Science.gov

Sample records for 4m blanco telescope

  1. Monitoring of the environmental conditions inside the dome of the 4m Blanco Telescope at CTIO

    NASA Astrophysics Data System (ADS)

    Els, S. G.; Abbott, T. M. C.; Bustos, E. B.; Seguel, J.; Walker, D. E.; Berdja, A.; Riddle, R.; Schöck, M.; Skidmore, W.; Travouillon, T.

    2010-07-01

    Between February and April 2009 a number of ultrasonic anemometers, temperature probes and dust sensors were operated inside the CTIO Blanco telescope dome. These sensors were distributed in a way that temperature and 3 dimensional wind speeds were monitored along the line of sight of the telescope. During telescope operations, occasional seeing measurements were obtained using the Mosaic CCD imager and the CTIO site monitoring MASS-DIMM system. In addition, also a Lunar Scintillometer (LuSci) was operated over the course of a few nights inside the dome. We describe the instrumental setup and first preliminary results on the linkage of the atmospheric conditions inside the dome to the overall image quality.

  2. Improvements to the CTIO Blanco Telescope

    NASA Astrophysics Data System (ADS)

    Walker, Alistair

    2011-01-01

    The V. M. Blanco 4-m telescope at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, is undergoing a number of improvements prior to the delivery of the Dark Energy Camera. These include improved slewing and tracking performance resulting from a new telescope control system plus new encoders, and upgrades to the primary mirror support system and the environmental control system that have potential to improve both image quality and stability. I will describe the status of the upgrades.

  3. Improving the Blanco Telescope's delivered image quality

    NASA Astrophysics Data System (ADS)

    Abbott, Timothy M. C.; Montane, Andrés; Tighe, Roberto; Walker, Alistair R.; Gregory, Brooke; Smith, R. Christopher; Cisternas, Alfonso

    2010-07-01

    The V. M. Blanco 4-m telescope at Cerro Tololo Inter-American Observatory is undergoing a number of improvements in preparation for the delivery of the Dark Energy Camera. The program includes upgrades having potential to deliver gains in image quality and stability. To this end, we have renovated the support structure of the primary mirror, incorporating innovations to improve both the radial support performance and the registration of the mirror and telescope top end. The resulting opto-mechanical condition of the telescope is described. We also describe some improvements to the environmental control. Upgrades to the telescope control system and measurements of the dome environment are described in separate papers in this conference.

  4. Speckle Interferometry at the Blanco and SOAR Telescopes in 2008 and 2009

    NASA Technical Reports Server (NTRS)

    Tokovinin, Andrei; Mason, Brian D.; Hartkopf, William I.

    2010-01-01

    The results of speckle interferometric measurements of binary and multiple stars conducted in 2008 and 2009 at the Blanco and Southern Astrophysical Research (SOAR) 4 m telescopes in Chile are presented. A tot al of 1898 measurements of 1189 resolved pairs or sub-systems and 394 observations of 285 un-resolved targets are listed. We resolved for the first time 48 new pairs, 21 of which are new sub-systems in close visual multiple stars. Typical internal measurement precision is 0.3 mas in both coordinates, typical companion detection capability is delta m approximately 4.2 at 0.15 degree separation. These data were obtained with a new electron-multiplication CCD camera; data processing is described in detail, including estimation of magnitude difference, observational errors, detection limits, and analysis of artifacts. We comment on some newly discovered pairs and objects of special interest.

  5. Conceptual design and structural analysis for an 8.4-m telescope

    NASA Astrophysics Data System (ADS)

    Mendoza, Manuel; Farah, Alejandro; Ruiz Schneider, Elfego

    2004-09-01

    This paper describes the conceptual design of the optics support structures of a telescope with a primary mirror of 8.4 m, the same size as a Large Binocular Telescope (LBT) primary mirror. The design goal is to achieve a structure for supporting the primary and secondary mirrors and keeping them joined as rigid as possible. With this purpose an optimization with several models was done. This iterative design process includes: specifications development, concepts generation and evaluation. Process included Finite Element Analysis (FEA) as well as other analytical calculations. Quality Function Deployment (QFD) matrix was used to obtain telescope tube and spider specifications. Eight spiders and eleven tubes geometric concepts were proposed. They were compared in decision matrixes using performance indicators and parameters. Tubes and spiders went under an iterative optimization process. The best tubes and spiders concepts were assembled together. All assemblies were compared and ranked according to their performance.

  6. Rapid instrument exchanging system for the Cassegrain focus of the Lijiang 2.4-m Telescope

    NASA Astrophysics Data System (ADS)

    Fan, Yu-Feng; Bai, Jin-Ming; Zhang, Ju-Jia; Wang, Chuan-Jun; Chang, Liang; Xin, Yu-Xin; Zhang, Rui-Long

    2015-06-01

    As a facility used for astronomical research, the Lijiang 2.4-m telescope of Yunnan Astronomical Observatories, requires the ability to change one auxiliary instrument with another in as short a time as possible. This arises from the need to quickly respond to scientific programs (e.g. transient observation, time domain studies) and changes in observation conditions (e.g. seeing and weather conditions). In this paper, we describe the design, construction and test of hardware and software in the rapid instrument exchange system (RIES) for the Cassegrain focal station of this telescope, which enables instruments to be quickly changed at night without much loss of observing time. Tests in the laboratory and at the telescope show that the image quality and pointing accuracy of RIES are satisfactory. With RIES, we observed the same Landolt standard stars almost at the same time with the Princeton Instruments VersArray 1300B Camera (PICCD) and the Yunnan Faint Object Spectrograph and Camera (YFOSC), while both were mounted at the Cassegrain focus. A quasi-simultaneous comparison shows that the image quality of the optical system inside the YFOSC is comparable with that provided by the PICCD. Supported by the National Natural Science Foundation of China.

  7. Production of 8.4m segments for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Martin, H. M.; Allen, R. G.; Burge, J. H.; Kim, D. W.; Kingsley, J. S.; Law, K.; Lutz, R. D.; Strittmatter, P. A.; Su, P.; Tuell, M. T.; West, S. C.; Zhou, P.

    2012-09-01

    Production of segments for the Giant Magellan Telescope is well underway at the Steward Observatory Mirror Lab. We report on the completion of the first 8.4 m off-axis segment, the casting of the second segment, and preparations for manufacture of the remaining segments. The complete set of infrastructure for serial production is in place, including the casting furnace, two 8.4 m capacity grinding and polishing machines, and a 28 m test tower that incorporates four independent measurement systems. The first segment, with 14 mm p-v aspheric departure, is by some measures the most challenging astronomical mirror ever made. Its manufacture took longer than expected, but the result is an excellent figure and demonstration of valuable new systems that will support both fabrication and measurement of the remaining segments. Polishing was done with a 1.2 m stressed lap for smoothing and large-scale figuring, and a series of smaller passive rigid-conformal laps for deterministic figuring on smaller scales. The interferometric measurement produces a null wavefront with a 3-element asymmetric null corrector including a 3.8 m spherical mirror and a computer-generated hologram. In addition to this test, we relied heavily on the new SCOTS slope test with its high accuracy and dynamic range. Evaluation of the measured figure includes simulated active correction using both the 160-actuator mirror support and the alignment degrees of freedom for the off-axis segment.

  8. The Blanco Cosmology Survey: Data Reduction, Calibration and Photometric Redshift Estimation to Four Distant Galaxy Clusters Discovered by the South Pole Telescope

    NASA Astrophysics Data System (ADS)

    Ngeow, Chow Choong; Mohr, J.; Zenteno, A.; Data Management, DES; BCS; SPT Collaborations

    2009-01-01

    The Blanco Cosmology Survey (BCS) is designed to enable a study of the cosmic acceleration using multiple techniques. To date, BCS has acquired Sloan griz band imaging data from 60 nights (15 nights per year from 2005 to 2008) using the Blanco 4m Telescope located at CTIO. The astronomical imaging data taken from this survey have been processed on high performance computer TeraGrid platforms at NCSA, using the automated Dark Energy Survey (DES) data management (DM) system. The DES DM system includes (1) middlewares for controlling and managing the processing jobs, and serve as an application container encapsulating the scientific codes; and (2) DES archive, which includes filesystem nodes, a relational database and a data access framework, to support the pipeline processing, data storage and scientific analyzes. Photometric solution module (PSM) were run on photometric nights to determine the zeropoints (ZP) and other photometric solutions. We remapped and coadded the images that lie within the pre-defined coadd tiles in the sky. When running the coaddition pipeline, we determined the ZP for each images using the photometric ZP from PSM, the magnitude offsets between overlapping images, and the sky brightness ratio for CCDs within a given exposure. We also applied aperture correction and color-term correction to the coadded catalogs. Satisfactory photometric and astrometric precision were achieved. These enabled initial estimation of photometric redshifts using ANNz codes, trained from 5000 galaxies with spectroscopic redshifts. RMS in the photometric redshifts ranges from 0.05 to 0.1 in sigma_z/(1+z) for redshift extended to z=1. We used the BCS data to optically confirm and estimate redshifts for four of the highest S/N galaxy clusters discovered with the South Pole Telescope using the Sunyaev-Zel'dovich Effect.

  9. Lunar Occultations of 18 Stellar Sources from the 2.4 m Thai National Telescope

    NASA Astrophysics Data System (ADS)

    Richichi, A.; Tasuya, O.; Irawati, P.; Soonthornthum, B.; Dhillon, V. S.; Marsh, T. R.

    2016-01-01

    We report further results from the program of lunar occultation (LO) observations started at the 2.4 m Thai National Telescope (TNT) in 2014. We have recorded LO events of 18 stellar sources, leading to the detection of four angular diameters and two binary stars. With two exceptions, these are first-time determinations. We could resolve angular diameters as small as 2 milliarcseconds (mas) and projected separations as small as 4 mas. We discuss the individual results, in the context of previous observations, when available. The first-time angular diameters for o Psc, HR 6196 and 75 Leo are in good agreement with expected values, while that of π Leo agrees with the average of previous determinations but has a higher accuracy. We find a new secondary in o Psc, as previously suspected from Hipparcos data. We also obtain an accurate measurement of the companion in 31 Ari, revealing inconsistencies in the currently available orbital parameters. The TNT, equipped with the fast ULTRASPEC imager, is the leading facility in Southeast Asia for high time resolution observations. The LO technique at this telescope achieves a sensitivity of i‧ ≈ 10 mag, with a potential to detect several hundreds of LO events per year.

  10. First Lunar Occultation Results from the 2.4 m Thai National Telescope Equipped with ULTRASPEC

    NASA Astrophysics Data System (ADS)

    Richichi, A.; Irawati, P.; Soonthornthum, B.; Dhillon, V. S.; Marsh, T. R.

    2014-11-01

    The recently inaugurated 2.4 m Thai National Telescope (TNT) is equipped with, among other instruments, the ULTRASPEC low-noise, frame-transfer EMCCD camera. At the end of its first official observing season, we report on the use of this facility to record high time resolution imaging using small detector subarrays with a sampling as fast as several 102 Hz. In particular, we have recorded lunar occultations of several stars that represent the first contribution to this area of research made from Southeast Asia with a telescope of this class. Among the results, we discuss an accurate measurement of α Cnc, which has been reported previously as a suspected close binary. Attempts by several authors to resolve this star have so far met with a lack of unambiguous confirmation. With our observation we are able to place stringent limits on the projected angular separation (<0.''003) and brightness (Δm > 5) of a putative companion. We also present a measurement of the binary HR 7072, which extends considerably the time coverage available for its yet undetermined orbit. We discuss our precise determination of the flux ratio and projected separation in the context of other available data. We conclude by providing an estimate of the performance of ULTRASPEC at TNT for lunar occultation work. This facility can help to extend the lunar occultation technique in a geographical area where no comparable resources were available until now.

  11. First lunar occultation results from the 2.4 m Thai national telescope equipped with ULTRASPEC

    SciTech Connect

    Richichi, A.; Irawati, P.; Soonthornthum, B.; Dhillon, V. S.; Marsh, T. R.

    2014-11-01

    The recently inaugurated 2.4 m Thai National Telescope (TNT) is equipped with, among other instruments, the ULTRASPEC low-noise, frame-transfer EMCCD camera. At the end of its first official observing season, we report on the use of this facility to record high time resolution imaging using small detector subarrays with a sampling as fast as several 10{sup 2} Hz. In particular, we have recorded lunar occultations of several stars that represent the first contribution to this area of research made from Southeast Asia with a telescope of this class. Among the results, we discuss an accurate measurement of α Cnc, which has been reported previously as a suspected close binary. Attempts by several authors to resolve this star have so far met with a lack of unambiguous confirmation. With our observation we are able to place stringent limits on the projected angular separation (<0.''003) and brightness (Δm > 5) of a putative companion. We also present a measurement of the binary HR 7072, which extends considerably the time coverage available for its yet undetermined orbit. We discuss our precise determination of the flux ratio and projected separation in the context of other available data. We conclude by providing an estimate of the performance of ULTRASPEC at TNT for lunar occultation work. This facility can help to extend the lunar occultation technique in a geographical area where no comparable resources were available until now.

  12. Preliminary optical design for a 2.2 degree diameter prime focus corrector for the Blanco 4 meter telescope

    SciTech Connect

    Kent, S.; Bernstein, R.; Abbott, T.; Bigelow, B.; Brooks, D.; Doel, P.; Flaugher, B.; Gladders, M.; Walker, A.; Worswick, S.; /Fermilab /Cerro-Tololo InterAmerican Obs. /Michigan U. /University Coll. London /Carnegie Inst. Observ.

    2006-04-01

    We describe a five element corrector for the prime focus of the 4 meter Blanco telescope at the Cerro Tololo Inter-American Observatory (CTIO) in Chile that will be used in conjunction with a new mosaic CCD camera as part of the proposed Dark Energy Survey (DES). The corrector is designed to provide a flat focal plane and good images in the SDSS g, r, i, and z filters. We describe the performance in conjunction with the scientific requirements of the DES, particularly with regard to ghosting and weak-lensing point spread function (PSF) calibration.

  13. Dark Energy Camera for Blanco

    SciTech Connect

    Binder, Gary A.; /Caltech /SLAC

    2010-08-25

    In order to make accurate measurements of dark energy, a system is needed to monitor the focus and alignment of the Dark Energy Camera (DECam) to be located on the Blanco 4m Telescope for the upcoming Dark Energy Survey. One new approach under development is to fit out-of-focus star images to a point spread function from which information about the focus and tilt of the camera can be obtained. As a first test of a new algorithm using this idea, simulated star images produced from a model of DECam in the optics software Zemax were fitted. Then, real images from the Mosaic II imager currently installed on the Blanco telescope were used to investigate the algorithm's capabilities. A number of problems with the algorithm were found, and more work is needed to understand its limitations and improve its capabilities so it can reliably predict camera alignment and focus.

  14. Spacewatch Astrometry of Asteroids and Comets with the Bok 2.3-m and Mayall 4-m Telescopes.

    NASA Astrophysics Data System (ADS)

    Scotti, James V.; McMillan, Robert S.; Larsen, Jeffrey A.

    2014-11-01

    We use the Bok 2.3-m and Mayall 4-m telescopes on Kitt Peak to improve knowledge of the orbits and magnitudes of high priority classes of Near Earth Objects (NEOs) and other small bodies in need of recovery that cannot be reached with the Spacewatch 0.9-m and 1.8-m telescopes. Targets include NEOs with potential close encounters with Earth (Virtual Impactors; VIs), future targets of radar, NEOs previously detected by NEOWISE with orbits or albedos suggesting potential for cometary activity, potential destinations for spacecraft, returning NEOs with hard-won albedos and diameters determined by NEOWISE, and faint Potentially Hazardous Asteroids (PHAs). Notable targets successfully recovered include the Earth Trojan 2010 TK7 and the faint almost-lost VI 2011 BY24 discovered by NEOWISE. Between 2010 June 6 and 2014 July 23 the MPC accepted 1316 lines of astrometry by us with these telescopes on 207 different NEOs including 84 PHAs. We made 343 observations of PHAs with V>=22. Our average arc extension on large PHAs (with H<=17.75) is 184 days, which is 2x longer than the next most effective observing station. Recently with all four telescopes Spacewatch has made 39% of all the observations of PHAs that were fainter than V=22 at the time of measurement. This count is twice that of the next most productive station in that measure. The faintest V magnitude we have observed so far is 24.4 and the smallest solar elongation angle at which we have observed is 46 degrees. Our work with the Mayall and Bok telescopes has been determined by the Minor Planet Center (MPC) to provide "dramatic improvement" to NEO orbits (T. Spahr, 2014 private communication). Support of Spacewatch was/is from JPL subcontract 100319 (2010-2011), NASA/NEOO grants NNG06GJ42G, NNX11AB52G, NNX12AG11G, NNX13AP99G, NNX14AL13G, and NNX14AL14G, the Lunar and Planetary Laboratory, the Brinson Foundation of Chicago, IL, the estates of R. S. Vail and R. L. Waland, and other private donors. We are also indebted

  15. Optical and mechanical design and characterization of the new baffle for the 2.4-m Thai National Telescope

    NASA Astrophysics Data System (ADS)

    Buisset, Christophe; Prasit, Apirat; Lépine, Thierry; Poshyajinda, Saran

    2015-09-01

    The first astronomical images obtained at the 2.4 m Thai National Telescope (TNT) during observations in bright moon conditions were contaminated by high levels of light scattered by the telescope structure. We identified that the origins of this scattered light were the M3 folding mirror baffle and the tube placed inside the fork between the M3 and the M4 mirrors. We thus decided to design and install a new baffle. In a first step, we calculated the optical and mechanical inputs needed to define the baffle optical design. These inputs were: the maximum length of the baffle, the maximum dimensions of the vanes and the incident beam diameter between M3 and M4 mirrors. In a second step, we defined the number, the position and the diameter of the vanes to remove the critical objects from the detector's FOV by using a targeted method. Then, we verified that the critical objects were moved away from the detector's view. In a third step, we designed and manufactured the baffle. The mechanical design is made of 21 sections (1 section for each vane) and comprises an innovative mechanism for the adjustment of the baffle position. The baffle installation and adjustment is performed in less than 20 minutes by 2 operators. In a fourth step, we installed and characterized the baffle by using a pinhole camera. We quantified the performance improvement and we identified the baffle areas at the origin of the residual stray light signal. Finally, we performed targeted on-sky observations to test the baffle in real conditions.

  16. Validation and Characterization of K2 Exoplanet Candidates with NIR Transit Photometry from the 4m Mayall and 3.5m WIYN Telescopes

    NASA Astrophysics Data System (ADS)

    Colón, Knicole D.; Barclay, Thomas

    2016-06-01

    We present new ground-based near-infrared (NIR) transit photometry of exoplanet candidates recently discovered by the NASA K2 mission. These observations support the confirmation and characterization of these newly discovered transiting exoplanets, many which are in the super-Earth to mini-Neptune size regime and orbit cool, nearby stars. We specifically used NEWFIRM on the 4m Mayall telescope and WHIRC on the 3.5m WIYN telescope, both located at Kitt Peak National Observatory, to observe several K2 exoplanet candidates in transit. To our knowledge, these facilities have not been tested for such high-precision differential transit photometry before. Follow-up transit photometry with the high spatial resolution NIR cameras installed on the Mayall and WIYN telescopes allows us to confirm the transit host, which is critical given the large pixel scale of the Kepler spacecraft. NIR transit photometry in particular allows us to verify that the transit is achromatic, after comparing the NIR transit depth to the transit depth measured in the optical from K2. Finding a different depth in different bandpasses indicates that the candidate is instead an eclipsing binary false positive. Furthermore, NIR transit photometry provides robust constraints on the measured planet radius, since stellar limb darkening is minimized in the NIR. Finally, the high-precision and high-cadence photometry we achieve allows us to refine the transit ephemeris, which is crucial for future follow-up efforts with other facilities like NASA's James Webb Space Telescope. The capabilities of these ground-based facilities therefore approach those of space telescopes, since we are able use these ground-based observatories to refine transit parameters and constrain properties for the exoplanets that K2 is discovering, all the way down to super-Earth-size planets.

  17. Chromospheric activity on the late-type star V1355 Ori using Lijiang 1.8-m and 2.4-m telescopes

    NASA Astrophysics Data System (ADS)

    Pi, Qing-Feng; Zhang, Li-Yun; Chang, Liang; Han, Xian-Ming; Lu, Hong-Peng; Zhang, Xi-Liang; Wang, Dai-Mei

    2016-10-01

    We obtained new high-resolution spectra using the Lijiang 1.8-m and 2.4-m telescopes to investigate the chromospheric activities of V1355 Ori as indicated in the behaviors of Ca ii H&K, Hδ, Hγ, Hβ, Na i D1, D2, Hα and Ca ii infrared triplet (IRT) lines. The observed spectra show obvious emissions above the continuum in Ca ii H&K lines, absorptions in the Hδ, Hγ, Hβ and Na i D1, D2 lines, variable behavior (filled-in absorption, partial emission with a core absorption component or emission above the continuum) in the Hα line, and weak self-reversal emissions in the strong filled-in absorptions of the Ca ii IRT lines. We used a spectral subtraction technique to analyze our data. The results show no excess emission in the Hδ and Hγ lines, very weak excess emissions in the Na i D1, D2 lines, excess emission in the Hβ line, clear excess emission in the Hα line, and excess emissions in the Ca ii IRT lines. The value of the ratio of EW8542/EW8498 is in the range 0.9 to 1.7, which implies that chromospheric activity might have been caused by plage events. The value of the ratio E Hα/E Hβ is above 3, indicating that the Balmer lines would arise from prominence-like material. We also found time variations in light curves associated with equivalent widths of chromospheric activity lines in the Na i D1, D2, Ca ii IRT and Hα lines in particular. These phenomena can be explained by plage events, which are consistent with the behavior of chromospheric activity indicators.

  18. Application of the Dark Energy Survey Data Management System to the Blanco Cosmology Survey Data

    NASA Astrophysics Data System (ADS)

    Ngeow, Chow Choong; Mohr, J. J.; Barkhouse, W.; Alam, T.; Beldica, C.; Cai, D.; Daues, G.; Duda, P.; Annis, J.; Lin, H.; Tucker, D.; Rest, A.; Smith, C.; Lin, Y.; High, W.; Hansen, S.; Brodwin, M.; Allam, S.; BCS Collaboration

    2006-12-01

    The Dark Energy Survey (DES; operations 2010-2016) will image 5000 deg2 of the southern sky using a new 3 deg2 imager (DECam) for the CTIO Blanco 4-m telescope. The total data volume after the end of the survey will exceed 1 peta-byte, which requires our data management system (DMS) to offer a high degree of automated processing. Our DMS leverages the existing high performance computing infrastructure to meet the project's goals. The DESDMS consists of (1) processing pipelines with built in quality assurance testing, (2) a distributed archive to support automated data processing and calibration, (3) a catalog archive database to support scientific analysis, (4) web portals for control, monitoring, user data access and scientific analysis, and (5) hardware platforms required for operations. We have tested our early version of DMS using both of the simulated DECam data from Fermilab and the observed data from the Blanco Cosmology Survey (BCS), which is a 45-night NOAO survey program. The aim of BCS is to study the cosmic acceleration using the galaxy cluster survey (in coordination with APEX, ACT and SPT) and the galaxy power spectrum. The BCS employs the MOSAIC-II imager currently installed on the Blanco telescope to carry out the deep, griz photometric survey of two 50 deg2 patches of the southern sky. The flexibility and scalabity of our DMS allows the automatic reduction of the BCS data to be done on local workstations, which is convenient because of the two orders of magnitude lower data volume compared to DES. We report our preliminary results from reducing the BCS data for the first two observing semesters with our DESDMS. We present survey completeness limits, astrometric and photometric accuracy, photometric redshift estimates and a preliminary summary of optical cluster finding and the galaxy angular power spectrum.

  19. THE BLANCO COSMOLOGY SURVEY: DATA ACQUISITION, PROCESSING, CALIBRATION, QUALITY DIAGNOSTICS, AND DATA RELEASE

    SciTech Connect

    Desai, S.; Mohr, J. J.; Semler, D. R.; Liu, J.; Bazin, G.; Zenteno, A.; Armstrong, R.; Bertin, E.; Allam, S. S.; Buckley-Geer, E. J.; Lin, H.; Tucker, D.; Barkhouse, W. A.; Cooper, M. C.; Hansen, S. M.; High, F. W.; Lin, Y.-T.; Ngeow, C.-C.; Rest, A.; Song, J.

    2012-09-20

    The Blanco Cosmology Survey (BCS) is a 60 night imaging survey of {approx}80 deg{sup 2} of the southern sky located in two fields: ({alpha}, {delta}) = (5 hr, -55 Degree-Sign ) and (23 hr, -55 Degree-Sign ). The survey was carried out between 2005 and 2008 in griz bands with the Mosaic2 imager on the Blanco 4 m telescope. The primary aim of the BCS survey is to provide the data required to optically confirm and measure photometric redshifts for Sunyaev-Zel'dovich effect selected galaxy clusters from the South Pole Telescope and the Atacama Cosmology Telescope. We process and calibrate the BCS data, carrying out point-spread function-corrected model-fitting photometry for all detected objects. The median 10{sigma} galaxy (point-source) depths over the survey in griz are approximately 23.3 (23.9), 23.4 (24.0), 23.0 (23.6), and 21.3 (22.1), respectively. The astrometric accuracy relative to the USNO-B survey is {approx}45 mas. We calibrate our absolute photometry using the stellar locus in grizJ bands, and thus our absolute photometric scale derives from the Two Micron All Sky Survey, which has {approx}2% accuracy. The scatter of stars about the stellar locus indicates a systematic floor in the relative stellar photometric scatter in griz that is {approx}1.9%, {approx}2.2%, {approx}2.7%, and {approx}2.7%, respectively. A simple cut in the AstrOmatic star-galaxy classifier spread{sub m}odel produces a star sample with good spatial uniformity. We use the resulting photometric catalogs to calibrate photometric redshifts for the survey and demonstrate scatter {delta}z/(1 + z) = 0.054 with an outlier fraction {eta} < 5% to z {approx} 1. We highlight some selected science results to date and provide a full description of the released data products.

  20. The Blanco Cosmology Survey: Data Acquisition, Processing, Calibration, Quality Diagnostics and Data Release

    SciTech Connect

    Desai, S.; Armstrong, R.; Mohr, J.J.; Semler, D.R.; Liu, J.; Bertin, E.; Allam, S.S.; Barkhouse, W.A.; Bazin, G.; Buckley-Geer, E.J.; Cooper, M.C.; /UC, Irvine /Lick Observ. /UC, Santa Cruz

    2012-04-01

    The Blanco Cosmology Survey (BCS) is a 60 night imaging survey of {approx}80 deg{sup 2} of the southern sky located in two fields: ({alpha},{delta})= (5 hr, -55{sup circ} and 23 hr, -55{sup circ}). The survey was carried out between 2005 and 2008 in griz bands with the Mosaic2 imager on the Blanco 4m telescope. The primary aim of the BCS survey is to provide the data required to optically confirm and measure photometric redshifts for Sunyaev-Zel'dovich effect selected galaxy clusters from the South Pole Telescope and the Atacama Cosmology Telescope. We process and calibrate the BCS data, carrying out PSF corrected model fitting photometry for all detected objects. The median 10{sigma} galaxy (point source) depths over the survey in griz are approximately 23.3 (23.9), 23.4 (24.0), 23.0 (23.6) and 21.3 (22.1), respectively. The astrometric accuracy relative to the USNO-B survey is {approx}45 milli-arcsec. We calibrate our absolute photometry using the stellar locus in grizJ bands, and thus our absolute photometric scale derives from 2MASS which has {approx}2% accuracy. The scatter of stars about the stellar locus indicates a systematics floor in the relative stellar photometric scatter in griz that is {approx}1.9%, {approx}2.2%, {approx}2.7% and {approx}2.7%, respectively. A simple cut in the AstrOmatic star-galaxy classifier produces a star sample with good spatial uniformity. We use the resulting photometric catalogs to calibrate photometric redshifts for the survey and demonstrate scatter {delta} z/(1+z)=0.054 with an outlier fraction {eta}<5% to z{approx}1. We highlight some selected science results to date and provide a full description of the released data products.

  1. DEBRIS DISKS OF MEMBERS OF THE BLANCO 1 OPEN CLUSTER

    SciTech Connect

    Stauffer, John R.; Noriega-Crespo, Alberto; Rebull, Luisa M.; James, David; Strom, Steven; Wolk, Scott; Carpenter, John M.; Barrado y Navascues, David; Backman, Dana; Cargile, P. A.

    2010-08-20

    We have used the Spitzer Space Telescope to obtain Multiband Imaging Photometer for Spitzer (MIPS) 24 {mu}m photometry for 37 members of the {approx}100 Myr old open cluster Blanco 1. For the brightest 25 of these stars (where we have 3{sigma} uncertainties less than 15%), we find significant mid-IR excesses for eight stars, corresponding to a debris disk detection frequency of about 32%. The stars with excesses include two A stars, four F dwarfs, and two G dwarfs. The most significant linkage between 24 {mu}m excess and any other stellar property for our Blanco 1 sample of stars is with binarity. Blanco 1 members that are photometric binaries show few or no detected 24 {mu}m excesses whereas a quarter of the apparently single Blanco 1 members do have excesses. We have examined the MIPS data for two other clusters of similar age to Blanco 1-NGC 2547 and the Pleiades. The AFGK photometric binary star members of both of these clusters also show a much lower frequency of 24 {mu}m excesses compared to stars that lie near the single-star main sequence. We provide a new determination of the relation between the V - K {sub s} color and K {sub s} - [24] color for main sequence photospheres based on Hyades members observed with MIPS. As a result of our analysis of the Hyades data, we identify three low mass Hyades members as candidates for having debris disks near the MIPS detection limit.

  2. New depside from Citrus reticulata Blanco.

    PubMed

    Phetkul, Uraiwan; Phongpaichit, Souwalak; Watanapokasin, Ramida; Mahabusarakam, Wilawan

    2014-01-01

    A new depside, named depcitrus A (1), and 31 known compounds were isolated from the peels, leaves and branch barks of Citrus reticulata Blanco. Methylation of the high polarity fractions from the branch barks and peels gave one new methylated compound named depcitrus B (14) and five known compounds. Their structures were established based on spectroscopic evidence. The antioxidant, antimicrobial and cytotoxic activities of some pure compounds were evaluated. PMID:24635118

  3. IDENTIFICATION OF THE LITHIUM DEPLETION BOUNDARY AND AGE OF THE SOUTHERN OPEN CLUSTER BLANCO 1

    SciTech Connect

    Cargile, P. A.; James, D. J.; Jeffries, R. D.

    2010-12-20

    We present results from a spectroscopic study of the very low mass members of the Southern open cluster Blanco 1 using the Gemini-N telescope. We obtained intermediate resolution (R {approx} 4400) GMOS spectra for 15 cluster candidate members with I {approx} 14-20 mag, and employed a series of membership criteria-proximity to the cluster's sequence in an I/I - K{sub s} color-magnitude diagram (CMD), kinematics agreeing with the cluster systemic motion, magnetic activity as a youth indicator-to classify 10 of these objects as probable cluster members. For these objects, we searched for the presence of the Li I 6708 A feature to identify the lithium depletion boundary (LDB) in Blanco 1. The I/I - K{sub s} CMD shows a clear mass segregation in the Li distribution along the cluster sequence; namely, all higher mass stars are found to be Li poor, while lower mass stars are found to be Li rich. The division between Li-poor and Li-rich (i.e., the LDB) in Blanco 1 is found at I = 18.78 {+-} 0.24 and I - K{sub s} = 3.05 {+-} 0.10. Using current pre-main-sequence evolutionary models, we determine an LDB age of 132 {+-} 24 Myr. Comparing our derived LDB age to upper-main-sequence isochrone ages for Blanco 1, as well as for other open clusters with identified LDBs, we find good chronometric consistency when using stellar evolution models that incorporate a moderate degree of convective core overshoot.

  4. A photometric and astrometric investigation of the brown dwarfs in Blanco 1

    NASA Astrophysics Data System (ADS)

    Casewell, S. L.; Baker, D. E. A.; Jameson, R. F.; Hodgkin, S. T.; Dobbie, P. D.; Moraux, E.

    2012-10-01

    We present the results of a photometric and astrometric study of the low-mass stellar and substellar population of the young open cluster Blanco 1. We have exploited J-band data, obtained recently with the Wide Field Camera (WFCAM) on the United Kingdom Infrared Telescope (UKIRT), and 10-year-old I- and z-band optical imaging from CFH12k on the Canada-France-Hawaii Telescope (CFHT), to identify 44 candidate low-mass stellar and substellar members, in an area of 2 deg2, on the basis of their colours and proper motions. This sample includes five sources which are newly discovered. We also confirm the lowest mass candidate member of Blanco 1 unearthed so far (29MJup). We determine the cluster mass function to have a slope of α = +0.93, assuming it to have a power-law form. This is high, but nearly consistent with previous studies of the cluster (to within the errors), and also that of its much better studied Northern hemisphere analogue, the Pleiades.

  5. KOSMOS and COSMOS: new facility instruments for the NOAO 4-meter telescopes

    NASA Astrophysics Data System (ADS)

    Martini, Paul; Elias, J.; Points, S.; Sprayberry, D.; Derwent, Mark A.; Gonzalez, Raymond; Mason, J. A.; O'Brien, T. P.; Pappalardo, D. P.; Pogge, Richard W.; Stoll, R.; Zhelem, R.; Daly, Phil; Fitzpatrick, M.; George, J. R.; Hunten, M.; Marshall, R.; Poczulp, Gary; Rath, S.; Seaman, R.; Trueblood, M.; Zelaya, K.

    2014-07-01

    We describe the design, construction and measured performance of the Kitt Peak Ohio State Multi-Object Spectrograph (KOSMOS) for the 4-m Mayall telescope and the Cerro Tololo Ohio State Multi-Object Spectrograph (COSMOS) for the 4-m Blanco telescope. These nearly identical imaging spectrographs are modified versions of the OSMOS instrument; they provide a pair of new, high-efficiency instruments to the NOAO user community. KOSMOS and COSMOS may be used for imaging, long-slit, and multi-slit spectroscopy over a 100 square arcminute field of view with a pixel scale of 0.29 arcseconds. Each contains two VPH grisms that provide R~2500 with a one arcsecond slit and their wavelengths of peak diffraction efficiency are approximately 510nm and 750nm. Both may also be used with either a thin, blue-optimized CCD from e2v or a thick, fully depleted, red-optimized CCD from LBNL. These instruments were developed in response to the ReSTAR process. KOSMOS was commissioned in 2013B and COSMOS was commissioned in 2014A.

  6. Mt. Blanco revisited: soil-geomorphic implications for the ages of the upper Cenozoic Blanco and Blackwater Draw Formations

    SciTech Connect

    Holliday, V.T.

    1988-06-01

    Mt. Blanco, on the eastern edge of the Southern High Plains of Texas, contains stratigraphic features significant in interpreting the late Cenozoic history of the region and the vertebrate paleontology of the Great Plains; however, the stratigraphic relations are confused in the literature or are unreported. Mt. Blanco is the type locality for the Blanco Formation and the Blanco Local Fauna, which occurs throughout North America and is the type fauna for the Blancan Land Mammal Age in North America. Here also occur exposures of the Blackwater Draw Formation, an extensive (120,000 km/sup 2/) eolian sheet that is the surficial cover of the region and contains the 1.4 Ma Guaje Ash and several buried soils. A reexamination of the section shows that (1) the Blackwater Draw Formation, an eolian deposit, contains three well-expressed buried soils (5 YR hues, argillic horizons greater than or equal to 1 m thick, Stages III and IV calcic horizons) and the similar regional surface soil (Paleustalf); (2) the Guaje Ash is within the lower Blackwater Draw Formation but is separated from the Blanco Formation, a lacustrine unit, by about 1 m of sediment, including the lowest buried soil; and (3) the lowest buried soil shows a Stage IV calcrete formed at the top of the Blanco Formation and the base of the Blackwater Draw Formation and probably took about 200 ka to form. These new data suggested that deposition of the type Blanco sediments may have ended by about 1.6 Ma or earlier. Since that time, the Blackwater Draw Formation has accumulated episodically; periods of nondeposition are characterized by landscape stability and pedogenesis.

  7. Backwater Flooding in San Marcos, TX from the Blanco River

    NASA Technical Reports Server (NTRS)

    Earl, Richard; Gaenzle, Kyle G.; Hollier, Andi B.

    2016-01-01

    Large sections of San Marcos, TX were flooded in Oct. 1998, May 2015, and Oct. 2015. Much of the flooding in Oct. 1998 and Oct. 2015 was produced by overbank flooding of San Marcos River and its tributaries by spills from upstream dams. The May 2015 flooding was almost entirely produced by backwater flooding from the Blanco River whose confluence is approximately 2.2 miles southeast of downtown. We use the stage height of the Blanco River to generate maps of the areas of San Marcos that are lower than the flood peaks and compare those results with data for the observed extent of flooding in San Marcos. Our preliminary results suggest that the flooding occurred at locations more than 20 feet lower than the maximum stage height of the Blanco River at San Marcos gage (08171350). This suggest that the datum for either gage 08171350 or 08170500 (San Marcos River at San Marcos) or both are incorrect. There are plans for the U.S. Army Corps of Engineers to construct a Blanco River bypass that will divert Blanco River floodwaters approximately 2 miles farther downstream, but the $60 million price makes its implementation problematic.

  8. Coherent array telescopes as a fifteen meter optical telescope equivalent

    NASA Astrophysics Data System (ADS)

    Odgers, G. J.

    1982-10-01

    The potential benefits of using a mirror array to form a large optical telescope equivalent to a 15 m monolithic mirror telescope are discussed. The concept comprises 25 three meter telescopes in a circular array or 13 double unit telescopes, also in a circular array. The double-units would have individual 4.2 m instruments. Meniscus-shaped mirrors with F/2 aperture ratios would allow lightweight construction. A smaller, four double unit telescope would be equivalent to an 8.4 m telescope, larger than any existing in the world. The viewing capabilities could also be extended to the IR. Each sector of the compound telescopes, if built with 3 m apertures, could be controlled with 1/20th arsec acccuracy. Finally, the inherent long baseline of an array telescope would permit enhanced interferometric viewing.

  9. An improved determination of the lithium depletion boundary age of Blanco 1 and a first look on the effects of magnetic activity

    SciTech Connect

    Juarez, Aaron J.; Stassun, Keivan G.; Cargile, Phillip A.; James, David J.

    2014-11-10

    The lithium depletion boundary (LDB) is a robust method for accurately determining the ages of young clusters, but most pre-main-sequence models used to derive LDB ages do not include the effects of magnetic activity on stellar properties. In light of this, we present results from our spectroscopic study of the very-low-mass members of the southern open cluster Blanco 1 using the Gemini-North Telescope, program IDs: GN-2009B-Q-53 and GN-2010B-Q-96. We obtained Gemini Multi-Object Spectrograph spectra at intermediate resolution for cluster candidate members with I ≈ 13-20 mag. From our sample of 43 spectra, we find 14 probable cluster members by considering proximity to the cluster sequence in an I/I – K {sub s} color-magnitude diagram, agreement with the cluster's systemic radial velocity, and magnetic activity as a youth indicator. We systematically analyze the Hα and Li features and update the LDB age of Blanco 1 to be 126{sub −14}{sup +13} Myr. Our new LDB age for Blanco 1 shows remarkable coevality with the benchmark Pleiades open cluster. Using available empirical activity corrections, we investigate the effects of magnetic activity on the LDB age of Blanco 1. Accounting for activity, we infer a corrected LDB age of 114{sub −10}{sup +9} Myr. This work demonstrates the importance of accounting for magnetic activity on LDB inferred stellar ages, suggesting the need to reinvestigate previous LDB age determinations.

  10. ATST telescope mount: telescope of machine tool

    NASA Astrophysics Data System (ADS)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  11. WIMS-D4M user manual

    SciTech Connect

    Deen, J.R.; Woodruff, W.L.; Costescu, C.I.

    1995-07-01

    The Winfrith Improved Multigroup Scheme (WIMS) code has been used extensively throughout the world for power and research reactor lattice physics analysis. There are many WIMS versions currently in use. The D4 version selected by the RERTR program was originally developed in 1980). It was chosen for the accurate lattice physics capability and an unrestricted distribution privilege. The code and its 69-group library tape 166259 generated in Winfrith were obtained from the Oak Ridge National Laboratory Radiation Shielding Information Center (RSIC) in 1992. Since that time the RERTR program has added three important features. The first was the capability to generate up to 20 broad-group bumup-dependent macroscopic or microscopic ISOTXS cross sections for each composition of the unit cell, a new ENDF/B-V based nuclear data library, and a new Supercell option. As a result of these modifications and other minor ones, the code is now named WIMS-D4M. A supplementary reference guide can be obtained from the RSIC that contains detailed explanations of all user options, library contents, along with several sample problems. Primary applications of WIMS for research reactor modeling do not require an extensive knowledge of all WIMS user options. This user guide is primarily addressed to the needs of the research reactor community although the code can be used for most thermal reactor lattices. The guide is written based on the experience of the RERTR staff with WIMS-D4M and will discuss only the most needed options for research reactor analyses.

  12. New acridone from the wood of Citrus reticulata Blanco.

    PubMed

    Phetkul, Uraiwan; Wanlaso, Nutthakran; Mahabusarakam, Wilawan; Phongpaichit, Souwalak; Carroll, Anthony R

    2013-10-01

    A new acridone, named citruscridone (1) together with five known compounds were isolated from the wood of Citrus reticulata Blanco. Their structures were established based on spectroscopic evidence. The antibacterial and antifungal activities of the wood extracts and pure compounds were evaluated. PMID:23697332

  13. The large binocular telescope.

    PubMed

    Hill, John M

    2010-06-01

    The Large Binocular Telescope (LBT) Observatory is a collaboration among institutions in Arizona, Germany, Italy, Indiana, Minnesota, Ohio, and Virginia. The telescope on Mount Graham in Southeastern Arizona uses two 8.4 m diameter primary mirrors mounted side by side. A unique feature of the LBT is that the light from the two Gregorian telescope sides can be combined to produce phased-array imaging of an extended field. This cophased imaging along with adaptive optics gives the telescope the diffraction-limited resolution of a 22.65 m aperture and a collecting area equivalent to an 11.8 m circular aperture. This paper describes the design, construction, and commissioning of this unique telescope. We report some sample astronomical results with the prime focus cameras. We comment on some of the technical challenges and solutions. The telescope uses two F/15 adaptive secondaries to correct atmospheric turbulence. The first of these adaptive mirrors has completed final system testing in Firenze, Italy, and is planned to be at the telescope by Spring 2010. PMID:20517352

  14. The large binocular telescope.

    PubMed

    Hill, John M

    2010-06-01

    The Large Binocular Telescope (LBT) Observatory is a collaboration among institutions in Arizona, Germany, Italy, Indiana, Minnesota, Ohio, and Virginia. The telescope on Mount Graham in Southeastern Arizona uses two 8.4 m diameter primary mirrors mounted side by side. A unique feature of the LBT is that the light from the two Gregorian telescope sides can be combined to produce phased-array imaging of an extended field. This cophased imaging along with adaptive optics gives the telescope the diffraction-limited resolution of a 22.65 m aperture and a collecting area equivalent to an 11.8 m circular aperture. This paper describes the design, construction, and commissioning of this unique telescope. We report some sample astronomical results with the prime focus cameras. We comment on some of the technical challenges and solutions. The telescope uses two F/15 adaptive secondaries to correct atmospheric turbulence. The first of these adaptive mirrors has completed final system testing in Firenze, Italy, and is planned to be at the telescope by Spring 2010.

  15. Space Telescope.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    This pamphlet describes the Space Telescope, an unmanned multi-purpose telescope observatory planned for launch into orbit by the Space Shuttle in the 1980s. The unique capabilities of this telescope are detailed, the major elements of the telescope are described, and its proposed mission operations are outlined. (CS)

  16. Space Telescopes

    NASA Technical Reports Server (NTRS)

    Clampin, Mark; Flanagan, Kathryn A.

    2012-01-01

    Space telescopes have been a dominant force in astrophysics and astronomy over the last two decades. As Lyman Spitzer predicted in 1946, space telescopes have opened up much of the electromagnetic spectrum to astronomers, and provided the opportunity to exploit the optical performance of telescopes uncompromised by the turbulent atmosphere. This special section of Optical Engineering is devoted to space telescopes. It focuses on the design and implementation of major space observatories from the gamma-ray to far-infrared, and highlights the scientific and technical breakthroughs enabled by these telescopes. The papers accepted for publication include reviews of major space telescopes spanning the last two decades, in-depth discussions of the design considerations for visible and x-ray telescopes, and papers discussing concepts and technical challenges for future space telescopes.

  17. BLANCO MOUNTAIN AND BLACK CANYON ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Diggles, Michael F.; Rains, Richard L.

    1984-01-01

    The mineral survey of the Blanco Mountain and Black Canyon Roadless Areas, California indicated that areas of probable and substantiated mineral-resource potential exist only in the Black Canyon Roadless Area. Gold with moderate amounts of lead, silver, zinc, and tungsten, occurs in vein deposits and in tactite. The nature of the geological terrain indicates little likelihood for the occurrence of energy resources in the roadless areas. Detailed geologic mapping might better define the extent of gold mineralization. Detailed stream-sediment sampling and analysis of heavy-mineral concentrations could better define tungsten resource potential.

  18. Telescope Equipment

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Renaissance Telescope for high resolution and visual astronomy has five 82-degree Field Tele-Vue Nagler Eyepieces, some of the accessories that contribute to high image quality. Telescopes and eyepieces are representative of a family of optical equipment manufactured by Tele-Vue Optics, Inc.

  19. A space imaging concept based on a 4m structured spun-cast borosilicate monolithic primary mirror

    NASA Astrophysics Data System (ADS)

    West, S. C.; Bailey, S. H.; Bauman, S.; Cuerden, B.; Granger, Z.; Olbert, B. H.

    2010-07-01

    Lockheed Martin Corporation (LMC) tasked The University of Arizona Steward Observatory (UASO) to conduct an engineering study to examine the feasibility of creating a 4m space telescope based on mature borosilicate technology developed at the UASO for ground-based telescopes. UASO has completed this study and concluded that existing launch vehicles can deliver a 4m monolithic telescope system to a 500 km circular orbit and provide reliable imagery at NIIRS 7-8. An analysis of such an imager based on a lightweight, high-performance, structured 4m primary mirror cast from borosilicate glass is described. The relatively high CTE of this glass is used to advantage by maintaining mirror shape quality with a thermal figuring method. Placed in a 290 K thermal shroud (similar to the Hubble Space Telescope), the orbit averaged figure surface error is 6nm rms when earth-looking. Space-looking optical performance shows that a similar thermal conditioning scheme combined with a 270 K shroud achieves primary mirror distortion of 10 nm rms surface. Analysis shows that a 3-point bipod mount will provide launch survivability with ample margin. The primary mirror naturally maintains its shape at 1g allowing excellent end-to-end pre-launch testing with e.g. the LOTIS 6.5m Collimator. The telescope includes simple systems to measure and correct mirror shape and alignment errors incorporating technologies already proven on the LOTIS Collimator. We have sketched a notional earth-looking 4m telescope concept combined with a wide field TMA concept into a DELTA IV or ATLAS 552 EELV fairing. We have combined an initial analysis of launch and space performance of a special light-weighted honeycomb borosilicate mirror (areal density 95 kg/m2) with public domain information on the existing launch vehicles.

  20. The European Solar Telescope

    NASA Astrophysics Data System (ADS)

    Socas-Navarro, H.

    2012-12-01

    In this presentation I will describe the current status of the European Solar Telescope (EST) project. The EST design has a 4-m aperture to achieve both a large photon collection and very high spatial resolution. It includes a multi-conjugate adaptive system integrated in the light path for diffraction-limited imaging. The optical train is optimized to minimize instrumental polarization and to keep it nearly constant as the telescope tracks the sky. A suite of visible and infrared instruments are planned with a light distribution system that accomodates full interoperability and simultaneous usage. The science drivers emphasize combined observations at multiple heights in the atmosphere to build a connected view of solar magnetism from the photosphere to the corona.

  1. Multi-Object Spectroscopy with OSIRIS at the 10.4 m GTC

    NASA Astrophysics Data System (ADS)

    Cabrera-Lavers, A.

    2016-10-01

    OSIRIS is the first light instrument of the 10.4 m GTC. Apart from standard imaging and spectroscopic observing modes, multi-object spectroscopic observations with OSIRIS instrument were initiated in March 2014, with extraordinary success both in the users' demand as well as in the data quality obtained. In this contribution we give a brief description of the process for requesting and defining MOS observations with OSIRIS. We present some numbers on the accuracy obtained in the mask design and on-sky positioning, based on real data obtained at the telescope during the first year of operation of this observing mode.

  2. Space Telescopes

    NASA Technical Reports Server (NTRS)

    Rigby, Jane R.

    2011-01-01

    The science of astronomy depends on modern-day temples called telescopes. Astronomers make pilgrimages to remote mountaintops where these large, intricate, precise machines gather light that rains down from the Universe. Bit, since Earth is a bright, turbulent planet, our finest telescopes are those that have been launched into the dark stillness of space. These space telescopes, named after heroes of astronomy (Hubble, Chandra, Spitzer, Herschel), are some of the best ideas our species has ever had. They show us, over 13 billion years of cosmic history, how galaxies and quasars evolve. They study planets orbiting other stars. They've helped us determine that 95% of the Universe is of unknown composition. In short, they tell us about our place in the Universe. The next step in this journey is the James Webb Space Telescope, being built by NASA, Europe, and Canada for a 2018 launch; Webb will reveal the first galaxies that ever formed.

  3. SNAP telescope

    SciTech Connect

    Lampton, Michael L.; Akerlof, C.W.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Bercovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers Jr., W.C.; Commins, E.D.; Day, C.; Deustua, S.E.; DiGennaro, R.; Ealet, A.; Ellis,R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar,A.; Groom, D.; Harris, S.E.; Harvey, P.R.; Heetderks, H.D.; Holland,S.E.; Huterer, D.; Karcher, A.; Kim, A.G.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Levi, M.E.; Levin, D.S.; Linder, E.V.; Loken,S.C.; Malina, R.; Massey, R.; McKay, T.; McKee, S.P.; Miquel, R.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi,H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto,E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tarle, G.; Tomasch,A.; von der Lippe, H.; Vincent, R.; Walder, J.-P.; Wang, G.; Wang, G.

    2002-07-29

    The SuperNova/Acceleration Probe (SNAP) mission will require a two-meter class telescope delivering diffraction limited images spanning a one degree field in the visible and near infrared wavelength regime. This requirement, equivalent to nearly one billion pixel resolution, places stringent demands on its optical system in terms of field flatness, image quality, and freedom from chromatic aberration. We discuss the advantages of annular-field three-mirror anastigmat (TMA) telescopes for applications such as SNAP, and describe the features of the specific optical configuration that we have baselined for the SNAP mission. We discuss the mechanical design and choice of materials for the telescope. Then we present detailed ray traces and diffraction calculations for our baseline optical design. We briefly discuss stray light and tolerance issues, and present a preliminary wavefront error budget for the SNAP Telescope. We conclude by describing some of tasks to be carried out during the upcoming SNAP research and development phase.

  4. Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Ekers, Ron; Wilson, Thomas L.

    ``Radio Telescopes" starts with a brief historical introduction from Jansky's1931 discovery of radio emission from the Milky Way through the development ofradio telescope dishes and arrays to aperture synthesis imaging. It includessufficient basics of electromagnetic radiation to provide some understanding of thedesign and operation of radio telescopes. The criteria such as frequencyrange, sensitivity, survey speed, angular resolution, and field of view thatdetermine the design of radio telescopes are introduced. Because it is soeasy to manipulate the electromagnetic waves at radio frequencies, radiotelescopes have evolved into many different forms, sometimes with "wire"structures tuned to specific wavelengths, which look very different from anykind of classical telescope. To assist astronomers more familiar with otherwavelength domains, the appendix A.1. includes a comparison of radioand optical terminology. Some of the different types of radio telescopesincluding the filled aperture dishes, electronically steered phased arrays, andaperture synthesis radio telescopes are discussed, and there is a sectioncomparing the differences between dishes and arrays. Some of the morerecent developments including hierarchical beam forming, phased arrayfeeds, mosaicing, rotation measure synthesis, digital receivers, and longbaseline interferometers are included. The problem of increasing radiofrequency interference is discussed, and some possible mitigation strategies areoutlined.

  5. Giant Magellan Telescope: overview

    NASA Astrophysics Data System (ADS)

    Johns, Matt; McCarthy, Patrick; Raybould, Keith; Bouchez, Antonin; Farahani, Arash; Filgueira, Jose; Jacoby, George; Shectman, Steve; Sheehan, Michael

    2012-09-01

    The Giant Magellan Telescope (GMT) is a 25-meter optical/infrared extremely large telescope that is being built by an international consortium of universities and research institutions. It will be located at the Las Campanas Observatory, Chile. The GMT primary mirror consists of seven 8.4-m borosilicate honeycomb mirror segments made at the Steward Observatory Mirror Lab (SOML). Six identical off-axis segments and one on-axis segment are arranged on a single nearly-paraboloidal parent surface having an overall focal ratio of f/0.7. The fabrication, testing and verification procedures required to produce the closely-matched off-axis mirror segments were developed during the production of the first mirror. Production of the second and third off-axis segments is underway. GMT incorporates a seven-segment Gregorian adaptive secondary to implement three modes of adaptive-optics operation: natural-guide star AO, laser-tomography AO, and ground-layer AO. A wide-field corrector/ADC is available for use in seeing-limited mode over a 20-arcmin diameter field of view. Up to seven instruments can be mounted simultaneously on the telescope in a large Gregorian Instrument Rotator. Conceptual design studies were completed for six AO and seeing-limited instruments, plus a multi-object fiber feed, and a roadmap for phased deployment of the GMT instrument suite is being developed. The partner institutions have made firm commitments for approximately 45% of the funds required to build the telescope. Project Office efforts are currently focused on advancing the telescope and enclosure design in preparation for subsystem- and system-level preliminary design reviews which are scheduled to be completed in the first half of 2013.

  6. Hubble Space Telescope satellite

    NASA Technical Reports Server (NTRS)

    Mitchell, R. E.

    1985-01-01

    The Hubble Space Telescope, named for the American astronomer Edwin Powell Hubble, will be the largest and most powerful astronomical instrument ever orbited. Placed above the obscuring effects of the earth's atmosphere in a 600-km orbit, this remotely-controlled, free-flying satellite observatory will expand the terrestrial-equivalent resolution of the universe by a factor of seven, or a volumetric factor of 350. This telescope has a 2.4-m primary mirror and can accommodate five scientific instruments (cameras, spectrographs and photometers). The optics are suitable for a spectral range from 1100 angstrom to 1 mm wavelength. With a projected service life of fifteen years, the spacecraft can be serviced on-orbit for replacement of degraded systems, to insert advanced scientific instruments, and to reboost the telescope from decayed altitudes. The anticipated image quality will be a result of extremely precise lambda/20 optics, stringent cleanliness, and very stable pointing: jitter will be held to less than 0.01 arcsecond for indefinite observation periods, consistent with instrument apertures as small as 0.1 arcsecond.

  7. 46 CFR 7.135 - Point Sur, CA to Cape Blanco, OR.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... shore. (e) A line drawn from the northwestern tip of Tomales Point to latitude 38°15.1′ N. longitude 123... 46 Shipping 1 2014-10-01 2014-10-01 false Point Sur, CA to Cape Blanco, OR. 7.135 Section 7.135... Pacific Coast § 7.135 Point Sur, CA to Cape Blanco, OR. (a) A line drawn from Monterey Harbor Light “6”...

  8. 46 CFR 7.135 - Point Sur, CA to Cape Blanco, OR.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... shore. (e) A line drawn from the northwestern tip of Tomales Point to latitude 38°15.1′ N. longitude 123... 46 Shipping 1 2012-10-01 2012-10-01 false Point Sur, CA to Cape Blanco, OR. 7.135 Section 7.135... Pacific Coast § 7.135 Point Sur, CA to Cape Blanco, OR. (a) A line drawn from Monterey Harbor Light “6”...

  9. 46 CFR 7.135 - Point Sur, CA to Cape Blanco, OR.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... shore. (e) A line drawn from the northwestern tip of Tomales Point to latitude 38°15.1′ N. longitude 123... 46 Shipping 1 2011-10-01 2011-10-01 false Point Sur, CA to Cape Blanco, OR. 7.135 Section 7.135... Pacific Coast § 7.135 Point Sur, CA to Cape Blanco, OR. (a) A line drawn from Monterey Harbor Light “6”...

  10. 46 CFR 7.135 - Point Sur, CA to Cape Blanco, OR.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... shore. (e) A line drawn from the northwestern tip of Tomales Point to latitude 38°15.1′ N. longitude 123... 46 Shipping 1 2013-10-01 2013-10-01 false Point Sur, CA to Cape Blanco, OR. 7.135 Section 7.135... Pacific Coast § 7.135 Point Sur, CA to Cape Blanco, OR. (a) A line drawn from Monterey Harbor Light “6”...

  11. 46 CFR 7.135 - Point Sur, CA to Cape Blanco, OR.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Point Sur, CA to Cape Blanco, OR. 7.135 Section 7.135 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Pacific Coast § 7.135 Point Sur, CA to Cape Blanco, OR. (a) A line drawn from Monterey Harbor Light “6” to latitude 36°36.5′ N. longitude...

  12. Design and manufacture of 8.4 m primary mirror segments and supports for the GMT

    NASA Astrophysics Data System (ADS)

    Martin, H. M.; Angel, J. R. P.; Burge, J. H.; Cuerden, B.; Davison, W. B.; Johns, M.; Kingsley, J. S.; Kot, L. B.; Lutz, R. D.; Miller, S. M.; Shectman, S. A.; Strittmatter, P. A.; Zhao, C.

    2006-06-01

    The design, manufacture and support of the primary mirror segments for the GMT build on the successful primary mirror systems of the MMT, Magellan and Large Binocular telescopes. The mirror segment and its support system are based on a proven design, and the experience gained in the existing telescopes has led to significant refinements that will provide even better performance in the GMT. The first 8.4 m segment has been cast at the Steward Observatory Mirror Lab, and optical processing is underway. Measurement of the off-axis surface is the greatest challenge in the manufacture of the segments. A set of tests that meets the requirements has been defined and the concepts have been developed in some detail. The most critical parts of the tests have been demonstrated in the measurement of a 1.7 m off-axis prototype. The principal optical test is a full-aperture, high-resolution null test in which a hybrid reflective-diffractive null corrector compensates for the 14 mm aspheric departure of the off-axis segment. The mirror support uses the same synthetic floatation principle as the MMT, Magellan, and LBT mirrors. Refinements for GMT include 3-axis actuators to accommodate the varying orientations of segments in the telescope.

  13. Why systems engineering on telescopes?

    NASA Astrophysics Data System (ADS)

    Swart, Gerhard P.; Meiring, Jacobus G.

    2003-02-01

    Although Systems Engineering has been widely applied to the defence industry, many other projects are unaware of its potential benefits when correctly applied, assuming that it is an expensive luxury. It seems that except in a few instances, telescope projects are no exception, prompting the writing of this paper. The authors postulate that classical Systems Engineering can and should be tailored, and then applied to telescope projects, leading to cost, schedule and technical benefits. This paper explores the essence of Systems Engineering and how it can be applied to any complex development project. The authors cite real-world Systems Engineering examples from the Southern African Large Telescope (SALT). The SALT project is the development and construction of a 10m-class telescope at the price of a 4m telescope. Although SALT resembles the groundbreaking Hobby-Eberly Telescope (HET) in Texas, the project team are attempting several challenging changes to the original design, requiring a focussed engineering approach and discernment in the definition of the telescope requirements. Following a tailored Systems Engineering approach on this project has already enhanced the quality of decisions made, improved the fidelity of contractual specifications for subsystems, and established criteria testing their performance. Systems Engineering, as applied on SALT, is a structured development process, where requirements are formally defined before the award of subsystem developmental contracts. During this process conceptual design, modeling and prototyping are performed to ensure that the requirements were realistic and accurate. Design reviews are held where the designs are checked for compliance with the requirements. Supplier factory and on-site testing are followed by integrated telescope testing, to verify system performance against the specifications. Although the SALT project is still far from completion, the authors are confident that the present benefits from

  14. Evaluating gyrochronology on the zero-age-main-sequence: rotation periods in the southern open cluster Blanco 1 from the Kelt-South survey

    SciTech Connect

    Cargile, P. A.; Pepper, J.; Siverd, R.; Stassun, K. G.; James, D. J.; Kuhn, R. B.

    2014-02-10

    We report periods for 33 members of Blanco 1 as measured from Kilodegree Extremely Little Telescope-South light curves, the first reported rotation periods for this benchmark zero-age-main-sequence open cluster. The distribution of these stars spans from late-A or early-F dwarfs to mid-K with periods ranging from less than a day to ∼8 days. The rotation period distribution has a morphology similar to the coeval Pleiades cluster, suggesting the universal nature of stellar rotation distributions. Employing two different gyrochronology methods, we find an age of 146{sub −14}{sup +13} Myr for the cluster. Using the same techniques, we infer an age of 134{sub −10}{sup +9} Myr for the Pleiades measured from existing literature rotation periods. These rotation-derived ages agree with independently determined cluster ages based on the lithium depletion boundary technique. Additionally, we evaluate different gyrochronology models and quantify levels of agreement between the models and the Blanco 1/Pleiades rotation period distributions, including incorporating the rotation distributions of clusters at ages up to 1.1 Gyr. We find the Skumanich-like spin-down rate sufficiently describes the rotation evolution of stars hotter than the Sun; however, we find cooler stars rotating faster than predicted by a Skumanich law, suggesting a mass dependence in the efficiency of stellar angular momentum loss rate. Finally, we compare the Blanco 1 and Pleiades rotation period distributions to available nonlinear angular momentum evolution models. We find they require a significant mass dependence on the initial rotation rate of solar-type stars to reproduce the observed range of rotation periods at a given stellar mass and are furthermore unable to predict the observed over-density of stars along the upper envelope of the clusters' rotation distributions.

  15. Infrared telescope

    NASA Technical Reports Server (NTRS)

    Karr, G. R.; Hendricks, J. B.

    1985-01-01

    The development of the Infrared Telescope for Spacelab 2 is discussed. The design, development, and testing required to interface a stationary superfluid helium dewar with a scanning cryostate capable of operating in the zero-g environment in the space shuttle bay is described.

  16. Telescopic hindsight

    NASA Astrophysics Data System (ADS)

    Cox, Laurence

    2014-08-01

    In reply to the physicsworld.com blog post "Cosmic blunders that have held back science" (2 June, http://ow.ly/xwC7C), about an essay by the astronomer Avi Loeb in which he criticized, among others, his Harvard University predecessor Edward Pickering, who claimed in 1909 that telescopes had reached their optimal size.

  17. Swift J1822.3-1606: Optical spectroscopy of the counterpart candidates from the 10.4m GTC

    NASA Astrophysics Data System (ADS)

    de Ugarte Postigo, A.; Munoz-Darias, T.

    2011-07-01

    We have performed optical spectroscopy of the two objects (S1 and S2; ATEL #3496, #3502) present within the Swift/XRT error circle of the Soft Gamma-ray Repeater (SGR) candidate, Swift J1822.3-1606 (ATEL #3488, #3489, #3490, #3491, #3493, #3501, #3503). Observations were performed on July 20, 2011 using the OSIRIS spectrograph at the 10.4m Gran Telescopio de Canarias (GTC) telescope in La Palma, Spain.

  18. Selecting Your First Telescope.

    ERIC Educational Resources Information Center

    Harrington, Sherwood

    1982-01-01

    Designed for first-time telescope purchasers, provides information on how a telescope works; major telescope types (refractors, reflectors, compound telescopes); tripod, pier, altazimuth, and equatorial mounts; selecting a telescope; visiting an astronomy club; applications/limitations of telescope use; and tips on buying a telescope. Includes a…

  19. Utrecht and the European Solar Telescope

    NASA Astrophysics Data System (ADS)

    Bettonvil, F. C. M.; EST Team

    2013-01-01

    In 2008, in the quest towards large solar facilities, a pan-European project was started to study a 4-m European Solar Telescope (EST). As one of the major partners, Utrecht played a significant role in the design, in particular in relation to the intended open design, its enclosure, telescope mechanics as well its polarimetric properties. Mid-2011 the work did result in an innovative conceptual design for EST.

  20. M4M chat rooms: individual socialization and sexual autonomy.

    PubMed

    Sanders, T C

    2008-04-01

    This paper uses data from twenty-one online and in-person qualitative interviews to examine the meaning and use of chat rooms located on men for men (M4M) websites from the perspectives of men seeking men on the Internet. This research is inspired by recent public health and social sciences literature on gay websites and chat rooms. The data indicate that these online sites help expedite learning about sex and sexuality and, for men who are shy or geographically isolated, to interact with metropolitan gay communities. There is, however, a measure of stigma associated with use of these chat rooms, particularly by men who are older or in coupled relationships. Using these data, the paper argues that M4M chat rooms play a vital role in fostering the sexual autonomy of many men who frequent these venues and that sociologists should devote more study to the complexity of online social interaction.

  1. M4M chat rooms: individual socialization and sexual autonomy.

    PubMed

    Sanders, T C

    2008-04-01

    This paper uses data from twenty-one online and in-person qualitative interviews to examine the meaning and use of chat rooms located on men for men (M4M) websites from the perspectives of men seeking men on the Internet. This research is inspired by recent public health and social sciences literature on gay websites and chat rooms. The data indicate that these online sites help expedite learning about sex and sexuality and, for men who are shy or geographically isolated, to interact with metropolitan gay communities. There is, however, a measure of stigma associated with use of these chat rooms, particularly by men who are older or in coupled relationships. Using these data, the paper argues that M4M chat rooms play a vital role in fostering the sexual autonomy of many men who frequent these venues and that sociologists should devote more study to the complexity of online social interaction. PMID:18432425

  2. United States Atlas of Optical Telescopes. [2nd Edition

    NASA Technical Reports Server (NTRS)

    Meszaros, Stephen Paul

    1987-01-01

    This atlas shows the locations of and gives information about optical telescopes used for astronomical research in the United States as of late 1986. Those instruments with mirror or lens diameters of 3/4 m (approx. 30 inches) and larger are included. These telescopes are concentrated in the Southwest, on the West Coast and on the island of Hawaii.

  3. Neutrino telescopes

    SciTech Connect

    Costantini, H.

    2012-09-15

    Neutrino astrophysics offers a new possibility to observe our Universe: high-energy neutrinos, produced by the most energetic phenomena in our Galaxy and in the Universe, carry complementary (if not exclusive) information about the cosmos: this young discipline extends in fact the conventional astronomy beyond the usual electromagnetic probe. The weak interaction of neutrinos with matter allows them to escape from the core of astrophysical objects and in this sense they represent a complementary messenger with respect to photons. However, their detection on Earth due to the small interaction cross section requires a large target mass. The aim of this article is to review the scientific motivations of the high-energy neutrino astrophysics, the detection principles together with the description of a running apparatus, the experiment ANTARES, the performance of this detector with some results, and the presentation of other neutrino telescope projects.

  4. Nanoelectronic primary thermometry below 4 mK.

    PubMed

    Bradley, D I; George, R E; Gunnarsson, D; Haley, R P; Heikkinen, H; Pashkin, Yu A; Penttilä, J; Prance, J R; Prunnila, M; Roschier, L; Sarsby, M

    2016-01-01

    Cooling nanoelectronic structures to millikelvin temperatures presents extreme challenges in maintaining thermal contact between the electrons in the device and an external cold bath. It is typically found that when nanoscale devices are cooled to ∼ 10 mK the electrons are significantly overheated. Here we report the cooling of electrons in nanoelectronic Coulomb blockade thermometers below 4 mK. The low operating temperature is attributed to an optimized design that incorporates cooling fins with a high electron-phonon coupling and on-chip electronic filters, combined with low-noise electronic measurements. By immersing a Coulomb blockade thermometer in the (3)He/(4)He refrigerant of a dilution refrigerator, we measure a lowest electron temperature of 3.7 mK and a trend to a saturated electron temperature approaching 3 mK. This work demonstrates how nanoelectronic samples can be cooled further into the low-millikelvin range. PMID:26816217

  5. RHEOLOGY AND MICROSTRUCTURE OF QUESO BLANCO AS AFFFECTED BY PRESSING PROCEDURE AND STORAGE CONDITIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Queso Blanco, a popular Hispanic-style cheese, was pressed using either a vertical press or a compression molder, and then stored under different conditions to determine if its rheological characteristics, and thus its consumer acceptance, would be affected. Texture profile analysis, torsion testin...

  6. JSC Particle Telescope

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.

    2003-01-01

    This paper presents a detailed description of the Johnson Space Center's Particle Telescope. Schematic diagrams of the telescope geometry and an electronic block diagram of the detector telescopes' components are also described.

  7. The Cherenkov Telescope Array single-mirror small size telescope project: status and prospects

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Bilnik, W.; Bogacz, L.; Bulik, T.; Christov, A.; della Volpe, D.; Dyrda, M.; Frankowski, A.; Grudzińska, M.; Grygorczuk, J.; Heller, M.; Idźkowski, B.; Janiak, M.; Jamrozy, M.; Karczewski, M.; Kasperek, J.; Lyard, E.; Marszalek, A.; Michalowski, J.; Rameez, M.; Moderski, R.; Montaruli, T.; Neronov, A.; Nicolau-Kukliński, J.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Płatos, Ł.; Prandini, E.; Rafalski, J.; Rajda, P. J.; Rataj, M.; Rupiński, M.; Rutkowskai, K.; Seweryn, K.; Sidz, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Tokarz, M.; Toscano, S.; Troyano Pujadas, I.; Walter, R.; Wawer, P.; Wawrzaszek, R.; Wiśniewski, L.; Winiarski, K.; Zietara, K.; Ziółkowski, P.; Źychowski, P.

    2014-07-01

    The Cherenkov Telescope Array (CTA), the next generation very high energy gamma-ray observatory, will consist of three types of telescopes: large (LST), medium (MST) and small (SST) size telescopes. The small size telescopes are dedicated to the observation of gamma-rays with energy between a few TeV and few hundreds of TeV. The single-mirror small size telescope (SST-1M) is one of several SST designs. It will be equipped with a 4 m-diameter segmented mirror dish and a fully digital camera based on Geiger-mode avalanche photodiodes. Currently, the first prototype of the mechanical structure is under assembly in Poland. In 2014 it will be equipped with 18 mirror facets and a prototype of the camera.

  8. A box corer 30 cm square and 4 m long

    NASA Astrophysics Data System (ADS)

    Foster Johnson, Richard

    1988-08-01

    To collect long, large-volume cores of diatomaceous sediment on the continental shelf off Namibia, we built a box corer that is 30 cm square and 4 m long. This paper describes the corer and the tools and procedures for sampling the covers. In terms of volume of sediment recovered in a single penetration, the corer may be among the largest ever used. The corer itself consists of a barrel with segments 20 cm long, a release mechanism at top and a thin fiberglass curtain at bottom. To support the large load of sediment without distortion, the curtain follows a semi-circular track, concave upward. During assembly and disassembly, the corer hangs vertically over the side, enabling it to operate from a relatively small ship. To sample the core, an extruding device pushes the sediment from each segment into boxes made of polyurethane foam. Ashore a specially designed jig helps slice these boxes into vertical slabs as thin as 1 cm. In the 6 days at sea that we had to test the corer and collect samples for the project, we took 9 cores, the longest of which was 3 m.

  9. First light for space telescope

    NASA Astrophysics Data System (ADS)

    Tresch-Fienberg, Richard

    1986-12-01

    The launch of the 2.4-m Hubble Space Telescope (HST) by the Space Shuttle Atlantis in late 1988 is discussed. Only after a commissioning period will the observatory begin routine scientific operations. After circling the globe in tandem for two days, Atlantis and space telescope will part and a one-to-two month Orbital Verification period will begin. 'First light' will involve the detection of an anonymous star by the spacecraft's pointing and control system. Three fine-guidance sensors permit the telescope to find a particular object and remain pointed at it to within 0.007 arc second for as long as 24 hours. Magnitude 28 stars will be detected routinely and magnitude 31 stars in the longest exposures. Objects that will be used to test the functioning of the various scientific instruments are noted: NGC 188 for the wide-field/planetary camera, 30 Doradus (Tarantula nebula) for the high-resolution spectrograph, the triple quasar PG 1115 + 80A, B, C in Leo for the faint-object spectrograph. In a Science verification period, the scientific instruments will be calibrated so as to remove their signatures as much as possible from the data. Kapteyn's Selected Area 95, the Orion nebula, and the 'Egg nebula' in Cygnus are candidate calibration objects.

  10. May 2011 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    SciTech Connect

    2011-12-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 16-17, 2011, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry, and for tritium using the conventional method. Tritium was not measured using the enrichment method because the EPA laboratory no longer offers that service. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outside the boundaries have not been affected by project-related contaminants.

  11. May 2012 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    SciTech Connect

    2012-12-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 9-10, 2012, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outside the site boundaries have not been affected by project-related contaminants.

  12. Rio Blanco, Colorado, Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2009

    SciTech Connect

    2009-12-21

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rio Blanco, Colorado, Site, for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 13 and 14, 2009. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectroscopy and tritium using the conventional and enriched methods.

  13. 2015 Long-Term Hydrologic Monitoring Program Sampling and Analysis Results at Rio Blanco, Colorado

    SciTech Connect

    Findlay, Rick; Kautsky, Mark

    2015-12-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rio Blanco, Colorado, Site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 20–21, 2015. This report documents the analytical results of the Rio Blanco annual monitoring event, the trip report, and the data validation package. The groundwater and surface water monitoring samples were shipped to the GEL Group Inc. laboratories for conventional analysis of tritium and analysis of gamma-emitting radionuclides by high-resolution gamma spectrometry. A subset of water samples collected from wells near the Rio Blanco site was also sent to GEL Group Inc. for enriched tritium analysis. All requested analyses were successfully completed. Samples were collected from a total of four onsite wells, including two that are privately owned. Samples were also collected from two additional private wells at nearby locations and from nine surface water locations. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry, and they were analyzed for tritium using the conventional method with a detection limit on the order of 400 picocuries per liter (pCi/L). Four locations (one well and three surface locations) were analyzed using the enriched tritium method, which has a detection limit on the order of 3 pCi/L. The enriched locations included the well at the Brennan Windmill and surface locations at CER-1, CER-4, and Fawn Creek 500 feet upstream.

  14. Geologic framework, hydrostratigraphy, and ichnology of the Blanco, Payton, and Rough Hollow 7.5-minute quadrangles, Blanco, Comal, Hays, and Kendall Counties, Texas

    USGS Publications Warehouse

    Clark, Allan K.; Golab, James A.; Morris, Robert E.

    2016-01-01

    This report presents the geologic framework, hydro­stratigraphy, and ichnology of the Trinity and Edwards Groups in the Blanco, Payton, and Rough Hollow 7.5-minute quad­rangles in Blanco, Comal, Hays, and Kendall Counties, Texas. Rocks exposed in the study area are of the Lower Cretaceous Trinity Group and lower part of the Fort Terrett Formation of the Lower Cretaceous Edwards Group. The mapped units in the study area are the Hammett Shale, Cow Creek Limestone, Hensell Sand, and Glen Rose Limestone of the Trinity Group and the lower portion of the Fort Terrett Formation of the Edwards Group. The Glen Rose Limestone is composed of the Lower and Upper Members. These Trinity Group rocks con­tain the upper and middle Trinity aquifers. The only remaining outcrops of the Edwards Group are the basal nodular member of the Fort Terrett Formation, which caps several hills in the northern portion of the study area. These rocks were deposited in an open marine to supratidal flats environment. The faulting and fracturing in the study area are part of the Balcones fault zone, an extensional system of faults that generally trends southwest to northeast in south-central Texas.The hydrostratigraphic units of the Edwards and Trinity aquifers were mapped and described using a classification system based on fabric-selective or not-fabric-selective poros­ity types. The only hydrostratigraphic unit of the Edwards aquifer present in the study area is hydrostratigraphic unit VIII. The mapped hydrostratigraphic units of the upper Trinity aquifer are (from top to bottom) the Camp Bullis, upper evaporite, fossiliferous, and lower evaporite which are interval equivalent to the Upper Member of the Glen Rose Limestone. The middle Trinity aquifer encompasses (from top to bottom) the Lower Member of the Glen Rose Limestone, the Hensell Sand Member, and the Cow Creek Limestone Member of the Pearsall Formation. The Lower Member of the Glen Rose Limestone is subdivided into six informal hydro

  15. Geologic framework, hydrostratigraphy, and ichnology of the Blanco, Payton, and Rough Hollow 7.5-minute quadrangles, Blanco, Comal, Hays, and Kendall Counties, Texas

    USGS Publications Warehouse

    Clark, Allan K.; Golab, James A.; Morris, Robert E.

    2016-09-13

    This report presents the geologic framework, hydro­stratigraphy, and ichnology of the Trinity and Edwards Groups in the Blanco, Payton, and Rough Hollow 7.5-minute quad­rangles in Blanco, Comal, Hays, and Kendall Counties, Texas. Rocks exposed in the study area are of the Lower Cretaceous Trinity Group and lower part of the Fort Terrett Formation of the Lower Cretaceous Edwards Group. The mapped units in the study area are the Hammett Shale, Cow Creek Limestone, Hensell Sand, and Glen Rose Limestone of the Trinity Group and the lower portion of the Fort Terrett Formation of the Edwards Group. The Glen Rose Limestone is composed of the Lower and Upper Members. These Trinity Group rocks con­tain the upper and middle Trinity aquifers. The only remaining outcrops of the Edwards Group are the basal nodular member of the Fort Terrett Formation, which caps several hills in the northern portion of the study area. These rocks were deposited in an open marine to supratidal flats environment. The faulting and fracturing in the study area are part of the Balcones fault zone, an extensional system of faults that generally trends southwest to northeast in south-central Texas.The hydrostratigraphic units of the Edwards and Trinity aquifers were mapped and described using a classification system based on fabric-selective or not-fabric-selective poros­ity types. The only hydrostratigraphic unit of the Edwards aquifer present in the study area is hydrostratigraphic unit VIII. The mapped hydrostratigraphic units of the upper Trinity aquifer are (from top to bottom) the Camp Bullis, upper evaporite, fossiliferous, and lower evaporite which are interval equivalent to the Upper Member of the Glen Rose Limestone. The middle Trinity aquifer encompasses (from top to bottom) the Lower Member of the Glen Rose Limestone, the Hensell Sand Member, and the Cow Creek Limestone Member of the Pearsall Formation. The Lower Member of the Glen Rose Limestone is subdivided into six informal hydro

  16. Telescopes and space exploration

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Maran, S. P.

    1976-01-01

    The necessity for different types of telescopes for astronomical investigations is discussed. Major findings in modern astronomy by ground-based and spaceborne telescopes are presented. Observations of the Crab Nebula, solar flares, interstellar gas, and the Black Hole are described. The theory of the oscillating universe is explored. Operating and planned telescopes are described.

  17. The space telescope

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Papers concerning the development of the Space Telescope which were presented at the Twenty-first Annual Meeting of the American Astronautical Society in August, 1975 are included. Mission planning, telescope performance, optical detectors, mirror construction, pointing and control systems, data management, and maintenance of the telescope are discussed.

  18. The Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Prestage, R. M.; Constantikes, K. T.; Hunter, T. R.; King, L. J.; Lacasse, R. J.; Lockman, F. J.; Norrod, R. D.

    2009-08-01

    The Robert C. Byrd Green Bank Telescope of the National Radio Astronomy Observatory is the world's premiere single-dish radio telescope operating at centimeter to long millimeter wavelengths. This paper describes the history, construction, and main technical features of the telescope.

  19. 46 CFR 153.351 - Location of 4m vent discharges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Location of 4m vent discharges. 153.351 Section 153.351... Venting Systems § 153.351 Location of 4m vent discharges. Except as prescribed in § 153.353, a 4m venting...) any walkway that is within a 4m (approx. 13.1 ft) horizontal radius from the vent discharge. (b)...

  20. New optical telescope projects at Devasthal Observatory

    NASA Astrophysics Data System (ADS)

    Sagar, Ram; Kumar, Brijesh; Omar, Amitesh; Pandey, A. K.

    2012-09-01

    Devasthal, located in the Kumaun region of Himalayas is emerging as one of the best optical astronomy site in the continent. The minimum recorded ground level atmospheric seeing at the site is 0.006 with median value at 1.001. Currently, a 1.3-m fast (f/4) wide field-of-view (660) optical telescope is operating at the site. In near future, a 4-m liquid mirror telescope in collaboration with Belgium and Canada, and a 3.6-m optical telescope in collaboration with Belgium are expected to be installed in 2013. The telescopes will be operated by Aryabhatta Research Institute of Observational Sciences. The first instruments on the 3.6-m telescope will be in-house designed and assembled faint object spectrograph and camera. The second generation instruments will be including a large field-of-view optical imager, high resolution optical spectrograph, integral field unit and an optical near-infrared spectrograph. The 1.3-m telescope is primarily used for wide field photometry imaging while the liquid mirror telescope will see a time bound operation to image half a degree wide strip in the galactic plane. There will be an aluminizing plant at the site to coat mirrors of sizes up to 3.7 m. The Devasthal Observatory and its geographical importance in between major astronomical observatories makes it important for time critical observations requiring continuous monitoring of variable and transient objects from ground based observatories. The site characteristics, its expansions plans and first results from the existing telescope are presented.

  1. Range-balancing the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Rakich, A.; Thompson, D.; Kuhn, O. P.

    2011-10-01

    The Large Binocular Telescope (LBT) consists of two 8.4 m telescopes mounted on a common alt-az gimbal. The telescope has various modes of operation, including prime-focus, bent- and direct-Gregorian modes. The telescopes can feed independent instruments or their light can be combined in one of two interferometric instruments, giving an interferometric baseline of over 22 m. With all large telescopes, including the LBT, collimation models or modeled values for hexapod positions, are required to maintain reasonable optical alignment over the working range of temperatures and telescope elevations. Unlike other telescopes, the LBT has a highly asymmetric mechanical structure, and as a result the collimation models are required to do a lot more "work", than on an equivalent aperture monocular telescope that are usually designed to incorporate a Serurrier truss arrangement. LBT has been phasing in science operations over the last 5 years, with first light on the prime-focus cameras in 2006, and first light in Gregorian mode in 2008. In this time the generation of collimation models for LBT has proven to be problematic, with large departures from a given model, and large changes in pointing, being the norm. A refined approach to generating collimation models, "range balancing", has greatly improved this situation. The range-balancing approach to generating collimation models has delivered reliable collimation and pointing in both prime focus and Gregorian modes which has led to greatly increased operational efficiency. The details of the range-balancing approach, involving the removal of pointing "contamination" from collimation data, are given in this paper.

  2. ATA50 telescope: hardware

    NASA Astrophysics Data System (ADS)

    Yeşilyaprak, C.; Yerli, S. K.; Aksaker, N.; Yildiran, Y.; Güney, Y.; Güçsav, B. B.; Özeren, F. F.; Kiliç, Y.; Shameoni, M. N.; Fişek, S.; Kiliçerkan, G.; Nasiroğlu, İ.; Özbaldan, E. E.; Yaşar, E.

    2014-12-01

    ATA50 Telescope is a new telescope with RC optics and 50 cm diameter. It was supported by Atatürk University Scientific Research Project (2010) and established at about 2000 meters altitude in city of Erzurum in Turkey last year. The observations were started a few months ago under the direction and control of Atatürk University Astrophysics Research and Application Center (ATASAM). The technical properties and infrastructures of ATA50 Telescope are presented and we have been working on the robotic automation of the telescope as hardware and software in order to be a ready-on-demand candidate for both national and international telescope networks.

  3. Space Infrared Telescope Facility (SIRTF) telescope overview

    NASA Technical Reports Server (NTRS)

    Schember, Helene; Manhart, Paul; Guiar, Cecilia; Stevens, James H.

    1991-01-01

    The Space Infrared Telescope Facility (SIRTF) will be the first true infrared observatory in space, building upon the technical and scientific experience gained through its two NASA survey-oriented predecessors: the Infrared Astronomical Satellite and the Cosmic Background Explorer. During its minimum five year lifetime, the SIRTF will perform pointed scientific observations at wavelengths from 1.8 to 1200 microns with an increase in sensitivity over previous missions of several orders of magnitude. This paper discusses a candidate design for the SIRTF telescope, encompassing optics, cryostat, and instrument accommodation, which has been undertaken to provide a fulcrum for the development of functional requirements, interface definition, risk assessment and cost. The telescope optics employ a baffled Ritchey-Chretien Cassegrain system with a 1-m class primary mirror, an active secondary mirror, and a stationary facetted tertiary mirror. The optics are embedded in a large superfluid He cryostat designed to maintain the entire telescope-instrument system at temperatures below 3 K.

  4. Surface figure measurements of radio telescopes with a shearing interferometer.

    PubMed

    Serabyn, E; Phillips, T G; Masson, C R

    1991-04-01

    A new technique for determining the surface figure of large submillimeter wavelength telescopes is presented, which is based on measuring the telescope's focal plane diffraction pattern with a shearing interferometer. In addition to the instrumental theory, results obtained using such an interferometer on the 10.4-m diam telescope of the Caltech Submillimeter Observatory are discussed. Using wavelengths near 1 mm, a measurement accuracy of 9 microm, or lambda/115, has been achieved, and the rms surface accuracy has been determined to be just under 30 microm. The distortions of the primary reflector with changing elevation angle have also been measured and agree well with theoretical predictions of the dish deformation.

  5. A Global Robotic Telescope Network for Time-Domain Science

    NASA Astrophysics Data System (ADS)

    Street, R. A.; Lister, T. A.; Tsapras, Y.; Shporer, A.; Bianco, F. B.; Fulton, B. J.; Howell, D. A.; Dilday, B.; Graham, M.; Sand, D.; Parent, J.; Brown, T.; Horne, K.; Dominik, M.; Browne, P.; Snodgrass, C.; Kains, N.; Bramich, D.; Law, N.; Steele, I.

    2012-04-01

    Las Cumbres Observatory Global Telescope Network (LCOGT) is currently building a new kind of general-purpose astronomical facility: a fully robotic network of telescopes of 2m, 1m and 0.4m apertures and homogeneous instrumentation. A pan-network approach to scheduling (rather than per individual telescope) offers redundancy in the event of poor weather or technical failure, as well as the ability to observe a target around the clock. Here we describe the network design and instrumentation under development, together with the main science programmes already being lead by LCOGT staff.

  6. Pier vibration isolation for lightweight interferometry telescopes

    NASA Astrophysics Data System (ADS)

    Wood, Perry G.; Penado, F. Ernesto; Clark, James H., III; Walton, Joshua P.

    2007-09-01

    The Navy Prototype Optical Interferometer (NPOI) in Flagstaff, Arizona, makes use of separate smaller telescopes spaced along a Y-array and used simultaneously to simulate an equivalent single large telescope. Each telescope is mounted on a massive reinforced concrete pier tied to bedrock. The mass of the pier dampens most, but not all, of the unwanted vibration in the required spectrum. The quality and resolution of a stellar image depends on minimizing movement of the mirrors due to vibration. The main source of pier vibration is due to the soil-pier interaction. Surrounding environmental and man-made vibration propagates through the soil as body and surface waves, and forces the pier to move. In this paper, a novel concept based on a sleeve/air gap system to isolate the soil from the pier is used to minimize the vibration input to the telescope. An example of the concept is presented with respect to the future implementation of a 1.4-m diameter composite telescope at the Navy Prototype Optical Interferometer.

  7. Productivity and Impact of Optical Telescopes

    NASA Astrophysics Data System (ADS)

    Trimble, Virginia; Zaich, Paul; Bosler, Tammy

    2005-01-01

    In 2001, about 2100 papers appearing in 18 journals reported and/or analyzed data collected with ground-based optical and infrared telescopes and the Hubble Space Telescope. About 250 telescopes were represented, including 25 with primary mirror diameters of 3 m or larger. The subjects covered in the papers divide reasonably cleanly into 20 areas, from solar system to cosmology. These papers were cited 24,354 times in 2002 and 2003, for a mean rate of 11.56 citations per paper, or 5.78 citations per paper per year (sometimes called impact or impact factor). We analyze here the distributions of the papers, citations, and impact factors among the telescopes and subject areas and compare the results with those of a very similar study of papers published in 1990-1991 and cited in 1993. Some of the results are exactly as expected. Big telescopes produce more papers and more citations per paper than small ones. There are fashionable topics (cosmology and exoplanets) and less fashionable ones (binary stars and planetary nebulae). And the Hubble Space Telescope has changed the landscape a great deal. Some other results surprised us but are explicable in retrospect. Small telescopes on well-supported sites (La Silla and Cerro Tololo, for instance) produce papers with larger impact factors than similar sized telescopes in relative isolation. Not just the fraction of all papers, but the absolute numbers of papers coming out of the most productive 4 m telescopes of a decade ago have gone down. The average number of citations per paper per year resulting from the 38 telescopes (2 m and larger) considered in 1993 has gone up 38%, from 3.48 to 4.81, a form, perhaps, of grade inflation. And 53% of the 2100 papers and 38% of the citations (including 44% of the papers and 31% of the citations from mirrors of 3 m and larger) pertain to topics often not regarded as major drivers for the next generation of still larger ground-based telescopes.

  8. May 2013 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    SciTech Connect

    2013-10-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 14-16, 2013, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location CER #1 Black Sulphur. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods.

  9. Discrimination of Citrus reticulata Blanco and Citrus reticulata 'Chachi' by gas chromatograph-mass spectrometry based metabolomics approach.

    PubMed

    Duan, Li; Guo, Long; Dou, Li-Li; Zhou, Chang-Lin; Xu, Feng-Guo; Zheng, Guo-Dong; Li, Ping; Liu, E-Hu

    2016-12-01

    Citri Reticulatae Pericarpium, mainly including the pericarp of Citrus reticulata Blanco and the pericarp of Citrus reticulata 'Chachi', has been consumed daily as food and dietary supplement for centuries. In this study, GC-MS based metabolomics was employed to compare comprehensively the volatile constituents in Citrus reticulata Blanco and Citrus reticulata 'Chachi'. Principal component analysis and orthogonal partial least squares discrimination analysis indicated that samples could be distinguished effectively from one another. Fifteen metabolites were finally identified for use as chemical markers in discrimination of Citri Reticulatae Pericarpium samples. The antimicrobial activity against Gram-negative and Gram-positive bacteria of the volatile oil from Citrus reticulata Blanco and Citrus reticulata 'Chachi' was investigated preliminarily. PMID:27374515

  10. JWST pathfinder telescope integration

    NASA Astrophysics Data System (ADS)

    Matthews, Gary W.; Kennard, Scott H.; Broccolo, Ronald T.; Ellis, James M.; Daly, Elizabeth A.; Hahn, Walter G.; Amon, John N.; Mt. Pleasant, Stephen M.; Texter, Scott; Atkinson, Charles B.; McKay, Andrew; Levi, Joshua; Keski-Kuha, Ritva; Feinberg, Lee

    2015-08-01

    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. In 2014, a major risk reduction effort related to the Alignment, Integration, and Test (AI and T) of the segmented telescope was completed. The Pathfinder telescope includes two Primary Mirror Segment Assemblies (PMSA's) and the Secondary Mirror Assembly (SMA) onto a flight-like composite telescope backplane. This pathfinder allowed the JWST team to assess the alignment process and to better understand the various error sources that need to be accommodated in the flight build. The successful completion of the Pathfinder Telescope provides a final integration roadmap for the flight operations that will start in August 2015.

  11. Automated telescope scheduling

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    1988-01-01

    With the ever increasing level of automation of astronomical telescopes the benefits and feasibility of automated planning and scheduling are becoming more apparent. Improved efficiency and increased overall telescope utilization are the most obvious goals. Automated scheduling at some level has been done for several satellite observatories, but the requirements on these systems were much less stringent than on modern ground or satellite observatories. The scheduling problem is particularly acute for Hubble Space Telescope: virtually all observations must be planned in excruciating detail weeks to months in advance. Space Telescope Science Institute has recently made significant progress on the scheduling problem by exploiting state-of-the-art artificial intelligence software technology. What is especially interesting is that this effort has already yielded software that is well suited to scheduling groundbased telescopes, including the problem of optimizing the coordinated scheduling of more than one telescope.

  12. The Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Grueff, G.; Alvito, G.; Ambrosini, R.; Bolli, P.; D'Amico, N.; Maccaferri, A.; Maccaferri, G.; Morsiani, M.; Mureddu, L.; Natale, V.; Olmi, L.; Orfei, A.; Pernechele, C.; Poma, A.; Porceddu, I.; Rossi, L.; Zacchiroli, G.

    We describe the Sardinia Radio Telescope (SRT), a new general purpose, fully steerable antenna of the National Institute for Astrophysics. The radio telescope is under construction near Cagliari (Sardinia). With its large aperture (64m diameter) and its active surface, SRT is capable of operations up to ˜100GHz, it will contribute significantly to VLBI networks and will represent a powerful single-dish radio telescope for many science fields. The radio telescope has a Gregorian optical configuration with a supplementary beam-waveguide (BWG), which provides additional focal points. The Gregorian surfaces are shaped to minimize the spill-over and standing wave. After the start of the contract for the radio telescope structural and mechanical fabrication in 2003, in the present year the foundation construction will be completed. The schedule foresees the radio telescope inauguration in late 2006.

  13. JWST Pathfinder Telescope Integration

    NASA Technical Reports Server (NTRS)

    Matthews, Gary W.; Kennard, Scott H.; Broccolo, Ronald T.; Ellis, James M.; Daly, Elizabeth A.; Hahn, Walter G.; Amon, John N.; Mt. Pleasant, Stephen M.; Texter, Scott; Atkinson, Charles B.; McKay, Andrew; Levi, Joshua; Keski-Kuha, Ritva; Feinberg, Lee

    2015-01-01

    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. In 2014, a major risk reduction effort related to the Alignment, Integration, and Test (AI&T) of the segmented telescope was completed. The Pathfinder telescope includes two Primary Mirror Segment Assemblies (PMSA's) and the Secondary Mirror Assembly (SMA) onto a flight-like composite telescope backplane. This pathfinder allowed the JWST team to assess the alignment process and to better understand the various error sources that need to be accommodated in the flight build. The successful completion of the Pathfinder Telescope provides a final integration roadmap for the flight operations that will start in August 2015.

  14. South Pole Telescope optics.

    PubMed

    Padin, S; Staniszewski, Z; Keisler, R; Joy, M; Stark, A A; Ade, P A R; Aird, K A; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Crawford, T M; Crites, A T; Dobbs, M A; Halverson, N W; Heimsath, S; Hills, R E; Holzapfel, W L; Lawrie, C; Lee, A T; Leitch, E M; Leong, J; Lu, W; Lueker, M; McMahon, J J; Meyer, S S; Mohr, J J; Montroy, T E; Plagge, T; Pryke, C; Ruhl, J E; Schaffer, K K; Shirokoff, E; Spieler, H G; Vieira, J D

    2008-08-20

    The South Pole Telescope is a 10 m diameter, wide-field, offset Gregorian telescope with a 966-pixel, millimeter-wave, bolometer array receiver. The telescope has an unusual optical system with a cold stop around the secondary. The design emphasizes low scattering and low background loading. All the optical components except the primary are cold, and the entire beam from prime focus to the detectors is surrounded by cold absorber. PMID:18716649

  15. South Pole Telescope optics.

    PubMed

    Padin, S; Staniszewski, Z; Keisler, R; Joy, M; Stark, A A; Ade, P A R; Aird, K A; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Crawford, T M; Crites, A T; Dobbs, M A; Halverson, N W; Heimsath, S; Hills, R E; Holzapfel, W L; Lawrie, C; Lee, A T; Leitch, E M; Leong, J; Lu, W; Lueker, M; McMahon, J J; Meyer, S S; Mohr, J J; Montroy, T E; Plagge, T; Pryke, C; Ruhl, J E; Schaffer, K K; Shirokoff, E; Spieler, H G; Vieira, J D

    2008-08-20

    The South Pole Telescope is a 10 m diameter, wide-field, offset Gregorian telescope with a 966-pixel, millimeter-wave, bolometer array receiver. The telescope has an unusual optical system with a cold stop around the secondary. The design emphasizes low scattering and low background loading. All the optical components except the primary are cold, and the entire beam from prime focus to the detectors is surrounded by cold absorber.

  16. LISA Telescope Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    The results of a LISA telescope sensitivity analysis will be presented, The emphasis will be on the outgoing beam of the Dall-Kirkham' telescope and its far field phase patterns. The computed sensitivity analysis will include motions of the secondary with respect to the primary, changes in shape of the primary and secondary, effect of aberrations of the input laser beam and the effect the telescope thin film coatings on polarization. An end-to-end optical model will also be discussed.

  17. UV/Visible Telescope with Hubble Disposal

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.

    2013-01-01

    Submission Overview: Our primary objective is to convey a sense of the significant advances possible in astrophysics investigations for major Cosmic Origins COR program goals with a 2.4m telescope asset outfitted with one or more advanced UV visible instruments. Several compelling science objectives were identified based on community meetings these science objectives drove the conceptual design of instruments studied by the COR Program Office during July September 2012. This RFI submission encapsulates the results of that study, and suggests that a more detailed look into the instrument suite should be conducted to prove viability and affordability to support the demonstrated scientific value. This study was conducted in the context of a larger effort to consider the options available for a mission to dispose safely of Hubble hence, the overall architecture considered for the mission we studied for the 2.4m telescope asset included resource sharing. This mitigates combined cost and risk and provides naturally for a continued US leadership role in astrophysics with an advanced, general-purpose UV visible space telescope.

  18. Telescope performance verification

    NASA Astrophysics Data System (ADS)

    Swart, Gerhard P.; Buckley, David A. H.

    2004-09-01

    While Systems Engineering appears to be widely applied on the very large telescopes, it is lacking in the development of many of the medium and small telescopes currently in progress. The latter projects rely heavily on the experience of the project team, verbal requirements and conjecture based on the successes and failures of other telescopes. Furthermore, it is considered an unaffordable luxury to "close-the-loop" by carefully analysing and documenting the requirements and then verifying the telescope's compliance with them. In this paper the authors contend that a Systems Engineering approach is a keystone in the development of any telescope and that verification of the telescope's performance is not only an important management tool but also forms the basis upon which successful telescope operation can be built. The development of the Southern African Large Telescope (SALT) has followed such an approach and is now in the verification phase of its development. Parts of the SALT verification process will be discussed in some detail to illustrate the suitability of this approach, including oversight by the telescope shareholders, recording of requirements and results, design verification and performance testing. Initial test results will be presented where appropriate.

  19. Anti-fungal activity of Citrus reticulata Blanco essential oil against Penicillium italicum and Penicillium digitatum.

    PubMed

    Tao, Nengguo; Jia, Lei; Zhou, Haien

    2014-06-15

    The chemical composition of Citrus reticulata Blanco essential oil was analysed using GC/MS. Monoterpene hydrocarbons (C10H16) constituted the majority (88.96%, w/w) of the total oil. The oils dose-dependently inhibited Penicillium italicum and Penicillium digitatum. The anti-fungal activity of the oils against P. italicum was attributed to citronellol, octanal, citral, decanal, nonanal, β-pinene, linalool, and γ-terpinene, whereas anti-fungal activity against P. digitatum is attributed to octanal, decanal, nonanal, limonene, citral, γ-terpinene, linalool, and α-terpineol. The oils altered the hyphal morphology of P. italicum and P. digitatum by causing loss of cytoplasm and distortion of the mycelia. The oils significantly altered extracellular conductivity, the release of cell constituents, and the total lipid content of P. italicum and P. digitatum. The results suggest that C. reticulata Blanco essential oils generate cytotoxicity in P. italicum and P. digitatum by disrupting cell membrane integrity and causing the leakage of cell components. PMID:24491729

  20. LUTE telescope structural design

    NASA Technical Reports Server (NTRS)

    Ruthven, Gregory

    1993-01-01

    The major objective of the Lunar Ultraviolet Transit Experiment (LUTE) Telescope Structural Design Study was to investigate the feasibility of designing an ultralightweight 1-m aperture system within optical performance requirements and mass budget constraints. This study uses the results from our previous studies on LUTE as a basis for further developing the LUTE structural architecture. After summarizing our results in Section 2, Section 3 begins with the overall logic we used to determine which telescope 'structural form' should be adopted for further analysis and weight estimates. Specific telescope component analysis showing calculated fundamental frequencies and how they compare with our derived requirements are included. 'First-order' component stress analyses to ensure telescope optical and structural component (i.e. mirrors & main bulkhead) weights are realistic are presented. Layouts of both the primary and tertiary mirrors showing dimensions that are consistent with both our weight and frequency calculations also form part of Section 3. Section 4 presents our calculated values for the predicted thermally induced primary-to-secondary mirror despace motion due to the large temperature range over which LUTE must operate. Two different telescope design approaches (one which utilizes fused quartz metering rods and one which assumes the entire telescope is fabricated from beryllium) are considered in this analysis. We bound the secondary mirror focus mechanism range (in despace) based on these two telescope configurations. In Section 5 we show our overall design of the UVTA (Ultraviolet Telescope Assembly) via an 'exploded view' of the sub-system. The 'exploded view' is annotated to help aid in the understanding of each sub-assembly. We also include a two view layout of the UVTA from which telescope and telescope component dimensions can be measured. We conclude our study with a set of recommendations not only with respect to the LUTE structural architecture

  1. High resolution telescope

    DOEpatents

    Massie, Norbert A.; Oster, Yale

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activites. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  2. Goddard Robotic Telescope

    NASA Astrophysics Data System (ADS)

    Sakamoto, Takanori; Donato, Davide; Gehrels, Neil; Okajima, Takashi; Ukwatta, Tilan N.

    2009-05-01

    We are constructing the 14'' fully automated optical robotic telescope, Goddard Robotic Telescope (GRT), at the Goddard Geophysical and Astronomical Observatory. The aims of our robotic telescope are 1) to follow-up the Swift/Fermi Gamma-Ray Bursts (GRBs) and 2) to perform the coordinated optical observations of the Fermi/Large Area Telescope (LAT) Active Galactic Nuclei (AGN). Our telescope system consists of the 14'' Celestron Optical Telescope Assembly (OTA), the Astro-Physics 1200GTO mount, the Apogee U47 CCD camera, the JMI's electronic focuser, and the Finger Lake Instrumentation's color filter wheel with U, B, V, R and I filters. With the focal reducer, 20'×20' field of view has been achieved. The observatory dome is the Astro Haven's 7 ft clam-shell dome. We started the scientific observations on mid-November 2008. While not observing our primary targets (GRBs and AGNs), we are planning to open our telescope time to the public for having a wider use of our telescope in both a different research field and an educational purpose.

  3. Video Telescope Operating Microscopy.

    PubMed

    Divers, Stephen J

    2015-09-01

    Exotic pet veterinarians frequently have to operate on small animals, and magnification is commonly used. Existing endoscopy equipment can be used with a mechanical arm and telescope to enable video telescope operating microscopy. The additional equipment items and their specifics are described, and several case examples are provided. PMID:26117519

  4. Goddard Robotic Telescope

    SciTech Connect

    Sakamoto, Takanori; Donato, Davide; Gehrels, Neil; Okajima, Takashi; Ukwatta, Tilan N.

    2009-05-25

    We are constructing the 14'' fully automated optical robotic telescope, Goddard Robotic Telescope (GRT), at the Goddard Geophysical and Astronomical Observatory. The aims of our robotic telescope are 1) to follow-up the Swift/Fermi Gamma-Ray Bursts (GRBs) and 2) to perform the coordinated optical observations of the Fermi/Large Area Telescope (LAT) Active Galactic Nuclei (AGN). Our telescope system consists of the 14'' Celestron Optical Telescope Assembly (OTA), the Astro-Physics 1200GTO mount, the Apogee U47 CCD camera, the JMI's electronic focuser, and the Finger Lake Instrumentation's color filter wheel with U, B, V, R and I filters. With the focal reducer, 20'x20' field of view has been achieved. The observatory dome is the Astro Haven's 7 ft clam-shell dome. We started the scientific observations on mid-November 2008. While not observing our primary targets (GRBs and AGNs), we are planning to open our telescope time to the public for having a wider use of our telescope in both a different research field and an educational purpose.

  5. Video Telescope Operating Microscopy.

    PubMed

    Divers, Stephen J

    2015-09-01

    Exotic pet veterinarians frequently have to operate on small animals, and magnification is commonly used. Existing endoscopy equipment can be used with a mechanical arm and telescope to enable video telescope operating microscopy. The additional equipment items and their specifics are described, and several case examples are provided.

  6. Hubble Space Telescope overview

    NASA Technical Reports Server (NTRS)

    Polidan, Ronald S.

    1991-01-01

    A general overview of the performance and current status of the Hubble Space Telescope is presented. Most key spacecraft subsystems are operating well, equaling or exceeding specifications. Spacecraft thermal properties, power, and communications, are superb. The only spacecraft subsystem to have failed, a gyro, is briefly discussed. All science instruments are functioning extremely well and are returning valuable scientific data. The two significant problems effecting the Hubble Space Telescope science return, the pointing jitter produced by thermally induced bending of the solar array wings and the optical telescope assembly spherical aberration, are discussed and plans to repair both problems are mentioned. The possible restoration of full optical performance of the axial scientific instruments through the use of the Corrective Optics Space Telescope Axial Replacement, currently under study for the 1993 servicing mission, is discussed. In addition, an overview of the scientific performance of the Hubble Space Telescope is presented.

  7. The European Solar Telescope

    NASA Astrophysics Data System (ADS)

    Collados, M.; Bettonvil, F.; Cavaller, L.; Ermolli, I.; Gelly, B.; Pérez, A.; Socas-Navarro, H.; Soltau, D.; Volkmer, R.; EST Team

    The European Solar Telescope (EST) is a project to design, build and operate an European Solar 4-meter class telescope to be located in the Canary Islands, with the participation of institutions from fifteen European countries gathered around the consortium EAST (European Association for Solar Telescopes). The project main objective up to the present has been the development of the conceptual design study (DS) of a large aperture Solar Telescope. The study has demonstrated the scientific, technical and financial feasibility of EST. The DS has been possible thanks to the co-financing allocated specifically by the EU and the combined efforts of all the participant institutions. Different existing alternatives have been analysed for all telescope systems and subsystems, and decisions have been taken on the ones that are most compatible with the scientific goals and the technical strategies. The present status of some subsystems is reviewed in this paper.

  8. The Large Binocular Telescope as an early ELT

    NASA Astrophysics Data System (ADS)

    Hill, John; Hinz, Philip; Ashby, David

    2013-12-01

    The Large Binocular Telescope (LBT) has two 8.4-m primary mirrors on a common AZ-EL mounting. The dual Gregorian optical configuration for LBT includes a pair of adaptive secondaries. The adaptive secondaries are working reliably for science observations as well as for the commissioning of new instruments. Many aspects of the LBT telescope design have been optimized for the combination of the two optical trains. The telescope structure is relatively compact and stiff with a lowest eigenfrequency near 8 Hz. A vibration measurement system of accelerometers (OVMS) has been installed to characterize the vibrations of the telescope. A first-generation of the binocular telescope control system has been deployed on-sky. Two instruments, LBTI and LINC-NIRVANA, have been built to take advantage of the 22.65-m diffraction baseline when the telescope is phased. This diffraction-limited imaging capability (beyond 20-m baseline) positions LBT as a forerunner of the new generation of extremely large telescopes (ELT). We discuss here some of the experiences ofphasing the two sides of the telescope starting in 2010. We also report some lessons learned during on-sky commissioning of the LBTI instrument.

  9. Advanced Technology Solar Telescope Construction: Progress Report

    NASA Astrophysics Data System (ADS)

    Rimmele, Thomas R.; McMullin, J.; Keil, S.; Goode, P.; Knoelker, M.; Kuhn, J.; Rosner, R.; ATST Team

    2012-05-01

    The 4m Advance Technology Solar Telescope (ATST) on Haleakala will be the most powerful solar telescope and the world’s leading ground-based resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun’s output. The ATST will provide high resolution and high sensitivity observations of the dynamic solar magnetic fields throughout the solar atmosphere, including the corona at infrared wavelengths. With its 4 m aperture, ATST will resolve magnetic features at their intrinsic scales. A high order adaptive optics system delivers a corrected beam to the initial set of five state-of-the-art, facility class instrumentation located in the coude laboratory facility. Photopheric and chromospheric magnetometry is part of the key mission of four of these instruments. Coronal magnetometry and spectroscopy will be performed by two of these instruments at infrared wavelengths. The ATST project has transitioned from design and development to its construction phase. Site construction is expected to begin in April 2012. The project has awarded design and fabrication contracts for major telescope subsystems. A robust instrument program has been established and all instruments have passed preliminary design reviews or critical design reviews. A brief overview of the science goals and observational requirements of the ATST will be given, followed by a summary of the project status of the telescope and discussion of the approach to integrating instruments into the facility. The National Science Foundation (NSF) through the National Solar Observatory (NSO) funds the ATST Project. The NSO is operated under a cooperative agreement between the Association of Universities for Research in Astronomy, Inc. (AURA) and NSF.

  10. Two Easily Made Astronomical Telescopes.

    ERIC Educational Resources Information Center

    Hill, M.; Jacobs, D. J.

    1991-01-01

    The directions and diagrams for making a reflecting telescope and a refracting telescope are presented. These telescopes can be made by students out of plumbing parts and easily obtainable, inexpensive, optical components. (KR)

  11. Telescopic vision contact lens

    NASA Astrophysics Data System (ADS)

    Tremblay, Eric J.; Beer, R. Dirk; Arianpour, Ashkan; Ford, Joseph E.

    2011-03-01

    We present the concept, optical design, and first proof of principle experimental results for a telescopic contact lens intended to become a visual aid for age-related macular degeneration (AMD), providing magnification to the user without surgery or external head-mounted optics. Our contact lens optical system can provide a combination of telescopic and non-magnified vision through two independent optical paths through the contact lens. The magnified optical path incorporates a telescopic arrangement of positive and negative annular concentric reflectors to achieve 2.8x - 3x magnification on the eye, while light passing through a central clear aperture provides unmagnified vision.

  12. Cooled infrared telescope development

    NASA Technical Reports Server (NTRS)

    Young, L. S.

    1976-01-01

    The feasibility of the design concept for a 1-m-aperture, cryogenically cooled telescope for Spacelab is assessed. The device makes use of double-folded Gregorian reflective optics. The planned cryogen is helium, and beryllium will be used for the 1.2 m primary mirror. Results of studies based on smaller instruments indicate that no new technology will be required to construct a Shuttle Infrared Telescope Facility which will offer improvement over the sensitivity of conventional telescopes by a factor of 1000 at 10 micrometers.

  13. The Large Synoptic Survey Telescope

    NASA Astrophysics Data System (ADS)

    Ivezic, Zeljko

    2007-05-01

    The Large Synoptic Survey Telescope (LSST) is currently by far the most ambitious proposed ground-based optical survey. With initial funding from the US National Science Foundation (NSF), Department of Energy (DOE) laboratories and private sponsors, the design and development efforts are well underway at many institutions, including top universities and leading national laboratories. The main science themes that drive the LSST system design are Dark Energy and Matter, the Solar System Inventory, Transient Optical Sky and the Milky Way Mapping. The LSST system, with its 8.4m telescope and 3,200 Megapixel camera, will be sited at Cerro Pachon in northern Chile, with the first light scheduled for 2014. In a continuous observing campaign, LSST will cover the entire available sky every three nights in two photometric bands to a depth of V=25 per visit (two 15 second exposures), with exquisitely accurate astrometry and photometry. Over the proposed survey lifetime of 10 years, each sky location would be observed about 1000 times, with the total exposure time of 8 hours distributed over six broad photometric bandpasses (ugrizY). This campaign will open a movie-like window on objects that change brightness, or move, on timescales ranging from 10 seconds to 10 years, and will produce a catalog containing over 10 billion galaxies and a similar number of stars. The survey will have a data rate of about 30 TB/night, and will collect over 60 PB of raw data over its lifetime, resulting in an incredibly rich and extensive public archive that will be a treasure trove for breakthroughs in many areas of astronomy and astrophysics.

  14. An aerial radiological survey of the project Rio Blanco and surrounding area

    SciTech Connect

    Singman, L.V.

    1994-11-01

    A team from the Remote Sensing Laboratory in Las Vegas, Nevada, conducted an aerial radiation survey of the area surrounding ground zero of Project Rio Blanco in the northwestern section of Colorado in June 1993. The object of the survey was to determine if there were man-made radioisotopes on or near the surface resulting from a nuclear explosion in 1972. No indications of surface contamination were found. A search for the cesium-137 radioisotope was negative. The Minimum Detectable Activity for cesium-137 is presented for several detection probabilities. The natural terrestrial exposure rates in units of Roentgens per hour were mapped and are presented in the form of a contour map over-laid on an aerial photograph. A second team made independent ground-based measurements in four places within the survey area. The average agreement of the ground-based with aerial measurements was six percent.

  15. Subacute toxicity assessment of carotenoids extracted from citrus peel (Nanfengmiju, Citrus reticulata Blanco) in rats.

    PubMed

    Xue, Feng; Li, Chen; Pan, Siyi

    2012-02-01

    The mixture of carotenoids extracted from citrus peel (Nanfengmiju, Citrus reticulata Blanco) was tested for subacute oral toxicity. In this study, dose levels of 0, 200, 500 and 2000 mg/kg body weight/day were administered by gavage to 10 Wistar rats/sex/group for 28 days. No statistically significant, dose-related effect on food consumption, food efficiency, body weight gain, clinical signs or ophthalmoscopic parameters was observed in any treatment group. Urinalysis, hematological, blood coagulation and serum biochemical examination as well as necropsy or histopathology showed that no observed adverse effect was found. These findings suggested that the No-Observed-Adverse-Effect Level for the mixture of carotenoids extracted from citrus peel was at least 2000 mg/kg body weight/day. PMID:22197624

  16. Multi-use lunar telescopes

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Hine, Butler; Genet, Russell; Genet, David; Talent, David; Boyd, Louis; Trueblood, Mark; Filippenko, Alexei V. (Editor)

    1991-01-01

    The objective of multi-use telescopes is to reduce the initial and operational costs of space telescopes to the point where a fair number of telescopes, a dozen or so, would be affordable. The basic approach is to develop a common telescope, control system, and power and communications subsystem that can be used with a wide variety of instrument payloads, i.e., imaging CCD cameras, photometers, spectrographs, etc. By having such a multi-use and multi-user telescope, a common practice for earth-based telescopes, development cost can be shared across many telescopes, and the telescopes can be produced in economical batches.

  17. Laramide tectonic evolution of San Juan sag, Colorado: Implications of Animas and Blanco basin formations

    SciTech Connect

    Brister, B.S. )

    1989-09-01

    The lower member of the Animas Formation (McDermott Member) is a volcaniclastic sequence derived from a north-northwest source (San Juan-La Plata area). It consists of purple andesitic debris flows, green fan-delta sandstones and mud rocks, and dark gray conglomerates with clast compositions indicating that the Precambrian core of the source uplift was exposed. The upper member is a sand-dominated alluvial plain sequence deposited by southwest-flowing braided streams. It includes green-gray-brown carbonaceous mudstones and pebbly sandstones containing clasts of mudstone, andesite, and detritus from Precambrian and Mesozoic sources in the Brazos-San Luis uplift to the east and northeast. by the end of Animas deposition, the San Juan sag (then a northeastern extension of the San Juan basin) was a broad, southwest-plunging synclinal downwarp bounded by hogback monoclines to the north and east. An erosional period followed Animas deposition; the greatest thickness of Animas was preserved along the axis of this synclinal feature. Bright-red sandy mudstones and yellow-gray pebbly sandstones and cobble conglomerates comprise the proximal alluvial-fan deposits of the Blanco Basin Formation. They unconformably overlie Precambrian through Paleocene rocks and clast compositions reflect these sources. Renewed uplift and segmentation of the Brazos-San Luis uplift resulted in the shedding of detritus southwestward into the San Juan sag and eastward into a narrow, asymmetrical, north-trending wrench basin within the uplift. Following Blanco Basin deposition, the last Laramide event is represented by the separation of the San Juan sag from the San Juan basin by uplift of the Archuleta anticlinorium.

  18. Cape Blanco Wind Farm Feasibility Study : Technical Report, No. 5. Communications Inteference.

    SciTech Connect

    Sengupta, D.L.

    1986-04-01

    The potential interference effects of the proposed Cape Blanco Wind Farm on the performance of various electromagnetic communications systems in its vicinity have been assessed from a teoretical standpoint. The assessment was carried out by assuming that the wind farm could involve 455 units of FloWind 170 kW, 31 units of Boeing MOD-2, or 259 units of DAF 6400 turbines. The systems that were assessed include navigation, microwave links and ratio, AM and FM broadcast reception, and television reception. The electromagnetic interference assessment was conducted on the basis of known criteria. The results of the study indicate that the navigation systems located at Cape Blanco would not be significantly affected by any of the three cnadidate wind turbines. If the radio systems are used as links, it would be unlikely that their performance would be adversely affected by the vertical-axis wind turbines (VAWTs). However, a more detailed evaluation should be carried out before deciding on the actual distribution of the MOD-2 turbines. If the miscellaneous radio systems were used for area communication, their performance within and in the immediate vicinity of the wind farm could be affected adversely. AM and FM broadcast reception outside the wind farm should not be affected significantly; within the wind farm site, the reception within a few rotor diameters of an individual wind turbine could be affected adversely. With regard to the effect on television, reception from a satellite dish antenna in the vicinity of the site was included in the assessment. Use of either of the two VAWTs could produce slight effects at the nearby residence. The effects would be strong and unacceptable with the MOD-2 turbines, requiring further studies to determine more accurately the impacts.

  19. Webb Telescope: Planetary Evolution

    NASA Video Gallery

    Stars and planets form in the dark, inside vast, cold clouds of gas and dust. The James Webb Space Telescope's large mirror and infrared sensitivity will let astronomers peer inside dusty knots whe...

  20. The Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Schloerb, F. Peter; Carrasco, Luis

    2004-10-01

    We present a summary of the Large Millimeter Telescope Project and its present status. The Large Millimeter Telescope (LMT) is a joint project of the University of Massachusetts (UMass) in the USA and the Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) in Mexico to build a 50m-diameter millimeter-wave telescope. The LMT is being built at an altitude of 4600 m atop Volcan Sierra Negra, an extinct volcanic peak in the state of Puebla, Mexico, approximately 100 km east of the city of Puebla. Construction of the antenna is now well underway. The basic structure with a limited number of surface panels is expected to be completed in 2005. Engineering acceptance and telescope commissioning are expected to be completed in 2007.

  1. Composite Space Telescope Truss

    NASA Video Gallery

    NASA engineers are recycling an idea for a lightweight, compact space telescope structure from the early 1990s. The 315 struts and 84 nodes were originally designed to enable spacewalking astronaut...

  2. Building a Telescope.

    ERIC Educational Resources Information Center

    Linas, Chris F.

    1988-01-01

    Provides information on the parts, materials, prices, dimensions, and tools needed for the construction of a telescope that can be used in high school science laboratories. Includes step-by-step directions and a diagram for assembly. (RT)

  3. Shuttle Infrared Telescope Facility

    NASA Technical Reports Server (NTRS)

    Mccarthy, S. G.

    1976-01-01

    The Shuttle Infrared Telescope Facility (SIRTF) will combine high sensitivity with the flexibility offered by the Space Transportation System. A recently completed study has generated a preliminary design which demonstrates the feasibility of SIRTF. The 1.0 to 1.5 meter aperture, f/8 Gregorian telescope will be cooled to 20 K by a stored supercritical helium system. The telescope will be pointed and stabilized at two levels: the European-developed Instrument Pointing System provides primary pointing and stabilization; and an internal star tracker senses residual errors and drives a folding mirror inside the telescope to null the errors. The folding mirror can also be driven by square or triangular waves to provide space chopping or small-area scanning.

  4. Telescopes in History

    NASA Astrophysics Data System (ADS)

    Bond, P.; Murdin, P.

    2000-11-01

    The precise origins of the optical telescope are hidden in the depths of time. In the thirteenth century Roger Bacon claimed to have devised a combination of lenses which enabled him to see distant objects as if they were near. Others who have an unsubstantiated claim to have invented the telescope in the sixteenth century include an Englishman, Leonard DIGGES, and an Italian, Giovanni Batista Po...

  5. Hubble Space Telescope Configuration

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This image illustrates the overall Hubble Space Telescope (HST) configuration. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  6. LISA Telescope Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Krebs, Carolyn (Technical Monitor)

    2002-01-01

    The Laser Interferometer Space Antenna (LISA) for the detection of Gravitational Waves is a very long baseline interferometer which will measure the changes in the distance of a five million kilometer arm to picometer accuracies. As with any optical system, even one with such very large separations between the transmitting and receiving, telescopes, a sensitivity analysis should be performed to see how, in this case, the far field phase varies when the telescope parameters change as a result of small temperature changes.

  7. The Future of Small Telescopes In The New Millennium. Volume II - The Telescopes We Use

    NASA Astrophysics Data System (ADS)

    Oswalt, T. D.

    2003-06-01

    An invaluable reference for any student, scientist or administrator, using small telescopes for research. An essential collection of data and opinions for those charged with setting scientific and funding priorities. This three-volume set, The Future of Small Telescopes in the New Millennium details the essential roles that small telescopes should play in 21st century science and how their future productivity can be maximized. Over 70 experts from all corners of the international astronomical community have created a definitive reference on the present and future of "big science with small telescopes." Despite highly publicized closures of telescopes smaller than 4-m in aperture at national facilities and their omission from national science priority studies, the oft-lamented demise of the small telescope has been greatly exaggerated. In fact, the future of these workhorses of astronomy will be brighter than ever if creative steps are taken now. This three-volume set defines the essential roles that small telescopes should play in 21st century science and the ways in which a productive future for them can be realized. A wide cross-section of the astronomical community has contributed to a definitive assessment of the present and a vision for the future. Volume 2: The Telescopes We Use Small cost-effective optical-, radio- and space-based facilities face similar problems in scientific prioritization and funding. Volume 2 highlights how current small facilities are evolving to meet the scientific priorities and economical realities of the 21st century through standardization of instrumentation, use of off-the-shelf technology, specialization, optical improvements, new modes of scheduling, automation, and internet access. The Future of Small Telescopes in the New Millennium is a fundamental resource for those looking to undertake new projects with small telescopes, for those that are responsible for their operation, and for those called upon to help set scientific

  8. An Evolvable Space Telescope for Future Astronomical Missions

    NASA Astrophysics Data System (ADS)

    Polidan, Ronald S.; Breckinridge, James B.; Lillie, Charles F.; MacEwen, Howard A.; Flannery, Martin; Dailey, Dean

    2015-01-01

    Astronomical flagship missions after the James Webb Space Telescope (JWST) will require lower cost space telescopes and science instruments. Innovative spacecraft-electro-opto-mechanical system architectures matched to the science requirements are needed for observations for exoplanet characterization, cosmology, dark energy, galactic evolution formation of stars and planets, and many other research areas. The needs and requirements to perform this science will continue to drive us toward larger and larger apertures.Recent technology developments in precision station keeping of spacecraft, interplanetary transfer orbits, wavefront/sensing and control, laser engineering, macroscopic application of nano-technology, lossless optical designs, deployed structures, thermal management, interferometry, detectors and signal processing enable innovative telescope/system architectures with break-through performance.Unfortunately, NASA's budget for Astrophysics is unlikely to be able to support the funding required for the 8-m to 16-m telescopes that have been studied for the follow-on to JWST using similar development/assembly approaches without accounting for too large of a portion of the Astrophysics Division's budget. Consequently, we have been examining the feasibility of developing an 'Evolvable Space Telescope' that would be 3 to 4-m when placed on orbit and then periodically augmented with additional mirror segments, structures, and newer instruments to evolve the telescope and achieve the performance of a 16-m space telescope.This paper reviews the technologies required for such a mission, identifies candidate architectures, and discusses different science measurement objectives for these architectures.

  9. An evolvable space telescope for future astronomical missions

    NASA Astrophysics Data System (ADS)

    Polidan, Ronald S.; Breckinridge, James B.; Lillie, Charles F.; MacEwen, Howard A.; Flannery, Martin R.; Dailey, Dean R.

    2014-08-01

    Astronomical flagship missions after JWST will require affordable space telescopes and science instruments. Innovative spacecraft-electro-opto-mechanical system architectures matched to the science requirements are needed for observations for exoplanet characterization, cosmology, dark energy, galactic evolution formation of stars and planets, and many other research areas. The needs and requirements to perform this science will continue to drive us toward larger and larger apertures. Recent technology developments in precision station keeping of spacecraft, interplanetary transfer orbits, wavefront/sensing and control, laser engineering, macroscopic application of nano-technology, lossless optical designs, deployed structures, thermal management, interferometry, detectors and signal processing enable innovative telescope/system architectures with break-through performance. Unfortunately, NASA's budget for Astrophysics is unlikely to be able to support the funding required for the 8 m to 16 m telescopes that have been studied as a follow-on to JWST using similar development/assembly approaches without decimating the rest of the Astrophysics Division's budget. Consequently, we have been examining the feasibility of developing an "Evolvable Space Telescope" that would begin as a 3 to 4 m telescope when placed on orbit and then periodically be augmented with additional mirror segments, structures, and newer instruments to evolve the telescope and achieve the performance of a 16 m or larger space telescope. This paper reviews the approach for such a mission and identifies and discusses candidate architectures.

  10. Innovative relocation system for enclosures for MROI array telescopes

    NASA Astrophysics Data System (ADS)

    Busatta, A.; Ghedin, L.; Marchiori, G.; Mian, S.; Payne, I.; Pozzobon, M.

    2010-07-01

    Magdalena Ridge Observatory Interferometer (MROI) comprises an array of up to ten (10) 1.4m diameter mirror telescopes. Each of these ten telescopes will be housed inside a Unit Telescope Enclosure (UTE) which can be relocated, with the telescope inside, to any of 28 stations arranged in a "Y" configuration. These stations comprise fixed foundations with utility and data connections. There are four standard array configurations, the most compact of which one has less than 350 mm of space between the enclosures. This paper describes the relocation systems that were evaluated, including a rail based system, wheels or trolley fixed to the bottom of the enclosure, and various lifting mechanisms, all of which were analyzed to determine their performances related to the requirements. Eventually a relocation system utilizing a modified reachstacker (a transporter used to handle freight containers) has been selected. The reachstacker is capable of manoeuvring between and around the enclosures, is capable of lifting the combined weight of the enclosure with the telescope (40tons), and can manoeuvre the enclosure with minimal vibrations. A rigorous testing procedure has been performed to determine the vibrations induced in a dummy load in order to guarantee the safety of optics that must remain on the nasmyth table during the relocation. Finally we describe the lifting system, constituted by hydraulic jacks and locating pins, designed to lift and lower the enclosure and telescope during the precise positioning of the telescopes in the various stations.

  11. The Multiple-Mirror Telescope

    ERIC Educational Resources Information Center

    Carleton, Nathaniel P.; Hoffmann, William F.

    1978-01-01

    Describes the basic design and principle of operating an optical-infrared telescope, the MMT. This third largest telescope in the world represents a new stage in telescope design; it uses a cluster of six reflecting telescopes, and relies on an automatic sensing and control system. (GA)

  12. DAG Telescope: A New Potential for MOS Observations

    NASA Astrophysics Data System (ADS)

    Alis, S.; Yesilyaprak, C.; Yerli, S. K.

    2016-10-01

    East Anatolian Observatory (aka. DAG) is a national project supported by the Turkish Government for building a 4 m class telescope which will be working in the optical and near-IR domain. As the tender process has been completed and kick-off to the telescope and the mirror production has been initiated, the project team is looking for possible collaborations for the focal plane instrumentation. This contribution is intended to describe the DAG project and to show its opportunities for a state-of-the-art MOS instrument.

  13. Hubble Space Telescope: The Telescope, the Observations & the Servicing Mission

    NASA Astrophysics Data System (ADS)

    1999-11-01

    the way for other space-based observatories. How the mission was named Hubble Space Telescope is named after Edwin Powell Hubble (1889-1953), who was one of the great pioneers of modern astronomy. Industrial Involvement The ESA contribution to HST included the Solar Panels and the Faint Object Camera (FOC). Prime contractors for the FOC were Dornier (now DaimlerChrysler Aerospace, Germany), and Matra (France); for the Solar Panels British Aerospace (UK). Launch date: April 25, 1990 Launcher: Space Shuttle Discovery (STS-31) Launch mass: 11 110 kg Dimensions Length: 15.9 m, diameter: 4.2 m. In addition two solar panels each 2.4 x 12.1 m. Payload (current) A 2.4 m f/24 Ritchey-Chretien telescope with four main instruments, currently WFPC2, STIS, NICMOS and FOC. In addition the three fine-guidance sensors are used for astrometric observations (positional astronomy). WFPC2 - Wide Field/Planetary Camera 2 is an electronic camera working at two magnifications. It has four CCD detectors with 800 x 800 pixels. One of these (called Planetary Camera) has a higher resolution (<0.1 arcsecond). STIS - Space Telescope Imaging Spectrograph uses so-called MAMAs and CCDs to provide images and spectra. It is sensitive to a wide range of light from UV to Infrared. NICMOS - Near-Infrared Camera and Multi-Object Spectrometer provides images and spectra in the infrared. NICMOS uses cooled HgCdTe detectors. Currently NICMOS is dormant and awaits a new cooler to be provided during Servicing Mission 3B. FOC - Faint Object Camera - a very high resolution camera built by ESA. FOC is no longer in use and will be replaced by the new Advanced Camera for Surveys (ACS) during Servicing Mission 3B. Orbit Circular, 593 km with a 28.5 degree inclination. Operations Science operations are co-ordinated and conducted by the Space Telescope Science Institute (STScI) in Baltimore. Overall management of daily on-orbit operations is carried out by NASA's Goddard Space Flight Center (GSFC) in Greenbelt. Ground

  14. THE SERENDIPITOUS OBSERVATION OF A GRAVITATIONALLY LENSED GALAXY AT z = 0.9057 FROM THE BLANCO COSMOLOGY SURVEY: THE ELLIOT ARC

    SciTech Connect

    Buckley-Geer, E. J.; Lin, H.; Drabek, E. R.; Allam, S. S.; Tucker, D. L.; Frieman, J. A.; Armstrong, R.; Barkhouse, W. A.; Bertin, E.; Brodwin, M.; Desai, S.; Ngeow, C.-C.; Hansen, S. M.; High, F. W.; Mohr, J. J.; Zenteno, A.; Lin, Y.-T.; Rest, A.; Smith, R. C.; Song, J.

    2011-11-20

    We report on the serendipitous discovery in the Blanco Cosmology Survey (BCS) imaging data of a z = 0.9057 galaxy that is being strongly lensed by a massive galaxy cluster at a redshift of z = 0.3838. The lens (BCS J2352-5452) was discovered while examining i- and z-band images being acquired in 2006 October during a BCS observing run. Follow-up spectroscopic observations with the Gemini Multi-Object Spectrograph instrument on the Gemini-South 8 m telescope confirmed the lensing nature of this system. Using weak-plus-strong lensing, velocity dispersion, cluster richness N{sub 200}, and fitting to a Navarro-Frenk-White (NFW) cluster mass density profile, we have made three independent estimates of the mass M{sub 200} which are all very consistent with each other. The combination of the results from the three methods gives M{sub 200} = (5.1 {+-} 1.3) Multiplication-Sign 10{sup 14} M{sub Sun }, which is fully consistent with the individual measurements. The final NFW concentration c{sub 200} from the combined fit is c{sub 200} = 5.4{sup +1.4}{sub -1.1}. We have compared our measurements of M{sub 200} and c{sub 200} with predictions for (1) clusters from {Lambda}CDM simulations, (2) lensing-selected clusters from simulations, and (3) a real sample of cluster lenses. We find that we are most compatible with the predictions for {Lambda}CDM simulations for lensing clusters, and we see no evidence based on this one system for an increased concentration compared to {Lambda}CDM. Finally, using the flux measured from the [O II]3727 line we have determined the star formation rate of the source galaxy and find it to be rather modest given the assumed lens magnification.

  15. The serendipitous observation of a gravitationally lensed galaxy at z = 0.9057 from the Blanco Cosmology Survey: the Elliot Arc

    SciTech Connect

    Buckley-Geer, E. J.; Lin, H.; Drabek, E. R.; Allam, S. S.; Tucker, D. L.; Armstrong, R.; Barkhouse, W. A.; Bertin, E.; Brodwin, M.; Desai, S.; Frieman, J. A.; Hansen, S. M.; High, F. W.; Mohr, J. J.; Lin, Y. -T.; Ngeow, C. -C.; Rest, A.; Smith, R. C.; Song, J.; Zenteno, A.

    2011-11-03

    We report on the serendipitous discovery in the Blanco Cosmology Survey (BCS) imaging data of a z = 0.9057 galaxy that is being strongly lensed by a massive galaxy cluster at a redshift of z = 0.3838. The lens (BCS J2352-5452) was discovered while examining i- and z-band images being acquired in October 2006 during a BCS observing run. Follow-up spectroscopic observations with the GMOS instrument on the Gemini South 8m telescope confirmed the lensing nature of this system. Using weak plus strong lensing, velocity dispersion, cluster richness N200, and fitting to an NFW cluster mass density profile, we have made three independent estimates of the mass M200 which are all very consistent with each other. The combination of the results from the three methods gives M200 = (5.1 x 1.3) x 1014 circle_dot, which is fully consistent with the individual measurements. The final NFW concentration c200 from the combined fit is c200 = 5.4-1.1+1.4. We have compared our measurements of M200 and c200 with predictions for (a) clusters from λCDM simulations, (b) lensing selected clusters from simulations, and (c) a real sample of cluster lenses. We find that we are most compatible with the predictions for λCDM simulations for lensing clusters, and we see no evidence based on this one system for an increased concentration compared to λCDM. Finally, using the flux measured from the [OII]3727 line we have determined the star formation rate (SFR) of the source galaxy and find it to be rather modest given the assumed lens magnification.

  16. The serendipitous observation of a gravitationally lensed galaxy at z = 0.9057 from the Blanco Cosmology Survey: the Elliot Arc

    DOE PAGES

    Buckley-Geer, E. J.; Lin, H.; Drabek, E. R.; Allam, S. S.; Tucker, D. L.; Armstrong, R.; Barkhouse, W. A.; Bertin, E.; Brodwin, M.; Desai, S.; et al

    2011-11-03

    We report on the serendipitous discovery in the Blanco Cosmology Survey (BCS) imaging data of a z = 0.9057 galaxy that is being strongly lensed by a massive galaxy cluster at a redshift of z = 0.3838. The lens (BCS J2352-5452) was discovered while examining i- and z-band images being acquired in October 2006 during a BCS observing run. Follow-up spectroscopic observations with the GMOS instrument on the Gemini South 8m telescope confirmed the lensing nature of this system. Using weak plus strong lensing, velocity dispersion, cluster richness N200, and fitting to an NFW cluster mass density profile, we havemore » made three independent estimates of the mass M200 which are all very consistent with each other. The combination of the results from the three methods gives M200 = (5.1 x 1.3) x 1014 circle_dot, which is fully consistent with the individual measurements. The final NFW concentration c200 from the combined fit is c200 = 5.4-1.1+1.4. We have compared our measurements of M200 and c200 with predictions for (a) clusters from λCDM simulations, (b) lensing selected clusters from simulations, and (c) a real sample of cluster lenses. We find that we are most compatible with the predictions for λCDM simulations for lensing clusters, and we see no evidence based on this one system for an increased concentration compared to λCDM. Finally, using the flux measured from the [OII]3727 line we have determined the star formation rate (SFR) of the source galaxy and find it to be rather modest given the assumed lens magnification.« less

  17. Evaluation of Skin Anti-aging Potential of Citrus reticulata Blanco Peel

    PubMed Central

    Apraj, Vinita D.; Pandita, Nancy S.

    2016-01-01

    Background: The peel of Citrus reticulata Blanco is traditionally used as tonic, stomachic, astringent, and carminative. It is also useful in skin care. Objective: To study the anti-aging potential of alcoholic extracts of C. reticulata Blanco peel using in vitro antioxidant and anti-enzyme assays. Materials and Methods: Plant extracts were obtained by Soxhlation (CR HAE- Hot Alcoholic Extract of Citrus reticulata) and maceration method (CR CAE- Cold Alcoholic Extract of Citrus reticulata). Qualitative and quantitative phytochemical analysis was performed. Further, in vitro antioxidant, anti-enzyme, and gas chromatography-mass spectrometry (GC-MS) analyses were performed. Results: Total phenolic and flavonoid contents of CR HAE were found to be higher than CR CAE. EC50 value of CR HAE and CR CAE for 1,1-Diphenyl-2-picrylhydrazyl, Superoxide anion, and 2, 2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) assays were 250.33 ± 40.16 μg/ml and 254.73 ± 15.78 μg/ml, 221.27 ± 11.25 μg/ml and 354.20 ± 23.79 μg/ml, and 59.16 ± 2.17 μg/ml and 59.12 ± 6.21 μg/ml, respectively. Oxygen radical absorbance capacity values for CR HAE and CR CAE were found to be 1243 and 1063 μmoles 6-hydroxy-2,5,7,8-tetra methylchromane-2-carboxylic acid equivalent/g of substance, respectively. Anti-collagenase and anti-elastase activities were evaluated for both CR HAE and CR CAE. EC50 values of CR HAE and CR CAE for anti-collagenase and anti-elastase were 329.33 ± 6.38 μg/ml, 466.93 ± 8.04 μg/ml and 3.22 ± 0.24 mg/ml, 5.09 ± 0.30 mg/ml, respectively. CR HAE exhibited stronger anti-collagenase and anti-elastase activity than CR CAE. GC-MS analysis of CR HAE was carried out because CR HAE exhibited higher antioxidant and anti-enzyme potential than CR CAE. Conclusion: C. reticulata peel can be utilized in anti-wrinkle skin care formulations. SUMMARY Skin anti-aging potential of Citrus reticulata Blanco peel was evaluated throughIn vitro antioxidant and anti-enzyme assays

  18. Evaluation of Skin Anti-aging Potential of Citrus reticulata Blanco Peel

    PubMed Central

    Apraj, Vinita D.; Pandita, Nancy S.

    2016-01-01

    Background: The peel of Citrus reticulata Blanco is traditionally used as tonic, stomachic, astringent, and carminative. It is also useful in skin care. Objective: To study the anti-aging potential of alcoholic extracts of C. reticulata Blanco peel using in vitro antioxidant and anti-enzyme assays. Materials and Methods: Plant extracts were obtained by Soxhlation (CR HAE- Hot Alcoholic Extract of Citrus reticulata) and maceration method (CR CAE- Cold Alcoholic Extract of Citrus reticulata). Qualitative and quantitative phytochemical analysis was performed. Further, in vitro antioxidant, anti-enzyme, and gas chromatography-mass spectrometry (GC-MS) analyses were performed. Results: Total phenolic and flavonoid contents of CR HAE were found to be higher than CR CAE. EC50 value of CR HAE and CR CAE for 1,1-Diphenyl-2-picrylhydrazyl, Superoxide anion, and 2, 2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) assays were 250.33 ± 40.16 μg/ml and 254.73 ± 15.78 μg/ml, 221.27 ± 11.25 μg/ml and 354.20 ± 23.79 μg/ml, and 59.16 ± 2.17 μg/ml and 59.12 ± 6.21 μg/ml, respectively. Oxygen radical absorbance capacity values for CR HAE and CR CAE were found to be 1243 and 1063 μmoles 6-hydroxy-2,5,7,8-tetra methylchromane-2-carboxylic acid equivalent/g of substance, respectively. Anti-collagenase and anti-elastase activities were evaluated for both CR HAE and CR CAE. EC50 values of CR HAE and CR CAE for anti-collagenase and anti-elastase were 329.33 ± 6.38 μg/ml, 466.93 ± 8.04 μg/ml and 3.22 ± 0.24 mg/ml, 5.09 ± 0.30 mg/ml, respectively. CR HAE exhibited stronger anti-collagenase and anti-elastase activity than CR CAE. GC-MS analysis of CR HAE was carried out because CR HAE exhibited higher antioxidant and anti-enzyme potential than CR CAE. Conclusion: C. reticulata peel can be utilized in anti-wrinkle skin care formulations. SUMMARY Skin anti-aging potential of Citrus reticulata Blanco peel was evaluated throughIn vitro antioxidant and anti-enzyme assays

  19. The South Pole Telescope

    SciTech Connect

    Ruhl, J.E.; Ade, P.A.R.; Carlstrom, J.E.; Cho, H.M.; Crawford,T.; Dobbs, M.; Greer, C.H.; Halverson, N.W.; Holzapfel, W.L.; Lanting,T.M.; Lee, A.T.; Leitch, E.M.; Leong, J.; Lu, W.; Lueker, M.; Mehl, J.; Meyer, S.S.; Mohr, J.J.; Padin, S.; Plagge, T.; Pryke, C.; Runyan, M.C.; Schwan, D.; Sharp, M.K.; Spieler, H.; Staniszewski, Z.; Stark, A.A.

    2004-11-04

    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10 m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over 4000 degrees for galaxy clusters using the Sunyaev-Zeldovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.

  20. Robotic and Survey Telescopes

    NASA Astrophysics Data System (ADS)

    Woźniak, Przemysław

    Robotic telescopes are revolutionizing the way astronomers collect their dataand conduct sky surveys. This chapter begins with a discussion of principles thatguide the process of designing, constructing, and operating telescopes andobservatories that offer a varying degree of automation, from instruments remotelycontrolled by observers to fully autonomous systems requiring no humansupervision during their normal operations. Emphasis is placed on designtrade-offs involved in building end-to-end systems intended for a wide range ofscience applications. The second part of the chapter contains descriptions ofseveral projects and instruments, both existing and currently under development.It is an attempt to provide a representative selection of actual systems thatillustrates state of the art in technology, as well as important ideas and milestonesin the development of the field. The list of presented instruments spans the fullrange in size starting from small all-sky monitors, through midrange robotic andsurvey telescopes, and finishing with large robotic instruments and surveys.Explosive growth of telescope networking is enabling entirely new modesof interaction between the survey and follow-up observing. Increasingimportance of standardized communication protocols and software is stressed.These developments are driven by the fusion of robotic telescope hardware,massive storage and databases, real-time knowledge extraction, and datacross-correlation on a global scale. The chapter concludes with examplesof major science results enabled by these new technologies and futureprospects.

  1. Telescope Adaptive Optics Code

    2005-07-28

    The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The defaultmore » parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST« less

  2. Spectroradiometry with space telescopes

    NASA Astrophysics Data System (ADS)

    Pauluhn, Anuschka; Huber, Martin C. E.; Smith, Peter L.; Colina, Luis

    2015-12-01

    Radiometry, i.e. measuring the power of electromagnetic radiation—hitherto often referred to as "photometry"—is of fundamental importance in astronomy. We provide an overview of how to achieve a valid laboratory calibration of space telescopes and discuss ways to reliably extend this calibration to the spectroscopic telescope's performance in space. A lot of effort has been, and still is going into radiometric "calibration" of telescopes once they are in space; these methods use celestial primary and transfer standards and are based in part on stellar models. The history of the calibration of the Hubble Space Telescope serves as a platform to review these methods. However, we insist that a true calibration of spectroscopic space telescopes must directly be based on and traceable to laboratory standards, and thus be independent of the observations. This has recently become a well-supported aim, following the discovery of the acceleration of the cosmic expansion by use of type-Ia supernovae, and has led to plans for launching calibration rockets for the visible and infrared spectral range. This is timely, too, because an adequate exploitation of data from present space missions, such as Gaia, and from many current astronomical projects like Euclid and WFIRST demands higher radiometric accuracy than is generally available today. A survey of the calibration of instruments observing from the X-ray to the infrared spectral domains that include instrument- or mission-specific estimates of radiometric accuracies rounds off this review.

  3. Monolithic afocal telescope

    NASA Technical Reports Server (NTRS)

    Roberts, William T. (Inventor)

    2010-01-01

    An afocal monolithic optical element formed of a shallow cylinder of optical material (glass, polymer, etc.) with fast aspheric surfaces, nominally confocal paraboloids, configured on the front and back surfaces. The front surface is substantially planar, and this lends itself to deposition of multi-layer stacks of thin dielectric and metal films to create a filter for rejecting out-of-band light. However, an aspheric section (for example, a paraboloid) can either be ground into a small area of this surface (for a Cassegrain-type telescope) or attached to the planar surface (for a Gregorian-type telescope). This aspheric section of the surface is then silvered to create the telescope's secondary mirror. The rear surface of the cylinder is figured into a steep, convex asphere (again, a paraboloid in the examples), and also made reflective to form the telescope's primary mirror. A small section of the rear surface (approximately the size of the secondary obscuration, depending on the required field of the telescope) is ground flat to provide an unpowered surface through which the collimated light beam can exit the optical element. This portion of the rear surface is made to transmit the light concentrated by the reflective surfaces, and can support the deposition of a spectral filter.

  4. The Travelling Telescope

    NASA Astrophysics Data System (ADS)

    Murabona Oduori, Susan

    2015-08-01

    The telescope has been around for more than 400 years, and through good use of it scientists have made many astonishing discoveries and begun to understand our place in the universe. Most people, however, have never looked through one. Yet it is a great tool for cool science and observation especially in a continent and country with beautifully dark skies. The Travelling Telescope project aims to invite people outside under the stars to learn about those curious lights in the sky.The Travelling Telescope aims to promote science learning to a wide range of Kenyan schools in various locations exchanging knowledge about the sky through direct observations of celestial bodies using state of the art telescopes. In addition to direct observing we also teach science using various hands-on activities and astronomy software, ideal for explaining concepts which are hard to understand, and for a better grasp of the sights visible through the telescope. We are dedicated to promoting science using astronomy especially in schools, targeting children from as young as 3 years to the youth, teachers, their parents and members of the public. Our presentation focuses on the OAD funded project in rural coastal Kenya.

  5. Amateur Telescope Making

    NASA Astrophysics Data System (ADS)

    Tonkin, Stephen

    Many amateur astronomers make their own instruments, either because of financial considerations or because they are just interested. Amateur Telescope Making offers a variety of designs for telescopes, mounts and drives which are suitable for the home-constructor. The designs range from simple to advanced, but all are within the range of a moderately well-equipped home workshop. The book not only tells the reader what he can construct, but also what it is sensible to construct given what time is available commercially. Thus each chapter begins with reasons for undertaking the project, then looks at theoretical consideration before finishing with practical instructions and advice. An indication is given as to the skills required for the various projects. Appendices list reputable sources of (mail order) materials and components. The telescopes and mounts range from "shoestring" (very cheap) instruments to specialist devices that are unavailable commercially.

  6. The Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Pérez-Grovas, Alfonso Serrano; Schloerb, F. Peter; Hughes, David; Yun, Min

    2006-06-01

    We present a summary of the Large Millimeter Telescope (LMT) Project and its current status. The LMT is a joint project of the University of Massachusetts (UMass) in the USA and the Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) in Mexico to build a 50m-diameter millimeter-wave telescope. The LMT site is at an altitude of 4600 m atop Volcan Sierra Negra, an extinct volcanic peak in the state of Puebla, Mexico, approximately 100 km east of the city of Puebla. Construction of the antenna steel structure has been completed and the antenna drive system has been installed. Fabrication of the reflector surface is underway. The telescope is expected to be completed in 2008.

  7. The Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi

    2011-08-01

    We present the status of the Sardinia Radio Telescope (SRT) project, a new general purpose, fully steerable 64 m diameter parabolic radio telescope under construction in Sardinia. The instrument is funded by Italian Ministry of University and Research (MIUR), by the Sardinia Regional Government (RAS), and by the Italian Space Agency (ASI), and it is charge to three research structures of the National Institute for Astrophysics (INAF): the Institute of Radio Astronomy of Bologna, the Cagliari Astronomical Observatory (in Sardinia), and the Arcetri Astrophysical Observatory in Florence. The radio telescope has a shaped Gregorian optical configuration with a 8 m diameter secondary mirror and additional Beam-Wave Guide (BWG) mirrors. One of the most challenging feature of SRT is the active surface of the primary reflector which provides good efficiency up to about 100 GHz. This paper reports on the most recent advances of the construction.

  8. Configurable Aperture Space Telescope

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Bendek, Eduardo

    2015-01-01

    In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide straw man mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible and/or UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HST

  9. Irradiation effect on α- and β-caseins of milk and Queso Blanco cheese determined by capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Ham, J. S.; Jeong, S. G.; Lee, S. G.; Han, G. S.; Chae, H. S.; Yoo, Y. M.; Kim, D. H.; Lee, W. K.; Jo, C.

    2009-02-01

    Milk and Queso Blanco cheese were exposed to irradiation with doses of 1, 2, 3, 5, and 10 kGy to investigate the irradiation effect on α- and β-casein using a capillary electrophoresis. αS1-Casein to total protein ratio in raw milk was decreased from 19.63% to 8.64% by 10 kGy of gamma irradiation. The ratio of αS1- to αS0-casein was also decreased from 1.38 to 0.53, which showed αS1-casein is more susceptible to gamma irradiation than αS0-casein. Similarly, αS1-casein to total protein ratio in Queso Blanco cheese was decreased from 17.48% to 7.82% and the ratio of αS1- to αS0-casein was decreased from 1.16 to 0.43 by 10 kGy of gamma irradiation. Dose-dependent reduction of βA1-casein was also found. βA1-Casein to total protein ratios in raw milk and Queso Blanco cheese were decreased from 22.00% to 14.16% and from 21.96% to 13.89% after 10 kGy, respectively. The ratios of βA1- to βA2-casein were from 1.10 to 0.64 and 0.93 to 0.57 in milk and Queso Blanco cheese, respectively. However, αS0-, βB-, and βA3-casein increased by irradiation at 10 kGy. The results suggest that αS1-casein and βA1-casein were more susceptible to gamma irradiation, and may be related to the reduction of milk allergenicity caused by gamma irradiation.

  10. The Discovery Channel Telescope

    NASA Astrophysics Data System (ADS)

    Millis, R. L.; Dunham, E. W.; Sebring, T. A.; Smith, B. W.; de Kock, M.; Wiecha, O.

    2004-11-01

    The Discovery Channel Telescope (DCT) is a 4.2-m telescope to be built at a new site near Happy Jack, Arizona. The DCT features a large prime focus mosaic CCD camera with a 2-degree-diameter field of view especially designed for surveys of KBOs, Centaurs, NEAs and other moving or time-variable targets. The telescope can be switched quickly to a Ritchey-Chretien configuration for optical/IR spectroscopy or near-IR imaging. This flexibility allows timely follow-up physical studies of high priority objects discovered in survey mode. The ULE (ultra-low-expansion) meniscus primary and secondary mirror blanks for the telescope are currently in fabrication by Corning Glass. Goodrich Aerospace, Vertex RSI, M3 Engineering and Technology Corp., and e2v Technologies have recently completed in-depth conceptual design studies of the optics, mount, enclosure, and mosaic focal plane, respectively. The results of these studies were subjected to a formal design review in July, 2004. Site testing at the 7760-ft altitude Happy Jack site began in 2001. Differential image motion observations from 117 nights since January 1, 2003 gave median seeing of 0.84 arcsec FWHM, and the average of the first quartile was 0.62 arcsec. The National Environmental Policy Act (NEPA) process for securing long-term access to this site on the Coconino National Forest is nearing completion and ground breaking is expected in the spring of 2005. The Discovery Channel Telescope is a project of the Lowell Observatory with major financial support from Discovery Communications, Inc. (DCI). DCI plans ongoing television programming featuring the construction of the telescope and the research ultimately undertaken with the DCT. An additional partner can be accommodated in the project. Interested parties should contact the lead author.

  11. Hubble Space Telescope Image

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is a photograph of giant twisters and star wisps in the Lagoon Nebula. This superb Hubble Space Telescope (HST) image reveals a pair of one-half light-year long interstellar twisters, eerie furnels and twisted rope structures (upper left), in the heart of the Lagoon Nebula (Messier 8) that lies 5,000 light-years away in the direction of the constellation Sagittarius. This image was taken by the Hubble Space Telescope Wide Field/Planetary Camera 2 (WF/PC2).

  12. Ground based automated telescope

    SciTech Connect

    Colgate, S.A.; Thompson, W.

    1980-01-01

    Recommendation that a ground-based automated telescope of the 2-meter class be built for remote multiuser use as a natural facility. Experience dictates that a primary consideration is a time shared multitasking operating system with virtual memory overlayed with a real time priority interrupt. The primary user facility is a remote terminal networked to the single computer. Many users must have simultaneous time shared access to the computer for program development. The telescope should be rapid slewing, and hence a light weight construction. Automation allows for the closed loop pointing error correction independent of extreme accuracy of the mount.

  13. Robust telescope scheduling

    NASA Technical Reports Server (NTRS)

    Swanson, Keith; Bresina, John; Drummond, Mark

    1994-01-01

    This paper presents a technique for building robust telescope schedules that tend not to break. The technique is called Just-In-Case (JIC) scheduling and it implements the common sense idea of being prepared for likely errors, just in case they should occur. The JIC algorithm analyzes a given schedule, determines where it is likely to break, reinvokes a scheduler to generate a contingent schedule for each highly probable break case, and produces a 'multiply contingent' schedule. The technique was developed for an automatic telescope scheduling problem, and the paper presents empirical results showing that Just-In-Case scheduling performs extremely well for this problem.

  14. Pointing the SOFIA Telescope

    NASA Astrophysics Data System (ADS)

    Gross, M. A. K.; Rasmussen, J. J.; Moore, E. M.

    2010-12-01

    SOFIA is an airborne, gyroscopically stabilized 2.5m infrared telescope, mounted to a spherical bearing. Unlike its predecessors, SOFIA will work in absolute coordinates, despite its continually changing position and attitude. In order to manage this, SOFIA must relate equatorial and telescope coordinates using a combination of avionics data and star identification, manage field rotation and track sky images. We describe the algorithms and systems required to acquire and maintain the equatorial reference frame, relate it to tracking imagers and the science instrument, set up the oscillating secondary mirror, and aggregate pointings into relocatable nods and dithers.

  15. Hubble Space Telescope Image

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This color image from the Hubble Space Telescope (HST) shows a region in NGC 1365, a barred spiral galaxy located in a cluster of galaxies called Fornax. A barred spiral galaxy is characterized by a bar of stars, dust, and gas across its center. The black and white photograph from a ground-based telescope shows the entire galaxy, which is visible from the Southern Hemisphere. The galaxy is estimated to be 60-million light-years from Earth. This image was taken by the HST Wide Field/Planetary Camera 2 (WF/PC-2).

  16. In vitro evaluation of the DP-4M PennCentury insufflator.

    PubMed

    Hoppentocht, M; Hoste, C; Hagedoorn, P; Frijlink, H W; de Boer, A H

    2014-09-01

    Dry powder formulations for inhalation have to be screened in animal studies for therapeutic efficacy and safety aspects and both are significantly affected by the dose and the particle size distribution (PSD) of the aerosol that is given. One of the most frequently used apparatus for pulmonary delivery of dry powder formulations in mice studies is the PennCentury DP-4M Dry Powder Insufflator. To make researchers of future preclinical animal studies with the DP-4M insufflator aware of the pitfalls regarding the conclusions to be drawn from their data, we investigated the dispersion behaviour by the DP-4M insufflator using two to three different powder preparation techniques for four different compounds. The primary PSDs of the different formulations were determined in duplicate by laser diffraction analysis. To measure the PSDs of the aerosols obtained with the DP-4M insufflator, the same diffractometer was used in combination with an in-house constructed adapter for the insufflator. The dispersion efficiency and delivered dose were highly affected by the amount of air available for dispersion; the 200 μL of air recommended for the type of insufflator used was insufficient for adequate dispersion. In contrast, the weighed dose did not have a profound effect on the dispersion behaviour and the delivered dose of the DP-4M insufflator. Also the physico-chemical powder properties and the applied particle preparation technique influenced the amount and PSD of the delivered aerosol only to a limited extend, with a few exceptions. We advise researchers to investigate the dispersion efficiency and delivered dose from the DP-4M insufflator with the formulation under investigation prior to in vivo studies and it may be necessary to optimise the formulation for administration to mice. PMID:24993307

  17. Association of SUMO4 M55V polymorphism with autoimmune diabetes in Latvian patients.

    PubMed

    Sedimbi, Saikiran K; Shastry, Arun; Park, Yongsoo; Rumba, Ingrida; Sanjeevi, Carani B

    2006-10-01

    Small ubiquitin-related modifier (SUMO4), located in IDDM5, has been identified as a potential susceptibility gene for type 1 diabetes mellitus (T1DM). The novel polymorphism M55V, causing an amino acid change in the evolutionarily conserved met55 residue has been shown to activate the nuclear factor kappaB (NF-kappaB), hence the suspected role of SUMO4 in the pathogenicity of T1DM. The M55V polymorphism has been shown to be associated with susceptibility to T1DM in Asians, but not in Caucasians. Latent autoimmune diabetes in adults (LADA) is a slowly progressive form of T1DM and SUMO4 M55V has not been studied in LADA to date. The current study aims to test whether Latvians are similar to Caucasians in susceptibility to autoimmune diabetes (T1DM and LADA), with respect to SUMO4 M55V. We studied, age- and sex-matched, Latvian T1DM patients (n = 100) and healthy controls (n = 90) and LADA patients (n = 45) and healthy controls (n = 95). SUMO4 M55V polymorphism was analyzed using polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP). The allelic frequencies of the A and G alleles were compared with HLA DR3-DR4-positive and HLA DR3-DR4-negative patients to identify any potential relation between HLA DR3-DR4 and SUMO4 M55V. We found no significant association between SUMO4 M55V and T1DM susceptibility in Latvians, the results being in concurrence with the previous studies in Caucasians of British and Canadian origin. Comparison of the A and G alleles with HLA DR3-DR4 did not result in any significant P values. No significant association was found between SUMO4 M55V and LADA. SUMO4 M55V is not associated with susceptibility to T1DM and LADA in Latvians, and Latvians exhibit similarity to other Caucasians with respect to association of SUMO4 M55V with autoimmune diabetes. PMID:17130565

  18. Quench performance of a 4-m long Nb3Sn shell-type dipole coil

    SciTech Connect

    Chlachidze, G.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; /Fermilab

    2008-08-01

    Fermilab has finished the first phase of Nb{sub 3}Sn technology scale up by testing 2-m and 4-m long shell-type dipole coils in a 'magnetic mirror' configuration. The 2-m long coil, made of Powder-in-Tube (PIT) Nb{sub 3}Sn strand, reached its short sample limit at a field level of 10 T. The 4-m long coil, made of advanced Nb{sub 3}Sn strand based on the Restack Rod Process (RRP) of 108/127 design, has been recently fabricated and tested. Coil test results at 4.5 K and 2.2 K are reported and discussed.

  19. Association of SUMO4 M55V polymorphism with autoimmune diabetes in Latvian patients.

    PubMed

    Sedimbi, Saikiran K; Shastry, Arun; Park, Yongsoo; Rumba, Ingrida; Sanjeevi, Carani B

    2006-10-01

    Small ubiquitin-related modifier (SUMO4), located in IDDM5, has been identified as a potential susceptibility gene for type 1 diabetes mellitus (T1DM). The novel polymorphism M55V, causing an amino acid change in the evolutionarily conserved met55 residue has been shown to activate the nuclear factor kappaB (NF-kappaB), hence the suspected role of SUMO4 in the pathogenicity of T1DM. The M55V polymorphism has been shown to be associated with susceptibility to T1DM in Asians, but not in Caucasians. Latent autoimmune diabetes in adults (LADA) is a slowly progressive form of T1DM and SUMO4 M55V has not been studied in LADA to date. The current study aims to test whether Latvians are similar to Caucasians in susceptibility to autoimmune diabetes (T1DM and LADA), with respect to SUMO4 M55V. We studied, age- and sex-matched, Latvian T1DM patients (n = 100) and healthy controls (n = 90) and LADA patients (n = 45) and healthy controls (n = 95). SUMO4 M55V polymorphism was analyzed using polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP). The allelic frequencies of the A and G alleles were compared with HLA DR3-DR4-positive and HLA DR3-DR4-negative patients to identify any potential relation between HLA DR3-DR4 and SUMO4 M55V. We found no significant association between SUMO4 M55V and T1DM susceptibility in Latvians, the results being in concurrence with the previous studies in Caucasians of British and Canadian origin. Comparison of the A and G alleles with HLA DR3-DR4 did not result in any significant P values. No significant association was found between SUMO4 M55V and LADA. SUMO4 M55V is not associated with susceptibility to T1DM and LADA in Latvians, and Latvians exhibit similarity to other Caucasians with respect to association of SUMO4 M55V with autoimmune diabetes.

  20. TELESCOPES: Astronomers Overcome 'Aperture Envy'.

    PubMed

    Irion, R

    2000-07-01

    Many users of small telescopes are disturbed by the trend of shutting down smaller instruments in order to help fund bigger and bolder ground-based telescopes. Small telescopes can thrive in the shadow of giant new observatories, they say--but only if they are adapted to specialized projects. Telescopes with apertures of 2 meters or less have unique abilities to monitor broad swaths of the sky and stare at the same objects night after night, sometimes for years; various teams are turning small telescopes into robots, creating networks that span the globe and devoting them to survey projects that big telescopes don't have a prayer of tackling. PMID:17832960

  1. The Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Schloerb, F. Peter

    2008-07-01

    This paper, presented on behalf of the Large Millimeter Telescope (LMT) project team, describes the status and near-term plans for the telescope and its initial instrumentation. The LMT is a bi-national collaboration between Mexico and the USA, led by the Instituto Nacional de Astrofísica, Optica y Electronica (INAOE) and the University of Massachusetts at Amherst, to construct, commission and operate a 50m-diameter millimeter-wave radio telescope. Construction activities are nearly complete at the 4600m LMT site on the summit of Sierra Negra, an extinct volcano in the Mexican state of Puebla. Full movement of the telescope, under computer control in both azimuth and elevation, has been achieved. First-light at centimeter wavelengths on astronomical sources was obtained in November 2006. Installation of precision surface segments for millimeter-wave operation is underway, with the inner 32m-diameter of the surface now complete and ready to be used to obtain first light at millimeter wavelengths in 2008. Installation of the remainder of the reflector will continue during the next year and be completed in 2009 for final commissioning of the antenna. The full LMT antenna, outfitted with its initial complement of scientific instruments, will be a world-leading scientific research facility for millimeter-wave astronomy.

  2. The Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Hughes, D. H.; Schloerb, F. P.; LMT Project Team

    2009-05-01

    This paper, presented on behalf of the Large Millimeter Telescope (LMT) project team, describes the status and near-term plans for the telescope and its initial instrumentation. The LMT is a bi-national collaboration between México and the USA, led by the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) and the University of Massachusetts at Amherst, to construct, commission and operate a 50 m diameter millimeter-wave radio telescope. Construction activities are nearly complete at the LMT site, at an altitude of ˜ 4600 m on the summit of Sierra Negra, an extinct volcano in the Mexican state of Puebla. Full movement of the telescope, under computer control in both azimuth and elevation, has been achieved. First-light at centimeter wavelengths on astronomical sources was obtained in November 2006. Installation of precision surface segments for millimeter-wave operation is underway, with the inner 32 m diameter of the surface now complete and ready to be used to obtain first-light at millimeter wavelengths in 2008. Installation of the remainder of the reflector will continue during the next year and be completed in 2009 for final commissioning of the antenna. The full LMT antenna, outfitted with its initial complement of scientific instruments, will be a world-leading scientific research facility for millimeter-wave astronomy.

  3. Solar Rotating Fourier Telescope

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan

    1994-01-01

    Proposed telescope based on absorbing Fourier-transform grids images full Sun at unprecedented resolution. Overcomes limitations of both conventional optical and pinhole cameras. Arrays of grids and detectors configured for sensitivity to selected fourier components of x-ray images.

  4. Exploring Galileo's Telescope

    ERIC Educational Resources Information Center

    Straulino, Samuele; Terzuoli, Alessandra

    2010-01-01

    In the first months of 2009, the International Year of Astronomy, the authors developed an educational project for middle-level students connected with the first astronomical discoveries that Galileo Galilei (1564-1642) made 400 years ago. The project included the construction of a basic telescope and the observation of the Moon. The project, if…

  5. The Space Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.; Odell, C. R.

    1979-01-01

    A convenient guide to the expected characteristics of the Space Telescope Observatory for astronomers and physicists is presented. An attempt is made to provide enough detail so that a professional scientist, observer or theorist, can plan how the observatory may be used to further his observing programs or to test theoretical models.

  6. The Falcon Telescope Network

    NASA Astrophysics Data System (ADS)

    Chun, F.; Tippets, R.; Dearborn, M.; Gresham, K.; Freckleton, R.; Douglas, M.

    2014-09-01

    The Falcon Telescope Network (FTN) is a global network of small aperture telescopes developed by the Center for Space Situational Awareness Research in the Department of Physics at the United States Air Force Academy (USAFA). Consisting of commercially available equipment, the FTN is a collaborative effort between USAFA and other educational institutions ranging from two- and four-year colleges to major research universities. USAFA provides the equipment (e.g. telescope, mount, camera, filter wheel, dome, weather station, computers and storage devices) while the educational partners provide the building and infrastructure to support an observatory. The user base includes USAFA along with K-12 and higher education faculty and students. Since the FTN has a general use purpose, objects of interest include satellites, astronomical research, and STEM support images. The raw imagery, all in the public domain, will be accessible to FTN partners and will be archived at USAFA in the Cadet Space Operations Center. FTN users will be able to submit observational requests via a web interface. The requests will then be prioritized based on the type of user, the object of interest, and a user-defined priority. A network wide schedule will be developed every 24 hours and each FTN site will autonomously execute its portion of the schedule. After an observational request is completed, the FTN user will receive notification of collection and a link to the data. The Falcon Telescope Network is an ambitious endeavor, but demonstrates the cooperation that can be achieved by multiple educational institutions.

  7. A Simple "Tubeless" Telescope

    ERIC Educational Resources Information Center

    Straulino, S.; Bonechi, L.

    2010-01-01

    Two lenses make it possible to create a simple telescope with quite large magnification. The set-up is very simple and can be reproduced in schools, provided the laboratory has a range of lenses with different focal lengths. In this article, the authors adopt the Keplerian configuration, which is composed of two converging lenses. This instrument,…

  8. Holocene vegetation and climate in the Puerto Blanco Mountains, southwestern Arizona

    NASA Astrophysics Data System (ADS)

    Van Devender, Thomas R.

    1987-01-01

    Plant macrofossils from 21 pack rat ( Neotoma sp.) middens at 535-605 m from the Puerto Blanco Mountains, southwestern Arizona, provide and excellent history of vegetation and climate for the last 14, 120 yr B.P. in the Sonoran Desert. A late Wisconsin juniper-Joshua tree woodland gave way to a transitional early Holocene desertscrub with sparse Juniperus californica (California juniper) by 10,540 yr B.P. Important Sonoran Desert plants including Carnegiea gigantea (saguaro) and Encelia farinosa (brittle bush) were dominants. Riparian trees such as Acacia greggii (catclaw acacia), Prosopis velutina (velvet mesquite), and Cerdicium floridum (blue palo verde) grew on dry, south-facing slopes in a middle Holocene Sonoran desertscrub in a warm, wet summer climate with frequent winter freezes. Modern subtropical Sonoran desertscrub formed about 4000 yr B.P. as summer rainfall and winter freezes declined. Cercidium microphyllum (foothills palo verde), Sapium biloculare (Mexican jumping bean), Olneya tesota (ironwood) and Stenocereus thurberi (organ pipe cactus) became dominant as riparian trees retreated to wash habitats. The inferences of a latest Wisconsin/early Holocene summer monsoonal maximum by J. E. Kutzbach (1983), Modeling of Holocene climates. In "Late-Quaternary Environments of the United States," Vol. 2, "The Holocene" (H. E. Wright, Ed.), pp. 271-277. Univ. of Minnesota Press, Minneapolis) are not supported for the Southwest. Apparently the persistence of late Wisconsin circulation patterns offset any increases in insolation.

  9. Citrus Reticulata blanco induces apoptosis in human gastric cancer cells SNU-668.

    PubMed

    Kim, Mi-Ja; Park, Hae Jeong; Hong, Mee Suk; Park, Hi-Joon; Kim, Min-Su; Leem, Kang-Hyun; Kim, Jeung-Beum; Kim, Youn Jung; Kim, Hye Kyung

    2005-01-01

    Citrus fruits have been known to reduce the proliferation of many cancer cells. The antiproliferative effects of Citrus reticulata Blanco (CR) extract, the immature tangerine peel, on human gastric cancer cell line SNU-668 were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, 4,6-diamidineo-2-phenylindole staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, reverse transcription-polymerase chain reaction expressions of BCL-2, BAX and CASP-3 genes, caspase-3 activity, and immunocytochemistry of caspase-3. From the results of the morphological and biochemical assays, CR (50 microg/ml) increased the apoptosis of human gastric cancer cells with typical apoptotic characteristics, including morphological changes of chromatin condensation and apoptotic body formation. CR (50 microg/ml) reduced the expression of BCL-2, whereas the expression of BAX and CASP-3 was increased compared with the control group. Furthermore, caspase-3 activity and caspase-3 protein expression in the CR-treated group was significantly increased compared with that in control group. These results suggest that CR may induce the apoptosis through the caspase-3 pathway in human gastric cancer cells. PMID:15749633

  10. Forensic Hydrological Investigation of the Blanco River Flood May 2015, Wimberley, TX

    NASA Astrophysics Data System (ADS)

    Furl, C.

    2015-12-01

    A forensic hydrological investigation of a major flash flood was conducted for the Blanco River in south-central Texas. The unprecedented flood occurred during the early morning hours of May 24th leaving 12 dead in the towns of Wimberley and San Marcos. Hundreds of homes were damaged or destroyed, two reinforced concrete bridges were washed off their piers, and nearly 100 high water rescues were made the following day. The present work characterizes the meteorological setup leading to the event, describes the flood hydrology using the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model, and reports on an extensive field campaign seeking to document high water marks throughout the 1200 km2 basin. Results indicate high precipitable water values, large CAPE, and strong mid and upper level winds aided in impressive divergence over the region. This allowed for storms to continually produce heavy rainfall over the same areas. Large regions of the catchment received greater than 200 mm across the upper portion of the basin with 24 hr maximums around 330 mm. GSSHA simulations indicate good performance when compared to a stage hydrograph recorded mid-catchment. The remaining USGS gauges failed early on during the rising limb of the hydrograph. Model estimates indicate peak streamflow was approximately 5500 cms with stage values nearing 13 m as the flood wave moved through the town of Wimberley. Approximately 125 locations were examined for high water marks along the mainstem of the river using RTK GPS. Stage values ranged from 12 - 18 m.

  11. Oxidative burst inhibition, cytotoxicity and antibacterial acriquinoline alkaloids from Citrus reticulate (Blanco).

    PubMed

    Fomani, Marie; Ngeufa Happi, Emmanuel; Nouga Bisoue, Achille; Ndom, Jean Claude; Kamdem Waffo, Alain François; Sewald, Norbert; Wansi, Jean Duplex

    2016-01-15

    Two novel acridone-quinoline alkaloids, acriquinoline A (1) and acriquinoline B (2), together with twenty-two known compounds were isolated from the methanol extract of the root of Citrus reticulata Blanco. The structures of all compounds were determined by comprehensive analyses of their 1D and 2D NMR and mass spectral (EI and ESI) data. The possible biosynthesis for the formation of above compounds is proposed, based on close examination of their structures. Compounds 1, 2, 6, 10 and 14-17 exhibited strong suppressive effect on phagocytosis response upon activation with serum opsonized zymosan in the range of IC50 0.2-10.5μM, which was tested in vitro for oxidative burst studies of whole blood. However, compounds displayed low cytotoxic activity against the human Caucasian prostate adenocarcinoma cell line PC-3, with IC50 between 30.8 and 60.5μM compared to the standard doxorubicin with IC50 0.9μM. These compounds, tested against bacteria, fungi and plant pathogen oomycetes by the paper disk agar diffusion assay, resulting in missing to low activities corresponding with MICs>1mg/mL. PMID:26711890

  12. Cape Blanco Wind Farm Feasibility Study : Technical Report, No. 9. Socioeconomics.

    SciTech Connect

    Cunningham, E.S.

    1986-04-01

    The socioeconomic impacts of a proposed wind farm at Cape Blanco, Oregon were assessed within the context of Curry County and, more specifically, Port Orford. The proposed 80-MW wind farm consists of installing either 455 units of FloWind 170-kW turbines or 31 units of Boeing MOD-2 turbines. Positive impacts are expected to occur during the on-year construction period. Local workers are expected to fill approximately 45 jobs for the Boeing alternative and 155 for the FloWind. The expenditures of nonlocal construction workers, estimated at $2.6 million (1984 dollars) for the Boeing and at $0.5 million (1984 dollars) for the FloWind, would contribute to increased revenues in the trade and services sectors of Port Orford. The construction workers for the FloWind alternative are expected to use primarily motels and trailer parks for their housing accommodations. Since there could be a shortage of temporary housing, particularly during the summer months, rental housing might need to be used. The demand for temporary housing, however, is not expected to displace tourists. If the Boeing alternative were selected, the construction contractor might need to provide worker housing to alleviate the demand for housing in Port Orford.

  13. The Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Hughes, David H.; Jáuregui Correa, Juan-Carlos; Schloerb, F. Peter; Erickson, Neal; Romero, Jose Guichard; Heyer, Mark; Reynoso, David Huerta; Narayanan, Gopal; Perez-Grovas, Alfonso Serrano; Souccar, Kamal; Wilson, Grant; Yun, Min

    2010-07-01

    This paper describes the current status of the Large Millimeter Telescope (LMT), the near-term plans for the telescope and the initial suite of instrumentation. The LMT is a bi-national collaboration between Mexico and the USA, led by the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) and the University of Massachusetts at Amherst, to construct, commission and operate a 50m-diameter millimeter-wave radio telescope. Construction activities are nearly complete at the 4600m LMT site on the summit of Volcán Sierra Negra, an extinct volcano in the Mexican state of Puebla. Full movement of the telescope, under computer control in both azimuth and elevation, has been achieved. The commissioning and scientific operation of the LMT is divided into two major phases. As part of phase 1, the installation of precision surface segments for millimeter-wave operation within the inner 32m-diameter of the LMT surface is now complete. The alignment of these surface segments is underway. The telescope (in its 32-m diameter format) will be commissioned later this year with first-light scientific observations at 1mm and 3mm expected in early 2011. In phase 2, we will continue the installation and alignment of the remainder of the reflector surface, following which the final commissioning of the full 50-m LMT will take place. The LMT antenna, outfitted with its initial complement of scientific instruments, will be a world-leading scientific research facility for millimeter-wave astronomy.

  14. The Greenland Telescope

    NASA Astrophysics Data System (ADS)

    Grimes, Paul; Blundell, Raymond

    2012-09-01

    In the spring of 2010, the Academia Sinica Institute of Astronomy and Astrophysics, and the Smithsonian Astrophysical Observatory, acquired the ALMA North America prototype antenna - a state-of-the-art 12-m diameter dish designed for submillimeter astronomy. Together with the MIT-Haystack Observatory and the National Radio Astronomy Observatory, the plan is to retrofit this antenna for cold-weather operation and equip it with a suite of instruments designed for a variety of scientific experiments and observations. The primary scientific goal is to image the shadow of the Super-Massive Black Hole in M87 in order to test Einstein’s theory of relativity under extreme gravity. This requires the highest angular resolution, which can only be achieved by linking this antenna with others already in place to form a telescope almost the size of the Earth. We are therefore developing plans to install this antenna at the peak of the Greenland ice-sheet. This location will produce an equivalent North-South separation of almost 9,000 km when linked to the ALMA telescope in Northern Chile, and an East-West separation of about 6,000 km when linked to SAO and ASIAA’s Submillimeter Array on Mauna Kea, Hawaii, and will provide an angular resolution almost 1000 times higher than that of the most powerful optical telescopes. Given the quality of the atmosphere at the proposed telescope location, we also plan to make observations in the atmospheric windows at 1.3 and 1.5 THz. We will present plans to retrofit the telescope for cold-weather operation, and discuss potential instrumentation and projected time-line.

  15. Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey

    2007-05-01

    The Allen Telescope Array (ATA) is a pioneering centimeter-wavelength radio telescope that will produce science that cannot be done with any other instrument. The ATA is the first radio telescope designed for commensal observing; it will undertake the most comprehensive and sensitive SETI surveys ever done as well as the deepest and largest area continuum and spectroscopic surveys. Science operations will commence this year with a 42-element array. The ATA will ultimately comprise 350 6-meter dishes at Hat Creek in California, and will make possible large, deep radio surveys that were not previously feasible. The telescope incorporates many new design features including hydroformed antenna surfaces, a log-periodic feed covering the entire range of frequencies from 500 MHz to 11.2 GHz, low noise, wide-band amplifiers with a flat response over the entire band. The full array has the sensitivity of the Very Large Array but with a survey capability that is greater by an order of magnitude due to the wide field of view of the 6-meter dishes. Even with 42 elements, the ATA will be one of the most powerful radio survey telescopes. Science goals include the Five GHz sky survey (FiGSS) to match the 1.4-GHz NRAO VLA Sky Survey (NVSS) and the Sloan Digital Sky Survey within the first year of operation with the 42 element array, and a deep all-sky survey of extragalactic hydrogen to investigate galaxy evolution and intergalactic gas accretion. Transient and variable source surveys, pulsar science, spectroscopy of new molecular species in the galaxy, large-scale mapping of galactic magnetic filaments, and wide-field imaging of comets and other solar system objects are among the other key science objectives of the ATA. SETI surveys will reach sufficient sensitivity to detect an Arecibo planetary radar from 1,000,000 stars to distances of 300 pc.

  16. CDC Awards $2.4M to 5 Locales to Fight Zika

    MedlinePlus

    ... Awards $2.4M to 5 Locales to Fight Zika The goal: To assist in monitoring and dealing with Zika-related birth defects To use the sharing features ... Prevention to assist in monitoring and dealing with Zika virus-related birth defects, the agency said Friday. ...

  17. The 4M companY: Make Mine Metric Mission! Sixth Grade Teacher's Guide.

    ERIC Educational Resources Information Center

    Hawaii State Dept. of Education, Honolulu.

    This is one of several teacher's guides for the 4M Company, a set of materials for teaching metric concepts and computation skills to elementary school students. Included in the guide are sections on needed materials, metric symbols, length, perimeter, area, volume, capacity, mass (weight), decimals, conversion between metric units, temperature,…

  18. The 4M Company: Make Mine Metric Monkeys. Kindergarten Teacher's Guide.

    ERIC Educational Resources Information Center

    Hawaii State Dept. of Education, Honolulu.

    This is one of several teacher's guides for the 4M Company, a set of materials for teaching metric concepts and computation. This level of the program deals with premeasurement concepts and vocabulary and introduces the basic metric units. Students compare properties of common objects directly. Students are introduced to four metric units: meter,…

  19. The 4M cOmpany: Make Mine Metric Mice. First Grade Teacher's Guide.

    ERIC Educational Resources Information Center

    Hawaii State Dept. of Education, Honolulu.

    This is one of several teacher's guides for the 4M Company, a set of materials for teaching metric concepts and computation. This level of the program extends comparisons from two objects to comparisons involving three or more objects. Vocabulary includes superlatives (longest) as well as comparatives (longer). Students are introduced to six…

  20. The 4M comPany: Make Mine Metric Marvels. Third Grade Teacher's Guide.

    ERIC Educational Resources Information Center

    Hawaii State Dept. of Education, Honolulu.

    This is one of several teacher's guides for the 4M Company, a set of materials for teaching metric concepts and computation skills to elementary school students. Included in this guide are sections on needed materials, length (ancient Hawaiian units, meter decimeter, centimeter, addition, subtraction), decimals related to meters (measurement,…

  1. The 4M coMpany: Make Mine Metric Monsters. Second Grade Teacher's Guide.

    ERIC Educational Resources Information Center

    Hawaii State Dept. of Education, Honolulu.

    This is one of several teacher's guides for the 4M Company, a set of materials for teaching metric concepts and computation skills to elementary school students. Included in this guide are sections on needed materials, length (comparison, arbitrary units, meter, decimeter, centimeter, addition, subtraction), capacity (comparison, arbitrary units,…

  2. Overview and status of the Giant Magellan Telescope project

    NASA Astrophysics Data System (ADS)

    Bernstein, Rebecca A.; McCarthy, Patrick J.; Raybould, Keith; Bigelow, Bruce C.; Bouchez, Atonin H.; Filgueira, José M.; Jacoby, George; Johns, Matt; Sawyer, David; Shectman, Stephen; Sheehan, Michael

    2014-07-01

    The Giant Magellan Telescope (GMT) is a 25.4-m diameter, optical/infrared telescope that is being built by an international consortium of universities and research institutions as one of the next generation of Extremely Large Telescopes. The primary mirror of GMT consists of seven 8.4 m borosilicate honeycomb mirror segments that are optically conjugate to seven corresponding segments in the Gregorian secondary mirror. Fabrication is complete for one primary mirror segment and is underway for the next two. The final focal ratio of the telescope is f/8.2, so that the focal plane has an image scale of 1.02 arcsec/mm. GMT will be commissioned using a fast-steering secondary mirror assembly comprised of conventional, rigid segments to provide seeing-limited observations. A secondary mirror with fully adaptive segments will be used in standard operation to additionally enable ground-layer and diffraction-limited adaptive optics. In the seeing limited mode, GMT will provide a 10 arcmin field of view without field correction. A 20 arcmin field of view will be obtained using a wide-field corrector and atmospheric dispersion compensator. The project has recently completed a series of sub-system and system-level preliminary design reviews and is currently preparing to move into the construction phase. This paper summarizes the technical development of the GMT sub-systems and the current status of the GMT project.

  3. Wavefront Analysis of Adaptive Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Hillman, Lloyd

    1997-01-01

    The motivation for this work came from a NASA Headquarters interest in investigating design concepts for a large space telescope employing active optics technology. The development of telescope optical requirements and potential optical design configurations is reported.

  4. 3_D modeling using TLS and GPR techniques to characterize above and below-ground wood distribution in pyroclastic deposits along the Blanco River (Chilean Patagonia)

    NASA Astrophysics Data System (ADS)

    Valdebenito, Galo; Tonon, Alessia; Iroume, Andrés; Alvarado, David; Fuentes, Carlos; Picco, Lorenzo; Lenzi, Mario

    2016-04-01

    To date, the study of in-stream wood in rivers has been focused mainly on quantifying wood pieces deposited above the ground. However, in some particular river systems, the presence of buried dead wood can also represent an important component of wood recruitment and budgeting dynamics. This is the case of the Blanco River (Southern Chile) severely affected by the eruption of Chaitén Volcano occurred between 2008 and 2009. The high pyroclastic sediment deposition and transport affected the channel and the adjacent forest, burying wood logs and standing trees. The aim of this contribution is to assess the presence and distribution of wood in two study areas (483 m2 and 1989 m2, respectively) located along the lower streambank of the Blanco River, and covered by thick pyroclastic deposition up to 5 m. The study areas were surveyed using two different devices, a Terrestrial Laser Scanner (TLS) and a Ground Penetrating Radar (GPR). The first was used to scan the above surface achieving a high point cloud density (≈ 2000 points m-2) which allowed us to identify and measure the wood volume. The second, was used to characterize the internal morphology of the volcanic deposits and to detect the presence and spatial distribution of buried wood up to a depth of 4 m. Preliminary results have demonstrated differences in the numerousness and volume of above wood between the two study areas. In the first one, there were 43 wood elements, 33 standing trees and 10 logs, with a total volume of 2.96 m3 (109.47 m3 km-1), whereas the second one was characterized by the presence of just 7 standing trees and 11 wood pieces, for a total amount of 0.77 m3 (7.73 m3 km-1). The dimensions of the wood elements vary greatly according to the typology, standing trees show the higher median values in diameter and length (0.15 m and 2.91 m, respectively), whereas the wood logs were smaller (0.06 m and 1.12 m, respectively). The low dimensions of deposited wood can be probably connected to their

  5. Science operations with Space Telescope

    NASA Astrophysics Data System (ADS)

    Giacconi, R.

    1982-08-01

    The operation, instrumentation, and expected contributions of the Space Telescope are discussed. Space Telescope capabilities are described. The organization and nature of the Space Telescope Science Institute are outlined, including the allocation of observing time and the data rights and data access policies of the institute.

  6. Lunar transit telescope lander design

    NASA Technical Reports Server (NTRS)

    Omar, Husam A.

    1992-01-01

    The Program Development group at NASA's Marshall Space Flight Center has been involved in studying the feasibility of placing a 16 meter telescope on the lunar surface to scan the skies using visible/ Ultraviolet/ Infrared light frequencies. The precursor telescope is now called the TRANSIT LUNAR TELESCOPE (LTT). The Program Development Group at Marshall Space Flight Center has been given the task of developing the basic concepts and providing a feasibility study on building such a telescope. The telescope should be simple with minimum weight and volume to fit into one of the available launch vehicles. The preliminary launch date is set for 2005. A study was done to determine the launch vehicle to be used to deliver the telescope to the lunar surface. The TITAN IV/Centaur system was chosen. The engineering challenge was to design the largest possible telescope to fit into the TITAN IV/Centaur launch system. The telescope will be comprised of the primary, secondary and tertiary mirrors and their supporting system in addition to the lander that will land the telescope on the lunar surface and will also serve as the telescope's base. The lunar lander should be designed integrally with the telescope in order to minimize its weight, thus allowing more weight for the telescope and its support components. The objective of this study were to design a lander that meets all the constraints of the launching system. The basic constraints of the TITAN IV/Centaur system are given.

  7. Lunar transit telescope lander design

    NASA Technical Reports Server (NTRS)

    Omar, Husam A.

    1991-01-01

    The Program Development group at NASA's Marshall Space Flight Center has been involved in studying the feasibility of placing a 16 meter telescope on the lunar surface to scan the skies using visible/ Ultraviolet/ Infrared light frequencies. The precursor telescope is now called the TRANSIT LUNAR TELESCOPE (LTT). The Program Development Group at Marshall Space Flight Center has been given the task of developing the basic concepts and providing a feasibility study on building such a telescope. The telescope should be simple with minimum weight and volume to fit into one of the available launch vehicles. The preliminary launch date is set for 2005. A study was done to determine the launch vehicle to be used to deliver the telescope to the lunar surface. The TITAN IV/Centaur system was chosen. The engineering challenge was to design the largest possible telescope to fit into the TITAN IV/Centaur launch system. The telescope will be comprised of the primary, secondary and tertiary mirrors and their supporting system in addition to the lander that will land the telescope on the lunar surface and will also serve as the telescope's base. The lunar lander should be designed integrally with the telescope in order to minimize its weight, thus allowing more weight for the telescope and its support components. The objective of this study were to design a lander that meets all the constraints of the launching system. The basic constraints of the TITAN IV/Centaur system are given.

  8. The Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Deboer, David; Ackermann, Rob; Blitz, Leo; Bock, Douglas; Bower, Geoffrey; Davis, Michael; Dreher, John; Engargiola, Greg; Fleming, Matt; Keleta, Girmay; Harp, Gerry; Lugten, John; Tarter, Jill; Thornton, Doug; Wadefalk, Niklas; Weinreb, Sander; Welch, William J.

    2004-06-01

    The Allen Telescope Array, a joint project between the SETI Institute and the Radio Astronomy Laboratory at the University of California Berkeley, is currently under development and construction at the Hat Creek Radio Observatory in northern California. It will consist of 350 6.1-m offset Gregorian antennas in a fairly densely packed configuration, with minimum baselines of less than 10 m and a maximum baseline of about 900 m. The dual-polarization frequency range spans from about 500 MHz to 11 GHz, both polarizations of which are transported back from each antenna. The first generation processor will provide 32 synthesized beams of 104 MHz bandwidth, eight at each of four tunings, as well as outputs for a full-polarization correlator at two of the tunings at the same bandwidth. This paper provides a general description of the Allen Telescope Array.

  9. Telescopes of galileo.

    PubMed

    Greco, V; Molesini, G; Quercioli, F

    1993-11-01

    The Florentine Istituto e Museo di Storia delta Scienza houses two complete telescopes and a single objective lens (reconstructed from several fragments) that can be attributed to Galileo. These optics have been partially dismantled and made available for optical testing with state-of-the-art equipment. The lenses were investigated individually; the focal length and the radii of curvature were measured, and the optical layout of the instruments was worked out. The optical quality of the surfaces and the overall performance of the two complete telescopes have been evaluated interferometrically at a wavelength of 633 nm (with a He-Ne laser source). It was found in particular that the optics of Galileo came close to attaining diffraction-limited operation.

  10. COROT telescope development

    NASA Astrophysics Data System (ADS)

    Viard, Thierry; Bodin, Pierre; Magnan, Alain

    2004-06-01

    COROTEL is the telescope of the future COROT satellite which aims at measuring stellar flux variations very accurately. To perform this mission, COROTEL has to be very well protected against straylight (from Sun and Earth) and must be very stable with time. Thanks to its high experience in this field, Alcatel Space has proposed an original optical concept associated with a high performance baffle. From 2001, the LAM (Laboratoire d'Astrophysique de Marseille, CNRS) has placed the telescope development contract to Alcatel Space and is presently almost finished. Based on relevant material and efficient thermal control design, COROTEL should meet its ambitious performance and bring to scientific community for the first time precious data coming from stars and their possible companions.

  11. Telescopic limiting magnitudes

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.

    1990-01-01

    The prediction of the magnitude of the faintest star visible through a telescope by a visual observer is a difficult problem in physiology. Many prediction formulas have been advanced over the years, but most do not even consider the magnification used. Here, the prediction algorithm problem is attacked with two complimentary approaches: (1) First, a theoretical algorithm was developed based on physiological data for the sensitivity of the eye. This algorithm also accounts for the transmission of the atmosphere and the telescope, the brightness of the sky, the color of the star, the age of the observer, the aperture, and the magnification. (2) Second, 314 observed values for the limiting magnitude were collected as a test of the formula. It is found that the formula does accurately predict the average observed limiting magnitudes under all conditions.

  12. The Neutrino Telescope ANTARES

    NASA Astrophysics Data System (ADS)

    Hernández, Juan José

    Neutrinos can reveal a brand new Universe at high energies. The ANTARES collaboration [1] , formed in 1996, works towards the building and deployment of a neutrino telescope. This detector could observe and study high energy astrophysical sources such as X-ray binary systems, young supernova remnants or Active Galactic Nuclei and help to discover or set exclusion limits on some of the elementary particles and objects that have been put forward as candidates to fill the Universe (WIMPS, neutralinos, topological deffects, Q-balls, etc). A neutrino telescope will certainly open a new observational window and can shed light on the most energetic phenomena of the Universe. A review of the progress made by the ANTARES collaboration to achieve this goal is presented

  13. The Large Area Telescope

    SciTech Connect

    Michelson, Peter F.; /KIPAC, Menlo Park /Stanford U., HEPL

    2007-11-13

    The Large Area Telescope (LAT), one of two instruments on the Gamma-ray Large Area Space Telescope (GLAST) mission, is an imaging, wide field-of-view, high-energy pair-conversion telescope, covering the energy range from {approx}20 MeV to more than 300 GeV. The LAT is being built by an international collaboration with contributions from space agencies, high-energy particle physics institutes, and universities in France, Italy, Japan, Sweden, and the United States. The scientific objectives the LAT will address include resolving the high-energy gamma-ray sky and determining the nature of the unidentified gamma-ray sources and the origin of the apparently isotropic diffuse emission observed by EGRET; understanding the mechanisms of particle acceleration in celestial sources, including active galactic nuclei, pulsars, and supernovae remnants; studying the high-energy behavior of gamma-ray bursts and transients; using high-energy gamma-rays to probe the early universe to z {ge} 6; and probing the nature of dark matter. The components of the LAT include a precision silicon-strip detector tracker and a CsI(Tl) calorimeter, a segmented anticoincidence shield that covers the tracker array, and a programmable trigger and data acquisition system. The calorimeter's depth and segmentation enable the high-energy reach of the LAT and contribute significantly to background rejection. The aspect ratio of the tracker (height/width) is 0.4, allowing a large field-of-view and ensuring that nearly all pair-conversion showers initiated in the tracker will pass into the calorimeter for energy measurement. This paper includes a description of each of these LAT subsystems as well as a summary of the overall performance of the telescope.

  14. [Galileo and his telescope].

    PubMed

    Strebel, Christoph

    2006-01-01

    Galileo's publication of observations made with his newly reinvented telescope provoked a fierce debate. In April 1610 Martinus Horky, a young Bohemian astronomer, had an opportunity to make his own observations with Galileo's telescope in the presence of Antonio Magini and other astronomers. Horky and the other witnesses denied the adequacy of Galileo's telescope and therefore the bona fides of his discoveries. Kepler conjectured Horky as well as all his witnesses to be myopic. But Kepler's objection could not stop the publication of Horky's Peregrinatio contra nuncium sidereum (Modena, 1610), the first printed refutation of Galileo's Sidereus nuncius. In his treatise, Horky adresses four questions: 1) Do the four newly observed heavenly bodies actually exist? Horky denies their existence on various grounds: a) God, as every astronomer teaches, has created only seven moveable heavenly bodies and astronomical knowledge originates in God, too. b) Heavenly bodies are either stars or planets. Galileo's moveable heavenly bodies fit into neither category. c) If they do exist, why have they not already been observed by other scholars? Horky concludes that there are no such heavenly bodies. 2) What are these phenomena? They are purely artefactual, and produced by Galileo's telescope. 3) How are they like? Galileo's "stars" are so small as to be almost invisible. Galileo claims that he has measured their distances from each other. This however is impossible due to their diminutive size and other observational problems. Hence, Galileo's claim is a further proof that he is a fraud. 4) Why are they? For Galileo they are a chance to earn money but for astronomers like Horky they are a reason to offer thanks and honour to God. Horky's treatise was favourably received by the enemies of Galileo. But Kepler's critique was devastating. After calling on Kepler in Prague, Horky had to revoke the contents of his book.

  15. [Galileo and his telescope].

    PubMed

    Strebel, Christoph

    2006-01-01

    Galileo's publication of observations made with his newly reinvented telescope provoked a fierce debate. In April 1610 Martinus Horky, a young Bohemian astronomer, had an opportunity to make his own observations with Galileo's telescope in the presence of Antonio Magini and other astronomers. Horky and the other witnesses denied the adequacy of Galileo's telescope and therefore the bona fides of his discoveries. Kepler conjectured Horky as well as all his witnesses to be myopic. But Kepler's objection could not stop the publication of Horky's Peregrinatio contra nuncium sidereum (Modena, 1610), the first printed refutation of Galileo's Sidereus nuncius. In his treatise, Horky adresses four questions: 1) Do the four newly observed heavenly bodies actually exist? Horky denies their existence on various grounds: a) God, as every astronomer teaches, has created only seven moveable heavenly bodies and astronomical knowledge originates in God, too. b) Heavenly bodies are either stars or planets. Galileo's moveable heavenly bodies fit into neither category. c) If they do exist, why have they not already been observed by other scholars? Horky concludes that there are no such heavenly bodies. 2) What are these phenomena? They are purely artefactual, and produced by Galileo's telescope. 3) How are they like? Galileo's "stars" are so small as to be almost invisible. Galileo claims that he has measured their distances from each other. This however is impossible due to their diminutive size and other observational problems. Hence, Galileo's claim is a further proof that he is a fraud. 4) Why are they? For Galileo they are a chance to earn money but for astronomers like Horky they are a reason to offer thanks and honour to God. Horky's treatise was favourably received by the enemies of Galileo. But Kepler's critique was devastating. After calling on Kepler in Prague, Horky had to revoke the contents of his book. PMID:16929794

  16. MIRI Telescope Simulator

    NASA Astrophysics Data System (ADS)

    Belenguer, T.; Alcacera, M. A.; Aricha, A.; Balado, A.; Barandiarán, J.; Bernardo, A.; Canchal, M. R.; Colombo, M.; Diaz, E.; Eiriz, V.; Figueroa, I.; García, G.; Giménez, A.; González, L.; Herrada, F.; Jiménez, A.; López, R.; Menéndez, M.; Reina, M.; Rodríguez, J. A.; Sánchez, A.

    2008-07-01

    The MTS, MIRI Telescope Simulator, is developed by INTA as the Spanish contribution of MIRI (Mid InfraRed Instrument) on board JWST (James Web Space Telescope). The MTS is considered as optical equipment which is part of Optical Ground Support Equipment for the AIV/Calibration phase of the instrument at Rutherford Appleton Laboratory, UK. It is an optical simulator of the JWST Telescope, which will provide a diffractionlimited test beam, including the obscuration and mask pattern, in all the MIRI FOV and in all defocusing range. The MTS will have to stand an environment similar to the flight conditions (35K) but using a smaller set-up, typically at lab scales. The MTS will be used to verify MIRI instrument-level tests, based on checking the implementation/realisation of the interfaces and performances, as well as the instrument properties not subject to interface control such as overall transmission of various modes of operation. This paper includes a functional description and a summary of the development status.

  17. Fast Fourier transform telescope

    SciTech Connect

    Tegmark, Max; Zaldarriaga, Matias

    2009-04-15

    We propose an all-digital telescope for 21 cm tomography, which combines key advantages of both single dishes and interferometers. The electric field is digitized by antennas on a rectangular grid, after which a series of fast Fourier transforms recovers simultaneous multifrequency images of up to half the sky. Thanks to Moore's law, the bandwidth up to which this is feasible has now reached about 1 GHz, and will likely continue doubling every couple of years. The main advantages over a single dish telescope are cost and orders of magnitude larger field-of-view, translating into dramatically better sensitivity for large-area surveys. The key advantages over traditional interferometers are cost (the correlator computational cost for an N-element array scales as Nlog{sub 2}N rather than N{sup 2}) and a compact synthesized beam. We argue that 21 cm tomography could be an ideal first application of a very large fast Fourier transform telescope, which would provide both massive sensitivity improvements per dollar and mitigate the off-beam point source foreground problem with its clean beam. Another potentially interesting application is cosmic microwave background polarization.

  18. Scanning holographic lidar telescope

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Wilkerson, Thomas D.

    1993-01-01

    We have developed a unique telescope for lidar using a holographic optical element (HOE) as the primary optic. The HOE diffracts 532 nm laser backscatter making a 43 deg angle with a normal to its surface to a focus located 130 cm along the normal. The field of view scans a circle as the HOE rotates about the normal. The detector assembly and baffling remain stationary, compared to conventional scanning lidars in which the entire telescope and detector assembly require steering, or which use a large flat steerable mirror in front of the telescope to do the pointing. The spectral bandpass of our HOE is 50 nm (FWHM). Light within that bandpass is spectrally dispersed at 0.6 nm/mm in the focal plane. An aperture stop reduces the bandpass of light reaching the detector from one direction to 1 nm while simultaneously reducing the field of view to 1 mrad. Wavelengths outside the 50 nm spectral bandpass pass undiffracted through HOE to be absorbed by a black backing. Thus, the HOE combines three functions into one optic: the scanning mirror, the focusing mirror, and a narrowband filter.

  19. Deformation across the forearc of the Cascadia subduction zone at Cape Blanco, Oregon

    USGS Publications Warehouse

    Savage, J.C.; Svarc, J.L.; Prescott, W.H.; Murray, M.H.

    2000-01-01

    Over the interval 1992-1999 the U.S. Geological Survey measured the deformation of a geodetic array extending N880°E (approximate direction of plate convergence) from Cape Blanco on the Oregon coast to the volcanic arc near Newberry Crater (55 and 350 km, respectively, from the deformation front). Within about 150 km from the deformation front, the forearc is being compressed arcward (N80°E) by coupling to the subducting Juan de Fuca plate. Dislocation modeling of the observed N80°E compression suggests that the main thrust zone (the locked portion of the Juan de Fuca-forearc interface) is about 40 km wide in the downdip direction. The transverse (N10°W) velocity component of the forearc measured with respect to the fixed interior of North America decreases with distance from the deformation front at a rate of about 0.03 mm yr-1 km-1. That gradient appears to be a consequence of rigid rotation of the forearc block relative to fixed interior North America (Euler vector of 43.4°±0.1° N, 120.0°±0.4° W, and -1.67±0.17° (m.y.)-1; quoted uncertainties are standard deviations). The rotation rate is similar to the paleomagnetically measured rotation rate (-1.0±0.2° (m.y.)-1) of the 15 Ma lava flows along the Columbia River 250 km farther north. The back arc does not appear to participate in this rotation but rather is migrating at a rate of about 3.6 mm yr-1northward with respect to fixed North America. That migration could be partly an artifact of an imperfect tie of our reference coordinate system to the interior of North America.

  20. Assessment of hydrologic transport of radionuclides from the Rio Blanco underground nuclear test site, Colorado

    SciTech Connect

    Chapman, J.; Earman, S.; Andricevic, R.

    1996-10-01

    DOE is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations used for nuclear testing. Evaluation of radionuclide transport by groundwater is part of preliminary risk analysis. These evaluations allow prioritization of test areas in terms of risk, provide a basis for discussions with regulators and the public about future work, and provide a framework for assessing site characterization data needs. The Rio Blanco site in Colorado was the location of the simultaneous detonation of three 30-kiloton nuclear devices. The devices were located 1780, 1899, and 2039 below ground surface in the Fort Union and Mesaverde formations. Although all the bedrock formations at the site are thought to contain water, those below the Green River Formation (below 1000 in depth) are also gas-bearing, and have very low permeabilities. The transport scenario evaluated was the migration of radionuclides from the blast-created cavity through the Fort Union Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. This modeling was performed to investigate how the uncertainty in various physical parameters affect radionuclide transport at the site, and to serve as a starting point for discussion regarding further investigation; it was not intended to be a definitive simulation of migration pathways or radionuclide concentration values. Given the sparse data, the modeling results may differ significantly from reality. Confidence in transport predictions can be increased by obtaining more site data, including the amount of radionuclides which would have been available for transport (i.e., not trapped in melt glass or vented during gas flow testing), and the hydraulic properties of the formation. 38 refs., 6 figs., 1 tab.

  1. Validation of the WIMSD4M cross-section generation code with benchmark results

    SciTech Connect

    Leal, L.C.; Deen, J.R.; Woodruff, W.L.

    1995-02-01

    The WIMSD4 code has been adopted for cross-section generation in support of the Reduced Enrichment for Research and Test (RERTR) program at Argonne National Laboratory (ANL). Subsequently, the code has undergone several updates, and significant improvements have been achieved. The capability of generating group-collapsed micro- or macroscopic cross sections from the ENDF/B-V library and the more recent evaluation, ENDF/B-VI, in the ISOTXS format makes the modified version of the WIMSD4 code, WIMSD4M, very attractive, not only for the RERTR program, but also for the reactor physics community. The intent of the present paper is to validate the procedure to generate cross-section libraries for reactor analyses and calculations utilizing the WIMSD4M code. To do so, the results of calculations performed with group cross-section data generated with the WIMSD4M code will be compared against experimental results. These results correspond to calculations carried out with thermal reactor benchmarks of the Oak Ridge National Laboratory(ORNL) unreflected critical spheres, the TRX critical experiments, and calculations of a modified Los Alamos highly-enriched heavy-water moderated benchmark critical system. The benchmark calculations were performed with the discrete-ordinates transport code, TWODANT, using WIMSD4M cross-section data. Transport calculations using the XSDRNPM module of the SCALE code system are also included. In addition to transport calculations, diffusion calculations with the DIF3D code were also carried out, since the DIF3D code is used in the RERTR program for reactor analysis and design. For completeness, Monte Carlo results of calculations performed with the VIM and MCNP codes are also presented.

  2. Expression of Npas4 mRNA in Telencephalic Areas of Adult and Postnatal Mouse Brain

    PubMed Central

    Damborsky, Joanne C.; Slaton, G. Simona; Winzer-Serhan, Ursula H.

    2015-01-01

    The transcription factor neuronal PAS domain-containing protein 4 (Npas4) is an inducible immediate early gene which regulates the formation of inhibitory synapses, and could have a significant regulatory role during cortical circuit formation. However, little is known about basal Npas4 mRNA expression during postnatal development. Here, postnatal and adult mouse brain sections were processed for isotopic in situ hybridization using an Npas4 specific cRNA antisense probe. In adults, Npas4 mRNA was found in the telencephalon with very restricted or no expression in diencephalon or mesencephalon. In most telencephalic areas, including the anterior olfactory nucleus (AON), piriform cortex, neocortex, hippocampus, dorsal caudate putamen (CPu), septum and basolateral amygdala nucleus (BLA), basal Npas4 expression was detected in scattered cells which exhibited strong hybridization signal. In embryonic and neonatal brain sections, Npas4 mRNA expression signals were very low. Starting at postnatal day 5 (P5), transcripts for Npas4 were detected in the AON, CPu and piriform cortex. At P8, additional Npas4 hybridization was found in CA1 and CA3 pyramidal layer, and in primary motor cortex. By P13, robust mRNA expression was located in layers IV and VI of all sensory cortices, frontal cortex and cingulate cortex. After onset of expression, postnatal spatial mRNA distribution was similar to that in adults, with the exception of the CPu, where Npas4 transcripts became gradually restricted to the most dorsal part. In conclusion, the spatial distribution of Npas4 mRNA is mostly restricted to telencephalic areas, and the temporal expression increases with developmental age during postnatal development, which seem to correlate with the onset of activity-driven excitatory transmission. PMID:26633966

  3. Direct imaging of extra-solar planets with stationary occultations viewed by a space telescope

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.

    1978-01-01

    The use of a telescope in space to detect planets outside the solar system by means of imaging at optical wavelengths is discussed. If the 'black' limb of the moon is utilized as an occulting edge, a hypothetical Jupiter-Sun system could be detected at a distance as great as 10 pc, and a signal-to-noise ratio of 9 could be achieved in less than 20 min with a 2.4 m telescope in space. An orbit for the telescope is proposed; this orbit could achieve a stationary lunar occultation of any star for a period of nearly two hours.

  4. Characterization of Rio Blanco retort 1 water following treatment by lime-soda softening and reverse osmosis

    SciTech Connect

    Kocornik, D.J.

    1985-12-01

    Laboratory research was initiated to evaluate the chemical, physical, and toxicological characteristics of treated and untreated Rio Blanco oil shale retort water. Wet chemical analyses, metals analyses, MICROTOX assays and particle-size analysis were performed on the wastewater before and after treatment by lime-soda softening and reverse osmosis. The reverse osmosis system successfully removed dissolved solids and organics from the wastewater. Based on MICROTOX tests, the water was much less toxic after treatment by reverse osmosis. 8 refs., 7 figs., 8 tabs.

  5. Chemistry and age of groundwater in the Piceance structural basin, Rio Blanco county, Colorado, 2010-12

    USGS Publications Warehouse

    McMahon, Peter B.; Thomas, Judith C.; Hunt, Andrew G.

    2013-01-01

    Fourteen monitoring wells were sampled by the U.S. Geological Survey, in cooperation with the Bureau of Land Management, to better understand the chemistry and age of groundwater in the Piceance structural basin in Rio Blanco County, Colorado, and how they may relate to the development of underlying natural-gas reservoirs. Natural gas extraction in the area has been ongoing since at least the 1950s, and the area contains about 960 producing, shut-in, and abandoned natural-gas wells.

  6. The Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    DeBoer, David R.; Welch, William J.; Dreher, John; Tarter, Jill; Blitz, Leo; Davis, Michael; Fleming, Matt; Bock, Douglas; Bower, Geoffrey; Lugten, John; Girmay-Keleta, G.; D'Addario, Larry R.; Harp, Gerry R.; Ackermann, Rob; Weinreb, Sander; Engargiola, Greg; Thornton, Doug; Wadefalk, Niklas

    2004-10-01

    The Allen Telescope Array, originally called the One Hectare Telescope (1hT) [1] will be a large array radio telescope whose novel characteristics will be a wide field of view (3.5 deg-GHz HPBW), continuous frequency coverage of 0.5 - 11 GHz, four dual-linear polarization output bands of 100 MHz each, four beams in each band, two 100 MHz spectral correlators for two of the bands, and hardware for RFI mitigation built in. Its scientific motivation is for deep SETI searches and, at the same time, a variety of other radio astronomy projects, including transient (e.g. pulsar) studies, HI mapping of the Milky Way and nearby galaxies, Zeeman studies of the galactic magnetic field in a number of transitions, mapping of long chain molecules in molecular clouds, mapping of the decrement in the cosmic background radiation toward galaxy clusters, and observation of HI absorption toward quasars at redshifts up to z=2. The array is planned for 350 6.1-meter dishes giving a physical collecting area of about 10,000 square meters. The large number of components reduces the price with economies of scale. The front end receiver is a single cryogenically cooled MIMIC Low Noise Amplifier covering the whole band. The feed is a wide-band log periodic feed of novel design, and the reflector system is an offset Gregorian for minimum sidelobes and spillover. All preliminary and critical design reviews have been completed. Three complete antennas with feeds and receivers are under test, and an array of 33 antennas is under construction at the Hat Creek Radio Observatory for the end of 2004. The present plan is to have a total of about 200 antennas completed by the summer of 2006 and the balance of the array finished before the end of the decade.

  7. Comparing NEO Search Telescopes

    NASA Astrophysics Data System (ADS)

    Myhrvold, Nathan

    2016-04-01

    Multiple terrestrial and space-based telescopes have been proposed for detecting and tracking near-Earth objects (NEOs). Detailed simulations of the search performance of these systems have used complex computer codes that are not widely available, which hinders accurate cross-comparison of the proposals and obscures whether they have consistent assumptions. Moreover, some proposed instruments would survey infrared (IR) bands, whereas others would operate in the visible band, and differences among asteroid thermal and visible-light models used in the simulations further complicate like-to-like comparisons. I use simple physical principles to estimate basic performance metrics for the ground-based Large Synoptic Survey Telescope and three space-based instruments—Sentinel, NEOCam, and a Cubesat constellation. The performance is measured against two different NEO distributions, the Bottke et al. distribution of general NEOs, and the Veres et al. distribution of Earth-impacting NEO. The results of the comparison show simplified relative performance metrics, including the expected number of NEOs visible in the search volumes and the initial detection rates expected for each system. Although these simplified comparisons do not capture all of the details, they give considerable insight into the physical factors limiting performance. Multiple asteroid thermal models are considered, including FRM, NEATM, and a new generalized form of FRM. I describe issues with how IR albedo and emissivity have been estimated in previous studies, which may render them inaccurate. A thermal model for tumbling asteroids is also developed and suggests that tumbling asteroids may be surprisingly difficult for IR telescopes to observe.

  8. The Planck Telescope reflectors

    NASA Astrophysics Data System (ADS)

    Stute, Thomas

    2004-09-01

    The mechanical division of EADS-Astrium GmbH, Friedrichshafen is currently engaged with the development, manufacturing and testing of the advanced dimensionally stable composite reflectors for the ESA satellite borne telescope Planck. The objective of the ESA mission Planck is to analyse the first light that filled the universe, the cosmic microwave background radiation. Under contract of the Danish Space Research Institute and ESA EADS-Astrium GmbH is developing the all CFRP primary and secondary reflectors for the 1.5-metre telescope which is the main instrument of the Planck satellite. The operational frequency ranges from to 25 GHz to 1000 GHz. The demanding high contour accuracy and surface roughness requirements are met. The design provides the extreme dimensional stability required by the cryogenic operational environment at around 40 K. The elliptical off-axis reflectors display a classical lightweight sandwich design with CFRP core and facesheets. Isostatic mounts provide the interfaces to the telescope structure. Protected VDA provides the reflecting surface. The manufacturing is performed at the Friedrichshafen premises of EADS-Space Transportation GmbH, the former Dornier composite workshops. Advanced manufacturing technologies like true angle lay-up by CNC fibre placement and filament winding are utilized. The protected coating is applied at the CAHA facilities at the Calar Alto Observatory, Spain. The exhaustive environmental testing is performed at the facilities of IABG, Munich (mechanical testing) and for the cryo-optical tests at CSL Liege. The project is in advanced state with both Qualification Models being under environmental testing. The flight models will be delivered in 2004. The paper gives an overview over the requirements and the main structural features how these requirements are met. Special production aspects and available test results are reported.

  9. Astronomy before the telescope.

    NASA Astrophysics Data System (ADS)

    Walker, C.

    This book is the most comprehensive and authoritative survey to date of world astronomy before the telescope in AD 1609. International experts have contributed chapters examining what observations were made, what instruments were used, the effect of developments in mathematics and measurement, and the diversity of early views of cosmology and astrology. The achievements of European astronomers from prehistoric times to the Renaissance are linked with those of ancient Egypt and Mesopotamia, India and the Islamic world. Other chapters deal with early astronomy in the Far East and in the Americas, and with traditional astronomical knowledge in Africa, Australia and the Pacific.

  10. Images of exo-planets obtainable from dark speckles in adaptive telescopes.

    NASA Astrophysics Data System (ADS)

    Labeyrie, A.

    1995-06-01

    The detection of exo-planets, the planets which may be associated to stars outside of the solar system, is widely expected to become possible in space (???; ???; ???; ???) with telescopes somewhat larger than the 2.4m Hubble Space Telescope. The main difficulty arises from the halo of speckled light diffracted around the comparatively bright image of the star. It can be attenuated with adaptive optical techniques correcting the imperfections of the telescope, and the atmospheric disturbance when observing from the ground (???; ???). Angel (1994) has recently proposed to use adaptive ground-based imaging, with a high level of adaptive correction, to detect exo-planets in long exposures. It now appears that the detection sensitivity can be further improved, or the tolerances on residual "seeing" relaxed, by recording the dark speckles which briefly appear in the image. The principle is also applicable to searching exo-planets with space telescopes, including the Hubble Space Telescope.

  11. Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Nurre, G.

    1987-01-01

    The Hubble Space Telescope will employ magnetic torque controllers, which make use of the Earth's magnetic field augmented by four reaction wheels. DC torques are easily allowed for, but variations, orbit by orbit, can result in excessive wheel speeds which can excite vibratory modes in the telescope structure. If the angular momentum from aerodynamic sources exceeds its allocation of 100 Nms, the excess has to come out of the maneuvering budget since the total capacity of the momentum storage system is fixed at 500 Nms. This would mean that maneuvers could not be made as quickly, and this would reduce the amount of science return. In summary, there is a definite need for a model that accurately portrays short term (within orbit) variations in density for use in angular momentum management analyses. It would be desirable to have a simplified model that could be used for planning purposes; perhaps applicable only over a limited altitude range (400 to 700 km) and limited latitude band.

  12. Antares Reference Telescope System

    SciTech Connect

    Viswanathan, V.K.; Kaprelian, E.; Swann, T.; Parker, J.; Wolfe, P.; Woodfin, G.; Knight, D.

    1983-01-01

    Antares is a 24-beam, 40-TW carbon-dioxide laser-fusion system currently nearing completion at the Los Alamos National Laboratory. The 24 beams will be focused onto a tiny target (typically 300 to 1000 ..mu..m in diameter) located approximately at the center of a 7.3-m-diameter by 9.3-m-long vacuum (10/sup -6/ torr) chamber. The design goal is to position the targets to within 10 ..mu..m of a selected nominal position, which may be anywhere within a fixed spherical region 1 cm in diameter. The Antares Reference Telescope System is intended to help achieve this goal for alignment and viewing of the various targets used in the laser system. The Antares Reference Telescope System consists of two similar electro-optical systems positioned in a near orthogonal manner in the target chamber area of the laser. Each of these consists of four subsystems: (1) a fixed 9X optical imaging subsystem which produces an image of the target at the vidicon; (2) a reticle projection subsystem which superimposes an image of the reticle pattern at the vidicon; (3) an adjustable front-lighting subsystem which illuminates the target; and (4) an adjustable back-lighting subsystem which also can be used to illuminate the target. The various optical, mechanical, and vidicon design considerations and trade-offs are discussed. The final system chosen (which is being built) and its current status are described in detail.

  13. Antares reference telescope system

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. K.; Kaprelian, E.; Swann, T.; Parker, J.; Wolfe, P.; Woodfin, G.; Knight, D.

    Antares is a 24 beam, 40 TW carbon dioxide laser fusion system currently nearing completion. The 24 beams will be focused onto a tiny target. It is to position the targets to within 10 (SIGMA)m of a selected nominal position, which may be anywhere within a fixed spherical region 1 cm in diameter. The Antares reference telescope system is intended to help achieve this goal for alignment and viewing of the various targets used in the laser system. The Antares reference telescope system consists of two similar electrooptical systems positioned in a near orthogonal manner in the target chamber area of the laser. Each of these consists of four subsystems: (1) a fixed 9% optical imaging subsystem which produces an image of the target at the vidicon; (2) a reticle projection subsystem which superimposes an image of the reticle pattern at the vidicon; (3) an adjustable front lighting subsystem which illuminates the target; and (4) an adjustable back lighting subsystem which also can be used to illuminate the target. The various optical, mechanical, and vidicon design considerations and tradeoffs are discussed. The final system chosen and its current status are described.

  14. SNAP Telescope Latest Developments

    NASA Astrophysics Data System (ADS)

    Lampton, M.; SNAP Collaboration

    2004-12-01

    The coming era of precision cosmology imposes new demands on space telescopes with regard to spectrophotometric accuracy and image stability. To meet these requirements for SNAP we have developed an all reflecting two-meter-class space telescope of the three-mirror anastigmat type. Our design features a large flat annular field (1.5 degrees = 580mm diameter) and a telephoto advantage of 6, delivering a 22m focal length within an optical package length of only 3.5 meters. The use of highly stable materials (Corning ULE glass and carbon-fiber reinforced cyanate ester resin for the metering structure) combined with agressive distributed thermal control and an L2 orbit location will lead to unmatched figure stability. Owing to our choice of rigid structure with nondeployable solar panels, finite-element models show no structural resonances below 10Hz. An exhaustive stray light study has been completed. Beginning in 2005, two industry studies will develop plans for fabrication, integration and test, bringing SNAP to a highly realistic level of definition. SNAP is supported by the Office of Science, US DoE, under contract DE-AC03-76SF00098.

  15. Metalliferous sediment and a silica-hematite deposit within the Blanco fracture zone, Northeast Pacific

    USGS Publications Warehouse

    Hein, J.R.; Clague, D.A.; Koski, R.A.; Embley, R.W.; Dunham, R.E.

    2008-01-01

    A Tiburon ROV dive within the East Blanco Depression (EBD) increased the mapped extent of a known hydrothermal field by an order of magnitude. In addition, a unique opal-CT (cristobalite-tridymite)-hematite mound was discovered, and mineralized sediments and rock were collected and analyzed. Silica-hematite mounds have not previously been found on the deep ocean floor. The light-weight rock of the porous mound consists predominantly of opal-CT and hematite filaments, rods, and strands, and averages 77.8% SiO2 and 11.8% Fe2O3. The hematite and opal-CT precipitated from a low-temperature (???115?? C), strongly oxidized, silica- and iron-rich, sulfur-poor hydrothermal fluid; a bacterial mat provided the framework for precipitation. Samples collected from a volcaniclastic rock outcrop consist primarily of quartz with lesser plagioclase, smectite, pyroxene, and sulfides; SiO2 content averages 72.5%. Formation of these quartz-rich samples is best explained by cooling in an up-flow zone of silica-rich hydrothermal fluids within a low permeability system. Opal-A, opal-CT, and quartz mineralization found in different places within the EBD hydrothermal field likely reflects decreasing silica saturation and increasing temperature of the mineralizing fluid with increasing silica crystallinity. Six push cores recovered gravel, coarse sand, and mud mineralized variously by Fe or Mn oxides, silica, and sulfides. Total rare-earth element concentrations are low for both the rock and push core samples. Ce and Eu anomalies reflect high and low temperature hydrothermal components and detrital phases. A remarkable variety of types of mineralization occur within the EBD field, yet a consistent suite of elements is enriched (relative to basalt and unmineralized cores) in all samples analyzed: Ag, Au, S, Mo, Hg, As, Sb, Sr, and U; most samples are also enriched in Cu, Pb, Cd, and Zn. On the basis of these element enrichments, the EBD hydrothermal field might best be described as a base

  16. The Parkes radio telescope - 1986

    NASA Astrophysics Data System (ADS)

    Ables, J. G.; Jacka, C. E.; McConnell, D.; Schinckel, A. E.; Hunt, A. J.

    The Parkes radio telescope has been refurbished 25 years after its commisioning in 1961, with complete replacement of its drive and control systems. The new computer system distributes computing tasks among a loosely coupled network of minicomputers which communicate via full duplex serial lines. Central to the control system is the 'CLOCK' element, which relates all positioning of the telescope to absolute time and synchronizes the logging of astronomical data. Two completely independent servo loops furnish telescope positioning functions.

  17. Radionuclide Migration at the Rio Blanco Site, A Nuclear-stimulated Low-permeability Natural Gas Reservoir

    SciTech Connect

    Clay A. Cooper; Ming Ye; Jenny Chapman; Craig Shirley

    2005-10-01

    The U.S. Department of Energy and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability gas reservoirs. The third and final project in the program, Project Rio Blanco, was conducted in Rio Blanco County, in northwestern Colorado. In this experiment, three 33-kiloton nuclear explosives were simultaneously detonated in a single emplacement well in the Mesaverde Group and Fort Union Formation, at depths of 1,780, 1,899, and 2,039 m below land surface on May 17, 1973. The objective of this work is to estimate lateral distances that tritium released from the detonations may have traveled in the subsurface and evaluate the possible effect of postulated natural-gas development on radionuclide migration. Other radionuclides were considered in the analysis, but the majority occur in relatively immobile forms (such as nuclear melt glass). Of the radionuclides present in the gas phase, tritium dominates in terms of quantity of radioactivity in the long term and contribution to possible whole body exposure. One simulation is performed for {sup 85}Kr, the second most abundant gaseous radionuclide produced after tritium.

  18. Telescope structures - An evolutionary overview

    NASA Technical Reports Server (NTRS)

    Meinel, Aden B.; Meinel, Marjorie P.

    1987-01-01

    A development history is presented for telescope structural support materials, design concepts, equatorial and altazimuthal orientational preferences, and mechanical control system structural realizations. In the course of 50 years after Galileo, the basic configurations of all reflecting telescopes was set for the subsequent 300 years: these were the Cassegrain, Gregorian, and Newtonian designs. The challenge of making a lightweight ribbed pyrex glass primary mirror for the 5-m Palomar telescope was met by von Karman's use of finite element analysis. Attention is given to the prospects for a 20-m deployable space-based reflecting telescope.

  19. Why Space Telescopes Are Amazing

    NASA Technical Reports Server (NTRS)

    Rigby, Jane R.

    2012-01-01

    One of humanity's best ideas has been to put telescopes in space. The dark stillness of space allows telescopes to perform much better than they can on even the darkest and clearest of Earth's mountaintops. In addition, from space we can detect colors of light, like X-rays and gamma rays, that are blocked by the Earth's atmosphere I'll talk about NASA's team of great observatories: the Hubble Space Telescope, Spitzer Space Telescope, and Chandra X-ray Observatory} and how they've worked together to answer key questions: When did the stars form? Is there really dark matter? Is the universe really expanding ever faster and faster?

  20. PIWI homologs mediate Histone H4 mRNA localization to planarian chromatoid bodies

    PubMed Central

    Rouhana, Labib; Weiss, Jennifer A.; King, Ryan S.; Newmark, Phillip A.

    2014-01-01

    The well-known regenerative abilities of planarian flatworms are attributed to a population of adult stem cells called neoblasts that proliferate and differentiate to produce all cell types. A characteristic feature of neoblasts is the presence of large cytoplasmic ribonucleoprotein granules named chromatoid bodies, the function of which has remained largely elusive. This study shows that histone mRNAs are a common component of chromatoid bodies. Our experiments also demonstrate that accumulation of histone mRNAs, which is typically restricted to the S phase of eukaryotic cells, is extended during the cell cycle of neoblasts. The planarian PIWI homologs SMEDWI-1 and SMEDWI-3 are required for proper localization of germinal histone H4 (gH4) mRNA to chromatoid bodies. The association between histone mRNA and chromatoid body components extends beyond gH4 mRNA, since transcripts of other core histone genes were also found in these structures. Additionally, piRNAs corresponding to loci of every core histone type have been identified. Altogether, this work provides evidence that links PIWI proteins and chromatoid bodies to histone mRNA regulation in planarian stem cells. The molecular similarities between neoblasts and undifferentiated cells of other organisms raise the possibility that PIWI proteins might also regulate histone mRNAs in stem cells and germ cells of other metazoans. PMID:24903754

  1. LMO4 mRNA stability is regulated by extracellular ATP in F11 cells

    SciTech Connect

    Chen, Hsiao-Huei . E-mail: hchen@uottawa.ca; Xu, Jin; Safarpour, Farzaneh; Stewart, Alexandre F.R.

    2007-05-25

    LIM only domain protein 4 (LMO4) interacts with many signaling and transcription factors to regulate cellular proliferation, differentiation and plasticity. In Drosophila, mutations in the 3' untranslated region (UTR) of the homologue dLMO cause a gain of function by increasing mRNA stability. LMO4 3'UTR contains several AU-rich elements (ARE) and is highly conserved among vertebrates, suggesting that RNA destabilizing mechanisms are evolutionarily conserved. Here, we found that extracellular ATP stabilized LMO4 mRNA in F11 cells. The LMO4 3'UTR added to a luciferase reporter markedly reduced reporter activity under basal conditions, but increased activity with ATP treatment. Two ARE motifs were characterized in the LMO4 3'UTR. ATP increased binding of HuD protein to ARE1. ARE1 conferred ATP and HuD-dependent mRNA stabilization. In contrast, sequences flanking ARE2 bound CUGBP1 and ATP destabilized this complex. Thus, our results suggest that ATP modulates recruitment of RNA-binding proteins to the 3'UTR to stabilize LMO4 mRNA.

  2. Large space telescope, phase A. Volume 3: Optical telescope assembly

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development and characteristics of the optical telescope assembly for the Large Space Telescope are discussed. The systems considerations are based on mission-related parameters and optical equipment requirements. Information is included on: (1) structural design and analysis, (2) thermal design, (3) stabilization and control, (4) alignment, focus, and figure control, (5) electronic subsystem, and (6) scientific instrument design.

  3. Gamma-Ray Telescopes: 400 Years of Astronomical Telescopes

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.

    2010-01-01

    The last half-century has seen dramatic developments in gamma-ray telescopes, from their initial conception and development through to their blossoming into full maturity as a potent research tool in astronomy. Gamma-ray telescopes are leading research in diverse areas such as gamma-ray bursts, blazars, Galactic transients, and the Galactic distribution of Al-26.

  4. Hubble Space Telescope Image

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Astronomers using the Hubble Space Telescope (HST) have identified what may be the most luminous star known; a celestial mammoth that releases up to 10-million times the power of the Sun and is big enough to fill the diameter of Earth's orbit. The star unleashes as much energy in six seconds as our Sun does in one year. The image, taken by a UCLA-led team with the recently installed Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) aboard the HST, also reveals a bright nebula, created by extremely massive stellar eruptions. The UCLA astronomers estimate that the star, called the Pistol Star, (for the pistol shaped nebula surrounding it), is approximately 25,000 light-years from Earth, near the center of our Milky Way galaxy. The Pistol Star is not visible to the eye, but is located in the direction of the constellation Sagittarius, hidden behind the great dust clouds along the Milky Way

  5. Composite telescope technology

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Rabin, Douglas

    2014-07-01

    We report the development of optical mirrors based on polymer matrix composite materials. Advantages of this technology are low cost and versatility. By using appropriate combinations of polymers and various metallic and nonmetallic particles and fibers, the properties of the materials can be tailored to suit a wide variety of applications. We report the fabrication and testing of flat and curved mirrors made with metal powders, multiple mirrors replicated with high degree of uniformity from the same mandrels, cryogenic testing, mirrors made of ferromagnetic materials that can be actively or adaptively controlled by non-contact actuation, optics with very smooth surfaces made by replication, and by spincasting. We discuss development of a new generation of ultra-compact, low power active optics and 3D printing of athermal telescopes.

  6. Microoptical telescope compound eye.

    PubMed

    Duparré, Jacques; Schreiber, Peter; Matthes, André; Pshenay-Severin, Ekaterina; Bräuer, Andreas; Tünnermann, Andreas; Völkel, Reinhard; Eisner, Martin; Scharf, Toralf

    2005-02-01

    A new optical concept for compact digital image acquisition devices with large field of view is developed and proofed experimentally. Archetypes for the imaging system are compound eyes of small insects and the Gabor-Superlens. A paraxial 3x3 matrix formalism is used to describe the telescope arrangement of three microlens arrays with different pitch to find first order parameters of the imaging system. A 2mm thin imaging system with 21x3 channels, 70 masculinex10 masculine field of view and 4.5mm x 0.5mm image size is optimized and analyzed using sequential and non-sequential raytracing and fabricated by microoptics technology. Anamorphic lenses, where the parameters are a function of the considered optical channel, are used to achieve a homogeneous optical performance over the whole field of view. Captured images are presented and compared to simulation results. PMID:19494951

  7. The Travelling Telescope

    NASA Astrophysics Data System (ADS)

    Owen, Daniel

    2015-08-01

    The telescope has been around for over 400 years, yet most people have never looked though one. We invite people outside under the stars to learn about those curious lights in the sky, and have a close encounter with the cosmos.Our main aim is to promote science, technology, engineering, and mathematics to the young minds by inspiring, empowering and engaging them using astronomy and astrophysics tools and concepts. We would like to see Africa compete with the rest of the world and we believe this can happen through having a scientifically literate society. We also work closely wit teachers, parents and the general public to further our objectives. We will present on our recently awarded project to work with schools in rural coastal Kenya, a very poor area of the country. We will also present on other work we continue to do with schools to make our project sustainable even after the OAD funding.

  8. Actuated Hybrid Mirror Telescope

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Redding, David; Lowman, Andrew; Cohen, David; Ohara, Catherine

    2005-01-01

    The figure depicts the planned Actuated Hybrid Mirror Telescope (AHMT), which is intended to demonstrate a new approach to the design and construction of wide-aperture spaceborne telescopes for astronomy and Earth science. This technology is also appropriate for Earth-based telescopes. The new approach can be broadly summarized as using advanced lightweight mirrors that can be manufactured rapidly at relatively low cost. More specifically, it is planned to use precise replicated metallic nanolaminate mirrors to obtain the required high-quality optical finishes. Lightweight, dimensionally stable silicon carbide (SiC) structures will support the nanolaminate mirrors in the required surface figures. To enable diffraction- limited telescope performance, errors in surface figures will be corrected by use of mirror-shape-control actuators that will be energized, as needed, by a wave-front-sensing and control system. The concepts of nanolaminate materials and mirrors made from nanolaminate materials were discussed in several previous NASA Tech Briefs articles. Nanolaminates constitute a relatively new class of materials that can approach theoretical limits of stiffness and strength. Nanolaminate mirrors are synthesized by magnetron sputter deposition of metallic alloys and/or compounds on optically precise master surfaces to obtain optical-quality reflector surfaces backed by thin shell structures. As an integral part of the deposition process, a layer of gold that will constitute the reflective surface layer is deposited first, eliminating the need for a subsequent and separate reflective-coating process. The crystallographic textures of the nanolaminate will be controlled to optimize the performance of the mirror. The entire deposition process for making a nanolaminate mirror takes less than 100 hours, regardless of the mirror diameter. Each nanolaminate mirror will be bonded to its lightweight SiC supporting structure. The lightweight nanolaminate mirrors and Si

  9. Asteroseismology with robotic telescopes

    NASA Astrophysics Data System (ADS)

    Handler, G.

    2004-10-01

    Asteroseismology explores the interior of pulsating stars by analysing their normal mode spectrum. The detection of a sufficient number of pulsation modes for seismic modelling of main sequence variables requires large quantities of high-precision time resolved photometry. Robotic telescopes have become an asset for asteroseismology because of their stable instrumentation, cost- and time-efficient operation and the potentially large amounts of observing time available. We illustrate these points by presenting selected results on several types of pulsating variables, such as δ Scuti stars (main sequence and pre-main sequence), γ Doradus stars, rapidly oscillating Ap stars and β Cephei stars, thereby briefly reviewing recent success stories of asteroseismic studies of main sequence stars.

  10. The metagenomic telescope.

    PubMed

    Szalkai, Balázs; Scheer, Ildikó; Nagy, Kinga; Vértessy, Beáta G; Grolmusz, Vince

    2014-01-01

    Next generation sequencing technologies led to the discovery of numerous new microbe species in diverse environmental samples. Some of the new species contain genes never encountered before. Some of these genes encode proteins with novel functions, and some of these genes encode proteins that perform some well-known function in a novel way. A tool, named the Metagenomic Telescope, is described here that applies artificial intelligence methods, and seems to be capable of identifying new protein functions even in the well-studied model organisms. As a proof-of-principle demonstration of the Metagenomic Telescope, we considered DNA repair enzymes in the present work. First we identified proteins in DNA repair in well-known organisms (i.e., proteins in base excision repair, nucleotide excision repair, mismatch repair and DNA break repair); next we applied multiple alignments and then built hidden Markov profiles for each protein separately, across well-researched organisms; next, using public depositories of metagenomes, originating from extreme environments, we identified DNA repair genes in the samples. While the phylogenetic classification of the metagenomic samples are not typically available, we hypothesized that some very special DNA repair strategies need to be applied in bacteria and Archaea living in those extreme circumstances. It is a difficult task to evaluate the results obtained from mostly unknown species; therefore we applied again the hidden Markov profiling: for the identified DNA repair genes in the extreme metagenomes, we prepared new hidden Markov profiles (for each genes separately, subsequent to a cluster analysis); and we searched for similarities to those profiles in model organisms. We have found well known DNA repair proteins, numerous proteins with unknown functions, and also proteins with known, but different functions in the model organisms. PMID:25054802

  11. The metagenomic telescope.

    PubMed

    Szalkai, Balázs; Scheer, Ildikó; Nagy, Kinga; Vértessy, Beáta G; Grolmusz, Vince

    2014-01-01

    Next generation sequencing technologies led to the discovery of numerous new microbe species in diverse environmental samples. Some of the new species contain genes never encountered before. Some of these genes encode proteins with novel functions, and some of these genes encode proteins that perform some well-known function in a novel way. A tool, named the Metagenomic Telescope, is described here that applies artificial intelligence methods, and seems to be capable of identifying new protein functions even in the well-studied model organisms. As a proof-of-principle demonstration of the Metagenomic Telescope, we considered DNA repair enzymes in the present work. First we identified proteins in DNA repair in well-known organisms (i.e., proteins in base excision repair, nucleotide excision repair, mismatch repair and DNA break repair); next we applied multiple alignments and then built hidden Markov profiles for each protein separately, across well-researched organisms; next, using public depositories of metagenomes, originating from extreme environments, we identified DNA repair genes in the samples. While the phylogenetic classification of the metagenomic samples are not typically available, we hypothesized that some very special DNA repair strategies need to be applied in bacteria and Archaea living in those extreme circumstances. It is a difficult task to evaluate the results obtained from mostly unknown species; therefore we applied again the hidden Markov profiling: for the identified DNA repair genes in the extreme metagenomes, we prepared new hidden Markov profiles (for each genes separately, subsequent to a cluster analysis); and we searched for similarities to those profiles in model organisms. We have found well known DNA repair proteins, numerous proteins with unknown functions, and also proteins with known, but different functions in the model organisms.

  12. The Metagenomic Telescope

    PubMed Central

    Szalkai, Balázs; Scheer, Ildikó; Nagy, Kinga; Vértessy, Beáta G.; Grolmusz, Vince

    2014-01-01

    Next generation sequencing technologies led to the discovery of numerous new microbe species in diverse environmental samples. Some of the new species contain genes never encountered before. Some of these genes encode proteins with novel functions, and some of these genes encode proteins that perform some well-known function in a novel way. A tool, named the Metagenomic Telescope, is described here that applies artificial intelligence methods, and seems to be capable of identifying new protein functions even in the well-studied model organisms. As a proof-of-principle demonstration of the Metagenomic Telescope, we considered DNA repair enzymes in the present work. First we identified proteins in DNA repair in well–known organisms (i.e., proteins in base excision repair, nucleotide excision repair, mismatch repair and DNA break repair); next we applied multiple alignments and then built hidden Markov profiles for each protein separately, across well–researched organisms; next, using public depositories of metagenomes, originating from extreme environments, we identified DNA repair genes in the samples. While the phylogenetic classification of the metagenomic samples are not typically available, we hypothesized that some very special DNA repair strategies need to be applied in bacteria and Archaea living in those extreme circumstances. It is a difficult task to evaluate the results obtained from mostly unknown species; therefore we applied again the hidden Markov profiling: for the identified DNA repair genes in the extreme metagenomes, we prepared new hidden Markov profiles (for each genes separately, subsequent to a cluster analysis); and we searched for similarities to those profiles in model organisms. We have found well known DNA repair proteins, numerous proteins with unknown functions, and also proteins with known, but different functions in the model organisms. PMID:25054802

  13. Selective labeling and localization of the M4 (m4) muscarinic receptor subtype.

    PubMed

    Ferrari-Dileo, G; Waelbroeck, M; Mash, D C; Flynn, D D

    1994-12-01

    We report here a novel strategy for the selective labeling and localization of the M4 (m4) muscarinic receptor subtype, based on the distinct kinetics of the muscarinic antagonists dexetimide and N-methylscopolamine (NMS) and on the selectivity profile of guanylpirenzepine and AF-DX 116 for the m1-m5 muscarinic receptor subtypes expressed in CHO-K1 cells. Incubation with 10 nM dexetimide, a nonselective antagonist, resulted in > 90% occupancy of each of the m1-m5 receptor subtypes. The relatively rapid rates of dexetimide dissociation from the m1, m2, and m4 receptor subtypes (t1/2 values of < 12.5 min) and the slower rates of dexetimide dissociation from the m3 and m5 receptor subtypes (t1/2 values of 65 and 75 min, respectively) favored the labeling of the m1, m2, and m4 receptor subtypes with short incubations with [3H]NMS. Inclusion of 200 nM guanylpirenzepine and 250 nM AF-DX 116 prevented the binding of [3H]NMS to the majority of the m1 and m2 receptor subtypes, respectively, resulting in primary labeling of the m4 receptor subtype. Brief dissociation of the radioligand in the presence of 1 microM atropine improved the ratio of m4 to m2 labeling by selectively removing [3H]NMS from the m2 subtype. Under these conditions, the ratio of [3H]NMS binding to the m4 versus m1, m2, m3, and m5 receptor subtypes was 4:1. In vitro autoradiography combined with these m4-selective labeling conditions demonstrated that the M4 (m4) receptor subtype was localized to the primary visual area (V1, area 17, occipital cortex) and the basal ganglia, a distribution distinct from that demonstrated for the M1 (m1), M2 (m2), and M3 (m3) receptor subtypes. These results demonstrate that a combination of the distinct kinetics of dexetimide and NMS and the receptor subtype selectivity of guanylpirenzepine and AF-DX 116 provides a valuable labeling strategy to examine the distribution and localization of the M4 (m4) muscarinic receptor subtype in brain, peripheral tissues, and cell lines

  14. The energy transfer in the TEMP-4M pulsed ion beam accelerator

    SciTech Connect

    Isakova, Y. I.; Pushkarev, A. I.; Khaylov, I. P.

    2013-07-15

    The results of a study of the energy transfer in the TEMP-4M pulsed ion beam accelerator are presented. The energy transfer efficiency in the Blumlein and a self-magnetically insulated ion diode was analyzed. Optimization of the design of the accelerator allows for 85% of energy transferred from Blumlein to the diode (including after-pulses), which indicates that the energy loss in Blumlein and spark gaps is insignificant and not exceeds 10%–12%. Most losses occur in the diode. The efficiency of energy supplied to the diode to the energy of accelerated ions is 8%–9% for a planar strip self-magnetic MID, 12%–15% for focusing diode and 20% for a spiral self-magnetic MID.

  15. Synthesis of Co/MFe(2)O(4) (M = Fe, Mn) Core/Shell Nanocomposite Particles.

    PubMed

    Peng, Sheng; Xie, Jin; Sun, Shouheng

    2008-01-01

    Monodispersed cobalt nanoparticles (NPs) with controllable size (8-14 nm) have been synthesized using thermal decomposition of dicobaltoctacarbonyl in organic solvent. The as-synthesized high magnetic moment (125 emu/g) Co NPs are dispersible in various organic solvents, and can be easily transferred into aqueous phase by surface modification using phospholipids. However, the modified hydrophilic Co NPs are not stable as they are quickly oxidized, agglomerated in buffer. Co NPs are stabilized by coating the MFe(2)O(4) (M = Fe, Mn) ferrite shell. Core/shell structured bimagnetic Co/MFe(2)O(4) nanocomposites are prepared with tunable shell thickness (1-5 nm). The Co/MFe(2)O(4) nanocomposites retain the high magnetic moment density from the Co core, while gaining chemical and magnetic stability from the ferrite shell. Comparing to Co NPs, the nanocomposites show much enhanced stability in buffer solution at elevated temperatures, making them promising for biomedical applications.

  16. Gigabit-class optical wireless communication system at indoor distances (1.5 ÷ 4 m).

    PubMed

    Cossu, Giulio; Ali, Wajahat; Corsini, Raffaele; Ciaramella, Ernesto

    2015-06-15

    In this paper we experimentally realized bidirectional optical wireless communication (OWC) link using four channel visible LED board exploiting wavelength division multiplexing (WDM) for the downlink and infrared LED for uplink. We achieved greater than 5 Gbit/s data rate at common indoor distance (1.5 to 4 m) for downlink and 1.5 Gbit/s for uplink using commercially available LEDs. We achieved these results after a careful choice of the LED emission wavelengths and the optical filter spectra. Moreover, we investigate the optimal LED working current and the optimal modulation depth. The bit error ratios of all the channels were maintained lower than the FEC limit (3.8·10(-3)).

  17. Kashima 34-m Radio Telescope

    NASA Technical Reports Server (NTRS)

    Sekido, Mamoru; Kawai, Eiji

    2013-01-01

    The Kashima 34-m radio telescope has been continuously operated and maintained by the National Institute of Information and Communications Technology (NICT) as a facility of the Kashima Space Technology Center (KSTC) in Japan. This brief report summarizes the status of this telescope, the staff, and activities during 2012.

  18. Las Cumbres Observatory Global Telescope Network: Keeping Education in the Dark

    NASA Astrophysics Data System (ADS)

    Ross, R. J.

    2011-09-01

    Las Cumbres Observatory Global Telescope Network (LCOGT) is creating a network of telescopes to be placed around the world providing 24/7 sky coverage of both the Northern and Southern hemispheres. These telescopes will range in size from 0.4 m to 2.0 m and will be available for scientific and educational uses in both real-time and in a queue-scheduler. The educational uses of LCOGT will be primarily online through our website (http://www.lcogt.net) where there will be how-to guides, ideas for activities, opportunities for participating in research projects with our astronomers, full access to the public archive, as well as an online community built through forums and groups. Content will be visible to all, although registered users will have the ability to add resources, post on blogs and forums, comment and rate existing pages and resources, collaborate in world-wide projects, and much more. The current network includes the two 2.0 m Faulkes Telescopes on Haleakala, Maui and at Siding Spring, Australia. A 0.8 m telescope located at Sedgwick Reserve in the Santa Ynez Valley is nearly commissioned and will be used both for local outreach events as well as on the LCOGT network. The first pair of 0.4 m telescopes has been deployed to Maui and are enclosed inside the clamshell dome with Faulkes Telescope North (FTN), but still have some time to go before they are fully commissioned. The site in Chile is currently being prepped for three 1.0 m and two pairs of 0.4 m telescopes with the site in South Africa to follow shortly. Other sites include the Canary Islands, a site in North America, one in Asia, and another site in Australia. The 0.4 m telescopes will be deployed by pair and the 1.0 m telescopes will be deployed in groups of two or three, all with research-grade instrumentation.

  19. Physical Analysis of the Complex Rye (Secale cereale L.) Alt4 Aluminium (Aluminum) Tolerance Locus Using a Whole-Genome BAC Library of Rye cv. Blanco

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rye is a diploid crop species with many outstanding qualities, and is also important as a source of new traits for wheat and triticale improvement. Here we describe a BAC library of rye cv. Blanco, representing a valuable resource for rye molecular genetic studies. The library provides a 6 × genome ...

  20. Wind buffeting of large telescopes.

    PubMed

    MacMynowski, Douglas G; Andersen, Torben

    2010-02-01

    Unsteady wind loads due to turbulence within the telescope enclosure are one of the largest dynamic disturbances for ground-based optical telescopes. The desire to minimize the response to the wind influences the design of the telescope enclosure, structure, and control systems. There is now significant experience in detailed integrated modeling to predict image jitter due to wind. Based on this experience, a relatively simple model is proposed that is verified (from a more detailed model) to capture the relevant physics. In addition to illustrating the important elements of the telescope design that influence wind response, this model is used to understand the sensitivity of telescope image jitter to a wide range of design parameters. PMID:20119010

  1. Wind buffeting of large telescopes.

    PubMed

    MacMynowski, Douglas G; Andersen, Torben

    2010-02-01

    Unsteady wind loads due to turbulence within the telescope enclosure are one of the largest dynamic disturbances for ground-based optical telescopes. The desire to minimize the response to the wind influences the design of the telescope enclosure, structure, and control systems. There is now significant experience in detailed integrated modeling to predict image jitter due to wind. Based on this experience, a relatively simple model is proposed that is verified (from a more detailed model) to capture the relevant physics. In addition to illustrating the important elements of the telescope design that influence wind response, this model is used to understand the sensitivity of telescope image jitter to a wide range of design parameters.

  2. Definition of a mobilizing volume of sediment in a valley interested by volcanic eruption: Rio Blanco valley (Chile)

    NASA Astrophysics Data System (ADS)

    Oss-Cazzador, Daniele; Iroumé, Andrés; Picco, Lorenzo

    2016-04-01

    Volcanic explosive activity can strongly affect the riverine environments. Deposition of tephra, pyroclastic and hyperconcentrated flows along both the valley bottom and hillslopes can radically change the environmental morphology. Accumulation and transport of pyroclastic material can increase hazards and risks for anthropic activities. The aims of this research are to evaluate and quantify the amount of erodible sediment that can be transported along a gravel bed river affected by a volcanic eruption. The Rio Blanco valley (Chile) was upset by the plinian-type eruption of Chaiten volcano in 2008. The great amount of tephra released in the initial phase and the subsequent pyroclastic flows, accumulated up to 8 m of sediment over a great portion of the Rio Blanco valley. Using aerial photographs was possible to define the extension of vegetated zones affected by the eruption. The area was interested by a high mortality of vegetation, as confirmed by field surveys. Dendrometric measurements permitted to quantify the volume of wood and observe that renewal and herbal layer are almost absent, determining low soil cohesion and easier erosion by superficial and river erosion processes. Analysis of sediment accumulation allowed quantifying the volume of sediment that can be transported downstream. The analyses were carried out considering 7 km-long a reach, from the river mouth to the confluence between Caldera creek and Rio Blanco. After the eruption, was possible to define as a total area of about 2.19 km2 was affected by tephra deposition, the 40% (0,87 km2) was eroded by flows, while 60% (1,32 km2) is still present and composed by tephra, buried large wood (LW) and dead standing trees. Considering an average high of 5 m, the potential erodible sediment is around 6,5 x 106 m3, moreover there is a potential amount of about 7,3 x 104 m3 of LW that can be transported towards mouth. These analyses can be useful to better define the management plan for the river delta. In

  3. Base-resolution detection of N4-methylcytosine in genomic DNA using 4mC-Tet-assisted-bisulfite-sequencing

    DOE PAGES

    Yu, Miao; Ji, Lexiang; Neumann, Drexel A.; Chung, Dae -Hwan; Groom, Joseph; Westpheling, Janet; He, Chuan; Schmitz, Robert J.

    2015-07-15

    Restriction-modification (R-M) systems pose a major barrier to DNA transformation and genetic engineering of bacterial species. Systematic identification of DNA methylation in R-M systems, including N6-methyladenine (6mA), 5-methylcytosine (5mC) and N4-methylcytosine (4mC), will enable strategies to make these species genetically tractable. Although single-molecule, real time (SMRT) sequencing technology is capable of detecting 4mC directly for any bacterial species regardless of whether an assembled genome exists or not, it is not as scalable to profiling hundreds to thousands of samples compared with the commonly used next-generation sequencing technologies. Here, we present 4mC-Tet-assisted bisulfite-sequencing (4mC-TAB-seq), a next-generation sequencing method that rapidly andmore » cost efficiently reveals the genome-wide locations of 4mC for bacterial species with an available assembled reference genome. In 4mC-TAB-seq, both cytosines and 5mCs are read out as thymines, whereas only 4mCs are read out as cytosines, revealing their specific positions throughout the genome. We applied 4mC-TAB-seq to study the methylation of a member of the hyperthermophilc genus, Caldicellulosiruptor, in which 4mC-related restriction is a major barrier to DNA transformation from other species. Lastly, in combination with MethylC-seq, both 4mC- and 5mC-containing motifs are identified which can assist in rapid and efficient genetic engineering of these bacteria in the future.« less

  4. Seismic Imager Space Telescope

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Coste, Keith; Cunningham, J.; Sievers,Michael W.; Agnes, Gregory S.; Polanco, Otto R.; Green, Joseph J.; Cameron, Bruce A.; Redding, David C.; Avouac, Jean Philippe; Ampuero, Jean Paul; Leprince, Sebastien; Michel, Remi

    2012-01-01

    A concept has been developed for a geostationary seismic imager (GSI), a space telescope in geostationary orbit above the Pacific coast of the Americas that would provide movies of many large earthquakes occurring in the area from Southern Chile to Southern Alaska. The GSI movies would cover a field of view as long as 300 km, at a spatial resolution of 3 to 15 m and a temporal resolution of 1 to 2 Hz, which is sufficient for accurate measurement of surface displacements and photometric changes induced by seismic waves. Computer processing of the movie images would exploit these dynamic changes to accurately measure the rapidly evolving surface waves and surface ruptures as they happen. These measurements would provide key information to advance the understanding of the mechanisms governing earthquake ruptures, and the propagation and arrest of damaging seismic waves. GSI operational strategy is to react to earthquakes detected by ground seismometers, slewing the satellite to point at the epicenters of earthquakes above a certain magnitude. Some of these earthquakes will be foreshocks of larger earthquakes; these will be observed, as the spacecraft would have been pointed in the right direction. This strategy was tested against the historical record for the Pacific coast of the Americas, from 1973 until the present. Based on the seismicity recorded during this time period, a GSI mission with a lifetime of 10 years could have been in position to observe at least 13 (22 on average) earthquakes of magnitude larger than 6, and at least one (2 on average) earthquake of magnitude larger than 7. A GSI would provide data unprecedented in its extent and temporal and spatial resolution. It would provide this data for some of the world's most seismically active regions, and do so better and at a lower cost than could be done with ground-based instrumentation. A GSI would revolutionize the understanding of earthquake dynamics, perhaps leading ultimately to effective warning

  5. Evaluation of the table Mountain Ronchi telescope for angular tracking

    NASA Technical Reports Server (NTRS)

    Lanyi, G.; Purcell, G.; Treuhaft, R.; Buffington, A.

    1992-01-01

    The performance of the University of California at San Diego (UCSD) Table Mountain telescope was evaluated to determine the potential of such an instrument for optical angular tracking. This telescope uses a Ronchi ruling to measure differential positions of stars at the meridian. The Ronchi technique is summarized and the operational features of the Table Mountain instrument are described. Results from an analytic model, simulations, and actual data are presented that characterize the telescope's current performance. For a star pair of visual magnitude 7, the differential uncertainty of a 5-min observation is about 50 nrad (10 marcsec), and tropospheric fluctuations are the dominant error source. At magnitude 11, the current differential uncertainty is approximately 800 nrad (approximately 170 marcsec). This magnitude is equivalent to that of a 2-W laser with a 0.4-m aperture transmitting to Earth from a spacecraft at Saturn. Photoelectron noise is the dominant error source for stars of visual magnitude 8.5 and fainter. If the photoelectron noise is reduced, ultimately tropospheric fluctuations will be the limiting source of error at an average level of 35 nrad (7 marcsec) for stars approximately 0.25 deg apart. Three near-term strategies are proposed for improving the performance of the telescope to the 10-nrad level: improving the efficiency of the optics, masking background starlight, and averaging tropospheric fluctuations over multiple observations.

  6. PILOT: a wide-field telescope for the Antarctic plateau

    NASA Astrophysics Data System (ADS)

    Saunders, Will; Gillingham, Peter; McGrath, Andrew; Haynes, Roger; Brzeski, Jurek; Storey, John; Lawrence, Jon

    2008-07-01

    PILOT (the Pathfinder for an International Large Optical Telescope) is a proposed Australian/European optical/infrared telescope for Dome C on the Antarctic Plateau, with target first light in 2012. The telescope is 2.4m diameter, with overall focal ratio f/10, and a 1 degree field-of-view. It is mounted on a 30m tower to get above most of the turbulent surface layer, and has a tip-tilt secondary for fast guiding. In median seeing conditions, it delivers 0.3" FWHM wide-field image quality, from 0.7-2.5 microns. In the best quartile of conditions, it delivers diffraction-limited imaging down to 1 micron, or even less with lucky imaging. The major challenges have been (a) preventing frost-laden external air reaching the optics, (b) overcoming residual surface layer turbulence, (c) keeping mirror, telescope and dome seeing to acceptable levels in the presence of large temperature variations with height and time, (d) designing optics that do justice to the site conditions. The most novel feature of the design is active thermal and humidity control of the enclosure, to closely match the temperature of external air while preventing its ingress.

  7. Normalized and asynchronous mirror alignment for Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Baack, D.; Balbo, M.; Bergmann, M.; Biland, A.; Blank, M.; Bretz, T.; Bruegge, K. A.; Buss, J.; Domke, M.; Dorner, D.; Einecke, S.; Hempfling, C.; Hildebrand, D.; Hughes, G.; Lustermann, W.; Mannheim, K.; Mueller, S. A.; Neise, D.; Neronov, A.; Noethe, M.; Overkemping, A.-K.; Paravac, A.; Pauss, F.; Rhode, W.; Shukla, A.; Temme, F.; Thaele, J.; Toscano, S.; Vogler, P.; Walter, R.; Wilbert, A.

    2016-09-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures and high image intensities to map the faint Cherenkov light emitted from cosmic ray air showers onto their image sensors. Segmented reflectors fulfill these needs, and as they are composed from mass production mirror facets they are inexpensive and lightweight. However, as the overall image is a superposition of the individual facet images, alignment is a challenge. Here we present a computer vision based star tracking alignment method, which also works for limited or changing star light visibility. Our method normalizes the mirror facet reflection intensities to become independent of the reference star's intensity or the cloud coverage. Using two CCD cameras, our method records the mirror facet orientations asynchronously of the telescope drive system, and thus makes the method easy to integrate into existing telescopes. It can be combined with remote facet actuation, but does not require one to work. Furthermore, it can reconstruct all individual mirror facet point spread functions without moving any mirror. We present alignment results on the 4 m First Geiger-mode Avalanche Cherenkov Telescope (FACT).

  8. Lunar-based optical telescopes: Planning astronomical tools of the twenty-first century

    NASA Technical Reports Server (NTRS)

    Hilchey, J. D.; Nein, M. E.

    1995-01-01

    A succession of optical telescopes, ranging in aperture from 1 to 16 m or more, can be deployed and operated on the lunar surface over the next half-century. These candidates to succeed NASA's Great Observatories would capitalize on the unique observational advantages offered by the Moon. The Lunar Telescope Working Group and the LUTE Task Team of the George C. Marshall Space Flight Center (MSFC) have assessed the feasibility of developing and deploying these facilities. Studies include the 16-m Large Lunar Telescope (LLT); the Lunar Cluster Telescope Experiment (LCTE), a 4-m precursor to the LLT; the 2-m Lunar Transit Telescope (LTT); and its precursor, the 1-m Lunar Ultraviolet Telescope Experiment (LUTE). The feasibility of developing and deploying each telescope was assessed and system requirements and options for supporting technologies, subsystems, transportation, and operations were detailed. Influences of lunar environment factors and site selection on telescope design and operation were evaluated, and design approaches and key tradeoffs were established. This paper provides an overview of the study results. Design concepts and brief system descriptions are provided, including subsystem and mission options selected for the concepts.

  9. Lunar-based optical telescopes: Planning astronomical tools of the twenty-first century

    NASA Astrophysics Data System (ADS)

    Hilchey, J. D.; Nein, M. E.

    1995-02-01

    A succession of optical telescopes, ranging in aperture from 1 to 16 m or more, can be deployed and operated on the lunar surface over the next half-century. These candidates to succeed NASA's Great Observatories would capitalize on the unique observational advantages offered by the Moon. The Lunar Telescope Working Group and the LUTE Task Team of the George C. Marshall Space Flight Center (MSFC) have assessed the feasibility of developing and deploying these facilities. Studies include the 16-m Large Lunar Telescope (LLT); the Lunar Cluster Telescope Experiment (LCTE), a 4-m precursor to the LLT; the 2-m Lunar Transit Telescope (LTT); and its precursor, the 1-m Lunar Ultraviolet Telescope Experiment (LUTE). The feasibility of developing and deploying each telescope was assessed and system requirements and options for supporting technologies, subsystems, transportation, and operations were detailed. Influences of lunar environment factors and site selection on telescope design and operation were evaluated, and design approaches and key tradeoffs were established. This paper provides an overview of the study results. Design concepts and brief system descriptions are provided, including subsystem and mission options selected for the concepts.

  10. Improved Optical Design for the Large Synoptic Survey Telescope (LSST)

    SciTech Connect

    Seppala, L

    2002-09-24

    This paper presents an improved optical design for the LSST, an fll.25 three-mirror telescope covering 3.0 degrees full field angle, with 6.9 m effective aperture diameter. The telescope operates at five wavelength bands spanning 386.5 nm to 1040 nm (B, V, R, I and Z). For all bands, 80% of the polychromatic diffracted energy is collected within 0.20 arc-seconds diameter. The reflective telescope uses an 8.4 m f/1.06 concave primary, a 3.4 m convex secondary and a 5.2 m concave tertiary in a Paul geometry. The system length is 9.2 m. A refractive corrector near the detector uses three fused silica lenses, rather than the two lenses of previous designs. Earlier designs required that one element be a vacuum barrier, but now the detector sits in an inert gas at ambient pressure. The last lens is the gas barrier. Small adjustments lead to optimal correction at each band. The filters have different axial thicknesses. The primary and tertiary mirrors are repositioned for each wavelength band. The new optical design incorporates features to simplify manufacturing. They include a flat detector, a far less aspheric convex secondary (10 {micro}m from best fit sphere) and reduced aspheric departures on the lenses and tertiary mirror. Five aspheric surfaces, on all three mirrors and on two lenses, are used. The primary is nearly parabolic. The telescope is fully baffled so that no specularly reflected light from any field angle, inside or outside of the full field angle of 3.0 degrees, can reach the detector.

  11. Hubble Space Telescope Image

    NASA Technical Reports Server (NTRS)

    1995-01-01

    These eerie, dark, pillar-like structures are actually columns of cool interstellar hydrogen gas and dust that are also incubators for new stars. The pillars protrude from the interior wall of a dark molecular cloud like stalagmites from the floor of a cavern. They are part of the Eagle Nebula (also called M16), a nearby star-forming region 7,000 light-years away, in the constellation Serpens. The ultraviolet light from hot, massive, newborn stars is responsible for illuminating the convoluted surfaces of the columns and the ghostly streamers of gas boiling away from their surfaces, producing the dramatic visual effects that highlight the three-dimensional nature of the clouds. This image was taken on April 1, 1995 with the Hubble Space Telescope Wide Field Planetary Camera 2. The color image is constructed from three separate images taken in the light of emission from different types of atoms. Red shows emissions from singly-ionized sulfur atoms, green shows emissions from hydrogen, and blue shows light emitted by doubly-ionized oxygen atoms.

  12. The Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Dreher, J.

    2006-12-01

    The ATA will be a massively parallel array of 350 6-m antennas operating from 0.5 GHz to 11.3 GHz. It will be a superb instrument for both surveys and for imaging large, complex sources. By exploiting recent drops in the cost of electronics and by adopting the simplest possible design, the cost of the ATA will be significantly less than that of existing 100-m class telescopes. The ATA offers a very large primary field of view that may be imaged with a spectralline correlator and, at the same time, be studied with 16 dual-polarization pencil beams. The ATA also will have unique capabilities for very high fidelity imaging and for RFI excision. Central to the design is a high performance, yet cost effective, antenna with a Gregorian reflector system, connected to a novel ultrawide- band, log-periodic feed. Analog fiber is used to eliminate most of the electronics that are located at the antennas in more conventional arrays, allowing for a massively parallel signal processing design that offers enormous flexibility. A 42-element version of the ATA will begin observing in 2006.

  13. SOFIA: Flying the Telescope

    NASA Technical Reports Server (NTRS)

    Asher, Troy; Cumming, Steve

    2012-01-01

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is an international cooperative development and operations program between the United States National Aeronautics and Space Administration (NASA) and the German Space Agency, DLR (Deutsches Zentrum fuer Luft-und Raumfahrt). SOFIA is a 2.5 meter, optical/infrared/sub-millimeter telescope mounted in a Boeing model 747SP-21 aircraft and will be used for many basic astronomical observations performed at stratospheric altitudes. It will accommodate installation of different focal plane instruments with in-flight accessibility provided by investigators selected from the international science community. The Facility operational lifetime is planned to be greater than 20 years. This presentation will present the results of developmental testing of SOFIA, including analysis, envelope expansion and the first operational mission. It will describe a brief history of open cavities in flight, how NASA designed and tested SOFIAs cavity, as well as flight test results. It will focus on how the test team achieved key milestones by systematically and efficiently reducing the number of test points to only those absolutely necessary to achieve mission requirements, thereby meeting all requirements and saving the potential loss of program funding. Finally, it will showcase examples of the observatory in action and the first operational mission of the observatory, illustrating the usefulness of the system to the international scientific community. Lessons learned on how to whittle a mountain of test points into a manageable sum will be presented at the conclusion.

  14. The ash deposits of the 4200 BP Cerro Blanco eruption: the largest Holocene eruption of the Central Andes

    NASA Astrophysics Data System (ADS)

    Fernandez-Turiel, Jose-Luis; Saavedra, Julio; Perez-Torrado, Francisco-Jose; Rodriguez-Gonzalez, Alejandro; Carracedo, Juan-Carlos; Lobo, Agustin; Rejas, Marta; Gallardo, Juan-Fernando; Osterrieth, Margarita; Carrizo, Julieta; Esteban, Graciela; Martinez, Luis-Dante; Gil, Raul-Andres; Ratto, Norma; Baez, Walter

    2015-04-01

    We present new data about a major eruption -spreading approx. 110 km3 ashes over 440.000 km2- long thought to have occurred around 4200 years ago in the Cerro Blanco Volcanic Complex (CBVC) in the Central Andes of NW Argentina (Southern Puna, 26°45' S, 67°45' W). This eruption may be the biggest during the past five millennia in the Central Volcanic Zone of the Andes, and possibly one of the largest Holocene eruptions in the world. Discrimination and correlation of pyroclastic deposits of this eruption of Cerro Blanco was conducted comparing samples of proximal (domes, pyroclastic flow and fall deposits) with distal ash fall deposits (up to 400 km from de vent). They have been characterized using optical and electron microscopy (SEM), X-ray diffraction, particle-size distribution by laser diffraction and electron microprobe and HR-ICP-MS with laser ablation for major and trace element composition of glass, feldspars and biotite. New and published 14C ages were calibrated using Bayesian statistics. An one-at-a-time inversion method was used to reconstruct the eruption conditions using the Tephra2 code (Bonadonna et al. 2010, https://vhub.org/resources/tephra2). This method allowed setting the main features of the eruption that explains the field observations in terms of thickness and grain size distributions of the ash fall deposit. The main arguments that justify the correlation are four: 1) Compositional coincidence for glass, feldspars, and biotite in proximal and distal materials; 2) Stratigraphic and geomorphological relationships, including structure and thickness variation of the distal deposits; 3) Geochronological consistency, matching proximal and distal ages; and 4) Geographical distribution of correlated outcrops in relation to the eruption centre at the coordinates of Cerro Blanco. With a magnitude of 7.0 and a volcanic explosivity index or VEI 7, this eruption of ~4200 BP at Cerro Blanco is the largest in the last five millennia known in the Central

  15. Geomorphic change along a gravel bed river affected by volcanic eruption: Rio Blanco - Volcan Chaiten (South Chile)

    NASA Astrophysics Data System (ADS)

    Picco, Lorenzo; Ravazzolo, Diego; Ulloa, Hector; Iroumé, Andres; Aristide Lenzi, Mario

    2014-05-01

    Gravel bed rivers are environments shaped by the balance of flow, sediment regimes, large wood (LW) and vegetation. Geomorphic changes are response to fluctuations and changes of runoff and sediment supply involving mutual interactions among these factors. Typically, many natural disasters (i.e. debris flows, floods and forest fires) can affect the river basin dynamics. Explosive volcanic eruptions present, instead, the potential of exerting severe impacts as, for example, filling river valleys or changing river network patterns thanks to massive deposition of tephra and volcanic sediment all over the main channel and over the basin. These consistent impacts can strongly affect both hydrology and sediment transport dynamics, all over the river system, producing huge geomorphic changes. During the last years there has been a consistent increase in the survey technologies that permit to monitor geomorphic changes and to estimate sediment budgets through repeat topographic surveys. The calculation of differences between subsequent DEMs (difference of DEMs, DoD) is a commonly applied method to analyze and quantify these dynamics. Typically the higher uncertainty values are registered in areas with higher topographic variability and lower point density. This research was conducted along a ~ 2.2 km-long sub-reach of the Blanco River (Southern Chile), a fourth-order stream that presents a mainly rainfall regime with winter peak flows. The May 2008 Chaitén volcanic eruption strongly affected the entire Rio Blanco basin. The entire valley was highly exposed to the pyroclastic and fluvial flows, which affected directly a consistent area of evergreen forests. Extreme runoff from the upper Blanco catchment aggraded the channel and deposited up to several meters of tephra, alluvium, and LW along the entire river system. Aims of this contribution are to define and quantify the short term evolution of the Blanco River after the big eruption event and a subsequent consistent

  16. A MEASUREMENT OF THE CORRELATION OF GALAXY SURVEYS WITH CMB LENSING CONVERGENCE MAPS FROM THE SOUTH POLE TELESCOPE

    SciTech Connect

    Bleem, L. E.; Becker, M. R.; Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Van Engelen, A.; Holder, G. P.; De Haan, T.; Dobbs, M. A.; Aird, K. A.; Armstrong, R.; Ashby, M. L. N.; Biesiadzinski, T.; Brodwin, M.; Busha, M. T.; Cho, H. M.; Desai, S.; Dore, O.; and others

    2012-07-01

    We compare cosmic microwave background lensing convergence maps derived from South Pole Telescope (SPT) data with galaxy survey data from the Blanco Cosmology Survey, WISE, and a new large Spitzer/IRAC field designed to overlap with the SPT survey. Using optical and infrared catalogs covering between 17 and 68 deg{sup 2} of sky, we detect a correlation between the SPT convergence maps and each of the galaxy density maps at >4{sigma}, with zero correlation robustly ruled out in all cases. The amplitude and shape of the cross-power spectra are in good agreement with theoretical expectations and the measured galaxy bias is consistent with previous work. The detections reported here utilize a small fraction of the full 2500 deg{sup 2} SPT survey data and serve as both a proof of principle of the technique and an illustration of the potential of this emerging cosmological probe.

  17. Large Millimeter Telescope (LMT) status

    NASA Astrophysics Data System (ADS)

    Schloerb, F. Peter; Carrasco, Luis; Wilson, Grant W.

    2003-02-01

    We present a summary of the Large Millimeter Telescope Project and its present status. The Large Millimeter Telescope (LMT) is a joint project of the University of Massachusetts (UMass) in the USA and the Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) in Mexico to build a 50m-diameter millimeter-wave telescope. The LMT is being built at an altitude of 4600 m atop Volcan Sierra Negra, an extinct volcanic peak in the state of Puebla, Mexico, approximately 100 km east of the city of Puebla. Construction of the antenna is now well underway, and it is expected to be completed in 2004.

  18. Formation flight astronomical survey telescope

    NASA Astrophysics Data System (ADS)

    Tsunemi, Hiroshi

    2012-03-01

    Formation Flight Astronomical Survey Telescope (FFAST) is a project for hard X-ray observation. It consists of two small satellites; one (telescope satellite) has a super mirror covering the energy range up to 80 keV while the other (detector satellite) has an scintillator deposited CCD (SDCCD) having good spatial resolution and high efficiency up to 100 keV. Two satellites will be put into individual Kepler orbits forming an X-ray telescope with a focal length of 20 m. They will be not in pointing mode but in survey mode to cover a large sky region.

  19. Geodetic Observatory Wettzell - 20-m Radio Telescope and Twin Telescope

    NASA Technical Reports Server (NTRS)

    Neidhardt, Alexander; Kronschnabl, Gerhard; Schatz, Raimund

    2013-01-01

    In the year 2012, the 20-m radio telescope at the Geodetic Observatory Wettzell, Germany again contributed very successfully to the International VLBI Service for Geodesy and Astrometry observing program. Technical changes, developments, improvements, and upgrades were made to increase the reliability of the entire VLBI observing system. In parallel, the new Twin radio telescope Wettzell (TTW) got the first feedhorn, while the construction of the HF-receiving and the controlling system was continued.

  20. Ice Middleware in the New Solar Telescope's Telescope Control System

    NASA Astrophysics Data System (ADS)

    Shumko, S.

    2009-09-01

    The Big Bear Solar Observatory (BBSO) is now in the process of assembling and aligning its 1.6 m New Solar Telescope (NST). There are many challenges controlling NST and one of them is establishing reliable and robust communications between different parts of the Telescope Control System (TCS). For our TCS we selected Ice (Internet communication engine) from ZeroC, Inc. In this paper we discuss advantages of the Ice middleware, details of implementation and problems we face implementing it.

  1. eGIF4M: eGovernment Interoperability Framework for Mozambique

    NASA Astrophysics Data System (ADS)

    Shvaiko, Pavel; Villafiorita, Adolfo; Zorer, Alessandro; Chemane, Lourino; Fumo, Teotónio; Hinkkanen, Jussi

    Harmonizing decentralized development of ICT solutions with centralized strategies, e.g., meant to favor reuse and optimization of resources, is a complex technical and organizational challenge. The problem, shared by virtually all the governments, is becoming a priority also for countries, such as Mozambique, that have started their ICT policy relatively recently and for which it is now evident that — if no particular attention is devoted to the interoperability of the solutions being developed — the result will rapidly become a patchwork of solutions incompatible with each other. The focus of the paper is on formulation of eGIF4M: eGovernment Interoperability Framework for Mozambique. The framework is based on a holistic approach. It builds on top of the existing experiences in eGIFs all over the world and it addresses some specific needs and peculiarities of developing countries, like Mozambique. The result is a comprehensive framework based on: (i) a reference architecture along with technical standards, (ii) a standardization life cycle, (iii) a maturity model, and (iv) some key actions meant to make the initiative sustainable in the longer term.

  2. Structure cristalline de la 4-méthyl-1,2,4-triazole-thione

    NASA Astrophysics Data System (ADS)

    El Hajji, A.; El Ammari, L.; Mattern, G.; Benarafa, L.; Saidi Idrissi, M.

    1998-10-01

    The 4-methyl-1,2,4-triazole-thione crystalizes in the monoclinic system with the space group P21/n. The unit cell parameters are: a = 7.946 Å; b = 6.295 Å; c = 20.901 Å; β=100.47circ and Z = 8. The structure refinement lead to R = 0.047 and Rw = 0.035 factors. The molecules are planar and are joined together through hydrogen bonds N-H...N. Among the two possible tautomeric forms, only the thione form is present in the crystal structure. La 4-méthyl-1,2,4-triazole-thione cristallise dans un système monoclinique avec un groupe d'espace P21/n. Les paramètres cristallins sont : a = 7,946 Å ; b = 6,295 Å ; c = 20,901 Å ; β=100,47circ et Z = 8. L'affinement de la structure a conduit aux facteurs R = 0,047 et Rw = 0,035. Les molécules sont planes et sont liées entre elles par des liaisons hydrogène N- - -H....N. Parmi les deux formes tautomères possibles pour cette molécule, seule existe dans le cristal, la forme thione.

  3. Design progress of the solar UV-Vis-IR telescope (SUVIT) aboard SOLAR-C

    NASA Astrophysics Data System (ADS)

    Katsukawa, Y.; Ichimoto, K.; Suematsu, Y.; Hara, H.; Kano, R.; Shimizu, T.; Matsuzaki, K.

    2013-09-01

    We present a design progress of the Solar UV-Vis-IR Telescope (SUVIT) aboard the next Japanese solar mission SOLAR-C. SUVIT has an aperture diameter of ~1.4 m for achieving spectro-polarimetric observations with spatial and temporal resolution exceeding the Hinode Solar Optical Telescope (SOT). We have studied structural and thermal designs of the optical telescope as well as the optical interface between the telescope and the focal plane instruments. The focal plane instruments are installed into two packages, filtergraph and spectrograph packages. The spectropolarimeter is the instrument dedicated to accurate polarimetry in the three spectrum windows at 525 nm, 854 nm, and 1083 nm for observing magnetic fields at both the photospheric and chromospheric layers. We made optical design of the spectrograph accommodating the conventional slit spectrograph and the integral field unit (IFU) for two-dimensional coverage. We are running feasibility study of the IFU using fiber arrays consisting of rectangular cores.

  4. Wide Field Infra-Red Survey Telescope (WFIRST) 2.4-Meter Mission Study

    NASA Technical Reports Server (NTRS)

    Content, D.; Aaron, K.; Alplanalp, L.; Anderson, K.; Capps, R.; Chang, Z.; Dooley, J.; Egerman, R.; Goullioud, R.; Klein, D.; Kruk, J.; Kuan, G.; Melton, M.; Ruffa, J.; Underhill, M.; Buren, D. Van

    2013-01-01

    The most recent study of the Wide Field Infrared Survey Telescope (WFIRST) mission is based on reuse of an existing 2.4m telescope. This study was commissioned by NASA to examine the potential science return and cost effectiveness of WFIRST by using this significantly larger aperture telescope. We review the science program envisioned by the WFIRST 2012-2013 Science Definition Team (SDT), an overview of the mission concept, and the telescope design and status. Comparisons against the previous 1.3m and reduced cost 1.1m WFIRST design concepts are discussed. A significant departure from past point designs is the option for serviceability and the geostationary orbit location which enables servicing and replacement instrument insertion later during mission life. Other papers at this conference provide more in depth discussion of the wide field instrument and the optional exoplanet imaging coronagraph instrument.

  5. Planet detection and spectroscopy in visible light with a single aperture telescope and a nulling coronagraph

    NASA Technical Reports Server (NTRS)

    Shao, Michael; Serabyn, Eugene; Levine, Bruce Martin; Beichman, Charles; Liu, Duncan; Martin, Stefan; Orton, Glen; Mennesson, Bertrand; Morgan, Rhonda; Velusamy, Thangasamy; Wallace, J. Kent; Unwin, Stephen

    2003-01-01

    This talk describes a new concept for visible direct detection of Earth like extra solar planets using a nulling coronagraph instrument behind a 4m telescope in space. In the baseline design, a 4 beam nulling interferometer is synthesized from the telescope pupil, producing a very deep theta^4null which is then filtered by a coherent array of single mode fibers to suppress the residual scattered light. With perfect optics, the stellar leakage is less than 1e-11 of the starlight at the location of the planet. With diffraction limited telescope optics (lambda/20), suppression of the starlight to 1e-10 is possible. The concept is described along with the key advantages over more traditional approaches such as apodized aperture telescopes and Lyot type coronagraphs.

  6. The Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey C.; Allen Telescope Array Team

    2010-01-01

    The ATA is a 42-element centimeter wavelength array located in Hat Creek, California and jointly operated by UC Berkeley Radio Astronomy Laboratory and the SETI Institute. Since the ATA dedication in Fall 2007, activities have been focused on commissioning the array, retrofitting a handful of components including the feed, developing an operations model, creation of pipeline processing for correlator imaging data, early science observations, and launching of the major surveys for which the telescope was built. The retrofit of the feed improves feed mechanical robustness as well as high frequency performance. Science programs launched include imaging radio transient and static sky surveys (ATATS and PiGSS), commensal SETI and transient surveys of the Galactic Center, targeted SETI observations of nearby stars, the Fly's Eye transient survey, broadband spectra of nearby star-forming galaxies, polarimetric observations of bright radio sources, observations of hydrogen in nearby galaxies and galaxy groups, molecular line observations in the Galaxy, and observations of Jupiter and the Moon. The baseline Square Kilometer Array (SKA) design, a large-N-small-diameter (LNSD) array with wide-band single-pixel feeds and an offset Gregorian antenna, bears a strong resemblance to the ATA. Additional ATA contributions to the SKA include configuration studies for LNSD arrays, the use of fiber optics for broadband data transmission, the use of flexible FPGA-based digital electronics, passive cooling of antennas, and implementation of commensal observing modes. The ATA is currently used for exploration of calibration and imaging algorithms necessary for the SKA. I will summarize current technical status and performance, the results from early science and surveys, and ATA contributions to SKA development.

  7. Lightweighted ZERODUR for telescopes

    NASA Astrophysics Data System (ADS)

    Westerhoff, T.; Davis, M.; Hartmann, P.; Hull, T.; Jedamzik, R.

    2014-07-01

    The glass ceramic ZERODUR® from SCHOTT has an excellent reputation as mirror blank material for earthbound and space telescope applications. It is known for its extremely low coefficient of thermal expansion (CTE) at room temperature and its excellent CTE homogeneity. Recent improvements in CNC machining at SCHOTT allow achieving extremely light weighted substrates up to 90% incorporating very thin ribs and face sheets. In 2012 new ZERODUR® grades EXPANSION CLASS 0 SPECIAL and EXTREME have been released that offer the tightest CTE grades ever. With ZERODUR® TAILORED it is even possible to offer ZERODUR® optimized for customer application temperature profiles. In 2013 SCHOTT started the development of a new dilatometer setup with the target to drive the industrial standard of high accuracy thermal expansion metrology to its limit. In recent years SCHOTT published several paper on improved bending strength of ZERODUR® and lifetime evaluation based on threshold values derived from 3 parameter Weibull distribution fitted to a multitude of stress data. ZERODUR® has been and is still being successfully used as mirror substrates for a large number of space missions. ZERODUR® was used for the secondary mirror in HST and for the Wolter mirrors in CHANDRA without any reported degradation of the optical image quality during the lifetime of the missions. Some years ago early studies on the compaction effects of electron radiation on ZERODUR® were re analyzed. Using a more relevant physical model based on a simplified bimetallic equation the expected deformation of samples exposed in laboratory and space could be predicted in a much more accurate way. The relevant ingredients for light weighted mirror substrates are discussed in this paper: substrate material with excellent homogeneity in its properties, sufficient bending strengths, space radiation hardness and CNC machining capabilities.

  8. Prism beamswitch for radio telescopes.

    PubMed

    Payne, J M; Ulich, B L

    1978-12-01

    A dielectric prism and switching mechanism have been constructed for beamswitching a Cassegrain radio telescope. Spatially extended radio sources may be mapped without significant confusion utilizing the sensitivity and stability inherent in the conventional Dicke radiometer.

  9. The CMS pixel luminosity telescope

    NASA Astrophysics Data System (ADS)

    Kornmayer, A.

    2016-07-01

    The Pixel Luminosity Telescope (PLT) is a new complement to the CMS detector for the LHC Run II data taking period. It consists of eight 3-layer telescopes based on silicon pixel detectors that are placed around the beam pipe on each end of CMS viewing the interaction point at small angle. A fast 3-fold coincidence of the pixel planes in each telescope will provide a bunch-by-bunch measurement of the luminosity. Particle tracking allows collision products to be distinguished from beam background, provides a self-alignment of the detectors, and a continuous in-time monitoring of the efficiency of each telescope plane. The PLT is an independent luminometer, essential to enhance the robustness on the measurement of the delivered luminosity and to reduce its systematic uncertainties. This will allow to determine production cross-sections, and hence couplings, with high precision and to set more stringent limits on new particle production.

  10. Hubble Space Telescope-Illustration

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This is a cutaway illustration of the Hubble Space Telescope (HST) with callouts. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  11. Hubble Space Telescope-Concept

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This is an artist's concept of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  12. Hubble Space Telescope-Illustration

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This illustration depicts a side view of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  13. Imaging phased telescope array study

    NASA Technical Reports Server (NTRS)

    Harvey, James E.

    1989-01-01

    The problems encountered in obtaining a wide field-of-view with large, space-based direct imaging phased telescope arrays were considered. After defining some of the critical systems issues, previous relevant work in the literature was reviewed and summarized. An extensive list was made of potential error sources and the error sources were categorized in the form of an error budget tree including optical design errors, optical fabrication errors, assembly and alignment errors, and environmental errors. After choosing a top level image quality requirment as a goal, a preliminary tops-down error budget allocation was performed; then, based upon engineering experience, detailed analysis, or data from the literature, a bottoms-up error budget reallocation was performed in an attempt to achieve an equitable distribution of difficulty in satisfying the various allocations. This exercise provided a realistic allocation for residual off-axis optical design errors in the presence of state-of-the-art optical fabrication and alignment errors. Three different computational techniques were developed for computing the image degradation of phased telescope arrays due to aberrations of the individual telescopes. Parametric studies and sensitivity analyses were then performed for a variety of subaperture configurations and telescope design parameters in an attempt to determine how the off-axis performance of a phased telescope array varies as the telescopes are scaled up in size. The Air Force Weapons Laboratory (AFWL) multipurpose telescope testbed (MMTT) configuration was analyzed in detail with regard to image degradation due to field curvature and distortion of the individual telescopes as they are scaled up in size.

  14. Telescope optical systems program overview

    NASA Technical Reports Server (NTRS)

    Hirschbein, Murray S.; Key, Richard W.

    1991-01-01

    Telescope Optical Systems is a new focused program of technology development that will shape and enable the new 'telescope' missions being studied and planned by NASA. The program structure contains six major elements: systems, optics, materials, structures, controls, and integration and test. Activities in each element will address key technology issues that support a wide range of user needs. Program goals, technology needs, and technology performance objectives are summarized in outline form.

  15. Global TIE (Telescopes in Education)

    NASA Astrophysics Data System (ADS)

    Mayo, L.; Schweitzer, A. E.; Clark, G.; Hoban, S.; Melsheimer, T. T.

    2001-12-01

    The NASA-sponsored Telescopes In Education (TIE) project (http://tie.jpl.nasa.gov) has been wildly successful in engaging the K-12 education community in real-time, hands-on, interactive astronomy activities. Hundreds of schools in the US, Australia, Canada, England, and Japan have participated in the TIE program, remotely controlling the 24-inch telescope at the Mount Wilson Observatory from their classrooms. In recent years, several (approximately 20 to date) other telescopes have been, or are in the process of being, outfitted for remote use as TIE affiliates. Global TIE integrates these telescopes seamlessly into one virtual observatory and provides the services required to operate this facility, including a scheduling service, tools for data manipulation, an online proposal review environment, an online "Virtual TIE Student Ap J" for publication of results, and access to related educational materials provided by the TIE community. Global TIE seeks to establish a network of research grade telescopes, no longer useful to the professional astronomical community, that can be made accessible to schools all across the country through existing IT technologies and applications. These telescopes could provide unparalleled research and educational opportunities for a broad spectrum of K-12 and college students and turns underutilized observatory facilities into valuable, state-of-the-art teaching centers.

  16. Alt-Az Spacewatch Telescope

    NASA Technical Reports Server (NTRS)

    Gehrels, Tom

    1997-01-01

    This grant funded about one third of the cost of the construction of a telescope with an aperture 1.8 meters in diameter to discover asteroids and comets and investigate the statistics of their populations and orbital distributions. This telescope has been built to the PI's specifications and installed in a dome on Kitt Peak mountain in Arizona. Funds for the dome and building were provided entirely by private sources. The dome building and telescope were dedicated in a ceremony at the site on June 7, 1997. The attached abstract describes the parameters of the telescope. The telescope is a new item of capital property. It is permanently located in University of Arizona building number 910 in the Steward Observatory compound on Kitt Peak mountain in the Tohono O'odham Nation, Arizona. fts property tag number is A252107. This grant did not include funds for the coma corrector lens, instrument derotator, CCD detector, detector electronics, or computers to acquire or process the data. It also did not include funds to operate the telescope or conduct research with it. Funds for these items and efforts are pending from NASA and other sources.

  17. Concept Design for SOAR Telescope

    NASA Astrophysics Data System (ADS)

    Sebring, T.; Cecil, G.; Krabbendam, V.; Moretto, G.

    1998-12-01

    The Southern Astrophysical Research (SOAR) telescope is a \\$28M collaboration between Brazil, NOAO, Michigan State University, and the University of North Carolina at Chapel Hill. NOAO will operate the telescope for 20 years in exchange for 30 astronomers.) The project is now fully funded. This f/16 telescope is optimized for high-quality images across the isokinetic field (0."17 FWHM degradation from the telescope+facility over a field of 7.5' diameter.) It is being designed to take up to 2 Gemini-class (2100 kg) instruments, or a combination of lighter instruments at 7 Nasmyth and bent Cassegrain foci. The facility is now under construction atop Cerro Pachon, 400m from Gemini-S. First light is currently scheduled for early 2002. Corning Inc. is preparing to fabricate the 4.2m-diameter, 7.5-10 cm thick primary mirror from ULE glass. In early 1999 contacts will be awarded for 2 major subsystems: active optics (which includes optics polishing), and the alt.-az. telescope mount. We will outline the novel strategies that are being used to control project costs while optimizing telescope performance. Instrumentation plans will also be summarized.

  18. SOFIA: Flying the Telescope

    NASA Technical Reports Server (NTRS)

    Asher, Troy A.; Cumming, Stephen B.

    2012-01-01

    and a proof of concept mission for which SOFIA was opportunely positioned is showcased. Success on this time-critical mission to observe a rare astronomical event proved the usefulness of an airborne observatory and the value in waiting for the capability provided by SOFIA. Finally, lessons learned in the test program are presented with emphasis on how lessons from previous aircraft and successful test programs were applied to SOFIA. Effective application of these lessons was crucial to the success of the SOFIA flight test program. SOFIA is an international cooperative program between NASA and the German Space Agency, DLR. It is a 2.5 meter (100-inch) telescope mounted in a Boeing 747SP aircraft used for astronomical observations at altitudes above 35,000 feet. SOFIA will accommodate a host of scientific instruments from the international science community and has a planned operational lifespan of more than 20 years.

  19. The HORUS Observatory - A Next Generation 2.4m UV-Optical Mission To Study Planetary, Stellar And Galactic Formation

    NASA Astrophysics Data System (ADS)

    Scowen, Paul A.; SDT, HORUS

    2013-01-01

    The High-ORbit Ultraviolet-visible Satellite (HORUS) is a 2.4-meter class UV-optical space telescope that will conduct a comprehensive and systematic study of the astrophysical processes and environments relevant for the births and life cycles of stars and their planetary systems, to investigate and understand the range of environments, feedback mechanisms, and other factors that most affect the outcome of the star and planet formation process. To do so, HORUS will provide 100 times greater imaging efficiency and more than 10 times greater UV spectroscopic sensitivity than has existed on the Hubble Space Telescope (HST). The HORUS mission will contribute vital information on how solar systems form and whether habitable planets should be common or rare. It also will investigate the structure, evolution, and destiny of galaxies and universe. This program relies on focused capabilities unique to space that no other planned NASA mission will provide: near-UV/visible (200-1075nm) wide-field, diffraction-limited imaging; and high-sensitivity, high-resolution UV (100-170nm) spectroscopy. The core HORUS design will provide wide field of view imagery and high efficiency point source FUV spectroscopy using a novel combination of spectral selection and field sharing. The HORUS Optical Telescope Assembly (OTA) design is based on modern light weight mirror technology with a faster primary mirror to shorten the overall package and thereby reduce mass. The OTA uses a three-mirror anastigmat configuration to provide excellent imagery over a large FOV - and is exactly aligned to use one of the recently released f/1.2 NRO OTAs as part of its design. The UV/optical Imaging Cameras use two 21k x 21k Focal Plane Arrays (FPAs). The FUV spectrometer uses cross strip anode based MCPs. This poster presents results from a 2010 design update requested by the NRC Decadal Survey, and reflects updated costs and technology to the original 2004 study. It is now one of the most mature 2.4m UVOIR

  20. The Giant Magellan Telescope phasing system

    NASA Astrophysics Data System (ADS)

    Bouchez, Antonin H.; McLeod, Brian A.; Acton, D. Scott; Kanneganti, Srikrishna; Kibblewhite, Edward J.; Shectman, Stephen A.; van Dam, Marcos A.

    2012-07-01

    The 25 m Giant Magellan Telescope consists of seven circular 8.4 m primary mirror segments with matching segmentation of the Gregorian secondary mirror. Achieving the diffraction limit in the adaptive optics observing modes will require equalizing the optical path between pairs of segments to a small fraction of the observing wavelength. This is complicated by the fact that primary mirror segments are separated by up to 40 cm, and composed of borosilicate glass. The phasing system therefore includes both edge sensors to sense high-frequency disturbances, and wavefront sensors to measure their long-term drift and sense atmosphere-induced segment piston errors. The major subsystems include a laser metrology system monitoring the primary mirror segments, capacitive edge sensors between secondary mirror segments, a phasing camera with a wide capture range, and an additional sensitive optical piston sensor incorporated into each AO instrument. We describe in this paper the overall phasing strategy, controls scheme, and the expected performance of the system with respect to the overall adaptive optics error budget. Further details may be found in specific papers on each of the subsystems.

  1. The Xinglong 2.16-m Telescope: Current Instruments and Scientific Projects

    NASA Astrophysics Data System (ADS)

    Fan, Zhou; Wang, Huijuan; Jiang, Xiaojun; Wu, Hong; Li, Hongbin; Huang, Yang; Xu, Dawei; Hu, Zhongwen; Zhu, Yinan; Wang, Jianfeng; Komossa, Stefanie; Zhang, Xiaoming

    2016-11-01

    The Xinglong 2.16-m reflector is the first 2-m class astronomical telescope in China. It was jointly designed and built by the Nanjing Astronomical Instruments Factory (NAIF), Beijing Astronomical Observatory (now National Astronomical Observatories, Chinese Academy of Sciences, NAOC), and Institute of Automation, Chinese Academy of Sciences in 1989. It is a Ritchey-Chrétien (R-C) reflector on an English equatorial mount and the effective aperture is 2.16 m. It had been the largest optical telescope in China for ∼18 years until the Guoshoujing Telescope (also called Large Sky Area Multi-Object Fiber Spectroscopic Telescope, LAMOST) and the Lijiang 2.4-m telescope were built. At present, there are three main instruments on the Cassegrain focus available: the Beijing Faint Object Spectrograph and Camera (BFOSC) for direct imaging and low-resolution (R ∼ 500–2000) spectroscopy, the spectrograph made by Optomechanics Research Inc. (OMR) for low-resolution spectroscopy (the spectral resolutions are similar to those of BFOSC) and the fiber-fed High Resolution Spectrograph (HRS; R ∼ 30,000–65,000). The telescope is widely open to astronomers all over China as well as international astronomical observers. Each year there are more than 40 ongoing observing projects, including 6–8 key projects. Recently, some new techniques and instruments (e.g., astro-frequency comb calibration system, polarimeter, and adaptive optics) have been or will be tested on the telescope to extend its observing abilities.

  2. HYPATIA and STOIC: an active optics system for a large space telescope

    NASA Astrophysics Data System (ADS)

    Devaney, Nicholas; Reinlein, Claudia; Lange, Nicolas; Goy, Matthias; Goncharov, Alexander; Hallibert, Pascal

    2016-07-01

    The next generation of UVOIR space telescopes will be required to provide excellent wavefront control despite perturbations due to thermal changes, gravity release and vibrations. The STOIC project is a response to an ESA Invitation to Tender to develop an active optics correction chain for future space telescopes. The baseline space telescope being considered is a two-mirror, 4m telescope with a monolithic primary mirror - we refer to this concept as Hypatia. The primary mirror diameter could be extended, but is limited in the near future by launch vehicle dimensions. A deformable mirror (pupil diameter 110mm) will be an integral part of the telescope design; it is being designed for high precision and the ability to maintain a stable form over long periods of time. The secondary mirror of the telescope will be activated to control tip-tilt, defocus and alignment with the primary. Wavefront sensing will be based on phase diversity and a dedicated Shack-Hartmann wavefront sensor. The project will develop a laboratory prototype to demonstrate key aspects of the active correction chain. We present the current state of the preliminary design for both the Hypatia space telescope and the laboratory breadboard.

  3. Hubble Space Telescope Scale Model

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This is a photograph of a 1/15 scale model of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13- meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  4. LISA Telescope Spacer Design Issues

    NASA Technical Reports Server (NTRS)

    Livas, Jeff; Arsenovic, P.; Catelluci, K.; Generie, J.; Howard, J.; Stebbins, Howard R.; Preston, A.; Sanjuan, J.; Williams, L.; Mueller, G.

    2010-01-01

    The LISA mission observes gravitational waves by measuring the separations between freely floating proof masses located 5 million kilometers apart with an accuracy of - 10 picometers. The separations are measured interferometrically. The telescope is an afocal Cassegrain style design with a magnification of 80x. The entrance pupil has a 40 cm diameter and will either be centered on-axis or de-centered off-axis to avoid obscurations. Its two main purposes are to transform the small diameter beam used on the optical bench to a diffraction limited collimated beam to efficiently transfer the metrology laser between spacecraft, and to receive the incoming light from the far spacecraft. It transmits and receives simultaneously. The basic optical design and requirements are well understood for a conventional telescope design for imaging applications, but the LISA design is complicated by the additional requirement that the total optical path through the telescope must remain stable at the picometer level over the measurement band during the mission to meet the measurement accuracy. We describe the mechanical requirements for the telescope and the preliminary work that has been done to understand the materials and mechanical issues associated with the design of a passive metering structure to support the telescope and to maintain the spacing between the primary and secondary mirrors in the LISA on-orbit environment. This includes the requirements flowdown from the science goals, thermal modeling of the spacecraft and telescope to determine the expected temperature distribution, layout options for the telescope including an on- and off-axis design. Plans for fabrication and testing will be outlined.

  5. Preliminary LISA Telescope Spacer Design

    NASA Technical Reports Server (NTRS)

    Livas, J.; Arsenovic, P.; Catellucci, K.; Generie, J.; Howard, J.; Stebbins, R. T.

    2010-01-01

    The Laser Interferometric Space Antenna (LISA) mission observes gravitational waves by measuring the separations between freely floating proof masses located 5 million kilometers apart with an accuracy of approximately 10 picometers. The separations are measured interferometrically. The telescope is an afocal Cassegrain style design with a magnification of 80x. The entrance pupil has a 40 cm diameter and will either be centered on-axis or de-centered off-axis to avoid obscurations. Its two main purposes are to transform the small diameter beam used on the optical bench to a diffraction limited collimated beam to efficiently transfer the metrology laser between spacecraft, and to receive the incoming light from the far spacecraft. It transmits and receives simultaneously. The basic optical design and requirements are well understood for a conventional telescope design for imaging applications, but the LISA design is complicated by the additional requirement that the total optical path through the telescope must remain stable at the picometer level over the measurement band during the mission to meet the measurement accuracy. This poster describes the requirements for the telescope and the preliminary work that has been done to understand the materials and mechanical issues associated with the design of a passive metering structure to support the telescope and to maintain the spacing between the primary and secondary mirrors in the LISA on-orbit environment. This includes the requirements flowdown from the science goals, thermal modeling of the spacecraft and telescope to determine the expected temperature distribution,layout options for the telescope including an on- and off-axis design, and plans for fabrication and testing.

  6. An underground cosmic ray muon telescope for observation of cosmic ray anisotropy

    NASA Technical Reports Server (NTRS)

    Lee, Y. W.; Ng, L. K.

    1985-01-01

    A telescope housed in a tunnel laboratory has an overburden of 573 hg cm(-2) and is located under the center of a saddle-shaped landscape. It is composed of triple layers of proportional counters, each layer of area approx. 4m x 2m and their separation 0.5m. Events are selected by triple coincidence and software track identification. The telescope is in operation for over a year and the overall count rate is 1280 hr(-1). The structure and operation of the system is reported.

  7. Alignment and phasing of deployable telescopes

    NASA Technical Reports Server (NTRS)

    Woolf, N. J.; Ulich, B. L.

    1983-01-01

    The experiences in coaligning and phasing the Multi-Mirror Telescope (MMT), together with studies in setting up radio telescopes, are presented. These experiences are discussed, and on the basis they furnish, schemes are suggested for coaligning and phasing four large future telescopes with complex primary mirror systems. These telescopes are MT2, a 15-m-equivalent MMT, the University of California Ten Meter Telescope, the 10 m sub-mm wave telescope of the University of Arizona and the Max Planck Institute for Radioastronomy, and the Large Deployable Reflector, a future space telescope for far-IR and sub-mm waves.

  8. Design Evolution of the Wide Field Infrared Survey Telescope Using Astrophysics Focused Telescope Assets (WFIRST-AFTA) and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Peabody, Hume L.; Peters, Carlton V.; Rodriguez-Ruiz, Juan E.; McDonald, Carson S.; Content, David A.; Jackson, Clifton E.

    2015-01-01

    The design of the Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA) continues to evolve as each design cycle is analyzed. In 2012, two Hubble sized (2.4 m diameter) telescopes were donated to NASA from elsewhere in the Federal Government. NASA began investigating potential uses for these telescopes and identified WFIRST as a mission to benefit from these assets. With an updated, deeper, and sharper field of view than previous design iterations with a smaller telescope, the optical designs of the WFIRST instruments were updated and the mechanical and thermal designs evolved around the new optical layout. Beginning with Design Cycle 3, significant analysis efforts yielded a design and model that could be evaluated for Structural-Thermal-Optical-Performance (STOP) purposes for the Wide Field Imager (WFI) and provided the basis for evaluating the high level observatory requirements. Development of the Cycle 3 thermal model provided some valuable analysis lessons learned and established best practices for future design cycles. However, the Cycle 3 design did include some major liens and evolving requirements which were addressed in the Cycle 4 Design. Some of the design changes are driven by requirements changes, while others are optimizations or solutions to liens from previous cycles. Again in Cycle 4, STOP analysis was performed and further insights into the overall design were gained leading to the Cycle 5 design effort currently underway. This paper seeks to capture the thermal design evolution, with focus on major design drivers, key decisions and their rationale, and lessons learned as the design evolved.

  9. Design Evolution of the Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA) and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Peabody, Hume; Peters, Carlton; Rodriguez, Juan; McDonald, Carson; Content, David A.; Jackson, Cliff

    2015-01-01

    The design of the Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA) continues to evolve as each design cycle is analyzed. In 2012, two Hubble sized (2.4 m diameter) telescopes were donated to NASA from elsewhere in the Federal Government. NASA began investigating potential uses for these telescopes and identified WFIRST as a mission to benefit from these assets. With an updated, deeper, and sharper field of view than previous design iterations with a smaller telescope, the optical designs of the WFIRST instruments were updated and the mechanical and thermal designs evolved around the new optical layout. Beginning with Design Cycle 3, significant analysis efforts yielded a design and model that could be evaluated for Structural-Thermal-Optical-Performance (STOP) purposes for the Wide Field Imager (WFI) and provided the basis for evaluating the high level observatory requirements. Development of the Cycle 3 thermal model provided some valuable analysis lessons learned and established best practices for future design cycles. However, the Cycle 3 design did include some major liens and evolving requirements which were addressed in the Cycle 4 Design. Some of the design changes are driven by requirements changes, while others are optimizations or solutions to liens from previous cycles. Again in Cycle 4, STOP analysis was performed and further insights into the overall design were gained leading to the Cycle 5 design effort currently underway. This paper seeks to capture the thermal design evolution, with focus on major design drivers, key decisions and their rationale, and lessons learned as the design evolved.

  10. James Webb Space Telescope Optical Telescope Element Mirror Coatings

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva A.; Bowers, Charles W.; Quijada, Manuel A.; Heaney, James B.; Gallagher, Benjamin; McKay, Andrew; Stevenson, Ian

    2012-01-01

    James Webb Space Telescope (JWST) Optical Telescope Element (OTE) mirror coating program has been completed. The science goals of the JWST mission require a uniform, low stress, durable optical coating with high reflectivity over the JWST spectral region. The coating has to be environmentally stable, radiation resistant and compatible with the cryogenic operating environment. The large size, 1.52 m point to point, light weight, beryllium primary mirror (PM) segments and flawless coating process during the flight mirror coating program that consisted coating of 21 flight mirrors were among many technical challenges. This paper provides an overview of the JWST telescope mirror coating program. The paper summarizes the coating development program and performance of the flight mirrors.

  11. Large wood budget assessment along a gravel bed river affected by volcanic eruption: the Rio Blanco study case (Chile).

    NASA Astrophysics Data System (ADS)

    Oss-Cazzador, Daniele; Iroume, Andres; Lenzi, Mario; Picco, Lorenzo

    2016-04-01

    Wood in riverine environments exerts different functions on ecological and geomorphic settings, influencing morphological processes, and increasing risks for sensitive structures. Large wood (LW) is defined as wood material, dead or alive, larger than 10 cm in diameter and 1 m in length. Natural hazards can strongly increase the presence of LW in waterways and flood events can transport it affecting the ecosystem and landscape. This study aims to increase the knowledge of wood budget, considering the effects of two subsequent slight flood events along a sub-reach of the Rio Blanco gravel bed river , in Chilean Patagonia, strongly affected by the eruption of Chaiten volcano in 2008. The volcanic eruption affected almost 3,5 km 2 of evergreen forest on the southern (left) bank, because of primary direct effects from pyroclastic density currents and lahar-floods that caused deposition up to 8 m of reworked tephra, alluvium, and wood on floodplains and terrace along the Rio Blanco. After the eruption, there was a considerable increase of LW into the main channel: into the bankfull channel, volume exceeds 100 m 3 /ha. Field surveys were carried out in January and March 2015, before and after two slight flood events (Recurrence Intervals lower than 1 year). The pre-event phase permitted to detect and analyze the presence of LW into the study area, along a 80 m-long reach of Rio Blanco (7500 m 2 . Every LW element was manually measured and described, a numbered metal tag was installed, and the position was recorded by GPS device. In January, there was a total amount of 113 m 3 /ha, 90% accumulated in LW jams (WJ) and 10% as single logs. The LW was characterized by mean dimensions of 3,36 m height, 0,25 m diameter and 0,26 m 3 volume, respectively. The WJ are characterized by wide range of dimension: volume varies from 0,28 m 3 to 672 m 3 , length from 1,20 m to 56 m, width from 0,40 m to 8,70 m and height from 0,20 m to 3 m, respectively. After the flood events, field

  12. Is Upregulation of Aquaporin 4-M1 Isoform Responsible for the Loss of Typical Orthogonal Arrays of Particles in Astrocytomas?

    PubMed Central

    Fallier-Becker, Petra; Nieser, Maike; Wenzel, Ulrike; Ritz, Rainer; Noell, Susan

    2016-01-01

    The astrocytic endfoot membranes of the healthy blood-brain barrier—contacting the capillary—are covered with a large number of the water channel aquaporin 4 (AQP4). They form orthogonal arrays of particles (OAPs), which consist of AQP4 isoform M1 and M23. Under pathologic conditions, AQP4 is distributed over the whole cell and no or only small OAPs are found. From cell culture experiments, it is known that cells transfected only with AQP4-M1 do not form OAPs or only small ones. We hypothesized that in astrocytomas the situation may be comparable to the in vitro experiments expecting an upregulation of AQP4-M1. Quantitative Real-time PCR (qRT-PCR) of different graded astrocytomas revealed an upregulation of both isoforms AQP4 M1 and M23 in all astrocytomas investigated. In freeze fracture replicas of low-grade malignancy astrocytomas, more OAPs than in high-grade malignancy astrocytomas were found. In vitro, cultured glioma cells did not express AQP4, whereas healthy astrocytes revealed a slight upregulation of both isoforms and only a few OAPs in freeze fracture analysis. Taken together, we found a correlation between the decrease of OAPs and increasing grade of malignancy of astrocytomas but this was not consistent with an upregulation of AQP4-M1 in relation to AQP4 M23. PMID:27483250

  13. Detection of and response to a probable volcanogenic T-wave event swarm on the western Blanco Transform Fault Zone

    USGS Publications Warehouse

    Dziak, R.P.; Fox, C.G.; Embley, R.W.; Lupton, J.E.; Johnson, G.C.; Chadwick, W.W.; Koski, R.A.

    1996-01-01

    The East Blanco Depression (EBD), a pull-apart basin within the western Blanco Transform Fault Zone (BTFZ), was the site of an intense earthquake T-wave swarm that began at 1317Z on January 9, 1994. Although tectonically generated earthquakes occur frequently along the BTFZ, this swarm was unusual in that it was preceded and accompanied by periodic, low-frequency, long-duration acoustic signals, that originated from near the swarm epicenters. These tremor-like signals were very similar in character to acoustic energy produced by a shallow-submarine eruption near Socorro Island, a seamount several hundred km west of Baja, California. The ???69 earthquakes and ???400 tremor-like events at the EBD occurred sporadically, with two periods of peak activity occurring between January 5-16 and 27-31. The swarm-like character of the earthquakes and the similarity of the tremor activity to the Socorro eruption indicated that the EBD was undergoing an intrusion or eruption episode. On January 27, six CTD/rosette casts were conducted at the site. Water samples from two of the stations yielded anomalous 3He concentrations, with maxima at ???2800 m depth over the main basin. In June 1994 two camera tows within the basin yielded evidence of pillow-lava volcanism and hydrothermal deposits, but no conclusive evidence of a recent seafloor eruption. In September 1994, deployments of the U.S. Navy's Advanced Tethered Vehicle resulted in the discovery of an active hydrothermal mound on the flanks of a pillow-lava volcano. The hydrothermal mound consists of Fe-rich hydrothermal precipitate and bacterial mats. Temperatures to 60??C were measured 30 cm below the surface. This is the first discovery of active hydrothermal vents along an oceanic fracture zone. Although no conclusive evidence of volcanic activity associated with the T-wave event swarm was found during these response efforts, the EBD has been the site of recent seafloor eruptions. Copyright 1996 by the American Geophysical

  14. Diel Drift Patterns and Spatio-temporal Distribution of Macroinvertebrates in the Blanco River, Texas: A Groundwater Dominated Stream Subject to Intermittent Flow

    NASA Astrophysics Data System (ADS)

    Pendergrass, D. R.; Arsuffi, T. L.

    2005-05-01

    The Blanco River is a relatively pristine karst stream in central Texas and designated a conservation target by The Nature Conservancy. It is fed primarily by groundwater in the upper reaches and dominated by runoff and intermittency downstream. The spatial and temporal structure of macroinvertebrates in the Blanco River was assessed with seasonal Hess and d-net samples during 2003-2004 and three diel drift samples from May to October 2004. Our downstream site showed a 47% drop in diversity, but comparable abundances to up- and mid-stream sites. Ephemeropteran and trichopteran taxa (e.g. Tricorythodes and Cheumatopsyche) comprised about 60% of drift and benthic samples alike, however, non-insect taxa were nearly absent from the drift. Some taxa not present in the benthic samples were present in the drift. Post-dusk and pre-dawn peaks in diel drift were discerned. No strong seasonal patterns were detected which may be attributable to an unusually wet year and asynchronous, multivoltinous life cycles associated with mild seasonality in subtropical regions. The Blanco River's historically variable hydrological regime may be further exacerbated by long-term flow alteration associated with increasing anthropogenic development and could alter the composition and distribution of macroinvertebrate assemblages.

  15. In vivo redox effects of Aspidosperma quebracho-blanco Schltdl., Lantana grisebachii Stuck and Ilex paraguariensis A. St.-Hil. on blood, thymus and spleen of mice.

    PubMed

    Canalis, A M; Cittadini, M C; Albrecht, C; Soria, E A

    2014-09-01

    Argentinian native plants Aspidosperma quebracho-blanco, Lantana grisebachii and Ilex paraguariensis are known to have antiinflammatory and antioxidant properties. We demonstrated it in vivo by the redox changes in murine hemolymphatic tissues after infusive extract intake of these plants as revealed in organic trophism, tissue phenolics, hydroperoxides, superoxide, nitrites and gamma-glutamyltranspeptidase in thymus, blood and spleen. A. quebracho-blanco reduced hydroperoxidation in blood and spleen of both sexes, with gamma-glutamyltranspeptidase negativization in lymphatic organs and thymic nitrosative up-regulation. Males have shown increased phenolic content in blood after treatment. L. grisebachii and I. paraguariensis treatment exhibited incomplete antioxidation and oxidative induction in the studied tissues. Different results according to sex were found in redox response to phenolics and their kinetics, with males showing antioxidant effects, whereas females showed oxidative susceptibility. A. quebracho-blanco exhibited protection of murine tissues against oxidation in both sexes and modulation of their trophism, supporting its therapeutic uses in inflammatory diseases. Also, gender had significant influence in phenolic biodistribution and redox response.

  16. Optical Telescope Design Study Results

    NASA Astrophysics Data System (ADS)

    Livas, J.; Sankar, S.

    2015-05-01

    We report on the results of a study conducted from Nov 2012-Apr 2013 to develop a telescope design for a space-based gravitational wave detector. The telescope is needed for efficient power delivery but since it is directly in the beam path, the design is driven by the requirements for the overall displacement sensitivity of the gravitational wave observatory. Two requirements in particular, optical pathlength stability and scattered light performance, are beyond the usual specifications for good image quality encountered in traditional telescopic systems. An important element of the study was to tap industrial expertise to develop an optimized design that can be reliably manufactured. Key engineering and design trade-offs and the sometimes surprising results will be presented.

  17. ORFEUS-SPAS MAIN TELESCOPE

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In the Multi-Payload Processing Facility (MPPF) at KSC, technicians hoist the orbiting and Retrievable Far and Extreme Ultraviolet Spectrograph-Shuttle Pallet Satellite (ORFEUS-SPAS) II main telescope to a vertical position prior to installing it atop the Astronomy Shuttle Pallet Satellite (ASTRO-SPAS) platform. Two spectrographs share the main telescope: the Extreme Ultraviolet Spectrograph (EUV) provided by the University of California at Berkeley, and the Far Ultraviolet Spectrograph (FUV) designed by German institutions the University of Tubingen and Landessternwarte Heidelberg and built by German company Kayser-Threde. The main telescope has a primary mirror approximately one yard (one meter) in diameter, coated with iridium to improve its light-gathering power in the ultraviolet. During the flight of ORFEUS-SPAS II on Space Shuttle Mission STS- 80, these two spectrographs -- along with a third installed separately on the ASTRO-SPAS -- will gather data about the life cycle of stars.

  18. Hubble Space Telescope Primary Mirror

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This photograph shows the Hubble Space Telescope's (HST's) Primary Mirror being polished at the the Perkin-Elmer Corporation's large optics fabrication facility. After the 8-foot diameter mirror was ground to shape and polished, the glass surface was coated with a reflective layer of aluminum and a protective layer of magnesium fluoride, 0.1- and 0.025-micrometers thick, respectively. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST and the Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  19. Hubble Space Telescope Primary Mirror

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This photograph shows engineers inspecting the Hubble Space Telescope's (HST's) Primary Mirror at the Perkin-Elmer Corporation's large optics fabrication facility. After the 8-foot diameter mirror was ground to shape and polished, the glass surface was coated with a reflective layer of aluminum and a protective layer of magnesium fluoride, 0.1- and 0.025- micrometers thick, respectively. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST and the Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  20. Hubble Space Telescope Primary Mirror

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This photograph shows the Hubble Space Telescope's (HST's) Primary Mirror being ground at the Perkin-Elmer Corporation's large optics fabrication facility. After the 8-foot diameter mirror was ground to shape and polished, the glass surface was coated with a reflective layer of aluminum and a protective layer of magnesium fluoride, 0.1- and 0.025-micrometers thick, respectively. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST and the Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  1. Quantum telescope: feasibility and constraints.

    PubMed

    Kurek, A R; Pięta, T; Stebel, T; Pollo, A; Popowicz, A

    2016-03-15

    The quantum telescope is a recent idea aimed at beating the diffraction limit of spaceborne telescopes and possibly other distant target imaging systems. There is no agreement yet on the best setup of such devices, but some configurations have already been proposed. In this Letter we characterize the predicted performance of quantum telescopes and their possible limitations. Our extensive simulations confirm that the presented model of such instruments is feasible and the device can provide considerable gains in the angular resolution of imaging in the UV, optical, and infrared bands. We argue that it is generally possible to construct and manufacture such instruments using the latest or soon to be available technology. We refer to the latest literature to discuss the feasibility of the proposed QT system design. PMID:26977642

  2. The Spitzer Space Telescope Mission

    NASA Technical Reports Server (NTRS)

    Werner, M. W.

    2005-01-01

    The Spitzer Space Telescope, NASA's Great Observatory for infrared astronomy, was launched 2003 August 25 and is returning excellent scientific data from its Earth-trailing solar orbit. Spitzer combines the intrinsic sensitivity achievable with a cryogenic telescope in space with the great imaging and spectroscopic power of modern detector arrays to provide the user community with huge gains in capability for exploration of the cosmos in the infrared. The observatory systems are largely performing as expected, and the projected cryogenic lifetime is about five years. Spitzer is thus both a scientific and a technical precursor to the infrared astronomy missions of the future. This very brief paper refers interested readers to several sets of recent publications which describe both the scientific and the technical features of Spitzer in detail. Note that, until 2003 December, Spitzer was known as the Space Infrared Telescope Facility (SIRTF).

  3. Scientific management of Space Telescope

    NASA Technical Reports Server (NTRS)

    Odell, C. R.

    1981-01-01

    A historical summay is given on the science management of the Space Telescope, the inception of which began in 1962, when scientists and engineers first recommended the development of a nearly diffraction limited substantial-size optical telescope. Phase A, the feasibility requirements generation phase, began in 1971 and consisted largely of NASA scientists and a NASA design. Phase B, the preliminary design phase, established a tiered structure of scientists, led by the Large Space Telescope operations and Management Work Group. A Mission Operations Working Group headed six instrument definition teams to develop the essential instrument definitions. Many changes took place during Phase B, before design and development, which began in 1978 and still continues today.

  4. Quantum telescope: feasibility and constraints.

    PubMed

    Kurek, A R; Pięta, T; Stebel, T; Pollo, A; Popowicz, A

    2016-03-15

    The quantum telescope is a recent idea aimed at beating the diffraction limit of spaceborne telescopes and possibly other distant target imaging systems. There is no agreement yet on the best setup of such devices, but some configurations have already been proposed. In this Letter we characterize the predicted performance of quantum telescopes and their possible limitations. Our extensive simulations confirm that the presented model of such instruments is feasible and the device can provide considerable gains in the angular resolution of imaging in the UV, optical, and infrared bands. We argue that it is generally possible to construct and manufacture such instruments using the latest or soon to be available technology. We refer to the latest literature to discuss the feasibility of the proposed QT system design.

  5. The Future of Small Telescopes In The New Millennium. Volume I - Perceptions, Productivities, and Policies

    NASA Astrophysics Data System (ADS)

    Oswalt, T. D.

    2003-06-01

    An invaluable reference for any student, scientist or administrator, using small telescopes for research. An essential collection of data and opinions for those charged with setting scientific and funding priorities. This three-volume set, The Future of Small Telescopes in the New Millennium details the essential roles that small telescopes should play in 21st century science and how their future productivity can be maximized. Over 70 experts from all corners of the international astronomical community have created a definitive reference on the present and future of "big science with small telescopes." Despite highly publicized closures of telescopes smaller than 4-m in aperture at national facilities and their omission from national science priority studies, the oft-lamented demise of the small telescope has been greatly exaggerated. In fact, the future of these workhorses of astronomy will be brighter than ever if creative steps are taken now. This three-volume set defines the essential roles that small telescopes should play in 21st century science and the ways in which a productive future for them can be realized. A wide cross-section of the astronomical community has contributed to a definitive assessment of the present and a vision for the future. Volume 1: Perceptions, Productivities, and Policies Beginning with a summary of recent national scientific priority-setting efforts, Volume 1 examines the public's and the astronomical community's own perceptions of and misconceptions about small telescope productivity. These shape the future scientific research that will be done with telescopes smaller than 4-m in aperture, and the number of astronomers that will have access to them. The Future of Small Telescopes in the New Millennium is a fundamental resource for those looking to undertake new projects with small telescopes, for those that are responsible for their operation, and for those called upon to help set scientific priorities for the coming decade. It

  6. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew

    2008-01-01

    The James Webb Space Telescope is being developed by NASA in partnership with the European and Canadian space agencies for launch during 2013. This mission is expected to carry the legacy of discovery of the Hubble Space Telescope through the next decade, and is designed with unique capability to address key questions about formation of the first galaxies after the Big Bang, their subsequelet volution, and the formation of stars and planets within our own galaxy. This talk will present an overview of the mission science objectives and the status of the mission development.

  7. Superconductor lunar telescopes --Abstract only

    NASA Technical Reports Server (NTRS)

    Chen, P. C.; Pitts, R.; Shore, S.; Oliversen, R.; Stolarik, J.; Segal, K.; Hojaji, H.

    1994-01-01

    We propose a new type of telescope designed specifically for the lunar environment of high vacuum and low temperature. Large area UV-Visible-IR telescope arrays can be built with ultra-light-weight replica optics. High T(sub c) superconductors provide support, steering, and positioning. Advantages of this approach are light-weight payload compatible with existing launch vehicles, configurable large area optical arrays, no excavation or heavy construction, and frictionless electronically controlled mechanisms. We have built a prototype and will be demonstarting some of its working characteristics.

  8. Wide field of view telescope

    DOEpatents

    Ackermann, Mark R.; McGraw, John T.; Zimmer, Peter C.

    2008-01-15

    A wide field of view telescope having two concave and two convex reflective surfaces, each with an aspheric surface contour, has a flat focal plane array. Each of the primary, secondary, tertiary, and quaternary reflective surfaces are rotationally symmetric about the optical axis. The combination of the reflective surfaces results in a wide field of view in the range of approximately 3.8.degree. to approximately 6.5.degree.. The length of the telescope along the optical axis is approximately equal to or less than the diameter of the largest of the reflective surfaces.

  9. Criticality analysis of selected Saxton Plutonium Program experiments using WIMS-D4M and DIF3D

    SciTech Connect

    Cuevas Vivas, G.F.; Parish, T.A.

    1998-08-01

    The Saxton critical experiments were simulated with homogenized region, multigroup cross sections from the WIMS-D4M lattice physics code (ENDF/B-V library) and the diffusion code, DIF3D. The simulations were focused on assessing the codes` capabilities, including the different cell models available in WIMS-D4M. The accuracy of the core power distributions obtained with DIF3D has also been assessed. The number of experiments and their variety was used to obtain statistical parameters that allow a quantitative discussion of the assessment of the methodology.

  10. Maintaining hexapod range while co-pointing the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Rakich, A.; Thompson, D.; Kuhn, O. P.

    2011-10-01

    The Large Binocular Telescope on Mt Graham in Arizona consists of two 8.4 m telescopes mounted on a common gimbal. Each independent telescope has hexapods controlling the position of individual optical elements. These can be used to drive each telescope to point to a common target (or known offsets to these) as is required for many of the observational modes of the telescope. The hexapods have a limited range of travel, particularly the primary mirror hexapods. This paper discusses the approach that has been taken to achieve optical co-pointing while maintaining the maximum possible range of travel in the hexapods. The approach described here is, starting with collimated but not co-pointed telescopes, to first calculate a coma-free rotation of the optical elements that will equalize the percentage consumption of range on pairs of hexapod elements that affect {X,Y} pointing; i.e. {X, Ry} and {Y, Rx} respectively. On a collimated telescope this results in a state which maximizes the available range of travel of the hexapods for a given set of initial hexapod values. Next a further calculation step is taken which achieves optical co-pointing. This step takes into account what range of travel is available for each hexapod for the given "range-balanced" starting point, then allocates a percentage of the required optical copointing to each telescope so as to maximize the available range of hexapod travel on each side. This technique has been applied successfully to both the prime-focus and "bent-Gregorian" modes of the telescope.

  11. Influence of root-knot nematode infestation on antioxidant enzymes, chlorophyll content and growth in Pogostemon cablin (Blanco) Benth.

    PubMed

    Bhau, B S; Borah, Bitupon; Ahmed, Reshma; Phukon, P; Gogoi, Barbi; Sarmah, D K; Lal, M; Wann, S B

    2016-04-01

    Plants adapt themselves to overcome adverse environmental conditions, and this involves a plethora of concurrent cellular activities. Physiological experiments or metabolic profiling can quantify this response. Among several diseases of Pogostemon cablin (Blanco) Benth. (Patchouli), root-knot nematode infection caused by Meloidogyne incognita (Kofoid and White) Chitwood causes severe damage to the plant and hence, the oil production. In the present study, we identified M. incognita morphologically and at molecular level using sequenced characterized amplified region marker (SCAR). M. incognita was artificially inoculated at different levels of second stage juveniles (J₂) to examine the effect on Patchouli plant growth parameters. Peroxidase and polyphenol oxidase enzyme activity and changes in the total phenol and chlorophyll contents in M. incognita was also evaluated in response to infection. The results have demonstrated that nematode infestation leads to increased peroxidase activities in the leaves of the patchouli plants and thereby, increase in phenolic content as a means of defence against nematode infestation. Chlorophyll content was also found decreased but no changes in polyphenol oxidase enzyme activity.

  12. Influence of root-knot nematode infestation on antioxidant enzymes, chlorophyll content and growth in Pogostemon cablin (Blanco) Benth.

    PubMed

    Bhau, B S; Borah, Bitupon; Ahmed, Reshma; Phukon, P; Gogoi, Barbi; Sarmah, D K; Lal, M; Wann, S B

    2016-04-01

    Plants adapt themselves to overcome adverse environmental conditions, and this involves a plethora of concurrent cellular activities. Physiological experiments or metabolic profiling can quantify this response. Among several diseases of Pogostemon cablin (Blanco) Benth. (Patchouli), root-knot nematode infection caused by Meloidogyne incognita (Kofoid and White) Chitwood causes severe damage to the plant and hence, the oil production. In the present study, we identified M. incognita morphologically and at molecular level using sequenced characterized amplified region marker (SCAR). M. incognita was artificially inoculated at different levels of second stage juveniles (J₂) to examine the effect on Patchouli plant growth parameters. Peroxidase and polyphenol oxidase enzyme activity and changes in the total phenol and chlorophyll contents in M. incognita was also evaluated in response to infection. The results have demonstrated that nematode infestation leads to increased peroxidase activities in the leaves of the patchouli plants and thereby, increase in phenolic content as a means of defence against nematode infestation. Chlorophyll content was also found decreased but no changes in polyphenol oxidase enzyme activity. PMID:27295922

  13. Hubble Space Telescope prescription retrieval.

    PubMed

    Redding, D; Dumont, P; Yu, J

    1993-04-01

    Prescription retrieval is a technique for directly estimating optical prescription parameters from images. We apply it to estimate the value of the Hubble Space Telescope primary mirror conic constant. Our results agree with other studies that examined primary-mirror test fixtures and results. In addition they show that small aberrations exist on the planetary-camera repeater optics.

  14. Fermi's Large Area Telescope (LAT)

    NASA Video Gallery

    Fermi’s Large Area Telescope (LAT) is the spacecraft’s main scientificinstrument. This animation shows a gamma ray (purple) entering the LAT,where it is converted into an electron (red) and a...

  15. Push-To Telescope Mathematics

    ERIC Educational Resources Information Center

    Teets, Donald

    2012-01-01

    Two coordinate systems are related here, one defined by the earth's equator and north pole, the other by the orientation of a telescope at some location on the surface of the earth. Applying an interesting though somewhat obscure property of orthogonal matrices and using the cross-product simplifies this relationship, revealing that a surprisingly…

  16. Zero CTE Glass in the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Wood, H. John

    2008-01-01

    Orbiting high above the turbulence of the Earth's atmosphere, the Hubble Space Telescope (HST) has provided breathtaking views of astronomical objects never before seen in such detail. The steady diffraction-limited images allow this medium-size telescope to reach faint galaxies fainter than 30th stellar magnitude. Some of these galaxies are seen as early as 2 billion years after the Big Bang in a 13.7 billion year old universe. Up until recently, astronomers assumed that all of the laws of physics and astronomy applied back then as they do today. Now, using the discovery that certain supernovae are "standard candles," astronomers have found that the universe is expanding faster today than it was back then: the universe is accelerating in its expansion. The Hubble Space Telescope is a two-mirror Ritchey-Chretien telescope of 2.4m aperture in low earth orbit. The mirrors are made of Ultra Low Expansion (ULE) glass by Corning Glass Works. This material allows rapid figuring and outstanding performance in space astronomy applications. The paper describes how the primary mirror was mis-figured in manufacturing and later corrected in orbit. Outstanding astronomical images taken over the last 17 years show how the application of this new technology has advanced our knowledge of the universe. Not only has the acceleration of the expansion been discovered, the excellent imaging capability of HST has allowed gravitational lensing to become a tool to study the distribution of dark matter and dark energy in distant clusters of galaxies. The HST has touched practically every field of astronomy enabling astronomers to solve many long-standing puzzles. It will be a long time until the end of the universe when the density is near zero and all of the stars have long since evaporated. It is remarkable that humankind has found the technology and developed the ability to interpret the measurements in order to understand this dramatic age we live in.

  17. NEAT: a microarcsec astrometric telescope

    NASA Astrophysics Data System (ADS)

    Shao, M.; Nemati, B.; Zhai, C.; Goullioud, R.; Malbet, F.; Leger, A.

    2011-10-01

    NEAT, Nearby Exo-Earth Astrometric Telescope is a medium-small telescope ~ 1m in diameter that is designed to make ultra precise < 1 uas (microarcsec) astrometric measurements of nearby stars in a ~ 1hr observation. Four major error sources prevent normal space telescopes from obtaining accuracies close to 1 uas. Even with a small 1m telescope, photon noise is usually not a problem for the bright nearby target stars. But in general, the reference stars are much fainter. Typically a field of view of ~0.5 deg dia is needed to obtain enough bright reference stars. The NEAT concept uses a very simple but unusual design to avoid optically induced astrometric errors. The third source of error is the accuracy and stability of the focal plane. A 1uas error over a ~2000 arcsec field of view implies the focal plane is accurate or at least stable to 5 parts in 1010 over the lifetime of the mission (~5yrs). The 4th class of error has to do with our knowledge of the PSF and how that PSF is sampled by an imperfect detector. A Nyquist sampled focal plane would have > 2 pixels per λ/D, and centroiding to 1uas means centroiding to 10-5 pixels. This paper describes the mission concept, and an overview of the technology needed to perform 1uas astrometry with a small telescope, and how we overcome problems 1 and 2. A companion paper will describe the technical progress we've made in solving problems 3 and 4.

  18. Targeting Planetary Anomalies in Microlensing Events with the Las Cumbres Observatory Global Telescope Network

    NASA Astrophysics Data System (ADS)

    Street, Rachel; RoboNet Microlensing Team

    2007-12-01

    By the nature of these transient, non-repeating phenomena, observing microlensing events requires a fast, responsive system of telescopes distributed over a range of longitudes. The Las Cumbres Observatory Global Telescope Network currently consists of the 2m Faulkes Telescopes North and South. Over the course of the next few years LCOGT will expand this network to a complement of 44, including 2x2m, 18x1m and 24x0.4m which will be sited in clusters of 3-4 telescopes such that at least one site is in the dark at any given time, enabling us to provide 24hr coverage of any transient event. The telescopes are controlled via a robotic scheduler, allowing a fast response to alerts from eStar or other robotic agents or to manual override. Both 2m telescopes have been engaged in robotically-controlled follow-up of 222 OGLE and MOA alerts during the 2007 Bulge season and intensive observations of 2 events displaying clear anomalies. We summarise here the results to date.

  19. High-precision robotic equatorial C-ring telescope mounts: design, fabrication, and performance

    NASA Astrophysics Data System (ADS)

    Dubberley, Matthew A.

    2010-07-01

    The performance of the C-ring telescope mount rivals other designs in stiffness, tracking, simplicity, lack of field rotation, mechanical size and operating envelope. Issues relating to cost, fabrication, and complexity have suppressed the prevalence of the C-ring mount. The Las Cumbres Observatory Global Telescope (LCOGT) robotic C-ring telescope mounts, built for its network of 1.0m and 0.4m telescopes, solve many of these issues. The design yields a scalable mount with performance capabilities well suited for telescopes located at the best astronomical sites in the world at a low cost. Pointing has been demonstrated to be under 7 arc-sec RMS. Unguided tracking performance is 0.6 arc-sec for 1 minute and 2 arc-sec for 15 minutes. Slew speeds of 10deg/sec are reliably used with sub-second settling times. The mount coupled with the 1.0m telescope yields a well damped 16 Hz system. Axes are driven with zero backlash direct drive motors with a 0.01 arc-sec resolution. High system bandwidth yields superb disturbance rejection making it ideal for open air operation. Drive and bearings are maintenance free and feature a novel "bug cover" to seal them from wear and damage. Low costs are achieved with the drive/feedback configuration, structure design, and fabrication techniques, as well minimizing operating and maintenance.

  20. Development of Large-Aperture, Light-Weight Fresnel Lenses for Gossamer Space Telescopes

    SciTech Connect

    Sham, D; Hyde, R; Weisberg, A; Early, J; Rushford, M; Britten, J

    2002-04-29

    In order to examine more distant astronomical objects, with higher resolution, future space telescopes require objectives with significantly larger aperture than presently available. NASA has identified a progression in size from the 2.4m aperture objective currently used in the HUBBLE space telescope[l,2], to 25m and greater in order to observe, e.g., extra-solar planets. Since weight is a crucial factor for any object sent into space, the relative weight of large optics over a given area must be reduced[3]. The areal mass density of the primary mirror for the Hubble space telescope is {approx}200 kg/m{sup 2}. This is expected to be reduced to around 15 kg/m{sup 2} for the successor to Hubble--the next generation space telescope (NGST)[4]. For future very large aperture telescopes needed for extra-solar planet detection, the areal mass density must be reduced even further. For example, the areal mass density goal for the Gossamer space telescopes is < 1 kg/m{sup 2}. The production of lightweight focusing optics at >10m size is also an enabling technology for many other applications such as Earth observation, power beaming, and optical communications.

  1. Co-Phasing the Large Binocular Telescope:. [Status and Performance of LBTI-PHASECam

    NASA Technical Reports Server (NTRS)

    Defrere, D.; Hinz, P.; Downey, E.; Ashby, D.; Bailey, V.; Brusa, G.; Christou, J.; Danchi, W. C.; Grenz, P.; Hill, J. M.; Hoffmann, W. F.; Leisenring, J.; Lozi, J.; McMahon, T.; Mennesson, B.; Millan-Gabet, R.; Montoya, M.; Powell, K.; Skemer, A.; Vaitheeswaran, V.; Vaz, A.; Veillet, C.

    2014-01-01

    The Large Binocular Telescope Interferometer is a NASA-funded nulling and imaging instrument designed to coherently combine the two 8.4-m primary mirrors of the LBT for high-sensitivity, high-contrast, and high-resolution infrared imaging (1.5-13 micrometer). PHASECam is LBTI's near-infrared camera used to measure tip-tilt and phase variations between the two AO-corrected apertures and provide high-angular resolution observations. We report on the status of the system and describe its on-sky performance measured during the first semester of 2014. With a spatial resolution equivalent to that of a 22.8-meter telescope and the light-gathering power of single 11.8-meter mirror, the co-phased LBT can be considered to be a forerunner of the next-generation extremely large telescopes (ELT).

  2. Large aperture solar optical telescope and instruments for the SOLAR-C mission

    NASA Astrophysics Data System (ADS)

    Suematsu, Y.; Katsukawa, Y.; Hara, H.; Kano, R.; Shimizu, T.; Ichimoto, K.

    2014-08-01

    A large aperture solar optical telescope and its instruments for the SOLAR-C mission are under study to provide the critical physical parameters in the lower solar atmosphere and to resolve the mechanism of magnetic dynamic events happening there and in the upper atmosphere as well. For the precise magnetic field measurements and high angular resolution in wide wavelength region, covering FOV of 3 arcmin x3 arcmin, an entrance aperture of 1.4 m Gregorian telescope is proposed. Filtergraphs are designed to realize high resolution imaging and pseudo 2D spectro-polarimetry in several magnetic sensitive lines of both photosphere and chromosphere. A full stokes polarimetry is carried out at three magnetic sensitive lines with a four-slit spectrograph of 2D image scanning mechanism. We present a progress in optical and structural design of SOLAR-C large aperture optical telescope and its observing instruments which fulfill science requirements.

  3. The Advanced Technology Large Aperture Space Telescope (ATLAST): Science Drivers and Technology Developments

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Brown, Tom; Sembach, Kenneth; Giavalisco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Stahl, H. Phillip; Tumlinson, Jason; Mountain, Matt; Soummer, Remi; Hyde, Tupper

    2011-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8-meter to 16-meter UVOIR space observatory for launch in the 2025-2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including "Is there life elsewhere in the Galaxy?" We present a range of science drivers and the resulting performance requirements for ATLAST (8 to 16 milliarcsecond angular resolution, diffraction limited imaging at 0.5 m wavelength, minimum collecting area of 45 square meters, high sensitivity to light wavelengths from 0.1 m to 2.4 m, high stability in wavefront sensing and control). We also discuss the priorities for technology development needed to enable the construction of ATLAST for a cost that is comparable to current generation observatory-class space missions. Keywords: Advanced Technology Large-Aperture Space Telescope (ATLAST); ultraviolet/optical space telescopes; astrophysics; astrobiology; technology development.

  4. Eclipse Photographs Through a Small Telescope

    NASA Astrophysics Data System (ADS)

    Kramer, Bill

    1999-08-01

    Results of previous eclipse photography using a small telescope (Questar 90mm x 1200mm EFL) and camera. During the presentation of images, tips and ideas for getting good pictures through a telescope will be discussed.

  5. FORCAST Camera Installed on SOFIA Telescope

    NASA Video Gallery

    Cornell University's Faint Object Infrared Camera for the SOFIA Telescope, or FORCAST, being installed on the Stratospheric Observatory for Infrared Astronomy's 2.5-meter telescope in preparation f...

  6. Optical Telescope Assembly Concept for Next Generation Space Telescope

    NASA Astrophysics Data System (ADS)

    Wallace, N.; Krim, M.; Horner, G.

    1996-12-01

    A recent study by a TRW/HDOS/GSFC/LaRC/Swales team produced a conceptual design for an eight-meter diameter Next Generation Space Telescope (NGST). This space telescope would have a deployed primary mirror with active figure control of the mirror petals to give diffraction limited performance at one micron wavelength. The High Accuracy Reflector Development (HARD) scheme, utilizing special translation-rotation mechanisms and precision latches, would deploy and lock the primary mirror segments into place. Thin mirror faceplates on stiff, lightweight backing structure would allow the extremely low weight at moderate cost. The telescope would produce images and spectra from radiation in the 0.5 micron to 10 micron spectral interval, have a 10 arc-minute circular field of view, weigh about 1000 kg, and fit within the shroud of an Atlas II AS launch vehicle. A deployable sunshield and an L2 Lissajous orbit would give passive cooling to 30 K. This paper describes the baseline optics, structures, and control systems of the Optical Telescope Assembly design produced in the study. The associated technologies are discussed, with emphasis on the optics and mechanisms for the primary mirror. For the optics, different mirror materials, fabrication processes, structural configurations, controls configurations, and verification techniques were studied, and a preliminary wavefront error budget was produced. For mechanisms, concepts were produced for high resolution actuators with a large operating range and for active vibration suppression. The state-of-the-art of all these technologies is presented, the technological advances needed, and some preliminary plans for their development.

  7. Alignment of the James Webb Space Telescope optical telescope element

    NASA Astrophysics Data System (ADS)

    Glassman, Tiffany; Levi, Joshua; Liepmann, Till; Hahn, Walter; Bisson, Gary; Porpora, Dan; Hadjimichael, Theo

    2016-07-01

    The optical telescope element (OTE) of the James Webb Space Telescope has now been integrated and aligned. The OTE comprises the flight mirrors and the structure that supports them - 18 primary mirror segments, the secondary mirror, and the tertiary and fine steering mirrors (both housed in the aft optics subsystem). The primary mirror segments and the secondary mirror have actuators to actively control their positions during operations. This allows the requirements for aligning the OTE subsystems to be in the range of microns rather than nanometers. During OTE integration, the alignment of the major subsystems of the OTE structure and optics were controlled to ensure that, when the telescope is on orbit and at cryogenic temperatures, the active mirrors will be within the adjustment range of the actuators. Though the alignment of this flagship mission was complex and intricate, the key to a successful integration process turned out to be very basic: a clear, concise series of steps employing advanced planning, backup measurements, and cross checks that this multi-organizational team executed with a careful and methodical approach. This approach was not only critical to our own success but has implications for future space observatories.

  8. The Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Bely, Pierre-Yves (Editor); Burrows,, Christopher J. (Editor); Illingworth,, Garth D.

    1989-01-01

    In Space Science in the Twenty-First Century, the Space Science Board of the National Research Council identified high-resolution-interferometry and high-throughput instruments as the imperative new initiatives for NASA in astronomy for the two decades spanning 1995 to 2015. In the optical range, the study recommended an 8 to 16-meter space telescope, destined to be the successor of the Hubble Space Telescope (HST), and to complement the ground-based 8 to 10-meter-class telescopes presently under construction. It might seem too early to start planning for a successor to HST. In fact, we are late. The lead time for such major missions is typically 25 years, and HST has been in the making even longer with its inception dating back to the early 1960s. The maturity of space technology and a more substantial technological base may lead to a shorter time scale for the development of the Next Generation Space Telescope (NGST). Optimistically, one could therefore anticipate that NGST be flown as early as 2010. On the other hand, the planned lifetime of HST is 15 years. So, even under the best circumstances, there will be a five year gap between the end of HST and the start of NGST. The purpose of this first workshop dedicated to NGST was to survey its scientific potential and technical challenges. The three-day meeting brought together 130 astronomers and engineers from government, industry and universities. Participants explored the technologies needed for building and operating the observatory, reviewed the current status and future prospects for astronomical instrumentation, and discussed the launch and space support capabilities likely to be available in the next decade. To focus discussion, the invited speakers were asked to base their presentations on two nominal concepts, a 10-meter telescope in space in high earth orbit, and a 16-meter telescope on the moon. The workshop closed with a panel discussion focused mainly on the scientific case, siting, and the

  9. World atlas of large optical telescopes

    NASA Technical Reports Server (NTRS)

    Meszaros, S. P.

    1979-01-01

    By 1980 there will be approximately 100 large optical telescopes in the world with mirror or lens diameters of one meter (39 inches) and larger. This atlas gives information on these telescopes and shows their locations on continent-sized maps. Observatory locations considered suitable for the construction of future large telescopes are also shown.

  10. The Hubble Space Telescope: Problems and Solutions.

    ERIC Educational Resources Information Center

    Villard, Ray

    1990-01-01

    Presented is the best understanding of the flaw discovered in the optics of the Hubble Space Telescope and the possible solutions to the problems. The spherical aberration in the telescope's mirror and its effect on the quality of the telescope's imaging ability is discussed. (CW)

  11. Telescoping Space-Station Modules

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1986-01-01

    New telescoping-space-station design involves module within a module. After being carried to orbit within payload bay of Space Shuttle orbiter, outer module telescopically deployed to achieve nearly twice as much usable space-station volume per Space Shuttle launch. Closed-loop or "race-track" space-station configurations possible with this concept and provide additional benefits. One benefit involves making one of modules double-walled haven safe from debris, radiation, and like. Module accessible from either end, and readily available to all positions in space station. Concept also provides flexibility in methods in which Space Shuttle orbiter docked or berthed with space station and decrease chances of damage.

  12. THE OPTIMAL GRAVITATIONAL LENS TELESCOPE

    SciTech Connect

    Surdej, J.; Hanot, C.; Sadibekova, T.; Delacroix, C.; Habraken, S.; Coleman, P.; Dominik, M.; Le Coroller, H.; Mawet, D.; Quintana, H.; Sluse, D.

    2010-05-15

    Given an observed gravitational lens mirage produced by a foreground deflector (cf. galaxy, quasar, cluster, ...), it is possible via numerical lens inversion to retrieve the real source image, taking full advantage of the magnifying power of the cosmic lens. This has been achieved in the past for several remarkable gravitational lens systems. Instead, we propose here to invert an observed multiply imaged source directly at the telescope using an ad hoc optical instrument which is described in the present paper. Compared to the previous method, this should allow one to detect fainter source features as well as to use such an optimal gravitational lens telescope to explore even fainter objects located behind and near the lens. Laboratory and numerical experiments illustrate this new approach.

  13. Focusing X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab; Juda, Michael; Kolodziejczak, Jeffrey; Murray, Stephen; Petre, Robert; Podgorski, William; Ramsey, Brian; Reid, Paul; Saha, Timo; Wolk, Scott; Troller-McKinstry, Susan; Weisskopf, Martin; Wilke, Rudeger; Zhang, William

    2010-01-01

    During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  14. Synchronous network of distant telescopes

    NASA Astrophysics Data System (ADS)

    Zhilyaev, B.; Svyatogorov, O.; Verlyuk, I.; Andreev, M.; Sergeev, A.; Lovkaya, M.; Antov, A.; Konstantinova-Antova, R.; Bogdanovski, R.; Avgoloupis, S.; Seiradakis, J.; Contadakis, M. E.

    The Synchronous Network of distant Telescopes (SNT) represents an innovative approach in observational astrophysics. The authors present an unique existing realization of the SNT-conception. It was founded within the international collaboration between astronomical observatories of Ukraine, Russia, Bulgaria and Greece. All the telescopes of the Network are equipped with standardized photometric systems (based on photo-multipliers). The unified timing systems (based on GPS-receivers) synchronize all the apertures to UTC with an accuracy of 1 microsecond and better. The essential parts of the SNT are the original software for operating and data processing. The described international Network successfully works for more than 10 years. The obtained unique observational data made it possible to discover new fine-scale features and flare-triggered phenomena in flaring red dwarfs, as well as the recently found high-frequency variability in some chromospherically active stars.

  15. Hubble Space Telescope Servicing begins.

    NASA Astrophysics Data System (ADS)

    1993-12-01

    The day's work began when astronauts Story Musgrave and Jeff Hoffman stepped out into the cargo bay at 9h41 pm CST, Saturday (4h41 am CET, Sunday). They immediately set to work replacing two gyroscope assemblies, known as the Rate Sensor Units, two associated electronics boxes, called Electronic Control Units, and eight electrical fuse plugs. The work was completed ahead of schedule, but the astronauts had trouble closing the doors of the compartment housing the gyros and took over an hour to get them shut. The astronauts also prepared equipment for the replacement of the solar arrays. "The feeling down here is one of great satisfaction for a tremendous job today" said spacecraft communicator Greg Harbaugh in mission control. "We are very proud of the work that you all did and we are very confident in the continued success of the mission. Everything is going great and tomorrow is going to be another great day". ESA astronaut Claude Nicollier played a vital role during the spacewalk moving the astronauts and their equipment around the cargo bay with the shuttle's robot arm. The Hubble Space Telescope servicing mission features more robot arm operations than any other shuttle flight. The telescope's left-hand solar array was rolled up successfully at 6h24 am CST (1h24 pm CET). The 11-tonne observatory was rotated 180 degrees on its turntable before commands were sent to retract the second array at 8h23 am CST (3h23 pm CET). The crew stopped the retraction when it appeared the system may have jammed. Mission control instructed the crew to jettison the array, a procedure that they have trained for. Tomorrow astronauts Kathy Thornton and Tom Akers will make a six-hour spacewalk to jettison the troublesome wing, store the other in the cargo bay, and install two new panels supplied by ESA. The second set of arrays feature thermal shields and a modified thermal compensation system to prevent the flexing that affected the first pair. The Hubble Space Telescope was plucked

  16. Workshop on Mars Telescopic Observations

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III (Editor); Moersch, J. E. (Editor)

    1995-01-01

    The Mars Telescopic Observations Workshop, held August 14-15, 1995, at Cornell University in Ithaca, New York, was organized and planned with two primary goals in mind: The first goal was to facilitate discussions among and between amateur and professional observers and to create a workshop environment fostering collaborations and comparisons within the Mars observing community. The second goal was to explore the role of continuing telescopic observations of Mars in the upcoming era of increased spacecraft exploration. The 24 papers presented at the workshop described the current NASA plans for Mars exploration over the next decade, current and recent Mars research being performed by professional astronomers, and current and past Mars observations being performed by amateur observers and observing associations. The workshop was divided into short topical sessions concentrating on programmatic overviews, groundbased support of upcoming spacecraft experiments, atmospheric observations, surface observations, modeling and numerical studies, and contributions from amateur astronomers.

  17. Space infrared telescope facility project

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    1988-01-01

    The functions undertaken during this reporting period were: to inform the planetary science community of the progress and status of the Space Infrared Telescope Facility (SIRTF) Project; to solicit input from the planetary science community on needs and requirements of planetary science in the use of SIRTF at such time that it becomes an operational facility; and a white paper was prepared on the use of the SIRTF for solar system studies.

  18. TOML - Telescope Observation Markup Language

    NASA Astrophysics Data System (ADS)

    de Witt, S.; Jenness, T.; Economou, F.; Folger, M.

    2005-12-01

    Telescope Observation Markup Language (TOML) has been developed by the Joint Astronomy Centre as a means of expressing an astronomical observing program in XML. It provides a means of encoding a program developed using a graphical tool in a language neutral format which can be sent over the web to a database or a colleague who is also working on the same project. This can then be loaded into any tool capable of accepting TOML.

  19. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes, and is currently the largest scientific project under construction in the United States. It will be a large (6.6m) cold (50K) telescope launched into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. Science with the James Webb Space Telescope falls into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will conclude the talk with a description of recent technical progress in the construction of the observatory.

  20. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes, and is currently the largest scientific project under construction in the United States. It will be a large (6.6m) cold (50K) telescope launched in about 5 years into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. Science with the James Webb Space Telescope falls into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will conclude the talk with a description of recent technical progress in the construction of the observatory.

  1. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes, and is currently the largest scientific project under construction in the United States. It will be a large (6.6m) cold (50K) telescope launched in about 5 years into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. Science with the James Webb Space Telescope falls into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Proto planetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will conclude the talk with a description of recent technical progress in the construction of the observatory.

  2. India's National Large Solar Telescope

    NASA Astrophysics Data System (ADS)

    Hasan, S. S.

    2012-12-01

    India's 2-m National Large Solar Telescope (NLST) is aimed primarily at carrying out observations of the solar atmosphere with high spatial and spectral resolution. A comprehensive site characterization program, that commenced in 2007, has identified two superb sites in the Himalayan region at altitudes greater than 4000-m that have extremely low water vapor content and are unaffected by monsoons. With an innovative optical design, the NLST is an on-axis Gregorian telescope with a low number of optical elements to reduce the number of reflections and yield a high throughput with low polarization. In addition, it is equipped with a high-order adaptive optics to produce close to diffraction limited performance. To control atmospheric and thermal perturbations of the observations, the telescope will function with a fully open dome, to achieve its full potential atop a 25 m tower. Given its design, NLST can also operate at night, without compromising its solar performance. The post-focus instruments include broad-band and tunable Fabry-Pérot narrow-band imaging instruments; a high resolution spectropolarimeter and an Echelle spectrograph for night time astronomy. This project is led by the Indian Institute of Astrophysics and has national and international partners. Its geographical location will fill the longitudinal gap between Japan and Europe and is expected to be the largest solar telescope with an aperture larger than 1.5 m till the ATST and EST come into operation. An international consortium has been identified to build the NLST. The facility is expected to be commissioned by 2016.

  3. The Automated Planet Finder telescope's automation and first three years of planet detections

    NASA Astrophysics Data System (ADS)

    Burt, Jennifer

    The Automated Planet Finder (APF) is a 2.4m, f/15 telescope located at the UCO's Lick Observatory, atop Mt. Hamilton. The telescope has been specifically optimized to detect and characterize extrasolar planets via high precision, radial velocity (RV) observations using the high-resolution Levy echelle spectrograph. The telescope has demonstrated world-class internal precision levels of 1 m/s when observing bright, RV standard stars. Observing time on the telescope is divided such that ˜80% is spent on exoplanet related research and the remaining ˜20% is made available to the University of California consortium for other science goals. The telescope achieved first light in 2013, and this work describes the APF's early science achievements and its transition from a traditional observing approach to a fully autonomous facility. First we provide a characteristic look at the APF telescope and the Levy spectrograph, focusing on the stability of the instrument and its performance on RV standard stars. Second, we describe the design and implementation of the dynamic scheduling software which has been running our team's nightly observations on the APF for the past year. Third, we discuss the detection of a Neptune-mass planet orbiting the nearby, low-mass star GL687 by the APF in collaboration with the HIRES instrument on Keck I. Fourth, we summarize the APF's detection of two multi-planet systems: the four planet system orbiting HD 141399 and the 6 planet system orbiting HD 219134. Fifth, we expand our science focus to assess the impact that the APF - with the addition of a new, time-varying prioritization scheme to the telescope's dynamic scheduling software - can have on filling out the exoplanet Mass-Radius diagram when pursuing RV follow-up of transiting planets detected by NASA's TESS satellite. Finally, we outline some likely next science goals for the telescope.

  4. Dissection and fine mapping of a major QTL for preharvest sprouting resistance in white wheat Rio Blanco.

    PubMed

    Liu, Shubing; Bai, Guihua

    2010-11-01

    Preharvest sprouting (PHS) is a major constraint to white wheat production. Previously, we mapped quantitative trait loci (QTL) for PHS resistance in white wheat by using a recombinant inbred line (RIL) population derived from the cross Rio Blanco/NW97S186. One QTL, QPhs.pseru-3A, showed a major effect on PHS resistance, and three simple sequence repeat (SSR) markers were mapped in the QTL region. To determine the flanking markers for the QTL and narrow down the QTL to a smaller chromosome region, we developed a new fine mapping population of 1,874 secondary segregating F(2) plants by selfing an F6 RIL (RIL25) that was heterozygous in the three SSR marker loci. Segregation of PHS resistance in the population fitted monogenic inheritance. An additive effect of the QTL played a major role on PHS resistance, but a dominant effect was also observed. Fifty-six recombinants among the three SSR markers were identified in the population and selfed to produce homozygous recombinants or QTL near-isogenic lines (NIL). PHS evaluation of the recombinants delineated the QTL in the region close to Xbarc57 flanked by Xbarc321 and Xbarc12. To saturate the QTL region, 11 amplified fragment length polymorphism (AFLP) markers were mapped in the QTL region with 7 AFLP co-segregated with Xbarc57 by using the NIL population. Dissection of the QTL as a Mendelian factor and saturation of the QTL region with additional markers created a solid foundation for positional cloning of the major QTL. PMID:20607209

  5. Serological and Molecular Studies of a Novel Virus Isolate Causing Yellow Mosaic of Patchouli [Pogostemon cablin (Blanco) Benth

    PubMed Central

    Zaim, Mohammad; Ali, Ashif; Joseph, Jomon; Khan, Feroz

    2013-01-01

    Here we have identified and characterized a devastating virus capable of inducing yellow mosaic on the leaves of Patchouli [Pogostemon cablin (Blanco) Benth]. The diagnostic tools used were host range, transmission studies, cytopathology, electron microscopy, serology and partial coat protein (CP) gene sequencing. Evidence from biological, serological and sequence data suggested that the causal virus belonged to genus Potyvirus, family Potyviridae. The isolate, designated as Patchouli Yellow Mosaic Virus (PaYMV), was transmitted through grafting, sap and the insect Myzus persicae (Sulz.). Flexuous rod shaped particles with a mean length of 800 nm were consistently observed in leaf-dip preparations from natural as well as alternate hosts, and in purified preparation. Cytoplasmic cylindrical inclusions, pinwheels and laminar aggregates were observed in ultra-thin sections of infected patchouli leaves. The purified capsid protein has a relative mass of 43 kDa. Polyclonal antibodies were raised in rabbits against the coat protein separated on SDS – PAGE; which were used in ELISA and western blotting. Using specific antibodies in ELISA, PaYMV was frequently detected at patchouli plantations at Lucknow and Bengaluru. Potyvirus-specific degenerate primer pair (U335 and D335) had consistently amplified partial CP gene from crude preparations of infected tissues by reverse transcription polymerase chain reaction (RT-PCR). Comparison of the PCR product sequence (290 bp) with the corresponding regions of established potyviruses showed 78–82% and 91–95% sequence similarity at the nucleotide and amino acid levels, respectively. The results clearly established that the virus under study has close homology with watermelon mosaic virus (WMV) in the coat protein region and therefore could share a common ancestor family. Further studies are required to authenticate the identity of PaYMV as a distinct virus or as an isolate of WMV. PMID:24386278

  6. Low Temperature Induced Changes in Citrate Metabolism in Ponkan (Citrus reticulata Blanco cv. Ponkan) Fruit during Maturation.

    PubMed

    Lin, Qiong; Qian, Jing; Zhao, Chenning; Wang, Dengliang; Liu, Chunrong; Wang, Zhidong; Sun, Chongde; Chen, Kunsong

    2016-01-01

    Citrate is the most important organic acid in citrus fruit, and its concentration in fruit cells is regulated mainly by the balance between synthesis and degradation. Ponkan (Citrus reticulate Blanco cv. Ponkan) is one of the major citrus cultivars grew in China, and the fruit are picked before fully mature to avoid bad weather. Greenhouse production is widely used to prolong the maturation period and improve the quality of Ponkan fruit by maintaining adequate temperature and providing protection from adverse weather. In this research, Ponkan fruit cultivated in either a greenhouse or open field were used to investigate differences in the expression of genes related to citrate metabolism during maturation in the two environments. The citrate contents were higher in open field fruit, and were mainly correlated with expressions of CitPEPCs, CitCSs, CitAco3 and CitGAD4, which were significantly increased. In addition, the impacts of low temperature (LT) and water stress (WS) on citrate metabolism in Ponkan were investigated during fruit maturation. The citrate contents in LT fruit were significantly increased, by between 1.4-1.9 fold, compared to the control; it showed no significant difference in fruit with water stress treatment compared to the control fruit. Furthermore, the expressions of CitPEPCs, CitCSs, CitAco3 and CitGAD4 were significantly increased in response to LT treatment, but showed no significant difference in WS compared to the control fruit. Thus, it can be concluded that low temperature may be the main factor influencing citrate metabolism during maturation in Ponkan fruit. PMID:27249065

  7. Low Temperature Induced Changes in Citrate Metabolism in Ponkan (Citrus reticulata Blanco cv. Ponkan) Fruit during Maturation

    PubMed Central

    Lin, Qiong; Qian, Jing; Zhao, Chenning; Wang, Dengliang; Liu, Chunrong; Wang, Zhidong; Sun, Chongde; Chen, Kunsong

    2016-01-01

    Citrate is the most important organic acid in citrus fruit, and its concentration in fruit cells is regulated mainly by the balance between synthesis and degradation. Ponkan (Citrus reticulate Blanco cv. Ponkan) is one of the major citrus cultivars grew in China, and the fruit are picked before fully mature to avoid bad weather. Greenhouse production is widely used to prolong the maturation period and improve the quality of Ponkan fruit by maintaining adequate temperature and providing protection from adverse weather. In this research, Ponkan fruit cultivated in either a greenhouse or open field were used to investigate differences in the expression of genes related to citrate metabolism during maturation in the two environments. The citrate contents were higher in open field fruit, and were mainly correlated with expressions of CitPEPCs, CitCSs, CitAco3 and CitGAD4, which were significantly increased. In addition, the impacts of low temperature (LT) and water stress (WS) on citrate metabolism in Ponkan were investigated during fruit maturation. The citrate contents in LT fruit were significantly increased, by between 1.4–1.9 fold, compared to the control; it showed no significant difference in fruit with water stress treatment compared to the control fruit. Furthermore, the expressions of CitPEPCs, CitCSs, CitAco3 and CitGAD4 were significantly increased in response to LT treatment, but showed no significant difference in WS compared to the control fruit. Thus, it can be concluded that low temperature may be the main factor influencing citrate metabolism during maturation in Ponkan fruit. PMID:27249065

  8. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these for science themes, JWST will be a large (6.6m) cold (50K) telescope launched to the second Earth-Sun Lagrange point early in the next decade. It is the successor to the Hubble Space Telescope, and is a partnership of NASA, ESA and CSA. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I review the status and capabilities of the observatory and instruments in the context of the major scientific goals.

  9. QUIJOTE telescope design and fabrication

    NASA Astrophysics Data System (ADS)

    Gomez, Alberto; Murga, Gaizka; Etxeita, Borja; Sanquirce, Rubén; Rebolo, Rafael; Rubiño-Martin, Jose Alberto; Herreros, José-Miguel; Hoyland, Roger; Gomez, Francisca; Génova-Santos, Ricardo T.; Piccirillo, Lucio; Maffei, Bruno; Watson, Robert

    2010-07-01

    The QUIJOTE CMB experiment aims to characterize the polarization of the CMB in the frequency range 10-30 GHz and large angular scales. It will be installed in the Teide Observatory, following the projects that the Anisotropy of the Cosmic Microwave Background group has developed in the past (Tenerife experiment, IAC-Bartol experiment...) and is running at the present time (VSA, Cosmosomas). The QUIJOTE CMB experiment will consist of two telescopes which will be installed inside a unique enclosure, which is already constructed. The layout of both telescopes is based on an altazimuth mount supporting a primary and a secondary mirror disposed in a offset Gregorian Dragon scheme. The use of industrial-like fabrication techniques, such as sand-mould casting, CNC machining, and laser tracker measuring for alignment, provided the required performances for microwave observation. A fast-track construction scheme, altogether with the use of these fabrication techniques allowed designing and manufacturing the opto-mechanics of the telescope in 14 months prior to delivery for final start-up in December 2008.

  10. The NASA Spitzer Space Telescope.

    PubMed

    Gehrz, R D; Roellig, T L; Werner, M W; Fazio, G G; Houck, J R; Low, F J; Rieke, G H; Soifer, B T; Levine, D A; Romana, E A

    2007-01-01

    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991-2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/.

  11. NEWS: Hands-on telescopes!

    NASA Astrophysics Data System (ADS)

    2000-05-01

    As part of the International Astronomical Union Meeting taking place in Manchester in August, the Education Committee of the Royal Astronomical Society is organizing a day conference on using robotic telescopes in schools. `Astronomy research projects for schools and university students' will commence at 10.30 on Friday 18 August 2000. This discussion meeting will explore ways in which students at school and university can participate in research projects, and at the same time increase their understanding of astronomy and develop useful skills. The increase in access to robotic telescopes and to astronomy databases is making research by school and undergraduate students ever more feasible. In addition, useful research can be done with very modest telescope systems, of the sort a school could afford. A range of international speakers will describe and demonstrate the possibilities, as well as leading the discussion. This meeting is being organized by the Education Committee of the Royal Astronomical Society and by Commission 46 of the International Astronomical Union. It is being held at the end of the IAU General Assembly. Those who pay the registration fee for the General Assembly need pay no further fee for attending the discussion meeting; otherwise there is a fee of £10. Refreshments will be provided at no charge. To obtain a registration form for this discussion meeting please contact Alan Pickwick (Alan_C_Pickwick@compuserve.com).

  12. EUSO-TA prototype telescope

    NASA Astrophysics Data System (ADS)

    Bisconti, Francesca

    2016-07-01

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  13. The NASA Spitzer Space Telescope.

    PubMed

    Gehrz, R D; Roellig, T L; Werner, M W; Fazio, G G; Houck, J R; Low, F J; Rieke, G H; Soifer, B T; Levine, D A; Romana, E A

    2007-01-01

    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991-2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/. PMID:17503900

  14. Technologies for producing segments for extremely large telescopes

    NASA Astrophysics Data System (ADS)

    Walker, D.; Atkins, C.; Baker, I.; Evans, R.; Hamidi, S.; Harris, P.; Li, H.; Messelink, W.; Mitchell, J.; Parry-Jones, M.; Rees, P.; Yu, G.

    2011-09-01

    We describe progress on a novel process-chain being used to produce eight 1.4m hexagonal segments as prototypes for the European Extremely Large Telescope - a Master Spherical Segment as a reference, and seven aspheric segments. A new pilot plant integrates a bespoke full-aperture test-tower designed and built by OpTIC Glyndwr, with a Zeeko 1.6m polishing machine. The process chain starts with aspherising hexagonal segments on the Cranfield BoX™ grinder, followed by smoothing, corrective-polishing and edge-rectification using the Zeeko CNC platform. The paper describes the technology and progress, and anticipates how the process-chain is expected to evolve through the seven segments to increase both process-speed and surface-quality.

  15. Educational activities with the Faulkes Telescopes

    NASA Astrophysics Data System (ADS)

    Roberts, S.; Roche, P.; Ross, R.

    2008-06-01

    Las Cumbres Observatory Global Telescope Network (LCOGTN) will eventually provide access to a global network of robotic telescopes for research-based science education. Here we present the educational projects that have been undertaken using the 2-m Faulkes Telescopes in Hawaii and Australia in both the UK and Europe. These include themed observing days in which schools collaborate in their telescope sessions, the development of science portals where schools can upload and share their telescope data, and other innovative projects. Public access to these facilities will increase as IYA2009 approaches.

  16. Equal-Curvature X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Zhang, William

    2002-01-01

    We introduce a new type of x-ray telescope design; an Equal-Curvature telescope. We simply add a second order axial sag to the base grazing incidence cone-cone telescope. The radius of curvature of the sag terms is the same on the primary surface and on the secondary surface. The design is optimized so that the on-axis image spot at the focal plane is minimized. The on-axis RMS (root mean square) spot diameter of two studied telescopes is less than 0.2 arc-seconds. The off-axis performance is comparable to equivalent Wolter type 1 telescopes.

  17. Cost Modeling for Space Optical Telescope Assemblies

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Henrichs, Todd; Luedtke, Alexander; West, Miranda

    2011-01-01

    Parametric cost models are used to plan missions, compare concepts and justify technology investments. This paper reviews an on-going effort to develop cost modes for space telescopes. This paper summarizes the methodology used to develop cost models and documents how changes to the database have changed previously published preliminary cost models. While the cost models are evolving, the previously published findings remain valid: it costs less per square meter of collecting aperture to build a large telescope than a small telescope; technology development as a function of time reduces cost; and lower areal density telescopes cost more than more massive telescopes.

  18. Vibrational, mechanical and thermodynamical properties of indium thiospinels MIn2S4 (M = Cd, Zn and Mg)

    NASA Astrophysics Data System (ADS)

    Kushwaha, A. K.; Khenata, R.; Bin Omran, S.

    2016-01-01

    In this paper, interatomic interactions, zone-center phonon frequencies, mechanical properties, sound velocities and Debye temperature of indium thiospinels MIn2S4 (M = Cd, Zn and Mg) have been calculated using rigid-ion model. We found that the first neighbor interaction is stronger than the second neighbor interaction. We have compared our calculated results with the available experimental and theoretical data and find good agreement with the experimental results.

  19. Twin-Telescope Wettzell (TTW)

    NASA Astrophysics Data System (ADS)

    Hase, H.; Dassing, R.; Kronschnabl, G.; Schlüter, W.; Schwarz, W.; Lauber, P.; Kilger, R.

    2007-07-01

    Following the recommendations made by the VLBI2010 vision report of the IVS, a proposal has been made to construct a Twin Telescope for the Fundamental Station Wettzell in order to meet the future requirements of the next VLBI generation. The Twin Telescope consists of two identical radiotelescopes. It is a project of the Federal Agency for Cartography and Geodesy (BKG). This article summarizes the project and some design ideas for the Twin-Telescope. %ZALMA (2005). Technical Specification for Design, Manufacturing, Transport and Integration on Site of the ALMA ANTENNAS, Doc. ALMA-34.00.00.00.006-BSPE. Behrend, D. (2006). VLBI2010 Antenna Specs, Data sheet. DeBoer, D. (2001). The ATA Offset Gregorian Antenna, ATA Memo #16, February 10. Imbriale, W.A. (2006). Design of a Wideband Radio Telescope, Jet Propulsion Laboratory and S. Weinreb and H. Mandi, California Institute of Technology. Kilger, R. (2007). TWIN-Design studies, Presentation for the IVS board members (internal document),Wettzell. Kronschnabl, G. (2006). Subject: Memo from Bill Petrachenko, E-mail to the Twin-Working Group (in German), July. Lindgren, ETS-Lindgren (2005). The Model 3164-05 Open Boundary Quadridge Horn, Data Sheet. Niell, A., A. Whitney, W. Petrachenko, W. Schlüter, N. Vandenberg, H.Hase, Y. Koyama, C. Ma, H. Schuh, G. Tucari (2006). in: IVS Annual Report 2005, pg. 13-40, NASA/TP-2006-214136, April. Olsson, R., Kildal, P.-S., and Weinreb, S. (2006). IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, February. Petrachenko, B. (2006). The Case For and Against Multiple Antennas at a Site, IVS Memorandum, 2006-019v01. Petrachenko, B. (2006). IVS Memorandum, 2006-016v01. RFSpin (2004). Double Ridged Waveguide Horn-Model DRH20, Antenna Specifications, Data Sheet. Rohde&Schwarz (2004). SHF Antennas Crossed Log- Periodic Antennas HL024A1/S1, Data Sheet. Rohde&Schwarz (2004). SHF Antennas Log-Periodic Antennas HL050/HL050S1, Data Sheet. Rogers, A.E.E. (2006). Simulations of broadband

  20. Wavefront Analysis of Adaptive Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Hillman, Lloyd

    1997-01-01

    The motivation for this work came from a NASA Headquarters interest in investigating design concepts for a large space telescope employing active optics technology. Current and foreseeable launch vehicles will be limited to carrying around 4-5 meter diameter objects. Thus, if a large, filled-aperture telescope (6-20 meters in diameter) is to be placed in space, it will be required to have a deployable primary mirror. Such a mirror may be an inflatable membrane or a segmented mirror consisting of many smaller pieces. In any case, it is expected that the deployed primary will not be of sufficient quality to achieve diffraction-limited performance for its aperture size. Thus, an active optics system will be needed to correct for initial as well as environmentally-produced primary figure errors. Marshall Space Flight Center has developed considerable expertise in the area of active optics with the PAMELA test-bed. The combination of this experience along with the Marshall optical shop's work in mirror fabrication made MSFC the logical choice to lead NASA's effort to develop active optics technology for large, space-based, astronomical telescopes. Furthermore, UAH's support of MSFC in the areas of optical design, fabrication, and testing of space-based optical systems placed us in a key position to play a major role in the development of this future-generation telescope. A careful study of the active optics components had to be carried out in order to determine control segment size, segment quality, and segment controllability required to achieve diffraction-limited resolution with a given primary mirror. With this in mind, UAH undertook the following effort to provide NASA/MSFC with optical design and analysis support for the large telescope study. All of the work performed under this contract has already been reported, as a team member with MSFC, to NASA Headquarters in a series of presentations given between May and December of 1995. As specified on the delivery

  1. Splice junctions in adenovirus 2 early region 4 mRNAs: multiple splice sites produce 18 to 24 RNAs.

    PubMed Central

    Tigges, M A; Raskas, H J

    1984-01-01

    We localized the splice junctions in adenovirus 2 early region 4 (E4) mRNAs. Processing of the E4 precursor RNA positioned the donor splice site of the 5' leader sequence adjacent to acceptor sites near the 5' ends of five of the six open reading regions in the E4 transcription unit. Of particular interest among the E4 mRNAs is an extensively spliced class which includes multiple species with sizes ranging from 1.1 to 0.75 kilobases (kb). Purified 1.1- to 0.75-kb mRNAs specified at least 10 polypeptides in vitro. We detected eight acceptor and two donor splice sites utilized in the deletion of the intron from the 3' portion of these mRNAs. E4 RNAs were isolated from the cytoplasm of infected cells at 5, 9, 12, and 18 h after infection. The E4 mRNAs were present throughout infection, but different members of the 1.1- to 0.7-kb class were predominant at each time assayed. Alternate splicing of the 3.0-kb E4 precursor RNA can generate as many as 25 mRNAs that encode at least 16 polypeptides. Images PMID:6336328

  2. Target accessibility and signal specificity in live-cell detection of BMP-4 mRNA using molecular beacons.

    PubMed

    Rhee, Won Jong; Santangelo, Philip J; Jo, Hanjoong; Bao, Gang

    2008-03-01

    The ability to visualize mRNA in single living cells and monitor in real-time the changes of mRNA level and localization can provide unprecedented opportunities for biological and disease studies. However, the mRNA detection specificity and sensitivity are critically dependent on the selection of target sequences and their accessibility. We carried out an extensive study of the target accessibility of BMP-4 mRNA using 10 different designs of molecular beacons (MBs), and identified the optimal beacon design. Specifically, for MB design 1 and 8 (MB1 and MB8), the fluorescent intensities from BMP-4 mRNA correlated well with the GFP signal after upregulating BMP-4 and co-expressing GFP using adenovirus, and the knockdown of BMP-4 mRNA using siRNA significantly reduced the beacon signals, demonstrating detection specificity. The beacon specificity was further confirmed using blocking RNA and in situ hybridization. We found that fluorescence signal from MBs depends critically on target sequences; the target sequences corresponding to siRNA sites may not be good sites for beacon-based mRNA detection, and vice versa. Possible beacon design rules are identified and approaches for enhancing target accessibility are discussed. This has significant implications to MB design for live cell mRNA detection.

  3. GALAXY CLUSTERS SELECTED WITH THE SUNYAEV-ZEL'DOVICH EFFECT FROM 2008 SOUTH POLE TELESCOPE OBSERVATIONS

    SciTech Connect

    Vanderlinde, K.; De Haan, T.; Dudley, J. P.; Shaw, L.; Dobbs, M. A.; Crawford, T. M.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crites, A. T.; Gladders, M. D.; Ade, P. A. R.; Aird, K. A.; Brodwin, M.; Foley, R. J.; Desai, S.; George, E. M.; Hall, N. R.; Halverson, N. W.

    2010-10-20

    We present a detection-significance-limited catalog of 21 Sunyaev-Zel'dovich-selected galaxy clusters. These clusters, along with one unconfirmed candidate, were identified in 178 deg{sup 2} of sky surveyed in 2008 by the South Pole Telescope (SPT) to a depth of 18 {mu}K arcmin at 150 GHz. Optical imaging from the Blanco Cosmology Survey (BCS) and Magellan telescopes provided photometric (and in some cases spectroscopic) redshift estimates, with catalog redshifts ranging from z = 0.15 to z>1, with a median z = 0.74. Of the 21 confirmed galaxy clusters, 3 were previously identified as Abell clusters, 3 were presented as SPT discoveries in Staniszewski et al., and 3 were first identified in a recent analysis of BCS data by Menanteau et al.; the remaining 12 clusters are presented for the first time in this work. Simulated observations of the SPT fields predict the sample to be nearly 100% complete above a mass threshold of M{sub 200} {approx} 5 x 10{sup 14} M{sub sun} h {sup -1} at z = 0.6. This completeness threshold pushes to lower mass with increasing redshift, dropping to {approx}4 x 10{sup 14} M{sub sun} h {sup -1} at z = 1. The size and redshift distribution of this catalog are in good agreement with expectations based on our current understanding of galaxy clusters and cosmology. In combination with other cosmological probes, we use this cluster catalog to improve estimates of cosmological parameters. Assuming a standard spatially flat wCDM cosmological model, the addition of our catalog to the WMAP seven-year results yields {sigma}{sub 8} = 0.81 {+-} 0.09 and w = -1.07 {+-} 0.29, a {approx}50% improvement in precision on both parameters over WMAP7 alone.

  4. Aligning Astronomical Telescopes via Identification of Stars

    NASA Technical Reports Server (NTRS)

    Whorton, Mark

    2010-01-01

    A proposed method of automated, precise alignment of a ground-based astronomical telescope would eliminate the need for initial manual alignment. The method, based on automated identification of known stars and other celestial objects in the telescope field of view, would also eliminate the need for an initial estimate of the aiming direction. The method does not require any equipment other than a digital imaging device such as a charge-coupled-device digital imaging camera and control computers of the telescope and camera, all of which are standard components in professional astronomical telescope systems and in high-end amateur astronomical telescope systems. The method could be implemented in software running in the telescope or camera control computer or in an external computer communicating with the telescope pointing mount and camera control computers.

  5. VizieR Online Data Catalog: CT1 photometry of Antlia early-type galaxies (Smith+, 2008)

    NASA Astrophysics Data System (ADS)

    Smith Castelli, A. V.; Bassino, L. P.; Richtler, T.; Cellone, S. A.; Aruta, C.; Infante, L.

    2009-06-01

    The photometric observations were performed with the MOSAIC camera (eight CCDs mosaic imager) mounted at the prime focus of the 4-m Blanco telescope at the Cerro Tololo Inter-American Observatory (CTIO), during 2002 April 4-5. (1 data file).

  6. Hubble Space Telescope - New view of an ancient universe

    NASA Technical Reports Server (NTRS)

    Leckrone, David S.; Longair, Malcolm S.; Stockman, Peter; Olivier, Jean R.

    1989-01-01

    Scheduled for a March 1990 Shuttle launch, the Hubble Space Telescope (HST) will give astronomers a tool of unprecedented accuracy to observe the universe: an optically superb instrument free of the atmospheric turbulence, distortion, and brightness that plague all earthbound telescopes. The observatory will carry into orbit two cameras, a pair of spectrographs, a photometer, and fine guidance sensors optimized for astrometry. The diffraction limit for the 2.4-m aperture of the HST corresponds to 90 percent of the radiation from a point source falling within a circle of 0.1 arcsec angular radius at a wavelength of 633 nm. The 15-year mission will make observations in the ultraviolet as well as the optical spectral region, thus, widening the wavelength window to a range extending from the Lyman alpha wavelengnth of 122 nm to just about 2 microns. The observational program that awaits the HST will include the study of planetary atmospheres, in particular the search for aerosols; the study of globular star clusters within the Galaxy; and the determination of the present rate of expansion of the universe. The HST will achieve resolutions of 0.1 arcsec consistently, regardless of observation duration. The HST engineering challenge is also discussed.

  7. The ASTRI SST-2M prototype for the Cherenkov Telescope Array: primary mirror characterization by deflectometry

    NASA Astrophysics Data System (ADS)

    Sironi, Giorgia; Canestrari, Rodolfo

    2015-09-01

    In 2014 the ASTRI Collaboration, led by the Italian National Institute for Astrophysics, has constructed an end-to-end prototype of a dual-mirror imaging air Cherenkov telescope, proposed for the small size class of telescopes for the Cherenkov Telescope Array. The prototype, named ASTRI SST-2M, has been installed at the observing station located at Serra La Nave (Italy). In this project the Brera Astronomical Observatory was responsible for the production and the testing of the primary mirror. The ASTRI SST-2M telescope's primary mirror has an aperture of ~ 4 m, a polynomial design, and consists of 18 individual hexagonal facets. These characteristics require the production and testing of panels with a typical size of ~1 m vertex-to-vertex and with an aspheric component of up to several millimetres. The mirror segments were produced assembling a sandwich of thin glass foils bent at room temperature to reach the desired shape. For the characterization of the mirrors we developed an ad-hoc deflectometry facility that works as an inverse Ronchi test in combination with a ray-tracing code. In this contribution we report the results of the deflectometric measurements performed on the primary mirror segments of the ASTRI SST-2M dual mirror telescope. The expected point spread function and the contributions to the degradation of the image quality are studied.

  8. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2007-01-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these four science themes, JWST will be a large (6.6m) cold (50K) telescope launched to the second Earth-Sun Lagrange point early in the next decade. It is the successor to the Hubble Space Telescope, and is a partnership of NASA, ESA and CSA. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In this paper, the status and capabilities of the observatory and instruments in the context of the major scientific goals are reviewed.

  9. The Northwest Indiana Robotic Telescope

    NASA Astrophysics Data System (ADS)

    Slavin, Shawn D.; Rengstorf, A. W.; Aros, J. C.; Segally, W. B.

    2011-01-01

    The Northwest Indiana Robotic (NIRo) Telescope is a remote, automated observing facility recently built by Purdue University Calumet (PUC) at a site in Lowell, IN, approximately 30 miles from the PUC campus. The recently dedicated observatory will be used for broadband and narrowband optical observations by PUC students and faculty, as well as pre-college students through the implementation of standards-based, middle-school modules developed by PUC astronomers and education faculty. The NIRo observatory and its web portal are the central technical elements of a project to improve astronomy education at Purdue Calumet and, more broadly, to improve science education in middle schools of the surrounding region. The NIRo Telescope is a 0.5-meter (20-inch) Ritchey-Chrétien design on a Paramount ME robotic mount, featuring a seven-position filter wheel (UBVRI, Hα, Clear), Peltier (thermoelectrically) cooled CCD camera with 3056 x 3056, square, 12 μm pixels, and off-axis guiding. It provides a coma-free imaging field of 0.5 degrees square, with a plate scale of 0.6 arcseconds per pixel. The observatory has a wireless internet connection, local weather station which publishes data to an internet weather site, and a suite of CCTV security cameras on an IP-based, networked video server. Control of power to every piece of instrumentation is maintained via internet-accessible power distribution units. The telescope can be controlled on-site, or off-site in an attended fashion via an internet connection, but will be used primarily in an unattended mode of automated observation, where queued observations will be scheduled daily from a database of requests. Completed observational data from queued operation will be stored on a campus-based server, which also runs the web portal and observation database. Partial support for this work was provided by the National Science Foundation's Course, Curriculum, and Laboratory Improvement (CCLI) program under Award No. 0736592.

  10. Las Cumbres Observatory Global Telescope Network

    NASA Astrophysics Data System (ADS)

    Brown, T. M.; Baliber, N.; Bianco, F. B.; Bowman, M.; Burleson, B.; Conway, P.; Crellin, M.; Depagne, É.; De Vera, J.; Dilday, B.; Dragomir, D.; Dubberley, M.; Eastman, J. D.; Elphick, M.; Falarski, M.; Foale, S.; Ford, M.; Fulton, B. J.; Garza, J.; Gomez, E. L.; Graham, M.; Greene, R.; Haldeman, B.; Hawkins, E.; Haworth, B.; Haynes, R.; Hidas, M.; Hjelstrom, A. E.; Howell, D. A.; Hygelund, J.; Lister, T. A.; Lobdill, R.; Martinez, J.; Mullins, D. S.; Norbury, M.; Parrent, J.; Paulson, R.; Petry, D. L.; Pickles, A.; Posner, V.; Rosing, W. E.; Ross, R.; Sand, D. J.; Saunders, E. S.; Shobbrook, J.; Shporer, A.; Street, R. A.; Thomas, D.; Tsapras, Y.; Tufts, J. R.; Valenti, S.; Vander Horst, K.; Walker, Z.; White, G.; Willis, M.

    2013-09-01

    Las Cumbres Observatory Global Telescope (LCOGT) is a young organization dedicated to time-domain observations at optical and (potentially) near-IR wavelengths. To this end, LCOGT is constructing a worldwide network of telescopes, including the two 2 m Faulkes telescopes, as many as 17 × 1 m telescopes, and as many as 23 × 40 cm telescopes. These telescopes initially will be outfitted for imaging and (excepting the 40 cm telescopes) spectroscopy at wavelengths between the atmospheric UV cutoff and the roughly 1-μm limit of silicon detectors. Since the first of LCOGT's 1 m telescopes are now being deployed, we lay out here LCOGT's scientific goals and the requirements that these goals place on network architecture and performance, we summarize the network's present and projected level of development, and we describe our expected schedule for completing it. In the bulk of the paper, we describe in detail the technical approaches that we have adopted to attain desired performance. In particular, we discuss our choices for the number and location of network sites, for the number and sizes of telescopes, for the specifications of the first generation of instruments, for the software that will schedule and control the network's telescopes and reduce and archive its data, and for the structure of the scientific and educational programs for which the network will provide observations.

  11. History of Robotic and Remotely Operated Telescopes

    NASA Astrophysics Data System (ADS)

    Genet, Russell M.

    2011-03-01

    While automated instrument sequencers were employed on solar eclipse expeditions in the late 1800s, it wasn't until the 1960s that Art Code and associates at Wisconsin used a PDP minicomputer to automate an 8-inch photometric telescope. Although this pioneering project experienced frequent equipment failures and was shut down after a couple of years, it paved the way for the first space telescopes. Reliable microcomputers initiated the modern era of robotic telescopes. Louis Boyd and I applied single board microcomputers with 64K of RAM and floppy disk drives to telescope automation at the Fairborn Observatory, achieving reliable, fully robotic operation in 1983 that has continued uninterrupted for 28 years. In 1985 the Smithsonian Institution provided us with a suburb operating location on Mt. Hopkins in southern Arizona, while the National Science Foundation funded additional telescopes. Remote access to our multiple robotic telescopes at the Fairborn Observatory began in the late 1980s. The Fairborn Observatory, with its 14 fully robotic telescopes and staff of two (one full and one part time) illustrates the potential for low operating and maintenance costs. As the information capacity of the Internet has expanded, observational modes beyond simple differential photometry opened up, bringing us to the current era of real-time remote access to remote observatories and global observatory networks. Although initially confined to smaller telescopes, robotic operation and remote access are spreading to larger telescopes as telescopes from afar becomes the normal mode of operation.

  12. Hubble Space Telescope battery background

    NASA Technical Reports Server (NTRS)

    Standlee, Dan

    1991-01-01

    The following topics are presented in viewgraph form and include the following: the MSFC Hubble Space Telescope (HST) Nickel-Hydrogen Battery Contract; HST battery design requirements; HST nickel-hydrogen battery development; HST nickel-hydrogen battery module; HST NiH2 battery module hardware; pressure vessel design; HST NiH2 cell design; offset non-opposing vs. rabbit ear cell; HST NiH2 specified capacity; HST NiH2 battery design; and HST NiH2 module design.

  13. The Large Millimeter Telescope (LMT)

    NASA Astrophysics Data System (ADS)

    Baars, J. W. M.; Carrasco, L.; Schloerb, F. P.

    1999-05-01

    The University of Massachusetts at Amherst, through the FCRAO, and the Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) in Puebla, Mexico, are collaborating in the design, construction and joint operation of the Large Millimeter Telescope (LMT). The LMT is a full aperture telescope of 50 m diameter for operation to a shortest wavelength of 1 mm. First generation facility instruments include a 32-channel spectroscopy receiver for the 85-115 GHz band and a 144-channel bolometer system at 250 GHz. A joint institute, the LMT Observatory, will operate the telescope for the astronomers from the participating institutes and outside observers. Commissioning of the LMT is scheduled to start in 2001. The LMT is expected to contribute in particular to the study of the Universe at high redshifts. Its size and southern location also make it a powerful member of the growing mm-wavelength VLBI activity. The LMT is located on Cerro la Negra in Central Mexico at 4600 m altitude and a latitude of 19 degrees. The site is 100 km east of Puebla. The opacity shows median tau-values of less than 0.15 at 230 GHz from Sep through May, good for operation to 300 GHz. Site preparation and installation of utilities is under way. Work on the telescope foundation will begin in Spring 1999 with steel assembly expected to commence in early 2000. The LMT is being designed by MAN Technologie. It is an exposed, alt-azimuth antenna with a wheel-on-track azimuth drive and double bull-gear elevation drive. An advanced servo-system will aid in achieving the pointing accuracy of 1''. A spacious receiver cabin behind the reflector, allows the deployment of and easy access to several receiver systems. The reflector is a space-frame structure, supporting 130 reflector subframes of about 5x3 m2 which carry the reflector surface panels. The subframes are supported on actuators to enable real-time correction of the reflector surface for deformations, caused by gravity, temperature gradients and

  14. Apollo Telescope Mount Thermal Unit

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center (MSFC) and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM consisted of eight scientific instruments as well as a number of smaller experiments. This image is of the ATM thermal unit being tested in MSFC's building 4619. The thermal unit consisted of an active fluid-cooling system of water and methanol that was circulated to radiators on the outside of the canister. The thermal unit provided temperature stability to the ultrahigh resolution optical instruments that were part of the ATM.

  15. Association of SUMO4 M55V polymorphism with susceptibility to autoimmune and inflammatory diseases: a meta-analysis.

    PubMed

    Zou, Y-F; Feng, X-L; Tao, J-H; Zhu, J-M; Pan, F-M; Su, H; Ye, D-Q

    2010-10-01

    The purpose of this study was to generate large-scale evidence on whether SUMO4 M55V polymorphism is associated with autoimmune and inflammatory diseases using a meta-analysis. We surveyed studies on the association of SUMO4 M55V polymorphism with autoimmune and inflammatory diseases in PubMed. Meta-analysis was performed for genotypes AG versus AA, GG versus AA, GG versus AA + AG, AG + GG versus AA and G allele versus A allele in a fixed/random effect model. We identified 16 studies (11, 407 cases and 10, 679 controls) using PubMed search. When all groups were pooled, we detected the association of SUMO4 M55V polymorphism with autoimmune and inflammatory diseases (G versus A: OR = 1.11, 95%CI = 1.03-1.19, P = 0.005; AG +GG versus AA: OR=1.17, 95%CI=1.06-1.28, P=0.001; GG versus AA+AG: OR=1.07, 95%CI=0.94-1.21, P=0.29; GG versus AA: OR=1.15, 95%CI=1.00-1.34, P=0.06; AG versus AA: OR=1.15, 95%CI=1.08-1.23, P<0.0001). In subgroup analyses, we detected the association of SUMO4 M55V polymorphism with autoimmune and inflammatory diseases in Asian population (G versus A: OR=1.18, 95%CI=1.08-1.28, P=0.0001; AG+GG versus AA: OR=1.30, 95%CI=1.16-1.45, P<0.00001; GG versus AA+AG: OR=1.04, 95%CI=0.78-1.37, P=0.80; GG versus AA: OR=1.20, 95%CI=0.99-1.45, P=0.07; AG versus AA: OR=1.32, 95%CI=1.18-1.49, P<0.00001). But the association was not found in Caucasian population. Meanwhile, an association of SUMO4 M55V polymorphism with autoimmune diabetes was found (G versus A: OR=1.18, 95%CI=1.08-1.30, P=0.0005; AG+GG versus AA: OR=1.22, 95%CI=1.13-1.32, P<0.00001; GG versus AA+AG: OR=1.15, 95%CI=0.96-1.38, P=0.13; GG versus AA: OR=1.32, 95%CI=1.08-1.60, P=0.006; AG versus AA: OR=1.23, 95%CI=1.13-1.33, P<0.00001). This meta-analysis demonstrates the association of SUMO4 M55V polymorphism with autoimmune and inflammatory diseases, especially in Asian population. PMID:20518843

  16. Stratigraphy and nahcolite resources of the saline facies of the Green River Formation, Rio Blanco County, Colorado

    USGS Publications Warehouse

    Dyni, John R.

    1974-01-01

    Based on a study of 10 drill cores, a sequence of oil shale and associated nahcolite, nearly 2,000 feet thick, in the lacustrine Green River Formation (Eocene) in the Piceance Creek basin, Rio Blanco County, Colo., was divided in ascending order into zones 1 to 13, B-groove, Mahogany zone (with lower, middle, and upper parts), and A-groove at the top. The odd-numbered zones and the Mahogany zone are mappable subsurface units of relatively thick oil shale and are distinguished from the even-numbered zones and A- and B-grooves which are thinner units of oil shale of lower grade. Large amounts of nahcolite found in zones 5 to 12 occur in (1) coarse-grained crystalline aggregates scattered through oil shale, (2) laterally continuous units of fine-grained crystals disseminated in oil shale, (3) brown microcrystalline beds, and (4) white coarse-grained beds that grade laterally into halitic rocks toward basin center. The original .upper limit of the nahcolite and halitic rocks is not yet completely known, but the present top is marked by a dissolution surface. Above this surface the rocks, extending from zones 11 or 12 upward into the Mahogany zone, form a water-saturated 'leached zone,' a geohydrologic unit in which large amounts of water-soluble minerals probably mostly nahcolite, and halite, were removed by ground-water dissolution. Rocks in the leached zone, mostly oil shale, are commonly broken and fractured and contain crystal cavities and solution breccias. Several solution breccias can be traced laterally into unleached beds of nahcolite and halite. Although evidence of salines is found in rocks above A-groove, the original saline facies that includes most of the bedded deposits extends from zone 5 upward into A-groove. Potentially ruinable beds of white nahcolite as much as 12 feet thick are found at depths of 1,560 or more feet below the surface. Some thicker beds of high-grade nahcolite are believed to be too close to the dissolution surface for safe room

  17. Mars Telescopic Observations Workshop II

    NASA Technical Reports Server (NTRS)

    Sprague, A. L. (Editor); Bell, J. F., III (Editor)

    1997-01-01

    Mars Telescopic Observations Workshop E convened in Tucson, Arizona, in October 1997 by popular demand slightly over two years following the first successful Mars Telescopic Observations Workshop, held in Ithaca, New York, in August 1995. Experts on Mars from the United Kingdom, Japan, Germany, and the United States were present. Twenty-eight oral presentations were made and generous time allotted for useful discussions among participants. The goals of the workshop were to (1) summarize active groundbased observing programs and evaluate them in the context of current and future space missions to Mars, (2) discuss new technologies and instrumentation in the context of changing emphasis of observations and theory useful for groundbased observing, and (3) more fully understand capabilities of current and planned Mars missions to better judge which groundbased observations are and will continue to be of importance to our overall Mars program. In addition, the exciting new discoveries presented from the Pathfinder experiments and the progress report from the Mars Global Surveyor infused the participants with satisfaction for the successes achieved in the early stages of these missions. Just as exciting was the enthusiasm for new groundbased programs designed to address new challenges resulting from mission science results. We would like to thank the National Aeronautics and Space Administration as well as Dr. David Black, director of the Lunar and Planetary Institute, and the staff of the Institute's Publications and Program Services Department for providing logistical, administrative, and publication support services for this workshop.

  18. ALMA telescope reaches new heights

    NASA Astrophysics Data System (ADS)

    2009-09-01

    of the Array Operations Site. This means surviving strong winds and temperatures between +20 and -20 Celsius whilst being able to point precisely enough that they could pick out a golf ball at a distance of 15 km, and to keep their smooth reflecting surfaces accurate to better than 25 micrometres (less than the typical thickness of a human hair). Once the transporter reached the high plateau it carried the antenna to a concrete pad - a docking station with connections for power and fibre optics - and positioned it with an accuracy of a few millimetres. The transporter is guided by a laser steering system and, just like some cars today, also has ultrasonic collision detectors. These sensors ensure the safety of the state-of-the-art antennas as the transporter drives them across what will soon be a rather crowded plateau. Ultimately, ALMA will have at least 66 antennas distributed over about 200 pads, spread over distances of up to 18.5 km and operating as a single, giant telescope. Even when ALMA is fully operational, the transporters will be used to move the antennas between pads to reconfigure the telescope for different kinds of observations. "Transporting our first antenna to the Chajnantor plateau is a epic feat which exemplifies the exciting times in which ALMA is living. Day after day, our global collaboration brings us closer to the birth of the most ambitious ground-based astronomical observatory in the world", said Thijs de Graauw, ALMA Director. This first ALMA antenna at the high site will soon be joined by others and the ALMA team looks forward to making their first observations from the Chajnantor plateau. They plan to link three antennas by early 2010, and to make the first scientific observations with ALMA in the second half of 2011. ALMA will help astronomers answer important questions about our cosmic origins. The telescope will observe the Universe using light with millimetre and submillimetre wavelengths, between infrared light and radio waves in

  19. Holographic spectrograph for space telescope

    NASA Astrophysics Data System (ADS)

    Ditto, Thomas D.; Lysenko, Sergiy; Crenshaw, Melissa

    2013-09-01

    A spectrograph is described which is made with dual Holographic Optical Elements (HOEs) which are identical and parallel to each other. Both optics are collimating transmission HOEs with focal points that are at equal and opposite distances from each other. The identical HOEs are formed by the interference of a plane wave parallel to the grating plane with an off-axis spherical wave originating in the near-field. In playback, a spectrum can be formed from a point source radiator placed at the position of the recording spherical wave. If played back at an arbitrary wavelength other than the recording wavelength, the image exhibits coma. This spectrograph is intended for an unusual configuration where many nearly monochromatic sources of known wavelengths are separately positioned relative to the first HOE. The special application is in a space telescope capable of resolving spectra from habitable planets within 10 pc. HOEs of this type could be fabricated on membrane substrates with a low areal mass and stowable on rolls for insertion into the second Lagrange point. The intended application is for a 50 x 10 meter class primary objective holographic space telescope with 50 x 10 m HOEs in the spectrograph. We present a computer model of the spectrograph.. Experimental results are compared with predictions from theory. A single HOE is shown to perform over a wider bandwidth and is demonstrated.

  20. Large aperture diffractive space telescope

    DOEpatents

    Hyde, Roderick A.

    2001-01-01

    A large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary objective lens functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass "aiming" at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The objective lens includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the objective lens, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets which may be either earth bound or celestial.

  1. Physical analysis of the complex rye (Secale cereale L.) Alt4 aluminium (aluminum) tolerance locus using a whole-genome BAC library of rye cv. Blanco.

    PubMed

    Shi, B-J; Gustafson, J P; Button, J; Miyazaki, J; Pallotta, M; Gustafson, N; Zhou, H; Langridge, P; Collins, N C

    2009-08-01

    Rye is a diploid crop species with many outstanding qualities, and is important as a source of new traits for wheat and triticale improvement. Rye is highly tolerant of aluminum (Al) toxicity, and possesses a complex structure at the Alt4 Al tolerance locus not found at the corresponding locus in wheat. Here we describe a BAC library of rye cv. Blanco, representing a valuable resource for rye molecular genetic studies, and assess the library's suitability for investigating Al tolerance genes. The library provides 6 x genome coverage of the 8.1 Gb rye genome, has an average insert size of 131 kb, and contains only ~2% of empty or organelle-derived clones. Genetic analysis attributed the Al tolerance of Blanco to the Alt4 locus on the short arm of chromosome 7R, and revealed the presence of multiple allelic variants (haplotypes) of the Alt4 locus in the BAC library. BAC clones containing ALMT1 gene clusters from several Alt4 haplotypes were identified, and will provide useful starting points for exploring the basis for the structural variability and functional specialization of ALMT1 genes at this locus.

  2. A NEW REDUCTION OF THE BLANCO COSMOLOGY SURVEY: AN OPTICALLY SELECTED GALAXY CLUSTER CATALOG AND A PUBLIC RELEASE OF OPTICAL DATA PRODUCTS

    SciTech Connect

    Bleem, L. E.; Stalder, B.; Brodwin, M.; Busha, M. T.; Wechsler, R. H.; Gladders, M. D.; High, F. W.; Rest, A.

    2015-01-01

    The Blanco Cosmology Survey is a four-band (griz) optical-imaging survey of ∼80 deg{sup 2} of the southern sky. The survey consists of two fields centered approximately at (R.A., decl.) = (23{sup h}, –55°) and (5{sup h}30{sup m}, –53°) with imaging sufficient for the detection of L {sub *} galaxies at redshift z ≤ 1. In this paper, we present our reduction of the survey data and describe a new technique for the separation of stars and galaxies. We search the calibrated source catalogs for galaxy clusters at z ≤ 0.75 by identifying spatial over-densities of red-sequence galaxies and report the coordinates, redshifts, and optical richnesses, λ, for 764 galaxy clusters at z ≤ 0.75. This sample, >85% of which are new discoveries, has a median redshift of z = 0.52 and median richness λ(0.4 L {sub *}) = 16.4. Accompanying this paper we also release full survey data products including reduced images and calibrated source catalogs. These products are available at http://data.rcc.uchicago.edu/dataset/blanco-cosmology-survey.

  3. Provenance of the Eocene Soebi Blanco formation, Bonaire, Leeward Antilles: Correlations with post-Eocene tectonic evolution of northern South America

    NASA Astrophysics Data System (ADS)

    Zapata, S.; Cardona, A.; Montes, C.; Valencia, V.; Vervoort, J.; Reiners, P.

    2014-07-01

    Middle to upper Eocene fluvial strata in the island of Bonaire contain detrital components that were tracked to Precambrian to Triassic massifs in northern Colombia and Venezuela. These detrital components confirm previous hypothesis suggesting that Bonaire and the Leeward Antilles were attached to South American basement massifs (SABM). These are composed of different fragmented South American blocks (Paraguana, Falcon, Maracaibo, Guajira, Perija, and Santa Marta) representing an Eocene, right-laterally displaced tectonic piercing point along the southern Caribbean plate margin. U-Pb LA-ICP-MS from the metamorphic boulders of the Soebi Blanco Formation in Bonaire yield Grenvillian peaks ages (1000-1200 Ma), while detrital zircons recovered from the sandy matrix of the conglomerates contain populations with peaks of 1000 Ma-1200 Ma, 750-950 Ma, and 200-300 Ma. These populations match with geochronological data reported for the northern South American massifs. Thermochronological results from the metamorphic clasts yield Paleocene-middle Eocene ages (65-50 Ma) that confirm a regional-scale cooling event in this time. These data imply a land connection between the SABM and the Leeward Antilles in late Eocene times, followed by a significant strike slip right-lateral displacement and transtensional basin opening starting in latest Eocene times. The succession of Eocene tectonic events recorded by the Soebi Blanco Formation and adjacent basins is a major tracer of the oblique convergence of the Caribbean plate against the South American margin.

  4. JWST Telescope Integration and Test Progress

    NASA Technical Reports Server (NTRS)

    Matthews, Gary W.; Whitman, Tony L.; Feinberg, Lee D.; Voyton, Mark F.; Lander, Juli A.; Keski-Kuha, Ritva

    2016-01-01

    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. The JWST Optical Telescope Element (Telescope) integration and test program is well underway. The telescope was completed in the spring of 2016 and the cryogenic test equipment has been through two optical test programs leading up to the final flight verification program. The details of the telescope mirror integration will be provided along with the current status of the flight observatory. In addition, the results of the two optical ground support equipment cryo tests will be shown and how these plans fold into the flight verification program.

  5. JWST telescope integration and test progress

    NASA Astrophysics Data System (ADS)

    Matthews, Gary W.; Whitman, Tony L.; Feinberg, Lee D.; Voyton, Mark F.; Lander, Juli A.; Keski-Kuha, Ritva

    2016-07-01

    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. The JWST Optical Telescope Element (Telescope) integration and test program is well underway. The telescope was completed in the spring of 2016 and the cryogenic test equipment has been through two optical test programs leading up to the final flight verification program. The details of the telescope mirror integration will be provided along with the current status of the flight observatory. In addition, the results of the two optical ground support equipment cryo tests will be shown and how these plans fold into the flight verification program.

  6. Review of lunar telescope studies at MSFC

    NASA Astrophysics Data System (ADS)

    Hilchey, John D.; Nein, Max E.

    1993-09-01

    In the near future astronomers can take advantage of the lunar surface as the new 'high ground' from which to study the universe. Optical telescopes placed and operated on the lunar surface would be successors to NASA's Great Observatories. Four telescopes, ranging in aperture from a 16-m, IR/Vis/UV observatory down to a 1-m, UV 'transit' instrument, have been studied by the Lunar Telescope Working Group and the LUTE (lunar telescope ultraviolet experiment) Task Team of the Marshall Space Flight Center (MSFC). This paper presents conceptual designs of the telescopes, provides descriptions of the telescope subsystem options selected for each concept, and outlines the potential evolution of their science capabilities.

  7. Optical aperture synthesis with electronically connected telescopes.

    PubMed

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D

    2015-04-16

    Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths.

  8. Telescope Systems for Balloon-Borne Research

    NASA Technical Reports Server (NTRS)

    Swift, C. (Editor); Witteborn, F. C. (Editor); Shipley, A. (Editor)

    1974-01-01

    The proceedings of a conference on the use of balloons for scientific research are presented. The subjects discussed include the following: (1) astronomical observations with balloon-borne telescopes, (2) orientable, stabilized balloon-borne gondola for around-the-world flights, (3) ultraviolet stellar spectrophotometry from a balloon platform, (4) infrared telescope for balloon-borne infrared astronomy, and (5) stabilization, pointing, and command control of balloon-borne telescopes.

  9. Optical photometry using Bradford robotic telescope

    NASA Astrophysics Data System (ADS)

    Seal Braun, P.; Baruch, J. E. F.

    2009-06-01

    The Bradford Robotic Telescope (BRT) is located on Mount Teide at Tenerife and is working, taking observations since 2003. It is a fully automated telescope. The hardware and software used for the working of the telescope are described here. Twenty four BL Lac objects are observed since 2005 and magnitudes of the objects are calculated. We describe in this paper the working of BRT and optical BVR photometry of BL Lac objects, observed during 2005-2007.

  10. ANTARES: The first undersea neutrino telescope

    NASA Astrophysics Data System (ADS)

    Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; Ameli, F.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Arnaud, K.; Aslanides, E.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Becherini, Y.; Beltramelli, J.; Bersani, A.; Bertin, V.; Beurthey, S.; Biagi, S.; Bigongiari, C.; Billault, M.; Blaes, R.; Bogazzi, C.; de Botton, N.; Bou-Cabo, M.; Boudahef, B.; Bouwhuis, M. C.; Brown, A. M.; Brunner, J.; Busto, J.; Caillat, L.; Calzas, A.; Camarena, F.; Capone, A.; Caponetto, L.; Cârloganu, C.; Carminati, G.; Carmona, E.; Carr, J.; Carton, P. H.; Cassano, B.; Castorina, E.; Cecchini, S.; Ceres, A.; Chaleil, Th.; Charvis, Ph.; Chauchot, P.; Chiarusi, T.; Circella, M.; Compère, C.; Coniglione, R.; Coppolani, X.; Cosquer, A.; Costantini, H.; Cottini, N.; Coyle, P.; Cuneo, S.; Curtil, C.; D'Amato, C.; Damy, G.; van Dantzig, R.; de Bonis, G.; Decock, G.; Decowski, M. P.; Dekeyser, I.; Delagnes, E.; Desages-Ardellier, F.; Deschamps, A.; Destelle, J.-J.; di Maria, F.; Dinkespiler, B.; Distefano, C.; Dominique, J.-L.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drogou, J.-F.; Drouhin, D.; Druillole, F.; Durand, D.; Durand, R.; Eberl, T.; Emanuele, U.; Engelen, J. J.; Ernenwein, J.-P.; Escoffier, S.; Falchini, E.; Favard, S.; Fehr, F.; Feinstein, F.; Ferri, M.; Ferry, S.; Fiorello, C.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatá, S.; Galeotti, S.; Gay, P.; Gensolen, F.; Giacomelli, G.; Gojak, C.; Gómez-González, J. P.; Goret, Ph.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartmann, B.; Heijboer, A. J.; Heine, E.; Hello, Y.; Henry, S.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hogenbirk, J.; Hsu, C. C.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jourde, D.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Karg, T.; Karkar, S.; Karolak, M.; Katz, U.; Keller, P.; Kestener, P.; Kok, E.; Kok, H.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Kulikovskiy, V.; Lachartre, D.; Lafoux, H.; Lagier, P.; Lahmann, R.; Lahonde-Hamdoun, C.; Lamare, P.; Lambard, G.; Languillat, J.-C.; Larosa, G.; Lavalle, J.; Le Guen, Y.; Le Provost, H.; Levansuu, A.; Lefèvre, D.; Legou, T.; Lelaizant, G.; Lévéque, C.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Magnier, P.; Mangano, S.; Marcel, A.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Masullo, R.; Mazéas, F.; Mazure, A.; Meli, A.; Melissas, M.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Neff, M.; Niess, V.; Nooren, G. J. L.; Oberski, J. E. J.; Olivetto, C.; Palanque-Delabrouille, N.; Palioselitis, D.; Papaleo, R.; Păvălaş, G. E.; Payet, K.; Payre, P.; Peek, H.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Piret, Y.; Poinsignon, J.; Popa, V.; Pradier, T.; Presani, E.; Prono, G.; Racca, C.; Raia, G.; van Randwijk, J.; Real, D.; Reed, C.; Réthoré, F.; Rewiersma, P.; Riccobene, G.; Richardt, C.; Richter, R.; Ricol, J. S.; Rigaud, V.; Roca, V.; Roensch, K.; Rolin, J.-F.; Rostovtsev, A.; Rottura, A.; Roux, J.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Sciliberto, D.; Shanidze, R.; Shirokov, E.; Simeone, F.; Sottoriva, A.; Spies, A.; Spona, T.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Streeb, K.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Tasca, L.; Terreni, G.; Tezier, D.; Toscano, S.; Urbano, F.; Valdy, P.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Venekamp, G.; Verlaat, B.; Vernin, P.; Virique, E.; de Vries, G.; van Wijk, R.; Wijnker, G.; Wobbe, G.; de Wolf, E.; Yakovenko, Y.; Yepes, H.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zúñiga, J.

    2011-11-01

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.

  11. A cooled telescope for infrared balloon astronomy

    NASA Technical Reports Server (NTRS)

    Frederick, C.; Jacobson, M. R.; Harwit, M. O.

    1974-01-01

    The characteristics of a 16 inch liquid helium cooled Cassegrain telescope with vibrating secondary mirror are discussed. The telescope is used in making far infrared astronomical observations. The system houses several different detectors for multicolor photometry. The cooled telescope has a ten to one increase in signal-to-noise ratio over a similar warm version and is installed in a high altitude balloon gondola to obtain data on the H2 region of the galaxy.

  12. Design of Galilean-type telescope systems.

    PubMed

    Menchaca, C; Malacara, D

    1988-09-01

    In this paper we present the design of three Galilean-type telescope systems with magnifications of 2.2x, 4x, and 5x. These systems are free of the large weight and length as well as the reduced field of view, which are frequent undesirable properties of Galilean telescopes. These designs have a moderate field of view and a short length, with reasonably good aberration correction, and may be used as binocular telescopes or magnifiers with a large working distance.

  13. Hubble Space Telescope: The Telescope, the Observations & the Servicing Mission

    NASA Astrophysics Data System (ADS)

    1999-11-01

    Today the HST Archives contain more than 260 000 astronomical observations. More than 13 000 astronomical objects have been observed by hundreds of different groups of scientists. Direct proof of the scientific significance of this project is the record-breaking number of papers published : over 2400 to date. Some of HST's most memorable achievements are: * the discovery of myriads of very faint galaxies in the early Universe, * unprecedented, accurate measurements of distances to the farthest galaxies, * significant improvement in the determination of the Hubble constant and thus the age of the Universe, * confirmation of the existence of blacks holes, * a far better understanding of the birth, life and death of stars, * a very detailed look at the secrets of the process by which planets are created. Europe and HST ESA's contribution to HST represents a nominal investment of 15%. ESA provided one of the two imaging instruments - the Faint Object Camera (FOC) - and the solar panels. It also has 15 scientists and computer staff working at the Space Telescope Science Institute in Baltimore (Maryland). In Europe the astronomical community receives observational assistance from the Space Telescope European Coordinating Facility (ST-ECF) located in Garching, Munich. In return for ESA's investment, European astronomers have access to approximately 15% of the observing time. In reality the actual observing time competitively allocated to European astronomers is closer to 20%. Looking back at almost ten years of operation, the head of ST-ECF, European HST Project Scientist Piero Benvenuti states: "Hubble has been of paramount importance to European astronomy, much more than the mere 20% of observing time. It has given the opportunity for European scientists to use a top class instrument that Europe alone would not be able to build and operate. In specific areas of research they have now, mainly due to HST, achieved international leadership." One of the major reasons for

  14. Meiotic behavior and H3K4m distribution in B chromosomes of Characidium gomesi (Characiformes, Crenuchidae)

    PubMed Central

    Serrano, Érica Alves; Araya-Jaime, Cristian; Suárez-Villota, Elkin Y.; Oliveira, Claudio; Foresti, Fausto

    2016-01-01

    Abstract Characidium gomesi Travasso, 1956 specimens from the Pardo River have up to four heterochromatic supernumerary chromosomes, derived from the sex chromosomes. To access the meiotic behavior and distribution of an active chromatin marker, males and females of Characidium gomesi with two or three B chromosomes were analyzed. Mitotic chromosomes were characterized using C-banding and FISH with B chromosome probes. Meiocytes were subjected to immunofluorescence-FISH assay using anti-SYCP3, anti-H3K4m, and B chromosomes probes. Molecular homology of supernumeraries was confirmed by FISH and by its bivalent conformation in individuals with two of these chromosomes. In individuals with three Bs, these elements formed a bivalent and a univalent. Supernumerary and sex chromosomes exhibited H3K4m signals during pachytene contrasting with their heterochromatic and asynaptic nature, which suggest a more structural role than functional of this histone modification. The implications of this result are discussed in light of the homology, meiotic nuclear organization, and meiotic silencing of unsynapsed chomatin. PMID:27551347

  15. Synthesis of Co/MFe{sub 2}O{sub 4} (M=Fe, Mn) core/shell nanocomposite particles

    SciTech Connect

    Peng Sheng; Xie Jin; Sun Shouheng

    2008-07-15

    Monodispersed cobalt nanoparticles (NPs) with controllable size (8-14 nm) have been synthesized using thermal decomposition of dicobaltoctacarbonyl in organic solvent. The as-synthesized high magnetic moment (125 emu/g) Co NPs are dispersible in various organic solvents, and can be easily transferred into aqueous phase by surface modification using phospholipids. However, the modified hydrophilic Co NPs are not stable as they are quickly oxidized, agglomerated in buffer. Co NPs are stabilized by coating the MFe{sub 2}O{sub 4} (M=Fe, Mn) ferrite shell. Core/shell structured bimagnetic Co/MFe{sub 2}O{sub 4} nanocomposites are prepared with tunable shell thickness (1-5 nm). The Co/MFe{sub 2}O{sub 4} nanocomposites retain the high magnetic moment density from the Co core, while gaining chemical and magnetic stability from the ferrite shell. Compared to Co NPs, the nanocomposites show much enhanced stability in buffer solution at elevated temperatures, making them promising for biomedical applications. - Graphical abstract: The 10 nm/3 nm Co/MFe{sub 2}O{sub 4} (M=Fe, Mn) bimagnetic core/shell nanocomposites are synthesized from the surface coating of ferrite shell over 10 nm Co nanoparticle seeds. The nanocomposites show much enhanced chemical and magnetic stability in solid state, organic solution and aqueous phase, and are promising for biomedical applications.

  16. Recycling bacteria for the synthesis of LiMPO4 (M = Fe, Mn) nanostructures for high-power lithium batteries.

    PubMed

    Zhou, Yanping; Yang, Dan; Zeng, Yi; Zhou, Yan; Ng, Wun Jern; Yan, Qingyu; Fong, Eileen

    2014-10-15

    In this work, a novel waste-to-resource strategy to convert waste bacteria into a useful class of cathode materials, lithium metal phosphate (LiMPO4; M = Fe, Mn), is presented. Escherichia coli (E. coli) bacteria used for removing phosphorus contamination from wastewater are harvested and used as precursors for the synthesis of LiMPO4. After annealing, LiFePO4 and LiMnPO4 nanoparticles with dimensions around 20 nm are obtained. These particles are found to be enveloped in a carbon layer with a thickness around 3-5 nm, generated through the decomposition of the organic matter from the bacterial cell cytoplasm. The battery performance for the LiFePO4 is evaluated. A high discharge capacity of 140 mAh g(-1) at 0.1 C with a flat plateau located at around 3.5 V is obtained. In addition, the synthesized particles display excellent stability and rate capabilities. Even under a high C rate of 10 C, a stable discharge capacity of 75.4 mAh g(-1) can still be achieved.

  17. Meiotic behavior and H3K4m distribution in B chromosomes of Characidium gomesi (Characiformes, Crenuchidae).

    PubMed

    Serrano, Érica Alves; Araya-Jaime, Cristian; Suárez-Villota, Elkin Y; Oliveira, Claudio; Foresti, Fausto

    2016-01-01

    Characidium gomesi Travasso, 1956 specimens from the Pardo River have up to four heterochromatic supernumerary chromosomes, derived from the sex chromosomes. To access the meiotic behavior and distribution of an active chromatin marker, males and females of Characidium gomesi with two or three B chromosomes were analyzed. Mitotic chromosomes were characterized using C-banding and FISH with B chromosome probes. Meiocytes were subjected to immunofluorescence-FISH assay using anti-SYCP3, anti-H3K4m, and B chromosomes probes. Molecular homology of supernumeraries was confirmed by FISH and by its bivalent conformation in individuals with two of these chromosomes. In individuals with three Bs, these elements formed a bivalent and a univalent. Supernumerary and sex chromosomes exhibited H3K4m signals during pachytene contrasting with their heterochromatic and asynaptic nature, which suggest a more structural role than functional of this histone modification. The implications of this result are discussed in light of the homology, meiotic nuclear organization, and meiotic silencing of unsynapsed chomatin. PMID:27551347

  18. A simple solvothermal synthesis of MFe{sub 2}O{sub 4} (M=Mn, Co and Ni) nanoparticles

    SciTech Connect

    Yanez-Vilar, S.; Sanchez-Andujar, M.; Gomez-Aguirre, C.; Senaris-Rodriguez, M.A.

    2009-10-15

    Nanoparticles of MFe{sub 2}O{sub 4} (M=Mn, Co and Ni), with diameters ranging from 5 to 10 nm, have been obtained through a solvothermal method. In this synthesis, an alcohol (benzyl alcohol or hexanol) is used as both a solvent and a ligand; it is not necessary, therefore, to add a surfactant, simplifying the preparation of the dispersed particles. We have studied the influence of the synthetic conditions (temperature, time of synthesis and nature of solvent) on the quality of the obtained ferrites and on their particle size. In this last aspect, we have to highlight that the solvent plays an important role on the particle size, obtaining the smallest diameters when hexanol was used as a solvent. In addition, the magnetic properties of the obtained compounds have been studied at room temperature (RT). These compounds show a superparamagnetic behaviour, as was expected for single domain nanoparticles, and good magnetization values. The maxima magnetization values of the MFe{sub 2}O{sub 4} samples are quite high for such small nanoparticles; this is closely related to the high crystallinity of the particles obtained by the solvothermal method. - Graphical abstract: An adaptation of the solvothermal method allow us to obtain stable suspensions of monodispersed particles of MFe{sub 2}O{sub 4} (M=Mn, Co and Ni), with diameters ranging from 5 to 10 nm, and with good crystallinity.

  19. Preliminary Cost Model for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Prince, F. Andrew; Smart, Christian; Stephens, Kyle; Henrichs, Todd

    2009-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. However, great care is required. Some space telescope cost models, such as those based only on mass, lack sufficient detail to support such analysis and may lead to inaccurate conclusions. Similarly, using ground based telescope models which include the dome cost will also lead to inaccurate conclusions. This paper reviews current and historical models. Then, based on data from 22 different NASA space telescopes, this paper tests those models and presents preliminary analysis of single and multi-variable space telescope cost models.

  20. The radio telescope RATAN 600

    NASA Technical Reports Server (NTRS)

    Schwartz, R.

    1978-01-01

    A six-meter radio antenna having 900 reflector elements arranged on a 579 -meter diameter circle and located in the northern part of the Caucasian Mountains is described. The elements are about 7.4 m by 2 m resulting in a total reflector surface of about 10,000 sq m. Individual elements can be adjusted by changing 260 screws and can be rotated both horizontally and vertically as well as being moved translationally in the radial direction. The circular area is equipped with a grid of tracks where four asymmetric cylindrical paraboloids serving as subreflectors are located. The directional profile or observational direction of the antenna is achieved by shifting the subreflectors and changing the position of the reflecting elements with respect to the subreflectors. Different radio sources can be observed at the same time by using different subreflectors and their associated reflector sectors. Each subreflector is connected to a receiving station. Capabilities for spectroscopic observation are discussed.

  1. Diffractive X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Skinner, Gerald K.

    2010-01-01

    Diffractive X-ray telescopes, using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution many orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the super-massive black holes in the center of active galaxies. What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

  2. The Giant Metrewave Radio Telescope

    NASA Astrophysics Data System (ADS)

    Nityananda, R.

    2003-05-01

    The Giant Metrewave Radio Telescope (GMRT) of the National Centre of Radio Astrophysics (NCRA) of the Tata Institute of Fundamental Research (TIFR) at Khodad, India, has been operational in the band 0.2 to 2 metres for the last two and a half years. The system characteristics and performance and recent results from the group will be presented. Details of use over the last six months by scientists from other observatories under the GMRT Time Allocation Committee (GTAC) and future plans will be also be reviewed in this paper. Areas which have been studied include observations made in the GMRT band of neutral hydrogen, nearby galaxies, supernova remnants, the Galactic Centre, pulsars, the Sun and others.

  3. Unparticle effects in neutrino telescopes

    SciTech Connect

    Gonzalez-Sprinberg, G.; Martinez, R.; Sampayo, Oscar A.

    2009-03-01

    Recently H. Georgi has introduced the concept of unparticles in order to describe the low energy physics of a nontrivial scale invariant sector of an effective theory. We investigate its physical effects on the neutrino flux to be detected in a kilometer cubic neutrino telescope such as IceCube. We study the effects, on different observables, of the survival neutrino flux after through the Earth, and the regeneration originated in the neutral currents. We calculate the contribution of unparticle physics to the neutrino-nucleon interaction and, then, to the observables in order to evaluate detectable effects in IceCUbe. Our results are compared with the bounds obtained by other nonunderground experiments. Finally, the results are presented as an exclusion plot in the relevant parameters of the new physics stuff.

  4. Recent results from telescope array

    NASA Astrophysics Data System (ADS)

    Fukushima, Masaki

    2015-08-01

    The Telescope Array (TA) is an experiment to observe Ultra-High Energy Cosmic Rays (UHECRs). TA's recent results, the energy spectrum and anisotropy based on the 6-year surface array data, and the primary composition obtained from the shower maximum (XMAX) are reported. The spectrum demonstrates a clear dip and cutoff. The shape of the spectrum is well described by the energy loss of extra-galactic protons interacting with the cosmic microwave background (CMB). Above the cutoff, a medium-scale (20∘ radius) flux enhancement was observed near the Ursa-Major. A chance probability of creating this hotspot from the isotropic flux is 4.0 σ. The measured ⟨XMAX⟩ is consistent with the primary being proton or light nuclei for energies 1018.2 eV-1019.2 eV.

  5. SLAC Cosmic Ray Telescope Facility

    SciTech Connect

    Va'vra, J.

    2010-02-15

    SLAC does not have a test beam for the HEP detector development at present. We have therefore created a cosmic ray telescope (CRT) facility, which is presently being used to test the FDIRC prototype. We have used it in the past to debug this prototype with the original SLAC electronics before going to the ESA test beam. Presently, it is used to test a new waveform digitizing electronics developed by the University of Hawaii, and we are also planning to incorporate the new Orsay TDC/ADC electronics. As a next step, we plan to put in a full size DIRC bar box with a new focusing optics, and test it together with a final SuberB electronics. The CRT is located in building 121 at SLAC. We anticipate more users to join in the future. This purpose of this note is to provide an introductory manual for newcomers.

  6. Adaptive Optics for Large Telescopes

    SciTech Connect

    Olivier, S

    2008-06-27

    The use of adaptive optics was originally conceived by astronomers seeking to correct the blurring of images made with large telescopes due to the effects of atmospheric turbulence. The basic idea is to use a device, a wave front corrector, to adjust the phase of light passing through an optical system, based on some measurement of the spatial variation of the phase transverse to the light propagation direction, using a wave front sensor. Although the original concept was intended for application to astronomical imaging, the technique can be more generally applied. For instance, adaptive optics systems have been used for several decades to correct for aberrations in high-power laser systems. At Lawrence Livermore National Laboratory (LLNL), the world's largest laser system, the National Ignition Facility, uses adaptive optics to correct for aberrations in each of the 192 beams, all of which must be precisely focused on a millimeter scale target in order to perform nuclear physics experiments.

  7. The Onsala Twin Telescope Project

    NASA Astrophysics Data System (ADS)

    Haas, R.

    2013-08-01

    This paper described the Onsala Twin Telescope project. The project aims at the construction of two new radio telescopes at the Onsala Space Observatory, following the VLBI2010 concept. The project starts in 2013 and is expected to be finalized within 4 years. Z% O. Rydbeck. Chalmers Tekniska Högskola, Göteborg, ISBN 91-7032-621-5, 407-823, 1991. B. Petrachenko, A. Niell, D. Behrend, B. Corey, J. Böhm, P. Charlot, A. Collioud, J. Gipson, R. Haas, Th. Hobiger, Y. Koyama, D. MacMillan, Z. Malkin, T. Nilsson, A. Pany, G. Tuccari, A. Whitney, and J. Wresnik. Design Aspects of the VLBI2010 System. NASA/TM-2009-214180, 58 pp., 2009. R. Haas, G. Elgered, J. Löfgren, T. Ning, and H.-G. Scherneck. Onsala Space Observatory - IVS Network Station. In K. D. Baver and D. Behrend, editors, International VLBI Service for Geodesy and Astrometry 2011 Annual Report, NASA/TP-2012-217505, 88-91, 2012. H.-G. Scherneck, G. Elgered, J. M. Johansson, and B. O. Rönnäng. Phys. Chem. Earth, Vol. 23, No. 7-8, 811-823, 1998. A. R. Whitney. Ph.D. thesis, Dept. of Electrical engineering, MIT Cambridge, MA., 1974. B. A. Harper, J. D. Kepert, and J. D. Ginger. Guidelines for converting between various wind averaging periods in tropical cyclone conditions. WMO/TD-No. 1555, 64 pp., 2010 (available at \\url{http://www.wmo.int/pages/prog/www/tcp/documents/WMO_TD_1555_en.pdf})

  8. Calculating net primary productivity of forest ecosystem with G4M model: case study on South Korea

    NASA Astrophysics Data System (ADS)

    Sung, S.; Forsell, N.; Kindermann, G.; Lee, D. K.

    2015-12-01

    Net primary productivity (NPP) is considered as an important indicator for forest ecosystem since the role of forest is highlighted as a stepping stone for mitigating climate change. Especially rapidly urbanizing countries which have high carbon dioxide emission have large interest in calculating forest NPP under climate change. Also maximizing carbon sequestration in forest sector has became a global goal to minimize the impacts of climate change. Therefore, the objective of this research is estimating carbon stock change under the different climate change scenarios by using G4M (Global Forestry Model) model in South Korea. We analyzed four climate change scenarios in different Representative Concentration Pathway (RCP). In this study we used higher resolution data (1kmx1km) to produce precise estimation on NPP from regionalized four climate change scenarios in G4M model. Finally, we set up other environmental variables for G4M such as water holding capacity, soil type and elevation. As a result of this study, temperature showed significant trend during 2011 to 2100. Average annual temperature increased more than 5℃ in RCP 8.5 scenario while 1℃ increased in RCP 2.6 scenario. Each standard deviation of the annual average temperature showed similar trend. Average annual precipitation showed similarity within four scenarios. However the standard deviation of average annual precipitation is higher in RCP8.5 scenario which indicates the ranges of precipitation is wider in RCP8.5 scenario. These results present that climate indicators such as temperature and precipitation have uncertainties in climate change scenarios. NPP has changed from 5-13tC/ha/year in RCP2.6 scenario to 9-21 tC/ha/year in RCP8.5 scenario in 2100. In addition the spatial distribution of NPP presented different trend among the scenarios. In conclusion we calculated differences in temperature and precipitation and NPP change in different climate change scenarios. This study can be applied for

  9. Structural, elastic, electronic and optical properties of Cu3MTe4 (M = Nb, Ta) sulvanites — An ab initio study

    NASA Astrophysics Data System (ADS)

    Ali, M. A.; Roknuzzaman, M.; Nasir, M. T.; Islam, A. K. M. A.; Naqib, S. H.

    2016-04-01

    The elastic, electronic, and optical properties of Cu3MTe4 (M = Nb, Ta) are investigated for the first time using the density-functional formalism. The optimized crystal structure is obtained and the lattice parameters are compared with available experimental data. Different elastic moduli are calculated. The Born criteria for mechanical stability are found to be fulfilled from the estimated values of the elastic moduli, Cij. The band structure and the electronic energy density of states (EDOS) are also determined. The band structure calculations show semiconducting behavior for both the compounds. The theoretically calculated values of the band gaps are found to be strongly dependent on the nature of the functional representing the exchange correlations. Technologically significant optical parameters (e.g., dielectric function, refractive index, absorption coefficient, optical conductivity, reflectivity, and loss function) have been determined. Important conclusions are drawn based on the theoretical findings.

  10. Studies on CO 2 decomposition over H 2-reduced MFe 2O 4 (M = Ni, Cu, Co, Zn)

    NASA Astrophysics Data System (ADS)

    Ma, Lingjuan; Wu, Rui; Liu, Huadong; Xu, Wenju; Chen, Linshen; Chen, Songying

    2011-12-01

    Decomposition of CO 2 over reduced MFe 2O 4 (M = Ni, Co, Cu, Zn) was studied by H 2-TPR, H 2-TG, and CO 2-TG. XRD Rietveld analysis was used for determining phase composition and crystallite size of reduced and oxidized samples. The results indicate that spinel CoFe 2O 4 and CuFe 2O 4 are reduced to metals by H 2, while ZnFe 2O 4 and NiFe 2O 4 only partly reduced at 350 °C. The CoFe 2O 4 spinel ferrite shows the best activity in decomposing CO 2 and the ZnFe 2O 4 shows the best recovery ability in the process of redox.

  11. Optical observations of Swift J1822.3-1606 with the 10.4m Gran Telescopio Canarias

    NASA Astrophysics Data System (ADS)

    Rea, N.; Mignani, R. P.; Israel, G. L.; Esposi, P.

    2011-07-01

    We observed the field of the new Soft Gamma-ray Repeater (SGR), Swift J1822.3-1606 (Cummings et al., Atel #3488) with the 10.4m Gran Telescopio Canarias (GranTeCan). Images have been taken with the OSIRIS camera, a two-chip CCD with a nominal 7.8'x7.8' arcmin field of view and a pixel size of 0.125". Observations have been taken in the z-Sloan-band on 2011 July 21st (unfortunately in bright lunar time, with a large sky background and a seeing ranging from 1-2.5") with exposure times of 54-108s.

  12. 2.4 m offset dual reflector antenna for a transportable 20/30 GHz earth station

    NASA Astrophysics Data System (ADS)

    Ansorge, Harald

    1990-11-01

    An offset dual-reflector antenna for transportable and stationary earth stations operating in the 20/30-GHz band is described. The principles of dual-reflector systems are outlined, and emphasis is placed on the problem of reflector-profile errors and their influence on the radiation characteristics of the antenna. With a 2.4-m circular aperture, the antenna achieves a gain of 55.9 dB at 29.75 GHZ at the feed-horn input interface; this value corresponds to an antenna efficiency of 70 percent. The main-reflector and subreflector spillovers are considered, and a complete feed system is presented. Measured azimuth radiation patterns are assessed, and it is noted that the subreflector spillover is eliminated by using a metal box enclosing the feed/subreflector unit.

  13. Electrical relaxation studies of olivine type nanocrystalline LiMPO4 (M=Ni, Mn and Co) materials

    NASA Astrophysics Data System (ADS)

    Cheruku, Rajesh; Kruthika, G.; Govindaraj, G.; Vijayan, Lakshmi

    2015-11-01

    The olivine type LiMPO4 (M=Ni, Mn and Co) materials were synthesized by solution combustion technique using glycine as fuel. The structural characterizations were explored to confirm the phase formation of materials. The scanning electron microscope was used to identify the morphology of olivine materials. The local structure and chemical bonding between MO6 octahedral and (PO4)3- tetrahedral groups were probed by Raman spectroscopy. Grain and grain boundaries were contributed for ion relaxation and dc conduction in olivine materials. Two orders of enhancement in ionic conductivity was observed in these olivine materials than the reported value. Among all the explored olivine samples, LiMnPO4 showed highest enhancement in conductivity due to weak Li-O bonding and largest unit cell volume.

  14. Application of very low energy neutron radiography with energy selection system using 4Qc(4m) supermirror

    NASA Astrophysics Data System (ADS)

    Kawabata, Yuji; Hino, Masahiro; Nakano, Takafumi; Sunohara, Hiroaki; Matsushima, Uzuki; Geltenbort, Peter

    2005-04-01

    A high contrast neutron CT system is installed in the VCN/PF2 port of Institut Laue-Langevin and VCN port of Kyoto University Reactor (KUR). A converter+C-CCD system is used for the image detection. This system has an option of the energy selection system by neutron reflection on a 4Qc (4m) supermirror. The critical angle of the neutron reflection on this mirror is four times larger than that of natural nickel and the diameter is 20 cm. As the neutron reflection on a mirror removes faster neutrons, it can be used as a low pass filter of the neutron energy. The upper limit of the reflected neutron energy can be easily changed by the rotation of the mirror. As the application of this high contrast imaging system, the density nonuniformity of an aluminum welding sample can be shown by the refraction effect of very cold neutrons in VCN/PF2/ILL.

  15. Polyol-mediated low-temperature synthesis of crystalline tungstate nanoparticles MWO4 (M = Mn, Fe, Co, Ni, Cu, Zn)

    NASA Astrophysics Data System (ADS)

    Ungelenk, Jan; Speldrich, Manfred; Dronskowski, Richard; Feldmann, Claus

    2014-05-01

    A polyol-mediated synthesis is presented as a general access to nanoscaled transition-metal tungstates MWO4 (M = Mn, Fe, Co, Ni, Cu, Zn). Using simple inorganic salts as starting materials, uniform and readily crystalline nanoparticles are prepared under mild conditions (T < 220 °C). The nanoparticles are of high quality in terms of small diameter (<20 nm), high surface area (up to 200 m2 g-1), phase purity and yield (>85%). Size, morphology and composition can be adjusted by precise variation of the reaction parameters, including type of starting material, duration and temperature of reaction. The transition-metal tungstate nanoparticles are fully functional, exhibiting typical properties of this class of materials, for instance, superparamagnetism (CoWO4), luminescence (ZnWO4) and photocatalytic activity (CuWO4).

  16. Mutation in the AP4M1 Gene Provides a Model for Neuroaxonal Injury in Cerebral Palsy

    PubMed Central

    Verkerk, Annemieke J.M.H.; Schot, Rachel; Dumee, Belinda; Schellekens, Karlijn; Swagemakers, Sigrid; Bertoli-Avella, Aida M.; Lequin, Maarten H.; Dudink, Jeroen; Govaert, Paul; van Zwol, A.L.; Hirst, Jennifer; Wessels, Marja W.; Catsman-Berrevoets, Coriene; Verheijen, Frans W.; de Graaff, Esther; de Coo, Irenaeus F.M.; Kros, Johan M.; Willemsen, Rob; Willems, Patrick J.; van der Spek, Peter J.; Mancini, Grazia M.S.

    2009-01-01

    Cerebral palsy due to perinatal injury to cerebral white matter is usually not caused by genetic mutations, but by ischemia and/or inflammation. Here, we describe an autosomal-recessive type of tetraplegic cerebral palsy with mental retardation, reduction of cerebral white matter, and atrophy of the cerebellum in an inbred sibship. The phenotype was recorded and evolution followed for over 20 years. Brain lesions were studied by diffusion tensor MR tractography. Homozygosity mapping with SNPs was performed for identification of the chromosomal locus for the disease. In the 14 Mb candidate region on chromosome 7q22, RNA expression profiling was used for selecting among the 203 genes in the area. In postmortem brain tissue available from one patient, histology and immunohistochemistry were performed. Disease course and imaging were mostly reminiscent of hypoxic-ischemic tetraplegic cerebral palsy, with neuroaxonal degeneration and white matter loss. In all five patients, a donor splice site pathogenic mutation in intron 14 of the AP4M1 gene (c.1137+1G→T), was identified. AP4M1, encoding for the μ subunit of the adaptor protein complex-4, is involved in intracellular trafficking of glutamate receptors. Aberrant GluRδ2 glutamate receptor localization and dendritic spine morphology were observed in the postmortem brain specimen. This disease entity, which we refer to as congenital spastic tetraplegia (CST), is therefore a genetic model for congenital cerebral palsy with evidence for neuroaxonal damage and glutamate receptor abnormality, mimicking perinatally acquired hypoxic-ischemic white matter injury. PMID:19559397

  17. Proposed Integrated Radio-Telescope Network

    NASA Technical Reports Server (NTRS)

    Cohen, M. H.; Ewing, M. S.; Levy, G. S.; Mallis, R. K.; Readhead, A. C. S.; Smith, J. R.; Backer, D. C.

    1982-01-01

    Proposed network of radio telescopes, controlled by a central computer and managed by a single organization, offer potential for research on a scale that could not be matched by present privately and publicly-owned radio telescopes. With 10 antenna sites, network would establish base lines thousands of miles long. Antennas will be linked to computer center by telephone circuits.

  18. Milestone reached for James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2016-03-01

    The primary mirror for the James Webb Space Telescope (JWST) - the successor to the Hubble Space Telescope - is complete after engineers at NASA's Goddard Space Flight Center in Maryland, US, put in place the craft's 18th and final mirror segment.

  19. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; Vanlew, K.; Melsheimer, T.; Melsheimer, L.; Rideout, C.; Patterson, T.

    1997-12-01

    A second observatory of the Telescopes in Education (TIE) project is in the planning stages, with hopes to be in use by fall 1998. The Little Thompson Observatory will be located adjacent to Berthoud High School in northern Colorado. TIE has offered the observatory a Tinsley 18" Cassegrain telescope on a 10-year loan. Local schools and youth organizations will have prioritized access to the telescope until midnight; after that, the telescope will be open to world-wide use by schools via the Internet. The first TIE observatory is a 24" telescope on Mt. Wilson, already booked through July 1998. That telescope has been in use every clear night for the past four years by up to 50 schools per month. Students remotely control the telescope over the Internet, and then receive the images on their local computers. The estimated cost of the Little Thompson Observatory is roughly \\170,000. However, donations of labor and materials have reduced the final price tag closer to \\40,000. Habitat for Humanity is organized to construct the dome, classrooms, and other facilities. Tom and Linda Melsheimer, who developed the remote telescope control system for the University of Denver's Mount Evans Observatory, are donating a similar control system. The formally-trained, all-volunteer staff will be comprised of local residents, teachers and amateur astronomers. Utilities and Internet access will be provided by the Thompson School District.

  20. A Mechanical Analogue of the Refracting Telescope

    ERIC Educational Resources Information Center

    Vannoni, Maurizio; Molesini, Giuseppe; Sordini, Andrea; Straulino, Samuele

    2011-01-01

    The recent celebration of the discoveries made by Galileo four centuries ago has attracted new attention to the refracting telescope and to its use as an instrument for the observation of the night sky. This has offered the opportunity for addressing in the classroom the basic principles explaining the operation of the telescope. When doing so, a…

  1. Longer-baseline telescopes using quantum repeaters.

    PubMed

    Gottesman, Daniel; Jennewein, Thomas; Croke, Sarah

    2012-08-17

    We present an approach to building interferometric telescopes using ideas of quantum information. Current optical interferometers have limited baseline lengths, and thus limited resolution, because of noise and loss of signal due to the transmission of photons between the telescopes. The technology of quantum repeaters has the potential to eliminate this limit, allowing in principle interferometers with arbitrarily long baselines. PMID:23006349

  2. Galaxies, quasars, and beyond - The Space Telescope

    NASA Astrophysics Data System (ADS)

    Bahcall, J. N.

    1983-03-01

    The overall NASA plans for the Space Telescope are described. A brief history of the development of the Space Telescope is presented and the major characteristics of the ST Observatory are summarized. The astronomical instruments that will be used in the first few years are described and some of the important scientific projects are outlined.

  3. Adaptive compensation for an optical tracking telescope

    NASA Technical Reports Server (NTRS)

    Gilbart, J. W.; Winston, G. C.

    1974-01-01

    The application of model referenced adaptive control theory to an optical tracking telescope is discussed. The capability of the adaptive technique to compensate for mount irregularities such as inertial variations and bearing friction is demonstrated via field test results on a large tracking telescope. Results are presented which show a 6 to 1 improvement in tracking accuracy for a worst-case satellite trajectory.

  4. Mineralized and Barren Tourmaline Breccia at Río Blanco-Los Bronces Copper Deposit, Central Chile

    NASA Astrophysics Data System (ADS)

    Hohf, Michael; Seifert, Thomas; Ratschbacher, Lothar; Rabbia, Osvaldo; Krause, Joachim; Haser, Sabine; Cuadra, Patricio

    2014-05-01

    The Río Blanco-Los Bronces porphyry copper-molybdenum cluster (14.8-4.3 Ma) in central Chile is one of the largest mining districts of the world with more than 200 Mt of contained Cu; almost 30% of these resources are hosted by hydrothermal breccias. These breccia complexes are tourmaline-, biotite-, chlorite-, or iron oxide-cemented and are widespread in the Paleo-Eocene and Mio-Pliocene porphyry Cu-Mo belt of the central Andes. The ongoing research project aims to understand the time-space relationships between the different breccia bodies and the multiple porphyry intrusions. For this, two cross sections in the southern part of the deposit (Sur-Sur and La Americana areas) are studied. Most interesting from the economic/genetic point of view is the intermineral breccia (tourmaline- and biotite-cemented), which have high copper grades. It is under debate whether there is a vertical mineralogical zonation of the cement of the breccia body from tourmaline-rich at the top to biotite-dominated at the bottom, or there are two superimposed breccia formation events. Textural and mineralogical observations of benches- and tunnels-outcrops, drill cores, and polished-thin sections support the first hypothesis. Our work has been focused on tourmaline chemistry due to its high resistance to alteration and weathering, which allows this mineral to retain its original isotopic signature. Preliminary results of 127 microprobe measurements of tourmaline chemistry from the early mineralized breccia (BXT) and the late barren one (BXTTO) show that all the tourmalines belong to the alkali group and the composition ranges between the dravite-schorl end members. There is a pronounced negative correlation between Fe (ferric?) and Al, probably due to exchange at the Z octahedral position. The backscatter images of tourmaline show oscillatory and sector zonings, i.e., alternating light bands/zones (high CaO, FeO, Na2O) and darker ones (enriched in Al2O3 and MgO). There is no significant

  5. Software controls for the ATST Solar Telescope

    NASA Astrophysics Data System (ADS)

    Goodrich, Bret D.; Wampler, Stephen B.

    2004-09-01

    The Advanced Technology Solar Telescope (ATST) is intended to be the premier solar observatory for experimental solar physics. The ATST telescope control software is designed to operate similar to current nighttime telescopes, but will contain added functionality required for solar observations. These additions include the use of solar coordinate systems, non-sidereal track rates, solar rotation models, alternate guide signal sources, the control of thermal loads on the telescope, unusual observation and calibration motions, and serendipitous acquisition of transient objects. These requirements have resulted in a design for the ATST telescope control system (TCS) that is flexible and well-adapted for solar physics experiments. This report discusses both the classical design of the ATST TCS and the modifications required to observe in a solar physics environment. The control and servo loops required to operate both the pointing and wavefront correction systems are explained.

  6. James Webb Space Telescope Project (JWST) Overview

    NASA Technical Reports Server (NTRS)

    Dutta, Mitra

    2008-01-01

    This presentation provides an overview of the James Webb Space Telescope (JWST) Project. The JWST is an infrared telescope designed to collect data in the cosmic dark zone. Specifically, the mission of the JWST is to study the origin and evolution of galaxies, stars and planetary systems. It is a deployable telescope with a 6.5 m diameter, segmented, adjustable primary mirror. outfitted with cryogenic temperature telescope and instruments for infrared performance. The JWST is several times more sensitive than previous telescope and other photographic and electronic detection methods. It hosts a near infrared camera, near infrared spectrometer, mid-infrared instrument and a fine guidance sensor. The JWST mission objection and architecture, integrated science payload, instrument overview, and operational orbit are described.

  7. Optical design of a rotating eyepiece telescope

    NASA Astrophysics Data System (ADS)

    Siddique, M.; Nasim, F.; Khan, A. N.; Gul, A.

    2016-08-01

    Flexible eyepiece telescope has been designed and verified. The rotating eyepiece of telescope will facilitate viewing of objects in a remote or out of sight target. Eyepiece arm of telescope can be rotated upto 360o keeping objective and reticule unchanged and ensuring zero deviation in reticule inclination. Main application of this scope is off axis viewing of objects. Image inversion has been carried out by using pair of mirrors and length of telescope is controlled by using relay lenses. The optical design, simulation and image analysis has been carried out by using ZEMAX®. Magnification of telescope is between 10∼⃒12 times with FOV of 60. Experiment has been carried out using uncoated Edmund Optics and optical tool box of Micro Series Kit, NEWPORT.

  8. Las Cumbres Observatory Global Telescope 1-meter Telescope Project: Design, Deployment Plans, Status

    NASA Astrophysics Data System (ADS)

    Brown, Timothy M.; Burleson, B.; Crellin, M.; De Vera, J.; Dubberly, M.; Greene, R.; Falarski, M.; Haldeman, B.; Hausler, S.; Haynes, R.; Hjelstrom, A.; Hygelund, J.; Johnson, D.; Lobdill, R.; Martinez, J.; Mullins, D.; Pickles, A.; Posner, V.; Rosing, W.; Tufts, J.; Vander Horst, K.; Vanderhyden, B.; Walker, Z.

    2010-01-01

    Las Cumbres Observatory Global Telescope (LCOGT) is a privately-funded observatory dedicated to time-domain astronomy. Our main observing tool will be a homogeneous world-wide network of 12 x 1m optical telescopes, each equipped for both imaging and spectroscopy. Here we describe the LCOGT 1m telescope design, its development status, and our plans for deploying a dozen or so such telescopes in a worldwide network capable of continuous observing. We also describe the 80 cm Sedgwick telescope, which is now in regular operation as a research instrument, and which has served as a prototype for many of the 1m mechanical and control systems.

  9. 3D DIC tests of mirrors for the single-mirror small-size telescope of CTA

    NASA Astrophysics Data System (ADS)

    Rataj, M.; Malesa, M.; Kujawińska, M.; Płatos, Ł.; Wawer, P.; Seweryn, K.; Malowany, K.

    2015-10-01

    The Cherenkov Telescope Array (CTA) is the next generation very high energy gamma-ray observatory. Three classes of telescopes, of large, medium and small sizes are designed and developed for the observatory. The single-mirror option for the small-size telescopes (SST-1M), of 4 m diameter, dedicated to the observations of the highest energy gamma-rays above several TeV, consists of 18 hexagonal mirror facets of 78 cm flat-to-flat. The goal of the work described in this paper is the investigation of a surface shape quality of the mirror facets of the SST-1M CTA telescope. The mirrors measured are made of composite materials formed using sheet moulding compound (SMC) technology. This solution is being developed as an alternative to glass mirrors, to minimize the production cost of hundreds of mirrors for the network of telescopes, while retaining the optical quality of the telescope. To evaluate the progress of design, production technology and the mirrors' functionality in operating conditions, the three-dimensional (3D) Digital Image Correlation (DIC) method was selected and implemented for testing selected mirrors. The method and measurement procedure are described. The novel measurement approach based on 3D DIC has been proven to be well suited to the investigation of the mirrors' behavior with temperature, producing the necessary accuracy.

  10. ALMA Telescope Reaches New Heights

    NASA Astrophysics Data System (ADS)

    2009-09-01

    ball at a distance of nine miles, and to keep their smooth reflecting surfaces accurate to less than the thickness of a human hair. Once the transporter reached the high plateau it carried the antenna to a concrete pad -- a docking station with connections for power and fiber optics -- and positioned it with an accuracy of a small fraction of an inch. The transporter is guided by a laser steering system and, just like some cars, also has ultrasonic collision detectors. These sensors ensure the safety of the state-of-the-art antennas as the transporter drives them across what will soon be a rather crowded plateau. Ultimately, ALMA will have at least 66 antennas distributed over about 200 pads, spread over distances of up to 11.5 miles and operating as a single, giant telescope. Even when ALMA is fully operational, the transporters will be used to move the antennas between pads to reconfigure the telescope for different kinds of observations. This first ALMA antenna at the high site will soon be joined by others, and the ALMA team looks forward to making their first observations from the Chajnantor plateau. They plan to link three antennas by early 2010, and to make the first scientific observations with ALMA in the second half of 2011. ALMA will help astronomers answer important questions about our cosmic origins. The telescope will observe the Universe using light with millimeter and submillimeter wavelengths, between infrared light and radio waves in the electromagnetic spectrum. Light at these wavelengths comes from some of the coldest, and from some of the most distant objects in the cosmos. These include cold clouds of gas and dust where new stars are being born, or remote galaxies towards the edge of the observable universe. The Universe is relatively unexplored at submillimeter wavelengths, as the telescopes need extremely dry atmospheric conditions, such as those at Chajnantor, and advanced detector technology. The Atacama Large Millimeter/submillimeter Array

  11. Synthesis, crystal structures and ionic conductivities of Bi 14P 4O 31 and Bi 50V 4O 85. Two members of the series Bi 18-4mM 4mO 27+4m ( M=P, V) related to the fluorite-type structure

    NASA Astrophysics Data System (ADS)

    Mauvy, F.; Launay, J. C.; Darriet, J.

    2005-06-01

    The two hitherto unknown compounds Bi 14P 4O 31 and Bi 50V 4O 85 were prepared by the direct solid-state reaction of Bi 2O 3 and (NH 4)H 2PO 4 or V 2O 5, respectively. Bi 14P 4O 31 crystallizes in a C-centred monoclinic symmetry ( C2/ c space group) with the unit-cell parameters: a=19.2745(2) Å, b=11.3698(1) Å, c=52.4082(2) Å and β=93.63(1)° ( Z=16). The symmetry of Bi 50V 4O 85 is also monoclinic ( I2/ m space group) with lattice parameters of a=11.8123(3) Å, b=11.7425(2) Å, c=16.5396(2) Å and β=90.14(1)° ( Z=2). Both structures correspond to a fluorite-type superstructure where the Bi and P or V atoms are ordered in the framework. An idealized structural model is proposed where the structures result of the stacking of mixed atomic layers of composition [Bi 14M4O 31] and [Bi 18O 27] respectively. This new family can be formulated Bi 18-4mM 4mO 27+4m with M=P, V and where the parameter m ( 0⩽m⩽1) represents the ratio of the number of [Bi 14M4O 31] layers to the total number of layers in the sequence. Bi 14P 4O 31 corresponds to m=1 when Bi 50V 8O 85 corresponds to m=1/3. In this last case, the structural sequence is simply one [Bi 14V 4O 31] layer to two [Bi 18O 27] layers. As predicted by the proposed structural building principle, Bi 14P 4O 31 is not a good ionic conductor. The conductivity at 650 °C is 4 orders of magnitude lower from those found in Bi 46M8O 89 ( M=P, V) ( m=2/3) and Bi 50V 4O 85 ( m=1/3).

  12. A new telescope control system for the Telescopio Nazionale Galileo: I - derotators

    NASA Astrophysics Data System (ADS)

    Ghedina, Adriano; Gonzalez, Manuel; Perez Ventura, Hector; Carmona, Candido; Riverol, Luis

    2014-07-01

    Telescopio Nazionale Galileo (TNG) is a 4m class active optics telescope at the observatory of Roque de Los Muchachos. In the framework of keeping optimum performances during observation and continuous reliability the telescope control system (TCS) of the TNG is going through a deep upgrade after nearly 20 years of service. The original glass encoders and bulb lamp heads are substituted with modern steel scale drums and scanning units. The obsolete electronic racks and computers for the control loops are replaced with modern and compact commercial drivers with a net improvement in the tracking error RMS. In order to minimize the impact on the number of nights lost during the mechanical and electronic changes in the TCS the new TCS is developed and tested in parallel to the existing one and three steps will be taken to achieve the full upgrade. We describe here the first step affecting the mechanical derotators at the Nasmyth foci.

  13. All-spherical catadioptric telescope design for wide-field imaging.

    PubMed

    Bahrami, Mehdi; Goncharov, Alexander V

    2010-10-20

    The current trend in building medium-size telescopes for wide-field imaging is to use a Ritchey-Chrétien (RC) design with a multilens corrector near the focus. Our goal is to find a cost-effective alternative design to the RC system for seeing-limited observations. We present an f/4.5 all-spherical catadioptric system with a 1.5° field of view. The system consists of a 0.8 m spherical primary and 0.4 m flat secondary mirror combined with a meniscus lens and followed by a three-lens field corrector. The optical performance is comparable to an equivalent f/4.5 RC system. We conclude that, for telescopes with apertures up to 2 m, the catadioptric design is a good alternative to the RC system. PMID:20962933

  14. Base-resolution detection of N4-methylcytosine in genomic DNA using 4mC-Tet-assisted-bisulfite-sequencing

    SciTech Connect

    Yu, Miao; Ji, Lexiang; Neumann, Drexel A.; Chung, Dae -Hwan; Groom, Joseph; Westpheling, Janet; He, Chuan; Schmitz, Robert J.

    2015-07-15

    Restriction-modification (R-M) systems pose a major barrier to DNA transformation and genetic engineering of bacterial species. Systematic identification of DNA methylation in R-M systems, including N6-methyladenine (6mA), 5-methylcytosine (5mC) and N4-methylcytosine (4mC), will enable strategies to make these species genetically tractable. Although single-molecule, real time (SMRT) sequencing technology is capable of detecting 4mC directly for any bacterial species regardless of whether an assembled genome exists or not, it is not as scalable to profiling hundreds to thousands of samples compared with the commonly used next-generation sequencing technologies. Here, we present 4mC-Tet-assisted bisulfite-sequencing (4mC-TAB-seq), a next-generation sequencing method that rapidly and cost efficiently reveals the genome-wide locations of 4mC for bacterial species with an available assembled reference genome. In 4mC-TAB-seq, both cytosines and 5mCs are read out as thymines, whereas only 4mCs are read out as cytosines, revealing their specific positions throughout the genome. We applied 4mC-TAB-seq to study the methylation of a member of the hyperthermophilc genus, Caldicellulosiruptor, in which 4mC-related restriction is a major barrier to DNA transformation from other species. Lastly, in combination with MethylC-seq, both 4mC- and 5mC-containing motifs are identified which can assist in rapid and efficient genetic engineering of these bacteria in the future.

  15. The Large Millimeter Telescope (LMT)

    NASA Astrophysics Data System (ADS)

    Young, J. S.; Carrasco, L.; Schloerb, F. P.

    2002-05-01

    The Large Millimeter Telescope (LMT) project is a collaboration between the University of Massachusetts (UMass) in the USA and the Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) in Mexico to build a 50m-diameter millimeter-wave antenna which will operate with good efficiency at wavelengths as short as 1 mm. The LMT is being built at an altitude of 4600 m atop Volcan Sierra Negra, an extinct volcanic peak in the state of Puebla, Mexico, approximately 100 km east of the city of Puebla. At 18 degrees 59' N latitude, the site offers an excellent view of the Galactic Center and good sky coverage of both hemispheres. Construction of the telescope is now well underway, and it is expected to be completed in late 2004. The LMT specifications call for an overall effective surface accuracy of 75 microns rms and a pointing accuracy of 1" rms. The strategy for meeting these performance goals supplements conventional antenna designs with various "active" systems to bring the final performance within the requirements. For surface accuracy, the LMT will rely on an open loop active surface which includes 180 moveable surface segments. For pointing accuracy, we will use traditional approaches supplemented by measurements to characterize the behavior of the structure, including inclinometers and temperature sensors which may be used with finite element models to determine structural deformations and predict pointing behavior. The initial complement of instruments will include a 32 element, heterodyne focal plane array at 3mm; a large format, focal plane bolometer array; a unique wide band receiver and spectrometer to determine the redshifts of primordial galaxies; and a 4 element receiver for the 1mm band. With its excellent sensitivity and angular resolution, the LMT will enable unique studies of the early universe and galaxy evolution, the interstellar medium and star formation in galaxies, and planetary science. In particular, with nearly 2000 m2 of collecting

  16. Design and development of a fast-steering secondary mirror for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Cho, Myung; Corredor, Andrew; Dribusch, Christoph; Park, Kwijong; Kim, Young-Soo; Moon, Il-Kweon

    2011-09-01

    The Giant Magellan Telescope (GMT) will be a 25m class telescope which is one of the extremely large telescope projects in the design and development phase. The GMT will have two Gregorian secondary mirrors, an adaptive secondary mirror (ASM) and a fast-steering secondary mirror (FSM). Both secondary mirrors are 3.2 m in diameter and built as seven 1.1 m diameter circular segments conjugated 1:1 to the seven 8.4m segments of the primary. The FSM has a tip-tilt feature to compensate image motions from the telescope structure jitters and the wind buffeting. The support system of the lightweight mirror consists of three axial actuators, one lateral support at the center, and a vacuum system. A parametric study and optimization of the FSM mirror blank and central lateral flexure design were performed. This paper reports the results of the trade study. The optical image qualities and structure functions for the axial and lateral gravity print-through cases, thermal gradient effects, and dynamic performances will be discussed for the case of a lightweighted segment with a center thickness of 140 mm weighing approximately 105 kg.

  17. Development of a fast steering secondary mirror prototype for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Cho, Myung K.; Corredor, Andrew; Dribusch, Christoph; Park, Kwijong; Kim, Young-Soo; Moon, Il-Kweon; Park, Won Hyun

    2012-09-01

    The Giant Magellan Telescope (GMT) will be a 25m class telescope currently in the design and development phase. The GMT will be a Gregorian telescope and equipped with a fast-steering secondary mirror (FSM). This secondary mirror is 3.2 m in diameter and built as seven 1.1 m diameter circular segments conjugated 1:1 to the seven 8.4m segments of the primary. The prototype of FSM (FSMP) development effort is led by the Korea Astronomy and Space Science Institute (KASI) with several collaborators in Korea, and the National Optical Astronomy Observatory (NOAO) in USA. The FSM has a tip-tilt feature to compensate image motions from the telescope structure jitters and the wind buffeting. For its dynamic performance, each of the FSM segments is designed in a lightweight mirror. Support system of the lightweight mirror consists of three axial actuators, one lateral support at the center, and a vacuum system. A parametric design study to optimize the FSM mirror configuration was performed. In this trade study, the optical image qualities and structure functions for the axial and lateral gravity print-through cases, thermal gradient effects, and dynamic performances will be discussed.

  18. Distinct Carotenoid and Flavonoid Accumulation in a Spontaneous Mutant of Ponkan (Citrus reticulata Blanco) Results in Yellowish Fruit and Enhanced Postharvest Resistance.

    PubMed

    Luo, Tao; Xu, Kunyang; Luo, Yi; Chen, Jiajing; Sheng, Ling; Wang, Jinqiu; Han, Jingwen; Zeng, Yunliu; Xu, Juan; Chen, Jianmin; Wu, Qun; Cheng, Yunjiang; Deng, Xiuxin

    2015-09-30

    As the most important fresh fruit worldwide, citrus is often subjected to huge postharvest losses caused by abiotic and biotic stresses. As a promising strategy to reduce postharvest losses, enhancing natural defense by potential metabolism reprogramming in citrus mutants has rarely been reported. The yellowish spontaneous mutant of Ponkan (Citrus reticulata Blanco) (YP) was used to investigate the influence of metabolism reprogramming on postharvest performance. Our results show that reduced xanthophyll accumulation is the cause of yellowish coloring of YP and might be attributed to the reduced carotenoid sequestration capacity and upregulated expression of carotenoid cleavage dioxygenase genes. Constantly higher levels of polymethoxylated flavones (PMFs) during the infection and the storage stage might make significant contribution to the more strongly induced resistance against Penicillium digitatum and lower rotting rate. The present study demonstrates the feasibility of applying bud mutants to improve the postharvest performance of citrus fruits. PMID:26329679

  19. Effect of juice extraction methods and processing temperature-time on juice quality of Nagpur mandarin (Citrus reticulata Blanco) during storage.

    PubMed

    Pareek, Sunil; Paliwal, Ravinder; Mukherjee, Subrata

    2011-04-01

    Influence of juice extraction methods and pasteurization temperature and time on quality of mandarin (Citrus reticulata Blanco) juice was studied. The experiment consisted of 65 °C pasteurization temperature with 15, 25 and 35 min holding time; 75 °C with 10, 20 and 30 min and 85 °C with 5, 10 and 15 min holding times and two types of juice extraction methods. The experiment was laid out in factorial completely randomized Design with three replications. Juice extracted with screw type juice extractor and processed at 65 °C for 15 min maintained better qualitative characteristics like total soluble solids, acidity, ascorbic acid, sugars and non-enzymatic browning during 6 months storage. Naringin and limonin contents were minimum with the screw extractor and 65 °C processing temperature for 15 min.

  20. Distinct Carotenoid and Flavonoid Accumulation in a Spontaneous Mutant of Ponkan (Citrus reticulata Blanco) Results in Yellowish Fruit and Enhanced Postharvest Resistance.

    PubMed

    Luo, Tao; Xu, Kunyang; Luo, Yi; Chen, Jiajing; Sheng, Ling; Wang, Jinqiu; Han, Jingwen; Zeng, Yunliu; Xu, Juan; Chen, Jianmin; Wu, Qun; Cheng, Yunjiang; Deng, Xiuxin

    2015-09-30

    As the most important fresh fruit worldwide, citrus is often subjected to huge postharvest losses caused by abiotic and biotic stresses. As a promising strategy to reduce postharvest losses, enhancing natural defense by potential metabolism reprogramming in citrus mutants has rarely been reported. The yellowish spontaneous mutant of Ponkan (Citrus reticulata Blanco) (YP) was used to investigate the influence of metabolism reprogramming on postharvest performance. Our results show that reduced xanthophyll accumulation is the cause of yellowish coloring of YP and might be attributed to the reduced carotenoid sequestration capacity and upregulated expression of carotenoid cleavage dioxygenase genes. Constantly higher levels of polymethoxylated flavones (PMFs) during the infection and the storage stage might make significant contribution to the more strongly induced resistance against Penicillium digitatum and lower rotting rate. The present study demonstrates the feasibility of applying bud mutants to improve the postharvest performance of citrus fruits.

  1. The One-Hectare Telescope

    NASA Astrophysics Data System (ADS)

    Welch, William J.; Dreher, John W.

    2000-07-01

    The 1HT will be a large area telescope whose novel characteristics will be a wide field of view, continuous frequency coverage from .500 - 11 Ghz, multibeam capability, and provision for RFI mitigation built in. Its scientific motivation includes deep SETI searches, pulsar detection and investigation, galactic magnetic field mapping through many Zeemann transitions, mapping of the decrement in the cosmic background radiation seen toward galaxy clusters, observation of HI absorption toward quasars at redshifts up to z equals 2, and deep mapping of the HI distributions in the Milky Way and nearby galaxies. The array will use economies of scale to keep the costs down. It will consist of 500 - 1000 dishes of diameters in the range 3.6 m - 5 m. The dishes will be TV satellite style with wideband MMIC chip front-end amplifiers. Substantial prototype activity is under way. The feed, dish, and front-end MMIC designs are well along. A seven element test array is nearing completion. It will be used for studying RFI mitigation. By 2002, a 12 element array (PTA) which will be made up of all the final components will be operational. Final construction of the full array is expected by 2005.

  2. Spitzer Space Telescope proposal process

    NASA Astrophysics Data System (ADS)

    Laine, S.; Silbermann, N. A.; Rebull, L. M.; Storrie-Lombardi, L. J.

    2006-06-01

    This paper discusses the Spitzer Space Telescope General Observer proposal process. Proposals, consisting of the scientific justification, basic contact information for the observer, and observation requests, are submitted electronically using a client-server Java package called Spot. The Spitzer Science Center (SSC) uses a one-phase proposal submission process, meaning that fully-planned observations are submitted for most proposals at the time of submission, not months after acceptance. Ample documentation and tools are available to the observers on SSC web pages to support the preparation of proposals, including an email-based Helpdesk. Upon submission proposals are immediately ingested into a database which can be queried at the SSC for program information, statistics, etc. at any time. Large proposals are checked for technical feasibility and all proposals are checked against duplicates of already approved observations. Output from these tasks is made available to the Time Allocation Committee (TAC) members. At the review meeting, web-based software is used to record reviewer comments and keep track of the voted scores. After the meeting, another Java-based web tool, Griffin, is used to track the approved programs as they go through technical reviews, duplication checks and minor modifications before the observations are released for scheduling. In addition to detailing the proposal process, lessons learned from the first two General Observer proposal calls are discussed.

  3. Polymethoxylated flavones, flavanone glycosides, carotenoids, and antioxidants in different cultivation types of tangerines ( Citrus reticulata Blanco cv. Sainampueng) from Northern Thailand.

    PubMed

    Stuetz, Wolfgang; Prapamontol, Tippawan; Hongsibsong, Surat; Biesalski, Hans-Konrad

    2010-05-26

    Polymethoxylated flavones (PMFs) and flavanone glycosides (FGs) were analyzed in hand-pressed juice and the peeled fruit of 'Sainampueng' tangerines ( Citrus reticulata Blanco cv. Sainampueng) grown in northern Thailand. The tangerines were collected from a citrus cluster of small orchard farmers and were cultivated as either agrochemical-based (AB), agrochemical-safe (AS), or organic grown fruits. Juice samples were also measured on contents of carotenoids, ascorbic acid, and tocopherols. The peel-deriving PMFs tangeretin, nobiletin, and sinensetin were found with high concentrations in juice as a result of simple squeezing, whereas amounts of those PMFs were negligibly low in peeled tangerine fruit. In contrast, the mean concentrations of the FGs narirutin, hesperidin, and didymin were several fold higher in peeled fruit than in tangerine juice and significantly higher in organic than AS and AB tangerines. Narirutin and hesperidin in juice from organic produces as well as narirutin in juice from AS produces were significantly higher than respective mean concentrations in juice from AB produces. beta-Cryptroxanthin was the predominant carotenoid beside zeaxanthin, lutein, lycopene, and beta-carotene in tangerine juice. Ascorbic acid concentrations were not predicted by the type of cultivation, whereas alpha-tocopherol was significantly higher in juice from organic than AS produces. In summary, hand-pressed juice of C. reticulata Blanco cv. Sainampueng serves as a rich source of PMFs, FGs, carotenoids, and antioxidants: 4-5 tangerine fruits ( approximately 80 g of each fruit) giving one glass of 200 mL hand-pressed juice would provide more than 5 mg of nobiletin and tangeretin and 36 mg of hesperidin, narirutin, and didymin, as well as 30 mg of ascorbic acid, >1 mg of provitamin A active beta-cryptoxanthin, and 200 microg of alpha-tocopherol. PMID:20420369

  4. The earliest telescope preserved in Japan

    NASA Astrophysics Data System (ADS)

    Nakamura, Tsuko

    2008-11-01

    This paper describes the antique telescope owned by one of Japan's major feudal warlords, Tokugawa Yoshinao. As he died in 1650, this means that this telescope was produced in or before that year. Our recent investigation of the telescope revealed that it is of Schyrlean type, consisting of four convex lenses, so that it gives erect images with a measured magnifying power of 3.9 (± 0.2-0.3). This also implies that Yoshinao's telescope could be one of the earliest Schyrlean telescopes ever. The design, fabrication technique, and the surface decoration of the telescopic tube and caps all suggest that it is not a Western make at all, but was produced probably under the guidance of a Chinese Jesuit missionary or by the Chinese, in Suzhou or Hangzhou in Zhejiang province, China, or in Nagasaki. Following descriptions in the Japanese and Chinese historical literature, we also discuss the possibility that production of Schyrlean-type telescopes started independently in the Far East nearly simultaneously with the publication of Oculus Enoch et Eliae by Anton Maria Schyrle in 1645.

  5. NLST: the Indian National Large Solar Telescope

    NASA Astrophysics Data System (ADS)

    Hasan, S. S.; Soltau, D.; Kärcher, H.; Süss, M.; Berkefeld, T.

    2010-07-01

    India is planning a new solar telescope with an aperture of 2-m for carrying out high resolution studies of the Sun. Site characterization is underway at high altitude locations in the Himalayan mountains. A detailed concept design for NLST (National Large Solar Telescope) has been completed. The optical design of the telescope is optimized for high optical throughput and uses a minimum number of optical elements. A high order AO system is integrated part of the design that works with a modest Fried's parameter of 7-cm to give diffraction limited performance. The telescope will be equipped with a suite of post-focus instruments including a high resolution spectrograph and a polarimeter. NLST will also be used for carrying out stellar observations during the night. The mechanical design of the telescope, building, and the innovative dome is optimized to take advantage of the natural air flush which will help to keep the open telescope in temperature equilibrium. After its completion (planned for 2014), NLST will fill a gap in longitude between the major solar facilities in USA and Europe, and it will be for years the largest solar telescope in the world

  6. Reproduction Of William Herschel's Metallic Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Okamura, N.; Hirabayashi, S.; Isida, A.; Komori, A.; Nishitani, M.

    2006-08-01

    Following the reproduction of Cassini's open-air telescope, which took us almost three years to complete, our club decided to reproduce the metallic mirror telescope invented by William Herschel, which is a telescope of the subsequent generation. We based our design on the 7-foot telescope by which he used to discover Uranus in 1781. The metallic mirror was casted and blended copper and tin in the ratio of seven to three, exactly like the mirrors in those days. The surface of the casted mirror had many imperfections such as hollow portions and bubbles. These were removed by using the rock grinder at our school and the mirror was later polished at the Hidaka Optical Institute. The tube of the mirror was also made up of eight polygons just like the original. When we observed the stars with the metallic mirror telescope, they were a little bit dark, but it was possible to observe them well and to observe the gap between Saturn and Cassini. We also succeeded in observing Uranus with this telescope last September. Reproduction of the telescope mount is being made in a nearly the same design as the original one. We have learned through the reproduction that the unique design of the mount allows us to make observations with precise tracking accuracy in a comfortable observing position.

  7. Parametric Cost Models for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtney

    2010-01-01

    Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.

  8. OPTICAL REDSHIFT AND RICHNESS ESTIMATES FOR GALAXY CLUSTERS SELECTED WITH THE SUNYAEV-Zel'dovich EFFECT FROM 2008 SOUTH POLE TELESCOPE OBSERVATIONS

    SciTech Connect

    High, F. W.; Stalder, B.; Song, J.; Ade, P. A. R.; Aird, K. A.; Allam, S. S.; Buckley-Geer, E. J.; Armstrong, R.; Barkhouse, W. A.; Benson, B. A.; Bertin, E.; Bhattacharya, S.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Brodwin, M.; Challis, P.; De Haan, T.

    2010-11-10

    We present redshifts and optical richness properties of 21 galaxy clusters uniformly selected by their Sunyaev-Zel'dovich (SZ) signature. These clusters, plus an additional, unconfirmed candidate, were detected in a 178 deg{sup 2} area surveyed by the South Pole Telescope (SPT) in 2008. Using griz imaging from the Blanco Cosmology Survey and from pointed Magellan telescope observations, as well as spectroscopy using Magellan facilities, we confirm the existence of clustered red-sequence galaxies, report red-sequence photometric redshifts, present spectroscopic redshifts for a subsample, and derive R{sub 200} radii and M{sub 200} masses from optical richness. The clusters span redshifts from 0.15 to greater than 1, with a median redshift of 0.74; three clusters are estimated to be at z>1. Redshifts inferred from mean red-sequence colors exhibit 2% rms scatter in {sigma}{sub z}/(1 + z) with respect to the spectroscopic subsample for z < 1. We show that the M{sub 200} cluster masses derived from optical richness correlate with masses derived from SPT data and agree with previously derived scaling relations to within the uncertainties. Optical and infrared imaging is an efficient means of cluster identification and redshift estimation in large SZ surveys, and exploiting the same data for richness measurements, as we have done, will be useful for constraining cluster masses and radii for large samples in cosmological analysis.

  9. Ground-Based Telescope Parametric Cost Model

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.

  10. General surface equations for glancing incidence telescopes.

    PubMed

    Saha, T T

    1987-02-15

    A generalized set of equations are derived for two mirror glancing incidence telescopes using Fermat's principle, a differential form of the law of reflection, the generalized sine condition, and a ray propagation equation described in vector form as a theoretical basis. The resulting formulation groups the possible telescope configurations into three distinct classes which are the Wolter, Wolter-Schwarzschild, and higherorder telescopes in which the Hettrick-Bowyer types are a subset. Eight configurations are possible within each class depending on the sign and magnitude of the parameters. PMID:20454195

  11. NASA capabilities roadmap: advanced telescopes and observatories

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D.

    2005-01-01

    The NASA Advanced Telescopes and Observatories (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories collecting all electromagnetic bands, ranging from x-rays to millimeter waves, and including gravity-waves. It has derived capability priorities from current and developing Space Missions Directorate (SMD) strategic roadmaps and, where appropriate, has ensured their consistency with other NASA Strategic and Capability Roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  12. Hubble Space Telescope Primer for Cycle 21

    NASA Astrophysics Data System (ADS)

    Gonzaga, S.; et al.

    2012-12-01

    The Hubble Space Telescope Primer for Cycle 21 is a companion document to the HST Call for Proposals1. It provides an overview of the Hubble Space Telescope (HST), with basic information about telescope operations, instrument capabilities, and technical aspects of the proposal preparation process. A thorough understanding of the material in this document is essential for the preparation of a competitive proposal. This document is available as an online HTML document and a PDF file. The HTML version, optimized for online browsing, contains many links to additional information. The PDF version is optimized for printing, but online PDF readers have search capabilities for quick retrieval of specific information.

  13. The Thirty Meter Telescope (TMT) Project

    NASA Astrophysics Data System (ADS)

    Sanders, G.; TMT Project

    2004-12-01

    The Thirty Meter Telescope (TMT) Project is engaged in a design and development phase. TMT is proposed as a private-public partnership of the California Institute of Technology and the University of California (partners in the earlier CELT design study), AURA (designers of the earlier GSMT concept), and the Canadian ACURA consortium (designers of the VLOT concept). The partners are developing a 30 meter diameter, finely segmented filled aperture telescope with seeing-limited and diffraction-limited capabilities to address the broad range of GSMT science goals. The paper will present the status of the project development and telescope and instrument design.

  14. Passive Cooling For Large Infrared Telescopes

    NASA Technical Reports Server (NTRS)

    Lin, Edward I.

    1993-01-01

    Conceptual passive-cooling technique enables very large infrared telescope in vacuum of outer space cooled to below 20 K without using cryogen. Telescope orbiting Earth at high altitude of around 100,000 km. Scheme also offers very small gradient of temperature across primary telescope reflector, so thermal distortions smaller; accuracy of surface figure of reflector significantly enhanced. Passive-cooling technique also applied to building of very large cryostats and to development of very large sun shields in traditional manner, and some elements of technique adapted for current small observatories.

  15. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  16. Dual-Channel Multi-Purpose Telescope

    NASA Technical Reports Server (NTRS)

    Howard, Joseph M.; Content, David

    2009-01-01

    A dual-channel telescope allows for a wide-field telescope design wit h a good, narrow field channel of fewer surfaces for shorter-wavelen gth or planet-finding applications. The design starts with a Korsch three-mirror-anastigmat (TMA) telescope that meets the mission criter ia for image quality over a wide field of view. The internal image a t the Cassegrain focus is typically blurry due to the aberration bala ncing among the three mirrors. The Cassegrain focus is then re-optim ized on the axis of the system where the narrow field channel instru ment is picked off by bending the primary mirror.

  17. Support structures for large infrared telescopes

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.

    1984-01-01

    An infrared telescope requires an accuracy of its reflecting surfaces of less than a micrometer. Future missions may require such accuracy from telescopes that are 20 meters or larger in diameter. The structure for supporting such a telescope will most probably take the form of a deep truss. Various approaches for constructing the primary mirror in space are illustrated. One that employs automated deployment of interconnected reflector-structure modules was described in detail. Estimates were made of the precision obtainable with properly configured truss structures and the required ability of active control systems for achieving the desired accuracy.

  18. Measuring Neutrinos with the ANTARES Telescope

    SciTech Connect

    Reed, Corey

    2009-12-17

    The ANTARES underwater neutrino telescope has been taking data since construction began in 2006. The telescope, completed in May of 2008, detects the Cerenkov radiation of charged leptons produced by high energy neutrinos interacting in or around the detector. The lepton trajectory is reconstructed with high precision, revealing the direction of the incoming neutrino. The performance of the detector will be discussed and recent data showing muons, electromagnetic showers and atmospheric neutrinos will be presented. Studies have been underway to search for neutrino point sources in the ANTARES data since 2007. Results from these studies will be presented, and the sensitivity of the telescope will be discussed.

  19. HIGH-PRECISION ASTROMETRY WITH A DIFFRACTIVE PUPIL TELESCOPE

    SciTech Connect

    Guyon, Olivier; Eisner, Josh A.; Angel, Roger; Woolf, Neville J.; Bendek, Eduardo A.; Milster, Thomas D.; Mark Ammons, S.; Shao, Michael; Shaklan, Stuart; Levine, Marie; Nemati, Bijan; Pitman, Joe; Woodruff, Robert A.; Belikov, Ruslan

    2012-06-01

    Astrometric detection and mass determination of Earth-mass exoplanets require sub-{mu}as accuracy, which is theoretically possible with an imaging space telescope using field stars as an astrometric reference. The measurement must, however, overcome astrometric distortions, which are much larger than the photon noise limit. To address this issue, we propose to generate faint stellar diffraction spikes using a two-dimensional grid of regularly spaced small dark spots added to the surface of the primary mirror (PM). Accurate astrometric motion of the host star is obtained by comparing the position of the spikes to the background field stars. The spikes do not contribute to scattered light in the central part of the field and therefore allow unperturbed coronagraphic observation of the star's immediate surroundings. Because the diffraction spikes are created on the PM and imaged on the same focal plane detector as the background stars, astrometric distortions affect equally the diffraction spikes and the background stars and are therefore calibrated. We describe the technique, detail how the data collected by the wide-field camera are used to derive astrometric motion, and identify the main sources of astrometric error using numerical simulations and analytical derivations. We find that the 1.4 m diameter telescope, 0.3 deg{sup 2} field we adopt as a baseline design achieves 0.2 {mu}as single measurement astrometric accuracy. The diffractive pupil concept thus enables sub-{mu}as astrometry without relying on the accurate pointing, external metrology, or high-stability hardware required with previously proposed high-precision astrometry concepts.

  20. A broad band imager for the European Solar Telescope

    NASA Astrophysics Data System (ADS)

    Munari, Matteo; Scuderi, Salvatore; Cecconi, Massimo

    2012-09-01

    We report on the results of the conceptual design study of a broad band imager for the European Solar Telescope (EST), a joint project of several European research institutes to design and realize a 4-m class solar telescope. The EST broad band imager is an imaging instrument whose function is to obtain diffraction limited images over the full field of view of EST at multiple wavelengths and high frame rate. Its scientific objective is the study of fundamental astrophysical processes at their intrinsic scales in the Sun's atmosphere. The optical layout foresee two observational modes: a maximum field of view mode and a high resolution mode. The imager will have a 2'x2' corrected field of view in the first mode and an angular resolution better than 0.04" at 500nm in the latter mode. The imager will cover a wavelength range spanning from 390nm to 900nm through a number of filters with bandpasses between 0.05nm and 0.5nm. The selected optical layout is an all refractive design. To optimize optical performances and throughput there will be two arms working simultaneously: a blue arm (covering the 380nm - 500nm range) and a red arm (600nm - 900nm). The blue arm will have two channels while the red arm only one. Each channel will be divided in three subchannels: one will host narrow band filters for chromospheric observations, another one, in focus wide band filters used as reference for speckle reconstruction and photospheric observations, and the last one, out of focus wide band filters for phase diversity reconstruction of photospheric observations.

  1. Daniel K. Inouye Solar Telescope: Overview and Status

    NASA Astrophysics Data System (ADS)

    Rimmele, Thomas; McMullin, Joseph; Warner, Mark; Craig, Simon; Woeger, Friedrich; Tritschler, Alexandra; Cassini, Roberto; Kuhn, Jeff; Lin, Haosheng; Schmidt, Wolfgang; Berukoff, Steve; Reardon, Kevin; Goode, Phil; Knoelker, Michael; Rosner, Robert; Mathioudakis, Mihalis; DKIST TEAM

    2015-08-01

    The 4m Daniel K. Inouye Solar Telescope (DKIST) currently under construction on Haleakala, Maui will be the world’s largest solar telescope. Designed to meet the needs of critical high resolution and high sensitivity spectral and polarimetric observations of the sun, this facility will perform key observations of our nearest star that matters most to humankind. DKIST’s superb resolution and sensitivity will enable astronomers to unravel many of the mysteries the Sun presents, including the origin of solar magnetism, the mechanisms of coronal heating and drivers of the solar wind, flares, coronal mass ejections and variability in solar output. The all-reflecting, off-axis design allows the facility to observe over a broad wavelength range and enables DKIST to operate as a coronagraph. In addition, the photon flux provided by its large aperture will be capable of routine and precise measurements of the currently elusive coronal magnetic fields. The state-of-the-art adaptive optics system provides diffraction limited imaging and the ability to resolve features approximately 20 km on the Sun. Five first light instruments, representing a broad community effort, will be available at the start of operations: Visible Broadband Imager (National Solar Observatory), Visible Spectro-Polarimeter (High Altitude Observatory), Visible Tunable Filter (Kiepenheuer Institute, Germany), Diffraction Limited NIR Spectro-Polarimeter (University of Hawaii) and the Cryogenic NIR Spectro-Polarimeter (University of Hawaii). High speed cameras for capturing highly dynamic processes in the solar atmosphere are being developed by a UK consortium. Site construction on Haleakala began in December 2012 and is progressing on schedule. Operations are scheduled to begin in 2019. We provide an overview of the facility, discuss the construction status, and present progress with DKIST operations planning.

  2. California Extremely Large Telescope : conceptual design for a thirty-meter telescope

    NASA Astrophysics Data System (ADS)

    Following great success in the creation of the Keck Observatory, scientists at the California Institute of Technology and the University of California have begun to explore the scientific and technical prospects for a much larger telescope. The Keck telescopes will remain the largest telescopes in the world for a number of years, with many decades of forefront research ahead after that. Though these telescopes have produced dramatic discoveries, it is already clear that even larger telescopes must be built if we are to address some of the most profound questions about our universe. The time required to build a larger telescope is approximately ten years, and the California community is presently well-positioned to begin its design and construction. The same scientists who conceived, led the design, and guided the construction of the Keck Observatory have been intensely engaged in a study of the prospects for an extremely large telescope. Building on our experience with the Keck Observatory, we have concluded that the large telescope is feasible and is within the bounds set by present-day technology. Our reference telescope has a diameter of 30 meters, the largest size we believe can be built with acceptable risk. The project is currently designated the California Extremely Large Telescope (CELT).

  3. Fabrication and test of 4m long Nb3Sn quadrupole coil made of RRP-114-127 strand

    SciTech Connect

    Bossert, R.; Ambrosio, G.; Andreev, N.; Barzi, E.; Chlachidze, G.; Kashikhin, V.V.; Lamm, M.; Nobrega, A.; Novitski, I.; Orris, D.; Tartaglia, M.; /Fermilab

    2011-06-01

    Fermilab is collaborating with LBNL and BNL (US-LARP collaboration) to develop a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. Several two-layer quadrupole models of the 1-meter and 3.4-meter length with 90mm apertures have been fabricated and tested by the US-LARP collaboration. High-Jc RRP-54/61 strand was used for nearly all models. Large flux jumps typical for this strand due to the large sub-element diameter limited magnet quench performance at temperatures below 2.5-3K. This paper summarizes the fabrication and test by Fermilab of LQM01, a long quadrupole coil test structure (quadrupole mirror) with the first 3.4m quadrupole coil made of more stable RRP-114/127 strand. The coil and structure are fully instrumented with voltage taps, full bridge strain gauges and strip heaters to monitor preload, thermal properties and quench behavior. Measurements during fabrication are reported, including preload during the yoke welding process. Testing is done at 4.5K, 1.9K and a range of intermediate temperatures. The test results include magnet strain and quench performance during training, as well as quench studies of current ramp rate and temperature dependence from 1.9K to 4.5K.

  4. Fabrication and test of 4M long Nb3SN quadrupole coil made of RRP-114/127 strand

    NASA Astrophysics Data System (ADS)

    Bossert, Rodger; Ambrosio, G.; Andreev, Nikolai; Barzi, Emanuela; Chlachidze, Guram; Kashikhin, Vadim; Lamm, Michael; Nobrega, Alfred; Novitski, Igor; Orris, Darryl; Tartaglia, Mike; Turrioni, Daniele; Yamada, Ryuji; Zlobin, Alexander

    2012-06-01

    Fermilab is collaborating with Lawrence Berkeley National Laboratory (LBNL) and Brookhaven National Laboratory (BNL) within the US-LHC Accelerator Research Project (US-LARP collaboration) to develop a large-aperture Nb3SN superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. Several two-layer quadrupole models of the 1-meter and 3.4-meter length with 90 mm apertures have been fabricated and tested by the US-LARP collaboration. High-Jc Nb3SN RRP-54/61 strand was used for nearly all models. Large flux jumps typical for this strand, due to the large sub-element diameter, limited magnet quench performance at temperatures below 2.5-3K. This paper summarizes the fabrication and test by Fermilab of LQM01, a long quadrupole coil test structure (quadrupole mirror) with the first 3.4 m quadrupole coil made of more stable RRP-114/127 strand. The coil and structure are fully instrumented with voltage taps, full bridge strain gauges and strip heaters to monitor preload, thermal properties and quench behavior. Measurements during fabrication are reported, including preload during the yoke welding process. Testing is done at 4.5 K, 1.9 K and a range of intermediate temperatures. The test results include magnet strain and quench performance during training, as well as quench studies of current ramp rate and temperature dependence from 1.9 K to 4.5 K.

  5. Modelling potential photovoltaic absorbers Cu3MCh4(M = V, Nb, Ta; Ch = S, Se, Te) using density functional theory.

    PubMed

    Kehoe, Aoife B; Scanlon, David O; Watson, Graeme W

    2016-05-01

    The geometric and electronic properties of a series of potential photovoltaic materials, the sulvanite structured Cu3MCh4(M = V, Nb, Ta; Ch = S, Se, Te), have been computationally examined using both PBEsol+U and HSE06 methods to assess the materials' suitability for solar cell application and to compare the predictions of the two theoretical approaches. The lattice parameters, electronic density of states, and band gaps of the compounds have been calculated to ascertain the experimental agreement obtained by each method and to determine if any of the systems have an optical band gap appropriate for photovoltaic absorber materials. The PBEsol+U results are shown to achieve better agreement with experiment than HSE06 in terms of both lattice constants and band gaps, demonstrating that higher level theoretical methods do not automatically result in a greater level of accuracy than their computationally less expensive counterparts. The PBEsol+U calculated optical band gaps of five materials suggest potential suitability as photovoltaic absorbers, with values of 1.72 eV, 1.49 eV, 1.19 eV, 1.46 eV, and 1.69 eV for Cu3VS4, Cu3VSe4, Cu3VTe4, Cu3NbTe4, and Cu3TaTe4, respectively, although it should be noted that all fundamental band gaps are indirect in nature, which could lower the open-circuit voltage and hence the efficiency of prospective devices.

  6. Fabrication of Fe3O4@mSiO2 Core-Shell Composite Nanoparticles for Drug Delivery Applications

    NASA Astrophysics Data System (ADS)

    Uribe Madrid, Sergio I.; Pal, Umapada; Kang, Young Soo; Kim, Junghoon; Kwon, Hyungjin; Kim, Jungho

    2015-05-01

    We report the synthesis of Fe3O4@mSiO2 nanostructures of different meso-silica (mSiO2) shell thickness, their biocompatibility and behaviors for loading and release of a model drug ibuprofen. The composite nanostructures have superparamagnetic magnetite cores of 208 nm average size and meso-silica shells of 15 to 40 nm thickness. A modified Stöber method was used to grow the meso-silica shells over the hydrothermally grown monodispersed magnetite particles. The composite nanoparticles show very promising drug holding and releasing behaviors, which depend on the thickness of meso-silica shell. The biocompatibility of the meso-silica-coated and uncoated magnetite nanoparticles was tested through cytotoxicity assay on breast cancer (MCF-7), ovarian cancer (SKOV3), normal human lung fibroblasts MRC-5, and IMR-90 cells. The high drug holding capacity and reasonable biocompatibility of the nanostructures make them ideal agents for targeted drug delivery applications in human body.

  7. A microRNA of infectious laryngotracheitis virus can downregulate and direct cleavage of ICP4 mRNA.

    PubMed

    Waidner, Lisa A; Burnside, Joan; Anderson, Amy S; Bernberg, Erin L; German, Marcelo A; Meyers, Blake C; Green, Pamela J; Morgan, Robin W

    2011-03-01

    Viral microRNAs regulate gene expression using either translational repression or mRNA cleavage and decay. Two microRNAs from infectious laryngotracheitis virus (ILTV), iltv-miR-I5 and iltv-miR-I6, map antisense to the ICP4 gene. Post-transcriptional repression by these microRNAs was tested against a portion of the ICP4 coding sequence cloned downstream of firefly luciferase. Luciferase activity was downregulated by approximately 60% with the iltv-miR-I5 mimic. Addition of an iltv-miR-I5 antagomiR or mutagenesis of the target seed sequence alleviated this effect. The iltv-miR-I5 mimic, when co-transfected with a plasmid expressing ICP4, reduced ICP4 transcript levels by approximately 50%, and inhibition was relieved by an iltv-miR-I5 antagomiR. In infected cells, iltv-miR-I5 mediated cleavage at the canonical site, as indicated by modified RACE analysis. Thus, in this system, iltv-miR-I5 decreased ILTV ICP4 mRNA levels via transcript cleavage and degradation. Downregulation of ICP4 could impact the balance between the lytic and latent states of the virus in vivo.

  8. High-resolution CCD spectra of stars in globular clusters. III - M4, M13, and M22

    NASA Technical Reports Server (NTRS)

    Wallerstein, George; Leep, E. Myckky; Oke, J. B.

    1987-01-01

    Spectra of 0.3 and 0.6 A resolution of stars in M4, M13 and M22 to derive abundances of various atomic species and the CN molecule. For M13, the usual Fe/H ratio and a surprisingly high aluminum abundance is found. The CN lines indicate a larger column density in the oxygen-rich star III-63 than in the oxygen-poor star II-67 by a factor of 10. It appears that II-67 is deficient in C, N, and O by about a factor 3 relative to iron for all three elements. For M4, Fe/H = -1.2 using solar f values derived via the Bell et al. (1976) model. This Fe abundance lies between earlier echelle values and photometric values. For two stars, CN data are obtained that can be understood if there was a slight excess of C/Fe and N/Fe prior to CN cycling and mixing. For M22, a large difference in CN is found between stars III-3 and IV-102. The origin of the CNO elements is discussed in terms of mass loss from an early generation of red giants and possibly Wolf-Rayet stars.

  9. Addressing Thermal Model Run Time Concerns of the Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA)

    NASA Technical Reports Server (NTRS)

    Peabody, Hume; Guerrero, Sergio; Hawk, John; Rodriguez, Juan; McDonald, Carson; Jackson, Cliff

    2016-01-01

    The Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA) utilizes an existing 2.4 m diameter Hubble sized telescope donated from elsewhere in the federal government for near-infrared sky surveys and Exoplanet searches to answer crucial questions about the universe and dark energy. The WFIRST design continues to increase in maturity, detail, and complexity with each design cycle leading to a Mission Concept Review and entrance to the Mission Formulation Phase. Each cycle has required a Structural-Thermal-Optical-Performance (STOP) analysis to ensure the design can meet the stringent pointing and stability requirements. As such, the models have also grown in size and complexity leading to increased model run time. This paper addresses efforts to reduce the run time while still maintaining sufficient accuracy for STOP analyses. A technique was developed to identify slews between observing orientations that were sufficiently different to warrant recalculation of the environmental fluxes to reduce the total number of radiation calculation points. The inclusion of a cryocooler fluid loop in the model also forced smaller time-steps than desired, which greatly increases the overall run time. The analysis of this fluid model required mitigation to drive the run time down by solving portions of the model at different time scales. Lastly, investigations were made into the impact of the removal of small radiation couplings on run time and accuracy. Use of these techniques allowed the models to produce meaningful results within reasonable run times to meet project schedule deadlines.

  10. Design, optimization and characterization of the light concentrators of the single-mirror small size telescopes of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Basili, A.; Boccone, V.; Cadoux, F.; Christov, A.; della Volpe, D.; Montaruli, T.; Płatos, Ł.; Rameez, M.

    2015-01-01

    The focal-plane cameras of γ -ray telescopes frequently use light concentrators in front of the light sensors. The purpose of these concentrators is to increase the effective area of the camera as well as to reduce the stray light coming at large incident angles. These light concentrators are usually based on the Winston cone design. In this contribution we present the design of a hexagonal hollow light concentrator with a lateral profile optimized using a cubic Bézier function to achieve a higher collection efficiency in the angular region of interest. The design presented here is optimized for a Davies-Cotton telescope with a primary mirror of about 4 m in diameter and a focal length of 5.6 m. The described concentrators are part of an innovative camera made up of silicon-photomultiplier sensors, although a similar approach can be used for other sizes of single-mirror telescopes with different camera sensors, including photomultipliers. The challenge of our approach is to achieve a cost-effective design suitable for standard industrial production of both the plastic concentrator substrate and the reflective coating. At the same time we maximize the optical performance. In this paper we also describe the optical set-up to measure the absolute collection efficiency of the light concentrators and demonstrate our good understanding of the measured data using a professional ray-tracing simulation.

  11. The ALMA Telescope Control System

    NASA Astrophysics Data System (ADS)

    Farris, A.; Marson, Ralph; Kern, Jeff

    2005-10-01

    The Atacama Large Millimeter Array (ALMA) is a joint project between North America, Europe and Japan. ALMA is an aperture synthesis radio telescope consisting of 50 12-meter antennas located at an elevation of 5,000 meters in Llano de Chajnantor, Chile. These antennas will operate at frequencies ranging from 31.3 GHz to 950 GHz. The antennas can be moved and placed in different configurations, with baselines between the antennas varying from 150 meters to 20 km. The 50 antennas are supplemented by sixteen additional ones, known as the ALMA Compact Array (ACA): 12 7-meter antennas and 4 12-meter antennas. The ALMA control system will consist of over 70 computers separated by distances of over 20 km. Two aspects of the system are apparent: its distributed nature and its need to accurately synchronize events across many computers separated by large distances. In this paper we describe key features of the architecture of the ALMA Control System, focusing on its properties as a distributed system and on the mechanisms employed to achieve its time synchronization goals. This control system is a distributed system that uses the ALMA Common Software (ACS) as a middleware system layered on top of CORBA. The architecture of the control system extensively employs the component/container model in ACS. In addition, the use of CORBA allows us to employ Java in the higher levels of the control system, leaving C++ to the lower time-critical levels. Python as a scripting language is used by astronomers, to craft standard observing programs, and engineers, in a testing and debugging mode. Key to the concept of an aperture synthesis telescope is a special purpose hardware system known as a correlator, responsible for making various delay model corrections and correlating the signals from the antennas. There are two correlators in ALMA, one for the array of 50 antennas and one for the ACA. This entire system operates under a control system that must synchronize events across the

  12. Cosmology with liquid mirror telescopes

    NASA Astrophysics Data System (ADS)

    Hogg, David W.; Gibson, Brad K.; Hickson, Paul

    1993-01-01

    Liquid mirrors provide an exciting means to obtain large optical telescopes for substantially lower costs than conventional technologies. The liquid mirror concept has been demonstrated in the lab with the construction of a diffraction limited 1.5 m mirror. The mirror surface, using liquid mercury, forms a perfect parabolic shape when the mirror cell is rotated at a uniform velocity. A liquid mirror must be able to support a heavy mercury load with minimal flexure and have a fundamental resonant frequency that is as high as possible, to suppress the amplitude of surface waves caused by small vibrations transmitted to the mirror. To minimize the transmission of vibrations to the liquid surface, the entire mirror rests on an air bearing. This necessitates the mirror cell being lightweight, due to the limited load capabilities of the air bearing. The mirror components must also have physical characteristics which minimize the effects of thermal expansion with ambient temperature fluctuations in the observatory. In addition, the 2.7 m mirror construction is designed so that the techniques used may be readily extended to the construction of large mirrors. To attain the goals of a lightweight, rigid mirror, a composite laminant construction was used. The mirror consists of a foam core cut to the desired parabolic shape, with an accuracy of a few mm. An aluminum hub serves as an anchor for the foam and skin, and allows precise centering of the mirror on the air bearing and drive system. Several plys of Kevlar, covered in an epoxy matrix, are then applied to the foam. A final layer of pure epoxy is formed by spin casting. This final layer is parabolic to within a fraction of a mm. An aluminum ring bonded to the circumference of the mirror retains the mercury, and incorporates stainless-steel hard-points for the attachment of balance weights.

  13. Turbidite pathways in Cascadia Basin and Tufts abyssal plain, Part A, Astoria Channel, Blanco Valley, and Gorda Basin

    USGS Publications Warehouse

    Wolf, Stephen C.; Hamer, Michael R.

    1999-01-01

    This open-file report was prepared in support of the USGS Earthquake Hazards of Cascadia Project. The primary objective of this phase of the project is to determine recurrence intervals of turbidites in Cascadia basin-floor channel systems and evaluate implications of this event record for the paleoseismic history of the Cascadia subduction zone. The purpose of this study is to determine whether the canyon/channel systems themselves are blocked or deformed in such a way that the downstream turbidite stratigraphy might be biased. To accomplish this investigation approximately 7500 kilometers of pre-existing 3.5 KHz seismic data were evaluated to determine the direction and extent of the Astoria Channel/pathway system, which originates at the base of the Astoria Fan. Additionally, distribution and thickness of turbidite sediment sequences were determined along each identified pathway. Bathymetery and distance were used to determine gradients along the main pathway axis and for each of the secondary pathways that feed into it. Channel pathways were identified on the basis of channel phyisiography, where visible at the seafloor, subbottom channel configuration, and acoustic packets of sediments that might represent turbidite deposits. A principal result of this study is that the Astoria Channel/pathway extends continuously from the base of the Astoria Fan southward along the base of the continental slope through the Blanco Valley, then heads southwestward through the Gorda Basin and into the region of the Escanaba Trough. Additionally it was determined that the Astoria Channel is filled and basically buried for it's full length south of 44 degrees latitude. The 44 North Slump, as defined by Goldfinger (1999, see Map 3 ref.), may have been instrumental in blocking the pathway and thus contributed to the filling of the channel/pathway. Sheets 1 and 2 show the Astoria and secondary turbidite pathways highlighted in blue. Ship survey tracklines are shown for the area

  14. The associate principal astronomer telescope operations model

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Bresina, John; Swanson, Keith; Edgington, Will; Henry, Greg

    1994-01-01

    This paper outlines a new telescope operations model that is intended to achieve low operating costs with high operating efficiency and high scientific productivity. The model is based on the existing Principal Astronomer approach used in conjunction with ATIS, a language for commanding remotely located automatic telescopes. This paper introduces the notion of an Associate Principal Astronomer, or APA. At the heart of the APA is automatic observation loading and scheduling software, and it is this software that is expected to help achieve efficient and productive telescope operations. The purpose of the APA system is to make it possible for astronomers to submit observation requests to and obtain resulting data from remote automatic telescopes, via the Internet, in a highly-automated way that minimizes human interaction with the system and maximizes the scientific return from observing time.

  15. Apollo Telescope Mount of Skylab: an overview.

    PubMed

    Tousey, R

    1977-04-01

    This introductory paper describes Skylab and the course of events that led to this complex space project. In particular it covers the Apollo Telescope Mount and its instruments and the method of operation of the ATM mission.

  16. Theoretical contamination of cryogenic satellite telescopes

    NASA Technical Reports Server (NTRS)

    Murakami, M.

    1978-01-01

    The state of contaminant molecules, the deposition rate on key surfaces, and the heat transfer rate were estimated by the use of a zeroth-order approximation. Optical surfaces of infrared telescopes cooled to about 20 K should be considered to be covered with at least several deposition layers of condensible molecules without any contamination controls. The effectiveness of the purge gas method of contamination controls was discussed. This method attempts to drive condensible molecules from the telescope tube by impacts with a purge gas in the telescope tube. For this technique to be sufficiently effective, the pressure of the purge gas must be more than 2 x .000001 torr. The influence caused by interactions of the purged gas with the particulate contaminants was found to slightly increase the resident times of the particulate contaminants within the telescope field of view.

  17. Compound catadioptric telescopes with all spherical surfaces.

    PubMed

    Sigler, R D

    1978-05-15

    Catadioptric, all spherical Cassegrainian and Gregorian telescopes with one and two full aperture corrector lenses are investigated. Appropriate closed form third-order aberration equations are presented, and a variety of aplanatic and anastigmatic solutions are indicated. PMID:20198015

  18. Wide-Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets coronagraphic operations: lessons learned from the Hubble Space Telescope and the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Debes, John H.; Ygouf, Marie; Choquet, Elodie; Hines, Dean C.; Perrin, Marshall D.; Golimowski, David A.; Lajoie, Charles-Phillipe; Mazoyer, Johan; Pueyo, Laurent; Soummer, Rémi; van der Marel, Roeland

    2016-01-01

    The coronagraphic instrument (CGI) currently proposed for the Wide-Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets (WFIRST-AFTA) mission will be the first example of a space-based coronagraph optimized for extremely high contrasts that are required for the direct imaging of exoplanets reflecting the light of their host star. While the design of this instrument is still in progress, this early stage of development is a particularly beneficial time to consider the operation of such an instrument. We review current or planned operations on the Hubble Space Telescope and the James Webb Space Telescope with a focus on which operational aspects will have relevance to the planned WFIRST-AFTA CGI. We identify five key aspects of operations that will require attention: (1) detector health and evolution, (2) wavefront control, (3) observing strategies/postprocessing, (4) astrometric precision/target acquisition, and (5) polarimetry. We make suggestions on a path forward for each of these items.

  19. Hunting Spinning Asteroids with the Faulkes Telescopes

    NASA Astrophysics Data System (ADS)

    Miles, Richard

    2008-08-01

    The Faulkes telescopes are proving a dab hand at allowing schools and amateurs to do real science. The author discusses the latest Faulkes research project, and his record-breaking discovery that was pert of it.

  20. Wind loads on ground-based telescopes.

    PubMed

    MacMynowski, Douglas G; Vogiatzis, Konstantinos; Angeli, George Z; Fitzsimmons, Joeleff; Nelson, Jerry E

    2006-10-20

    One of the factors that can influence the performance of large optical telescopes is the vibration of the telescope structure due to unsteady wind inside the telescope enclosure. Estimating the resulting degradation in image quality has been difficult because of the relatively poor understanding of the flow characteristics. Significant progress has recently been made, informed by measurements in existing observatories, wind-tunnel tests, and computational fluid dynamic analyses. We combine the information from these sources to summarize the relevant wind characteristics and enable a model of the dynamic wind loads on a telescope structure within an enclosure. The amplitude, temporal spectrum, and spatial distribution of wind disturbances are defined as a function of relevant design parameters, providing a significant improvement in our understanding of an important design issue.

  1. Compound catadioptric telescopes with all spherical surfaces.

    PubMed

    Sigler, R D

    1978-05-15

    Catadioptric, all spherical Cassegrainian and Gregorian telescopes with one and two full aperture corrector lenses are investigated. Appropriate closed form third-order aberration equations are presented, and a variety of aplanatic and anastigmatic solutions are indicated.

  2. The Hubble Space Telescope (HST) Transportation Operation

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Ready for transportation to the Kennedy Space Center, the Hubble Space Telescope (HST) is pictured onboard the strongback dolly at the Vertical Processing Facility (VPF) at the Lockheed assembly plant upon completion of final testing and verification.

  3. The misalignment induced aberrations of TMA telescopes.

    PubMed

    Thompson, Kevin P; Schmid, Tobias; Rolland, Jannick P

    2008-12-01

    The next major space-borne observatory, the James Webb Space Telescope, will be a 6.6M field-biased, obscured, three-mirror anastigmat (TMA). Over the used field of view, the performance of TMA telescopes is dominated by 3(rd) order misalignment aberrations. Here it is shown that two dominant 3(rd) order misalignment aberrations arise for any TMA telescope. One aberration, field constant 3(rd) order coma is a well known misalignment aberration commonly seen in two-mirror Ritchey Chretien telescopes. The second aberration, field-asymmetric, field-linear, 3(rd) order astigmatism is a new and unique image orientation dependence with field derived here for the first time using nodal aberration theory.

  4. Goldstone Apple Valley Radio Telescope Project.

    ERIC Educational Resources Information Center

    Ibe, Mary; MacLaren, Dave

    2003-01-01

    Describes the Goldstone Apple Valley Radio Telescope (GAVRT) project as a way of teaching astronomy concepts to middle school students. The project provides students opportunities to work with professional scientists. (SOE)

  5. Solar Rejection Filter for Large Telescopes

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Lesh, James

    2009-01-01

    To reject solar radiation photons at the front aperture for large telescopes, a mosaic of large transmission mode filters is placed in front of the telescope or at the aperture of the dome. Filtering options for effective rejection of sunlight include a smaller filter down-path near the focus of the telescope, and a large-diameter filter located in the front of the main aperture. Two types of large filters are viable: reflectance mode and transmittance mode. In the case of reflectance mode, a dielectric coating on a suitable substrate (e.g. a low-thermal-expansion glass) is arranged to reflect only a single, narrow wavelength and to efficiently transmit all other wavelengths. These coatings are commonly referred to as notch filter. In this case, the large mirror located in front of the telescope aperture reflects the received (signal and background) light into the telescope. In the case of transmittance mode, a dielectric coating on a suitable substrate (glass, sapphire, clear plastic, membrane, and the like) is arranged to transmit only a single wavelength and to reject all other wavelengths (visible and near IR) of light. The substrate of the large filter will determine its mass. At first glance, a large optical filter with a diameter of up to 10 m, located in front of the main aperture, would require a significant thickness to avoid sagging. However, a segmented filter supported by a structurally rugged grid can support smaller filters. The obscuration introduced by the grid is minimal because the total area can be made insignificant. This configuration can be detrimental to a diffraction- limited telescope due to diffraction effects at the edges of each sub-panel. However, no discernable degradation would result for a 20 diffraction-limit telescope (a photon bucket). Even the small amount of sagging in each subpanel should have minimal effect in the performance of a non-diffraction limited telescope because the part has no appreciable optical power. If the

  6. Development of a clean optical telescope

    NASA Technical Reports Server (NTRS)

    Brown, R. A.

    1983-01-01

    Particulate contamination on astronomical mirrors degrades performance in two ways: by information loss by extinction of light; and background and noise from scattering, especially forward or Fraunhofer scattering. These effects were not generally understood, and an ambitious pilot program was outlined to measure particulate effects on telescope optical performance; develop prophylactic and cleaning procedures suitable for groundbased observatories; investigate by computational modelling the effects on telescopes in space; and communicate the results and concerns within the astronomical community.

  7. Hubble Space Telescope (HST) Primary Mirror Inspection

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Prior to installation, technicians inspect the primary mirror of the Hubble Space Telescope (HST). The first in a series of great observatories launched by NASA, the HST was designed to last approximately 15 years. The Marshall Space Flight Center had management responsibility for the development of the HST and played a major role in ground tests and orbital checkout of the telescope. The HST was launched April 24, 1990 aboard Space Shuttle Discovery's STS-31 mission.

  8. Zone generator for Large Space Telescope technology

    NASA Technical Reports Server (NTRS)

    Erickson, K. E.

    1974-01-01

    A concept is presented for monitoring the optical adjustment and performance of a Large Space Telescope which consists of a 1.2m diameter turntable with a laser stylus to operate at speeds up to 30 rpm. The focus of the laser stylus is under closed loop control. A technique for scribing zones of suitable depth, width, and uniformity applicable to large telescope mirrors is also reported.

  9. Holographic Optical Elements as Scanning Lidar Telescopes

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.

    2003-01-01

    We have investigated and developed the use of holographic optical elements (HOE) and holographic transmission gratings for scanning lidar telescopes. By rotating a flat HOE in its own plane with the focal spot on the rotation axis, a very simple and compact conical scanning telescope is possible. We developed and tested transmission and reflection HOES for use with the first three harmonics of Nd:YAG lasers, and designed, built, and tested two lidar systems based on this technology.

  10. Commissioning Results on the JWST Testbed Telescope

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.; Acton, D. Scott

    2006-01-01

    The one-meter 18 segment JWST Testbed Telescope (TBT) has been developed at Ball Aerospace to facilitate commissioning operations for the JWST Observatory. Eight different commissioning activities were tested on the TBT: telescope focus sweep, segment ID and Search, image array, global alignment, image stacking, coarse phasing, fine phasing, and multi-field phasing. This paper describes recent commissioning results from experiments performed on the TBT.

  11. Modelling potential photovoltaic absorbers Cu3MCh4(M = V, Nb, Ta; Ch = S, Se, Te) using density functional theory.

    PubMed

    Kehoe, Aoife B; Scanlon, David O; Watson, Graeme W

    2016-05-01

    The geometric and electronic properties of a series of potential photovoltaic materials, the sulvanite structured Cu3MCh4(M = V, Nb, Ta; Ch = S, Se, Te), have been computationally examined using both PBEsol+U and HSE06 methods to assess the materials' suitability for solar cell application and to compare the predictions of the two theoretical approaches. The lattice parameters, electronic density of states, and band gaps of the compounds have been calculated to ascertain the experimental agreement obtained by each method and to determine if any of the systems have an optical band gap appropriate for photovoltaic absorber materials. The PBEsol+U results are shown to achieve better agreement with experiment than HSE06 in terms of both lattice constants and band gaps, demonstrating that higher level theoretical methods do not automatically result in a greater level of accuracy than their computationally less expensive counterparts. The PBEsol+U calculated optical band gaps of five materials suggest potential suitability as photovoltaic absorbers, with values of 1.72 eV, 1.49 eV, 1.19 eV, 1.46 eV, and 1.69 eV for Cu3VS4, Cu3VSe4, Cu3VTe4, Cu3NbTe4, and Cu3TaTe4, respectively, although it should be noted that all fundamental band gaps are indirect in nature, which could lower the open-circuit voltage and hence the efficiency of prospective devices. PMID:27033972

  12. The Faulkes Telescope Optical Spectrographs and Swift

    NASA Astrophysics Data System (ADS)

    O'Brien, Paul

    The Faulkes Telescope project funded primarily by the Dill Faulkes Educational Trust is currently constructing two 2-m robotic telescopes to be located in Hawaii and Australia. These will be the largest and most powerful telescopes ever built dedicated for use by schools and colleges. We have been awarded funding to build two optical spectrographs to be permanently mounted on these telescopes by the end of 2003. At this time an astronomical satellite called Swift will be launched by NASA. Swift is dedicated to the study of gamma-ray bursts the most powerful explosive events in the Universe. The Department of Physics and Astronomy at the University of Leicester has provided the X-ray camera for Swift and is a partner in the Faulkes Telescopes project. To enhance both projects we intend to use the Faulkes Telescope optical spectrographs to study the gamma-ray bursts identified by Swift. These data will also be made available to schools thereby raising the profile of physics and astronomy in the educational community.

  13. Thermal analysis of the TMT telescope structure

    NASA Astrophysics Data System (ADS)

    Cho, Myung; Corredor, Andrew; Vogiatzis, Konstantinos; Angeli, George

    2010-07-01

    Thermal performances of the Thirty Meter Telescope (TMT) structure were evaluated by finite element thermal models. The thermal models consist of the telescope optical assembly systems, instruments, laser facility, control and electronic equipments, and structural members. Temporal and spatial temperature distributions of the optical assembly systems and the telescope structure were calculated under various thermal conditions including air convections, conductions, heat flux loadings, and radiations. In order to capture thermal responses faithfully, a three-consecutive-day thermal environment data was implemented. This thermal boundary condition was created by CFD based on the environment conditions of the corresponding TMT site. The thermo-elastic analysis was made to predict thermal deformations of the telescope structure at every hour for three days. The line of sight calculation was made using the thermally induced structural deformations. Merit function was utilized to calculate the OPD maps after repositioning the optics based on a best fit of M1 segment deformations. The goal of this thermal analysis is to establish creditable thermal models by finite element analysis to simulate the thermal effects with the TMT site environment data. These thermal models can be utilized for estimating the thermal responses of the TMT structure. Thermal performance prediction of the TMT structure will guide us to assess the thermal impacts, and enables us to establish a thermal control strategy and requirements in order to minimize the thermal effects on the telescope structure due to heat dissipation from the telescope mounted equipment and systems.

  14. Analysis of space telescope data collection systems

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.

    1984-01-01

    The Multiple Access (MA) communication link of the Space Telescope (ST) is described. An expected performance bit error rate is presented. The historical perspective and rationale behind the ESTL space shuttle end-to-end tests are given. The concatenated coding scheme using a convolutional encoder for the outer coder is developed. The ESTL end-to-end tests on the space shuttle communication link are described. Most important is how a concatenated coding system will perform. This is a go-no-go system with respect to received signal-to-noise ratio. A discussion of the verification requirements and Specification document is presented, and those sections that apply to Space Telescope data and communications system are discussed. The Space Telescope System consists of the Space Telescope Orbiting Observatory (ST), the Space Telescope Science Institute, and the Space Telescope Operation Control Center. The MA system consists of the ST, the return link from the ST via the Tracking and Delay Relay Satellite system to White Sands, and from White Sands via the Domestic Communications Satellite to the STOCC.

  15. Optical aperture synthesis with electronically connected telescopes

    PubMed Central

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.

    2015-01-01

    Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths. PMID:25880705

  16. Adaptive-optics performance of Antarctic telescopes.

    PubMed

    Lawrence, Jon S

    2004-02-20

    The performance of natural guide star adaptive-optics systems for telescopes located on the Antarctic plateau is evaluated and compared with adaptive-optics systems operated with the characteristic mid-latitude atmosphere found at Mauna Kea. A 2-m telescope with tip-tilt correction and an 8-m telescope equipped with a high-order adaptive-optics system are considered. Because of the large isoplanatic angle of the South Pole atmosphere, the anisoplanatic error associated with an adaptive-optics correction is negligible, and the achievable resolution is determined only by the fitting error associated with the number of corrected wave-front modes, which depends on the number of actuators on the deformable mirror. The usable field of view of an adaptive-optics equipped Antarctic telescope is thus orders of magnitude larger than for a similar telescope located at a mid-latitude site; this large field of view obviates the necessity for multiconjugate adaptive-optics systems that use multiple laser guide stars. These results, combined with the low infrared sky backgrounds, indicate that the Antarctic plateau is the best site on Earth at which to perform high-resolution imaging with large telescopes, either over large fields of view or with appreciable sky coverage. Preliminary site-testing results obtained recently from the Dome Concordia station indicate that this site is far superior to even the South Pole. PMID:15008551

  17. Retention force measurement of telescopic crowns.

    PubMed

    Bayer, Stefan; Stark, Helmut; Mues, Sebastian; Keilig, Ludger; Schrader, Anja; Enkling, Norbert

    2010-10-01

    This study deals with the determination of the retentive force between primary and secondary telescopic crowns under clinical conditions. Forty-three combined fixed-removable prostheses with a total of 140 double crowns were used for retention force measurement of the telescopic crowns prior to cementation. The crowns had a preparation of 1-2°. A specifically designed measuring device was used. The retentive forces were measured with and without lubrication by a saliva substitute. The measured values were analyzed according to the type of tooth (incisors, canines, premolars, and molars). Additionally, a comparison between lubricated and unlubricated telescopic crowns was done. As maximum retention force value 29.98 N was recorded with a telescopic crown on a molar, while the minimum of 0.08 N was found with a specimen on a canine. The median value of retention force of all telescopic crowns reached 1.93 N with an interquartile distance of 4.35 N. No statistically significant difference between lubricated and unlubricated specimens was found. The results indicate that retention force values of telescopic crowns, measured in clinical practice, are often much lower than those cited in the literature. The measurements also show a wide range. Whether this proves to be a problem for the patient's quality of life or not can however only be established by a comparison of the presented results with a follow-up study involving measurement of intraoral retention and determination by e.g. oral health impact profile.

  18. Sardinia Radio Telescope: the new Italian project

    NASA Astrophysics Data System (ADS)

    Grueff, Gavril; Alvito, Giovanni; Ambrosini, Roberto; Bolli, Pietro; Maccaferri, Andrea; Maccaferri, Giuseppe; Morsiani, Marco; Mureddu, Leonardo; Natale, Vincenzo; Olmi, Luca; Orfei, Alessandro; Pernechele, Claudio; Poma, Angelo; Porceddu, Ignazio; Rossi, Lucio; Zacchiroli, Gianpaolo

    2004-10-01

    This contribution gives a description of the Sardinia Radio Telescope (SRT), a new general purpose, fully steerable antenna proposed by the Institute of Radio Astronomy (IRA) of the National Institute for Astrophysics. The radio telescope is under construction near Cagliari (Sardinia) and it will join the two existing antennas of Medicina (Bologna) and Noto (Siracusa) both operated by the IRA. With its large antenna size (64m diameter) and its active surface, SRT, capable of operations up to about 100GHz, will contribute significantly to VLBI networks and will represent a powerful single-dish radio telescope for many science fields. The radio telescope has a Gregorian optical configuration with a supplementary beam-waveguide (BWG), which provides additional focal points. The Gregorian surfaces are shaped to minimize the spill-over and the standing wave between secondary mirror and feed. After the start of the contract for the radio telescope structural and mechanical fabrication in 2003, in the present year the foundation construction will be completed. The schedule foresees the radio telescope inauguration in late 2006.

  19. Telescopes Lofted to Space: An Historical Chronology

    NASA Astrophysics Data System (ADS)

    Abrahams, Peter

    2005-01-01

    To become airborne was an early dream of humanity. It was a profound dream because of the meaningfulness of the perspective from aloft: the subject was able to observe the Earth and to become closer to heaven. In this context, a telescope is the most basic augmentation of the airborne experience: it expands the new perspective, allows measurement and analysis, and provides new forms of beauty. The first telescopes in space were anticipated by imaginative authors and by exacting engineers, whose dreams and proposals have a part in this story. The earliest telescopes to achieve space, the rocket-launched suborbital missions, both successes and failures, will be described, along with the effect they had on science and culture. Telescopes in orbit and in space probes are the current generation of instruments, a prelude to a future of lunar and planetary telescopes. Every success can be seen to have had a direct effect on the widening of horizons provided by the telescope. This paper will serve as an introduction to a very extensive subject.

  20. Optical aperture synthesis with electronically connected telescopes.

    PubMed

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D

    2015-01-01

    Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths. PMID:25880705