Dewen; Wang, Qiwei; Wang, Yongtian

    2016-10-01

    This study introduces a telescope with virtual reality (VR) and augmented reality (AR) functions. In this telescope, information on the micro-display screen is integrated to the reticule of telescope through a beam splitter and is then received by the observer. The design and analysis of telescope optical system with AR and VR ability is accomplished and the opto-mechanical structure is designed. Finally, a proof-of-concept prototype is fabricated and demonstrated. The telescope has an exit pupil diameter of 6 mm at an eye relief of 19 mm, 6° field of view, 5 to 8 times visual magnification , and a 30° field of view of the virtual image.

  13. Turbidite pathways in Cascadia Basin and Tufts abyssal plain, Part A, Astoria Channel, Blanco Valley, and Gorda Basin

    USGS Publications Warehouse

    Wolf, Stephen C.; Hamer, Michael R.

    1999-01-01

    This open-file report was prepared in support of the USGS Earthquake Hazards of Cascadia Project. The primary objective of this phase of the project is to determine recurrence intervals of turbidites in Cascadia basin-floor channel systems and evaluate implications of this event record for the paleoseismic history of the Cascadia subduction zone. The purpose of this study is to determine whether the canyon/channel systems themselves are blocked or deformed in such a way that the downstream turbidite stratigraphy might be biased. To accomplish this investigation approximately 7500 kilometers of pre-existing 3.5 KHz seismic data were evaluated to determine the direction and extent of the Astoria Channel/pathway system, which originates at the base of the Astoria Fan. Additionally, distribution and thickness of turbidite sediment sequences were determined along each identified pathway. Bathymetery and distance were used to determine gradients along the main pathway axis and for each of the secondary pathways that feed into it. Channel pathways were identified on the basis of channel phyisiography, where visible at the seafloor, subbottom channel configuration, and acoustic packets of sediments that might represent turbidite deposits. A principal result of this study is that the Astoria Channel/pathway extends continuously from the base of the Astoria Fan southward along the base of the continental slope through the Blanco Valley, then heads southwestward through the Gorda Basin and into the region of the Escanaba Trough. Additionally it was determined that the Astoria Channel is filled and basically buried for it's full length south of 44 degrees latitude. The 44 North Slump, as defined by Goldfinger (1999, see Map 3 ref.), may have been instrumental in blocking the pathway and thus contributed to the filling of the channel/pathway. Sheets 1 and 2 show the Astoria and secondary turbidite pathways highlighted in blue. Ship survey tracklines are shown for the area

  14. ALMA Telescope Reaches New Heights

    NASA Astrophysics Data System (ADS)

    2009-09-01

    ball at a distance of nine miles, and to keep their smooth reflecting surfaces accurate to less than the thickness of a human hair. Once the transporter reached the high plateau it carried the antenna to a concrete pad -- a docking station with connections for power and fiber optics -- and positioned it with an accuracy of a small fraction of an inch. The transporter is guided by a laser steering system and, just like some cars, also has ultrasonic collision detectors. These sensors ensure the safety of the state-of-the-art antennas as the transporter drives them across what will soon be a rather crowded plateau. Ultimately, ALMA will have at least 66 antennas distributed over about 200 pads, spread over distances of up to 11.5 miles and operating as a single, giant telescope. Even when ALMA is fully operational, the transporters will be used to move the antennas between pads to reconfigure the telescope for different kinds of observations. This first ALMA antenna at the high site will soon be joined by others, and the ALMA team looks forward to making their first observations from the Chajnantor plateau. They plan to link three antennas by early 2010, and to make the first scientific observations with ALMA in the second half of 2011. ALMA will help astronomers answer important questions about our cosmic origins. The telescope will observe the Universe using light with millimeter and submillimeter wavelengths, between infrared light and radio waves in the electromagnetic spectrum. Light at these wavelengths comes from some of the coldest, and from some of the most distant objects in the cosmos. These include cold clouds of gas and dust where new stars are being born, or remote galaxies towards the edge of the observable universe. The Universe is relatively unexplored at submillimeter wavelengths, as the telescopes need extremely dry atmospheric conditions, such as those at Chajnantor, and advanced detector technology. The Atacama Large Millimeter/submillimeter Array

  15. Beyond the Hubble Space Telescope: Early Development of the Next Generation Space Telescope

    NASA Astrophysics Data System (ADS)

    Smith, Robert W.; Patrick McCray, W.

    In this paper we investigate the early history of what was at first called the Next Generation Space Telescope, later to be renamed the James Webb Space Telescope. We argue that the initial ideas for such a Next Generation Space Telescope were developed in the context of the planning for a successor to the Hubble Space Telescope. Much the most important group of astronomers and engineers examining such a successor was based at the Space Telescope Science Institute in Baltimore. By the late 1980s, they had fashioned concepts for a successor that would work in optical, ultraviolet and infrared wavelengths, concepts that would later be regarded as politically unrealistic given the costs associated with them. We also explore how the fortunes of the planned Next Generation Space Telescope were intimately linked to that of its "parent," the Hubble Space Telescope.

  16. A new telescope control system for the Telescopio Nazionale Galileo: I - derotators

    NASA Astrophysics Data System (ADS)

    Ghedina, Adriano; Gonzalez, Manuel; Perez Ventura, Hector; Carmona, Candido; Riverol, Luis

    2014-07-01

    Telescopio Nazionale Galileo (TNG) is a 4m class active optics telescope at the observatory of Roque de Los Muchachos. In the framework of keeping optimum performances during observation and continuous reliability the telescope control system (TCS) of the TNG is going through a deep upgrade after nearly 20 years of service. The original glass encoders and bulb lamp heads are substituted with modern steel scale drums and scanning units. The obsolete electronic racks and computers for the control loops are replaced with modern and compact commercial drivers with a net improvement in the tracking error RMS. In order to minimize the impact on the number of nights lost during the mechanical and electronic changes in the TCS the new TCS is developed and tested in parallel to the existing one and three steps will be taken to achieve the full upgrade. We describe here the first step affecting the mechanical derotators at the Nasmyth foci.

  17. High-resolution CCD spectra of stars in globular clusters. III - M4, M13, and M22

    NASA Technical Reports Server (NTRS)

    Wallerstein, George; Leep, E. Myckky; Oke, J. B.

    1987-01-01

    Spectra of 0.3 and 0.6 A resolution of stars in M4, M13 and M22 to derive abundances of various atomic species and the CN molecule. For M13, the usual Fe/H ratio and a surprisingly high aluminum abundance is found. The CN lines indicate a larger column density in the oxygen-rich star III-63 than in the oxygen-poor star II-67 by a factor of 10. It appears that II-67 is deficient in C, N, and O by about a factor 3 relative to iron for all three elements. For M4, Fe/H = -1.2 using solar f values derived via the Bell et al. (1976) model. This Fe abundance lies between earlier echelle values and photometric values. For two stars, CN data are obtained that can be understood if there was a slight excess of C/Fe and N/Fe prior to CN cycling and mixing. For M22, a large difference in CN is found between stars III-3 and IV-102. The origin of the CNO elements is discussed in terms of mass loss from an early generation of red giants and possibly Wolf-Rayet stars.

  18. Mass-analyzed threshold ionization and structural isomers of M3O4 (M = Sc, Y, and La)

    NASA Astrophysics Data System (ADS)

    Wu, Lu; Zhang, Changhua; Krasnokutski, Serge A.; Yang, Dong-Sheng

    2012-08-01

    M3O4 (M = Sc, Y, and La) were produced in a pulsed laser-vaporization molecular beam source and studied by mass-analyzed threshold ionization (MATI) spectroscopy and electronic structure calculations. Adiabatic ionization energies (AIEs) of the neutral clusters and vibrational frequencies of the cations were measured accurately for the first time from the MATI spectra. Five possible structural isomers of M3O4 were considered in the calculations and spectral analysis. A cage-like structure in C3v point group was identified as the most stable one. The structure is formed by fusing three M2O2 fragments together, each sharing two O-M bonds with others. The ground electronic state of the neutral clusters is 2A1 with the unpaired electron being largely a metal-based s character. Ionization of the 2A1 state yields a 1A1 ion state in a similar geometry to the neutral cluster. The AIEs of the clusters are 4.4556 (6), 4.0586(6), and 3.4750(6) eV for M = Sc, Y, and La, respectively. The observed vibrational modes of the cations include metal-oxygen stretching, metal triangle breathing, and oxygen-metal-oxygen rocking in the frequency range of 200-800 cm-1.

  19. Loss of CD4 membrane expression and CD4 mRNA during acute human immunodeficiency virus replication

    PubMed Central

    1988-01-01

    Using mAbs and genomic probe to the CD4 molecule, the HIV receptor, we demonstrated that HIV replication induces the disappearance of its functional receptor from the cell surface by two distinct mechanisms. First, after being expressed onto the cell surface, HIV envelope gp110 will complex CD4, efficiently masking the CD4 epitope used by the virus to bind its receptor. This phenomenon occurs on the surface of each infected cell and is not due to the release of soluble gp110; infection with recombinant HIV/vaccinia viruses expressing a mutated HIV env gene designed to prevent gp110 release from the cell surface induces a similar gp/CD4 complexes formation. Second, virus replication induces a dramatic and rapid loss of CD4 mRNA transcripts, preventing new CD4 molecules from being synthesized. These two mechanisms of receptor modulation could have been developed to avoid reinfection of cells replicating the virus as well as to produce more infectious particles. These results suggest that the classical virus interference documented for other retroviruses might not only be due to receptor/envelope interaction, but might also depend on receptor gene expression. PMID:3264318

  20. Structural and diffuse reflectance study of Ca(1-x)Co(x)MO4 (M=W, Mo).

    PubMed

    Buvaneswari, G; Valsalan, Keerthi

    2014-04-24

    Precipitation and combustion routes have been followed in the synthesis of Co substituted scheelite phases of the formula Ca1-xCoxMO4 (M=W, Mo). Phase analysis by powder XRD techniques indicated that precipitation method resulted in pure tetragonal scheelite phase formation in the case of compositions Ca1-xCoxMO4 (x=0.1, 0.2, 0.3) and Ca1-xCoxMO4 (x=0.1, 0.2, 0.5). While in combustion method, pure tetragonal structure phase was obtained only for the composition with x=0.1 in both the cases. As evidenced from the SEM analysis that the precipitation method lead to the formation of microballs and the combustion route yielded powder of dispersed particles in the case of Ca0.9Co0.1WO4 and Ca0.9Co0.1MoO4. Similarly, the method of synthesis influenced the color of the above two phases. The colorimetric data revealed the difference in the color hues of the phases with increase in cobalt content in both W and Mo series.

  1. Healthy older observers cannot use biological-motion point-light information efficiently within 4 m of themselves

    PubMed Central

    Legault, Isabelle; Troje, Nikolaus F; Faubert, Jocelyn

    2012-01-01

    Healthy aging is associated with a number of perceptual changes, but measures of biological-motion perception have yielded conflicting results. Biological motion provides information about a walker, from gender and identity to speed, direction, and distance. In our natural environment, as someone approaches us (closer distances), the walker spans larger areas of our field of view, the extent of which can be underutilized with age. Yet, the effect of age on biological-motion perception in such real-world scenarios remains unknown. We assessed the effect of age on discriminating walking direction in upright and inverted biological-motion patterns, positioned at various distances in virtual space. Findings indicate that discrimination is worse at closer distances, an effect exacerbated by age. Older adults’ performance decreases at distances as far away as 4 m, whereas younger adults maintain their performance as close as 1 m (worse at 0.5 m). This suggests that older observers are limited in their capacity to integrate information over larger areas of the visual field and supports the notion that age-related effects are more apparent when larger neural networks are required to process simultaneous information. This has further implications for social contexts where information from biological motion is critical. PMID:23145271

  2. Fabrication of Fe3O4@mSiO2 Core-Shell Composite Nanoparticles for Drug Delivery Applications

    NASA Astrophysics Data System (ADS)

    Uribe Madrid, Sergio I.; Pal, Umapada; Kang, Young Soo; Kim, Junghoon; Kwon, Hyungjin; Kim, Jungho

    2015-05-01

    We report the synthesis of Fe3O4@mSiO2 nanostructures of different meso-silica (mSiO2) shell thickness, their biocompatibility and behaviors for loading and release of a model drug ibuprofen. The composite nanostructures have superparamagnetic magnetite cores of 208 nm average size and meso-silica shells of 15 to 40 nm thickness. A modified Stöber method was used to grow the meso-silica shells over the hydrothermally grown monodispersed magnetite particles. The composite nanoparticles show very promising drug holding and releasing behaviors, which depend on the thickness of meso-silica shell. The biocompatibility of the meso-silica-coated and uncoated magnetite nanoparticles was tested through cytotoxicity assay on breast cancer (MCF-7), ovarian cancer (SKOV3), normal human lung fibroblasts MRC-5, and IMR-90 cells. The high drug holding capacity and reasonable biocompatibility of the nanostructures make them ideal agents for targeted drug delivery applications in human body.

  3. Modelling potential photovoltaic absorbers Cu3MCh4(M = V, Nb, Ta; Ch = S, Se, Te) using density functional theory.

    PubMed

    Kehoe, Aoife B; Scanlon, David O; Watson, Graeme W

    2016-05-05

    The geometric and electronic properties of a series of potential photovoltaic materials, the sulvanite structured Cu3MCh4(M = V, Nb, Ta; Ch = S, Se, Te), have been computationally examined using both PBEsol+U and HSE06 methods to assess the materials' suitability for solar cell application and to compare the predictions of the two theoretical approaches. The lattice parameters, electronic density of states, and band gaps of the compounds have been calculated to ascertain the experimental agreement obtained by each method and to determine if any of the systems have an optical band gap appropriate for photovoltaic absorber materials. The PBEsol+U results are shown to achieve better agreement with experiment than HSE06 in terms of both lattice constants and band gaps, demonstrating that higher level theoretical methods do not automatically result in a greater level of accuracy than their computationally less expensive counterparts. The PBEsol+U calculated optical band gaps of five materials suggest potential suitability as photovoltaic absorbers, with values of 1.72 eV, 1.49 eV, 1.19 eV, 1.46 eV, and 1.69 eV for Cu3VS4, Cu3VSe4, Cu3VTe4, Cu3NbTe4, and Cu3TaTe4, respectively, although it should be noted that all fundamental band gaps are indirect in nature, which could lower the open-circuit voltage and hence the efficiency of prospective devices.

  4. Fabrication and test of 4m long Nb3Sn quadrupole coil made of RRP-114-127 strand

    SciTech Connect

    Bossert, R.; Ambrosio, G.; Andreev, N.; Barzi, E.; Chlachidze, G.; Kashikhin, V.V.; Lamm, M.; Nobrega, A.; Novitski, I.; Orris, D.; Tartaglia, M.; /Fermilab

    2011-06-01

    Fermilab is collaborating with LBNL and BNL (US-LARP collaboration) to develop a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. Several two-layer quadrupole models of the 1-meter and 3.4-meter length with 90mm apertures have been fabricated and tested by the US-LARP collaboration. High-Jc RRP-54/61 strand was used for nearly all models. Large flux jumps typical for this strand due to the large sub-element diameter limited magnet quench performance at temperatures below 2.5-3K. This paper summarizes the fabrication and test by Fermilab of LQM01, a long quadrupole coil test structure (quadrupole mirror) with the first 3.4m quadrupole coil made of more stable RRP-114/127 strand. The coil and structure are fully instrumented with voltage taps, full bridge strain gauges and strip heaters to monitor preload, thermal properties and quench behavior. Measurements during fabrication are reported, including preload during the yoke welding process. Testing is done at 4.5K, 1.9K and a range of intermediate temperatures. The test results include magnet strain and quench performance during training, as well as quench studies of current ramp rate and temperature dependence from 1.9K to 4.5K.

  5. Fabrication and test of 4M long Nb3SN quadrupole coil made of RRP-114/127 strand

    NASA Astrophysics Data System (ADS)

    Bossert, Rodger; Ambrosio, G.; Andreev, Nikolai; Barzi, Emanuela; Chlachidze, Guram; Kashikhin, Vadim; Lamm, Michael; Nobrega, Alfred; Novitski, Igor; Orris, Darryl; Tartaglia, Mike; Turrioni, Daniele; Yamada, Ryuji; Zlobin, Alexander

    2012-06-01

    Fermilab is collaborating with Lawrence Berkeley National Laboratory (LBNL) and Brookhaven National Laboratory (BNL) within the US-LHC Accelerator Research Project (US-LARP collaboration) to develop a large-aperture Nb3SN superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. Several two-layer quadrupole models of the 1-meter and 3.4-meter length with 90 mm apertures have been fabricated and tested by the US-LARP collaboration. High-Jc Nb3SN RRP-54/61 strand was used for nearly all models. Large flux jumps typical for this strand, due to the large sub-element diameter, limited magnet quench performance at temperatures below 2.5-3K. This paper summarizes the fabrication and test by Fermilab of LQM01, a long quadrupole coil test structure (quadrupole mirror) with the first 3.4 m quadrupole coil made of more stable RRP-114/127 strand. The coil and structure are fully instrumented with voltage taps, full bridge strain gauges and strip heaters to monitor preload, thermal properties and quench behavior. Measurements during fabrication are reported, including preload during the yoke welding process. Testing is done at 4.5 K, 1.9 K and a range of intermediate temperatures. The test results include magnet strain and quench performance during training, as well as quench studies of current ramp rate and temperature dependence from 1.9 K to 4.5 K.

  6. The first critical experiment with a LEU Russian fuel IRT-4M at the training reactor VR-1

    SciTech Connect

    Frybort, Jan

    2008-07-15

    A critical experiment is a standard part of training of students at the Training Reactor VR-1 operated within the Faculty of Nuclear Sciences and Physical Engineering at the Czech Technical University in Prague. In autumn 2005 the HEU fuel IRT-3M with enrichment 36 % {sup 235}U was replaced by the LEU fuel IRT-4M with enrichment 19.7 % {sup 235}U. The fuel replacement at the VR-1 Reactor is a part of an international program RERTR. This Paper presents basic information about preparation for the fuel replacement and approaching of the first critical state with the new zone configuration C1 which replaced B1 core with the old IRT-3M fuel. The whole process was carried out according to the Czech law and the relevant international recommendations. The experience with the VR-1 operation confirms the assumption that the C1 core configuration will be suitable from the point of view of the reactivity balance for the long term safe operation of the Training Reactor VR-1. (author)

  7. Future prospects for spectroscopic and direct work - Optical and UV. [astronomical observations with Space Telescope

    NASA Technical Reports Server (NTRS)

    Burbidge, E. M.

    1978-01-01

    A description of the main features and proposed instrumentation of the 2.4 m Space Telescope is given. Highlights of work that can be planned on active nuclei of galaxies, QSOs, and BL Lac objects are briefly outlined, involving spectroscopy over wavelengths from 1200 A to 1 mm, direct imaging with 0.1 sec resolution, and the capability for 0.1 sec resolution along the spectrograph slit. The resolution, the much reduced sky background, and the full wavelength coverage also make possible important observations relevant to cosmology.

  8. Infrastructure for large space telescopes

    NASA Astrophysics Data System (ADS)

    MacEwen, Howard A.; Lillie, Charles F.

    2016-10-01

    It is generally recognized (e.g., in the National Aeronautics and Space Administration response to recent congressional appropriations) that future space observatories must be serviceable, even if they are orbiting in deep space (e.g., around the Sun-Earth libration point, SEL2). On the basis of this legislation, we believe that budgetary considerations throughout the foreseeable future will require that large, long-lived astrophysics missions must be designed as evolvable semipermanent observatories that will be serviced using an operational, in-space infrastructure. We believe that the development of this infrastructure will include the design and development of a small to mid-sized servicing vehicle (MiniServ) as a key element of an affordable infrastructure for in-space assembly and servicing of future space vehicles. This can be accomplished by the adaptation of technology developed over the past half-century into a vehicle approximately the size of the ascent stage of the Apollo Lunar Module to provide some of the servicing capabilities that will be needed by very large telescopes located in deep space in the near future (2020s and 2030s). We specifically address the need for a detailed study of these servicing requirements and the current proposals for using presently available technologies to provide the appropriate infrastructure.

  9. Telescopes for the 1980s

    NASA Astrophysics Data System (ADS)

    Neugebauer, G.

    In the last decades, astronomy has been changed in a number of significant ways. The number of large optical telescopes with diameters on the order of or larger than 2.3 m has increased from 3 shortly after World War II to about 20 at the present time. Whereas prewar astronomy was largely devoted to the visual wavelengths (0.3-0.8 μm), astronomical observations currently span the range from γ ray wavelengths to the longest radio wavelengths. Most significantly, astronomy outside conventional optical astronomy has developed into sophisticated disciplines rather than experimental explorations. Many of the observational advances at the forefront of astronomy now come from other than visual observations. Along with these changes have come fundamental changes in visual astronomy itself. Observations with photographic plates are the exception rather than the rule at most large observatories. Instead, electronic cameras are in common use. A second change, especially in the United States, is that the funding has gone from largely private funding (e.g., the Carnegie Institution of Washington) to funding with the government providing a main share of the support. Indeed, the government has provided the total funding for those disciplines, like X ray astronomy, which use space-borne platforms. These changes have also affected the character of doing astronomy, and astronomers have become much more politically active on the national science scene.

  10. Parallaxes with Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Benedict, G. F.; McArthur, B. E.; Harrison, T. E.; Lee, J.; Slesnick, C. L.; HST Astrometry Science Team

    2001-11-01

    We report on parallaxes for astrophysically interesting stars obtained with the Fine Guidance Sensor interferometer on Hubble Space Telescope. These objects include the central star of the planetary nebula NGC 6853, the cataclysmic variable TV Col, and the distance scale calibrators RR Lyr and delta Cep. We will discuss our considerable efforts to characterize the reference stars associated with each prime target, necessary to effect the correction from relative to absolute parallax. These targets were originally chosen by L. W. Fredrick in 1980. We compare these and our past results with all past, non-HST determinations, including those from HIPPARCOS for our brighter targets. The HST Astrometry Sceince Team consists of W. H. Jefferys , P.I., G. F. Benedict, deputy P.I., B. E. McArthur, P. J. Shelus, R. Duncombe (UTexas), E. Nelan (STScI), W. van Altena and J. Lee (Yale), O. Franz and L. Wasserman (Lowell Obs.), and L. Fredrick (UVirginia). We gratefully acknowledge the support of NASA grant NAG5-1603 and our many supporters at STScI and Goddard Spaceflight Center. We thank R. Patterson, J. Rhee, and S. Majewski (UVirginia) and T. Montemayor (UTexas) for assistance with reference star photometry.

  11. Celestial Objects for Common Telescopes

    NASA Astrophysics Data System (ADS)

    Webb, Thomas William

    2010-06-01

    Introduction; Part I. The Instrument and the Observer: 1. The telescope; 2. The mode of observation; Part II. The Solar System: 1. The Sun; 2. Mercury; 3. Venus; 4. The Moon; 5. Index to the map of the moon; 6. Mars; 7. Jupiter; 8. Saturn; 9. Uranus and Neptune; 10. Comets; Part III. The Starry Heavens: 1. Double stars, clusters, and nebulae; 2. Andromeda; 3. Anser; 4. Antinous; 5. Aquarius; 6. Aquila; 7. Argo Navis; 8. Aries; 9. Auriga; 10. Boötes; 11. Camelopardus; 12. Cancer; 13. Canes Venatici; 14. Canis Major; 15. Canis Minor; 16. Capricornus; 17. Cassiopea; 18. Cepheus; 19. Cetus; 20. Clypeus Sobieskii; 21. Coma Berenices; 22. Corona Borealis; 23. Corvus; 24. Crater; 25. Cygnus; 26. Delphinus; 27. Draco; 28. Equuleus; 29. Eridanus; 30. Gemini; 31. Hercules; 32. Hydra; 33. Lacerta; 34. Leo; 35. Leo Minor; 36. Lepus; 37. Libra; 38. Lynx; 39. Lyra; 40. Monoceros; 41. Ophiuchus; 42. Orion; 43. Pegasus; 44. Perseus; 45. Pisces; 46. Sagitta; 47. Sagittarius; 48. Scorpio; Scutum, see Clypeus, Sobieskii; 49. Serpens; 50. Sextans; 51. Taurus; 52. Taurus Poniatowskii; 53. Triangulum; 54. Ursa Major; 55. Ursa Minor; 56. Virgo; 57. Vulpecula.

  12. Parametric Cost Models for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtney

    2010-01-01

    Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.

  13. OPTICAL REDSHIFT AND RICHNESS ESTIMATES FOR GALAXY CLUSTERS SELECTED WITH THE SUNYAEV-Zel'dovich EFFECT FROM 2008 SOUTH POLE TELESCOPE OBSERVATIONS

    SciTech Connect

    High, F. W.; Stalder, B.; Song, J.; Ade, P. A. R.; Aird, K. A.; Allam, S. S.; Buckley-Geer, E. J.; Armstrong, R.; Barkhouse, W. A.; Benson, B. A.; Bertin, E.; Bhattacharya, S.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Brodwin, M.; Challis, P.; De Haan, T.

    2010-11-10

    We present redshifts and optical richness properties of 21 galaxy clusters uniformly selected by their Sunyaev-Zel'dovich (SZ) signature. These clusters, plus an additional, unconfirmed candidate, were detected in a 178 deg{sup 2} area surveyed by the South Pole Telescope (SPT) in 2008. Using griz imaging from the Blanco Cosmology Survey and from pointed Magellan telescope observations, as well as spectroscopy using Magellan facilities, we confirm the existence of clustered red-sequence galaxies, report red-sequence photometric redshifts, present spectroscopic redshifts for a subsample, and derive R{sub 200} radii and M{sub 200} masses from optical richness. The clusters span redshifts from 0.15 to greater than 1, with a median redshift of 0.74; three clusters are estimated to be at z>1. Redshifts inferred from mean red-sequence colors exhibit 2% rms scatter in {sigma}{sub z}/(1 + z) with respect to the spectroscopic subsample for z < 1. We show that the M{sub 200} cluster masses derived from optical richness correlate with masses derived from SPT data and agree with previously derived scaling relations to within the uncertainties. Optical and infrared imaging is an efficient means of cluster identification and redshift estimation in large SZ surveys, and exploiting the same data for richness measurements, as we have done, will be useful for constraining cluster masses and radii for large samples in cosmological analysis.

  14. Ground-Based Telescope Parametric Cost Model

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.

  15. Hubble Space Telescope Primer for Cycle 21

    NASA Astrophysics Data System (ADS)

    Gonzaga, S.; et al.

    2012-12-01

    The Hubble Space Telescope Primer for Cycle 21 is a companion document to the HST Call for Proposals1. It provides an overview of the Hubble Space Telescope (HST), with basic information about telescope operations, instrument capabilities, and technical aspects of the proposal preparation process. A thorough understanding of the material in this document is essential for the preparation of a competitive proposal. This document is available as an online HTML document and a PDF file. The HTML version, optimized for online browsing, contains many links to additional information. The PDF version is optimized for printing, but online PDF readers have search capabilities for quick retrieval of specific information.

  16. Dual-Channel Multi-Purpose Telescope

    NASA Technical Reports Server (NTRS)

    Howard, Joseph M.; Content, David

    2009-01-01

    A dual-channel telescope allows for a wide-field telescope design wit h a good, narrow field channel of fewer surfaces for shorter-wavelen gth or planet-finding applications. The design starts with a Korsch three-mirror-anastigmat (TMA) telescope that meets the mission criter ia for image quality over a wide field of view. The internal image a t the Cassegrain focus is typically blurry due to the aberration bala ncing among the three mirrors. The Cassegrain focus is then re-optim ized on the axis of the system where the narrow field channel instru ment is picked off by bending the primary mirror.

  17. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  18. General surface equations for glancing incidence telescopes

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.

    1987-01-01

    A generalized set of equations are derived for two mirror glancing incidence telescopes using Fermat's principle, a differential form of the law of reflection, the generalized sine condition, and a ray propagation equation described in vector form as a theoretical basis. The resulting formulation groups the possible telescope configurations into three distinct classes which are the Wolter, Wolter-Schwarzschild, and higher-order telescopes in which the Hettrick-Bowyer types are a subset. Eight configurations are possible within each class depending on the sign and magnitude of the parameters.

  19. NASA capabilities roadmap: advanced telescopes and observatories

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D.

    2005-01-01

    The NASA Advanced Telescopes and Observatories (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories collecting all electromagnetic bands, ranging from x-rays to millimeter waves, and including gravity-waves. It has derived capability priorities from current and developing Space Missions Directorate (SMD) strategic roadmaps and, where appropriate, has ensured their consistency with other NASA Strategic and Capability Roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  20. New technology for large optical telescopes

    NASA Astrophysics Data System (ADS)

    de Jonge, M. J.

    1983-05-01

    A recurrent topic arising in the discussions about new generation large optical telescopes is related to the economic advantages of lightweight reflector surfaces. A description is given of new technologies which might be suited for the construction of lightweight telescopes of low cost. One technology involves the use of sandwich structures, which include aluminum layers, separated by aluminum honeycomb layers. The availability of these structures, which have been developed for aircraft manufacture, has led various groups to study the feasibility of a use of sandwich materials for the manufacture of highly accurate reflecting surfaces, as required for millimeter and submillimeter wave telescopes. The results of these studies are discussed.

  1. MI-6: Michigan interferometry with six telescopes

    NASA Astrophysics Data System (ADS)

    Monnier, John D.; Anderson, M.; Baron, F.; Berger, D. H.; Che, X.; Eckhause, T.; Kraus, S.; Pedretti, E.; Thureau, N.; Millan-Gabet, R.; ten Brummelaar, T.; Irwin, P.; Zhao, M.

    2010-07-01

    Based on the success of four-telescope imaging with the Michigan Infrared Combiner (MIRC) on the CHARA Array, our Michigan-based group will now upgrade our system to combine all six CHARA telescope simultaneously. In order to make this observationally efficient, we have had to improve a number of subsystems and commission new ones, including the new CHAMP fringe tracker, the introduction of photometric channels, the upgrading of the realtime operating systems, and the obvious hardware and software upgrades of the control system and the data pipeline. Here we will discuss the advantages of six-telescope operation, outline our upgrade plans and discuss our current progress.

  2. Design analysis of the astrometrical telescope facility

    NASA Technical Reports Server (NTRS)

    Huang, Chunsheng; Lawrence, George; Levy, Eugene; Mcmillan, Robert

    1989-01-01

    This paper presents a detailed analysis of a space-based telescope requiring an accuracy of 50 pico radians. A relationship between the geometric centroid of a diffraction image and wave aberrations is derived by a combination approach of diffraction optics and geometric optics. Based on sensitivity of the centroid, one-mirror and two-mirror aplanatic telescopes are investigated. The comparison among three telescopes, parabola, Schwartzschild and Ritchey-Chretien are quantitatively carried out in terms of their sensitivities to the systematic errors and random errors. The study shows that the Ritchey-Chretien design is the most preferable.

  3. Dynamics and Control for a Small Telescope

    NASA Astrophysics Data System (ADS)

    Berná, J. A.; Pérez, M.; Bernabeu, G.

    1998-06-01

    Our main goal is to determine the dynamic equations of a certain complex system, as is the case of the mechanical system for a small aperture telescope. Causes of this complexity are: the lack of documents about the operation of the elements belonging to the system, and the variation of dynamics with respect to the time and the position of the telescope. To check that we have obtained a valid set of dynamic equations, we will design a computer control system that will implement a self-guide system for the telescope.

  4. Support structures for large infrared telescopes

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.

    1984-01-01

    An infrared telescope requires an accuracy of its reflecting surfaces of less than a micrometer. Future missions may require such accuracy from telescopes that are 20 meters or larger in diameter. The structure for supporting such a telescope will most probably take the form of a deep truss. Various approaches for constructing the primary mirror in space are illustrated. One that employs automated deployment of interconnected reflector-structure modules was described in detail. Estimates were made of the precision obtainable with properly configured truss structures and the required ability of active control systems for achieving the desired accuracy.

  5. HAT-P-16b: A 4 M J Planet Transiting a Bright Star on an Eccentric Orbit

    NASA Astrophysics Data System (ADS)

    Buchhave, L. A.; Bakos, G. Á.; Hartman, J. D.; Torres, G.; Kovács, G.; Latham, D. W.; Noyes, R. W.; Esquerdo, G. A.; Everett, M.; Howard, A. W.; Marcy, G. W.; Fischer, D. A.; Johnson, J. A.; Andersen, J.; Fűrész, G.; Perumpilly, G.; Sasselov, D. D.; Stefanik, R. P.; Béky, B.; Lázár, J.; Papp, I.; Sári, P.

    2010-09-01

    We report the discovery of HAT-P-16b, a transiting extrasolar planet orbiting the V = 10.8 mag F8 dwarf GSC 2792-01700, with a period P = 2.775960 ± 0.000003 days, transit epoch Tc = 2455027.59293 ± 0.00031 (BJD10), and transit duration 0.1276 ± 0.0013 days. The host star has a mass of 1.22 ± 0.04 M sun, radius of 1.24 ± 0.05 R sun, effective temperature 6158 ± 80 K, and metallicity [Fe/H] = +0.17 ± 0.08. The planetary companion has a mass of 4.193 ± 0.094 M J and radius of 1.289 ± 0.066 R J, yielding a mean density of 2.42 ± 0.35 g cm-3. Comparing these observed characteristics with recent theoretical models, we find that HAT-P-16b is consistent with a 1 Gyr H/He-dominated gas giant planet. HAT-P-16b resides in a sparsely populated region of the mass-radius diagram and has a non-zero eccentricity of e = 0.036 with a significance of 10σ. Based in part on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Based in part on observations obtained at the W. M. Keck Observatory, which is operated by the University of California and the California Institute of Technology. Keck time has been granted by NASA (N018Hr).

  6. A broad band imager for the European Solar Telescope

    NASA Astrophysics Data System (ADS)

    Munari, Matteo; Scuderi, Salvatore; Cecconi, Massimo

    2012-09-01

    We report on the results of the conceptual design study of a broad band imager for the European Solar Telescope (EST), a joint project of several European research institutes to design and realize a 4-m class solar telescope. The EST broad band imager is an imaging instrument whose function is to obtain diffraction limited images over the full field of view of EST at multiple wavelengths and high frame rate. Its scientific objective is the study of fundamental astrophysical processes at their intrinsic scales in the Sun's atmosphere. The optical layout foresee two observational modes: a maximum field of view mode and a high resolution mode. The imager will have a 2'x2' corrected field of view in the first mode and an angular resolution better than 0.04" at 500nm in the latter mode. The imager will cover a wavelength range spanning from 390nm to 900nm through a number of filters with bandpasses between 0.05nm and 0.5nm. The selected optical layout is an all refractive design. To optimize optical performances and throughput there will be two arms working simultaneously: a blue arm (covering the 380nm - 500nm range) and a red arm (600nm - 900nm). The blue arm will have two channels while the red arm only one. Each channel will be divided in three subchannels: one will host narrow band filters for chromospheric observations, another one, in focus wide band filters used as reference for speckle reconstruction and photospheric observations, and the last one, out of focus wide band filters for phase diversity reconstruction of photospheric observations.

  7. HIGH-PRECISION ASTROMETRY WITH A DIFFRACTIVE PUPIL TELESCOPE

    SciTech Connect

    Guyon, Olivier; Eisner, Josh A.; Angel, Roger; Woolf, Neville J.; Bendek, Eduardo A.; Milster, Thomas D.; Mark Ammons, S.; Shao, Michael; Shaklan, Stuart; Levine, Marie; Nemati, Bijan; Pitman, Joe; Woodruff, Robert A.; Belikov, Ruslan

    2012-06-01

    Astrometric detection and mass determination of Earth-mass exoplanets require sub-{mu}as accuracy, which is theoretically possible with an imaging space telescope using field stars as an astrometric reference. The measurement must, however, overcome astrometric distortions, which are much larger than the photon noise limit. To address this issue, we propose to generate faint stellar diffraction spikes using a two-dimensional grid of regularly spaced small dark spots added to the surface of the primary mirror (PM). Accurate astrometric motion of the host star is obtained by comparing the position of the spikes to the background field stars. The spikes do not contribute to scattered light in the central part of the field and therefore allow unperturbed coronagraphic observation of the star's immediate surroundings. Because the diffraction spikes are created on the PM and imaged on the same focal plane detector as the background stars, astrometric distortions affect equally the diffraction spikes and the background stars and are therefore calibrated. We describe the technique, detail how the data collected by the wide-field camera are used to derive astrometric motion, and identify the main sources of astrometric error using numerical simulations and analytical derivations. We find that the 1.4 m diameter telescope, 0.3 deg{sup 2} field we adopt as a baseline design achieves 0.2 {mu}as single measurement astrometric accuracy. The diffractive pupil concept thus enables sub-{mu}as astrometry without relying on the accurate pointing, external metrology, or high-stability hardware required with previously proposed high-precision astrometry concepts.

  8. Advanced Mirror Technology Development for Very Large Space Telescopes

    NASA Astrophysics Data System (ADS)

    Stahl, H. P.

    2014-01-01

    Advanced Mirror Technology Development (AMTD) is a NASA Strategic Astrophysics Technology project to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. The developed mirror technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. Just as JWST’s architecture was driven by launch vehicle, a future UVOIR mission’s architectures (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, to provide the science community with options, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We derived engineering specifications for potential future monolithic or segmented space telescopes based on science needs and implement constraints. And we are maturing six inter-linked critical technologies to enable potential future large aperture UVOIR space telescope: 1) Large-Aperture, Low Areal Density, High Stiffness Mirrors, 2) Support Systems, 3) Mid/High Spatial Frequency Figure Error, 4) Segment Edges, 5) Segment-to-Segment Gap Phasing, and 6) Integrated Model Validation Science Advisory Team and a Systems Engineering Team. We are maturing all six technologies simultaneously because all are required to make a primary mirror assembly (PMA); and, it is the PMA’s on-orbit performance which determines science return. PMA stiffness depends on substrate and support stiffness. Ability to cost-effectively eliminate mid/high spatial figure errors and polishing edges depends on substrate stiffness. On-orbit thermal and mechanical performance depends on substrate stiffness, the coefficient of thermal expansion (CTE) and thermal mass. And, segment-to-segment phasing depends on substrate & structure stiffness

  9. Daniel K. Inouye Solar Telescope: Overview and Status

    NASA Astrophysics Data System (ADS)

    Rimmele, Thomas; McMullin, Joseph; Warner, Mark; Craig, Simon; Woeger, Friedrich; Tritschler, Alexandra; Cassini, Roberto; Kuhn, Jeff; Lin, Haosheng; Schmidt, Wolfgang; Berukoff, Steve; Reardon, Kevin; Goode, Phil; Knoelker, Michael; Rosner, Robert; Mathioudakis, Mihalis; DKIST TEAM

    2015-08-01

    The 4m Daniel K. Inouye Solar Telescope (DKIST) currently under construction on Haleakala, Maui will be the world’s largest solar telescope. Designed to meet the needs of critical high resolution and high sensitivity spectral and polarimetric observations of the sun, this facility will perform key observations of our nearest star that matters most to humankind. DKIST’s superb resolution and sensitivity will enable astronomers to unravel many of the mysteries the Sun presents, including the origin of solar magnetism, the mechanisms of coronal heating and drivers of the solar wind, flares, coronal mass ejections and variability in solar output. The all-reflecting, off-axis design allows the facility to observe over a broad wavelength range and enables DKIST to operate as a coronagraph. In addition, the photon flux provided by its large aperture will be capable of routine and precise measurements of the currently elusive coronal magnetic fields. The state-of-the-art adaptive optics system provides diffraction limited imaging and the ability to resolve features approximately 20 km on the Sun. Five first light instruments, representing a broad community effort, will be available at the start of operations: Visible Broadband Imager (National Solar Observatory), Visible Spectro-Polarimeter (High Altitude Observatory), Visible Tunable Filter (Kiepenheuer Institute, Germany), Diffraction Limited NIR Spectro-Polarimeter (University of Hawaii) and the Cryogenic NIR Spectro-Polarimeter (University of Hawaii). High speed cameras for capturing highly dynamic processes in the solar atmosphere are being developed by a UK consortium. Site construction on Haleakala began in December 2012 and is progressing on schedule. Operations are scheduled to begin in 2019. We provide an overview of the facility, discuss the construction status, and present progress with DKIST operations planning.

  10. Design, optimization and characterization of the light concentrators of the single-mirror small size telescopes of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Basili, A.; Boccone, V.; Cadoux, F.; Christov, A.; della Volpe, D.; Montaruli, T.; Płatos, Ł.; Rameez, M.

    2015-01-01

    The focal-plane cameras of γ -ray telescopes frequently use light concentrators in front of the light sensors. The purpose of these concentrators is to increase the effective area of the camera as well as to reduce the stray light coming at large incident angles. These light concentrators are usually based on the Winston cone design. In this contribution we present the design of a hexagonal hollow light concentrator with a lateral profile optimized using a cubic Bézier function to achieve a higher collection efficiency in the angular region of interest. The design presented here is optimized for a Davies-Cotton telescope with a primary mirror of about 4 m in diameter and a focal length of 5.6 m. The described concentrators are part of an innovative camera made up of silicon-photomultiplier sensors, although a similar approach can be used for other sizes of single-mirror telescopes with different camera sensors, including photomultipliers. The challenge of our approach is to achieve a cost-effective design suitable for standard industrial production of both the plastic concentrator substrate and the reflective coating. At the same time we maximize the optical performance. In this paper we also describe the optical set-up to measure the absolute collection efficiency of the light concentrators and demonstrate our good understanding of the measured data using a professional ray-tracing simulation.

  11. Addressing Thermal Model Run Time Concerns of the Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA)

    NASA Technical Reports Server (NTRS)

    Peabody, Hume; Guerrero, Sergio; Hawk, John; Rodriguez, Juan; McDonald, Carson; Jackson, Cliff

    2016-01-01

    The Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA) utilizes an existing 2.4 m diameter Hubble sized telescope donated from elsewhere in the federal government for near-infrared sky surveys and Exoplanet searches to answer crucial questions about the universe and dark energy. The WFIRST design continues to increase in maturity, detail, and complexity with each design cycle leading to a Mission Concept Review and entrance to the Mission Formulation Phase. Each cycle has required a Structural-Thermal-Optical-Performance (STOP) analysis to ensure the design can meet the stringent pointing and stability requirements. As such, the models have also grown in size and complexity leading to increased model run time. This paper addresses efforts to reduce the run time while still maintaining sufficient accuracy for STOP analyses. A technique was developed to identify slews between observing orientations that were sufficiently different to warrant recalculation of the environmental fluxes to reduce the total number of radiation calculation points. The inclusion of a cryocooler fluid loop in the model also forced smaller time-steps than desired, which greatly increases the overall run time. The analysis of this fluid model required mitigation to drive the run time down by solving portions of the model at different time scales. Lastly, investigations were made into the impact of the removal of small radiation couplings on run time and accuracy. Use of these techniques allowed the models to produce meaningful results within reasonable run times to meet project schedule deadlines.

  12. The ALMA Telescope Control System

    NASA Astrophysics Data System (ADS)

    Farris, A.; Marson, Ralph; Kern, Jeff

    2005-10-01

    The Atacama Large Millimeter Array (ALMA) is a joint project between North America, Europe and Japan. ALMA is an aperture synthesis radio telescope consisting of 50 12-meter antennas located at an elevation of 5,000 meters in Llano de Chajnantor, Chile. These antennas will operate at frequencies ranging from 31.3 GHz to 950 GHz. The antennas can be moved and placed in different configurations, with baselines between the antennas varying from 150 meters to 20 km. The 50 antennas are supplemented by sixteen additional ones, known as the ALMA Compact Array (ACA): 12 7-meter antennas and 4 12-meter antennas. The ALMA control system will consist of over 70 computers separated by distances of over 20 km. Two aspects of the system are apparent: its distributed nature and its need to accurately synchronize events across many computers separated by large distances. In this paper we describe key features of the architecture of the ALMA Control System, focusing on its properties as a distributed system and on the mechanisms employed to achieve its time synchronization goals. This control system is a distributed system that uses the ALMA Common Software (ACS) as a middleware system layered on top of CORBA. The architecture of the control system extensively employs the component/container model in ACS. In addition, the use of CORBA allows us to employ Java in the higher levels of the control system, leaving C++ to the lower time-critical levels. Python as a scripting language is used by astronomers, to craft standard observing programs, and engineers, in a testing and debugging mode. Key to the concept of an aperture synthesis telescope is a special purpose hardware system known as a correlator, responsible for making various delay model corrections and correlating the signals from the antennas. There are two correlators in ALMA, one for the array of 50 antennas and one for the ACA. This entire system operates under a control system that must synchronize events across the

  13. Cosmology with liquid mirror telescopes

    NASA Technical Reports Server (NTRS)

    Hogg, David W.; Gibson, Brad K.; Hickson, Paul

    1993-01-01

    Liquid mirrors provide an exciting means to obtain large optical telescopes for substantially lower costs than conventional technologies. The liquid mirror concept has been demonstrated in the lab with the construction of a diffraction limited 1.5 m mirror. The mirror surface, using liquid mercury, forms a perfect parabolic shape when the mirror cell is rotated at a uniform velocity. A liquid mirror must be able to support a heavy mercury load with minimal flexure and have a fundamental resonant frequency that is as high as possible, to suppress the amplitude of surface waves caused by small vibrations transmitted to the mirror. To minimize the transmission of vibrations to the liquid surface, the entire mirror rests on an air bearing. This necessitates the mirror cell being lightweight, due to the limited load capabilities of the air bearing. The mirror components must also have physical characteristics which minimize the effects of thermal expansion with ambient temperature fluctuations in the observatory. In addition, the 2.7 m mirror construction is designed so that the techniques used may be readily extended to the construction of large mirrors. To attain the goals of a lightweight, rigid mirror, a composite laminant construction was used. The mirror consists of a foam core cut to the desired parabolic shape, with an accuracy of a few mm. An aluminum hub serves as an anchor for the foam and skin, and allows precise centering of the mirror on the air bearing and drive system. Several plys of Kevlar, covered in an epoxy matrix, are then applied to the foam. A final layer of pure epoxy is formed by spin casting. This final layer is parabolic to within a fraction of a mm. An aluminum ring bonded to the circumference of the mirror retains the mercury, and incorporates stainless-steel hard-points for the attachment of balance weights.

  14. A variable-focal-length telescope

    NASA Astrophysics Data System (ADS)

    Irkaev, Bahor; Popov, Gennadiy; Nekhaeva, Svetlana

    2005-04-01

    A special additional optical system (AOS) to develop any telescope into a zoom or a variable-focal-length telescope (variotelescope) is proposed. This system permits the telescope optics and detector (charge-couped device) to be matched in order to obtain the best resolution. An analysis of the resolution of the system consisting of the ‘V-telescope and detector’ is performed, and it is shown that the best way to match the optics and detector is to change the focal length, that is to change the image scale. The proposed AOS consists of two spherical mirrors: a large concave mirror and a small convex mirror. The AOS is illustrated by means of figures and tables.

  15. The associate principal astronomer telescope operations model

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Bresina, John; Swanson, Keith; Edgington, Will; Henry, Greg

    1994-01-01

    This paper outlines a new telescope operations model that is intended to achieve low operating costs with high operating efficiency and high scientific productivity. The model is based on the existing Principal Astronomer approach used in conjunction with ATIS, a language for commanding remotely located automatic telescopes. This paper introduces the notion of an Associate Principal Astronomer, or APA. At the heart of the APA is automatic observation loading and scheduling software, and it is this software that is expected to help achieve efficient and productive telescope operations. The purpose of the APA system is to make it possible for astronomers to submit observation requests to and obtain resulting data from remote automatic telescopes, via the Internet, in a highly-automated way that minimizes human interaction with the system and maximizes the scientific return from observing time.

  16. Thermal conditioning of the AEOS Telescope

    NASA Astrophysics Data System (ADS)

    Roberts, Lewis C., Jr.; Figgis, Peter D.

    2003-02-01

    The AEOS telescope facility was designed for high angular resolution imagery. Part of that design is the inclusion of several air handling systems to maximize dome seeing. Four air conditioning units chill the telescope and dome air to the predicted nighttime temperature. There is a mirror purge system, which prevents moisture from condensing on the mirror by blowing desiccated air into the mirror cell. A laminar air system counteracts the seeing degradation effects of a warm mirror by blowing air across the face of the primary. An hour before sunset the dome is partially opened and outside air is pulled through the telescope truss structure in an effort to remove any thermal differences caused by incorrect cooling. Finally a fan pulls air through the coude' tube in order to remove rising air cells. We present details of each system and the beginnings of our experiments to determine their efficacy. Finally, lessons learned from the systems on the AEOS telescope are presented.

  17. Wide-Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets coronagraphic operations: lessons learned from the Hubble Space Telescope and the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Debes, John H.; Ygouf, Marie; Choquet, Elodie; Hines, Dean C.; Perrin, Marshall D.; Golimowski, David A.; Lajoie, Charles-Phillipe; Mazoyer, Johan; Pueyo, Laurent; Soummer, Rémi; van der Marel, Roeland

    2016-01-01

    The coronagraphic instrument (CGI) currently proposed for the Wide-Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets (WFIRST-AFTA) mission will be the first example of a space-based coronagraph optimized for extremely high contrasts that are required for the direct imaging of exoplanets reflecting the light of their host star. While the design of this instrument is still in progress, this early stage of development is a particularly beneficial time to consider the operation of such an instrument. We review current or planned operations on the Hubble Space Telescope and the James Webb Space Telescope with a focus on which operational aspects will have relevance to the planned WFIRST-AFTA CGI. We identify five key aspects of operations that will require attention: (1) detector health and evolution, (2) wavefront control, (3) observing strategies/postprocessing, (4) astrometric precision/target acquisition, and (5) polarimetry. We make suggestions on a path forward for each of these items.

  18. Goldstone Apple Valley Radio Telescope Project.

    ERIC Educational Resources Information Center

    Ibe, Mary; MacLaren, Dave

    2003-01-01

    Describes the Goldstone Apple Valley Radio Telescope (GAVRT) project as a way of teaching astronomy concepts to middle school students. The project provides students opportunities to work with professional scientists. (SOE)

  19. The misalignment induced aberrations of TMA telescopes.

    PubMed

    Thompson, Kevin P; Schmid, Tobias; Rolland, Jannick P

    2008-12-08

    The next major space-borne observatory, the James Webb Space Telescope, will be a 6.6M field-biased, obscured, three-mirror anastigmat (TMA). Over the used field of view, the performance of TMA telescopes is dominated by 3(rd) order misalignment aberrations. Here it is shown that two dominant 3(rd) order misalignment aberrations arise for any TMA telescope. One aberration, field constant 3(rd) order coma is a well known misalignment aberration commonly seen in two-mirror Ritchey Chretien telescopes. The second aberration, field-asymmetric, field-linear, 3(rd) order astigmatism is a new and unique image orientation dependence with field derived here for the first time using nodal aberration theory.

  20. Operations at the JPL OCTL Telescope

    NASA Technical Reports Server (NTRS)

    Wilson, Keith E.; Kovalik, Joseph M.; Biswas, Abhijit; Roberts, William T.

    2007-01-01

    The JPL Optical Communications Telescope Laboratory (OCTL) is a 200 sq-m located at 2.2.km altitude in Wrightwood California and houses a state-of-the-art 1-m telescope. The OCTL team is involved in the development of operational strategies for ground-to-space laser beam propagation for future NASA optical communications missions. Strategies include safe beam propagation through navigable air space, line of sight optical attenuation monitoring, adaptive optics, and multi-beam scintillation mitigation. This paper presents the results of recent operations at the OCTL facility including telescope characterization data and laser beam propagation experiments to Earth-orbiting retro-reflecting satellites; experiments that validate the telescope's tracking and blind-pointing performance and safe laser beam transmission procedures for propagating through navigable airspace.