Science.gov

Sample records for 4m blanco telescope

  1. Speckle Interferometry at the Blanco and SOAR Telescopes in 2008 and 2009

    NASA Technical Reports Server (NTRS)

    Tokovinin, Andrei; Mason, Brian D.; Hartkopf, William I.

    2010-01-01

    The results of speckle interferometric measurements of binary and multiple stars conducted in 2008 and 2009 at the Blanco and Southern Astrophysical Research (SOAR) 4 m telescopes in Chile are presented. A tot al of 1898 measurements of 1189 resolved pairs or sub-systems and 394 observations of 285 un-resolved targets are listed. We resolved for the first time 48 new pairs, 21 of which are new sub-systems in close visual multiple stars. Typical internal measurement precision is 0.3 mas in both coordinates, typical companion detection capability is delta m approximately 4.2 at 0.15 degree separation. These data were obtained with a new electron-multiplication CCD camera; data processing is described in detail, including estimation of magnitude difference, observational errors, detection limits, and analysis of artifacts. We comment on some newly discovered pairs and objects of special interest.

  2. 4MOST: 4m Multi Object Spectroscopic Telescope

    NASA Astrophysics Data System (ADS)

    Depagne, Éric

    4MOST (4m Multi Object Spectroscopic Telescope) is a spectroscopic facility that will be installed on ESO's VISTA around 2020. The science rationale of this facility are to be found in the ASTRONET Science Vision for European Astronomy (de Zeeuw & Molster, (eds) A Science Vision for European Astronomy, Astronet 2007. ISBN 978-3-923524-62-4). Specifically fundamental contribution can be made to the Extreme Universe (Dark Energy & Dark Matter, Black holes), Galaxy Formation & Evolution, and the Origin of Stars science cases in the ASTRONET Science Vision. The unique capabilities of the 4MOST facility are due to by its large field-of-view, high multiplex, its broad optical spectral wavelength coverage

  3. Thermal analysis of a 4m honeycomb telescope primary mirror

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Xian, Hao

    2012-09-01

    Thermal characteristics of a 4m class honeycomb telescope primary mirror are presented. A 3 dimensional finite elements model of the primary mirror with the varying ambient air temperature as the boundary conditions is used for the numerical simulations. Every night's air temperature profile has been detected in 2009 in Gaomeigu observatory site. Four typical nights' air temperature profiles in different seasons are chose as the boundary conditions in finite element simulation. Temperature difference between primary mirror's optical surface and ambient air is studied, as well as the axial temperature difference inner the mirror blank and radial temperature difference on the optical surface. Primary mirror seeing phenomenon results from the temperature difference between primary mirror's optical surface and the ambient air is discussed. Thermal deformations due to temperature gradient of the primary mirror are analyzed by the finite element model. Axial thermal deformations on the optical surface are discussed in detail. Thermal deformation would induce the optical surface of primary mirror to distort from the normal shape, and lead to large observation image quality degradation. Primary mirror seeing with the turbulence near the optical surface would introduce wavefront aberration and deteriorate the final observation image. In order to reduce mirror seeing and thermal deformation, it is necessary to design a thermal control system for primary mirror. The thermal and structural analysis result will be valuable in designing primary mirror's thermal control system.

  4. Off-axis systems for 4-m class telescopes.

    PubMed

    Moretto, G; Kuhn, J R

    1998-06-01

    We describe here an off-axis design for a 4.0-m astronomical telescope. We show that the geometric optical performance of this configuration can equal that of an on-axis conventional configuration while the diffractive performance fundamentally surpasses conventional telescopes because of the absence of pupil obstruction. The specific optical design described here uses a single off-axis primary mirror to obtain three distinct final focus ports: an f/10 port (with corrector) for wide-field imaging and spectroscopy with a field of view (FOV) of 15 arc min; a small-field, 2-reflection f/10 port suitable for polarimetry and coronagraphy; and a slower, f/16(3-reflection) port with a 7 arc min FOV. For general astronomical observations requiring high optical throughput and low scattered light, this design is superior to conventional Ritchey-Chretien optical configurations. PMID:18273321

  5. The design of 1-wire net meteorological observatory for 2.4 m telescope

    NASA Astrophysics Data System (ADS)

    Zhu, Gao-Feng; Wei, Ka-Ning; Fan, Yu-Feng; Xu, Jun; Qin, Wei

    2005-03-01

    The weather is an important factor to affect astronomical observations. The 2.4 m telescope can not work in Robotic Mode without the weather data input. Therefore it is necessary to build a meteorological observatory near the 2.4 m telescope. In this article, the design of the 1-wire net meteorological observatory, which includes hardware and software systems, is introduced. The hardware system is made up of some kinds of sensors and ADC. A suited power station system is also designed. The software system is based on Windows XP operating system and MySQL data management system, and a prototype system of browse/server model is developed by JAVA and JSP. After being tested, the meteorological observatory can register the immediate data of weather, such as raining, snowing, and wind speed. At last, the data will be stored for feature use. The product and the design can work well for the 2.4 m telescope.

  6. Dark Energy Camera for Blanco

    SciTech Connect

    Binder, Gary A.; /Caltech /SLAC

    2010-08-25

    In order to make accurate measurements of dark energy, a system is needed to monitor the focus and alignment of the Dark Energy Camera (DECam) to be located on the Blanco 4m Telescope for the upcoming Dark Energy Survey. One new approach under development is to fit out-of-focus star images to a point spread function from which information about the focus and tilt of the camera can be obtained. As a first test of a new algorithm using this idea, simulated star images produced from a model of DECam in the optics software Zemax were fitted. Then, real images from the Mosaic II imager currently installed on the Blanco telescope were used to investigate the algorithm's capabilities. A number of problems with the algorithm were found, and more work is needed to understand its limitations and improve its capabilities so it can reliably predict camera alignment and focus.

  7. The Blanco Cosmology Survey: Data Reduction, Calibration and Photometric Redshift Estimation to Four Distant Galaxy Clusters Discovered by the South Pole Telescope

    NASA Astrophysics Data System (ADS)

    Ngeow, Chow Choong; Mohr, J.; Zenteno, A.; Data Management, DES; BCS; SPT Collaborations

    2009-01-01

    The Blanco Cosmology Survey (BCS) is designed to enable a study of the cosmic acceleration using multiple techniques. To date, BCS has acquired Sloan griz band imaging data from 60 nights (15 nights per year from 2005 to 2008) using the Blanco 4m Telescope located at CTIO. The astronomical imaging data taken from this survey have been processed on high performance computer TeraGrid platforms at NCSA, using the automated Dark Energy Survey (DES) data management (DM) system. The DES DM system includes (1) middlewares for controlling and managing the processing jobs, and serve as an application container encapsulating the scientific codes; and (2) DES archive, which includes filesystem nodes, a relational database and a data access framework, to support the pipeline processing, data storage and scientific analyzes. Photometric solution module (PSM) were run on photometric nights to determine the zeropoints (ZP) and other photometric solutions. We remapped and coadded the images that lie within the pre-defined coadd tiles in the sky. When running the coaddition pipeline, we determined the ZP for each images using the photometric ZP from PSM, the magnitude offsets between overlapping images, and the sky brightness ratio for CCDs within a given exposure. We also applied aperture correction and color-term correction to the coadded catalogs. Satisfactory photometric and astrometric precision were achieved. These enabled initial estimation of photometric redshifts using ANNz codes, trained from 5000 galaxies with spectroscopic redshifts. RMS in the photometric redshifts ranges from 0.05 to 0.1 in sigma_z/(1+z) for redshift extended to z=1. We used the BCS data to optically confirm and estimate redshifts for four of the highest S/N galaxy clusters discovered with the South Pole Telescope using the Sunyaev-Zel'dovich Effect.

  8. Preliminary optical design for a 2.2 degree diameter prime focus corrector for the Blanco 4 meter telescope

    SciTech Connect

    Kent, S.; Bernstein, R.; Abbott, T.; Bigelow, B.; Brooks, D.; Doel, P.; Flaugher, B.; Gladders, M.; Walker, A.; Worswick, S.; /Fermilab /Cerro-Tololo InterAmerican Obs. /Michigan U. /University Coll. London /Carnegie Inst. Observ.

    2006-04-01

    We describe a five element corrector for the prime focus of the 4 meter Blanco telescope at the Cerro Tololo Inter-American Observatory (CTIO) in Chile that will be used in conjunction with a new mosaic CCD camera as part of the proposed Dark Energy Survey (DES). The corrector is designed to provide a flat focal plane and good images in the SDSS g, r, i, and z filters. We describe the performance in conjunction with the scientific requirements of the DES, particularly with regard to ghosting and weak-lensing point spread function (PSF) calibration.

  9. Minimum-cost 4-m telescope developed at October 1979 Nanjing study of telescope design and construction.

    PubMed

    Meinel, A B; Meinel, M P; Ningshen, H; Qiqian, H; Chunhua, P

    1980-08-15

    A lightweight 4-m telescope with a 6400-kg primary mirror of f/11.5 was developed during a two-week workshop at the Nanjing Astronomical Instruments Factory sponsored by the Purple Mountain Observatory, Academia Sinica, Nanjing, People's Republic of China. A central column supports the secondary mirror, thus eliminating all structures around the periphery of the primary mirror. The altazimuth mounting has the elevation axis behind the primary mirror and cell, requiring a counterweight. The Cassegrain focal position coincides with the elevation axis. A single secondary mirror and appropriate field correctors enable operations at the Harland Epps-Dan Schulte (HEDS), Cassegrain, Nasmyth, and coudé foci. Relay of the Cassegrain beam to the coudé is via an elliptical relay mirror. Cost scaling law considerations indicate that this 4-m design will have a cost comparable with that of a conventional 2.2-m telescope. A discussion of the double-tapered lightweight Cer-Vit-type mirror is included. PMID:20234489

  10. Rapid instrument exchanging system for the Cassegrain focus of the Lijiang 2.4-m Telescope

    NASA Astrophysics Data System (ADS)

    Fan, Yu-Feng; Bai, Jin-Ming; Zhang, Ju-Jia; Wang, Chuan-Jun; Chang, Liang; Xin, Yu-Xin; Zhang, Rui-Long

    2015-06-01

    As a facility used for astronomical research, the Lijiang 2.4-m telescope of Yunnan Astronomical Observatories, requires the ability to change one auxiliary instrument with another in as short a time as possible. This arises from the need to quickly respond to scientific programs (e.g. transient observation, time domain studies) and changes in observation conditions (e.g. seeing and weather conditions). In this paper, we describe the design, construction and test of hardware and software in the rapid instrument exchange system (RIES) for the Cassegrain focal station of this telescope, which enables instruments to be quickly changed at night without much loss of observing time. Tests in the laboratory and at the telescope show that the image quality and pointing accuracy of RIES are satisfactory. With RIES, we observed the same Landolt standard stars almost at the same time with the Princeton Instruments VersArray 1300B Camera (PICCD) and the Yunnan Faint Object Spectrograph and Camera (YFOSC), while both were mounted at the Cassegrain focus. A quasi-simultaneous comparison shows that the image quality of the optical system inside the YFOSC is comparable with that provided by the PICCD. Supported by the National Natural Science Foundation of China.

  11. Production of 8.4m segments for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Martin, H. M.; Allen, R. G.; Burge, J. H.; Kim, D. W.; Kingsley, J. S.; Law, K.; Lutz, R. D.; Strittmatter, P. A.; Su, P.; Tuell, M. T.; West, S. C.; Zhou, P.

    2012-09-01

    Production of segments for the Giant Magellan Telescope is well underway at the Steward Observatory Mirror Lab. We report on the completion of the first 8.4 m off-axis segment, the casting of the second segment, and preparations for manufacture of the remaining segments. The complete set of infrastructure for serial production is in place, including the casting furnace, two 8.4 m capacity grinding and polishing machines, and a 28 m test tower that incorporates four independent measurement systems. The first segment, with 14 mm p-v aspheric departure, is by some measures the most challenging astronomical mirror ever made. Its manufacture took longer than expected, but the result is an excellent figure and demonstration of valuable new systems that will support both fabrication and measurement of the remaining segments. Polishing was done with a 1.2 m stressed lap for smoothing and large-scale figuring, and a series of smaller passive rigid-conformal laps for deterministic figuring on smaller scales. The interferometric measurement produces a null wavefront with a 3-element asymmetric null corrector including a 3.8 m spherical mirror and a computer-generated hologram. In addition to this test, we relied heavily on the new SCOTS slope test with its high accuracy and dynamic range. Evaluation of the measured figure includes simulated active correction using both the 160-actuator mirror support and the alignment degrees of freedom for the off-axis segment.

  12. First Lunar Occultation Results from the 2.4 m Thai National Telescope Equipped with ULTRASPEC

    NASA Astrophysics Data System (ADS)

    Richichi, A.; Irawati, P.; Soonthornthum, B.; Dhillon, V. S.; Marsh, T. R.

    2014-11-01

    The recently inaugurated 2.4 m Thai National Telescope (TNT) is equipped with, among other instruments, the ULTRASPEC low-noise, frame-transfer EMCCD camera. At the end of its first official observing season, we report on the use of this facility to record high time resolution imaging using small detector subarrays with a sampling as fast as several 102 Hz. In particular, we have recorded lunar occultations of several stars that represent the first contribution to this area of research made from Southeast Asia with a telescope of this class. Among the results, we discuss an accurate measurement of α Cnc, which has been reported previously as a suspected close binary. Attempts by several authors to resolve this star have so far met with a lack of unambiguous confirmation. With our observation we are able to place stringent limits on the projected angular separation (<0.''003) and brightness (Δm > 5) of a putative companion. We also present a measurement of the binary HR 7072, which extends considerably the time coverage available for its yet undetermined orbit. We discuss our precise determination of the flux ratio and projected separation in the context of other available data. We conclude by providing an estimate of the performance of ULTRASPEC at TNT for lunar occultation work. This facility can help to extend the lunar occultation technique in a geographical area where no comparable resources were available until now.

  13. Lunar Occultations of 18 Stellar Sources from the 2.4 m Thai National Telescope

    NASA Astrophysics Data System (ADS)

    Richichi, A.; Tasuya, O.; Irawati, P.; Soonthornthum, B.; Dhillon, V. S.; Marsh, T. R.

    2016-01-01

    We report further results from the program of lunar occultation (LO) observations started at the 2.4 m Thai National Telescope (TNT) in 2014. We have recorded LO events of 18 stellar sources, leading to the detection of four angular diameters and two binary stars. With two exceptions, these are first-time determinations. We could resolve angular diameters as small as 2 milliarcseconds (mas) and projected separations as small as 4 mas. We discuss the individual results, in the context of previous observations, when available. The first-time angular diameters for o Psc, HR 6196 and 75 Leo are in good agreement with expected values, while that of π Leo agrees with the average of previous determinations but has a higher accuracy. We find a new secondary in o Psc, as previously suspected from Hipparcos data. We also obtain an accurate measurement of the companion in 31 Ari, revealing inconsistencies in the currently available orbital parameters. The TNT, equipped with the fast ULTRASPEC imager, is the leading facility in Southeast Asia for high time resolution observations. The LO technique at this telescope achieves a sensitivity of i‧ ≈ 10 mag, with a potential to detect several hundreds of LO events per year.

  14. First lunar occultation results from the 2.4 m Thai national telescope equipped with ULTRASPEC

    SciTech Connect

    Richichi, A.; Irawati, P.; Soonthornthum, B.; Dhillon, V. S.; Marsh, T. R.

    2014-11-01

    The recently inaugurated 2.4 m Thai National Telescope (TNT) is equipped with, among other instruments, the ULTRASPEC low-noise, frame-transfer EMCCD camera. At the end of its first official observing season, we report on the use of this facility to record high time resolution imaging using small detector subarrays with a sampling as fast as several 10{sup 2} Hz. In particular, we have recorded lunar occultations of several stars that represent the first contribution to this area of research made from Southeast Asia with a telescope of this class. Among the results, we discuss an accurate measurement of α Cnc, which has been reported previously as a suspected close binary. Attempts by several authors to resolve this star have so far met with a lack of unambiguous confirmation. With our observation we are able to place stringent limits on the projected angular separation (<0.''003) and brightness (Δm > 5) of a putative companion. We also present a measurement of the binary HR 7072, which extends considerably the time coverage available for its yet undetermined orbit. We discuss our precise determination of the flux ratio and projected separation in the context of other available data. We conclude by providing an estimate of the performance of ULTRASPEC at TNT for lunar occultation work. This facility can help to extend the lunar occultation technique in a geographical area where no comparable resources were available until now.

  15. 12 GHz Radio-Holographic Surface Measurements of the RRI 10.4~m Telescope

    NASA Astrophysics Data System (ADS)

    Balasubramanyam, R.; Venkatesh, S.; Raju, S. B.

    2009-09-01

    A modern Q-band low noise amplifier (LNA) front-end is being fitted to the 10.4~m millimeter-wave telescope at the Raman Research Institute (RRI) to support observations in the 40-50~GHz frequency range. To assess the suitability of the surface for this purpose, we measured the deviations of the primary surface from an ideal paraboloid using radio holography. We used the 11.6996 GHz beacon signal from the GSAT3 satellite, a 1.2~m reference antenna, commercial Ku-band Low Noise Block Convereters (LNBC) as the receiver front-ends and a Stanford Research Systems (SRS) lock-in amplifier as the backend. The LNBCs had independent free-running first local oscillators (LO). Yet, we recovered the correlation by using a radiatively injected common tone that served as the second local oscillator. With this setup, we mapped the surface deviations on a 64 × 64 grid and measured an rms surface deviation of ˜ 350~μm with a measurement accuracy of ˜ 50~μm.

  16. Astrometry of three near Earth asteroids with the Lijiang 2.4 m telescope

    NASA Astrophysics Data System (ADS)

    Zhang, Xi-Liang; Yu, Yong; Wang, Xue-Li; Wang, Chuan-Jun; Chang, Liang; Fan, Yu-Feng; Tang, Zheng-Hong

    2015-03-01

    Under the framework of observational campaigns organized by the GAIA Follow Up Network for Solar System Objects, three near Earth asteroids, 367943 Duende, 99942 Apophis and 2013 TV135, were observed with the Lijiang 2.4m telescope administered by Yunnan Observatories. The software package PRISM was used to calibrate the CCD fields and measure the positions of 99942 Apophis and 2013 TV135, and our own software was used for 367943 Duende. A comparison of the results show that the ephemerides of INPOP10a and JPL are consistent for 99942 Apophis and 2013 TV135, however, they are quite inconsistent for 367943 Duende. Moreover, we have found that differences between the mean values in the ephemerides of INPOP10a and JPL are about 72″ and —199″ in right ascension and declination respectively for 367943 Duende. Moreover, the ephemeris published by JPL is reliable in terms of the mean observed-minus-calculated (O — C) residuals in right ascension and declination of about 2.72″ and 1.49″ respectively. Supported by the National Natural Science Foundation of China.

  17. ULTRASPEC: a high-speed imaging photometer on the 2.4-m Thai National Telescope

    NASA Astrophysics Data System (ADS)

    Dhillon, V. S.; Marsh, T. R.; Atkinson, D. C.; Bezawada, N.; Bours, M. C. P.; Copperwheat, C. M.; Gamble, T.; Hardy, L. K.; Hickman, R. D. H.; Irawati, P.; Ives, D. J.; Kerry, P.; Leckngam, A.; Littlefair, S. P.; McLay, S. A.; O'Brien, K.; Peacocke, P. T.; Poshyachinda, S.; Richichi, A.; Soonthornthum, B.; Vick, A.

    2014-11-01

    ULTRASPEC is a high-speed imaging photometer mounted permanently at one of the Nasmyth focii of the 2.4-m Thai National Telescope (TNT) on Doi Inthanon, Thailand's highest mountain. ULTRASPEC employs a 1024 × 1024 pixel frame-transfer, electron-multiplying CCD (EMCCD) in conjunction with re-imaging optics to image a field of 7.7 × 7.7 arcmin2 at (windowed) frame rates of up to ˜200 Hz. The EMCCD has two outputs - a normal output that provides a readout noise of 2.3 e- and an avalanche output that can provide essentially zero readout noise. A six-position filter wheel enables narrow-band and broad-band imaging over the wavelength range 330-1000 nm. The instrument saw first light on the TNT in 2013 November and will be used to study rapid variability in the Universe. In this paper we describe the scientific motivation behind ULTRASPEC, present an outline of its design and report on its measured performance on the TNT.

  18. Spacewatch Astrometry of Asteroids and Comets with the Bok 2.3-m and Mayall 4-m Telescopes.

    NASA Astrophysics Data System (ADS)

    Scotti, James V.; McMillan, Robert S.; Larsen, Jeffrey A.

    2014-11-01

    We use the Bok 2.3-m and Mayall 4-m telescopes on Kitt Peak to improve knowledge of the orbits and magnitudes of high priority classes of Near Earth Objects (NEOs) and other small bodies in need of recovery that cannot be reached with the Spacewatch 0.9-m and 1.8-m telescopes. Targets include NEOs with potential close encounters with Earth (Virtual Impactors; VIs), future targets of radar, NEOs previously detected by NEOWISE with orbits or albedos suggesting potential for cometary activity, potential destinations for spacecraft, returning NEOs with hard-won albedos and diameters determined by NEOWISE, and faint Potentially Hazardous Asteroids (PHAs). Notable targets successfully recovered include the Earth Trojan 2010 TK7 and the faint almost-lost VI 2011 BY24 discovered by NEOWISE. Between 2010 June 6 and 2014 July 23 the MPC accepted 1316 lines of astrometry by us with these telescopes on 207 different NEOs including 84 PHAs. We made 343 observations of PHAs with V>=22. Our average arc extension on large PHAs (with H<=17.75) is 184 days, which is 2x longer than the next most effective observing station. Recently with all four telescopes Spacewatch has made 39% of all the observations of PHAs that were fainter than V=22 at the time of measurement. This count is twice that of the next most productive station in that measure. The faintest V magnitude we have observed so far is 24.4 and the smallest solar elongation angle at which we have observed is 46 degrees. Our work with the Mayall and Bok telescopes has been determined by the Minor Planet Center (MPC) to provide "dramatic improvement" to NEO orbits (T. Spahr, 2014 private communication). Support of Spacewatch was/is from JPL subcontract 100319 (2010-2011), NASA/NEOO grants NNG06GJ42G, NNX11AB52G, NNX12AG11G, NNX13AP99G, NNX14AL13G, and NNX14AL14G, the Lunar and Planetary Laboratory, the Brinson Foundation of Chicago, IL, the estates of R. S. Vail and R. L. Waland, and other private donors. We are also indebted

  19. Characterizing exoplanet atmospheres with the 10.4m GTC telescope: New results from the world’s largest optical telescope

    NASA Astrophysics Data System (ADS)

    Wilson, Paul Anthony; Evans, Tom; Sing, David Kent; Nikolov, Nikolay; Lecavelier des Etangs, Alain; Colón, Knicole

    2015-12-01

    Exoplanet transit spectroscopy of hot Jupiters has given us the first detailed glimpses of the complex physical characteristics that govern these objects. These highly irradiated planets with their extended atmospheres lend themselves as excellent targets for probing their compositions, temperature-pressure profiles and the vertical abundance distributions.We have explored the atmospheres of several hot Jupiters using the 10.4m GTC telescope together with unique tunable filters capable of precision narrowband photometry at specific wavelengths. Using the worlds largest optical telescope we have been able to detect and characterise specific atmospheric features at higher resolutions than can be obtained with the Hubble Space Telescope. This is important as atmospheric signatures could be missed if the resolution is not sufficiently high.In this talk I will present a summary of the exoplanet atmospheres characterised with the GTC telescope. I will also present new results obtained by combining Kepler and GTC data to study the low-albedo atmosphere of TrES-2b.

  20. Optical and mechanical design and characterization of the new baffle for the 2.4-m Thai National Telescope

    NASA Astrophysics Data System (ADS)

    Buisset, Christophe; Prasit, Apirat; Lépine, Thierry; Poshyajinda, Saran

    2015-09-01

    The first astronomical images obtained at the 2.4 m Thai National Telescope (TNT) during observations in bright moon conditions were contaminated by high levels of light scattered by the telescope structure. We identified that the origins of this scattered light were the M3 folding mirror baffle and the tube placed inside the fork between the M3 and the M4 mirrors. We thus decided to design and install a new baffle. In a first step, we calculated the optical and mechanical inputs needed to define the baffle optical design. These inputs were: the maximum length of the baffle, the maximum dimensions of the vanes and the incident beam diameter between M3 and M4 mirrors. In a second step, we defined the number, the position and the diameter of the vanes to remove the critical objects from the detector's FOV by using a targeted method. Then, we verified that the critical objects were moved away from the detector's view. In a third step, we designed and manufactured the baffle. The mechanical design is made of 21 sections (1 section for each vane) and comprises an innovative mechanism for the adjustment of the baffle position. The baffle installation and adjustment is performed in less than 20 minutes by 2 operators. In a fourth step, we installed and characterized the baffle by using a pinhole camera. We quantified the performance improvement and we identified the baffle areas at the origin of the residual stray light signal. Finally, we performed targeted on-sky observations to test the baffle in real conditions.

  1. Validation and Characterization of K2 Exoplanet Candidates with NIR Transit Photometry from the 4m Mayall and 3.5m WIYN Telescopes

    NASA Astrophysics Data System (ADS)

    Colón, Knicole D.; Barclay, Thomas

    2016-06-01

    We present new ground-based near-infrared (NIR) transit photometry of exoplanet candidates recently discovered by the NASA K2 mission. These observations support the confirmation and characterization of these newly discovered transiting exoplanets, many which are in the super-Earth to mini-Neptune size regime and orbit cool, nearby stars. We specifically used NEWFIRM on the 4m Mayall telescope and WHIRC on the 3.5m WIYN telescope, both located at Kitt Peak National Observatory, to observe several K2 exoplanet candidates in transit. To our knowledge, these facilities have not been tested for such high-precision differential transit photometry before. Follow-up transit photometry with the high spatial resolution NIR cameras installed on the Mayall and WIYN telescopes allows us to confirm the transit host, which is critical given the large pixel scale of the Kepler spacecraft. NIR transit photometry in particular allows us to verify that the transit is achromatic, after comparing the NIR transit depth to the transit depth measured in the optical from K2. Finding a different depth in different bandpasses indicates that the candidate is instead an eclipsing binary false positive. Furthermore, NIR transit photometry provides robust constraints on the measured planet radius, since stellar limb darkening is minimized in the NIR. Finally, the high-precision and high-cadence photometry we achieve allows us to refine the transit ephemeris, which is crucial for future follow-up efforts with other facilities like NASA's James Webb Space Telescope. The capabilities of these ground-based facilities therefore approach those of space telescopes, since we are able use these ground-based observatories to refine transit parameters and constrain properties for the exoplanets that K2 is discovering, all the way down to super-Earth-size planets.

  2. Results from DESDM Pipeline on Data From Blanco Cosmology Survey

    NASA Astrophysics Data System (ADS)

    Desai, Shantanu; Mohr, J.; Armstrong, R.; Bertin, E.; Zenteno, A.; Tucker, D.; Song, J.; Ngeow, C.; Lin, H.; Bazin, G.; Liu, J.; Cosmology Survey, Blanco

    2011-01-01

    The Blanco Cosmology Survey (BCS) is a 60-night survey of the southern skies using the CTIO Blanco 4 m telescope, whose main goal to study cosmic acceleration using galaxy clusters. BCS has carried out observations in two 50 degree patches of the southern skies centered at 23 hr and 5 hr in griz bands. These fields were chosen to maximize overlap with the the South Pole Telescope. The data from this survey has been processed using the Dark energy Data Management System (DESDM) on Teragrid resources at NCSA and CCT. DESDM is developed to analyze data from the Dark Energy Survey, which begins around 2011 and analysis of real data provides valuable warmup exercise before the DES survey starts. We describe in detail the key steps in producing science ready catalogs from the raw data. This includes detrending, astrometric calibration, photometric calibration, co-addition with psf homogenization. The final catalogs are constructed using model-fitting photometry which includes detailed galaxy fitting models convolved with the local PSF. We illustrate how photometric redshifts of galaxy clusters are estimated using red-sequence fitting and show results from a few clusters.

  3. The Blanco Cosmology Survey: Data Acquisition, Processing, Calibration, Quality Diagnostics and Data Release

    SciTech Connect

    Desai, S.; Armstrong, R.; Mohr, J.J.; Semler, D.R.; Liu, J.; Bertin, E.; Allam, S.S.; Barkhouse, W.A.; Bazin, G.; Buckley-Geer, E.J.; Cooper, M.C.; /UC, Irvine /Lick Observ. /UC, Santa Cruz

    2012-04-01

    The Blanco Cosmology Survey (BCS) is a 60 night imaging survey of {approx}80 deg{sup 2} of the southern sky located in two fields: ({alpha},{delta})= (5 hr, -55{sup circ} and 23 hr, -55{sup circ}). The survey was carried out between 2005 and 2008 in griz bands with the Mosaic2 imager on the Blanco 4m telescope. The primary aim of the BCS survey is to provide the data required to optically confirm and measure photometric redshifts for Sunyaev-Zel'dovich effect selected galaxy clusters from the South Pole Telescope and the Atacama Cosmology Telescope. We process and calibrate the BCS data, carrying out PSF corrected model fitting photometry for all detected objects. The median 10{sigma} galaxy (point source) depths over the survey in griz are approximately 23.3 (23.9), 23.4 (24.0), 23.0 (23.6) and 21.3 (22.1), respectively. The astrometric accuracy relative to the USNO-B survey is {approx}45 milli-arcsec. We calibrate our absolute photometry using the stellar locus in grizJ bands, and thus our absolute photometric scale derives from 2MASS which has {approx}2% accuracy. The scatter of stars about the stellar locus indicates a systematics floor in the relative stellar photometric scatter in griz that is {approx}1.9%, {approx}2.2%, {approx}2.7% and {approx}2.7%, respectively. A simple cut in the AstrOmatic star-galaxy classifier produces a star sample with good spatial uniformity. We use the resulting photometric catalogs to calibrate photometric redshifts for the survey and demonstrate scatter {delta} z/(1+z)=0.054 with an outlier fraction {eta}<5% to z{approx}1. We highlight some selected science results to date and provide a full description of the released data products.

  4. THE BLANCO COSMOLOGY SURVEY: DATA ACQUISITION, PROCESSING, CALIBRATION, QUALITY DIAGNOSTICS, AND DATA RELEASE

    SciTech Connect

    Desai, S.; Mohr, J. J.; Semler, D. R.; Liu, J.; Bazin, G.; Zenteno, A.; Armstrong, R.; Bertin, E.; Allam, S. S.; Buckley-Geer, E. J.; Lin, H.; Tucker, D.; Barkhouse, W. A.; Cooper, M. C.; Hansen, S. M.; High, F. W.; Lin, Y.-T.; Ngeow, C.-C.; Rest, A.; Song, J.

    2012-09-20

    The Blanco Cosmology Survey (BCS) is a 60 night imaging survey of {approx}80 deg{sup 2} of the southern sky located in two fields: ({alpha}, {delta}) = (5 hr, -55 Degree-Sign ) and (23 hr, -55 Degree-Sign ). The survey was carried out between 2005 and 2008 in griz bands with the Mosaic2 imager on the Blanco 4 m telescope. The primary aim of the BCS survey is to provide the data required to optically confirm and measure photometric redshifts for Sunyaev-Zel'dovich effect selected galaxy clusters from the South Pole Telescope and the Atacama Cosmology Telescope. We process and calibrate the BCS data, carrying out point-spread function-corrected model-fitting photometry for all detected objects. The median 10{sigma} galaxy (point-source) depths over the survey in griz are approximately 23.3 (23.9), 23.4 (24.0), 23.0 (23.6), and 21.3 (22.1), respectively. The astrometric accuracy relative to the USNO-B survey is {approx}45 mas. We calibrate our absolute photometry using the stellar locus in grizJ bands, and thus our absolute photometric scale derives from the Two Micron All Sky Survey, which has {approx}2% accuracy. The scatter of stars about the stellar locus indicates a systematic floor in the relative stellar photometric scatter in griz that is {approx}1.9%, {approx}2.2%, {approx}2.7%, and {approx}2.7%, respectively. A simple cut in the AstrOmatic star-galaxy classifier spread{sub m}odel produces a star sample with good spatial uniformity. We use the resulting photometric catalogs to calibrate photometric redshifts for the survey and demonstrate scatter {delta}z/(1 + z) = 0.054 with an outlier fraction {eta} < 5% to z {approx} 1. We highlight some selected science results to date and provide a full description of the released data products.

  5. DEBRIS DISKS OF MEMBERS OF THE BLANCO 1 OPEN CLUSTER

    SciTech Connect

    Stauffer, John R.; Noriega-Crespo, Alberto; Rebull, Luisa M.; James, David; Strom, Steven; Wolk, Scott; Carpenter, John M.; Barrado y Navascues, David; Backman, Dana; Cargile, P. A.

    2010-08-20

    We have used the Spitzer Space Telescope to obtain Multiband Imaging Photometer for Spitzer (MIPS) 24 {mu}m photometry for 37 members of the {approx}100 Myr old open cluster Blanco 1. For the brightest 25 of these stars (where we have 3{sigma} uncertainties less than 15%), we find significant mid-IR excesses for eight stars, corresponding to a debris disk detection frequency of about 32%. The stars with excesses include two A stars, four F dwarfs, and two G dwarfs. The most significant linkage between 24 {mu}m excess and any other stellar property for our Blanco 1 sample of stars is with binarity. Blanco 1 members that are photometric binaries show few or no detected 24 {mu}m excesses whereas a quarter of the apparently single Blanco 1 members do have excesses. We have examined the MIPS data for two other clusters of similar age to Blanco 1-NGC 2547 and the Pleiades. The AFGK photometric binary star members of both of these clusters also show a much lower frequency of 24 {mu}m excesses compared to stars that lie near the single-star main sequence. We provide a new determination of the relation between the V - K {sub s} color and K {sub s} - [24] color for main sequence photospheres based on Hyades members observed with MIPS. As a result of our analysis of the Hyades data, we identify three low mass Hyades members as candidates for having debris disks near the MIPS detection limit.

  6. Characterizing the Stellar Content of the Young Open Cluster Blanco 1

    NASA Astrophysics Data System (ADS)

    King, Piera Andrea Soto; James, David

    2015-01-01

    In this work we seek to derive the age of the nearby and young open cluster Blanco 1. This solar metallicity cluster, is located far from the Galactic plane making it quite unusual and astrophysically interesting. The methods that we used to determinate the age of Blanco 1 employed color magnitude diagrams and various flavors of stellar evolution models.Initially, the data that we used are a suite of F- and G-star spectra, which were acquired using the low-resolution cassegrain spectrograph installed on the 1.9m Radcliffe telescope located at the South African Astronomical Observatory. Comparing optical photometry with spectral types, we hoped to derive reddening vectors to help us with the isochrone fitting of Blanco 1. However, magnetic activity on our target stars prevented us from completing this analysis. We instead used hot, higher-mass, early-spectral type stars in thecluster to derive its reddening vectors.To fit the distance we tried with the HIPPARCOS (209 pc) distance, that have no a good fit in the main sequence. On the other hand we found that the best fit is 240 pc by isochrones D'Antona & Mazzitelli (1997).Finally, isochrones generated from theoretical stellar models were compared to the cluster's color magnitude diagrams, allowing us to estimate the distance-dependent age of Blanco 1. We find that its photometric age is ˜150 Myr, comparable to its lithium and gyrochronology age.

  7. New depside from Citrus reticulata Blanco.

    PubMed

    Phetkul, Uraiwan; Phongpaichit, Souwalak; Watanapokasin, Ramida; Mahabusarakam, Wilawan

    2014-01-01

    A new depside, named depcitrus A (1), and 31 known compounds were isolated from the peels, leaves and branch barks of Citrus reticulata Blanco. Methylation of the high polarity fractions from the branch barks and peels gave one new methylated compound named depcitrus B (14) and five known compounds. Their structures were established based on spectroscopic evidence. The antioxidant, antimicrobial and cytotoxic activities of some pure compounds were evaluated. PMID:24635118

  8. IDENTIFICATION OF THE LITHIUM DEPLETION BOUNDARY AND AGE OF THE SOUTHERN OPEN CLUSTER BLANCO 1

    SciTech Connect

    Cargile, P. A.; James, D. J.; Jeffries, R. D.

    2010-12-20

    We present results from a spectroscopic study of the very low mass members of the Southern open cluster Blanco 1 using the Gemini-N telescope. We obtained intermediate resolution (R {approx} 4400) GMOS spectra for 15 cluster candidate members with I {approx} 14-20 mag, and employed a series of membership criteria-proximity to the cluster's sequence in an I/I - K{sub s} color-magnitude diagram (CMD), kinematics agreeing with the cluster systemic motion, magnetic activity as a youth indicator-to classify 10 of these objects as probable cluster members. For these objects, we searched for the presence of the Li I 6708 A feature to identify the lithium depletion boundary (LDB) in Blanco 1. The I/I - K{sub s} CMD shows a clear mass segregation in the Li distribution along the cluster sequence; namely, all higher mass stars are found to be Li poor, while lower mass stars are found to be Li rich. The division between Li-poor and Li-rich (i.e., the LDB) in Blanco 1 is found at I = 18.78 {+-} 0.24 and I - K{sub s} = 3.05 {+-} 0.10. Using current pre-main-sequence evolutionary models, we determine an LDB age of 132 {+-} 24 Myr. Comparing our derived LDB age to upper-main-sequence isochrone ages for Blanco 1, as well as for other open clusters with identified LDBs, we find good chronometric consistency when using stellar evolution models that incorporate a moderate degree of convective core overshoot.

  9. A photometric and astrometric investigation of the brown dwarfs in Blanco 1

    NASA Astrophysics Data System (ADS)

    Casewell, S. L.; Baker, D. E. A.; Jameson, R. F.; Hodgkin, S. T.; Dobbie, P. D.; Moraux, E.

    2012-10-01

    We present the results of a photometric and astrometric study of the low-mass stellar and substellar population of the young open cluster Blanco 1. We have exploited J-band data, obtained recently with the Wide Field Camera (WFCAM) on the United Kingdom Infrared Telescope (UKIRT), and 10-year-old I- and z-band optical imaging from CFH12k on the Canada-France-Hawaii Telescope (CFHT), to identify 44 candidate low-mass stellar and substellar members, in an area of 2 deg2, on the basis of their colours and proper motions. This sample includes five sources which are newly discovered. We also confirm the lowest mass candidate member of Blanco 1 unearthed so far (29MJup). We determine the cluster mass function to have a slope of α = +0.93, assuming it to have a power-law form. This is high, but nearly consistent with previous studies of the cluster (to within the errors), and also that of its much better studied Northern hemisphere analogue, the Pleiades.

  10. A Wide-Field Corrector at the Prime Focus of a Ritchey--Chrétien Telescope

    NASA Astrophysics Data System (ADS)

    Terebizh, V. Yu.

    2004-03-01

    We propose a form of a lens corrector at the prime focus of a hyperboloidal mirror that provides a flat field of view up to 3 deg in diameter at image quality D_{80} < 0.8 arcsec in integrated (0.32-1.1 microm) light. The corrector consists of five lenses made of fused silica. All lens surfaces are spherical in shape, so the system is capable of achieving better images, if necessary, by aspherizing the surfaces. The optical system of the corrector is stable in the sense that its principal features are retained when optimized after significant perturbations of its parameters. As an example, we calculated three versions of the corrector for the Blanco 4-m telescope at Cerro Tololo Inter-American Observatory with 2.12 deg, 2.4 deg, and 3.0 deg fields of view.

  11. KOSMOS and COSMOS: new facility instruments for the NOAO 4-meter telescopes

    NASA Astrophysics Data System (ADS)

    Martini, Paul; Elias, J.; Points, S.; Sprayberry, D.; Derwent, Mark A.; Gonzalez, Raymond; Mason, J. A.; O'Brien, T. P.; Pappalardo, D. P.; Pogge, Richard W.; Stoll, R.; Zhelem, R.; Daly, Phil; Fitzpatrick, M.; George, J. R.; Hunten, M.; Marshall, R.; Poczulp, Gary; Rath, S.; Seaman, R.; Trueblood, M.; Zelaya, K.

    2014-07-01

    We describe the design, construction and measured performance of the Kitt Peak Ohio State Multi-Object Spectrograph (KOSMOS) for the 4-m Mayall telescope and the Cerro Tololo Ohio State Multi-Object Spectrograph (COSMOS) for the 4-m Blanco telescope. These nearly identical imaging spectrographs are modified versions of the OSMOS instrument; they provide a pair of new, high-efficiency instruments to the NOAO user community. KOSMOS and COSMOS may be used for imaging, long-slit, and multi-slit spectroscopy over a 100 square arcminute field of view with a pixel scale of 0.29 arcseconds. Each contains two VPH grisms that provide R~2500 with a one arcsecond slit and their wavelengths of peak diffraction efficiency are approximately 510nm and 750nm. Both may also be used with either a thin, blue-optimized CCD from e2v or a thick, fully depleted, red-optimized CCD from LBNL. These instruments were developed in response to the ReSTAR process. KOSMOS was commissioned in 2013B and COSMOS was commissioned in 2014A.

  12. Mt. Blanco revisited: Soil-geomorphic implications for the ages of the upper Cenozoic Blanco and Blackwater Draw Formations

    NASA Astrophysics Data System (ADS)

    Holliday, Vance T.

    1988-06-01

    Mt. Blanco, on the eastern edge of the Southern High Plains of Texas, contains stratigraphic features significant in interpreting the late Cenozoic history of the region and the vertebrate paleontology of the Great Plains; however, the stratigraphic relations are confused in the literature or are unreported. Mt. Blanco is the type locality for the Blanco Formation and the Blanco Local Fauna, which occurs throughout North America and is the type fauna for the Blancan Land Mammal Age in North America. Here also occur exposures of the Blackwater Draw Formation, an extensive (˜120000 km2) eolian sheet that is the surficial cover of the region and contains the 1.4 Ma Guaje Ash and several buried soils. A reexamination of the section shows that (1) the Blackwater Draw Formation, an eolian deposit, contains three well-expressed buried soils (5 YR hues, argillic horizons ≥1 m thick, Stages III and IV calcic horizons) and the similar regional surface soil (Paleustalf); (2) the Guaje Ash is within the lower Blackwater Draw Formation but is separated from the Blanco Formation, a lacustrine unit, by about 1 m of sediment, including the lowest buried soil; and (3) the lowest buried soil shows a Stage IV calcrete formed at the top of the Blanco Formation and the base of the Black-water Draw Formation and probably took about 200 ka to form. These new data suggest that deposition of the type Blanco sediments may have ended by about 1.6 Ma or earlier. Since that time, the Blackwater Draw Formation has accumulated episodically; periods of nondeposition are characterized by landscape stability and pedogenesis.

  13. Mt. Blanco revisited: soil-geomorphic implications for the ages of the upper Cenozoic Blanco and Blackwater Draw Formations

    SciTech Connect

    Holliday, V.T.

    1988-06-01

    Mt. Blanco, on the eastern edge of the Southern High Plains of Texas, contains stratigraphic features significant in interpreting the late Cenozoic history of the region and the vertebrate paleontology of the Great Plains; however, the stratigraphic relations are confused in the literature or are unreported. Mt. Blanco is the type locality for the Blanco Formation and the Blanco Local Fauna, which occurs throughout North America and is the type fauna for the Blancan Land Mammal Age in North America. Here also occur exposures of the Blackwater Draw Formation, an extensive (120,000 km/sup 2/) eolian sheet that is the surficial cover of the region and contains the 1.4 Ma Guaje Ash and several buried soils. A reexamination of the section shows that (1) the Blackwater Draw Formation, an eolian deposit, contains three well-expressed buried soils (5 YR hues, argillic horizons greater than or equal to 1 m thick, Stages III and IV calcic horizons) and the similar regional surface soil (Paleustalf); (2) the Guaje Ash is within the lower Blackwater Draw Formation but is separated from the Blanco Formation, a lacustrine unit, by about 1 m of sediment, including the lowest buried soil; and (3) the lowest buried soil shows a Stage IV calcrete formed at the top of the Blanco Formation and the base of the Blackwater Draw Formation and probably took about 200 ka to form. These new data suggested that deposition of the type Blanco sediments may have ended by about 1.6 Ma or earlier. Since that time, the Blackwater Draw Formation has accumulated episodically; periods of nondeposition are characterized by landscape stability and pedogenesis.

  14. Spectroscopy of the young cluster Blanco 1

    NASA Technical Reports Server (NTRS)

    Panagi, P. M.; O'Dell, M. A.; Cameron, A. Collier; Robinson, R. D.

    1994-01-01

    We present spectroscopic observations of some 115 stars of the cluster Blanco 1, extending from the Ca II(H,K) region to the Ca II(I-R) triplet, supporting an age similar to that of the young cluster alpha Persei. The H-alpha absorption equivalent with vs (B - V) diagram forms a well-defined locus, with decreasing absorption equivalent width for decreasing effective temperature, akin to solar neighborhood dwarfs. A large spread in the Ca II surface flux, as a function of (B - V), also indicates the presence of a high degree of surface inhomogeneity, synonymous with high magnetic activity in young stars. A drop-off in the Ca II flux at (B - V) = 1.0 is also similar to the solar neighborhood stars, and shows that the primary chromospheric cooling changes from the Ca II and Mg II lines to the Balmer lines. The mean chromospheric temperature for stars at 4800 K lies between 8000 K and 10,000 K, based on theoretical models, which is somewhat higher than the older solar neighborhood dwarfs. The high mean Ca II surface flux of the sample is also consistent with that of other young clusters. We were able to measure the equivalent width of the Li(6708) line, whose strength as a function of (B - V) indicates an age similar to the young cluster alpha Persei. The lithium abundance decreases with decreasing effective temperature, consistent with the premise of lithium depletion in stars with larger convection zones. Using published photometry and a recent Zero Age Main Sequence (ZAMS) fitting method, we also re-define the distance to the cluster to be 246 pc.

  15. An improved determination of the lithium depletion boundary age of Blanco 1 and a first look on the effects of magnetic activity

    SciTech Connect

    Juarez, Aaron J.; Stassun, Keivan G.; Cargile, Phillip A.; James, David J.

    2014-11-10

    The lithium depletion boundary (LDB) is a robust method for accurately determining the ages of young clusters, but most pre-main-sequence models used to derive LDB ages do not include the effects of magnetic activity on stellar properties. In light of this, we present results from our spectroscopic study of the very-low-mass members of the southern open cluster Blanco 1 using the Gemini-North Telescope, program IDs: GN-2009B-Q-53 and GN-2010B-Q-96. We obtained Gemini Multi-Object Spectrograph spectra at intermediate resolution for cluster candidate members with I ≈ 13-20 mag. From our sample of 43 spectra, we find 14 probable cluster members by considering proximity to the cluster sequence in an I/I – K {sub s} color-magnitude diagram, agreement with the cluster's systemic radial velocity, and magnetic activity as a youth indicator. We systematically analyze the Hα and Li features and update the LDB age of Blanco 1 to be 126{sub −14}{sup +13} Myr. Our new LDB age for Blanco 1 shows remarkable coevality with the benchmark Pleiades open cluster. Using available empirical activity corrections, we investigate the effects of magnetic activity on the LDB age of Blanco 1. Accounting for activity, we infer a corrected LDB age of 114{sub −10}{sup +9} Myr. This work demonstrates the importance of accounting for magnetic activity on LDB inferred stellar ages, suggesting the need to reinvestigate previous LDB age determinations.

  16. Modeling Environment for Total Risk-4M

    EPA Science Inventory

    MENTOR-4M uses an integrated, mechanistically consistent, source-to-dose modeling framework to quantify simultaneous exposures and doses of individuals and populations to multiple contaminants. It is an implementation of the MENTOR system for exposures to Multiple contaminants fr...

  17. New acridone from the wood of Citrus reticulata Blanco.

    PubMed

    Phetkul, Uraiwan; Wanlaso, Nutthakran; Mahabusarakam, Wilawan; Phongpaichit, Souwalak; Carroll, Anthony R

    2013-10-01

    A new acridone, named citruscridone (1) together with five known compounds were isolated from the wood of Citrus reticulata Blanco. Their structures were established based on spectroscopic evidence. The antibacterial and antifungal activities of the wood extracts and pure compounds were evaluated. PMID:23697332

  18. ATST telescope pier

    NASA Astrophysics Data System (ADS)

    Jeffers, Paul; Manuel, Eric; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world with a 4m aperture primary mirror. The off axis nature of the telescope optical layout, has the proportions of an 8 metre class telescope. Accordingly the instrumentation for solar observations a 16m diameter co-rotating laboratory (Coude Rotator) is also located within the telescope pier. The pier has a lower cylindrical profile with an upper conical section to support both the telescope mount with a 9m bearing diameter and contain the 16m diameter Coudé rotator. The performance of this pier cannot be considered in isolation but must account for ancillary equipment, access and initial installation. The Coude rotator structure and bearing system are of similar size to the telescope base structure and therefore this is the proverbial 'ship in a bottle' problem. This paper documents the competing requirements on the pier design and the balancing of these as the design progresses. Also summarized is the evolution of the design from a conceptual traditional reinforced concrete pier to a composite concrete and steel framed design. The stiffness requirements of the steel frame was a unique challenge for both the theoretical performance and overall design strategy considering constructability. The development of design acceptance criteria for the pier is discussed along with interfacing of the AandE firm responsible for the pier design and the telescope designer responsible for the telescope performance.

  19. WIMS-D4M user manual

    SciTech Connect

    Deen, J.R.; Woodruff, W.L.; Costescu, C.I.

    1995-07-01

    The Winfrith Improved Multigroup Scheme (WIMS) code has been used extensively throughout the world for power and research reactor lattice physics analysis. There are many WIMS versions currently in use. The D4 version selected by the RERTR program was originally developed in 1980). It was chosen for the accurate lattice physics capability and an unrestricted distribution privilege. The code and its 69-group library tape 166259 generated in Winfrith were obtained from the Oak Ridge National Laboratory Radiation Shielding Information Center (RSIC) in 1992. Since that time the RERTR program has added three important features. The first was the capability to generate up to 20 broad-group bumup-dependent macroscopic or microscopic ISOTXS cross sections for each composition of the unit cell, a new ENDF/B-V based nuclear data library, and a new Supercell option. As a result of these modifications and other minor ones, the code is now named WIMS-D4M. A supplementary reference guide can be obtained from the RSIC that contains detailed explanations of all user options, library contents, along with several sample problems. Primary applications of WIMS for research reactor modeling do not require an extensive knowledge of all WIMS user options. This user guide is primarily addressed to the needs of the research reactor community although the code can be used for most thermal reactor lattices. The guide is written based on the experience of the RERTR staff with WIMS-D4M and will discuss only the most needed options for research reactor analyses.

  20. ATST telescope mount: telescope of machine tool

    NASA Astrophysics Data System (ADS)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  1. The large binocular telescope.

    PubMed

    Hill, John M

    2010-06-01

    The Large Binocular Telescope (LBT) Observatory is a collaboration among institutions in Arizona, Germany, Italy, Indiana, Minnesota, Ohio, and Virginia. The telescope on Mount Graham in Southeastern Arizona uses two 8.4 m diameter primary mirrors mounted side by side. A unique feature of the LBT is that the light from the two Gregorian telescope sides can be combined to produce phased-array imaging of an extended field. This cophased imaging along with adaptive optics gives the telescope the diffraction-limited resolution of a 22.65 m aperture and a collecting area equivalent to an 11.8 m circular aperture. This paper describes the design, construction, and commissioning of this unique telescope. We report some sample astronomical results with the prime focus cameras. We comment on some of the technical challenges and solutions. The telescope uses two F/15 adaptive secondaries to correct atmospheric turbulence. The first of these adaptive mirrors has completed final system testing in Firenze, Italy, and is planned to be at the telescope by Spring 2010. PMID:20517352

  2. BLANCO MOUNTAIN AND BLACK CANYON ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Diggles, Michael F.; Rains, Richard L.

    1984-01-01

    The mineral survey of the Blanco Mountain and Black Canyon Roadless Areas, California indicated that areas of probable and substantiated mineral-resource potential exist only in the Black Canyon Roadless Area. Gold with moderate amounts of lead, silver, zinc, and tungsten, occurs in vein deposits and in tactite. The nature of the geological terrain indicates little likelihood for the occurrence of energy resources in the roadless areas. Detailed geologic mapping might better define the extent of gold mineralization. Detailed stream-sediment sampling and analysis of heavy-mineral concentrations could better define tungsten resource potential.

  3. Space Telescope.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    This pamphlet describes the Space Telescope, an unmanned multi-purpose telescope observatory planned for launch into orbit by the Space Shuttle in the 1980s. The unique capabilities of this telescope are detailed, the major elements of the telescope are described, and its proposed mission operations are outlined. (CS)

  4. 46 CFR 7.140 - Cape Blanco, OR to Cape Flattery, WA.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Cape Blanco, OR to Cape Flattery, WA. 7.140 Section 7.140 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Pacific Coast § 7.140 Cape Blanco, OR to Cape Flattery, WA. (a) A line drawn from the...

  5. Space Telescopes

    NASA Technical Reports Server (NTRS)

    Clampin, Mark; Flanagan, Kathryn A.

    2012-01-01

    Space telescopes have been a dominant force in astrophysics and astronomy over the last two decades. As Lyman Spitzer predicted in 1946, space telescopes have opened up much of the electromagnetic spectrum to astronomers, and provided the opportunity to exploit the optical performance of telescopes uncompromised by the turbulent atmosphere. This special section of Optical Engineering is devoted to space telescopes. It focuses on the design and implementation of major space observatories from the gamma-ray to far-infrared, and highlights the scientific and technical breakthroughs enabled by these telescopes. The papers accepted for publication include reviews of major space telescopes spanning the last two decades, in-depth discussions of the design considerations for visible and x-ray telescopes, and papers discussing concepts and technical challenges for future space telescopes.

  6. 46 CFR 7.135 - Point Sur, CA to Cape Blanco, OR.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... shore. (e) A line drawn from the northwestern tip of Tomales Point to latitude 38°15.1′ N. longitude 123... 46 Shipping 1 2014-10-01 2014-10-01 false Point Sur, CA to Cape Blanco, OR. 7.135 Section 7.135... Pacific Coast § 7.135 Point Sur, CA to Cape Blanco, OR. (a) A line drawn from Monterey Harbor Light “6”...

  7. 46 CFR 7.135 - Point Sur, CA to Cape Blanco, OR.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... shore. (e) A line drawn from the northwestern tip of Tomales Point to latitude 38°15.1′ N. longitude 123... 46 Shipping 1 2012-10-01 2012-10-01 false Point Sur, CA to Cape Blanco, OR. 7.135 Section 7.135... Pacific Coast § 7.135 Point Sur, CA to Cape Blanco, OR. (a) A line drawn from Monterey Harbor Light “6”...

  8. 46 CFR 7.135 - Point Sur, CA to Cape Blanco, OR.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... shore. (e) A line drawn from the northwestern tip of Tomales Point to latitude 38°15.1′ N. longitude 123... 46 Shipping 1 2011-10-01 2011-10-01 false Point Sur, CA to Cape Blanco, OR. 7.135 Section 7.135... Pacific Coast § 7.135 Point Sur, CA to Cape Blanco, OR. (a) A line drawn from Monterey Harbor Light “6”...

  9. 46 CFR 7.135 - Point Sur, CA to Cape Blanco, OR.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... shore. (e) A line drawn from the northwestern tip of Tomales Point to latitude 38°15.1′ N. longitude 123... 46 Shipping 1 2013-10-01 2013-10-01 false Point Sur, CA to Cape Blanco, OR. 7.135 Section 7.135... Pacific Coast § 7.135 Point Sur, CA to Cape Blanco, OR. (a) A line drawn from Monterey Harbor Light “6”...

  10. 46 CFR 7.135 - Point Sur, CA to Cape Blanco, OR.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... shore. (e) A line drawn from the northwestern tip of Tomales Point to latitude 38°15.1′ N. longitude 123... 46 Shipping 1 2010-10-01 2010-10-01 false Point Sur, CA to Cape Blanco, OR. 7.135 Section 7.135... Pacific Coast § 7.135 Point Sur, CA to Cape Blanco, OR. (a) A line drawn from Monterey Harbor Light “6”...

  11. 46 CFR 7.140 - Cape Blanco, OR to Cape Flattery, WA.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Cape Blanco, OR to Cape Flattery, WA. 7.140 Section 7.140 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Pacific Coast § 7.140 Cape Blanco, OR to Cape Flattery, WA. (a) A line drawn from the seaward extremity of the Coos Bay South Jetty to...

  12. A space imaging concept based on a 4m structured spun-cast borosilicate monolithic primary mirror

    NASA Astrophysics Data System (ADS)

    West, S. C.; Bailey, S. H.; Bauman, S.; Cuerden, B.; Granger, Z.; Olbert, B. H.

    2010-07-01

    Lockheed Martin Corporation (LMC) tasked The University of Arizona Steward Observatory (UASO) to conduct an engineering study to examine the feasibility of creating a 4m space telescope based on mature borosilicate technology developed at the UASO for ground-based telescopes. UASO has completed this study and concluded that existing launch vehicles can deliver a 4m monolithic telescope system to a 500 km circular orbit and provide reliable imagery at NIIRS 7-8. An analysis of such an imager based on a lightweight, high-performance, structured 4m primary mirror cast from borosilicate glass is described. The relatively high CTE of this glass is used to advantage by maintaining mirror shape quality with a thermal figuring method. Placed in a 290 K thermal shroud (similar to the Hubble Space Telescope), the orbit averaged figure surface error is 6nm rms when earth-looking. Space-looking optical performance shows that a similar thermal conditioning scheme combined with a 270 K shroud achieves primary mirror distortion of 10 nm rms surface. Analysis shows that a 3-point bipod mount will provide launch survivability with ample margin. The primary mirror naturally maintains its shape at 1g allowing excellent end-to-end pre-launch testing with e.g. the LOTIS 6.5m Collimator. The telescope includes simple systems to measure and correct mirror shape and alignment errors incorporating technologies already proven on the LOTIS Collimator. We have sketched a notional earth-looking 4m telescope concept combined with a wide field TMA concept into a DELTA IV or ATLAS 552 EELV fairing. We have combined an initial analysis of launch and space performance of a special light-weighted honeycomb borosilicate mirror (areal density 95 kg/m2) with public domain information on the existing launch vehicles.

  13. Telescope enclosure flow visualization

    NASA Astrophysics Data System (ADS)

    Forbes, Fred F.; Wong, Woon-Yin; Baldwin, Jack; Siegmund, Walter A.; Limmongkol, Siriluk; Comfort, Charles H.

    1991-12-01

    Dome-induced thermal disturbances that degrade seeing can originate when temperature differences exist between the interior and exterior of a telescope enclosure. It is important to design enclosures which minimize the effect. One design aid is to model the enclosure and study the flow patterns in and around the model at various angles to the flow direction. We have used a water tunnel and models of spherical, octagonal, and rectangular enclosures to investigate the flow characteristics as a function of angle and venting configuration. In addition to a large video data-base, numerical results yield flushing times for all models and all venting arrangements. We have also investigated the comparative merits of passive venting as opposed to active forced flow circulation for the 4m telescope enclosure at the NOAO Cerro Tololo Interamerican Observatory at La Serena, Chile. Finally, the flow characteristics of a tracking half-shroud were studied as a possible shield for the enclosureless case.

  14. Evaluating gyrochronology on the zero-age-main-sequence: rotation periods in the southern open cluster Blanco 1 from the Kelt-South survey

    SciTech Connect

    Cargile, P. A.; Pepper, J.; Siverd, R.; Stassun, K. G.; James, D. J.; Kuhn, R. B.

    2014-02-10

    We report periods for 33 members of Blanco 1 as measured from Kilodegree Extremely Little Telescope-South light curves, the first reported rotation periods for this benchmark zero-age-main-sequence open cluster. The distribution of these stars spans from late-A or early-F dwarfs to mid-K with periods ranging from less than a day to ∼8 days. The rotation period distribution has a morphology similar to the coeval Pleiades cluster, suggesting the universal nature of stellar rotation distributions. Employing two different gyrochronology methods, we find an age of 146{sub −14}{sup +13} Myr for the cluster. Using the same techniques, we infer an age of 134{sub −10}{sup +9} Myr for the Pleiades measured from existing literature rotation periods. These rotation-derived ages agree with independently determined cluster ages based on the lithium depletion boundary technique. Additionally, we evaluate different gyrochronology models and quantify levels of agreement between the models and the Blanco 1/Pleiades rotation period distributions, including incorporating the rotation distributions of clusters at ages up to 1.1 Gyr. We find the Skumanich-like spin-down rate sufficiently describes the rotation evolution of stars hotter than the Sun; however, we find cooler stars rotating faster than predicted by a Skumanich law, suggesting a mass dependence in the efficiency of stellar angular momentum loss rate. Finally, we compare the Blanco 1 and Pleiades rotation period distributions to available nonlinear angular momentum evolution models. We find they require a significant mass dependence on the initial rotation rate of solar-type stars to reproduce the observed range of rotation periods at a given stellar mass and are furthermore unable to predict the observed over-density of stars along the upper envelope of the clusters' rotation distributions.

  15. Space Telescopes

    NASA Technical Reports Server (NTRS)

    Rigby, Jane R.

    2011-01-01

    The science of astronomy depends on modern-day temples called telescopes. Astronomers make pilgrimages to remote mountaintops where these large, intricate, precise machines gather light that rains down from the Universe. Bit, since Earth is a bright, turbulent planet, our finest telescopes are those that have been launched into the dark stillness of space. These space telescopes, named after heroes of astronomy (Hubble, Chandra, Spitzer, Herschel), are some of the best ideas our species has ever had. They show us, over 13 billion years of cosmic history, how galaxies and quasars evolve. They study planets orbiting other stars. They've helped us determine that 95% of the Universe is of unknown composition. In short, they tell us about our place in the Universe. The next step in this journey is the James Webb Space Telescope, being built by NASA, Europe, and Canada for a 2018 launch; Webb will reveal the first galaxies that ever formed.

  16. SNAP telescope

    SciTech Connect

    Lampton, Michael L.; Akerlof, C.W.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Bercovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers Jr., W.C.; Commins, E.D.; Day, C.; Deustua, S.E.; DiGennaro, R.; Ealet, A.; Ellis,R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar,A.; Groom, D.; Harris, S.E.; Harvey, P.R.; Heetderks, H.D.; Holland,S.E.; Huterer, D.; Karcher, A.; Kim, A.G.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Levi, M.E.; Levin, D.S.; Linder, E.V.; Loken,S.C.; Malina, R.; Massey, R.; McKay, T.; McKee, S.P.; Miquel, R.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi,H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto,E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tarle, G.; Tomasch,A.; von der Lippe, H.; Vincent, R.; Walder, J.-P.; Wang, G.; Wang, G.

    2002-07-29

    The SuperNova/Acceleration Probe (SNAP) mission will require a two-meter class telescope delivering diffraction limited images spanning a one degree field in the visible and near infrared wavelength regime. This requirement, equivalent to nearly one billion pixel resolution, places stringent demands on its optical system in terms of field flatness, image quality, and freedom from chromatic aberration. We discuss the advantages of annular-field three-mirror anastigmat (TMA) telescopes for applications such as SNAP, and describe the features of the specific optical configuration that we have baselined for the SNAP mission. We discuss the mechanical design and choice of materials for the telescope. Then we present detailed ray traces and diffraction calculations for our baseline optical design. We briefly discuss stray light and tolerance issues, and present a preliminary wavefront error budget for the SNAP Telescope. We conclude by describing some of tasks to be carried out during the upcoming SNAP research and development phase.

  17. Teaching Telescopes

    ERIC Educational Resources Information Center

    Reid, John S.

    1974-01-01

    Discusses experience of teaching optical experiments with emphasis upon the student's design and construction of refracting and reflecting telescopes. Concludes that the student's interest and acquired knowledge are greatly enhanced through the use of realistic experiments. (CC)

  18. Super-size space telescope

    NASA Technical Reports Server (NTRS)

    Korsch, D.; Warner, J. W.

    1980-01-01

    A class of space telescopes for astronomical observations with a resolution and collecting capability more than one order of magnitude better than what is expected from the 2.4 m Space Telescope is discussed. To this purpose aplanatic two-mirror systems of coplanar primary/secondary mirror arrangements with approximately 45 deg angles of incidence and an overall diameter of about 100 m have been designed and analyzed. The main advantages of these systems are their compactness and the associated minimization of the moment of inertia in two axes. Two opposing secondary arrangements, one forward-reflecting and the other backward-reflecting are analyzed and compared.

  19. Hubble Space Telescope satellite

    NASA Technical Reports Server (NTRS)

    Mitchell, R. E.

    1985-01-01

    The Hubble Space Telescope, named for the American astronomer Edwin Powell Hubble, will be the largest and most powerful astronomical instrument ever orbited. Placed above the obscuring effects of the earth's atmosphere in a 600-km orbit, this remotely-controlled, free-flying satellite observatory will expand the terrestrial-equivalent resolution of the universe by a factor of seven, or a volumetric factor of 350. This telescope has a 2.4-m primary mirror and can accommodate five scientific instruments (cameras, spectrographs and photometers). The optics are suitable for a spectral range from 1100 angstrom to 1 mm wavelength. With a projected service life of fifteen years, the spacecraft can be serviced on-orbit for replacement of degraded systems, to insert advanced scientific instruments, and to reboost the telescope from decayed altitudes. The anticipated image quality will be a result of extremely precise lambda/20 optics, stringent cleanliness, and very stable pointing: jitter will be held to less than 0.01 arcsecond for indefinite observation periods, consistent with instrument apertures as small as 0.1 arcsecond.

  20. A search for flares and mass ejections on young late-type stars in the open cluster Blanco-1

    NASA Astrophysics Data System (ADS)

    Leitzinger, M.; Odert, P.; Greimel, R.; Korhonen, H.; Guenther, E. W.; Hanslmeier, A.; Lammer, H.; Khodachenko, M. L.

    2014-09-01

    We present a search for stellar activity (flares and mass ejections) in a sample of 28 stars in the young open cluster Blanco-1. We use optical spectra obtained with European Southern Observatory's Visible Multi-Object Spectrograph installed on the Very Large Telescope. From the total observing time of ˜5 h, we find four Hα flares but no distinct indication of coronal mass ejections (CMEs) on the investigated dK-dM stars. Two flares show `dips' in their light curves right before their impulsive phases which are similar to previous discoveries in photometric light curves of active dMe stars. We estimate an upper limit of <4 CMEs per day per star and discuss this result with respect to a empirical estimation of the CME rate of main-sequence stars. We find that we should have detected at least one CME per star with a mass of ≤ 3 × 1017 g depending on the star's X-ray luminosity, but the estimated Hα fluxes associated with these masses are below the detection limit of our observations. We conclude that the parameter which mainly influences the detection of stellar CMEs using the method of Doppler-shifted emission caused by moving plasma is not the spectral resolution/velocity but the flux/mass of the CME.

  1. Multiple-Event Relocation of Blanco Transform Fault Zone Earthquakes

    NASA Astrophysics Data System (ADS)

    Arnot, J. M.; Ledger, A. S.; Perkins, M. L.; Ruddock, S.; Salentine, B. J.; Salentine, S. J.; Larsen, H. E.; Cronin, V. S.; Sverdrup, K. A.

    2001-12-01

    Earthquakes along the ~350 km long Blanco transform fault zone (BTFZ) between the Pacific and Juan de Fuca plates are routinely mislocated northeast of the active transform boundary. A set of 111 magnitude >5 earthquakes recorded from 1964 through 2000 were relocated using the multiple-event relocation technique of Jordan and Sverdrup (1981). An earthquake on June 2, 2000, that was included in the relocated set had also been well located using independent data from the SOSUS hydrophone array (Fox, Dziak and Will, 2000), permitting specification of a static correction to improve absolute locations for the clusters. The static correction involved a rotation of all earthquake location vectors from the relocated positions by ~0.23° around a pole at latitude 11.14° N, longitude 28.99° W, resulting in an average change in location of 25 km toward azimuth 165° . The final locations resulting from the multiple-event relocation and static correction were an average distance of 30 +/-10 km toward azimuth 172 +/-31 degrees relative to the initial ISC locations. The 95% confidence-interval ellipses of these solutions generally fall on or very near active structural features along the BTFZ. The semi-major axis of the 95% CI error ellipse for most events in the set averaged 14.9 +/-5.9 km in length; however, the semi-major axis for 8 events recorded by <50 stations were >40 km long. The pattern of relocated epicenters does not indicate uniform spatial distribution of activity along the BTFZ; however, the sample time interval of just 36 years may be too short to expect uniform distribution. Focal mechanism solutions were obtained from the Harvard CMT catalog for 33 of the events. All but 2 of the focal mechanism solutions for earthquakes along the BTFZ indicate appropriate right-lateral strike-slip focal mechanisms. One event relocated to near the Surveyor Basin has a normal-fault focal mechanism. The focal mechanism solutions support the interpretation that these are plate

  2. GISOT: a giant solar telescope

    NASA Astrophysics Data System (ADS)

    Hammerschlag, Robert H.; von der Lühe, Oskar F.; Bettonvil, Felix C.; Jägers, Aswin P.; Snik, Frans

    2004-10-01

    A concept is presented for an extremely large high-resolution solar telescope with an aperture of 11 m and diffraction limited for visual wavelengths. The structure of GISOT will be transparent to wind and placed on a transparent stiff tower. For efficient wind flushing, all optics, including the primary mirror, will be located above the elevation axis. The aperture will be of the order of 11 m, not rotatively symmetrical, but of an elongated shape with dimensions 11 x 4 m. It consists of a central on-axis 4 m mirror with on both sides 3 pieces of 2 m mirrors. The optical layout will be kept simple to guarantee quality and minimize stray light. A Coudé room for instruments is planned below the telescope. The telescope will not be housed in a dome-like construction, which interferes with the open principle. Instead the telescope will be protected by a foldable tent construction with a diameter of the order of 30 m, which doesn"t form any obstruction during observations, but can withstand the severe weather circumstances on mountain sites. Because of the nature of the solar scene, extremely high resolution in only one dimension is sufficient to solve many exciting problems in solar physics and in this respect the concept of GISOT is very promising.

  3. Infrared telescope

    NASA Technical Reports Server (NTRS)

    Karr, G. R.; Hendricks, J. B.

    1985-01-01

    The development of the Infrared Telescope for Spacelab 2 is discussed. The design, development, and testing required to interface a stationary superfluid helium dewar with a scanning cryostate capable of operating in the zero-g environment in the space shuttle bay is described.

  4. Selecting Your First Telescope.

    ERIC Educational Resources Information Center

    Harrington, Sherwood

    1982-01-01

    Designed for first-time telescope purchasers, provides information on how a telescope works; major telescope types (refractors, reflectors, compound telescopes); tripod, pier, altazimuth, and equatorial mounts; selecting a telescope; visiting an astronomy club; applications/limitations of telescope use; and tips on buying a telescope. Includes a…

  5. EFFECTS OF PRESSING PROCEDURE AND STORAGE CONDITIONS ON THE RHEOLOGY AND MICROSTRUCTURE OF QUESO BLANCO

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Queso Blanco, a popular Hispanic-style cheese, was pressed using two methods and then stored under different conditions to determine if its rheological characteristics, and thus its consumer acceptance, would be affected. Texture profile analysis, torsion testing, and small amplitude oscillatory sh...

  6. RHEOLOGY AND MICROSTRUCTURE OF QUESO BLANCO AS AFFFECTED BY PRESSING PROCEDURE AND STORAGE CONDITIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Queso Blanco, a popular Hispanic-style cheese, was pressed using either a vertical press or a compression molder, and then stored under different conditions to determine if its rheological characteristics, and thus its consumer acceptance, would be affected. Texture profile analysis, torsion testin...

  7. CTIO under Victor Blanco's Directorship in the Years 1968-1977

    NASA Astrophysics Data System (ADS)

    Hesser, J. E.

    2015-05-01

    From my perspective of four decades of hindsight, diverse personal experiences in the initial years of Victor Blanco's directorship became lessons upon which I've gratefully drawn throughout my career. These years spanned a period of remarkable growth of CTIO's technical and scientific impact during exceptionally challenging times for Chile and Chileans.

  8. M4M chat rooms: individual socialization and sexual autonomy.

    PubMed

    Sanders, T C

    2008-04-01

    This paper uses data from twenty-one online and in-person qualitative interviews to examine the meaning and use of chat rooms located on men for men (M4M) websites from the perspectives of men seeking men on the Internet. This research is inspired by recent public health and social sciences literature on gay websites and chat rooms. The data indicate that these online sites help expedite learning about sex and sexuality and, for men who are shy or geographically isolated, to interact with metropolitan gay communities. There is, however, a measure of stigma associated with use of these chat rooms, particularly by men who are older or in coupled relationships. Using these data, the paper argues that M4M chat rooms play a vital role in fostering the sexual autonomy of many men who frequent these venues and that sociologists should devote more study to the complexity of online social interaction. PMID:18432425

  9. United States Atlas of Optical Telescopes. [2nd Edition

    NASA Technical Reports Server (NTRS)

    Meszaros, Stephen Paul

    1987-01-01

    This atlas shows the locations of and gives information about optical telescopes used for astronomical research in the United States as of late 1986. Those instruments with mirror or lens diameters of 3/4 m (approx. 30 inches) and larger are included. These telescopes are concentrated in the Southwest, on the West Coast and on the island of Hawaii.

  10. Mechanical concepts for 30 m class telescopes

    NASA Astrophysics Data System (ADS)

    Davison, Warren B.; Angel, James Roger P.

    2003-01-01

    The 20 20 Telescope is a 30 meter class telescope comprised of two 21.2m collector telescopes on a 100m circular track. Each collector telescope has a focal ratio of F: 0.7 and is comprised of seven 8.4 m segments. There is an instrument bridge that carries the combining instrument. The proposal for 20 20 is to have discrete combiner stations for 30,60,and 100 meter baselines. Additional focal stations are implemented for Nasmyth and bent Cassegrain. The Track has the same segmented construction and tracking motion on hydrostatic bearings as LBT. The collector telescope buildings will co-track and co-rotate on separate tracks. The 30m design has the same basic shape as a single 21 meter Collector but many aspects are different. The 30 meter telescope is a single hexagonal aperture with a primary at F: 0.5. There are 13 that are 8.74m hexagons and 6 half hexagons. The 30m telescope has primarily Nasmyth platforms behind the primary mirror. Both telescopes have a 30 meter equivalent circular aperture. Both telescopes have high structural performance, at 6.5 Hz and 5.3 Hz respectively. Both are balanced, and use similar designed components. Comparison of their characteristics and design differences can show the strengths and weaknesses of each.

  11. Robotic Telescopes

    NASA Astrophysics Data System (ADS)

    Akerlof, C. W.

    2001-05-01

    Since the discovery of gamma-ray bursts, a number of groups have attempted to detect correlated optical transients from these elusive objects. Following the flight of the BATSE instrument on the Compton Gamma-Ray Observatory in 1991, a prompt burst coordinate alert service, BACODINE (now GCN) became available to ground-based telescopes. Several instruments were built to take advantage of this facility, culminating in the discovery of a bright optical flash associated with GRB990123. To date, that single observation remains unique - no other prompt flashes have been seen for a dozen or so other bursts observed with comparably short response times. Thus, GRB prompt optical luminosities may be considerably dimmer than observed for the GRB990123 event or even absent altogether. A new generation of instruments is prepared to explore these possibilties using burst coordinates provided by HETE-2, Swift, Ballerina, Agile and other satellite missions. These telescopes have response times as short as a few seconds and reach limiting magnitudes, m_v 20, guaranteeing a sensitivity sufficient to detect the afterglow many hours later. Results from these experiments should provide important new data about the dynamics and locale of GRBs.

  12. Nanoelectronic primary thermometry below 4 mK

    NASA Astrophysics Data System (ADS)

    Bradley, D. I.; George, R. E.; Gunnarsson, D.; Haley, R. P.; Heikkinen, H.; Pashkin, Yu. A.; Penttilä, J.; Prance, J. R.; Prunnila, M.; Roschier, L.; Sarsby, M.

    2016-01-01

    Cooling nanoelectronic structures to millikelvin temperatures presents extreme challenges in maintaining thermal contact between the electrons in the device and an external cold bath. It is typically found that when nanoscale devices are cooled to ~10 mK the electrons are significantly overheated. Here we report the cooling of electrons in nanoelectronic Coulomb blockade thermometers below 4 mK. The low operating temperature is attributed to an optimized design that incorporates cooling fins with a high electron-phonon coupling and on-chip electronic filters, combined with low-noise electronic measurements. By immersing a Coulomb blockade thermometer in the 3He/4He refrigerant of a dilution refrigerator, we measure a lowest electron temperature of 3.7 mK and a trend to a saturated electron temperature approaching 3 mK. This work demonstrates how nanoelectronic samples can be cooled further into the low-millikelvin range.

  13. Nanoelectronic primary thermometry below 4 mK.

    PubMed

    Bradley, D I; George, R E; Gunnarsson, D; Haley, R P; Heikkinen, H; Pashkin, Yu A; Penttilä, J; Prance, J R; Prunnila, M; Roschier, L; Sarsby, M

    2016-01-01

    Cooling nanoelectronic structures to millikelvin temperatures presents extreme challenges in maintaining thermal contact between the electrons in the device and an external cold bath. It is typically found that when nanoscale devices are cooled to ∼ 10 mK the electrons are significantly overheated. Here we report the cooling of electrons in nanoelectronic Coulomb blockade thermometers below 4 mK. The low operating temperature is attributed to an optimized design that incorporates cooling fins with a high electron-phonon coupling and on-chip electronic filters, combined with low-noise electronic measurements. By immersing a Coulomb blockade thermometer in the (3)He/(4)He refrigerant of a dilution refrigerator, we measure a lowest electron temperature of 3.7 mK and a trend to a saturated electron temperature approaching 3 mK. This work demonstrates how nanoelectronic samples can be cooled further into the low-millikelvin range. PMID:26816217

  14. May 2012 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    SciTech Connect

    2012-12-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 9-10, 2012, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outside the site boundaries have not been affected by project-related contaminants.

  15. May 2011 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    SciTech Connect

    2011-12-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 16-17, 2011, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry, and for tritium using the conventional method. Tritium was not measured using the enrichment method because the EPA laboratory no longer offers that service. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outside the boundaries have not been affected by project-related contaminants.

  16. Rio Blanco, Colorado, Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2009

    SciTech Connect

    2009-12-21

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rio Blanco, Colorado, Site, for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 13 and 14, 2009. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectroscopy and tritium using the conventional and enriched methods.

  17. Neutrino telescopes

    SciTech Connect

    Costantini, H.

    2012-09-15

    Neutrino astrophysics offers a new possibility to observe our Universe: high-energy neutrinos, produced by the most energetic phenomena in our Galaxy and in the Universe, carry complementary (if not exclusive) information about the cosmos: this young discipline extends in fact the conventional astronomy beyond the usual electromagnetic probe. The weak interaction of neutrinos with matter allows them to escape from the core of astrophysical objects and in this sense they represent a complementary messenger with respect to photons. However, their detection on Earth due to the small interaction cross section requires a large target mass. The aim of this article is to review the scientific motivations of the high-energy neutrino astrophysics, the detection principles together with the description of a running apparatus, the experiment ANTARES, the performance of this detector with some results, and the presentation of other neutrino telescope projects.

  18. 2015 Long-Term Hydrologic Monitoring Program Sampling and Analysis Results at Rio Blanco, Colorado

    SciTech Connect

    Findlay, Rick; Kautsky, Mark

    2015-12-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rio Blanco, Colorado, Site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 20–21, 2015. This report documents the analytical results of the Rio Blanco annual monitoring event, the trip report, and the data validation package. The groundwater and surface water monitoring samples were shipped to the GEL Group Inc. laboratories for conventional analysis of tritium and analysis of gamma-emitting radionuclides by high-resolution gamma spectrometry. A subset of water samples collected from wells near the Rio Blanco site was also sent to GEL Group Inc. for enriched tritium analysis. All requested analyses were successfully completed. Samples were collected from a total of four onsite wells, including two that are privately owned. Samples were also collected from two additional private wells at nearby locations and from nine surface water locations. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry, and they were analyzed for tritium using the conventional method with a detection limit on the order of 400 picocuries per liter (pCi/L). Four locations (one well and three surface locations) were analyzed using the enriched tritium method, which has a detection limit on the order of 3 pCi/L. The enriched locations included the well at the Brennan Windmill and surface locations at CER-1, CER-4, and Fawn Creek 500 feet upstream.

  19. Las Cumbres Observatory Global Telescope

    NASA Astrophysics Data System (ADS)

    Brown, Timothy M.; Rosing, W.; Pickles, A.; Howell, D. A.

    2009-05-01

    Las Cumbres Observatory Global Telescope (LCOGT) is a privately-funded observatory dedicated to time-domain astronomy. Our main observing tool will be a homogeneous world-wide network of 12 x 1m optical telescopes, each equipped for both imaging and spectroscopy. We will also continue to operate 2m telscopes in Hawaii and Australia, and we plan to deploy a few tens of 0.4m imaging telescopes for education and for bright-object research. LCOGT has membership in the Pan-STARRS1 consortium, in the Palomar Transient Factory (PTF), and in LSST. In accord with these affiliations, our staff's scientific interests are concentrated in (but not restricted to) the areas of extrasolar planets, extragalactic transients (especially SNe), and pulsating stars. In this poster we describe the observatory in general terms, including its research agenda, its telescope deployment plans and schedule, its notable technical challenges, and its anticipated methods of working with the wider astronomical community. For more detailed information about LCOGT's aims and projects, please see the related posters in this session.

  20. Investigation of charge balance in ion accelerator TEMP-4M

    NASA Astrophysics Data System (ADS)

    Khailov, I. P.; Pak, V. G.

    2014-10-01

    The paper presents the results of a study on the balance of charge in accelerator TEMP-4M operating in double-pulse mode with resistance load and ion diode. Crucially, it was found, that during the switching there is no losses of accumulated charge. It means, that all accumulated charge transferred to the load. However when the charge is transferred from the Marx generator to Blumlein line the half of accumulated charge is lost. Calibration of diagnostic equipment showed a good agreement between the calculated and experimental values of voltage and current. It means, that our diagnostic system is correct for registration parameters of the ion accelerator. A distinctive feature of the ion accelerators with self-magnetically insulated diode is that there is no need to use additional energy source for the creation of an external magnetic field. That's why the efficiency of ion diodes with an external magnetic field is not more than 10-15%. The efficiency of energy conversion in self-magnetically insulated diodes will be determined by not only the efficiency of the diode, but the energy losses in the units of the accelerator. The aim of the researches is the analysis of the balance of charge in units of the ion beams pulsed generator and definition of the most significant channels of energy loss.

  1. Global Astrophysical Telescope System - telescope No. 2

    NASA Astrophysics Data System (ADS)

    Kamiński, Krzysztof; Baranowski, Roman; Fagas, Monika; Borczyk, Wojciech; Dimitrov, Wojciech; Polińska, Magdalena

    2014-02-01

    We present the new, second spectroscopic telescope of Poznań Astronomical Observatory. The telescope allows automatic simultaneous spectroscopic and photometric observations and is scheduled to begin operation from Arizona in autumn 2013. Together with the telescope located in Borowiec, Poland, it will constitute a perfect instrument for nearly continuous spectroscopic observations of variable stars. With both instruments operational, the Global Astrophysical Telescope System will be established.

  2. System concepts for a series of lunar optical telescopes

    NASA Technical Reports Server (NTRS)

    Nein, Max E.; Davis, Billy G.; Hilchey, John D.

    1992-01-01

    The Lunar Telescope Working Group of the Marshall Space Flight Center, NASA, has conducted conceptual studies of an evolutionary family of UV/ optical/IR telescopes to be based on the lunar surface. Included are: (1) the 16-m aperture Large Lunar Telescope; (2) the 4-m aperture precursor Lunar Cluster Telescope Experiment; and (3) the 2-m Lunar Transit Telescope proposed by John McGraw of the Steward Observatory. Development and emplacement of these advanced astronomical facilities would parallel the buildup of an initial lunar exploration site, an early lunar outpost, and a permanent lunar base. The Working Group has examined the feasibility of constructing such telescopes and assessed technology, subsystem, system, transportation, and operations requirements for their development and emplacement. Influences of the lunar environment and site selection on telescope design and operation were also evaluated.

  3. Geologic framework, hydrostratigraphy, and ichnology of the Blanco, Payton, and Rough Hollow 7.5-minute quadrangles, Blanco, Comal, Hays, and Kendall Counties, Texas

    USGS Publications Warehouse

    Clark, Allan K.; Golab, James A.; Morris, Robert E.

    2016-01-01

    This report presents the geologic framework, hydro­stratigraphy, and ichnology of the Trinity and Edwards Groups in the Blanco, Payton, and Rough Hollow 7.5-minute quad­rangles in Blanco, Comal, Hays, and Kendall Counties, Texas. Rocks exposed in the study area are of the Lower Cretaceous Trinity Group and lower part of the Fort Terrett Formation of the Lower Cretaceous Edwards Group. The mapped units in the study area are the Hammett Shale, Cow Creek Limestone, Hensell Sand, and Glen Rose Limestone of the Trinity Group and the lower portion of the Fort Terrett Formation of the Edwards Group. The Glen Rose Limestone is composed of the Lower and Upper Members. These Trinity Group rocks con­tain the upper and middle Trinity aquifers. The only remaining outcrops of the Edwards Group are the basal nodular member of the Fort Terrett Formation, which caps several hills in the northern portion of the study area. These rocks were deposited in an open marine to supratidal flats environment. The faulting and fracturing in the study area are part of the Balcones fault zone, an extensional system of faults that generally trends southwest to northeast in south-central Texas.The hydrostratigraphic units of the Edwards and Trinity aquifers were mapped and described using a classification system based on fabric-selective or not-fabric-selective poros­ity types. The only hydrostratigraphic unit of the Edwards aquifer present in the study area is hydrostratigraphic unit VIII. The mapped hydrostratigraphic units of the upper Trinity aquifer are (from top to bottom) the Camp Bullis, upper evaporite, fossiliferous, and lower evaporite which are interval equivalent to the Upper Member of the Glen Rose Limestone. The middle Trinity aquifer encompasses (from top to bottom) the Lower Member of the Glen Rose Limestone, the Hensell Sand Member, and the Cow Creek Limestone Member of the Pearsall Formation. The Lower Member of the Glen Rose Limestone is subdivided into six informal hydro

  4. BOMBOLO: a Multi-Band, Wide-field, Near UV/Optical Imager for the SOAR 4m Telescope

    NASA Astrophysics Data System (ADS)

    Angeloni, R.; Guzmán, D.; Puzia, T. H.; Infante, L.

    2014-10-01

    BOMBOLO is a new multi-passband visitor instrument for SOAR observatory. The first fully Chilean instrument of its kind, it is a three-arms imager covering the near-UV and optical wavelengths. The three arms work simultaneously and independently, providing synchronized imaging capability for rapid astronomical events. BOMBOLO will be able to address largely unexplored events in the minute-to-second timescales, with the following leading science cases: 1) Simultaneous Multiband Flickering Studies of Accretion Phenomena; 2) Near UV/Optical Diagnostics of Stellar Evolutionary Phases; 3) Exoplanetary Transits and 4) Microlensing Follow-Up. BOMBOLO optical design consists of a wide field collimator feeding two dychroics at 390 and 550 nm. Each arm encompasses a camera, filter wheel and a science CCD230-42, imaging a 7 x 7 arcmin field of view onto a 2k x 2k image. The three CCDs will have different coatings to optimise the efficiencies of each camera. The detector controller to run the three cameras will be Torrent (the NOAO open-source system) and a PanView application will run the instrument and produce the data-cubes. The instrument is at Conceptual Design stage, having been approved by the SOAR Board of Directors as a visitor instrument in 2012 and having been granted full funding from CONICYT, the Chilean State Agency of Research, in 2013. The Design Phase is starting now and will be completed in late 2014, followed by a construction phase in 2015 and 2016A, with expected Commissioning in 2016B and 2017A.

  5. Carbon and nutrient dynamics during coastal upwelling off Cape Blanco, Oregon

    NASA Astrophysics Data System (ADS)

    van Geen, A.; Takesue, R. K.; Goddard, J.; Takahashi, T.; Barth, J. A.; Smith, R. L.

    2000-05-01

    The partial pressure of carbon dioxide (PCO 2) and concentrations of the nutrients phosphate (P) and silicate (Si) in coastal surface waters within a 100 km×300 km area centered on Cape Blanco, Oregon, were mapped at high resolution during August 17-27, 1995. Alkalinity and the concentration of total CO 2 were determined on a subset of stored samples. Over the 9-18°C range in sea-surface temperatures encountered during the cruise, PCO 2, and P and Si concentrations varied between 150-690 μatm, <0.1-1.8, and <1-33 μmol/kg, respectively. Spatial variations in the intensity of coastal upwelling set the wide range in surface water properties. Acoustic Doppler current profiler data collected throughout the cruise indicate the advective nature of many chemical features. PCO 2 data also indicate the presence of an intense phytoplankton bloom in continental shelf waters along the coast north of Cape Blanco, with little evidence of biological drawdown to the south. The available data do not provide an unambiguous explanation for this contrast. Surf-zone water was sampled from shore at 17 locations along the cruise area on August 25 and 26, 1995, concurrently with the shipboard measurements. PCO 2, and P and Si concentrations, varied in the range 250-640 μatm, 0.3-2.0, and 1.1-42 μmol/kg, respectively. North of Cape Blanco, the chemical expression of upwelling was considerably stronger in the surf-zone than at all locations sampled on board ship because the phytoplankton bloom did not extend to the coast. South of Cape Blanco, concentrations of upwelling tracers measured on board ship within a distance of 5-10 km from the coast and in the surf-zone were comparable. Vertical nutrient profiles across the continental shelf show that the composition of surf-zone water is consistent with conservative advection of nutrient-enriched bottom water from the edge of the continental shelf to the surf-zone.

  6. May 2013 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    SciTech Connect

    2013-10-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 14-16, 2013, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location CER #1 Black Sulphur. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods.

  7. Coherent large telescopes

    NASA Astrophysics Data System (ADS)

    Nelson, J. E.

    Present ground-based telescopes are compared with those of the future. The inherent limitations of ground-based telescopes are reviewed, and existing telescopes and their evolution are briefly surveyed in order to see the trends that led to the present period of innovative telescope design. The major telescope types and the critical design factors that must be considered in designing large telescopes for the future are reviewed, emphasizing economicality. As an example, the Ten Meter Telescope project at the University of California is discussed in detail, including the telescope buildings, domes, and apertures, the telescope moving weights, the image quality, and the equipment. Finally, a brief review of current work in progress on large telescopes is given.

  8. Discrimination of Citrus reticulata Blanco and Citrus reticulata 'Chachi' by gas chromatograph-mass spectrometry based metabolomics approach.

    PubMed

    Duan, Li; Guo, Long; Dou, Li-Li; Zhou, Chang-Lin; Xu, Feng-Guo; Zheng, Guo-Dong; Li, Ping; Liu, E-Hu

    2016-12-01

    Citri Reticulatae Pericarpium, mainly including the pericarp of Citrus reticulata Blanco and the pericarp of Citrus reticulata 'Chachi', has been consumed daily as food and dietary supplement for centuries. In this study, GC-MS based metabolomics was employed to compare comprehensively the volatile constituents in Citrus reticulata Blanco and Citrus reticulata 'Chachi'. Principal component analysis and orthogonal partial least squares discrimination analysis indicated that samples could be distinguished effectively from one another. Fifteen metabolites were finally identified for use as chemical markers in discrimination of Citri Reticulatae Pericarpium samples. The antimicrobial activity against Gram-negative and Gram-positive bacteria of the volatile oil from Citrus reticulata Blanco and Citrus reticulata 'Chachi' was investigated preliminarily. PMID:27374515

  9. Cape Blanco Wind Farm Feasibility Study : Technical Report, No. 3. Geotechnical.

    SciTech Connect

    United States. Bonneville Power Administration.

    1986-04-01

    This preliminary geotechnical investigation of the proposed Cape Blanco Wind Farm site was directed towards the identification and evaluation of significant geologic features, so that a preliminary evaluation could be made of the project feasibility. To accomplish this, two borings were drilled, preliminary geologic reconnaissances were made, and available geologic and geotechnical literature relating to the project area was researched. Preliminary observations and conclusions are presented. The site under evaluation consists of 1600 acres located immediately south of Cape Blanco on the southern Oregon Coast. The project as presently envisioned would have a total design capacity of as much as 80 megawatts. The explorations and research revealed that the site is underlain by variable thicknesses of soil sediments, such as sand, gravel and silt. Typical examples of these sediments are exposed in the very steep ocean-facing bluffs along the western edge of the site. The soils are underlain by sedimentary and volcanic rocks of the Otter Point Formation. This formation includes lithified sandstone, submarine basalt and sheared clay shales. The various geotechnical/geological conditions discussed in the report include: slope stability, foundation considerations, groundwater, earthquakes and earthquake-induced ocean waves, erosion, earthwork, and vibrations.

  10. Anti-fungal activity of Citrus reticulata Blanco essential oil against Penicillium italicum and Penicillium digitatum.

    PubMed

    Tao, Nengguo; Jia, Lei; Zhou, Haien

    2014-06-15

    The chemical composition of Citrus reticulata Blanco essential oil was analysed using GC/MS. Monoterpene hydrocarbons (C10H16) constituted the majority (88.96%, w/w) of the total oil. The oils dose-dependently inhibited Penicillium italicum and Penicillium digitatum. The anti-fungal activity of the oils against P. italicum was attributed to citronellol, octanal, citral, decanal, nonanal, β-pinene, linalool, and γ-terpinene, whereas anti-fungal activity against P. digitatum is attributed to octanal, decanal, nonanal, limonene, citral, γ-terpinene, linalool, and α-terpineol. The oils altered the hyphal morphology of P. italicum and P. digitatum by causing loss of cytoplasm and distortion of the mycelia. The oils significantly altered extracellular conductivity, the release of cell constituents, and the total lipid content of P. italicum and P. digitatum. The results suggest that C. reticulata Blanco essential oils generate cytotoxicity in P. italicum and P. digitatum by disrupting cell membrane integrity and causing the leakage of cell components. PMID:24491729

  11. SCIENTIFIC EFFICIENCY OF GROUND-BASED TELESCOPES

    SciTech Connect

    Abt, Helmut A.

    2012-10-01

    I scanned the six major astronomical journals of 2008 for all 1589 papers that are based on new data obtained from ground-based optical/IR telescopes worldwide. Then I collected data on numbers of papers, citations to them in 3+ years, the most-cited papers, and annual operating costs. These data are assigned to four groups by telescope aperture. For instance, while the papers from telescopes with an aperture >7 m average 1.29 more citations than those with an aperture of 2 to <4 m, this represents a small return for a factor of four difference in operating costs. Among the 17 papers that have received {>=}100 citations in 3+ years, only half come from the large (>7 m) telescopes. I wonder why the large telescopes do so relatively poorly and suggest possible reasons. I also found that papers based on archival data, such as the Sloan Digital Sky Survey, produce 10.6% as many papers and 20.6% as many citations as those based on new data. Also, the 577.2 papers based on radio data produced 36.3% as many papers and 33.6% as many citations as the 1589 papers based on optical/IR telescopes.

  12. Scientific Efficiency of Ground-based Telescopes

    NASA Astrophysics Data System (ADS)

    Abt, Helmut A.

    2012-10-01

    I scanned the six major astronomical journals of 2008 for all 1589 papers that are based on new data obtained from ground-based optical/IR telescopes worldwide. Then I collected data on numbers of papers, citations to them in 3+ years, the most-cited papers, and annual operating costs. These data are assigned to four groups by telescope aperture. For instance, while the papers from telescopes with an aperture >7 m average 1.29 more citations than those with an aperture of 2 to <4 m, this represents a small return for a factor of four difference in operating costs. Among the 17 papers that have received >=100 citations in 3+ years, only half come from the large (>7 m) telescopes. I wonder why the large telescopes do so relatively poorly and suggest possible reasons. I also found that papers based on archival data, such as the Sloan Digital Sky Survey, produce 10.6% as many papers and 20.6% as many citations as those based on new data. Also, the 577.2 papers based on radio data produced 36.3% as many papers and 33.6% as many citations as the 1589 papers based on optical/IR telescopes.

  13. 46 CFR 153.352 - B/3 and 4 m venting system outlets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false B/3 and 4 m venting system outlets. 153.352 Section 153... Cargo Venting Systems § 153.352 B/3 and 4 m venting system outlets. A B/3 or 4 m venting system outlet must: (a) Discharge vertically upwards; and (b) Prevent precipitation from entering the vent system....

  14. 46 CFR 153.352 - B/3 and 4 m venting system outlets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false B/3 and 4 m venting system outlets. 153.352 Section 153.352 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES... Cargo Venting Systems § 153.352 B/3 and 4 m venting system outlets. A B/3 or 4 m venting system...

  15. Telescopes and space exploration

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Maran, S. P.

    1976-01-01

    The necessity for different types of telescopes for astronomical investigations is discussed. Major findings in modern astronomy by ground-based and spaceborne telescopes are presented. Observations of the Crab Nebula, solar flares, interstellar gas, and the Black Hole are described. The theory of the oscillating universe is explored. Operating and planned telescopes are described.

  16. The Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Prestage, R. M.; Constantikes, K. T.; Hunter, T. R.; King, L. J.; Lacasse, R. J.; Lockman, F. J.; Norrod, R. D.

    2009-08-01

    The Robert C. Byrd Green Bank Telescope of the National Radio Astronomy Observatory is the world's premiere single-dish radio telescope operating at centimeter to long millimeter wavelengths. This paper describes the history, construction, and main technical features of the telescope.

  17. Coma-compensation telescope

    NASA Technical Reports Server (NTRS)

    MacFarlane, Malcolm J. (Inventor)

    1986-01-01

    A telescope for eliminating on axis coma due to tilt of the secondary mirror in infrared astronomy. The secondary mirror of a reflecting telescope is formed to cause field coma to always be equal and opposite at the optical axis of the telescope to tilt coma regardless of the angle through the secondary mirror is tilted with respect to the optical axis.

  18. The space telescope

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Papers concerning the development of the Space Telescope which were presented at the Twenty-first Annual Meeting of the American Astronautical Society in August, 1975 are included. Mission planning, telescope performance, optical detectors, mirror construction, pointing and control systems, data management, and maintenance of the telescope are discussed.

  19. An aerial radiological survey of the project Rio Blanco and surrounding area

    SciTech Connect

    Singman, L.V.

    1994-11-01

    A team from the Remote Sensing Laboratory in Las Vegas, Nevada, conducted an aerial radiation survey of the area surrounding ground zero of Project Rio Blanco in the northwestern section of Colorado in June 1993. The object of the survey was to determine if there were man-made radioisotopes on or near the surface resulting from a nuclear explosion in 1972. No indications of surface contamination were found. A search for the cesium-137 radioisotope was negative. The Minimum Detectable Activity for cesium-137 is presented for several detection probabilities. The natural terrestrial exposure rates in units of Roentgens per hour were mapped and are presented in the form of a contour map over-laid on an aerial photograph. A second team made independent ground-based measurements in four places within the survey area. The average agreement of the ground-based with aerial measurements was six percent.

  20. Preliminary report on Bureau of Mines Yellow Creek core hole No. 1, Rio Blanco County, Colorado

    USGS Publications Warehouse

    Carroll, R.D.; Coffin, D.L.; Ege, J.R.; Welder, F.A.

    1967-01-01

    Analysis of geologic, hydrologic , and geophysical data obtained in and around Yellow Creek core hole No. 1, Rio Blanco County, Colorado, indicate a 1,615-foot section of oil shale was penetrated by the hole. Geophysical log data indicate the presence of 25 gallons per ton shale for a thickness of 500 feet my be marginal. The richest section of oil shale is indicated to be centered around a depth of 2,260 feet. Within the oil shale the interval 1,182 to 1,737 feet is indicated to be relatively structurally incompetent and probably permeable. Extension of available regional hydrologic data indicate the oil shale section is probably water bearing and may yield as much as 1,000 gallons per minute. Hydrologic testing in the hole is recommended.

  1. An evaluation of baseline conditions at lease tract C-a, Rio Blanco County, Colorado

    SciTech Connect

    Barteaux, W.L.; Biezugbe, G.

    1987-09-01

    An analysis was made of baseline groundwater quality data from oil shale lease tract C-a, managed by Rio Blanco Oil Shale Company. The data are limited in several respects. All conclusions drawn from the data must be qualified with these limitations. Baseline conditions were determined by analyzing data from wells in the upper bedrock and lower bedrock aquifers and from the alluvial wells. Baseline data were considered all data collected before mining operations began. The water quality was then evaluated using the 1987 Colorado State Basic Standards for Ground Water as a basis. The maximum baseline values for several parameters in each aquifer exceed the standard values. The quality of the upper lower bedrock aquifers varies from region to region within the site. Data on the lower bedrock aquifer are insufficient for speculation on the cause of the variations. Variations in the upper bedrock aquifer are possibly caused by leakage of the lower bedrock aquifer. 16 refs., 9 figs., 9 tabs.

  2. Laramide tectonic evolution of San Juan sag, Colorado: Implications of Animas and Blanco basin formations

    SciTech Connect

    Brister, B.S. )

    1989-09-01

    The lower member of the Animas Formation (McDermott Member) is a volcaniclastic sequence derived from a north-northwest source (San Juan-La Plata area). It consists of purple andesitic debris flows, green fan-delta sandstones and mud rocks, and dark gray conglomerates with clast compositions indicating that the Precambrian core of the source uplift was exposed. The upper member is a sand-dominated alluvial plain sequence deposited by southwest-flowing braided streams. It includes green-gray-brown carbonaceous mudstones and pebbly sandstones containing clasts of mudstone, andesite, and detritus from Precambrian and Mesozoic sources in the Brazos-San Luis uplift to the east and northeast. by the end of Animas deposition, the San Juan sag (then a northeastern extension of the San Juan basin) was a broad, southwest-plunging synclinal downwarp bounded by hogback monoclines to the north and east. An erosional period followed Animas deposition; the greatest thickness of Animas was preserved along the axis of this synclinal feature. Bright-red sandy mudstones and yellow-gray pebbly sandstones and cobble conglomerates comprise the proximal alluvial-fan deposits of the Blanco Basin Formation. They unconformably overlie Precambrian through Paleocene rocks and clast compositions reflect these sources. Renewed uplift and segmentation of the Brazos-San Luis uplift resulted in the shedding of detritus southwestward into the San Juan sag and eastward into a narrow, asymmetrical, north-trending wrench basin within the uplift. Following Blanco Basin deposition, the last Laramide event is represented by the separation of the San Juan sag from the San Juan basin by uplift of the Archuleta anticlinorium.

  3. Mount control system for the CFGT telescope

    NASA Astrophysics Data System (ADS)

    Xu, Xinqi; Dong, Zhiming; Zhou, Wangping

    2006-06-01

    The concept for Chinese Future Giant Telescope (CFGT) with 30-m aperture has been around for several years, although the requirements for control system are still far from completed and conclusive at this stage. Since the project was proposed more study on a number of key issues relevant to the control system has been conducted. In particular the mount control system for the giant telescope has been put forward under exploration. With our ongoing 4-m LAMOST telescope just underwent a successful mount drive test the LAMOST control group has become more knowledgeable with hands on experience that would be quite useful for mount drive design of even large telescope. This paper focuses on the mount control system design for CFGT telescope in general. Particular aspects such as the effect of large moment of inertia with ultra low-speed and multi-disturbance are included. Friction drive is opted for both historical and economical reasons. Drive stiffness and servo control parameters optimization are discussed based on the workshop test with LAMOST mount that could possibly be mapped to CFGT.

  4. Control of optical performance on the Space Telescope

    NASA Technical Reports Server (NTRS)

    Jones, C. O.

    1977-01-01

    A large astronomical telescope, termed the Space Telescope, is expected to be placed in orbit in the early 1980's. It will be operated as an international observatory that will enable astronomers to detect electromagnetic radiation over a much broader spectrum than is possible from ground observatories. The image quality (not degraded by atmospheric effects) will be limited only by the quality of the optics and by aperture diffraction. This opportunity to approach diffraction-limited imagery on an astronomical telescope of this size (2.4-m aperture) sets unusually stringent tolerances on the optical quality. The budgeting and control of these qualities throughout the design, fabrication, assembly, and operation of the Space Telescope is described. A feedback control system which will maintain the telescope at peak performance in the orbital environment is examined.

  5. The Robotic Super-LOTIS Telescope: Results & Future Plans

    NASA Astrophysics Data System (ADS)

    Williams, G. G.; Milne, P. A.; Park, H. S.; Barthelmy, S. D.; Hartmann, D. H.; Updike, A.; Hurley, K.

    2008-05-01

    We provide an overview of the robotic Super-LOTIS (Livermore Optical Transient Imaging System) telescope and present results from gamma-ray burst (GRB) afterglow observations using Super-LOTIS and other Steward Observatory telescopes. The 0.6-m Super-LOTIS telescope is a fully robotic system dedicated to the measurement of prompt and early time optical emission from GRBs. The system began routine operations from its Steward Observatory site atop Kitt Peak in April 2000 and currently operates every clear night. The telescope is instrumented with an optical CCD camera and a four position filter wheel. It is capable of observing Swift Burst Alert Telescope (BAT) error boxes as early or earlier than the Swift UV/Optical Telescope (UVOT). Super-LOTIS complements the UVOT observations by providing early R- and I-band imaging. We also use the suite of Steward Observatory telescopes including the 1.6-m Kuiper, the 2.3-m Bok, the 6.5-m MMT, and the 8.4-m Large Binocular Telescope to perform follow-up optical and near infrared observations of GRB afterglows. These follow-up observations have traditionally required human intervention but we are currently working to automate the 1.6-m Kuiper telescope to minimize its response time.

  6. UV/Visible Telescope with Hubble Disposal

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.

    2013-01-01

    Submission Overview: Our primary objective is to convey a sense of the significant advances possible in astrophysics investigations for major Cosmic Origins COR program goals with a 2.4m telescope asset outfitted with one or more advanced UV visible instruments. Several compelling science objectives were identified based on community meetings these science objectives drove the conceptual design of instruments studied by the COR Program Office during July September 2012. This RFI submission encapsulates the results of that study, and suggests that a more detailed look into the instrument suite should be conducted to prove viability and affordability to support the demonstrated scientific value. This study was conducted in the context of a larger effort to consider the options available for a mission to dispose safely of Hubble hence, the overall architecture considered for the mission we studied for the 2.4m telescope asset included resource sharing. This mitigates combined cost and risk and provides naturally for a continued US leadership role in astrophysics with an advanced, general-purpose UV visible space telescope.

  7. JWST Pathfinder Telescope Integration

    NASA Technical Reports Server (NTRS)

    Matthews, Gary W.; Kennard, Scott H.; Broccolo, Ronald T.; Ellis, James M.; Daly, Elizabeth A.; Hahn, Walter G.; Amon, John N.; Mt. Pleasant, Stephen M.; Texter, Scott; Atkinson, Charles B.; McKay, Andrew; Levi, Joshua; Keski-Kuha, Ritva; Feinberg, Lee

    2015-01-01

    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. In 2014, a major risk reduction effort related to the Alignment, Integration, and Test (AI&T) of the segmented telescope was completed. The Pathfinder telescope includes two Primary Mirror Segment Assemblies (PMSA's) and the Secondary Mirror Assembly (SMA) onto a flight-like composite telescope backplane. This pathfinder allowed the JWST team to assess the alignment process and to better understand the various error sources that need to be accommodated in the flight build. The successful completion of the Pathfinder Telescope provides a final integration roadmap for the flight operations that will start in August 2015.

  8. JWST pathfinder telescope integration

    NASA Astrophysics Data System (ADS)

    Matthews, Gary W.; Kennard, Scott H.; Broccolo, Ronald T.; Ellis, James M.; Daly, Elizabeth A.; Hahn, Walter G.; Amon, John N.; Mt. Pleasant, Stephen M.; Texter, Scott; Atkinson, Charles B.; McKay, Andrew; Levi, Joshua; Keski-Kuha, Ritva; Feinberg, Lee

    2015-08-01

    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. In 2014, a major risk reduction effort related to the Alignment, Integration, and Test (AI and T) of the segmented telescope was completed. The Pathfinder telescope includes two Primary Mirror Segment Assemblies (PMSA's) and the Secondary Mirror Assembly (SMA) onto a flight-like composite telescope backplane. This pathfinder allowed the JWST team to assess the alignment process and to better understand the various error sources that need to be accommodated in the flight build. The successful completion of the Pathfinder Telescope provides a final integration roadmap for the flight operations that will start in August 2015.

  9. Automated telescope scheduling

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    1988-01-01

    With the ever increasing level of automation of astronomical telescopes the benefits and feasibility of automated planning and scheduling are becoming more apparent. Improved efficiency and increased overall telescope utilization are the most obvious goals. Automated scheduling at some level has been done for several satellite observatories, but the requirements on these systems were much less stringent than on modern ground or satellite observatories. The scheduling problem is particularly acute for Hubble Space Telescope: virtually all observations must be planned in excruciating detail weeks to months in advance. Space Telescope Science Institute has recently made significant progress on the scheduling problem by exploiting state-of-the-art artificial intelligence software technology. What is especially interesting is that this effort has already yielded software that is well suited to scheduling groundbased telescopes, including the problem of optimizing the coordinated scheduling of more than one telescope.

  10. Automated telescope scheduling

    NASA Astrophysics Data System (ADS)

    Johnston, Mark D.

    1988-08-01

    With the ever increasing level of automation of astronomical telescopes the benefits and feasibility of automated planning and scheduling are becoming more apparent. Improved efficiency and increased overall telescope utilization are the most obvious goals. Automated scheduling at some level has been done for several satellite observatories, but the requirements on these systems were much less stringent than on modern ground or satellite observatories. The scheduling problem is particularly acute for Hubble Space Telescope: virtually all observations must be planned in excruciating detail weeks to months in advance. Space Telescope Science Institute has recently made significant progress on the scheduling problem by exploiting state-of-the-art artificial intelligence software technology. What is especially interesting is that this effort has already yielded software that is well suited to scheduling groundbased telescopes, including the problem of optimizing the coordinated scheduling of more than one telescope.

  11. Next Generation Space Telescope

    NASA Astrophysics Data System (ADS)

    Smith, E.; Murdin, P.

    2002-01-01

    The Next Generation Space Telescope (NGST) will be an 8 m class deployable, radiatively cooled telescope, optimized for the 1-5 μm band, with zodiacal background limited sensitivity from 0.6 to 10 μm or longer, operating for 10 yr near the Earth-Sun second LAGRANGIAN POINT (L2). It will be a general-purpose observatory, operated by the SPACE TELESCOPE SCIENCE INSTITUTE (STScI) for competitively s...

  12. South Pole Telescope optics.

    PubMed

    Padin, S; Staniszewski, Z; Keisler, R; Joy, M; Stark, A A; Ade, P A R; Aird, K A; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Crawford, T M; Crites, A T; Dobbs, M A; Halverson, N W; Heimsath, S; Hills, R E; Holzapfel, W L; Lawrie, C; Lee, A T; Leitch, E M; Leong, J; Lu, W; Lueker, M; McMahon, J J; Meyer, S S; Mohr, J J; Montroy, T E; Plagge, T; Pryke, C; Ruhl, J E; Schaffer, K K; Shirokoff, E; Spieler, H G; Vieira, J D

    2008-08-20

    The South Pole Telescope is a 10 m diameter, wide-field, offset Gregorian telescope with a 966-pixel, millimeter-wave, bolometer array receiver. The telescope has an unusual optical system with a cold stop around the secondary. The design emphasizes low scattering and low background loading. All the optical components except the primary are cold, and the entire beam from prime focus to the detectors is surrounded by cold absorber. PMID:18716649

  13. The Antarctic Submillimetre Telescope

    NASA Astrophysics Data System (ADS)

    Minier, V.; Olmi, L.; Durand, G.; Daddi, E.; Israel, F.; Kramer, C.; Lagage, P.-O.; de Petris, M.; Sabbatini, L.; Spinoglio, L.; Schneider, N.; Tothill, N.; Tremblin, P.; Valenziano, L.; Veyssière, C.

    This report aims to provide a summary of the status of our Antarctic Submillimetre Telescope (AST) project up to date. It is a very new project for Antarctic astronomy. Necessary prerequisites for a future deployment of a large size telescope infrastructure have been tested in years 2007 and 2008. The knowledge of the transmission, frost formation and temperature gradient were fundamental parameters before starting a feasibility study. The telescope specifications and requirements are currently discussed with the industrial partnership.

  14. LISA Telescope Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    The results of a LISA telescope sensitivity analysis will be presented, The emphasis will be on the outgoing beam of the Dall-Kirkham' telescope and its far field phase patterns. The computed sensitivity analysis will include motions of the secondary with respect to the primary, changes in shape of the primary and secondary, effect of aberrations of the input laser beam and the effect the telescope thin film coatings on polarization. An end-to-end optical model will also be discussed.

  15. Evaluation of Skin Anti-aging Potential of Citrus reticulata Blanco Peel

    PubMed Central

    Apraj, Vinita D.; Pandita, Nancy S.

    2016-01-01

    Background: The peel of Citrus reticulata Blanco is traditionally used as tonic, stomachic, astringent, and carminative. It is also useful in skin care. Objective: To study the anti-aging potential of alcoholic extracts of C. reticulata Blanco peel using in vitro antioxidant and anti-enzyme assays. Materials and Methods: Plant extracts were obtained by Soxhlation (CR HAE- Hot Alcoholic Extract of Citrus reticulata) and maceration method (CR CAE- Cold Alcoholic Extract of Citrus reticulata). Qualitative and quantitative phytochemical analysis was performed. Further, in vitro antioxidant, anti-enzyme, and gas chromatography-mass spectrometry (GC-MS) analyses were performed. Results: Total phenolic and flavonoid contents of CR HAE were found to be higher than CR CAE. EC50 value of CR HAE and CR CAE for 1,1-Diphenyl-2-picrylhydrazyl, Superoxide anion, and 2, 2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) assays were 250.33 ± 40.16 μg/ml and 254.73 ± 15.78 μg/ml, 221.27 ± 11.25 μg/ml and 354.20 ± 23.79 μg/ml, and 59.16 ± 2.17 μg/ml and 59.12 ± 6.21 μg/ml, respectively. Oxygen radical absorbance capacity values for CR HAE and CR CAE were found to be 1243 and 1063 μmoles 6-hydroxy-2,5,7,8-tetra methylchromane-2-carboxylic acid equivalent/g of substance, respectively. Anti-collagenase and anti-elastase activities were evaluated for both CR HAE and CR CAE. EC50 values of CR HAE and CR CAE for anti-collagenase and anti-elastase were 329.33 ± 6.38 μg/ml, 466.93 ± 8.04 μg/ml and 3.22 ± 0.24 mg/ml, 5.09 ± 0.30 mg/ml, respectively. CR HAE exhibited stronger anti-collagenase and anti-elastase activity than CR CAE. GC-MS analysis of CR HAE was carried out because CR HAE exhibited higher antioxidant and anti-enzyme potential than CR CAE. Conclusion: C. reticulata peel can be utilized in anti-wrinkle skin care formulations. SUMMARY Skin anti-aging potential of Citrus reticulata Blanco peel was evaluated throughIn vitro antioxidant and anti-enzyme assays

  16. The Multiple Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Beckers, J. M.; Ulich, B. L.; Shannon, R. R.; Carleton, N. P.; Geary, J. C.; Latham, D. W.; Angel, J. R. P.; Hoffmann, W. F.; Low, F. J.; Weymann, R. J.

    The Multiple Mirror Telescope (MMT), located on top of Mount Hopkins (2600 m) in Arizona, consists of six main telescope systems, each of which is a classical Cassegrain with a 1.8 m diameter parabolic primary with focal ratio f/2.7, and a hyperbolic secondary producing a final f/31.6 for each of the individual telescopes. The most significant departures of the MMT from conventional optical telescope technology are (1) the use of light-weight 'egg-crate' mirrors, which reduced the telescope weight, (2) the use of an alt-azimuth mount, which simplifies the gravitational effects on the structure, (3) the use of a ball-bearing support rather than hydrostatic bearings, resulting in cost savings and less maintenance, (4) the use of spur gear drives rather than worm gears, and (5) the use of multiple coaligned light collectors rather than a single monolithic mirror. Early multiple objective telescopes are discussed, and the early history of the MMT project is given. The design and performance of the telescope are explained, and MMT instrumentation (spectrograph, optical design, detector, infrared photometer, SAO CCD camera) is given. Astronomical research with the telescope is discussed, along with plans for future multiple objective telescopes.

  17. The first VERITAS telescope

    NASA Astrophysics Data System (ADS)

    Holder, J.; Atkins, R. W.; Badran, H. M.; Blaylock, G.; Bradbury, S. M.; Buckley, J. H.; Byrum, K. L.; Carter-Lewis, D. A.; Celik, O.; Chow, Y. C. K.; Cogan, P.; Cui, W.; Daniel, M. K.; de la Calle Perez, I.; Dowdall, C.; Dowkontt, P.; Duke, C.; Falcone, A. D.; Fegan, S. J.; Finley, J. P.; Fortin, P.; Fortson, L. F.; Gibbs, K.; Gillanders, G.; Glidewell, O. J.; Grube, J.; Gutierrez, K. J.; Gyuk, G.; Hall, J.; Hanna, D.; Hays, E.; Horan, D.; Hughes, S. B.; Humensky, T. B.; Imran, A.; Jung, I.; Kaaret, P.; Kenny, G. E.; Kieda, D.; Kildea, J.; Knapp, J.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; LeBohec, S.; Linton, E.; Little, E. K.; Maier, G.; Manseri, H.; Milovanovic, A.; Moriarty, P.; Mukherjee, R.; Ogden, P. A.; Ong, R. A.; Petry, D.; Perkins, J. S.; Pizlo, F.; Pohl, M.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Roache, E. T.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Sleege, G.; Steele, D.; Swordy, S. P.; Syson, A.; Toner, J. A.; Valcarcel, L.; Vassiliev, V. V.; Wakely, S. P.; Weekes, T. C.; White, R. J.; Williams, D. A.; Wagner, R.

    2006-07-01

    The first atmospheric Cherenkov telescope of VERITAS (the Very Energetic Radiation Imaging Telescope Array System) has been in operation since February 2005. We present here a technical description of the instrument and a summary of its performance. The calibration methods are described, along with the results of Monte Carlo simulations of the telescope and comparisons between real and simulated data. The analysis of TeV γ-ray observations of the Crab Nebula, including the reconstructed energy spectrum, is shown to give results consistent with earlier measurements. The telescope is operating as expected and has met or exceeded all design specifications.

  18. Telescope performance verification

    NASA Astrophysics Data System (ADS)

    Swart, Gerhard P.; Buckley, David A. H.

    2004-09-01

    While Systems Engineering appears to be widely applied on the very large telescopes, it is lacking in the development of many of the medium and small telescopes currently in progress. The latter projects rely heavily on the experience of the project team, verbal requirements and conjecture based on the successes and failures of other telescopes. Furthermore, it is considered an unaffordable luxury to "close-the-loop" by carefully analysing and documenting the requirements and then verifying the telescope's compliance with them. In this paper the authors contend that a Systems Engineering approach is a keystone in the development of any telescope and that verification of the telescope's performance is not only an important management tool but also forms the basis upon which successful telescope operation can be built. The development of the Southern African Large Telescope (SALT) has followed such an approach and is now in the verification phase of its development. Parts of the SALT verification process will be discussed in some detail to illustrate the suitability of this approach, including oversight by the telescope shareholders, recording of requirements and results, design verification and performance testing. Initial test results will be presented where appropriate.

  19. 46 CFR 153.351 - Location of 4m vent discharges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Location of 4m vent discharges. 153.351 Section 153.351 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.351 Location of 4m...

  20. 46 CFR 153.351 - Location of 4m vent discharges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Location of 4m vent discharges. 153.351 Section 153.351 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.351 Location of 4m...

  1. THE SERENDIPITOUS OBSERVATION OF A GRAVITATIONALLY LENSED GALAXY AT z = 0.9057 FROM THE BLANCO COSMOLOGY SURVEY: THE ELLIOT ARC

    SciTech Connect

    Buckley-Geer, E. J.; Lin, H.; Drabek, E. R.; Allam, S. S.; Tucker, D. L.; Frieman, J. A.; Armstrong, R.; Barkhouse, W. A.; Bertin, E.; Brodwin, M.; Desai, S.; Ngeow, C.-C.; Hansen, S. M.; High, F. W.; Mohr, J. J.; Zenteno, A.; Lin, Y.-T.; Rest, A.; Smith, R. C.; Song, J.

    2011-11-20

    We report on the serendipitous discovery in the Blanco Cosmology Survey (BCS) imaging data of a z = 0.9057 galaxy that is being strongly lensed by a massive galaxy cluster at a redshift of z = 0.3838. The lens (BCS J2352-5452) was discovered while examining i- and z-band images being acquired in 2006 October during a BCS observing run. Follow-up spectroscopic observations with the Gemini Multi-Object Spectrograph instrument on the Gemini-South 8 m telescope confirmed the lensing nature of this system. Using weak-plus-strong lensing, velocity dispersion, cluster richness N{sub 200}, and fitting to a Navarro-Frenk-White (NFW) cluster mass density profile, we have made three independent estimates of the mass M{sub 200} which are all very consistent with each other. The combination of the results from the three methods gives M{sub 200} = (5.1 {+-} 1.3) Multiplication-Sign 10{sup 14} M{sub Sun }, which is fully consistent with the individual measurements. The final NFW concentration c{sub 200} from the combined fit is c{sub 200} = 5.4{sup +1.4}{sub -1.1}. We have compared our measurements of M{sub 200} and c{sub 200} with predictions for (1) clusters from {Lambda}CDM simulations, (2) lensing-selected clusters from simulations, and (3) a real sample of cluster lenses. We find that we are most compatible with the predictions for {Lambda}CDM simulations for lensing clusters, and we see no evidence based on this one system for an increased concentration compared to {Lambda}CDM. Finally, using the flux measured from the [O II]3727 line we have determined the star formation rate of the source galaxy and find it to be rather modest given the assumed lens magnification.

  2. The serendipitous observation of a gravitationally lensed galaxy at z = 0.9057 from the Blanco Cosmology Survey: the Elliot Arc

    DOE PAGESBeta

    Buckley-Geer, E. J.; Lin, H.; Drabek, E. R.; Allam, S. S.; Tucker, D. L.; Armstrong, R.; Barkhouse, W. A.; Bertin, E.; Brodwin, M.; Desai, S.; et al

    2011-11-03

    We report on the serendipitous discovery in the Blanco Cosmology Survey (BCS) imaging data of a z = 0.9057 galaxy that is being strongly lensed by a massive galaxy cluster at a redshift of z = 0.3838. The lens (BCS J2352-5452) was discovered while examining i- and z-band images being acquired in October 2006 during a BCS observing run. Follow-up spectroscopic observations with the GMOS instrument on the Gemini South 8m telescope confirmed the lensing nature of this system. Using weak plus strong lensing, velocity dispersion, cluster richness N200, and fitting to an NFW cluster mass density profile, we havemore » made three independent estimates of the mass M200 which are all very consistent with each other. The combination of the results from the three methods gives M200 = (5.1 x 1.3) x 1014 circle_dot, which is fully consistent with the individual measurements. The final NFW concentration c200 from the combined fit is c200 = 5.4-1.1+1.4. We have compared our measurements of M200 and c200 with predictions for (a) clusters from λCDM simulations, (b) lensing selected clusters from simulations, and (c) a real sample of cluster lenses. We find that we are most compatible with the predictions for λCDM simulations for lensing clusters, and we see no evidence based on this one system for an increased concentration compared to λCDM. Finally, using the flux measured from the [OII]3727 line we have determined the star formation rate (SFR) of the source galaxy and find it to be rather modest given the assumed lens magnification.« less

  3. The serendipitous observation of a gravitationally lensed galaxy at z = 0.9057 from the Blanco Cosmology Survey: the Elliot Arc

    SciTech Connect

    Buckley-Geer, E. J.; Lin, H.; Drabek, E. R.; Allam, S. S.; Tucker, D. L.; Armstrong, R.; Barkhouse, W. A.; Bertin, E.; Brodwin, M.; Desai, S.; Frieman, J. A.; Hansen, S. M.; High, F. W.; Mohr, J. J.; Lin, Y. -T.; Ngeow, C. -C.; Rest, A.; Smith, R. C.; Song, J.; Zenteno, A.

    2011-11-03

    We report on the serendipitous discovery in the Blanco Cosmology Survey (BCS) imaging data of a z = 0.9057 galaxy that is being strongly lensed by a massive galaxy cluster at a redshift of z = 0.3838. The lens (BCS J2352-5452) was discovered while examining i- and z-band images being acquired in October 2006 during a BCS observing run. Follow-up spectroscopic observations with the GMOS instrument on the Gemini South 8m telescope confirmed the lensing nature of this system. Using weak plus strong lensing, velocity dispersion, cluster richness N200, and fitting to an NFW cluster mass density profile, we have made three independent estimates of the mass M200 which are all very consistent with each other. The combination of the results from the three methods gives M200 = (5.1 x 1.3) x 1014 circle_dot, which is fully consistent with the individual measurements. The final NFW concentration c200 from the combined fit is c200 = 5.4-1.1+1.4. We have compared our measurements of M200 and c200 with predictions for (a) clusters from λCDM simulations, (b) lensing selected clusters from simulations, and (c) a real sample of cluster lenses. We find that we are most compatible with the predictions for λCDM simulations for lensing clusters, and we see no evidence based on this one system for an increased concentration compared to λCDM. Finally, using the flux measured from the [OII]3727 line we have determined the star formation rate (SFR) of the source galaxy and find it to be rather modest given the assumed lens magnification.

  4. LUTE telescope structural design

    NASA Technical Reports Server (NTRS)

    Ruthven, Gregory

    1993-01-01

    The major objective of the Lunar Ultraviolet Transit Experiment (LUTE) Telescope Structural Design Study was to investigate the feasibility of designing an ultralightweight 1-m aperture system within optical performance requirements and mass budget constraints. This study uses the results from our previous studies on LUTE as a basis for further developing the LUTE structural architecture. After summarizing our results in Section 2, Section 3 begins with the overall logic we used to determine which telescope 'structural form' should be adopted for further analysis and weight estimates. Specific telescope component analysis showing calculated fundamental frequencies and how they compare with our derived requirements are included. 'First-order' component stress analyses to ensure telescope optical and structural component (i.e. mirrors & main bulkhead) weights are realistic are presented. Layouts of both the primary and tertiary mirrors showing dimensions that are consistent with both our weight and frequency calculations also form part of Section 3. Section 4 presents our calculated values for the predicted thermally induced primary-to-secondary mirror despace motion due to the large temperature range over which LUTE must operate. Two different telescope design approaches (one which utilizes fused quartz metering rods and one which assumes the entire telescope is fabricated from beryllium) are considered in this analysis. We bound the secondary mirror focus mechanism range (in despace) based on these two telescope configurations. In Section 5 we show our overall design of the UVTA (Ultraviolet Telescope Assembly) via an 'exploded view' of the sub-system. The 'exploded view' is annotated to help aid in the understanding of each sub-assembly. We also include a two view layout of the UVTA from which telescope and telescope component dimensions can be measured. We conclude our study with a set of recommendations not only with respect to the LUTE structural architecture

  5. Irradiation effect on α- and β-caseins of milk and Queso Blanco cheese determined by capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Ham, J. S.; Jeong, S. G.; Lee, S. G.; Han, G. S.; Chae, H. S.; Yoo, Y. M.; Kim, D. H.; Lee, W. K.; Jo, C.

    2009-02-01

    Milk and Queso Blanco cheese were exposed to irradiation with doses of 1, 2, 3, 5, and 10 kGy to investigate the irradiation effect on α- and β-casein using a capillary electrophoresis. αS1-Casein to total protein ratio in raw milk was decreased from 19.63% to 8.64% by 10 kGy of gamma irradiation. The ratio of αS1- to αS0-casein was also decreased from 1.38 to 0.53, which showed αS1-casein is more susceptible to gamma irradiation than αS0-casein. Similarly, αS1-casein to total protein ratio in Queso Blanco cheese was decreased from 17.48% to 7.82% and the ratio of αS1- to αS0-casein was decreased from 1.16 to 0.43 by 10 kGy of gamma irradiation. Dose-dependent reduction of βA1-casein was also found. βA1-Casein to total protein ratios in raw milk and Queso Blanco cheese were decreased from 22.00% to 14.16% and from 21.96% to 13.89% after 10 kGy, respectively. The ratios of βA1- to βA2-casein were from 1.10 to 0.64 and 0.93 to 0.57 in milk and Queso Blanco cheese, respectively. However, αS0-, βB-, and βA3-casein increased by irradiation at 10 kGy. The results suggest that αS1-casein and βA1-casein were more susceptible to gamma irradiation, and may be related to the reduction of milk allergenicity caused by gamma irradiation.

  6. Video Telescope Operating Microscopy.

    PubMed

    Divers, Stephen J

    2015-09-01

    Exotic pet veterinarians frequently have to operate on small animals, and magnification is commonly used. Existing endoscopy equipment can be used with a mechanical arm and telescope to enable video telescope operating microscopy. The additional equipment items and their specifics are described, and several case examples are provided. PMID:26117519

  7. High resolution telescope

    DOEpatents

    Massie, Norbert A.; Oster, Yale

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activites. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  8. High resolution telescope

    SciTech Connect

    Massie, N.A.; Oster, Y.

    1990-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1m in a circle-of-nine configuration. The telescope array has an effective aperture of 12m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activities. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes. 9 figs., 1 tab.

  9. High resolution telescope

    SciTech Connect

    Massie, N.A.; Oster, Y.

    1990-12-31

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1m in a circle-of-nine configuration. The telescope array has an effective aperture of 12m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activities. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes. 9 figs., 1 tab.

  10. Inherent small telescope projects

    NASA Astrophysics Data System (ADS)

    Charles, P. A.

    2001-01-01

    As we stand on the verge of substantial access to the new generation of giant telescopes (Gemini, VLT and others) it is timely to consider the range of science that can be undertaken with the substantial number of smaller telescopes that are spread around the globe. While providing survey science input to the giant telescopes, or simultaneous monitoring capability for space missions, is a clearly important role (see previous contributions), it should not be forgotten that there are still many outstanding scientific programmes that can be undertaken on smaller telescopes in their own right. There is a danger of these opportunities being overlooked in the stampede to abandon the smaller telescope 'baggage' in the hope of acquiring access to more giant telescope time. I will try to demonstrate that the most effective and efficient use of all our telescope time requires access to a broad range of complementary facilities. I will therefore describe here some of the projects currently being undertaken with smaller telescopes as well as some of those planned for future facilities such as ROBONET.

  11. Telescope With Reflecting Baffle

    NASA Technical Reports Server (NTRS)

    Linlor, W. I.

    1985-01-01

    Telescope baffle made from combination of reflecting surfaces. In contrast with previous ellipsoidal reflecting baffles, new baffle reflects skew rays more effectively and easier to construct. For infrared telescopes, reflecting baffles better than absorbing baffles because heat load reduced, and not necessary to contend with insufficiency of infrared absorption exhibited by black coatings.

  12. Goddard Robotic Telescope

    SciTech Connect

    Sakamoto, Takanori; Donato, Davide; Gehrels, Neil; Okajima, Takashi; Ukwatta, Tilan N.

    2009-05-25

    We are constructing the 14'' fully automated optical robotic telescope, Goddard Robotic Telescope (GRT), at the Goddard Geophysical and Astronomical Observatory. The aims of our robotic telescope are 1) to follow-up the Swift/Fermi Gamma-Ray Bursts (GRBs) and 2) to perform the coordinated optical observations of the Fermi/Large Area Telescope (LAT) Active Galactic Nuclei (AGN). Our telescope system consists of the 14'' Celestron Optical Telescope Assembly (OTA), the Astro-Physics 1200GTO mount, the Apogee U47 CCD camera, the JMI's electronic focuser, and the Finger Lake Instrumentation's color filter wheel with U, B, V, R and I filters. With the focal reducer, 20'x20' field of view has been achieved. The observatory dome is the Astro Haven's 7 ft clam-shell dome. We started the scientific observations on mid-November 2008. While not observing our primary targets (GRBs and AGNs), we are planning to open our telescope time to the public for having a wider use of our telescope in both a different research field and an educational purpose.

  13. Hubble Space Telescope overview

    NASA Technical Reports Server (NTRS)

    Polidan, Ronald S.

    1991-01-01

    A general overview of the performance and current status of the Hubble Space Telescope is presented. Most key spacecraft subsystems are operating well, equaling or exceeding specifications. Spacecraft thermal properties, power, and communications, are superb. The only spacecraft subsystem to have failed, a gyro, is briefly discussed. All science instruments are functioning extremely well and are returning valuable scientific data. The two significant problems effecting the Hubble Space Telescope science return, the pointing jitter produced by thermally induced bending of the solar array wings and the optical telescope assembly spherical aberration, are discussed and plans to repair both problems are mentioned. The possible restoration of full optical performance of the axial scientific instruments through the use of the Corrective Optics Space Telescope Axial Replacement, currently under study for the 1993 servicing mission, is discussed. In addition, an overview of the scientific performance of the Hubble Space Telescope is presented.

  14. Telescope Adaptive Optics Code

    SciTech Connect

    Phillion, D.

    2005-07-28

    The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The default parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST

  15. The solar optical telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Objectives of the Solar Optical Telescope are to study the physics of the Sun on the scale at which many of the important physical processes occur and to attain a resolution of 73km on the Sun or 0.1 arc seconds of angular resolution. Topics discussed in this overview of the Solar Optical Telescope include: why is the Solar Optical Telescope needed; current picture of the Sun's atmosphere and convection zone; scientific problems for the Solar Optical Telescope; a description of the telescope; the facility - science management, contamination control, and accessibility to the instruments; the scientific instruments - a coordinated instrument package for unlocking the Sun's secrets; parameters of the coordinated instrument package; science operations from the Space Shuttle; and the dynamic solar atmosphere.

  16. Large Binocular Telescope Project

    NASA Astrophysics Data System (ADS)

    Hill, John M.; Salinari, Piero

    1998-08-01

    The Large Binocular Telescope (LBT) Project is a collaboration between institutions in Arizona, Germany, Italy, and Ohio. With the addition of the partners from Ohio State and Germany in February 1997, the Large Binocular Telescope Corporation has the funding required to build the full telescope populated with both 8.4 meter optical trans. The first of two 8.4 meter borosilicate honeycomb primary mirrors for LBT was cast at the Steward Observatory Mirror Lab in 1997. The baseline optical configuration of LBT includes adaptive infrared secondaries of a Gregorian design. The F/15 secondaries are undersized to provide a low thermal background focal plane. The interferometric focus combining the light from the two 8.4 meter primaries will reimage the two folded Gregorian focal planes to three central locations. The telescope elevation structure accommodates swing arms which allow rapid interchange of the various secondary and tertiary mirrors. Maximum stiffness and minimal thermal disturbance were important drivers for the design of the telescope in order to provide the best possible images for interferometric observations. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The detailed design of the telescope structure was completed in 1997 by ADS Italia (Lecco) and European Industrial Engineering (Mestre). A series of contracts for the fabrication and machining of the telescope structure had been placed at the end of 1997. The final enclosure design was completed at M3 Engineering & Technology (Tucson), EIE and ADS Italia. During 1997, the telescope pier and the concrete ring wall for the rotating enclosure were completed along with the steel structure of the fixed portion of the enclosure. The erection of the steel structure for the rotating portion of the enclosure will begin in the Spring of 1998.

  17. Oxidative burst inhibition, cytotoxicity and antibacterial acriquinoline alkaloids from Citrus reticulate (Blanco).

    PubMed

    Fomani, Marie; Ngeufa Happi, Emmanuel; Nouga Bisoue, Achille; Ndom, Jean Claude; Kamdem Waffo, Alain François; Sewald, Norbert; Wansi, Jean Duplex

    2016-01-15

    Two novel acridone-quinoline alkaloids, acriquinoline A (1) and acriquinoline B (2), together with twenty-two known compounds were isolated from the methanol extract of the root of Citrus reticulata Blanco. The structures of all compounds were determined by comprehensive analyses of their 1D and 2D NMR and mass spectral (EI and ESI) data. The possible biosynthesis for the formation of above compounds is proposed, based on close examination of their structures. Compounds 1, 2, 6, 10 and 14-17 exhibited strong suppressive effect on phagocytosis response upon activation with serum opsonized zymosan in the range of IC50 0.2-10.5μM, which was tested in vitro for oxidative burst studies of whole blood. However, compounds displayed low cytotoxic activity against the human Caucasian prostate adenocarcinoma cell line PC-3, with IC50 between 30.8 and 60.5μM compared to the standard doxorubicin with IC50 0.9μM. These compounds, tested against bacteria, fungi and plant pathogen oomycetes by the paper disk agar diffusion assay, resulting in missing to low activities corresponding with MICs>1mg/mL. PMID:26711890

  18. Effects of Pogostemon cablin Blanco extract on hypoxia induced rabbit cardiomyocyte injury

    PubMed Central

    Lim, Chi-Yeon; Kim, Bu-Yeo; Lim, Se-Hyun; Cho, Su-In

    2015-01-01

    Background: Pogostemonis Herba, the dried aerial part of Pogostemon cablin Blanco, is a well-known materia medica in Asia that is widely used for syndrome of gastrointestinal dysfunctions. Objective: This study was undertaken to examine whether Pogostemon cablin extract (PCe) might have any beneficial effect on hypoxia induced rabbit cardiomyocyte injury. Materials and Methods: Isolated cardiomyocytes were divided into three groups and the changes of cell viability in cardiomyocytes of hypoxic and hypoxia/reoxygenation group were determined. The effect of PCe on reactive oxygen species (ROS) generation, intracellular formation of ROS was also measured by monitoring the 2’,7’-dichlorofluorescein fluorescence. Results: PCe effectively protected the cells against both the hypoxia and reoxygenation induced injury, and the protective effect of PCe is not mediated by interaction with adenosine triphosphate-sensitive K+ channels. In the presence of PCe, production of ROS under chemical hypoxia was remarkably reduced which suggests that PCe might exert its effect as a ROS scavenger. Conclusion: The present study provides clear evidence for the beneficial effect of PCe on cardiomyocyte injury during hypoxia or reoxygenation following prolonged hypoxia. PMID:25829770

  19. Forensic Hydrological Investigation of the Blanco River Flood May 2015, Wimberley, TX

    NASA Astrophysics Data System (ADS)

    Furl, C.

    2015-12-01

    A forensic hydrological investigation of a major flash flood was conducted for the Blanco River in south-central Texas. The unprecedented flood occurred during the early morning hours of May 24th leaving 12 dead in the towns of Wimberley and San Marcos. Hundreds of homes were damaged or destroyed, two reinforced concrete bridges were washed off their piers, and nearly 100 high water rescues were made the following day. The present work characterizes the meteorological setup leading to the event, describes the flood hydrology using the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model, and reports on an extensive field campaign seeking to document high water marks throughout the 1200 km2 basin. Results indicate high precipitable water values, large CAPE, and strong mid and upper level winds aided in impressive divergence over the region. This allowed for storms to continually produce heavy rainfall over the same areas. Large regions of the catchment received greater than 200 mm across the upper portion of the basin with 24 hr maximums around 330 mm. GSSHA simulations indicate good performance when compared to a stage hydrograph recorded mid-catchment. The remaining USGS gauges failed early on during the rising limb of the hydrograph. Model estimates indicate peak streamflow was approximately 5500 cms with stage values nearing 13 m as the flood wave moved through the town of Wimberley. Approximately 125 locations were examined for high water marks along the mainstem of the river using RTK GPS. Stage values ranged from 12 - 18 m.

  20. Holocene vegetation and climate in the Puerto Blanco Mountains, southwestern Arizona

    NASA Astrophysics Data System (ADS)

    Van Devender, Thomas R.

    1987-01-01

    Plant macrofossils from 21 pack rat ( Neotoma sp.) middens at 535-605 m from the Puerto Blanco Mountains, southwestern Arizona, provide and excellent history of vegetation and climate for the last 14, 120 yr B.P. in the Sonoran Desert. A late Wisconsin juniper-Joshua tree woodland gave way to a transitional early Holocene desertscrub with sparse Juniperus californica (California juniper) by 10,540 yr B.P. Important Sonoran Desert plants including Carnegiea gigantea (saguaro) and Encelia farinosa (brittle bush) were dominants. Riparian trees such as Acacia greggii (catclaw acacia), Prosopis velutina (velvet mesquite), and Cerdicium floridum (blue palo verde) grew on dry, south-facing slopes in a middle Holocene Sonoran desertscrub in a warm, wet summer climate with frequent winter freezes. Modern subtropical Sonoran desertscrub formed about 4000 yr B.P. as summer rainfall and winter freezes declined. Cercidium microphyllum (foothills palo verde), Sapium biloculare (Mexican jumping bean), Olneya tesota (ironwood) and Stenocereus thurberi (organ pipe cactus) became dominant as riparian trees retreated to wash habitats. The inferences of a latest Wisconsin/early Holocene summer monsoonal maximum by J. E. Kutzbach (1983), Modeling of Holocene climates. In "Late-Quaternary Environments of the United States," Vol. 2, "The Holocene" (H. E. Wright, Ed.), pp. 271-277. Univ. of Minnesota Press, Minneapolis) are not supported for the Southwest. Apparently the persistence of late Wisconsin circulation patterns offset any increases in insolation.

  1. Two Easily Made Astronomical Telescopes.

    ERIC Educational Resources Information Center

    Hill, M.; Jacobs, D. J.

    1991-01-01

    The directions and diagrams for making a reflecting telescope and a refracting telescope are presented. These telescopes can be made by students out of plumbing parts and easily obtainable, inexpensive, optical components. (KR)

  2. Innovative enclosure design for the MROI array telescopes

    NASA Astrophysics Data System (ADS)

    Payne, Ifan; Marchiori, GianPietro; Busatta, Andrea

    2010-07-01

    The Magdalena Ridge Interferometer (MROI) is a project which comprises an optical array of up to ten relocatable 1.4m telescopes arranged in a "Y" configuration. Each of these telescopes will be housed inside a Unit Telescope Enclosure (UTE) which can be lifted and moved onto any of 28 stations. This paper presents a general description of how the constraints imposed by the requirements for the close-pack configuration and relocatability led to the design of an innovative, compact and light-weight enclosure of small diameter and high structural strength. The unique internal layout gives sufficient space inside to house, not only to house the telescope mount, but also associated electronics, nasmyth table opto-mechanical equipment and beam relay system interface.

  3. The Large Synoptic Survey Telescope

    NASA Astrophysics Data System (ADS)

    Ivezic, Zeljko

    2007-05-01

    The Large Synoptic Survey Telescope (LSST) is currently by far the most ambitious proposed ground-based optical survey. With initial funding from the US National Science Foundation (NSF), Department of Energy (DOE) laboratories and private sponsors, the design and development efforts are well underway at many institutions, including top universities and leading national laboratories. The main science themes that drive the LSST system design are Dark Energy and Matter, the Solar System Inventory, Transient Optical Sky and the Milky Way Mapping. The LSST system, with its 8.4m telescope and 3,200 Megapixel camera, will be sited at Cerro Pachon in northern Chile, with the first light scheduled for 2014. In a continuous observing campaign, LSST will cover the entire available sky every three nights in two photometric bands to a depth of V=25 per visit (two 15 second exposures), with exquisitely accurate astrometry and photometry. Over the proposed survey lifetime of 10 years, each sky location would be observed about 1000 times, with the total exposure time of 8 hours distributed over six broad photometric bandpasses (ugrizY). This campaign will open a movie-like window on objects that change brightness, or move, on timescales ranging from 10 seconds to 10 years, and will produce a catalog containing over 10 billion galaxies and a similar number of stars. The survey will have a data rate of about 30 TB/night, and will collect over 60 PB of raw data over its lifetime, resulting in an incredibly rich and extensive public archive that will be a treasure trove for breakthroughs in many areas of astronomy and astrophysics.

  4. The GREGOR Solar Telescope

    NASA Astrophysics Data System (ADS)

    Denker, C.; Lagg, A.; Puschmann, K. G.; Schmidt, D.; Schmidt, W.; Sobotka, M.; Soltau, D.; Strassmeier, K. G.; Volkmer, R.; von der Luehe, O.; Solanki, S. K.; Balthasar, H.; Bello Gonzalez, N.; Berkefeld, T.; Collados Vera, M.; Hofmann, A.; Kneer, F.

    2012-12-01

    The 1.5-meter GREGOR solar telescope is a new facility for high-resolution observations of the Sun. The telescope is located at the Spanish Observatorio del Teide on Tenerife. The telescope incorporates advanced designs for a foldable-tent dome, an open steel-truss telescope structure, and active and passive means to minimize telescope and mirror seeing. Solar fine structure can be observed with a dedicated suite of instruments: a broad-band imaging system, the "GREGOR Fabry-Perot Interferometer", and the "Grating Infrared Spectrograph". All post-focus instruments benefit from a high-order (multi-conjugate) adaptive optics system, which enables observations close to the diffraction limit of the telescope. The inclusion of a spectrograph for stellar activity studies and the search for solar twins expands the scientific usage of the GREGOR to the nighttime domain. We report on the successful commissioning of the telescope until the end of 2011 and the first steps towards science verification in 2012.

  5. First light with a carbon fiber reinforced polymer 0.4 meter telescope

    NASA Astrophysics Data System (ADS)

    Wilcox, Christopher C.; Santiago, Freddie; Jungwirth, Matthew E.; Martinez, Ty; Restaino, Sergio R.; Bagwell, Brett; Romeo, Robert

    2014-03-01

    For the passed several years, the Naval Research Laboratory (NRL) has been investigating the use of Carbon Fiber Reinforced Polymer (CFRP) material in the construction of a telescope assembly including the optical components. The NRL, Sandia National Laboratories (SNL), and Composite Mirror Applications, Inc. (CMA) have jointly assembled a prototype telescope and achieved "first light" images with a CFRP 0.4 m aperture telescope. CFRP offers several advantages over traditional materials such as creating structures that are lightweight and low coefficient of thermal expansion and conductivity. The telescope's primary and secondary mirrors are not made from glass, but CFRP, as well. The entire telescope weighs approximately 10 kg while a typical telescope of this size would weigh quite a bit more. We present the achievement of "first light" with this telescope demonstrating the imaging capabilities of this prototype and the optical surface quality of the mirrors with images taken during a day's quiescent periods.

  6. Telescopic vision contact lens

    NASA Astrophysics Data System (ADS)

    Tremblay, Eric J.; Beer, R. Dirk; Arianpour, Ashkan; Ford, Joseph E.

    2011-03-01

    We present the concept, optical design, and first proof of principle experimental results for a telescopic contact lens intended to become a visual aid for age-related macular degeneration (AMD), providing magnification to the user without surgery or external head-mounted optics. Our contact lens optical system can provide a combination of telescopic and non-magnified vision through two independent optical paths through the contact lens. The magnified optical path incorporates a telescopic arrangement of positive and negative annular concentric reflectors to achieve 2.8x - 3x magnification on the eye, while light passing through a central clear aperture provides unmagnified vision.

  7. Lear jet telescope system

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.; Goorvitch, D.; Dix, M. G.; Hitchman, M. J.

    1974-01-01

    The telescope system was designed as a multi-user facility for observations of celestial objects at infrared wavelengths, where ground-based observations are difficult or impossible due to the effects of telluric atmospheric absorption. The telescope is mounted in a Lear jet model 24B which typically permits 70 min. of observing per flight at altitudes in excess of 45,000 ft (13 km). Telescope system installation is discussed, along with appropriate setup and adjustment procedures. Operation of the guidance system is also explained, and checklists are provided which pertain to the recommended safe operating and in-flight trouble-shooting procedures for the equipment.

  8. Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    1990-02-01

    An overview of the mission of the Hubble Space Telescope, a joint project between NASA and the European Space Agency which will be used to study deep space, as well as our solar system is presented. The video contains animations depicting the Hubble Space Telescope in orbit, as well as footage of scientists at the Space Telescope Science Institute making real time observations. The images Hubble acquires will be downloaded into a database that contains images of over 19,000,0000 celestial objects called the Star Catalog.

  9. Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    An overview of the mission of the Hubble Space Telescope, a joint project between NASA and the European Space Agency which will be used to study deep space, as well as our solar system is presented. The video contains animations depicting the Hubble Space Telescope in orbit, as well as footage of scientists at the Space Telescope Science Institute making real time observations. The images Hubble acquires will be downloaded into a database that contains images of over 19,000,000 celestial objects called the Star Catalog.

  10. Ritchey-Chretien Telescope

    NASA Technical Reports Server (NTRS)

    Rosin, S.; Amon, M. (Inventor)

    1973-01-01

    A Ritchey-Chretien telescope is described which was designed to respond to images located off the optical axis by using two transparent flat plates positioned in the ray path of the image. The flat plates have a tilt angle relative to the ray path to compensate for astigmatism introduced by the telescope. The tilt angle of the plates is directly proportional to the off axis angle of the image. The plates have opposite inclination angles relative to the ray paths. A detector which is responsive to the optical image as transmitted through the plates is positioned approximately on the sagittal focus of the telescope.

  11. Multi-use lunar telescopes

    NASA Technical Reports Server (NTRS)

    Genet, Russell M.; Genet, David R.; Talent, David L.; Drummond, Mark; Hine, Butler P.; Boyd, Louis J.; Trueblood, Mark

    1992-01-01

    The objective of multi-use telescopes is to reduce the initial and operational costs of space telescopes to the point where a fair number of telescopes, a dozen or so, would be affordable. The basic approach is to develop a common telescope, control system, and power and communications subsystem that can be used with a wide variety of instrument payloads, i.e., imaging CCD cameras, photometers, spectrographs, etc. By having such a multi-use and multi-user telescope, a common practice for earth-based telescopes, development cost can be shared across many telescopes, and the telescopes can be produced in economical batches.

  12. Multi-use lunar telescopes

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Hine, Butler; Genet, Russell; Genet, David; Talent, David; Boyd, Louis; Trueblood, Mark; Filippenko, Alexei V. (Editor)

    1991-01-01

    The objective of multi-use telescopes is to reduce the initial and operational costs of space telescopes to the point where a fair number of telescopes, a dozen or so, would be affordable. The basic approach is to develop a common telescope, control system, and power and communications subsystem that can be used with a wide variety of instrument payloads, i.e., imaging CCD cameras, photometers, spectrographs, etc. By having such a multi-use and multi-user telescope, a common practice for earth-based telescopes, development cost can be shared across many telescopes, and the telescopes can be produced in economical batches.

  13. 3_D modeling using TLS and GPR techniques to characterize above and below-ground wood distribution in pyroclastic deposits along the Blanco River (Chilean Patagonia)

    NASA Astrophysics Data System (ADS)

    Valdebenito, Galo; Tonon, Alessia; Iroume, Andrés; Alvarado, David; Fuentes, Carlos; Picco, Lorenzo; Lenzi, Mario

    2016-04-01

    To date, the study of in-stream wood in rivers has been focused mainly on quantifying wood pieces deposited above the ground. However, in some particular river systems, the presence of buried dead wood can also represent an important component of wood recruitment and budgeting dynamics. This is the case of the Blanco River (Southern Chile) severely affected by the eruption of Chaitén Volcano occurred between 2008 and 2009. The high pyroclastic sediment deposition and transport affected the channel and the adjacent forest, burying wood logs and standing trees. The aim of this contribution is to assess the presence and distribution of wood in two study areas (483 m2 and 1989 m2, respectively) located along the lower streambank of the Blanco River, and covered by thick pyroclastic deposition up to 5 m. The study areas were surveyed using two different devices, a Terrestrial Laser Scanner (TLS) and a Ground Penetrating Radar (GPR). The first was used to scan the above surface achieving a high point cloud density (≈ 2000 points m-2) which allowed us to identify and measure the wood volume. The second, was used to characterize the internal morphology of the volcanic deposits and to detect the presence and spatial distribution of buried wood up to a depth of 4 m. Preliminary results have demonstrated differences in the numerousness and volume of above wood between the two study areas. In the first one, there were 43 wood elements, 33 standing trees and 10 logs, with a total volume of 2.96 m3 (109.47 m3 km-1), whereas the second one was characterized by the presence of just 7 standing trees and 11 wood pieces, for a total amount of 0.77 m3 (7.73 m3 km-1). The dimensions of the wood elements vary greatly according to the typology, standing trees show the higher median values in diameter and length (0.15 m and 2.91 m, respectively), whereas the wood logs were smaller (0.06 m and 1.12 m, respectively). The low dimensions of deposited wood can be probably connected to their

  14. Composite Space Telescope Truss

    NASA Video Gallery

    NASA engineers are recycling an idea for a lightweight, compact space telescope structure from the early 1990s. The 315 struts and 84 nodes were originally designed to enable spacewalking astronaut...

  15. Hubble Space Telescope Image

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph is a Hubble Space Telescope (HST) image of a sky full of glittering jewels. The HST peered into the Sagittarius star cloud, a narrow dust free region, providing this spectacular glimpse of a treasure chest full of stars.

  16. Webb Telescope: Planetary Evolution

    NASA Video Gallery

    Stars and planets form in the dark, inside vast, cold clouds of gas and dust. The James Webb Space Telescope's large mirror and infrared sensitivity will let astronomers peer inside dusty knots whe...

  17. Building a Telescope.

    ERIC Educational Resources Information Center

    Linas, Chris F.

    1988-01-01

    Provides information on the parts, materials, prices, dimensions, and tools needed for the construction of a telescope that can be used in high school science laboratories. Includes step-by-step directions and a diagram for assembly. (RT)

  18. Telescopes and space exploration

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Maran, S. P.

    1982-01-01

    Progress in contemporary astronomy and astrophysics is shown to depend on complementary investigations with sensitive telescopes operating in several wavelength regions, some of which can be on the Earth's surface and others of which must be in space.

  19. Large Binocular Telescope Project

    NASA Astrophysics Data System (ADS)

    Hill, John M.

    1997-03-01

    The large binocular telescope (LBT) project have evolved from concepts first proposed in 1985. The present partners involved in the design and construction of this 2 by 8.4 meter binocular telescope are the University of Arizona, Italy represented by the Osservatorio Astrofisico di Arcetri and the Research Corporation based in Tucson, Arizona. These three partners have committed sufficient funds to build the enclosure and the telescope populated with a single 8.4 meter optical train -- approximately 40 million dollars (1989). Based on this commitment, design and construction activities are now moving forward. Additional partners are being sought. The next mirror to be cast at the Steward Observatory Mirror Lab in the fall of 1996 will be the first borosilicate honeycomb primary for LBT. The baseline optical configuration of LBT includes wide field Cassegrain secondaries with optical foci above the primaries to provide a corrected one degree field at F/4. The infrared F/15 secondaries are a Gregorian design to allow maximum flexibility for adaptive optics. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4 arcminute diameter field-of-view. The interferometric focus combining the light from the two 8.4 meter primaries will reimage two folded Gregorian focal planes to a central location. The telescope elevation structure accommodates swing arms which allow rapid interchange of the various secondary and tertiary mirrors. Maximum stiffness and minimal thermal disturbance continue to be important drivers for the detailed design of the telescope. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The detailed design of the telescope structure will be completed in 1996 by ADS Italia (Lecco) and European Industrial Engineering (Mestre). The final enclosure design is now in progress at M3 Engineering (Tucson), EIE and ADS Italia

  20. Hubble Space Telescope Configuration

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This image illustrates the overall Hubble Space Telescope (HST) configuration. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  1. Optical tracking telescope compensation

    NASA Technical Reports Server (NTRS)

    Gilbart, J. W.

    1973-01-01

    In order to minimize the effects of parameter variations in the dynamics of an optical tracking telescope, a model referenced parameter adaptive control system is described that - in conjunction with more traditional forms of compensation - achieves a reduction of rms pointing error by more than a factor of six. The adaptive compensation system utilizes open loop compensation, closed loop compensation, and model reference compensation to provide the precise input to force telescope axis velocity to follow the ideal velocity.

  2. LISA Telescope Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Krebs, Carolyn (Technical Monitor)

    2002-01-01

    The Laser Interferometer Space Antenna (LISA) for the detection of Gravitational Waves is a very long baseline interferometer which will measure the changes in the distance of a five million kilometer arm to picometer accuracies. As with any optical system, even one with such very large separations between the transmitting and receiving, telescopes, a sensitivity analysis should be performed to see how, in this case, the far field phase varies when the telescope parameters change as a result of small temperature changes.

  3. The Future of Small Telescopes In The New Millennium. Volume II - The Telescopes We Use

    NASA Astrophysics Data System (ADS)

    Oswalt, T. D.

    2003-06-01

    An invaluable reference for any student, scientist or administrator, using small telescopes for research. An essential collection of data and opinions for those charged with setting scientific and funding priorities. This three-volume set, The Future of Small Telescopes in the New Millennium details the essential roles that small telescopes should play in 21st century science and how their future productivity can be maximized. Over 70 experts from all corners of the international astronomical community have created a definitive reference on the present and future of "big science with small telescopes." Despite highly publicized closures of telescopes smaller than 4-m in aperture at national facilities and their omission from national science priority studies, the oft-lamented demise of the small telescope has been greatly exaggerated. In fact, the future of these workhorses of astronomy will be brighter than ever if creative steps are taken now. This three-volume set defines the essential roles that small telescopes should play in 21st century science and the ways in which a productive future for them can be realized. A wide cross-section of the astronomical community has contributed to a definitive assessment of the present and a vision for the future. Volume 2: The Telescopes We Use Small cost-effective optical-, radio- and space-based facilities face similar problems in scientific prioritization and funding. Volume 2 highlights how current small facilities are evolving to meet the scientific priorities and economical realities of the 21st century through standardization of instrumentation, use of off-the-shelf technology, specialization, optical improvements, new modes of scheduling, automation, and internet access. The Future of Small Telescopes in the New Millennium is a fundamental resource for those looking to undertake new projects with small telescopes, for those that are responsible for their operation, and for those called upon to help set scientific

  4. An Evolvable Space Telescope for Future Astronomical Missions

    NASA Astrophysics Data System (ADS)

    Polidan, Ronald S.; Breckinridge, James B.; Lillie, Charles F.; MacEwen, Howard A.; Flannery, Martin; Dailey, Dean

    2015-01-01

    Astronomical flagship missions after the James Webb Space Telescope (JWST) will require lower cost space telescopes and science instruments. Innovative spacecraft-electro-opto-mechanical system architectures matched to the science requirements are needed for observations for exoplanet characterization, cosmology, dark energy, galactic evolution formation of stars and planets, and many other research areas. The needs and requirements to perform this science will continue to drive us toward larger and larger apertures.Recent technology developments in precision station keeping of spacecraft, interplanetary transfer orbits, wavefront/sensing and control, laser engineering, macroscopic application of nano-technology, lossless optical designs, deployed structures, thermal management, interferometry, detectors and signal processing enable innovative telescope/system architectures with break-through performance.Unfortunately, NASA's budget for Astrophysics is unlikely to be able to support the funding required for the 8-m to 16-m telescopes that have been studied for the follow-on to JWST using similar development/assembly approaches without accounting for too large of a portion of the Astrophysics Division's budget. Consequently, we have been examining the feasibility of developing an 'Evolvable Space Telescope' that would be 3 to 4-m when placed on orbit and then periodically augmented with additional mirror segments, structures, and newer instruments to evolve the telescope and achieve the performance of a 16-m space telescope.This paper reviews the technologies required for such a mission, identifies candidate architectures, and discusses different science measurement objectives for these architectures.

  5. An evolvable space telescope for future astronomical missions

    NASA Astrophysics Data System (ADS)

    Polidan, Ronald S.; Breckinridge, James B.; Lillie, Charles F.; MacEwen, Howard A.; Flannery, Martin R.; Dailey, Dean R.

    2014-08-01

    Astronomical flagship missions after JWST will require affordable space telescopes and science instruments. Innovative spacecraft-electro-opto-mechanical system architectures matched to the science requirements are needed for observations for exoplanet characterization, cosmology, dark energy, galactic evolution formation of stars and planets, and many other research areas. The needs and requirements to perform this science will continue to drive us toward larger and larger apertures. Recent technology developments in precision station keeping of spacecraft, interplanetary transfer orbits, wavefront/sensing and control, laser engineering, macroscopic application of nano-technology, lossless optical designs, deployed structures, thermal management, interferometry, detectors and signal processing enable innovative telescope/system architectures with break-through performance. Unfortunately, NASA's budget for Astrophysics is unlikely to be able to support the funding required for the 8 m to 16 m telescopes that have been studied as a follow-on to JWST using similar development/assembly approaches without decimating the rest of the Astrophysics Division's budget. Consequently, we have been examining the feasibility of developing an "Evolvable Space Telescope" that would begin as a 3 to 4 m telescope when placed on orbit and then periodically be augmented with additional mirror segments, structures, and newer instruments to evolve the telescope and achieve the performance of a 16 m or larger space telescope. This paper reviews the approach for such a mission and identifies and discusses candidate architectures.

  6. Innovative relocation system for enclosures for MROI array telescopes

    NASA Astrophysics Data System (ADS)

    Busatta, A.; Ghedin, L.; Marchiori, G.; Mian, S.; Payne, I.; Pozzobon, M.

    2010-07-01

    Magdalena Ridge Observatory Interferometer (MROI) comprises an array of up to ten (10) 1.4m diameter mirror telescopes. Each of these ten telescopes will be housed inside a Unit Telescope Enclosure (UTE) which can be relocated, with the telescope inside, to any of 28 stations arranged in a "Y" configuration. These stations comprise fixed foundations with utility and data connections. There are four standard array configurations, the most compact of which one has less than 350 mm of space between the enclosures. This paper describes the relocation systems that were evaluated, including a rail based system, wheels or trolley fixed to the bottom of the enclosure, and various lifting mechanisms, all of which were analyzed to determine their performances related to the requirements. Eventually a relocation system utilizing a modified reachstacker (a transporter used to handle freight containers) has been selected. The reachstacker is capable of manoeuvring between and around the enclosures, is capable of lifting the combined weight of the enclosure with the telescope (40tons), and can manoeuvre the enclosure with minimal vibrations. A rigorous testing procedure has been performed to determine the vibrations induced in a dummy load in order to guarantee the safety of optics that must remain on the nasmyth table during the relocation. Finally we describe the lifting system, constituted by hydraulic jacks and locating pins, designed to lift and lower the enclosure and telescope during the precise positioning of the telescopes in the various stations.

  7. Deformation across the forearc of the Cascadia subduction zone at Cape Blanco, Oregon

    USGS Publications Warehouse

    Savage, J.C.; Svarc, J.L.; Prescott, W.H.; Murray, M.H.

    2000-01-01

    Over the interval 1992-1999 the U.S. Geological Survey measured the deformation of a geodetic array extending N880°E (approximate direction of plate convergence) from Cape Blanco on the Oregon coast to the volcanic arc near Newberry Crater (55 and 350 km, respectively, from the deformation front). Within about 150 km from the deformation front, the forearc is being compressed arcward (N80°E) by coupling to the subducting Juan de Fuca plate. Dislocation modeling of the observed N80°E compression suggests that the main thrust zone (the locked portion of the Juan de Fuca-forearc interface) is about 40 km wide in the downdip direction. The transverse (N10°W) velocity component of the forearc measured with respect to the fixed interior of North America decreases with distance from the deformation front at a rate of about 0.03 mm yr-1 km-1. That gradient appears to be a consequence of rigid rotation of the forearc block relative to fixed interior North America (Euler vector of 43.4°±0.1° N, 120.0°±0.4° W, and -1.67±0.17° (m.y.)-1; quoted uncertainties are standard deviations). The rotation rate is similar to the paleomagnetically measured rotation rate (-1.0±0.2° (m.y.)-1) of the 15 Ma lava flows along the Columbia River 250 km farther north. The back arc does not appear to participate in this rotation but rather is migrating at a rate of about 3.6 mm yr-1northward with respect to fixed North America. That migration could be partly an artifact of an imperfect tie of our reference coordinate system to the interior of North America.

  8. Assessment of hydrologic transport of radionuclides from the Rio Blanco underground nuclear test site, Colorado

    SciTech Connect

    Chapman, J.; Earman, S.; Andricevic, R.

    1996-10-01

    DOE is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations used for nuclear testing. Evaluation of radionuclide transport by groundwater is part of preliminary risk analysis. These evaluations allow prioritization of test areas in terms of risk, provide a basis for discussions with regulators and the public about future work, and provide a framework for assessing site characterization data needs. The Rio Blanco site in Colorado was the location of the simultaneous detonation of three 30-kiloton nuclear devices. The devices were located 1780, 1899, and 2039 below ground surface in the Fort Union and Mesaverde formations. Although all the bedrock formations at the site are thought to contain water, those below the Green River Formation (below 1000 in depth) are also gas-bearing, and have very low permeabilities. The transport scenario evaluated was the migration of radionuclides from the blast-created cavity through the Fort Union Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. This modeling was performed to investigate how the uncertainty in various physical parameters affect radionuclide transport at the site, and to serve as a starting point for discussion regarding further investigation; it was not intended to be a definitive simulation of migration pathways or radionuclide concentration values. Given the sparse data, the modeling results may differ significantly from reality. Confidence in transport predictions can be increased by obtaining more site data, including the amount of radionuclides which would have been available for transport (i.e., not trapped in melt glass or vented during gas flow testing), and the hydraulic properties of the formation. 38 refs., 6 figs., 1 tab.

  9. The Multiple-Mirror Telescope

    ERIC Educational Resources Information Center

    Carleton, Nathaniel P.; Hoffmann, William F.

    1978-01-01

    Describes the basic design and principle of operating an optical-infrared telescope, the MMT. This third largest telescope in the world represents a new stage in telescope design; it uses a cluster of six reflecting telescopes, and relies on an automatic sensing and control system. (GA)

  10. Hubble Space Telescope: The Telescope, the Observations & the Servicing Mission

    NASA Astrophysics Data System (ADS)

    1999-11-01

    the way for other space-based observatories. How the mission was named Hubble Space Telescope is named after Edwin Powell Hubble (1889-1953), who was one of the great pioneers of modern astronomy. Industrial Involvement The ESA contribution to HST included the Solar Panels and the Faint Object Camera (FOC). Prime contractors for the FOC were Dornier (now DaimlerChrysler Aerospace, Germany), and Matra (France); for the Solar Panels British Aerospace (UK). Launch date: April 25, 1990 Launcher: Space Shuttle Discovery (STS-31) Launch mass: 11 110 kg Dimensions Length: 15.9 m, diameter: 4.2 m. In addition two solar panels each 2.4 x 12.1 m. Payload (current) A 2.4 m f/24 Ritchey-Chretien telescope with four main instruments, currently WFPC2, STIS, NICMOS and FOC. In addition the three fine-guidance sensors are used for astrometric observations (positional astronomy). WFPC2 - Wide Field/Planetary Camera 2 is an electronic camera working at two magnifications. It has four CCD detectors with 800 x 800 pixels. One of these (called Planetary Camera) has a higher resolution (<0.1 arcsecond). STIS - Space Telescope Imaging Spectrograph uses so-called MAMAs and CCDs to provide images and spectra. It is sensitive to a wide range of light from UV to Infrared. NICMOS - Near-Infrared Camera and Multi-Object Spectrometer provides images and spectra in the infrared. NICMOS uses cooled HgCdTe detectors. Currently NICMOS is dormant and awaits a new cooler to be provided during Servicing Mission 3B. FOC - Faint Object Camera - a very high resolution camera built by ESA. FOC is no longer in use and will be replaced by the new Advanced Camera for Surveys (ACS) during Servicing Mission 3B. Orbit Circular, 593 km with a 28.5 degree inclination. Operations Science operations are co-ordinated and conducted by the Space Telescope Science Institute (STScI) in Baltimore. Overall management of daily on-orbit operations is carried out by NASA's Goddard Space Flight Center (GSFC) in Greenbelt. Ground

  11. Chemistry and age of groundwater in the Piceance structural basin, Rio Blanco county, Colorado, 2010-12

    USGS Publications Warehouse

    McMahon, Peter B.; Thomas, Judith C.; Hunt, Andrew G.

    2013-01-01

    Fourteen monitoring wells were sampled by the U.S. Geological Survey, in cooperation with the Bureau of Land Management, to better understand the chemistry and age of groundwater in the Piceance structural basin in Rio Blanco County, Colorado, and how they may relate to the development of underlying natural-gas reservoirs. Natural gas extraction in the area has been ongoing since at least the 1950s, and the area contains about 960 producing, shut-in, and abandoned natural-gas wells.

  12. In vitro evaluation of the DP-4M PennCentury insufflator.

    PubMed

    Hoppentocht, M; Hoste, C; Hagedoorn, P; Frijlink, H W; de Boer, A H

    2014-09-01

    Dry powder formulations for inhalation have to be screened in animal studies for therapeutic efficacy and safety aspects and both are significantly affected by the dose and the particle size distribution (PSD) of the aerosol that is given. One of the most frequently used apparatus for pulmonary delivery of dry powder formulations in mice studies is the PennCentury DP-4M Dry Powder Insufflator. To make researchers of future preclinical animal studies with the DP-4M insufflator aware of the pitfalls regarding the conclusions to be drawn from their data, we investigated the dispersion behaviour by the DP-4M insufflator using two to three different powder preparation techniques for four different compounds. The primary PSDs of the different formulations were determined in duplicate by laser diffraction analysis. To measure the PSDs of the aerosols obtained with the DP-4M insufflator, the same diffractometer was used in combination with an in-house constructed adapter for the insufflator. The dispersion efficiency and delivered dose were highly affected by the amount of air available for dispersion; the 200 μL of air recommended for the type of insufflator used was insufficient for adequate dispersion. In contrast, the weighed dose did not have a profound effect on the dispersion behaviour and the delivered dose of the DP-4M insufflator. Also the physico-chemical powder properties and the applied particle preparation technique influenced the amount and PSD of the delivered aerosol only to a limited extend, with a few exceptions. We advise researchers to investigate the dispersion efficiency and delivered dose from the DP-4M insufflator with the formulation under investigation prior to in vivo studies and it may be necessary to optimise the formulation for administration to mice. PMID:24993307

  13. Quench performance of a 4-m long Nb3Sn shell-type dipole coil

    SciTech Connect

    Chlachidze, G.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; /Fermilab

    2008-08-01

    Fermilab has finished the first phase of Nb{sub 3}Sn technology scale up by testing 2-m and 4-m long shell-type dipole coils in a 'magnetic mirror' configuration. The 2-m long coil, made of Powder-in-Tube (PIT) Nb{sub 3}Sn strand, reached its short sample limit at a field level of 10 T. The 4-m long coil, made of advanced Nb{sub 3}Sn strand based on the Restack Rod Process (RRP) of 108/127 design, has been recently fabricated and tested. Coil test results at 4.5 K and 2.2 K are reported and discussed.

  14. The South Pole Telescope

    SciTech Connect

    Ruhl, J.E.; Ade, P.A.R.; Carlstrom, J.E.; Cho, H.M.; Crawford,T.; Dobbs, M.; Greer, C.H.; Halverson, N.W.; Holzapfel, W.L.; Lanting,T.M.; Lee, A.T.; Leitch, E.M.; Leong, J.; Lu, W.; Lueker, M.; Mehl, J.; Meyer, S.S.; Mohr, J.J.; Padin, S.; Plagge, T.; Pryke, C.; Runyan, M.C.; Schwan, D.; Sharp, M.K.; Spieler, H.; Staniszewski, Z.; Stark, A.A.

    2004-11-04

    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10 m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over 4000 degrees for galaxy clusters using the Sunyaev-Zeldovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.

  15. Monolithic afocal telescope

    NASA Technical Reports Server (NTRS)

    Roberts, William T. (Inventor)

    2010-01-01

    An afocal monolithic optical element formed of a shallow cylinder of optical material (glass, polymer, etc.) with fast aspheric surfaces, nominally confocal paraboloids, configured on the front and back surfaces. The front surface is substantially planar, and this lends itself to deposition of multi-layer stacks of thin dielectric and metal films to create a filter for rejecting out-of-band light. However, an aspheric section (for example, a paraboloid) can either be ground into a small area of this surface (for a Cassegrain-type telescope) or attached to the planar surface (for a Gregorian-type telescope). This aspheric section of the surface is then silvered to create the telescope's secondary mirror. The rear surface of the cylinder is figured into a steep, convex asphere (again, a paraboloid in the examples), and also made reflective to form the telescope's primary mirror. A small section of the rear surface (approximately the size of the secondary obscuration, depending on the required field of the telescope) is ground flat to provide an unpowered surface through which the collimated light beam can exit the optical element. This portion of the rear surface is made to transmit the light concentrated by the reflective surfaces, and can support the deposition of a spectral filter.

  16. The Travelling Telescope

    NASA Astrophysics Data System (ADS)

    Murabona Oduori, Susan

    2015-08-01

    The telescope has been around for more than 400 years, and through good use of it scientists have made many astonishing discoveries and begun to understand our place in the universe. Most people, however, have never looked through one. Yet it is a great tool for cool science and observation especially in a continent and country with beautifully dark skies. The Travelling Telescope project aims to invite people outside under the stars to learn about those curious lights in the sky.The Travelling Telescope aims to promote science learning to a wide range of Kenyan schools in various locations exchanging knowledge about the sky through direct observations of celestial bodies using state of the art telescopes. In addition to direct observing we also teach science using various hands-on activities and astronomy software, ideal for explaining concepts which are hard to understand, and for a better grasp of the sights visible through the telescope. We are dedicated to promoting science using astronomy especially in schools, targeting children from as young as 3 years to the youth, teachers, their parents and members of the public. Our presentation focuses on the OAD funded project in rural coastal Kenya.

  17. Spectroradiometry with space telescopes

    NASA Astrophysics Data System (ADS)

    Pauluhn, Anuschka; Huber, Martin C. E.; Smith, Peter L.; Colina, Luis

    2015-12-01

    Radiometry, i.e. measuring the power of electromagnetic radiation—hitherto often referred to as "photometry"—is of fundamental importance in astronomy. We provide an overview of how to achieve a valid laboratory calibration of space telescopes and discuss ways to reliably extend this calibration to the spectroscopic telescope's performance in space. A lot of effort has been, and still is going into radiometric "calibration" of telescopes once they are in space; these methods use celestial primary and transfer standards and are based in part on stellar models. The history of the calibration of the Hubble Space Telescope serves as a platform to review these methods. However, we insist that a true calibration of spectroscopic space telescopes must directly be based on and traceable to laboratory standards, and thus be independent of the observations. This has recently become a well-supported aim, following the discovery of the acceleration of the cosmic expansion by use of type-Ia supernovae, and has led to plans for launching calibration rockets for the visible and infrared spectral range. This is timely, too, because an adequate exploitation of data from present space missions, such as Gaia, and from many current astronomical projects like Euclid and WFIRST demands higher radiometric accuracy than is generally available today. A survey of the calibration of instruments observing from the X-ray to the infrared spectral domains that include instrument- or mission-specific estimates of radiometric accuracies rounds off this review.

  18. Telescope Adaptive Optics Code

    2005-07-28

    The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The defaultmore » parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST« less

  19. Ultrathin zoom telescopic objective.

    PubMed

    Li, Lei; Wang, Di; Liu, Chao; Wang, Qiong-Hua

    2016-08-01

    We report an ultrathin zoom telescopic objective that can achieve continuous zoom change and has reduced compact volume. The objective consists of an annular folded lens and three electrowetting liquid lenses. The annular folded lens undertakes the main part of the focal power of the lens system. Due to a multiple-fold design, the optical path is folded in a lens with the thickness of ~1.98mm. The electrowetting liquid lenses constitute a zoom part. Based on the proposed objective, an ultrathin zoom telescopic camera is demonstrated. We analyze the properties of the proposed objective. The aperture of the proposed objective is ~15mm. The total length of the system is ~18mm with a tunable focal length ~48mm to ~65mm. Compared with the conventional zoom telescopic objective, the total length has been largely reduced. PMID:27505830

  20. Configurable Aperture Space Telescope

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Bendek, Eduardo

    2015-01-01

    In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide straw man mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible and/or UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HST

  1. The Discovery Channel Telescope

    NASA Astrophysics Data System (ADS)

    Millis, R. L.; Dunham, E. W.; Sebring, T. A.; Smith, B. W.; de Kock, M.; Wiecha, O.

    2004-11-01

    The Discovery Channel Telescope (DCT) is a 4.2-m telescope to be built at a new site near Happy Jack, Arizona. The DCT features a large prime focus mosaic CCD camera with a 2-degree-diameter field of view especially designed for surveys of KBOs, Centaurs, NEAs and other moving or time-variable targets. The telescope can be switched quickly to a Ritchey-Chretien configuration for optical/IR spectroscopy or near-IR imaging. This flexibility allows timely follow-up physical studies of high priority objects discovered in survey mode. The ULE (ultra-low-expansion) meniscus primary and secondary mirror blanks for the telescope are currently in fabrication by Corning Glass. Goodrich Aerospace, Vertex RSI, M3 Engineering and Technology Corp., and e2v Technologies have recently completed in-depth conceptual design studies of the optics, mount, enclosure, and mosaic focal plane, respectively. The results of these studies were subjected to a formal design review in July, 2004. Site testing at the 7760-ft altitude Happy Jack site began in 2001. Differential image motion observations from 117 nights since January 1, 2003 gave median seeing of 0.84 arcsec FWHM, and the average of the first quartile was 0.62 arcsec. The National Environmental Policy Act (NEPA) process for securing long-term access to this site on the Coconino National Forest is nearing completion and ground breaking is expected in the spring of 2005. The Discovery Channel Telescope is a project of the Lowell Observatory with major financial support from Discovery Communications, Inc. (DCI). DCI plans ongoing television programming featuring the construction of the telescope and the research ultimately undertaken with the DCT. An additional partner can be accommodated in the project. Interested parties should contact the lead author.

  2. The 4M cOmpany: Make Mine Metric Mice. First Grade Teacher's Guide.

    ERIC Educational Resources Information Center

    Hawaii State Dept. of Education, Honolulu.

    This is one of several teacher's guides for the 4M Company, a set of materials for teaching metric concepts and computation. This level of the program extends comparisons from two objects to comparisons involving three or more objects. Vocabulary includes superlatives (longest) as well as comparatives (longer). Students are introduced to six…

  3. CDC Awards $2.4M to 5 Locales to Fight Zika

    MedlinePlus

    ... Awards $2.4M to 5 Locales to Fight Zika The goal: To assist in monitoring and dealing with Zika-related birth defects To use the sharing features ... Prevention to assist in monitoring and dealing with Zika virus-related birth defects, the agency said Friday. ...

  4. The 4M companY: Make Mine Metric Mission! Sixth Grade Teacher's Guide.

    ERIC Educational Resources Information Center

    Hawaii State Dept. of Education, Honolulu.

    This is one of several teacher's guides for the 4M Company, a set of materials for teaching metric concepts and computation skills to elementary school students. Included in the guide are sections on needed materials, metric symbols, length, perimeter, area, volume, capacity, mass (weight), decimals, conversion between metric units, temperature,…

  5. Telescoping tube assembly

    NASA Technical Reports Server (NTRS)

    Sturm, Albert J. (Inventor); Marrinan, Thomas E. (Inventor)

    1995-01-01

    An extensible and retractable telescoping tube positions test devices that inspect large stationary objects. The tube has three dimensional adjustment capabilities and is vertically suspended from a frame. The tube sections are independently supported with each section comprising U-shaped housing secured to a thicker support plate. Guide mechanisms preferably mounted only to the thicker plates guide each tube section parallel to a reference axis with improved accuracy so that the position of the remote end of the telescoping tube is precisely known.

  6. Virtual Telescopes in Education

    NASA Astrophysics Data System (ADS)

    Hoban, S.; Des Jardins, M.; Farrell, N.; Rathod, P.; Sachs, J.; Sansare, S.; Yesha, Y.; Keating, J.; Busschots, B.; Means, J.; Clark, G.; Mayo, L.; Smith, W.

    Virtual Telescopes in Education is providing the services required to operate a virtual observatory comprising distributed telescopes, including an interactive, constraint-based scheduling service, data and resource archive, proposal preparation and review environment, and a VTIE Journal. A major goal of VTIE is to elicit from learners questions about the nature of celestial objects and the physical processes that give rise to the spectacular imagery that catches their imaginations. Generation of constrained science questions will assist learners in the science process. To achieve interoperability with other NSDL resources, our approach follows the Open Archives Initiative and the W3C Semantic Web activity.

  7. Prognostic significance of serum ERBB3 and ERBB4 mRNA in lung adenocarcinoma patients.

    PubMed

    Masroor, Mirza; Javid, Jamsheed; Mir, Rashid; Y, Prasant; A, Imtiyaz; Z, Mariyam; Mohan, Anant; Ray, P C; Saxena, Alpana

    2016-01-01

    Serum messenger RNA (mRNA) is an emerging prognostic tool for noninvasive malignant disease prognosis, and to study serum mRNA may have importance in the prognosis and detection of disease. This study aimed to evaluate the possible prognostic role of serum ERBB3 and ERBB4 mRNA expressions in lung adenocarcinoma patients. One hundred newly diagnosed lung adenocarcinoma patients and 100 age- and sex-matched healthy controls were included. Expression was analysed by quantitative real-time PCR and overall survival was analysed by Kaplan-Meier analysis. Serum ERBB3 and ERBB4 mRNA expressions was found to be significantly associated with distant metastases and TNM stages. It was observed that patients with distant metastases had 4.8- and 3.4-fold high ERBB3 and ERBB4 expression in contrast to patients without distant metastases, respectively. It was also found that ERBB3 and ERBB4 mRNA expression was 7.7-fold and 6.7-fold high in TNM stage IV compared to TNM stage I, respectively. Significantly, 2.6-fold increased serum ERBB4 mRNA expression was found in patients with pleural effusion compared to patients without pleural effusion (p = 0.005). Lung adenocarcinoma patients with ≤8- and >8-fold increased serum ERBB3 mRNA expression had 10.0 and 5.5 months of overall median survival while serum ERBB4 mRNA with ≤10- and >10-fold increased expression showed 11.4 and 5.0 months overall median survival, respectively. ERBB3 and ERBB4 together also found to be significantly associated with poor overall median survival. Patients with ≤8 + ≤10- and >8 + >10-fold expression showed 11.3 vs 4.8 months of overall median survival, respectively. In conclusion, serum ERBB3 and ERBB4 mRNA expressions may be a prognostic marker and monitoring of serum ERBB3 and ERBB4 mRNA can be one of the predictive factors for metastases and poor overall survival of lung adenocarcinoma patients. PMID:26254096

  8. Metalliferous sediment and a silica-hematite deposit within the Blanco fracture zone, Northeast Pacific

    USGS Publications Warehouse

    Hein, J.R.; Clague, D.A.; Koski, R.A.; Embley, R.W.; Dunham, R.E.

    2008-01-01

    A Tiburon ROV dive within the East Blanco Depression (EBD) increased the mapped extent of a known hydrothermal field by an order of magnitude. In addition, a unique opal-CT (cristobalite-tridymite)-hematite mound was discovered, and mineralized sediments and rock were collected and analyzed. Silica-hematite mounds have not previously been found on the deep ocean floor. The light-weight rock of the porous mound consists predominantly of opal-CT and hematite filaments, rods, and strands, and averages 77.8% SiO2 and 11.8% Fe2O3. The hematite and opal-CT precipitated from a low-temperature (???115?? C), strongly oxidized, silica- and iron-rich, sulfur-poor hydrothermal fluid; a bacterial mat provided the framework for precipitation. Samples collected from a volcaniclastic rock outcrop consist primarily of quartz with lesser plagioclase, smectite, pyroxene, and sulfides; SiO2 content averages 72.5%. Formation of these quartz-rich samples is best explained by cooling in an up-flow zone of silica-rich hydrothermal fluids within a low permeability system. Opal-A, opal-CT, and quartz mineralization found in different places within the EBD hydrothermal field likely reflects decreasing silica saturation and increasing temperature of the mineralizing fluid with increasing silica crystallinity. Six push cores recovered gravel, coarse sand, and mud mineralized variously by Fe or Mn oxides, silica, and sulfides. Total rare-earth element concentrations are low for both the rock and push core samples. Ce and Eu anomalies reflect high and low temperature hydrothermal components and detrital phases. A remarkable variety of types of mineralization occur within the EBD field, yet a consistent suite of elements is enriched (relative to basalt and unmineralized cores) in all samples analyzed: Ag, Au, S, Mo, Hg, As, Sb, Sr, and U; most samples are also enriched in Cu, Pb, Cd, and Zn. On the basis of these element enrichments, the EBD hydrothermal field might best be described as a base

  9. Radionuclide Migration at the Rio Blanco Site, A Nuclear-stimulated Low-permeability Natural Gas Reservoir

    SciTech Connect

    Clay A. Cooper; Ming Ye; Jenny Chapman; Craig Shirley

    2005-10-01

    The U.S. Department of Energy and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability gas reservoirs. The third and final project in the program, Project Rio Blanco, was conducted in Rio Blanco County, in northwestern Colorado. In this experiment, three 33-kiloton nuclear explosives were simultaneously detonated in a single emplacement well in the Mesaverde Group and Fort Union Formation, at depths of 1,780, 1,899, and 2,039 m below land surface on May 17, 1973. The objective of this work is to estimate lateral distances that tritium released from the detonations may have traveled in the subsurface and evaluate the possible effect of postulated natural-gas development on radionuclide migration. Other radionuclides were considered in the analysis, but the majority occur in relatively immobile forms (such as nuclear melt glass). Of the radionuclides present in the gas phase, tritium dominates in terms of quantity of radioactivity in the long term and contribution to possible whole body exposure. One simulation is performed for {sup 85}Kr, the second most abundant gaseous radionuclide produced after tritium.

  10. [Biotic and abiotic factors that affect the quality of Schinopsis balansae Engl. and Aspidosperma quebracho-blanco Schltdl. seeds].

    PubMed

    Alzugaray, Claudia; Carnevale, Nélida J; Salinas, Adriana R; Pioli, Rosanna

    2007-06-01

    Aspidosperma quebracho-blanco (white quebracho) and Schinopsis balansae (red quebracho) are distinctive trees of the South American Park in Argentina. Quebrachos are found in forests that have been exploited very intensively. The object of this work was the identification of biotic and abiotic factors specially fungal pathogen that affect the quality of both species and its relation with germination. Seeds where evaluated through germination test and the percentage of the incidence of fungal agents in two different years of harvest was determined. In S. balansae the germination rate was 77% and of 27% in 2000 and 2001 harvests, respectively. Associations fungi-germination were found in 2001 for Alternaria spp., Curvularia spp., and Fusarium spp., showing an coefficient of correlation = -0.84; -0.85 and -0.73 (p < 0.00004), respectively. A high percentage of vane seeds (55%) was also found in 2001 harvest, due to adverse environmental factors, specifically higher precipitations during flowering. In A. quebracho-blanco seeds, the germination rate was 50% and 90% in 2000 and 2003 respectively, with a 42% of immature seeds in 2000 harvest that was associated to high precipitations and high temperatures during flowering and ripping of fruits. The incidence of pathogens was low and did not have association to germination. PMID:17604434

  11. 2-m LAMOST-type telescope for the Antarctic

    NASA Astrophysics Data System (ADS)

    Cui, Xiangqun; Zhao, Yongheng; Wang, Yanan; Li, Guoping

    2006-06-01

    The Large-Sky-Area Multi-object Fiber Spectroscopic Telescope (LAMOST) put forward by Shou-guan Wang and Ding-qiang Su is a special reflecting Schmidt telescope with the spherical mirror fixed and the correcting plate acts as both correcting plate and tractor. The correcting plate is installed on an alt-azimuth mounting and its aspherical figure is variable to meet the requirement for eliminate the spherical aberration of the spherical primary mirror when it is at variant orientations during the observation course and for different sky area. With LAMOST, both large aperture and large field of view can been obtained. Benefited from the LAMOST design and practice, a LAMOST-type telescope for full-sky survey is conceived for the Antarctic. Because of the favorable seeing condition and all-winter continuous observation, a telescope with aperture of the 2-m could be equivalent to the 4-m LAMOST. We preliminarily considered a 2-m telescope with a primary focus and a Cassegrain focus. The f-ratio of 5 and FOV 3-degree for the primary focus, and f-ratio of 15 and 8 minutes FOV with the diffraction limited image for the Cassegrain focus. In this paper, the scientific goals, the optical system of the telescope, particular material and technique which are applicable under the extreme low temperature condition at the Antarctic are described.

  12. TELESCOPES: Astronomers Overcome 'Aperture Envy'.

    PubMed

    Irion, R

    2000-07-01

    Many users of small telescopes are disturbed by the trend of shutting down smaller instruments in order to help fund bigger and bolder ground-based telescopes. Small telescopes can thrive in the shadow of giant new observatories, they say--but only if they are adapted to specialized projects. Telescopes with apertures of 2 meters or less have unique abilities to monitor broad swaths of the sky and stare at the same objects night after night, sometimes for years; various teams are turning small telescopes into robots, creating networks that span the globe and devoting them to survey projects that big telescopes don't have a prayer of tackling. PMID:17832960

  13. Exploring Galileo's Telescope

    ERIC Educational Resources Information Center

    Straulino, Samuele; Terzuoli, Alessandra

    2010-01-01

    In the first months of 2009, the International Year of Astronomy, the authors developed an educational project for middle-level students connected with the first astronomical discoveries that Galileo Galilei (1564-1642) made 400 years ago. The project included the construction of a basic telescope and the observation of the Moon. The project, if…

  14. The Falcon Telescope Network

    NASA Astrophysics Data System (ADS)

    Chun, F.; Tippets, R.; Dearborn, M.; Gresham, K.; Freckleton, R.; Douglas, M.

    2014-09-01

    The Falcon Telescope Network (FTN) is a global network of small aperture telescopes developed by the Center for Space Situational Awareness Research in the Department of Physics at the United States Air Force Academy (USAFA). Consisting of commercially available equipment, the FTN is a collaborative effort between USAFA and other educational institutions ranging from two- and four-year colleges to major research universities. USAFA provides the equipment (e.g. telescope, mount, camera, filter wheel, dome, weather station, computers and storage devices) while the educational partners provide the building and infrastructure to support an observatory. The user base includes USAFA along with K-12 and higher education faculty and students. Since the FTN has a general use purpose, objects of interest include satellites, astronomical research, and STEM support images. The raw imagery, all in the public domain, will be accessible to FTN partners and will be archived at USAFA in the Cadet Space Operations Center. FTN users will be able to submit observational requests via a web interface. The requests will then be prioritized based on the type of user, the object of interest, and a user-defined priority. A network wide schedule will be developed every 24 hours and each FTN site will autonomously execute its portion of the schedule. After an observational request is completed, the FTN user will receive notification of collection and a link to the data. The Falcon Telescope Network is an ambitious endeavor, but demonstrates the cooperation that can be achieved by multiple educational institutions.

  15. The Liverpool Telescope

    NASA Astrophysics Data System (ADS)

    Smith, Robert J.; Bates, S. D.; Clay, Neil R.; Fraser, Stephen N.; Marchant, J. M.; Mottram, C. J.; Steele, I. A.; Tomlinson, M. D.

    2011-03-01

    The Liverpool Telescope (LT) is a fully robotic 2m optical telescope at a world-class observatory site. It runs autonomously without direct human control either on site or remotely. It is not operated primarily for a single science project, but rather is a common-user facility, time allocated by an open, peer-review process and conducting a variety of optical and IR imaging, spectroscopic and polarimetric programs. This paper describes some of aspects of the site infrastructure and instrument suite designed specifically to support robust and reliable unsupervised operations. Aside from the telescope hardware, the other aspect of robotic operations is the mechanisms whereby users interact with the telescope and its automated scheduler. We describe how these have been implemented for the LT. Observing routinely since 2004, the LT has demonstrated it is possible to operate a large, common-user robotic observatory. Making the most of the flexibility afforded by fully robotic operations, development continues in collaboration with both observers and other observatories to develop observing modes to enable new science across the broad discipline of time-domain astrophysics.

  16. Wearable telescopic contact lens.

    PubMed

    Arianpour, Ashkan; Schuster, Glenn M; Tremblay, Eric J; Stamenov, Igor; Groisman, Alex; Legerton, Jerry; Meyers, William; Amigo, Goretty Alonso; Ford, Joseph E

    2015-08-20

    We describe the design, fabrication, and testing of a 1.6 mm thick scleral contact lens providing both 1× and 2.8× magnified vision paths, intended for use as a switchable eye-borne telescopic low-vision aid. The F/9.7 telescopic vision path uses an 8.2 mm diameter annular entrance pupil and 4 internal reflections in a polymethyl methacrylate precision optic. This gas-impermeable insert is contained inside a smooth outer casing of rigid gas-permeable polymer, which also provides achromatic correction for refraction at the curved lens face. The unmagnified F/4.1 vision path is through the central aperture of the lens, with additional transmission between the annular telescope rings to enable peripheral vision. We discuss potential solutions for providing oxygenation for an extended wear version of the lens. The prototype lenses were characterized using a scale-model human eye, and telescope functionality was confirmed in a small-scale clinical (nondispensed) demonstration. PMID:26368753

  17. The Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Hughes, D. H.; Schloerb, F. P.; LMT Project Team

    2009-05-01

    This paper, presented on behalf of the Large Millimeter Telescope (LMT) project team, describes the status and near-term plans for the telescope and its initial instrumentation. The LMT is a bi-national collaboration between México and the USA, led by the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) and the University of Massachusetts at Amherst, to construct, commission and operate a 50 m diameter millimeter-wave radio telescope. Construction activities are nearly complete at the LMT site, at an altitude of ˜ 4600 m on the summit of Sierra Negra, an extinct volcano in the Mexican state of Puebla. Full movement of the telescope, under computer control in both azimuth and elevation, has been achieved. First-light at centimeter wavelengths on astronomical sources was obtained in November 2006. Installation of precision surface segments for millimeter-wave operation is underway, with the inner 32 m diameter of the surface now complete and ready to be used to obtain first-light at millimeter wavelengths in 2008. Installation of the remainder of the reflector will continue during the next year and be completed in 2009 for final commissioning of the antenna. The full LMT antenna, outfitted with its initial complement of scientific instruments, will be a world-leading scientific research facility for millimeter-wave astronomy.

  18. The Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Schloerb, F. Peter

    2008-07-01

    This paper, presented on behalf of the Large Millimeter Telescope (LMT) project team, describes the status and near-term plans for the telescope and its initial instrumentation. The LMT is a bi-national collaboration between Mexico and the USA, led by the Instituto Nacional de Astrofísica, Optica y Electronica (INAOE) and the University of Massachusetts at Amherst, to construct, commission and operate a 50m-diameter millimeter-wave radio telescope. Construction activities are nearly complete at the 4600m LMT site on the summit of Sierra Negra, an extinct volcano in the Mexican state of Puebla. Full movement of the telescope, under computer control in both azimuth and elevation, has been achieved. First-light at centimeter wavelengths on astronomical sources was obtained in November 2006. Installation of precision surface segments for millimeter-wave operation is underway, with the inner 32m-diameter of the surface now complete and ready to be used to obtain first light at millimeter wavelengths in 2008. Installation of the remainder of the reflector will continue during the next year and be completed in 2009 for final commissioning of the antenna. The full LMT antenna, outfitted with its initial complement of scientific instruments, will be a world-leading scientific research facility for millimeter-wave astronomy.

  19. A Simple "Tubeless" Telescope

    ERIC Educational Resources Information Center

    Straulino, S.; Bonechi, L.

    2010-01-01

    Two lenses make it possible to create a simple telescope with quite large magnification. The set-up is very simple and can be reproduced in schools, provided the laboratory has a range of lenses with different focal lengths. In this article, the authors adopt the Keplerian configuration, which is composed of two converging lenses. This instrument,…

  20. Nordic optical telescope

    NASA Astrophysics Data System (ADS)

    Ardeberg, Arne

    The Nordic Optical Telescope for the Roque de los Muchachos Observatory at La Palma is presented. It has been designed with highest emphasis on good resulting image quality. Within a tight budget frame a compact altazimuth mounted telescope has emerged. We have aimed at high-quality blind pointing and tracking. Optomechanically the telescope should be able to take advantage also of the observing periods with best seeing. The building has been designed with main emphasis on image quality. Partly guided by wind-tunnel tests, we have chosen a small dome with favourable air-flow performance. Data on micro-thermal activity has made us opt for a height above ground of the primary mirror being about eight metres. A relatively complete site-testing programme has confirmed the excellent quality of the observatory. The telescope will be operated with a Cassegrain focus only. Provisions are foreseen for rapid exchange of ancillary instrumentation. A set of standard ancillary instruments will be available at all times under the responsibility of on-site staff. It will include modern imaging devices, photometers, polarimeters and spectrographs for various tasks.

  1. The Greenland Telescope

    NASA Astrophysics Data System (ADS)

    Grimes, Paul; Blundell, Raymond

    2012-09-01

    In the spring of 2010, the Academia Sinica Institute of Astronomy and Astrophysics, and the Smithsonian Astrophysical Observatory, acquired the ALMA North America prototype antenna - a state-of-the-art 12-m diameter dish designed for submillimeter astronomy. Together with the MIT-Haystack Observatory and the National Radio Astronomy Observatory, the plan is to retrofit this antenna for cold-weather operation and equip it with a suite of instruments designed for a variety of scientific experiments and observations. The primary scientific goal is to image the shadow of the Super-Massive Black Hole in M87 in order to test Einstein’s theory of relativity under extreme gravity. This requires the highest angular resolution, which can only be achieved by linking this antenna with others already in place to form a telescope almost the size of the Earth. We are therefore developing plans to install this antenna at the peak of the Greenland ice-sheet. This location will produce an equivalent North-South separation of almost 9,000 km when linked to the ALMA telescope in Northern Chile, and an East-West separation of about 6,000 km when linked to SAO and ASIAA’s Submillimeter Array on Mauna Kea, Hawaii, and will provide an angular resolution almost 1000 times higher than that of the most powerful optical telescopes. Given the quality of the atmosphere at the proposed telescope location, we also plan to make observations in the atmospheric windows at 1.3 and 1.5 THz. We will present plans to retrofit the telescope for cold-weather operation, and discuss potential instrumentation and projected time-line.

  2. Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey

    2007-05-01

    The Allen Telescope Array (ATA) is a pioneering centimeter-wavelength radio telescope that will produce science that cannot be done with any other instrument. The ATA is the first radio telescope designed for commensal observing; it will undertake the most comprehensive and sensitive SETI surveys ever done as well as the deepest and largest area continuum and spectroscopic surveys. Science operations will commence this year with a 42-element array. The ATA will ultimately comprise 350 6-meter dishes at Hat Creek in California, and will make possible large, deep radio surveys that were not previously feasible. The telescope incorporates many new design features including hydroformed antenna surfaces, a log-periodic feed covering the entire range of frequencies from 500 MHz to 11.2 GHz, low noise, wide-band amplifiers with a flat response over the entire band. The full array has the sensitivity of the Very Large Array but with a survey capability that is greater by an order of magnitude due to the wide field of view of the 6-meter dishes. Even with 42 elements, the ATA will be one of the most powerful radio survey telescopes. Science goals include the Five GHz sky survey (FiGSS) to match the 1.4-GHz NRAO VLA Sky Survey (NVSS) and the Sloan Digital Sky Survey within the first year of operation with the 42 element array, and a deep all-sky survey of extragalactic hydrogen to investigate galaxy evolution and intergalactic gas accretion. Transient and variable source surveys, pulsar science, spectroscopy of new molecular species in the galaxy, large-scale mapping of galactic magnetic filaments, and wide-field imaging of comets and other solar system objects are among the other key science objectives of the ATA. SETI surveys will reach sufficient sensitivity to detect an Arecibo planetary radar from 1,000,000 stars to distances of 300 pc.

  3. Wavefront Analysis of Adaptive Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Hillman, Lloyd

    1997-01-01

    The motivation for this work came from a NASA Headquarters interest in investigating design concepts for a large space telescope employing active optics technology. The development of telescope optical requirements and potential optical design configurations is reported.

  4. The histone H3 and H4 mRNAs are polyadenylated in maize.

    PubMed Central

    Chaubet, N; Chaboute, M E; Clément, B; Ehling, M; Philipps, G; Gigot, C

    1988-01-01

    Northern blot analysis revealed that the histone H3 and H4 mRNAs are of unusual large size in germinating maize embryos. S1-mapping experiments show that the 3'-untranslated regions of the mRNAs transcribed from 3 H3 and 2 H4 maize genes previously described are much longer than in the non-polyadenylated histone mRNAs which represent a major class in animals. Moreover, oligo d(T) cellulose fractionation of RNAs isolated at different developmental stages indicates that more than 99% of the maize H3 and H4 mRNAs are polyadenylated. A putative polyadenylation signal is present in all five genes 17 to 27 nucleotides before the 3'-ends of the mRNAs. Images PMID:2831497

  5. New ENDF/B-V nuclear data library for WIMS-D4M

    SciTech Connect

    Deen, J.R.; Woodruff, W.L.; Costescu, C.I.

    1993-12-31

    The WIMS-D4M code has been chosen by the Reduced Enrichment for Research and Test Reactor (RERTR) Program for all future research reactor cross-section generation replacing EPRI-CELL. A new 69-group 96-material library has been created for use in WIMS-D4M. The latest SUN version of NJOY (91.27) was used to generate the ENDF/B-V-based cross-section library. The library also includes ENDF/B-V based fission yields, energy fission and energy per capture data. The upper energy boundary has been extended from 10 to 20 MeV in order to model high energy neutron reactions. Additional fuel and moderator temperatures have been included to better predict temperature coefficients. More excess potential scattering points have been added to increase the accuracy of self-shielded resonance cross-sections. Several benchmark comparisons have been made to validate the new library.

  6. Expression of Npas4 mRNA in Telencephalic Areas of Adult and Postnatal Mouse Brain

    PubMed Central

    Damborsky, Joanne C.; Slaton, G. Simona; Winzer-Serhan, Ursula H.

    2015-01-01

    The transcription factor neuronal PAS domain-containing protein 4 (Npas4) is an inducible immediate early gene which regulates the formation of inhibitory synapses, and could have a significant regulatory role during cortical circuit formation. However, little is known about basal Npas4 mRNA expression during postnatal development. Here, postnatal and adult mouse brain sections were processed for isotopic in situ hybridization using an Npas4 specific cRNA antisense probe. In adults, Npas4 mRNA was found in the telencephalon with very restricted or no expression in diencephalon or mesencephalon. In most telencephalic areas, including the anterior olfactory nucleus (AON), piriform cortex, neocortex, hippocampus, dorsal caudate putamen (CPu), septum and basolateral amygdala nucleus (BLA), basal Npas4 expression was detected in scattered cells which exhibited strong hybridization signal. In embryonic and neonatal brain sections, Npas4 mRNA expression signals were very low. Starting at postnatal day 5 (P5), transcripts for Npas4 were detected in the AON, CPu and piriform cortex. At P8, additional Npas4 hybridization was found in CA1 and CA3 pyramidal layer, and in primary motor cortex. By P13, robust mRNA expression was located in layers IV and VI of all sensory cortices, frontal cortex and cingulate cortex. After onset of expression, postnatal spatial mRNA distribution was similar to that in adults, with the exception of the CPu, where Npas4 transcripts became gradually restricted to the most dorsal part. In conclusion, the spatial distribution of Npas4 mRNA is mostly restricted to telencephalic areas, and the temporal expression increases with developmental age during postnatal development, which seem to correlate with the onset of activity-driven excitatory transmission. PMID:26633966

  7. Physical Analysis of the Complex Rye (Secale cereale L.) Alt4 Aluminium (Aluminum) Tolerance Locus Using a Whole-Genome BAC Library of Rye cv. Blanco

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rye is a diploid crop species with many outstanding qualities, and is also important as a source of new traits for wheat and triticale improvement. Here we describe a BAC library of rye cv. Blanco, representing a valuable resource for rye molecular genetic studies. The library provides a 6 × genome ...

  8. Science operations with Space Telescope

    NASA Technical Reports Server (NTRS)

    Giacconi, R.

    1982-01-01

    The operation, instrumentation, and expected contributions of the Space Telescope are discussed. Space Telescope capabilities are described. The organization and nature of the Space Telescope Science Institute are outlined, including the allocation of observing time and the data rights and data access policies of the institute.

  9. Lunar transit telescope lander design

    NASA Technical Reports Server (NTRS)

    Omar, Husam A.

    1992-01-01

    The Program Development group at NASA's Marshall Space Flight Center has been involved in studying the feasibility of placing a 16 meter telescope on the lunar surface to scan the skies using visible/ Ultraviolet/ Infrared light frequencies. The precursor telescope is now called the TRANSIT LUNAR TELESCOPE (LTT). The Program Development Group at Marshall Space Flight Center has been given the task of developing the basic concepts and providing a feasibility study on building such a telescope. The telescope should be simple with minimum weight and volume to fit into one of the available launch vehicles. The preliminary launch date is set for 2005. A study was done to determine the launch vehicle to be used to deliver the telescope to the lunar surface. The TITAN IV/Centaur system was chosen. The engineering challenge was to design the largest possible telescope to fit into the TITAN IV/Centaur launch system. The telescope will be comprised of the primary, secondary and tertiary mirrors and their supporting system in addition to the lander that will land the telescope on the lunar surface and will also serve as the telescope's base. The lunar lander should be designed integrally with the telescope in order to minimize its weight, thus allowing more weight for the telescope and its support components. The objective of this study were to design a lander that meets all the constraints of the launching system. The basic constraints of the TITAN IV/Centaur system are given.

  10. Lunar transit telescope lander design

    NASA Technical Reports Server (NTRS)

    Omar, Husam A.

    1991-01-01

    The Program Development group at NASA's Marshall Space Flight Center has been involved in studying the feasibility of placing a 16 meter telescope on the lunar surface to scan the skies using visible/ Ultraviolet/ Infrared light frequencies. The precursor telescope is now called the TRANSIT LUNAR TELESCOPE (LTT). The Program Development Group at Marshall Space Flight Center has been given the task of developing the basic concepts and providing a feasibility study on building such a telescope. The telescope should be simple with minimum weight and volume to fit into one of the available launch vehicles. The preliminary launch date is set for 2005. A study was done to determine the launch vehicle to be used to deliver the telescope to the lunar surface. The TITAN IV/Centaur system was chosen. The engineering challenge was to design the largest possible telescope to fit into the TITAN IV/Centaur launch system. The telescope will be comprised of the primary, secondary and tertiary mirrors and their supporting system in addition to the lander that will land the telescope on the lunar surface and will also serve as the telescope's base. The lunar lander should be designed integrally with the telescope in order to minimize its weight, thus allowing more weight for the telescope and its support components. The objective of this study were to design a lander that meets all the constraints of the launching system. The basic constraints of the TITAN IV/Centaur system are given.

  11. Definition of a mobilizing volume of sediment in a valley interested by volcanic eruption: Rio Blanco valley (Chile)

    NASA Astrophysics Data System (ADS)

    Oss-Cazzador, Daniele; Iroumé, Andrés; Picco, Lorenzo

    2016-04-01

    Volcanic explosive activity can strongly affect the riverine environments. Deposition of tephra, pyroclastic and hyperconcentrated flows along both the valley bottom and hillslopes can radically change the environmental morphology. Accumulation and transport of pyroclastic material can increase hazards and risks for anthropic activities. The aims of this research are to evaluate and quantify the amount of erodible sediment that can be transported along a gravel bed river affected by a volcanic eruption. The Rio Blanco valley (Chile) was upset by the plinian-type eruption of Chaiten volcano in 2008. The great amount of tephra released in the initial phase and the subsequent pyroclastic flows, accumulated up to 8 m of sediment over a great portion of the Rio Blanco valley. Using aerial photographs was possible to define the extension of vegetated zones affected by the eruption. The area was interested by a high mortality of vegetation, as confirmed by field surveys. Dendrometric measurements permitted to quantify the volume of wood and observe that renewal and herbal layer are almost absent, determining low soil cohesion and easier erosion by superficial and river erosion processes. Analysis of sediment accumulation allowed quantifying the volume of sediment that can be transported downstream. The analyses were carried out considering 7 km-long a reach, from the river mouth to the confluence between Caldera creek and Rio Blanco. After the eruption, was possible to define as a total area of about 2.19 km2 was affected by tephra deposition, the 40% (0,87 km2) was eroded by flows, while 60% (1,32 km2) is still present and composed by tephra, buried large wood (LW) and dead standing trees. Considering an average high of 5 m, the potential erodible sediment is around 6,5 x 106 m3, moreover there is a potential amount of about 7,3 x 104 m3 of LW that can be transported towards mouth. These analyses can be useful to better define the management plan for the river delta. In

  12. Telescopic horizon scanning.

    PubMed

    Koenderink, Jan

    2014-12-20

    The problem of "distortionless" viewing with terrestrial telescopic systems (mainly "binoculars") remains problematic. The so called "globe effect" is only partially counteracted in modern designs. Theories addressing the phenomenon have never reached definitive closure. In this paper, we show that exact distortionless viewing with terrestrial telescopic systems is not possible in general, but that it is in principle possible in-very frequent in battle field and marine applications-the case of horizon scanning. However, this involves cylindrical optical elements. For opto-electronic systems, a full solution is more readily feasible. The solution involves a novel interpretation of the relevant constraints and objectives. For final design decisions, it is not necessary to rely on a corpus of psychophysical (or ergonomic) data, although one has to decide whether the instrument is intended as an extension of the eye or as a "pictorial" device. PMID:25608206

  13. COROT telescope development

    NASA Astrophysics Data System (ADS)

    Viard, Thierry; Bodin, Pierre; Magnan, Alain

    2004-06-01

    COROTEL is the telescope of the future COROT satellite which aims at measuring stellar flux variations very accurately. To perform this mission, COROTEL has to be very well protected against straylight (from Sun and Earth) and must be very stable with time. Thanks to its high experience in this field, Alcatel Space has proposed an original optical concept associated with a high performance baffle. From 2001, the LAM (Laboratoire d'Astrophysique de Marseille, CNRS) has placed the telescope development contract to Alcatel Space and is presently almost finished. Based on relevant material and efficient thermal control design, COROTEL should meet its ambitious performance and bring to scientific community for the first time precious data coming from stars and their possible companions.

  14. Telescopic limiting magnitudes

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.

    1990-01-01

    The prediction of the magnitude of the faintest star visible through a telescope by a visual observer is a difficult problem in physiology. Many prediction formulas have been advanced over the years, but most do not even consider the magnification used. Here, the prediction algorithm problem is attacked with two complimentary approaches: (1) First, a theoretical algorithm was developed based on physiological data for the sensitivity of the eye. This algorithm also accounts for the transmission of the atmosphere and the telescope, the brightness of the sky, the color of the star, the age of the observer, the aperture, and the magnification. (2) Second, 314 observed values for the limiting magnitude were collected as a test of the formula. It is found that the formula does accurately predict the average observed limiting magnitudes under all conditions.

  15. Galileo's wondrous telescope

    NASA Astrophysics Data System (ADS)

    Cartlidge, Edwin

    2008-06-01

    If you need reminding of just how wrong the great and the good can be, take a trip to the Museum of the History of Science in Florence, Italy. The museum is staging an exhibition entitled "Galileo's telescope - the instrument that changed the world" to mark the 400th anniversary this year of Galileo Galilei's revolutionary astronomical discoveries, which were made possible by the invention of the telescope. At the start of the 17th century, astronomers assumed that all the planets and the stars in the heavens had been identified and that there was nothing new for them to discover, as the exhibition's curator, Giorgio Strano, points out. "No-one could have imagined what wondrous new things were about to be revealed by an instrument created by inserting two eyeglass lenses into the ends of a tube," he adds.

  16. The Bionic Telescope

    NASA Astrophysics Data System (ADS)

    Woolf, Neville

    2009-05-01

    Four hundred years after children in a spectacle makers workshop accidentally discovered the telescope, the development of this device has been a continuous replacement of the ``natural'' by the deliberate. The human eye is gone. The lens is gone. The tube is gone. The dome is on the verge of going. The size of the optics are ceasing to be set by transportation limits. Adaptive optics are preferred to stable optics. We deliberately break the Lagrange invariant. We focus on lasers instead of stars, and natural observing environments are being replaced by adaptive environments. The goals for the new ground based telescope encompass the oldest and newest ideas, to find signs of life elsewhere, and to find how all the universe developed.

  17. The Large Area Telescope

    SciTech Connect

    Michelson, Peter F.; /KIPAC, Menlo Park /Stanford U., HEPL

    2007-11-13

    The Large Area Telescope (LAT), one of two instruments on the Gamma-ray Large Area Space Telescope (GLAST) mission, is an imaging, wide field-of-view, high-energy pair-conversion telescope, covering the energy range from {approx}20 MeV to more than 300 GeV. The LAT is being built by an international collaboration with contributions from space agencies, high-energy particle physics institutes, and universities in France, Italy, Japan, Sweden, and the United States. The scientific objectives the LAT will address include resolving the high-energy gamma-ray sky and determining the nature of the unidentified gamma-ray sources and the origin of the apparently isotropic diffuse emission observed by EGRET; understanding the mechanisms of particle acceleration in celestial sources, including active galactic nuclei, pulsars, and supernovae remnants; studying the high-energy behavior of gamma-ray bursts and transients; using high-energy gamma-rays to probe the early universe to z {ge} 6; and probing the nature of dark matter. The components of the LAT include a precision silicon-strip detector tracker and a CsI(Tl) calorimeter, a segmented anticoincidence shield that covers the tracker array, and a programmable trigger and data acquisition system. The calorimeter's depth and segmentation enable the high-energy reach of the LAT and contribute significantly to background rejection. The aspect ratio of the tracker (height/width) is 0.4, allowing a large field-of-view and ensuring that nearly all pair-conversion showers initiated in the tracker will pass into the calorimeter for energy measurement. This paper includes a description of each of these LAT subsystems as well as a summary of the overall performance of the telescope.

  18. The Astrometric Telescope Facility

    NASA Technical Reports Server (NTRS)

    Black, David; Dyer, John; Nishioka, Kenji; Scargle, Jeffrey; Sobeck, Charlie

    1991-01-01

    The evolution of the Astrometric Telescope Facility (ATF) proposed for use on NASA's Space Station is traced and its design characteristics are presented. With a focal plane scale of 12.7 arcsec/mm, the strawman design has a field size of 10 sq arcmin and a limiting visual magnitude fainter than 16. Output from an observation includes the X and Y coordinates of each star and its relative brightness.

  19. [Galileo and his telescope].

    PubMed

    Strebel, Christoph

    2006-01-01

    Galileo's publication of observations made with his newly reinvented telescope provoked a fierce debate. In April 1610 Martinus Horky, a young Bohemian astronomer, had an opportunity to make his own observations with Galileo's telescope in the presence of Antonio Magini and other astronomers. Horky and the other witnesses denied the adequacy of Galileo's telescope and therefore the bona fides of his discoveries. Kepler conjectured Horky as well as all his witnesses to be myopic. But Kepler's objection could not stop the publication of Horky's Peregrinatio contra nuncium sidereum (Modena, 1610), the first printed refutation of Galileo's Sidereus nuncius. In his treatise, Horky adresses four questions: 1) Do the four newly observed heavenly bodies actually exist? Horky denies their existence on various grounds: a) God, as every astronomer teaches, has created only seven moveable heavenly bodies and astronomical knowledge originates in God, too. b) Heavenly bodies are either stars or planets. Galileo's moveable heavenly bodies fit into neither category. c) If they do exist, why have they not already been observed by other scholars? Horky concludes that there are no such heavenly bodies. 2) What are these phenomena? They are purely artefactual, and produced by Galileo's telescope. 3) How are they like? Galileo's "stars" are so small as to be almost invisible. Galileo claims that he has measured their distances from each other. This however is impossible due to their diminutive size and other observational problems. Hence, Galileo's claim is a further proof that he is a fraud. 4) Why are they? For Galileo they are a chance to earn money but for astronomers like Horky they are a reason to offer thanks and honour to God. Horky's treatise was favourably received by the enemies of Galileo. But Kepler's critique was devastating. After calling on Kepler in Prague, Horky had to revoke the contents of his book. PMID:16929794

  20. Error-Compensated Telescope

    NASA Technical Reports Server (NTRS)

    Meinel, Aden B.; Meinel, Marjorie P.; Stacy, John E.

    1989-01-01

    Proposed reflecting telescope includes large, low-precision primary mirror stage and small, precise correcting mirror. Correcting mirror machined under computer control to compensate for error in primary mirror. Correcting mirror machined by diamond cutting tool. Computer analyzes interferometric measurements of primary mirror to determine shape of surface of correcting mirror needed to compensate for errors in wave front reflected from primary mirror and commands position and movement of cutting tool accordingly.

  1. The Smiley Radio Telescope

    NASA Astrophysics Data System (ADS)

    Blake, R. M.; Castelaz, M. W.; Daugherty, J.; Owen, L.

    2004-12-01

    More than ever modern astronomy is based upon a multi-wavelength approach combining data-sets from optical, infrared, radio, X-ray and gamma ray observatories to provide improved understanding of astrophysical phenomena. In the field of astronomy education however, until recently most teaching resources available to high schools have been limited to small optical telescopes, with little coverage of other branches of observational astronomy. To fill in this resource gap, PARI has developed the School of Galactic Radio Astronomy and the Smiley 4.6 m Radio Telescope to provide high schools access to a state-of-the-art, internet accessable radio observatory for class projects and activities. We describe here the development of the Smiley radio telescope, its control systems and give examples of several class activities which have been developed for use by high school students. We describe the future development of Smiley and plans to upgrade its performance. The SGRA has been supported by grants from Progress Energy, Z. Smith Reynolds, STScI IDEAS, and the AAS Small Research Grant Program which is supported by NASA.

  2. Muon cherenkov telescope

    NASA Astrophysics Data System (ADS)

    Malamova, E.; Angelov, I.; Kalapov, I.; Davidkov, K.; Stamenov, J.

    2001-08-01

    : The Muon Cerenkov Telescope is a system of water cerenkov detectors, using the coincidence technique to register cosmic ray muons. It is constructed in order to study the variations of cosmic rays and their correlation with solar activity and processes in the Earth magnetosphere. 1 Basic design of the Muon Cerenkov Telescope The telescope has 18 water cerenkov detectors / 0.25 m2 each /, situated in two parallel planes. / Fig. 1/ Each detector /fig. 2/ consists of a container with dimensions 50x50x12.5 cm made of 3mm thick glass with mirror cover of the outer side. The container is filled with distilled water to 10cm level. A photomultiplier is attached to a transparent circle at the floor of the container and the discriminator is placed in its housing. When a charged particle with energy greater than the threshold energy for cerenkov radiation generation passes the radiator, cerenkov photons are initiated and a part of them reach the PMT cathode after multiple reflections from the mirror sides of the container.

  3. Scanning holographic lidar telescope

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Wilkerson, Thomas D.

    1993-01-01

    We have developed a unique telescope for lidar using a holographic optical element (HOE) as the primary optic. The HOE diffracts 532 nm laser backscatter making a 43 deg angle with a normal to its surface to a focus located 130 cm along the normal. The field of view scans a circle as the HOE rotates about the normal. The detector assembly and baffling remain stationary, compared to conventional scanning lidars in which the entire telescope and detector assembly require steering, or which use a large flat steerable mirror in front of the telescope to do the pointing. The spectral bandpass of our HOE is 50 nm (FWHM). Light within that bandpass is spectrally dispersed at 0.6 nm/mm in the focal plane. An aperture stop reduces the bandpass of light reaching the detector from one direction to 1 nm while simultaneously reducing the field of view to 1 mrad. Wavelengths outside the 50 nm spectral bandpass pass undiffracted through HOE to be absorbed by a black backing. Thus, the HOE combines three functions into one optic: the scanning mirror, the focusing mirror, and a narrowband filter.

  4. Geomorphic change along a gravel bed river affected by volcanic eruption: Rio Blanco - Volcan Chaiten (South Chile)

    NASA Astrophysics Data System (ADS)

    Picco, Lorenzo; Ravazzolo, Diego; Ulloa, Hector; Iroumé, Andres; Aristide Lenzi, Mario

    2014-05-01

    Gravel bed rivers are environments shaped by the balance of flow, sediment regimes, large wood (LW) and vegetation. Geomorphic changes are response to fluctuations and changes of runoff and sediment supply involving mutual interactions among these factors. Typically, many natural disasters (i.e. debris flows, floods and forest fires) can affect the river basin dynamics. Explosive volcanic eruptions present, instead, the potential of exerting severe impacts as, for example, filling river valleys or changing river network patterns thanks to massive deposition of tephra and volcanic sediment all over the main channel and over the basin. These consistent impacts can strongly affect both hydrology and sediment transport dynamics, all over the river system, producing huge geomorphic changes. During the last years there has been a consistent increase in the survey technologies that permit to monitor geomorphic changes and to estimate sediment budgets through repeat topographic surveys. The calculation of differences between subsequent DEMs (difference of DEMs, DoD) is a commonly applied method to analyze and quantify these dynamics. Typically the higher uncertainty values are registered in areas with higher topographic variability and lower point density. This research was conducted along a ~ 2.2 km-long sub-reach of the Blanco River (Southern Chile), a fourth-order stream that presents a mainly rainfall regime with winter peak flows. The May 2008 Chaitén volcanic eruption strongly affected the entire Rio Blanco basin. The entire valley was highly exposed to the pyroclastic and fluvial flows, which affected directly a consistent area of evergreen forests. Extreme runoff from the upper Blanco catchment aggraded the channel and deposited up to several meters of tephra, alluvium, and LW along the entire river system. Aims of this contribution are to define and quantify the short term evolution of the Blanco River after the big eruption event and a subsequent consistent

  5. The ash deposits of the 4200 BP Cerro Blanco eruption: the largest Holocene eruption of the Central Andes

    NASA Astrophysics Data System (ADS)

    Fernandez-Turiel, Jose-Luis; Saavedra, Julio; Perez-Torrado, Francisco-Jose; Rodriguez-Gonzalez, Alejandro; Carracedo, Juan-Carlos; Lobo, Agustin; Rejas, Marta; Gallardo, Juan-Fernando; Osterrieth, Margarita; Carrizo, Julieta; Esteban, Graciela; Martinez, Luis-Dante; Gil, Raul-Andres; Ratto, Norma; Baez, Walter

    2015-04-01

    We present new data about a major eruption -spreading approx. 110 km3 ashes over 440.000 km2- long thought to have occurred around 4200 years ago in the Cerro Blanco Volcanic Complex (CBVC) in the Central Andes of NW Argentina (Southern Puna, 26°45' S, 67°45' W). This eruption may be the biggest during the past five millennia in the Central Volcanic Zone of the Andes, and possibly one of the largest Holocene eruptions in the world. Discrimination and correlation of pyroclastic deposits of this eruption of Cerro Blanco was conducted comparing samples of proximal (domes, pyroclastic flow and fall deposits) with distal ash fall deposits (up to 400 km from de vent). They have been characterized using optical and electron microscopy (SEM), X-ray diffraction, particle-size distribution by laser diffraction and electron microprobe and HR-ICP-MS with laser ablation for major and trace element composition of glass, feldspars and biotite. New and published 14C ages were calibrated using Bayesian statistics. An one-at-a-time inversion method was used to reconstruct the eruption conditions using the Tephra2 code (Bonadonna et al. 2010, https://vhub.org/resources/tephra2). This method allowed setting the main features of the eruption that explains the field observations in terms of thickness and grain size distributions of the ash fall deposit. The main arguments that justify the correlation are four: 1) Compositional coincidence for glass, feldspars, and biotite in proximal and distal materials; 2) Stratigraphic and geomorphological relationships, including structure and thickness variation of the distal deposits; 3) Geochronological consistency, matching proximal and distal ages; and 4) Geographical distribution of correlated outcrops in relation to the eruption centre at the coordinates of Cerro Blanco. With a magnitude of 7.0 and a volcanic explosivity index or VEI 7, this eruption of ~4200 BP at Cerro Blanco is the largest in the last five millennia known in the Central

  6. Las Cumbres Observatory 1-Meter Global Science Telescope Network

    NASA Astrophysics Data System (ADS)

    Pickles, Andrew; Dubberley, M.; Haldeman, B.; Haynes, R.; Posner, V.; Rosing, W.; staff, LCOGT

    2009-05-01

    We present the optical, mechanical and electronic design of the LCOGT 1-m telescope. These telescopes are planned to go in pairs to each of 6 sites worldwide, complementing 0.4m telescopes and 2-m telescopes at two existing sites. This science network is designed to provide continuously available photometric monitoring and spectroscopy of variable sources. The 1-m optical design is an f/8 quasi-RC system, with a doublet corrector and field flattener to provide good image quality out to 0.8 degrees. The field of view of the Fairchild 4K science CCD is 27 arcmin, with 0.39 arcsec pixels. The mechanical design includes a stiff C-ring equatorial mount and friction drive rollers, mounted on a triangular base that can be adjusted for latitude. Another friction drive is coupled at the Declination axis to the M1 mirror cell, that forms the main Optical Tube Assembly (OTA) structural element. The OTA design includes a stiff carbon fiber truss assembly, with offset vanes to an M2 drive that provides remote focus, tilt and collimation. The tube assembly weighs about 600 Kg, including Hextek mirrors, 4K science CCD, filter wheel, autoguiders and medium resolution spectrograph pick-off fiber. The telescopes will be housed in domes at existing observatory sites. They are designed to operate remotely and reliably under centralized control for automatic, optimized scheduling of observations with available hardware.

  7. Concept study and validation of Antarctic telescope tower

    NASA Astrophysics Data System (ADS)

    Lanford, Ephraim; Swain, Mark; Meyers, Catherine; Muramatsu, Tamao; Nielson, Greg; Olson, Valerie; Ronsse, Sebastien; Vinding Nyden, Emily; Hammerschlag, Robert; Little, Patrick

    2006-06-01

    Studies by Mark Swain and a colleague at the Max Planck Institut fur Astronomie, coupled with results from past and ongoing projects at Harvey Mudd College, strongly suggest that it may be possible to achieve imaging performance comparable to the Hubble Space Telescope at relatively low cost using available, commercial products. This is achievable by placing a 2.4 m telescope, with readily available adaptive optics, on a 30 m tower located at a high-elevation geological "dome" in Antarctica. An initial project surveyed relevant tower design approaches, then generated and evaluated six concept designs for telescope towers. Using data for typical and extreme wind at Dome C to generate wind loads, finite element analysis yielded lateral deflections at the top of 0.3 mm for typical winds and 12.1 mm for extreme gusts, with the lowest resonant frequency at 0.7 Hz; some tower concepts are innovative and allow for easy shipment, setup, and relocation. A subsequent project analyzed a tower designed by Hammerschlag and found fundamental resonance frequencies at 4.3 Hz for bending and 5.9 Hz for torsion; this project also designed and simulated an active telescope control system that maintained 17 milliarcsecond pointing error for the telescope atop the tower during typical wind conditions.

  8. Results and Perspectives of the Master Robotic Telescopes Network

    NASA Astrophysics Data System (ADS)

    Denisenko, D.

    2013-05-01

    The MASTER Net of Mobile AStronomical TElescopes-Robots has been developed since 2002 and started its fully autonomous operation in March, 2011. At the moment it consists of five identical binocular telescopes with a total of ten 0.4-m tubes corresponding to the effective aperture of 1.25 m. They are situated in five locations spread over six time zones, from 127E longitude in Russian Far East to 37E in the Central European part of Russia (see http://observ.pereplet.ru for more details). Originally designed for the fast response to Gamma-Ray Burst alerts from the spacecrafts, the telescopes of MASTER Net are discovering a lot of new objects in the survey mode, including a number of astrophysically important ones. In the first year of full time operation MASTER robotic telescopes have discovered more than 120 optical transients, including over 50 supernovae candidates, about 30 new cataclysmic variables, classical Nova, several fast transients and objects of unknown nature. In the same time MASTER telescopes keep on providing about 50 per cent of the first pointings to the GRB alerts in the world, including the observations from space. The plans are to install two to four additional MASTER systems abroad (on the Canary Islands, in Argentina, South Africa and Antarctica) to cover the western hemisphere and the southern sky. Using the identical instruments will allow the unique continuous monitoring of the sky covering about 5000 sq. deg. per night to the 20th limiting magnitude.

  9. Turkey's next big science project: DAG the 4 meter telescope

    NASA Astrophysics Data System (ADS)

    Keskin, O.; Yesilyaprak, C.; Yerli, S. K.; Zago, L.; Jolissaint, L.

    2014-07-01

    The DAG (Turkish for Eastern Anatolia Observatory) 4-m telescope project has been formally launched in 2012, being fully funded by the Government of Turkey. This new observatory is to be located on a 3170 m altitude ridge near the town of Erzurum in Eastern Anatolia. First light is scheduled for late 2017. The DAG team's baseline design of the telescope consists of a Ritchey-Chretien type with alt-az mount, a focal length of 56 m and a field of view up to 30 arcmin. Multiple instruments will be located at the Nasmyth foci. The optical specifications of the telescope are set by DAG team for diffraction limited performance with active and adaptive optics. Modern mirror control technologies will allow defining in a most cost effective way the figuring requirements of the optical surfaces: the low order figuring errors of the combined optical train constituted of M1-M2-M3 are defined in terms of Zernike coefficients and referred to the M1 surface area. The high order figuring errors are defined using the phase structure functions. Daytime chilling of the closed enclosure volume and natural ventilation through suitable openings during observations will be used to ensure optimal mirror and dome seeing. A design of a ground layer adaptive optics (GLAO) subsystem is developed concurrently with the telescope. In this paper, main design aspects, the optical design and expected performance analysis of the telescope will be presented.

  10. Upper limit to the 11.4 m flux of Saturn using VLBI.

    NASA Technical Reports Server (NTRS)

    Shawhan, S. D.; Clark, T. A.; Cronyn, W. M.; Basart, J. P.

    1973-01-01

    Summary of a series of interferometric observations of Saturn using large phased dipole arrays at 11.4 m wavelength (26.3 MHz). The observations were made in August 1971 using a VLBI system operated over two baselines. The results obtained are interpreted as negative for both decametric continuum and noise storm emission from source regions much less than the planetary disk size. This leads to an upper limit value of approximately 14 flux units from a source less than 1 arc sec in diameter located in a region plus or minus 40 min in right ascension and 3.5 deg in declination about Saturn's optical position.

  11. Comparing NEO Search Telescopes

    NASA Astrophysics Data System (ADS)

    Myhrvold, Nathan

    2016-04-01

    Multiple terrestrial and space-based telescopes have been proposed for detecting and tracking near-Earth objects (NEOs). Detailed simulations of the search performance of these systems have used complex computer codes that are not widely available, which hinders accurate cross-comparison of the proposals and obscures whether they have consistent assumptions. Moreover, some proposed instruments would survey infrared (IR) bands, whereas others would operate in the visible band, and differences among asteroid thermal and visible-light models used in the simulations further complicate like-to-like comparisons. I use simple physical principles to estimate basic performance metrics for the ground-based Large Synoptic Survey Telescope and three space-based instruments—Sentinel, NEOCam, and a Cubesat constellation. The performance is measured against two different NEO distributions, the Bottke et al. distribution of general NEOs, and the Veres et al. distribution of Earth-impacting NEO. The results of the comparison show simplified relative performance metrics, including the expected number of NEOs visible in the search volumes and the initial detection rates expected for each system. Although these simplified comparisons do not capture all of the details, they give considerable insight into the physical factors limiting performance. Multiple asteroid thermal models are considered, including FRM, NEATM, and a new generalized form of FRM. I describe issues with how IR albedo and emissivity have been estimated in previous studies, which may render them inaccurate. A thermal model for tumbling asteroids is also developed and suggests that tumbling asteroids may be surprisingly difficult for IR telescopes to observe.

  12. The Planck Telescope reflectors

    NASA Astrophysics Data System (ADS)

    Stute, Thomas

    2004-09-01

    The mechanical division of EADS-Astrium GmbH, Friedrichshafen is currently engaged with the development, manufacturing and testing of the advanced dimensionally stable composite reflectors for the ESA satellite borne telescope Planck. The objective of the ESA mission Planck is to analyse the first light that filled the universe, the cosmic microwave background radiation. Under contract of the Danish Space Research Institute and ESA EADS-Astrium GmbH is developing the all CFRP primary and secondary reflectors for the 1.5-metre telescope which is the main instrument of the Planck satellite. The operational frequency ranges from to 25 GHz to 1000 GHz. The demanding high contour accuracy and surface roughness requirements are met. The design provides the extreme dimensional stability required by the cryogenic operational environment at around 40 K. The elliptical off-axis reflectors display a classical lightweight sandwich design with CFRP core and facesheets. Isostatic mounts provide the interfaces to the telescope structure. Protected VDA provides the reflecting surface. The manufacturing is performed at the Friedrichshafen premises of EADS-Space Transportation GmbH, the former Dornier composite workshops. Advanced manufacturing technologies like true angle lay-up by CNC fibre placement and filament winding are utilized. The protected coating is applied at the CAHA facilities at the Calar Alto Observatory, Spain. The exhaustive environmental testing is performed at the facilities of IABG, Munich (mechanical testing) and for the cryo-optical tests at CSL Liege. The project is in advanced state with both Qualification Models being under environmental testing. The flight models will be delivered in 2004. The paper gives an overview over the requirements and the main structural features how these requirements are met. Special production aspects and available test results are reported.

  13. PIWI homologs mediate Histone H4 mRNA localization to planarian chromatoid bodies

    PubMed Central

    Rouhana, Labib; Weiss, Jennifer A.; King, Ryan S.; Newmark, Phillip A.

    2014-01-01

    The well-known regenerative abilities of planarian flatworms are attributed to a population of adult stem cells called neoblasts that proliferate and differentiate to produce all cell types. A characteristic feature of neoblasts is the presence of large cytoplasmic ribonucleoprotein granules named chromatoid bodies, the function of which has remained largely elusive. This study shows that histone mRNAs are a common component of chromatoid bodies. Our experiments also demonstrate that accumulation of histone mRNAs, which is typically restricted to the S phase of eukaryotic cells, is extended during the cell cycle of neoblasts. The planarian PIWI homologs SMEDWI-1 and SMEDWI-3 are required for proper localization of germinal histone H4 (gH4) mRNA to chromatoid bodies. The association between histone mRNA and chromatoid body components extends beyond gH4 mRNA, since transcripts of other core histone genes were also found in these structures. Additionally, piRNAs corresponding to loci of every core histone type have been identified. Altogether, this work provides evidence that links PIWI proteins and chromatoid bodies to histone mRNA regulation in planarian stem cells. The molecular similarities between neoblasts and undifferentiated cells of other organisms raise the possibility that PIWI proteins might also regulate histone mRNAs in stem cells and germ cells of other metazoans. PMID:24903754

  14. Alpha-CTLA-4 mAb-associated panenteritis: a histologic and immunohistochemical analysis.

    PubMed

    Oble, Darryl A; Mino-Kenudson, Mari; Goldsmith, Jeffrey; Hodi, F Stephen; Seliem, Rania M; Dranoff, Glenn; Mihm, Martin; Hasserjian, Robert; Lauwers, Gregory Y

    2008-08-01

    Monoclonal antibodies (mAbs) against the cytotoxic T lymphocyte antigen-4 (CTLA-4) molecule are used as an adjuvant to experimental tumor immunization protocols in the treatment of malignant melanomas and ovarian cancers. Aside from noted early therapeutic successes, a spectrum of adverse effects, including severe gastroenteritis, has been reported. We report herein our observations of 5 patients who developed severe gastrointestinal toxicity affecting the gastric, small intestinal, and colonic mucosa. The endoscopic findings were variable, ranging from normal to diffusely erythematous and ulcerated mucosa. The constant histologic findings included a lymphoplasmacytic expansion of the lamina propria with increase in intraepithelial lymphocytes. Increased epithelial apoptosis was also a distinctive feature. Cryptitis and glandular inflammation were observed in the colon, ileum, and stomach, whereas villous blunting was present in the ileal and duodenal mucosa. Immunohistochemical analysis revealed a marked increase of all T-cell subsets (CD3+, CD4+, and CD8+) and of CD4CD25 regulatory T cells. We conclude that the panenteritis associated with injection of alpha-CTLA-4 mAbs demonstrates histology resembling autoimmune enteropathy. Furthermore, although the pathogenesis of immune dysregulation after the infusion of alpha-CTLA-4 mAbs remains unclear, we suspect that the increased number of regulatory T cells in the gastrointestinal mucosa may play a role in the pathogenicity. PMID:18545145

  15. PIWI homologs mediate histone H4 mRNA localization to planarian chromatoid bodies.

    PubMed

    Rouhana, Labib; Weiss, Jennifer A; King, Ryan S; Newmark, Phillip A

    2014-07-01

    The well-known regenerative abilities of planarian flatworms are attributed to a population of adult stem cells called neoblasts that proliferate and differentiate to produce all cell types. A characteristic feature of neoblasts is the presence of large cytoplasmic ribonucleoprotein granules named chromatoid bodies, the function of which has remained largely elusive. This study shows that histone mRNAs are a common component of chromatoid bodies. Our experiments also demonstrate that accumulation of histone mRNAs, which is typically restricted to the S phase of eukaryotic cells, is extended during the cell cycle of neoblasts. The planarian PIWI homologs SMEDWI-1 and SMEDWI-3 are required for proper localization of germinal histone H4 (gH4) mRNA to chromatoid bodies. The association between histone mRNA and chromatoid body components extends beyond gH4 mRNA, since transcripts of other core histone genes were also found in these structures. Additionally, piRNAs corresponding to loci of every core histone type have been identified. Altogether, this work provides evidence that links PIWI proteins and chromatoid bodies to histone mRNA regulation in planarian stem cells. The molecular similarities between neoblasts and undifferentiated cells of other organisms raise the possibility that PIWI proteins might also regulate histone mRNAs in stem cells and germ cells of other metazoans. PMID:24903754

  16. LMO4 mRNA stability is regulated by extracellular ATP in F11 cells

    SciTech Connect

    Chen, Hsiao-Huei . E-mail: hchen@uottawa.ca; Xu, Jin; Safarpour, Farzaneh; Stewart, Alexandre F.R.

    2007-05-25

    LIM only domain protein 4 (LMO4) interacts with many signaling and transcription factors to regulate cellular proliferation, differentiation and plasticity. In Drosophila, mutations in the 3' untranslated region (UTR) of the homologue dLMO cause a gain of function by increasing mRNA stability. LMO4 3'UTR contains several AU-rich elements (ARE) and is highly conserved among vertebrates, suggesting that RNA destabilizing mechanisms are evolutionarily conserved. Here, we found that extracellular ATP stabilized LMO4 mRNA in F11 cells. The LMO4 3'UTR added to a luciferase reporter markedly reduced reporter activity under basal conditions, but increased activity with ATP treatment. Two ARE motifs were characterized in the LMO4 3'UTR. ATP increased binding of HuD protein to ARE1. ARE1 conferred ATP and HuD-dependent mRNA stabilization. In contrast, sequences flanking ARE2 bound CUGBP1 and ATP destabilized this complex. Thus, our results suggest that ATP modulates recruitment of RNA-binding proteins to the 3'UTR to stabilize LMO4 mRNA.

  17. Is Your Telescope Tweeting?

    NASA Astrophysics Data System (ADS)

    Atkinson, Nancy

    2009-05-01

    Half of the world's population today was born after the Apollo Moon landings. The best way to reach this generation and get them excited about today's space exploration and astronomy news and events is through online social media, which are technologies that allow anyone to communicate with everyone. Twitter is a growing popular social media tool that uses short, 140 character "Tweets" to quickly and concisely convey updates on what you "are doing." With the right combination of information, personality and fun, telescopes and spacecraft are using Twitter for public outreach, providing important status updates while making the public feel like they are part of the mission.

  18. Telescope Time Allocation Tool

    NASA Astrophysics Data System (ADS)

    Alves, J.

    2005-03-01

    TaToo is ESO's new Time Allocation Tool. This software scheduler is a combination of a user-friendly graphical user interface and an intelligent constraint-programming engine fine-tuned to ESO's scheduling problem. TaToo is able to produce a high quality and reliable schedule taking into consideration all constraints of the recommended programs for all telescopes in about 15 minutes. This performance allows schedulers at ESO-VISAS to simulate and evaluate different scenarios, optimize the scheduling of engineering activities at the observatories, and in the end construct the most science efficient schedule possible.

  19. Astronomy before the telescope.

    NASA Astrophysics Data System (ADS)

    Walker, C.

    This book is the most comprehensive and authoritative survey to date of world astronomy before the telescope in AD 1609. International experts have contributed chapters examining what observations were made, what instruments were used, the effect of developments in mathematics and measurement, and the diversity of early views of cosmology and astrology. The achievements of European astronomers from prehistoric times to the Renaissance are linked with those of ancient Egypt and Mesopotamia, India and the Islamic world. Other chapters deal with early astronomy in the Far East and in the Americas, and with traditional astronomical knowledge in Africa, Australia and the Pacific.

  20. The CCAT Telescope

    NASA Astrophysics Data System (ADS)

    Glenn, Jason; CCAT

    2013-01-01

    CCAT will be a 25 m diameter on-axis Gregory telescope operating in the 0.2 to 2.1 mm wavelength range. It will be located at an altitude of 5600 m on Cerro Chajnantor in northern Chile. CCAT will support cameras and spectrometers with up to 1 field of view at its f/6 Nasmyth foci. The key performance requirements for the telescope are a half wavefront error <12.5 μm rms and pointing error <0.35"/350 μm). CCAT will have an f/0.4 primary with an active surface to compensate gravitational and thermal deformations. The primary will be made of 2 m keystone-shaped segments, each with 16 machined aluminum tiles mounted on a carbon-fiber-reinforced-plastic (CFRP) subframe. The segments will be supported by a CFRP spaceframe truss on an elevation over azimuth mount made of steel. CCAT will be inside an enclosure to reduce wavefront and pointing errors due to wind forces and thermal deformation due to solar illumination.

  1. Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Nurre, G.

    1987-01-01

    The Hubble Space Telescope will employ magnetic torque controllers, which make use of the Earth's magnetic field augmented by four reaction wheels. DC torques are easily allowed for, but variations, orbit by orbit, can result in excessive wheel speeds which can excite vibratory modes in the telescope structure. If the angular momentum from aerodynamic sources exceeds its allocation of 100 Nms, the excess has to come out of the maneuvering budget since the total capacity of the momentum storage system is fixed at 500 Nms. This would mean that maneuvers could not be made as quickly, and this would reduce the amount of science return. In summary, there is a definite need for a model that accurately portrays short term (within orbit) variations in density for use in angular momentum management analyses. It would be desirable to have a simplified model that could be used for planning purposes; perhaps applicable only over a limited altitude range (400 to 700 km) and limited latitude band.

  2. Antares reference telescope system

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. K.; Kaprelian, E.; Swann, T.; Parker, J.; Wolfe, P.; Woodfin, G.; Knight, D.

    Antares is a 24 beam, 40 TW carbon dioxide laser fusion system currently nearing completion. The 24 beams will be focused onto a tiny target. It is to position the targets to within 10 (SIGMA)m of a selected nominal position, which may be anywhere within a fixed spherical region 1 cm in diameter. The Antares reference telescope system is intended to help achieve this goal for alignment and viewing of the various targets used in the laser system. The Antares reference telescope system consists of two similar electrooptical systems positioned in a near orthogonal manner in the target chamber area of the laser. Each of these consists of four subsystems: (1) a fixed 9% optical imaging subsystem which produces an image of the target at the vidicon; (2) a reticle projection subsystem which superimposes an image of the reticle pattern at the vidicon; (3) an adjustable front lighting subsystem which illuminates the target; and (4) an adjustable back lighting subsystem which also can be used to illuminate the target. The various optical, mechanical, and vidicon design considerations and tradeoffs are discussed. The final system chosen and its current status are described.

  3. SNAP Telescope Latest Developments

    NASA Astrophysics Data System (ADS)

    Lampton, M.; SNAP Collaboration

    2004-12-01

    The coming era of precision cosmology imposes new demands on space telescopes with regard to spectrophotometric accuracy and image stability. To meet these requirements for SNAP we have developed an all reflecting two-meter-class space telescope of the three-mirror anastigmat type. Our design features a large flat annular field (1.5 degrees = 580mm diameter) and a telephoto advantage of 6, delivering a 22m focal length within an optical package length of only 3.5 meters. The use of highly stable materials (Corning ULE glass and carbon-fiber reinforced cyanate ester resin for the metering structure) combined with agressive distributed thermal control and an L2 orbit location will lead to unmatched figure stability. Owing to our choice of rigid structure with nondeployable solar panels, finite-element models show no structural resonances below 10Hz. An exhaustive stray light study has been completed. Beginning in 2005, two industry studies will develop plans for fabrication, integration and test, bringing SNAP to a highly realistic level of definition. SNAP is supported by the Office of Science, US DoE, under contract DE-AC03-76SF00098.

  4. Magellan Telescopes operations 2008

    NASA Astrophysics Data System (ADS)

    Osip, David J.; Phillips, Mark M.; Palunas, Povilas; Perez, Frank; Leroy, M.

    2008-07-01

    The twin 6.5m Magellan Telescopes have been in routine operations at the Las Campanas Observatory in the Chilean Andes since 2001 and 2002 respectively. The telescopes are owned and operated by Carnegie for the benefit of the Magellan consortium members (Carnegie Institution of Washington, Harvard University, the University of Arizona, Massachusetts Institute of Technology, and the University of Michigan). This paper provides an up to date review of the scientific, technical, and administrative structure of the 'Magellan Model' for observatory operations. With a modest operations budget and a reasonably small staff, the observatory is operated in the "classical" mode, wherein the visiting observer is a key member of the operations team. Under this model, all instrumentation is supplied entirely by the consortium members and the various instrument teams continue to play a critical support role beyond initial deployment and commissioning activities. Here, we present a critical analysis of the Magellan operations model and suggest lessons learned and changes implemented as we continue to evolve an organizational structure that can efficiently deliver a high scientific return for the investment of the partners.

  5. Selective labeling and localization of the M4 (m4) muscarinic receptor subtype.

    PubMed

    Ferrari-Dileo, G; Waelbroeck, M; Mash, D C; Flynn, D D

    1994-12-01

    We report here a novel strategy for the selective labeling and localization of the M4 (m4) muscarinic receptor subtype, based on the distinct kinetics of the muscarinic antagonists dexetimide and N-methylscopolamine (NMS) and on the selectivity profile of guanylpirenzepine and AF-DX 116 for the m1-m5 muscarinic receptor subtypes expressed in CHO-K1 cells. Incubation with 10 nM dexetimide, a nonselective antagonist, resulted in > 90% occupancy of each of the m1-m5 receptor subtypes. The relatively rapid rates of dexetimide dissociation from the m1, m2, and m4 receptor subtypes (t1/2 values of < 12.5 min) and the slower rates of dexetimide dissociation from the m3 and m5 receptor subtypes (t1/2 values of 65 and 75 min, respectively) favored the labeling of the m1, m2, and m4 receptor subtypes with short incubations with [3H]NMS. Inclusion of 200 nM guanylpirenzepine and 250 nM AF-DX 116 prevented the binding of [3H]NMS to the majority of the m1 and m2 receptor subtypes, respectively, resulting in primary labeling of the m4 receptor subtype. Brief dissociation of the radioligand in the presence of 1 microM atropine improved the ratio of m4 to m2 labeling by selectively removing [3H]NMS from the m2 subtype. Under these conditions, the ratio of [3H]NMS binding to the m4 versus m1, m2, m3, and m5 receptor subtypes was 4:1. In vitro autoradiography combined with these m4-selective labeling conditions demonstrated that the M4 (m4) receptor subtype was localized to the primary visual area (V1, area 17, occipital cortex) and the basal ganglia, a distribution distinct from that demonstrated for the M1 (m1), M2 (m2), and M3 (m3) receptor subtypes. These results demonstrate that a combination of the distinct kinetics of dexetimide and NMS and the receptor subtype selectivity of guanylpirenzepine and AF-DX 116 provides a valuable labeling strategy to examine the distribution and localization of the M4 (m4) muscarinic receptor subtype in brain, peripheral tissues, and cell lines

  6. Near anastigmatic grazing incidence telescope

    NASA Technical Reports Server (NTRS)

    Korsch, D.

    1984-01-01

    A performance capability assessment is presently conducted for short versus long grazing incidence telescope designs, in view of the observation that the field curvature and astigmatism that are the primary residual aberrations of a Wolter-type incidence telescope can be substantially reduced through mirror length reduction. A major advantage of the short element telescope is that, if sufficiently short, both the paraboloid and hyperboloid surfaces may be fabricated as a single piece; this significantly facilitates the task of alignment.

  7. Cost Modeling for Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2011-01-01

    Parametric cost models are an important tool for planning missions, compare concepts and justify technology investments. This paper presents on-going efforts to develop single variable and multi-variable cost models for space telescope optical telescope assembly (OTA). These models are based on data collected from historical space telescope missions. Standard statistical methods are used to derive CERs for OTA cost versus aperture diameter and mass. The results are compared with previously published models.

  8. Why Space Telescopes Are Amazing

    NASA Technical Reports Server (NTRS)

    Rigby, Jane R.

    2012-01-01

    One of humanity's best ideas has been to put telescopes in space. The dark stillness of space allows telescopes to perform much better than they can on even the darkest and clearest of Earth's mountaintops. In addition, from space we can detect colors of light, like X-rays and gamma rays, that are blocked by the Earth's atmosphere I'll talk about NASA's team of great observatories: the Hubble Space Telescope, Spitzer Space Telescope, and Chandra X-ray Observatory} and how they've worked together to answer key questions: When did the stars form? Is there really dark matter? Is the universe really expanding ever faster and faster?

  9. Telescope structures - An evolutionary overview

    NASA Technical Reports Server (NTRS)

    Meinel, Aden B.; Meinel, Marjorie P.

    1987-01-01

    A development history is presented for telescope structural support materials, design concepts, equatorial and altazimuthal orientational preferences, and mechanical control system structural realizations. In the course of 50 years after Galileo, the basic configurations of all reflecting telescopes was set for the subsequent 300 years: these were the Cassegrain, Gregorian, and Newtonian designs. The challenge of making a lightweight ribbed pyrex glass primary mirror for the 5-m Palomar telescope was met by von Karman's use of finite element analysis. Attention is given to the prospects for a 20-m deployable space-based reflecting telescope.

  10. Compact Sunshade For Telescope Antenna

    NASA Technical Reports Server (NTRS)

    Kerr, E. L.

    1990-01-01

    Proposed built-in sunshade enables large-aperture reflecting telescope to view laser transmitter apparently close to Sun, without adding excessive size or mass to telescope. Telescope looks through sunshade from behind and below. Tops of hexagonal tubes trimmed to spherical shape corresponding to sphere of rotation of telescope. Sunshade supports secondary reflector. Discerns signals from sources only 12 degrees from line of sight to Sun. Sunshade equipped with internal vanes running lengths of tubes receives signals from sources within 6 degree or even 3 degree of apparent position of Sun.

  11. High-precision particle mass measurements using the KEDR detector at the VEPP-4M collider

    NASA Astrophysics Data System (ADS)

    Levichev, E. B.; Skrinsky, A. N.; Tikhonov, Yu A.; Todyshev, K. Yu

    2014-01-01

    A review is presented of experiments performed using the KEDR detector at the VEPP-4M accelerator complex for the precise measurement of particle masses. The resonant depolarization method, proposed in 1975 at the G I Budker Institute of Nuclear Physics of the RAS Siberian Branch for measuring beam energy, has undergone further development in the experiments described; an unprecedented accuracy of 5\\times 10^{-7} has been achieved. Application of this method together with measurement of the Compton backscattering energy allowed a series of experiments to be carried out which have provided the world's most accurate mass values for the J/{\\rm\\psi}, {\\psi(2S)}, {\\psi(3770)}, and D^{+/- } mesons for the {\\tau}-lepton.

  12. Facile Synthesis of Carboxylic Functionalized MFe2O4 (M = Mn, Co, Zn) Nanospheres.

    PubMed

    Xing, Ruimin; Lu, Li; Huang, Haiping; Liu, Shanhu; Niu, Jingyang

    2015-07-01

    A facile one-pot solvothermal method was developed for the synthesis of carboxylic functionalized MFe2O4 (M = Mn, Co, Zn) nanospheres. Field-emission scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared spectrometer, and a superconducting quantum interference device magnetometer were used to characterize the morphologies, compositions and properties of the functionalized materials. Results show that all of the products were cubic spinel structures and exhibited hierarchical sphere-like morphologies, which were composed of primary nanocrystals. The MFe2O4 present advantageous functionality and good water dispensability due to the preferential exposure of uncoordinated carboxylate groups on their respective surfaces. These properties make them ideal candidates for various important applications such as drug delivery, bioseparation, and magnetic resonance imaging. PMID:26373101

  13. The energy transfer in the TEMP-4M pulsed ion beam accelerator

    SciTech Connect

    Isakova, Y. I.; Pushkarev, A. I.; Khaylov, I. P.

    2013-07-15

    The results of a study of the energy transfer in the TEMP-4M pulsed ion beam accelerator are presented. The energy transfer efficiency in the Blumlein and a self-magnetically insulated ion diode was analyzed. Optimization of the design of the accelerator allows for 85% of energy transferred from Blumlein to the diode (including after-pulses), which indicates that the energy loss in Blumlein and spark gaps is insignificant and not exceeds 10%–12%. Most losses occur in the diode. The efficiency of energy supplied to the diode to the energy of accelerated ions is 8%–9% for a planar strip self-magnetic MID, 12%–15% for focusing diode and 20% for a spiral self-magnetic MID.

  14. Measurement of gamma field parameters in core with LEU fuel IRT-4M using TL detectors

    SciTech Connect

    Bily, T.

    2008-07-15

    Thermoluminescent dosimeters represent very useful tool for gamma fields parameters measurements at nuclear research reactors, especially at zero power ones. {sup 7}LiF:Mg,Ti and {sup 7}LiF:Mg,Cu,P type TL dosimeters enable determination of only gamma component in mixed neutron - gamma field. At VR-1 reactor operated within the Faculty of Nuclear Sciences and Physical Engineering at the Czech Technical University in Prague the integral characteristics of gamma rays field were investigated, especially its spatial distribution and time behaviour, i.e. the non-saturated delayed gamma ray emission influence. Measured spatial distributions were compared with monte carlo code MCNP5 calculations. Although MCNP cannot generate delayed gamma rays from fission, the relative gamma dose rate distribution is within {+-} 15% with measured values. The experiments were carried out with core configuration C1 consisting of LEU fuel IRT-4M (19.7 %). (author)

  15. Efficient generation of THz pulses with 0.4 mJ energy.

    PubMed

    Fülöp, J A; Ollmann, Z; Lombosi, Cs; Skrobol, C; Klingebiel, S; Pálfalvi, L; Krausz, F; Karsch, S; Hebling, J

    2014-08-25

    Efficient generation of THz pulses with high energy was demonstrated by optical rectification of 785-fs laser pulses in lithium niobate using tilted-pulse-front pumping. The enhancement of conversion efficiency by a factor of 2.4 to 2.7 was demonstrated up to 186 μJ THz energy by cryogenic cooling of the generating crystal and using up to 18.5 mJ/cm2 pump fluence. Generation of THz pulses with more than 0.4 mJ energy and 0.77% efficiency was demonstrated even at room temperature by increasing the pump fluence to 186 mJ/cm2. The spectral peak is at about 0.2 THz, suitable for charged-particle manipulation. PMID:25321225

  16. Large space telescope, phase A. Volume 3: Optical telescope assembly

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development and characteristics of the optical telescope assembly for the Large Space Telescope are discussed. The systems considerations are based on mission-related parameters and optical equipment requirements. Information is included on: (1) structural design and analysis, (2) thermal design, (3) stabilization and control, (4) alignment, focus, and figure control, (5) electronic subsystem, and (6) scientific instrument design.

  17. Gamma-Ray Telescopes: 400 Years of Astronomical Telescopes

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.

    2010-01-01

    The last half-century has seen dramatic developments in gamma-ray telescopes, from their initial conception and development through to their blossoming into full maturity as a potent research tool in astronomy. Gamma-ray telescopes are leading research in diverse areas such as gamma-ray bursts, blazars, Galactic transients, and the Galactic distribution of Al-26.

  18. Las Cumbres Observatory Global Telescope Network: Keeping Education in the Dark

    NASA Astrophysics Data System (ADS)

    Ross, R. J.

    2011-09-01

    Las Cumbres Observatory Global Telescope Network (LCOGT) is creating a network of telescopes to be placed around the world providing 24/7 sky coverage of both the Northern and Southern hemispheres. These telescopes will range in size from 0.4 m to 2.0 m and will be available for scientific and educational uses in both real-time and in a queue-scheduler. The educational uses of LCOGT will be primarily online through our website (http://www.lcogt.net) where there will be how-to guides, ideas for activities, opportunities for participating in research projects with our astronomers, full access to the public archive, as well as an online community built through forums and groups. Content will be visible to all, although registered users will have the ability to add resources, post on blogs and forums, comment and rate existing pages and resources, collaborate in world-wide projects, and much more. The current network includes the two 2.0 m Faulkes Telescopes on Haleakala, Maui and at Siding Spring, Australia. A 0.8 m telescope located at Sedgwick Reserve in the Santa Ynez Valley is nearly commissioned and will be used both for local outreach events as well as on the LCOGT network. The first pair of 0.4 m telescopes has been deployed to Maui and are enclosed inside the clamshell dome with Faulkes Telescope North (FTN), but still have some time to go before they are fully commissioned. The site in Chile is currently being prepped for three 1.0 m and two pairs of 0.4 m telescopes with the site in South Africa to follow shortly. Other sites include the Canary Islands, a site in North America, one in Asia, and another site in Australia. The 0.4 m telescopes will be deployed by pair and the 1.0 m telescopes will be deployed in groups of two or three, all with research-grade instrumentation.

  19. Base-resolution detection of N 4-methylcytosine in genomic DNA using 4mC-Tet-assisted-bisulfite-sequencing

    DOE PAGESBeta

    Yu, Miao; Ji, Lexiang; Neumann, Drexel A.; Chung, Dae -Hwan; Groom, Joseph; Westpheling, Janet; He, Chuan; Schmitz, Robert J.

    2015-07-15

    Restriction-modification (R-M) systems pose a major barrier to DNA transformation and genetic engineering of bacterial species. Systematic identification of DNA methylation in R-M systems, including N6-methyladenine (6mA), 5-methylcytosine (5mC) and N4-methylcytosine (4mC), will enable strategies to make these species genetically tractable. Although single-molecule, real time (SMRT) sequencing technology is capable of detecting 4mC directly for any bacterial species regardless of whether an assembled genome exists or not, it is not as scalable to profiling hundreds to thousands of samples compared with the commonly used next-generation sequencing technologies. Here, we present 4mC-Tet-assisted bisulfite-sequencing (4mC-TAB-seq), a next-generation sequencing method that rapidly andmore » cost efficiently reveals the genome-wide locations of 4mC for bacterial species with an available assembled reference genome. In 4mC-TAB-seq, both cytosines and 5mCs are read out as thymines, whereas only 4mCs are read out as cytosines, revealing their specific positions throughout the genome. We applied 4mC-TAB-seq to study the methylation of a member of the hyperthermophilc genus, Caldicellulosiruptor, in which 4mC-related restriction is a major barrier to DNA transformation from other species. Lastly, in combination with MethylC-seq, both 4mC- and 5mC-containing motifs are identified which can assist in rapid and efficient genetic engineering of these bacteria in the future.« less

  20. Base-resolution detection of N4-methylcytosine in genomic DNA using 4mC-Tet-assisted-bisulfite- sequencing

    PubMed Central

    Yu, Miao; Ji, Lexiang; Neumann, Drexel A.; Chung, Dae-hwan; Groom, Joseph; Westpheling, Janet; He, Chuan; Schmitz, Robert J.

    2015-01-01

    Restriction-modification (R-M) systems pose a major barrier to DNA transformation and genetic engineering of bacterial species. Systematic identification of DNA methylation in R-M systems, including N6-methyladenine (6mA), 5-methylcytosine (5mC) and N4-methylcytosine (4mC), will enable strategies to make these species genetically tractable. Although single-molecule, real time (SMRT) sequencing technology is capable of detecting 4mC directly for any bacterial species regardless of whether an assembled genome exists or not, it is not as scalable to profiling hundreds to thousands of samples compared with the commonly used next-generation sequencing technologies. Here, we present 4mC-Tet-assisted bisulfite-sequencing (4mC-TAB-seq), a next-generation sequencing method that rapidly and cost efficiently reveals the genome-wide locations of 4mC for bacterial species with an available assembled reference genome. In 4mC-TAB-seq, both cytosines and 5mCs are read out as thymines, whereas only 4mCs are read out as cytosines, revealing their specific positions throughout the genome. We applied 4mC-TAB-seq to study the methylation of a member of the hyperthermophilc genus, Caldicellulosiruptor, in which 4mC-related restriction is a major barrier to DNA transformation from other species. In combination with MethylC-seq, both 4mC- and 5mC-containing motifs are identified which can assist in rapid and efficient genetic engineering of these bacteria in the future. PMID:26184871

  1. Base-resolution detection of N4-methylcytosine in genomic DNA using 4mC-Tet-assisted-bisulfite-sequencing

    DOE PAGESBeta

    Yu, Miao; Ji, Lexiang; Neumann, Drexel A.; Chung, Dae -Hwan; Groom, Joseph; Westpheling, Janet; He, Chuan; Schmitz, Robert J.

    2015-07-15

    Restriction-modification (R-M) systems pose a major barrier to DNA transformation and genetic engineering of bacterial species. Systematic identification of DNA methylation in R-M systems, including N6-methyladenine (6mA), 5-methylcytosine (5mC) and N4-methylcytosine (4mC), will enable strategies to make these species genetically tractable. Although single-molecule, real time (SMRT) sequencing technology is capable of detecting 4mC directly for any bacterial species regardless of whether an assembled genome exists or not, it is not as scalable to profiling hundreds to thousands of samples compared with the commonly used next-generation sequencing technologies. Here, we present 4mC-Tet-assisted bisulfite-sequencing (4mC-TAB-seq), a next-generation sequencing method that rapidly andmore » cost efficiently reveals the genome-wide locations of 4mC for bacterial species with an available assembled reference genome. In 4mC-TAB-seq, both cytosines and 5mCs are read out as thymines, whereas only 4mCs are read out as cytosines, revealing their specific positions throughout the genome. We applied 4mC-TAB-seq to study the methylation of a member of the hyperthermophilc genus, Caldicellulosiruptor, in which 4mC-related restriction is a major barrier to DNA transformation from other species. Lastly, in combination with MethylC-seq, both 4mC- and 5mC-containing motifs are identified which can assist in rapid and efficient genetic engineering of these bacteria in the future.« less

  2. A MEASUREMENT OF THE CORRELATION OF GALAXY SURVEYS WITH CMB LENSING CONVERGENCE MAPS FROM THE SOUTH POLE TELESCOPE

    SciTech Connect

    Bleem, L. E.; Becker, M. R.; Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Van Engelen, A.; Holder, G. P.; De Haan, T.; Dobbs, M. A.; Aird, K. A.; Armstrong, R.; Ashby, M. L. N.; Biesiadzinski, T.; Brodwin, M.; Busha, M. T.; Cho, H. M.; Desai, S.; Dore, O.; and others

    2012-07-01

    We compare cosmic microwave background lensing convergence maps derived from South Pole Telescope (SPT) data with galaxy survey data from the Blanco Cosmology Survey, WISE, and a new large Spitzer/IRAC field designed to overlap with the SPT survey. Using optical and infrared catalogs covering between 17 and 68 deg{sup 2} of sky, we detect a correlation between the SPT convergence maps and each of the galaxy density maps at >4{sigma}, with zero correlation robustly ruled out in all cases. The amplitude and shape of the cross-power spectra are in good agreement with theoretical expectations and the measured galaxy bias is consistent with previous work. The detections reported here utilize a small fraction of the full 2500 deg{sup 2} SPT survey data and serve as both a proof of principle of the technique and an illustration of the potential of this emerging cosmological probe.

  3. The single mirror small size telescope camera for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Heller, Matthieu

    2015-07-01

    The UniGe group has proposed an innovative approach for the camera of a Davies-Cotton telescope of dish diameter 4 m and focal length 5.6 m, which would require single pixel SiPM with a size exceeding any commercial device. In collaboration with Hamamatsu, we have developed a large area (93.6 mm2) hexagonal SiPM operated in Geiger Avalanche mode. Coupled to a hollow hexagonal light concentrator, the sensitive area is extended to the required pixel size. The large area and the corresponding high capacitance (> 800 pF) of these sensors poses many difficulties in terms of operation. The characterization of these devices together with the dedicated electronics will be presented.

  4. Actuated Hybrid Mirror Telescope

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Redding, David; Lowman, Andrew; Cohen, David; Ohara, Catherine

    2005-01-01

    The figure depicts the planned Actuated Hybrid Mirror Telescope (AHMT), which is intended to demonstrate a new approach to the design and construction of wide-aperture spaceborne telescopes for astronomy and Earth science. This technology is also appropriate for Earth-based telescopes. The new approach can be broadly summarized as using advanced lightweight mirrors that can be manufactured rapidly at relatively low cost. More specifically, it is planned to use precise replicated metallic nanolaminate mirrors to obtain the required high-quality optical finishes. Lightweight, dimensionally stable silicon carbide (SiC) structures will support the nanolaminate mirrors in the required surface figures. To enable diffraction- limited telescope performance, errors in surface figures will be corrected by use of mirror-shape-control actuators that will be energized, as needed, by a wave-front-sensing and control system. The concepts of nanolaminate materials and mirrors made from nanolaminate materials were discussed in several previous NASA Tech Briefs articles. Nanolaminates constitute a relatively new class of materials that can approach theoretical limits of stiffness and strength. Nanolaminate mirrors are synthesized by magnetron sputter deposition of metallic alloys and/or compounds on optically precise master surfaces to obtain optical-quality reflector surfaces backed by thin shell structures. As an integral part of the deposition process, a layer of gold that will constitute the reflective surface layer is deposited first, eliminating the need for a subsequent and separate reflective-coating process. The crystallographic textures of the nanolaminate will be controlled to optimize the performance of the mirror. The entire deposition process for making a nanolaminate mirror takes less than 100 hours, regardless of the mirror diameter. Each nanolaminate mirror will be bonded to its lightweight SiC supporting structure. The lightweight nanolaminate mirrors and Si

  5. Composite telescope technology

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Rabin, Douglas

    2014-07-01

    We report the development of optical mirrors based on polymer matrix composite materials. Advantages of this technology are low cost and versatility. By using appropriate combinations of polymers and various metallic and nonmetallic particles and fibers, the properties of the materials can be tailored to suit a wide variety of applications. We report the fabrication and testing of flat and curved mirrors made with metal powders, multiple mirrors replicated with high degree of uniformity from the same mandrels, cryogenic testing, mirrors made of ferromagnetic materials that can be actively or adaptively controlled by non-contact actuation, optics with very smooth surfaces made by replication, and by spincasting. We discuss development of a new generation of ultra-compact, low power active optics and 3D printing of athermal telescopes.

  6. Microoptical telescope compound eye

    NASA Astrophysics Data System (ADS)

    Duparré, Jacques W.; Schreiber, Peter; Matthes, André; Pshenay–Severin, Ekaterina; Bräuer, Andreas; Tünnermann, Andreas; Völkel, Reinhard; Eisner, Martin; Scharf, Toralf

    2005-02-01

    A new optical concept for compact digital image acquisition devices with large field of view is developed and proofed experimentally. Archetypes for the imaging system are compound eyes of small insects and the Gabor Superlens. A paraxial 3x3 matrix formalism is used to describe the telescope arrangement of three microlens arrays with different pitch to find first order parameters of the imaging system. A 2mm thin imaging system with 21x3 channels, 70ºx10º field of view and 4.5mm x 0.5mm image size is optimized and analyzed using sequential and non sequential raytracing and fabricated by microoptics technology. Anamorphic lenses, where the parameters are a function of the considered optical channel, are used to achieve a homogeneous optical performance over the whole field of view. Captured images are presented and compared to simulation results.

  7. Microoptical telescope compound eye.

    PubMed

    Duparré, Jacques; Schreiber, Peter; Matthes, André; Pshenay-Severin, Ekaterina; Bräuer, Andreas; Tünnermann, Andreas; Völkel, Reinhard; Eisner, Martin; Scharf, Toralf

    2005-02-01

    A new optical concept for compact digital image acquisition devices with large field of view is developed and proofed experimentally. Archetypes for the imaging system are compound eyes of small insects and the Gabor-Superlens. A paraxial 3x3 matrix formalism is used to describe the telescope arrangement of three microlens arrays with different pitch to find first order parameters of the imaging system. A 2mm thin imaging system with 21x3 channels, 70 masculinex10 masculine field of view and 4.5mm x 0.5mm image size is optimized and analyzed using sequential and non-sequential raytracing and fabricated by microoptics technology. Anamorphic lenses, where the parameters are a function of the considered optical channel, are used to achieve a homogeneous optical performance over the whole field of view. Captured images are presented and compared to simulation results. PMID:19494951

  8. Hubble Space Telescope Image

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Astronomers using the Hubble Space Telescope (HST) have identified what may be the most luminous star known; a celestial mammoth that releases up to 10-million times the power of the Sun and is big enough to fill the diameter of Earth's orbit. The star unleashes as much energy in six seconds as our Sun does in one year. The image, taken by a UCLA-led team with the recently installed Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) aboard the HST, also reveals a bright nebula, created by extremely massive stellar eruptions. The UCLA astronomers estimate that the star, called the Pistol Star, (for the pistol shaped nebula surrounding it), is approximately 25,000 light-years from Earth, near the center of our Milky Way galaxy. The Pistol Star is not visible to the eye, but is located in the direction of the constellation Sagittarius, hidden behind the great dust clouds along the Milky Way

  9. The Travelling Telescope

    NASA Astrophysics Data System (ADS)

    Owen, Daniel

    2015-08-01

    The telescope has been around for over 400 years, yet most people have never looked though one. We invite people outside under the stars to learn about those curious lights in the sky, and have a close encounter with the cosmos.Our main aim is to promote science, technology, engineering, and mathematics to the young minds by inspiring, empowering and engaging them using astronomy and astrophysics tools and concepts. We would like to see Africa compete with the rest of the world and we believe this can happen through having a scientifically literate society. We also work closely wit teachers, parents and the general public to further our objectives. We will present on our recently awarded project to work with schools in rural coastal Kenya, a very poor area of the country. We will also present on other work we continue to do with schools to make our project sustainable even after the OAD funding.

  10. Large wood budget assessment along a gravel bed river affected by volcanic eruption: the Rio Blanco study case (Chile).

    NASA Astrophysics Data System (ADS)

    Oss-Cazzador, Daniele; Iroume, Andres; Lenzi, Mario; Picco, Lorenzo

    2016-04-01

    Wood in riverine environments exerts different functions on ecological and geomorphic settings, influencing morphological processes, and increasing risks for sensitive structures. Large wood (LW) is defined as wood material, dead or alive, larger than 10 cm in diameter and 1 m in length. Natural hazards can strongly increase the presence of LW in waterways and flood events can transport it affecting the ecosystem and landscape. This study aims to increase the knowledge of wood budget, considering the effects of two subsequent slight flood events along a sub-reach of the Rio Blanco gravel bed river , in Chilean Patagonia, strongly affected by the eruption of Chaiten volcano in 2008. The volcanic eruption affected almost 3,5 km 2 of evergreen forest on the southern (left) bank, because of primary direct effects from pyroclastic density currents and lahar-floods that caused deposition up to 8 m of reworked tephra, alluvium, and wood on floodplains and terrace along the Rio Blanco. After the eruption, there was a considerable increase of LW into the main channel: into the bankfull channel, volume exceeds 100 m 3 /ha. Field surveys were carried out in January and March 2015, before and after two slight flood events (Recurrence Intervals lower than 1 year). The pre-event phase permitted to detect and analyze the presence of LW into the study area, along a 80 m-long reach of Rio Blanco (7500 m 2 . Every LW element was manually measured and described, a numbered metal tag was installed, and the position was recorded by GPS device. In January, there was a total amount of 113 m 3 /ha, 90% accumulated in LW jams (WJ) and 10% as single logs. The LW was characterized by mean dimensions of 3,36 m height, 0,25 m diameter and 0,26 m 3 volume, respectively. The WJ are characterized by wide range of dimension: volume varies from 0,28 m 3 to 672 m 3 , length from 1,20 m to 56 m, width from 0,40 m to 8,70 m and height from 0,20 m to 3 m, respectively. After the flood events, field

  11. The metagenomic telescope.

    PubMed

    Szalkai, Balázs; Scheer, Ildikó; Nagy, Kinga; Vértessy, Beáta G; Grolmusz, Vince

    2014-01-01

    Next generation sequencing technologies led to the discovery of numerous new microbe species in diverse environmental samples. Some of the new species contain genes never encountered before. Some of these genes encode proteins with novel functions, and some of these genes encode proteins that perform some well-known function in a novel way. A tool, named the Metagenomic Telescope, is described here that applies artificial intelligence methods, and seems to be capable of identifying new protein functions even in the well-studied model organisms. As a proof-of-principle demonstration of the Metagenomic Telescope, we considered DNA repair enzymes in the present work. First we identified proteins in DNA repair in well-known organisms (i.e., proteins in base excision repair, nucleotide excision repair, mismatch repair and DNA break repair); next we applied multiple alignments and then built hidden Markov profiles for each protein separately, across well-researched organisms; next, using public depositories of metagenomes, originating from extreme environments, we identified DNA repair genes in the samples. While the phylogenetic classification of the metagenomic samples are not typically available, we hypothesized that some very special DNA repair strategies need to be applied in bacteria and Archaea living in those extreme circumstances. It is a difficult task to evaluate the results obtained from mostly unknown species; therefore we applied again the hidden Markov profiling: for the identified DNA repair genes in the extreme metagenomes, we prepared new hidden Markov profiles (for each genes separately, subsequent to a cluster analysis); and we searched for similarities to those profiles in model organisms. We have found well known DNA repair proteins, numerous proteins with unknown functions, and also proteins with known, but different functions in the model organisms. PMID:25054802

  12. The Metagenomic Telescope

    PubMed Central

    Szalkai, Balázs; Scheer, Ildikó; Nagy, Kinga; Vértessy, Beáta G.; Grolmusz, Vince

    2014-01-01

    Next generation sequencing technologies led to the discovery of numerous new microbe species in diverse environmental samples. Some of the new species contain genes never encountered before. Some of these genes encode proteins with novel functions, and some of these genes encode proteins that perform some well-known function in a novel way. A tool, named the Metagenomic Telescope, is described here that applies artificial intelligence methods, and seems to be capable of identifying new protein functions even in the well-studied model organisms. As a proof-of-principle demonstration of the Metagenomic Telescope, we considered DNA repair enzymes in the present work. First we identified proteins in DNA repair in well–known organisms (i.e., proteins in base excision repair, nucleotide excision repair, mismatch repair and DNA break repair); next we applied multiple alignments and then built hidden Markov profiles for each protein separately, across well–researched organisms; next, using public depositories of metagenomes, originating from extreme environments, we identified DNA repair genes in the samples. While the phylogenetic classification of the metagenomic samples are not typically available, we hypothesized that some very special DNA repair strategies need to be applied in bacteria and Archaea living in those extreme circumstances. It is a difficult task to evaluate the results obtained from mostly unknown species; therefore we applied again the hidden Markov profiling: for the identified DNA repair genes in the extreme metagenomes, we prepared new hidden Markov profiles (for each genes separately, subsequent to a cluster analysis); and we searched for similarities to those profiles in model organisms. We have found well known DNA repair proteins, numerous proteins with unknown functions, and also proteins with known, but different functions in the model organisms. PMID:25054802

  13. The Advanced Technology Solar Telescope Construction Status Report

    NASA Astrophysics Data System (ADS)

    McMullin, Joseph P.; Rimmele, T. R.; Warner, M.; Berger, T.; Keil, S. L.

    2013-07-01

    The Advanced Technology Solar Telescope (ATST) will provide observing capabilities in the visible through infrared wavelengths with unprecedented resolution and sensitivity. Designed to study solar magnetism that controls the solar wind, flares, CMEs and variability in the Sun's output, the ATST will be capable of detecting and spatially resolving the fundamental astrophysical processes at their intrinsic scales throughout the solar atmosphere. The 4-m class facility is currently under construction in Maui, HI on the Haleakala Observatories site with a scheduled completion of July 2019. Since the start of site construction in December of 2012, significant progress has been made toward the development of the observatory buildings (excavation, foundations, working towards the steel erection). In addition, off-site, the major subsystems of the telescope have been contracted, designs are complete and fabrication is underway. We review the science drivers, design details, technical challenges, and provide a construction status update on the subsystems and their integration.

  14. PILOT the Pathfinder for an International Large Optical Telescope

    NASA Astrophysics Data System (ADS)

    Storey, J. W. V.; Ashley, M. C. B.; Burton, M. G.; Lawrence, J. S.

    PILOT is proposed as a partnership between Australia and Europe to develop a 2.4 m optical/infrared telescope for Dome C, Antarctica. Funding for a detailed designed study is being sought from Australian sources, with a view to commencing construction in early 2008. The current “strawman” design is for an f/10 dual Nasmyth configuration with provision for both a silicon carbide fast tip-tilt secondary mirror for the thermal infrared, and an adaptive secondary mirror to achieve diffraction-limited imaging at wavelengths as short as V-band.

  15. Acoustic monitoring of earthquakes along the Blanco Transform Fault zone and Gorda Plate and their tectonic implications

    NASA Astrophysics Data System (ADS)

    Dziak, Robert Paul

    Hydroacoustic tertiary (T-) waves are seismically generated acoustic waves that propagate over great distances in the ocean sound channel with little loss in signal strength. Hydrophone recorded T-waves can provide a lower earthquake detection threshold and an improved epicenter location accuracy for oceanic earthquakes than land-based seismic networks. Thus detection and location of NE Pacific ocean earthquakes along the Blanco Transform Fault (BTFZ) and Gorda plate using the U.S. Navy's SOSUS (SOund SUrveillance System) hydrophone arrays afford greater insight into the current state of stress and crustal deformation mechanics than previously available. Acoustic earthquake information combined with bathymetry, submersible observations, earthquake source- parameter estimates, petrologic samples, and water-column chemistry renders a new tectonic view of the southern Juan de Fuca plate boundaries. Chapter 2 discusses development of seismo-acoustic analysis techniques using the well-documented April 1992 Cape Mendocino earthquake sequence. Findings include a hydrophone detection threshold estimate (M ~ 2.4), and T-wave propagation path modeling to approximate earthquake acoustic source energy. Empirical analyses indicate that acoustic energy provides a reasonable magnitude and seismic moment estimate of oceanic earthquakes not detected by seismic networks. Chapters 3 documents a probable volcanogenic T-wave event swarm along a pull-apart basin within the western BTFZ during January 1994. Response efforts yielded evidence of anomalous water-column 3He concentrations, pillow- lava volcanism, and the first discovery of active hydrothermal vents along an oceanic fracture zone. Chapter 4 discusses the detection of a NE-SW trending microearthquake band along the mid-Gorda plate which was active from initiation of SOSUS recording in August 1991 through July 1992, then abruptly ceased. It is proposed that eventual termination of the Gorda plate seismicity band is due to

  16. Detection of and response to a probable volcanogenic T-wave event swarm on the western Blanco Transform Fault Zone

    USGS Publications Warehouse

    Dziak, R.P.; Fox, C.G.; Embley, R.W.; Lupton, J.E.; Johnson, G.C.; Chadwick, W.W.; Koski, R.A.

    1996-01-01

    The East Blanco Depression (EBD), a pull-apart basin within the western Blanco Transform Fault Zone (BTFZ), was the site of an intense earthquake T-wave swarm that began at 1317Z on January 9, 1994. Although tectonically generated earthquakes occur frequently along the BTFZ, this swarm was unusual in that it was preceded and accompanied by periodic, low-frequency, long-duration acoustic signals, that originated from near the swarm epicenters. These tremor-like signals were very similar in character to acoustic energy produced by a shallow-submarine eruption near Socorro Island, a seamount several hundred km west of Baja, California. The ???69 earthquakes and ???400 tremor-like events at the EBD occurred sporadically, with two periods of peak activity occurring between January 5-16 and 27-31. The swarm-like character of the earthquakes and the similarity of the tremor activity to the Socorro eruption indicated that the EBD was undergoing an intrusion or eruption episode. On January 27, six CTD/rosette casts were conducted at the site. Water samples from two of the stations yielded anomalous 3He concentrations, with maxima at ???2800 m depth over the main basin. In June 1994 two camera tows within the basin yielded evidence of pillow-lava volcanism and hydrothermal deposits, but no conclusive evidence of a recent seafloor eruption. In September 1994, deployments of the U.S. Navy's Advanced Tethered Vehicle resulted in the discovery of an active hydrothermal mound on the flanks of a pillow-lava volcano. The hydrothermal mound consists of Fe-rich hydrothermal precipitate and bacterial mats. Temperatures to 60??C were measured 30 cm below the surface. This is the first discovery of active hydrothermal vents along an oceanic fracture zone. Although no conclusive evidence of volcanic activity associated with the T-wave event swarm was found during these response efforts, the EBD has been the site of recent seafloor eruptions. Copyright 1996 by the American Geophysical

  17. Telescopes, Mounts and Control Systems

    NASA Astrophysics Data System (ADS)

    Mobberley, M.; Murdin, P.

    2003-04-01

    The amateur astronomer used to have a relatively basic choice of equipment: a refractor (see REFRACTING TELESCOPES), or a Newtonian reflector (see REFLECTING TELESCOPES); there were few other options. The refractor has always been the stereotype astronomer's instrument: a spy glass, with a lens at one end and an eyepiece at the other. However, in practice, the reflector has always been better aper...

  18. Himalayan optical telescope switches on

    NASA Astrophysics Data System (ADS)

    Padma, T. V.

    2016-05-01

    The largest optical telescope in India has turned on, opening up a new era for astronomy in the country. The 3.6 m Devasthal Optical Telescope (DOT) – part of an Indo-Belgian collaboration – was activated remotely on 30 March from Belgium by visiting Indian prime minister Narendra Modi and his Belgian counterpart Charles Michel.

  19. Kashima 34-m Radio Telescope

    NASA Technical Reports Server (NTRS)

    Sekido, Mamoru; Kawai, Eiji

    2013-01-01

    The Kashima 34-m radio telescope has been continuously operated and maintained by the National Institute of Information and Communications Technology (NICT) as a facility of the Kashima Space Technology Center (KSTC) in Japan. This brief report summarizes the status of this telescope, the staff, and activities during 2012.

  20. Diel Drift Patterns and Spatio-temporal Distribution of Macroinvertebrates in the Blanco River, Texas: A Groundwater Dominated Stream Subject to Intermittent Flow

    NASA Astrophysics Data System (ADS)

    Pendergrass, D. R.; Arsuffi, T. L.

    2005-05-01

    The Blanco River is a relatively pristine karst stream in central Texas and designated a conservation target by The Nature Conservancy. It is fed primarily by groundwater in the upper reaches and dominated by runoff and intermittency downstream. The spatial and temporal structure of macroinvertebrates in the Blanco River was assessed with seasonal Hess and d-net samples during 2003-2004 and three diel drift samples from May to October 2004. Our downstream site showed a 47% drop in diversity, but comparable abundances to up- and mid-stream sites. Ephemeropteran and trichopteran taxa (e.g. Tricorythodes and Cheumatopsyche) comprised about 60% of drift and benthic samples alike, however, non-insect taxa were nearly absent from the drift. Some taxa not present in the benthic samples were present in the drift. Post-dusk and pre-dawn peaks in diel drift were discerned. No strong seasonal patterns were detected which may be attributable to an unusually wet year and asynchronous, multivoltinous life cycles associated with mild seasonality in subtropical regions. The Blanco River's historically variable hydrological regime may be further exacerbated by long-term flow alteration associated with increasing anthropogenic development and could alter the composition and distribution of macroinvertebrate assemblages.

  1. In vivo redox effects of Aspidosperma quebracho-blanco Schltdl., Lantana grisebachii Stuck and Ilex paraguariensis A. St.-Hil. on blood, thymus and spleen of mice.

    PubMed

    Canalis, A M; Cittadini, M C; Albrecht, C; Soria, E A

    2014-09-01

    Argentinian native plants Aspidosperma quebracho-blanco, Lantana grisebachii and Ilex paraguariensis are known to have antiinflammatory and antioxidant properties. We demonstrated it in vivo by the redox changes in murine hemolymphatic tissues after infusive extract intake of these plants as revealed in organic trophism, tissue phenolics, hydroperoxides, superoxide, nitrites and gamma-glutamyltranspeptidase in thymus, blood and spleen. A. quebracho-blanco reduced hydroperoxidation in blood and spleen of both sexes, with gamma-glutamyltranspeptidase negativization in lymphatic organs and thymic nitrosative up-regulation. Males have shown increased phenolic content in blood after treatment. L. grisebachii and I. paraguariensis treatment exhibited incomplete antioxidation and oxidative induction in the studied tissues. Different results according to sex were found in redox response to phenolics and their kinetics, with males showing antioxidant effects, whereas females showed oxidative susceptibility. A. quebracho-blanco exhibited protection of murine tissues against oxidation in both sexes and modulation of their trophism, supporting its therapeutic uses in inflammatory diseases. Also, gender had significant influence in phenolic biodistribution and redox response. PMID:25241588

  2. Euro50: Proposal for a 50 m Optical and Infrared Telescope

    NASA Astrophysics Data System (ADS)

    Ardeberg, Arne; Andersen, Torben; Rodriguez Espinosa, Jose Miguel

    Staff from Instituto de Astrofisica de Canarias, Lund Observatory, Physics Department and Larmor Research Institute at Galway, and Tuorla Observatory is collaborating on studies for a 50 m optical and infrared telescope. The telescope concepts are based on the work on extremely large telescopes carried out during 1991-2000 at Lund Observatory, and on the experience from the 10.4 m segmented Grantecan telescope presently under construction. The proposed 50 m telescope is a fully adaptive Nasmyth telescope with a Ritchey Chretien configuration. It will have an aspherical, segmented primary mirror with 2 m large segments and a deformable secondary. Adaptive optics will be implemented in several steps. From the beginning, there will be single-conjugate adaptive optics for the K-band. Next, and within the first year of operation, the telescope will have single-conjugate adaptive optics for visible wavelengths. As a third step, and another year of operation, dual-conjugate adaptive optics will be made available for the K-band. The telescope will be housed in a co-rotating enclosure at the Roque de los Muchachos observatory on La Palma. Further studies are in progress aiming at preparation of a proposal during the first half of 2002.

  3. PILOT: a wide-field telescope for the Antarctic plateau

    NASA Astrophysics Data System (ADS)

    Saunders, Will; Gillingham, Peter; McGrath, Andrew; Haynes, Roger; Brzeski, Jurek; Storey, John; Lawrence, Jon

    2008-07-01

    PILOT (the Pathfinder for an International Large Optical Telescope) is a proposed Australian/European optical/infrared telescope for Dome C on the Antarctic Plateau, with target first light in 2012. The telescope is 2.4m diameter, with overall focal ratio f/10, and a 1 degree field-of-view. It is mounted on a 30m tower to get above most of the turbulent surface layer, and has a tip-tilt secondary for fast guiding. In median seeing conditions, it delivers 0.3" FWHM wide-field image quality, from 0.7-2.5 microns. In the best quartile of conditions, it delivers diffraction-limited imaging down to 1 micron, or even less with lucky imaging. The major challenges have been (a) preventing frost-laden external air reaching the optics, (b) overcoming residual surface layer turbulence, (c) keeping mirror, telescope and dome seeing to acceptable levels in the presence of large temperature variations with height and time, (d) designing optics that do justice to the site conditions. The most novel feature of the design is active thermal and humidity control of the enclosure, to closely match the temperature of external air while preventing its ingress.

  4. Evaluation of the table Mountain Ronchi telescope for angular tracking

    NASA Technical Reports Server (NTRS)

    Lanyi, G.; Purcell, G.; Treuhaft, R.; Buffington, A.

    1992-01-01

    The performance of the University of California at San Diego (UCSD) Table Mountain telescope was evaluated to determine the potential of such an instrument for optical angular tracking. This telescope uses a Ronchi ruling to measure differential positions of stars at the meridian. The Ronchi technique is summarized and the operational features of the Table Mountain instrument are described. Results from an analytic model, simulations, and actual data are presented that characterize the telescope's current performance. For a star pair of visual magnitude 7, the differential uncertainty of a 5-min observation is about 50 nrad (10 marcsec), and tropospheric fluctuations are the dominant error source. At magnitude 11, the current differential uncertainty is approximately 800 nrad (approximately 170 marcsec). This magnitude is equivalent to that of a 2-W laser with a 0.4-m aperture transmitting to Earth from a spacecraft at Saturn. Photoelectron noise is the dominant error source for stars of visual magnitude 8.5 and fainter. If the photoelectron noise is reduced, ultimately tropospheric fluctuations will be the limiting source of error at an average level of 35 nrad (7 marcsec) for stars approximately 0.25 deg apart. Three near-term strategies are proposed for improving the performance of the telescope to the 10-nrad level: improving the efficiency of the optics, masking background starlight, and averaging tropospheric fluctuations over multiple observations.

  5. Normalized and asynchronous mirror alignment for Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Baack, D.; Balbo, M.; Bergmann, M.; Biland, A.; Blank, M.; Bretz, T.; Bruegge, K. A.; Buss, J.; Domke, M.; Dorner, D.; Einecke, S.; Hempfling, C.; Hildebrand, D.; Hughes, G.; Lustermann, W.; Mannheim, K.; Mueller, S. A.; Neise, D.; Neronov, A.; Noethe, M.; Overkemping, A.-K.; Paravac, A.; Pauss, F.; Rhode, W.; Shukla, A.; Temme, F.; Thaele, J.; Toscano, S.; Vogler, P.; Walter, R.; Wilbert, A.

    2016-09-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures and high image intensities to map the faint Cherenkov light emitted from cosmic ray air showers onto their image sensors. Segmented reflectors fulfill these needs, and as they are composed from mass production mirror facets they are inexpensive and lightweight. However, as the overall image is a superposition of the individual facet images, alignment is a challenge. Here we present a computer vision based star tracking alignment method, which also works for limited or changing star light visibility. Our method normalizes the mirror facet reflection intensities to become independent of the reference star's intensity or the cloud coverage. Using two CCD cameras, our method records the mirror facet orientations asynchronously of the telescope drive system, and thus makes the method easy to integrate into existing telescopes. It can be combined with remote facet actuation, but does not require one to work. Furthermore, it can reconstruct all individual mirror facet point spread functions without moving any mirror. We present alignment results on the 4 m First Geiger-mode Avalanche Cherenkov Telescope (FACT).

  6. Improved Optical Design for the Large Synoptic Survey Telescope (LSST)

    SciTech Connect

    Seppala, L

    2002-09-24

    This paper presents an improved optical design for the LSST, an fll.25 three-mirror telescope covering 3.0 degrees full field angle, with 6.9 m effective aperture diameter. The telescope operates at five wavelength bands spanning 386.5 nm to 1040 nm (B, V, R, I and Z). For all bands, 80% of the polychromatic diffracted energy is collected within 0.20 arc-seconds diameter. The reflective telescope uses an 8.4 m f/1.06 concave primary, a 3.4 m convex secondary and a 5.2 m concave tertiary in a Paul geometry. The system length is 9.2 m. A refractive corrector near the detector uses three fused silica lenses, rather than the two lenses of previous designs. Earlier designs required that one element be a vacuum barrier, but now the detector sits in an inert gas at ambient pressure. The last lens is the gas barrier. Small adjustments lead to optimal correction at each band. The filters have different axial thicknesses. The primary and tertiary mirrors are repositioned for each wavelength band. The new optical design incorporates features to simplify manufacturing. They include a flat detector, a far less aspheric convex secondary (10 {micro}m from best fit sphere) and reduced aspheric departures on the lenses and tertiary mirror. Five aspheric surfaces, on all three mirrors and on two lenses, are used. The primary is nearly parabolic. The telescope is fully baffled so that no specularly reflected light from any field angle, inside or outside of the full field angle of 3.0 degrees, can reach the detector.

  7. Wind buffeting of large telescopes.

    PubMed

    MacMynowski, Douglas G; Andersen, Torben

    2010-02-01

    Unsteady wind loads due to turbulence within the telescope enclosure are one of the largest dynamic disturbances for ground-based optical telescopes. The desire to minimize the response to the wind influences the design of the telescope enclosure, structure, and control systems. There is now significant experience in detailed integrated modeling to predict image jitter due to wind. Based on this experience, a relatively simple model is proposed that is verified (from a more detailed model) to capture the relevant physics. In addition to illustrating the important elements of the telescope design that influence wind response, this model is used to understand the sensitivity of telescope image jitter to a wide range of design parameters. PMID:20119010

  8. eGIF4M: eGovernment Interoperability Framework for Mozambique

    NASA Astrophysics Data System (ADS)

    Shvaiko, Pavel; Villafiorita, Adolfo; Zorer, Alessandro; Chemane, Lourino; Fumo, Teotónio; Hinkkanen, Jussi

    Harmonizing decentralized development of ICT solutions with centralized strategies, e.g., meant to favor reuse and optimization of resources, is a complex technical and organizational challenge. The problem, shared by virtually all the governments, is becoming a priority also for countries, such as Mozambique, that have started their ICT policy relatively recently and for which it is now evident that — if no particular attention is devoted to the interoperability of the solutions being developed — the result will rapidly become a patchwork of solutions incompatible with each other. The focus of the paper is on formulation of eGIF4M: eGovernment Interoperability Framework for Mozambique. The framework is based on a holistic approach. It builds on top of the existing experiences in eGIFs all over the world and it addresses some specific needs and peculiarities of developing countries, like Mozambique. The result is a comprehensive framework based on: (i) a reference architecture along with technical standards, (ii) a standardization life cycle, (iii) a maturity model, and (iv) some key actions meant to make the initiative sustainable in the longer term.

  9. Structure cristalline de la 4-méthyl-1,2,4-triazole-thione

    NASA Astrophysics Data System (ADS)

    El Hajji, A.; El Ammari, L.; Mattern, G.; Benarafa, L.; Saidi Idrissi, M.

    1998-10-01

    The 4-methyl-1,2,4-triazole-thione crystalizes in the monoclinic system with the space group P21/n. The unit cell parameters are: a = 7.946 Å; b = 6.295 Å; c = 20.901 Å; β=100.47circ and Z = 8. The structure refinement lead to R = 0.047 and Rw = 0.035 factors. The molecules are planar and are joined together through hydrogen bonds N-H...N. Among the two possible tautomeric forms, only the thione form is present in the crystal structure. La 4-méthyl-1,2,4-triazole-thione cristallise dans un système monoclinique avec un groupe d'espace P21/n. Les paramètres cristallins sont : a = 7,946 Å ; b = 6,295 Å ; c = 20,901 Å ; β=100,47circ et Z = 8. L'affinement de la structure a conduit aux facteurs R = 0,047 et Rw = 0,035. Les molécules sont planes et sont liées entre elles par des liaisons hydrogène N- - -H....N. Parmi les deux formes tautomères possibles pour cette molécule, seule existe dans le cristal, la forme thione.

  10. Structural stability of BaMF4 (M = Mg, Zn and Mn) at high pressures

    NASA Astrophysics Data System (ADS)

    Posse, J. M.; Friese, K.; Grzechnik, A.

    2011-06-01

    Piezoelectric fluorides of the composition BaMF4 (M = Mg, Zn, Mn) have been studied in situ at high pressures in diamond anvil cells with single-crystal x-ray diffraction and Raman spectroscopy. All three compounds crystallize in the acentric space group Cmc 21 at ambient pressure. BaMgF4 undergoes a reversible second order phase transition to the paraelectric phase (space group Cmcm) at pressures between 5 and 6 GPa. BaZnF4 undergoes a reversible first order phase transition to a monoclinic phase (space group P 11n). Both high- and low-pressure polymorphs coexist in the pressure range 5-7 GPa. BaMnF4 maintains the Cmc 21 structure up to pressures of 4 GPa. Above this pressure the diffraction signal decreases rapidly and at 6 GPa no diffraction signal could be detected in our experiment. The compound does not recover its crystallinity on decompression. A comparison of the effects of external and chemical pressure is presented.

  11. Seismic Imager Space Telescope

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Coste, Keith; Cunningham, J.; Sievers,Michael W.; Agnes, Gregory S.; Polanco, Otto R.; Green, Joseph J.; Cameron, Bruce A.; Redding, David C.; Avouac, Jean Philippe; Ampuero, Jean Paul; Leprince, Sebastien; Michel, Remi

    2012-01-01

    A concept has been developed for a geostationary seismic imager (GSI), a space telescope in geostationary orbit above the Pacific coast of the Americas that would provide movies of many large earthquakes occurring in the area from Southern Chile to Southern Alaska. The GSI movies would cover a field of view as long as 300 km, at a spatial resolution of 3 to 15 m and a temporal resolution of 1 to 2 Hz, which is sufficient for accurate measurement of surface displacements and photometric changes induced by seismic waves. Computer processing of the movie images would exploit these dynamic changes to accurately measure the rapidly evolving surface waves and surface ruptures as they happen. These measurements would provide key information to advance the understanding of the mechanisms governing earthquake ruptures, and the propagation and arrest of damaging seismic waves. GSI operational strategy is to react to earthquakes detected by ground seismometers, slewing the satellite to point at the epicenters of earthquakes above a certain magnitude. Some of these earthquakes will be foreshocks of larger earthquakes; these will be observed, as the spacecraft would have been pointed in the right direction. This strategy was tested against the historical record for the Pacific coast of the Americas, from 1973 until the present. Based on the seismicity recorded during this time period, a GSI mission with a lifetime of 10 years could have been in position to observe at least 13 (22 on average) earthquakes of magnitude larger than 6, and at least one (2 on average) earthquake of magnitude larger than 7. A GSI would provide data unprecedented in its extent and temporal and spatial resolution. It would provide this data for some of the world's most seismically active regions, and do so better and at a lower cost than could be done with ground-based instrumentation. A GSI would revolutionize the understanding of earthquake dynamics, perhaps leading ultimately to effective warning

  12. Influence of root-knot nematode infestation on antioxidant enzymes, chlorophyll content and growth in Pogostemon cablin (Blanco) Benth.

    PubMed

    Bhau, B S; Borah, Bitupon; Ahmed, Reshma; Phukon, P; Gogoi, Barbi; Sarmah, D K; Lal, M; Wann, S B

    2016-04-01

    Plants adapt themselves to overcome adverse environmental conditions, and this involves a plethora of concurrent cellular activities. Physiological experiments or metabolic profiling can quantify this response. Among several diseases of Pogostemon cablin (Blanco) Benth. (Patchouli), root-knot nematode infection caused by Meloidogyne incognita (Kofoid and White) Chitwood causes severe damage to the plant and hence, the oil production. In the present study, we identified M. incognita morphologically and at molecular level using sequenced characterized amplified region marker (SCAR). M. incognita was artificially inoculated at different levels of second stage juveniles (J₂) to examine the effect on Patchouli plant growth parameters. Peroxidase and polyphenol oxidase enzyme activity and changes in the total phenol and chlorophyll contents in M. incognita was also evaluated in response to infection. The results have demonstrated that nematode infestation leads to increased peroxidase activities in the leaves of the patchouli plants and thereby, increase in phenolic content as a means of defence against nematode infestation. Chlorophyll content was also found decreased but no changes in polyphenol oxidase enzyme activity. PMID:27295922

  13. Wide Field Infra-Red Survey Telescope (WFIRST) 2.4-Meter Mission Study

    NASA Technical Reports Server (NTRS)

    Content, D.; Aaron, K.; Alplanalp, L.; Anderson, K.; Capps, R.; Chang, Z.; Dooley, J.; Egerman, R.; Goullioud, R.; Klein, D.; Kruk, J.; Kuan, G.; Melton, M.; Ruffa, J.; Underhill, M.; Buren, D. Van

    2013-01-01

    The most recent study of the Wide Field Infrared Survey Telescope (WFIRST) mission is based on reuse of an existing 2.4m telescope. This study was commissioned by NASA to examine the potential science return and cost effectiveness of WFIRST by using this significantly larger aperture telescope. We review the science program envisioned by the WFIRST 2012-2013 Science Definition Team (SDT), an overview of the mission concept, and the telescope design and status. Comparisons against the previous 1.3m and reduced cost 1.1m WFIRST design concepts are discussed. A significant departure from past point designs is the option for serviceability and the geostationary orbit location which enables servicing and replacement instrument insertion later during mission life. Other papers at this conference provide more in depth discussion of the wide field instrument and the optional exoplanet imaging coronagraph instrument.

  14. Design progress of the solar UV-Vis-IR telescope (SUVIT) aboard SOLAR-C

    NASA Astrophysics Data System (ADS)

    Katsukawa, Y.; Ichimoto, K.; Suematsu, Y.; Hara, H.; Kano, R.; Shimizu, T.; Matsuzaki, K.

    2013-09-01

    We present a design progress of the Solar UV-Vis-IR Telescope (SUVIT) aboard the next Japanese solar mission SOLAR-C. SUVIT has an aperture diameter of ~1.4 m for achieving spectro-polarimetric observations with spatial and temporal resolution exceeding the Hinode Solar Optical Telescope (SOT). We have studied structural and thermal designs of the optical telescope as well as the optical interface between the telescope and the focal plane instruments. The focal plane instruments are installed into two packages, filtergraph and spectrograph packages. The spectropolarimeter is the instrument dedicated to accurate polarimetry in the three spectrum windows at 525 nm, 854 nm, and 1083 nm for observing magnetic fields at both the photospheric and chromospheric layers. We made optical design of the spectrograph accommodating the conventional slit spectrograph and the integral field unit (IFU) for two-dimensional coverage. We are running feasibility study of the IFU using fiber arrays consisting of rectangular cores.

  15. SOFIA: Flying the Telescope

    NASA Technical Reports Server (NTRS)

    Asher, Troy; Cumming, Steve

    2012-01-01

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is an international cooperative development and operations program between the United States National Aeronautics and Space Administration (NASA) and the German Space Agency, DLR (Deutsches Zentrum fuer Luft-und Raumfahrt). SOFIA is a 2.5 meter, optical/infrared/sub-millimeter telescope mounted in a Boeing model 747SP-21 aircraft and will be used for many basic astronomical observations performed at stratospheric altitudes. It will accommodate installation of different focal plane instruments with in-flight accessibility provided by investigators selected from the international science community. The Facility operational lifetime is planned to be greater than 20 years. This presentation will present the results of developmental testing of SOFIA, including analysis, envelope expansion and the first operational mission. It will describe a brief history of open cavities in flight, how NASA designed and tested SOFIAs cavity, as well as flight test results. It will focus on how the test team achieved key milestones by systematically and efficiently reducing the number of test points to only those absolutely necessary to achieve mission requirements, thereby meeting all requirements and saving the potential loss of program funding. Finally, it will showcase examples of the observatory in action and the first operational mission of the observatory, illustrating the usefulness of the system to the international scientific community. Lessons learned on how to whittle a mountain of test points into a manageable sum will be presented at the conclusion.

  16. Space Schmidt telescope

    NASA Technical Reports Server (NTRS)

    Wray, J. D.; Smith, H. J.; Henize, K. G.; Carruthers, G. R.

    1982-01-01

    The complete survey takes in 3627 fields, each 4.87 deg in diameter, arranged in a hexagonal pattern superimposed on the celestial equatorial coordinate system. The declination bands are spaced every 3 deg, 20 min. The optical instrument is a folded all-reflecting Schmidt system with an aperture of 0.74 m, a focal length of 2.0 m (f/2.7), a circlar field with a diameter of 4.87 deg, and a limiting image diameter of less than 2 arcsec over the entire field. The detector is an electrographic camera having a photocathode diameter of 170 mm. In discussing the telescope structure, it is pointed out that the optical support system is to be of graphite-epoxy construction. The focal tolerance (the most critical optical tolerance) is to be + or - 12 microns. Regarding contamination control, it is expected that with appropriate design it will be possible to operate in sunlight for observations in a restricted portion of the sky, at least more than 90 deg from the sun, depending on the geometry and reflectivity of the platform or spacecraft configuration.

  17. Operating a heterogeneous telescope network

    NASA Astrophysics Data System (ADS)

    Allan, Alasdair; Bischoff, Karsten; Burgdorf, Martin; Cavanagh, Brad; Christian, Damien; Clay, Neil; Dickens, Rob; Economou, Frossie; Fadavi, Mehri; Frazer, Stephen; Granzer, Thomas; Grosvenor, Sandy; Hessman, Frederic V.; Jenness, Tim; Koratkar, Anuradha; Lehner, Matthew; Mottram, Chris; Naylor, Tim; Saunders, Eric S.; Solomos, Nikolaos; Steele, Iain A.; Tuparev, Georg; Vestrand, W. Thomas; White, Robert R.; Yost, Sarah

    2006-06-01

    In the last few years the ubiquitous availability of high bandwidth networks has changed the way both robotic and non-robotic telescopes operate, with single isolated telescopes being integrated into expanding "smart" telescope networks that can span continents and respond to transient events in seconds. The Heterogeneous Telescope Networks (HTN)* Consortium represents a number of major research groups in the field of robotic telescopes, and together we are proposing a standards based approach to providing interoperability between the existing proprietary telescope networks. We further propose standards for interoperability, and integration with, the emerging Virtual Observatory. We present the results of the first interoperability meeting held last year and discuss the protocol and transport standards agreed at the meeting, which deals with the complex issue of how to optimally schedule observations on geographically distributed resources. We discuss a free market approach to this scheduling problem, which must initially be based on ad-hoc agreements between the participants in the network, but which may eventually expand into a electronic market for the exchange of telescope time.

  18. Polarimetry with multiple mirror telescopes

    NASA Technical Reports Server (NTRS)

    West, S. C.

    1986-01-01

    The polarizations of multiple mirror telescopes are calculated using Mueller calculus. It is found that the Multiple Mirror Telescope (MMT) produces a constant depolarization that is a function of wavelength and independent of sky position. The efficiency and crosstalk are modeled and experimentally verified. The two- and four-mirror new generation telescopes are found to produce sinusoidal depolarization for which an accurate interpretation of the incident Stokes vector requires inverse matrix calculations. Finally, the depolarization of f/1 paraboloids is calculated and found to be less than 0.1 percent at 3000 A.

  19. Global Astrophysical Telescope System - GATS

    NASA Astrophysics Data System (ADS)

    Polińska, M.; Kamiński, K.; Dimitrov, W.; Fagas, M.; Borczyk, W.; Kwiatkowski, T.; Baranowski, R.; Bartczak, P.; Schwarzenberg-Czerny, A.

    2014-02-01

    The Global Astronomical Telescope System is a project managed by the Astronomical Observatory Institute of Adam Mickiewicz University in Poznań (Poland) and it is primarily intended for stellar medium/high resolution spectroscopy. The system will be operating as a global network of robotic telescopes. The GATS consists of two telescopes: PST 1 in Poland (near Poznań) and PST 2 in the USA (Arizona). The GATS project is also intended to cooperate with the BRITE satellites and supplement their photometry with spectroscopic observations.

  20. Geodetic Observatory Wettzell - 20-m Radio Telescope and Twin Telescope

    NASA Technical Reports Server (NTRS)

    Neidhardt, Alexander; Kronschnabl, Gerhard; Schatz, Raimund

    2013-01-01

    In the year 2012, the 20-m radio telescope at the Geodetic Observatory Wettzell, Germany again contributed very successfully to the International VLBI Service for Geodesy and Astrometry observing program. Technical changes, developments, improvements, and upgrades were made to increase the reliability of the entire VLBI observing system. In parallel, the new Twin radio telescope Wettzell (TTW) got the first feedhorn, while the construction of the HF-receiving and the controlling system was continued.

  1. The HORUS Observatory - A Next Generation 2.4m UV-Optical Mission To Study Planetary, Stellar And Galactic Formation

    NASA Astrophysics Data System (ADS)

    Scowen, Paul A.; SDT, HORUS

    2013-01-01

    The High-ORbit Ultraviolet-visible Satellite (HORUS) is a 2.4-meter class UV-optical space telescope that will conduct a comprehensive and systematic study of the astrophysical processes and environments relevant for the births and life cycles of stars and their planetary systems, to investigate and understand the range of environments, feedback mechanisms, and other factors that most affect the outcome of the star and planet formation process. To do so, HORUS will provide 100 times greater imaging efficiency and more than 10 times greater UV spectroscopic sensitivity than has existed on the Hubble Space Telescope (HST). The HORUS mission will contribute vital information on how solar systems form and whether habitable planets should be common or rare. It also will investigate the structure, evolution, and destiny of galaxies and universe. This program relies on focused capabilities unique to space that no other planned NASA mission will provide: near-UV/visible (200-1075nm) wide-field, diffraction-limited imaging; and high-sensitivity, high-resolution UV (100-170nm) spectroscopy. The core HORUS design will provide wide field of view imagery and high efficiency point source FUV spectroscopy using a novel combination of spectral selection and field sharing. The HORUS Optical Telescope Assembly (OTA) design is based on modern light weight mirror technology with a faster primary mirror to shorten the overall package and thereby reduce mass. The OTA uses a three-mirror anastigmat configuration to provide excellent imagery over a large FOV - and is exactly aligned to use one of the recently released f/1.2 NRO OTAs as part of its design. The UV/optical Imaging Cameras use two 21k x 21k Focal Plane Arrays (FPAs). The FUV spectrometer uses cross strip anode based MCPs. This poster presents results from a 2010 design update requested by the NRC Decadal Survey, and reflects updated costs and technology to the original 2004 study. It is now one of the most mature 2.4m UVOIR

  2. Lightweighted ZERODUR for telescopes

    NASA Astrophysics Data System (ADS)

    Westerhoff, T.; Davis, M.; Hartmann, P.; Hull, T.; Jedamzik, R.

    2014-07-01

    The glass ceramic ZERODUR® from SCHOTT has an excellent reputation as mirror blank material for earthbound and space telescope applications. It is known for its extremely low coefficient of thermal expansion (CTE) at room temperature and its excellent CTE homogeneity. Recent improvements in CNC machining at SCHOTT allow achieving extremely light weighted substrates up to 90% incorporating very thin ribs and face sheets. In 2012 new ZERODUR® grades EXPANSION CLASS 0 SPECIAL and EXTREME have been released that offer the tightest CTE grades ever. With ZERODUR® TAILORED it is even possible to offer ZERODUR® optimized for customer application temperature profiles. In 2013 SCHOTT started the development of a new dilatometer setup with the target to drive the industrial standard of high accuracy thermal expansion metrology to its limit. In recent years SCHOTT published several paper on improved bending strength of ZERODUR® and lifetime evaluation based on threshold values derived from 3 parameter Weibull distribution fitted to a multitude of stress data. ZERODUR® has been and is still being successfully used as mirror substrates for a large number of space missions. ZERODUR® was used for the secondary mirror in HST and for the Wolter mirrors in CHANDRA without any reported degradation of the optical image quality during the lifetime of the missions. Some years ago early studies on the compaction effects of electron radiation on ZERODUR® were re analyzed. Using a more relevant physical model based on a simplified bimetallic equation the expected deformation of samples exposed in laboratory and space could be predicted in a much more accurate way. The relevant ingredients for light weighted mirror substrates are discussed in this paper: substrate material with excellent homogeneity in its properties, sufficient bending strengths, space radiation hardness and CNC machining capabilities.

  3. The Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey C.; Allen Telescope Array Team

    2010-01-01

    The ATA is a 42-element centimeter wavelength array located in Hat Creek, California and jointly operated by UC Berkeley Radio Astronomy Laboratory and the SETI Institute. Since the ATA dedication in Fall 2007, activities have been focused on commissioning the array, retrofitting a handful of components including the feed, developing an operations model, creation of pipeline processing for correlator imaging data, early science observations, and launching of the major surveys for which the telescope was built. The retrofit of the feed improves feed mechanical robustness as well as high frequency performance. Science programs launched include imaging radio transient and static sky surveys (ATATS and PiGSS), commensal SETI and transient surveys of the Galactic Center, targeted SETI observations of nearby stars, the Fly's Eye transient survey, broadband spectra of nearby star-forming galaxies, polarimetric observations of bright radio sources, observations of hydrogen in nearby galaxies and galaxy groups, molecular line observations in the Galaxy, and observations of Jupiter and the Moon. The baseline Square Kilometer Array (SKA) design, a large-N-small-diameter (LNSD) array with wide-band single-pixel feeds and an offset Gregorian antenna, bears a strong resemblance to the ATA. Additional ATA contributions to the SKA include configuration studies for LNSD arrays, the use of fiber optics for broadband data transmission, the use of flexible FPGA-based digital electronics, passive cooling of antennas, and implementation of commensal observing modes. The ATA is currently used for exploration of calibration and imaging algorithms necessary for the SKA. I will summarize current technical status and performance, the results from early science and surveys, and ATA contributions to SKA development.

  4. Postburn lithology and mineralogy at Rio Blanco Oil Shale Company's Tract C-a retort 1, Rio Blanco County, Colorado. [Core samples from near the in-situ retort

    SciTech Connect

    Trudell, L.G.; Mason, G.M.; Fahy, L.J.

    1986-05-01

    An investigation was conducted to provide basic data on some of the characteristics of a modified in situ (MIS) oil shale retort after processing. Samples of retort contents and overburden were obtained from three core holes drilled into Rio Blanco's Tract C-a retort 1 in the western part of the Piceance Creek Basin, Colorado. The retort operation had been completed nearly four years before the coring, and the cavity and mine workings had been flooded by groundwater for almost one year. Cores were characterized by lithologic description, x-ray diffraction, and optical microscopy. Drilling and logging records indicate as much as 35 to 40 feet of roof rock has collapsed into the retort since the burn was terminated. A water-filled attic cavity 46 to 62 feet high exists at the top of the retort. One core hole penetrated 377 feet of rubble in the retort and floor rock with numerous fractures below the retort. Most of the material recovered from the retort consisted of highly altered, fused and vesicular rock. Lesser amounts of carbonized, oxidized and moderately heated-altered oil shale were recovered from the upper and lower parts. Raw shale roof fall at the top and unretorted oil shale rubble at the bottom are also present. Thermal alteration has produced high-temperature silicate minerals from the original mixtures of carbonate and silicate minerals in the raw oil shale. Adequate material was recovered from the retort contents to provide valuable data on the lithologic, mineralogic, and physical characteristics of the MIS retort. 19 refs., 12 figs., 17 tabs.

  5. The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Kalirai, Jason

    2014-07-01

    The James Webb Space Telescope (JWST) will be the most powerful space telescope that we've ever constructed, and it is a critical step towards answering the top science questions outlined in both the 2000 and 2010 Astronomy & Astrophysics Decadal Surveys. In this presentation, I'll first briefly highlight the science capabilities, current status, and science timeline of JWST out to its 2018 launch. I'll then describe several frontier science opportunities that are uniquely enabled by combining JWST's high spatial resolution and unprecedented IR throughput with the Thirty Meter Telescope's spectral capabilities and visible throughput. Like Hubble and current 10 meter telescopes on the ground, the combination of these two facilities will be a great 1-2 punch to usher in a new era in UVOIR astrophysics.

  6. The CMS pixel luminosity telescope

    NASA Astrophysics Data System (ADS)

    Kornmayer, A.

    2016-07-01

    The Pixel Luminosity Telescope (PLT) is a new complement to the CMS detector for the LHC Run II data taking period. It consists of eight 3-layer telescopes based on silicon pixel detectors that are placed around the beam pipe on each end of CMS viewing the interaction point at small angle. A fast 3-fold coincidence of the pixel planes in each telescope will provide a bunch-by-bunch measurement of the luminosity. Particle tracking allows collision products to be distinguished from beam background, provides a self-alignment of the detectors, and a continuous in-time monitoring of the efficiency of each telescope plane. The PLT is an independent luminometer, essential to enhance the robustness on the measurement of the delivered luminosity and to reduce its systematic uncertainties. This will allow to determine production cross-sections, and hence couplings, with high precision and to set more stringent limits on new particle production.

  7. The Chinese Giant Solar Telescope

    NASA Astrophysics Data System (ADS)

    Liu, Zhong; Deng, Yuanyong; Ji, Haisheng

    2014-01-01

    Chinese Giant Solar Telescope is the next generation ground-based solar telescope. The main science task of this telescope is to observe the ultra fine structures of the solar magnetic field and dynamic field. Due to the advantages in polarization detection and thermal controlling with a symmetrical circular system, the current design of CGST is a 6~8 meter circular symmetrical telescope. The results of simulations and analysis showed that the current design could meet the demands of most science cases not only in infrared bands but also in near infrared bands and even in visible bands. The prominences and the filaments are very important science cases of CGST. The special technologies for prominence observation will be developed, including the day time laser guide star and MCAO. CGST is proposed by all solar observatories and several institutes and universities in China. It is supported by CAS and NSFC (National Natural Science Foundation of China) as a long term astronomical project.

  8. Automated telescope for variability studies

    NASA Astrophysics Data System (ADS)

    Ganesh, S.; Baliyan, K. S.; Chandra, S.; Joshi, U. C.; Kalyaan, A.; Mathur, S. N.

    PRL has installed a 50 cm telescope at Mt Abu, Gurushikhar. The backend instrument consists of a 1K × 1K EMCCD camera with standard UBVRI filters and also has polarization measurement capability using a second filter wheel with polaroid sheets oriented at different position angles. This 50 cm telescope observatory is operated in a robotic mode with different methods of scheduling of the objects being observed. This includes batch mode, fully manual as well as fully autonomous mode of operation. Linux based command line as well as GUI software are used entirely in this observatory. This talk will present the details of the telescope and associated instruments and auxiliary facilities for weather monitoring that were developed in house to ensure the safe and reliable operation of the telescope. The facility has been in use for a couple of years now and various objects have been observed. Some of the interesting results will also be presented.

  9. Large aperture Fresnel telescopes/011

    SciTech Connect

    Hyde, R.A., LLNL

    1998-07-16

    At Livermore we`ve spent the last two years examining an alternative approach towards very large aperture (VLA) telescopes, one based upon transmissive Fresnel lenses rather than on mirrors. Fresnel lenses are attractive for VLA telescopes because they are launchable (lightweight, packagable, and deployable) and because they virtually eliminate the traditional, very tight, surface shape requirements faced by reflecting telescopes. Their (potentially severe) optical drawback, a very narrow spectral bandwidth, can be eliminated by use of a second (much smaller) chromatically-correcting Fresnel element. This enables Fresnel VLA telescopes to provide either single band ({Delta}{lambda}/{lambda} {approximately} 0.1), multiple band, or continuous spectral coverage. Building and fielding such large Fresnel lenses will present a significant challenge, but one which appears, with effort, to be solvable.

  10. Anastigmatic three-mirror telescope

    NASA Technical Reports Server (NTRS)

    Korsch, D. G. (Inventor)

    1978-01-01

    A three-mirror telescope for extraterrestrial observations is described. An ellipsoidal primary mirror, a hyperbolic secondary mirror, and an ellipsoidal tertiary mirror, produce an image in a conveniently located finite plane for viewing.

  11. Prism beamswitch for radio telescopes.

    PubMed

    Payne, J M; Ulich, B L

    1978-12-01

    A dielectric prism and switching mechanism have been constructed for beamswitching a Cassegrain radio telescope. Spatially extended radio sources may be mapped without significant confusion utilizing the sensitivity and stability inherent in the conventional Dicke radiometer. PMID:18699031

  12. Glancing incidence telescopes for space astronomy

    NASA Technical Reports Server (NTRS)

    Mangus, J. D.

    1972-01-01

    Design optimization is reported for glancing telescopes of increased collecting areas. Considered are nested geometries for X-ray and extreme ultraviolet telescopes, each of which generates only one singular principal surface. In the case of the X-ray telescope, the field curvature of the outer telescope serves as a standard and the focus of each of the inner telescopes is made coplanar by a slight descrease in the collecting area of each of the inner telescopes. In the case of the EUV telescope, a slight change in the maximum slope angle of the inner telescope makes the field curvatures coincide. Five concentric X-ray telescopes form a collecting area of approximately 900 sq cm, and a nested EUV telescope consisting of two concentric telescopes produces a collecting area of about 45 sq cm.

  13. Imaging phased telescope array study

    NASA Technical Reports Server (NTRS)

    Harvey, James E.

    1989-01-01

    The problems encountered in obtaining a wide field-of-view with large, space-based direct imaging phased telescope arrays were considered. After defining some of the critical systems issues, previous relevant work in the literature was reviewed and summarized. An extensive list was made of potential error sources and the error sources were categorized in the form of an error budget tree including optical design errors, optical fabrication errors, assembly and alignment errors, and environmental errors. After choosing a top level image quality requirment as a goal, a preliminary tops-down error budget allocation was performed; then, based upon engineering experience, detailed analysis, or data from the literature, a bottoms-up error budget reallocation was performed in an attempt to achieve an equitable distribution of difficulty in satisfying the various allocations. This exercise provided a realistic allocation for residual off-axis optical design errors in the presence of state-of-the-art optical fabrication and alignment errors. Three different computational techniques were developed for computing the image degradation of phased telescope arrays due to aberrations of the individual telescopes. Parametric studies and sensitivity analyses were then performed for a variety of subaperture configurations and telescope design parameters in an attempt to determine how the off-axis performance of a phased telescope array varies as the telescopes are scaled up in size. The Air Force Weapons Laboratory (AFWL) multipurpose telescope testbed (MMTT) configuration was analyzed in detail with regard to image degradation due to field curvature and distortion of the individual telescopes as they are scaled up in size.

  14. Hubble Space Telescope-Concept

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This is an artist's concept of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  15. The JCMT Telescope Management System

    NASA Astrophysics Data System (ADS)

    Tilanus, Remo P. J.; Jenness, Tim; Economou, Frossie; Cockayne, Steve

    Established telescopes often face a challenge when trying to incorporate new software standards and utilities into their existing real-time control system. At the JCMT we have successfully added important new features such as a Relational Database (the Telescope Management System---TMS), an online data Archive, and WWW based utilities to an, in part, 10-year old system. The new functionality was added with remarkably few alterations to the existing system. We are still actively expanding and exploring these new capabilities.

  16. BCK Network of Optical Telescopes

    NASA Astrophysics Data System (ADS)

    McGruder, Charles H.; Antoniuk, Krill; Carini, Michael T.; Gelderman, Richard; Hammond, Benjamin; Hicks, Stacy; Laney, David; Shakhovskoy, David; Strolger, Louis-Gregory; Williams, Joshua

    2015-01-01

    The BCK network consists of three research grade telescopes: 0.6m (B) at the Bell Observatory near Western Kentucky University (WKU), 1.3m (C) at the Crimean Astrophysical Observatory and a 1.3m (K) at Kitt Peak National Observatory. The Bell Telescope is operated remotely from WKU while the Robotically Controlled Telescope (RCT) at Kitt Peak possesses an autonomous scheduler. The BCK telescopes are distributed longitudinally over 145º and can be used to observe continuously up to 21.2 hours/day. The network will be chiefly employed to observe variable stars, blazars and unpredictable celestial events.Because celestial objects with ground-based telescopes cannot be observed optically during the daytime, continuous ground-based astronomical observations are only possible via a network of longitudinally distributed telescopes. When the sun rises in Crimea after it sets at Bell, continuous observations are possible. This occurs for about six and ½ months per year - mid September to early April. A network is highly desirable for events that are not predictable for instance the appearance of supernovae, gamma-ray bursts, or undiscovered exoplanetsVariable stars are really only known in significant numbers to about 14 mag. But, as the magnitude increases the number of stars in any field increases very sharply, so there are many variable stars to discover at faint magnitude (m > 14). Discovering new variables makes great undergraduate student projects, a major component of astronomical research at WKU. In addition, pinning down the periods of variable stars is greatly facilitated with a network of telescopes.The BCK telescope network will also be used for monitoring the optical variability of blazars. The network provides increased coverage on daily variability timescales by minimizing interruptions due to weather and or mechanical problems at any one observatory and is used for obtaining continuous (12+ hours) of observations of rapid variability in blazars which would

  17. Radio Telescope Gets Star Treatment

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-11-01

    Actress Jodie Foster, who played a scientist in search of extraterrestrial life in the 1997 film Contact, narrates a new promotional film to reintroduce the public to the National Radio Astronomy Observatory's (NRAO) renovated Karl G. Jansky Very Large Array (VLA) radio telescope in New Mexico. The 24-minute film, Beyond the Visible, which will air in the VLA Visitor Center, focuses on the operation of the telescope and scientific achievements associated with it.

  18. NIRo Telescope: Research and Education

    NASA Astrophysics Data System (ADS)

    Rengstorf, Adam W.; Slavin, S.

    2006-12-01

    The Northwest Indiana Robotic (NIRo) Telescope is a 20-inch telescope and wide-field CCD imager to be used for remote, unattended observing. To be located in southern Lake County, IN, the NIRo Telescope will enjoy darker skies than those around the Purdue University Calumet (PUC) campus. While this project will enable high-quality research for the astronomy faculty and undergraduate students at PUC, its uniqueness lies in the planned education and outreach components. Using synoptic data from the telescope, we will, in conjunction with faculty from the PUC School of Education, develop curricula and assessment tools in line with Indiana earth and space science standards for grades 6 8. While small, robotic telescopes have been successfully used to implement similar programs for undergraduate and secondary education, this is, to the best of our knowledge, the first project to specifically target primary school education. This program will affect a wide range in ethnic and socioeconomic communities immediately surrounding the PUC campus in northwest Indiana. Data from the telescope will be reduced by PUC faculty and undergraduate researchers and disseminated to the participating schools for analysis and discovery and also archived for future use via a dedicated website. The website and its contents will then be accessible to the broader community, allowing schools outside the immediate region to view data and results and potentially participate in the educational component of our proposal.

  19. Demonstration Telescopes Using "Dollar Optics"

    NASA Astrophysics Data System (ADS)

    Ross, Paul

    2008-05-01

    I propose a poster that illustrates the use of "dollar optics” for experimentation and for the creation of demonstration telescopes. Handling a variety of lenses and mirrors provides an opportunity for discovering practical optics. Some part of this path of exploration must have been traveled by Galileo as he experimented with spectacle lenses. "Dollar optics” include reading glasses (positive meniscus lenses), convex and concave mirrors, Fresnel sheets, magnifying lenses, and eye loupes. Unwanted distance spectacles (negative meniscus lenses) are available at second-hand stores. Galileo telescopes, "long” 17th century telescopes, and useful demonstration models of Newtonian reflectors can be made with "dollar” optics. The poster will illustrate practical information about "dollar optics” and telescopes: magnification, focal length, and "diopters” disassembling spectacles; creating cheap mounts for spectacle lenses; the importance of optical axes and alignment; eyepieces; and focusing. (A table would be useful with the poster to set out a hands-on display of "dollar optic” telescopes.) Educators, experimenters, and those concerned with astronomy outreach might be interested in this poster. Working with "dollar optics” requires facility with simple tools, interest in planning projects, patience, imagination, and the willingness to invest some time and effort. "Dollar optics” may help to foster creativity and hands-on enthusiasm - as did Galileo's work with simple lenses 400 years ago. "Oh! When will there be an end put to the new observations and discoveries of this admirable instrument?” - Galileo Galilei as quoted by Henry C. King, The History of the Telescope.

  20. Global TIE (Telescopes in Education)

    NASA Astrophysics Data System (ADS)

    Mayo, L.; Schweitzer, A. E.; Clark, G.; Hoban, S.; Melsheimer, T. T.

    2001-12-01

    The NASA-sponsored Telescopes In Education (TIE) project (http://tie.jpl.nasa.gov) has been wildly successful in engaging the K-12 education community in real-time, hands-on, interactive astronomy activities. Hundreds of schools in the US, Australia, Canada, England, and Japan have participated in the TIE program, remotely controlling the 24-inch telescope at the Mount Wilson Observatory from their classrooms. In recent years, several (approximately 20 to date) other telescopes have been, or are in the process of being, outfitted for remote use as TIE affiliates. Global TIE integrates these telescopes seamlessly into one virtual observatory and provides the services required to operate this facility, including a scheduling service, tools for data manipulation, an online proposal review environment, an online "Virtual TIE Student Ap J" for publication of results, and access to related educational materials provided by the TIE community. Global TIE seeks to establish a network of research grade telescopes, no longer useful to the professional astronomical community, that can be made accessible to schools all across the country through existing IT technologies and applications. These telescopes could provide unparalleled research and educational opportunities for a broad spectrum of K-12 and college students and turns underutilized observatory facilities into valuable, state-of-the-art teaching centers.

  1. An underground cosmic ray muon telescope for observation of cosmic ray anisotropy

    NASA Technical Reports Server (NTRS)

    Lee, Y. W.; Ng, L. K.

    1985-01-01

    A telescope housed in a tunnel laboratory has an overburden of 573 hg cm(-2) and is located under the center of a saddle-shaped landscape. It is composed of triple layers of proportional counters, each layer of area approx. 4m x 2m and their separation 0.5m. Events are selected by triple coincidence and software track identification. The telescope is in operation for over a year and the overall count rate is 1280 hr(-1). The structure and operation of the system is reported.

  2. System concepts for a large UV/optical/IR telescope on the moon

    NASA Technical Reports Server (NTRS)

    Nein, Max E.; Davis, Billy

    1991-01-01

    To assess the systems and technological requirements for constructing lunar telescopes in conjunction with the buildup of a lunar base for scientific exploration and as a waypoint for travel to Mars, the NASA Marshall Space Flight Center conducted concept studies of a 16-m-aperture large lunar telescope (LLT) and a 4-m-aperture precursor telescope, both operating in the UV/visible/IR spectral region. The feasibility of constructing a large telescope on the lunar surface is assessed, and its systems and subsystems are analyzed. Telescope site selection, environmental effects, and launch and assembly scenarios are also evaluated. It is argued that key technical drivers for the LLT must be tested in situ by precursor telescopes to evaluate such areas as the operations and long-term reliability of active optics, radiation protection of instruments, lunar dust mitigation, and thermal shielding of the telescope systems. For a manned lunar outpost or an LLT to become a reality, a low-cost dependable transportation system must be developed.

  3. SOFIA: Flying the Telescope

    NASA Technical Reports Server (NTRS)

    Asher, Troy A.; Cumming, Stephen B.

    2012-01-01

    and a proof of concept mission for which SOFIA was opportunely positioned is showcased. Success on this time-critical mission to observe a rare astronomical event proved the usefulness of an airborne observatory and the value in waiting for the capability provided by SOFIA. Finally, lessons learned in the test program are presented with emphasis on how lessons from previous aircraft and successful test programs were applied to SOFIA. Effective application of these lessons was crucial to the success of the SOFIA flight test program. SOFIA is an international cooperative program between NASA and the German Space Agency, DLR. It is a 2.5 meter (100-inch) telescope mounted in a Boeing 747SP aircraft used for astronomical observations at altitudes above 35,000 feet. SOFIA will accommodate a host of scientific instruments from the international science community and has a planned operational lifespan of more than 20 years.

  4. The Mantos Blancos copper deposit: an upper Jurassic breccia-style hydrothermal system in the Coastal Range of Northern Chile

    NASA Astrophysics Data System (ADS)

    Ramírez, L. E.; Palacios, C.; Townley, B.; Parada, M. A.; Sial, A. N.; Fernandez-Turiel, J. L.; Gimeno, D.; Garcia-Valles, M.; Lehmann, B.

    2006-06-01

    The Upper Jurassic Mantos Blancos copper deposit (500 Mt at 1.0% Cu), located in the Coastal Range of northern Chile, displays two superimposed hydrothermal events. An older phyllic alteration probably related to felsic magmatic-hydrothermal brecciation at ˜155 Ma, and younger (141-142 Ma) potassic, propylitic, and sodic alterations, coeval with dioritic and granodioritic stocks and sills, and dioritic dikes. Main ore formation is genetically related to the second hydrothermal event, and consists of hydrothermal breccias, disseminations and stockwork-style mineralization, associated with sodic alteration. Hypogene sulfide assemblages show distinctive vertical and lateral zoning, centered on magmatic and hydrothermal breccia bodies, which constitute the feeders to mineralization. A barren pyrite root zone is overlain by pyrite-chalcopyrite, and followed upwards and laterally by chalcopyrite-digenite or chalcopyrite-bornite. The assemblage digenite-supergene chalcocite characterizes the central portions of high-grade mineralization in the breccia bodies. Fluid inclusions show evidence of boiling during the potassic and sodic alteration events, which occurred at temperatures around 450-460°C and 350-410°C, and salinities between 3-53 and 13-45 wt% NaCl eq., respectively. The hydrothermal events occurred during episodic decompression due to fluid overpressuring, hydrofracturing, and sharp changes from lithostatic to hydrostatic conditions. Sulfur isotope results of hypogene sulfide minerals fall in a narrow range around 0 per mil, suggesting a dominance of magmatic sulfur. Carbon and oxygen isotopic data of calcites from propylitic alteration suggest a mantle-derived carbon and oxygen isotope fractionation due to low-temperature alteration.

  5. Serological and Molecular Studies of a Novel Virus Isolate Causing Yellow Mosaic of Patchouli [Pogostemon cablin (Blanco) Benth

    PubMed Central

    Zaim, Mohammad; Ali, Ashif; Joseph, Jomon; Khan, Feroz

    2013-01-01

    Here we have identified and characterized a devastating virus capable of inducing yellow mosaic on the leaves of Patchouli [Pogostemon cablin (Blanco) Benth]. The diagnostic tools used were host range, transmission studies, cytopathology, electron microscopy, serology and partial coat protein (CP) gene sequencing. Evidence from biological, serological and sequence data suggested that the causal virus belonged to genus Potyvirus, family Potyviridae. The isolate, designated as Patchouli Yellow Mosaic Virus (PaYMV), was transmitted through grafting, sap and the insect Myzus persicae (Sulz.). Flexuous rod shaped particles with a mean length of 800 nm were consistently observed in leaf-dip preparations from natural as well as alternate hosts, and in purified preparation. Cytoplasmic cylindrical inclusions, pinwheels and laminar aggregates were observed in ultra-thin sections of infected patchouli leaves. The purified capsid protein has a relative mass of 43 kDa. Polyclonal antibodies were raised in rabbits against the coat protein separated on SDS – PAGE; which were used in ELISA and western blotting. Using specific antibodies in ELISA, PaYMV was frequently detected at patchouli plantations at Lucknow and Bengaluru. Potyvirus-specific degenerate primer pair (U335 and D335) had consistently amplified partial CP gene from crude preparations of infected tissues by reverse transcription polymerase chain reaction (RT-PCR). Comparison of the PCR product sequence (290 bp) with the corresponding regions of established potyviruses showed 78–82% and 91–95% sequence similarity at the nucleotide and amino acid levels, respectively. The results clearly established that the virus under study has close homology with watermelon mosaic virus (WMV) in the coat protein region and therefore could share a common ancestor family. Further studies are required to authenticate the identity of PaYMV as a distinct virus or as an isolate of WMV. PMID:24386278

  6. Serological and molecular studies of a novel virus isolate causing yellow mosaic of Patchouli [Pogostemon cablin (Blanco) Benth].

    PubMed

    Zaim, Mohammad; Ali, Ashif; Joseph, Jomon; Khan, Feroz

    2013-01-01

    Here we have identified and characterized a devastating virus capable of inducing yellow mosaic on the leaves of Patchouli [Pogostemon cablin (Blanco) Benth]. The diagnostic tools used were host range, transmission studies, cytopathology, electron microscopy, serology and partial coat protein (CP) gene sequencing. Evidence from biological, serological and sequence data suggested that the causal virus belonged to genus Potyvirus, family Potyviridae. The isolate, designated as Patchouli Yellow Mosaic Virus (PaYMV), was transmitted through grafting, sap and the insect Myzus persicae (Sulz.). Flexuous rod shaped particles with a mean length of 800 nm were consistently observed in leaf-dip preparations from natural as well as alternate hosts, and in purified preparation. Cytoplasmic cylindrical inclusions, pinwheels and laminar aggregates were observed in ultra-thin sections of infected patchouli leaves. The purified capsid protein has a relative mass of 43 kDa. Polyclonal antibodies were raised in rabbits against the coat protein separated on SDS - PAGE; which were used in ELISA and western blotting. Using specific antibodies in ELISA, PaYMV was frequently detected at patchouli plantations at Lucknow and Bengaluru. Potyvirus-specific degenerate primer pair (U335 and D335) had consistently amplified partial CP gene from crude preparations of infected tissues by reverse transcription polymerase chain reaction (RT-PCR). Comparison of the PCR product sequence (290 bp) with the corresponding regions of established potyviruses showed 78-82% and 91-95% sequence similarity at the nucleotide and amino acid levels, respectively. The results clearly established that the virus under study has close homology with watermelon mosaic virus (WMV) in the coat protein region and therefore could share a common ancestor family. Further studies are required to authenticate the identity of PaYMV as a distinct virus or as an isolate of WMV. PMID:24386278

  7. Low Temperature Induced Changes in Citrate Metabolism in Ponkan (Citrus reticulata Blanco cv. Ponkan) Fruit during Maturation.

    PubMed

    Lin, Qiong; Qian, Jing; Zhao, Chenning; Wang, Dengliang; Liu, Chunrong; Wang, Zhidong; Sun, Chongde; Chen, Kunsong

    2016-01-01

    Citrate is the most important organic acid in citrus fruit, and its concentration in fruit cells is regulated mainly by the balance between synthesis and degradation. Ponkan (Citrus reticulate Blanco cv. Ponkan) is one of the major citrus cultivars grew in China, and the fruit are picked before fully mature to avoid bad weather. Greenhouse production is widely used to prolong the maturation period and improve the quality of Ponkan fruit by maintaining adequate temperature and providing protection from adverse weather. In this research, Ponkan fruit cultivated in either a greenhouse or open field were used to investigate differences in the expression of genes related to citrate metabolism during maturation in the two environments. The citrate contents were higher in open field fruit, and were mainly correlated with expressions of CitPEPCs, CitCSs, CitAco3 and CitGAD4, which were significantly increased. In addition, the impacts of low temperature (LT) and water stress (WS) on citrate metabolism in Ponkan were investigated during fruit maturation. The citrate contents in LT fruit were significantly increased, by between 1.4-1.9 fold, compared to the control; it showed no significant difference in fruit with water stress treatment compared to the control fruit. Furthermore, the expressions of CitPEPCs, CitCSs, CitAco3 and CitGAD4 were significantly increased in response to LT treatment, but showed no significant difference in WS compared to the control fruit. Thus, it can be concluded that low temperature may be the main factor influencing citrate metabolism during maturation in Ponkan fruit. PMID:27249065

  8. Low Temperature Induced Changes in Citrate Metabolism in Ponkan (Citrus reticulata Blanco cv. Ponkan) Fruit during Maturation

    PubMed Central

    Lin, Qiong; Qian, Jing; Zhao, Chenning; Wang, Dengliang; Liu, Chunrong; Wang, Zhidong; Sun, Chongde; Chen, Kunsong

    2016-01-01

    Citrate is the most important organic acid in citrus fruit, and its concentration in fruit cells is regulated mainly by the balance between synthesis and degradation. Ponkan (Citrus reticulate Blanco cv. Ponkan) is one of the major citrus cultivars grew in China, and the fruit are picked before fully mature to avoid bad weather. Greenhouse production is widely used to prolong the maturation period and improve the quality of Ponkan fruit by maintaining adequate temperature and providing protection from adverse weather. In this research, Ponkan fruit cultivated in either a greenhouse or open field were used to investigate differences in the expression of genes related to citrate metabolism during maturation in the two environments. The citrate contents were higher in open field fruit, and were mainly correlated with expressions of CitPEPCs, CitCSs, CitAco3 and CitGAD4, which were significantly increased. In addition, the impacts of low temperature (LT) and water stress (WS) on citrate metabolism in Ponkan were investigated during fruit maturation. The citrate contents in LT fruit were significantly increased, by between 1.4–1.9 fold, compared to the control; it showed no significant difference in fruit with water stress treatment compared to the control fruit. Furthermore, the expressions of CitPEPCs, CitCSs, CitAco3 and CitGAD4 were significantly increased in response to LT treatment, but showed no significant difference in WS compared to the control fruit. Thus, it can be concluded that low temperature may be the main factor influencing citrate metabolism during maturation in Ponkan fruit. PMID:27249065

  9. Tools-4-Metatool (T4M): online suite of web-tools to process stoichiometric network analysis data from Metatool.

    PubMed

    Xavier, Daniela; Vázquez, Sara; Higuera, Clara; Morán, Federico; Montero, Francisco

    2011-08-01

    Tools-4-Metatool (T4M) is a suite of web-tools, implemented in PERL, which analyses, parses, and manipulates files related to Metatool. Its main goal is to assist the work with Metatool. T4M has two major sets of tools: Analysis and Compare. Analysis visualizes the results of Metatool (convex basis, elementary flux modes, and enzyme subsets) and facilitates the study of metabolic networks. It is composed of five tools: MDigraph, MetaMatrix, CBGraph, EMGraph, and SortEM. Compare was developed to compare different Metatool results from different networks. This set consists of: Compara and ComparaSub which compare network subsets providing outputs in different formats and ComparaEM that seeks for identical elementary modes in two metabolic networks. The suite T4M also includes one script that generates Metatool input: CBasis2Metatool, based on a Metatool output file that is filtered by a list of convex basis' metabolites. Finally, the utility CheckMIn checks the consistency of the Metatool input file. T4M is available at http://solea.quim.ucm.es/t4m. PMID:21554926

  10. Is Upregulation of Aquaporin 4-M1 Isoform Responsible for the Loss of Typical Orthogonal Arrays of Particles in Astrocytomas?

    PubMed Central

    Fallier-Becker, Petra; Nieser, Maike; Wenzel, Ulrike; Ritz, Rainer; Noell, Susan

    2016-01-01

    The astrocytic endfoot membranes of the healthy blood-brain barrier—contacting the capillary—are covered with a large number of the water channel aquaporin 4 (AQP4). They form orthogonal arrays of particles (OAPs), which consist of AQP4 isoform M1 and M23. Under pathologic conditions, AQP4 is distributed over the whole cell and no or only small OAPs are found. From cell culture experiments, it is known that cells transfected only with AQP4-M1 do not form OAPs or only small ones. We hypothesized that in astrocytomas the situation may be comparable to the in vitro experiments expecting an upregulation of AQP4-M1. Quantitative Real-time PCR (qRT-PCR) of different graded astrocytomas revealed an upregulation of both isoforms AQP4 M1 and M23 in all astrocytomas investigated. In freeze fracture replicas of low-grade malignancy astrocytomas, more OAPs than in high-grade malignancy astrocytomas were found. In vitro, cultured glioma cells did not express AQP4, whereas healthy astrocytes revealed a slight upregulation of both isoforms and only a few OAPs in freeze fracture analysis. Taken together, we found a correlation between the decrease of OAPs and increasing grade of malignancy of astrocytomas but this was not consistent with an upregulation of AQP4-M1 in relation to AQP4 M23. PMID:27483250

  11. Is Upregulation of Aquaporin 4-M1 Isoform Responsible for the Loss of Typical Orthogonal Arrays of Particles in Astrocytomas?

    PubMed

    Fallier-Becker, Petra; Nieser, Maike; Wenzel, Ulrike; Ritz, Rainer; Noell, Susan

    2016-01-01

    The astrocytic endfoot membranes of the healthy blood-brain barrier-contacting the capillary-are covered with a large number of the water channel aquaporin 4 (AQP4). They form orthogonal arrays of particles (OAPs), which consist of AQP4 isoform M1 and M23. Under pathologic conditions, AQP4 is distributed over the whole cell and no or only small OAPs are found. From cell culture experiments, it is known that cells transfected only with AQP4-M1 do not form OAPs or only small ones. We hypothesized that in astrocytomas the situation may be comparable to the in vitro experiments expecting an upregulation of AQP4-M1. Quantitative Real-time PCR (qRT-PCR) of different graded astrocytomas revealed an upregulation of both isoforms AQP4 M1 and M23 in all astrocytomas investigated. In freeze fracture replicas of low-grade malignancy astrocytomas, more OAPs than in high-grade malignancy astrocytomas were found. In vitro, cultured glioma cells did not express AQP4, whereas healthy astrocytes revealed a slight upregulation of both isoforms and only a few OAPs in freeze fracture analysis. Taken together, we found a correlation between the decrease of OAPs and increasing grade of malignancy of astrocytomas but this was not consistent with an upregulation of AQP4-M1 in relation to AQP4 M23. PMID:27483250

  12. Design Evolution of the Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA) and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Peabody, Hume; Peters, Carlton; Rodriguez, Juan; McDonald, Carson; Content, David A.; Jackson, Cliff

    2015-01-01

    The design of the Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA) continues to evolve as each design cycle is analyzed. In 2012, two Hubble sized (2.4 m diameter) telescopes were donated to NASA from elsewhere in the Federal Government. NASA began investigating potential uses for these telescopes and identified WFIRST as a mission to benefit from these assets. With an updated, deeper, and sharper field of view than previous design iterations with a smaller telescope, the optical designs of the WFIRST instruments were updated and the mechanical and thermal designs evolved around the new optical layout. Beginning with Design Cycle 3, significant analysis efforts yielded a design and model that could be evaluated for Structural-Thermal-Optical-Performance (STOP) purposes for the Wide Field Imager (WFI) and provided the basis for evaluating the high level observatory requirements. Development of the Cycle 3 thermal model provided some valuable analysis lessons learned and established best practices for future design cycles. However, the Cycle 3 design did include some major liens and evolving requirements which were addressed in the Cycle 4 Design. Some of the design changes are driven by requirements changes, while others are optimizations or solutions to liens from previous cycles. Again in Cycle 4, STOP analysis was performed and further insights into the overall design were gained leading to the Cycle 5 design effort currently underway. This paper seeks to capture the thermal design evolution, with focus on major design drivers, key decisions and their rationale, and lessons learned as the design evolved.

  13. Design Evolution of the Wide Field Infrared Survey Telescope Using Astrophysics Focused Telescope Assets (WFIRST-AFTA) and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Peabody, Hume L.; Peters, Carlton V.; Rodriguez-Ruiz, Juan E.; McDonald, Carson S.; Content, David A.; Jackson, Clifton E.

    2015-01-01

    The design of the Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA) continues to evolve as each design cycle is analyzed. In 2012, two Hubble sized (2.4 m diameter) telescopes were donated to NASA from elsewhere in the Federal Government. NASA began investigating potential uses for these telescopes and identified WFIRST as a mission to benefit from these assets. With an updated, deeper, and sharper field of view than previous design iterations with a smaller telescope, the optical designs of the WFIRST instruments were updated and the mechanical and thermal designs evolved around the new optical layout. Beginning with Design Cycle 3, significant analysis efforts yielded a design and model that could be evaluated for Structural-Thermal-Optical-Performance (STOP) purposes for the Wide Field Imager (WFI) and provided the basis for evaluating the high level observatory requirements. Development of the Cycle 3 thermal model provided some valuable analysis lessons learned and established best practices for future design cycles. However, the Cycle 3 design did include some major liens and evolving requirements which were addressed in the Cycle 4 Design. Some of the design changes are driven by requirements changes, while others are optimizations or solutions to liens from previous cycles. Again in Cycle 4, STOP analysis was performed and further insights into the overall design were gained leading to the Cycle 5 design effort currently underway. This paper seeks to capture the thermal design evolution, with focus on major design drivers, key decisions and their rationale, and lessons learned as the design evolved.

  14. First light of the 1.6 meter off-axis New Solar Telescope at Big Bear Solar Observatory

    NASA Astrophysics Data System (ADS)

    Cao, Wenda; Gorceix, Nicolas; Coulter, Roy; Coulter, Aaron; Goode, Philip R.

    2010-07-01

    New Jersey Institute of Technology, in collaboration with the University of Hawaii and the Korea Astronomy & Space Science Institute, has successfully developed and installed a 1.6 m clear aperture, off-axis New Solar Telescope (NST) at the Big Bear Solar Observatory. The NST will be the largest aperture solar telescope in the world until the 4 m Advanced Technology Solar Telescope (ATST) and 4 m European Solar Telescope (EST) begin operation in the next decade. Meanwhile, the NST will be the largest off-axis telescope before the 8.4 m segmented Giant Magellan Telescope (GMT) comes on-line. The NST is configured as an off-axis Gregorian system consisting of a parabolic primary, prime focus field stop and heat reflector, elliptical secondary and diagonal flats. The primary mirror is made of Zerodur from Schott and figured to a final residual error of 16 nm rms by Steward Observatory Mirror Lab. The final focal ratio is f/52. The 180 circular opening in the field stop defines the maximal square field-of-view. The working wavelength range will cover 0.4 to 1.7 μm in the Coud´e Lab two floors beneath the telescope, and all wavelengths including far infrared at the Nasmyth focus on an optical bench attached to the side of the telescope structure. First-light scientific observations have been attained at the Nasmyth focus and in the Coud´e Lab. This paper presents a detailed description of installation and alignment of the NST. First-light observational results are also shown to demonstrate the validity of the NST optical alignment.

  15. Alignment and phasing of deployable telescopes

    NASA Technical Reports Server (NTRS)

    Woolf, N. J.; Ulich, B. L.

    1983-01-01

    The experiences in coaligning and phasing the Multi-Mirror Telescope (MMT), together with studies in setting up radio telescopes, are presented. These experiences are discussed, and on the basis they furnish, schemes are suggested for coaligning and phasing four large future telescopes with complex primary mirror systems. These telescopes are MT2, a 15-m-equivalent MMT, the University of California Ten Meter Telescope, the 10 m sub-mm wave telescope of the University of Arizona and the Max Planck Institute for Radioastronomy, and the Large Deployable Reflector, a future space telescope for far-IR and sub-mm waves.

  16. LISA Telescope Spacer Design Issues

    NASA Technical Reports Server (NTRS)

    Livas, Jeff; Arsenovic, P.; Catelluci, K.; Generie, J.; Howard, J.; Stebbins, Howard R.; Preston, A.; Sanjuan, J.; Williams, L.; Mueller, G.

    2010-01-01

    The LISA mission observes gravitational waves by measuring the separations between freely floating proof masses located 5 million kilometers apart with an accuracy of - 10 picometers. The separations are measured interferometrically. The telescope is an afocal Cassegrain style design with a magnification of 80x. The entrance pupil has a 40 cm diameter and will either be centered on-axis or de-centered off-axis to avoid obscurations. Its two main purposes are to transform the small diameter beam used on the optical bench to a diffraction limited collimated beam to efficiently transfer the metrology laser between spacecraft, and to receive the incoming light from the far spacecraft. It transmits and receives simultaneously. The basic optical design and requirements are well understood for a conventional telescope design for imaging applications, but the LISA design is complicated by the additional requirement that the total optical path through the telescope must remain stable at the picometer level over the measurement band during the mission to meet the measurement accuracy. We describe the mechanical requirements for the telescope and the preliminary work that has been done to understand the materials and mechanical issues associated with the design of a passive metering structure to support the telescope and to maintain the spacing between the primary and secondary mirrors in the LISA on-orbit environment. This includes the requirements flowdown from the science goals, thermal modeling of the spacecraft and telescope to determine the expected temperature distribution, layout options for the telescope including an on- and off-axis design. Plans for fabrication and testing will be outlined.

  17. Preliminary LISA Telescope Spacer Design

    NASA Technical Reports Server (NTRS)

    Livas, J.; Arsenovic, P.; Catellucci, K.; Generie, J.; Howard, J.; Stebbins, R. T.

    2010-01-01

    The Laser Interferometric Space Antenna (LISA) mission observes gravitational waves by measuring the separations between freely floating proof masses located 5 million kilometers apart with an accuracy of approximately 10 picometers. The separations are measured interferometrically. The telescope is an afocal Cassegrain style design with a magnification of 80x. The entrance pupil has a 40 cm diameter and will either be centered on-axis or de-centered off-axis to avoid obscurations. Its two main purposes are to transform the small diameter beam used on the optical bench to a diffraction limited collimated beam to efficiently transfer the metrology laser between spacecraft, and to receive the incoming light from the far spacecraft. It transmits and receives simultaneously. The basic optical design and requirements are well understood for a conventional telescope design for imaging applications, but the LISA design is complicated by the additional requirement that the total optical path through the telescope must remain stable at the picometer level over the measurement band during the mission to meet the measurement accuracy. This poster describes the requirements for the telescope and the preliminary work that has been done to understand the materials and mechanical issues associated with the design of a passive metering structure to support the telescope and to maintain the spacing between the primary and secondary mirrors in the LISA on-orbit environment. This includes the requirements flowdown from the science goals, thermal modeling of the spacecraft and telescope to determine the expected temperature distribution,layout options for the telescope including an on- and off-axis design, and plans for fabrication and testing.

  18. James Webb Space Telescope Optical Telescope Element Mirror Coatings

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva A.; Bowers, Charles W.; Quijada, Manuel A.; Heaney, James B.; Gallagher, Benjamin; McKay, Andrew; Stevenson, Ian

    2012-01-01

    James Webb Space Telescope (JWST) Optical Telescope Element (OTE) mirror coating program has been completed. The science goals of the JWST mission require a uniform, low stress, durable optical coating with high reflectivity over the JWST spectral region. The coating has to be environmentally stable, radiation resistant and compatible with the cryogenic operating environment. The large size, 1.52 m point to point, light weight, beryllium primary mirror (PM) segments and flawless coating process during the flight mirror coating program that consisted coating of 21 flight mirrors were among many technical challenges. This paper provides an overview of the JWST telescope mirror coating program. The paper summarizes the coating development program and performance of the flight mirrors.

  19. The Large Binocular Telescope mount control system architecture

    NASA Astrophysics Data System (ADS)

    Ashby, David S.; McKenna, Dan; Brynnel, Joar G.; Sargent, Tom; Cox, Dan; Little, John; Powell, Keith; Holmberg, Gene

    2006-06-01

    The Large Binocular Telescope (LBT) features dual 8.4 m diameter mirrors in a common elevation-over-azimuth mount. The LBT moves in elevation on two large crescent-shaped C-rings that are supported by radial hydrostatic bearing pads located near the four corners of the rectangular azimuth frame. The azimuth frame, in turn, is supported by four hydrostatic bearing pads and uses hydrodynamic roller bearings for centering. Each axis is gear driven by four large electric motors. In addition to precision optical motor encoders, each axis is equipped with Farrand Inductosyn strip encoders which yield 0.005 arcsecond resolution. The telescope weighs 580 metric tons and is designed to track with 0.03 arcsecond or better servo precision under wind speeds as high as 24 km/hr. Though the telescope is still under construction, the Mount Control System (MCS) has been routinely exercised to achieve First Light. The authors present a description of the unique, DSP-based synchronous architecture of the MCS and its capabilities.

  20. Compact high-resolution IR spectrometer for the Columbus Telescope

    NASA Astrophysics Data System (ADS)

    Williams, D. M.; Thompson, Craig L.; Rieke, George H.; Montgomery, Earl F.

    1993-10-01

    An infrared, cryogenically-cooled, grating spectrometer has been designed for the Columbus Project (2 X 8.4-m telescopes) and MMT Conversion (6.5-m). On one barrel of the Columbus Telescope and using a NICMOS3 array of 256 X 256 40 micrometers HgCdTe detectors, the instrument will project each pixel to 0.33 arcsec. With a slit of 0.66 arcsec width (2 pixels), the available spectral resolutions will range from (lambda) /(Delta) (lambda) equals 670 to 19,000. The optics are achromatic from 1.4 to 5 micrometers , allowing use of a variety of array types. The first version of this instrument has been built and fitted with optics that allow its use with the Steward Observatory 1.5-m and 2.3-m telescopes. It is relatively inexpensive (< $DOL400 K) and compact (approximately 0.3 m(superscript 3)). The high spectral resolution in such a compact instrument will be achieved through an echelle grating immersed in silicon. We discuss the processing for producing such gratings, including demonstrations that we have conducted on test blanks. We report on the preliminary performance of the prototype instrument and on unique design features that may be useful for other spectrometers.

  1. Status and Plans for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Green, R. F.

    2006-08-01

    The Large Binocular Telescope (LBT) is in commissioning, with the initiation of science operations planned for 2007. The telescope contains two 8.4-m diameter borosilicate honeycomb primary mirrors, supported actively to control bending modes. The secondary mirrors will provide adaptive optics correction through rapid modulation of the surface of a Zerodur face sheet 91 cm in diameter and 1.5 mm thick. The initial complement of facility instruments comprises capabilities used in pairs on common fields of view. The Large Binocular Cameras are wide-field 36 Mpix mosaics at prime focus optimized for blue and for red performance. The Multi-Object Double Spectrographs will be fed at straight-through Gregorian foci through custom cut focal plane masks. The ambitious LUCIFER near-IR spectrographs at bent Gregorian will have exchangeable cold focal plan masks. Ultimately, two instruments will combine the two beams through Fizeau interferometry. One, LBTI, is optimized for mid-IR, and will have a nulling capability for coronagraphic work. The other, LINC-NIRVANA, will employ three levels of adaptive correction to achieve interferometric resolution down to 1 micron. The 23-m tip-to-tip dimension affords resolution as good as 10 mas. LBTO is supported by a consortium of institutions from Arizona, Italy, Germany, and the U.S. It is truly an international project and the first of the next generation of large ground-based telescopes.

  2. Small optical telescopes on the moon.

    NASA Technical Reports Server (NTRS)

    Wells, E. H.

    1972-01-01

    Problems associated with the design and operation of efficient lunar-based telescopes are discussed. The various types of reflecting telescopes and catadioptric optical systems developed so far are characterized and compared. Requirements concerning mounting of a telescope on the lunar surface are examined. Properties of materials to be used in manufacturing telescopes for a safe operation in the lunar environment are considered. Finally, the telescope size is dealt with.

  3. The Future of Small Telescopes In The New Millennium. Volume I - Perceptions, Productivities, and Policies

    NASA Astrophysics Data System (ADS)

    Oswalt, T. D.

    2003-06-01

    An invaluable reference for any student, scientist or administrator, using small telescopes for research. An essential collection of data and opinions for those charged with setting scientific and funding priorities. This three-volume set, The Future of Small Telescopes in the New Millennium details the essential roles that small telescopes should play in 21st century science and how their future productivity can be maximized. Over 70 experts from all corners of the international astronomical community have created a definitive reference on the present and future of "big science with small telescopes." Despite highly publicized closures of telescopes smaller than 4-m in aperture at national facilities and their omission from national science priority studies, the oft-lamented demise of the small telescope has been greatly exaggerated. In fact, the future of these workhorses of astronomy will be brighter than ever if creative steps are taken now. This three-volume set defines the essential roles that small telescopes should play in 21st century science and the ways in which a productive future for them can be realized. A wide cross-section of the astronomical community has contributed to a definitive assessment of the present and a vision for the future. Volume 1: Perceptions, Productivities, and Policies Beginning with a summary of recent national scientific priority-setting efforts, Volume 1 examines the public's and the astronomical community's own perceptions of and misconceptions about small telescope productivity. These shape the future scientific research that will be done with telescopes smaller than 4-m in aperture, and the number of astronomers that will have access to them. The Future of Small Telescopes in the New Millennium is a fundamental resource for those looking to undertake new projects with small telescopes, for those that are responsible for their operation, and for those called upon to help set scientific priorities for the coming decade. It

  4. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2011-01-01

    The James Webb Space Telescope (JWST) is a large, infrared-optimized space telescope. JWST's primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. The observatory has a large primary mirror 6.5 meter in diameter, designed to deliver high angular resolution in the infrared, combined with a large collecting area. The telescope optics are designed and fabricated to operate at the cryogenic temperatures (,...,40 k) required for an IR optimized telescope. The primary mirror is also a segmented mirror architecture. The observatory is designed to achieve cryogenic operating temperature via passive cooling, facilitated by a five-layer sunshield which keeps the telescope in the sun's shadow. Since the observatory dimensions exceed the Ariane 5 fairing size, the observatory has to be stowed for launch and deployed following launch. The observatory will be launched into an L2 orbit that provides continuous science operations and a benign thermal environment for optical stability.

  5. Architecture of the FIRST telescope

    NASA Astrophysics Data System (ADS)

    Cohen, Eri J.; Connell, Steven J.; Dodson, Kelly J.; Abbott, Jamie L.; Abusafieh, Abdel A.; Backovsky, Z. F.; Dyer, Jack E.; Escobedo-Torres, Javier; Friedman, Zvi; Hull, Anthony B.; Small, Donald W.; Thorndyke, Phil; Whitmore, Shaun A.

    2000-07-01

    The Far Infrared and Submillimeter Telescope (FIRST), is an ESA cornerstone mission, that will be used for photometry, imaging and spectroscopy in the 80 to 670 micrometer range. NASA, through the Jet Propulsion Laboratory (JPL), will be contributing the telescope and its design to ESA. This paper will discuss the work being done by JPL and Composite Optics, Incorporated (COI), the developer of the primary mirror technology. Optical and mechanical constraints for the telescope have been defined by ESA and evolved from their trade studies. Design drivers are wave front error (10 micrometer rms with a goal of 6 micrometer rms), mass (260 kg), primary mirror diameter (3.5 m) and f number (f/0.5), and the operational temperature (less than 90 K). In response to these requirements a low mass, low coefficient of thermal expansion (CTE) telescope has been designed using carbon fiber reinforced polymer (CFRP). This paper will first present background on the JPL/COI CFRP mirror development efforts. After selection of the material, the next two steps, that are being done in parallel, are to demonstrate that a large CFRP mirror could meet the requirements and to detail the optical, thermal and mechanical design of the telescope.

  6. Space Telescope maintenance and refurbishment

    NASA Technical Reports Server (NTRS)

    Trucks, H. F.

    1983-01-01

    The Space Telescope (ST) represents a new concept regarding spaceborne astronomical observatories. Maintenance crews will be brought to the orbital worksite to make repairs and replace scientific instruments. For major overhauls the telescope can be temporarily returned to earth with the aid of the Shuttle. It will, thus, be possible to conduct astronomical studies with the ST for two decades or more. The five first-generation scientific instruments used with the ST include a wide field/planetary camera, a faint object camera, a faint object spectrograph, a high resolution spectrograph, and a high speed photometer. Attention is given to the optical telescope assembly, the support systems module, aspects of mission and science operations, unscheduled maintenance, contingency orbital maintenance, planned on-orbit maintenance, ground maintenance, ground refurbishment, and ground logistics.

  7. Optical Telescope Design Study Results

    NASA Astrophysics Data System (ADS)

    Livas, J.; Sankar, S.

    2015-05-01

    We report on the results of a study conducted from Nov 2012-Apr 2013 to develop a telescope design for a space-based gravitational wave detector. The telescope is needed for efficient power delivery but since it is directly in the beam path, the design is driven by the requirements for the overall displacement sensitivity of the gravitational wave observatory. Two requirements in particular, optical pathlength stability and scattered light performance, are beyond the usual specifications for good image quality encountered in traditional telescopic systems. An important element of the study was to tap industrial expertise to develop an optimized design that can be reliably manufactured. Key engineering and design trade-offs and the sometimes surprising results will be presented.

  8. Scientific management of Space Telescope

    NASA Technical Reports Server (NTRS)

    Odell, C. R.

    1981-01-01

    A historical summay is given on the science management of the Space Telescope, the inception of which began in 1962, when scientists and engineers first recommended the development of a nearly diffraction limited substantial-size optical telescope. Phase A, the feasibility requirements generation phase, began in 1971 and consisted largely of NASA scientists and a NASA design. Phase B, the preliminary design phase, established a tiered structure of scientists, led by the Large Space Telescope operations and Management Work Group. A Mission Operations Working Group headed six instrument definition teams to develop the essential instrument definitions. Many changes took place during Phase B, before design and development, which began in 1978 and still continues today.

  9. Infrared telescope on Spacelab 2

    NASA Technical Reports Server (NTRS)

    Koch, D.

    1979-01-01

    The infrared telescope (IRT) on Spacelab 2 which will be the first cryogenically cooled telescope operated from the Orbiter is discussed. Its objectives are to measure the induced environment about the Orbiter and to demonstrate the ability to manage a large volume of superfluid helium in space. The prime astrophysical objectives are to map extended sources of low surface brightness infrared emission, including the zodiacal light, the galactic plane, and extragalactic regions. The IRT design is described, including the f/4 15.2 cm highly baffled Herschelian telescope cooled to 8 K which may scan to within 35 deg of the sun. The focal plane cooled to 3 K consists of nine discrete photoconductors covering the wavelength of 4.5-120 microns in five bands, with a single stellar detector used for aspect determination. Overlapping scans, contiguous orbits, and a six degree per second scan rate permit rapid redundant coverage of 60 % of the sky.

  10. Quantum telescope: feasibility and constraints.

    PubMed

    Kurek, A R; Pięta, T; Stebel, T; Pollo, A; Popowicz, A

    2016-03-15

    The quantum telescope is a recent idea aimed at beating the diffraction limit of spaceborne telescopes and possibly other distant target imaging systems. There is no agreement yet on the best setup of such devices, but some configurations have already been proposed. In this Letter we characterize the predicted performance of quantum telescopes and their possible limitations. Our extensive simulations confirm that the presented model of such instruments is feasible and the device can provide considerable gains in the angular resolution of imaging in the UV, optical, and infrared bands. We argue that it is generally possible to construct and manufacture such instruments using the latest or soon to be available technology. We refer to the latest literature to discuss the feasibility of the proposed QT system design. PMID:26977642

  11. ORFEUS-SPAS MAIN TELESCOPE

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In the Multi-Payload Processing Facility (MPPF) at KSC, technicians hoist the orbiting and Retrievable Far and Extreme Ultraviolet Spectrograph-Shuttle Pallet Satellite (ORFEUS-SPAS) II main telescope to a vertical position prior to installing it atop the Astronomy Shuttle Pallet Satellite (ASTRO-SPAS) platform. Two spectrographs share the main telescope: the Extreme Ultraviolet Spectrograph (EUV) provided by the University of California at Berkeley, and the Far Ultraviolet Spectrograph (FUV) designed by German institutions the University of Tubingen and Landessternwarte Heidelberg and built by German company Kayser-Threde. The main telescope has a primary mirror approximately one yard (one meter) in diameter, coated with iridium to improve its light-gathering power in the ultraviolet. During the flight of ORFEUS-SPAS II on Space Shuttle Mission STS- 80, these two spectrographs -- along with a third installed separately on the ASTRO-SPAS -- will gather data about the life cycle of stars.

  12. AKARI: space infrared cooled telescope

    NASA Astrophysics Data System (ADS)

    Onaka, Takashi; Salama, Alberto

    2009-12-01

    AKARI, formerly known as ASTRO-F, is the second Japanese space mission to perform infrared astronomical observations. AKARI was launched on 21 February 2006 (UT) and brought into a sun-synchronous polar orbit at an altitude of 700 km by a JAXA M-V rocket. AKARI has a telescope with a primary-mirror aperture size of 685 mm together with two focal-plane instruments on board: the Infrared Camera (IRC), which covers the spectral range 2-26 μm and the Far-Infrared Surveyor (FIS), which operates in the range 50-180 μm. The telescope mirrors are made of sandwich-type silicon carbide, specially developed for AKARI. The focal-plane instruments and the telescope are cooled by a unique cryogenic system that kept the telescope at 6K for 550 days with 180 l super-fluid liquid Helium (LHe) with the help of mechanical coolers on board. Despite the small telescope size, the cold environment and the state-of-the-art detectors enable very sensitive observations at infrared wavelengths. To take advantage of the characteristics of the sun-synchronous polar orbit, AKARI performed an all-sky survey during the LHe holding period in four far-infrared bands with FIS and two mid-infrared bands with IRC, which surpasses the IRAS survey made in 1983 in sensitivity, spatial resolution, and spectral coverage. AKARI also made over 5,000 pointing observations at given targets in the sky for approximately 10 min each, for deep imaging and spectroscopy from 2 to 180 μm during the LHe holding period. The LHe ran out on 26 August 2007, since which date the telescope and instrument are still kept around 40K by the mechanical cooler on board, and near-infrared imaging and spectroscopic observations with IRC are now being continued in pointing mode.

  13. Formulation development and evaluation of Diltiazem HCl sustained release matrix tablets using HPMC K4M and K100M.

    PubMed

    Qazi, Faaiza; Shoaib, Muhammad Harris; Yousuf, Rabia Ismail; Qazi, Tanveer Mustafa; Mehmood, Zafar Alam; Hasan, S M Farid

    2013-07-01

    The aim of this study was to develop a sustained release hydrophilic matrix tablet of Diltiazem HCl and evaluates the effect of formulation variables (e.g. lubricant, binder, polymer content and viscosity grades of HPMC) on drug release. Twelve different formulations (F1-F12) were prepared by direct compression. The results of the physical parameters and assay were found to be within the acceptable range. Rate of drug release was found to be slow as the fraction of the polymer was increased from 20-50%. The drug release rate from tablets containing K4M was effectively controlled by increasing the talc concentration, whereas the burst effect was reduced by increasing binder content. The drug release was higher with K4M as compare to K100M. Model-dependent and independent methods were used for data analysis and the best results were observed for K4M in Higuchi (R(2)=0.9903-0.9962) and K100M in Baker and Lonsdale (R(2)=0.9779-0.9941). The release mechanism of all formulations was non-Fickian. F7 (50% K4M, 2% talc, 10% Avicel PH101) and F11 (40% K100M) were very close to targeted release profile. F12 (50% K100M) exhibited highest degree of swelling and lowest erosion. The f1 and f2 test were performed taking F11 as a reference formulation. PMID:23811439

  14. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew

    2008-01-01

    The James Webb Space Telescope is being developed by NASA in partnership with the European and Canadian space agencies for launch during 2013. This mission is expected to carry the legacy of discovery of the Hubble Space Telescope through the next decade, and is designed with unique capability to address key questions about formation of the first galaxies after the Big Bang, their subsequelet volution, and the formation of stars and planets within our own galaxy. This talk will present an overview of the mission science objectives and the status of the mission development.

  15. System of reflective telescope baffles

    NASA Astrophysics Data System (ADS)

    Stavroudis, Orestes N.; Foo, Leslie D.

    1994-03-01

    The use of absorbing baffles for blocking scattered light in space-borne telescopes raises a major problem. The absorbed stray light becomes heat, which in the space environment cannot be dissipated by air convection. This is particularly important for those telescopes operating in the IR, because the warm baffles will reradiate at those wavelengths. The conventional solution to this problem is the use of cryogenic cooling. We present here an alternative system of reflective baffles that reflect back out of the entrance aperture a preponderance of the stray light. Some criteria are also presented that will aid in the location and the distribution of the individual vanes.

  16. The network of INTA telescopes

    NASA Astrophysics Data System (ADS)

    Cuesta, L.

    2008-06-01

    The Spanish Instituto Nacional de Técnica Aeroespacial has a network of three telescopes located at some of the best places for astronomy in mainland Spain. The first is at the Observatorio de Calar Alto in Almeria, at an altitude of more than 2100 m. The second is near Calatayud in Zaragoza, at the summit of a 1400-m high mountain. The last is on the campus of the Instituto Nacional de Técnica Aerospatial (INTA), in Madrid. The three telescopes are either 40 or 50 cm in diameter and will be available for communications and educational projects.

  17. New Information about Old Telescopes

    NASA Astrophysics Data System (ADS)

    Van Helden, Albert

    2016-01-01

    It has long been known that the earliest telescopes were primitive, suffering from a number of defects such as spherical and chromatic aberrations, grinding and polishing errors, and poor quality glass. In the last two decades, much new information has been uncovered by the cooperation between historians and scientists. As a result, we now have a much better, and more complete, history of early telescopes, from spectacle lenses and the invention of the instrument to the demise of long-focus non-achromatic refractors and their replacement by reflectors in the eighteenth century. We can begin to quantify the properties of these early instruments, and the results are often surprising.

  18. LISA telescope spacer design investigations

    NASA Astrophysics Data System (ADS)

    Sanjuan, Josep; Mueller, Guido; Livas, Jeffrey; Preston, Alix; Arsenovic, Petar; Castellucci, Kevin; Generie, Joseph; Howard, Joseph; Stebbins, Robin

    The Laser Interferometer Space Antenna (LISA) is a space-based gravitational wave observa-tory with the goal of observing Gravitational Waves (GWs) from astronomical sources in a frequency range from 30 µHz to 0.1 Hz. The detection of GWs at such low frequency requires measurements of distances at the pico-meter level between bodies separated by 5 million kilo-meters. The LISA mission consists of three identical spacecraft (SC) separated by 5 × 106 km forming an equilateral triangle. Each SC contains two optical assemblies and two vacuum en-closures housing one proof mass (PM) in geodesic (free fall) motion each. The two assemblies on one SC are each pointing towards an identical assembly on each of the other two SC to form a non-equal arm interferometer. The measurement of the GW strain is done by measuring the change in the length of the optical path between the PMs of one arm relative to the other arms caused by the pass of a GW. An important element of the Interferometric Measurement System (IMS) is the telescope which, on one hand, gathers the light coming from the far SC (˜100 pW) and, on the other hand, expands and collimates the small outgoing beam ( 1 W) and sends it to the far SC. Due to the very demanding sensitivity requirements care must be taken in the design and validation of the telescope not to degrade the IMS performance. For instance, the diameter of the telescope sets the the shot noise of the IMS and depends critically on the diameter of the primary and the divergence angle of the outgoing beam. As the telescope is rather fast telescope, the divergence angle is a critical function of the overall separation between the primary and secondary. Any long term changes of the distance of more than a a few micro-meter would be detrimental to the LISA mission. Similarly challenging are the requirements on the in-band path-length noise for the telescope which has to be kept below 1 pm Hz-1/2 in the LISA band. Different configurations (on-axis/off axis

  19. The Large Space Telescope program.

    NASA Technical Reports Server (NTRS)

    O'Dell, C. R.

    1972-01-01

    The 1980's should see the establishment of the first major observatory in space. This observatory will contain a long-lifetime reflecting telescope of about 120 inches clear aperture. Advantages of an orbiting telescope include the elimination of astronomical seeing effects and improvements in resolving power. The small images and darker sky will permit low-dispersion spectrographs to avoid more of the contaminating background. The crispness of the images also has potential for very efficient high-dispersion spectroscopy. A further advantage lies in the accessibility of all the sky and nearly around-the-clock observing.

  20. Wide field of view telescope

    DOEpatents

    Ackermann, Mark R.; McGraw, John T.; Zimmer, Peter C.

    2008-01-15

    A wide field of view telescope having two concave and two convex reflective surfaces, each with an aspheric surface contour, has a flat focal plane array. Each of the primary, secondary, tertiary, and quaternary reflective surfaces are rotationally symmetric about the optical axis. The combination of the reflective surfaces results in a wide field of view in the range of approximately 3.8.degree. to approximately 6.5.degree.. The length of the telescope along the optical axis is approximately equal to or less than the diameter of the largest of the reflective surfaces.

  1. Colliding Galaxies: Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    1997-10-01

    NASA's Hubble Space Telescope looks deep within the violent center where the two Antennae Galaxies were merging. The Hubble's high resolution and sensitivity reveals the birth of young star clusters formed in the collision. New Hubble images of young star clusters help investigators put the evolutionary sequence into the right order. The Hubble Space Telescope images are: (1) zoom into the antennae galaxies; (2) galaxy merger evolution sequence; (3) the formation of the antennae pair; and (4) artist's conception of the collision of Milky-Way Galaxy with the Andromeda.

  2. The Future of Small Telescopes In The New Millennium. Volume III - Science in the Shadows of Giants

    NASA Astrophysics Data System (ADS)

    Oswalt, T. D.

    2003-06-01

    An invaluable reference for any student, scientist or administrator, using small telescopes for research. An essential collection of data and opinions for those charged with setting scientific and funding priorities. This three-volume set, The Future of Small Telescopes in the New Millennium details the essential roles that small telescopes should play in 21st century science and how their future productivity can be maximized. Over 70 experts from all corners of the international astronomical community have created a definitive reference on the present and future of "big science with small telescopes." Despite highly publicized closures of telescopes smaller than 4-m in aperture at national facilities and their omission from national science priority studies, the oft-lamented demise of the small telescope has been greatly exaggerated. In fact, the future of these workhorses of astronomy will be brighter than ever if creative steps are taken now. This three-volume set defines the essential roles that small telescopes should play in 21st century science and the ways in which a productive future for them can be realized. A wide cross-section of the astronomical community has contributed to a definitive assessment of the present and a vision for the future. Volume 3: Science in the Shadow of Giants What first-rank science can small telescopes contribute in the coming era of 30-m class giant telescopes? Volume 3 explores a broad selection of scientific initiatives, from planetary astronomy to cosmology, that are ideally suited for small telescopes. The Future of Small Telescopes in the New Millennium is a fundamental resource for those looking to undertake new projects with small telescopes, for those that are responsible for their operation, and for those called upon to help set scientific priorities for the coming decade. It will be useful for the practicing researcher, mountain facility manager, science policy maker, and beginning graduate student. Link: http

  3. High-precision robotic equatorial C-ring telescope mounts: design, fabrication, and performance

    NASA Astrophysics Data System (ADS)

    Dubberley, Matthew A.

    2010-07-01

    The performance of the C-ring telescope mount rivals other designs in stiffness, tracking, simplicity, lack of field rotation, mechanical size and operating envelope. Issues relating to cost, fabrication, and complexity have suppressed the prevalence of the C-ring mount. The Las Cumbres Observatory Global Telescope (LCOGT) robotic C-ring telescope mounts, built for its network of 1.0m and 0.4m telescopes, solve many of these issues. The design yields a scalable mount with performance capabilities well suited for telescopes located at the best astronomical sites in the world at a low cost. Pointing has been demonstrated to be under 7 arc-sec RMS. Unguided tracking performance is 0.6 arc-sec for 1 minute and 2 arc-sec for 15 minutes. Slew speeds of 10deg/sec are reliably used with sub-second settling times. The mount coupled with the 1.0m telescope yields a well damped 16 Hz system. Axes are driven with zero backlash direct drive motors with a 0.01 arc-sec resolution. High system bandwidth yields superb disturbance rejection making it ideal for open air operation. Drive and bearings are maintenance free and feature a novel "bug cover" to seal them from wear and damage. Low costs are achieved with the drive/feedback configuration, structure design, and fabrication techniques, as well minimizing operating and maintenance.

  4. Dynamic analysis of the Green Bank Telescope structure and servo system

    NASA Astrophysics Data System (ADS)

    Ranka, Trupti; Garcia-Sanz, Mario; Symmes, Arthur; Ford, John M.; Weadon, Timothy

    2016-01-01

    The Green Bank Telescope is a 100-m aperture single-dish radio telescope. For high-frequency observations (above 100 GHz), it needs a tracking error below 1.5 arc sec rms. The present system has a tracking error of 1 arc sec rms for very low wind speeds of ≤1 m/s, which increases well above 1.5 arc sec for wind speeds above 4 m/s. Hence, improvements in the servo control system are needed to achieve pointing accuracy goals for high-frequency observations. As a first step toward this goal, it is necessary to evaluate the dynamic response of the present servo system and the telescope, which forms a large flexible structure. We derive the model of the telescope dynamics using finite element analysis data. This model is further tuned and validated using system identification experiments performed on the telescope. A reduced model is developed for controller design by using modes with the highest Hankel singular value for frequencies up to 2 Hz. We quantify the uncertainty in azimuth axis dynamics with a change in elevation angle by varying the zeros of the model. We discuss the effects of transient response, wind disturbances, and azimuth track joint disturbances on telescope tracking performance.

  5. Development of Large-Aperture, Light-Weight Fresnel Lenses for Gossamer Space Telescopes

    SciTech Connect

    Sham, D; Hyde, R; Weisberg, A; Early, J; Rushford, M; Britten, J

    2002-04-29

    In order to examine more distant astronomical objects, with higher resolution, future space telescopes require objectives with significantly larger aperture than presently available. NASA has identified a progression in size from the 2.4m aperture objective currently used in the HUBBLE space telescope[l,2], to 25m and greater in order to observe, e.g., extra-solar planets. Since weight is a crucial factor for any object sent into space, the relative weight of large optics over a given area must be reduced[3]. The areal mass density of the primary mirror for the Hubble space telescope is {approx}200 kg/m{sup 2}. This is expected to be reduced to around 15 kg/m{sup 2} for the successor to Hubble--the next generation space telescope (NGST)[4]. For future very large aperture telescopes needed for extra-solar planet detection, the areal mass density must be reduced even further. For example, the areal mass density goal for the Gossamer space telescopes is < 1 kg/m{sup 2}. The production of lightweight focusing optics at >10m size is also an enabling technology for many other applications such as Earth observation, power beaming, and optical communications.

  6. Zero CTE Glass in the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Wood, H. John

    2008-01-01

    Orbiting high above the turbulence of the Earth's atmosphere, the Hubble Space Telescope (HST) has provided breathtaking views of astronomical objects never before seen in such detail. The steady diffraction-limited images allow this medium-size telescope to reach faint galaxies fainter than 30th stellar magnitude. Some of these galaxies are seen as early as 2 billion years after the Big Bang in a 13.7 billion year old universe. Up until recently, astronomers assumed that all of the laws of physics and astronomy applied back then as they do today. Now, using the discovery that certain supernovae are "standard candles," astronomers have found that the universe is expanding faster today than it was back then: the universe is accelerating in its expansion. The Hubble Space Telescope is a two-mirror Ritchey-Chretien telescope of 2.4m aperture in low earth orbit. The mirrors are made of Ultra Low Expansion (ULE) glass by Corning Glass Works. This material allows rapid figuring and outstanding performance in space astronomy applications. The paper describes how the primary mirror was mis-figured in manufacturing and later corrected in orbit. Outstanding astronomical images taken over the last 17 years show how the application of this new technology has advanced our knowledge of the universe. Not only has the acceleration of the expansion been discovered, the excellent imaging capability of HST has allowed gravitational lensing to become a tool to study the distribution of dark matter and dark energy in distant clusters of galaxies. The HST has touched practically every field of astronomy enabling astronomers to solve many long-standing puzzles. It will be a long time until the end of the universe when the density is near zero and all of the stars have long since evaporated. It is remarkable that humankind has found the technology and developed the ability to interpret the measurements in order to understand this dramatic age we live in.

  7. A NEW REDUCTION OF THE BLANCO COSMOLOGY SURVEY: AN OPTICALLY SELECTED GALAXY CLUSTER CATALOG AND A PUBLIC RELEASE OF OPTICAL DATA PRODUCTS

    SciTech Connect

    Bleem, L. E.; Stalder, B.; Brodwin, M.; Busha, M. T.; Wechsler, R. H.; Gladders, M. D.; High, F. W.; Rest, A.

    2015-01-01

    The Blanco Cosmology Survey is a four-band (griz) optical-imaging survey of ∼80 deg{sup 2} of the southern sky. The survey consists of two fields centered approximately at (R.A., decl.) = (23{sup h}, –55°) and (5{sup h}30{sup m}, –53°) with imaging sufficient for the detection of L {sub *} galaxies at redshift z ≤ 1. In this paper, we present our reduction of the survey data and describe a new technique for the separation of stars and galaxies. We search the calibrated source catalogs for galaxy clusters at z ≤ 0.75 by identifying spatial over-densities of red-sequence galaxies and report the coordinates, redshifts, and optical richnesses, λ, for 764 galaxy clusters at z ≤ 0.75. This sample, >85% of which are new discoveries, has a median redshift of z = 0.52 and median richness λ(0.4 L {sub *}) = 16.4. Accompanying this paper we also release full survey data products including reduced images and calibrated source catalogs. These products are available at http://data.rcc.uchicago.edu/dataset/blanco-cosmology-survey.

  8. Provenance of the Eocene Soebi Blanco formation, Bonaire, Leeward Antilles: Correlations with post-Eocene tectonic evolution of northern South America

    NASA Astrophysics Data System (ADS)

    Zapata, S.; Cardona, A.; Montes, C.; Valencia, V.; Vervoort, J.; Reiners, P.

    2014-07-01

    Middle to upper Eocene fluvial strata in the island of Bonaire contain detrital components that were tracked to Precambrian to Triassic massifs in northern Colombia and Venezuela. These detrital components confirm previous hypothesis suggesting that Bonaire and the Leeward Antilles were attached to South American basement massifs (SABM). These are composed of different fragmented South American blocks (Paraguana, Falcon, Maracaibo, Guajira, Perija, and Santa Marta) representing an Eocene, right-laterally displaced tectonic piercing point along the southern Caribbean plate margin. U-Pb LA-ICP-MS from the metamorphic boulders of the Soebi Blanco Formation in Bonaire yield Grenvillian peaks ages (1000-1200 Ma), while detrital zircons recovered from the sandy matrix of the conglomerates contain populations with peaks of 1000 Ma-1200 Ma, 750-950 Ma, and 200-300 Ma. These populations match with geochronological data reported for the northern South American massifs. Thermochronological results from the metamorphic clasts yield Paleocene-middle Eocene ages (65-50 Ma) that confirm a regional-scale cooling event in this time. These data imply a land connection between the SABM and the Leeward Antilles in late Eocene times, followed by a significant strike slip right-lateral displacement and transtensional basin opening starting in latest Eocene times. The succession of Eocene tectonic events recorded by the Soebi Blanco Formation and adjacent basins is a major tracer of the oblique convergence of the Caribbean plate against the South American margin.

  9. ZERODUR mirror substrates for solar telescopes

    NASA Astrophysics Data System (ADS)

    Döhring, T.; Jedamzik, R.; Hartmann, P.

    The zero-expansion glass ceramic material, ZERODUR, is well known for nighttime telescope mirror substrates. Also for solar telescopes, ZERODUR is often selected as mirror blank material. Examples are the Swedish 1m Solar Telescope (SST), the balloon-born telescope SUNRISE, and the New Solar Telescope (NST) of the Big Bear Solar Observatory. The properties of ZERODUR are discussed with respect to the special technical requirements of solar observatories, resulting in the conclusion that mirrors made of this glass ceramic material are an excellent choice for solar telescopes.

  10. The Advanced Technology Large Aperture Space Telescope (ATLAST): Science Drivers and Technology Developments

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Brown, Tom; Sembach, Kenneth; Giavalisco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Stahl, H. Phillip; Tumlinson, Jason; Mountain, Matt; Soummer, Remi; Hyde, Tupper

    2011-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8-meter to 16-meter UVOIR space observatory for launch in the 2025-2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including "Is there life elsewhere in the Galaxy?" We present a range of science drivers and the resulting performance requirements for ATLAST (8 to 16 milliarcsecond angular resolution, diffraction limited imaging at 0.5 m wavelength, minimum collecting area of 45 square meters, high sensitivity to light wavelengths from 0.1 m to 2.4 m, high stability in wavefront sensing and control). We also discuss the priorities for technology development needed to enable the construction of ATLAST for a cost that is comparable to current generation observatory-class space missions. Keywords: Advanced Technology Large-Aperture Space Telescope (ATLAST); ultraviolet/optical space telescopes; astrophysics; astrobiology; technology development.

  11. The Visible and Infrared Survey Telescope for Astronomy (VISTA): Design, technical overview, and performance

    NASA Astrophysics Data System (ADS)

    Sutherland, Will; Emerson, Jim; Dalton, Gavin; Atad-Ettedgui, Eli; Beard, Steven; Bennett, Richard; Bezawada, Naidu; Born, Andrew; Caldwell, Martin; Clark, Paul; Craig, Simon; Henry, David; Jeffers, Paul; Little, Bryan; McPherson, Alistair; Murray, John; Stewart, Malcolm; Stobie, Brian; Terrett, David; Ward, Kim; Whalley, Martin; Woodhouse, Guy

    2015-03-01

    The Visible and Infrared Survey Telescope for Astronomy (VISTA) is the 4-m wide-field survey telescope at ESO's Paranal Observatory, equipped with the world's largest near-infrared imaging camera (VISTA IR Camera, VIRCAM), with 1.65 degree diameter field of view, and 67 Mpixels giving 0.6 deg2 active pixel area, operating at wavelengths 0.8-2.3 μm. We provide a short history of the project, and an overview of the technical details of the full system including the optical design, mirrors, telescope structure, IR camera, active optics, enclosure and software. The system includes several innovative design features such as the f/1 primary mirror, thedichroic cold-baffle camera design and the sophisticated wavefront sensing system delivering closed-loop 5-axis alignment of the secondary mirror. We conclude with a summary of the delivered performance, and a short overview of the six ESO public surveys in progress on VISTA.

  12. A spectral identification technique for adaptive attitude control and pointing of the Space Telescope

    NASA Technical Reports Server (NTRS)

    Teuber, D. L.

    1976-01-01

    The Space Telescope is a 2.4 m class aperture optical telescope having near-diffraction-limited performance. It will be placed into earth orbit by 1980 via the Space Shuttle. The problem considered is how to achieve negligible degradation of the astronomy imaging capability (to 0.005 arc second) due to smearing by pointing motions during observations. Initially, pointing instability sources were identified and a linear stability was used to assess the magnitude of elastic body modes and to design control system compensation regions necessary for subsequent adaptive control. A spectral identification technique for this adaptive attitude control and pointing has been investigated that will alleviate requirements for comprehensive dynamic ground testing. Typical all-digital simulation results describing motions of the telescope line of sight are presented.

  13. The 1.6 m off-axis New Solar Telescope (NST) in Big Bear

    NASA Astrophysics Data System (ADS)

    Goode, Philip R.; Cao, Wenda

    2012-09-01

    The 1.6-m New Solar Telescope (NST) has been used to observe the Sun for more than three years with ever increasing capabilities as its commissioning phase winds down. The NST is the first facility-class solar telescope built in the U.S. in a generation, and it has an off-axis design as is planned for the 4 m Advanced Technology Solar Telescope. Lessons learned will be discussed. Current NST post-focus instrumentation includes adaptive optics (AO) feeding photometric and near-IR polarimetric sytems, as well as an imaging spectrograph. On-going instrumentation projects will be sketched, including Multi-Conjugate AO (MCAO), next generation (dual Fabry- Perot) visible light and near-IR polarimeters and a fully cryogenic spectrograph. Finally, recent observational results illustrating the high resolution capabilities of the NST will be shown.

  14. Co-Phasing the Large Binocular Telescope:. [Status and Performance of LBTI-PHASECam

    NASA Technical Reports Server (NTRS)

    Defrere, D.; Hinz, P.; Downey, E.; Ashby, D.; Bailey, V.; Brusa, G.; Christou, J.; Danchi, W. C.; Grenz, P.; Hill, J. M.; Hoffmann, W. F.; Leisenring, J.; Lozi, J.; McMahon, T.; Mennesson, B.; Millan-Gabet, R.; Montoya, M.; Powell, K.; Skemer, A.; Vaitheeswaran, V.; Vaz, A.; Veillet, C.

    2014-01-01

    The Large Binocular Telescope Interferometer is a NASA-funded nulling and imaging instrument designed to coherently combine the two 8.4-m primary mirrors of the LBT for high-sensitivity, high-contrast, and high-resolution infrared imaging (1.5-13 micrometer). PHASECam is LBTI's near-infrared camera used to measure tip-tilt and phase variations between the two AO-corrected apertures and provide high-angular resolution observations. We report on the status of the system and describe its on-sky performance measured during the first semester of 2014. With a spatial resolution equivalent to that of a 22.8-meter telescope and the light-gathering power of single 11.8-meter mirror, the co-phased LBT can be considered to be a forerunner of the next-generation extremely large telescopes (ELT).

  15. Fermi's Large Area Telescope (LAT)

    NASA Video Gallery

    Fermi’s Large Area Telescope (LAT) is the spacecraft’s main scientificinstrument. This animation shows a gamma ray (purple) entering the LAT,where it is converted into an electron (red) and a...

  16. Hubble Space Telescope Solar Array

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This is a view of a solar cell blanket deployed on a water table during the Solar Array deployment test. The Hubble Space Telescope (HST) Solar Arrays provide power to the spacecraft. The arrays are mounted on opposite sides of the HST, on the forward shell of the Support Systems Module. Each array stands on a 4-foot mast that supports a retractable wing of solar panels 40-feet (12.1-meters) long and 8.2-feet (2.5-meters) wide, in full extension. The arrays rotate so that the solar cells face the Sun as much as possible to harness the Sun's energy. The Space Telescope Operations Control Center at the Goddard Space Center operates the array, extending the panels and maneuvering the spacecraft to focus maximum sunlight on the arrays. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST Solar Array was designed by the European Space Agency and built by British Aerospace. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST.

  17. LSST telescope integration and tests

    NASA Astrophysics Data System (ADS)

    Sebag, Jacques; Gressler, William; Neill, Doug; Barr, Jeff; Claver, Chuck; Andrew, John

    2014-07-01

    The Large Synoptic Survey Telescope (LSST) Telescope integration and test plan is phased to ensure that subsystems and services are available to support the integration flow. It begins with the summit facility construction and shows how the major subsystems feed into the activities through final testing. In order to minimize the amount of hardware mated for the first time during that period, the approach is to favor all hardware mated and pre-tested at vendors' facilities with associated hardware and software prior to delivery onsite. The integration and test plan exploits the diffraction limited on-axis image quality of the three-mirror design. In addition, fiducials will be used during optical acceptance testing at vendors' facilities to capture the optical axis geometry of each optical element. These fiducials will be used during the integration and tests sequence to facilitate the telescope optical alignment. In this paper, we describe the major steps of the LSST telescope integration and test sequence prior to the start of commissioning with the science camera.

  18. Conically Scanned Holographic LIDAR Telescope

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary

    1993-01-01

    Holographic LIDAR telescope includes holographic disk, rotation of which sweeps collimated, monochromatic beam of light from laser through conical scan. Holographic disk diffracts light scattered back from target volume or area to focal point located at stationary photomultiplier detector. Two conical baffles prevent stray light from reaching detector.

  19. Push-To Telescope Mathematics

    ERIC Educational Resources Information Center

    Teets, Donald

    2012-01-01

    Two coordinate systems are related here, one defined by the earth's equator and north pole, the other by the orientation of a telescope at some location on the surface of the earth. Applying an interesting though somewhat obscure property of orthogonal matrices and using the cross-product simplifies this relationship, revealing that a surprisingly…

  20. MACE telescope : Servo design aspects

    NASA Astrophysics Data System (ADS)

    Mayya, Y. S.; Srivastava, G. P.; Koul, R.

    2002-03-01

    The design parameters of the servo system for the MACE imaging Cerenkov telescope, based on functional, performance, operational and safety requirements of the system are briefly discussed. The servo system is designed around electronically commutated motors using fully digital controllers, pc-compatible hardware and software and ethernet connectivity for remote monitoring and control.

  1. NEAT: A Microarcsec Astrometric Telescope

    NASA Technical Reports Server (NTRS)

    Shao, M.; Nemati, B.; Zhai, C.; Goullioud, R.

    2011-01-01

    NEAT, Nearby Exo-Earth Astrometric Telescope is a medium-small telescope (is) approximately 1m in diameter that is designed to make ultra precise (is) less than 1 uas (microarcsec) astrometric measurements of nearby stars in a (is) approximately 1hr observation. Four major error sources prevent normal space telescopes from obtaining accuracies close to 1 uas. Even with a small 1m telescope, photon noise is usually not a problem for the bright nearby target stars. But in general, the reference stars are much fainter. Typically a field of view of (is) approximately 0.5 deg dia is needed to obtain enough bright reference stars. The NEAT concept uses a very simple but unusual design to avoid optically induced astrometric errors. The third source of error is the accuracy and stability of the focal plane. A 1uas error over a (is) approximately 2000 arcsec field of view implies the focal plane is accurate or at least stable to 5 parts in 10(exp 10) over the lifetime of the mission ( (is) approximately 5yrs). The 4th class of error has to do with our knowledge of the PSF and how that PSF is sampled by an imperfect detector. A Nyquist sampled focal plane would have (is) greater than 2 pixels per lambda/D, and centroiding to 1uas means centroiding to 10-5 pixels. This paper describes the mission concept, and an overview of the technology needed to perform 1uas astrometry with a small telescope, and how we overcome problems 1 and 2. A companion paper will describe the technical progress we've made in solving problems 3 and 4.

  2. NEAT: A Microarcsec Astrometric Telescope

    NASA Technical Reports Server (NTRS)

    Shao, M.; Nemati, B.; Zhai, C.

    2011-01-01

    NEAT, Nearby Exo-Earth Astrometric Telescope is a medium-small telescope 1m in diameter that is designed to make ultra precise < 1 uas (microarcsec) astrometric measurements of nearby stars in a 1hr observation. Four major error sources prevent normal space telescopes from obtaining accuracies close to 1 uas. Even with a small 1m telescope, photon noise is usually not a problem for the bright nearby target stars. But in general, the reference stars are much fainter. Typically a field of view of 0.5 deg dia is needed to obtain enough bright reference stars. The NEAT concept uses a very simple but unusual design to avoid optically induced astrometric errors. The third source of error is the accuracy and stability of the focal plane. A 1uas error over a 2000 arcsec field of view implies the focal plane is accurate or at least stable to 5 parts in 1010 over the lifetime of the mission (5yrs). The 4th class of error has to do with our knowledge of the PSF and how that PSF is sampled by an imperfect detector. A Nyquist sampled focal plane would have > 2 pixels per ?/D, and centroiding to 1uas means centroiding to 10-5 pixels. This paper describes the mission concept, and an overview of the technology needed to perform 1uas astrometry with a small telescope, and how we overcome problems 1 and 2. A companion paper will describe the technical progress we've made in solving problems 3 and 4.

  3. FORCAST Camera Installed on SOFIA Telescope

    NASA Video Gallery

    Cornell University's Faint Object Infrared Camera for the SOFIA Telescope, or FORCAST, being installed on the Stratospheric Observatory for Infrared Astronomy's 2.5-meter telescope in preparation f...

  4. Rangefinder Metrology for the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Goldman, M. A.; Creager, R. E.; Parker, D. H.; Payne, J. A.

    A scanning laser rangefinder metrology system for the 100 meter Green Bank Telescope is described. Use of this system for correction of the primary reflector's shape and pointing of the telescope is described.

  5. Recent Results from the MAGIC Telescope

    SciTech Connect

    Bock, Rudolf K.

    2005-02-21

    Some recent results are shown, obtained during the commissioning period of the MAGIC telescope. They demonstrate that the telescope is now approaching a performance level suitable for physics observations.

  6. Galileo, telescopic astronomy, and the Copernican system.

    NASA Astrophysics Data System (ADS)

    van Helden, A.

    Contents: 1. Introduction. 2. Telescopic discoveries. 3. Sunspots, Copernicanism, and theology. 4. The decree of 1616. 5. The Dialogue. 6. The trial of Galileo. 7. The aftermath of the trial. 8. Telescopic astronomy after Galileo.

  7. Telescope protection algorithm for the Space Infrared Telescope Facility

    NASA Astrophysics Data System (ADS)

    Class, B. F.; Welch, R. V.; Wiltsee, C.

    1988-01-01

    This paper presents a proposed on-board Telescope Protection Algorithm (TPA) for the Space Infrared Telescope Facility (SIRTF). This TPA consists of hardware and software capable of performing both fail-operational and fail-safe modes of operation. In the fail-operational mode, each ephemeris load and slew/dwell command sequence is checked on-board before use. The slew command monitor detects unallowable slew/dwell commands and transfers control to an algorithm which slews to and maintains a safe telescope orientation while preserving precise attitude determination and control. This fail-operational mode is also given the authority to autonomously restart the slew/dwell sequence at a point beyond the faulty command. The fail-safe system consists of software and hardware which detects impending earth, moon, or sun avoidance zone violations and activates a backup hardware safe hold mode. The subject TPA and relevant sensor complement were designed for the SIRTF mission; however, this system can easily be used as a basis for failure detection and correction in a wide range of other missions.

  8. Splice junctions in adenovirus 2 early region 4 mRNAs: multiple splice sites produce 18 to 24 RNAs.

    PubMed Central

    Tigges, M A; Raskas, H J

    1984-01-01

    We localized the splice junctions in adenovirus 2 early region 4 (E4) mRNAs. Processing of the E4 precursor RNA positioned the donor splice site of the 5' leader sequence adjacent to acceptor sites near the 5' ends of five of the six open reading regions in the E4 transcription unit. Of particular interest among the E4 mRNAs is an extensively spliced class which includes multiple species with sizes ranging from 1.1 to 0.75 kilobases (kb). Purified 1.1- to 0.75-kb mRNAs specified at least 10 polypeptides in vitro. We detected eight acceptor and two donor splice sites utilized in the deletion of the intron from the 3' portion of these mRNAs. E4 RNAs were isolated from the cytoplasm of infected cells at 5, 9, 12, and 18 h after infection. The E4 mRNAs were present throughout infection, but different members of the 1.1- to 0.7-kb class were predominant at each time assayed. Alternate splicing of the 3.0-kb E4 precursor RNA can generate as many as 25 mRNAs that encode at least 16 polypeptides. Images PMID:6336328

  9. The Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Bely, Pierre-Yves (Editor); Burrows,, Christopher J. (Editor); Illingworth,, Garth D.

    1989-01-01

    In Space Science in the Twenty-First Century, the Space Science Board of the National Research Council identified high-resolution-interferometry and high-throughput instruments as the imperative new initiatives for NASA in astronomy for the two decades spanning 1995 to 2015. In the optical range, the study recommended an 8 to 16-meter space telescope, destined to be the successor of the Hubble Space Telescope (HST), and to complement the ground-based 8 to 10-meter-class telescopes presently under construction. It might seem too early to start planning for a successor to HST. In fact, we are late. The lead time for such major missions is typically 25 years, and HST has been in the making even longer with its inception dating back to the early 1960s. The maturity of space technology and a more substantial technological base may lead to a shorter time scale for the development of the Next Generation Space Telescope (NGST). Optimistically, one could therefore anticipate that NGST be flown as early as 2010. On the other hand, the planned lifetime of HST is 15 years. So, even under the best circumstances, there will be a five year gap between the end of HST and the start of NGST. The purpose of this first workshop dedicated to NGST was to survey its scientific potential and technical challenges. The three-day meeting brought together 130 astronomers and engineers from government, industry and universities. Participants explored the technologies needed for building and operating the observatory, reviewed the current status and future prospects for astronomical instrumentation, and discussed the launch and space support capabilities likely to be available in the next decade. To focus discussion, the invited speakers were asked to base their presentations on two nominal concepts, a 10-meter telescope in space in high earth orbit, and a 16-meter telescope on the moon. The workshop closed with a panel discussion focused mainly on the scientific case, siting, and the

  10. Technologies for producing segments for extremely large telescopes

    NASA Astrophysics Data System (ADS)

    Walker, D.; Atkins, C.; Baker, I.; Evans, R.; Hamidi, S.; Harris, P.; Li, H.; Messelink, W.; Mitchell, J.; Parry-Jones, M.; Rees, P.; Yu, G.

    2011-09-01

    We describe progress on a novel process-chain being used to produce eight 1.4m hexagonal segments as prototypes for the European Extremely Large Telescope - a Master Spherical Segment as a reference, and seven aspheric segments. A new pilot plant integrates a bespoke full-aperture test-tower designed and built by OpTIC Glyndwr, with a Zeeko 1.6m polishing machine. The process chain starts with aspherising hexagonal segments on the Cranfield BoX™ grinder, followed by smoothing, corrective-polishing and edge-rectification using the Zeeko CNC platform. The paper describes the technology and progress, and anticipates how the process-chain is expected to evolve through the seven segments to increase both process-speed and surface-quality.

  11. 2m class telescope project at Lijiang

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Wang, Jian-Cheng; Xu, Jun; Zhang, Bai-Rong; Luo, Guo-Quan; Liu, Zhong; Tan, Hui-Song

    Supported by the ministry of science and technology, government of Yunnan Province and Chinese Academy of Sciences, a 2m class telescope project was granted. In this paper, we will first review the site, Gaomeigu, briefly, then give the details of 2m class telescope project, and finally discuss the future plans of this new telescope.

  12. Wide-Angle, Flat-Field Telescope

    NASA Technical Reports Server (NTRS)

    Hallam, K. L.; Howell, B. J.; Wilson, M. E.

    1987-01-01

    All-reflective system unvignetted. Wide-angle telescope uses unobstructed reflecting elements to produce flat image. No refracting elements, no chromatic aberration, and telescope operates over spectral range from infrared to far ultraviolet. Telescope used with such image detectors as photographic firm, vidicons, and solid-state image arrays.

  13. World atlas of large optical telescopes

    NASA Technical Reports Server (NTRS)

    Meszaros, S. P.

    1979-01-01

    By 1980 there will be approximately 100 large optical telescopes in the world with mirror or lens diameters of one meter (39 inches) and larger. This atlas gives information on these telescopes and shows their locations on continent-sized maps. Observatory locations considered suitable for the construction of future large telescopes are also shown.

  14. The Hubble Space Telescope: Problems and Solutions.

    ERIC Educational Resources Information Center

    Villard, Ray

    1990-01-01

    Presented is the best understanding of the flaw discovered in the optics of the Hubble Space Telescope and the possible solutions to the problems. The spherical aberration in the telescope's mirror and its effect on the quality of the telescope's imaging ability is discussed. (CW)

  15. The Optimal Gravitational Lens Telescope

    NASA Astrophysics Data System (ADS)

    Surdej, J.; Delacroix, C.; Coleman, P.; Dominik, M.; Habraken, S.; Hanot, C.; Le Coroller, H.; Mawet, D.; Quintana, H.; Sadibekova, T.; Sluse, D.

    2010-05-01

    Given an observed gravitational lens mirage produced by a foreground deflector (cf. galaxy, quasar, cluster, ...), it is possible via numerical lens inversion to retrieve the real source image, taking full advantage of the magnifying power of the cosmic lens. This has been achieved in the past for several remarkable gravitational lens systems. Instead, we propose here to invert an observed multiply imaged source directly at the telescope using an ad hoc optical instrument which is described in the present paper. Compared to the previous method, this should allow one to detect fainter source features as well as to use such an optimal gravitational lens telescope to explore even fainter objects located behind and near the lens. Laboratory and numerical experiments illustrate this new approach.

  16. Workshop on Mars Telescopic Observations

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III (Editor); Moersch, J. E. (Editor)

    1995-01-01

    The Mars Telescopic Observations Workshop, held August 14-15, 1995, at Cornell University in Ithaca, New York, was organized and planned with two primary goals in mind: The first goal was to facilitate discussions among and between amateur and professional observers and to create a workshop environment fostering collaborations and comparisons within the Mars observing community. The second goal was to explore the role of continuing telescopic observations of Mars in the upcoming era of increased spacecraft exploration. The 24 papers presented at the workshop described the current NASA plans for Mars exploration over the next decade, current and recent Mars research being performed by professional astronomers, and current and past Mars observations being performed by amateur observers and observing associations. The workshop was divided into short topical sessions concentrating on programmatic overviews, groundbased support of upcoming spacecraft experiments, atmospheric observations, surface observations, modeling and numerical studies, and contributions from amateur astronomers.

  17. THE OPTIMAL GRAVITATIONAL LENS TELESCOPE

    SciTech Connect

    Surdej, J.; Hanot, C.; Sadibekova, T.; Delacroix, C.; Habraken, S.; Coleman, P.; Dominik, M.; Le Coroller, H.; Mawet, D.; Quintana, H.; Sluse, D.

    2010-05-15

    Given an observed gravitational lens mirage produced by a foreground deflector (cf. galaxy, quasar, cluster, ...), it is possible via numerical lens inversion to retrieve the real source image, taking full advantage of the magnifying power of the cosmic lens. This has been achieved in the past for several remarkable gravitational lens systems. Instead, we propose here to invert an observed multiply imaged source directly at the telescope using an ad hoc optical instrument which is described in the present paper. Compared to the previous method, this should allow one to detect fainter source features as well as to use such an optimal gravitational lens telescope to explore even fainter objects located behind and near the lens. Laboratory and numerical experiments illustrate this new approach.

  18. Focusing X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab; Juda, Michael; Kolodziejczak, Jeffrey; Murray, Stephen; Petre, Robert; Podgorski, William; Ramsey, Brian; Reid, Paul; Saha, Timo; Wolk, Scott; Troller-McKinstry, Susan; Weisskopf, Martin; Wilke, Rudeger; Zhang, William

    2010-01-01

    During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  19. Hubble Space Telescope Servicing begins.

    NASA Astrophysics Data System (ADS)

    1993-12-01

    The day's work began when astronauts Story Musgrave and Jeff Hoffman stepped out into the cargo bay at 9h41 pm CST, Saturday (4h41 am CET, Sunday). They immediately set to work replacing two gyroscope assemblies, known as the Rate Sensor Units, two associated electronics boxes, called Electronic Control Units, and eight electrical fuse plugs. The work was completed ahead of schedule, but the astronauts had trouble closing the doors of the compartment housing the gyros and took over an hour to get them shut. The astronauts also prepared equipment for the replacement of the solar arrays. "The feeling down here is one of great satisfaction for a tremendous job today" said spacecraft communicator Greg Harbaugh in mission control. "We are very proud of the work that you all did and we are very confident in the continued success of the mission. Everything is going great and tomorrow is going to be another great day". ESA astronaut Claude Nicollier played a vital role during the spacewalk moving the astronauts and their equipment around the cargo bay with the shuttle's robot arm. The Hubble Space Telescope servicing mission features more robot arm operations than any other shuttle flight. The telescope's left-hand solar array was rolled up successfully at 6h24 am CST (1h24 pm CET). The 11-tonne observatory was rotated 180 degrees on its turntable before commands were sent to retract the second array at 8h23 am CST (3h23 pm CET). The crew stopped the retraction when it appeared the system may have jammed. Mission control instructed the crew to jettison the array, a procedure that they have trained for. Tomorrow astronauts Kathy Thornton and Tom Akers will make a six-hour spacewalk to jettison the troublesome wing, store the other in the cargo bay, and install two new panels supplied by ESA. The second set of arrays feature thermal shields and a modified thermal compensation system to prevent the flexing that affected the first pair. The Hubble Space Telescope was plucked

  20. Mineralized and Barren Tourmaline Breccia at Río Blanco-Los Bronces Copper Deposit, Central Chile

    NASA Astrophysics Data System (ADS)

    Hohf, Michael; Seifert, Thomas; Ratschbacher, Lothar; Rabbia, Osvaldo; Krause, Joachim; Haser, Sabine; Cuadra, Patricio

    2014-05-01

    The Río Blanco-Los Bronces porphyry copper-molybdenum cluster (14.8-4.3 Ma) in central Chile is one of the largest mining districts of the world with more than 200 Mt of contained Cu; almost 30% of these resources are hosted by hydrothermal breccias. These breccia complexes are tourmaline-, biotite-, chlorite-, or iron oxide-cemented and are widespread in the Paleo-Eocene and Mio-Pliocene porphyry Cu-Mo belt of the central Andes. The ongoing research project aims to understand the time-space relationships between the different breccia bodies and the multiple porphyry intrusions. For this, two cross sections in the southern part of the deposit (Sur-Sur and La Americana areas) are studied. Most interesting from the economic/genetic point of view is the intermineral breccia (tourmaline- and biotite-cemented), which have high copper grades. It is under debate whether there is a vertical mineralogical zonation of the cement of the breccia body from tourmaline-rich at the top to biotite-dominated at the bottom, or there are two superimposed breccia formation events. Textural and mineralogical observations of benches- and tunnels-outcrops, drill cores, and polished-thin sections support the first hypothesis. Our work has been focused on tourmaline chemistry due to its high resistance to alteration and weathering, which allows this mineral to retain its original isotopic signature. Preliminary results of 127 microprobe measurements of tourmaline chemistry from the early mineralized breccia (BXT) and the late barren one (BXTTO) show that all the tourmalines belong to the alkali group and the composition ranges between the dravite-schorl end members. There is a pronounced negative correlation between Fe (ferric?) and Al, probably due to exchange at the Z octahedral position. The backscatter images of tourmaline show oscillatory and sector zonings, i.e., alternating light bands/zones (high CaO, FeO, Na2O) and darker ones (enriched in Al2O3 and MgO). There is no significant

  1. NRO 10-m submillimeter telescope

    NASA Astrophysics Data System (ADS)

    Ukita, Nobuharu; Kawabe, Ryohei; Ishiguro, Masato; Ezawa, Hajime; Sekimoto, Yutaro; Hasegawa, Tatsuo; Yamamoto, Satoshi; Miyawaki, Keizo; Matsumoto, Soichi

    2000-07-01

    A 10-m submillimeter telescope designed for interferometric observations at bands from 3 to 0.3 mm has constructed at Nobeyama Radio Observatory. The telescope is an engineering model for a large millimeter and sub-millimeter array, and will be operated for developments of sub-millimeter observation techniques at a remote site. We have fabricated lightweight machined aluminum panels (15 kg m-2) that have a surface accuracy of 5 micrometer rms. They have a typical size of 0.8 m X 0.6 m, and are supported with three motorized screws. The back-up structure is constructed of a central hub of low thermal expansion alloy, and CFRP honeycomb boards and tubes. Holography measurements will be made with a nearby transmitter at 3 mm. The overall surface accuracy is expected to be < 25 micrometer rms; the goal being 17 micrometer rms. We have achieved an accuracy of 0.03' rms for angle encoders. The drive and control system is designed to achieve a pointing error of 1'.0 rms with no wind and at night. Under a wind velocity of 7 m s-1, the pointing error increases to 2'.0 rms. An optical telescope of 10-cm diameter mounted on the center hub will be used to characterize pointing and tracking accuracy. Thermal effects on the pointing and surface accuracy will be investigated using temperature measurements and FEM analyses. The fast position switching capability is also demanded to cancel atmospheric fluctuations. The antenna is able to drive both axes at a maximum velocity of 3 deg s-2 with a maximum acceleration of 6 deg. s-2. The telescope is currently equipped with SIS receivers for 100, 150, 230, and 345 GHz and a continuum backend and an FX-type digital autocorrelator with an instantaneous bandwidth of 512 MHz and 1024 channel outputs.

  2. Space infrared telescope facility project

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    1988-01-01

    The functions undertaken during this reporting period were: to inform the planetary science community of the progress and status of the Space Infrared Telescope Facility (SIRTF) Project; to solicit input from the planetary science community on needs and requirements of planetary science in the use of SIRTF at such time that it becomes an operational facility; and a white paper was prepared on the use of the SIRTF for solar system studies.

  3. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes, and is currently the largest scientific project under construction in the United States. It will be a large (6.6m) cold (50K) telescope launched into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. Science with the James Webb Space Telescope falls into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will conclude the talk with a description of recent technical progress in the construction of the observatory.

  4. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes, and is currently the largest scientific project under construction in the United States. It will be a large (6.6m) cold (50K) telescope launched in about 5 years into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. Science with the James Webb Space Telescope falls into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Proto planetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will conclude the talk with a description of recent technical progress in the construction of the observatory.

  5. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes, and is currently the largest scientific project under construction in the United States. It will be a large (6.6m) cold (50K) telescope launched in about 5 years into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. Science with the James Webb Space Telescope falls into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will conclude the talk with a description of recent technical progress in the construction of the observatory.

  6. The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Gardner, J. P.

    2009-12-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these four science themes, JWST will be a large (6.5m) cold (50K) telescope launched to the second Earth-Sun Lagrange point early in the next decade. It is the successor to the Hubble Space Telescope, and is a partnership of NASA, ESA and CSA. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will operate within the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy between 5 and 29 microns. The scientific investigations described here define the measurement capabilities of the telescope, but they do not imply that those particular observations will be made. JWST is a facility-class mission, so most of the observing time will be allocated to investigators from the international astronomical community through competitively-selected proposals.

  7. Hubble Space Telescope systems engineering

    NASA Technical Reports Server (NTRS)

    Wojtalik, F. S.

    1988-01-01

    The role of systems engineering in the Hubble Space Telescope (HST) development program at NASA Marshall is reviewed. The scientific objectives and overall characteristics of the HST are recalled, and particular attention is given to the early identification and correction of problems in the optical system, the pointing-control system (maneuvering and fine guidance), the rate-gyro assembly, reaction-wheel isolation, the battery reconditioning circuit, and optical cleanliness.

  8. India's National Large Solar Telescope

    NASA Astrophysics Data System (ADS)

    Hasan, S. S.

    2012-12-01

    India's 2-m National Large Solar Telescope (NLST) is aimed primarily at carrying out observations of the solar atmosphere with high spatial and spectral resolution. A comprehensive site characterization program, that commenced in 2007, has identified two superb sites in the Himalayan region at altitudes greater than 4000-m that have extremely low water vapor content and are unaffected by monsoons. With an innovative optical design, the NLST is an on-axis Gregorian telescope with a low number of optical elements to reduce the number of reflections and yield a high throughput with low polarization. In addition, it is equipped with a high-order adaptive optics to produce close to diffraction limited performance. To control atmospheric and thermal perturbations of the observations, the telescope will function with a fully open dome, to achieve its full potential atop a 25 m tower. Given its design, NLST can also operate at night, without compromising its solar performance. The post-focus instruments include broad-band and tunable Fabry-Pérot narrow-band imaging instruments; a high resolution spectropolarimeter and an Echelle spectrograph for night time astronomy. This project is led by the Indian Institute of Astrophysics and has national and international partners. Its geographical location will fill the longitudinal gap between Japan and Europe and is expected to be the largest solar telescope with an aperture larger than 1.5 m till the ATST and EST come into operation. An international consortium has been identified to build the NLST. The facility is expected to be commissioned by 2016.

  9. Sensitivity of coded mask telescopes.

    PubMed

    Skinner, Gerald K

    2008-05-20

    Simple formulas are often used to estimate the sensitivity of coded mask x-ray or gamma-ray telescopes, but these are strictly applicable only if a number of basic assumptions are met. Complications arise, for example, if a grid structure is used to support the mask elements, if the detector spatial resolution is not good enough to completely resolve all the detail in the shadow of the mask, or if any of a number of other simplifying conditions are not fulfilled. We derive more general expressions for the Poisson-noise-limited sensitivity of astronomical telescopes using the coded mask technique, noting explicitly in what circumstances they are applicable. The emphasis is on using nomenclature and techniques that result in simple and revealing results. Where no convenient expression is available a procedure is given that allows the calculation of the sensitivity. We consider certain aspects of the optimization of the design of a coded mask telescope and show that when the detector spatial resolution and the mask to detector separation are fixed, the best source location accuracy is obtained when the mask elements are equal in size to the detector pixels. PMID:18493279

  10. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these for science themes, JWST will be a large (6.6m) cold (50K) telescope launched to the second Earth-Sun Lagrange point early in the next decade. It is the successor to the Hubble Space Telescope, and is a partnership of NASA, ESA and CSA. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I review the status and capabilities of the observatory and instruments in the context of the major scientific goals.

  11. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes. It will be a large (6.6m) cold (SDK) telescope launched into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. The science goals for JWST include the formation of the first stars and galaxies in the early universe; the chemical, morphological and dynamical buildup of galaxies and the formation of stars and planetary systems. Recently, the goals have expanded to include studies of dark energy, dark matter, active galactic nuclei, exoplanets and Solar System objects. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Near-Infrared Imager and Slitless Spectrograph will cover the wavelength range 0.6 to S microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. The observatory is confirmed for launch in 2018; the design is complete and it is in its construction phase. Recent progress includes the completion of the mirrors, the delivery of the first flight instruments and the start of the integration and test phase.

  12. EUSO-TA prototype telescope

    NASA Astrophysics Data System (ADS)

    Bisconti, Francesca

    2016-07-01

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  13. The NASA Spitzer Space Telescope.

    PubMed

    Gehrz, R D; Roellig, T L; Werner, M W; Fazio, G G; Houck, J R; Low, F J; Rieke, G H; Soifer, B T; Levine, D A; Romana, E A

    2007-01-01

    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991-2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/. PMID:17503900

  14. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Nowak, Maria; Eichorn, William; Hill, Michael; Hylan, Jason; Marsh, James; Ohl, Raymond; Sampler, Henry; Wright, Geraldine; Crane, Allen; Herrera, Acey; Quigley, Robert; Jetten, Mark; Young, Philip

    2007-01-01

    The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (approx.40K). The JWST Observatory architecture includes the Optical Telescope Element and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The ISIM optical metering structure is a roughly 2.2x1.7x2.2mY, asymmetric frame that is composed of carbon fiber and resin tubes bonded to invar end fittings and composite gussets and clips. The structure supports the SIs, isolates the SIs from the OTE, and supports thermal and electrical subsystems. The structure is attached to the OTE structure via strut-like kinematic mounts. The ISM structure must meet its requirements at the approx.40K cryogenic operating temperature. The SIs are aligned to the structure s coordinate system under ambient, clean room conditions using laser tracker and theodolite metrology. The ISM structure is thermally cycled for stress relief and in order to measure temperature-induced mechanical, structural changes. These ambient-to-cryogenic changes in the alignment of SI and OTE-related interfaces are an important component in the JWST Observatory alignment plan and must be verified.

  15. Cost Modeling for Space Optical Telescope Assemblies

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Henrichs, Todd; Luedtke, Alexander; West, Miranda

    2011-01-01

    Parametric cost models are used to plan missions, compare concepts and justify technology investments. This paper reviews an on-going effort to develop cost modes for space telescopes. This paper summarizes the methodology used to develop cost models and documents how changes to the database have changed previously published preliminary cost models. While the cost models are evolving, the previously published findings remain valid: it costs less per square meter of collecting aperture to build a large telescope than a small telescope; technology development as a function of time reduces cost; and lower areal density telescopes cost more than more massive telescopes.

  16. All sky monitoring network with amateur telescopes

    NASA Astrophysics Data System (ADS)

    Fang, Zhonghua; Xu, Chun

    2012-09-01

    We describe here a multiband all sky monitoring system under construction using amateur resources. The system consists of a data management center and a network of telescopes. The total number of telescopes in this network can be huge and all the telescopes are not affected by their local weather or their operability so this network is capable of monitoring the whole night sky simultaneously in many different bands. The telescopes in the network can be operated on an individual basis or on a coordinated mode. The data taken by the telescopes in the network are sent to the data management center via internet where calibration, data fusion, data analysis are performed.

  17. Twin-Telescope Wettzell (TTW)

    NASA Astrophysics Data System (ADS)

    Hase, H.; Dassing, R.; Kronschnabl, G.; Schlüter, W.; Schwarz, W.; Lauber, P.; Kilger, R.

    2007-07-01

    Following the recommendations made by the VLBI2010 vision report of the IVS, a proposal has been made to construct a Twin Telescope for the Fundamental Station Wettzell in order to meet the future requirements of the next VLBI generation. The Twin Telescope consists of two identical radiotelescopes. It is a project of the Federal Agency for Cartography and Geodesy (BKG). This article summarizes the project and some design ideas for the Twin-Telescope. %ZALMA (2005). Technical Specification for Design, Manufacturing, Transport and Integration on Site of the ALMA ANTENNAS, Doc. ALMA-34.00.00.00.006-BSPE. Behrend, D. (2006). VLBI2010 Antenna Specs, Data sheet. DeBoer, D. (2001). The ATA Offset Gregorian Antenna, ATA Memo #16, February 10. Imbriale, W.A. (2006). Design of a Wideband Radio Telescope, Jet Propulsion Laboratory and S. Weinreb and H. Mandi, California Institute of Technology. Kilger, R. (2007). TWIN-Design studies, Presentation for the IVS board members (internal document),Wettzell. Kronschnabl, G. (2006). Subject: Memo from Bill Petrachenko, E-mail to the Twin-Working Group (in German), July. Lindgren, ETS-Lindgren (2005). The Model 3164-05 Open Boundary Quadridge Horn, Data Sheet. Niell, A., A. Whitney, W. Petrachenko, W. Schlüter, N. Vandenberg, H.Hase, Y. Koyama, C. Ma, H. Schuh, G. Tucari (2006). in: IVS Annual Report 2005, pg. 13-40, NASA/TP-2006-214136, April. Olsson, R., Kildal, P.-S., and Weinreb, S. (2006). IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, February. Petrachenko, B. (2006). The Case For and Against Multiple Antennas at a Site, IVS Memorandum, 2006-019v01. Petrachenko, B. (2006). IVS Memorandum, 2006-016v01. RFSpin (2004). Double Ridged Waveguide Horn-Model DRH20, Antenna Specifications, Data Sheet. Rohde&Schwarz (2004). SHF Antennas Crossed Log- Periodic Antennas HL024A1/S1, Data Sheet. Rohde&Schwarz (2004). SHF Antennas Log-Periodic Antennas HL050/HL050S1, Data Sheet. Rogers, A.E.E. (2006). Simulations of broadband

  18. Wavefront Analysis of Adaptive Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Hillman, Lloyd

    1997-01-01

    The motivation for this work came from a NASA Headquarters interest in investigating design concepts for a large space telescope employing active optics technology. Current and foreseeable launch vehicles will be limited to carrying around 4-5 meter diameter objects. Thus, if a large, filled-aperture telescope (6-20 meters in diameter) is to be placed in space, it will be required to have a deployable primary mirror. Such a mirror may be an inflatable membrane or a segmented mirror consisting of many smaller pieces. In any case, it is expected that the deployed primary will not be of sufficient quality to achieve diffraction-limited performance for its aperture size. Thus, an active optics system will be needed to correct for initial as well as environmentally-produced primary figure errors. Marshall Space Flight Center has developed considerable expertise in the area of active optics with the PAMELA test-bed. The combination of this experience along with the Marshall optical shop's work in mirror fabrication made MSFC the logical choice to lead NASA's effort to develop active optics technology for large, space-based, astronomical telescopes. Furthermore, UAH's support of MSFC in the areas of optical design, fabrication, and testing of space-based optical systems placed us in a key position to play a major role in the development of this future-generation telescope. A careful study of the active optics components had to be carried out in order to determine control segment size, segment quality, and segment controllability required to achieve diffraction-limited resolution with a given primary mirror. With this in mind, UAH undertook the following effort to provide NASA/MSFC with optical design and analysis support for the large telescope study. All of the work performed under this contract has already been reported, as a team member with MSFC, to NASA Headquarters in a series of presentations given between May and December of 1995. As specified on the delivery

  19. Interferometry with the ESO Very Large Telescope

    NASA Astrophysics Data System (ADS)

    von der Luehe, Oskar; Derie, Frederic; Koehler, Bertrand; Leveque, Samuel A.; Paresce, Francesco; Verola, Massimo

    1997-03-01

    The interferometric mode of the ESO very large telescope (VLT) permits coherent combination of stellar light beams collected by four telescopes with 8 m diameter and by several auxiliary telescopes of the 2 m class. While the position of the 8 m telescopes is fixed, auxiliary telescopes can be moved on rails, and can operate from 30 stations distributed on the top of the observatory site for efficient UV coverage. Coherent beam combination can be achieved with the 8 m telescopes alone, with the auxiliary telescopes alone, or with any combination, up to eight telescopes in total. A distinct feature of the interferometric mode is the high sensitivity due to the 8 m pupil of the main telescopes, with the potential for adaptive optics compensation in the near- infrared spectral regime. The VLT interferometer is conceived as an evolutionary program where a significant fraction of the interferometer's functionality is initially funded, and more capability may be added later while experience is gained and further funding becomes available. The scientific program is now defined by a team which consists of a VLTI scientist at ESO and fifteen astronomers from the VLT community. ESO has recently decided to resume the construction of the VLTI which was delayed in December 1993, in order to achieve first interferometric fringes with two of the 8 m telescopes around the year 2000, and routine operation with 2 m auxiliary telescopes from 2003 onwards. This paper presents an overview of the recent evolution of the project and its future development.

  20. Aligning Astronomical Telescopes via Identification of Stars

    NASA Technical Reports Server (NTRS)

    Whorton, Mark

    2010-01-01

    A proposed method of automated, precise alignment of a ground-based astronomical telescope would eliminate the need for initial manual alignment. The method, based on automated identification of known stars and other celestial objects in the telescope field of view, would also eliminate the need for an initial estimate of the aiming direction. The method does not require any equipment other than a digital imaging device such as a charge-coupled-device digital imaging camera and control computers of the telescope and camera, all of which are standard components in professional astronomical telescope systems and in high-end amateur astronomical telescope systems. The method could be implemented in software running in the telescope or camera control computer or in an external computer communicating with the telescope pointing mount and camera control computers.

  1. E-ELT telescope main structure

    NASA Astrophysics Data System (ADS)

    Orden Martínez, Alfredo; Dilla Martínez, Angel; Ballesteros Pérez, Noelia; Alcantud Abellán, Manuel

    2012-09-01

    The European Extra Large Telescope is ESO's biggest astronomical telescope project. The E-ELT is an active and adaptive telescope. It has an astigmatic optical solution (five mirrors, including two flat ones). The telescope structure is of alt-azimuth type able to support a primary mirror with an equivalent diameter of 40 m. The telescope will be installed in a high-seismicity zone, in Cerro Armazones, Antofagasta Region, Chile, at an altitude of 3046 metres above sea level. This has significantly affected the boundary conditions and safety aspects considered during the project. The scope of the paper describes the Telescope Main Structure configuration developed by Empresarios Agrupados (Spain) during the FEED Studies performed from June 2009 to July 2011 in the frame of ESO Contracts. Most of the solutions implemented were extrapolated from existing installations in which Empresarios Agrupados has participated, adjusting for the extra large size of this new telescope.

  2. Distinct Carotenoid and Flavonoid Accumulation in a Spontaneous Mutant of Ponkan (Citrus reticulata Blanco) Results in Yellowish Fruit and Enhanced Postharvest Resistance.

    PubMed

    Luo, Tao; Xu, Kunyang; Luo, Yi; Chen, Jiajing; Sheng, Ling; Wang, Jinqiu; Han, Jingwen; Zeng, Yunliu; Xu, Juan; Chen, Jianmin; Wu, Qun; Cheng, Yunjiang; Deng, Xiuxin

    2015-09-30

    As the most important fresh fruit worldwide, citrus is often subjected to huge postharvest losses caused by abiotic and biotic stresses. As a promising strategy to reduce postharvest losses, enhancing natural defense by potential metabolism reprogramming in citrus mutants has rarely been reported. The yellowish spontaneous mutant of Ponkan (Citrus reticulata Blanco) (YP) was used to investigate the influence of metabolism reprogramming on postharvest performance. Our results show that reduced xanthophyll accumulation is the cause of yellowish coloring of YP and might be attributed to the reduced carotenoid sequestration capacity and upregulated expression of carotenoid cleavage dioxygenase genes. Constantly higher levels of polymethoxylated flavones (PMFs) during the infection and the storage stage might make significant contribution to the more strongly induced resistance against Penicillium digitatum and lower rotting rate. The present study demonstrates the feasibility of applying bud mutants to improve the postharvest performance of citrus fruits. PMID:26329679

  3. Hubble Space Telescope - New view of an ancient universe

    NASA Technical Reports Server (NTRS)

    Leckrone, David S.; Longair, Malcolm S.; Stockman, Peter; Olivier, Jean R.

    1989-01-01

    Scheduled for a March 1990 Shuttle launch, the Hubble Space Telescope (HST) will give astronomers a tool of unprecedented accuracy to observe the universe: an optically superb instrument free of the atmospheric turbulence, distortion, and brightness that plague all earthbound telescopes. The observatory will carry into orbit two cameras, a pair of spectrographs, a photometer, and fine guidance sensors optimized for astrometry. The diffraction limit for the 2.4-m aperture of the HST corresponds to 90 percent of the radiation from a point source falling within a circle of 0.1 arcsec angular radius at a wavelength of 633 nm. The 15-year mission will make observations in the ultraviolet as well as the optical spectral region, thus, widening the wavelength window to a range extending from the Lyman alpha wavelengnth of 122 nm to just about 2 microns. The observational program that awaits the HST will include the study of planetary atmospheres, in particular the search for aerosols; the study of globular star clusters within the Galaxy; and the determination of the present rate of expansion of the universe. The HST will achieve resolutions of 0.1 arcsec consistently, regardless of observation duration. The HST engineering challenge is also discussed.

  4. Design and Analysis of 20m track mounted and 30m telescopes

    NASA Astrophysics Data System (ADS)

    Davison, Warren B.; Woolf, Neville J.; Angel, James Roger P.

    2003-01-01

    This paper presents designs of compact 21 and 30 m aperture telescopes with primary focal of f/0.7 and f/0.56. The 20 20 telescope moves on three axes; the elevation axis (which is below the primary vertex), the azimuth axis, and a tracking axis at the center of 100 m diameter tracks. The 30 m telescope has an elevation and azimuth axis. All of the axes move on hydrostatic bearings. A primary requirement for such large telescopes is stiffness against deformation by wind gusts. The mass and stiffness needed for the structure is substantially independent of the primary mirror mass, which can therefore be set by thermal and diffraction issues. For the 21 m design, whose primary has seven 8.4 m glass segments weighing 128 tons, the total moving mass is 905 tons, and the lowest resonant frequency 6.5 Hz. For the 30 m design, whose primary has, 13 whole and 6 half, glass segments 8.7 m, across the points, weighing 256 tons, the total moving mass is 3,460 tons, and the lowest resonant frequency 5.3 Hz. These practical designs offer two versatile telescopes with high performance.

  5. The ASTRI SST-2M prototype for the Cherenkov Telescope Array: primary mirror characterization by deflectometry

    NASA Astrophysics Data System (ADS)

    Sironi, Giorgia; Canestrari, Rodolfo

    2015-09-01

    In 2014 the ASTRI Collaboration, led by the Italian National Institute for Astrophysics, has constructed an end-to-end prototype of a dual-mirror imaging air Cherenkov telescope, proposed for the small size class of telescopes for the Cherenkov Telescope Array. The prototype, named ASTRI SST-2M, has been installed at the observing station located at Serra La Nave (Italy). In this project the Brera Astronomical Observatory was responsible for the production and the testing of the primary mirror. The ASTRI SST-2M telescope's primary mirror has an aperture of ~ 4 m, a polynomial design, and consists of 18 individual hexagonal facets. These characteristics require the production and testing of panels with a typical size of ~1 m vertex-to-vertex and with an aspheric component of up to several millimetres. The mirror segments were produced assembling a sandwich of thin glass foils bent at room temperature to reach the desired shape. For the characterization of the mirrors we developed an ad-hoc deflectometry facility that works as an inverse Ronchi test in combination with a ray-tracing code. In this contribution we report the results of the deflectometric measurements performed on the primary mirror segments of the ASTRI SST-2M dual mirror telescope. The expected point spread function and the contributions to the degradation of the image quality are studied.

  6. Expression of CD134 and CXCR4 mRNA in term placentas from FIV-infected and control cats.

    PubMed

    Scott, Veronica L; Burgess, Shane C; Shack, Leslie A; Lockett, Nikki N; Coats, Karen S

    2008-05-15

    Feline immunodeficiency virus (FIV) causes a natural infection of domestic cats that resembles HIV-1 in pathogenesis and disease progression. Feline AIDS is characterized by depression of the CD4+ T cell population and fatal opportunistic infections. Maternal-fetal transmission of FIV readily occurs under experimental conditions, resulting in infected viable kittens and resorbed or arrested fetal tissues. Although both FIV and HIV use the chemokine receptor CXCR4 as a co-receptor, FIV does not utilize CD4 as the primary receptor. Rather, CD134 (OX40), a T cell activation antigen and co-stimulatory molecule, is the primary receptor for FIV. We hypothesized that placental expression of CD134 and CXCR4 may render the placenta vulnerable to FIV infection, possibly facilitating efficient vertical transmission of FIV, and impact pregnancy outcome. The purpose of this project was to quantify the relative expression of CD134 and CXCR4 mRNA from the term placentas of three groups of cats: uninfected queens producing viable offspring, experimentally-infected queens producing only viable offspring, and experimentally-infected queens producing viable offspring among mostly non-viable fetuses. Total RNA was extracted from term placental tissues from all groups of cats. Real-time one-step reverse transcriptase-PCR was used to measure gene expression. The FIV receptors CD134 and CXCR4 were expressed in all late term feline placental tissues. Placentas from FIV-infected queens producing litters of only viable offspring expressed more CD134 and CXCR4 mRNA than those from uninfected queens, suggesting that infection may cause upregulation of the receptors. On the other hand, placentas from FIV-infected cats with non-successful pregnancies expressed similar levels of CD134 mRNA and slightly less CXCR4 mRNA than those from uninfected queens. Thus, it appears that cells expressing these receptors may play a role in pregnancy maintenance. PMID:18295905

  7. Las Cumbres Observatory Global Telescope Network: Keeping Citizen Scientists in the Dark

    NASA Astrophysics Data System (ADS)

    Ross, R. J.

    2012-08-01

    Las Cumbres Observatory Global Telescope Network (LCOGT) is creating a network of telescopes at excellent sites around the world providing 24/7 all sky coverage for astronomical observations. The network of telescopes, ranging in size from 0.4 m to 2.0 m, will be available for both scientific and education users. The LCOGT telescopes are being built quickly and will be deployed soon. The two 2.0 m Faulkes Telescopes, one on Haleakala, Maui (FTN), the other at Siding Spring Observatory, Australia (FTS), are currently in operation. There is also a 0.8 m telescope in the Santa Ynez Valley, California (BOS), which is being used for commissioning and for many local outreach programs. The first 1.0 m telescopes will be heading to Chile and South Africa in 2011 and will each be accompanied by a 0.4 m telescope. Other sites, including Tenerife (Canary Islands, Spain), McDonald Observatory (Texas), Siding Spring (Australia), and Haleakala (Hawaii) will follow, with the possibility of up to two additional sites yet to be selected. The LCOGT education and public outreach effort is transforming into a "Citizen Science" program. Several projects will encompass taking observations through the network, analyzing the data, and sharing the results with other citizen scientists from around the world. The first of these projects, "Agent Exoplanet," will be launched in mid-2011, and will involve analyzing brand-new data to create a light curve of an exoplanet. As the network is not yet complete, this test project will not include actual observing as future ones will. More information about LCOGT and its Citizen Science program can be found online (http://www.lcogt.net). In addition to material to get started in the Citizen Science program, the website also includes resources and content for more hands-on activities using archived data, general astronomy pages, network information, complete access to the public data archive, current news, and recent publications. And don't forget to

  8. The Northwest Indiana Robotic Telescope

    NASA Astrophysics Data System (ADS)

    Slavin, Shawn D.; Rengstorf, A. W.; Aros, J. C.; Segally, W. B.

    2011-01-01

    The Northwest Indiana Robotic (NIRo) Telescope is a remote, automated observing facility recently built by Purdue University Calumet (PUC) at a site in Lowell, IN, approximately 30 miles from the PUC campus. The recently dedicated observatory will be used for broadband and narrowband optical observations by PUC students and faculty, as well as pre-college students through the implementation of standards-based, middle-school modules developed by PUC astronomers and education faculty. The NIRo observatory and its web portal are the central technical elements of a project to improve astronomy education at Purdue Calumet and, more broadly, to improve science education in middle schools of the surrounding region. The NIRo Telescope is a 0.5-meter (20-inch) Ritchey-Chrétien design on a Paramount ME robotic mount, featuring a seven-position filter wheel (UBVRI, Hα, Clear), Peltier (thermoelectrically) cooled CCD camera with 3056 x 3056, square, 12 μm pixels, and off-axis guiding. It provides a coma-free imaging field of 0.5 degrees square, with a plate scale of 0.6 arcseconds per pixel. The observatory has a wireless internet connection, local weather station which publishes data to an internet weather site, and a suite of CCTV security cameras on an IP-based, networked video server. Control of power to every piece of instrumentation is maintained via internet-accessible power distribution units. The telescope can be controlled on-site, or off-site in an attended fashion via an internet connection, but will be used primarily in an unattended mode of automated observation, where queued observations will be scheduled daily from a database of requests. Completed observational data from queued operation will be stored on a campus-based server, which also runs the web portal and observation database. Partial support for this work was provided by the National Science Foundation's Course, Curriculum, and Laboratory Improvement (CCLI) program under Award No. 0736592.

  9. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2007-01-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these four science themes, JWST will be a large (6.6m) cold (50K) telescope launched to the second Earth-Sun Lagrange point early in the next decade. It is the successor to the Hubble Space Telescope, and is a partnership of NASA, ESA and CSA. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In this paper, the status and capabilities of the observatory and instruments in the context of the major scientific goals are reviewed.

  10. The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Gardner, J.

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these four science themes, JWST will be a large (6.5m) cold (50K) telescope launched to the second Earth-Sun Lagrange point early in the next decade. It is the successor to the Hubble Space Telescope, and is a partnership of NASA, ESA and CSA. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy between 5 and 29 microns. JWST is a facility-class mission, so most of the observing time will be allocated to investigators from the international astronomical community through competitively-selected proposals.

  11. History of Robotic and Remotely Operated Telescopes

    NASA Astrophysics Data System (ADS)

    Genet, Russell M.

    2011-03-01

    While automated instrument sequencers were employed on solar eclipse expeditions in the late 1800s, it wasn't until the 1960s that Art Code and associates at Wisconsin used a PDP minicomputer to automate an 8-inch photometric telescope. Although this pioneering project experienced frequent equipment failures and was shut down after a couple of years, it paved the way for the first space telescopes. Reliable microcomputers initiated the modern era of robotic telescopes. Louis Boyd and I applied single board microcomputers with 64K of RAM and floppy disk drives to telescope automation at the Fairborn Observatory, achieving reliable, fully robotic operation in 1983 that has continued uninterrupted for 28 years. In 1985 the Smithsonian Institution provided us with a suburb operating location on Mt. Hopkins in southern Arizona, while the National Science Foundation funded additional telescopes. Remote access to our multiple robotic telescopes at the Fairborn Observatory began in the late 1980s. The Fairborn Observatory, with its 14 fully robotic telescopes and staff of two (one full and one part time) illustrates the potential for low operating and maintenance costs. As the information capacity of the Internet has expanded, observational modes beyond simple differential photometry opened up, bringing us to the current era of real-time remote access to remote observatories and global observatory networks. Although initially confined to smaller telescopes, robotic operation and remote access are spreading to larger telescopes as telescopes from afar becomes the normal mode of operation.

  12. Recycling bacteria for the synthesis of LiMPO4 (M = Fe, Mn) nanostructures for high-power lithium batteries.

    PubMed

    Zhou, Yanping; Yang, Dan; Zeng, Yi; Zhou, Yan; Ng, Wun Jern; Yan, Qingyu; Fong, Eileen

    2014-10-15

    In this work, a novel waste-to-resource strategy to convert waste bacteria into a useful class of cathode materials, lithium metal phosphate (LiMPO4; M = Fe, Mn), is presented. Escherichia coli (E. coli) bacteria used for removing phosphorus contamination from wastewater are harvested and used as precursors for the synthesis of LiMPO4. After annealing, LiFePO4 and LiMnPO4 nanoparticles with dimensions around 20 nm are obtained. These particles are found to be enveloped in a carbon layer with a thickness around 3-5 nm, generated through the decomposition of the organic matter from the bacterial cell cytoplasm. The battery performance for the LiFePO4 is evaluated. A high discharge capacity of 140 mAh g(-1) at 0.1 C with a flat plateau located at around 3.5 V is obtained. In addition, the synthesized particles display excellent stability and rate capabilities. Even under a high C rate of 10 C, a stable discharge capacity of 75.4 mAh g(-1) can still be achieved. PMID:24930375

  13. Synthesis of Co/MFe{sub 2}O{sub 4} (M=Fe, Mn) core/shell nanocomposite particles

    SciTech Connect

    Peng Sheng; Xie Jin; Sun Shouheng

    2008-07-15

    Monodispersed cobalt nanoparticles (NPs) with controllable size (8-14 nm) have been synthesized using thermal decomposition of dicobaltoctacarbonyl in organic solvent. The as-synthesized high magnetic moment (125 emu/g) Co NPs are dispersible in various organic solvents, and can be easily transferred into aqueous phase by surface modification using phospholipids. However, the modified hydrophilic Co NPs are not stable as they are quickly oxidized, agglomerated in buffer. Co NPs are stabilized by coating the MFe{sub 2}O{sub 4} (M=Fe, Mn) ferrite shell. Core/shell structured bimagnetic Co/MFe{sub 2}O{sub 4} nanocomposites are prepared with tunable shell thickness (1-5 nm). The Co/MFe{sub 2}O{sub 4} nanocomposites retain the high magnetic moment density from the Co core, while gaining chemical and magnetic stability from the ferrite shell. Compared to Co NPs, the nanocomposites show much enhanced stability in buffer solution at elevated temperatures, making them promising for biomedical applications. - Graphical abstract: The 10 nm/3 nm Co/MFe{sub 2}O{sub 4} (M=Fe, Mn) bimagnetic core/shell nanocomposites are synthesized from the surface coating of ferrite shell over 10 nm Co nanoparticle seeds. The nanocomposites show much enhanced chemical and magnetic stability in solid state, organic solution and aqueous phase, and are promising for biomedical applications.

  14. A simple solvothermal synthesis of MFe{sub 2}O{sub 4} (M=Mn, Co and Ni) nanoparticles

    SciTech Connect

    Yanez-Vilar, S.; Sanchez-Andujar, M.; Gomez-Aguirre, C.; Senaris-Rodriguez, M.A.

    2009-10-15

    Nanoparticles of MFe{sub 2}O{sub 4} (M=Mn, Co and Ni), with diameters ranging from 5 to 10 nm, have been obtained through a solvothermal method. In this synthesis, an alcohol (benzyl alcohol or hexanol) is used as both a solvent and a ligand; it is not necessary, therefore, to add a surfactant, simplifying the preparation of the dispersed particles. We have studied the influence of the synthetic conditions (temperature, time of synthesis and nature of solvent) on the quality of the obtained ferrites and on their particle size. In this last aspect, we have to highlight that the solvent plays an important role on the particle size, obtaining the smallest diameters when hexanol was used as a solvent. In addition, the magnetic properties of the obtained compounds have been studied at room temperature (RT). These compounds show a superparamagnetic behaviour, as was expected for single domain nanoparticles, and good magnetization values. The maxima magnetization values of the MFe{sub 2}O{sub 4} samples are quite high for such small nanoparticles; this is closely related to the high crystallinity of the particles obtained by the solvothermal method. - Graphical abstract: An adaptation of the solvothermal method allow us to obtain stable suspensions of monodispersed particles of MFe{sub 2}O{sub 4} (M=Mn, Co and Ni), with diameters ranging from 5 to 10 nm, and with good crystallinity.

  15. Meiotic behavior and H3K4m distribution in B chromosomes of Characidium gomesi (Characiformes, Crenuchidae).

    PubMed

    Serrano, Érica Alves; Araya-Jaime, Cristian; Suárez-Villota, Elkin Y; Oliveira, Claudio; Foresti, Fausto

    2016-01-01

    Characidium gomesi Travasso, 1956 specimens from the Pardo River have up to four heterochromatic supernumerary chromosomes, derived from the sex chromosomes. To access the meiotic behavior and distribution of an active chromatin marker, males and females of Characidium gomesi with two or three B chromosomes were analyzed. Mitotic chromosomes were characterized using C-banding and FISH with B chromosome probes. Meiocytes were subjected to immunofluorescence-FISH assay using anti-SYCP3, anti-H3K4m, and B chromosomes probes. Molecular homology of supernumeraries was confirmed by FISH and by its bivalent conformation in individuals with two of these chromosomes. In individuals with three Bs, these elements formed a bivalent and a univalent. Supernumerary and sex chromosomes exhibited H3K4m signals during pachytene contrasting with their heterochromatic and asynaptic nature, which suggest a more structural role than functional of this histone modification. The implications of this result are discussed in light of the homology, meiotic nuclear organization, and meiotic silencing of unsynapsed chomatin. PMID:27551347

  16. Multi-modal miniature microscope: 4M Device for bio-imaging applications - an overview of the system

    NASA Astrophysics Data System (ADS)

    Tkaczyk, Tomasz S.; Rogers, Jeremy D.; Rahman, Mohammed; Christenson, Todd C.; Gaalema, Stephen; Dereniak, Eustace L.; Richards-Kortum, Rebecca; Descour, Michael R.

    2005-09-01

    The multi-modal miniature microscope (4M) device to image morphology and cytochemistry in vivo is a microscope on a chip including optical, micro-mechanical, and electronic components. This paper describes all major system components: optical system, custom high speed CMOS detector and comb drive actuator. The hybrid sol-gel lenses, their fabrication and assembling technology, optical system parameters, and various operation modes (fluorescence, reflectance, structured illumination) are also discussed. A particularly interesting method is a structured illumination technique that delivers confocal-imaging capabilities and may be used for optical sectioning. For reconstruction of the sectioned layer a sine approximation algorithm is applied. Structured illumination is produced with LIGA fabricated actuator scanning in resonance. The spatial resolution of the system is 1 μm, and was magnified by 4x matching the CMOS pixel size of 4 μm (a lateral magnification is 4:1), and the extent of field of the system is 250μm. An overview of the 4M device is combined with the presentation of imaging results for epithelial cell phantoms with optical properties characteristic of normal and cancerous tissue labeled with nanoparticles.

  17. Flow modulation comprehensive two-dimensional gas chromatography-mass spectrometry using ≈4mLmin(-1) gas flows.

    PubMed

    Franchina, Flavio A; Maimone, Mariarosa; Tranchida, Peter Q; Mondello, Luigi

    2016-04-01

    The main objective of the herein described research was focused on performing satisfactory flow modulation (FM), in comprehensive two-dimensional gas chromatography-mass spectrometry (GC×GC-MS), using an MS-compatible second-dimension gas flow of approx. 4mLmin(-1). The FM model used was based on that initially proposed by Seeley et al. [3]. The use of limited gas flows was enabled through fine tuning of the FM parameters, in particular the duration of the re-injection (or flushing) process. Specifically, the application of a long re-injection period (i.e., 700ms) enabled efficient accumulation-loop flushing with gas flows of about 4mLmin(-1). It was possible to apply such extended re-injection periods by using different restrictor lengths in the connections linking the modulator to the auxiliary pressure source. FM GC×GC-MS applications were performed on a mixture containing C9-10 alkanes, and on a sample of essential oil. GC×GC-MS sensitivity was compared with that attained by using conventional GC-MS analysis, in essential oil applications. It was observed that signal intensities were, in general, considerably higher in the FM GC×GC-MS experiments. PMID:26968229

  18. Meiotic behavior and H3K4m distribution in B chromosomes of Characidium gomesi (Characiformes, Crenuchidae)

    PubMed Central

    Serrano, Érica Alves; Araya-Jaime, Cristian; Suárez-Villota, Elkin Y.; Oliveira, Claudio; Foresti, Fausto

    2016-01-01

    Abstract Characidium gomesi Travasso, 1956 specimens from the Pardo River have up to four heterochromatic supernumerary chromosomes, derived from the sex chromosomes. To access the meiotic behavior and distribution of an active chromatin marker, males and females of Characidium gomesi with two or three B chromosomes were analyzed. Mitotic chromosomes were characterized using C-banding and FISH with B chromosome probes. Meiocytes were subjected to immunofluorescence-FISH assay using anti-SYCP3, anti-H3K4m, and B chromosomes probes. Molecular homology of supernumeraries was confirmed by FISH and by its bivalent conformation in individuals with two of these chromosomes. In individuals with three Bs, these elements formed a bivalent and a univalent. Supernumerary and sex chromosomes exhibited H3K4m signals during pachytene contrasting with their heterochromatic and asynaptic nature, which suggest a more structural role than functional of this histone modification. The implications of this result are discussed in light of the homology, meiotic nuclear organization, and meiotic silencing of unsynapsed chomatin. PMID:27551347

  19. Apollo Telescope Mount Thermal Unit

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center (MSFC) and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM consisted of eight scientific instruments as well as a number of smaller experiments. This image is of the ATM thermal unit being tested in MSFC's building 4619. The thermal unit consisted of an active fluid-cooling system of water and methanol that was circulated to radiators on the outside of the canister. The thermal unit provided temperature stability to the ultrahigh resolution optical instruments that were part of the ATM.

  20. Space Telescope performance and verification

    NASA Technical Reports Server (NTRS)

    Wright, W. F.

    1980-01-01

    The verification philosophy for the Space Telescope (ST) has evolved from years of experience with multispacecraft programs modified by the new factors introduced by the Space Transportation System. At the systems level of test, the ST will undergo joint qualification/acceptance tests with environment simulation using Lockheed's large spacecraft test facilities. These tests continue the process of detecting workmanship defects and module interface incompatibilities. The test program culminates in an 'all up' ST environmental test verification program resulting in a 'ready to launch' ST.

  1. Detectors for the space telescope

    NASA Technical Reports Server (NTRS)

    Kelsall, T.

    1978-01-01

    This review of Space Telescope (ST) detectors is divided into two parts. The first part gives short summaries of detector programs carried out during the final planning stage (Phase B) of the ST and discusses such detectors as Photicon, the MAMA detectors, the CODACON, the University of Maryland ICCD, the Goddard Space Flight Center ICCD, and the 70 mm SEC TV sensor. The second part describes the detectors selected for the first ST flight, including the wide field/planetary camera, the faint object and high resolution spectrographs, and the high speed photometer.

  2. Hubble Space Telescope battery background

    NASA Technical Reports Server (NTRS)

    Standlee, Dan

    1991-01-01

    The following topics are presented in viewgraph form and include the following: the MSFC Hubble Space Telescope (HST) Nickel-Hydrogen Battery Contract; HST battery design requirements; HST nickel-hydrogen battery development; HST nickel-hydrogen battery module; HST NiH2 battery module hardware; pressure vessel design; HST NiH2 cell design; offset non-opposing vs. rabbit ear cell; HST NiH2 specified capacity; HST NiH2 battery design; and HST NiH2 module design.

  3. Las Cumbres Observatory Global Telescope Network: Keeping Education in the Dark

    NASA Astrophysics Data System (ADS)

    Ross, R.

    2010-08-01

    Las Cumbres Observatory Global Telescope Network is building a network of telescopes ranging in size from 0.4-m to 2.0-m for scientific and educational uses. Most of the educational time will be on the 0.4-m network, of which there will be about twenty. Observations will be able to take place in either real-time or queued modes. The educational arm of LCOGT will be primarily through our new website (http://www.lcogt.net) where there will be how-to guides, research projects with our astronomers, activities, and more including an online community through forums and groups. Registered users will also be able to add additional resources, comment on and rate existing pages, collaborate in world-wide research projects, and much more. LCOGT education will be a user-driven community, with everyone working together to create a rich website of resources and information. Although the telescopes are not yet available, there is a vast archive of data that is available to the public and combined with all the projects that can be imagined (and many more that can't), there are countless learning opportunities for in and out of the classroom.

  4. Mars Telescopic Observations Workshop II

    NASA Technical Reports Server (NTRS)

    Sprague, A. L. (Editor); Bell, J. F., III (Editor)

    1997-01-01

    Mars Telescopic Observations Workshop E convened in Tucson, Arizona, in October 1997 by popular demand slightly over two years following the first successful Mars Telescopic Observations Workshop, held in Ithaca, New York, in August 1995. Experts on Mars from the United Kingdom, Japan, Germany, and the United States were present. Twenty-eight oral presentations were made and generous time allotted for useful discussions among participants. The goals of the workshop were to (1) summarize active groundbased observing programs and evaluate them in the context of current and future space missions to Mars, (2) discuss new technologies and instrumentation in the context of changing emphasis of observations and theory useful for groundbased observing, and (3) more fully understand capabilities of current and planned Mars missions to better judge which groundbased observations are and will continue to be of importance to our overall Mars program. In addition, the exciting new discoveries presented from the Pathfinder experiments and the progress report from the Mars Global Surveyor infused the participants with satisfaction for the successes achieved in the early stages of these missions. Just as exciting was the enthusiasm for new groundbased programs designed to address new challenges resulting from mission science results. We would like to thank the National Aeronautics and Space Administration as well as Dr. David Black, director of the Lunar and Planetary Institute, and the staff of the Institute's Publications and Program Services Department for providing logistical, administrative, and publication support services for this workshop.

  5. Large aperture diffractive space telescope

    DOEpatents

    Hyde, Roderick A.

    2001-01-01

    A large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary objective lens functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass "aiming" at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The objective lens includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the objective lens, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets which may be either earth bound or celestial.

  6. Celestial Objects for Modern Telescopes

    NASA Astrophysics Data System (ADS)

    Covington, Michael A.

    2002-09-01

    Preface; Part I. Amateur Astronomy: 1. Using this book effectively; 2. Observing sites and conditions; 3. The Moon, the Sun, and eclipses; 4. The planets; 5. Comets, asteroids (minor planets), and artificial satellites; 6. Constellations; 7. Stars - identification, nomenclature, and maps; 8. Stars - physical properties; 9. Double and multiple stars; 10. Variable stars; 11. Clusters, nebulae, and galaxies; Part II. Celestial Objects for Suburban Telescopes: 12. Celestial objects for suburban telescopes; 13. The January-February sky (R.A. 6h-10h); 14. The March-April sky (R.A. 10h-14h); 15. The May-June sky (R.A. 14h-18h); 16. The July-August sky (R.A. 18h-22h); 17. The September-October sky (R.A. 22h-2h); 18. The November-December sky (R.A. 2h-6h); Part III. Appendices: A. Converting decimal minutes to seconds; B. Precession from 1950 to 2000; C. Julian date, 2001-2015.

  7. TMT telescope structure thermal model

    NASA Astrophysics Data System (ADS)

    Vogiatzis, Konstantinos; Sadjadpour, Amir; Roberts, Scott

    2014-08-01

    The thermal behavior of the Thirty Meter Telescope (TMT) Telescope Structure (STR) and the STR mounted subsystems depends on the heat load of the System, the thermal properties of component materials and the environment as well as their interactions through convection, conduction and radiation. In this paper the thermal environment is described and the latest three-dimensional Computational Solid Dynamics (CSD) model is presented. The model tracks the diurnal temperature variation of the STR and the corresponding deformations. The resulting displacements are fed into the TMT Merit Function Routine (MFR), which converts them into translations and rotations of the optical surfaces. They, in turn, are multiplied by the TMT optical sensitivity matrix that delivers the corresponding pointing error. Thus the thermal performance of the structure can be assessed for requirement compliance, thermal drift correction strategies and look-up tables can be developed and design guidance can be provided. Results for a representative diurnal cycle based on measured temperature data from the TMT site on Mauna Kea and CFD simulations are presented and conclusions are drawn.

  8. ALMA telescope reaches new heights

    NASA Astrophysics Data System (ADS)

    2009-09-01

    of the Array Operations Site. This means surviving strong winds and temperatures between +20 and -20 Celsius whilst being able to point precisely enough that they could pick out a golf ball at a distance of 15 km, and to keep their smooth reflecting surfaces accurate to better than 25 micrometres (less than the typical thickness of a human hair). Once the transporter reached the high plateau it carried the antenna to a concrete pad - a docking station with connections for power and fibre optics - and positioned it with an accuracy of a few millimetres. The transporter is guided by a laser steering system and, just like some cars today, also has ultrasonic collision detectors. These sensors ensure the safety of the state-of-the-art antennas as the transporter drives them across what will soon be a rather crowded plateau. Ultimately, ALMA will have at least 66 antennas distributed over about 200 pads, spread over distances of up to 18.5 km and operating as a single, giant telescope. Even when ALMA is fully operational, the transporters will be used to move the antennas between pads to reconfigure the telescope for different kinds of observations. "Transporting our first antenna to the Chajnantor plateau is a epic feat which exemplifies the exciting times in which ALMA is living. Day after day, our global collaboration brings us closer to the birth of the most ambitious ground-based astronomical observatory in the world", said Thijs de Graauw, ALMA Director. This first ALMA antenna at the high site will soon be joined by others and the ALMA team looks forward to making their first observations from the Chajnantor plateau. They plan to link three antennas by early 2010, and to make the first scientific observations with ALMA in the second half of 2011. ALMA will help astronomers answer important questions about our cosmic origins. The telescope will observe the Universe using light with millimetre and submillimetre wavelengths, between infrared light and radio waves in

  9. Holographic spectrograph for space telescope

    NASA Astrophysics Data System (ADS)

    Ditto, Thomas D.; Lysenko, Sergiy; Crenshaw, Melissa

    2013-09-01

    A spectrograph is described which is made with dual Holographic Optical Elements (HOEs) which are identical and parallel to each other. Both optics are collimating transmission HOEs with focal points that are at equal and opposite distances from each other. The identical HOEs are formed by the interference of a plane wave parallel to the grating plane with an off-axis spherical wave originating in the near-field. In playback, a spectrum can be formed from a point source radiator placed at the position of the recording spherical wave. If played back at an arbitrary wavelength other than the recording wavelength, the image exhibits coma. This spectrograph is intended for an unusual configuration where many nearly monochromatic sources of known wavelengths are separately positioned relative to the first HOE. The special application is in a space telescope capable of resolving spectra from habitable planets within 10 pc. HOEs of this type could be fabricated on membrane substrates with a low areal mass and stowable on rolls for insertion into the second Lagrange point. The intended application is for a 50 x 10 meter class primary objective holographic space telescope with 50 x 10 m HOEs in the spectrograph. We present a computer model of the spectrograph.. Experimental results are compared with predictions from theory. A single HOE is shown to perform over a wider bandwidth and is demonstrated.

  10. Corrector systems for cassegrain telescopes.

    PubMed

    Wilson, R N

    1968-02-01

    Most modern reflecting telescopes have relative apertures of about f/3 and f/8 for the primary and first secondary foci in accordance with the suggestions of Bowen. The angular field which can be used at the first secondary focus is limited by the size of available plates for large instruments but can approach +/-1 degrees for smaller systems. The factors influencing the choice of the field corrector system in the first secondary focus are discussed. It is an important point whether the Ritchey-Chrétien form of the mirrors is strictly maintained-giving an optimum field without the corrector-or whether the aspheric constants are allowed to vary as free parameters. The differences are small but significant. The performance of a number of secondary focus correctors consisting of one, two, and three elements is discussed, spot diagrams being given in each case. Systems with fixed Ritchey-Chrétien mirror constants are inferior to those with free mirror constants. Test methods for the manufacture of the mirrors of telescopes of this type are compared. A doublet type corrector is suitable for compensation testing of primary mirrors or for secondaries tested from the back, but the testing of the latter from the front is more difficult. Several possible techniques are discussed. PMID:20062454

  11. JWST Telescope Integration and Test Progress

    NASA Technical Reports Server (NTRS)

    Matthews, Gary W.; Whitman, Tony L.; Feinberg, Lee D.; Voyton, Mark F.; Lander, Juli A.; Keski-Kuha, Ritva

    2016-01-01

    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. The JWST Optical Telescope Element (Telescope) integration and test program is well underway. The telescope was completed in the spring of 2016 and the cryogenic test equipment has been through two optical test programs leading up to the final flight verification program. The details of the telescope mirror integration will be provided along with the current status of the flight observatory. In addition, the results of the two optical ground support equipment cryo tests will be shown and how these plans fold into the flight verification program.

  12. Telescope Systems for Balloon-Borne Research

    NASA Technical Reports Server (NTRS)

    Swift, C. (Editor); Witteborn, F. C. (Editor); Shipley, A. (Editor)

    1974-01-01

    The proceedings of a conference on the use of balloons for scientific research are presented. The subjects discussed include the following: (1) astronomical observations with balloon-borne telescopes, (2) orientable, stabilized balloon-borne gondola for around-the-world flights, (3) ultraviolet stellar spectrophotometry from a balloon platform, (4) infrared telescope for balloon-borne infrared astronomy, and (5) stabilization, pointing, and command control of balloon-borne telescopes.

  13. A cooled telescope for infrared balloon astronomy

    NASA Technical Reports Server (NTRS)

    Frederick, C.; Jacobson, M. R.; Harwit, M. O.

    1974-01-01

    The characteristics of a 16 inch liquid helium cooled Cassegrain telescope with vibrating secondary mirror are discussed. The telescope is used in making far infrared astronomical observations. The system houses several different detectors for multicolor photometry. The cooled telescope has a ten to one increase in signal-to-noise ratio over a similar warm version and is installed in a high altitude balloon gondola to obtain data on the H2 region of the galaxy.

  14. 1-meter near-infrared solar telescope

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Xu, J.

    In order to observe the fine structure of solar dynamical field and magnetic field, a 1-meter near-infrared solar telescope was developed by Yunnan Astronomical Observatory, Chinese Academy of Sciences. The telescope is located by the Fuxian Lake in southwest China. In this paper, we will introduce some details of the telescope such as scientific goals, structures, instruments and the parameters of the site. First light observation of high resolution photosphere is introduced too.

  15. ANTARES: The first undersea neutrino telescope

    NASA Astrophysics Data System (ADS)

    Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; Ameli, F.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Arnaud, K.; Aslanides, E.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Becherini, Y.; Beltramelli, J.; Bersani, A.; Bertin, V.; Beurthey, S.; Biagi, S.; Bigongiari, C.; Billault, M.; Blaes, R.; Bogazzi, C.; de Botton, N.; Bou-Cabo, M.; Boudahef, B.; Bouwhuis, M. C.; Brown, A. M.; Brunner, J.; Busto, J.; Caillat, L.; Calzas, A.; Camarena, F.; Capone, A.; Caponetto, L.; Cârloganu, C.; Carminati, G.; Carmona, E.; Carr, J.; Carton, P. H.; Cassano, B.; Castorina, E.; Cecchini, S.; Ceres, A.; Chaleil, Th.; Charvis, Ph.; Chauchot, P.; Chiarusi, T.; Circella, M.; Compère, C.; Coniglione, R.; Coppolani, X.; Cosquer, A.; Costantini, H.; Cottini, N.; Coyle, P.; Cuneo, S.; Curtil, C.; D'Amato, C.; Damy, G.; van Dantzig, R.; de Bonis, G.; Decock, G.; Decowski, M. P.; Dekeyser, I.; Delagnes, E.; Desages-Ardellier, F.; Deschamps, A.; Destelle, J.-J.; di Maria, F.; Dinkespiler, B.; Distefano, C.; Dominique, J.-L.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drogou, J.-F.; Drouhin, D.; Druillole, F.; Durand, D.; Durand, R.; Eberl, T.; Emanuele, U.; Engelen, J. J.; Ernenwein, J.-P.; Escoffier, S.; Falchini, E.; Favard, S.; Fehr, F.; Feinstein, F.; Ferri, M.; Ferry, S.; Fiorello, C.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatá, S.; Galeotti, S.; Gay, P.; Gensolen, F.; Giacomelli, G.; Gojak, C.; Gómez-González, J. P.; Goret, Ph.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartmann, B.; Heijboer, A. J.; Heine, E.; Hello, Y.; Henry, S.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hogenbirk, J.; Hsu, C. C.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jourde, D.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Karg, T.; Karkar, S.; Karolak, M.; Katz, U.; Keller, P.; Kestener, P.; Kok, E.; Kok, H.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Kulikovskiy, V.; Lachartre, D.; Lafoux, H.; Lagier, P.; Lahmann, R.; Lahonde-Hamdoun, C.; Lamare, P.; Lambard, G.; Languillat, J.-C.; Larosa, G.; Lavalle, J.; Le Guen, Y.; Le Provost, H.; Levansuu, A.; Lefèvre, D.; Legou, T.; Lelaizant, G.; Lévéque, C.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Magnier, P.; Mangano, S.; Marcel, A.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Masullo, R.; Mazéas, F.; Mazure, A.; Meli, A.; Melissas, M.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Neff, M.; Niess, V.; Nooren, G. J. L.; Oberski, J. E. J.; Olivetto, C.; Palanque-Delabrouille, N.; Palioselitis, D.; Papaleo, R.; Păvălaş, G. E.; Payet, K.; Payre, P.; Peek, H.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Piret, Y.; Poinsignon, J.; Popa, V.; Pradier, T.; Presani, E.; Prono, G.; Racca, C.; Raia, G.; van Randwijk, J.; Real, D.; Reed, C.; Réthoré, F.; Rewiersma, P.; Riccobene, G.; Richardt, C.; Richter, R.; Ricol, J. S.; Rigaud, V.; Roca, V.; Roensch, K.; Rolin, J.-F.; Rostovtsev, A.; Rottura, A.; Roux, J.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Sciliberto, D.; Shanidze, R.; Shirokov, E.; Simeone, F.; Sottoriva, A.; Spies, A.; Spona, T.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Streeb, K.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Tasca, L.; Terreni, G.; Tezier, D.; Toscano, S.; Urbano, F.; Valdy, P.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Venekamp, G.; Verlaat, B.; Vernin, P.; Virique, E.; de Vries, G.; van Wijk, R.; Wijnker, G.; Wobbe, G.; de Wolf, E.; Yakovenko, Y.; Yepes, H.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zúñiga, J.

    2011-11-01

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.

  16. Progress at the Vatican Advanced Technology Telescope

    NASA Astrophysics Data System (ADS)

    West, Steve C.; Nagel, Robert H.; Harvey, David A.; Brar, A.; Phillips, B.; Ray, J.; Trebisky, T. J.; Cromwell, Richard H.; Woolf, Neville J.; Corbally, Chris; Boyle, R.; Blanco, Daniel R.; Otten, L.

    1997-03-01

    The Vatican Advanced Technology Telescope incorporates a fast (f/1.0) borosilicate honeycomb primary mirror and an f/0.9 secondary in an aplanatic Gregorian optical configuration. We provide a brief technical and performance overview by describing the optical layout, the primary and secondary mirror systems, and the telescope drive and control system. Results from a high resolution wavefront sensor and a current wide-field image taken at the f/9 focus demonstrates the overall fine performance of the telescope.

  17. Corrective Optics For Camera On Telescope

    NASA Technical Reports Server (NTRS)

    Macenka, Steven A.; Meinel, Aden B.

    1994-01-01

    Assembly of tilted, aspherical circularly symmetric mirrors used as corrective optical subsystem for camera mounted on telescope exhibiting both large spherical wave-front error and inherent off-axis astigmatism. Subsystem provides unobscured camera aperture and diffraction-limited camera performance, despite large telescope aberrations. Generic configuration applied in other optical systems in which aberations deliberately introduced into telescopes and corrected in associated cameras. Concept of corrective optical subsystem provides designer with additional degrees of freedom used to optimize optical system.

  18. Hubble Space Telescope: The Telescope, the Observations & the Servicing Mission

    NASA Astrophysics Data System (ADS)

    1999-11-01

    Today the HST Archives contain more than 260 000 astronomical observations. More than 13 000 astronomical objects have been observed by hundreds of different groups of scientists. Direct proof of the scientific significance of this project is the record-breaking number of papers published : over 2400 to date. Some of HST's most memorable achievements are: * the discovery of myriads of very faint galaxies in the early Universe, * unprecedented, accurate measurements of distances to the farthest galaxies, * significant improvement in the determination of the Hubble constant and thus the age of the Universe, * confirmation of the existence of blacks holes, * a far better understanding of the birth, life and death of stars, * a very detailed look at the secrets of the process by which planets are created. Europe and HST ESA's contribution to HST represents a nominal investment of 15%. ESA provided one of the two imaging instruments - the Faint Object Camera (FOC) - and the solar panels. It also has 15 scientists and computer staff working at the Space Telescope Science Institute in Baltimore (Maryland). In Europe the astronomical community receives observational assistance from the Space Telescope European Coordinating Facility (ST-ECF) located in Garching, Munich. In return for ESA's investment, European astronomers have access to approximately 15% of the observing time. In reality the actual observing time competitively allocated to European astronomers is closer to 20%. Looking back at almost ten years of operation, the head of ST-ECF, European HST Project Scientist Piero Benvenuti states: "Hubble has been of paramount importance to European astronomy, much more than the mere 20% of observing time. It has given the opportunity for European scientists to use a top class instrument that Europe alone would not be able to build and operate. In specific areas of research they have now, mainly due to HST, achieved international leadership." One of the major reasons for

  19. Preliminary Cost Model for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Prince, F. Andrew; Smart, Christian; Stephens, Kyle; Henrichs, Todd

    2009-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. However, great care is required. Some space telescope cost models, such as those based only on mass, lack sufficient detail to support such analysis and may lead to inaccurate conclusions. Similarly, using ground based telescope models which include the dome cost will also lead to inaccurate conclusions. This paper reviews current and historical models. Then, based on data from 22 different NASA space telescopes, this paper tests those models and presents preliminary analysis of single and multi-variable space telescope cost models.

  20. eSTAR: a distributed telescope network

    NASA Astrophysics Data System (ADS)

    Steele, Iain A.; Naylor, Tim; Allan, Alisdair; Etherton, Jason; Mottram, C. J.

    2002-11-01

    The e-STAR (e-Science Telescopes for Astronomical Research) project uses GRID techniques to develop the software infrastructure for a global network of robotic telescopes. The basic architecture is based around Intelligent Agents which request data from Discovery Nodes that may be telescopes or databases. Communication is based on a development of the XML RTML language secured using the Globus I/O library, with status serving provided via LDAP. We describe the system architecture and protocols devised to give a distributed approach to telescope scheduling, as well as giving details of the implementation of prototype Intelligent Agent and Discovery Node systems.

  1. European Extremely Large Telescope: progress report

    NASA Astrophysics Data System (ADS)

    Tamai, R.; Spyromilio, J.

    2014-07-01

    The European Extremely Large Telescope is a project of the European Southern Observatory to build and operate a 40-m class optical near-infrared telescope. The telescope design effort is largely concluded and construction contracts are being placed with industry and academic/research institutes for the various components. The siting of the telescope in Northern Chile close to the Paranal site allows for an integrated operation of the facility providing significant economies. The progress of the project in various areas is presented in this paper and references to other papers at this SPIE meeting are made.

  2. Herschel's 20ft Telescope at the Smithsonian

    NASA Astrophysics Data System (ADS)

    DeVorkin, David H.

    2011-01-01

    The tube and one of the mirrors from the original Herschel 20-foot telescope have been on display at the National Air and Space Museum since September 12, 2001. Approximately 3,000 visitors walk past it each day, inspecting how William and Caroline jointly operated the telescope in their garden. This presentation will recount how the telescope was brought to NASM, and prepared for exhibition. We will also discuss a bit of what we've learned about the telescope's history from developing this display.

  3. Studies on CO 2 decomposition over H 2-reduced MFe 2O 4 (M = Ni, Cu, Co, Zn)

    NASA Astrophysics Data System (ADS)

    Ma, Lingjuan; Wu, Rui; Liu, Huadong; Xu, Wenju; Chen, Linshen; Chen, Songying

    2011-12-01

    Decomposition of CO 2 over reduced MFe 2O 4 (M = Ni, Co, Cu, Zn) was studied by H 2-TPR, H 2-TG, and CO 2-TG. XRD Rietveld analysis was used for determining phase composition and crystallite size of reduced and oxidized samples. The results indicate that spinel CoFe 2O 4 and CuFe 2O 4 are reduced to metals by H 2, while ZnFe 2O 4 and NiFe 2O 4 only partly reduced at 350 °C. The CoFe 2O 4 spinel ferrite shows the best activity in decomposing CO 2 and the ZnFe 2O 4 shows the best recovery ability in the process of redox.

  4. Detection of p24 in HIV-1 infected cells embedded in LR White and Lowicryl K4M.

    PubMed

    Stransky, G; Garry, R F; Gay, S

    1991-08-01

    In this study we present a postembedding on-grid immunogold labelling procedure for the ultrastructural localization of the HIV-1 core protein p24. HIV-1 infected cells were fixed in 0.1% glutaraldehyde, incompletely dehydrated and embedded in LR White or in Lowicryl K4M. Antigenic sites were detected by incubation of ultrathin sections with primary mouse monoclonal antibody anti-HIV-1 p24, followed by the secondary antibody goat anti-mouse IgG coupled to 10nm gold particles. Antigenicity of p24 was found to withstand the applied fixation and was shown to be preserved in LR White as well as in Lowicryl. The described procedure permits the uncomplicated and easy detection of p24 in HIV-1 infected cells and tissues. PMID:1917566

  5. Safety of Herbal Medicinal Products: Echinacea and Selected Alkylamides Do Not Induce CYP3A4 mRNA Expression.

    PubMed

    Modarai, Maryam; Silva, Elisabete; Suter, Andy; Heinrich, Michael; Kortenkamp, Andreas

    2011-01-01

    A major safety concern with the use of herbal medicinal products (HMP) is their interactions with conventional medicines, which are often mediated via the cytochrome P450 (CYP) system. Echinacea is a widely used over-the-counter HMP, with proven immunomodulatory properties. Its increasing use makes research into its safety an urgent concern. Previously, we showed that Echinacea extracts and its alkylamides (thought to be important for Echinacea's immunomodulatory activity) mildly inhibit the enzymatic activity of the main drug metabolising CYP isoforms, but to this date, there is insufficient work on its ability to alter CYP expression levels. We now report for the first time the effect of a commercial Echinacea extract (Echinaforce) and four Echinacea alkylamides on the transcription of the major drug metabolizing enzyme CYP3A4. HepG2 cells were exposed for 96 h to clinically relevant concentrations of Echinaforce (22, 11.6 and 1.16 μg mL(-1)) or the alkylamides (1.62 and 44 nM). CYP3A4 mRNA levels were quantified using real-time reverse transcription polymerase chain reaction (RT-PCR). Neither Echinaforce nor the alkylamides produced any significant changes in the steady-state CYP3A4 mRNA levels, under these conditions. In contrast, treatment with 50 μM rifampicin resulted in a 3.8-fold up-regulation over the vehicle control. We conclude that Echinaforce is unlikely to affect CYP3A4 transcriptional levels, even at concentrations which can inhibit the enzymatic activity of CYP3A4. Overall, our data provides further evidence for the lack of interactions between Echinacea and conventional drugs. PMID:19906827

  6. Mutation in the AP4M1 Gene Provides a Model for Neuroaxonal Injury in Cerebral Palsy

    PubMed Central

    Verkerk, Annemieke J.M.H.; Schot, Rachel; Dumee, Belinda; Schellekens, Karlijn; Swagemakers, Sigrid; Bertoli-Avella, Aida M.; Lequin, Maarten H.; Dudink, Jeroen; Govaert, Paul; van Zwol, A.L.; Hirst, Jennifer; Wessels, Marja W.; Catsman-Berrevoets, Coriene; Verheijen, Frans W.; de Graaff, Esther; de Coo, Irenaeus F.M.; Kros, Johan M.; Willemsen, Rob; Willems, Patrick J.; van der Spek, Peter J.; Mancini, Grazia M.S.

    2009-01-01

    Cerebral palsy due to perinatal injury to cerebral white matter is usually not caused by genetic mutations, but by ischemia and/or inflammation. Here, we describe an autosomal-recessive type of tetraplegic cerebral palsy with mental retardation, reduction of cerebral white matter, and atrophy of the cerebellum in an inbred sibship. The phenotype was recorded and evolution followed for over 20 years. Brain lesions were studied by diffusion tensor MR tractography. Homozygosity mapping with SNPs was performed for identification of the chromosomal locus for the disease. In the 14 Mb candidate region on chromosome 7q22, RNA expression profiling was used for selecting among the 203 genes in the area. In postmortem brain tissue available from one patient, histology and immunohistochemistry were performed. Disease course and imaging were mostly reminiscent of hypoxic-ischemic tetraplegic cerebral palsy, with neuroaxonal degeneration and white matter loss. In all five patients, a donor splice site pathogenic mutation in intron 14 of the AP4M1 gene (c.1137+1G→T), was identified. AP4M1, encoding for the μ subunit of the adaptor protein complex-4, is involved in intracellular trafficking of glutamate receptors. Aberrant GluRδ2 glutamate receptor localization and dendritic spine morphology were observed in the postmortem brain specimen. This disease entity, which we refer to as congenital spastic tetraplegia (CST), is therefore a genetic model for congenital cerebral palsy with evidence for neuroaxonal damage and glutamate receptor abnormality, mimicking perinatally acquired hypoxic-ischemic white matter injury. PMID:19559397

  7. Seismic telescope for astrophysical research from space (STARS) triply reflecting telescope: a space instrument for astrophysics.

    PubMed

    Badiali, M; Amoretti, M

    1997-12-01

    We describe the characteristics of the wide-field, triply reflecting telescope adopted for the European Space Agency project STARS (seismic telescope for astrophysical research from space), operating in the visible and UV range. PMID:18264439

  8. The radio telescope RATAN 600

    NASA Technical Reports Server (NTRS)

    Schwartz, R.

    1978-01-01

    A six-meter radio antenna having 900 reflector elements arranged on a 579 -meter diameter circle and located in the northern part of the Caucasian Mountains is described. The elements are about 7.4 m by 2 m resulting in a total reflector surface of about 10,000 sq m. Individual elements can be adjusted by changing 260 screws and can be rotated both horizontally and vertically as well as being moved translationally in the radial direction. The circular area is equipped with a grid of tracks where four asymmetric cylindrical paraboloids serving as subreflectors are located. The directional profile or observational direction of the antenna is achieved by shifting the subreflectors and changing the position of the reflecting elements with respect to the subreflectors. Different radio sources can be observed at the same time by using different subreflectors and their associated reflector sectors. Each subreflector is connected to a receiving station. Capabilities for spectroscopic observation are discussed.

  9. The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Gardner, Jonathan P.; Mather, John C.; Clampin, Mark; Doyon, Rene; Greenhouse, Matthew A.; Hammel, Heidi B.; Hutchings, John B.; Jakobsen, Peter; Lilly, Simon J.; Long, Knox S.; Lunine, Jonathan I.; McCaughrean, Mark J.; Mountain, Matt; Nella, John; Rieke, George H.; Rieke, Marcia J.; Rix, Hans-Walter; Smith, Eric P.; Sonneborn, George; Stiavelli, Massimo; Stockman, H. S.; Windhorst, Rogier A.; Wright, Gillian S.

    2006-04-01

    The James Webb Space Telescope (JWST) is a large (6.6 m), cold (<50 K), infrared (IR)-optimized space observatory that will be launched early in the next decade into orbit around the second Earth Sun Lagrange point. The observatory will have four instruments: a near-IR camera, a near-IR multiobject spectrograph, and a tunable filter imager will cover the wavelength range, 0.6 < ; < 5.0 μ m, while the mid-IR instrument will do both imaging and spectroscopy from 5.0 < ; < 29 μ m. The JWST science goals are divided into four themes. The key objective of The End of the Dark Ages: First Light and Reionization theme is to identify the first luminous sources to form and to determine the ionization history of the early universe. The key objective of The Assembly of Galaxies theme is to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The key objective of The Birth of Stars and Protoplanetary Systems theme is to unravel the birth and early evolution of stars, from infall on to dust-enshrouded protostars to the genesis of planetary systems. The key objective of the Planetary Systems and the Origins of Life theme is to determine the physical and chemical properties of planetary systems including our own, and investigate the potential for the origins of life in those systems. Within these themes and objectives, we have derived representative astronomical observations. To enable these observations, JWST consists of a telescope, an instrument package, a spacecraft, and a sunshield. The telescope consists of 18 beryllium segments, some of which are deployed. The segments will be brought into optical alignment on-orbit through a process of periodic wavefront sensing and control. The instrument package contains the four science instruments and a fine guidance sensor. The spacecraft provides pointing, orbit maintenance, and communications. The sunshield

  10. The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Gardner, Jonathan P.; Mather, John C.; Clampin, Mark; Doyon, Rene; Flanagan, Kathryn A.; Franx, Marijn; Greenhouse, Matthew A.; Hammel, Heidi B.; Hutchings, John B.; Jakobsen, Peter; Lilly, Simon J.; Lunine, Jonathan I.; McCaughrean, Mark J.; Mountain, Matt; Rieke, George H.; Rieke, Marcia J.; Sonneborn, George; Stiavelli, Massimo; Windhorst, Rogier; Wright, Gillian S.

    The James Webb Space Telescope (JWST) is a large (6.6 m), cold (<50 K), infrared (IR)-optimized space observatory that will be launched early in the next decade into orbit around the second Earth-Sun Lagrange point. The observatory will have four instruments: a near-IR camera, a near-IR multi-object spectrograph, and a tunable filter imager that will cover the wavelength range, 0.6 < λ < 5.0 μm, while the mid-IR instrument will do both imaging and spectroscopy from 5.0 < λ < 29 μm. The JWST science goals are divided into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the early universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems including our own, and investigate the potential for the origins of life in those systems. To enable these science goals, JWST consists of a telescope, an instrument package, a spacecraft, and a sunshield. The telescope primary mirror is made of 18 beryllium segments, some of which are deployed. The segments will be brought into optical alignment on-orbit through a process of periodic wavefront sensing and control. The instrument package contains the four science instruments and a fine guidance sensor. The spacecraft provides pointing, orbit maintenance, and communications. The sunshield provides passive thermal control. The JWST operations plan is based on that used for previous space observatories, and the majority of JWST

  11. Base-resolution detection of N4-methylcytosine in genomic DNA using 4mC-Tet-assisted-bisulfite-sequencing

    SciTech Connect

    Yu, Miao; Ji, Lexiang; Neumann, Drexel A.; Chung, Dae -Hwan; Groom, Joseph; Westpheling, Janet; He, Chuan; Schmitz, Robert J.

    2015-07-15

    Restriction-modification (R-M) systems pose a major barrier to DNA transformation and genetic engineering of bacterial species. Systematic identification of DNA methylation in R-M systems, including N6-methyladenine (6mA), 5-methylcytosine (5mC) and N4-methylcytosine (4mC), will enable strategies to make these species genetically tractable. Although single-molecule, real time (SMRT) sequencing technology is capable of detecting 4mC directly for any bacterial species regardless of whether an assembled genome exists or not, it is not as scalable to profiling hundreds to thousands of samples compared with the commonly used next-generation sequencing technologies. Here, we present 4mC-Tet-assisted bisulfite-sequencing (4mC-TAB-seq), a next-generation sequencing method that rapidly and cost efficiently reveals the genome-wide locations of 4mC for bacterial species with an available assembled reference genome. In 4mC-TAB-seq, both cytosines and 5mCs are read out as thymines, whereas only 4mCs are read out as cytosines, revealing their specific positions throughout the genome. We applied 4mC-TAB-seq to study the methylation of a member of the hyperthermophilc genus, Caldicellulosiruptor, in which 4mC-related restriction is a major barrier to DNA transformation from other species. Lastly, in combination with MethylC-seq, both 4mC- and 5mC-containing motifs are identified which can assist in rapid and efficient genetic engineering of these bacteria in the future.

  12. Recent results from telescope array

    NASA Astrophysics Data System (ADS)

    Fukushima, Masaki

    2015-08-01

    The Telescope Array (TA) is an experiment to observe Ultra-High Energy Cosmic Rays (UHECRs). TA's recent results, the energy spectrum and anisotropy based on the 6-year surface array data, and the primary composition obtained from the shower maximum (XMAX) are reported. The spectrum demonstrates a clear dip and cutoff. The shape of the spectrum is well described by the energy loss of extra-galactic protons interacting with the cosmic microwave background (CMB). Above the cutoff, a medium-scale (20∘ radius) flux enhancement was observed near the Ursa-Major. A chance probability of creating this hotspot from the isotropic flux is 4.0 σ. The measured ⟨XMAX⟩ is consistent with the primary being proton or light nuclei for energies 1018.2 eV-1019.2 eV.

  13. Unparticle effects in neutrino telescopes

    SciTech Connect

    Gonzalez-Sprinberg, G.; Martinez, R.; Sampayo, Oscar A.

    2009-03-01

    Recently H. Georgi has introduced the concept of unparticles in order to describe the low energy physics of a nontrivial scale invariant sector of an effective theory. We investigate its physical effects on the neutrino flux to be detected in a kilometer cubic neutrino telescope such as IceCube. We study the effects, on different observables, of the survival neutrino flux after through the Earth, and the regeneration originated in the neutral currents. We calculate the contribution of unparticle physics to the neutrino-nucleon interaction and, then, to the observables in order to evaluate detectable effects in IceCUbe. Our results are compared with the bounds obtained by other nonunderground experiments. Finally, the results are presented as an exclusion plot in the relevant parameters of the new physics stuff.

  14. GREGOR telescope: start of commissioning

    NASA Astrophysics Data System (ADS)

    Volkmer, R.; von der Lühe, O.; Denker, C.; Solanki, S.; Balthasar, H.; Berkefeld, T.; Caligari, P.; Collados, M.; Halbgewachs, C.; Heidecke, F.; Hofmann, A.; Klvana, M.; Kneer, F.; Lagg, A.; Popow, E.; Schmidt, D.; Schmidt, W.; Sobotka, M.; Soltau, D.; Strassmeier, K.

    2010-07-01

    With the integration of a 1-meter Cesic primary mirror the GREGOR telescope pre-commissioning started. This is the first time, that the entire light path has seen sunlight. The pre-commissioning period includes testing of the main optics, adaptive optics, cooling system, and pointing system. This time was also used to install a near-infrared grating spectro-polarimeter and a 2D-spectropolarimeter for the visible range as first-light science instruments. As soon as the final 1.5 meter primary mirror is installed, commissioning will be completed, and an extended phase of science verification will follow. In the near future, GREGOR will be equipped with a multi-conjugate adaptive optics system that is presently under development at KIS.

  15. Adaptive Optics for Large Telescopes

    SciTech Connect

    Olivier, S

    2008-06-27

    The use of adaptive optics was originally conceived by astronomers seeking to correct the blurring of images made with large telescopes due to the effects of atmospheric turbulence. The basic idea is to use a device, a wave front corrector, to adjust the phase of light passing through an optical system, based on some measurement of the spatial variation of the phase transverse to the light propagation direction, using a wave front sensor. Although the original concept was intended for application to astronomical imaging, the technique can be more generally applied. For instance, adaptive optics systems have been used for several decades to correct for aberrations in high-power laser systems. At Lawrence Livermore National Laboratory (LLNL), the world's largest laser system, the National Ignition Facility, uses adaptive optics to correct for aberrations in each of the 192 beams, all of which must be precisely focused on a millimeter scale target in order to perform nuclear physics experiments.

  16. Diffractive X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Skinner, Gerald K.

    2010-01-01

    Diffractive X-ray telescopes, using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution many orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the super-massive black holes in the center of active galaxies. What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

  17. The Giant Metrewave Radio Telescope

    NASA Astrophysics Data System (ADS)

    Nityananda, R.

    2003-05-01

    The Giant Metrewave Radio Telescope (GMRT) of the National Centre of Radio Astrophysics (NCRA) of the Tata Institute of Fundamental Research (TIFR) at Khodad, India, has been operational in the band 0.2 to 2 metres for the last two and a half years. The system characteristics and performance and recent results from the group will be presented. Details of use over the last six months by scientists from other observatories under the GMRT Time Allocation Committee (GTAC) and future plans will be also be reviewed in this paper. Areas which have been studied include observations made in the GMRT band of neutral hydrogen, nearby galaxies, supernova remnants, the Galactic Centre, pulsars, the Sun and others.

  18. SLAC Cosmic Ray Telescope Facility

    SciTech Connect

    Va'vra, J.

    2010-02-15

    SLAC does not have a test beam for the HEP detector development at present. We have therefore created a cosmic ray telescope (CRT) facility, which is presently being used to test the FDIRC prototype. We have used it in the past to debug this prototype with the original SLAC electronics before going to the ESA test beam. Presently, it is used to test a new waveform digitizing electronics developed by the University of Hawaii, and we are also planning to incorporate the new Orsay TDC/ADC electronics. As a next step, we plan to put in a full size DIRC bar box with a new focusing optics, and test it together with a final SuberB electronics. The CRT is located in building 121 at SLAC. We anticipate more users to join in the future. This purpose of this note is to provide an introductory manual for newcomers.

  19. SkyView Virtual Telescope:

    NASA Astrophysics Data System (ADS)

    McGlynn, Thomas A.; McDonald, Laura M.; Scollick, Keith A.

    2015-11-01

    The SkyView Virtual telescope provides access to survey datasets ranging from radio through the gamma-ray regimes. Over 100 survey datasets are currently available. The SkyView library referenced here is used as the basis for the SkyView web site (at http://skvyiew.gsfc.nasa.gov) but is designed for individual use by researchers as well. SkyView's approach to access surveys is distinct from most other toolkits. Rather than providing links to the original data, SkyView attempts to immediately re-render the source data in the user-requested reference frame, projection, scaling, orientation, etc. The library includes a set of geometry transformation and mosaicking tools that may be integrated into other applications independent of SkyView.

  20. The Onsala Twin Telescope Project

    NASA Astrophysics Data System (ADS)

    Haas, R.

    2013-08-01

    This paper described the Onsala Twin Telescope project. The project aims at the construction of two new radio telescopes at the Onsala Space Observatory, following the VLBI2010 concept. The project starts in 2013 and is expected to be finalized within 4 years. Z% O. Rydbeck. Chalmers Tekniska Högskola, Göteborg, ISBN 91-7032-621-5, 407-823, 1991. B. Petrachenko, A. Niell, D. Behrend, B. Corey, J. Böhm, P. Charlot, A. Collioud, J. Gipson, R. Haas, Th. Hobiger, Y. Koyama, D. MacMillan, Z. Malkin, T. Nilsson, A. Pany, G. Tuccari, A. Whitney, and J. Wresnik. Design Aspects of the VLBI2010 System. NASA/TM-2009-214180, 58 pp., 2009. R. Haas, G. Elgered, J. Löfgren, T. Ning, and H.-G. Scherneck. Onsala Space Observatory - IVS Network Station. In K. D. Baver and D. Behrend, editors, International VLBI Service for Geodesy and Astrometry 2011 Annual Report, NASA/TP-2012-217505, 88-91, 2012. H.-G. Scherneck, G. Elgered, J. M. Johansson, and B. O. Rönnäng. Phys. Chem. Earth, Vol. 23, No. 7-8, 811-823, 1998. A. R. Whitney. Ph.D. thesis, Dept. of Electrical engineering, MIT Cambridge, MA., 1974. B. A. Harper, J. D. Kepert, and J. D. Ginger. Guidelines for converting between various wind averaging periods in tropical cyclone conditions. WMO/TD-No. 1555, 64 pp., 2010 (available at \\url{http://www.wmo.int/pages/prog/www/tcp/documents/WMO_TD_1555_en.pdf})

  1. The Large Synoptic Survey Telescope

    NASA Astrophysics Data System (ADS)

    Axelrod, T. S.

    2006-07-01

    The Large Synoptic Survey Telescope (LSST) is an 8.4 meter telescope with a 10 square degree field degree field and a 3 Gigapixel imager, planned to be on-sky in 2012. It is a dedicated all-sky survey instrument, with several complementary science missions. These include understanding dark energy through weak lensing and supernovae; exploring transients and variable objects; creating and maintaining a solar system map, with particular emphasis on potentially hazardous objects; and increasing the precision with which we understand the structure of the Milky Way. The instrument operates continuously at a rapid cadence, repetitively scanning the visible sky every few nights. The data flow rates from LSST are larger than those from current surveys by roughly a factor of 1000: A few GB/night are typical today. LSST will deliver a few TB/night. From a computing hardware perspective, this factor of 1000 can be dealt with easily in 2012. The major issues in designing the LSST data management system arise from the fact that the number of people available to critically examine the data will not grow from current levels. This has a number of implications. For example, every large imaging survey today is resigned to the fact that their image reduction pipelines fail at some significant rate. Many of these failures are dealt with by rerunning the reduction pipeline under human supervision, with carefully ``tweaked'' parameters to deal with the original problem. For LSST, this will no longer be feasible. The problem is compounded by the fact that the processing must of necessity occur on clusters with large numbers of CPU's and disk drives, and with some components connected by long-haul networks. This inevitably results in a significant rate of hardware component failures, which can easily lead to further software failures. Both hardware and software failures must be seen as a routine fact of life rather than rare exceptions to normality.

  2. 3D DIC tests of mirrors for the single-mirror small-size telescope of CTA

    NASA Astrophysics Data System (ADS)

    Rataj, M.; Malesa, M.; Kujawińska, M.; Płatos, Ł.; Wawer, P.; Seweryn, K.; Malowany, K.

    2015-10-01

    The Cherenkov Telescope Array (CTA) is the next generation very high energy gamma-ray observatory. Three classes of telescopes, of large, medium and small sizes are designed and developed for the observatory. The single-mirror option for the small-size telescopes (SST-1M), of 4 m diameter, dedicated to the observations of the highest energy gamma-rays above several TeV, consists of 18 hexagonal mirror facets of 78 cm flat-to-flat. The goal of the work described in this paper is the investigation of a surface shape quality of the mirror facets of the SST-1M CTA telescope. The mirrors measured are made of composite materials formed using sheet moulding compound (SMC) technology. This solution is being developed as an alternative to glass mirrors, to minimize the production cost of hundreds of mirrors for the network of telescopes, while retaining the optical quality of the telescope. To evaluate the progress of design, production technology and the mirrors' functionality in operating conditions, the three-dimensional (3D) Digital Image Correlation (DIC) method was selected and implemented for testing selected mirrors. The method and measurement procedure are described. The novel measurement approach based on 3D DIC has been proven to be well suited to the investigation of the mirrors' behavior with temperature, producing the necessary accuracy.

  3. A new telescope control system for the Telescopio Nazionale Galileo: I - derotators

    NASA Astrophysics Data System (ADS)

    Ghedina, Adriano; Gonzalez, Manuel; Perez Ventura, Hector; Carmona, Candido; Riverol, Luis

    2014-07-01

    Telescopio Nazionale Galileo (TNG) is a 4m class active optics telescope at the observatory of Roque de Los Muchachos. In the framework of keeping optimum performances during observation and continuous reliability the telescope control system (TCS) of the TNG is going through a deep upgrade after nearly 20 years of service. The original glass encoders and bulb lamp heads are substituted with modern steel scale drums and scanning units. The obsolete electronic racks and computers for the control loops are replaced with modern and compact commercial drivers with a net improvement in the tracking error RMS. In order to minimize the impact on the number of nights lost during the mechanical and electronic changes in the TCS the new TCS is developed and tested in parallel to the existing one and three steps will be taken to achieve the full upgrade. We describe here the first step affecting the mechanical derotators at the Nasmyth foci.

  4. All-spherical catadioptric telescope design for wide-field imaging.

    PubMed

    Bahrami, Mehdi; Goncharov, Alexander V

    2010-10-20

    The current trend in building medium-size telescopes for wide-field imaging is to use a Ritchey-Chrétien (RC) design with a multilens corrector near the focus. Our goal is to find a cost-effective alternative design to the RC system for seeing-limited observations. We present an f/4.5 all-spherical catadioptric system with a 1.5° field of view. The system consists of a 0.8 m spherical primary and 0.4 m flat secondary mirror combined with a meniscus lens and followed by a three-lens field corrector. The optical performance is comparable to an equivalent f/4.5 RC system. We conclude that, for telescopes with apertures up to 2 m, the catadioptric design is a good alternative to the RC system. PMID:20962933

  5. Curvature wavefront sensing performance evaluation for active correction of the Large Synoptic Survey Telescope (LSST).

    PubMed

    Manuel, Anastacia M; Phillion, Donald W; Olivier, Scot S; Baker, Kevin L; Cannon, Brice

    2010-01-18

    The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, modified Paul-Baker design, with an 8.4-meter primary mirror, a 3.4-m secondary, and a 5.0-m tertiary, along with three refractive corrector lenses to produce a flat focal plane with a field of view of 9.6 square degrees. In order to maintain image quality during operation, the deformations and rigid body motions of the three large mirrors must be actively controlled to minimize optical aberrations, which arise primarily from forces due to gravity and thermal expansion. We describe the methodology for measuring the telescope aberrations using a set of curvature wavefront sensors located in the four corners of the LSST camera focal plane. We present a comprehensive analysis of the wavefront sensing system, including the availability of reference stars, demonstrating that this system will perform to the specifications required to meet the LSST performance goals. PMID:20173981

  6. OPTICAL REDSHIFT AND RICHNESS ESTIMATES FOR GALAXY CLUSTERS SELECTED WITH THE SUNYAEV-Zel'dovich EFFECT FROM 2008 SOUTH POLE TELESCOPE OBSERVATIONS

    SciTech Connect

    High, F. W.; Stalder, B.; Song, J.; Ade, P. A. R.; Aird, K. A.; Allam, S. S.; Buckley-Geer, E. J.; Armstrong, R.; Barkhouse, W. A.; Benson, B. A.; Bertin, E.; Bhattacharya, S.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Brodwin, M.; Challis, P.; De Haan, T.

    2010-11-10

    We present redshifts and optical richness properties of 21 galaxy clusters uniformly selected by their Sunyaev-Zel'dovich (SZ) signature. These clusters, plus an additional, unconfirmed candidate, were detected in a 178 deg{sup 2} area surveyed by the South Pole Telescope (SPT) in 2008. Using griz imaging from the Blanco Cosmology Survey and from pointed Magellan telescope observations, as well as spectroscopy using Magellan facilities, we confirm the existence of clustered red-sequence galaxies, report red-sequence photometric redshifts, present spectroscopic redshifts for a subsample, and derive R{sub 200} radii and M{sub 200} masses from optical richness. The clusters span redshifts from 0.15 to greater than 1, with a median redshift of 0.74; three clusters are estimated to be at z>1. Redshifts inferred from mean red-sequence colors exhibit 2% rms scatter in {sigma}{sub z}/(1 + z) with respect to the spectroscopic subsample for z < 1. We show that the M{sub 200} cluster masses derived from optical richness correlate with masses derived from SPT data and agree with previously derived scaling relations to within the uncertainties. Optical and infrared imaging is an efficient means of cluster identification and redshift estimation in large SZ surveys, and exploiting the same data for richness measurements, as we have done, will be useful for constraining cluster masses and radii for large samples in cosmological analysis.

  7. A Mechanical Analogue of the Refracting Telescope

    ERIC Educational Resources Information Center

    Vannoni, Maurizio; Molesini, Giuseppe; Sordini, Andrea; Straulino, Samuele

    2011-01-01

    The recent celebration of the discoveries made by Galileo four centuries ago has attracted new attention to the refracting telescope and to its use as an instrument for the observation of the night sky. This has offered the opportunity for addressing in the classroom the basic principles explaining the operation of the telescope. When doing so, a…

  8. Milestone reached for James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2016-03-01

    The primary mirror for the James Webb Space Telescope (JWST) - the successor to the Hubble Space Telescope - is complete after engineers at NASA's Goddard Space Flight Center in Maryland, US, put in place the craft's 18th and final mirror segment.

  9. AUTOFOCUSING CATADIOPTRIC TELESCOPE FOR LIDAR APPLICATIONS

    SciTech Connect

    LUCY WENDER

    2000-05-17

    An eight (8) inch diameter F/2.8 autofocusing optical telescope was designed for Lidar applications such as UV Mini-Raman spectroscopy. Operational range is 2 meters to infinity with autofocusing feature for ranges within 50 meters. Test measurements using silica telescope components gave a spot size within the 0.2 mm specification.

  10. The development of the Schmidt telescope

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, G.

    2009-06-01

    % Bernhard Schmidt (1879-1935) was born in Estonia. After a few years of studying engineering he ran an optical workshop in Mittweida, Saxonia, between 1901 and 1927. Astronomers appreciated the quality of his telescopes. Starting in 1925, on behalf of the Hamburg Observatory, he developed a short focal length optical system with a large field of view. For this purpose, Schmidt moved his workshop to the observatory. He succeeded in inventing the ``Schmidt telescope'' which allows the imaging of a large field of the sky without any distortions. Schmidt's first telescope (spherical mirror diameter 0.44 m, correction plate 0.36 m diameter, aperture ratio 1:1.75, and focal length 0.625 m) has been used since 1962 at the Boyden Observatory in Bloemfontein/South Africa. Apart from his 0.36 m telescope, Schmidt produced a second larger one of 0.60 m aperture. Shortly after Schmidt's death, the director of the observatory published details on the invention and production of the Schmidt telescope. After World War II, Schmidt telescopes have been widely used. The first large Schmidt telescope, the ``Big Schmidt'' (1.26 m), Mount Palomar, USA, was completed in 1948. The 0.80 m Schmidt telescope of Hamburg Observatory, planned since 1936, finished in 1954, is now on Calar Alto/Spain.

  11. Parametric Cost Models for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    A study is in-process to develop a multivariable parametric cost model for space telescopes. Cost and engineering parametric data has been collected on 30 different space telescopes. Statistical correlations have been developed between 19 variables of 59 variables sampled. Single Variable and Multi-Variable Cost Estimating Relationships have been developed. Results are being published.

  12. Adaptive compensation for an optical tracking telescope

    NASA Technical Reports Server (NTRS)

    Gilbart, J. W.; Winston, G. C.

    1974-01-01

    The application of model referenced adaptive control theory to an optical tracking telescope is discussed. The capability of the adaptive technique to compensate for mount irregularities such as inertial variations and bearing friction is demonstrated via field test results on a large tracking telescope. Results are presented which show a 6 to 1 improvement in tracking accuracy for a worst-case satellite trajectory.

  13. Reliability of telescopes for the lunar surface

    NASA Astrophysics Data System (ADS)

    Benaroya, Haym

    1995-02-01

    The subject of risk and reliability for lunar structures, in particular lunar-based telescopes, is introduced and critical issues deliberated. General discussions are made more specific regarding the lunar telescope, but this paper provides a framework for further quantitative reliability studies.

  14. Development Of Composite Panels For Telescope Mirrors

    NASA Technical Reports Server (NTRS)

    Freeland, Robert E.; Mcelroy, Paul M.; Johnston, Robert D.

    1991-01-01

    Report describes continuing program for development of lightweight hexagonal graphite/epoxy composite panels intended to support precisely curved mirror surfaces assembled into large telescope mirror. Discusses development requirements, technical decisions, fabrication methods, measurements of properties of materials, analytical simulation, and thermal vacuum testing. Telescope flown in orbit around Earth to observe at wavelengths down to 30 micrometers.

  15. Nearly Anastigmatic X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Korsch, D.

    1985-01-01

    Proposed X-ray telescope made of many concentric reflecting rings, each of which consists of two portions of cone. Proposed design is variation on conventional grazing incidence X-ray telescope, which has just one twosegment reflecting element but suffers from excessive astigmatism and field curvature. Using many short elements instead of single long element, new design gives nearly anastigmatic image.

  16. Proposed Integrated Radio-Telescope Network

    NASA Technical Reports Server (NTRS)

    Cohen, M. H.; Ewing, M. S.; Levy, G. S.; Mallis, R. K.; Readhead, A. C. S.; Smith, J. R.; Backer, D. C.

    1982-01-01

    Proposed network of radio telescopes, controlled by a central computer and managed by a single organization, offer potential for research on a scale that could not be matched by present privately and publicly-owned radio telescopes. With 10 antenna sites, network would establish base lines thousands of miles long. Antennas will be linked to computer center by telephone circuits.

  17. Scientific instrumentation for the 1.6 m New Solar Telescope in Big Bear

    NASA Astrophysics Data System (ADS)

    Cao, W.; Gorceix, N.; Coulter, R.; Ahn, K.; Rimmele, T. R.; Goode, P. R.

    2010-06-01

    The NST (New Solar Telescope), a 1.6 m clear aperture, off-axis telescope, is in its commissioning phase at Big Bear Solar Observatory (BBSO). It will be the most capable, largest aperture solar telescope in the US until the 4 m ATST (Advanced Technology Solar Telescope) comes on-line late in the next decade. The NST will be outfitted with state-of-the-art scientific instruments at the Nasmyth focus on the telescope floor and in the Coudé Lab beneath the telescope. At the Nasmyth focus, several filtergraphs already in routine operation have offered high spatial resolution photometry in TiO 706 nm, H\\alpha 656 nm, G-band 430 nm and the near infrared (NIR), with the aid of a correlation tracker and image reconstruction system. Also, a Cryogenic Infrared Spectrograph (CYRA) is being developed to supply high signal-to-noise-ratio spectrometry and polarimetry spanning 1.0 to 5.0 μm. The Coudé Lab instrumentation will include Adaptive Optics (AO), InfraRed Imaging Magnetograph (IRIM), Visible Imaging Magnetograph (VIM), and Fast Imaging Solar Spectrograph (FISS). A 308 sub-aperture (349-actuator deformable mirror) AO system will enable nearly diffraction limited observations over the NST's principal operating wavelengths from 0.4 μm through 1.7 μm. IRIM and VIM are Fabry-Pérot based narrow-band tunable filters, which provide high resolution two-dimensional spectroscopic and polarimetric imaging in the NIR and visible respectively. FISS is a collaboration between BBSO and Seoul National University focussing on chromosphere dynamics. This paper reports the up-to-date progress on these instruments including an overview of each instrument and details of the current state of design, integration, calibration and setup/testing on the NST.

  18. Design and development of a fast-steering secondary mirror for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Cho, Myung; Corredor, Andrew; Dribusch, Christoph; Park, Kwijong; Kim, Young-Soo; Moon, Il-Kweon

    2011-09-01

    The Giant Magellan Telescope (GMT) will be a 25m class telescope which is one of the extremely large telescope projects in the design and development phase. The GMT will have two Gregorian secondary mirrors, an adaptive secondary mirror (ASM) and a fast-steering secondary mirror (FSM). Both secondary mirrors are 3.2 m in diameter and built as seven 1.1 m diameter circular segments conjugated 1:1 to the seven 8.4m segments of the primary. The FSM has a tip-tilt feature to compensate image motions from the telescope structure jitters and the wind buffeting. The support system of the lightweight mirror consists of three axial actuators, one lateral support at the center, and a vacuum system. A parametric study and optimization of the FSM mirror blank and central lateral flexure design were performed. This paper reports the results of the trade study. The optical image qualities and structure functions for the axial and lateral gravity print-through cases, thermal gradient effects, and dynamic performances will be discussed for the case of a lightweighted segment with a center thickness of 140 mm weighing approximately 105 kg.

  19. Development of a fast steering secondary mirror prototype for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Cho, Myung K.; Corredor, Andrew; Dribusch, Christoph; Park, Kwijong; Kim, Young-Soo; Moon, Il-Kweon; Park, Won Hyun

    2012-09-01

    The Giant Magellan Telescope (GMT) will be a 25m class telescope currently in the design and development phase. The GMT will be a Gregorian telescope and equipped with a fast-steering secondary mirror (FSM). This secondary mirror is 3.2 m in diameter and built as seven 1.1 m diameter circular segments conjugated 1:1 to the seven 8.4m segments of the primary. The prototype of FSM (FSMP) development effort is led by the Korea Astronomy and Space Science Institute (KASI) with several collaborators in Korea, and the National Optical Astronomy Observatory (NOAO) in USA. The FSM has a tip-tilt feature to compensate image motions from the telescope structure jitters and the wind buffeting. For its dynamic performance, each of the FSM segments is designed in a lightweight mirror. Support system of the lightweight mirror consists of three axial actuators, one lateral support at the center, and a vacuum system. A parametric design study to optimize the FSM mirror configuration was performed. In this trade study, the optical image qualities and structure functions for the axial and lateral gravity print-through cases, thermal gradient effects, and dynamic performances will be discussed.

  20. Southern Fireworks above ESO Telescopes

    NASA Astrophysics Data System (ADS)

    1999-05-01

    New Insights from Observations of Mysterious Gamma-Ray Burst International teams of astronomers are now busy working on new and exciting data obtained during the last week with telescopes at the European Southern Observatory (ESO). Their object of study is the remnant of a mysterious cosmic explosion far out in space, first detected as a gigantic outburst of gamma rays on May 10. Gamma-Ray Bursters (GRBs) are brief flashes of very energetic radiation - they represent by far the most powerful type of explosion known in the Universe and their afterglow in optical light can be 10 million times brighter than the brightest supernovae [1]. The May 10 event ranks among the brightest one hundred of the over 2500 GRB's detected in the last decade. The new observations include detailed images and spectra from the VLT 8.2-m ANTU (UT1) telescope at Paranal, obtained at short notice during a special Target of Opportunity programme. This happened just over one month after that powerful telescope entered into regular service and demonstrates its great potential for exciting science. In particular, in an observational first, the VLT measured linear polarization of the light from the optical counterpart, indicating for the first time that synchrotron radiation is involved . It also determined a staggering distance of more than 7,000 million light-years to this GRB . The astronomers are optimistic that the extensive observations will help them to better understand the true nature of such a dramatic event and thus to bring them nearer to the solution of one of the greatest riddles of modern astrophysics. A prime example of international collaboration The present story is about important new results at the front-line of current research. At the same time, it is also a fine illustration of a successful collaboration among several international teams of astronomers and the very effective way modern science functions. It began on May 10, at 08:49 hrs Universal Time (UT), when the Burst