Science.gov

Sample records for 4n forging steel

  1. Factors Affecting Scale Adhesion on Steel Forgings

    NASA Astrophysics Data System (ADS)

    Zitterman, J. A.; Bacco, R. P.; Boggs, W. E.

    1982-04-01

    Occasionally, undesirable "sticky" adherent scale forms on low-carbon steel during reheating for hot forging. The mechanical abrading or chemical pickling required to remove this scale adds appreciably to the fabrication cost. Characterization of the steel-scale system by metallographic examination, x-ray diffraction, and electron-probe microanalysis revealed that nickel, silicon, and/or sulfur might be involved in the mechanism of sticky-scale formation. Laboratory reheating tests were conducted on steels with varied concentrations of nickel and silicon in atmospheres simulating those resulting from burning natural gas or sulfur-bearing fuels. Subsequent characterization of the scale formed during the tests tends to confirm that the composition of the steel, especially increased nickel and silicon contents, and the presence of the sulfur in the furnace atmosphere cause the formation of this undesirable scale.

  2. 77 FR 14445 - Application for a License To Export Steel Forging

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... FR 49139 (Aug. 28, 2007). Information about filing electronically is available on the NRC's public... Spain. December 15, 2011 head steel head steel February 7, 2012 forging. forging will be XR175 machined into the 11005983 finished vessel head at ENSA Equipos Nucleares, S.A. in Spain, for use in...

  3. Friction and wear in hot forging of steels

    SciTech Connect

    Daouben, E.; Dubar, L.; Dubar, M.; Deltombe, R.; Dubois, A.; Truong-Dinh, N.; Lazzarotto, L.

    2007-04-07

    In the field of hot forging of steels, the mastering of wear phenomena enables to save cost production, especially concerning tools. Surfaces of tools are protected thanks to graphite. The existing lubrication processes are not very well known: amount and quality of lubricant, lubrication techniques have to be strongly optimized to delay wear phenomena occurrence. This optimization is linked with hot forging processes, the lubricant layers must be tested according to representative friction conditions. This paper presents the first part of a global study focused on wear phenomena encountered in hot forging of steels. The goal is the identification of reliable parameters, in order to bring knowledge and models of wear. A prototype testing stand developed in the authors' laboratory is involved in this experimental analysis. This test is called Warm and Hot Upsetting Sliding Test (WHUST). The stand is composed of a heating induction system and a servo-hydraulic system. Workpieces taken from production can be heated until 1200 deg. C. A nitrided contactor representing the tool is heated at 200 deg. C. The contactor is then coated with graphite and rubs against the workpiece, leaving a residual track on it. Friction coefficient and surface parameters on the contactor and the workpiece are the most representative test results. The surface parameters are mainly the sliding length before defects occurrence, and the amplitude of surface profile of the contactor. The developed methodology will be first presented followed by the different parts of the experimental prototype. The results of experiment show clearly different levels of performance according to different lubricants.

  4. HYDROGEN-ASSISTED FRACTURE IN FORGED TYPE 304L AUSTENITIC STAINLESS STEEL

    SciTech Connect

    Switzner, Nathan; Neidt, Ted; Hollenbeck, John; Knutson, J.; Everhart, Wes; Hanlin, R.; Bergen, R.; Balch, D. K.

    2012-09-06

    Austenitic stainless steels generally have good resistance to hydrogen-assisted fracture; however, structural designs for high-pressure gaseous hydrogen are constrained by the low strength of this class of material. Forging is used to increase the low strength of austenitic stainless steels, thus improving the efficiency of structural designs. Hydrogen-assisted racture, however, depends on microstructural details associated with manufacturing. In this study, hydrogen-assisted fracture of forged type 304L austenitic stainless steel is investigated. Microstructural variation in multi-step forged 304L was achieved by forging at different rates and temperatures, and by process annealing. High internal hydrogen content in forged type 304L austenitic stainless steel is achieved by thermal precharging in gaseous hydrogen and results in as much as 50% reduction of tensile ductility.

  5. Parameter Optimization During Forging Process of a Novel High-Speed-Steel Cold Work Roll

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Liu, Ligang; Sun, Yanliang; Li, Qiang; Ren, Xuejun; Yang, Qingxiang

    2016-01-01

    The forging of high-speed-steel (HSS) roll has always been a technical problem in manufacturing industry. In this study, the forging process of a novel HSS cold work roll was simulated by deform-3D on the basis of rigid-viscoplastic finite element model. The effect of heating temperature and forging speed on temperature and stress fields during forging process was simulated too. The results show that during forging process, the temperature of the contact region with anvils increases. The stress of the forging region increases and distributes un-uniformly, while that of the non-forging region is almost zero. With increasing forging time, Z load on anvil increases gradually. With increasing heating temperature or decreasing forging speed, the temperature of the whole billet increases, while the stress and Z load on anvil decrease. In order to ensure the high efficiency and safety of the forging process, the heating temperature and the forging speed are chosen as 1160 °C and 16.667 mm/s, respectively.

  6. Residual Stresses in 21-6-9 Stainless Steel Warm Forgings

    SciTech Connect

    Everhart, Wesley A.; Lee, Jordan D.; Broecker, Daniel J.; Bartow, John P.; McQueen, Jamie M.; Switzner, Nathan T.; Neidt, Tod M.; Sisneros, Thomas A.; Brown, Donald W.

    2012-11-14

    Forging residual stresses are detrimental to the production and performance of derived machined parts due to machining distortions, corrosion drivers and fatigue crack drivers. Residual strains in a 21-6-9 stainless steel warm High Energy Rate Forging (HERF) were measured via neutron diffraction. The finite element analysis (FEA) method was used to predict the residual stresses that occur during forging and water quenching. The experimentally measured residual strains were used to calibrate simulations of the three-dimensional residual stress state of the forging. ABAQUS simulation tools predicted residual strains that tend to match with experimental results when varying yield strength is considered.

  7. 76 FR 31585 - Forged Stainless Steel Flanges From India: Notice of Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... International Trade Administration Forged Stainless Steel Flanges From India: Notice of Rescission of... stainless steel flanges from India. The period of review is February 1, 2010, through January 22, 2011... stainless steel flanges from India. See Antidumping or Countervailing Duty Order, Finding, or...

  8. Structure and Mechanical Properties of Nitrogen Austenitic Steel after Ultrasonic Forging

    NASA Astrophysics Data System (ADS)

    Narkevich, N. A.; Tolmachev, A. I.; Vlasov, I. V.; Surikova, N. S.

    2016-03-01

    Electron microscopy and X-ray diffraction have been used to investigate a nitrogen 07Kh17AG18 steel with an austenitic structure after the surface deformation treatment—ultrasonic forging. During ultrasonic forging, an austenitic structure transforms into a new structure with an elevated concentration of deformation-induced stacking faults, a lot of deformation microtwins, ɛ-martensite crystals. The austenite lattice parameter is found to be decreased in the surface layer. After ultrasonic forging, nitrided steel exhibits enhanced strength properties with retained high plasticity.

  9. 76 FR 8773 - Forged Stainless Steel Flanges From India and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... reviews, * * *'' (76 FR 5331). Accordingly, pursuant to section 751(c) of the Tariff Act of 1930 (19 U.S.C... COMMISSION Forged Stainless Steel Flanges From India and Taiwan AGENCY: United States International Trade... steel flanges from India and Taiwan would be likely to lead to continuation or recurrence of...

  10. 75 FR 67110 - Forged Stainless Steel Flanges From India and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-01

    ... stainless steel flanges from India and Taiwan (65 FR 49964). Following second five-year reviews by Commerce... duty orders on imports of forged stainless steel flanges from India and Taiwan (71 FR 3457, January 23... part 201), and part 207, subparts A, D, E, and F (19 CFR part 207), as most recently amended at 74...

  11. 76 FR 5331 - Forged Stainless Steel Flanges From India and Taiwan: Final Results of Sunset Reviews and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    .... See Initiation of Five-Year (``Sunset'') Review, 75 FR 67082 (November 1, 2010). We did not receive a... Forged Stainless Steel Flanges From India, 59 FR 5994 (February 9, 1994) and Antidumping Duty Order: Certain Forged Stainless Steel Flanges From Taiwan, 59 FR 5995 (February 9, 1994). On January 23,...

  12. HYDROGEN EFFECTS ON THE FRACTURE TOUGHNESS PROPERTIES OF FORGED STAINLESS STEELS

    SciTech Connect

    Morgan, M

    2008-03-28

    The effect of hydrogen on the fracture toughness properties of Types 304L, 316L and 21-6-9 forged stainless steels was investigated. Fracture toughness samples were fabricated from forward-extruded forgings. Samples were uniformly saturated with hydrogen after exposure to hydrogen gas at 34 MPa or 69 and 623 K prior to testing. The fracture toughness properties were characterized by measuring the J-R behavior at ambient temperature in air. The results show that the hydrogen-charged steels have fracture toughness values that were about 50-60% of the values measured for the unexposed steels. The reduction in fracture toughness was accompanied by a change in fracture appearance. Both uncharged and hydrogen-charged samples failed by microvoid nucleation and coalescence, but the fracture surfaces of the hydrogen-charged steels had smaller microvoids. Type 316L stainless steel had the highest fracture toughness properties and the greatest resistance to hydrogen degradation.

  13. TRITIUM AGING EFFECTS ON THE FRACTURE TOUGHNESS PROPERTIES OF FORGED STAINLESS STEEL

    SciTech Connect

    Morgan, M

    2008-04-14

    The fracture toughness properties of Type 21-6-9 stainless steel were measured for forgings in the unexposed, hydrogen-exposed, and tritium-exposed-and-aged conditions. Fracture toughness samples were cut from conventionally-forged and high-energy-rate-forged forward-extruded cylinders and mechanically tested at room temperature using ASTM fracture-toughness testing procedures. Some of the samples were exposed to either hydrogen or tritium gas (340 MPa, 623 K) prior to testing. Tritium-exposed samples were aged for up to seven years and tested periodically in order to measure the effect on fracture toughness of {sup 3}He from radioactive tritium decay. The results show that hydrogen-exposed and tritium-exposed samples had lower fracture- toughness values than unexposed samples and that fracture toughness decreased with increasing decay {sup 3}He content. Forged steels were more resistant to the embrittling effects of tritium and decay {sup 3}He than annealed steels, although their fracture-toughness properties depended on the degree of sensitization that occurred during processing. The fracture process was dominated by microvoid nucleation, growth and coalescence; however, the size and spacing of microvoids on the fracture surfaces were affected by hydrogen and tritium with the lowest-toughness samples having the smallest microvoids and finest spacing.

  14. Microstructural changes in as-cast M2 grade high speed steel during hot forging

    SciTech Connect

    Ghomashchi, M.R. . Metallurgy Dept.); Sellars, C.M. . Dept. of Engineering Materials)

    1993-10-01

    High speed steels have a complex carbide pattern in the as-cast state which has to be modified to achieve the desired properties of adequate toughness, hot hardness, and wear resistance. The High speed steels have a complex carbide pattern in the as-cast state which has to be modified to achieve the desired properties of adequate toughness, hot hardness, and wear resistance. The effects of hot forging and postdeformation annealing on carbide distribution and morphology in M2 grade high speed steel were studied, and it was shown that hot forging accelerates the spheroidization rate of M[sub 6]C carbide with little effect on coarsening. The mechanism responsible for such acceleration is dominated by mechanical disintegration of M[sub 6]C carbide plates, while diffusion-controlled spheroidization was not significant. For MC carbide particles, coarsening was the dominant mechanism, but it was not possible to ascertain whether diffusion had been unaffected by deformation or even increased by a factor that could be as high as 10,000 times. Annealing after deformation accelerated spheroidization which was attributed to the damaging of carbide plates during forging rather than an increase in diffusion rate, since the matrix was almost substructure-free in the annealed condition, i.e., lack of short-circuiting paths for diffusion.

  15. Corrosion fatigue crack growth in clad low-alloy steels: Part 1, medium-sulfur forging steel

    SciTech Connect

    James, L.A.; Poskie, T.J.; Auten, T.A; Cullen, W.H.

    1996-04-01

    Corrosion fatigue crack propagation tests were conducted on a medium- sulfur ASTM A508-2 forging steel overlaid with weld-deposited Alloy EN82H cladding. The specimens featured semi-elliptical surface cracks penetrating approximately 6.3 mm of cladding into the underlying steel. The initial crack sizes were relatively large with surface lengths of 30.3--38.3 mm, and depths of 13.1--16.8 mm. The experiments were conducted in a quasi-stagnant low-oxygen (O{sub 2} < 10 ppb) aqueous environment at 243{degrees}C, under loading conditions ({Delta}K, R, and cyclic frequency) conductive to environmentally-assisted cracking (EAC) in higher-sulfur steels under quasi-stagnant conditions. Earlier experiments on unclad compact tension specimens of this heat of steel did not exhibit EAC, and the present experiments on semi-elliptical surface cracks penetrating cladding also did not exhibit EAC.

  16. Effect of forging strain rate and deformation temperature on the mechanical properties of warm-worked 304L stainless steel

    SciTech Connect

    Switzner, N. T.; Van Tyne, C. J.; Mataya, M. C.

    2010-01-25

    Stainless steel 304L forgings were produced with four different types of production forging equipment – hydraulic press, mechanical press, screw press, and high-energy rate forging (HERF). Each machine imparted a different nominal strain rate during the deformation. The final forgings were done at the warm working (low hot working) temperatures of 816 °C, 843°C, and 871°C. The objectives of the study were to characterize and understand the effect of industrial strain rates (i.e. processing equipment), and deformation temperature on the mechanical properties for the final component. Some of the components were produced with an anneal prior to the final forging while others were deformed without the anneal. The results indicate that lower strain rates produced lower strength and higher ductility components, but the lower strain rate processes were more sensitive to deformation temperature variation and resulted in more within-part property variation. The highest strain rate process, HERF, resulted in slightly lower yield strength due to internal heating. Lower processing temperatures increased strength, decreased ductility but decreased within-part property variation. The anneal prior to the final forging produced a decrease in strength, a small increase in ductility, and a small decrease of within-part property variation.

  17. Effects of Low Temperature on Hydrogen-Assisted Crack Growth in Forged 304L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Jackson, Heather; San Marchi, Chris; Balch, Dorian; Somerday, Brian; Michael, Joseph

    2016-08-01

    The objective of this study was to evaluate effects of low temperature on hydrogen-assisted crack propagation in forged 304L austenitic stainless steel. Fracture initiation toughness and crack-growth resistance curves were measured using fracture mechanics specimens that were thermally precharged with 140 wppm hydrogen and tested at 293 K or 223 K (20 °C or -50 °C). Fracture initiation toughness for hydrogen-precharged forgings decreased by at least 50 to 80 pct relative to non-charged forgings. With hydrogen, low-temperature fracture initiation toughness decreased by 35 to 50 pct relative to room-temperature toughness. Crack growth without hydrogen at both temperatures was microstructure-independent and indistinguishable from blunting, while with hydrogen microcracks formed by growth and coalescence of microvoids. Initiation of microvoids in the presence of hydrogen occurred where localized deformation bands intersected grain boundaries and other deformation bands. Low temperature additionally promoted fracture initiation at annealing twin boundaries in the presence of hydrogen, which competed with deformation band intersections and grain boundaries as sites of microvoid formation and fracture initiation. A common ingredient for fracture initiation was stress concentration that arose from the intersection of deformation bands with these microstructural obstacles. The localized deformation responsible for producing stress concentrations at obstacles was intensified by low temperature and hydrogen. Crack orientation and forging strength were found to have a minor effect on fracture initiation toughness of hydrogen-supersaturated 304L forgings.

  18. Rapid heating tensile tests of hydrogen-charged high-energy-rate-forged 316L stainless steel

    SciTech Connect

    Mosley, W.C.

    1989-05-19

    316L stainless steel is a candidate material for construction of equipment that will be exposed to tritium. Proper design of the equipment will require an understanding of how tritium and its decay product helium affect mechanical properties. This memorandum describes results of rapid heating tensile testing of hydrogen-charged specimens of high-energy-rate-forged (HERF) 316L stainless steel. These results provide a data base for comparison with uncharged and tritium-charged-and-aged specimens to distinguish the effects of hydrogen and helium. Details of the experimental equipment and procedures and results for uncharged specimens were reported previously. 3 refs., 10 figs.

  19. Characteristics comparison of weld metal zones welded to cast and forged steels for piston crown material

    NASA Astrophysics Data System (ADS)

    Moon, Kyung-Man; Kim, Yun-Hae; Lee, Myeong-Hoon; Baek, Tae-Sil

    2015-03-01

    An optimum repair welding for the piston crown which is one of the engine parts exposed to the combustion chamber is considered to be very important to prolong the engine lifetime from an economical point of view. In this study, two types of filler metals such as 1.25Cr-0.5Mo, 0.5Mo were welded with SMAW method and the other two types of filler metals such as Inconel 625 and 718 were welded with GTAW method, respectively, and the used base metals were the cast and forged steels of the piston crown material. The weld metal zones welded with Inconel 625 and 718 filler metals exhibited higher corrosion resistance compared to 1.25Cr-0.5Mo and 0.5Mo filler metals. In particular, the weld metal zone welded with Inconel 718 and 0.5Mo, filler metals indicated the best and worst corrosion resistance, respectively. Consequently, it is suggested that the corrosion resistance of the weld metal zone surely depends on the chemical components of each filler metal and welding method irrespective of the types of piston crown material.

  20. The Influence of Temperature on the Frictional Behavior of Duplex-Coated Die Steel Rubbing Against Forging Brass

    NASA Astrophysics Data System (ADS)

    Ebrahimzadeh, I.; Ashrafizadeh, F.

    2015-01-01

    Improvement of die life under hot forging of brass alloys is considered vital from both economical and technical points of view. One of the best methods for improving die life is duplex coatings. In this research, the influence of temperature on the tribological behavior of duplex-coated die steel rubbing against forging brass was investigated. The wear tests were performed on a pin-on-disk machine from room temperature to 700 °C; the pins were made in H13 hot work tool steel treated by plasma nitriding and by PVD coatings of TiN-TiAlN-CrAlN. The disks were machined from a two-phase brass alloy too. The results revealed that the friction coefficient of this tribosystem went through a maximum at 550 °C and decreased largely at 700 °C. Furthermore, the formation of Cr2O3 caused the reduction of friction coefficient at 700 °C. PVD coatings proved their wear resistance up to 550 °C, well above the working temperature of the brass forging dies.

  1. Surface fatigue and failure characteristics of hot-forged powder metal AISI 4620, AISI 4640, and machined AISI 4340 steel spur gears

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.

    1987-01-01

    Spur gear surface fatigue endurance tests were conducted to investigate hot forged powder metal AISI 4620 and 4640 steel for use as a gear material, to determine endurance characteristics and to compare the results with machined AISI 4340 and 9310 steel gear materials. The as-forged and unground AISI 4620 gear exhibited a 10 percent fatigue life that was approximately one-fourth of that for AISI 9310 and less than one-half that for the AISI 4340 gears. The forged and finish ground AISI 4620 gears exhibited a 10 percent life, approximately 70 percent that of AISI 9310 and slightly better than that of AISI 4340. The AISI 4640 hot forged gears had less fracture toughness and slightly less fatigue life than the AISI 4620 test gears.

  2. Surface fatigue and failure characteristics of hot forged powder metal AISI 4620, AISI 4640, and machined AISI 4340 steel spur gears

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.

    1986-01-01

    Spur gear surface fatigue endurance tests were conducted to investigate hot forged powder metal AISI 4620 and 4640 steel for use as a gear material, to determine endurance characteristics and to compare the results with machined AISI 4340 and 9310 steel gear materials. The as-forged and unground SISI 4620 gear exhibited a 10 percent fatigue life that was approximately one-fourth of that for AISI 9310 and less than one-half that for the AISI 4340 gears. The forged and finish ground AISI 4620 gears exhibited a 10 percent life, approximately 70 percent that of AISI 9310 and slightly better than that of AISI 4340. The AISI 4640 hot forged gears had less fracture toughness and slightly less fatigue life than the AISI 4620 test gears.

  3. Master curve characterization of the fracture toughness behavior in SA508 Gr.4N low alloy steels

    NASA Astrophysics Data System (ADS)

    Lee, Ki-Hyoung; Kim, Min-Chul; Lee, Bong-Sang; Wee, Dang-Moon

    2010-08-01

    The fracture toughness properties of the tempered martensitic SA508 Gr.4N Ni-Mo-Cr low alloy steel for reactor pressure vessels were investigated by using the master curve concept. These results were compared to those of the bainitic SA508 Gr.3 Mn-Mo-Ni low alloy steel, which is a commercial RPV material. The fracture toughness tests were conducted by 3-point bending with pre-cracked charpy (PCVN) specimens according to the ASTM E1921-09c standard method. The temperature dependency of the fracture toughness was steeper than those predicted by the standard master curve, while the bainitic SA508 Gr.3 steel fitted well with the standard prediction. In order to properly evaluate the fracture toughness of the Gr.4N steels, the exponential coefficient of the master curve equation was changed and the modified curve was applied to the fracture toughness test results of model alloys that have various chemical compositions. It was found that the modified curve provided a better description for the overall fracture toughness behavior and adequate T0 determination for the tempered martensitic SA508 Gr.4N steels.

  4. Microstructure and Texture Evolution in Cold Rotary Forging of Spur Bevel Gears of 20CrMnTi Alloy Steel

    NASA Astrophysics Data System (ADS)

    Han, Xinghui; Dong, Liying; Hua, Lin; Zhuang, Wuhao

    2016-03-01

    The microstructure of cold rotary forged gears greatly affects their working life. Therefore, the aim of this study is to reveal the evolution of microstructure and texture that occurs during the cold rotary forging of spur bevel gears of 20CrMnTi alloy steel. The evolution of grains of the gear tooth is investigated through optical microscopy. By employing scanning electron microscopy and electron backscatter diffraction, the evolution of the cementite particles and the texture of the gear tooth is also revealed. The results indicate that the grain size distribution is non-uniform from the tooth profile to its center. The cementite particles in the tooth profile are finer and more uniformly distributed than those in the tooth center. After cold rotary forging, the tooth center has a combination of α- and γ-fibers, and the γ-fibers are more developed than the α-fibers, while most of the components in the tooth profile are assembled along the α-fibers.

  5. Manufacturing of Precision Forgings by Radial Forging

    SciTech Connect

    Wallner, S.; Harrer, O.; Buchmayr, B.; Hofer, F.

    2011-01-17

    Radial forging is a multi purpose incremental forging process using four tools on the same plane. It is widely used for the forming of tool steels, super alloys as well as titanium- and refractory metals. The range of application goes from reducing the diameters of shafts, tubes, stepped shafts and axels, as well as for creating internal profiles for tubes in Near-Net-Shape and Net-Shape quality. Based on actual development of a weight optimized transmission input shaft, the specific features of radial forging technology is demonstrated. Also a Finite Element Model for the simulation of the process is shown which leads to reduced pre-processing effort and reduced computing time compared to other published simulation methods for radial forging. The finite element model can be applied to quantify the effects of different forging strategies.

  6. A Microstructural Study on the Observed Differences in Charpy Impact Behavior Between Hot Isostatically Pressed and Forged 304L and 316L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Cooper, Adam J.; Cooper, Norman I.; Bell, Andrew; Dhers, Jean; Sherry, Andrew H.

    2015-11-01

    With near-net shape technology becoming a more desirable route toward component manufacture due to its ability to reduce machining time and associated costs, it is important to demonstrate that components fabricated via Hot Isostatic Pressing (HIP) are able to perform to similar standards as those set by equivalent forged materials. This paper describes the results of a series of Charpy tests from HIP'd and forged 304L and 316L austenitic stainless steel, and assesses the differences in toughness values observed. The pre-test and post-test microstructures were examined to develop an understanding of the underlying reasons for the differences observed. The as-received microstructure of HIP'd material was found to contain micro-pores, which was not observed in the forged material. In tested specimens, martensite was detectable within close proximity to the fracture surface of Charpy specimens tested at 77 K (-196 °C), and not detected in locations remote from the fracture surface, nor was martensite observed in specimens tested at ambient temperatures. The results suggest that the observed changes in the Charpy toughness are most likely to arise due to differences in as-received microstructures of HIP'd vs forged stainless steel.

  7. Energy audit of three energy-conserving devices in a steel-industry demonstration program. Task I. Hague forge furnaces. Final report

    SciTech Connect

    Lownie, H.W.; Holden, F.C.

    1982-06-01

    A program to demonstrate to industry the benefits of installing particular types of energy-conserving devices and equipment was carried out. One of these types of equipment and the results obtained under production conditions in commercial plants are described. The equipment under consideration includes improved forge furnaces and associated heat-recovery components. They are used to heat steel to about 2300 F prior to hot forging. The energy-conserving devices include improved insulation, automatic air-fuel ratio control, and a ceramic recuperator that recovers heat from hot combustion gases and delivers preheated air to high-temperature recirculating burners. Twelve Hague furnaces and retrofit packages were purchased and installed by eleven host forge shops that agree to furnish performance data for the purpose of demonstrating the energy and economic savings that can be achieved in comparison with existing equipment. Fuel savings were reported by comparing the specific energy consumption (Btu's per pound of steel heated) for each Hague furnace with that of a comparison furnace. Economic comparisons were made using payback period based on annual after-tax cash flow. Payback periods for the Hague equipment varied from less than two years to five years or more. In several cases, payback times were high only because the units were operated at a small fraction of their available capacity.

  8. Forging Advisor

    SciTech Connect

    Kerry Barnett

    2003-03-01

    Many mechanical designs demand components produced to a near net shape condition to minimize subsequent process steps. Rough machining from slab or bar stock can quickly and economically produce simple prismatic or cylindrical shapes. More complex shapes can be produced by laser engineered net shaping (LENS), casting , or forging. But for components that require great strength in mission critical applications, forging may be the best or even the only option. However, designers of these parts may and often do lack the detailed forging process knowledge necessary to understand the impact of process details such as grain flow or parting line placement on both the forging process and the characteristics of the forged part. Economics and scheduling requirements must also be considered. Sometimes the only viable answer to a difficult problem is to re-design the assembly to reduce loading and enable use of other alternatives.

  9. Plasticity and ab initio characterizations on Fe 4N produced on the surface of nanocrystallized 18Ni-maraging steel plasma nitrided at lower temperature

    NASA Astrophysics Data System (ADS)

    Yan, M. F.; Wu, Y. Q.; Liu, R. L.

    2009-08-01

    18Ni-maraging steel has been entirely nanocrystallized by a series of processes including solution treatment, hot-rolling deformation, cold-drawn deformation and direct electric heating. The plasma nitriding of nanocrystallized 18Ni-maraging steel was carried out at 410 °C for 3 h and 6 h in a mixture gas of 20% N 2 + 80% H 2 with a pressure of 400 Pa. The surface phase constructions and nitrogen concentration profile in surface layer were analyzed using an X-ray diffractometer (XRD) and the glow discharge spectrometry (GDS), respectively. The results show that an about 2 μm thick compound layer (mono-phase γ'-Fe 4N) can be produced on the top of the surface layer of nanocrystallized 18Ni-maraging steel plasma nitrided at 410 °C for 6 h. The measured hardness value of the nitrided surface is 11.6 GPa. More importantly, the γ'-Fe 4N phase has better plasticity, i.e., its plastic deformation energy calculated from the load-displacement curve obtained by nano-indentation tester is close to that of nanocrystallized 18Ni-maraging steel. Additionally, the mechanical properties of γ'-Fe 4N phase were also characterized by first-principles calculations. The calculated results indicate that the hardness value and the ratio of bulk to shear modulus ( B/ G) of the γ'-Fe 4N phase are 10.15 GPa and 3.12 (>1.75), respectively. This demonstrates that the γ'-Fe 4N phase has higher hardness and better ductility.

  10. Weldability Characteristics of Sintered Hot-Forged AISI 4135 Steel Produced through P/M Route by Using Pulsed Current Gas Tungsten Arc Welding

    NASA Astrophysics Data System (ADS)

    Joseph, Joby; Muthukumaran, S.; Pandey, K. S.

    2016-01-01

    Present investigation is an attempt to study the weldability characteristics of sintered hot-forged plates of AISI 4135 steel produced through powder metallurgy (P/M) route using matching filler materials of ER80S B2. Compacts of homogeneously blended elemental powders corresponding to the above steel were prepared on a universal testing machine (UTM) by taking pre-weighed powder blend with a suitable die, punch and bottom insert assembly. Indigenously developed ceramic coating was applied on the entire surface of the compacts in order to protect them from oxidation during sintering. Sintered preforms were hot forged to flat, approximately rectangular plates, welded by pulsed current gas tungsten arc welding (PCGTAW) processes with aforementioned filler materials. Microstructural, tensile and hardness evaluations revealed that PCGTAW process with low heat input could produce weldments of good quality with almost nil defects. It was established that PCGTAW joints possess improved tensile properties compared to the base metal and it was mainly attributed to lower heat input, resulting in finer fusion zone grains and higher fusion zone hardness. Thus, the present investigation opens a new and demanding field in research.

  11. High-energy rate forgings of wedges :

    SciTech Connect

    Reynolds, Thomas Bither; Everhart, Wesley; Switzner, Nathan T; Balch, Dorian K.; San Marchi, Christopher W.

    2014-05-01

    The wedge geometry is a simple geometry for establishing a relatively constant gradient of strain in a forged part. The geometry is used to establish gradients in microstructure and strength as a function of strain, forging temperature, and quenching time after forging. This geometry has previously been used to benchmark predictions of strength and recrystallization using Sandias materials model for type 304L austenitic stainless steel. In this report, the processing conditions, in particular the times to forge and quench the forged parts, are summarized based on information recorded during forging on June 18, 2013 of the so-called wedge geometry from type 316L and 21Cr-6Ni-9Mn austenitic stainless steels.

  12. New Trends in Forging Technologies

    NASA Astrophysics Data System (ADS)

    Behrens, B.-A.; Hagen, T.; Knigge, J.; Elgaly, I.; Hadifi, T.; Bouguecha, A.

    2011-05-01

    Limited natural resources increase the demand on highly efficient machinery and transportation means. New energy-saving mobility concepts call for design optimisation through downsizing of components and choice of corrosion resistant materials possessing high strength to density ratios. Component downsizing can be performed either by constructive structural optimisation or by substituting heavy materials with lighter high-strength ones. In this context, forging plays an important role in manufacturing load-optimised structural components. At the Institute of Metal Forming and Metal-Forming Machines (IFUM) various innovative forging technologies have been developed. With regard to structural optimisation, different strategies for localised reinforcement of components were investigated. Locally induced strain hardening by means of cold forging under a superimposed hydrostatic pressure could be realised. In addition, controlled martensitic zones could be created through forming induced phase conversion in metastable austenitic steels. Other research focused on the replacement of heavy steel parts with high-strength nonferrous alloys or hybrid material compounds. Several forging processes of magnesium, aluminium and titanium alloys for different aeronautical and automotive applications were developed. The whole process chain from material characterisation via simulation-based process design to the production of the parts has been considered. The feasibility of forging complex shaped geometries using these alloys was confirmed. In spite of the difficulties encountered due to machine noise and high temperature, acoustic emission (AE) technique has been successfully applied for online monitoring of forging defects. New AE analysis algorithm has been developed, so that different signal patterns due to various events such as product/die cracking or die wear could be detected and classified. Further, the feasibility of the mentioned forging technologies was proven by means

  13. Steel bars and forgings, 0.50Cr 0.55Ni 0.25Mo (0.38 0.43C) (SAE 8740), heat treated, 125,000 psi (862 MPa) tensile strength (reaffirmed, Apr 1994). (SAE standard)

    SciTech Connect

    1988-10-01

    This specification covers an aircraft-quality, low-alloy steel in the form of bars and forgings. Primarily for parts, such as nuts, bolts, and screws, 1.50 inch (38.1 mm) and under in section thickness, requiring a minimum tensile strength of 125,000 (862 MPa). Alloy: 8740 UNS Number: G8740.

  14. Co-Operative Training in the Sheffield Forging Industry

    ERIC Educational Resources Information Center

    Duncan, R.

    2008-01-01

    Purpose: The purpose of this paper is to give details of an operation carried out in Sheffield to increase the recruitment of young men into the steel forging industry. Design/methodology/approach: The Sheffield Forges Co-operative Training Scheme was designed to encourage boys to enter the forging industry and to provide them with training and…

  15. Impact of Temperature on Cooling Structural Variation of Forging Dies

    NASA Astrophysics Data System (ADS)

    Piesova, Marianna; Czan, Andrej

    2014-12-01

    The article is focused on the issue of die forging in the automotive industry. The cooling effect of temperature on the structure of forged die are under review. In the article, there is elaborated the analysis of theoretical knowledge in the field, focusing on die forging and experimentally proven effect of the cooling rate on the final structure of forged dies made of hypoeutectic carbon steel C56E2.

  16. Prediction of Microstructure in High-Strength Ductile Forging Parts

    SciTech Connect

    Urban, M.; Back, A.; Hirt, G.; Keul, C.; Bleck, W.

    2010-06-15

    Governmental, environmental and economic demands call for lighter, stiffer and at the same time cheaper products in the vehicle industry. Especially safety relevant parts have to be stiff and at the same time ductile. The strategy of this project was to improve the mechanical properties of forging steel alloys by employing a high-strength and ductile bainitic microstructure in the parts while maintaining cost effective process chains to reach these goals for high stressed forged parts. Therefore, a new steel alloy combined with an optimized process chain has been developed. To optimize the process chain with a minimum of expensive experiments, a numerical approach was developed to predict the microstructure of the steel alloy after the process chain based on FEM simulations of the forging and cooling combined with deformation-time-temperature-transformation-diagrams.

  17. Modeling of Closed-Die Forging for Estimating Forging Load

    NASA Astrophysics Data System (ADS)

    Sheth, Debashish; Das, Santanu; Chatterjee, Avik; Bhattacharya, Anirban

    2016-05-01

    Closed die forging is one common metal forming process used for making a range of products. Enough load is to exert on the billet for deforming the material. This forging load is dependent on work material property and frictional characteristics of the work material with the punch and die. Several researchers worked on estimation of forging load for specific products under different process variables. Experimental data on deformation resistance and friction were used to calculate the load. In this work, theoretical estimation of forging load is made to compare this value with that obtained through LS-DYNA model facilitating the finite element analysis. Theoretical work uses slab method to assess forging load for an axi-symmetric upsetting job made of lead. Theoretical forging load estimate shows slightly higher value than the experimental one; however, simulation shows quite close matching with experimental forging load, indicating possibility of wide use of this simulation software.

  18. Fallon FORGE Well Lithologies

    DOE Data Explorer

    Doug Blankenship

    2016-03-01

    x,y,z text file of the downhole lithologic interpretations in the wells in and around the Fallon FORGE site. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.

  19. Superplastic forging nitride ceramics

    DOEpatents

    Panda, Prakash C.; Seydel, Edgar R.; Raj, Rishi

    1988-03-22

    The invention relates to producing relatively flaw free silicon nitride ceramic shapes requiring little or no machining by superplastic forging This invention herein was made in part under Department of Energy Grant DE-AC01-84ER80167, creating certain rights in the United States Government. The invention was also made in part under New York State Science and Technology Grant SB1R 1985-10.

  20. Development of high purity large forgings for nuclear power plants

    NASA Astrophysics Data System (ADS)

    Tanaka, Yasuhiko; Sato, Ikuo

    2011-10-01

    The recent increase in the size of energy plants has been supported by the development of manufacturing technology for high purity large forgings for the key components of the plant. To assure the reliability and performance of the large forgings, refining technology to make high purity steels, casting technology for gigantic ingots, forging technology to homogenize the material and consolidate porosity are essential, together with the required heat treatment and machining technologies. To meet these needs, the double degassing method to reduce impurities, multi-pouring methods to cast the gigantic ingots, vacuum carbon deoxidization, the warm forging process and related technologies have been developed and further improved. Furthermore, melting facilities including vacuum induction melting and electro slag re-melting furnaces have been installed. By using these technologies and equipment, large forgings have been manufactured and shipped to customers. These technologies have also been applied to the manufacture of austenitic steel vessel components of the fast breeder reactors and components for fusion experiments.

  1. Characterization of precipitates in a 2.25Cr-1Mo-0.25V steel for large-scale cast-forged products

    SciTech Connect

    Fu, R.D. Wang, T.S.; Zhou, W.H.; Zhang, W.H.; Zhang, F.C.

    2007-10-15

    In this paper, the precipitates formed during the heat-treatment processes for 2.25Cr-1Mo-0.25V steels were investigated by using an analytical transmission electron microscope (A-TEM). The results show that the complex precipitates containing several microalloyed elements (Ti, Nb, V) are dominant when the specimens are re-austenitized at 980 deg. C and 1200 deg. C. When the austenitization temperature is increased, the size and the quantity of the precipitates decrease. It is worth noting that Nb and V still exist in the precipitates even when the austenitizing temperature is as high as 1200 deg. C. It indicates that the composition of the complex precipitates has become homogeneous during prior thermal processing. Some vanadium is also preserved in the core of the complex precipitates. For the specimen quenched from 980 deg. C and tempered at 650 deg. C for 30 h, numerous carbides (e.g.; M{sub 23}C{sub 6}, M{sub 2}C and M{sub 7}C{sub 3}) are formed along grain boundary or in the matrix, in which elements such as Fe, Mn, Cr, Mo and V are found. Moreover, the prior precipitates have become coarse due to the extended tempering time.

  2. Superplastic forging nitride ceramics

    DOEpatents

    Panda, P.C.; Seydel, E.R.; Raj, R.

    1988-03-22

    A process is disclosed for preparing silicon nitride ceramic parts which are relatively flaw free and which need little or no machining, said process comprising the steps of: (a) preparing a starting powder by wet or dry mixing ingredients comprising by weight from about 70% to about 99% silicon nitride, from about 1% to about 30% of liquid phase forming additive and from 1% to about 7% free silicon; (b) cold pressing to obtain a preform of green density ranging from about 30% to about 75% of theoretical density; (c) sintering at atmospheric pressure in a nitrogen atmosphere at a temperature ranging from about 1,400 C to about 2,200 C to obtain a density which ranges from about 50% to about 100% of theoretical density and which is higher than said preform green density, and (d) press forging workpiece resulting from step (c) by isothermally uniaxially pressing said workpiece in an open die without initial contact between said workpiece and die wall perpendicular to the direction of pressing and so that pressed workpiece does not contact die wall perpendicular to the direction of pressing, to substantially final shape in a nitrogen atmosphere utilizing a temperature within the range of from about 1,400 C to essentially 1,750 C and strain rate within the range of about 10[sup [minus]7] to about 10[sup [minus]1] seconds[sup [minus]1], the temperature and strain rate being such that surface cracks do not occur, said pressing being carried out to obtain a shear deformation greater than 30% whereby superplastic forging is effected.

  3. Comparison of pitting fatigue life of ausforged and standard forged AISI M-50 and AISI 9310 spur gears

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Bamberger, E. N.; Zaretsky, E. V.

    1975-01-01

    Standard forged and ausforged spur gears made of vacuum-induction-melted, consumable-electrode, vacuum-arc-remelted AISI M-50 steel were tested under conditions that produced fatigue pitting. The gears were 8.89 cm (3.5 in.) in pitch diameter and had tip relief. The M-50 standard forged and ausforged test results were compared with each other. They were then compared with results for machined vacuum-arc-remelted AISI 9310 gears tested under identical conditions. Both types of M-50 gears had lives approximately five times that of the 9310 gears. The life at which 10 percent of the M-50 ausforged gears failed was slightly less than that at which the M-50 standard forged gears failed. The ausforged gears had a slightly greater tendency to fail by tooth fracture than did the standard forged gears, most likely because of the better forging and grain flow pattern of standard forged gears.

  4. Investigations on Forging Dies with Ceramic Inserts by means of Finite-Element-Analysis

    NASA Astrophysics Data System (ADS)

    Behrens, B.-A.; Schäfer, F.; Bistron, M.

    2007-05-01

    The tools in hot forging processes are exposed to high thermal and mechanical loadings. Tempering of the tool edge layer occurs as a result of thermal loadings. This leads to a gradual hardness loss of the tool material and increase of wear over forging cycles. Hence, the tool life in hot forging is mainly limited by wear. An extension of the die service life can be achieved by the use of ceramic inserts. The integration of ceramics into the die base plate made of hot-work steel is realised by active brazing, whereby it possible to apply ceramic in region with high wear. It has to be ensured in the design process of ceramic inserts for forging dies that no critical tensile stresses occur in the ceramics. A reliable design of the ceramic inserts is possible only through consideration of brazing and forming process. The development of a Finite-Element-model for the design of forging dies with ceramic inserts is the intention of the work presented in this paper. At first the forging process with a conventional die is analyzed concerning abrasive die wear to identify regions with high wear risk applying a modified Archard model. Based on the results of wear calculation, a forging die with ceramic inserts is investigated in terms of joint stresses at the end of the active brazing process. Subsequently, the forging process considering the residual stresses caused by joining is simulated in order to obtain the die stress in use.

  5. Large forging manufacturing process

    DOEpatents

    Thamboo, Samuel V.; Yang, Ling

    2002-01-01

    A process for forging large components of Alloy 718 material so that the components do not exhibit abnormal grain growth includes the steps of: a) providing a billet with an average grain size between ASTM 0 and ASTM 3; b) heating the billet to a temperature of between 1750.degree. F. and 1800.degree. F.; c) upsetting the billet to obtain a component part with a minimum strain of 0.125 in at least selected areas of the part; d) reheating the component part to a temperature between 1750.degree. F. and 1800.degree. F.; e) upsetting the component part to a final configuration such that said selected areas receive no strains between 0.01 and 0.125; f) solution treating the component part at a temperature of between 1725.degree. F. and 1750.degree. F.; and g) aging the component part over predetermined times at different temperatures. A modified process achieves abnormal grain growth in selected areas of a component where desirable.

  6. 29 CFR 1910.218 - Forging machines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Forging machines. 1910.218 Section 1910.218 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.218 Forging machines. (a... other identifier, for the forging machine which was inspected. (ii) Scheduling and recording...

  7. 29 CFR 1910.218 - Forging machines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Forging machines. 1910.218 Section 1910.218 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.218 Forging machines. (a... other identifier, for the forging machine which was inspected. (ii) Scheduling and recording...

  8. 29 CFR 1910.218 - Forging machines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Forging machines. 1910.218 Section 1910.218 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.218 Forging machines. (a... other identifier, for the forging machine which was inspected. (ii) Scheduling and recording...

  9. Effect of Die Strength and Work Piece Strength on the Wear of Hot Forging Dies

    NASA Astrophysics Data System (ADS)

    Levy, B. S.; Van Tyne, C. J.

    2015-01-01

    The effect of the strength ratio extracted from an Archard model for wear is used to describe the wear rates expected in hot forging dies. In the current study, the strength ratio is the strength of the hot forging die to the strength of the work piece. Three hot forging die steels are evaluated. The three die steels are FX, 2714, and WF. To determine the strength of the forging die, a continuous function has been developed that describes the yield strength of three die steels for temperatures from 600 to 700 °C and for times up to 20 h (i.e., tempering times of up to 20 h). The work piece material is assumed to be AISI 1045. Based on the analysis, the wear resistance of WF should be superior and FX should be slightly better than 2714. Decreasing the forging temperature increases the strength ratio, because the strength of the die surface increases faster than the flow strength of AISI 1045. The increase in the strength ratio indicates a decrease in the expected wear rate.

  10. Process modelings and simulations of heavy castings and forgings

    NASA Astrophysics Data System (ADS)

    Li, Dianzhong; Sun, Mingyue; Wang, Pei; Kang, Xiuhong; Fu, Paixian; Li, Yiyi

    2013-05-01

    The Materials Process Modeling Division, IMR, CAS has been promoting for more than 10 years research activities on modeling and experimental studies on heavy castings and forgings. In this report, we highlight some selected achievements and impacts in this area: To satisfy domestic strategic requirements, such as nuclear and hydraulic power, marine projects and high speed rail, we have developed a number of casting and forging technologies, which combine advanced computing simulations, X-ray real time observation techniques and industrial-scaled trial experiments. These technologies have been successfully applied in various industrial areas and yielded a series of scientific and technological breakthroughs and innovation. Important examples of this strategic research include the hot-processing technologies of the Three Gorge water turbine runner, marine crankshaft manufacturers, backup rolls for hot rolling mills and the production of hundreds-ton steel ingot.

  11. Analysis of the thermo-mechanical deformations in a hot forging tool by numerical simulation

    NASA Astrophysics Data System (ADS)

    L-Cancelos, R.; Varas, F.; Martín, E.; Viéitez, I.

    2016-03-01

    Although programs have been developed for the design of tools for hot forging, its design is still largely based on the experience of the tool maker. This obliges to build some test matrices and correct their errors to minimize distortions in the forged piece. This phase prior to mass production consumes time and material resources, which makes the final product more expensive. The forging tools are usually constituted by various parts made of different grades of steel, which in turn have different mechanical properties and therefore suffer different degrees of strain. Furthermore, the tools used in the hot forging are exposed to a thermal field that also induces strain or stress based on the degree of confinement of the piece. Therefore, the mechanical behaviour of the assembly is determined by the contact between the different pieces. The numerical simulation allows to analyse different configurations and anticipate possible defects before tool making, thus, reducing the costs of this preliminary phase. In order to improve the dimensional quality of the manufactured parts, the work presented here focuses on the application of a numerical model to a hot forging manufacturing process in order to predict the areas of the forging die subjected to large deformations. The thermo-mechanical model developed and implemented with free software (Code-Aster) includes the strains of thermal origin, strains during forge impact and contact effects. The numerical results are validated with experimental measurements in a tooling set that produces forged crankshafts for the automotive industry. The numerical results show good agreement with the experimental tests. Thereby, a very useful tool for the design of tooling sets for hot forging is achieved.

  12. Fallon FORGE Well Temp data

    DOE Data Explorer

    Doug Blankenship

    2016-03-01

    x,y,z downhole temperature data for wells in and around the Fallon FORGE site. Data for the following wells are included: 82-36, 82-19, 84.31, 61-36, 88-24, FOH-3D, FDU-1, and FDU-2. Data are formatted in txt format and in columns for importing into Earthvision Software. Column headers and coordinate system information is stored in the file header.

  13. Reactor pressure vessel with forged nozzles

    DOEpatents

    Desai, Dilip R.

    1993-01-01

    Inlet nozzles for a gravity-driven cooling system (GDCS) are forged with a cylindrical reactor pressure vessel (RPV) section to which a support skirt for the RPV is attached. The forging provides enhanced RPV integrity around the nozzle and substantial reduction of in-service inspection costs by eliminating GDCS nozzle-to-RPV welds.

  14. Characterization of a Viking Blade Fabricated by Traditional Forging Techniques

    NASA Astrophysics Data System (ADS)

    Vo, H.; Frazer, D.; Bailey, N.; Traylor, R.; Austin, J.; Pringle, J.; Bickel, J.; Connick, R.; Connick, W.; Hosemann, P.

    2016-09-01

    A team of students from the University of California, Berkeley, participated in a blade-smithing competition hosted by the Minerals, Metals, and Materials Society at the TMS 2015 144th annual meeting and exhibition. Motivated by ancient forging methods, the UC Berkeley team chose to fabricate our blade from historical smithing techniques utilizing naturally-occurring deposits of iron ore. This approach resulted in receiving the "Best Example of a Traditional Blade Process/Ore Smelting Technique" award for our blade named "Berkelium." First, iron-enriched sand was collected from local beaches. Magnetite (Fe3O4) was then extracted from the sand and smelted into individual high- and low-carbon steel ingots. Layers of high- and low-carbon steels were forge-welded together, predominantly by hand, to form a composite material. Optical microscopy, energy dispersive spectroscopy, and Vickers hardness mechanical testing were conducted at different stages throughout the blade-making process to evaluate the microstructure and hardness evolution during formation. It was found that the pre-heat-treated blade microstructure was composed of ferrite and pearlite, and contained many nonmetallic inclusions. A final heat treatment was performed, which caused the average hardness of the blade edge to increase by more than a factor of two, indicating a martensitic transformation.

  15. Forging of Advanced Disk Alloy LSHR

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John; Falsey, John

    2005-01-01

    The powder metallurgy disk alloy LSHR was designed with a relatively low gamma precipitate solvus temperature and high refractory element content to allow versatile heat treatment processing combined with high tensile, creep and fatigue properties. Grain size can be chiefly controlled through proper selection of solution heat treatment temperatures relative to the gamma precipitate solvus temperature. However, forging process conditions can also significantly influence solution heat treatment-grain size response. Therefore, it is necessary to understand the relationships between forging process conditions and the eventual grain size of solution heat treated material. A series of forging experiments were performed with subsequent subsolvus and supersolvus heat treatments, in search of suitable forging conditions for producing uniform fine grain and coarse grain microstructures. Subsolvus, supersolvus, and combined subsolvus plus supersolvus heat treatments were then applied. Forging and subsequent heat treatment conditions were identified allowing uniform fine and coarse grain microstructures.

  16. Analysis Of Potentiometric Methods Used For Crack Detection In Forging Tools

    NASA Astrophysics Data System (ADS)

    Pilc, Jozef; Drbúl, Mário; Stančeková, Dana; Varga, Daniel; Martinček, Juraj; Kuždák, Viktor

    2015-12-01

    Increased use of forging tools in mass production causes their increased wear and creates pressure to design more efficient renovation process. Renovation is complicated because of the identification of cracks expanding from the surface to the core material. Given that the production of forging tools is expensive, caused by the cost of tool steels and the thermo-chemical treatment, it is important to design forging tool with its easy renovation in mind. It is important to choose the right renovation technology, which will be able to restore the instrument to its original state while maintaining financial rentability. Choosing the right technology is difficult because of nitrided and heat-treated surface for high hardness and wear resistance. Article discusses the use of non-destructive method of detecting cracks taking into account the size of the cracks formed during working process.

  17. Development of forging and heat treating practices for AMS 5737 for use at liquid helium temperatures

    SciTech Connect

    Dalder, E.N.C.; Greenlee, M.

    1981-08-10

    To achieve a combination of high yield-strength (sigma y), plane-strain fracture-toughness (K/sub IC/) and resistance to galling when turned against austenitic stainless steels in highly-loaded threaded turnbuckles in the M.F.T.F.-B (Mirror Fusion Test Facility), AMS 5737 (Fe-15Cr-25Ni-1Mo-V-Ti-Al-B), a heat-treatable Fe-base superalloy that is slightly-ferromagnetic under high magnetic fields at 4K, was chosen for large (approx. 340 kg) forged turn buckles. This report describes the forging and heat-treatment optimization program that resulted in good sigma y and K/sub IC/ over the 4 to 300K range of service-temperatures and the verification tests run on a pre-production forging and actual production parts.

  18. Ultrahigh carbon steels, Damascus steels, and superplasticity

    SciTech Connect

    Sherby, O.D.; Wadsworth, J.

    1997-04-01

    The processing properties of ultrahigh carbon steels (UHCSs) have been studied at Stanford University over the past twenty years. These studies have shown that such steels (1 to 2.1% C) can be made superplastic at elevated temperature and can have remarkable mechanical properties at room temperature. It was the investigation of these UHCSs that eventually brought us to study the myths, magic, and metallurgy of ancient Damascus steels, which in fact, were also ultrahigh carbon steels. These steels were made in India as castings, known as wootz, possibly as far back as the time of Alexander the Great. The best swords are believed to have been forged in Persia from Indian wootz. This paper centers on recent work on superplastic UHCSs and on their relation to Damascus steels. 32 refs., 6 figs.

  19. A Life Study of Ausforged, Standard Forged and Standard Machined AISI M-50 Spur Gears

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Bamberger, E. N.; Zaretsky, E. V.

    1975-01-01

    Tests were conducted at 350 K (170 F) with three groups of 8.9 cm (3.5 in.) pitch diameter spur gears made of vacuum induction melted (VIM) consumable-electrode vacuum-arc melted (VAR), AISI M-50 steel and one group of vacuum-arc remelted (VAR) AISI 9310 steel. The pitting fatigue life of the standard forged and ausforged gears was approximately five times that of the VAR AISI 9310 gears and ten times that of the bending fatigue life of the standard machined VIM-VAR AISI M-50 gears run under identical conditions. There was a slight decrease in the 10-percent life of the ausforged gears from that for the standard forged gears, but the difference is not statistically significant. The standard machined gears failed primarily by gear tooth fracture while the forged and ausforged VIM-VAR AISI M-50 and the VAR AISI 9310 gears failed primarily by surface pitting fatigue. The ausforged gears had a slightly greater tendency to fail by tooth fracture than the standard forged gears.

  20. Phased Array Ultrasonic Inspection of Titanium Forgings

    SciTech Connect

    Howard, P.; Klaassen, R.; Kurkcu, N.; Barshinger, J.; Chalek, C.; Nieters, E.; Sun, Zongqi; Fromont, F. de

    2007-03-21

    Aerospace forging inspections typically use multiple, subsurface-focused sound beams in combination with digital C-scan image acquisition and display. Traditionally, forging inspections have been implemented using multiple single element, fixed focused transducers. Recent advances in phased array technology have made it possible to perform an equivalent inspection using a single phased array transducer. General Electric has developed a system to perform titanium forging inspection based on medical phased array technology and advanced image processing techniques. The components of that system and system performance for titanium inspection will be discussed.

  1. Forging process design for risk reduction

    NASA Astrophysics Data System (ADS)

    Mao, Yongning

    In this dissertation, forging process design has been investigated with the primary concern on risk reduction. Different forged components have been studied, especially those ones that could cause catastrophic loss if failure occurs. As an effective modeling methodology, finite element analysis is applied extensively in this work. Three examples, titanium compressor disk, superalloy turbine disk, and titanium hip prosthesis, have been discussed to demonstrate this approach. Discrete defects such as hard alpha anomalies are known to cause disastrous failure if they are present in those stress critical components. In this research, hard-alpha inclusion movement during forging of titanium compressor disk is studied by finite element analysis. By combining the results from Finite Element Method (FEM), regression modeling and Monte Carlo simulation, it is shown that changing the forging path is able to mitigate the failure risk of the components during the service. The second example goes with a turbine disk made of superalloy IN 718. The effect of forging on microstructure is the main consideration in this study. Microstructure defines the as-forged disk properties. Considering specific forging conditions, preform has its own effect on the microstructure. Through a sensitivity study it is found that forging temperature and speed have significant influence on the microstructure. In order to choose the processing parameters to optimize the microstructure, the dependence of microstructure on die speed and temperature is thoroughly studied using design of numerical experiments. For various desired goals, optimal solutions are determined. The narrow processing window of titanium alloy makes the isothermal forging a preferred way to produce forged parts without forging defects. However, the cost of isothermal forging (dies at the same temperature as the workpiece) limits its wide application. In this research, it has been demonstrated that with proper process design, the die

  2. Phased Array Ultrasonic Inspection of Titanium Forgings

    NASA Astrophysics Data System (ADS)

    Howard, P.; Klaassen, R.; Kurkcu, N.; Barshinger, J.; Chalek, C.; Nieters, E.; Sun, Zongqi; deFromont, F.

    2007-03-01

    Aerospace forging inspections typically use multiple, subsurface-focused sound beams in combination with digital C-scan image acquisition and display. Traditionally, forging inspections have been implemented using multiple single element, fixed focused transducers. Recent advances in phased array technology have made it possible to perform an equivalent inspection using a single phased array transducer. General Electric has developed a system to perform titanium forging inspection based on medical phased array technology and advanced image processing techniques. The components of that system and system performance for titanium inspection will be discussed.

  3. Microstructural Evaluation of Forging Parameters for Superalloy Disks

    NASA Technical Reports Server (NTRS)

    Falsey, John R.

    2004-01-01

    Forgings of nickel base superalloy were formed under several different strain rates and forging temperatures. Samples were taken from each forging condition to find the ASTM grain size, and the as large as grain (ALA). The specimens were mounted in bakelite, polished, etched and then optical microscopy was used to determine grain size. The specimens ASTM grain sizes from each forging condition were plotted against strain rate, forging temperature, and presoak time. Grain sizes increased with increasing forging temperature. Grain sizes also increased with decreasing strain rates and increasing forging presoak time. The ALA had been determined from each forging condition using the ASTM standard method. Each ALA was compared with the ASTM grain size of each forging condition to determine if the grain sizes were uniform or not. The forging condition of a strain rate of .03/sec and supersolvus heat treatment produced non uniform grains indicated by critical grain growth. Other anomalies are noted as well.

  4. Forging of FeAl intermetallic compounds

    SciTech Connect

    Flores, O.; Juarez, J.; Campillo, B.; Martinez, L.; Schneibel, J.H.

    1994-09-01

    Much activity has been concentrated on the development of intermetallic compounds with the aim of improving tensile ductility, fracture toughness and high notch sensitivity in order to develop an attractive combination of properties for high and low temperature applications. This paper reports experience in processing and forging of FeAl intermetallic of B2 type. During the experiments two different temperatures were employed, and the specimens were forged after annealing in air, 10{sup {minus}2} torr vacuum and argon. From the results it was learned that annealing FeAl in argon atmosphere prior to forging resulted in better deformation behavior than for the other two environments. For the higher forging temperature used in the experiments (700C), the as-cast microstructure becomes partially recrystallized.

  5. Mechanical Testing Development for Reservoir Forgings

    SciTech Connect

    Wenski, E.G.

    2000-05-22

    The goal of this project was to determine the machining techniques and testing capabilities required for mechanical property evaluation of commercially procured reservoir forgings. Due to the small size of these specific forgings, specialized methods are required to adequately machine and test these sub-miniature samples in accordance with the requirements of ASTM-E8 and ASTM-E9. At the time of project initiation, no capability existed at Federal Manufacturing & Technologies (FM&T) to verify the physical properties of these reservoirs as required on the drawing specifications. The project determined the sample definitions, machining processes, and testing procedures to verify the physical properties of the reservoir forgings; specifically, tensile strength, yield strength, reduction of area, and elongation. In addition, a compression test method was also developed to minimize sample preparation time and provide a more easily machined test sample while maintaining the physical validation of the forging.

  6. Numerical simulation and experimental study for the die forging process of a high-speed railway brake disc hub

    NASA Astrophysics Data System (ADS)

    Sun, Mingyue; Xu, Bin; Zhang, Long; LI, Dianzhong

    2013-05-01

    With the aim of manufacturing a near-net shape forging product of a brake disk hub for the high-speed railway, the die forging process was designed and optimized in this study. Firstly, based on the measured stress-strain curves at different strain rates and the thermal-physical parameters of 40Cr A steel, a finite element model for the forging process of a high-speed railway brake disc hub was established. Then, the temperature, stress and strain fields were studied and analyzed at the pre-forging and the finial-forging stages. Besides, in order to trace the stress and strain evolution, five points at different positions were chosen on the billet, and the comparison of the state conditions was made among these points. The results have demonstrated that the product can be well formed by an elaborately designed three-stage forging process, which may reduce the metal machine allowance and the producing cost effectively. Finally, an industrial trial was made and a machined product with sound quality was obtained.

  7. A material based approach to creating wear resistant surfaces for hot forging

    NASA Astrophysics Data System (ADS)

    Babu, Sailesh

    . Dissertation outlines development of a new cyclic contact test design to recreate intermittent tempering seen in hot forging. This test has been used to validate the use of tempering parameters in modeling of in-service softening of tool steel surfaces. The dissertation also outlines an industrial case study, conducted at a forging company, to validate the wear model. This dissertation also outlines efforts at Ohio State University, to deposit Nickel Aluminide on AISI H13 substrate, using Laser Engineered Net Shaping (LENS). Dissertation reports results from an array of experiments conducted using LENS 750 machine, at various power levels, table speeds and hatch spacing. Results pertaining to bond quality, surface finish, compositional gradients and hardness are provided. Also, a thermal-based finite element numerical model that was used to simulate the LENS process is presented, along with some demonstrated results.

  8. Hot Cutting of Real-Time Cast-Forged GS Ductile Iron for Automotive Rods

    NASA Astrophysics Data System (ADS)

    Fouilland, Laurence; Mansori, Mohamed El

    2011-01-01

    In the global economy context, automotive industry suppliers have to keep a constant advance on products design and manufacturing process. Concerning automotive rods, the substitution of forged steel by spherical graphite iron (SG iron) with high mechanical properties constitutes a valid economic alternative. Such rods are produced using a complex coupled process: casting and forging followed by an austempered heat treatment. The forging operation is capable to shape the cast rod which introduces hot deformation to increase mechanical properties of net-shape SG iron rod. However, the intermediate re-heating between casting and forging must be avoided to keep competitive manufacturing costs. A major concern of this new process development is the cracks produced in rod's surface which are consecutive to hot spruing involved after casting operations. This issue is addressed in this paper which discusses the physical mechanisms involved in the hot ductile damage of SG iron. Hot cutting tests were performed to simulate the spruing operation which shows the close interactions between microstructure, machining parameters and resulting damages. The damage mechanisms in terms of crack initiation and its growth have been studied with respect to the constituent phases (austenite+graphite nodules), the cut surface morphology and the hot cutting performance.

  9. 1. MIDDLE FORGE DISPLAY, ACROSS FROM BUILDING NO. 114 on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. MIDDLE FORGE DISPLAY, ACROSS FROM BUILDING NO. 114 on FARLEY AVE. MARKER ON DISPLAY ITSELF READS: FORGE AND TOOLS, USED AT MIDDLE FORGE LOCATED AT PICATINNY LAKE OUTLETS 1749 TO 1880. NEARBY MARKER READS: THE MIDDLE FORGE. THE MT. HOPE IRONWORKS INCLUDING A TRACT CALLED THE MIDDLE FORGE, SUPPLIED ORDNANCE MATERIAL TO THE CONTINENTAL ARMY IN THE AMERICAN REVOLUTION. GENERAL WASHINGTON INSPECTED THE FACILITY. THE WAR DEPARTMENT PURCHASED THE MIDDLE FORGE PORPERTY FOR AN ARMY POWDER DEPOT IN 1879-80. THE FORGE AND TOOLS WERE RECOVERED AT THE ACTUAL SITE NEAR PICATINNY PEAK. THROUGH THE YEARS, THE MIDDLE FORGE DISPLAY CAME TO BE THE UNOFFICIAL SYMBOL OF PICATINNY ARSENAL. -- HISTORICAL OFFICE NO DATE - Picatinny Arsenal, State Route 15 near I-80, Dover, Morris County, NJ

  10. 4. FORGE, ANVIL, PEDESTAL GRINDER, AND BELT DRIVES. NOTE WATERWHEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. FORGE, ANVIL, PEDESTAL GRINDER, AND BELT DRIVES. NOTE WATERWHEEL NEEDLE VALVE CASTING HANGING ON THE WALL ABOVE THE FORGE. VIEW TO NORTH. - Santa Ana River Hydroelectric System, SAR-1 Machine Shop, Redlands, San Bernardino County, CA

  11. Near-Net Forging Technology Demonstration Program

    NASA Technical Reports Server (NTRS)

    Hall, I. Keith

    1996-01-01

    Significant advantages in specific mechanical properties, when compared to conventional aluminum (Al) alloys, make aluminum-lithium (Al-Li) alloys attractive candidate materials for use in cryogenic propellant tanks and dry bay structures. However, the cost of Al-Li alloys is typically five times that of 2219 aluminum. If conventional fabrication processes are employed to fabricate launch vehicle structure, the material costs will restrict their utilization. In order to fully exploit the potential cost and performance benefits of Al-Li alloys, it is necessary that near-net manufacturing methods be developed to off-set or reduce raw material costs. Near-net forging is an advanced manufacturing method that uses elevated temperature metal movement (forging) to fabricate a single piece, near-net shape, structure. This process is termed 'near-net' because only a minimal amount of post-forge machining is required. The near-net forging process was developed to reduce the material scrap rate (buy-to-fly ratio) and fabrication costs associated with conventional manufacturing methods. The goal for the near-net forging process, when mature, is to achieve an overall cost reduction of approximately 50 percent compared with conventional manufacturing options for producing structures fabricated from Al-Li alloys. This NASA Marshall Space Flight Center (MSFC) sponsored program has been a part of a unique government / industry partnership, coordinated to develop and demonstrate near-net forging technology. The objective of this program was to demonstrate scale-up of the near-net forging process. This objective was successfully achieved by fabricating four integrally stiffened, 170- inch diameter by 20-inch tall, Al-Li alloy 2195, Y-ring adapters. Initially, two 2195 Al-Li ingots were converted and back extruded to produce four cylindrical blockers. Conventional ring rolling of the blockers was performed to produce ring preforms, which were then contour ring rolled to produce

  12. 22 CFR 121.10 - Forgings, castings, and machined bodies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Forgings, castings, and machined bodies. 121.10... STATES MUNITIONS LIST Enumeration of Articles § 121.10 Forgings, castings, and machined bodies. The U.S. Munitions List controls as defense articles those forgings, castings, and other unfinished products, such...

  13. Study on Pot Forming of Induction Heater Type Rice Cookers by Forging Cast Process

    NASA Astrophysics Data System (ADS)

    Ohnishi, Masayuki; Yamaguchi, Mitsugi; Ohashi, Osamu

    This paper describes a study result on pot fabrication by the forging cast process of stainless steel with aluminum. Rice cooked with the new bowl-shaped pot for the induction heater type rice cookers is better tasting than rice cooked with the conventional cylindrical one, due to the achievement of better heat conduction and convection. The conventional pot is made of the clad sheet, consisting of stainless steel and aluminum. However, it is rather difficult to form a bowl shape from the clad sheet, primarily due to the problem of a material spring back. The fabrication of a new type of a pot was made possible by means of the adoption of a forging cast process instead of the clad sheet. In this process, iron powder is inserted between stainless steel and aluminum in order to alleviate the large difference on the coefficient of expansion between each material. It was made clear that the application of two kinds of iron particle, namely 10 μm size powder on the stainless steel side and 44 μm on the aluminum side, enables the joints to become strong enough. The joint strength of the new pot by this fabrication process was confirmed by the tests of the shear strength and the fatigue tests together with the stress analysis.

  14. Forging Collaborative Partnerships: The Waterloo Neighborhood Project.

    ERIC Educational Resources Information Center

    Gruenewald, Anne

    The Forging Collaborative Partnerships Project in Waterloo, Iowa is a collaborative venture to assist voluntary agencies in developing tools and strategies to strengthen collaborative relationships among public and nonprofit child welfare agencies and other key stakeholders as they adopt a family-focused philosophy. This monograph details how the…

  15. Forging Inclusive Solutions: Experiential Earth Charter Education

    ERIC Educational Resources Information Center

    Hill, Linda D.

    2010-01-01

    Forging Inclusive Solutions describes the aims, methodology and outcomes of Inclusive Leadership Adventures, an experiential education curriculum for exploring the Earth Charter. Experiential education builds meaningful relationships, skills, awareness and an inclusive community based on the Earth Charter principles. When we meet people where they…

  16. 29 CFR 1910.218 - Forging machines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... specifications or dimensions shown in Table O-11. (2) Hydraulic forging presses. When dies are being changed or maintenance is being performed on the press, the following shall be accomplished: (i) The hydraulic pumps and... a manner that they will not fly off or fall in event of failure. (3) Hammers and presses. (i)...

  17. Computer-Aided Design of Manufacturing Chain Based on Closed Die Forging for Hardly Deformable Cu-Based Alloys

    NASA Astrophysics Data System (ADS)

    Pietrzyk, Maciej; Kuziak, Roman; Pidvysots'kyy, Valeriy; Nowak, Jarosław; Węglarczyk, Stanisław; Drozdowski, Krzysztof

    2013-07-01

    Two copper-based alloys were considered, Cu-1 pct Cr and Cu-0.7 pct Cr-1 pct Si-2 pct Ni. The thermal, electrical, and mechanical properties of these alloys are given in the paper and compared to pure copper and steel. The role of aging and precipitation kinetics in hardening of the alloys is discussed based upon the developed model. Results of plastometric tests performed at various temperatures and various strain rates are presented. The effect of the initial microstructure on the flow stress was investigated. Rheologic models for the alloys were developed. A finite element (FE) model based on the Norton-Hoff visco-plastic flow rule was applied to the simulation of forging of the alloys. Analysis of the die wear for various processes of hot and cold forging is presented as well. A microstructure evolution model was implemented into the FE code, and the microstructure and mechanical properties of final products were predicted. Various variants of the manufacturing cycles were considered. These include different preheating schedules, hot forging, cold forging, and aging. All variants were simulated using the FE method and loads, die filling, tool wear, and mechanical properties of products were predicted. Three variants giving the best combination of forging parameters were selected and industrial trials were performed. The best manufacturing technology for the copper-based alloys is proposed.

  18. Improvements in the process of boss bar upset forging into a horizontal forging machine with the aim of joint knuckle forging quality improvement

    NASA Astrophysics Data System (ADS)

    Pankratov, D. L.; Nizamov, R. S.; Kharisov, I. Zh

    2016-06-01

    A new technique for tapered composing transition shaping has been put forward in the process of upset forging with the use of an experimental tool. The results of the upset forging process with the use of a new composing transition has been computer simulated.

  19. Development of measurement method of work hardeningbehavior in large plastic strain for sheet metal forging

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Nobuo; Yamashita, Tomohiro; Shirakami, Satoshi; kada, Osamu; Yoshida, Tohru; Hiwatashi, Shunji

    2016-08-01

    For the purpose of accuracy improvement of sheet metal forging FE analysis, we have developed a new measurement method of work hardening behavior in large plastic strain by repeatedly performing simple shear test using pre-strained steel sheet. In this method, it is possible to measure work hardening behavior more than equivalent plastic strain 2.0. In addition, it was carried out a comparison between developed method and compression test in order to verify the validity of the results by the developed method. As a result, both results were in good agreement. The validity of developed method has been verified.

  20. Enhancement of Aluminum Alloy Forgings through Rapid Billet Heating

    SciTech Connect

    Kervick, R.; Blue, C. A.; Kadolkar, P. B.; Ando, T.; Lu, H.; Nakazawa, K.; Mayer, H.; Mochnal, G.

    2006-06-01

    Forging is a manufacturing process in which metal is pressed, pounded or squeezed under great pressure and, often, under high strain rates into high-strength parts known as forgings. The process is typically performed hot by preheating the metal to a desired temperature before it is worked. The forging process can create parts that are stronger than those manufactured by any other metal working process. Forgings are almost always used where reliability and human safety are critical. Forgings are normally component parts contained inside assembled items such airplanes, automobiles, tractors, ships, oil drilling equipment, engines missiles, and all kinds of capital equipment Forgings are stronger than castings and surpass them in predictable strength properties, producing superior strength that is assured, part to part.

  1. 77 FR 23496 - Boundary Revision of Valley Forge National Historical Park

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... National Park Service Boundary Revision of Valley Forge National Historical Park AGENCY: National Park... to the boundary of Valley Forge National Historical Park, pursuant to the authority specified below... ``Valley Forge National Historical Park Proposed Boundary Expansion, Montgomery County,...

  2. Fallon FORGE 3D Geologic Model

    DOE Data Explorer

    Doug Blankenship

    2016-03-01

    An x,y,z scattered data file for the 3D geologic model of the Fallon FORGE site. Model created in Earthvision by Dynamic Graphic Inc. The model was constructed with a grid spacing of 100 m. Geologic surfaces were extrapolated from the input data using a minimum tension gridding algorithm. The data file is tabular data in a text file, with lithology data associated with X,Y,Z grid points. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.

  3. West Flank Coso, CA FORGE Seismic Reflection

    DOE Data Explorer

    Doug Blankenship

    2016-05-16

    PDFs of seismic reflection profiles 101,110, 111 local to the West Flank FORGE site. 45 line kilometers of seismic reflection data are processed data collected in 2001 through the use of vibroseis trucks. The initial analysis and interpretation of these data was performed by Unruh et al. (2001). Optim processed these data by inverting the P-wave first arrivals to create a 2-D velocity structure. Kirchhoff images were then created for each line using velocity tomograms (Unruh et al., 2001).

  4. 27 CFR 447.22 - Forgings, castings, and machined bodies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2014-04-01 2014-04-01 false Forgings, castings, and... IMPLEMENTS OF WAR The U.S. Munitions Import List § 447.22 Forgings, castings, and machined bodies. Articles..., castings, extrusions, and machined bodies) which have reached a stage in manufacture where they are...

  5. 22 CFR 121.10 - Forgings, castings and machined bodies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Forgings, castings and machined bodies. 121.10... STATES MUNITIONS LIST Enumeration of Articles § 121.10 Forgings, castings and machined bodies. Articles..., castings, extrusions and machined bodies) which have reached a stage in manufacture where they are...

  6. 27 CFR 447.22 - Forgings, castings, and machined bodies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2012-04-01 2010-04-01 true Forgings, castings, and... IMPLEMENTS OF WAR The U.S. Munitions Import List § 447.22 Forgings, castings, and machined bodies. Articles..., castings, extrusions, and machined bodies) which have reached a stage in manufacture where they are...

  7. 22 CFR 121.10 - Forgings, castings and machined bodies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Forgings, castings and machined bodies. 121.10... STATES MUNITIONS LIST Enumeration of Articles § 121.10 Forgings, castings and machined bodies. Articles..., castings, extrusions and machined bodies) which have reached a stage in manufacture where they are...

  8. 22 CFR 121.10 - Forgings, castings and machined bodies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Forgings, castings and machined bodies. 121.10... STATES MUNITIONS LIST Enumeration of Articles § 121.10 Forgings, castings and machined bodies. Articles..., castings, extrusions and machined bodies) which have reached a stage in manufacture where they are...

  9. 76 FR 168 - Heavy Forged Hand Tools From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... antidumping duty order on imports of heavy forged hand tools from China (65 FR 48962). Following second five... continuation of the antidumping duty orders on imports of heavy forged hand tools from China (71 FR 8276). The... part 207), as most recently amended at 74 FR 2847 (January 16, 2009). \\1\\ No response to this...

  10. 17. Forge building, fuel storage shed, and foundry, 1906 Photocopied ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Forge building, fuel storage shed, and foundry, 1906 Photocopied from a photograph by Thomas S. Bronson, 'Group at Whitney Factory, 5 November 1906,' NHCHSL. The most reliable view of the fuel storage sheds and foundry, together with a view of the forge building. - Eli Whitney Armory, West of Whitney Avenue, Armory Street Vicinity, Hamden, New Haven County, CT

  11. Construction of a test bench for closed die forging

    NASA Astrophysics Data System (ADS)

    Batit, G.; Kaczmarek, B.; Ravassard, P.

    1984-03-01

    A swan neck press was equipped with hydraulic jacks to enable it to press and forge complex shapes in closed dies in one operation without wasting metal. Maximum closing stress is 250 kN, maximum pressing stress is 250 kN, maximum forging stress is 70 kN.

  12. 76 FR 50755 - Heavy Forged Hand Tools From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... determined on April 8, 2011 that it would conduct expedited reviews (76 FR 31631, June 1, 2011). The... COMMISSION Heavy Forged Hand Tools From China Determinations On the basis of the record \\1\\ developed in the... antidumping duty orders on heavy forged hand tools from China would be likely to lead to continuation...

  13. View west of small tooling and forging dies in Blacksmith ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View west of small tooling and forging dies in Blacksmith Shop, Boilermakers Department, east side of building 57; during World War II approximately forty women were employed as blacksmith's forging a variety of small tools; these may be the tools they used. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Structure Shop, League Island, Philadelphia, Philadelphia County, PA

  14. Stainless Steel Permeability

    SciTech Connect

    Buchenauer, Dean A.; Karnesky, Richard A.

    2015-09-01

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of the role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.

  15. Initial billet and forging dies shape optimization: Application on an axisymetrical forging with a hammer

    NASA Astrophysics Data System (ADS)

    Meng, Fanjuan; Labergere, Carl; Lafon, Pascal

    2011-05-01

    In metal forming process, the forging die design is the most important step for products quality control. Reasonable dies shape can not only reduce raw material cost but also improving material flow and eliminating defects. The main objective of this paper is to obtain some optimal parameters of the initial billet and forging dies shape according to the simulation results of a two-step metal forming process (platting step and forging step). To develop this metal forming process optimization system several numerical tools are required: geometric modelling (CATIA V5™), FEM analysis (ABAQUS®), work-flow control and optimization computation (MODEFRONTIER®). This study is done in three stages: simulating the two-step metal forming process, building surrogate meta-models to relate response and variables and optimizing the process by using advanced optimization algorithms. In this paper, a two-step axisymmetric metal forming project was studied as an example. By using our simulation model, we get 581 correct real simulation results totally. According to all these real values, we build the surrogate meta-models and obtain Pareto points for a two-objective optimization process. The choice of a solution in all Pareto points will be done by the engineer who can choose his best values according to their criterions of project.

  16. 6. NORTH END OF MACHINE SHOP. FORGE SHOP (HAER No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. NORTH END OF MACHINE SHOP. FORGE SHOP (HAER No. CA-326-K) ON LEFT, FORD PLANT IN DISTANCE, NE BY 60. - Rosie the Riveter National Historical Park, Machine Shop, 1311 Canal Boulevard, Richmond, Contra Costa County, CA

  17. DETAIL VIEW OF BLACKSMITH'S FORGE AND WORK AREA ON WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF BLACKSMITH'S FORGE AND WORK AREA ON WEST SIDE OF UPPER TRAM TERMINAL, LOOKING EAST. FORGE IS IN FOREGROUND, WITH THE ANVIL BLOCK JUST TO THE RIGHT AND BEHIND IT. A TRAM CAR IS UPSIDE DOWN TO THE LEFT OF THE FORGE. THE PIPE GOING INTO THE FORGE ON THE RIGHT CARRIED COMPRESSED AIR TO BLOW THE COALS. AT CENTER RIGHT ON THE TRAM TERMINAL ARE THE OPENING AND CLOSING MECHANISMS FOR THE ORE BUCKETS. AT CENTER LEFT IS A BRAKE WHEEL. THE ANCHOR POINTS FOR THE STATIONARY TRAM CABLES ARE JUST BELOW THIS WHEEL. THE FRONT END OF THE TERMINAL IS JUST OFF FRAME ON THE RIGHT. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  18. View facing east of top of quarry wall with forge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View facing east of top of quarry wall with forge site in foreground - Granite Hill Plantation, Quarry No. 4, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  19. Meso- and microstructural features of steel 12GBA produced by different methods of thermomechanical treatment

    NASA Astrophysics Data System (ADS)

    Derevyagina, Lyudmila S.; Panin, Viktor E.; Korznikov, Aleksandr V.; Gordienko, Antonina I.

    2015-10-01

    The effect of uniform isothermal forging (UF) and warm rolling (WR) on the structure of low-carbon tube steel 12GBA has been studied. It is shown that the structures of the treated steel differ significantly by the effective grain size, density of all boundaries, percentage of density of high angle boundaries (HABs) and low angle boundaries (LABs), carbide phase morphology in the perlite zone and texture of the ferrite phase. After forging steel has the greatest degree of grain refinement, maximum boundary density, and overrepresentation of LABs. This structural state of steel is characterized by a double-component texture: (001) + (111), <001> + <101>, while after warm rolling steel has a mono-component texture (111) <101>. The evident differences in the steel structure treated by WR and UF may have dual effect on the strength and plasticity properties of steel and its fracture behavior.

  20. Synthesis of bicyclo[4.n.1]alkanones.

    PubMed

    Montalt, Joaquin; Linker, Frédéric; Ratel, Frédéric; Miesch, Michel

    2004-10-01

    Cyclic beta-keto ester monoanions react with 1,4-dihalobutenes to give C-alkylated products which subsequently undergo a stereoselective SN2' O-alkylation reaction to yield functionalized enol ethers. When the starting material was ethyl cyclopentanone carboxylate, the C-alkylated product, treated with a base, directly afforded the functionalized bicyclo[4.2.1]nonanone. The enol ethers were submitted to a flash vacuum thermolysis (FVT) reaction to readily afford functionalized bicyclo[4.n.1]alkanones (n = 3, 4). This reaction sequence was applied to the synthesis of a functionalized tricyclo[7.4.1.0(1,5)]tetradecanone, which represents an analogue to the tricyclic core of ingenol. PMID:15387595

  1. Forging And Milling Contribution On Residual Stresses For A Textured Biphasic Titanium Alloy

    SciTech Connect

    Deleuze, C.; Fabre, A.; Barrallier, L.; Molinas, O.

    2011-01-17

    Ti-10V-2Fe-3Al is a biphasic titanium alloy ({alpha}+{beta}) used in aeronautical applications for its mechanical properties, such as its yield strength of 1200 MPa and it weighs 40% less than steel. This alloy is particularly useful for vital parts with complex geometry, because of its high forging capability. In order to predict the capability for fatigue lifetime, the designers need to know the residual stresses. X-Ray diffraction is the main experimental technique used to determine residual stresses on the surface. In this case, stress levels are primarily influenced by the complex forging and milling process. On this alloy in particular, it may be difficult to characterize stress due to modification of the microstructure close to the surface. Results obtained by x-ray analysis depend on the correct definition of the shape of the diffraction peaks. The more precisely defined the position of the peak, the more accurately the stresses are evaluated. This paper presents a method to detect if residual stresses can be characterized by x-ray diffraction. The characterization of hardness seems to be a relevant technique to quickly analyze the capability of x-ray diffraction to determine residual stresses.

  2. Snake River Plain FORGE Site Characterization Data

    DOE Data Explorer

    Robert Podgorney

    2016-04-18

    The site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. This collection includes data on seismic events, groundwater, geomechanical models, gravity surveys, magnetics, resistivity, magnetotellurics (MT), rock physics, stress, the geologic setting, and supporting documentation, including several papers. Also included are 3D models (Petrel and Jewelsuite) of the proposed site. Data for wells INEL-1, WO-2, and USGS-142 have been included as links to separate data collections. These data have been assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL). Other contributors include the National Renewable Energy Laboratory (NREL), Lawrence Livermore National Laboratory (LLNL), the Center for Advanced Energy Studies (CEAS), the University of Idaho, Idaho State University, Boise State University, University of Wyoming, University of Oklahoma, Energy and Geoscience Institute-University of Utah, US Geothermal, Baker Hughes Campbell Scientific Inc., Chena Power, US Geological Survey (USGS), Idaho Department of Water Resources, Idaho Geological Survey, and Mink GeoHydro.

  3. West Flank Coso, CA FORGE Magnetotelluric Inversion

    DOE Data Explorer

    Doug Blankenship

    2016-05-16

    The Coso Magnetotelluric (MT) dataset of which the West Flank FORGE MT data is a subset, was collected by Schlumberger / WesternGeco and initially processed by the WesternGeco GeoSolutions Integrated EM Center of Excellence in Milan, Italy. The 2011 data was based on 99 soundings that were centered on the West Flank geothermal prospect. The new soundings along with previous data from 2003 and 2006 were incorporated into a 3D inversion. Full impedance tensor data were inverted in the 1-3000 Hz range. The modelling report notes several noise sources, specifically the DC powerline that is 20,000 feet west of the survey area, and may have affected data in the 0.02 to 10 Hz range. Model cell dimensions of 450 x 450 x 65 feet were used to avoid computational instability in the 3D model. The fit between calculated and observed MT values for the final model run had an RMS value of 1.807. The included figure from the WesternGeco report shows the sounding locations from the 2011, 2006 and 2003 surveys.

  4. X-mas trees: A new application for duplex stainless steels

    SciTech Connect

    Hochoertler, G.; Zeiler, G.; Haberfellner, K.

    1995-12-31

    The development of fields in severe areas (subsea installations, deserts) necessitates the use of materials which can operate maintenance free in these conditions. Depending on production route and aggressivity of relevant media, the materials used until now, such as AISI 4130, are being superseded by higher alloyed materials such as F6NM, Duplex and Super Duplex Steels. Extensive investigation of metallurgical, mechanical, technological and stress aspects as well as research into the influence of melting, forging and heat treatment processes on high alloyed materials enables ``High Tech`` forgings to be manufactured. Based on investigations and experience gained by previously produced forgings (WYE-piece, Gate Valve components, Swivel forgings, line pipes made of Super Duplex Stainless Steels and Duplex Stainless Steels), the first X-mas trees made of solid Duplex Stainless Steel has been produced. Due to the excellent mechanical and corrosion properties of Duplex Stainless Steel, the expensive and time consuming cladding can be eliminated for most environments, which results in good economy and significantly reduced production time. To obtain information about the quality of such a large forging, samples were taken from one of these X-mas trees and the mechanical and corrosion properties were investigated.

  5. Development of Next Generation Heating System for Scale Free Steel Reheating

    SciTech Connect

    Dr. Arvind C. Thekdi

    2011-01-27

    The work carried out under this project includes development and design of components, controls, and economic modeling tools that would enable the steel industry to reduce energy intensity through reduction of scale formation during the steel reheating process. Application of scale free reheating offers savings in energy used for production of steel that is lost as scale, and increase in product yield for the global steel industry. The technology can be applied to a new furnace application as well as retrofit design for conversion of existing steel reheating furnaces. The development work has resulted in the knowledge base that will enable the steel industry and steel forging industry us to reheat steel with 75% to 95% reduction in scale formation and associated energy savings during the reheating process. Scale reduction also results in additional energy savings associated with higher yield from reheat furnaces. Energy used for steel production ranges from 9 MM Btu/ton to 16.6 MM Btu/ton or the industry average of approximately 13 MM Btu/ton. Hence, reduction in scale at reheating stage would represent a substantial energy reduction for the steel industry. Potential energy savings for the US steel industry could be in excess of 25 Trillion Btu/year when the technology is applied to all reheating processes. The development work has resulted in new design of reheating process and the required burners and control systems that would allow use of this technology for steel reheating in steel as well as steel forging industries.

  6. Structural aspect of the manifestation of thermal brittleness in a maraging steel of the EI-832 type

    NASA Astrophysics Data System (ADS)

    Schastlivtsev, V. M.; Yakovleva, I. L.; Tereshchenko, N. A.; Kruglov, A. A.

    2010-02-01

    The character of fracture, phase composition, and structure of a maraging steel of the EI-832 type in large forged pieces (90 mm and more in cross section) have been investigated. Structural factors responsible for the level of impact toughness of the steel subjected to aging in a forged state and after quenching have been revealed. It has been shown that for this steel the manifestation of thermal brittleness that is caused by precipitation of dispersed titanium carbonitrides at grain boundaries and is not eliminated upon subsequent conventional heat treatment is possible.

  7. West Flank Coso FORGE Magnetotelluric 3D Data

    DOE Data Explorer

    Doug Blankenship

    2016-01-01

    This is the 3D version of the MT data for the West Flank FORGE area.The Coso geothermal field has had three Magnetotelluric (MT) datasets collected including surveys in 2003, 2006, and 2011. The final collection, in 2011, expanded the survey to the west and covers the West Flank of FORGE area.This most recent data set was collected by Schlumberger/WesternGeco and inverted by the WesternGeco GeoSolutions Integrated EM Center of Excellence in Milan, Italy; the 2003 and 2006 data were integrated for these inversions in the present study.

  8. Modelling of the radial forging process of a hollow billet with the mandrel on the lever radial forging machine

    NASA Astrophysics Data System (ADS)

    Karamyshev, A. P.; Nekrasov, I. I.; Pugin, A. I.; Fedulov, A. A.

    2016-04-01

    The finite-element method (FEM) has been used in scientific research of forming technological process modelling. Among the others, the process of the multistage radial forging of hollow billets has been modelled. The model includes both the thermal problem, concerning preliminary heating of the billet taking into account thermal expansion, and the deformation problem, when the billet is forged in a special machine. The latter part of the model describes such features of the process as die calibration, die movement, initial die temperature, friction conditions, etc. The results obtained can be used to define the necessary process parameters and die calibration.

  9. 27 CFR 447.22 - Forgings, castings, and machined bodies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... machined bodies. 447.22 Section 447.22 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO... IMPLEMENTS OF WAR The U.S. Munitions Import List § 447.22 Forgings, castings, and machined bodies. Articles..., castings, extrusions, and machined bodies) which have reached a stage in manufacture where they are...

  10. 27 CFR 447.22 - Forgings, castings, and machined bodies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... machined bodies. 447.22 Section 447.22 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO... IMPLEMENTS OF WAR The U.S. Munitions Import List § 447.22 Forgings, castings, and machined bodies. Articles..., castings, extrusions, and machined bodies) which have reached a stage in manufacture where they are...

  11. Forging an Identity over the Life-Course

    ERIC Educational Resources Information Center

    Spiteri, Damian

    2009-01-01

    Using a social constructionist approach, this study explores the self-perceptions of young men who, when at school, were classed as boys with social, emotional and behavioural difficulties (SEBD). The aim is to understand how these perceptions were forged throughout the young men's life-courses resulting in changing self-identities. The study also…

  12. Family Health and Financial Literacy--Forging the Connection

    ERIC Educational Resources Information Center

    Braun, Bonnie; Kim, Jinhee; Anderson, Elaine A.

    2009-01-01

    Families are at-risk of or experiencing a diminished quality of living and life in current economic times and difficult decisions are required. Health and financial literacy are the basis for wise personal and public decision making. Family and consumer sciences (FCS) professionals can forge connections between health and financial literacy to…

  13. Electronic Portfolios in Teacher Education: Forging a Middle Ground

    ERIC Educational Resources Information Center

    Strudler, Neal; Wetzel, Keith

    2012-01-01

    At a time when implementation of electronic portfolios (EPs) is expanding, the issues of clarifying their purposes continue to plague teacher education programs. Are student-centered uses of EPs compatible with program assessment and accreditation efforts? Is this an either/or situation, or can a productive middle ground be forged? This article…

  14. 16. Forge building and fuel storage shed from the southwest, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Forge building and fuel storage shed from the southwest, c.1918 Photocopied from a photograph in the collection of William F. Applegate, 43 Grandview Avenue, Wallingford, Connecticut. - Eli Whitney Armory, West of Whitney Avenue, Armory Street Vicinity, Hamden, New Haven County, CT

  15. Forging Consensus for Implementing Youth Socialization Policy in Northwest China

    ERIC Educational Resources Information Center

    Fairbrother, Gregory P.

    2011-01-01

    The goal of this article is to examine how the provincial education media in China play a role of forging consensus among local actors responsible for the implementation of new centrally-promulgated youth socialization policy. In doing so, it also explores the tension among three of the Chinese state's claims to legitimacy: economic development,…

  16. Industrial forging applications of shaping simulation using modeling clay

    NASA Astrophysics Data System (ADS)

    Ravassard, P.; Bournicon, C.

    1982-09-01

    The use of Plasticine and similar modeling materials to simulate forgings is advocated. It permits low cost studies of complex processes for manufacturing or training purposes without interfering with work schedules of real machines. Criteria for choosing a clay, construction of dies, equipment, and laboratory procedures are described.

  17. The Valley Forge Encampment: Epic on the Schuylkill.

    ERIC Educational Resources Information Center

    Trussell, John B. B., Jr.

    Valley Forge, outside Philadelphia (Pennsylvania), has long been recognized as the site of a great victory of the human spirit. Eleven thousand men including Blacks and Indians resided there during the winter of 1777-78 and triumphed over cold, starvation, nakedness, disease, and uncertainty. The encampment site was unprepared for the tattered,…

  18. Processing and properties of superclean ASTM A508 Cl. 4 forgings

    SciTech Connect

    Hinkel, A.V.; Handerhan, K.J.; Manzo, G.J.; Simkins, G.P.

    1988-12-31

    Steels with improved resistance to temper embrittlement are now being produced using ``superclean`` steelmaking technology. This technology involves the use of scrap control, proper electric arc furnace and ladle refining furnace practices to produce steel with very low Mn, Si, P, S and other residual impurities such as Sn, As and Sb. This technology has been applied on a production basis to modified ASTM A508 Cl- 4 material intended for high temperature pressure vessel forgings. Processing and properties of this superclean material are reviewed. In addition, the cleanliness and mechanical properties are compared to conventionally melted A508 Cl. 4 material. The ``superclean`` A508 Cl. 4 mod. was found to meet all specification requirements. In addition, the superclean material was found to possess superior upper shelf CVN properties, a lower FATT{sub 50} and NDTT, along with superior microcleanliness compared to conventional material. Finally, the superclean material was found to be immune to temper embrittlement based on the short-term embrittlement treatments examined.

  19. Fatigue crack growth properties of a cryogenic structural steel at liquid helium temperature

    SciTech Connect

    Konosu, Shinji; Kishiro, Tomohiro; Ivano, O.; Nunoya, Yoshihiko; Nakajima, Hideo; Tsuji, Hiroshi

    1996-01-01

    The structural materials of the coils of superconducting magnets utilized in thermonuclear fusion reactors are used at liquid helium (4.2 K) temperatures and are subjected to repeated thermal stresses and electromagnetic forces. A high strength, high toughness austenitic stainless steel (12Cr-12Ni-10Mn-5Mo-0.2N) has recently been developed for large, thick-walled components used in such environments. This material is non-magnetic even when subjected to processing and, because it is a forging material, it is advantageous as a structural material for large components. In the current research, a large forging of 12Cr-12Ni-10Mn-5Mo-0.2N austenitic stainless steel, was fabricated to a thickness of 250 mm, which is typical of section thicknesses encountered in actual equipment. The tensile fatigue crack growth properties of the forging were examined at liquid helium temperature as a function of specimen location across the thickness of the forging. There was virtually no evidence of variation in tensile strength or fatigue crack growth properties attributable to different sampling locations in the thickness direction and no effect of thickness due to the forging or solution treatment associated with large forgings was observed.

  20. Thermal investigation of compound cast steel tools

    NASA Astrophysics Data System (ADS)

    Schaper, Mirko; Haferkamp, Heinz; Niemeyer, Matthias; Pelz, Christoph; Viets, Roman

    1999-03-01

    Tools for hot forging are exposed to complex stresses during their life-cycle. Therefore, forging dies should have a high wear resistance and toughness on the surface, combined with excellent thermal conductivity in the die body. Hot-work tool steel is appropriate for this application except from its thermal conductance. Hence, a tool consisting of hot-work tool steel in the area of contact and heat-treatable steel as die body is favorable. A smoothly graded microstructure in the joint zone between the two steel alloys is needed to match with the requirements. Fabrication of such functionally graded dies by sand casting exhibits high sensitivity to temperature and geometry dependent parameters. To melt on the inlay's surface must be ensured without destroying this region according to overheat coarsening and mixing of alloying elements. Instead of empirical methods to optimize the process parameters, a thermographic CCD-device is used for visualization of the heat flow while pouring the melt on the inlay. In fact the molten metal flow can be directed homogeneously across the bonding surface at adequate temperatures after evaluation of thermography data. The use of a silica-aerogel sheet as opaque window beneath the inlay in the mold enables systematic development of gating and risering, whereas undesirable scaling of the inlay due to the change of emissivity is retarded. Infrared image sequences clearly demonstrate the influence of different ring gating systems concerning the filling properties. Non-joined cavities may even be classified from image data. Compound cast steel tools have been manufactured and examined in forging trials validating life-cycle prolongation.

  1. TRITIUM AGING EFFECTS ON THE FRACTURE TOUGHNESS PROPERTIES OF STAINLESS STEEL BASE METAL AND WELDS

    SciTech Connect

    Morgan, M.

    2009-07-30

    Tritium reservoirs are constructed from welded stainless steel forgings. While these steels are highly resistant to the embrittling effects of hydrogen isotopes and helium from tritium decay; they are not immune. Tritium embrittlement is an enhanced form of hydrogen embrittlement because of the presence of helium-3 from tritium decay which nucleates as nanometer-sized bubbles on dislocations, grain boundaries, and other microstructural defects. Steels with decay helium bubble microstructures are hardened and less able to deform plastically and become more susceptible to embrittlement by hydrogen and its isotopes. Ductility, elongation-to-failure, and fracture toughness are reduced by exposures to tritium and the reductions increase with time as helium-3 builds into the material from tritium permeation and radioactive decay. Material and forging specifications have been developed for optimal material compatibility with tritium. These specifications cover composition, mechanical properties, and select microstructural characteristics like grain size, flow-line orientation, inclusion content, and ferrite distribution. For many years, the forming process of choice for reservoir manufacturing was high-energy-rate forging (HERF), principally because the DOE forging facility owned only HERF hammers. Today, some reservoir forgings are being made that use a conventional, more common process known as press forging (PF or CF). One of the chief differences between the two forging processes is strain rate: Conventional hydraulic or mechanical forging presses deform the metal at 4-8 ft/s, about ten-fold slower than the HERF process. The material specifications continue to provide successful stockpile performance by ensuring that the two forging processes produce similar reservoir microstructures. While long-term life storage tests have demonstrated the general tritium compatibility of tritium reservoirs, fracture-toughness properties of both conventionally forged and high

  2. 2015 Accomplishments-Tritium aging studies on stainless steel. Effects of hydrogen isotopes, crack orientation, and specimen geometry on fracture toughness

    SciTech Connect

    Morgan, Michael J.

    2016-01-01

    This study reports on the effects of hydrogen isotopes, crack orientation, and specimen geometry on the fracture toughness of stainless steels. Fracture toughness variability was investigated for Type 21-6-9 stainless steel using the 7K0004 forging. Fracture toughness specimens were cut from the forging in two different geometric configurations: arc shape and disc shape. The fracture toughness properties were measured at ambient temperature before and after exposure to hydrogen gas and compared to prior studies. There are three main conclusions that can be drawn from the results. First, the fracture toughness properties of actual reservoir forgings and contemporary heats of steel are much higher than those measured in earlier studies that used heats of steel from the 1980s and 1990s and forward extruded forgings which were designed to simulate reservoir microstructures. This is true for as-forged heats as well as forged heats exposed to hydrogen gas. Secondly, the study confirms the well-known observation that cracks oriented parallel to the forging grain flow will propagate easier than those oriented perpendicular to the grain flow. However, what was not known, but is shown here, is that this effect is more pronounced, particularly after hydrogen exposures, when the forging is given a larger upset. In brick forgings, which have a relatively low amount of upset, the fracture toughness variation with specimen orientation is less than 5%; whereas, in cup forgings, the fracture toughness is about 20% lower than that forging to show how specimen geometry affects fracture toughness values. The American Society for Testing Materials (ASTM) specifies minimum specimen section sizes for valid fracture toughness values. However, sub-size specimens have long been used to study tritium effects because of the physical limitation of diffusing hydrogen isotopes into stainless steel at mild temperatures so as to not disturb the underlying forged microstructure. This study shows

  3. Genetic characterization of avian influenza subtype H4N6 and H4N9 from live bird market, Thailand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A one year active surveillance program for influenza A viruses among avian species in a live-bird market (LBM) in Bangkok, Thailand was conducted in 2009. Out of 970 samples collected, influenza A virus subtypes H4N6 (n=2) and H4N9 (n=1), were isolated from healthy Muscovy ducks. All three viruses w...

  4. First Results of Energy Saving at Process Redesign of Die Forging Al-Alloys

    SciTech Connect

    Pepelnjak, Tomaz; Kuzman, Karl; Kokol, Anton

    2011-05-04

    The contribution deals with eco-friendly solutions for shortened production chains of forging light alloys. During the die forging operations a remarkable amount of material goes into the flash and later on into chips during finish machining. These low value side products are rich with embedded energy therefore recycling or reprocessing could be very energy saving procedure.In cooperation with a die forging company a shortened reprocessing cycle has been studied starting from re-melting the forging flash and without additional heating to cast preforms for subsequent die forging. As such preforms have not as good formability characteristics as those done from extruded billets the isothermal forging process has been adopted. First results showed that without cracks and other defects the formability is sufficient for a broad spectrum of forgings.To improve the formability a homogenization process of cast preforms has been implemented. As the process started immediately after casting, amount of additional energy for heating was minimized. To reduce voids forging process was redesigned in a way to assure greater hydrostatic pressures in parts during forging. First results were promising therefore research is going towards improving processes without adding significantly more energy as it is needed for casting with homogenization and die forging.

  5. Performance Assessment Method for a Forged Fingerprint Detection Algorithm

    NASA Astrophysics Data System (ADS)

    Shin, Yong Nyuo; Jun, In-Kyung; Kim, Hyun; Shin, Woochang

    The threat of invasion of privacy and of the illegal appropriation of information both increase with the expansion of the biometrics service environment to open systems. However, while certificates or smart cards can easily be cancelled and reissued if found to be missing, there is no way to recover the unique biometric information of an individual following a security breach. With the recognition that this threat factor may disrupt the large-scale civil service operations approaching implementation, such as electronic ID cards and e-Government systems, many agencies and vendors around the world continue to develop forged fingerprint detection technology, but no objective performance assessment method has, to date, been reported. Therefore, in this paper, we propose a methodology designed to evaluate the objective performance of the forged fingerprint detection technology that is currently attracting a great deal of attention.

  6. Crack toughness evaluation of hot pressed and forged beryllium.

    NASA Technical Reports Server (NTRS)

    Jones, M. H.; Bubsey, R. T.; Brown, W. F., Jr.

    1973-01-01

    Fracture toughness tests at room temperature were made on three-point loaded beryllium bend specimens cut from hot pressed block and a forged disk. These specimens had plane proportions conforming to ASTM E 399 and covered a thickness range of from 1/32 to 1/2 in. Two sets of bend specimens were tested, one having fatigue cracks and the other 0.5 mil radius notches. One objective of the investigation was the development of techniques to produce fatigue cracks in accordance with the procedures specified in ASTM E 399. This objective was achieved for the hot pressed material. In plane cracks were not consistently produced in the specimens cut from forged stock.

  7. West Flank Coso, CA FORGE ArcGIS data 2

    DOE Data Explorer

    Doug Blankenship

    2016-03-01

    archive of ArcGIS data from the West Flank FORGE site located in Coso, California. Archive contains: 8 shapefiles polygon of the 3D geologic model polylines of the traces 3D modeled faults polylines of the fault traces from Duffield and Bacon, 1980 polygon of the West Flank FORGE site polylines of the traces of the geologic cross-sections (cross-sections in a separate archive in the GDR) polylines of the traces of the seismic reflection profiles through and adjacent to the West Flank site (seismic reflection profiles in a separate archive in the GDR) points of the well collars in and around the West Flank site polylines of the surface expression of the West Flank well paths

  8. THE EFFECTS OF HYDROGEN, TRITIUM, AND HEAT TREATMENT ON THE DEFORMATION AND FRACTURE TOUGHNESS PROPERTIES OF STAINLESS STEEL

    SciTech Connect

    Morgan, M.; Tosten, M.; Chapman, G.

    2013-09-06

    The deformation and fracture toughness properties of forged stainless steels pre-charged with tritium were compared to the deformation and fracture toughness properties of the same steels heat treated at 773 K or 873 K and precharged with hydrogen. Forged stainless steels pre-charged with tritium exhibit an aging effect: Fracture toughness values decrease with aging time after precharging because of the increase in concentration of helium from tritium decay. This study shows that forged stainless steels given a prior heat treatment and then pre-charged with hydrogen also exhibit an aging effect: Fracture toughness values decrease with increasing time at temperature. A microstructural analysis showed that the fracture toughness reduction in the heat-treated steels was due to patches of recrystallized grains that form within the forged matrix during the heat treatment. The combination of hydrogen and the patches of recrystallized grains resulted in more deformation twinning. Heavy deformation twinning on multiple slip planes was typical for the hydrogen-charged samples; whereas, in the non-charged samples, less twinning was observed and was generally limited to one slip plane. Similar effects occur in tritium pre-charged steels, but the deformation twinning is brought on by the hardening associated with decay helium bubbles in the microstructure.

  9. The Flow Behavior and Microstructural Evolution of Ti-5Al-5Mo-5V-3Cr during Subtransus Isothermal Forging

    NASA Astrophysics Data System (ADS)

    Jones, N. G.; Dashwood, R. J.; Dye, D.; Jackson, M.

    2009-08-01

    High-strength metastable β alloys, for example, Ti-5Al-5Mo-5V-3Cr, have replaced steel as the material of choice for large components, such as the main truck beam on the latest generation of airframes. The production of these components is carried out by hot near-net-shape forging, during which process variable control is essential to achieve the desired microstructural condition and subsequent mechanical properties. The flow behavior and microstructural evolution during subtransus isothermal forging of Ti-5Al-5Mo-5V-3Cr has been investigated for two different starting microstructures and analysis has incorporated previously published results. The flow behavior, irrespective of initial microstructural condition, is found to be very similar at strains ≥0.35. It is thought that this is due to a common microstructural state being reached, where dynamic recovery of the β phase is the dominating deformation mechanism. At strains <0.35, the flow behavior is believed to be dominated by the morphology and volume fraction of the α phase. Small globular α particles are thought to have little effect on the flow behavior, while the observed flow softening is directly linked to the fragmentation of acicular α precipitates.

  10. Influence of Processing Parameters on Grain Size Evolution of a Forged Superalloy

    NASA Astrophysics Data System (ADS)

    Reyes, L. A.; Páramo, P.; Salas Zamarripa, A.; de la Garza, M.; Guerrero-Mata, M. P.

    2016-01-01

    The microstructure evolution of nickel-based superalloys has a great influence on the mechanical behavior during service conditions. Microstructure modification and the effect of process variables such as forging temperature, die-speed, and tool heating were evaluated after hot die forging of a heat-resistant nickel-based alloy. Forging sequences in a temperature range from 1253 to 1323 K were considered through experimental trials. An Avrami model was applied using finite element data to evaluate the average grain size and recrystallization at different evolution zones. It was observed that sequential forging at final temperatures below 1273 K provided greater grain refinement through time-dependent recrystallization phenomena. This investigation was aim to explore the influence of forging parameters on grain size evolution in order to design a fully homogenous and refined microstructure after hot die forging.

  11. Mechanical properties and microstructure of Al-Li-Cu-Mg-Zr die forgings

    NASA Astrophysics Data System (ADS)

    Webster, Donald; Kirkbride, Richard

    1986-11-01

    Four forgings of Al 8090 alloy were evaluated for strength, toughness, and stress corrosion resistance. A microstructural evaluation was also conducted. The forgings easily met the strength requirements for Al 7075-T73 but only just met the 7 pct minimum elongation requirement. The stress corrosion threshold was less than 35 MPa in the short transverse orientation, a value that is far below the 310 MPa minimum often required for Al 7075-T73. Fracture in areas which received low forging reductions was intergranular, while fracture in more heavily forged areas was also along subgrain boundaries. Possible mechanisms for the low toughness and stress corrosion resistance of Al-Li alloys are discussed.

  12. Microstructural, mechanical, corrosion and cytotoxicity characterization of the hot forged FeMn30(wt.%) alloy.

    PubMed

    Čapek, Jaroslav; Kubásek, Jiří; Vojtěch, Dalibor; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš

    2016-01-01

    An interest in biodegradable metallic materials has been increasing in the last two decades. Besides magnesium based materials, iron-manganese alloys have been considered as possible candidates for fabrication of biodegradable stents and orthopedic implants. In this study, we prepared a hot forged FeMn30 (wt.%) alloy and investigated its microstructural, mechanical and corrosion characteristics as well as cytotoxicity towards mouse L 929 fibroblasts. The obtained results were compared with those of iron. The FeMn30 alloy was composed of antiferromagnetic γ-austenite and ε-martensite phases and possessed better mechanical properties than iron and even that of 316 L steel. The potentiodynamic measurements in simulated body fluids showed that alloying with manganese lowered the free corrosion potential and enhanced the corrosion rate, compared to iron. On the other hand, the corrosion rate of FeMn30 obtained by a semi-static immersion test was significantly lower than that of iron, most likely due to a higher degree of alkalization in sample surrounding. The presence of manganese in the alloy slightly enhanced toxicity towards the L 929 cells; however, the toxicity did not exceed the allowed limit and FeMn30 alloy fulfilled the requirements of the ISO 10993-5 standard. PMID:26478385

  13. Microstructural, mechanical, corrosion and cytotoxicity characterization of the hot forged FeMn30(wt.%) alloy.

    PubMed

    Čapek, Jaroslav; Kubásek, Jiří; Vojtěch, Dalibor; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš

    2016-01-01

    An interest in biodegradable metallic materials has been increasing in the last two decades. Besides magnesium based materials, iron-manganese alloys have been considered as possible candidates for fabrication of biodegradable stents and orthopedic implants. In this study, we prepared a hot forged FeMn30 (wt.%) alloy and investigated its microstructural, mechanical and corrosion characteristics as well as cytotoxicity towards mouse L 929 fibroblasts. The obtained results were compared with those of iron. The FeMn30 alloy was composed of antiferromagnetic γ-austenite and ε-martensite phases and possessed better mechanical properties than iron and even that of 316 L steel. The potentiodynamic measurements in simulated body fluids showed that alloying with manganese lowered the free corrosion potential and enhanced the corrosion rate, compared to iron. On the other hand, the corrosion rate of FeMn30 obtained by a semi-static immersion test was significantly lower than that of iron, most likely due to a higher degree of alkalization in sample surrounding. The presence of manganese in the alloy slightly enhanced toxicity towards the L 929 cells; however, the toxicity did not exceed the allowed limit and FeMn30 alloy fulfilled the requirements of the ISO 10993-5 standard.

  14. Closed Die Deformation Behavior of Cylindrical Iron-Alumina Metal Matrix Composites During Cold Sinter Forging

    NASA Astrophysics Data System (ADS)

    Prasanna Kumar, Undeti Jacob; Gupta, Pallav; Jha, Arun Kant; Kumar, Devendra

    2015-09-01

    The present paper aims to study the closed die deformation behavior of cylindrical Fe-Al2O3 metal matrix composites (MMCs). Closed die was manufactured by machining the high carbon steel block followed by oil quenching and then finishing. Samples sintered at a temperature of 1100 °C for 1 h were characterized with X-ray diffraction and scanning electron microscopy, which showed the formation of Fe, Al2O3 and nano size FeAl2O4 phases respectively. Density and hardness of the composite samples were determined after sintering. Closed die deformation studies of the prepared composite samples were carried under three different interfacial frictional conditions i.e. dry, solid lubricating and liquid lubricating. Hardness, density and metallographic characterizations were also done for the deformed samples. On comparing the micrographs of the samples before and after deformation it was revealed that in deformed specimens recrystallization has taken place due to the difference in the energy between the strained iron matrix and unstrained alumina reinforcement during closed die forging process. Experimental density of the samples was also verified with the theoretical density using the standard equations. It is expected that the results of the present investigations will be helpful in developing quality MMC components for wide industrial applications.

  15. Low cost forged Y-pattern valves control hot corrosive/erosive gases

    SciTech Connect

    Gaines, A.

    1987-06-01

    The Morgantown Energy Technology Center in Morgantown, West Virginia is a research facility of the US Department of Energy (DOE) that does research on fossil fuels utilization and conversion to provide improved and environmentally acceptable energy sources. One area of investigation in the Morgantown facility is the use of gaseous fuels derived from coal from fluidized-bed and fixed-bed gasification technologies. The corrosive and slightly erosive gases and vapors at about 1000F and from 100 to 300 psi are treated in an experimental desulfurization unit to produce fuel gas with greatly enhanced environmental characteristics. The valves in use were constructed of Type 347 stainless steel, a stabilized version of 316 SS, and cost about $6000 for the 2'' size and about $4000 for the 1'' size. Despite the high cost, the valve sometimes became difficult or impossible to operate due to metal failures. The Technology Center had a number of new Class 1500 Y-pattern (angle-style) globe valves in inventory. The control valve body and bonnet are forged chrome moly steel (ASTM-H182-F22), the stem assembly is a 13% chrome alloy with an erosion resistant hard faced disc, and the seat ring is a cobalt-base alloy fused in place as an integral part of the body. Stem packing as an either wire inserted molded asbestos or Grafoil flexible graphite. The Y-pattern globe valves in 1 and 2'' sizes, which were judged potentially suitable and on hand, were installed in the experimental desulfization unit as well as in the connecting hot gas piping system to a new coal gasification process. The Class 1500 Y-pattern valves have provided reliable control of the hot corrosive and erosive gas streams with very little maintenance.

  16. Tensile properties of the modified 13Cr martensitic stainless steels

    NASA Astrophysics Data System (ADS)

    Mabruri, Efendi; Anwar, Moch. Syaiful; Prifiharni, Siska; Romijarso, Toni B.; Adjiantoro, Bintang

    2016-04-01

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  17. Superclean steel development: A guide for utility use

    SciTech Connect

    Richman, R.H.; McNaughton, W.P. )

    1989-12-01

    The Electric Power Research Institute has actively encouraged and sponsored a number of research projects to develop superclean 3. 5NiCrMoV steel for low pressure turbine rotors. Such steel is highly resistant to temper embrittlement and will thus facilitate increased efficiency in electricity generation through the use of higher operating temperatures and improvements in design. Steels with impurity contents typical of the superclean specification can be manufactured for production rotors with properties that equal or exceed those for conventional 3.5NiCrMoV rotors in every detail. Of particular interest are the results that the superclean steels appear to be virtually resistant to temper embrittlement to a temperature of 500{degree}C. The objective of this users guide is to assist US utilities with decisions about when to adopt superclean steel for new or replacement rotor forgings by providing an overview of superclean steel developments and a summary of the properties to be expected of production rotor forgings. 57 refs., 26 figs.

  18. Fragmentation of primary coarse macrostructure of AISI 321 steel

    NASA Astrophysics Data System (ADS)

    Jandoš, F.; Mazanec, K.; Kasl, J.; Kuneš, J.

    1988-04-01

    Fragmentation of primary grains in an ingot of AISI 321 steel was studied under common hammer forging conditions, i.e. at a temperature gradient existing in the cross-section of the ingot. It has been found that recrystallization in the surface zone starts by deformation induced migration of large subgrains observed inside primary grains, that static recrystallization takes place by intragranular twinning and that the fragmentation of the primary macrostructure is conditioned by static recrystallization.

  19. Effect of Variants of Thermomechanical Working and Annealing Treatment on Titanium Alloy Ti6Al4V Closed Die Forgings

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Kumar, V. Anil; Kumar, P. Ram

    2016-06-01

    Performance of titanium alloy Ti6Al4V pressure vessels made of closed die forged domes of route `B' (multiple step forged and mill annealed) is reported to be better than route `A' (single/two step forged and mill annealed). Analysis revealed that forgings processed through route `B' have uniformity in microstructure and yield strength at various locations within the forging, as compared to that of route `A.' It is attributed to in-process recrystallization (dynamic as well as static) of route `B' forgings as compared to limited recrystallization of route `A' forgings. Further, post-forging recrystallization annealing (RA) effect is found to be more significant for route `A' forgings in achieving uniform microstructure and mechanical properties, since route `B' forgings have already undergone similar phenomenon during the thermomechanical working process itself. Considering prime importance of yield strength, statistical scatter in yield strength values within the forgings have been evaluated for forgings of both the routes. Standard deviation in the yield strength of route `B' forgings was lower (<10 MPa) as compared to route `A' (>15 MPa), which later became lower (~10 MPa) after RA with a minor decrease in yield strength. The present work discusses these variants of thermomechanical processing along with annealing to achieve better uniformity in properties and microstructure.

  20. West Flank Coso, CA FORGE 3D geologic model

    DOE Data Explorer

    Doug Blankenship

    2016-03-01

    This is an x,y,z file of the West Flank FORGE 3D geologic model. Model created in Earthvision by Dynamic Graphic Inc. The model was constructed with a grid spacing of 100 m. Geologic surfaces were extrapolated from the input data using a minimum tension gridding algorithm. The data file is tabular data in a text file, with lithology data associated with X,Y,Z grid points. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.

  1. Snake River Plain FORGE Well Data for USGS-142

    SciTech Connect

    Robert Podgorney

    2015-11-23

    Well data for the USGS-142 well located in eastern Snake River Plain, Idaho. This data collection includes lithology reports, borehole logs, and photos of rhyolite core samples. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).

  2. Final Technical Report: Intensive Quenching Technology for Heat Treating and Forging Industries

    SciTech Connect

    Aronov, Michael A.

    2005-12-21

    Intensive quenching (IQ) process is an alternative way of hardening (quenching) steel parts through the use of highly agitated water and then still air. It was developed by IQ Technologies, Inc. (IQT) of Akron, Ohio. While conventional quenching is usually performed in environmentally unfriendly oil or water/polymer solutions, the IQ process uses highly agitated environmentally friendly water or low concentration water/mineral salt solutions. The IQ method is characterized by extremely high cooling rates of steel parts. In contrast to conventional quenching, where parts cool down to the quenchant temperature and usually have tensile or neutral residual surface stresses at the end of quenching. The IQ process is interrupted when the part core is still hot and when there are maximum compressive stresses deep into the parts, thereby providing hard, ductile, better wear resistant parts. The project goal was to advance the patented IQ process from feasibility to commercialization in the heat-treating and forging industries to reduce significantly energy consumption and environmental impact, to increase productivity and to enhance economic competitiveness of these industries as well as Steel, Metal Casting and Mining industries. To introduce successfully the IQ technology in the U.S. metal working industry, the project team has completed the following work over the course of this project: A total of 33 manufacturers of steel products provided steel parts for IQ trails. IQT conducted IQ demonstrations for 34 different steel parts. Our customers tested intensively quenched parts in actual field conditions to evaluate the product service life and performance improvement. The data obtained from the field showed the following: Service life (number of holes punched) of cold-work punches (provided by EHT customer and made of S5 shock-resisting steel) was improved by two to eight times. Aluminum extrusion dies provided by GAM and made of hot work H-13 steel outperformed the

  3. Forging; Heat Treating and Testing; Technically Oriented Industrial Materials and Process 1: 5898.05.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course provides students with advanced and exploratory experience in the area of plastic deformation of metals and in the changing of the physical characteristics of metals by the controlled application and timed removal of heat. Course content includes goals, specific objectives, safety in forge work, forging tools and equipment, industrial…

  4. Microstructure Modeling of a Ni-Fe-Based Superalloy During the Rotary Forging Process

    NASA Astrophysics Data System (ADS)

    Loyda, A.; Hernández-Muñoz, G. M.; Reyes, L. A.; Zambrano-Robledo, P.

    2016-06-01

    The microstructure evolution of Ni-Fe superalloys has a great influence on the mechanical behavior during service conditions. The rotary forging process offers an alternative to conventional bulk forming processes where the parts can be rotary forged with a fraction of the force commonly needed by conventional forging techniques. In this investigation, a numerical modeling of microstructure evolution for design and optimization of the hot forging operations has been used to manufacture a heat-resistant nickel-based superalloy. An Avrami model was implemented into finite element commercial platform DEFORM 3D to evaluate the average grain size and recrystallization during the rotary forging process. The simulations were carried out considering three initial temperatures, 980, 1000, and 1050 °C, to obtain the microstructure behavior after rotary forging. The final average grain size of one case was validated by comparing with results of previous experimental work of disk forging operation. This investigation was aimed to explore the influence of the rotary forging process on microstructure evolution in order to obtain a homogenous and refined grain size in the final component.

  5. Properties, processing of and experience with the steel X20 CrMo(W)V 12 1

    SciTech Connect

    Leich, K.E. ); Jesper, H. , Dortmund ); Kautz, H.R. )

    1990-01-01

    Considering the hot yield point and the creep rupture strength of X20 CrMo(W)V 12 1 (short: X20) the wall thickness in the temperature range 520-560{degrees}C is lower in comparison with low alloy heat-resistant steels and high-temperature steels. This is especially important with respect to headers, forgings, and piping. As a result, X20 CrMo(W)V 12 1 has become indispensable for large power plant units. Processing of the material, including welding, can be satisfactorily performed by competent manufactures. The excellent ductility of X20 in the creep range and the capability to absorb additional stresses prevented creep damage in forgings and welds. With the use of X20 for headers, forgings, and turbine piping the wall thickness can be reduced to such an extent that power plant units can be operated in the intermediate load range and in cycling mode.

  6. Pillars of Power: Silver and Steel of the Ottoman Empire.

    NASA Astrophysics Data System (ADS)

    Nerantzis, N.

    The Ottoman Empire was forged over disintegrating Byzantium, stretching across Anatolia and the Balkans and ruled for almost five centuries. One crucial parameter that allowed for its quick expansion has been a combination of economic wealth and superiority of armed forces. The Ottomans succeeded in both sectors by promoting innovative technology in the field of silver and steel production for supplying their monetary system and weapons industry. Rich mines and smelting workshops provided increased output in metals, allowing for quick expansion and economic growth. Some of the major centres for silver and steel production are being discussed in this paper in conjunction with analytical data from smelting residues.

  7. Microstructure and Elemental Distribution in a Cast Austenitic Steel

    SciTech Connect

    Kenik, Edward A; Busby, Jeremy T; Hoelzer, David T; Rowcliffe, Arthur Frederick; Vitek, John Michael

    2007-01-01

    Casting of austenitic stainless steels offers the possibility of directly producing large and/or complex structures, such as the first wall shield module or the diverter cassette for the International Tokomak Experimental Reactor. However, the resulting mechanical properties and the corrosion resistance of such cast components can be inferior compared to conventionally forged components because of the larger grain size, lower dislocation density and extensive segregation inherent in the cast material. This study examines the microstructural and compositional heterogeneities of a large casting of 316N stainless steel, as well as the possibility of improving the homogeneity and mechanical properties of such a cast material.

  8. Research on the Microstructure and Mechanical Property of Ti-7Cu Alloy after Semi-Solid Forging

    NASA Astrophysics Data System (ADS)

    Chen, Yongnan; Huo, Yazhou; Zhao, Yongqing; Sun, Zhiping; Bai, Fan

    2016-06-01

    The present work is focused on the development of microstructure of Ti-7Cu alloy as a function of forging temperature and forging ratio in semi-solid state and the influence of resulting microstructure on the mechanical properties. The experimental results showed that the dynamic recrystallization occurred during semi-solid forging and the grain refinement was attained which is considered to be favorable for improving the semi-solid formability. The grain size increased with forging temperature and decreased with forging ratio. Forging temperature has a significant effect on the precipitation behavior in grain boundary regions during the semi-solid processing. More acicular-Ti2Cu tended to precipitate in grain boundary regions with higher forging temperature and finally formed precipitates zones adjacent to grain boundaries after forged at 1,100°C. High ultimate tensile strengths and low elongation have been achieved after semi-solid forging. The strength and hardness decreased with increase of forging temperature, while the ductility increased with increase of forging ratio. The relative contributions of tensile properties were attributed to the varieties of grain size and the distribution of Ti2Cu precipitates obtained by semi-solid forging.

  9. [Mechanism of NH(4+)-N removal in drinking water biofilter].

    PubMed

    Liu, Bing; Fan, Hui; Yu, Guo-Zhong; Yu, Xin; Zhao, Cheng-Mei; Li, Qing-Fei; Zhang, Shu-Ting; Wei, Bo

    2012-07-01

    In order to explore the mechanism of NH(4+)-N removal in drinking water biofilter, water quality parameters, such as NH(4+)-N, NO(2-)-N, NO(3-)-N, total phosphorus, permanganate index, nitrogen gas, temperature and dissolved oxygen etc, were determined in the inflow and outflow of biofilter. Samples of granular activated carbon (GAC) at different height (0, 10, 20, 40, 60 cm) of the biofiter media were collected and analyzed for the bacterial community with molecular biology techniques. The bacterial diversity in the activated carbon biofilm sample was studied based on the phylogenetic analysis of sequences. The results showed that there were three stages according to the NH(4+)-N concentration in the influent. The "nitrogen loss" phenomenon (total inorganic nitrogen in the effluent was less than that in the influent) occurred at the first, second and third stages and the amount of nitrogen loss were 0.94, 0.32 and 0.15 mg x L(-1), respectively. The amount of nitrogen loss had a good positive correlation with the NH(4+)-N concentration in the influent, but not a linear relationship with the concentration of the permanganate index in the influent. The average concentrations of N2 increased gradually with the height of media in the biofilter, with values of 14.04 and 14.67 mg x L(-1) in the influent and the effluent, respectively. Based on the sequencing results, the ammonia-oxidizing bacteria (AOB) in the activated carbon biofilm were classified into three common genera: Nitrosococcus, Nitrosomonas and Nitrosospira. When the NH(4+)-N concentration in the influent was relatively high, the "nitrogen loss" phenomenon in biofilter was caused by the AOB.

  10. Potential for 4-n-nonylphenol biodegradation in stream sediments

    USGS Publications Warehouse

    Bradley, P.M.; Barber, L.B.; Kolpin, D.W.; McMahon, P.B.; Chapelle, F.H.

    2008-01-01

    The potential for in situ biodegradation of 4-nonylphenol (4-NP) was investigated in three hydrologically distinct streams impacted by wastewater treatment plants (WWTPs) in the United States. Microcosms were prepared with sediments from each site and amended with [U-ring-14C]4-n-nonylphenol (4-n-NP) as a model test substrate. Microcosms prepared with sediment collected upstream of the WWTP outfalls and incubated under oxic conditions showed rapid and complete mineralization of [U-ring-14C]4- n-NP to 14CO2 in all three systems. In contrast, no mineralization of [U-ring-14C]4-n-NP was observed in these sediments under anoxic (methanogenic) conditions. The initial linear rate of [U-ring-14C]4-n-NP mineralization in sediments from upstream and downstream of the respective WWTP outfalls was inversely correlated with the biochemical oxygen demand (BOD) of the streambed sediments. These results suggest that the net supply of dissolved oxygen to streambed sediments is a key determinant of the rate and extent of 4-NP biodegradation in stream systems. In the stream systems considered by the present study, dissolved oxygen concentrations in the overlying water column (8–10 mg/L) and in the bed sediment pore water (1–3 mg/L at a depth of 10 cm below the sediment–water interface) were consistent with active in situ 4-NP biodegradation. These results suggest WWTP procedures that maximize the delivery of dissolved oxygen while minimizing the release of BOD to stream receptors favor efficient biodegradation of 4-NP contaminants in wastewater-impacted stream environments.

  11. Hot Deformation Behavior and Microstructural Evolution of a Medium Carbon Vanadium Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Cutrim, Rialberth M.; Rodrigues, Samuel F.; Reis, Gedeon S.; Silva, Eden S.; Aranas, Clodualdo; Balancin, Oscar

    2016-10-01

    Hot forging of steel requires application of large strains, under which conditions, dynamic recrystallization (DRX) is expected to take place. In this study, torsion tests were carried out on a medium carbon vanadium microalloyed steel (38MnSiVS5) to simulate hot forging. Deformations were applied isothermally in the temperature range 900-1200 °C at strain rates of 0.1-10 s-1 in order to observe for the occurrence of DRX and to investigate for the microstructural evolution during straining. The shape of the flow curves indicated that the recrystallization takes place during deformation. This was supported by optical microscopy performed on the quenched samples which displayed considerable amounts of recrystallized grains. It was shown that the grain size depends on straining conditions such as strain rate and temperature. Finally, it was revealed that these process parameters can considerably affect the evolution of microstructure of industrial grade steels by means of DRX.

  12. Corrosion behavior of a welded stainless-steel orthopedic implant.

    PubMed

    Reclaru, L; Lerf, R; Eschler, P Y; Meyer, J M

    2001-02-01

    The corrosion behavior of combinations of materials used in an orthopedic implant: the spherical part (forged or forged and annealed) constituting the head, the weld (tungsten inert gas (TIG) or electron beam (EB) techniques), and the cylindrical part (annealed) constituting the shaft of a femoral prosthesis - has been investigated. Open-circuit potentials, potentiodynamic curves, Tafel slope, mixed potential theory and susceptibility to intergranular attack are electrochemical and chemical procedures selected for this work. Electrochemical measurements using a microelectrode have been made in the following zones: spherical part, cylindrical part, weld, and weld/sphere, and weld/shaft interfaces. To detect intergranular attack, the Strauss test has been used. At the interfaces, corrosion currents, measured (Icorr) and predicted (Icouple) are low, in the order of the pico- to nanoampere. The electrochemical behavior of the electron beam (EB) weld is better than that of the tungsten inert gas (TIG). Welds at interfaces can behave either anodically or cathodically. It is better if welds, which are sensitive parts of the femoral prosthesis, behave cathodically. In this way, the risk of starting localized corrosion (pitting, crevice or intergranular corrosion) from a galvanic couple, remains low. From this point of view, the sample with the EB weld offers the best behavior. All the other samples containing a TIG type of weld exhibit a less favorable behavior. The mechanical treatments (forged, and forged and annealed) of the steel sphere did not show any difference in the corrosion behavior. No intergranular corrosion has been observed at the weld/steel interface for unsensitized samples. With sensitized samples, however, a TIG sample has exhibited some localized intergranular corrosion at a distance of 500 microm along the weld/stainless steel (sphere) interface. PMID:11197502

  13. 49 CFR 178.512 - Standards for steel, aluminum or other metal boxes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Standards for steel, aluminum or other metal boxes..., aluminum or other metal boxes. (a) The following are identification codes for steel, aluminum, or other metal boxes: (1) 4A for a steel box; (2) 4B for an aluminum box; and (3) 4N for an other metal box....

  14. 49 CFR 178.512 - Standards for steel, aluminum or other metal boxes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Standards for steel, aluminum or other metal boxes..., aluminum or other metal boxes. (a) The following are identification codes for steel, aluminum, or other metal boxes: (1) 4A for a steel box; (2) 4B for an aluminum box; and (3) 4N for an other metal box....

  15. Design and Analysis of a Forging Die for Manufacturing of Multiple Connecting Rods

    NASA Astrophysics Data System (ADS)

    Megharaj, C. E.; Nagaraj, P. M.; Jeelan Pasha, K.

    2016-09-01

    This paper demonstrates to utilize the hammer capacity by modifying the die design such that forging hammer can manufacture more than one connecting rod in a given forging cycle time. To modify the die design study is carried out to understand the parameters that are required for forging die design. By considering these parameters, forging die is designed using design modelling tool solid edge. This new design now can produce two connecting rods in same capacity hammer. The new design is required to validate by verifying complete filing of metal in die cavities without any defects in it. To verify this, analysis tool DEFORM 3D is used in this project. Before start of validation process it is require to convert 3D generated models in to. STL file format to import the models into the analysis tool DEFORM 3D. After importing these designs they are analysed for material flow into the cavities and energy required to produce two connecting rods in new forging die design. It is found that the forging die design is proper without any defects and also energy graph shows that the forging energy required to produce two connecting rods is within the limit of that hammer capacity. Implementation of this project increases the production of connecting rods by 200% in less than previous cycle time.

  16. 3D Finite Element Analysis of Spider Non-isothermal Forging Process

    NASA Astrophysics Data System (ADS)

    Niu, Ling; Wei, Wei; Wei, Kun Xia; Alexandrov, Igor V.; Hu, Jing

    2016-06-01

    The differences of effective stress, effective strain, velocity field, and the load-time curves between the spider isothermal and non-isothermal forging processes are investigated by making full use of 3D FEA, and verified by the production experiment of spider forging. Effective stress is mainly concentrated on the pin, and becomes lower closer to the front of the pin. The maximum effective strain in the non-isothermal forging is lower than that in the isothermal. The great majority of strain in the non-isothermal forging process is 1.76, which is larger than the strain of 1.31 in the isothermal forging. The maximum load required in the isothermal forging is higher than that in the non-isothermal. The maximum experimental load and deformation temperature in the spider production are in good agreement with those in the non-isothermal FEA. The results indicate that the non-isothermal 3D FEA results can guide the design of the spider forging process.

  17. Mechanical and Microstructural Characterization of an Aluminum Bearing Trip Steel

    NASA Astrophysics Data System (ADS)

    Monsalve, Alberto; Guzmán, Alexis; De Barbieri, Flavio; Artigas, Alfredo; Carvajal, Linton; Bustos, Oscar; Garza-Montes-de Oca, Nelson F.; Colás, Rafael

    2016-06-01

    The mechanical properties and microstructural characteristics of a steel able to sustain the TRIP-effect were studied. The material was prepared by taking in mind the partial substitution of silicon by aluminum following a processing route that included hot forging, hot and cold rolling, intercritical annealing, and a final bainitic isothermal treatment. The mechanical properties that were obtained resulted to be above those of commercial a 780 TRIP steel. The TRIP phenomenon was confirmed by the change in retained austenite before and after deforming the steel; X-ray diffraction was used to evaluate the volume content of retained austenite. Formability of the steel under study can be rationalized in terms of the texture developed in the material.

  18. Degradation of 4-n-nonylphenol under nitrate reducing conditions

    PubMed Central

    Viñas, Marc; Grotenhuis, Tim; Rijnaarts, Huub H. M.; Langenhoff, Alette A. M.

    2010-01-01

    Nonylphenol (NP) is an endocrine disruptor present as a pollutant in river sediment. Biodegradation of NP can reduce its toxicological risk. As sediments are mainly anaerobic, degradation of linear (4-n-NP) and branched nonylphenol (tNP) was studied under methanogenic, sulphate reducing and denitrifying conditions in NP polluted river sediment. Anaerobic bioconversion was observed only for linear NP under denitrifying conditions. The microbial population involved herein was further studied by enrichment and molecular characterization. The largest change in diversity was observed between the enrichments of the third and fourth generation, and further enrichment did not affect the diversity. This implies that different microorganisms are involved in the degradation of 4-n-NP in the sediment. The major degrading bacteria were most closely related to denitrifying hexadecane degraders and linear alkyl benzene sulphonate (LAS) degraders. The molecular structures of alkanes and LAS are similar to the linear chain of 4-n-NP, this might indicate that the biodegradation of linear NP under denitrifying conditions starts at the nonyl chain. Initiation of anaerobic NP degradation was further tested using phenol as a structure analogue. Phenol was chosen instead of an aliphatic analogue, because phenol is the common structure present in all NP isomers while the structure of the aliphatic chain differs per isomer. Phenol was degraded in all cases, but did not affect the linear NP degradation under denitrifying conditions and did not initiate the degradation of tNP and linear NP under the other tested conditions. PMID:20640878

  19. Snake River Plain FORGE Well Data for INEL-1

    DOE Data Explorer

    Robert Podgorney

    1979-03-01

    Well data for the INEL-1 well located in eastern Snake River Plain, Idaho. This data collection includes caliper logs, lithology reports, borehole logs, temperature at depth data, neutron density and gamma data, full color logs, fracture analysis, photos, and rock strength parameters for the INEL-1 well. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).

  20. Physics and Technological Training in Bulgarian Forge Craft

    NASA Astrophysics Data System (ADS)

    Petkova, Petya N.; Velcheva, Keranka G.

    2010-01-01

    The contemporary world regenerates and preserves the traditions of decorative—applied art and the national crafts. This brings up young generation and helps them to uncover the sources of national culture. In the commonly educational system the technological training realizes succession of new methods for national and applied art. The aim is examination of the national crafts as technological processes for cultivation of different metal constructions. There are enforced physical laws here. Seven basic groups of forging methods consider in Bulgarian tradition craft as heat treatment, plastic deformation and applying of different tensions. This gives information about morphology of construction after applying of stress, enlarging or decreasing of the linear sizes, structure change and the change of physical and mechanical properties.

  1. Snake River Plain FORGE Well Data for WO-2

    DOE Data Explorer

    Robert Podgorney

    1991-07-29

    Well data for the WO-2 well located in eastern Snake River Plain, Idaho. This data collection includes lithology reports, borehole logs, temperature at depth data, neutron density and gamma data, and rock strength parameters for the WO-2 well. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).

  2. Crack toughness evaluation of hot pressed and forged beryllium

    NASA Technical Reports Server (NTRS)

    Jones, M. H.; Bubsey, R. T.; Brown, W. F., Jr.

    1971-01-01

    Beryllium fracture toughness test specimens were fatigue cracked using reversed cycling with a compression load two to three times the tension load. In worked beryllium, textures may be produced which result in fatigue cracks that are out of plane with the starter notch. Specimens of hot pressed stock exhibited load displacement records which were nonlinear throughout their course. Fracture specimens of both hot pressed and forged stock showed essentially no reduction of thickness and the fracture surfaces were flat and normal to the load axis. However, the stress intensity factor at maximum load increased with decreasing thickness. Load-displacement and electric potential records for the hot pressed beryllium specimens exhibited several anomalies such as negative residual crack mouth displacements and a decrease in electrical potential with increasing load.

  3. Hot Superplastic Powder Forging for Transparent nanocrystalline Ceramics

    SciTech Connect

    Cannon, W. Roger

    2006-05-22

    The program explored a completely new, economical method of manufacturing nanocrystalline ceramics, Hot Superplastic Powder Forging (HSPF). The goal of the work was the development of nanocrystalline/low porosity optically transparent zirconia/alumina. The high optical transparency should result from lack of grain boundary scattering since grains will be smaller than one tenth the wavelength of light and from elimination of porosity. An important technological potential for this process is manufacturing of envelopes for high-pressure sodium vapor lamps. The technique for fabricating monolithic nanocrystalline material does not begin with powder whose particle diameter is <100 nm as is commonly done. Instead it begins with powder whose particle diameter is on the order of 10-100 microns but contains nanocrystalline crystallites <<100 nm. Spherical particles are quenched from a melt and heat treated to achieve the desired microstructure. Under a moderate pressure within a die or a mold at temperatures of 1100C to 1300C densification is by plastic flow of superplastic particles. A nanocrystalline microstructure results, though some features are greater than 100nm. It was found, for instance, that in the fully dense Al2O3-ZrO2 eutectic specimens that a bicontinuous microstructure exists containing <100 nm ZrO2 particles in a matrix of Al2O3 grains extending over 1-2 microns. Crystallization, growth, phase development and creep during hot pressing and forging were studied for several compositions and so provided some details on development of polycrystalline microstructure from heating quenched ceramics.

  4. Follow-up of hearing thresholds among forge hammering workers

    SciTech Connect

    Kamal, A.A.; Mikael, R.A.; Faris, R. )

    1989-01-01

    Hearing threshold was reexamined in a group of forge hammering workers investigated 8 years ago with consideration of the age effect and of auditory symptoms. Workers were exposed to impact noise that ranged from 112 to 139 dB(A)--at an irregular rate of 20 to 50 drop/minute--and a continuous background noise that ranged from 90 to 94 dB(A). Similar to what was observed 8 years ago, the present permanent threshold shift (PTS) showed a maximum notch at the frequency of 6 kHz and considerable elevations at the frequencies of 0.25-1 kHz. The age-corrected PTS and the postexposure hearing threshold were significantly higher than the corresponding previous values at the frequencies 0.25, 0.5, 1, and 8 kHz only. The rise was more evident at the low than at the high frequencies. Temporary threshold shift (TTS) values were significantly less than those 8 years ago. Contrary to the previous TTS, the present TTS were higher at low than at high frequencies. Although progression of PTS at the frequencies 0.25 and 0.5 kHz was continuous throughout the observed durations of exposure, progression at higher frequencies occurred essentially in the first 10 to 15 years of exposure. Thereafter, it followed a much slower rate. Tinnitus was significantly associated with difficulty in hearing the human voice and with elevation of PTS at all the tested frequencies, while acoustic after-image was significantly associated with increment of PTS at the frequencies 0.25-2 kHz. No relation between PTS and smoking was found. PTS at low frequencies may provide an indication of progression of hearing damage when the sensitivity at 6 and 4 kHz diminishes after prolonged years of exposure. Tinnitus and acoustic after-image are related to the auditory effect of forge hammering noise.

  5. Deformation Mechanisms in Tube Billets from Zr-1%Nb Alloy under Radial Forging

    SciTech Connect

    Perlovich, Yuriy; Isaenkova, Margarita; Fesenko, Vladimir; Krymskaya, Olga; Zavodchikov, Alexander

    2011-05-04

    Features of the deformation process by cold radial forging of tube billets from Zr-1%Nb alloy were reconstructed on the basis of X-ray data concerning their structure and texture. The cold radial forging intensifies grain fragmentation in the bulk of billet and increases significantly the latent hardening of potentially active slip systems, so that operation only of the single slip system becomes possible. As a result, in radially-forged billets unusual deformation and recrystallization textures arise. These textures differ from usual textures of {alpha}-Zr by the mutual inversion of crystallographic axes, aligned along the axis of tube.

  6. Assessment of NASA Dual Microstructure Heat Treatment Method for Multiple Forging Batch Heat Treatment

    NASA Technical Reports Server (NTRS)

    Gayda, John (Technical Monitor); Lemsky, Joe

    2004-01-01

    NASA dual microstructure heat treatment technology previously demonstrated on single forging heat treat batches of a generic disk shape was successfully demonstrated on a multiple disk batch of a production shape component. A group of four Rolls-Royce Corporation 3rd Stage AE2100 forgings produced from alloy ME209 were successfully dual microstructure heat treated as a single heat treat batch. The forgings responded uniformly as evidenced by part-to-part consistent thermocouple recordings and resultant macrostructures, and from ultrasonic examination. Multiple disk DMHT processing offers a low cost alternative to other published dual microstructure processing techniques.

  7. Deformation Mechanisms in Tube Billets from Zr-1%Nb Alloy under Radial Forging

    NASA Astrophysics Data System (ADS)

    Perlovich, Yuriy; Isaenkova, Margarita; Fesenko, Vladimir; Krymskaya, Olga; Zavodchikov, Alexander

    2011-05-01

    Features of the deformation process by cold radial forging of tube billets from Zr-1%Nb alloy were reconstructed on the basis of X-ray data concerning their structure and texture. The cold radial forging intensifies grain fragmentation in the bulk of billet and increases significantly the latent hardening of potentially active slip systems, so that operation only of the single slip system becomes possible. As a result, in radially-forged billets unusual deformation and recrystallization textures arise. These textures differ from usual textures of α-Zr by the mutual inversion of crystallographic axes, aligned along the axis of tube.

  8. Temperature and environmentally assisted cracking in low alloy steel

    SciTech Connect

    Auten, T.A.; Monter, J.V.

    1995-04-01

    Environmental assisted cracking (EAC) can be defined as the propagation of fatigue cracks in water at rates from 3 to over 40 times the growth rates in air. For low alloy steels with sulfur contents > 0.0125% by weight, EAC is normal behavior in the 240 to 290C range. However, literature yields mixed results for low alloy steels with compositions just below this sulfur level; some reports indicate EAC while others do not. Also, several authors have reported an increased tendency toward EAC when the water temperatures were lowered. In the present work, five ASTM A 508 Class 2 forgings with ladle and check analyses that ranged from 0.010 to 0.019 wt% S were tested in high purity deaerated water in the temperature range of 93 to 260C. At 260C these forgings did not exhibit EAC, reinforcing earlier results for two similar forgings. This broad sampling indicates strong resistance to EAC for this class of forging at 260C. On the other hand, EAC occurred consistently in the three of these forgings that were tested below 204C, provided the test conditions (loading frequency, {Delta}K, and R) were high enough to produce a high baseline fatigue crack growth rate (FCGR), where the baseline FCGR is that expected in air. At 149C, EAC occurred at test conditions that combined to yield a baseline FCGR greater than {approx}2E-6 mm/s. At 204, 121, and 93C, this critical crack growth rate appeared to shift to lower baseline values. The EAC that occurred at lower temperatures was a factor of 3 to 12 times higher than baseline air rates, which was not as strong as the effect for higher sulfur steels at 240 to 290C. Also, no plateau in the growth rates occurred as it does with the higher sulfur steels. In another approach, EAC was induced at 93 and at 260C by raising the dissolved oxygen content of the water from <10 to >15 ppb.

  9. 75 FR 20859 - Notice of Realty Action, Independence National Historical Park, Pennsylvania and Valley Forge...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... National Park Service Notice of Realty Action, Independence National Historical Park, Pennsylvania and Valley Forge National Historical Park, Pennsylvania AGENCY: National Park Service, Department of the... is located within the boundary of Independence National Historical Park (INDE). The privately...

  10. FEM Analysis and Experimental Verification of the Integral Forging Process for AP1000 Primary Coolant Pipe

    NASA Astrophysics Data System (ADS)

    Wang, Shenglong; Yu, Xiaoyi; Yang, Bin; Zhang, Mingxian; Wu, Huanchun

    2016-10-01

    AP1000 primary coolant pipes must be manufactured by integral forging technology according to the designer—Westinghouse Electric Co. The characteristics of these large, special-shaped pipes create nonuniform temperatures, effective stress, and effective strain during shaping of the pipes. This paper presents a three-dimensional finite element simulation (3D FEM) of the integral forging process, and qualitatively evaluates the likelihood of forging defects. By analyzing the evolution histories of the three field variables, we concluded that the initial forging temperature should be strictly controlled within the interval 1123 K to 1423 K (850 °C to 1150 °C) to avoid second-phase precipitation. In the hard deformation zones, small strains do not contribute to recrystallization resulting in coarse grains. Conversely, in the free deformation zone, the large strains can contribute to the dynamic recrystallization, favoring grain refinement and closure of voids. Cracks are likely to appear, however, on the workpiece surface when forging leads to large deformations. Based on the simulation results, an eligible workpiece with good mechanical properties, few macroscopic defects, and favorable grain size has been successfully forged by experiments at an industrial scale, which validates the FEM simulation.

  11. Deformation, recrystallization, strength, and fracture of press-forged ceramic crystals.

    NASA Technical Reports Server (NTRS)

    Rice, R. W.

    1972-01-01

    Sapphire and ruby were very difficult to press-forge because they deformed without cracking only in a limited temperature range before they melted. Spinel crystals were somewhat easier and MgO, CaO, and TiC crystals much easier to forge. The degree of recrystallization that occurred during forging (which was related to the ease and type of slip intersections) varied from essentially zero in Al2O3 to complete (i.e., random polycrystalline bodies were produced) in CaO. Forging of bi- and polycrystalline bodies produced incoherent bodies as a result of grain-boundary sliding. Strengths of the forged crystals were comparable to those of dense polycrystalline bodies of similar grain size. However, forged and recrystallized CaO crystals were ductile at lower temperatures than dense hot-pressed CaO. This behavior is attributed to reduced grain-boundary impurities and porosity. Fracture origins could be located, indicating that fracture in the CaO occurs internally as a result of surface work hardening caused by machining.-

  12. FEM Analysis and Experimental Verification of the Integral Forging Process for AP1000 Primary Coolant Pipe

    NASA Astrophysics Data System (ADS)

    Wang, Shenglong; Yu, Xiaoyi; Yang, Bin; Zhang, Mingxian; Wu, Huanchun

    2016-08-01

    AP1000 primary coolant pipes must be manufactured by integral forging technology according to the designer—Westinghouse Electric Co. The characteristics of these large, special-shaped pipes create nonuniform temperatures, effective stress, and effective strain during shaping of the pipes. This paper presents a three-dimensional finite element simulation (3D FEM) of the integral forging process, and qualitatively evaluates the likelihood of forging defects. By analyzing the evolution histories of the three field variables, we concluded that the initial forging temperature should be strictly controlled within the interval 1123 K to 1423 K (850 °C to 1150 °C) to avoid second-phase precipitation. In the hard deformation zones, small strains do not contribute to recrystallization resulting in coarse grains. Conversely, in the free deformation zone, the large strains can contribute to the dynamic recrystallization, favoring grain refinement and closure of voids. Cracks are likely to appear, however, on the workpiece surface when forging leads to large deformations. Based on the simulation results, an eligible workpiece with good mechanical properties, few macroscopic defects, and favorable grain size has been successfully forged by experiments at an industrial scale, which validates the FEM simulation.

  13. West Flank Coso, CA FORGE 3D temperature model

    DOE Data Explorer

    Doug Blankenship

    2016-03-01

    x,y,z data of the 3D temperature model for the West Flank Coso FORGE site. Model grid spacing is 250m. The temperature model for the Coso geothermal field used over 100 geothermal production sized wells and intermediate-depth temperature holes. At the near surface of this model, two boundary temperatures were assumed: (1) areas with surface manifestations, including fumaroles along the northeast striking normal faults and northwest striking dextral faults with the hydrothermal field, a temperature of ~104˚C was applied to datum at +1066 meters above sea level elevation, and (2) a near-surface temperature at about 10 meters depth, of 20˚C was applied below the diurnal and annual conductive temperature perturbations. These assumptions were based on heat flow studies conducted at the CVF and for the Mojave Desert. On the edges of the hydrothermal system, a 73˚C/km (4˚F/100’) temperature gradient contour was established using conductive gradient data from shallow and intermediate-depth temperature holes. This contour was continued to all elevation datums between the 20˚C surface and -1520 meters below mean sea level. Because the West Flank is outside of the geothermal field footprint, during Phase 1, the three wells inside the FORGE site were incorporated into the preexisting temperature model. To ensure a complete model was built based on all the available data sets, measured bottom-hole temperature gradients in certain wells were downward extrapolated to the next deepest elevation datum (or a maximum of about 25% of the well depth where conductive gradients are evident in the lower portions of the wells). After assuring that the margins of the geothermal field were going to be adequately modelled, the data was contoured using the Kriging method algorithm. Although the extrapolated temperatures and boundary conditions are not rigorous, the calculated temperatures are anticipated to be within ~6˚C (20˚F), or one contour interval, of the

  14. Movement Synchrony Forges Social Bonds across Group Divides

    PubMed Central

    Tunçgenç, Bahar; Cohen, Emma

    2016-01-01

    Group dynamics play an important role in the social interactions of both children and adults. A large amount of research has shown that merely being allocated to arbitrarily defined groups can evoke disproportionately positive attitudes toward one's in-group and negative attitudes toward out-groups, and that these biases emerge in early childhood. This prompts important empirical questions with far-reaching theoretical and applied significance. How robust are these inter-group biases? Can biases be mitigated by behaviors known to bond individuals and groups together? How can bonds be forged across existing group divides? To explore these questions, we examined the bonding effects of interpersonal synchrony on minimally constructed groups in a controlled experiment. In-group and out-group bonding were assessed using questionnaires administered before and after a task in which groups performed movements either synchronously or non-synchronously in a between-participants design. We also developed an implicit behavioral measure, the Island Game, in which physical proximity was used as an indirect measure of interpersonal closeness. Self-report and behavioral measures showed increased bonding between groups after synchronous movement. Bonding with the out-group was significantly higher in the condition in which movements were performed synchronously than when movements were performed non-synchronously between groups. The findings are discussed in terms of their importance for the developmental social psychology of group dynamics as well as their implications for applied intervention programs. PMID:27303341

  15. Building a New High School and Forging a New Community.

    ERIC Educational Resources Information Center

    Krajewski, Robert

    1988-01-01

    Two aging structures were replaced by Central High School in an Indiana steel town. Planning, board and administrator support, and community involvement eased negative attitudes toward the high school closures and resulted in a $36 million school that has unified the city and will serve it for over 50 years. (MLF)

  16. Computational chemical studies on thermochemistry and ring strains in cyclic [n]metaphenyleneacetylenes, butadiyne-bridged [4n]metacyclophynes, and butadiyne-bridged [4n]paracyclophynes.

    PubMed

    Ali, Mohamad Akbar; Krishnan, Mangala Sunder

    2010-09-01

    The thermochemical properties and ring strains in cyclic [n]metaphenyleneacetylenes ([n]CMPAs), butadiyne-bridged [4(n)]metacyclophynes (B-B[4(n)]MCs), and butadiyne-bridged [4(n)]paracyclophynes (B-B[4(n)]PCs) were studied using a homodesmotic reaction scheme coupled with density functional theory (B3LYP/6-31G*, mPW1PW91/6-31G*, and M06-2X/6-31+G**//B3LYP/6-31G*). Strain energies of [n]CMPAs and B-B[4(n)]MCs decrease first from very high values for small rings to become zero when n becomes 6, then increase with n, and finally decrease as n becomes larger than 8. In the case of B-B[4(n)]PCs, strain energies decrease with increasing n. Heats of formation of [n]CMPAs, B-B[4(n)]MCs, and B-B[4(n)]PCs increase steadily with increasing numbers of phenylacetylene and 1-(buta-1,3-diynyl)benzene to reach a near-constant value per unit monomer as n increases. The geometries and (vibrational and nuclear magnetic resonance) spectroscopic properties of [n]CMPAs, B-B[4(n)]MCs, and B-B[4(n)]PCs were also studied. Geometrical parameters, Raman frequencies, and (1)H NMR chemical shifts of [3]CMPA and [4]CMPA are found to be in good agreement with compounds for which there are experimentally available values at the B3LYP/6-31G* level of theory. In addition, electronic structure calculations were carried out for [n]CMPAs, B-B[4(n)]MCs, and B-B[4(n)]PCs. Ring diameters were also calculated for B-B[4(n)]PCs. PMID:20695635

  17. Optimization of Thixoforging Parameters for C70S6 Steel Connecting Rods

    NASA Astrophysics Data System (ADS)

    Özkara, İsa Metin; Baydoğan, Murat

    2016-09-01

    A microalloyed steel, C70S6, with a solidification interval of 1390-1479 °C, was thixoforged in the semisolid state in a closed die at temperatures in the range 1400-1475 °C to form a 1/7 scaled-down model of a passenger vehicle connecting rod. Die design and an optimized thixoforging temperature eliminated the excessive flash and other problems during forging. Tension test samples from connecting rods thixoforged at the optimum temperature of 1440 °C exhibited nearly the same hardness, yield strength, and ultimate tensile strength as conventional hot forged samples but ductility decreased by about 45% due to grain boundary ferrite network formed during cooling from the thixoforging temperature. Thus, C70S6-grade steel can be thixoforged at 1440 °C to form flash-free connecting rods. This conclusion was also validated using FEA analysis.

  18. Making randomised trials more efficient: report of the first meeting to discuss the Trial Forge platform.

    PubMed

    Treweek, Shaun; Altman, Doug G; Bower, Peter; Campbell, Marion; Chalmers, Iain; Cotton, Seonaidh; Craig, Peter; Crosby, David; Davidson, Peter; Devane, Declan; Duley, Lelia; Dunn, Janet; Elbourne, Diana; Farrell, Barbara; Gamble, Carrol; Gillies, Katie; Hood, Kerry; Lang, Trudie; Littleford, Roberta; Loudon, Kirsty; McDonald, Alison; McPherson, Gladys; Nelson, Annmarie; Norrie, John; Ramsay, Craig; Sandercock, Peter; Shanahan, Daniel R; Summerskill, William; Sydes, Matt; Williamson, Paula; Clarke, Mike

    2015-06-05

    Randomised trials are at the heart of evidence-based healthcare, but the methods and infrastructure for conducting these sometimes complex studies are largely evidence free. Trial Forge ( www.trialforge.org ) is an initiative that aims to increase the evidence base for trial decision making and, in doing so, to improve trial efficiency.This paper summarises a one-day workshop held in Edinburgh on 10 July 2014 to discuss Trial Forge and how to advance this initiative. We first outline the problem of inefficiency in randomised trials and go on to describe Trial Forge. We present participants' views on the processes in the life of a randomised trial that should be covered by Trial Forge.General support existed at the workshop for the Trial Forge approach to increase the evidence base for making randomised trial decisions and for improving trial efficiency. Agreed upon key processes included choosing the right research question; logistical planning for delivery, training of staff, recruitment, and retention; data management and dissemination; and close down. The process of linking to existing initiatives where possible was considered crucial. Trial Forge will not be a guideline or a checklist but a 'go to' website for research on randomised trials methods, with a linked programme of applied methodology research, coupled to an effective evidence-dissemination process. Moreover, it will support an informal network of interested trialists who meet virtually (online) and occasionally in person to build capacity and knowledge in the design and conduct of efficient randomised trials.Some of the resources invested in randomised trials are wasted because of limited evidence upon which to base many aspects of design, conduct, analysis, and reporting of clinical trials. Trial Forge will help to address this lack of evidence.

  19. Making randomised trials more efficient: report of the first meeting to discuss the Trial Forge platform.

    PubMed

    Treweek, Shaun; Altman, Doug G; Bower, Peter; Campbell, Marion; Chalmers, Iain; Cotton, Seonaidh; Craig, Peter; Crosby, David; Davidson, Peter; Devane, Declan; Duley, Lelia; Dunn, Janet; Elbourne, Diana; Farrell, Barbara; Gamble, Carrol; Gillies, Katie; Hood, Kerry; Lang, Trudie; Littleford, Roberta; Loudon, Kirsty; McDonald, Alison; McPherson, Gladys; Nelson, Annmarie; Norrie, John; Ramsay, Craig; Sandercock, Peter; Shanahan, Daniel R; Summerskill, William; Sydes, Matt; Williamson, Paula; Clarke, Mike

    2015-01-01

    Randomised trials are at the heart of evidence-based healthcare, but the methods and infrastructure for conducting these sometimes complex studies are largely evidence free. Trial Forge ( www.trialforge.org ) is an initiative that aims to increase the evidence base for trial decision making and, in doing so, to improve trial efficiency.This paper summarises a one-day workshop held in Edinburgh on 10 July 2014 to discuss Trial Forge and how to advance this initiative. We first outline the problem of inefficiency in randomised trials and go on to describe Trial Forge. We present participants' views on the processes in the life of a randomised trial that should be covered by Trial Forge.General support existed at the workshop for the Trial Forge approach to increase the evidence base for making randomised trial decisions and for improving trial efficiency. Agreed upon key processes included choosing the right research question; logistical planning for delivery, training of staff, recruitment, and retention; data management and dissemination; and close down. The process of linking to existing initiatives where possible was considered crucial. Trial Forge will not be a guideline or a checklist but a 'go to' website for research on randomised trials methods, with a linked programme of applied methodology research, coupled to an effective evidence-dissemination process. Moreover, it will support an informal network of interested trialists who meet virtually (online) and occasionally in person to build capacity and knowledge in the design and conduct of efficient randomised trials.Some of the resources invested in randomised trials are wasted because of limited evidence upon which to base many aspects of design, conduct, analysis, and reporting of clinical trials. Trial Forge will help to address this lack of evidence. PMID:26044814

  20. Forging of Naval Brass (ASTM B16) - Finite Element Analysis using Ls Dyna

    NASA Astrophysics Data System (ADS)

    Subha Sankari, T.; Sangavi, S.; Paneerselvam, T.; Venkatraman, R.; Venkatesan, M.

    2016-09-01

    Forging is one of the important manufacturing process in which products like connecting rod, transmission shaft, clutch hubs and gears are produced. Finite element analysis (FEA) in forming techniques is of recent interest for the optimal design and determination of right manufacturing forming process. The data from the numerical results can help in providing the information for selecting the ideal process conditions. Thus aside from experimental values, simulation by the finite element analysis software's such as LS DYNA can be used for the analysis of strain distribution in forging processes. In the present work, Finite element simulation of open die forging of naval brass (ASTM B16) is done at an optimal temperature. An advanced multi physics simulation software package by the Livermore software technology cooperation LSTC - LS DYNA is utilized for the simulation of forging process. For the forging validation, experiment is conducted with a cylindrical billet having height 45 mm and diameter of 40mm. The numerical results are compared with that of experimental results carried out at the same temperature and dimensions for validation. The distribution of strain is analyzed. Energy analysis due to impact load is detailed. The simulation results are found to be in good agreement with the experimental results.

  1. Identification of forged Bank of England £20 banknotes using IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sonnex, Emily; Almond, Matthew J.; Baum, John V.; Bond, John W.

    2014-01-01

    Bank of England notes of £20 denomination have been studied using infrared spectroscopy in order to generate a method to identify forged notes. An aim of this work was to develop a non-destructive method so that a small, compact Fourier transform infrared spectrometer (FT-IR) instrument could be used by bank workers, police departments or others such as shop assistants to identify forged notes in a non-lab setting. The ease of use of the instrument is the key to this method, as well as the relatively low cost. The presence of a peak at 1400 cm-1 arising from νasym (CO32-) from the blank paper section of a forged note proved to be a successful indicator of the note's illegality for the notes that we studied. Moreover, differences between the spectra of forged and genuine £20 notes were observed in the ν(OH) (ca. 3500 cm-1), ν(Csbnd H) (ca. 2900 cm-1) and ν(Cdbnd O) (ca. 1750 cm-1) regions of the IR spectrum recorded for the polymer film covering the holographic strip. In cases where these simple tests fail, we have shown how an infrared microscope can be used to further differentiate genuine and forged banknotes by producing infrared maps of selected areas of the note contrasting inks with background paper.

  2. Identification of Forged Bank of England 20 Gbp Banknotes Using IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sonnex, Emily

    2014-06-01

    Bank of England notes of 20 GBP denomination have been studied using infrared spectroscopy in order to generate a method to identify forged notes. A principal aim of this work was to develop a method so that a small, compact ATR FTIR instrument could be used by bank workers, police departments or others such as shop assistants to identify forged notes in a non-lab setting. The ease of use of the instrument is the key to this method, as well as the relatively low cost. The presence of a peak at 1400 wn from the blank paper section of a forged note proved to be a successful indicator of the note's illegality for the notes that we studied. Moreover, differences between the spectra of forged and genuine 20 GBP notes were observed in the ν(OH) (ca. 3500 wn), ν(C-H) (ca. 2900 wn) and ν(C=O) (ca. 1750 wn) regions of the IR spectrum recorded for the polymer film covering the holographic strip. In cases where these simple tests fail, we have shown how an infrared microscope can be used to further differentiate genuine and forged banknotes by producing infrared maps of selected areas of the note contrasting inks with background paper. Further to this, with an announcement by the Bank of England to produce polymer banknotes in the future, the work has been extended using Australian polymer banknotes to show that the method would be transferable.

  3. TDNiCr (ni-20Cr-2ThO2) forging studies

    NASA Technical Reports Server (NTRS)

    Filippi, A. M.

    1974-01-01

    Elevated temperature tensile and stress rupture properties were evaluated for forged TDNiCr (Ni-20Cr-2ThO2) and related to thermomechanical history and microstructure. Forging temperature and final annealed condition had pronounced influences on grain size which, in turn, was related to high temperature strength. Tensile strength improved by a factor of 8 as grain size changed from 1 to 150 microns. Stress-rupture strength was improved by a factor of 3 to 5 by a grain size increase from 10 to 1000 microns. Some contributions to the elevated temperature strength of very large grain material may also occur from the development of a strong texture and a preponderance of small twins. Other conditions promoting the improvement of high temperature strength were: an increase of total reduction, forging which continued the metal deformation inherent in the starting material, a low forging speed, and prior deformation by extrusion. The mechanical properties of optimally forged TDNiCr compared favorably to those of high strength sheet developed for space shuttle application.

  4. 2012 ACCOMPLISHMENTS - TRITIUM AGING STUDIES ON STAINLESS STEELS

    SciTech Connect

    Morgan, M.

    2013-01-31

    This report summarizes the research and development accomplishments during FY12 for the tritium effects on materials program. The tritium effects on materials program is designed to measure the long-term effects of tritium and its radioactive decay product, helium-3, on the structural properties of forged stainless steels which are used as the materials of construction for tritium reservoirs. The FY12 R&D accomplishments include: (1) Fabricated and Thermally-Charged 150 Forged Stainless Steel Samples with Tritium for Future Aging Studies; (2) Developed an Experimental Plan for Measuring Cracking Thresholds of Tritium-Charged-and-Aged Steels in High Pressure Hydrogen Gas; (3) Calculated Sample Tritium Contents For Laboratory Inventory Requirements and Environmental Release Estimates; (4) Published report on “Cracking Thresholds and Fracture Toughness Properties of Tritium-Charged-and-Aged Stainless Steels”; and, (5) Published report on “The Effects of Hydrogen, Tritium, and Heat Treatment on the Deformation and Fracture Toughness Properties of Stainless Steels”. These accomplishments are highlighted here and references given to additional reports for more detailed information.

  5. Simulation of 7050 Wrought Aluminum Alloy Wheel Die Forging and its Defects Analysis based on DEFORM

    SciTech Connect

    Huang Shiquan; Yi Youping; Zhang Yuxun

    2010-06-15

    Defects such as folding, intercrystalline cracking and flow lines outcrop are very likely to occur in the forging of aluminum alloy. Moreover, it is difficult to achieve the optimal set of process parameters just by trial and error within an industrial environment. In producing 7050 wrought aluminum alloy wheel, a rigid-plastic finite element method (FEM) analysis has been performed to optimize die forging process. Processing parameters were analyzed, focusing on the effects of punch speed, friction factor and temperature. Meanwhile, mechanism as well as the evolution with respect to the defects of the wrought wheel was studied in details. From an analysis of the results, isothermal die forging was proposed for producing 7050 aluminum alloy wheel with good mechanical properties. Finally, verification experiment was carried out on hydropress.

  6. Evaluation of Die Chilling Effects during Forging of Nimonic-80A Superalloy

    SciTech Connect

    Shahriari, D.; Sadeghi, M. H.; Amiri, A.; Cheraghzadeh, M.

    2010-06-15

    Nimonic-80A is a kind of nickel-based superalloys which is used in high temperature components of land gas turbines. In this paper, the influence of four design factors: die temperature, strain rate, friction coefficient and geometry size of ring sample over the variation of internal diameters (VID) and forging load (FL) was studied. It was done by means of design methodology based on DOE-designated full factorial and FE simulations. FEM and experimental results showed that the variation of internal diameters and forging load had inverse proportion to the die temperature. Regression models were developed by using the response surface methodology (RSM) for VID and FL. Rate of the dynamic recrystallization varied depending on different amounts of die temperature. The results can be used in the semi-isothermal forging of complex part of the Nimonic-80A.

  7. 76 FR 31631 - Heavy Forged Hand Tools From China; Scheduling of Expedited Five-Year Reviews Concerning the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... of institution (76 FR 168, January 3, 2011) of the subject five-year reviews was adequate and that... COMMISSION Heavy Forged Hand Tools From China; Scheduling of Expedited Five- Year Reviews Concerning the Antidumping Duty Orders on Heavy Forged Hand Tools From China. AGENCY: United States International...

  8. Effects of internal helium on mechanical properties of NITRONIC[trademark] 40 stainless steel

    SciTech Connect

    Mosley, W.C.

    1993-01-01

    This report describes results of tests on annealed Nitronic 40 stainless steel containing 0.0, 0.26, and 2.6 appM helium-3 (He-3), over the temperature range 25-842 C. Ultimate tensile strength, 0.2% offset yield strength, total elongation, uniform elongation, nonuniform elongation, and reduction-in-area were measured. The predominant effect of He-3 is decreased ductility caused by inhibition of necking. Annealed Nitronic 40 exhibits greater sensitivity to internal He-3 than solution-annealed Incoloy 903 and high-energy-rate forged 316L stainless steel.

  9. Structure and mechanical properties of hot-deformed low-carbon martensitic steel

    NASA Astrophysics Data System (ADS)

    Romanov, I. D.; Shatsov, A. A.; Zakirova, M. G.; Berezin, S. K.

    2016-03-01

    The structural changes in low-carbon martensitic 15Kh2G2NMFBA steel induced by its hot forging in the temperature range 1150-850°C have been studied. The calculated cracking resistance parameter I c is in agreement with its experimental value. A relation is found between the lath sizes in the martensite structure and the change in the impact toughness characteristics. A combined regime of hot deformation and hot treatment of the low-carbon martensitic steel is proposed to form submicrometer-sized structural elements and high strength and impact toughness characteristics.

  10. Phased Array Inspection of Titanium Disk Forgings Targeting no. 1/2 FBH Sensitivity

    SciTech Connect

    Roberts, R.A.; Friedl, J.

    2005-04-09

    The phased array implementation of a focused zoned ultrasonic inspection to achieve a >3dB signal-to-noise for no. 1/2 flat bottom holes (FBH) in titanium is reported. Previous work established the ultrasound focusing required to achieve the targeted sensitivity. This work reports on the design of a phased array transducer capable of maintaining the needed focus to the depths required in the forging inspection. The performance of the phased array inspection is verified by examining signal-to-noise of no. 1/2 FBHs contained in coupons cut from actual forgings.

  11. Ancient Blacksmiths, The Iron Age, Damascus Steels, and Modern Metallurgy

    SciTech Connect

    Sherby, O.D.; Wadsworth, J.

    2000-09-11

    The history of iron and Damascus steels is described through the eyes of ancient blacksmiths. For example, evidence is presented that questions why the Iron Age could not have begun at about the same time as the early Bronze Age (i.e. approximately 7000 B.C.). It is also clear that ancient blacksmiths had enough information from their forging work, together with their observation of color changes during heating and their estimate of hardness by scratch tests, to have determined some key parts of the present-day iron-carbon phase diagram. The blacksmiths' greatest artistic accomplishments were the Damascus and Japanese steel swords. The Damascus sword was famous not only for its exceptional cutting edge and toughness, but also for its beautiful surface markings. Damascus steels are ultrahigh carbon steels (UHCSs) that contain from 1.0 to 2.1%. carbon. The modern metallurgical understanding of UHCSs has revealed that remarkable properties can be obtained in these hypereutectoid steels. The results achieved in UHCSs are attributed to the ability to place the carbon, in excess of the eutectoid composition, to do useful work that enhances the high temperature processing of carbon steels and that improves the low and intermediate temperature mechanical properties.

  12. Characterization of Cracking and Crack Growth Properties of the C5A Aircraft Tie-Box Forging

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Smith, Stephen W.; Newman, John A.; Willard, Scott A.

    2003-01-01

    Detailed destructive examinations were conducted to characterize the integrity and material properties of two aluminum alloy (7075-T6) horizontal stabilizer tie box forgings removed.from US. Air Force C5A and C5B transport aircraft. The C5B tie box forging was,found to contain no evidence of cracking. Thirteen cracks were found in the CSA,forging. All but one of the cracks observed in the C5A component were located along the top cap region (one crack was located in the bottom cap region). The cracks in the C5A component initiated at fastener holes and propagated along a highly tunneled intergranular crack path. The tunneled crack growth configuration is a likelv result of surface compressive stress produced during peening of the .forging suijace. The tie box forging ,fatigue crack growth, fracture and stress corrosion cracking (SCC) properties were characterized. Reported herein are the results of laboratory air ,fatigue crack growth tests and 95% relative humidity SCC tests conducted using specimens machined from the C5A ,forging. SCC test results revealed that the C5A ,forging material was susceptible to intergranular environmental assisted cracking: the C5A forging material exhibited a SCC crack-tip stress-intensity factor threshold of less than 6 MPadn. Fracture toughness tests revealed that the C5A forging material exhibited a fracture toughness that was 25% less than the C5B forging. The C5A forging exhibited rapid laboratory air fatigue crack growth rates having a threshold crack-tip stress-intensity factor range of less than 0.8 MPa sup m. Detailed fractographic examinations revealed that the ,fatigue crack intergranular growth crack path was similar to the cracking observed in the C5A tie box forging. Because both fatigue crack propagation and SCC exhibit similar intergranular crack path behavior, the damage mechanism resulting in multi-site cracking of tie box forgings cannot be determined unless local cyclic stresses can be quantified.

  13. 76 FR 66996 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Forging...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ..., see the related notice published in the Federal Register on May 24, 2011 (76 FR 30200). Interested...; Forging Machines ACTION: Notice. SUMMARY: The Department of Labor (DOL) is submitting the Occupational... Machines,'' to the Office of Management and Budget (OMB) for review and approval for continued use...

  14. Jernberg Industries, Inc: Forging Facility Uses Plant-Wide Assessment to Aid Conversion to Lean Manufacturing

    SciTech Connect

    2004-10-01

    Jernberg Industries conducted a plant-wide assessment while converting to lean manufacturing at a forging plant. Seven projects were identified that could yield annual savings of $791,000, 64,000 MMBtu in fuel and 6 million kWh.

  15. 75 FR 70689 - Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum-Greenwood Forge Division; Currently...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ... in the Federal Register on November 17, 2009 (74 FR 59254). At the request of the State agency and a... Employment and Training Administration Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum- Greenwood... Aluminum Fabricated Products, LLC, Kaiser Aluminum-Greenwood Forge Division, including on- site...

  16. 76 FR 30200 - Forging Machines; Extension of the Office of Management and Budget's (OMB) Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... Order No. 5-2010 (72 FR 55355). Signed at Washington, DC, on May 19, 2011. David Michaels, Assistant... operated valves and switches. DATES: Comments must be submitted (postmarked, sent, or received) by July 25... clearly and properly identify manually operated valves and switches. Inspection of Forging...

  17. From Pastoralism to Industrial Antipathy in William Attaway's Blood on the Forge

    ERIC Educational Resources Information Center

    Vaughan, Philip

    1975-01-01

    Asserts that Blood on the Forge, published in 1941 by black novelist, William Attaway, represented a literary achievement in its own right, and at the same time realistically portrayed the transition of a people from a structured, authoritarian, rural existence to an industrialized urban frontier. Attaway rejected traditional forms of agrarianism…

  18. iPads as Placed Resources: Forging Community in Online and Off line Spaces

    ERIC Educational Resources Information Center

    Rowsell, Jennifer; Saudelli, Mary Gene; Scott, Ruth Mcquirter; Bishop, Andrea

    2013-01-01

    The article focuses on the notion of tablet technologies as placed resources (Prinsloo, 2005; Prinsloo & Rowsell, 2012) by exploring how an international research project in Australia, Canada, and the United States forged community through online spaces. There is a tendency in media and in literature to romanticize technologies like iPads as a…

  19. HotEye (tm) Based Coordinate Measuring Machine for Forging Industry

    SciTech Connect

    OG Technologies

    2003-06-09

    The objective of this project is to develop a 3 dimensional measurement system for the domestic forging industry based on HotEye{trademark}. This technology will allow high definition camera to accurately image a red hot object. The project marries conventional Coordinate Measurement Machine ''CMM'' technology to HotEye{trademark} technology to permit the accurate measurement of forged parts while they are at high temperature. Being able to take such measurements will dramatically reduce the amount of scrap produced by the domestic forging industry. This industry wastes a significant amount of energy because of the high rate of scrap it produces. OGT will: (1) Develop a 3D measurement sensor head that will work on a part at a temperature up to 1,450 C with an accuracy of 0.1mm or better and with a scanning speed of less than 10 seconds for an area of 100mm x 100mm. (2) Develop a Virtual-Fixturing software package to alleviate the need of precise hard fixturing. (3) Integrate the 3D measurement sensor head and the Virtual-Fixturing software into a standard CMM, both hardware (replacing the probes) and software (data format and user interface match) so that the system can automatically perform a complete preprogrammed measurement of a hot product. (4) Test and evaluate the system in a forging facility.

  20. Social Work and Engineering Collaboration: Forging Innovative Global Community Development Education

    ERIC Educational Resources Information Center

    Gilbert, Dorie J.

    2014-01-01

    Interdisciplinary programs in schools of social work are growing in scope and number. This article reports on collaboration between a school of social work and a school of engineering, which is forging a new area of interdisciplinary education. The program engages social work students working alongside engineering students in a team approach to…

  1. The Ties That Bind: How Social Capital Is Forged and Forfeited in Teacher Communities

    ERIC Educational Resources Information Center

    Bridwell-Mitchell, E. N.; Cooc, North

    2016-01-01

    The effects of social capital on school improvement make it important to understand how teachers forge, maintain, or forfeit collegial relationships. Two common explanations focused on formal organizational features and individual characteristics do not address how social capital accrues from informal dynamics of teachers' interactions in…

  2. T & I--Metalworking, Forging. Kit No. 55. Instructor's Manual [and] Student Learning Activity Guide.

    ERIC Educational Resources Information Center

    Lake, Robert J.

    An instructor's manual and student activity guide on forging are provided in this set of prevocational education materials which focuses on the vocational area of trade and industry (metalworking). (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven vocational offerings: agriculture, home…

  3. Irradiation embrittlement of reactor pressure vessel steel outside the astm specification A508 CL2

    NASA Astrophysics Data System (ADS)

    Pachur, D.; Krawczynski, S. J.; Derz, H.; Pott, G.

    1990-04-01

    Radiation embrittlement of reactor pressure vessel steels is of considerable significance for safety engineering. Steel manufacturers must therefore comply with specifications defined by national design codes. The extent to which a steel deviating from the specification is influenced by irradiation is being examined under the German Research Programme on the Integrity of Reactor Components. Charpy-V specimens were taken from a forged steel block longitudinally and vertically to the direction of main deformation and irradiated in the FRJ-1 research reactor at a temperature of 288 °C corresponding to the operating temperature of power reactors. The neutron fluences obtained ranged between 0.8 × 10 19 and 8 × 10 19n/ cm2. Instrumented pendulum impact tests have been evaluated and the load signals measured were analysed, fitting and calculating transition temperature curves and trend curves.

  4. Achieving Fine Beta Grain Structure in a Metastable Beta Titanium Alloy Through Multiple Forging-Annealing Cycles

    NASA Astrophysics Data System (ADS)

    Zafari, Ahmad; Ding, Yunpeng; Cui, Jianzhong; Xia, Kenong

    2016-07-01

    A coarse-grained (order of 1 mm) Ti-5553 metastable beta alloy was subjected to multiple passes of low-temperature forging and multiple forging plus annealing cycles, respectively. In the forging only processing, strain was concentrated in the shear bands formed and accumulated with each forging pass, resulting in a heterogeneous microstructure and eventual cracking along the shear bands. In contrast, the introduction of a short beta annealing after each forging step led to fine recrystallized grains (50 to 100 µm) formed in the shear bands, and a uniformly refined beta grain structure after four cycles. This is attributed to the strengthening effect of the fine grains, causing redistribution of most severe strains to the coarse grain region in the subsequent forging, consistent with the simulated results by finite element analysis. The analyses of the microstructures and simulated strain distributions revealed that the critical strain for recrystallization is between 0.2 and 0.5 and the strain to fracture to be ~0.8 to 0.9. The fine-grained (50 to 100 µm) beta alloy, however, fractured at a much smaller strain of <0.4 during the next forging step, owing to the formation of stress-induced martensitic α″ which is more prevalent in fine grains than in coarse ones.

  5. Surface and Bulk Carbide Transformations in High-Speed Steel.

    PubMed

    Godec, M; Večko Pirtovšek, T; Šetina Batič, B; McGuiness, P; Burja, J; Podgornik, B

    2015-01-01

    We have studied the transformation of carbides in AISI M42 high-speed steels in the temperature window used for forging. The annealing was found to result in the partial transformation of the large, metastable M2C carbides into small, more stable grains of M6C, with an associated change in the crystal orientation. In addition, MC carbides form during the transformation of M2C to M6C. From the high-speed-steel production point of view, it is beneficial to have large, metastable carbides in the cast structure, which later during annealing, before the forging, transform into a structure of polycrystalline carbides. Such carbides can be easily decomposed into several small carbides, which are then randomly distributed in the microstructure. The results also show an interesting difference in the carbide-transformation reactions on the surface versus the bulk of the alloy, which has implications for in-situ studies of bulk phenomena that are based on surface observations. PMID:26537780

  6. Surface and Bulk Carbide Transformations in High-Speed Steel

    PubMed Central

    Godec, M.; Večko Pirtovšek, T.; Šetina Batič, B.; McGuiness, P.; Burja, J.; Podgornik, B.

    2015-01-01

    We have studied the transformation of carbides in AISI M42 high-speed steels in the temperature window used for forging. The annealing was found to result in the partial transformation of the large, metastable M2C carbides into small, more stable grains of M6C, with an associated change in the crystal orientation. In addition, MC carbides form during the transformation of M2C to M6C. From the high-speed-steel production point of view, it is beneficial to have large, metastable carbides in the cast structure, which later during annealing, before the forging, transform into a structure of polycrystalline carbides. Such carbides can be easily decomposed into several small carbides, which are then randomly distributed in the microstructure. The results also show an interesting difference in the carbide-transformation reactions on the surface versus the bulk of the alloy, which has implications for in-situ studies of bulk phenomena that are based on surface observations. PMID:26537780

  7. Texture and Yield Stress of Pre-Strained 304L Stainless Steel

    SciTech Connect

    Bennett, K.; Von Dreele, B.; Gray, G.T. III; Chen, S.R.

    1997-06-23

    The evolution of texture and yield stress in 304L stainless steel is investigated as a function of deformation to large plastic strains. Steel bars quasi-statically upset forged at a strain rate of 0.001s{sup -1} to true strains of 0, 0.5, 1.0 and 1.8 were found to acquire their texture ({approximately}3.0 m.r.d.) in the first 0.5 strain with (110) poles highly aligned parallel to the compression direction independent of whether the pre-forged starting material was in a cold worked or annealed (1050 C for 1 hour) condition. The same bars, when strained at room temperature show an incremental yield with pre-strain regardless of strain rate (10{sup -1} or 10{sup -3}s{sup -1}) or thermal history, though annealed bars yield at slightly lower stresses. At 77 K and strain rate 10{sup -3}s{sup -1}, the annealed 304L exhibits more pronounced strain-hardening behavior than the 304L forged in a cold-worked condition.

  8. Creep of A508/533 Pressure Vessel Steel

    SciTech Connect

    Richard Wright

    2014-08-01

    ABSTRACT Evaluation of potential Reactor Pressure Vessel (RPV) steels has been carried out as part of the pre-conceptual Very High Temperature Reactor (VHTR) design studies. These design studies have generally focused on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Initially, three candidate materials were identified by this process: conventional light water reactor (LWR) RPV steels A508 and A533, 2¼Cr-1Mo in the annealed condition, and Grade 91 steel. The low strength of 2¼Cr-1Mo at elevated temperature has eliminated this steel from serious consideration as the VHTR RPV candidate material. Discussions with the very few vendors that can potentially produce large forgings for nuclear pressure vessels indicate a strong preference for conventional LWR steels. This preference is based in part on extensive experience with forging these steels for nuclear components. It is also based on the inability to cast large ingots of the Grade 91 steel due to segregation during ingot solidification, thus restricting the possible mass of forging components and increasing the amount of welding required for completion of the RPV. Grade 91 steel is also prone to weld cracking and must be post-weld heat treated to ensure adequate high-temperature strength. There are also questions about the ability to produce, and very importantly, verify the through thickness properties of thick sections of Grade 91 material. The availability of large components, ease of fabrication, and nuclear service experience with the A508 and A533 steels strongly favor their use in the RPV for the VHTR. Lowering the gas outlet temperature for the VHTR to 750°C from 950 to 1000°C, proposed in early concept studies, further strengthens the justification for this material selection. This steel is allowed in the ASME Boiler and Pressure Vessel Code for nuclear service up to 371°C (700°F); certain excursions above that temperature are

  9. Fracture Mechanical Measurements with Commercial Stainless Steels at 4 K and with Cp-Titanium at 173 K

    NASA Astrophysics Data System (ADS)

    Nyilas, A.; Mitterbacher, H.

    2010-04-01

    Using the JETT (J-Evaluation on Tensile Test) technique, measurements have been performed with commercial stainless steels in forged and cast condition for the reason of an assessment for low temperature service down to 4 K. These steels frequently used for industrial applications are designated by German Werkstoff (WNr) 1.4308 and 1.4408 cast stainless steels and a forged material with the number 1.4307. The fracture toughness tests at 4 K with forged material 1.4307 comprised apart from the base metal also the weld zone and additionally the 5% and 8% pre-strained conditions of the base metal. Fracture toughness reduced slightly for cold worked condition gradually as well as for the weld joint. The Reliability of the JETT measurements has been also checked using the ASTM E 1820—99a standard. In addition, to these measurements, commercial pure ASTM grade 2 titanium (WNr 3.7035) has been also examined using the same JETT method for the reason of industrial application and the requirement of minimum fracture toughness of 100 MPa√m was fulfilled at 173 K. Furthermore, test results performed at 7 K of pure titanium plate material (ASTM grade 1) with respect to fracture mechanical JETT method are presented.

  10. Characterization of four prestressed concrete reactor vessel liner steels

    SciTech Connect

    Nanstad, R. K.

    1980-12-01

    A program of fracture toughness testing and analysis is being performed with PCRV steels for HTGRs. This report focuses on background information for the base materials and results of characterization testing, such as tensile and impact properties, chemical composition, and microstructural examination. The steels tested were an SA-508 class 1 forging, two plates of SA-537 class 1, and one plate of SA-537 class 2. Tensile requirements in effect at the time of procurement are met by all four steels. However, the SA-537 class 2 plate would not meet the minimum requirement for yield strength. Drop-weight and Charpy impact tests verified that the RT/sub NDT/ is equal to the NDT for each steel. Charpy impact energies at the NDT range from 40 J (30 ft-lb) for one heat of SA-537 class 1 to 100 J (74 ft-lb) for the SA-537 class 2 plate; upper-shelf energies range from 170 to 310 J (125 to 228 ft-lb) for the same two steels, respectively. The onset of upper-shelf energy occurred at temperatures ranging from 0 to 50/sup 0/C.

  11. Automobile bodies: Can aluminum be an economical alternative to steel?

    NASA Astrophysics Data System (ADS)

    Roth, Richard; Clark, Joel; Kelkar, Ashish

    2001-08-01

    Although the use of aluminum in cars has been increasing for the past two decades, progress has been limited in developing aluminum auto bodies. In fact, most aluminum substitution has come in the form of castings and forgings in the transmission, wheels, etc. Car manufacturers have developed all-aluminum cars with two competing designs: conventional unibody and the spaceframe. However, aluminum is far from being a material of choice for auto bodies. The substitution of aluminum for steel is partly influenced by regulatory pressures to meet fuel efficiency standards by reducing vehicle weight, and to meet recycling standards. The key obstacles are the high cost of primary aluminum as compared to steel and added fabrication costs of aluminum panels. Both the aluminum and the automotive industries have attempted to make aluminum a cost-effective alternative to steel. This paper analyzes the cost of fabrication and assembly of four different aluminum car body designs, making comparisons with conventional steel designs at current aluminum prices and using current aluminum fabrication technology. It then attempts to determine if aluminum can be an alternative to steel at lower primary aluminum prices, and improved fabrication processes.

  12. Effect of Thermomechanical Processing on the Microstructure and Mechanical Properties of Nb-Ti-V Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Opiela, M.

    2014-09-01

    The paper presents the results of thermomechanical treatment via forging on the microstructure and mechanical properties of newly obtained microalloyed steel containing 0.28% C, 1.41% Mn, 0.027% Nb, 0.028% Ti, and 0.019% V. The investigated steel is assigned to the production of forged elements for the automotive industry. Conditions of forging using the thermomechanical processing method were developed based on plastometric tests. Continuous and double-hit compression tests were conducted using the Gleeble 3800 thermomechanical simulator. The samples were investigated in a temperature range from 900 to 1100 °C and a strain rate of 1 and 10 s-1. To determine the recrystallization kinetics of plastically deformed austenite, discontinuous compression tests of samples using the applied deformation were conducted in a temperature range from 900 to 1100 °C with isothermal holding of the specimens between successive deformations for 2-100 s. Observations of the microstructures of thin foils were conducted using a TITAN80-300 FEI transmission electron microscope. The applied thermomechanical treatment allows to obtain a fine-grained microstructure of the austenite during hot-working and production of forged parts. These acquire advantageous mechanical properties and guaranteed crack resistance after controlled cooling from the end plastic deformation temperature and successive tempering. Forgings produced using the thermomechanical treatment method, consecutively subjected to tempering in a temperature range from 550 to 650 °C, reveal values of YS0.2 which equal from 994 to 892 MPa, UTS from 1084 to 958 MPa, KV from 69 to 109 J, KV-40 from 55 to 83 J, and a hardness ranging from 360 to 300 HBW.

  13. Electron backscattering diffraction analysis of an ancient wootz steel blade from central India

    SciTech Connect

    Barnett, M.R. Sullivan, A.; Balasubramaniam, R.

    2009-04-15

    The electron backscattering diffraction technique was used to analyse the nature of carbides present in an ancient wootz steel blade. Bulky carbides, pro-eutectoid carbide along the prior austenite grain boundaries and fine spheroidized carbides were detected. Electron backscattering diffraction was employed to understand the texture of these carbides. The orientations of the cementite frequently occur in clusters, which points to a common origin of the members of the cluster. For the bands of coarse cementite, the origin is probably large coarse particles formed during the original cooling of the wootz cake. Pearlite formed earlier in the forging process has led to groups of similarly oriented fine cementite particles. The crystallographic texture of the cementite is sharp whereas that of the ferrite is weak. The sharp cementite textures point to the longevity of the coarse cementite throughout the repeated forging steps and to the influence of existing textured cementite on the nucleation of new cementite during cooling.

  14. Effects of Cryogenic Forging and Anodization on the Mechanical Properties of AA 7075-T73 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Shih, Teng-Shih; Liao, Tien-Wei; Hsu, Wen-Nong

    2016-03-01

    In this study, high-strength AA7075 alloy samples were cryogenically forged after annealing and then subjected to solution and aging treatments. The cryogenically forged 7075-T73 alloy samples displayed equiaxed fine grains associated with abundant fine precipitates in their matrix. Compared with conventional 7075-T73 alloy samples, the cryogenically forged samples exhibited an 8-12% reduction in tensile strength and an increased fatigue strength and higher corrosion resistance. The fatigue strength measured at 107 cycles was 225 MPa in the bare samples; the strength was increased to 250 MPa in the cryogenically forged samples. The effect of anodization on the corrosion resistance of the bare samples was improved from (E corr) -0.80 to -0.61 V.

  15. 76 FR 52313 - Heavy Forged Hand Tools (i.e., Axes & Adzes, Bars & Wedges, Hammers & Sledges, and Picks...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Heavy Forged Hand Tools (i.e., Axes & Adzes, Bars & Wedges, Hammers & Sledges... AGENCY: Import Administration, International Trade Administration, Department of Commerce. SUMMARY: As...

  16. Constructing optimal entanglement witnesses. II. Witnessing entanglement in 4N×4N systems

    NASA Astrophysics Data System (ADS)

    Chruściński, Dariusz; Pytel, Justyna

    2010-11-01

    We provide a class of optimal nondecomposable entanglement witnesses for 4N×4N composite quantum systems or, equivalently, another construction of nondecomposable positive maps in the algebra of 4N×4N complex matrices. This construction provides natural generalization of the Robertson map. It is shown that their structural physical approximations give rise to entanglement breaking channels.

  17. Constructing optimal entanglement witnesses. II. Witnessing entanglement in 4Nx4N systems

    SciTech Connect

    Chruscinski, Dariusz; Pytel, Justyna

    2010-11-15

    We provide a class of optimal nondecomposable entanglement witnesses for 4Nx4N composite quantum systems or, equivalently, another construction of nondecomposable positive maps in the algebra of 4Nx4N complex matrices. This construction provides natural generalization of the Robertson map. It is shown that their structural physical approximations give rise to entanglement breaking channels.

  18. Fatigue life on a full scale test rig: Forged versus cast wind turbine rotor shafts

    NASA Astrophysics Data System (ADS)

    Herrmann, J.; Rauert, T.; Dalhoff, P.; Sander, M.

    2016-09-01

    To reduce uncertainties associated with the fatigue life of the highly safety relevant rotor shaft and also to review today's design practice, the fatigue behaviour will be tested on a full scale test rig. Until now tests on full scale wind turbine parts are not common. Therefore, a general lack of experience on how to perform accelerated life time tests for those components exists. To clarify how to transfer real conditions to the test environment, the arrangements and deviations for the upcoming experimental test are discussed in detail. In order to complete investigations of weight saving potentials, next to getting a better comprehension of the fatigue behaviour by executing a full scale test, a further outcome are suggestions for the usage of cast and forged materials regarding the fatigue and the remaining life of the rotor shaft. It is shown, that it is worthwhile to think about a material exchange for the forged rotor shaft.

  19. Meta-Model Based Optimisation Algorithms for Robust Optimization of 3D Forging Sequences

    SciTech Connect

    Fourment, Lionel

    2007-04-07

    In order to handle costly and complex 3D metal forming optimization problems, we develop a new optimization algorithm that allows finding satisfactory solutions within less than 50 iterations (/function evaluation) in the presence of local extrema. It is based on the sequential approximation of the problem objective function by the Meshless Finite Difference Method (MFDM). This changing meta-model allows taking into account the gradient information, if available, or not. It can be easily extended to take into account uncertainties on the optimization parameters. This new algorithm is first evaluated on analytic functions, before being applied to a 3D forging benchmark, the preform tool shape optimization that allows minimizing the potential of fold formation during the two-stepped forging sequence.

  20. Tool Path Design of Incremental Open-Die Disk Forging Using Physical Modeling

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Uk; Yang, Dong-Yol

    A small-batch product of large-sized parts is usually manufactured using incremental open-die forging. In order to control the overall change in the shape of a part, it is essential to be able to predict the shape changes that occur during each step. This paper addresses shape changes of a material according to the forging path. Rapid prediction of metal flows for continuing incremental deformation using theoretical methods is difficult. Accordingly, instead of a theoretical approach, an experiment that tests the tendency of the metal flow for development of forming processes is required. For the sake of convenience, simulative experiments are carried out using plasticine at room temperature. In present study, the tool movement is dominant parameters to with respect to changing the shape of the workpiece.

  1. Effects of Process Parameters on Deformation and Temperature Uniformity of Forged Ti-6Al-4V Turbine Blade

    NASA Astrophysics Data System (ADS)

    Luo, Shiyuan; Zhu, Dahu; Hua, Lin; Qian, Dongsheng; Yan, Sijie; Yu, Fengping

    2016-09-01

    This work is motivated by the frequent occurrence of macro- and microdefects within forged Ti-6Al-4V turbine blades due to the severely nonuniform strain and temperature distributions. To overcome the problem of nonuniformity during the blade forging operation, firstly, a 2D coupled thermo-mechanical finite element approach using the strain-compensated Arrhenius-type constitutive model is employed to simulate the real movements and processing conditions, and its reliability is verified experimentally. Secondly, two evaluation indexes, standard deviation of equivalent plastic strain and standard deviation of temperature, are proposed to evaluate the uniformity characteristics within the forged blade, and the effects of four process parameters including the forging velocity, friction factor, initial workpiece temperature and dwell time on the uniformity of strain and temperature distributions are carefully studied. Finally, the numerically optimized combination of process parameters is validated by the application in a practical process. The parametric study reveals that a reasonable combination of process parameters considering the flow resistance, flow localization and the effects of deformation and friction heating is crucial for the titanium alloy blade forging with uniformity. This work can provide a significant guidance for the design and optimization of blade forging processes.

  2. Parallel investigation of double forged pure tungsten samples irradiated in three DPF devices

    NASA Astrophysics Data System (ADS)

    Gribkov, V. A.; Paduch, M.; Zielinska, E.; Laas, T.; Shirokova, V.; Väli, B.; Paju, J.; Pimenov, V. N.; Demina, E. V.; Latyshev, S. V.; Niemela, J.; Crespo, M.-L.; Cicuttin, A.; Talab, A. A.; Pokatilov, A.; Parker, M.

    2015-08-01

    The double forged pure tungsten (W) samples (supplied by IAEA CRP from the FZJ team in Juelich, Germany) were irradiated in DPF (dense plasma focus) devices PF-12, "Bora" and PF-1000 by hot plasma and fast ion streams. We have used the following analytical methods: microscopy (optical and scanning electron), X-ray photoelectron spectroscopy, electrical conductivity and microroughness measurements. The damage dependence of the tungsten grades on irradiation conditions and power flux densities of irradiation processes is discussed.

  3. Innovative Die Material and Lubrication Strategies for Clean and Energy Conserving Forging Technologies

    SciTech Connect

    Rajiv Shivpuri; Sailesh Babu; Lin Yang; Yijun Zhu

    2007-01-08

    The objective of this project was to develop and implement innovative die material and surface coating strategies such as composite dies and lubricated coatings to increase die lives and to reduce environmental pollution. In this project approaches and software were developed for die life optimization and optimal design of lubrication systems for hot forging. In addition, LENS applied nickel-aluminide coatings were developed and validated in the industrial environment for significant improvements in die life.

  4. [Effect of humic acids on migration and transformation of NH4(+) -N in saturated aquifer].

    PubMed

    Meng, Qing-Jun; Zhang, Yan; Feng, Qi-Yan; Zhang, Shuang-Sheng

    2011-11-01

    Isothermal adsorption experiment was used to study the adsorbing process of NH4(+) -N in quartz sands under the conditions with and without humic acid; the Langmuir and Freundlich equations were used to fit the absorption result and the maximum adsorption capacity of NH4(+) -N by quarts sands was calculated. Through the soil column experiments, the concentration of NH4(+) -N, NO3(-) -N and NO2(-) -N in effluent water in the tested soil column was investigated, and the effect of humic acid on migration and transformation of NH4(+) -N in saturated aquifer was analyzed, and Pseudo-second-order Kinetics Equation and Two-step Adsorption Kinetics Rate Equation were applied to fit the kinetic processes. The results showed that both Langmuir and Freundlich models can well describe the isothermal adsorption process of NH4(+) -N on the surface of quartz sands, which means that NH4(+) -N adsorbed by the quartz sand was mainly in the form of monolayer adsorption. The humic acid could increase the adsorption capacity of NH4(+) -N on quartz sand, and the saturated adsorption capacity was 0.354 mg x g(-1) under the condition with humic acid and 0.205 mg x g(-1) with the absence of humic acid. The experiment indicated that humic acid increased the adsorption capacity of NH4(+) -N on the surface of quartz sand by increasing adsorption space in the initial stage. After saturation, humic acid influenced the migration and transformation of NH4(+) -N to NO3(-) -N and NO2(-) -N probably through providing carbon source and energy for microorganisms such as nitrifying bacteria and then resulting in lower NH4(+) -N concentration in effluent water. Both Pseudo-second-order Kinetics Equation and Two-step Adsorption Kinetics Rate Equations can well describe the process of NH4(+) -N adsorption kinetics on quartz sand (R2 = 0.997 7 and R2 = 0.998 1 with humic acid; R2 = 0.992 3 and R2 = 0.994 4 without humic acid), indicating that this process was chemical adsorption. By comparing the

  5. Microstructure and degradation behavior of forged Fe-Mn-Si alloys

    NASA Astrophysics Data System (ADS)

    Xu, Zhigang; Hodgson, Michael A.; Cao, Peng

    2015-03-01

    This work presents a comparative study of a series of Fe-Mn-Si alloys proposed as degradable biomaterials for medical applications. Five Fe-28wt.%Mn-xSi (where x = 0 to 8 wt.%) alloys were fabricated by an arc-melting method. All the as-cast alloys were subsequently subjected to homogenization treatment and hot forging. The microstructure and phase constituents were investigated. It is found that the grain size of the as-forged alloys ranged approximately from 30 to 50 μm. The as-forged Fe-Mn-Si alloys containing Si from 2 to 6 wt.% was comprised of duplex martensitic ɛ and austenitic γ phases; however, the Si-free and 8 wt.% Si alloys only consisted of a single γ phase. After 30 days of static immersion test in a simulated body fluid (SBF) medium, it is found that pitting and general corrosion occur on the sample surfaces. Potentiodynamic analysis reveals that the degradation rate of the Fe-Mn-Si alloys increased gradually with Si content up to 6 wt.%, beyond which the degradation slows down.

  6. Experimental and Numerical Investigation of Forging Process to Reproduce a 3D Aluminium Foam Complex Shape

    NASA Astrophysics Data System (ADS)

    Filice, Luigino; Gagliardi, Francesco; Shivpuri, Rajiv; Umbrello, Domenico

    2007-05-01

    Metallic foams represent one of the most exciting materials introduced in the manufacturing scenario in the last years. In the study here addressed, the experimental and numerical investigations on the forging process of a simple foam billet shaped into complex sculptured parts were carried out. In particular, the deformation behavior of metallic foams and the development of density gradients were investigated through a series of experimental forging tests in order to produce a selected portion of a hip prosthesis. The human bone replacement was chosen as case study due to its industrial demand and for its particular 3D complex shape. A finite element code (Deform 3D®) was utilized for modeling the foam behavior during the forging process and an accurate material rheology description was used based on a porous material model which includes the measured local density. Once the effectiveness of the utilized Finite Element model was verified through the comparison with the experimental evidences, a numerical study of the influence of the foam density was investigated. The obtained numerical results shown as the initial billet density plays an important role on the prediction of the final shape, the optimization of the flash as well as the estimation of the punch load.

  7. Effects of Forging Process Parameters on Microstructure Evolution of Aluminum Alloy 7050

    SciTech Connect

    Yi Youping; Shi Yan; Yang Jihui; Lin Yongcheng

    2007-04-07

    The objective of this work is to investigate the behavior of microstructure evolution of aluminum alloy 7050 under the condition of different forging process parameters by means of combining materials physical model with finite element code. For the purpose of establishing constitutive equation and physical model of microstructure evolution, the isothermal compression test were performed by machine Gleeble 1500 on the condition of temperatures ranging from 250 deg. C to 450 deg. C and constant strain rates of 0.01s-1, 0.1s-1, 1s-1 and 10s-1. The behaviors of microstructure evolutions of aluminum alloy 7050 under difference process parameters were studied by metallographic observations. The experiment results showed that recrystallization during forming process occurred at the critical strain and the volume fraction of recrystallization changed with the temperature and strain rate. According to the results of isothermal compression test, a constitutive equation and an empirical model of DRX were obtained. A finite element code DEFORM 3D was used to analyze the influence of different forging process parameters on the behavior of microstructure evolution in details. The present model and simulation method can be served as a useful tool to predict and control the properties and shape of aluminum alloy 7050 components during forging.

  8. Formation and Microstructure of Ultrafine-Grained Titanium Processed by Multi-Directional Forging

    NASA Astrophysics Data System (ADS)

    Wang, Bingfeng; Wang, Xiaoyan; Li, Juan

    2016-06-01

    Ultrafine-grained titanium with uniform grain size for medical applications is obtained by multi-directional forging at 773 K in air. The microstructures and microtextures in the deformed titanium specimens are investigated by optical microscopy, electron backscattered diffraction technique, and transmission electron microscopy. Titanium specimen experience the recrystallization softening at cumulative strain about 1.2. After six passes with the cumulative strains of 2.4, the coarse grain sizes are gradually refined from about 25 μm to about 0.2 μm. New microtextures with recrystallized features generate in the specimens after multi-directional forgings. Grain boundaries in the specimens are geometrical necessary boundaries aiming to accommodate the imposed strain. It is suggested that the continuous dynamic recrystallization induced by deformation bands is responsible for the formation of ultrafine-grained titanium during multi-directional forging. Meanwhile the subdivision of grains by the mechanical twinning dramatically enhanced grain refinement to develop ultrafine-grained microstructure.

  9. Computer-assisted Rheo-forging Processing of A356 Aluminum Alloys

    SciTech Connect

    Kim, H. H.; Kang, C. G.

    2010-06-15

    Die casting process has been used widely for complex automotive products such as the knuckle, arm and etc. Generally, a part fabricated by casting has limited strength due to manufacturing defects by origin such as the dendrite structure and segregation. As an attempt to offer a solution to these problems, forging has been used as an alternative process. However, the forging process provides limited formability for complex shape products. Rheo-forging of metal offers not only superior mechanical strength but also requires significantly lower machine loads than solid forming processes. In order to produce semi-solid materials of the desired microstructure, a stirring process is applied during solidification of A356 aluminum molten state. This paper presents the results of an A356 aluminum alloy sample, which were obtained by experiment and by simulation using DEFORM 3D V6.1. Samples of metal parts were subsequently fabricated by using hydraulic press machinery. In order to compare the influence of loading method, two types of samples were fabricated: (1) samples fabricated under direct loading die sets (2) those fabricated under indirect loading die sets. The formability and defects, which were predicted by FEM simulation, were similar to those of samples used in practice.

  10. Simulations and Experiments of the Nonisothermal Forging Process of a Ti-6Al-4V Impeller

    NASA Astrophysics Data System (ADS)

    Prabhu, T. Ram

    2016-09-01

    In the present study, a nonisothermal precision forging process of a Ti-6Al-4V first-stage impeller for the gas turbine engine was simulated using the finite element software. The simulation results such as load requirements, damage, velocity field, stress, strain, and temperature distributions are discussed in detail. Simulations predicted the maximum load requirement of about 80 MN. The maximum temperature loss was observed at the contour surface regions. The center and contour regions are the high-strained regions in the part. To validate the model, forging experiments mimicking simulations were performed in the α + β phases region (930 °C). The selected locations of the part were characterized for tensile properties at 27 and 200 °C, hardness, microstructure, grain size, and the amount of primary α phase based on the strain distribution results. The soundness of the forged part was verified using fluorescent penetrant test (Mil Std 2175 Grade A) and ultrasonic test (AMS 2630 class A1). From the experimental results, it was found that the variations in the hardness, tensile properties at room, and elevated temperature are not significant. The microstructure, grain size, and primary α phase content are nearly same.

  11. Magnetic and mechanical properties of rotary forged aluminum compacted Nd-Fe-B magnets

    SciTech Connect

    Brett, R.L.; Rowlinson, N.; Ashraf, M.M.; Harris, I.R.; Bowen, P. )

    1990-05-01

    Magnetic and mechanical properties have been studied and compared for rotary forged aluminum compacts containing MQI and MQIII (isotropic and anisotropic melt-spun Nd-Fe-B, respectively) in the as-forged condition, and after subsequent heat treatment both above and below the Curie point. A maximum coercivity of 1165 kA m{sup {minus}1} and a maximum energy product of 84 kJ m{sup {minus}3} have been measured for compacts containing MQI material and 10% aluminum by volume. Compacts containing MQIII material possess superior fracture strengths to those containing MQI material in both bend tests (30 compared with 17 MPa) and uniaxial compression tests (185 compared with 67 MPa), and this is attributed primarily to more uniform compaction due to the morphology of the MQIII particles. Energy dispersive spectrography and fractography have indicated failure of MQIII compacts along interfaces between the aluminum and magnetic material, whereas MQI compacts fail through areas of incomplete compaction. In addition, heat treatment in vacuum subsequent to forging is shown to strengthen compacts containing both MQI and MQIII material substantially with only minor reductions measured in magnetic properties.

  12. Cold-forged connector ties back well risers in Congo field

    SciTech Connect

    Taylor, W.M.; Tison, M.; Bahoumina, A.

    1997-05-05

    The tieback of eleven 10 3/4-in., high-pressure risers in Elf Congo`s offshore N`Kossa field used a cold-forge tieback system to create a metal seal. The time-saving tieback method allows for placing the risers in residual tension. The installation work was completed in the fall of 1995. Average time to complete the 10 3/4-in. casing tiebacks, including test and nipple-up and nipple-down times, averaged 52 hr/well. Tiebacks for all three casing strings averaged 90 hr for all surface and subsea operations including BOP test and nipple-up/nipple-down time. Metal sealing of the primary casing annulus has been made practical because the offshore industry has gone toward compact-wellheads and hanging of the completion on a mandrel. Hanging the completion on a mandrel, however, has it own set of considerations. Exact riser length may be difficult to predict before running because the riser must first be locked into the mudline casing hanger and then landed out on the support shoulder in the surface head. Also, a general desire is that riser tieback strings should be in tension after installation. This is not always easy with a passive or dumb hanger and fixed should configuration. Threaded, adjustable mandrel hanger systems exist but can require very close casing string space-out to achieve the desired residual riser tension. The paper describes the objectives, forged sleeves, running sequence, cold forging, and the prototype test.

  13. Experimental and Numerical Investigation of Forging Process to Reproduce a 3D Aluminium Foam Complex Shape

    SciTech Connect

    Filice, Luigino; Gagliardi, Francesco; Umbrello, Domenico; Shivpuri, Rajiv

    2007-05-17

    Metallic foams represent one of the most exciting materials introduced in the manufacturing scenario in the last years. In the study here addressed, the experimental and numerical investigations on the forging process of a simple foam billet shaped into complex sculptured parts were carried out. In particular, the deformation behavior of metallic foams and the development of density gradients were investigated through a series of experimental forging tests in order to produce a selected portion of a hip prosthesis. The human bone replacement was chosen as case study due to its industrial demand and for its particular 3D complex shape. A finite element code (Deform 3D) was utilized for modeling the foam behavior during the forging process and an accurate material rheology description was used based on a porous material model which includes the measured local density. Once the effectiveness of the utilized Finite Element model was verified through the comparison with the experimental evidences, a numerical study of the influence of the foam density was investigated. The obtained numerical results shown as the initial billet density plays an important role on the prediction of the final shape, the optimization of the flash as well as the estimation of the punch load.

  14. An Approach to Optimize Size Parameters of Forging by Combining Hot-Processing Map and FEM

    NASA Astrophysics Data System (ADS)

    Hu, H. E.; Wang, X. Y.; Deng, L.

    2014-11-01

    The size parameters of 6061 aluminum alloy rib-web forging were optimized by using hot-processing map and finite element method (FEM) based on high-temperature compression data. The results show that the stress level of the alloy can be represented by a Zener-Holloman parameter in a hyperbolic sine-type equation with the hot deformation activation energy of 343.7 kJ/mol. Dynamic recovery and dynamic recrystallization concurrently preceded during high-temperature deformation of the alloy. Optimal hot-processing parameters for the alloy corresponding to the peak value of 0.42 are 753 K and 0.001 s-1. The instability domain occurs at deformation temperature lower than 653 K. FEM is an available method to validate hot-processing map in actual manufacture by analyzing the effect of corner radius, rib width, and web thickness on workability of rib-web forging of the alloy. Size parameters of die forgings can be optimized conveniently by combining hot-processing map and FEM.

  15. Computer-assisted Rheo-forging Processing of A356 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Kim, H. H.; Kang, C. G.

    2010-06-01

    Die casting process has been used widely for complex automotive products such as the knuckle, arm and etc. Generally, a part fabricated by casting has limited strength due to manufacturing defects by origin such as the dendrite structure and segregation. As an attempt to offer a solution to these problems, forging has been used as an alternative process. However, the forging process provides limited formability for complex shape products. Rheo-forging of metal offers not only superior mechanical strength but also requires significantly lower machine loads than solid forming processes. In order to produce semi-solid materials of the desired microstructure, a stirring process is applied during solidification of A356 aluminum molten state. This paper presents the results of an A356 aluminum alloy sample, which were obtained by experiment and by simulation using DEFORM 3D V6.1. Samples of metal parts were subsequently fabricated by using hydraulic press machinery. In order to compare the influence of loading method, two types of samples were fabricated: (1) samples fabricated under direct loading die sets (2) those fabricated under indirect loading die sets. The formability and defects, which were predicted by FEM simulation, were similar to those of samples used in practice.

  16. Simulations and Experiments of the Nonisothermal Forging Process of a Ti-6Al-4V Impeller

    NASA Astrophysics Data System (ADS)

    Prabhu, T. Ram

    2016-06-01

    In the present study, a nonisothermal precision forging process of a Ti-6Al-4V first-stage impeller for the gas turbine engine was simulated using the finite element software. The simulation results such as load requirements, damage, velocity field, stress, strain, and temperature distributions are discussed in detail. Simulations predicted the maximum load requirement of about 80 MN. The maximum temperature loss was observed at the contour surface regions. The center and contour regions are the high-strained regions in the part. To validate the model, forging experiments mimicking simulations were performed in the α + β phases region (930 °C). The selected locations of the part were characterized for tensile properties at 27 and 200 °C, hardness, microstructure, grain size, and the amount of primary α phase based on the strain distribution results. The soundness of the forged part was verified using fluorescent penetrant test (Mil Std 2175 Grade A) and ultrasonic test (AMS 2630 class A1). From the experimental results, it was found that the variations in the hardness, tensile properties at room, and elevated temperature are not significant. The microstructure, grain size, and primary α phase content are nearly same.

  17. Rolling contact fatigue of low hardness steel for slewing ring application

    NASA Astrophysics Data System (ADS)

    Knuth, Jason A.

    This thesis discusses the rolling contact fatigue of steel utilized in anti-friction bearings, also referred to as slewing bearings. These slewing bearings are utilized in cranes, excavators, wind turbines and other similar applications. Five materials composed of two different material types were tested. The two material types were high carbon steel and medium carbon alloy steel. The test specimens were processed from forged rolled rings. Two machines were evaluated a ZF-RCF and 3-Ball test machine. The evaluation was to determine which machine can best simulate the application in which the slewing bearing is utilized. Initially, each specimen will be pretested to determine the appropriate testing direction from within the forged rolled rings. Pretesting is needed in order to establish consistent failure modes between samples. The primary goal of the test is to understand the life differences and failure modes between high carbon steel and medium carbon alloy steel. The high carbon steel ring was cut into two sections, one of which was stress relieved and the other was quenched and tempered. The medium carbon alloy steel was cut into three sections, all of which were quenched and tempered to different hardness levels. The test program was dynamically adjusted based upon the previous sample's life and load. An S-N curve was then established from the 5 materials tested at two target loads. The samples were run until the first sign of a crack was detected by an eddy current. At the completion of the rolling contact test, select sample's microstructure was evaluated for crack initiation location. The selected samples were divided into four groups which represent different maximum shear stress levels. These samples displayed indications of material deformation in which the high carbon steel experienced an increased amount of cold work when compared to medium carbon alloy steel. The life of the high carbon steel was nearly equivalent to the expected life of the medium

  18. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene)

    NASA Astrophysics Data System (ADS)

    Urbankowski, Patrick; Anasori, Babak; Makaryan, Taron; Er, Dequan; Kota, Sankalp; Walsh, Patrick L.; Zhao, Mengqiang; Shenoy, Vivek B.; Barsoum, Michel W.; Gogotsi, Yury

    2016-06-01

    We report on the synthesis of the first two-dimensional transition metal nitride, Ti4N3-based MXene. In contrast to the previously reported MXene synthesis methods - in which selective etching of a MAX phase precursor occurred in aqueous acidic solutions - here a molten fluoride salt is used to etch Al from a Ti4AlN3 powder precursor at 550 °C under an argon atmosphere. We further delaminated the resulting MXene to produce few-layered nanosheets and monolayers of Ti4N3Tx, where T is a surface termination (F, O, or OH). Density functional theory calculations of bare, non-terminated Ti4N3 and terminated Ti4N3Tx were performed to determine the most energetically stable form of this MXene. Bare and functionalized Ti4N3 are predicted to be metallic. Bare Ti4N3 is expected to show magnetism, which is significantly reduced in the presence of functional groups.We report on the synthesis of the first two-dimensional transition metal nitride, Ti4N3-based MXene. In contrast to the previously reported MXene synthesis methods - in which selective etching of a MAX phase precursor occurred in aqueous acidic solutions - here a molten fluoride salt is used to etch Al from a Ti4AlN3 powder precursor at 550 °C under an argon atmosphere. We further delaminated the resulting MXene to produce few-layered nanosheets and monolayers of Ti4N3Tx, where T is a surface termination (F, O, or OH). Density functional theory calculations of bare, non-terminated Ti4N3 and terminated Ti4N3Tx were performed to determine the most energetically stable form of this MXene. Bare and functionalized Ti4N3 are predicted to be metallic. Bare Ti4N3 is expected to show magnetism, which is significantly reduced in the presence of functional groups. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02253g

  19. Aspects of testing and selecting stainless steels for sea water applications

    SciTech Connect

    Steinsmo, U.; Rogne, T.; Drugli, J.M.

    1994-12-31

    In the period from 1980, highly alloyed stainless steels (i.e. Pitting Resistance Equivalent (PRE{sub N}) > 40) have been widely selected for chlorinated sea water systems in the Norwegian offshore industry. Recently failures have been reported -- severe crevice corrosion on flanges in a cooling water system and crevice corrosion at the threaded cast and forged joints in a fire water system. The failures highlights the question of corrosion testing and safe use limits for high alloyed stainless steels in sea water systems. This paper discusses three aspects regarding testing and selection of highly alloyed stainless steels for sea water application -- the relevancy of the electrochemical test methods used, the quality control system and the importance of repassivation.

  20. Ultrasonic characterization of centrifugally cast stainless steel: Topical report

    SciTech Connect

    Jeong, P.

    1987-06-01

    Ultrasonic wave propagation in centrifugally cast stainless steel (CCSS) was investigated. The difficulties of inspecting CCSS material stem from elastic anisotropy that hampers defect location and severe attenuation caused by coarse grains within the structure that makes defect detection difficult. During this investigation, grain effects on ultrasonic wave propagation were investigated, techniques for identifying different grain structures were developed, and compensation methods for grain effects were addressed. Each step is explained analytically based on relevant theory and proven experimentally. Experiments were conducted on specially designed test specimens: angled blocks, polygonal blocks, wedge blocks, and calibration blocks. Wave parameters such as phase velocity, skew angle, energy velocity, attenuation, beam width, amplitude variation patterns, and frequency dependence on grain structures were all measured with these specimens. CCSS grain structures investigated were equiaxed-fine grains, columnar-dendritic grains, and coarse grains. For comparison purposes, additional types of material such as static-cast stainless steel, forged stainless steel, and carbon steel materials were also investigated. Longitudinal wave, horizontally and vertically polarized shear wave modes were all considered in experiments. The use of an automated ultrasonic system was also demonstrated for grain structure identification.

  1. Nanosized MX Precipitates in Ultra-Low-Carbon Ferritic/Martensitic Heat-Resistant Steels

    NASA Astrophysics Data System (ADS)

    Yin, Feng-Shi; Jung, Woo-Sang

    2009-02-01

    Nanosized MX precipitates in ultra-low-carbon ferritic/martensitic heat-resistant 9Cr-W-Mo-VNbTiN steels were characterized by transmission electron microscope (TEM) using carbon film replicas. The steels were prepared by vacuum induction melting followed by hot forging and rolling into plates. The plates were normalized at 1100 °C for 1 hour, cooled in air, and tempered at 700 °C for 1 hour. The results show that bimodal nanosized MX precipitates distribute densely and homogeneously in the matrix within martensitic lath after normalizing-and-tempering heat treatment. The larger nanosized MX precipitates with the size of 30 to 50 nm are rich in Nb, while the smaller ones with the size of about 10 nm contain less Nb but more V. Small addition of Ti causes an increase in the number of the larger nanosized MX precipitates. The total number density of the nanosized MX precipitates in the ultra-low-carbon ferritic/martensitic steels is measured to be over 300/ μm2, much higher than that in conventional ferritic/martensitic steels. Short-term creep test results show that the ultra-low-carbon ferritic/martensitic steels with high dense nanosized MX precipitates have much higher creep rupture strength than conventional ASME-P92 steel. The strength degradation of the ultra-low-carbon ferritic/martensitic heat-resistant steels during creep is also discussed in this article.

  2. WEC 3. 2. 3 study to optimize Cr-Mo steels to resist hydrogen and temper embrittlement. Quarterly report No. 7, February 15-May 15, 1980

    SciTech Connect

    Shaw, B.J.

    1980-10-20

    Purpose of Phase I was to establish the hydrogen embrittlement susceptibility of commercial 2-1/4 Cr-1Mo steels provided by API. Purpose of Phase II was to evaluate 32 laboratory heats tempered in a bainitic condition to two strength levels. These laboratory heats have been cast and forged, and this report gives the analytical chemistry and the metallograhic characterization of the heats. 32 figures, 7 tables. (DLC)

  3. Search for 4n contributions in the reaction 14Be(CH2,X)10He

    NASA Astrophysics Data System (ADS)

    Jones, M. D.; Kohley, Z.; Baumann, T.; Christian, G.; DeYoung, P. A.; Finck, J. E.; Frank, N.; Haring-Kaye, R. A.; Kuchera, A. N.; Luther, B.; Mosby, S.; Smith, J. K.; Snyder, J.; Spyrou, A.; Stephenson, S. L.; Thoennessen, M.

    2016-03-01

    A previously published measurement of the ground state resonance of 10He, populated by a reaction of a 59 MeV/u 14Be beam on a deuterated polyethylene target, was further analyzed to search for 4n emission resulting from 2p removal. No evidence for 4n events was found. A lower limit of about 1 MeV was determined for a possible resonance in 12He.

  4. Phase stability of graphitelike BC{sub 4}N up to 2100 K and 7 GPa

    SciTech Connect

    Solozhenko, V.L.; Turkevich, V.Z.; Sato, Tadao

    1997-12-01

    Thermal phase stability of graphitelike BC{sub 4}N (g-BC{sub 4}N) has been studied up to 7 GPa and 2,100 K using in-situ powder diffraction of synchrotron radiation. It has been shown that the process of g-BC{sub 4}N decomposition at ambient pressure starts at 2,050 K and occurs to form highly ordered hexagonal graphitelike boron nitride (hBN) and disordered graphite. As the pressure increases up to 6.6 GPa, the temperature of the decomposition onset decreases to 1,070 K. At this pressure in the 1,070--1,400 K temperature range (decomposition degree of < 0.1), the decomposition products remain the same, whereas at higher temperatures, the decomposition of g-BC{sub 4}N is accompanied by the formation of cubic boron nitride (cBN) and disordered graphite. Measurement of 298 K equation of state of g-BC{sub 4}N results in a zero-pressure bulk modulus of 18.1 {+-} 0.2 GPa and its pressure derivative of 6.6 {+-} 0.1. Thermodynamic analysis has shown that the g-BC{sub 4}N decomposition is a nonequilibrium process and the phase itself is metastable.

  5. Composition Optimization and Experimental Characterization of a Novel Steel Based on CALPHAD

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Liao, Bo; Liu, Ligang; Gao, Yukui; Ren, Xuejun; Yang, Qingxiang

    2015-05-01

    A new steel with high Cr and low W, Mo contents for forged cold work roll was designed based on the composition system of traditional high-speed steel roll. The Fe-C isopleths of the steel and the mass fraction of equilibrium phases versus temperature were calculated by Thermo-Calc, and the effects of different alloying elements (W, Mo, Cr, V) on austenite, ferrite, and carbides (MC, M6C, M7C3, M23C6) were also established to optimize the composition and structure. The designed and optimized specimens were both quenched at 1100 °C and then tempered twice at 560 °C. The hardness and wear resistance of the samples were measured. The microstructures of quenched tempered and forged specimens were studied. The results show that ferrite crystallization, peritectic reaction, austenite crystallization, and the precipitation of MC, M6C, M7C3, M23C6 occur during equilibrium solidification process. The alloying elements W, Mo mainly affect the precipitation of M6C, while Cr affects the precipitated region and mass fraction of M7C3. Higher V content widens the high-temperature region of the peritectic reaction and results in a large amount of MC precipitation. The optimized composition (wt.%) for cold work roll steel is 1.30-1.35%C, 9-10%Cr, 2.5-3.0%Mo, 0.5-1.0%W, 2.5-3.0%V, 0.5-0.6%Mn, 0.5-0.6%Si. The hardness of the steel after quenching and tempering is 60.8 HRC and weight loss after 120 min is 6.2 mg. This meets the requirement of hardness and wear resistance requirements for cold work roll. The ledeburite in the optimized steel disappears after forging and the carbide network break into a large amount of tiny blocky ones dispersed in the matrix without cracks, which shows a good forgeability of the steel and rationality of the optimized composition.

  6. Modeling of grain growth behavior of S34MnV steel at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Sun, Mingyue; Xu, Bin; Li, Dianzhong; Li, Yiyi

    2013-05-01

    S34MnV steel is widely used as a fundamental material in manufacturing crankshaft in diesel engine. However, due to amount of addition of Manganese element in the steel, coarse grain and mixed grain are commonly observed after long time heating during the forging passes in industrial practice, which may seriously reduce the impact toughness of the material. In current study, based on the observed microstructure of S34MnV steel at different temperatures and heating times, an empirical model has been established which reflects the relationship between the final grain size and the initial grain size, as well as heating temperature and holding time. This model has been validated by a scaled sample, and we further represented a successful industrial application of this model to simulate the grain size distribution and evolution during a large crankthrow heating and forging process, which evidences its practical and promising perspective of our model with an aim of widely promoting the mechanical properties heavy marine components.

  7. Effect of Forging Parameters on Low Cycle Fatigue Behaviour of Al/Basalt Short Fiber Metal Matrix Composites

    PubMed Central

    Karthigeyan, R.; Ranganath, G.

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface. PMID:24298207

  8. Effect of forging parameters on low cycle fatigue behaviour of Al/basalt short fiber metal matrix composites.

    PubMed

    Karthigeyan, R; Ranganath, G

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface.

  9. High Temperature, Slow Strain Rate Forging of Advanced Disk Alloy ME3

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; OConnor, Kenneth

    2001-01-01

    The advanced disk alloy ME3 was designed in the HSR/EPM disk program to have extended durability at 1150 to 1250 F in large disks. This was achieved by designing a disk alloy and process producing balanced monotonic, cyclic, and time-dependent mechanical properties. combined with robust processing and manufacturing characteristics. The resulting baseline alloy, processing, and supersolvus heat treatment produces a uniform, relatively fine mean grain size of about ASTM 7, with as-large-as (ALA) grain size of about ASTM 3. There is a long term need for disks with higher rim temperature capabilities than 1250 F. This would allow higher compressor exit (T3) temperatures and allow the full utilization of advanced combustor and airfoil concepts under development. Several approaches are being studied that modify the processing and chemistry of ME3, to possibly improve high temperature properties. Promising approaches would be applied to subscale material, for screening the resulting mechanical properties at these high temperatures. n obvious path traditionally employed to improve the high temperature and time-dependent capabilities of disk alloys is to coarsen the grain size. A coarser grain size than ASTM 7 could potentially be achieved by varying the forging conditions and supersolvus heat treatment. The objective of this study was to perform forging and heat treatment experiments ("thermomechanical processing experiments") on small compression test specimens of the baseline ME3 composition, to identify a viable forging process allowing significantly coarser grain size targeted at ASTM 3-5, than that of the baseline, ASTM 7.

  10. Derivation of uranium residual radioactive material guidelines for the Aliquippa Forge site

    SciTech Connect

    Monette, F.; Jones, L.; Yu, C.

    1992-09-01

    Residual radioactive material guidelines for uranium were derived for the Aliquippa Forge site in Aliquippa, Pennsylvania. This site has been identified for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy (DOE). The uranium guidelines were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the Aliquippa Forge site should not exceed a dose of 100 mrem/yr following decontamination. The DOE residual radioactive material guideline computer code, RESRAD, which implements the methodology described in the DOE manual for implementing residual radioactive material guidelines, was used in this evaluation. Four potential scenarios were considered for the site; the scenarios vary with regard to time spent at the site, sources of water used, and sources of food consumed. The results of the evaluation indicate that the basic dose limit of 100 mrem/yr will not be exceeded for uranium within 1,000 years, provided that the soil concentration of combined uranium (uranium-234, uranium-235, and uranium-238) at the Aliquippa Forge site does not exceed the following levels: 1,700 pCi/g for Scenario A (industrial worker: the expected scenario); 3,900 pCi/g for Scenario B (recreationist: a plausible scenario); 20 pCi/g for Scenario C (resident farmer using well water as the only water source: a possible but unlikely scenario), and 530 pCi/g for Scenario D (resident farmer using a distant water source not affected by site conditions as the only water source: a possible but unlikely scenario). The uranium guidelines derived in this report apply to the combined activity concentration of uranium-234, uranium-235, and uranium-238 and were calculated on the basis of a dose of 100 mrem/yr.

  11. Thermo-mechanical modeling of the electrically-assisted manufacturing (EAM) technique during open die forging

    NASA Astrophysics Data System (ADS)

    Salandro, Wesley A.

    This thesis contains all of the steps which allow the Electrically-Assisted Manufacturing (EAM) technique to be experimentally explored and analytically modeled for an electrically-assisted forging operation. Chapter 1 includes the problem statement, proposed solution, and literature reviews on EAM. Chapter 2 describes a thorough background on the EAM technique, highlights prior EAM research, and explains the research approach taken for this thesis. The coupled thermo-mechanical modeling strategy, along with the introduction of the Electroplastic Effect Coefficient (EEC) is provided in Chapter 3. Chapter 4 explains the two different approaches to determine the EEC profiles when modeling a particular metal. The simplified EAF mechanical model for electrically-assisted forging is presented in Chapter 5. Also in this chapter, the same modeling methodology (i.e. thermo-mechanical, EEC, etc.) is used to predict loads for an electrically-assisted bending (EAB) process. The following chapters explore how different material- and process-based parameters affect the EAF technique. Chapter 6 examines how different workpiece contact areas affect EAF effectiveness, along with an exploration of how well different metal forming lubricants perform with EAF. Chapter 7 explores if there is a difference in the thermal or mechanical profiles of specimens undergoing EAF forging tests with different average grain sizes. Chapter 8 examines the same effects as the previous chapter on specimens with varying levels of prior cold work. The materials- and process-based simplifications and sensitivities of the proposed modeling strategy are outlined in Chapter 9. Chapters 10-14 include the science behind the electroplastic effect, conclusions, future work, broader impacts, and intellectual merit, respectively. The overall intention of this thesis is to show the candidate's ability to take an idea for a new manufacturing process, prove that it works, and then understand and model the process

  12. Forging of eccentric co-extruded Al-Mg compounds and analysis of the interface strength

    NASA Astrophysics Data System (ADS)

    Förster, W.; Binotsch, C.; Awiszus, B.; Lehmann, T.; Müller, J.; Kirbach, C.; Stockmann, M.; Ihlemann, J.

    2016-03-01

    Within the subproject B3 of the Collaborative Research Center 692 it has been shown that Al-Mg compounds with a good bonding quality can be produced by hydrostatic coextrusion. During processing by forging, the aluminum sleeve is thinned in areas of high strains depending on the component geometry. To solve this problem an eccentric core arrangement during co-extrusion was investigated. Based on the results of FE-simulations, the experimental validation is presented in this work. Rods with an offset of 0.25, 0.5 and 0.75 mm were produced by eccentric hydrostatic co-extrusion. Ultrasonic testing was used to evaluate the bonding quality across the entire rods. For the forging investigations the basic process Rising was chosen. The still good bonding quality after forging was examined by dye penetrant testing and optical microscopy. For an optimal stress transfer between the materials across the entire component, a sufficient bonding between the materials is essential. To evaluate the interface strength, a special bending test was developed. For the conception of the bending specimens it was required to analyze the Rising specimens geometry. These analyses were performed using a reconstruction of the geometrical data based on computer tomography (CT) investigations. The comparison with the numerically deter-mined Rising specimen geometry shows good correlation. Parametric Finite Element Analyses of the bending test were used to develop the load case and the specimen geometry. By means of iterative adaption of load application, bearing and specimen geometry parameters, an advantageous stress state and experimentally applicable configuration were found. Based on this conception, the experimental setup was configured and bending tests were performed. The interface strength was deter-mined by the calculation of the maximum interlaminar interfacial tension stress using the experimental interface failure force and the bending FE model.

  13. Effect of Process Parameters on Microstructure and Hardness of Oxide Dispersion Strengthened 18Cr Ferritic Steel

    NASA Astrophysics Data System (ADS)

    Nagini, M.; Vijay, R.; Rajulapati, Koteswararao V.; Rao, K. Bhanu Sankara; Ramakrishna, M.; Reddy, A. V.; Sundararajan, G.

    2016-08-01

    Pre-alloyed ferritic 18Cr steel (Fe-18Cr-2.3W-0.3Ti) powder was milled with and without nano-yttria in high-energy ball mill for varying times until steady-state is reached. The milled powders were consolidated by upset forging followed by hot extrusion. Microstructural changes were examined at all stages of processing (milling, upset forging, and extrusion). In milled powders, crystallite size decreases and hardness increases with increasing milling time reaching a steady-state beyond 5 hours. The size of Y2O3 particles in powders decreases with milling time and under steady-state milling conditions; the particles either dissolve in matrix or form atomic clusters. Upset forged sample consists of unrecrystallized grain structure with few pockets of fine recrystallized grains and dispersoids of 2 to 4 nm. In extruded and annealed rods, the particles are of cuboidal Y2Ti2O7 at all sizes and their size decreased from 15 nm to 5 nm along with significant increase in number density. The oxide particles in ODS6 are of cuboidal Y2Ti2O7 with diamond cubic crystal structure ( Fd bar{3} m) having a lattice parameter of 10.1 Å and are semicoherent with the matrix. The hardness values of extruded and annealed samples predicted by linear summation model compare well with measured values.

  14. Forging partnerships between rural women with chronic conditions and their health care providers.

    PubMed

    Cudney, Shirley; Weinert, Clarann; Kinion, Elizabeth

    2011-03-01

    Successful adaptation to chronic illness is enhanced by active client-health care provider partnerships. The purposes of this article are to (a) examine the health care partnership needs of western rural women with chronic illness who participated in a computer-based support and education project, (b) describe how the role of the women in the partnership can be maximized by the use of a personal health record and improving health literacy, and (c) discuss ways health care providers can enhance their role in the partnership by careful listening and creating environments conducive to forging productive client-provider partnerships.

  15. Conventionally cast and forged copper alloy for high-heat-flux thrust chambers

    NASA Technical Reports Server (NTRS)

    Kazaroff, John M.; Repas, George A.

    1987-01-01

    The combustion chamber liner of the space shuttle main engine is made of NARloy-Z, a copper-silver-zirconium alloy. This alloy was produced by vacuum melting and vacuum centrifugal casting; a production method that is currently now available. Using conventional melting, casting, and forging methods, NASA has produced an alloy of the same composition called NASA-Z. This report compares the composition, microstructure, tensile properties, low-cycle fatigue life, and hot-firing life of these two materials. The results show that the materials have similar characteristics.

  16. Modelling of Viscoplastic Behaviour of IN718 Under Hot Forging Conditions

    SciTech Connect

    Lin, Y. P.; Lin, J.; Dean, T. A.; Brown, P. D.

    2007-04-07

    The mechanical properties of IN718 are directly related to microstructure such as grain size and the hardening mechanisms, which are effective during thermomechanical processing and subsequent heat treatment. In this study a set of unified viscoplastic constitutive equations were determined for IN718 from experimental data of hot forging conditions. Techniques were developed to analyse the reliability and consistency of the experimental data derived from different previous publications. In addition to viscoplastic flow of the material, the determined material model can be used to predict the evolution of dislocations, recrystallisation and grain size occurring during thermomechanical processing.

  17. Performance of intermittent aeration reactor on NH4-N removal from groundwater resources.

    PubMed

    Khanitchaidecha, W; Nakamura, T; Sumino, T; Kazama, F

    2010-01-01

    To study the effect of intermittent aeration period on ammonium-nitrogen (NH4-N) removal from groundwater resources, synthetic groundwater was prepared and three reactors were operated under different conditions--"reactor A" under continuous aeration, "reactor B" under 6 h intermittent aeration, and "reactor C" under 2 h intermittent aeration. To facilitate denitrification simultaneously with nitrification, "acetate" was added as an external carbon source with step-wise increase from 0.5 to 1.5 C/N ratio, where C stands for total carbon content in the system, and N for NH4-N concentration in the synthetic groundwater. Results show that complete NH4-N removal was obtained in "reactor B" and "reactor C" at 1.3 and 1.5 C/N ratio respectively; and partial NH4-N removal in "reactor A". These results suggest that intermittent aeration at longer interval could enhance the reactor performance on NH4-N removal in terms of efficiency and low external carbon requirement. Because of consumption of internal carbon by the process, less amount of external carbon is required. Further increase in carbon in a form of acetate (1.5 to 2.5 C/N ratios) increases removal rate (represented by reaction rate coefficient (k) of kinetic equation) as well as occurrence of free cells. It suggests that the operating condition at reactor B with 1.3 C/N ratio is more appropriate for long-term operation at a pilot-scale.

  18. Immobilization of Mn and NH4 (+)-N from electrolytic manganese residue waste.

    PubMed

    Chen, Hongliang; Liu, Renlong; Liu, Zuohua; Shu, Jiancheng; Tao, Changyuan

    2016-06-01

    The objective of this work was the immobilization of soluble manganese (Mn) and ammonium nitrogen (NH4 (+)-N) leached from electrolytic manganese residue (EMR). Immobilization of Mn was investigated via carbonation using carbon dioxide (CO2) and alkaline additives. NH4 (+)-N immobilization was evaluated via struvite precipitation using magnesium and phosphate sources. Results indicated that the immobilization efficiency of Mn using CO2 and quicklime (CaO) was higher than using CO2 and sodium hydroxide (NaOH). This higher efficiency was likely due to the slower release of OH(-) during CaO hydrolysis. The immobilization efficiency of Mn was >99.99 % at the CaO:EMR mass ratio of 0.05:1 for 20-min reaction time. The struvite precipitation of NH4 (+)-N was conducted in the carbonated EMR slurry and the immobilization efficiency was 89 % using MgCl2 · 6H2O + Na3PO4 · 12H2O at the Mg:P:N molar ratio of 1.5:1.5:1 for 90-min reaction time. A leaching test showed that the concentrations of Mn and NH4 (+)-N in the filtrate of the treated EMR were 0.2 and 9 mg/L, respectively. The combined immobilization of Mn and NH4 (+)-N was an effective pretreatment method in the harmless treatment of the EMR.

  19. The influence of scanning speed and number of scans on the properties of laser formed steel

    NASA Astrophysics Data System (ADS)

    Sanusi, Kazeem O.; Akinlabi, Stephen; Akinlabi, Esther T.

    2016-03-01

    Laser Beam Forming (LBF) process is an emerging and new forming method that generally requires brute force to forge the steel into the desired shape instead of using conventional methods. This study investigates the changes that occur in low carbon steel through the laser beam forming process. The parameters under investigation include variable scanning speed and number of scans at fixed laser intensity. The effect of these laser parameters on the chemical composition and properties of low carbon steel is assessed through characterisation of both the as received and LBF formed specimens. Characterizations of the laser formed steels were studied using microstructural analysis and micro hardness profiling. The results show that there is a significant increase in the mechanical properties of the LBF formed materials. Scanning power and the number of scans have a noticeable effect on the curvature achieved in the formed samples. The results obtained will contribute towards the further optimization of laser forming methods for steel for the optimization of the properties of steel using Laser Beam Forming process.

  20. Perpendicular magnetic anisotropy of Mn4N films fabricated by reactive sputtering method

    NASA Astrophysics Data System (ADS)

    Kabara, Kazuki; Tsunoda, Masakiyo

    2015-05-01

    Manganese nitride films were fabricated on MgO substrates by changing N2 flow ratio into Ar gas ( P N2 ) during reactive sputtering deposition of the films, and their crystal structures and magnetic properties were investigated. Single phased ɛ-Mn4N films were obtained when P N2 was 5%-9%, and the tetragonal lattice distortion was identified in all the Mn4N films (the lattice constant ratio, c/a = 0.99). Perpendicular magnetic anisotropy was observed in all the specimens. The Mn4N film, fabricated with P N2 = 8%, has a low saturation magnetization (Ms = 110 emu/cc) and relatively high magnetic anisotropic energy (Ku = 8.8 × 105 erg/cc). Both Ms and Ku of the films drastically changed with mixing other phases (α-Mn, β-Mn, η-Mn3N2, and possibly γ-Mn) by varying P N2 .

  1. Strain oxidation cracking of austenitic stainless steels at 610 C

    SciTech Connect

    Calvar, M. Le; Scott, P.M.; Magnin, T.; Rieux, P.

    1998-02-01

    Strain oxidation cracking of both forged and welded austenitic stainless steels (SS) was studied. Creep and slow strain rate tests (SSRT) were performed in vacuum, air, and a gas furnace environment (air + carbon dioxide [CO{sub 2}] + water [H{sub 2}O]). Results showed cracking was environmentally dependent. Almost no cracking was observed in vacuum, whereas intergranular cracking was observed with increasing severity in passing from an air to a gas furnace environment. The most severe cracking was associated with formation of a less protective film formed in the gas furnace environment (air: haematite-like M{sub 2}O{sub 3} oxide; gas furnace environment: spinel M{sub 3}O{sub 4} oxide). Cracking depended strongly on the carbon content and the sensitization susceptibility of the material: the higher the carbon content, the more susceptible the alloy. This cracking was believed to be similar to other oxidation-induced cracking phenomena.

  2. Focusing aberration corrections for ultrasonic inspections of disk forgings when using a surface compensating mirror and segmented annular phased array

    NASA Astrophysics Data System (ADS)

    Friedl, Jon Hiram, Jr.

    Phased array transducers are playing an increasing role in ultrasonic nondestructive evaluation inspection applications, and one area of their use is in the inspection of critical jet engine components such as titanium alloy turbine disk forgings. Inspection of these forging disks is performed during stages of their manufacturing, particularly at an intermediate stage when the forging disk has a deliberate "sonic shape." A forging's sonic shape, from which the final disk shape will be machined, is conducive to ultrasonic testing inspections due to its simple entry surfaces. These entry surfaces are primarily planar or conical surfaces. In prior work, forgings from General Electric Aircraft Engines, Pratt & Whitney, and Honeywell Engines and Systems were ultrasonically inspected through their planar interfaces, accomplished with a 10 MHz, segmented annular, compound spherical, phased array transducer designed to perform inspections through planar interfaces. Proof-of-concept research used this array along with surface compensating ultrasonic mirrors to inspect through the conical entry surfaces in these forgings. While successful, it was believed that the results of these inspections fell below what would be possible due to non-ideal focusing conditions and other focusing aberrations. To correct for focusing aberrations when inspecting through forging material planar and curved interfaces, three progressively more sophisticated ray-tracing algorithms were developed to generate delay time sets for phasing transducer array elements, including an initial 2D method from prior work, a refined 2D method designed to more accurately account for refraction at interfaces, and a 3D method designed for circumferentially phasing the segmented annular array. Ultrasonic inspections using these methods were performed on two sets of forging material specimens, with either planar or curved interfaces, thicknesses ranging from 0.2 inches to 2.7 inches, and each containing a 1/128-inch

  3. Spin Polarization Inversion at Benzene-Absorbed Fe4N Surface

    PubMed Central

    Zhang, Qian; Mi, Wenbo; Wang, Xiaocha; Wang, Xuhui

    2015-01-01

    We report a first-principle study on electronic structure and simulation of the spin-polarized scanning tunneling microscopy graphic of a benzene/Fe4N interface. Fe4N is a compound ferromagnet suitable for many spintronic applications. We found that, depending on the particular termination schemes and interface configurations, the spin polarization on the benzene surface shows a rich variety of properties ranging from cosine-type oscillation to polarization inversion. Spin-polarization inversion above benzene is resulting from the hybridizations between C pz and the out-of-plane d orbitals of Fe atom. PMID:26012892

  4. Heavy-Section Steel Technology Program fracture issues

    SciTech Connect

    Pennell, W.E.

    1991-01-01

    Large-scale fracture mechanics tests have resulted in the identification of a number of fracture-technology issues. Identification of additional issues has come from the reactor vessel materials-irradiation test program and from reactor operating experience. This paper provides a review of fracture issues with an emphasis on their potential impact on a reactor vessel pressurized-thermal-shock (PTS) analysis. Mixed-mode crack propagation emerges as a major issue, due in large measure to the poor performance of existing models for the prediction of ductile tearing. Rectification of ductile tearing technology deficiencies may require extending the technology to include a more complete treatment of stress-state and loading history effects. The effect of cladding on vessel fracture remains uncertain to the point that it is not possible to determine at this time if the net effect will be positive or negative. Enhanced fracture toughness for shallow flaws has been demonstrated for low-strength structural steels. Demonstration of a similar effect in reactor pressure vessel steels could have a significant beneficial effect on the probabilistic analysis of reactor vessel fracture. Further development of existing fracture-mechanics models and concepts is required to meet the special requirements for fracture evaluation of circumferential flaws in the welds of ring-forged vessels. Fracture technology advances required to address the issues discussed in this paper are the major objective for the ongoing Heavy-Section Steel Technology (HSST) Program at Oak Ridge National Laboratory (ORNL). 22 refs., 18 figs.

  5. The Impact of Antiaromatic Subunits in [4n+2] π-Systems: Bispentalenes with [4n+2] π-Electron Perimeters and Antiaromatic Character.

    PubMed

    Cao, Jing; London, Gábor; Dumele, Oliver; von Wantoch Rekowski, Margarete; Trapp, Nils; Ruhlmann, Laurent; Boudon, Corinne; Stanger, Amnon; Diederich, François

    2015-06-10

    Three series of stable, neutral, π-extended bispentalene derivatives, with two pentalenes fused to a central benzene or naphthalene moiety, have been prepared through a modified double carbopalladation cascade reaction. While these chromophores feature skeletons with [4n+2] π-electron perimeters, the two 8 π-electron pentalene subunits strongly influence bonding and spectral properties. (1)H NMR spectra showed large upfield shifts of the protons in the pentalene moieties, comparable to antiaromatic monobenzopentalenes. Further investigations on magnetic ring currents through NICS-XY-scans suggest a global paratropic current and a local diatropic current at the central benzene ring in two of the series, while the third series, with a central naphthalene ring, showed more localized ring currents, with stronger paratropic ring currents on the pentalene moieties. X-ray diffraction analyses revealed planar bispentalene cores with large double- and single-bond alternation in the pentalene units, characteristic for antiaromaticity, and small alternation in the central aromatic rings. In agreement with TD-DFT calculations, both optical and electrochemical data showed much smaller HOMO-LUMO energy gaps compared to other neutral, acene-like hydrocarbons with the same number of fused rings. Both experimental and computational results suggest that the molecular properties of the presented bispentalenes are dominated by the antiaromatic pentalene-subunits despite the [4n+2] π-electron perimeter of the skeletons. PMID:25978774

  6. The Impact of Antiaromatic Subunits in [4n+2] π-Systems: Bispentalenes with [4n+2] π-Electron Perimeters and Antiaromatic Character.

    PubMed

    Cao, Jing; London, Gábor; Dumele, Oliver; von Wantoch Rekowski, Margarete; Trapp, Nils; Ruhlmann, Laurent; Boudon, Corinne; Stanger, Amnon; Diederich, François

    2015-06-10

    Three series of stable, neutral, π-extended bispentalene derivatives, with two pentalenes fused to a central benzene or naphthalene moiety, have been prepared through a modified double carbopalladation cascade reaction. While these chromophores feature skeletons with [4n+2] π-electron perimeters, the two 8 π-electron pentalene subunits strongly influence bonding and spectral properties. (1)H NMR spectra showed large upfield shifts of the protons in the pentalene moieties, comparable to antiaromatic monobenzopentalenes. Further investigations on magnetic ring currents through NICS-XY-scans suggest a global paratropic current and a local diatropic current at the central benzene ring in two of the series, while the third series, with a central naphthalene ring, showed more localized ring currents, with stronger paratropic ring currents on the pentalene moieties. X-ray diffraction analyses revealed planar bispentalene cores with large double- and single-bond alternation in the pentalene units, characteristic for antiaromaticity, and small alternation in the central aromatic rings. In agreement with TD-DFT calculations, both optical and electrochemical data showed much smaller HOMO-LUMO energy gaps compared to other neutral, acene-like hydrocarbons with the same number of fused rings. Both experimental and computational results suggest that the molecular properties of the presented bispentalenes are dominated by the antiaromatic pentalene-subunits despite the [4n+2] π-electron perimeter of the skeletons.

  7. Electrical detection of magnetic domain wall in Fe4N nanostrip by negative anisotropic magnetoresistance effect

    NASA Astrophysics Data System (ADS)

    Gushi, Toshiki; Ito, Keita; Higashikozono, Soma; Takata, Fumiya; Oosato, Hirotaka; Sugimoto, Yoshimasa; Toko, Kaoru; Honda, Syuta; Suemasu, Takashi

    2016-09-01

    The magnetic structure of the domain wall (DW) of a 30-nm-thick Fe4N epitaxial film with a negative spin polarization of the electrical conductivity is observed by magnetic force microscopy and is well explained by micromagnetic simulation. The Fe4N film is grown by molecular beam epitaxy on a SrTiO3(001) substrate and processed into arc-shaped ferromagnetic nanostrips 0.3 μm wide by electron beam lithography and reactive ion etching with Cl2 and BCl3 plasma. Two electrodes mounted approximately 12 μm apart on the nanostrip register an electrical resistance at 8 K. By changing the direction of an external magnetic field (0.2 T), the presence or absence of a DW positioned in the nanostrip between the two electrodes can be controlled. The resistance is increased by approximately 0.5 Ω when the DW is located between the electrodes, which signifies the negative anisotropic magnetoresistance effect of Fe4N. The electrical detection of the resistance change is an important step toward the electrical detection of current-induced DW motion in Fe4N.

  8. Comparison of performance of genetics 4N6 FLOQSwabs™ with or without surfactant to rayon swabs.

    PubMed

    Frippiat, Christophe; Noel, Fabrice

    2016-08-01

    The collection of traces is the first step in the process of forensic genetics analysis. Currently, several different techniques are used (eg. gauze). Nevertheless, swabbing appears to be the most common of these. In a second step, the sampling devices should allow the use of preliminary tests in combination with an immunological confirmatory test (e.g. Hexagon Obti or Hemdirect). Our previous study shows that sampling with Genetics 4N6FLOQswabs™ coated with surfactant reduces by a factor of at least 100 the detection threshold of blood using two immunological tests. The aim of this work was to compare the ability to recover blood trace and the compatibility with immunological confirmatory test of various Genetics 4N6FLOQswabs™ nylon flocked swabs with or without surfactant. The results obtain in this study show that Genetics 4N6FLOQswabs™ not coated with surfactant and Human DNA free FLOQswabs™ were suitable for the used in combination with immunological blood detection tests. Nevertheless, the Genetics 4N6FLOQswabs™ not surfactant coated give a better blood trace recovery. PMID:27314974

  9. B4N and Fe3BN nitrides bands structure and theoretical determination of bulk modulus

    NASA Astrophysics Data System (ADS)

    dos Santos, A. V.

    2007-06-01

    With the evolution of material science there was some technological evolution as well as the need of finding new links which could be applied to diverse areas of knowledge. Thus, in this article, we study nitrides bands structures which contain boron, in two different stoichiometries Fe3BN and B4N. The choice of these compounds is meant to plan new links and to understand nitrides fundamental state properties facing these new crystalline structures. In order to resolve the compound band structure we used the method of linear Muffin Tin orbital (LMTO), with atomic sphere approximation (ASA). By using this method we obtained the energy of formation as a function of the lattice parameter as one of the results. We find the equilibrium lattice parameter of 6.9755 a.u., for the Fe3BN nitride, and in B4N, we have 6.8589 a.u. We also discuss in this article the charge transference between sites and the influence of pressure on the compound properties, as well as the Bulk modulus that is 239.82 GPa for Fe3BN and 105.48 GPa for B4N. We show the behaviour of the density of states (DOS) of the new band structure found for the proposed crystalline structure Fe3BN, in which the B atom replace the Fe atom in the corner of the structure γ‧- Fe4N.

  10. Transverse anisotropic magnetoresistance effects in pseudo-single-crystal γ'-Fe4N thin films

    NASA Astrophysics Data System (ADS)

    Kabara, Kazuki; Tsunoda, Masakiyo; Kokado, Satoshi

    2016-05-01

    Transverse anisotropic magnetoresistance (AMR) effects, for which magnetization is rotated in an orthogonal plane to the current direction, were investigated at various temperatures, in order to clarify the structural transformation from a cubic to a tetragonal symmetry in a pseudo-single-crystal Fe4N film, which is predicted from the usual in-plane AMR measurements by the theory taking into account the spin-orbit interaction and crystal field splitting of 3d bands. According to a phenomenological theory of AMR, which derives only from the crystal symmetry, a cos 2θ component ( C2 tr ) exists in transverse AMR curves for a tetragonal system but does not for a cubic system. In the Fe4N film, the C2 tr shows a positive small value (0.12%) from 300 K to 50 K. However, the C2 t r increases to negative value below 50 K and reaches to -2% at 5 K. The drastic increasing of the C2 tr demonstrates the structural transformation from a cubic to a tetragonal symmetry below 50 K in the Fe4N film. In addition, the out-of-plane and in-plane lattice constants (c and a) were precisely determined with X-ray diffraction at room temperature using the Nelson-Riely function. As a result, the positive small C2 t r above 50 K is attributed to a slightly distorted Fe4N lattice (c/a = 1.002).

  11. Comparison of performance of genetics 4N6 FLOQSwabs™ with or without surfactant to rayon swabs.

    PubMed

    Frippiat, Christophe; Noel, Fabrice

    2016-08-01

    The collection of traces is the first step in the process of forensic genetics analysis. Currently, several different techniques are used (eg. gauze). Nevertheless, swabbing appears to be the most common of these. In a second step, the sampling devices should allow the use of preliminary tests in combination with an immunological confirmatory test (e.g. Hexagon Obti or Hemdirect). Our previous study shows that sampling with Genetics 4N6FLOQswabs™ coated with surfactant reduces by a factor of at least 100 the detection threshold of blood using two immunological tests. The aim of this work was to compare the ability to recover blood trace and the compatibility with immunological confirmatory test of various Genetics 4N6FLOQswabs™ nylon flocked swabs with or without surfactant. The results obtain in this study show that Genetics 4N6FLOQswabs™ not coated with surfactant and Human DNA free FLOQswabs™ were suitable for the used in combination with immunological blood detection tests. Nevertheless, the Genetics 4N6FLOQswabs™ not surfactant coated give a better blood trace recovery.

  12. C4N2 ice in Titan’s atmosphere: reality or myth?

    NASA Astrophysics Data System (ADS)

    Anderson, Carrie; Samuelson, Robert E.; Achterberg, Richard K.; Flasar, F. M.

    2014-11-01

    Voyager 1 IRIS detected a spectral emission feature at 478 cm-1 in Titan’s atmosphere at high northern latitudes. Now one Titan year later we rediscovered it in Cassini CIRS limb spectra at 70°N. Thus far the feature has always been associated with the lower polar stratosphere during early northern spring. No known trace organic vapor in Titan’s atmosphere has a spectral feature at 478 cm-1, and the only known or suspected condensate that does is C4N2 ice. However, the C4N2 ν8 and ν9 vapor features at 472 cm-1 and 108 cm-1, respectively, have never been observed in Titan’s atmosphere, leading to a C4N2 vapor upper limit at least 2 orders of magnitude lower than equilibrium with the ice phase would suggest. In this study we analyze the spectral shapes and strengths of the 478 cm-1 feature in the IRIS and CIRS data sets in an effort to determine particle sizes, mole fractions, and vertical distributions of the putative condensate cloud responsible for the feature, and then discuss the pros and cons of its identify with C4N2 ice.

  13. Comminuting irradiated ferritic steel

    DOEpatents

    Bauer, Roger E.; Straalsund, Jerry L.; Chin, Bryan A.

    1985-01-01

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  14. 31 CFR 370.40 - Can I be held accountable if my negligence contributes to a forged signature?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Can I be held accountable if my negligence contributes to a forged signature? 370.40 Section 370.40 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE, DEPARTMENT OF THE TREASURY BUREAU OF THE...

  15. Quenching and Cold-Work Residual Stresses in Aluminum Hand Forgings : Contour Method Measurement and FEM Prediction

    SciTech Connect

    Prime, M. B.; Newborn, M. A.; Balog, J. A.

    2003-01-01

    The cold-compression stress relief process used to reduce the quench-induced stresses in high-strength aerospace aluminum alloy forgings does not fully relieve the stresses. This study measured and predicted the residual stress in 7050-T74 (solution heat treated, quenched, and artificially overaged) and 7050-T7452 (cold compressed prior to aging) hand forgings. The manufacturing process was simulated by finite element analysis. First, a thermal analysis simulated the quench using appropriate thermal boundary conditions and temperature dependent material properties. Second, a structural analysis used the thermal history and a temperature and strain-rate dependent constitutive model to predict the stresses after quenching. Third, the structural analysis was continued to simulate the multiple cold compressions of the stress relief process. Experimentally, the residual stresses in the forgings were mapped using the contour method, which involved cutting the forgings using wire EDM and then measuring the contour of the cut surface using a CMM. Multiple cuts were used to map different stress components. The results show a spatially periodic variation of stresses that results from the periodic nature of the cold work stress relief process. The results compare favorably with the finite element prediction of the stresses.

  16. Jernberg Industries, Inc.: Forging Facility Uses Plant-Wide Energy Assessment to Aid Conversion to Lean Manufacturing (Revised)

    SciTech Connect

    Not Available

    2004-10-01

    Jernberg Industries conducted a plant-wide assessment while converting to lean manufacturing at a forging plant. Seven projects were identified that could yield annual savings of $791,000, 64,000 MMBtu in fuel and 6 million kWh

  17. Taking the Lead in Science Education: Forging Next-Generation Science Standards. International Science Benchmarking Report. Appendix

    ERIC Educational Resources Information Center

    Achieve, Inc., 2010

    2010-01-01

    This appendix accompanies the report "Taking the Lead in Science Education: Forging Next-Generation Science Standards. International Science Benchmarking Report," a study conducted by Achieve to compare the science standards of 10 countries. This appendix includes the following: (1) PISA and TIMSS Assessment Rankings; (2) Courses and Levels…

  18. 76 FR 24856 - Heavy Forged Hand Tools (i.e., Axes & Adzes, Bars & Wedges, Hammers & Sledges, and Picks...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF COMMERCE International Trade Administration Heavy Forged Hand Tools (i.e., Axes & Adzes, Bars & Wedges, Hammers & Sledges..., Department of Commerce. SUMMARY: On January 3, 2011, the Department of Commerce (``Department'') initiated...

  19. Forging New Cocoa Keys: The Impact of Unlocking the Cocoa Bean’s Genome on Pre-harvest Food Safety

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forging New Cocoa Keys: The Impact of Unlocking the Cocoa Bean’s Genome on Pre-harvest Food Safety David N. Kuhn, USDA ARS SHRS, Miami FL Sometimes it's hard to see the value and application of genomics to real world problems. How will sequencing the cacao genome affect West African farmers? Thi...

  20. Microstructure and corrosion behaviour in biological environments of the new forged low-Ni Co-Cr-Mo alloys.

    PubMed

    Hiromoto, Sachiko; Onodera, Emi; Chiba, Akihiko; Asami, Katsuhiko; Hanawa, Takao

    2005-08-01

    Corrosion behaviour and microstructure of developed low-Ni Co-29Cr-(6, 8)Mo (mass%) alloys and a conventional Co-29Cr-6Mo-1Ni alloy (ASTM F75-92) were investigated in saline solution (saline), Hanks' solution (Hanks), and cell culture medium (E-MEM + FBS). The forging ratios of the Co-29Cr-6Mo alloy were 50% and 88% and that of the Co-29Cr-8Mo alloy was 88%. Ni content in the air-formed surface oxide film of the low-Ni alloys was under the detection limit of XPS. The passive current densities of the low-Ni alloys were of the same order of magnitude as that of the ASTM alloy in all the solutions. The passive current densities of all the alloys did not significantly change with the inorganic ions and the biomolecules. The anodic current densities in the secondary passive region of the low-Ni alloys were lower than that of the ASTM alloy in the E-MEM + FBS. Consequently, the low-Ni alloys are expected to show as high corrosion resistance as the ASTM alloy. On the other hand, the passive current density of the Co-29Cr-6Mo alloy with a forging ratio of 50% was slightly lower than that with a forging ratio of 88% in the saline. The refining of grains by further forging causes the increase in the passive current density of the low-Ni alloy. PMID:15769525

  1. 78 FR 8587 - Heraeus Kulzer, LLC., Including On-Site Leased Workers from People Link Staffing, Forge Staffing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ... products. The notice was published in the Federal Register on January 8, 2013 (78 FR 1255). At the request... Link Staffing, Forge Staffing, Career Transitions and Talent Source; South Bend, Indiana; Amended... information from the company shows that workers leased from Career Transitions and Talent Source were...

  2. Comparative Tensile Flow and Work-Hardening Behavior of 9 Pct Chromium Ferritic-Martensitic Steels in the Framework of the Estrin-Mecking Internal-Variable Approach

    NASA Astrophysics Data System (ADS)

    Choudhary, B. K.; Christopher, J.

    2016-06-01

    The comparative tensile flow and work-hardening behavior of P9 steel in two different product forms, normalized and tempered plate and thick section tube plate forging, and P91 steel were investigated in the framework of the dislocation dynamics based Estrin-Mecking (E-M) one-internal-variable approach. The analysis indicated that the flow behavior of P9 and P91 steels was adequately described by the E-M approach in a wide range of temperatures. It was suggested that dislocation dense martensite lath/cell boundaries and precipitates together act as effective barriers to dislocation motion in P9 and P91 steels. At room and intermediate temperatures, the evolution of the internal-state variable, i.e., the dislocation density with plastic strain, exhibited insignificant variations with respect to temperature. At high temperatures, a rapid evolution of dislocation density with plastic strain toward saturation with increasing temperature was observed. The softer P9 steel tube plate forging exhibited higher work hardening in terms of larger gains in the dislocation density and flow stress contribution from dislocations than the P9 steel plate and P91 steel at temperatures ranging from 300 K to 873 K (27 °C to 600 °C). The evaluation of activation energy suggests that the deformation is controlled by cross-slip of dislocations at room and intermediate temperatures, and climb of dislocations at high temperatures. The relative influence of initial microstructure on flow and work-hardening parameters associated with the E-M approach was discussed in the three temperature regimes displayed by P9 and P91 steels.

  3. The Z-Phase in 9Cr Ferritic/martensitic Heat Resistant Steel

    NASA Astrophysics Data System (ADS)

    Yin, Fengshi; Chen, Fuxia; Jiang, Xuebo; Xue, Bing; Zhou, Li; Jung, Woosang

    The precipitation behavior of Z-phase was investigated during long-term aging at 650°C in an ultra low carbon 9Cr ferritic/martensitic heat resistant steel. The steel was prepared by vacuum induction melting followed by hot forging and rolling into a plate. The plate was normalized at 1100°C for 1h, cooled in air and tempered at 700°C for 1h. Bimodal nano-sized MX precipitates distribute densely and homogeneously in the matrix within martensitic lath after normalizing-and-tempering heat treatment. After aging at 650°C for 1200h, the Z-phase was found to nucleate on the larger nano-sized MX. The Z-phase and MX have the following orientation relationship: <112>Z-phase//<001>MX and (1bar 10){Z-phase}//(200){MX} .

  4. The steel scrap age.

    PubMed

    Pauliuk, Stefan; Milford, Rachel L; Müller, Daniel B; Allwood, Julian M

    2013-04-01

    Steel production accounts for 25% of industrial carbon emissions. Long-term forecasts of steel demand and scrap supply are needed to develop strategies for how the steel industry could respond to industrialization and urbanization in the developing world while simultaneously reducing its environmental impact, and in particular, its carbon footprint. We developed a dynamic stock model to estimate future final demand for steel and the available scrap for 10 world regions. Based on evidence from developed countries, we assumed that per capita in-use stocks will saturate eventually. We determined the response of the entire steel cycle to stock saturation, in particular the future split between primary and secondary steel production. During the 21st century, steel demand may peak in the developed world, China, the Middle East, Latin America, and India. As China completes its industrialization, global primary steel production may peak between 2020 and 2030 and decline thereafter. We developed a capacity model to show how extensive trade of finished steel could prolong the lifetime of the Chinese steelmaking assets. Secondary steel production will more than double by 2050, and it may surpass primary production between 2050 and 2060: the late 21st century can become the steel scrap age.

  5. The steel scrap age.

    PubMed

    Pauliuk, Stefan; Milford, Rachel L; Müller, Daniel B; Allwood, Julian M

    2013-04-01

    Steel production accounts for 25% of industrial carbon emissions. Long-term forecasts of steel demand and scrap supply are needed to develop strategies for how the steel industry could respond to industrialization and urbanization in the developing world while simultaneously reducing its environmental impact, and in particular, its carbon footprint. We developed a dynamic stock model to estimate future final demand for steel and the available scrap for 10 world regions. Based on evidence from developed countries, we assumed that per capita in-use stocks will saturate eventually. We determined the response of the entire steel cycle to stock saturation, in particular the future split between primary and secondary steel production. During the 21st century, steel demand may peak in the developed world, China, the Middle East, Latin America, and India. As China completes its industrialization, global primary steel production may peak between 2020 and 2030 and decline thereafter. We developed a capacity model to show how extensive trade of finished steel could prolong the lifetime of the Chinese steelmaking assets. Secondary steel production will more than double by 2050, and it may surpass primary production between 2050 and 2060: the late 21st century can become the steel scrap age. PMID:23442209

  6. Endocrine-Disrupting Potential of Bisphenol A, Bisphenol A Dimethacrylate, 4-n-Nonylphenol, and 4-n-Octylphenol in Vitro: New Data and a Brief Review

    PubMed Central

    Bonefeld-Jørgensen, Eva C.; Long, Manhai; Hofmeister, Marlene V.; Vinggaard, Anne Marie

    2007-01-01

    Background An array of environmental compounds is known to possess endocrine disruption (ED) potentials. Bisphenol A (BPA) and bisphenol A dimethacrylate (BPA-DM) are monomers used to a high extent in the plastic industry and as dental sealants. Alkylphenols such as 4-n-nonylphenol (nNP) and 4-n-octylphenol (nOP) are widely used as surfactants. Objectives We investigated the effect in vitro of these four compounds on four key cell mechanisms including transactivation of a) the human estrogen receptor (ER), b) the human androgen receptor (AR), c) the aryl hydrocarbon receptor (AhR), and d) aromatase activity. Results All four compounds inhibited aromatase activity and were agonists and antagonists of ER and AR, respectively. nNP increased AhR activity concentration-dependently and further increased the 2,3,7,8-tetrachlorodibenzo-p-dioxin AhR action. nOP caused dual responses with a weak increased and a decreased AhR activity at lower (10−8 M) and higher concentrations (10−5–10−4 M), respectively. AhR activity was inhibited with BPA (10−5–10−4 M) and weakly increased with BPA-DM (10−5 M), respectively. nNP showed the highest relative potency (REP) compared with the respective controls in the ER, AhR, and aromatase assays, whereas similar REP was observed for the four chemicals in the AR assay. Conclusion Our in vitro data clearly indicate that the four industrial compounds have ED potentials and that the effects can be mediated via several cellular pathways, including the two sex steroid hormone receptors (ER and AR), aromatase activity converting testosterone to estrogen, and AhR; AhR is involved in syntheses of steroids and metabolism of steroids and xenobiotic compounds. PMID:18174953

  7. Methods of forming steel

    DOEpatents

    Branagan, Daniel J.; Burch, Joseph V.

    2001-01-01

    In one aspect, the invention encompasses a method of forming a steel. A metallic glass is formed and at least a portion of the glass is converted to a crystalline steel material having a nanocrystalline scale grain size. In another aspect, the invention encompasses another method of forming a steel. A molten alloy is formed and cooled the alloy at a rate which forms a metallic glass. The metallic glass is devitrified to convert the glass to a crystalline steel material having a nanocrystalline scale grain size. In yet another aspect, the invention encompasses another method of forming a steel. A first metallic glass steel substrate is provided, and a molten alloy is formed over the first metallic glass steel substrate to heat and devitrify at least some of the underlying metallic glass of the substrate.

  8. Comparison between 2D and 3D Numerical Modelling of a hot forging simulative test

    SciTech Connect

    Croin, M.; Ghiotti, A.; Bruschi, S.

    2007-04-07

    The paper presents the comparative analysis between 2D and 3D modelling of a simulative experiment, performed in laboratory environment, in which operating conditions approximate hot forging of a turbine aerofoil section. The plane strain deformation was chosen as an ideal case to analyze the process because of the thickness variations in the final section and the consequent distributions of contact pressure and sliding velocity at the interface that are closed to the conditions of the real industrial process. In order to compare the performances of 2D and 3D approaches, two different analyses were performed and compared with the experiments in terms of loads and temperatures peaks at the interface between the dies and the workpiece.

  9. Development of Replacements for Phoscoating Used in Forging, Extrusion and Metal Forming Processes

    SciTech Connect

    Kerry Barnett

    2003-03-01

    Many forging, extrusion, heading and other metal forming processes use graphite-based lubricants, phosphate coatings, and other potentially hazardous or harmful substances to improve the tribology of the metal forming process. The application of phosphate-based coatings has long been studied to determine if other synthetic ''clean'' lubricants could provide the same degree of protection afforded by phoscoatings and its formulations. So far, none meets the cost and performance objectives provided by phoscoatings as a general aid to the metal forming industry. In as much as phoscoatings and graphite have replaced lead-based lubricants, the metal forming industry has had previous experience with a legislated requirement to change processes. However, without a proactive approach to phoscoating replacement, many metal forming processes could find themselves without a cost effective tribology material necessary for the metal forming process

  10. Effects of Forged Stock and Pure Aluminum Coating on Cryogenic Performance of Heat Treated Aluminum Mirrors

    NASA Technical Reports Server (NTRS)

    Toland, Ronald W.; Ohl, Raymond G.; Barthelmy, Michael P.; Zewari, S. Wahid; Greenhouse, Matthew A.; MacKenty, John W.

    2003-01-01

    We present the results of an on-going test program designed to empirically determine the effects of different stress relief procedures for aluminum mirrors. Earlier test results identified a preferred heat treatment for flat and spherical mirrors diamond turned from blanks cut out of Al 6061-T651 plate stock. Further tests have been performed on mirrors from forged stock and one set from plate stock coated with Alumiplate(trademark) aluminum coating to measure the effect of these variables on cryogenic performance. The mirrors are tested for figure error and radius of curvature at room temperature and at 80 K for three thermal cycles. We correlate the results of our optical testing with heat treatment and metallographic data.

  11. Friction and Adhesion in Dry Warm Forging of Magnesium Alloy with Coated Tools

    NASA Astrophysics Data System (ADS)

    Matsumoto, Ryo; Kawashima, Hiroaki; Osakada, Kozo

    In order to develop forging process of magnesium alloys without lubrication, frictional behavior of magnesium alloy AZ31B (Mg-3%Al-1%Zn) is evaluated by a tapered plug penetration test under dry condition. The cemented tungsten carbide (WC) plugs polished to be a mirror-like surface are coated with diamond-like carbon (DLC) and TiAlN by physical vapor deposition (PVD). The cylindrical hollow billets of AZ31B are penetrated by the tapered plugs at a temperature of 200°C. The surface roughness of the hole of the billet, the adhesion length of AZ31B on the plug surface and the penetration load are measured. Compared with WC and TiAlN coating, it is found that DLC coating is effective in preventing AZ31B from adhering to the tool surface and reducing the penetration load.

  12. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting.

    PubMed

    Čapek, Jaroslav; Machová, Markéta; Fousová, Michaela; Kubásek, Jiří; Vojtěch, Dalibor; Fojt, Jaroslav; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš

    2016-12-01

    Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures.

  13. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting.

    PubMed

    Čapek, Jaroslav; Machová, Markéta; Fousová, Michaela; Kubásek, Jiří; Vojtěch, Dalibor; Fojt, Jaroslav; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš

    2016-12-01

    Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures. PMID:27612756

  14. POD of ultrasonic detection of synthetic hard alpha inclusions in titanium aircraft engine forgings

    SciTech Connect

    Thompson, R. B.; Meeker, W. Q.; Brasche, L. J. H.

    2011-06-23

    The probability of detection (POD) of inspection techniques is a key input to estimating the lives of structural components such as aircraft engines. This paper describes work conducted as a part of the development of POD curves for the ultrasonic detection of synthetic hard alpha (SHA) inclusions in titanium aircraft engine forgings. The sample upon which the POD curves are to be based contains four types of right circular SHAs that have been embedded in a representative titanium forging, as well as a number of flat bottomed holes (FBHs). The SHAs were of two sizes, number 3 and number 5, with each size including seeds with nominal nitrogen concentrations of both 3 and 17 wt. %. The FBHs included sizes of number 1, number 3, and number 5. This discreteness of the data poses a number of challenges to standard processes for determining POD. For example, at each concentration of nitrogen, there are only two sizes, with 10 inspection opportunities each. Fully empirical, standard methodologies such as a circumflex versus a provide less than an ideal framework for such an analysis. For example, there is no way to describe the beam limiting effect whereby the signal no longer increases the flaw grows larger than the beam, one can only determine POD at the two concentration levels present in the block, and confidence bounds tend to be broad because of the limited data available for each case. In this paper, we will describe strategies involving the use of physics-based models to overcome these difficulties by allowing the data from all reflectors to be analyzed by a single statistical model. Included will be a discussion of the development of the physics-based model, its comparison to the experimental data (obtained at multiple sites with multiple operators) and its implications regarding the statistical analysis, whose details will be given in a separate article by Li et al. in this volume.

  15. FEM simulation for cold press forging forming of the round-fin heat sink

    NASA Astrophysics Data System (ADS)

    Wang, Kesheng; Han, Yu; Zhang, Haiyan; Zhang, Lihan

    2013-05-01

    In this paper, the finite element method is used to investigate the forming process of cold press forging for the round-fin heat sink in the automotive lighting. A series of simulations on the round-fin heat sink forming using the program DEFORM were carried out. The blank thickness and friction coefficient on the formation of round-fin were studied, and the tooling structure with counterpressure on the heat sink formation was also investigated. The results show that the blank thickness is very good for the round-fin formation, and the thicker the blank is, the better the round-fin can be formed; and also When both the punch-blank interface and the die-blank interface have the same value of friction factor, the larger value of friction factor is in favor of round-fin forming, the further investigation reveals that the friction at the punch-blank interface has more significant effect on preventing the initiation of flow-through compared with the friction at the die-blank interface, which implies that the punch-blank interface has more significant effect on the material flow in the formation of round-fin. Meanwhile, The tooling structure with counterpressure is helpful to the formation of round-fin heat sink, which not only ensures the height of each round-fin on the heat sink is uniform but also retards the initiation of flow-through on the reverse side of round-fin. In addition, the experiments of press forging process were conducted to validate the finite element analysis, and the simulation results are in good agreement with the experimental data.

  16. Laser Spectroscopy of GdPO4 . nH2O:Eu Nanomaterials.

    PubMed

    Lu, Shaozhe; Zhang, Jiahua; Zhang, Jishen; Shulin, Zhang E; Zhao, Haifeng; Luo, Yongshi

    2016-04-01

    One-dimensional GdPO4 . nH2O:Eu nanowires and nanorods of different sizes and the same structure were synthesized by hydrothermal method. Nanowire and nanorods had width and length of about 10 nm/50 nm and 80 nm/1 µm, respectively. Adjusting reaction system PH value by adding alkali metal NaOH, the size and shape of the product can be tuned. The high resolution spectra, excitation spectra, and laser selective excitation spectra at low temperature were determined. Nanorod compared with nanowire, photoluminescence was enhanced, and the excitation spectrum and laser selective excitation spectra were broadened. These results suggest that Eu3+ in GdPO4 . nH20 nanorod and nanowire were located in different local environments. PMID:27451675

  17. Extrinsic anomalous Hall effect in epitaxial Mn{sub 4}N films

    SciTech Connect

    Meng, M.; Wu, S. X. Ren, L. Z.; Zhou, W. Q.; Wang, Y. J.; Wang, G. L.; Li, S. W.

    2015-01-19

    Anomalous Hall effect (AHE) in ferrimagnetic Mn{sub 4}N epitaxial films grown by molecular-beam epitaxy is investigated. The longitudinal conductivity σ{sub xx} is within the superclean regime, indicating Mn{sub 4}N is a highly conducting material. We further demonstrate that the AHE signal in 40-nm-thick films is mainly due to the extrinsic contributions based on the analysis fitted by ρ{sub AH}=a′ρ{sub xx0}+bρ{sub xx}{sup 2} and σ{sub AH}∝σ{sub xx}. Our study not only provide a strategy for further theoretical work on antiperovskite manganese nitrides but also shed promising light on utilizing their extrinsic AHE to fabricate spintronic devices.

  18. Search for coupling in ferromagnetic/superconducting multilayers: Fe{sub 4}N/NbN

    SciTech Connect

    Mattson, J.E.; Potter, C.D.; Conover, M.J.; Sowers, C.H.; Bader, S.D.

    1997-09-01

    Structural, magnetic, and superconducting properties of ferromagnetic/superconducting multilayers of Fe{sub 4}N/NbN are examined. The onset of superconductivity occurs at NbN layer thickness of {approximately}100 {Angstrom}. Below this thickness ferromagnetism of the Fe{sub 4}N layers is observed. Above this thickness superconductivity of the NbN is also observed, but there is no evidence for interlayer magnetic or superconductive coupling. The results are used in the formulation of guidelines for future searches of novel interlayer coupling phenomena. The superconducting critical field curves are reasonably well described within the framework of the theory for ferromagnetic/superconducting multilayers. {copyright} {ital 1997 American Vacuum Society.}

  19. Structure determination of (Fe3O4)n+(n = 1 - 3) clusters via DFT

    NASA Astrophysics Data System (ADS)

    Li, Yanhua; Cai, Congzhong; Zhao, Chengjun; Gu, Yonghong

    2016-07-01

    In virtue of the particle swarm optimization (PSO) algorithm, the global minimum candidate structures with the lowest energy for (Fe3O4)n(n = 1 - 3) clusters were obtained by first-principles structural searches. The geometric structures and spin configurations of three cationic (Fe3O4)n+(n = 1 - 3) clusters have been identified for the first time by comparing the experimental IR spectra with the calculated results from density functional theory by using different exchange-correlation functionals. It is found that the lowest energy structures of these clusters are of a shape of hat, boat and tower, respectively, with a ferrimagnetic arrangement of spins, and M06L functional is more suitable for Fe3O4 clusters than other ones.

  20. 4'''-N-demethylspiramycin derivatives: synthesis and evaluation of effectiveness against drug-resistant bacteria.

    PubMed

    Sunazuka, Toshiaki; Shudo, Hiroko; Nagai, Kenichiro; Yoshida, Kiminari; Yamaguchi, Yukie; Hanaki, Hideaki; Omura, Satoshi

    2008-03-01

    18-amino-4''-O-benzoyl-4'''-N-demethyl-18-deoxospiramycins were designed and synthesized. Synthetic strategy involved selective demethylation of the dimethylamino group in forosamine, benzoylation of the hydroxyl group at the C4'' position and reductive N-amination of the formyl group. Antibacterial characteristics of spiramycin derivatives were tested. The derivatives exhibited promising activity against drug-resistant bacterial strains. PMID:18503196

  1. Bu4N+ alkoxide-initiated/autocatalytic addition reactions with organotrimethylsilanes.

    PubMed

    Das, Manas; O'Shea, Donal F

    2014-06-20

    The use of Me3SiO(-)/Bu4N(+) as a general activator of organotrimethylsilanes for addition reactions has been established. The broad scope of the method offers trimethylsilanes (including acetate, allyl, propargyl, benzyl, dithiane, heteroaryl, and aryl derivatives) as bench-stable organometallics that can be readily utilized as carbanion equivalents for synthesis. Reactions are achieved at rt without the requirement of specialized precautions that are commonplace for other organometallics.

  2. Nqrs Data for C8H12BCuF4N4 (Subst. No. 1102)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for C8H12BCuF4N4 (Subst. No. 1102)

  3. Anomalous Hall effects in pseudo-single-crystal γ'-Fe4N thin films

    NASA Astrophysics Data System (ADS)

    Kabara, Kazuki; Tsunoda, Masakiyo; Kokado, Satoshi

    2016-05-01

    The anomalous Hall effects (AHE) were investigated at various temperatures for the pseudo-single-crystal Fe4N films, deposited on MgO substrates with changing the degree of order (S) of the nitrogen site. Both the anomalous Hall resistivity and the longitudinal resistivity simply decrease with lowering temperature for all the specimens. The AHE of the Fe4N films is presumed to arise from an intrinsic mechanism because of the relationship between the anomalous Hall resistivity and longitudinal resistivity. The anomalous Hall conductivity, σAH, exhibits a specific behavior at low temperature. In the case of the film with S = 0.93, the σAH drastically drops below 50 K, while it simply increases with lowering temperature in the range of 50-300 K. This low-temperature anomaly decays with decreasing S of the film and nearly vanishes in the films with low S. The threshold temperature and the dependence on S of the low-temperature anomaly of the σAH well correspond to those of the anisotropic magnetoresistance effects in the Fe4N films, reported in the literatures. From these results, it is suggested that the low-temperature anomaly of the σAH originates from the crystal field effect which reflects the structural transformation from a cubic to a tetragonal symmetry below 50 K and provides a modulation of the orbital angular momentum of the 3d orbitals at the Fermi level.

  4. Nano-crystalline silicon solar cell architecture with absorption at the classical 4n2 limit

    SciTech Connect

    Biswas, Rana; Xu, Chun

    2011-07-04

    We develop a periodically patterned conformal photonic-plasmonic crystal based solar architecture for a nano-crystalline silicon solar cell, through rigorous scattering matrix simulations. The solar cell architecture has a periodic array of tapered silver nano-pillars as the back-reflector coupled with a conformal periodic structure at the top of the cell. The absorption and maximal current, averaged over the entire range of wavelengths, for this solar cell architecture is at the semi-classical 4n{sup 2} limit over a range of common thicknesses (500-1500 nm) and slightly above the 4n{sup 2} limit for a 500 nm nc-Si cell. The absorption exceeds the 4n{sup 2} limit, corrected for reflection loss at the top surface. The photonic crystal cell current is enhanced over the flat Ag back-reflector by 60%, for a thick 1000 nm nc-Si layer, where predicted currents exceed 31 mA/cm{sup 2}. The conformal structure at the top surface focuses light within the absorber layer. There is plasmonic concentration of light, with intensity enhancements exceeding 7, near the back reflector that substantially enhances absorption.

  5. A Comparison between the Properties of Solid Cylinders and Tube Products in Multi-Pass Hot Radial Forging Using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Abedian, A.; Poursina, M.; Golestanian, H.

    2007-05-01

    Radial forging is an open die forging process used for reducing the diameter of shafts, tubes, stepped shafts and axels, and creating internal profiles for tubes such as rifling of gun barrels. In this work, a comprehensive study of multi-pass hot radial forging of short hollow and solid products are presented using 2-D axisymmetric finite element simulation. The workpiece is modeled as an elastic-viscoplastic material. A mixture of Coulomb law and constant limit shear is used to model the die-workpiece and mandrel-workpiece contacts. Thermal effects are also taken in to account. Three-pass radial forging of solid cylinders and tube products are considered. Temperature, stress, strain and metal flow distribution are obtained in each pass through thermo-mechanical simulation. The numerical results are compared with available experimental data and are in good agreement with them.

  6. Influence of Hot forging on Tribological behavior of Al6061-TiB2 In-situ composites

    NASA Astrophysics Data System (ADS)

    Pradeep kumar, G. S.; Keshavamurthy, R.; kuppahalli, Prabhakar; kumari, Prachi

    2016-09-01

    Al6061-TiB2 metal matrix composite was fabricated by stir casting technique via in-situ reaction, using mixture of Al6061 alloy, Potassium tetraflouroborate salt (KBF4) and tetraflourotitanate (K2TiF6). The cast composites were processed to hot forging, SEM studies; X- ray Diffraction studies (XRD), Microhardness and Dry friction and wear tests. Pin on disc type machine was used to perform tribological tests over a load range of 20-100N and sliding velocities of 0.314-1.57m/s. SEM and XRD studies confirms formation of fine in-situ TiB2 particles. Composites exhibit higher Microhardness, improved wear resistance and Lower COF with formation of TiB2 particles when compared with the unreinforced alloy. Compared to cast alloy and its Composites, forged alloy and its composites show superior Tribological behavior under similar test conditions.

  7. Search for evidence of C4N2 on Titan with new spectroscopic data

    NASA Astrophysics Data System (ADS)

    Jolly, A.; Benilan, Y.; Fayt, A.; Nixon, C.; Jennings, D.; Anderson, C.; Bjoraker, G.

    2013-09-01

    The Composite Infrared Spectrometer (CIRS) onboard Cassini has recorded spectra in the far and mid-infrared since 2004 with a spectral resolution of up to 0.5 cm-1. Mismatch between observed spectra and model spectra obtained from the available line lists has led us to study the spectroscopic parameters of HC3N, C4H2 and C2N2, the longest gas phase carbon chains observed so far on Titan. Band intensities, hot band intensities, and line lists were systematically verified by comparison with new laboratory spectra. Erroneous band intensities as well as an absence or shortage of hot band transitions in the line lists leading to model-data mismatches and inaccurate quantifications have been found. Improvement in the spectroscopic parameters has led to the detection of 13C isotopologues of HC3N [1] and C4H2 [2]. The study on C2N2 opens the way to the detection of 15N isotopologues whose abundances could give some clues to understand the origin and the evolution of Titan's atmosphere [3]. Also, the higher accuracy of spectroscopic data used to model CIRS spectra will facilitate the search for longer carbon chains on Titan such as HC5N, C6H2 and C4N2. Our recent measurements obtained at the SOLEIL synchrotron far infrared beam line of band intensities of C4N2 in the far and mid infrared domain have shown strong discrepancies with previous results [4]. Following the intensity measurements, a careful analysis of high resolution data has led to the first line lists for C4N2, which gives us the chance to determine precise abundance upper limits of this molecule in Titan's atmosphere.

  8. Vibrational and multinuclear NMR spectra of anionic mercuriomethanes [CH 4-n(HgX) n] n-

    NASA Astrophysics Data System (ADS)

    Breitinger, D. K.; Krumphanzl, U.; Moll, M.

    1990-03-01

    Vibrational spectra of solid sodium sulfitomercuriomethanates Na n[CH 4-n(HgSO 3) n]·nH 2O (2 ≤ and ≤ 4) exhibit high frequencies of the valence vibrations ν as(SO 3) > ν s(SO 3) (average 1057 cm -1) with big differences ν as - ν s (mean 104 cm -1), and ν(HgS) vibrations in the 200 to 230 cm -1 range, thus indicating S-coordinated sulfite ligands. Force field calculations for the ion [C(HgSO 3) 4] 4- yield high force constants K(S-O) = 605 N/m, K(Hg-S) = 258 N/m, and even K(C-Hg) = 181 N/m.- For thiosulfatomercuriomethanates [CH 4-n(HgS 2O 3] n- (1 ≤ n ≤ 4) in aqueous solutions Raman spectra suggest S-coordination with high ν as(SO 3) and ν s(SO 3) (average 1130 cm -1), and low ν(S-S) (˜420 cm -1) frequencies, and strong ν(Hg-S) bands (˜250 cm -1). From 1H, 13C and 199Hg NMR data is concluded that the CHg bond strengths in the series decrease on a lower level than in other mercuriomethanes.- On the whole, the electronic properties of the peripheral ligands X in the mercuriomethanes CH 4-n(HgX) n seem to be more important for the CHg bond strengths than the total charge.

  9. The Radiative Transfer Of CH{sub 4}-N{sub 2} Plasma Arc

    SciTech Connect

    Benallal, R.; Liani, B.

    2008-09-23

    Any physical modelling of a circuit-breaker arc therefore requires an understanding of the radiated energy which is taken into account in the form of a net coefficient. The evaluation of the net emission coefficient is performed by the knowledge of the chemical plasma composition and the resolution of the radiative transfer equation. In this paper, the total radiation which escapes from a CH{sub 4}-N{sub 2} plasma is calculated in the temperature range between 5000 and 30000K on the assumption of a local thermodynamic equilibrium and we have studied the nitrogen effect in the hydrocarbon plasmas.

  10. Critical fields of Fe{sub 4}N/NbN ferromagnetic/superconducting multilayers

    SciTech Connect

    Mattson, J.E.; Potter, C.D.; Conover, M.J.; Sowers, C.H.; Bader, S.D.

    1997-01-01

    Structural, magnetic, and superconducting properties of ferromagnetic/superconducting multilayers of Fe{sub 4}N/NbN are explored for a variety of thickness combinations. The superconducting properties show that 11 {Angstrom} ferromagnetic layers are sufficient to decouple the superconducting layers and to yield anisotropic behavior. The upper critical field data are well described by theory for ferromagnetic/superconducting multilayers. This analysis yields an interfacial parameter which characterizes the electron scattering at the ferromagnetic/superconducting boundary. {copyright} {ital 1997} {ital The American Physical Society}

  11. 4-N,N-Dimethylaminopyridine promoted selective oxidation of methyl aromatics with molecular oxygen.

    PubMed

    Zhang, Zhan; Gao, Jin; Wang, Feng; Xu, Jie

    2012-03-30

    4-N,N-Dimethylaminopyridine (DMAP) as catalyst in combination with benzyl bromide was developed for the selective oxidation of methyl aromatics. DMAP exhibited higher catalytic activity than other pyridine analogues, such as 4-carboxypyridine, 4-cyanopyridine and pyridine. The sp3 hybrid carbon-hydrogen (C-H) bonds of different methyl aromatics were successfully oxygenated with molecular oxygen. The real catalyst is due to the formation of a pyridine onium salt from the bromide and DMAP. The onium salt was well characterized by NMR and the reaction mechanism was discussed.

  12. Diffusion and separation of CH4/N2 in pillared graphene nanomaterials: A molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Zhou, Sainan; Lu, Xiaoqing; Wu, Zhonghua; Jin, Dongliang; Guo, Chen; Wang, Maohuai; Wei, Shuxian

    2016-09-01

    Diffusion and separation of CH4/N2 in pillared graphene were investigated by molecular dynamics. The pillared graphene with (6, 6) carbon nanotube (CNT) exhibited the higher diffusion and selectivity of CH4 over N2 than that with (7, 7) CNT due to the cooperative effect of pore topological characteristics and interaction energy. The stronger interaction facilitated CH4 to enter CNT prior to N2, and higher pressure promoted CH4 to pass CNT more easily. The relative concentrations profiles showed that CH4 reached equilibrium state faster than N2 at low pressure. Our results highlight potential use of pillared graphene in gas purification and separation.

  13. Laser pyrolysis fabrication of ferromagnetic gamma'-Fe4N and FeC nanoparticles

    NASA Technical Reports Server (NTRS)

    Grimes, C. A.; Qian, D.; Dickey, E. C.; Allen, J. L.; Eklund, P. C.

    2000-01-01

    Using the laser pyrolysis method, single phase gamma'-Fe4N nanoparticles were prepared by a two step method involving preparation of nanoscale iron oxide and a subsequent gas-solid nitridation reaction. Single phase Fe3C and Fe7C3 could be prepared by laser pyrolysis from Fe(CO)5 and 3C2H4 directly. Characterization techniques such as XRD, TEM and vibrating sample magnetometer were used to measure phase structure, particle size and magnetic properties of these nanoscale nitride and carbide particles. c2000 American Journal of Physics.

  14. Hydrogeology and ground-water quality of Valley Forge National Historical Park, Montgomery County, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.; McManus, B. Craig

    1996-01-01

    Valley Forge National Historical Park is just southwest of the Commodore Semiconductor Group (CSG) National Priorities List (Superfund) Site, a source of volatile organic compounds (VOC's) in ground water. The 7.5-square-mile study area includes the part of the park in Lower Providence and West Norriton Townships in Montgomery County, Pa., and surrounding vicinity. The park is underlain by sedimentary rocks of the Upper Triassic age stockton Formation. A potentiometric-surface map constructed from water levels measured in 59 wells shows a cone of depression, approximately 0.5 mile in diameter, centered near the CSG Site. The cone of depression is caused by the pumping of six public supply wells. A ground-water divide between the cone of depression and Valley Forge National Historical Park provides a hydraulic barrier to the flow of ground water and contaminants from the CSG Site to the park. If pumping in the cone of depression was to cease, water levels would recover, and the ground-water divide would shift to the north. A hydraulic gradient between the CSG Site and the Schuylkill River would be established, causing contaminated ground water to flow to the park. Water samples were collected from 12 wells within the park boundary and 9 wells between the park boundary and the ground-water divide to the north of the park. All water samples were analyzed for physical properties (field determinations), nutrients, common ions, metals and other trace constituents, and VOC's. Water samples from the 12 wells inside the park boundary also were analyzed for pesticides. Concentrations of inorganic constituents in the water samples did not exceed U.S. Environmental Protection Agency maximum contaminant levels. Very low concentrations of organic compounds were detected in some of the water samples. VOC's were detected in water from 76 percent of the wells sampled; the maximum concentration detected was 5.8 micrograms per liter of chloroform. The most commonly detected VOC was

  15. Simulations and Experiments of Hot Forging Design and Evaluation of the Aircraft Landing Gear Barrel Al Alloy Structure

    NASA Astrophysics Data System (ADS)

    Ram Prabhu, T.

    2016-04-01

    In the present study, the hot forging design of a typical landing gear barrel was evolved using finite element simulations and validated with experiments. A DEFORM3D software was used to evolve the forging steps to obtain the sound quality part free of defects with minimum press force requirements. The hot forging trial of a barrel structure was carried out in a 30 MN hydraulic press based on the simulation outputs. The tensile properties of the part were evaluated by taking samples from all three orientations (longitudinal, long transverse, short transverse). The hardness and microstructure of the part were also investigated. To study the soundness of the product, fluorescent penetrant inspection and ultrasonic testing were performed in order to identify any potential surface or internal defects in the part. From experiments, it was found that the part was formed successfully without any forging defects such as under filling, laps, or folds that validated the effectiveness of the process simulation. The tensile properties of the part were well above the specification limit (>10%) and the properties variation with respect to the orientation was less than 2.5%. The part has qualified the surface defects level of Mil Std 1907 Grade C and the internal defects level of AMS 2630 Class A (2 mm FBh). The microstructure shows mean grain length and width of 167 and 66 µm in the longitudinal direction. However, microstructure results revealed that the coarse grain structure was observed on the flat surface near the lug region due to the dead zone formation. An innovative and simple method of milling the surface layer after each pressing operation was applied to solve the problem of the surface coarse grain structure.

  16. Effect of Nano-Scale and Micro-Scale Yttria Reinforcement on Powder Forged AA-7075 Composites

    NASA Astrophysics Data System (ADS)

    Joshi, Tilak C.; Prakash, U.; Dabhade, Vikram V.

    2016-05-01

    The present investigation deals with the development of AA-7075 metal matrix composites reinforced with nano yttria particles (0.1 to 3 vol.%) and micron yttria particles (1 to 15 vol.%) by powder forging. Matrix powders (AA-7075) and reinforcement powders (yttria) were blended, cold compacted, sintered under pure nitrogen, and finally hot forged in a closed floating die. The hot forged samples were artificially age hardened at 121 °C for various time durations to determine the peak aging time. The mechanical properties in the peak-aged condition as well as density and microstructure were determined and correlated with the reinforcement size and content. The nano composites exhibited a well-densified structure as well as better hardness and tensile/compressive strength as compared to micro-scale composites. The mechanical properties in nano-scale composites peaked at 0.5 vol.% yttria addition while for micro-scale composites these properties peaked at 5 vol.% yttria addition.

  17. Effect of solution treatment on stress corrosion cracking behavior of an as-forged Mg-Zn-Y-Zr alloy

    NASA Astrophysics Data System (ADS)

    Wang, S. D.; Xu, D. K.; Wang, B. J.; Sheng, L. Y.; Han, E. H.; Dong, C.

    2016-07-01

    Effect of solid solution treatment (T4) on stress corrosion cracking (SCC) behavior of an as-forged Mg-6.7%Zn-1.3%Y-0.6%Zr (in wt.%) alloy has been investigated using slow strain rate tensile (SSRT) testing in 3.5 wt.% NaCl solution. The results demonstrated that the SCC susceptibility index (ISCC) of as-forged samples was 0.95 and its elongation-to-failure (εf) was only 1.1%. After T4 treatment, the SCC resistance was remarkably improved. The ISCC and εf values of T4 samples were 0.86 and 3.4%, respectively. Fractography and surface observation indicated that the stress corrosion cracking mode for as-forged samples was dominated by transgranular and partially intergranular morphology, whereas the cracking mode for T4 samples was transgranular. In both cases, the main cracking mechanism was associated with hydrogen embrittlement (HE). Through alleviating the corrosion attack of Mg matrix, the influence of HE on the SCC resistance of T4 samples can be greatly suppressed.

  18. Effect of solution treatment on stress corrosion cracking behavior of an as-forged Mg-Zn-Y-Zr alloy.

    PubMed

    Wang, S D; Xu, D K; Wang, B J; Sheng, L Y; Han, E H; Dong, C

    2016-07-08

    Effect of solid solution treatment (T4) on stress corrosion cracking (SCC) behavior of an as-forged Mg-6.7%Zn-1.3%Y-0.6%Zr (in wt.%) alloy has been investigated using slow strain rate tensile (SSRT) testing in 3.5 wt.% NaCl solution. The results demonstrated that the SCC susceptibility index (ISCC) of as-forged samples was 0.95 and its elongation-to-failure (εf) was only 1.1%. After T4 treatment, the SCC resistance was remarkably improved. The ISCC and εf values of T4 samples were 0.86 and 3.4%, respectively. Fractography and surface observation indicated that the stress corrosion cracking mode for as-forged samples was dominated by transgranular and partially intergranular morphology, whereas the cracking mode for T4 samples was transgranular. In both cases, the main cracking mechanism was associated with hydrogen embrittlement (HE). Through alleviating the corrosion attack of Mg matrix, the influence of HE on the SCC resistance of T4 samples can be greatly suppressed.

  19. Effect of solution treatment on stress corrosion cracking behavior of an as-forged Mg-Zn-Y-Zr alloy.

    PubMed

    Wang, S D; Xu, D K; Wang, B J; Sheng, L Y; Han, E H; Dong, C

    2016-01-01

    Effect of solid solution treatment (T4) on stress corrosion cracking (SCC) behavior of an as-forged Mg-6.7%Zn-1.3%Y-0.6%Zr (in wt.%) alloy has been investigated using slow strain rate tensile (SSRT) testing in 3.5 wt.% NaCl solution. The results demonstrated that the SCC susceptibility index (ISCC) of as-forged samples was 0.95 and its elongation-to-failure (εf) was only 1.1%. After T4 treatment, the SCC resistance was remarkably improved. The ISCC and εf values of T4 samples were 0.86 and 3.4%, respectively. Fractography and surface observation indicated that the stress corrosion cracking mode for as-forged samples was dominated by transgranular and partially intergranular morphology, whereas the cracking mode for T4 samples was transgranular. In both cases, the main cracking mechanism was associated with hydrogen embrittlement (HE). Through alleviating the corrosion attack of Mg matrix, the influence of HE on the SCC resistance of T4 samples can be greatly suppressed. PMID:27387817

  20. Dependence of Microstructure on Solution and Aging Treatment for Near-β Forged TA15 Ti-Alloy

    NASA Astrophysics Data System (ADS)

    Sun, Zhichao; Wu, Huili; Ma, Xiaoyong; Mao, Xiaojun; Yang, He

    2016-10-01

    For TA15 Ti-alloy, a tri-modal microstructure was obtained via near-β forging combined with solution and aging treatment (SAT) with a short time of air cooling (AC) during forgings transferring before water quenching (WQ). The influence of SAT conditions on final microstructures via 970 °C/0.1 s-1/60%/(AC + WQ) and SAT was investigated. Solution temperature determined the proportion of α and β phases and mainly affected the volume fraction of secondary lamellar α. Solution time mainly influenced the morphology of secondary lamellar α. Solution cooling method was the main factor affecting the thickness of lamellar α. Lower cooling rate resulted in more and thicker lamellar α. Aging treatment had little influence on the volume fraction, size, and morphology of each phase in the microstructure. The main function of aging treatment was to homogenize and stabilize the microstructure. The volume fraction and thickness of lamellar α were increased, and the distribution homogeneity became better during aging. Under the given forging condition, the reasonable solution and aging conditions to obtain tri-modal microstructure were determined as 930 °C/1~2 h/AC + 550~600 °C/5 h/AC.

  1. Microstructure characterization and mechanical behaviors of a hot forged high Nb containing PM-TiAl alloy

    SciTech Connect

    Li, Jianbo; Liu, Yong; Liu, Bin; Wang, Yan; Liang, Xiaopeng; He, Yuehui

    2014-09-15

    In this work, the effects of deformation on the microstructure and mechanical behaviors of TiAl alloy were investigated. Deformed microstructure observation was characterized by scanning electron microscopy, electron back scattered diffraction technique, transmission electron microscopy and DEFORM-3D software. Results indicated that the core area of the TiAl pancake was characterized by completely dynamically recrystallized microstructures, however some residual lamellar colonies can be observed near the edge area, which are primarily caused by a temperature drop and inhomogenous plastic flow. The main softening mechanism is dynamic recrystallization of γ grains. The as-forged alloy exhibited excellent mechanical properties at both room temperature and high temperature. Tensile test results showed that the ultimate tensile strength of the alloy increased from 832 MPa at room temperature to 853 MPa at 700 °C, while the elongation increased from 2.7% to 17.8%. Even at the temperature of 850 °C, the ultimate tensile strength maintained 404 MPa, and the elongation increased to 75%. The as-forged alloy also exhibited remarkable low-temperature superplasticity at 850 °C, with an elongation of 120%. - Highlights: • The core area of the TiAl pancake was characterized by DRX microstructure. • The elongation at RT is higher than that of other high Nb-containing TiAl alloys. • The forged alloy exhibited low-temperature superplasticity at 850 °C.

  2. Effect of solution treatment on stress corrosion cracking behavior of an as-forged Mg-Zn-Y-Zr alloy

    PubMed Central

    Wang, S. D.; Xu, D. K.; Wang, B. J.; Sheng, L. Y.; Han, E. H.; Dong, C.

    2016-01-01

    Effect of solid solution treatment (T4) on stress corrosion cracking (SCC) behavior of an as-forged Mg-6.7%Zn-1.3%Y-0.6%Zr (in wt.%) alloy has been investigated using slow strain rate tensile (SSRT) testing in 3.5 wt.% NaCl solution. The results demonstrated that the SCC susceptibility index (ISCC) of as-forged samples was 0.95 and its elongation-to-failure (εf) was only 1.1%. After T4 treatment, the SCC resistance was remarkably improved. The ISCC and εf values of T4 samples were 0.86 and 3.4%, respectively. Fractography and surface observation indicated that the stress corrosion cracking mode for as-forged samples was dominated by transgranular and partially intergranular morphology, whereas the cracking mode for T4 samples was transgranular. In both cases, the main cracking mechanism was associated with hydrogen embrittlement (HE). Through alleviating the corrosion attack of Mg matrix, the influence of HE on the SCC resistance of T4 samples can be greatly suppressed. PMID:27387817

  3. [Research on the temperature field detection method of hot forging based on long-wavelength infrared spectrum].

    PubMed

    Zhang, Yu-Cun; Wei, Bin; Fu, Xian-Bin

    2014-02-01

    A temperature field detection method based on long-wavelength infrared spectrum for hot forging is proposed in the present paper. This method combines primary spectrum pyrometry and three-stage FP-cavity LCTF. By optimizing the solutions of three group nonlinear equations in the mathematical model of temperature detection, the errors are reduced, thus measuring results will be more objective and accurate. Then the system of three-stage FP-cavity LCTF was designed on the principle of crystal birefringence. The system realized rapid selection of any wavelength in a certain wavelength range. It makes the response of the temperature measuring system rapid and accurate. As a result, without the emissivity of hot forging, the method can acquire exact information of temperature field and effectively suppress the background light radiation around the hot forging and ambient light that impact the temperature detection accuracy. Finally, the results of MATLAB showed that the infrared spectroscopy through the three-stage FP-cavity LCTF could meet the requirements of design. And experiments verified the feasibility of temperature measuring method. Compared with traditional single-band thermal infrared imager, the accuracy of measuring result was improved. PMID:24822408

  4. Dependence of Microstructure on Solution and Aging Treatment for Near-β Forged TA15 Ti-Alloy

    NASA Astrophysics Data System (ADS)

    Sun, Zhichao; Wu, Huili; Ma, Xiaoyong; Mao, Xiaojun; Yang, He

    2016-08-01

    For TA15 Ti-alloy, a tri-modal microstructure was obtained via near-β forging combined with solution and aging treatment (SAT) with a short time of air cooling (AC) during forgings transferring before water quenching (WQ). The influence of SAT conditions on final microstructures via 970 °C/0.1 s-1/60%/(AC + WQ) and SAT was investigated. Solution temperature determined the proportion of α and β phases and mainly affected the volume fraction of secondary lamellar α. Solution time mainly influenced the morphology of secondary lamellar α. Solution cooling method was the main factor affecting the thickness of lamellar α. Lower cooling rate resulted in more and thicker lamellar α. Aging treatment had little influence on the volume fraction, size, and morphology of each phase in the microstructure. The main function of aging treatment was to homogenize and stabilize the microstructure. The volume fraction and thickness of lamellar α were increased, and the distribution homogeneity became better during aging. Under the given forging condition, the reasonable solution and aging conditions to obtain tri-modal microstructure were determined as 930 °C/1~2 h/AC + 550~600 °C/5 h/AC.

  5. Effect of solution treatment on the fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy

    PubMed Central

    Wang, S. D.; Xu, D. K.; Wang, B. J.; Han, E. H.; Dong, C.

    2016-01-01

    Through investigating and comparing the fatigue behavior of an as-forged Mg-6.7Zn-1.3Y-0.6Zr (wt.%) alloy before and after solid solution treatment (T4) in laboratory air, the effect of T4 treatment on fatigue crack initiation was disclosed. S-N curves illustrated that the fatigue strength of as-forged samples was 110 MPa, whereas the fatigue strength of T4 samples was only 80 MPa. Observations to fracture surfaces demonstrated that for as-forged samples, fatigue crack initiation sites were covered with a layer of oxide film. However, due to the coarse grain structure and the dissolution of MgZn2 precipitates, the activation and accumulation of {10–12} twins in T4 samples were much easier, resulting in the preferential fatigue crack initiation at cracked twin boundaries (TBs). Surface characterization demonstrated that TB cracking was mainly ascribed to the incompatible plastic deformation in the twinned area and nearby α-Mg matrix. PMID:27032532

  6. Effect of solution treatment on the fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy

    NASA Astrophysics Data System (ADS)

    Wang, S. D.; Xu, D. K.; Wang, B. J.; Han, E. H.; Dong, C.

    2016-04-01

    Through investigating and comparing the fatigue behavior of an as-forged Mg-6.7Zn-1.3Y-0.6Zr (wt.%) alloy before and after solid solution treatment (T4) in laboratory air, the effect of T4 treatment on fatigue crack initiation was disclosed. S-N curves illustrated that the fatigue strength of as-forged samples was 110 MPa, whereas the fatigue strength of T4 samples was only 80 MPa. Observations to fracture surfaces demonstrated that for as-forged samples, fatigue crack initiation sites were covered with a layer of oxide film. However, due to the coarse grain structure and the dissolution of MgZn2 precipitates, the activation and accumulation of {10–12} twins in T4 samples were much easier, resulting in the preferential fatigue crack initiation at cracked twin boundaries (TBs). Surface characterization demonstrated that TB cracking was mainly ascribed to the incompatible plastic deformation in the twinned area and nearby α-Mg matrix.

  7. Modern Steel Framed Schools.

    ERIC Educational Resources Information Center

    American Inst. of Steel Construction, Inc., New York, NY.

    In view of the cost of structural framing for school buildings, ten steel-framed schools are examined to review the economical advantages of steel for school construction. These schools do not resemble each other in size, shape, arrangement or unit cost; some are original in concept and architecture, and others are conservative. Cost and…

  8. Steel Industry Wastes.

    ERIC Educational Resources Information Center

    Schmidtke, N. W.; Averill, D. W.

    1978-01-01

    Presents a literature review of wastes from steel industry, covering publications of 1976-77. This review covers: (1) coke production; (2) iron and steel production; (3) rolling operations; and (4) surface treatment. A list of 133 references is also presented. (NM)

  9. The Steel Band.

    ERIC Educational Resources Information Center

    Weil, Bruce

    1996-01-01

    Describes studying the steel drum, an import from Trinidad, as an instrument of intellectual growth. Describes how developing a steel drum band provided Montessori middle school students the opportunity to experience some important feelings necessary to emotional growth during this difficult age: competence, usefulness, independence, and…

  10. Static hyperpolarizability of the van der Waals complex CH(4)-N(2).

    PubMed

    Kalugina, Yulia N; Buldakov, Mikhail A; Cherepanov, Victor N

    2012-12-15

    The static first hyperpolarizability of the van der Waals CH(4)-N(2) complex was calculated. The calculations were carried out in the approximation of the rigid interacting molecules for a broad range of intermolecular separations (R = 6-40 a(0)) and for six configurations at CCSD(T) level of theory using the correlation consistent aug-cc-pVTZ basis set with the basis set superposition error correction. It was shown that the long-range classical approximation, including the terms up to R(-6), is in a good agreement with ab initio calculations for R > 11 a(0). It was found out that for the family of most stable configurations of the complex, the first hyperpolarizability invariants practically do not change (the changes are less than 0.1%). Under forming the stable van der Waals CH(4)-N(2) complex, the intensity and degree of depolarization of the hyper-Rayleigh scattering are noticeable decreased (by ∼10%) to be compared with the free CH(4) and N(2) molecules. PMID:22903865

  11. EAST ELEVATION, LTV STEEL (FORMERLY REPUBLIC STEEL), 8" BAR MILL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION, LTV STEEL (FORMERLY REPUBLIC STEEL), 8" BAR MILL, BUFFALO PLANT. VIEW LOOKING SOUTHWEST FROM ROLL SHOP. 8" BAR MILL DESIGNED AND BUILT BY DONNER STEEL CO. (PREDECESSOR OF REPUBLIC), 1919-1920. FOR DESCRIPTION OF ORIGINAL MILL SEE "IRON AGE", 116\\4 (23 JULY 1925): 201-204. - LTV Steel, 8-inch Bar Mill, Buffalo Plant, Buffalo, Erie County, NY

  12. The evolving role of health educators in advancing patient safety: forging partnerships and leading change.

    PubMed

    Mercurio, Annette

    2007-04-01

    At least 1.5 million preventable injuries because of adverse drug events occur in the United States each year, according to an Institute of Medicine report. IOM and other organizations at the forefront of health care improvement emphasize that stronger partnerships between patients, their families, and health care providers are necessary to make health care safer. Health educators possess a skill set and an ethical framework that effectively equip them to advance patient and family-centered care and contribute in other significant ways to a safer health care system. Health educators in clinical settings are playing varied and significant roles in advancing patient safety. They are removing barriers to clear communication and forging partnerships between patients, their families, and staff. Health educators are leading patient safety culture change within their institutions and contributing to the shift from provider-centric to patient-centric systems. To expand their impact in improving patient safety, health educators in clinical settings are participating in public awareness campaigns. In seeking to enhance patient safety, health educators face a number of challenges. To successfully manage those, health educators must expand their knowledge, broaden connections, and engage patients and families in meaningful ways.

  13. Forging Links between Human Mental Retardation–Associated CNVs and Mouse Gene Knockout Models

    PubMed Central

    Webber, Caleb; Hehir-Kwa, Jayne Y.; Nguyen, Duc-Quang; de Vries, Bert B. A.; Veltman, Joris A.; Ponting, Chris P.

    2009-01-01

    Rare copy number variants (CNVs) are frequently associated with common neurological disorders such as mental retardation (MR; learning disability), autism, and schizophrenia. CNV screening in clinical practice is limited because pathological CNVs cannot be distinguished routinely from benign CNVs, and because genes underlying patients' phenotypes remain largely unknown. Here, we present a novel, statistically robust approach that forges links between 148 MR–associated CNVs and phenotypes from ∼5,000 mouse gene knockout experiments. These CNVs were found to be significantly enriched in two classes of genes, those whose mouse orthologues, when disrupted, result in either abnormal axon or dopaminergic neuron morphologies. Additional enrichments highlighted correspondences between relevant mouse phenotypes and secondary presentations such as brain abnormality, cleft palate, and seizures. The strength of these phenotype enrichments (>100% increases) greatly exceeded molecular annotations (<30% increases) and allowed the identification of 78 genes that may contribute to MR and associated phenotypes. This study is the first to demonstrate how the power of mouse knockout data can be systematically exploited to better understand genetically heterogeneous neurological disorders. PMID:19557186

  14. Forging Hispanic communities in new destinations: A case study of Durham, NC1

    PubMed Central

    Flippen, Chenoa A.; Parrado, Emilio A.

    2013-01-01

    The Chicago School of urban sociology and its extension in the spatial assimilation model have provided the dominant framework for understanding the interplay between immigrant social and spatial mobility. However, the main tenets of the theory were derived from the experience of pre-war, centralized cities; scholars falling under the umbrella of the Los Angeles school have recently challenged the extent to which they are applicable to the contemporary urban form, which is characterized by sprawling, decentralized, and multi-nucleated development. Indeed, new immigrant destinations, such as those scattered throughout the American Southeast, are both decentralized and lack prior experience with large scale immigration. Informed by this debate this paper traces the formation and early evolution of Hispanic neighborhoods in Durham, NC, a new immigrant destination. Using qualitative data we construct a social history of immigrant neighborhoods and apply survey and census information to examine the spatial pattern of neighborhood succession. We also model the sorting of immigrants across neighborhoods according to personal characteristics. Despite the many differences in urban form and experience with immigration, the main processes forging the early development of Hispanic neighborhoods in Durham are remarkably consistent with the spatial expectations from the Chicago School, though the sorting of immigrants across neighborhoods is more closely connected to family dynamics and political economy considerations than purely human capital attributes. PMID:24482612

  15. Quench-Induced Stresses in AA2618 Forgings for Impellers: A Multiphysics and Multiscale Problem

    NASA Astrophysics Data System (ADS)

    Chobaut, Nicolas; Saelzle, Peter; Michel, Gilles; Carron, Denis; Drezet, Jean-Marie

    2015-05-01

    In the fabrication of heat-treatable aluminum parts such as AA2618 compressor impellers for turbochargers, solutionizing and quenching are key steps to obtain the required mechanical characteristics. Fast quenching is necessary to avoid coarse precipitation as it reduces the mechanical properties obtained after heat treatment. However, fast quenching induces residual stresses that can cause unacceptable distortions during machining. Furthermore, the remaining residual stresses after final machining can lead to unfavorable stresses in service. Predicting and controlling internal stresses during the whole processing from heat treatment to final machining is therefore of particular interest to prevent negative impacts of residual stresses. This problem is multiphysics because processes such as heat transfer during quenching, precipitation phenomena, thermally induced deformations, and stress generation are interacting and need to be taken into account. The problem is also multiscale as precipitates of nanosize form during quenching at locations where the cooling rate is too low. This precipitation affects the local yield strength of the material and thus impacts the level of macroscale residual stresses. A thermomechanical model accounting for precipitation in a simple but realistic way is presented. Instead of modelling precipitation that occurs during quenching, the model parameters are identified using a limited number of tensile tests achieved after representative interrupted cooling paths in a Gleeble machine. The simulation results are compared with as-quenched residual stresses in a forging measured by neutron diffraction.

  16. Seasonal food use by white-tailed deer at Valley Forge National Historical Park, Pennsylvania, USA

    NASA Astrophysics Data System (ADS)

    Cypher, Brian L.; Yahner, Richard H.; Cypher, Ellen A.

    1988-03-01

    Food habits of white-tailed deer ( Odocoileus virginianus) were examined from January to November 1984 via fecal-pellet analysis at Valley Forge National Historical Park (VFNHP), which represents an “island” habitat for deer surrounded by extensive urbanization, in southeastern Pennsylvania. In addition, use of fields by deer was compared to food habits. Herbaceous vegetation (forbs, leaves of woody plants, and conifer needles) was the predominant food type in all seasons except fall. Acorns and graminoids (grasses and sedges) were important food resources in fall and spring, respectively. Use of woody browse (twigs) was similar among seasons. Field use was relatively high during fall, winter without snow cover (<20 cm), and spring when food resources in fields were readily available. In contrast, use of fields was lowest in summer when preferred woodland foods were available and in winter with snow cover when food in fields was not readily accessible. Patterns of food-type use by deer at VFNHP indicate the year-round importance of nonwoody foods and field habitats to deer populations on public lands such as national parks in the northeastern United States.

  17. Forging School-Scientist Partnerships: A Case of Easier Said than Done?

    NASA Astrophysics Data System (ADS)

    Falloon, Garry

    2013-12-01

    Since the early 1980s, a number of initiatives have been undertaken worldwide which have involved scientists and teachers working together in projects designed to support the science learning of students. Many of these have attempted to establish school-scientist partnerships. In these, scientists, teachers, and students formed teams engaged in mutually beneficial science-based activities founded on principles such as equal recognition and input, and shared vision, responsibility and risk. This article uses two partnership programmes run by a New Zealand Science Research Institute, to illustrate the challenges faced by scientists and teachers as they attempted to forge meaningful and effective partnerships. It argues that achieving the theorised position of a shared partnership space at the intersection of the worlds of scientists and teachers is problematic, and that scientists must instead be prepared to penetrate deeply into the world of the classroom when undertaking any such interactions. Findings indicate epistemological differences, curriculum and school systems and issues, and teacher efficacy and science knowledge significantly affect the process of partnership formation. Furthermore, it is argued that a re-thinking of partnerships is needed to reflect present economic and education environments, which are very different to those in which they were originally conceived nearly 30 years ago. It suggests that technology has an important role to play in future partnership interactions.

  18. Biodegradation and utilization of 4-n-nonylphenol by Aspergillus versicolor as a sole carbon and energy source.

    PubMed

    Krupiński, Mariusz; Janicki, Tomasz; Pałecz, Bartłomiej; Długoński, Jerzy

    2014-09-15

    4-n-Nonylphenol (4-n-NP) is an environmental pollutant with endocrine-disrupting activities that is formed during the degradation of nonylphenol polyethoxylates, which are widely used as surfactants. Utilization of 4-n-NP by the filamentous fungus Aspergillus versicolor as the sole carbon and energy source was investigated. By means of gas chromatography-mass spectrometry, we showed that in the absence of any carbon source other than 4-n-NP in the medium, A. versicolor completely removed the xenobiotic (100 mg L(-1)) after 3 d of cultivation. Moreover, mass spectrometric analysis of intracellular extracts led to the identification of eight intermediates. The mineralization of the xenobiotic in cultures supplemented with 4-n-NP [ring-(14)C(U)] as a growth substrate was also assessed. After 3 d of incubation, approximately 50% of the initially applied radioactivity was recovered in the form of (14)CO2, proving that this xenobiotic was completely metabolized and utilized by A. versicolor as a carbon source. Based on microscopic analysis, A. versicolor is capable of germinating spores under such conditions. To confirm these observations, a microcalorimetric method was used. The results show that even the highest amount of 4-n-NP initiates heat production in the fungal samples, proving that metabolic processes were affected by the use of 4-n-NP as an energetic substrate. PMID:25222932

  19. Forging Harmony in the Social Organism: Industry and the Power of Psychometric Techniques

    ERIC Educational Resources Information Center

    Herman, Frederik

    2014-01-01

    This article analyses the initiating role of the steel industry in educational selection by means of psychometric techniques used in the psycho-physiological laboratory associated with a vocational school in Luxembourg founded in 1914. It first considers the origins of, and initial meanings bestowed upon, this first (and perhaps also last)…

  20. Nuclear transmutation in steels

    NASA Astrophysics Data System (ADS)

    Belozerova, A. R.; Shimanskii, G. A.; Belozerov, S. V.

    2009-05-01

    The investigations of the effects of nuclear transmutation in steels that are widely used in nuclear power and research reactors and in steels that are planned for the application in thermonuclear fusion plants, which are employed under the conditions of a prolonged action of neutron irradiation with different spectra, made it possible to study the effects of changes in the isotopic and chemical composition on the tendency of changes in the structural stability of these steels. For the computations of nuclear transmutation in steels, we used a program complex we have previously developed on the basis of algorithms for constructing branched block-type diagrams of nuclide transformations and for locally and globally optimizing these diagrams with the purpose of minimizing systematic errors in the calculation of nuclear transmutation. The dependences obtained were applied onto a Schaeffler diagram for steels used for structural elements of reactors. For the irradiation in fission reactors, we observed only a weak influence of the effects of nuclear transmutation in steels on their structural stability. On the contrary, in the case of irradiation with fusion neutrons, a strong influence of the effects of nuclear transmutation in steels on their structural stability has been noted.

  1. Induction of mouthpart deformities in Chironomus riparius larvae exposed to 4-n-nonylphenol.

    PubMed

    Meregalli, G; Pluymers, L; Ollevier, F

    2001-01-01

    Chironomid mouthpart deformities have often been associated with sediment contamination and are, therefore, currently used to assess sediment quality. Deformities were only occasionally induced in laboratory bioassays. Mouthpart deformities results from a physiological disturbance during larval molting. In the past few years it has been shown that some chemicals can exert negative effects on both vertebrates and invertebrates at the level of endocrine regulation. As insect molting is hormonally regulated, we wanted to test the hypothesis that deformities are induced due to a hormonal disruption in the developmental process. The aim of the present study was to test whether the endocrine disrupter, 4-n-nonylphenol (4NP), induces mouthpart deformities in chironomids. A laboratory bioassay was performed exposing Chironomus riparius larvae to 10, 50 and 100 micrograms l-1 4NP. Survival of the larvae was not affected by the tested concentrations, but the frequency of mentum deformities increased significantly (P < 0.01) after exposure to 4NP. PMID:11202727

  2. Repairing DNA damage in xeroderma pigmentosum: T4N5 lotion and gene therapy.

    PubMed

    Zahid, Sarwar; Brownell, Isaac

    2008-04-01

    Patients with xeroderma pigmentosum (XP) have defective DNA repair and are at a high risk for cutaneous malignancies. Standard treatments for XP are limited in scope and effectiveness. Understanding the molecular etiology of XP has led to the development of novel therapeutic approaches, including enzyme and gene therapies. One new topical treatment utilizing bacteriophage T4 endonuclease 5 (T4N5) in a liposomal lotion is currently in clinical trials and has received a Fast Track designation from the FDA. Gene therapy for XP, while making leaps in preclinical studies, has been slower to develop due to tactical hurdles, but seems to have much potential for future treatment. If these treatments prove effective in lowering the risk of cancer in patients with XP, they may also be found useful in reducing skin cancers in other at-risk patient populations.

  3. Nitrogen Incorporation in CH4-N2 Photochemical Aerosol Produced by Far Ultraviolet Irradiation

    PubMed Central

    Jimenez, Jose L.; Yung, Yuk L.; Toon, Owen B.; Tolbert, Margaret A.

    2012-01-01

    Abstract Nitrile incorporation into Titan aerosol accompanying hydrocarbon chemistry is thought to be driven by extreme UV wavelengths (λ<120 nm) or magnetospheric electrons in the outer reaches of the atmosphere. Far UV radiation (120–200 nm), which is transmitted down to the stratosphere of Titan, is expected to affect hydrocarbon chemistry only and not initiate the formation of nitrogenated species. We examined the chemical properties of photochemical aerosol produced at far UV wavelengths, using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), which allows for elemental analysis of particle-phase products. Our results show that aerosol formed from CH4/N2 photochemistry contains a surprising amount of nitrogen, up to 16% by mass, a result of photolysis in the far UV. The proportion of nitrogenated organics to hydrocarbon species is shown to be correlated with that of N2 in the irradiated gas. The aerosol mass greatly decreases when N2 is removed, which indicates that N2 plays a major role in aerosol production. Because direct dissociation of N2 is highly improbable given the immeasurably low cross section at the wavelengths studied, the chemical activation of N2 must occur via another pathway. Any chemical activation of N2 at wavelengths >120 nm is presently unaccounted for in atmospheric photochemical models. We suggest that reaction with CH radicals produced from CH4 photolysis may provide a mechanism for incorporating N into the molecular structure of the aerosol. Further work is needed to understand the chemistry involved, as these processes may have significant implications for how we view prebiotic chemistry on early Earth and similar planets. Key Words: Titan—Photochemical aerosol—CH4-N2 photolysis—Far UV—Nitrogen activation. Astrobiology 12, 315–326. PMID:22519972

  4. The influence of aluminum and carbon on the abrasion resistance of high manganese steels

    NASA Astrophysics Data System (ADS)

    Buckholz, Samuel August

    Abrasive wear testing of lightweight, austenitic Fe-Mn-Al-C cast steel has been performed in accordance with ASTM G65 using a dry sand, rubber wheel, abrasion testing apparatus. Testing was conducted on a series of Fe-30Mn-XAl-YC-1Si-0.5Mo chemistries containing aluminum levels from 2.9 to 9.5 wt.% and carbon levels from 0.9 to 1.83 wt.%. Solution treated materials having an austenitic microstructure produced the highest wear resistance. Wear resistance decreased with higher aluminum, lower carbon, and higher hardness after age hardening. In the solution treated condition the wear rate was a strong function of the aluminum to carbon ratio and the wear rate increased with a parabolic dependence on the Al/C ratio, which ranged from 1.8 to 10.2. Examination of the surface wear scar revealed a mechanism of plowing during abrasion testing and this method of material removal is sensitive to work hardening rate. Work hardening behavior was determined from tensile tests and also decreased with increasing Al/C ratio and after aging hardening. The loss of wear resistance is related to short range ordering of Al and C in the solution treated materials and kappa-carbide precipitation in age hardened materials and both contribute to planar slip and lower work hardening rates. A high carbon tool steel (W1) and a bainitic low alloy steel (SAE 8620) were also tested for comparison. A lightweight steel containing 6.5 wt.% Al and 1.2 wt.% C has wear resistance comparable to within 5% of the bainitic SAE 8620 steel forging currently used for the Bradley Fighting Vehicle track shoe and this cast Fe-Mn-Al-C steel, at equivalent tensile properties, would be 10% lighter.

  5. AQ4N: an alkylaminoanthraquinone N-oxide showing bioreductive potential and positive interaction with radiation in vivo.

    PubMed Central

    McKeown, S. R.; Hejmadi, M. V.; McIntyre, I. A.; McAleer, J. J.; Patterson, L. H.

    1995-01-01

    AQ4N (1,4-bis([2-(dimethylamino-N-oxide)ethyl]amino)5,8-dihydroxy- anthracene-9,10-dione) is a novel alkylaminoanthraquinone N-oxide which, on reduction, forms a stable DNA affinic cytotoxic compound AQ4. The in vivo anti-tumour efficacy of AQ4N was investigated in B6D2F1 mice bearing the T50/80 mammary carcinoma. The effect of the drug was evaluated in combination with hypobaric hypoxia and with radiation (single and multiple fractions). Systemic toxicity was assessed by weight loss post treatment. This was low for AQ4N and was less than that obtained with the bioreductive drugs, RSU 1069 (1-[3-aziridinyl-2-hydroxypropyl]-2-nitroimidazole) and SR 4233 (Tirapazamine, 3-amino-1,2,4-benzotriazine-1,4-dioxide). The anti-tumour effect of AQ4N was potentiated in vivo by combination with hypobaric hypoxia with a dose enhancement ratio of 5.1. This is consistent with the proposal that AQ4N was reduced in vivo to AQ4, resulting in enhanced anti-tumour toxicity. When AQ4N (200 mg kg-1) was combined with single dose radiation (12 Gy) the drug was shown to have an additive interaction with radiation. This was obtained even if the drug was administered from 4 days before to 6 h after radiation treatment. Equivalent anti-tumour activity was also shown when both AQ4N (200 mg kg-1) and radiation (5 x 3 Gy) were administered in fractionated schedules. In conclusion, AQ4N shows significant potential as a bioreductive drug for combination with fractionated radiotherapy. PMID:7599069

  6. Glass Stronger than Steel

    DOE R&D Accomplishments Database

    Yarris, Lynn

    2011-03-28

    A new type of damage-tolerant metallic glass, demonstrating a strength and toughness beyond that of steel or any other known material, has been developed and tested by a collaboration of researchers from Berkeley Lab and Caltech.

  7. Structural Amorphous Steels

    NASA Astrophysics Data System (ADS)

    Lu, Z. P.; Liu, C. T.; Thompson, J. R.; Porter, W. D.

    2004-06-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist’s dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed.

  8. Forge Welding of Magnesium Alloy to Aluminum Alloy Using a Cu, Ni, or Ti Interlayer

    NASA Astrophysics Data System (ADS)

    Yamagishi, Hideki; Sumioka, Junji; Kakiuchi, Shigeki; Tomida, Shogo; Takeda, Kouichi; Shimazaki, Kouichi

    2015-08-01

    The forge-welding process was examined to develop a high-strength bonding application of magnesium (Mg) alloy to aluminum (Al) alloy under high-productivity conditions. The effect of the insert material on the tensile strength of the joints, under various preheat temperatures and pressures, was investigated by analyzing the reaction layers of the bonded interface. The tensile strengths resulting from direct bonding, using pure copper (Cu), pure nickel (Ni), and pure titanium (Ti) inserts were 56, 100, 119, and 151 MPa, respectively. The maximum joint strength reached 93 pct with respect to the Mg cast billet. During high-pressure bonding, a microscopic plastic flow occurred that contributed to an anchor effect and the generation of a newly formed surface at the interface, particularly prominent with the Ti insert in the form of an oxide layer. The bonded interfaces of the maximum-strength inserts were investigated using scanning electron microscopy-energy-dispersive spectroscopy and electron probe microanalysis. The diffusion reaction layer at the bonded interface consisted of brittle Al-Mg intermetallics having a thickness of approximately 30 μm. In contrast, for the three inserts, the thicknesses of the diffusion reaction layer were infinitely thin. For the pure Ti insert, exhibiting the maximum tensile strength value among the inserts tested, focused ion beam-transmission electron microscopy-EDS analysis revealed a 60-nm-thick Al-Ti reaction layer, which had formed at the bonded interface on the Mg alloy side. Thus, a high-strength Al-Mg bonding method in air was demonstrated, suitable for mass production.

  9. Numerical Simulation of Damage during Forging with Superimposed Hydrostatic Pressure by Active Media

    SciTech Connect

    Behrens, B.-A.; Hagen, T.; Roehr, S.; Sidhu, K. B.

    2007-05-17

    The effective reduction of energy consumption and a reasonable treatment of resources can be achieved by minimizing a component's weight using lightweight metals. In this context, aluminum alloys play a major role. Due to their material-sided restricted formability, the mentioned aluminum materials are difficult to form. The plasticity of a material is ascertained by its maximum forming limit. It is attained, when the deformation causes mechanical damage within the material. Damage of that sort is reached more rapidly, the greater the tensile strength rate in relation to total tension rate. A promising approach of handling these low ductile, high-strength aluminum alloys within a forming process, is forming with a synchronized superposition of comprehensive stress by active media such as by controlling oil pressure. The influence of superimposed hydrostatic pressure on the flow stress was analyzed as well as the formability for different procedures at different hydrostatic pressures and temperature levels. It was observed that flow stress is independent of superimposed hydrostatic pressure. Neither the superimposed pressure has an influence on the plastic deformation, nor does a pressure dependent material hardening due to increasing hydrostatic pressure take place. The formability increases with rising hydrostatic pressure. The relative gain at room temperature and increase of the superimposed pressure from 0 to 600 bar for tested materials was at least 140 % and max. 220 %. Therefore in this paper, based on these experimental observations, it is the intended to develop a numerical simulation in order to predict ductile damage that occurs in the bulk forging process with superimposed hydrostatic pressure based Lemaitre's damage model.

  10. Life after Steel

    ERIC Educational Resources Information Center

    Mangan, Katherine

    2013-01-01

    Bobby Curran grew up in a working-class neighborhood in Baltimore, finished high school, and followed his grandfather's steel-toed bootprints straight to Sparrows Point, a 3,000-acre sprawl of industry on the Chesapeake Bay. College was not part of the plan. A gritty but well-paying job at the RG Steel plant was Mr. Curran's ticket to a secure…

  11. Waste product profile: Steel cans

    SciTech Connect

    Miller, C.

    1996-07-01

    Steel cans are made from tinplate steel, which is produced in basic oxygen furnaces. A thin layer of tin is applied to the can`s inner and outer surfaces to prevent rusting and protect food and beverage flavors. As a result, steel cans are often called tin cans. Steel mills are the largest market for steel cans. Integrated mills use the basic oxygen process to manufacture tinplate, appliances, car bodies, and steel framing. Electric arc furnaces use 100% scrap to produce steel shapes such as railroad ties and bridge spans. Electric arc furnaces are more geographically diverse and tend to have smaller capacities than basic oxygen furnaces. Detinners remove the tin from steel cans for resale to tin using industries. Continued decreases in the amount of tin used in steel cans has lessened the importance of this market. Foundries use scrap as a raw material in making castings and molds for industrial users.

  12. Articles comprising ferritic stainless steels

    DOEpatents

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  13. Prevalence of permanent hearing threshold shift among workers of Indian iron and steel small and medium enterprises: a study.

    PubMed

    Singh, Lakhwinder Pal; Bhardwaj, Arvind; Kumar, Deepak Kishore

    2012-01-01

    Occupational noise exposure and noise-induced hearing loss (NIHL) have been recognized as a problem among workers in Indian industries. The major industries in India are based on manufacturing. There are appreciable numbers of casting and forging units spread across the country. The objective of this study is to determine the prevalence of permanent hearing threshold shift among the workers engaged in Indian iron and steel small and medium enterprises (SMEs) and compared with control group subjects. As a part of hearing protection intervention, audiometric tests were conducted at low (250-1000 Hz), medium (1500-3000 Hz), and high (4000-8000 Hz) frequencies. The occurrence of hearing loss was determined based on hearing threshold levels with a low fence of 25 dB. Comparisons were made for hearing threshold at different frequencies between the exposed and control groups using Student's t test. ANOVA was used for the comparison of hearing threshold dB at different frequencies among occupation and year of experience. A P value <0.05 was considered as statistically significant. All data were presented as mean value (SD). Over 90% of workers engaged in various processes of casting and forging industry showed hearing loss in the noise-sensitive medium and higher frequencies. Occupation was significantly associated with NIHL, and hearing loss was particularly high among the workers of forging section. The analyses revealed a higher prevalence of significant hearing loss among the forging workers compared to the workers associated with other activities. The study shows alarming signals of NIHL, especially in forging workers. The occupational exposure to noise could be minimized by efficient control measures through engineering controls, administrative controls, and the use of personal protective devices. Applications of engineering and/or administrative controls are frequently not feasible in the developing countries for technical and financial reasons. A complete hearing

  14. Cationic motions and phase transitions in [(CH 3) 4N] 2SO 4·4H 2O, [(CH 3) 4N] 2SO 4, and [(CH 3) 4N] 2SeO 4 as studied by 1H NMR, differential thermal analysis, and X-ray powder diffraction techniques

    NASA Astrophysics Data System (ADS)

    Sato, Setsuko; Endo, Midori; Hara, Naoki; Nakamura, Daiyu; Ikeda, Ryuichi

    1995-02-01

    Cationic reorientations have been studied in solid [(CH 3) 4N] 2SO 4·4H 2O, [(CH 3) 4N] 2SO 4, and [(CH 3) 4N] 2SeO 4 by measuring 1H NMR spin-lattice relaxation times, T1. These motions have been discussed in association with the crystal structures and the phase transitions examined by X-ray powder diffraction and differential thermal analysis, respectively. In crystals of [(CH 3) 4N] 2SO 4·4H 2O, there are two kinds of cations distorted from regular tetrahedra. T1 is calculated according to the interpretation that two T1 minima are due to the two inequivalent (NH 3) 4N + ions reorienting at different frequencies. The result shows that at the phase transition temperatures, the correlation times to those cationic reorientations are very different from each other in this compound in contrast with (NH 4) 2SO 4 and [(CH 3) 4N] 2CdX 4 (X = Cl and Br). For the sulfate and selenate, there is a single kind of cation which can be considered tetrahedral, and the phase transitions occur in the temperature region where the narrowing of the resonance line owing to the overall cationic reorientations starts.

  15. A brief history of Forging New Frontiers, the annual conference of the Injury Free Coalition for Kids.

    PubMed

    Johnson, Estell Lenita; Barlow, Barbara

    2016-10-01

    The Injury Free Coalition for Kids Annual Conference has contributed to the dissemination of information pertaining to the development of the field of injury prevention. A content analysis was completed using conference agendas used during the span of 2005-2015, finding that more than 398 presentations covering a wide variety of injuries have taken place. Published work has appeared in the Journal of Trauma and there has been recognition of people who have contributed to the development of the field. Forging New Frontiers is a valuable tool for attendees to exchange information about injury prevention.

  16. Profiles in garbage: Steel cans

    SciTech Connect

    Miller, C.

    1998-02-01

    Steel mills are the largest market for steel cans. Integrated mills use the basic oxygen process to manufacture tinplate, appliances, car bodies, and steel framing. Electric arc furnaces use 100% scrap to produce steel shapes such as railroad ties and bridge spans. Electric arc furnaces are more geographically diverse and tend to have smaller capacities than basic oxygen furnaces. Detinners remove the tin from steel cans for resale to tin using industries. With less tin use in steel cans, the importance of the detinning market has declined substantially. Foundries use scrap as a raw material in making castings and molds for industrial users.

  17. Spherically symmetric solutions of a (4 + n)-dimensional Einstein Yang Mills model with cosmological constant

    NASA Astrophysics Data System (ADS)

    Brihaye, Yves; Hartmann, Betti

    2005-01-01

    We construct solutions of an Einstein Yang Mills system including a cosmological constant in 4 + n spacetime dimensions, where the n-dimensional manifold associated with the extra dimensions is taken to be Ricci flat. Assuming the matter and metric fields to be independent of the n extra coordinates, a spherical symmetric ansatz for the fields leads to a set of coupled ordinary differential equations. We find that for n > 1 only solutions with either one non-zero Higgs field or with all Higgs fields constant and zero gauge field function (corresponding to a Wu Yang-type ansatz) exist. We give the analytic solutions available in this model. These are 'embedded' Abelian solutions with a diverging size of the manifold associated with the extra n dimensions. Depending on the choice of parameters, these latter solutions either represent naked singularities or they possess a single horizon. We also present solutions of the effective four-dimensional Einstein Yang Mills Higgs-dilaton model, where the higher-dimensional cosmological constant induces a Liouville-type potential. The solutions are non-Abelian solutions with diverging Higgs fields, which exist only up to a maximal value of the cosmological constant.

  18. Structure, conformation and hydrogen bonding of 4-( N-methylpiperidinium)-butyric acid bromide

    NASA Astrophysics Data System (ADS)

    Dega-Szafran, Z.; Dulewicz, E.; Szafran, M.; Thaimattam, R.; Jaskolski, M.

    2007-02-01

    A 1:1 complex between 4-( N-methylpiperidinium)-butyrate inner salt (betaine) and hydrobromide, MPBUH·Br, has been characterized by single crystal X-ray analysis. The crystals are monoclinic, space group P2 1/c, with a = 8.284(1), b = 10.369(1), c = 13.809(2) Å, β = 92.26(1)°. The piperidine ring adopts a chair conformation with the (CH 2) 3COOH substituent in the axial and the CH 3 group in the equatorial positions. In the crystal, the Br - anion is engaged in a medium-strong hydrogen bond with the COOH group (O sbnd H⋯Br - = 3.141(1) Å), N +⋯Br - electrostatic interactions and in several C sbnd H⋯Br - contacts with the aliphatic groups forming a cavity in which it is enclosed. Three conformers ( 2- 4) were optimized by the B3LYP/6-31G (d, p) level of theory. The most stable is conformer 4 with the (CH 2) 3COOH substituent in the equatorial position and the CH 3 group in the axial position. The stability of the investigated conformers is controlled by electrostatic interactions between the oppositely charged groups. The FTIR spectrum of MPBUH·Br shows a strong band at 2941 cm -1 due to νOH and the νC dbnd O band at 1712 cm -1.

  19. Purification and characterization of 4-N-trimethylamino-1-butanol dehydrogenase from Fusarium merismoides var. acetilereum.

    PubMed

    Fujimitsu, Hiroshi; Taniyama, Yuko; Tajima, Sae; Mohamed Ahmed, Isam A; Arima, Jiro; Mori, Nobuhiro

    2016-09-01

    From investigation of 60 filamentous fungi, we identified Fusarium merismoides var. acetilereum, which uses 4-N-trimethylamino-1-butanol (TMA-butanol) as the sole source of carbon and nitrogen. The fungus produced NAD(+)-dependent TMA-butanol dehydrogenase (DH) when it was cultivated in medium containing TMA-butanol. The enzyme showed molecular mass of 40 kDa by SDS-PAGE and 160 kDa by gel filtration, suggesting that it is a homotetramer. TMA-butanol DH is stable at pH 7.5-9.0. It exhibits moderate stability with respect to temperature (up to 30 °C). Additionally, it has optimum activity at 45 °C and at pH 9.5. The enzyme has broad specificity to various alkyl alcohols and amino alkyl alcohols, and the carbon chains of which are longer than butanol. Moreover, the activity is strongly inhibited by oxidizing agents, carbonyl and thiol modulators, and chelating agents. This report is the first study examining TMA-butanol DH from eukaryotic microbes. PMID:27121905

  20. Can Moral Hazard Be Resolved by Common-Knowledge in S4n-Knowledge?

    NASA Astrophysics Data System (ADS)

    Matsuhisa, Takashi

    This article investigates the relationship between common-knowledge and agreement in multi-agent system, and to apply the agreement result by common-knowledge to the principal-agent model under non-partition information. We treat the two problems: (1) how we capture the fact that the agents agree on an event or they get consensus on it from epistemic point of view, and (2) how the agreement theorem will be able to make progress to settle a moral hazard problem in the principal-agents model under non-partition information. We shall propose a solution program for the moral hazard in the principal-agents model under non-partition information by common-knowledge. Let us start that the agents have the knowledge structure induced from a reflexive and transitive relation associated with the multi-modal logic S4n. Each agent obtains the membership value of an event under his/her private information, so he/she considers the event as fuzzy set. Specifically consider the situation that the agents commonly know all membership values of the other agents. In this circumstance we shall show the agreement theorem that consensus on the membership values among all agents can still be guaranteed. Furthermore, under certain assumptions we shall show that the moral hazard can be resolved in the principal-agent model when all the expected marginal costs are common-knowledge among the principal and agents.

  1. Cation-Cation Interactions in [(UO2)2(OH)n](4-n) Complexes

    SciTech Connect

    Odoh, Samuel O.; Govind, Niranjan; Schreckenbach, Georg; De Jong, Wibe A.

    2013-10-07

    The structures and bonding of gas-phase [(UO2)2(OH)n]4-n (n=2-6) complexes have been studied using density functional theory (DFT), MP2 and CCSD(T) methods with particular emphasis on ground state structures featuring cation-cation interactions (CCIs) between the uranyl groups. An interesting trend is observed in the stabilities of members of this series of complexes. The structures of [(UO2)2(OH)2]2+, [(UO2)2(OH)4] and [(UO2)2(OH)6]2- featuring CCIs are found at higher energies (by 3-20 kcal/mol) in comparison to their conventional μ2-dihydroxo structures. In contrast, the CCI structures of [(UO2)2(OH)3]+ and [(UO2)2(OH)5]- are respectively almost degenerate with and lower in energy than the structures with the μ2-dihydroxo format. The origin of this trend lies in the ‘symmetry’-based need to balance the coordination numbers and effective atomic charges of each uranium center. The calculated IR vibrational frequencies provide signature probes that can be used in differentiating the lowenergy structures and in experimentally confirming the existence of the structures featuring CCIs. Analysis of the bonding in the structures of [(UO2)2(OH)3]+ and [(UO2)2(OH)5]- shows that the CCIs and bridging hydroxo between the dioxo-uranium units are mainly electrostatic in nature.

  2. Early Events in the Nonadiabatic Relaxation Dynamics of 4-(N,N-Dimethylamino)benzonitrile.

    PubMed

    Kochman, Michał A; Tajti, Attila; Morrison, Carole A; Miller, R J Dwayne

    2015-03-10

    4-(N,N-Dimethylamino)benzonitrile (DMABN) is the archetypal system for dual fluorescence. Several past studies, both experimental and theoretical, have examined the mechanism of its relaxation in the gas phase following photoexcitation to the S2 state, without converging to a single description. In this contribution, we report first-principles simulations of the early events involved in this process performed using the nonadiabatic trajectory surface hopping (TSH) approach in combination with the ADC(2) electronic structure method. ADC(2) is verified to reproduce the ground- and excited-state structures of DMABN in reasonably close agreement with previous theoretical benchmarks. The TSH simulations predict that internal conversion from the S2 state to the S1 takes place as early as 8.5 fs, on average, after the initial photoexcitation, and with no significant torsion of the dimethylamino group relative to the aromatic ring. As evidenced by supporting EOM-CCSD calculations, the population transfer from S2 to S1 can be attributed to the skeletal deformation modes of the aromatic ring and the stretching of the ring-dimethylamino nitrogen bond. The non- or slightly twisted locally excited structure is the predominant product of the internal conversion, and the twisted intramolecular charge transfer structure is formed through equilibration with the locally excited structure with no change of adiabatic state. These findings point toward a new interpretation of data from previous time-resolved experiments. PMID:26579762

  3. Structural and biological evaluation of some metal complexes of vanillin-4N-(2-pyridyl) thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; Abu El-Reash, G. M.; Al-Jahdali, M.; El-Rakhawy, El-Bastawesy R.

    2013-12-01

    The synthesis and characterization of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) and U(VI)O2 complexes of vanillin-4N-(2-pyridyl) thiosemicarbazone (H2PVT) are reported. Theoretical calculations have been performed to obtain IR spectra of ligand and its complexes using AM1, Zindo/1, MM+ and PM3, methods. The Schiff base and its metal complexes have been screened for antibacterial Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis and Staphylococcus saprophyticus. H2VPT shows no apparent digestion effect on the egg albumin while Mn(II), Hg(II) and Cu(II) complexes exhibited a considerable digestion effect following the order Cu(II) > Mn(II) > Hg(II). Moreover, Ni(II) and Co(II) complexes revealed strong digestion effect. Fe(II), Mn(II), Cu(II), Zn(II) and Ni(II) acted as metal co- SOD enzyme factors, which are located in different compartments of the cell.

  4. Transport Properties of a Rarefied Ch4-N2 Gas Mixture

    NASA Astrophysics Data System (ADS)

    Fokin, L. R.; Kalashnikov, A. N.

    2016-01-01

    The area of application of the rarefied neutral methane-nitrogen gas mixture is considered. Experimental data on the transport properties of this mixture and its components were analyzed and generalized on the basis of molecular-kinetic theory relations with the use of the potentials of pair uniform and cross interactions of CH4 and N2 molecules. The parameters of three spherical symmetric three-parameter m-6 Lennard-Jones interaction potentials with a repulsive branch of varying rigidity were determined with the use of the nonlinear weight method of least squares. Tables of reference data on the viscosity of the indicated mixture and the coefficients of interdiffusion of its components were calculated for the concentration range 0-1 at temperatures 100-1150 K. Estimates of the confidential errors in determining the properties of this mixture have been made with the use of the error matrix of parameters of the indicated potentials. The results of calculations were compared with the corresponding reference data obtained earlier for the CH4-N2 gas mixture.

  5. Stress corrosion evaluation of HP 9Ni-4Co-0.20C steel

    NASA Technical Reports Server (NTRS)

    Torres, Pablo D.

    1993-01-01

    A stress corrosion cracking (SCC) evaluation was undertaken on HP 9Ni-4Co-0.20C steel in support of the Advanced Solid Rocket Motor (ASRM) program. This alloy was tested in plate, bar, and ring forging forms. Several heat treating procedures yielded ultimate tensile strengths ranging from 1,407 to 1,489 MPa (204 to 216 ksi). The test environments were high humidity, alternate immersion in 3.5-percent NaCl, and 5-percent salt spray. Stress levels ranged from 25 to 90 percent of the yield strengths. The majority of the tests were conducted for 90 days. Even though the specimens rusted significantly in salt spray and alternate immersion, no failures occurred. Therefore, it can be concluded that this alloy, in the forms and at the strength levels tested, is highly resistant to SCC in salt and high humidity environments.

  6. Study of the formation and effects of sigma phase in 21-6-9 stainless steel

    SciTech Connect

    Packard, C.L.; Mataya, M.C.; Edstrom, C.M.

    1981-11-07

    Work performed to date on the study of the formation and effects of sigma phase in 21-6-9 stainless steel is summarized in this report. Sigma phase was identified in forgings and as-rolled plate by color etching and microprobe analysis. In as-rolled plate sigma was found to start transforming from delta ferrite within 30 minutes at 1500/sup 0/F, with almost complete transformation after 24 hours at 1500/sup 0/F. The effect of sigma phase on room temperature mechanical properties was evaluated by tensile testing, Charpy impact testing, and impact shear testing. Sigma phase was found to severely reduce transverse ductility and longtudinal and transverse impact resistance. The greater the amount of sigma present, the greater was its effect on mechanical properties. Vendor contacts indicated that controlling delta ferrite to a minimum in the as-rolled plate is both possible and practical.

  7. Insight on the inconsistencies of Barkhausen signal measurements for radiation damage on nuclear reactor steel

    SciTech Connect

    Barroso, Soraia Pirfo; Fitzpatrick, Michael E.; Gillemot, Ferenc; Horváth, Marta; Horváth, Ákos; Szekely, Richard

    2014-02-18

    This paper focuses on the use of magnetic measurements, using Barkhausen signals to determine the irradiation effects, attempting to predict fracture toughness changes on nuclear reactor structural materials and correlating these measurements to mechanical testing and microstructure. For this study, two types of nuclear reactor materials were investigated: one sensitive to irradiation effects, the JRQ IAEA's reference material (A533B- -type); and one resistant material, 15KH2MFA WWER's reactor pressure vessel steel. The samples were carefully identified within the original heat block, i.e. forged or rolled plate. These calibrated samples were irradiated at different neutron fluences up to 10{sup 23} n/m{sup 2}. We show how microstructural anisotropy can mask the irradiation effects in the magnetic measurements. A correlation between irradiation effects and the magnetic measurements is explained based on this study.

  8. Insight on the inconsistencies of Barkhausen signal measurements for radiation damage on nuclear reactor steel

    NASA Astrophysics Data System (ADS)

    Barroso, Soraia Pirfo; Fitzpatrick, Michael E.; Gillemot, Ferenc; Horváth, Marta; Horváth, Ákos; Szekely, Richard

    2014-02-01

    This paper focuses on the use of magnetic measurements, using Barkhausen signals to determine the irradiation effects, attempting to predict fracture toughness changes on nuclear reactor structural materials and correlating these measurements to mechanical testing and microstructure. For this study, two types of nuclear reactor materials were investigated: one sensitive to irradiation effects, the JRQ IAEA's reference material (A533B- -type); and one resistant material, 15KH2MFA WWER's reactor pressure vessel steel. The samples were carefully identified within the original heat block, i.e. forged or rolled plate. These calibrated samples were irradiated at different neutron fluences up to 1023 n/m2. We show how microstructural anisotropy can mask the irradiation effects in the magnetic measurements. A correlation between irradiation effects and the magnetic measurements is explained based on this study.

  9. View northwest, wharf A, sheet steel bulkhead, steel lift tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northwest, wharf A, sheet steel bulkhead, steel lift tower - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  10. The diverse electronic properties of C4N3 monolayer under biaxial compressive strain: a theoretical study

    NASA Astrophysics Data System (ADS)

    Wu, Haiping; Liu, Yuzhen; Kan, Erjun; Ma, Yanming; Xu, Wenjie; Li, Jie; Yan, Meichen; Lu, Ruifeng; Wei, Jianfeng; Qian, Yan

    2016-07-01

    Because of the observation of half-metallicity in graphitic carbon nitride C4N3 (g-C4N3), extensive research has recently been focused on this compound. Using density-functional calculations, herein diverse electronic properties of g-C4N3 were engineered by applying biaxial compressive strain. The calculated results demonstrate that g-C4N3 preserves ferromagnetic half-metallicity when the strain is lower than  -2%, accompanied by a decrease of the half-metallic gap. When the compressive strain ranges from  -5 to  -3%, the compound turns into nonmagnetic metal. By increasing the strain on the end, it becomes a nonmagnetic semiconductor. Further investigations show that all nonmagnetic semiconductors possess a direct band gap with a value of around 1.6 eV. This fact indicates that g-C4N3 can be applied in spintronic or photovoltaic fields under a strain environment.

  11. The diverse electronic properties of C4N3 monolayer under biaxial compressive strain: a theoretical study

    NASA Astrophysics Data System (ADS)

    Wu, Haiping; Liu, Yuzhen; Kan, Erjun; Ma, Yanming; Xu, Wenjie; Li, Jie; Yan, Meichen; Lu, Ruifeng; Wei, Jianfeng; Qian, Yan

    2016-07-01

    Because of the observation of half-metallicity in graphitic carbon nitride C4N3 (g-C4N3), extensive research has recently been focused on this compound. Using density-functional calculations, herein diverse electronic properties of g-C4N3 were engineered by applying biaxial compressive strain. The calculated results demonstrate that g-C4N3 preserves ferromagnetic half-metallicity when the strain is lower than  ‑2%, accompanied by a decrease of the half-metallic gap. When the compressive strain ranges from  ‑5 to  ‑3%, the compound turns into nonmagnetic metal. By increasing the strain on the end, it becomes a nonmagnetic semiconductor. Further investigations show that all nonmagnetic semiconductors possess a direct band gap with a value of around 1.6 eV. This fact indicates that g-C4N3 can be applied in spintronic or photovoltaic fields under a strain environment.

  12. Influence of Cooling Rate on Phase Formationin Spray-Formed H13 Tool Steel

    SciTech Connect

    K. M. Mchugh; Y. Lin; Y. Zhou; E. J. Lavernia

    2006-04-01

    Spray forming is an effective way to process many tool steels into near-net-shape molds, dies and related tooling. The general approach involves depositing atomized droplets onto a refractory pattern in order to image the pattern’s features. The pattern is removed and the die is fitted into a standard holding fixture. This approach results in significant cost and lead-time savings compared to conventional machining, Spray-formed dies perform well in many industrial forming operations, oftentimes exhibiting extended die life over conventional dies. Care must be exercised when spray forming tool steel dies to minimize porosity and control the nature and distribution of phases and residual stresses. Selection of post-deposition heat treatment is important to tailor the die’s properties (hardness, strength, impact energy, etc.) for a particular application. This paper examines how the cooling rate and other processing parameters during spray processing and heat treatment of H13 tool steel influence phase formation. Results of case studies on spray-formed die performance in forging, extrusion and die casting, conducted by industry during production runs, will be described.

  13. Cryo-quenched Fe-Ni-Cr alloy single crystals: A new decorative steel

    DOE PAGESBeta

    Boatner, Lynn A.; Kolopus, James A.; Lavrik, Nicolay V.; Phani, P. Sudharshan

    2016-08-31

    In this paper, a decorative steel is described that is formed by a process that is unlike that of the fabrication methods utilized in making the original Damascus steels over 2000 years ago. The decorative aspect of the steel arises from a three-dimensional surface pattern that results from cryogenically quenching polished austenitic alloy single crystals into the martensitic phase that is present below 190 K. No forging operations are involved – the mechanism is entirely based on the metallurgical phase properties of the ternary alloy. The symmetry of the decorative pattern is determined and controlled by the crystallographic orientation andmore » symmetry of the 70%Fe,15%Ni,15%Cr alloy single crystals. Finally, in addition to using “cuts” made along principal crystallographic surface directions, an effectively infinite number of other random-orientation “cuts” can be utilized to produce decorative patterns where each pattern is unique after the austenitic-to-martensitic phase transformation.« less

  14. Forging an identity: Four science doctoral students in a collaborative partnership with K--12 science teachers

    NASA Astrophysics Data System (ADS)

    Balinsky, Martin G.

    2006-12-01

    A primary conflict regarding the identity of science education is the competition between those emphasizing science aspects of science education versus those who emphasize the education. I examine a National Science Foundation funded program at "Southern State University" (pseudonym) known as the GK-12 Project that placed science doctoral students into K-12 classrooms, where they worked with practicing science teachers. My research question was: How do GK-12 Fellows forge an identity through their experiences as both teachers and doctoral students? I used the "hermeneutic dialectic circle", a process whereby I interviewed each stakeholder in turn, and conducted member checks. My primary sources were interviews, and my primary subjects were four Fellows. One of the Fellows, Jose, left the program after one year. The other three in my study, Wanda, Rebecca, and Nathan, remained for all three years. The starting point for their learning was admitting what they did not know. These three learned about science outside of their fields because they learned how to learn. They also took an interest in and enacted making connections to students. In negotiating two cultures, the Fellows achieved heightened awareness of the SSU science culture's current practices in college science teaching, particularly the problems. They noted the ineffectiveness of the didactic delivery style and the lack of formative assessment. These three Fellows manifested rational and pluralistic worldviews. Because of his frames that were derived from growing up under an authoritarian government in Cuba, Jose experienced the program differently than the other three Fellows. For Jose, his identity as a scientist and as an educator remained more static, as he identified more with the authoritarian outlook on education espoused in SSU's science departments. The science culture at SSU is centered in the authoritarian value structure sees a need for a "fixing" of education, to improve "poorly prepared

  15. Bioresorbable composite screws manufactured via forging process: pull-out, shear, flexural and degradation characteristics.

    PubMed

    Felfel, R M; Ahmed, I; Parsons, A J; Rudd, C D

    2013-02-01

    Bioresorbable screws have the potential to overcome some of the complications associated with metallic screws currently in use. Removal of metallic screws after bone has healed is a serious issue which can lead to refracture due to the presence of screw holes. Poly lactic acid (PLA), fully 40 mol% P(2)O(5) containing phosphate unidirectional (P40UD) and a mixture of UD and short chopped strand random fibre mats (P40 70%UD/30%RM) composite screws were prepared via forging composite bars. Water uptake and mass loss for the composite screws manufactured increased significantly to ∼1.25% (P=0.0002) and ∼1.1% (P<0.0001), respectively, after 42 days of immersion in PBS at 37 °C. The initial maximum flexural load for P40 UD/RM and P40 UD composite screws was ∼60% (P=0.0047) and ∼100% (P=0.0037) higher than for the PLA screws (∼190 N), whilst the shear load was slightly higher in comparison to PLA (∼2.2 kN). The initial pull-out strengths for the P40 UD/RM and PLA screws were similar whereas that for P40 UD screws was ∼75% higher (P=0.022). Mechanical properties for the composite screws decreased initially after 3 days of immersion and this reduction was ascribed to the degradation of the fibre/matrix interface. After 3 days interval the mechanical properties (flexural, shear and pull-out) maintained their integrity for the duration of the study (at 42 days). This property retention was attributed to the chemical durability of the fibres used and stability of the matrix properties during the degradation process. It was also deemed necessary to enhance the fibre/matrix interface via use of a coupling agent in order to maintain the initial mechanical properties acquired for the required period of time. Lastly, it is also suggested that the degrading reinforcement fibres may have the potential to buffer any acidic products released from the PLA matrix. PMID:23262309

  16. Superclean steel development

    SciTech Connect

    Richman, R.H.; McNaughton, W.P. )

    1989-12-01

    The Electric Power Research Institute has actively encouraged and sponsored a number of research projects to develop a superclean 3.5NiCrMoV steel for low pressure turbine rotors. Such steel is highly resistant to temper embrittlement and will thus facilitate increased efficiency in electricity generation through the use of higher operating temperatures and improvements in design. The objective of this interim report was to integrate the results that have been generated to date worldwide in the pursuit of superclean steel. The report contains detailed findings that enable the interested utility to evaluate how the results affect utility decision making. A companion document has been written to summarize the findings from this technical report. The results indicate that steels with impurity contents typical of the superclean specification can be manufactured for production rotors with properties that equal or exceed those for conventional 3.5NiCrMoV rotors in every detail. Of particular interest are the results that the superclean steels appear to be virtually resistant to temper embrittlement to a temperature of 500 {degrees}C. 109 refs., 51 figs., 9 tabs.

  17. Brazing titanium to stainless steel

    NASA Technical Reports Server (NTRS)

    Batista, R. I.

    1980-01-01

    Titanium and stainless-steel members are usually joined mechanically for lack of any other effective method. New approach using different brazing alloy and plating steel member with nickel resolves problem. Process must be carried out in inert atmosphere.

  18. Continuous steel production and apparatus

    DOEpatents

    Peaslee, Kent D.; Peter, Jorg J.; Robertson, David G. C.; Thomas, Brian G.; Zhang, Lifeng

    2009-11-17

    A process for continuous refining of steel via multiple distinct reaction vessels for melting, oxidation, reduction, and refining for delivery of steel continuously to, for example, a tundish of a continuous caster system, and associated apparatus.

  19. Nitrogen Incorporation in CH4-N2 Photochemical Aerosol Produced by Far UV Irradiation

    NASA Technical Reports Server (NTRS)

    Trainer, Melissa G.; Jimenez, Jose L.; Yung, Yuk L.; Toon, Owen B.; Tolbert, Margaret A.

    2012-01-01

    Nitrile incorporation into Titan aerosol accompanying hydrocarbon chemistry is thought to be driven by extreme UV wavelengths (lambda < 120 nm) or magnetospheric electrons in the outer reaches of the atmosphere. Far UV radiation (120 - 200 nm), which is transmitted down to the stratosphere of Titan, is expected to affect hydrocarbon chemistry only and not initiate the formation of nitrogenated species. We have examined the chemical properties of photochemical aerosol produced at far UV wavelengths using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS), which allows for elemental analysis of particle-phase products. Our results show that aerosol formed from CH4/N2 photochemistry contains a surprising amount of nitrogen, up to 16% by mass, a result of photolysis in the far UV. The proportion of nitrogenated organics to hydrocarbon species is shown to be correlated with that of N2 in the irradiated gas. The aerosol mass greatly decreases when N2 is removed, indicating that N2 plays a major role in aerosol production. Because direct dissociation of N2 is highly improbable given the immeasurably low cross-section at the wavelengths studied, the chemical activation of N2 must occur via another pathway. Any chemical activation of N2 at wavelengths > 120 nm is presently unaccounted for in atmospheric photochemical models. We suggest that reaction with CH radicals produced from CH4 photolysis may provide a mechanism for incorporating N into the molecular structure of the aerosol. Further work is needed to understand the chemistry involved, as these processes may have significant implications for prebiotic chemistry on the early Earth and similar planets.

  20. Effects of Picoxystrobin and 4-n-Nonylphenol on Soil Microbial Community Structure and Respiration Activity

    PubMed Central

    Stenrød, Marianne; Klemsdal, Sonja S.; Norli, Hans Ragnar; Eklo, Ole Martin

    2013-01-01

    There is widespread use of chemical amendments to meet the demands for increased productivity in agriculture. Potentially toxic compounds, single or in mixtures, are added to the soil medium on a regular basis, while the ecotoxicological risk assessment procedures mainly follow a chemical by chemical approach. Picoxystrobin is a fungicide that has caused concern due to studies showing potentially detrimental effects to soil fauna (earthworms), while negative effects on soil microbial activities (nitrification, respiration) are shown to be transient. Potential mixture situations with nonylphenol, a chemical frequently occurring as a contaminant in sewage sludge used for land application, infer a need to explore whether these chemicals in mixture could alter the potential effects of picoxystrobin on the soil microflora. The main objective of this study was to assess the effects of picoxystrobin and nonylphenol, as single chemicals and mixtures, on soil microbial community structure and respiration activity in an agricultural sandy loam. Effects of the chemicals were assessed through measurements of soil microbial respiration activity and soil bacterial and fungal community structure fingerprints, together with a degradation study of the chemicals, through a 70 d incubation period. Picoxystrobin caused a decrease in the respiration activity, while 4-n-nonylphenol caused an increase in respiration activity concurring with a rapid degradation of the substance. Community structure fingerprints were also affected, but these results could not be directly interpreted in terms of positive or negative effects, and were indicated to be transient. Treatment with the chemicals in mixture caused less evident changes and indicated antagonistic effects between the chemicals in soil. In conclusion, the results imply that the application of the fungicide picoxystrobin and nonylphenol from sewage sludge application to agricultural soil in environmentally relevant concentrations, as

  1. Spin-polarization inversion at small organic molecule/Fe{sub 4}N interfaces: A first-principles study

    SciTech Connect

    Zhang, Qian; Mi, Wenbo

    2015-09-21

    We report the first-principles calculations on the electronic structure and simulation of the spin-polarized scan tunneling microscopy graphic of the small organic molecules (benzene, thiophene, and cyclopentadienyl)/Fe{sub 4}N interfaces. It is found that the plane of benzene and thiophene keeps parallel to Fe{sub 4}N surface, while that of cyclopentadienyl does not. For all the systems, the organic molecules bind strongly with Fe{sub 4}N. Due to the hybridization between molecule p{sub z} orbitals and d orbitals of Fe, i.e., Zener interaction, all the three systems realize the spin-polarization inversion, whereas the spatial spin-polarization inversion distribution shows different intensities influenced by the competition between the spin polarization of C p{sub z} and Fe d states.

  2. A-3 steel work completed

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Stennis Space Center engineers celebrated a key milestone in construction of the A-3 Test Stand on April 9 - completion of structural steel work. Workers with Lafayette (La.) Steel Erector Inc. placed the last structural steel beam atop the stand during a noon ceremony attended by more than 100 workers and guests.

  3. Characterization of an H4N2 avian influenza virus isolated from domestic duck in Dongting Lake wetland in 2009.

    PubMed

    Zhang, Hongbo; Chen, Quanjiao; Chen, Ze

    2012-02-01

    In January 2009, an H4N2 subtype of avian influenza virus [A/duck/Hunan/8-19/2009 (H4N2)] was isolated from domestic ducks in Dongting Lake wetland. The whole genome of the virus was sequenced and the results indicated that multiple gene segments of the virus had a high homology with viruses isolated from wild waterfowl, which indicated that the virus was probably transmitted from wild waterfowl to domestic ducks. Phylogenetic analysis revealed that the each gene belonged to the Eurasian lineage of avian influenza viruses, but genetic reassortment occurs between viruses of different subtypes.

  4. Cutting tool study: 21-6-9 stainless steel

    SciTech Connect

    McManigle, A.P.

    1992-07-29

    The Rocky Flats Plant conducted a study to test cermet cutting tools by performing machinability studies on War Reserve product under controlled conditions. The purpose of these studies was to determine the most satisfactory tools that optimize tool life, minimize costs, improve reliability and chip control, and increase productivity by performing the operations to specified Accuracies. This study tested three manufacturers` cermet cutting tools and a carbide tool used previously by the Rocky Flats Plant for machining spherical-shaped 21-6-9 stainless steel forgings (Figure 1). The 80-degree diamond inserts were tested by experimenting with various chip-breaker geometries, cutting speeds, feedrates, and cermet grades on the outside contour roughing operation. The cermets tested were manufactured by Kennametal, Valenite, and NTK. The carbide tool ordinarily used for this operation is manufactured by Carboloy. Evaluation of tho tools was conducted by investigating the number of passes per part and parts per insert, tool wear, cutting time, tool life, surface finish, and stem taper. Benefits to be gained from this study were: improved part quality, better chip control, increased tool life and utilization, and greater fabrication productivity. This was to be accomplished by performing the operation to specified accuracies within the scope of the tools tested.

  5. PERFORMANCE IMPROVEMENT OF CREEP-RESISTANT FERRITIC STEEL WELDMENTS THROUGH THERMO-MECHANICAL TREATMENT AND ALLOY DESIGN

    SciTech Connect

    Yamamoto, Yukinori; Babu, Prof. Sudarsanam Suresh; Shassere, Benjamin; Yu, Xinghua

    2016-01-01

    Two different approaches have been proposed for improvement of cross-weld creep properties of the high temperature ferrous structural materials for fossil-fired energy applications. The traditional creep strength-enhanced ferritic (CSEF) steel weldments suffer from Type IV failures which occur at the fine-grained heat affected zone (FGHAZ). In order to minimize the premature failure at FGHAZ in the existing CSEF steels, such as modified 9Cr-1Mo ferritic-martensitic steels (Grade 91), a thermo-mechanical treatment consisting of aus-forging/rolling and subsequent aus-aging is proposed which promotes the formation of stable MX carbonitrides prior to martensitic transformation. Such MX remains undissolved during welding process, even in FGHAZ, which successfully improves the cross-weld creep properties. Another approach is to develop a new fully ferrtic, creep-resistant FeCrAl alloy which is essentially free from Type IV failure issues. Fe-30Cr-3Al base alloys with minor alloying additions were developed which achieved a combination of good oxidation/corrosion resistance and improved tensile and creep performance comparable or superior to Grade 92 steel.

  6. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  7. Amine templating effect absent in uranyl sulfates synthesized with 1,4-n-butyldiamine

    SciTech Connect

    Jouffret, Laurent J.; Wylie, Ernest M.; Burns, Peter C.

    2013-01-15

    Two new uranyl sulfates, (C{sub 4}H{sub 14}N{sub 2})[(UO{sub 2}){sub 2}(SO{sub 4}){sub 3}(H{sub 2}O)]{center_dot}2H{sub 2}O (NDUS2) and (C{sub 4}H{sub 14}N{sub 2})[(UO{sub 2})(SO{sub 4}){sub 2}(H{sub 2}O)]{center_dot}2H{sub 2}O (NDUS3), were synthesized and their crystal structures determined. NDUS2 was obtained in highly acidic media heat-treated at 373 K and subsequently maintained at 278 K until crystals formed after two months. NDUS3 results from the degradation of NDUS2 over the course of a few days. NDUS2 and NDUS3 crystallize in the monoclinic space group P2{sub 1}/n, a=10.9075(4) A, b=10.4513(4) A, c=17.7881(7) A, {beta}=97.908(2) Degree-Sign , V=2008.52(13) A{sup 3}, Z=4, at 140 K and a=8.8570(4) A, b=7.3299(3) A, c=20.4260(9) A, {beta}=95.140(2) Degree-Sign , V=1320.74(10) A{sup 3}, Z=4, at 140 K, respectively. The compounds contain interlayer 1,4-n-butyldiammonium cations that charge-balance the anionic structural units. - Graphical abstract: Amine templating effect absent in uranyl sulfates synthesized with 1,4-diaminobutane, as shown by the synthesis of two new uranyl sulfates, (C{sub 4}H{sub 14}N{sub 2})[(UO{sub 2}){sub 2}(SO{sub 4}){sub 3}(H{sub 2}O)]{center_dot}2H{sub 2}O (NDUS2) and (C{sub 4}H{sub 14}N{sub 2})[(UO{sub 2})(SO{sub 4}){sub 2}(H{sub 2}O)]{center_dot}2H{sub 2}O (NDUS3). Highlights: Black-Right-Pointing-Pointer Two layered uranyl sulfates were synthesized. Black-Right-Pointing-Pointer Amine molecules are located in the interlayers of the compounds. Black-Right-Pointing-Pointer No templating effect of the amine was observed. Black-Right-Pointing-Pointer Amine molecules are only charge balancing cations in the structures.

  8. Braze alloy spreading on steel

    NASA Technical Reports Server (NTRS)

    Siewert, T. A.; Heine, R. W.; Lagally, M. G.

    1978-01-01

    Scanning electron microscopy (SEM) and Auger electron microscopy (AEM) were employed to observe elemental surface decomposition resulting from the brazing of a copper-treated steel. Two types of steel were used for the study, stainless steel (treated with a eutectic silver-copper alloy), and low-carbon steel (treated with pure copper). Attention is given to oxygen partial pressure during the processes; a low enough pressure (8 x 10 to the -5th torr) was found to totally inhibit the spreading of the filler material at a fixed heating cycle. With both types of steel, copper treatment enhanced even spreading at a decreased temperature.

  9. Sensitization of stainless steel

    NASA Technical Reports Server (NTRS)

    Nagy, James P.

    1990-01-01

    The objective of this experiment is to determine the corrosion rates of 18-8 stainless steels that have been sensitized at various temperatures and to show the application of phase diagrams. The laboratory instructor will assign each student a temperature, ranging from 550 C to 1050 C, to which the sample will be heated. Further details of the experimental procedure are detailed.

  10. AF4 and AF4N protein complexes: recruitment of P-TEFb kinase, their interactome and potential functions

    PubMed Central

    Scholz, Bastian; Kowarz, Eric; Rössler, Tanja; Ahmad, Khalil; Steinhilber, Dieter; Marschalek, Rolf

    2015-01-01

    AF4/AFF1 and AF5/AFF4 are the molecular backbone to assemble “super-elongation complexes” (SECs) that have two main functions: (1) control of transcriptional elongation by recruiting the positive transcription elongation factor b (P-TEFb = CyclinT1/CDK9) that is usually stored in inhibitory 7SK RNPs; (2) binding of different histone methyltransferases, like DOT1L, NSD1 and CARM1. This way, transcribed genes obtain specific histone signatures (e.g. H3K79me2/3, H3K36me2) to generate a transcriptional memory system. Here we addressed several questions: how is P-TEFb recruited into SEC, how is the AF4 interactome composed, and what is the function of the naturally occuring AF4N protein variant which exhibits only the first 360 amino acids of the AF4 full-length protein. Noteworthy, shorter protein variants are a specific feature of all AFF protein family members. Here, we demonstrate that full-length AF4 and AF4N are both catalyzing the transition of P-TEFb from 7SK RNP to their N-terminal domain. We have also mapped the protein-protein interaction network within both complexes. In addition, we have first evidence that the AF4N protein also recruits TFIIH and the tumor suppressor MEN1. This indicate that AF4N may have additional functions in transcriptional initiation and in MEN1-dependend transcriptional processes. PMID:26171280

  11. Structure, phase transitions, and isotope effects in [(CH3)4N]2PuCl6

    SciTech Connect

    Wilson, Richard E.

    2015-11-02

    The single crystal X-ray diffraction structure of [(CH3)4N]2PuCl6 is presented for the first time, resolving long standing confusion and speculation regarding the structure of this compound in the literature. A temperature dependent study of this compound shows that the structure of [(CH3)4N]2PuCl6 undergoes no fewer than two phase transitions between 100 and 360 K. The phase of [(CH3)4N]2PuCl6 at room temperature is Fd-3c a = 26.012(3) Å. At 360 K, the structure is in space group Fm-3m with a = 13.088(1) Å. The plutonium octahedra and tetramethylammonium cations undergo a rotative displacement and the degree of rotation varies with temperature, giving rise to the phase transition from Fm-3m to Fd-3c as the crystal is cooled. Synthesis and structural studies of the deuterated salt [(CD3)4N]2PuCl6 suggest that there is an isotopic effect associated with this phase transition as revealed by a changing transition temperature in the deuterated versus protonated compound indicating that the donor-acceptor interactions between the tetramethylammonium cations and the hexachloroplutonate anions are driving the phase transformation.

  12. Evaluation of Stress Corrosion Cracking Susceptibility Using Fracture Mechanics Techniques, Part 1. [environmental tests of aluminum alloys, stainless steels, and titanium alloys

    NASA Technical Reports Server (NTRS)

    Sprowls, D. O.; Shumaker, M. B.; Walsh, J. D.; Coursen, J. W.

    1973-01-01

    Stress corrosion cracking (SSC) tests were performed on 13 aluminum alloys, 13 precipitation hardening stainless steels, and two titanium 6Al-4V alloy forgings to compare fracture mechanics techniques with the conventional smooth specimen procedures. Commercially fabricated plate and rolled or forged bars 2 to 2.5-in. thick were tested. Exposures were conducted outdoors in a seacoast atmosphere and in an inland industrial atmosphere to relate the accelerated tests with service type environments. With the fracture mechanics technique tests were made chiefly on bolt loaded fatigue precracked compact tension specimens of the type used for plane-strain fracture toughness tests. Additional tests of the aluminum alloy were performed on ring loaded compact tension specimens and on bolt loaded double cantilever beams. For the smooth specimen procedure 0.125-in. dia. tensile specimens were loaded axially in constant deformation type frames. For both aluminum and steel alloys comparative SCC growth rates obtained from tests of precracked specimens provide an additional useful characterization of the SCC behavior of an alloy.

  13. Special steel production on common carbon steel production line

    NASA Astrophysics Data System (ADS)

    Pi, Huachun; Han, Jingtao; Hu, Haiping; Bian, Ruisheng; Kang, Jianjun; Xu, Manlin

    2004-06-01

    The equipment and technology of small bar tandem rolling line of Shijiazhuang Iron & Steel Co. in China has reached the 90's international advanced level in the 20th century, but products on the line are mostly of common carbon steel. Currently there are few steel plants in China to produce 45 steel bars for cold drawing, which is a kind of shortage product. Development of 45 steel for cold drawing has a wide market outlook in China. In this paper, continuous cooling transformation (CCT) curve of 45 steel for cold drawing used for rolling was set out first. According to the CCT curve, we determined some key temperature points such as Ac3 temperature and Ac1 temperature during the cooling procedure and discussed the precipitation microstructure at different cooling rate. Then by studying thermal treatment process of 45 steel bars for cold drawing, the influence of cooling time on microstructure was analyzed and the optimum cooling speed has been found. All results concluded from the above studies are the basis of regulating controlled cooling process of 45 steel bars for cold drawing. Finally, the feasible production process of 45 steel bars for cold drawing on common carbon steel production line combined with the field condition was recommended.

  14. Correlation Between Microstructures and Tensile Properties of Strain-Based API X60 Pipeline Steels

    NASA Astrophysics Data System (ADS)

    Sung, Hyo Kyung; Lee, Dong Ho; Lee, Sunghak; Kim, Hyoung Seop; Ro, Yunjo; Lee, Chang Sun; Hwang, Byoungchul; Shin, Sang Yong

    2016-06-01

    The correlation between the microstructures and tensile properties of strain-based American Petroleum Institute (API) X60 pipeline steels was investigated. Eight types of strain-based API X60 pipeline steels were fabricated by varying the chemical compositions, such as C, Ni, Cr, and Mo, and the finish cooling temperatures, such as single-phase and dual-phase regions. In the 4N and 5C steels, the volume fractions of bainitic ferrite (BF) and the secondary phases increased with the increasing C and adding Cr instead of Ni. In the 5C and 6NC steels, the volume fractions of acicular ferrite (AF) and BF decreased with increasing C and adding Ni, whereas the volume fractions of polygonal ferrite (PF) and the secondary phases increased. In the 6NC and 6NM steels, the volume fraction of BF was increased by adding Mo instead of Cr, whereas the volume fractions of PF and the secondary phases decreased. In the steels rolled in the single-phase region, the volume fraction of polygonal ferrite ranged from 40 to 60 pct and the volume fraction of AF ranged from 20 to 40 pct. In the steels rolled in the dual-phase region, however, the volume fraction of PF was more than 70 pct and the volume fraction of AF was below 20 pct. The strength of the steels with a high volume fraction of AF was higher than those of the steels with a high volume fraction of PF, whereas the yield point elongation and the strain hardening exponent were opposite. The uniform elongation after the thermal aging process decreased with increasing volume fraction of PF, whereas the uniform elongation increased with increasing volume fraction of AF. The strain hardening exponent increased with increasing volume fraction of PF, but decreased with increasing volume fraction of AF and effective grain size.

  15. Ferritic steel melt and FLiBe/steel experiment : melting ferritic steel.

    SciTech Connect

    Troncosa, Kenneth P.; Smith, Brandon M.; Tanaka, Tina Joan

    2004-11-01

    In preparation for developing a Z-pinch IFE power plant, the interaction of ferritic steel with the coolant, FLiBe, must be explored. Sandia National Laboratories Fusion Technology Department was asked to drop molten ferritic steel and FLiBe in a vacuum system and determine the gas byproducts and ability to recycle the steel. We tried various methods of resistive heating of ferritic steel using available power supplies and easily obtained heaters. Although we could melt the steel, we could not cause a drop to fall. This report describes the various experiments that were performed and includes some suggestions and materials needed to be successful. Although the steel was easily melted, it was not possible to drip the molten steel into a FLiBe pool Levitation melting of the drop is likely to be more successful.

  16. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  17. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  18. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  19. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  20. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  1. High-cycle fatigue behavior of Ti-5Al-2.5Sn ELI alloy forging at low temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Yoshinori; Yuri, Tetsumi; Ogata, Toshio; Demura, Masahiko; Matsuoka, Saburo; Sunakawa, Hideo

    2014-01-01

    High-cycle fatigue properties of Ti-5Al-2.5Sn Extra Low Interstitial (ELI) alloy forging were investigated at low temperatures. The high-cycle fatigue strength at low temperatures of this alloy was relatively low compared with that at ambient temperature. The crystallographic orientation of a facet formed at a fatigue crack initiation site was determined by electron backscatter diffraction (EBSD) method in scanning electron microscope (SEM) to understand the fatigue crack initiation mechanism and discuss on the low fatigue strength at low temperature. Furthermore, in terms of the practical use of this alloy, the effect of the stress ratio (or mean stress) on the high-cycle fatigue properties was evaluated using the modified Goodman diagram.

  2. Influence of hydrogen environment on fatigue crack growth in forged Ti-6Al-4V: fractographic analysis

    NASA Astrophysics Data System (ADS)

    Gaddam, R.; Pederson, R.; Hörnqvist, M.; Antti, M.-L.

    2013-12-01

    The influence of high-pressure gaseous hydrogen environment (15 MPa) on the fatigue crack growth in forged Ti-6A1-4V at room temperature is investigated. It is observed that the fatigue crack growth (FCG) rate is fluctuating at 20 <= ΔK <= 26 MPa√m, and increase drastically at ΔK > 26 MPa√m in hydrogen environment. The effect of hydrogen on the FCG rate is dependent on the stress intensity level (ΔK). Detailed fractographic analysis of the fracture surfaces is performed at different ΔK using field emission scanning electron microscope (FE-SEM). The differences in appearance of fracture surfaces in air and hydrogen are discussed.

  3. High-cycle fatigue behavior of Ti-5Al-2.5Sn ELI alloy forging at low temperatures

    SciTech Connect

    Ono, Yoshinori; Yuri, Tetsumi; Ogata, Toshio; Demura, Masahiko; Matsuoka, Saburo; Sunakawa, Hideo

    2014-01-27

    High-cycle fatigue properties of Ti-5Al-2.5Sn Extra Low Interstitial (ELI) alloy forging were investigated at low temperatures. The high-cycle fatigue strength at low temperatures of this alloy was relatively low compared with that at ambient temperature. The crystallographic orientation of a facet formed at a fatigue crack initiation site was determined by electron backscatter diffraction (EBSD) method in scanning electron microscope (SEM) to understand the fatigue crack initiation mechanism and discuss on the low fatigue strength at low temperature. Furthermore, in terms of the practical use of this alloy, the effect of the stress ratio (or mean stress) on the high-cycle fatigue properties was evaluated using the modified Goodman diagram.

  4. Investigation of Mechanisms of Blade Failure of Forged Hastalloy B and Cast Stellite 21 Turbine Blades in Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Yaker, C; Robards, C F; Garrett, F B

    1951-01-01

    An investigation was conducted to study the mechanisms of blade failure of forged Hastelloy B and cast Stellite 21. The blades were mounted in a 16-25-6 alloy rotor and subjected to 20-minute cycles consisting of 15 minutes at rated speed and approximately 5 minutes at idle. The first failures of the Hastelloy B and Stellite 21 blades were probably the result of excessive vibratory stresses and occurred after 14.25 and 16.75 hours, respectively. After 28.75 hours of operation, all but 3 of the original 25 Hastelloy B blades had either failed or contained stress-rupture-type cracks and four of the original 27 Stellite 21 blades contained stress-rupture-type cracks.

  5. Effect of isothermal forging on the fracture properties of binary [gamma]-base titanium aluminides at room temperature

    SciTech Connect

    Gnanamoorthy, R.; Mutoh, Y. ); Masahashi, N.; Mizuhara, Y. )

    1994-07-15

    Gamma base titanium aluminides are light in weight and possess excellent high temperature properties such as strength, stiffness and oxidation resistance. Mechanical properties of [gamma]-base titanium aluminides depend on the microstructure, alloying addition and processing route. Influences of microstructure and alloying addition on the fracture properties have been investigated. However, the influence of processing route on fracture properties is not clear at present. In the present study, the flexural strength, the flexural strength, fracture toughness and fatigue crack growth properties of (a) cast and heat treated and (b) cast, heat treated and subsequently isothermal forged binary Ti-50Al (compositions are mentioned in atomic percent) with equiaxed microstructures are investigated. Fracture surface and crack growth path investigations are performed.

  6. History of ultrahigh carbon steels

    SciTech Connect

    Wadsworth, J.; Sherby, O.D.

    1997-06-20

    The history and development of ultrahigh carbon steels (i.e., steels containing between 1 and 2.l percent C and now known as UHCS) are described. The early use of steel compositions containing carbon contents above the eutectoid level is found in ancient weapons from around the world. For example, both Damascus and Japanese sword steels are hypereutectoid steels. Their manufacture and processing is of interest in understanding the role of carbon content in the development of modern steels. Although sporadic examples of UHCS compositions are found in steels examined in the early part of this century, it was not until the mid-1970s that the modern study began. This study had its origin in the development of superplastic behavior in steels and the recognition that increasing the carbon content was of importance in developing that property. The compositions that were optimal for superplasticity involved the development of steels that contained higher carbon contents than conventional modern steels. It was discovered, however, that the room temperature properties of these compositions were of interest in their own right. Following this discovery, a period of intense work began on understanding their manufacture, processing, and properties for both superplastic forming and room temperature applications. The development of superplastic cast irons and iron carbides, as well as those of laminated composites containing UHCS, was an important part of this history.

  7. Respiratory status of stainless steel and mild steel welders.

    PubMed

    Kalliomäki, P L; Kalliomäki, K; Korhonen, O; Nordman, H; Rahkonen, E; Vaaranen, V

    1982-01-01

    Eighty-three full-time stainless steel and 29 mild steel welders from one shipyard were examined clinically, and their lung function was measured. The stainless steel welders had used both tungsten inert-gas (low-fume concentration) and manual metal-arc (MMA) (high-fume concentration) welding methods. The individual exposure of the welders was estimated based on the time spent doing MMA welding, the amount of retained contaminants in the lungs (magnetopulmography), and urinary chromium excretion. The results suggest that there is a greater prevalence of small airway disease among shipyard mild steel MMA welders than among stainless steel welders. Among the stainless steel welders the impairment of lung function parameters was associated with the MMA welding method. The type of welding, then, is important when the health hazards of welders are studied, and welders cannot be regarded as a single, homogeneous group. PMID:7100838

  8. Metastatic Neuroblastoma Confined to Distant Lymph Nodes (stage 4N) Predicts Outcome in Patients With Stage 4 Disease: A Study From the International Neuroblastoma Risk Group Database

    PubMed Central

    Morgenstern, Daniel A.; London, Wendy B.; Stephens, Derek; Volchenboum, Samuel L.; Hero, Barbara; Di Cataldo, Andrea; Nakagawara, Akira; Shimada, Hiroyuki; Ambros, Peter F.; Matthay, Katherine K.; Cohn, Susan L.; Pearson, Andrew D.J.; Irwin, Meredith S.

    2014-01-01

    Purpose The presence of distant metastases is one of the most powerful predictors of outcome in patients with neuroblastoma. However, the pattern of metastatic spread is not incorporated into current risk stratification systems. Small case series have suggested that patients with neuroblastoma who have metastatic disease limited to distant lymph nodes (4N disease) may have improved outcomes. Patients and Methods We analyzed retrospective data from the International Neuroblastoma Risk Group database for patients diagnosed from 1990 to 2002. 4N patients were compared with the remaining stage 4 patients (non-4N), excluding those with missing metastatic site data. Results In all, 2,250 International Neuroblastoma Staging System stage 4 patients with complete data were identified, of whom 146 (6.5%) had 4N disease. For 4N patients, event-free survival (EFS; 5-year, 77% ± 4%) and overall survival (OS; 5-year, 85% ± 3%) were significantly better than EFS (5-year, 35% ± 1%) and OS (5-year, 42% ± 1%) for non-4N stage 4 patients (P < .001). 4N patients were more likely to be younger (P < .001) and have tumors with favorable characteristics, including absence of MYCN amplification (89% v 69%; P < .001). In a multivariable analysis, 4N disease remained a significant predictor of outcome (hazard ratio for non-4N v 4N: 3.40 for EFS and 3.69 for OS). Within subgroups defined by age at diagnosis and tumor MYCN status, 4N disease was significantly associated with improved outcomes. Conclusion 4N represents a subgroup with better outcome than that of other patients with metastatic disease. These findings suggest that the biology and treatment response of 4N tumors differ from other stage 4 tumors, and less intensive therapy should be considered for this cohort. Future exploration of biologic factors determining the pattern of metastatic spread is warranted. PMID:24663047

  9. Tetrabutylammonium cation in a homoleptic environment of borohydride ligands: [(n-Bu){sub 4}N][BH{sub 4}] and [(n-Bu){sub 4}N][Y(BH{sub 4}){sub 4}

    SciTech Connect

    Jaron, T.; Wegner, W.; Cyranski, M.K.; Dobrzycki, L.; Grochala, W.

    2012-07-15

    A novel solvent-free dual-cation organic-inorganic derivative, tetrabutylammonium yttrium borohydride (TBAYB), has been prepared for the first time and structurally characterized together with its organic precursor, tetrabutylammonium borohydride (TBAB). Both compounds crystallize in monoclinic unit cells (TBAYB: P2{sub 1}/c, TBAB: P2/c) and they contain [(n-Bu){sub 4}N]{sup +} in a homoleptic environment consisting of BH{sub 4}{sup -} ligands. Presence of large and lightweight Bu{sub 4}N{sup +} cations results in loose packing and low densities of both solids close to 1 g cm{sup -3}. TBAB melts at ca. 130 Degree-Sign C and it decomposes thermally above 160 Degree-Sign C while TBAYB melts at temperature as low as 78 Degree-Sign C, and the melt is stable over an appreciable temperature range of ca. 150 Degree-Sign C. The low melting point of TBAYB is the second lowest among derivatives of yttrium rendering this compound a new ionic liquid above 78 Degree-Sign C. - Graphical abstract: A novel organic-inorganic hybrid material for hydrogen storage, where (n-Bu){sub 4}N{sup +} cation is found in homoleptic environment of BH{sub 4}{sup -} ligands, was synthesised. Highlights: Black-Right-Pointing-Pointer Novel organic-inorganic hybrid material for hydrogen storage was synthesised. Black-Right-Pointing-Pointer (n-Bu){sub 4}N{sup +} cation is found in a homoleptic environment of BH{sub 4}{sup -} ligands. Black-Right-Pointing-Pointer TBAYB derivative is a novel ionic liquid with melting point of 78 Degree-Sign C..

  10. Metallic transport and large anomalous Hall effect at room temperature in ferrimagnetic Mn{sub 4}N epitaxial thin film

    SciTech Connect

    Shen, Xi; Shigematsu, Kei; Chikamatsu, Akira Fukumura, Tomoteru; Hirose, Yasushi; Hasegawa, Tetsuya

    2014-08-18

    We report the electrical transport properties of ferrimagnetic Mn{sub 4}N (001) epitaxial thin films grown by pulsed laser deposition on MgO (001) substrates. The Mn{sub 4}N thin films were tetragonally distorted with a ratio of out-of-plane to in-plane lattice constants of 0.987 and showed perpendicular magnetic anisotropy with an effective magnetic anisotropy constant of 0.16 MJ/m{sup 3}, which is comparable with that of a recently reported molecular-beam-epitaxy-grown film. The thin films exhibited metallic transport with a room temperature resistivity of 125 μΩ cm in addition to a large anomalous Hall effect with a Hall angle tangent of 0.023.

  11. Solid-state photochemistry as a formation mechanism for Titan's stratospheric C4N2 ice clouds

    NASA Astrophysics Data System (ADS)

    Anderson, C. M.; Samuelson, R. E.; Yung, Y. L.; McLain, J. L.

    2016-04-01

    We propose that C4N2 ice clouds observed in Titan's springtime polar stratosphere arise due to solid-state photochemistry occurring within extant ice cloud particles of HCN-HC3N mixtures. This formation process resembles the halogen-induced ice particle surface chemistry that leads to condensed nitric acid trihydrate (NAT) particles and ozone depletion in Earth's polar stratosphere. As our analysis of the Cassini Composite Infrared Spectrometer 478 cm-1 ice emission feature demonstrates, this solid-state photochemistry mechanism eliminates the need for the relatively high C4N2 saturation vapor pressures required (even though they are not observed) when the ice is produced through the usual procedure of direct condensation from the vapor.

  12. The investigation of the electrical properties of Fe3O4/n-Si heterojunctions in a wide temperature range.

    PubMed

    Deniz, Ali Rıza; Çaldıran, Zakir; Metin, Önder; Meral, Kadem; Aydoğan, Şakir

    2016-07-01

    Monodisperse 8nm Fe3O4 nanoparticles (NPs) were synthesized by the thermal decomposition of iron(III) acetylacetonate in oleylamine and then were deposited onto n-type silicon wafer having the Al ohmic contact. Next, the morphology of the Fe3O4 NPs were characterized by using TEM and XRD. The optical properties of Fe3O4 NPs film was studied by UV-Vis spectroscopoy and its band gap was calculated to be 2.16eV. Au circle contacts with 7.85×10(-3)cm(2) area were provided on the Fe3O4 film via evaporation at 10(-5)Torr and the Au/Fe3O4 NPs/n-Si/Al heterojunction device were fabricated. The temperature-dependent junction parameters of Au/Fe3O4/n-Si/Al device including ideality factor, barrier height and series resistance were calculated by using the I-V characteristics in a wide temperature range of 40-300K. The results revealed that the ideality factor and series resistance increased by the decreasing temperature while the barrier height decreases. The Richardson constant of Au/Fe3O4/n-Si/Al device was calculated to be 2.17A/K(2)cm(2) from the I-V characteristics. The temperature dependence of Au/Fe3O4/n-Si/Al heterojunction device showed a double Gaussian distribution, which is caused by the inhomogeneities characteristics of Fe3O4/n-Si heterojunction.

  13. Spinel ZnCo2O4/N-doped carbon nanotube composite: A high active oxygen reduction reaction electrocatalyst

    NASA Astrophysics Data System (ADS)

    Pu, Zonghua; Liu, Qian; Tang, Chun; Asiri, Abdullah M.; Qusti, Abdullah H.; Al-Youbi, Abdulrahman O.; Sun, Xuping

    2014-07-01

    In this communication, we report on the solvothermal preparation of spinel ZnCo2O4/N-doped carbon nanotube (ZnCo2O4/NCNT) composite. As a novel oxygen reduction reaction (ORR) electrocatalyst, the ZnCo2O4/NCNT composite shows high activity via a four-electron pathway in alkaline solution. Such catalyst also exhibits superior methanol tolerance ability and durability over commercial Pt/C catalyst.

  14. DDX6 transfers P-TEFb kinase to the AF4/AF4N (AFF1) super elongation complex

    PubMed Central

    Mück, Fabian; Bracharz, Silvia; Marschalek, Rolf

    2016-01-01

    AF4/AFF1 and AF5/AFF4 are both backbones for the assembly of “super elongation complexes” (SECs) that exert 2 distinct functions after the recruitment of P-TEFb from the 7SK snRNP: (1) initiation and elongation of RNA polymerase II gene transcription, and (2) modification of transcribed gene regions by distinct histone methylation patterns. In this study we aimed to investigate one of the initial steps, namely how P-TEFb is transferred from 7SK snRNPs to the SECs. In particular, we were interested in the role of DDX6 that we have recently identified as part of the AF4 complex. DDX6 is an evolutionarily conserved member of the DEAD-box RNA helicase family that is known to control miRNA and mRNA biology (translation, storage and degradation). Overexpressed DDX6 is associated with different cancer types and with c-Myc protein overexpression. We could demonstrate that DDX6 binds to 7SK snRNA and causes the release and transfer of P-TEFb to the AF4/AF4N SEC. DDX6 also binds stably to AF4 and AF4N as demonstrated by GST pull-down and co-immunoprecipitation experiments. As a consequence, overexpression of either AF4/AF4N or DDX6 resulted in a strong increase of mRNA production (5-6 fold), while their simultaneous expression increased the cellular mRNA production by 11-fold. Conversely, the corresponding knockdown of DDX6 decreased mRNA production by 70%. In conclusion, AF4/AF4N and DDX6 represent key molecules for the elongation process of gene transcription and a model will be proposed for the hand-over process of P-TEFb to SECs. PMID:27679741

  15. Etch characteristics of magnetic tunnel junction materials using bias pulsing in the CH4/N2O inductively coupled plasma.

    PubMed

    Jeon, Min Hwan; Youn, Ji Youn; Yang, Kyung Chae; Yun, Deok Hyun; Lee, Du Yeong; Shim, Tae Hun; Park, Jea Gun; Yeom, Geun Young

    2014-12-01

    The etch characteristics of magnetic tunneling junction (MTJ) related materials such as CoFeB, MgO, FePt, Ru, and W as hard mask have been investigated as functions of rf pulse biasing, substrate heating, and CH4/N2O gas combination in an inductively coupled plasma system. When CH4/N2O gas ratio was varied, at CH4/N2O gas ratio of 2:1, not only the highest etch rates but also the highest etch selectivity over W could be obtained. By increasing the substrate temperature, the linear increase of both the etch rates of MTJ materials and the etch selectivity over W could be obtained. The use of the rf pulse biasing improved the etch selectivity of the MTJ materials over hard mask such as W further. The surface roughness and residual thickness remaining on the etched surface of the CoFeB were also decreased by using rf pulse biasing and with the decrease of rf duty percentage. The improvement of etch characteristics by substrate heating and rf pulse biasing was possibly related to the formation of more stable and volatile etch compounds and the removal of chemically reacted compounds more easily on the etched CoFeB surface. Highly selective etching of MTJ materials over the hard mask could be obtained by using the rf pulse biasing of 30% of duty ratio and by increasing the substrate temperature to 200 degrees C in the CH4/N2O (2:1) plasmas. PMID:25971096

  16. Stereotactic body radiotherapy for T3 and T4N0M0 non–small cell lung cancer

    PubMed Central

    Eriguchi, Takahisa; Takeda, Atsuya; Sanuki, Naoko; Nishimura, Shuichi; Takagawa, Yoshiaki; Enomoto, Tatsuji; Saeki, Noriyuki; Yashiro, Kae; Mizuno, Tomikazu; Aoki, Yousuke; Oku, Yohei; Yokosuka, Tetsuya; Shigematsu, Naoyuki

    2016-01-01

    To evaluate the outcomes and feasibility of stereotactic body radiotherapy (SBRT) for cT3 and cT4N0M0 non–small cell lung cancer (NSCLC), 25 patients with localized primary NSCLC diagnosed as cT3 or cT4N0M0, given SBRT between May 2005 and July 2013, were analyzed. All patients had inoperable tumors. The major reasons for tumors being unresectable were insufficient respiratory function for curative resection, advanced age (>80 years old) or technically inoperable due to invasion into critical organs. The median patient age was 79 years (range; 60–86). The median follow-up duration was 25 months (range: 5–100 months). The 2-year overall survival rates for T3 and T4 were 57% and 69%, respectively. The 2-year local control rates for T3 and T4 were 91% and 68%, respectively. As for toxicities, Grade 0–1, Grade 2 and Grade 3 radiation pneumonitis occurred in 23, 1 and 1 patient, respectively. No other acute or symptomatic late toxicities were reported. Thirteen patients who had no local, mediastinal or intrapulmonary progression at one year after SBRT underwent pulmonary function testing. The median variation in pre-SBRT and post-SBRT forced expiratory volume in 1 s (FEV1) values was –0.1 (–0.8–0.8). This variation was not statistically significant (P = 0.56). Forced vital capacity (FVC), vital capacity (VC), %VC and %FEV1 also showed no significant differences. SBRT for cT3 and cT4N0M0 NSCLC was both effective and feasible. Considering the favorable survival and low morbidity rate, SBRT is a potential treatment option for cT3 and cT4N0M0 NSCLC. PMID:26983978

  17. DDX6 transfers P-TEFb kinase to the AF4/AF4N (AFF1) super elongation complex.

    PubMed

    Mück, Fabian; Bracharz, Silvia; Marschalek, Rolf

    2016-01-01

    AF4/AFF1 and AF5/AFF4 are both backbones for the assembly of "super elongation complexes" (SECs) that exert 2 distinct functions after the recruitment of P-TEFb from the 7SK snRNP: (1) initiation and elongation of RNA polymerase II gene transcription, and (2) modification of transcribed gene regions by distinct histone methylation patterns. In this study we aimed to investigate one of the initial steps, namely how P-TEFb is transferred from 7SK snRNPs to the SECs. In particular, we were interested in the role of DDX6 that we have recently identified as part of the AF4 complex. DDX6 is an evolutionarily conserved member of the DEAD-box RNA helicase family that is known to control miRNA and mRNA biology (translation, storage and degradation). Overexpressed DDX6 is associated with different cancer types and with c-Myc protein overexpression. We could demonstrate that DDX6 binds to 7SK snRNA and causes the release and transfer of P-TEFb to the AF4/AF4N SEC. DDX6 also binds stably to AF4 and AF4N as demonstrated by GST pull-down and co-immunoprecipitation experiments. As a consequence, overexpression of either AF4/AF4N or DDX6 resulted in a strong increase of mRNA production (5-6 fold), while their simultaneous expression increased the cellular mRNA production by 11-fold. Conversely, the corresponding knockdown of DDX6 decreased mRNA production by 70%. In conclusion, AF4/AF4N and DDX6 represent key molecules for the elongation process of gene transcription and a model will be proposed for the hand-over process of P-TEFb to SECs. PMID:27679741

  18. Growth and electrical properties on NLO crystal: 4-N,N-dimethylamino 4′-N′-methylstilbazolium iodide

    SciTech Connect

    Kumar, M. Krishna Sudhahar, S. Kumar, R. Mohan

    2014-04-24

    4-N,N-Dimethylamino-4′-N′-methylstilbazolium tosylate single crystals were grown by solution crystal growth method. The cell parameters of grown crystal have been estimated using single crystal-X-ray diffraction analysis. The variation of real (´ε) and imaginary (´ε) part of dielectric constants and dielectric loss were observed for different frequencies and temperatures. The ac and dc electrical conductivities and activation energy were determined for DMSI crystal using dielectric studies.

  19. Stereotactic body radiotherapy for T3 and T4N0M0 non-small cell lung cancer.

    PubMed

    Eriguchi, Takahisa; Takeda, Atsuya; Sanuki, Naoko; Nishimura, Shuichi; Takagawa, Yoshiaki; Enomoto, Tatsuji; Saeki, Noriyuki; Yashiro, Kae; Mizuno, Tomikazu; Aoki, Yousuke; Oku, Yohei; Yokosuka, Tetsuya; Shigematsu, Naoyuki

    2016-06-01

    To evaluate the outcomes and feasibility of stereotactic body radiotherapy (SBRT) for cT3 and cT4N0M0 non-small cell lung cancer (NSCLC), 25 patients with localized primary NSCLC diagnosed as cT3 or cT4N0M0, given SBRT between May 2005 and July 2013, were analyzed. All patients had inoperable tumors. The major reasons for tumors being unresectable were insufficient respiratory function for curative resection, advanced age (>80 years old) or technically inoperable due to invasion into critical organs. The median patient age was 79 years (range; 60-86). The median follow-up duration was 25 months (range: 5-100 months). The 2-year overall survival rates for T3 and T4 were 57% and 69%, respectively. The 2-year local control rates for T3 and T4 were 91% and 68%, respectively. As for toxicities, Grade 0-1, Grade 2 and Grade 3 radiation pneumonitis occurred in 23, 1 and 1 patient, respectively. No other acute or symptomatic late toxicities were reported. Thirteen patients who had no local, mediastinal or intrapulmonary progression at one year after SBRT underwent pulmonary function testing. The median variation in pre-SBRT and post-SBRT forced expiratory volume in 1 s (FEV1) values was -0.1 (-0.8-0.8). This variation was not statistically significant (P = 0.56). Forced vital capacity (FVC), vital capacity (VC), %VC and %FEV1 also showed no significant differences. SBRT for cT3 and cT4N0M0 NSCLC was both effective and feasible. Considering the favorable survival and low morbidity rate, SBRT is a potential treatment option for cT3 and cT4N0M0 NSCLC. PMID:26983978

  20. DDX6 transfers P-TEFb kinase to the AF4/AF4N (AFF1) super elongation complex

    PubMed Central

    Mück, Fabian; Bracharz, Silvia; Marschalek, Rolf

    2016-01-01

    AF4/AFF1 and AF5/AFF4 are both backbones for the assembly of “super elongation complexes” (SECs) that exert 2 distinct functions after the recruitment of P-TEFb from the 7SK snRNP: (1) initiation and elongation of RNA polymerase II gene transcription, and (2) modification of transcribed gene regions by distinct histone methylation patterns. In this study we aimed to investigate one of the initial steps, namely how P-TEFb is transferred from 7SK snRNPs to the SECs. In particular, we were interested in the role of DDX6 that we have recently identified as part of the AF4 complex. DDX6 is an evolutionarily conserved member of the DEAD-box RNA helicase family that is known to control miRNA and mRNA biology (translation, storage and degradation). Overexpressed DDX6 is associated with different cancer types and with c-Myc protein overexpression. We could demonstrate that DDX6 binds to 7SK snRNA and causes the release and transfer of P-TEFb to the AF4/AF4N SEC. DDX6 also binds stably to AF4 and AF4N as demonstrated by GST pull-down and co-immunoprecipitation experiments. As a consequence, overexpression of either AF4/AF4N or DDX6 resulted in a strong increase of mRNA production (5-6 fold), while their simultaneous expression increased the cellular mRNA production by 11-fold. Conversely, the corresponding knockdown of DDX6 decreased mRNA production by 70%. In conclusion, AF4/AF4N and DDX6 represent key molecules for the elongation process of gene transcription and a model will be proposed for the hand-over process of P-TEFb to SECs.

  1. The first quaternary lanthanide(III) nitride iodides: Na M4N 2I 7 ( M=La-Nd)

    NASA Astrophysics Data System (ADS)

    Schurz, Christian M.; Schleid, Thomas

    2010-10-01

    In attempts to synthesize lanthanide(III) nitride iodides with the formula M2NI 3 ( M=La-Nd), moisture-sensitive single crystals of the first quaternary sodium lanthanide(III) nitride iodides Na M4N 2I 7 (orthorhombic, Pna2 1; Z=4; a=1391-1401, b=1086-1094, c=1186-1211 pm) could be obtained. The dominating structural features are {[}∞1 chains of trans-edge linked [N M4] 9+ tetrahedra, which run parallel to the polar 2 1-axis [001]. Between the chains, direct bonding via special iodide anions generates cages, in which isolated [NaI 6] 5- octahedra are embedded. The IR spectrum of NaLa 4N 2I 7 recorded from 100 to 1000 cm -1 shows main bands at υ=337, 373 and 489 cm -1. With decreasing radii of the lanthanide trications these bands, which can be assigned as an influence of the vibrations of the condensed [N M4] 9+ tetrahedra, are shifted toward higher frequencies for the Na M4N 2I 7 series ( M=La-Nd), following the lanthanide contraction.

  2. Characterization of an H4N2 Influenza Virus from Quails with a Multibasic Motif in the Hemagglutinin Cleavage Site

    PubMed Central

    Wong, Sook-San; Yoon, Sun-Woo; Zanin, Mark; Song, Min-Suk; Oshansky, Christine; Zaraket, Hassan; Sonnberg, Stephanie; Rubrum, Adam; Seiler, Patrick; Ferguson, Angela; Krauss, Scott; Cardona, Carol; Webby, Richard J.; Crossley, Beate

    2014-01-01

    The cleavage motif in the hemagglutinin (HA) protein of highly pathogenic H5 and H7 subtypes of avian influenza viruses is characterized by a peptide insertion or a multibasic cleavage site (MBCS). Here, we isolated an H4N2 virus from quails (Quail/CA12) with two additional arginines in the HA cleavage site, PEKRRTR/G, forming an MBCS-like motif. Quail/CA12 is a reassortant virus with the HA and neuraminidase (NA) gene most similar to a duck-isolated H4N2 virus, PD/CA06 with a monobasic HA cleavage site. Quail/CA12 required exogenous trypsin for efficient growth in culture and caused no clinical illness in infected chickens. Quail/CA12 had high binding preference for α2,6-linked sialic acids and showed higher replication and transmission ability in chickens and quails than PD/CA06. Although the H4N2 virus remained low pathogenic, these data suggests that the acquisition of MBCS in the field is not restricted to H5 or H7 subtypes. PMID:25151061

  3. Efficient hypoxic activation of the anticancer agent AQ4N by CYP2S1 and CYP2W1.

    PubMed

    Nishida, Clinton R; Lee, Melody; de Montellano, Paul R Ortiz

    2010-09-01

    AQ4N [1,4-bis{[2-(dimethylamino-N-oxide)ethyl]amino}-5,8-dihydroxyanthracene-9,10-dione], a prodrug with two dimethylamino N-oxide groups, is converted to the topoisomerase II inhibitor AQ4 [1,4-bis{[2-(dimethylamino)ethyl]amino}-5,8-dihydroxy-anthracene-9,10-dione] by reduction of the N-oxides to dimethylamino substituents. Earlier studies showed that several drug-metabolizing cytochrome P450 (P450) enzymes can catalyze this reductive reaction under hypoxic conditions comparable with those in solid tumors. CYP2S1 and CYP2W1, two extrahepatic P450 enzymes identified from the human genome whose functions are unknown, are expressed in hypoxic tumor cells at much higher levels than in normal tissue. Here, we demonstrate that CYP2S1, contrary to a published report (Mol Pharmacol 76:1031-1043, 2009), is efficiently reduced by NADPH-P450 reductase. Most importantly, both CYP2S1 and CYP2W1 are better catalysts for the reductive activation of AQ4N to AQ4 than all previously examined P450 enzymes. The overexpression of CYP2S1 and CYP2W1 in tumor tissues, together with their high catalytic activities for AQ4N activation, suggests that they may be exploited for the localized activation of anticancer prodrugs.

  4. Process for dezincing galvanized steel

    DOEpatents

    Morgan, William A.; Dudek, Frederick J.; Daniels, Edward J.

    1998-01-01

    A process for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75.degree. C. and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (i) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (ii) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (iii) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (iv) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte.

  5. Process for dezincing galvanized steel

    DOEpatents

    Morgan, W.A.; Dudek, F.J.; Daniels, E.J.

    1998-07-14

    A process is described for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75 C and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (1) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (2) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (3) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (4) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte. 1 fig.

  6. Induction heat treatment of steel

    SciTech Connect

    Semiatin, S.L.; Stutz, D.E.

    1985-01-01

    This book discusses the induction heating. After reviewing heat treating operations for steel and the principles of the heat treatment of steel, an overview of induction heat treating is provided. Next, consideration is given to equipment and equipment selection, coil design, power requirements and temperature control. A discussion of surface and through hardening of steel is provided, including information on frequency and power selection and quenching apparatus. Tempering is considered, followed by information on control of residual stresses, cracking, temper brittleness and the important metallurgical and hardness differences between induction and furnace treated steel.

  7. High strength, tough alloy steel

    DOEpatents

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other substitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  8. Fatigue and fracture properties of a super-austenitic stainless steel at 295 K and 4 K

    NASA Astrophysics Data System (ADS)

    McRae, D. M.; Walsh, R. P.; Dalder, E. N. C.; Litherland, S.; Trosen, M.; Kuhlmann, D. J.

    2014-01-01

    The tie plate structure for the ITER Central Solenoid (CS) is required to have high strength and good fatigue and fracture behavior at both room temperature and 4 K. A super-austenitic stainless steel - UNS 20910, commonly referred to by its trade name, Nitronic 50 (N50) - has been chosen for consideration to fulfill this task, due to its good room temperature and cryogenic yield strengths and weldability. Although N50 is often considered for cryogenic applications, little published data exists at 4 K. Here, a full series of tests have been conducted at 295 K and 4 K, and static tensile properties of four forgings of commercially-available N50 are reported along with fatigue life, fatigue crack growth rate (FCGR), and fracture toughness data. This study makes a significant contribution to the cryogenic mechanical properties database of high strength, paramagnetic alloys with potential for superconducting magnet applications.

  9. Partially degradable friction-welded pure iron-stainless steel 316L bone pin.

    PubMed

    Nasution, A K; Murni, N S; Sing, N B; Idris, M H; Hermawan, H

    2015-01-01

    This article describes the development of a partially degradable metal bone pin, proposed to minimize the occurrence of bone refracture by avoiding the creation of holes in the bone after pin removal procedure. The pin was made by friction welding and composed of two parts: the degradable part that remains in the bone and the nondegradable part that will be removed as usual. Rods of stainless steel 316L (nondegradable) and pure iron (degradable) were friction welded at the optimum parameters: forging pressure = 33.2 kPa, friction time = 25 s, burn-off length = 15 mm, and heat input = 4.58 J/s. The optimum tensile strength and elongation was registered at 666 MPa and 13%, respectively. A spiral defect formation was identified as the cause for the ductile fracture of the weld joint. A 40-µm wide intermetallic zone was identified along the fusion line having a distinct composition of Cr, Ni, and Mo. The corrosion rate of the pin gradually decreased from the undeformed zone of pure iron to the undeformed zone of stainless steel 316L. All metallurgical zones of the pin showed no toxic effect toward normal human osteoblast cells, confirming the ppb level of released Cr and Ni detected in the cell media were tolerable.

  10. The effect of microstructure and strength on the fracture toughness of an 18 Ni, 300 grade maraging steel

    NASA Technical Reports Server (NTRS)

    Psioda, J. A.; Low, J. R., Jr.

    1975-01-01

    A 300 grade maraging steel was chosen as a vehicle by which to understand the inverse relationship between strength and toughness in high strength alloys such as the 18 Ni maraging steels. The 18 Ni, 300 grade maraging material was a commercial grade consumable-electrode, vacuum arc remelted heat obtained in the form of forged and annealed plate. The matrix contained a population of second-phase impurity inclusions which was a product of the casting and hot working processes. These inclusions did not change with subsequent precipitation hardening. Changes in microstructure resulting in strength increases were brought about by variations in aging temperature and time. Maximum strength was attained in the 300 grade maraging steel by aging at 427 C (800 F) for 100 hours. Tensile, fatigue precracked Charpy impact, and plane-strain fracture toughness tests were performed at room temperature, 20 C (68 F). With increasing strength the fracture toughness decreases as smaller and smaller inclusions act as sites for void initiation.

  11. The industrial ecology of steel

    SciTech Connect

    Considine, Timothy J.; Jablonowski, Christopher; Considine, Donita M.M.; Rao, Prasad G.

    2001-03-26

    This study performs an integrated assessment of new technology adoption in the steel industry. New coke, iron, and steel production technologies are discussed, and their economic and environmental characteristics are compared. Based upon detailed plant level data on cost and physical input-output relations by process, this study develops a simple mathematical optimization model of steel process choice. This model is then expanded to a life cycle context, accounting for environmental emissions generated during the production and transportation of energy and material inputs into steelmaking. This life-cycle optimization model provides a basis for evaluating the environmental impacts of existing and new iron and steel technologies. Five different plant configurations are examined, from conventional integrated steel production to completely scrap-based operations. Two cost criteria are used to evaluate technology choice: private and social cost, with the latter including the environmental damages associated with emissions. While scrap-based technologies clearly generate lower emissions in mass terms, their emissions of sulfur dioxide and nitrogen oxides are significantly higher. Using conventional damage cost estimates reported in the literature suggests that the social costs associated with scrap-based steel production are slightly higher than with integrated steel production. This suggests that adopting a life-cycle viewpoint can substantially affect environmental assessment of new technologies. Finally, this study also examines the impacts of carbon taxes on steel production costs and technology choice.

  12. Effect of stress ratio on high-cycle fatigue properties of Ti-6Al-4V ELI alloy forging at low temperature

    NASA Astrophysics Data System (ADS)

    Ono, Yoshinori; Yuri, Tetsumi; Ogata, Toshio; Matsuoka, Saburo; Sunakawa, Hideo

    2014-01-01

    The effect of the stress ratio R (the ratio of minimum stress to maximum stress) on the high-cycle fatigue properties of Ti-6Al-4V extra-low interstitial (ELI) alloy forging was investigated at 293 and 77 K. At 293 K, the fatigue strength at 107 cycles exhibited deviations below the modified Goodman line in the R=0.01 and 0.5 tests. Moreover, at 77 K, larger deviations of the fatigue strength at 107 cycles below the modified Goodman line were confirmed in the same stress ratio conditions. The high-cycle fatigue strength of the present alloy forging exhibit an anomalous mean stress dependency at both temperatures and this dependency becomes remarkable at low temperature.

  13. Metals, pesticides, and semivolatile organic compounds in sediment in Valley Forge National Historical Park, Montgomery County, Pennsylvania

    USGS Publications Warehouse

    Reif, Andrew G.; Sloto, Ronald A.

    1997-01-01

    The Schuylkill River flows through Valley Forge National Historical Park in Lower Providence and West Norriton Townships in Montgomery County, Pa. The concentration of selected metals, pesticides, semivolatile organic compounds, and total carbon in stream-bottom sediments from Valley Forge National Historical Park were determined for samples collected once at 12 sites in and around the Schuylkill River. Relatively low concentrations of arsenic, chromium, copper, and lead were detected in all samples. The concentrations of these metals are similar to concentrations in other stream-bottom sediment samples collected in the region. The concentrations of iron, manganese, and zinc were elevated in samples from four sites in the Schuylkill River, and the concentration of mercury was elevated in a sample from an impoundment along the river. The organophosphorus insecticide diazinon was detected in relatively low concentrations in half of the 12 samples analyzed. The organo-chlorine insecticide DDE was detected in all 12 samples analyzed; dieldrin was detected in 10 samples, chlordane, DDD, and DDT were detected in 9 samples, and heptachlor epoxide was detected in one sample. The concentrations of organo-chlorine and organophosphorus insecticides were relatively low and similar to concentrations in samples collected in the region. Detectable concentrations of 17 semivolatile organic compounds were measured in the 12 samples analyzed. The most commonly detected compounds were fluoranthene, phenanthrene, and pyrene. The maximum concentration detected was 4,800 micrograms per kilogram of phenanthrene. The highest concentrations of compounds were detected in Lamb Run, a small tributary to the Schuylkill River with headwaters in an industrial corporate center. The concentration of compounds in the Schuylkill River below Lamb Run is higher than the Schuylkill River above Lamb Run, indicating that sediment from Lamb Run is increasing the concentration of semivolatile organic

  14. Evidence of multimicrometric coherent γ' precipitates in a hot-forged γ-γ' nickel-based superalloy.

    PubMed

    Charpagne, M-A; Vennéguès, P; Billot, T; Franchet, J-M; Bozzolo, N

    2016-07-01

    This paper demonstrates the existence of large γ' precipitates (several micrometres in diameter) that are coherent with their surrounding matrix grain in a commercial γ-γ' nickel-based superalloy. The use of combined energy dispersive X-ray spectrometry and electron backscattered diffraction (EBSD) analyses allowed for revealing that surprising feature, which was then confirmed by transmission electron microscopy (TEM). Coherency for such large second-phase particles is supported by a very low crystal lattice misfit between the two phases, which was confirmed thanks to X-ray diffractograms and TEM selected area electron diffraction patterns. Dynamic recrystallization of polycrystalline γ-γ' nickel-based superalloys has been extensively studied in terms of mechanisms and kinetics. As in many materials with low stacking fault energy, under forging conditions, the main softening mechanism is discontinuous dynamic recrystallization. This mechanism occurs with preferential nucleation on the grain boundaries of the deformed matrix. The latter is then being consumed by the growth of the newly formed grains of low energy and by nucleation that keeps generating new grains. In the case of sub-solvus forging, large γ' particles usually pin the migrating boundaries and thus limit grain growth to a size which is determined by the distribution of second-phase particles, in good agreement with the Smith-Zener model. Under particular circumstances, the driving force associated with the difference in stored energy between the growing grains and the matrix can be large enough that the pinning forces can be overcome, and some grains can then reach much larger grain sizes. In the latter exceptional case, some intragranular primary γ' particles can be observed, although they are almost exclusively located on grain boundaries and triple junctions otherwise. In both cases, primary precipitates have no special orientation relationship with the surrounding matrix grain(s). This

  15. Evidence of multimicrometric coherent γ' precipitates in a hot-forged γ-γ' nickel-based superalloy.

    PubMed

    Charpagne, M-A; Vennéguès, P; Billot, T; Franchet, J-M; Bozzolo, N

    2016-07-01

    This paper demonstrates the existence of large γ' precipitates (several micrometres in diameter) that are coherent with their surrounding matrix grain in a commercial γ-γ' nickel-based superalloy. The use of combined energy dispersive X-ray spectrometry and electron backscattered diffraction (EBSD) analyses allowed for revealing that surprising feature, which was then confirmed by transmission electron microscopy (TEM). Coherency for such large second-phase particles is supported by a very low crystal lattice misfit between the two phases, which was confirmed thanks to X-ray diffractograms and TEM selected area electron diffraction patterns. Dynamic recrystallization of polycrystalline γ-γ' nickel-based superalloys has been extensively studied in terms of mechanisms and kinetics. As in many materials with low stacking fault energy, under forging conditions, the main softening mechanism is discontinuous dynamic recrystallization. This mechanism occurs with preferential nucleation on the grain boundaries of the deformed matrix. The latter is then being consumed by the growth of the newly formed grains of low energy and by nucleation that keeps generating new grains. In the case of sub-solvus forging, large γ' particles usually pin the migrating boundaries and thus limit grain growth to a size which is determined by the distribution of second-phase particles, in good agreement with the Smith-Zener model. Under particular circumstances, the driving force associated with the difference in stored energy between the growing grains and the matrix can be large enough that the pinning forces can be overcome, and some grains can then reach much larger grain sizes. In the latter exceptional case, some intragranular primary γ' particles can be observed, although they are almost exclusively located on grain boundaries and triple junctions otherwise. In both cases, primary precipitates have no special orientation relationship with the surrounding matrix grain(s). This

  16. Neutron radiation embrittlement studies in support of continued operation, and validation by sampling of Magnox reactor steel pressure vessels and components

    SciTech Connect

    Jones, R.B.; Bolton, C.J.

    1997-02-01

    Magnox steel reactor pressure vessels differ significantly from US LWR vessels in terms of the type of steel used, as well as their operating environment (dose level, exposure temperature range, and neutron spectra). The large diameter ferritic steel vessels are constructed from C-Mn steel plates and forgings joined together with manual metal and submerged-arc welds which are stress-relieved. All Magnox vessels are now at least thirty years old and their continued operation is being vigorously pursued. Vessel surveillance and other programmes are summarized which support this objective. The current understanding of the roles of matrix irradiation damage, irradiation-enhanced copper impurity precipitation and intergranular embrittlement effects is described in so far as these influence the form of the embrittlement and hardening trend curves for each material. An update is given on the influence of high temperature exposure, and on the role of differing neutron spectra. Finally, the validation offered by the results of an initial vessel sampling exercise is summarized together with the objectives of a more extensive future sampling programme.

  17. Electron attachment and detachment, and the electron affinities of C5F5N and C5HF4N.

    PubMed

    Van Doren, Jane M; Kerr, Donna M; Miller, Thomas M; Viggiano, A A

    2005-09-15

    Rate constants have been measured for electron attachment to C5F5N (297-433 K) and to 2, 3, 5, 6-C5HF4N (303 K) using a flowing-afterglow Langmuir-probe apparatus (at a He gas pressure of 133 Pa). In both cases only the parent anion was formed in the attachment process. The attachment rate constants measured at room temperature are 1.8 +/- 0.5 X 10(-7) and 7 +/- 3 X 10(-10) cm(-3) s(-1), respectively. Rate constants were also measured for thermal electron detachment from the parent anions of these molecules. For C5F5N- detachment is negligible at room temperature, but increases to 2530 +/- 890 s(-1) at 433 K. For 2, 3, 5, 6-C5HF4N-, the detachment rate at 303 K was 520 +/- 180 s(-1). The attachment/detachment equilibrium yielded experimental electron affinities EA(C5F5N)=0.70 +/- 0.05 eV and EA(2, 3, 5, 6-C5HF4N)=0.40 +/- 0.08 eV. Electronic structure calculations were carried out for these molecules and related C5HxF5-xN using density-functional theory and the G3(MP2)//B3LYP compound method. The EAs are found to decrease by 0.25 eV, on average, with each F substitution by H. The calculated EAs are in good agreement with the present experimental results.

  18. A pass planning method for multi-hit stretching of heavy forgings by integration of a semi-analytical technique and degrees-reduced finite element

    NASA Astrophysics Data System (ADS)

    Cui, Zhenshan; Chen, Wen; Sui, Dashan; Liu, Juan

    2013-05-01

    A pass planning method for multi-pass and multi-hit stretching of heavy forgings is proposed, which composes of a semi-analytical procedure and a degrees-reduced finite element code. The semi-analytical procedure is based on a kinematically admissible velocity and Markov variational principle, and can be applied to roughly calculate the deformed shape and working force for stretch forging process for work-piece which has vertical and lateral symmetrical lines in cross-section. Meanwhile, in order to obtain the distributions of metal flow, temperature, strain and stress in detail, a degrees-reduced thermo-mechanical coupled rigid finite element code is developed. In this code, the instantaneous deformation zone is specially extracted from the total domain and simulated for metal flow, while the total domain is used to simulate the evolution of thermal field. Taking the semi-analytical method as a solver, the pass planning procedure for stretch forging is developed, and the degrees-reduced finite element code is used as a supplement to check the rationality of the planed pass schedule. An example is implemented to demonstrate the application of the proposed technique.

  19. Effect of Plasma Nitriding and Nitrocarburizing on HVOF-Sprayed Stainless Steel Coatings

    NASA Astrophysics Data System (ADS)

    Park, Gayoung; Bae, Gyuyeol; Moon, Kyungil; Lee, Changhee

    2013-12-01

    In this work, the effects of plasma nitriding (PN) and nitrocarburizing on HVOF-sprayed stainless steel nitride layers were investigated. 316 (austenitic), 17-4PH (precipitation hardening), and 410 (martensitic) stainless steels were plasma-nitrided and nitrocarburized using a N2 + H2 gas mixture and the gas mixture containing C2H2, respectively, at 550 °C. The results showed that the PN and nitrocarburizing produced a relatively thick nitrided layer consisting of a compound layer and an adjacent nitrogen diffusion layer depending on the crystal structures of the HVOF-sprayed stainless steel coatings. Also, the diffusion depth of nitrogen increased when a small amount of C2H2 (plasma nitrocarburizing process) was added. The PN and nitrocarburizing resulted in not only an increase of the surface hardness, but also improvement of the load bearing capacity of the HVOF-sprayed stainless steel coatings because of the formation of CrN, Fe3N, and Fe4N phases. Also, the plasma-nitrocarburized HVOF-sprayed 410 stainless steel had a superior surface microhardness and load bearing capacity due to the formation of Cr23C6 on the surface.

  20. Electronic structure and pair potential energy analysis of 4-n-methoxy-4'-cyanobiphenyl: A nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Sharma, Dipendra; Dwivedi, M. K.; Tiwari, S. N.

    2016-05-01

    Electronic structure properties of 4-n-methoxy-4'-cyanobiphenyl, a pure nematic liquid crystal have been examined using an ab‒initio, HF/6‒31G(d,p) technique with GAMESS program. Conformational and charge distribution analysis have been carried out. MEP, HOMO and LUMO surfaces have been scanned. Ionization potential, electron affinity, electronegativity, global hardness and softness of the liquid crystal molecule have been calculated. Further, stacking, side by side and end to end interactions between a molecular pair have been evaluated. Results have been used to elucidate the physico-chemical and liquid crystalline properties of the system.

  1. Molecular characterization of an influenza A virus (H4N2) isolated from waterfowl habitats in the State of Mexico.

    PubMed

    Ornelas-Eusebio, Erika; Obregón-Ascencio, Alejandro; Chávez-Maya, Fernando; García-Espinosa, Gary

    2015-03-01

    Wild waterfowl and their habitats are the main reservoirs of influenza A virus (IAV) mainly during the breeding season and prior to migration. This study describes the molecular characterization of an IAV isolated from 240 water samples of a small wetland during non-breeding season of migratory wild ducks in the State of Mexico, Mexico. The results showed that the virus belongs to the H4N2 subtype and each of its eight segments of the viral genome has similarity to IAV isolated from ducks in North America. This study suggests that IAV can be isolated from small wetland during non-breeding season of migrating waterfowl. PMID:25482497

  2. Molecular characterization of an influenza A virus (H4N2) isolated from waterfowl habitats in the State of Mexico.

    PubMed

    Ornelas-Eusebio, Erika; Obregón-Ascencio, Alejandro; Chávez-Maya, Fernando; García-Espinosa, Gary

    2015-03-01

    Wild waterfowl and their habitats are the main reservoirs of influenza A virus (IAV) mainly during the breeding season and prior to migration. This study describes the molecular characterization of an IAV isolated from 240 water samples of a small wetland during non-breeding season of migratory wild ducks in the State of Mexico, Mexico. The results showed that the virus belongs to the H4N2 subtype and each of its eight segments of the viral genome has similarity to IAV isolated from ducks in North America. This study suggests that IAV can be isolated from small wetland during non-breeding season of migrating waterfowl.

  3. Molecular characterization of an influenza A virus (H4N2) isolated from waterfowl habitats in the State of Mexico

    PubMed Central

    ORNELAS-EUSEBIO, Erika; OBREGÓN-ASCENCIO, Alejandro; CHÁVEZ-MAYA, Fernando; GARCÍA-ESPINOSA, Gary

    2014-01-01

    Wild waterfowl and their habitats are the main reservoirs of influenza A virus (IAV) mainly during the breeding season and prior to migration. This study describes the molecular characterization of an IAV isolated from 240 water samples of a small wetland during non-breeding season of migratory wild ducks in the State of Mexico, Mexico. The results showed that the virus belongs to the H4N2 subtype and each of its eight segments of the viral genome has similarity to IAV isolated from ducks in North America. This study suggests that IAV can be isolated from small wetland during non-breeding season of migrating waterfowl. PMID:25482497

  4. catena-Poly[[aqua-{4-[N'-(2,4-dioxo-3-pentyl-idene)-hydrazino]-benzoato}-copper(II)]-μ-acetato].

    PubMed

    Hao, Lujiang; Mu, Chunhua; Wang, Ridong

    2008-01-01

    In the title compound, [Cu(CH(3)CO(2))(C(12)H(11)N(2)O(4))(H(2)O)](n), the Cu(II) cation is tetra-coordinated by three carboxyl-ate O atoms from one 4-[N'-(2,4-dioxo-3-pentyl-idene)-hydrazino]-benzoate ligand and two acetate bridges, and by one water mol-ecule. The acetate bridges link adjacent Cu(II) cations, forming a chain. The crystal structure involves O-H⋯O hydrogen bonds. PMID:21202784

  5. Connections: Superplasticity, Damascus Steels, Laminated Steels, and Carbon Dating

    NASA Astrophysics Data System (ADS)

    Wadsworth, Jeffrey

    2016-09-01

    In this paper, a description is given of the connections that evolved from the initial development of a family of superplastic plain carbon steels that came to be known as Ultra-High Carbon Steels (UHCS). It was observed that their very high carbon contents were similar, if not identical, to those of Damascus steels. There followed a series of attempts to rediscover how the famous patterns found on Damascus steels blades were formed. At the same time, in order to improve the toughness at room temperature of the newly-developed UHCS, laminated composites were made of alternating layers of UHCS and mild steel (and subsequently other steels and other metals). This led to a study of ancient laminated composites, the motives for their manufacture, and the plausibility of some of the claims relating to the number of layers in the final blades. One apparently ancient laminated composite, recovered in 1837 from the great pyramid of Giza which was constructed in about 2750 B.C., stimulated a carbon dating study of ancient steels. The modern interest in "Bladesmithing" has connections back to many of these ancient weapons.

  6. The mitigating effect of calcification-dependent of utilization of inorganic carbon of Chara vulgaris Linn on NH4-N toxicity.

    PubMed

    Wang, Heyun; Ni, Leyi; Xie, Ping

    2013-09-01

    Increased ammonium (NH4-N) concentrations in water bodies have been reported to adversely affect the dominant species of submersed vegetation in meso-eutrophic waters worldwide. However calcareous plants were lowly sensitive to NH4-N toxicity. In order to make clear the function of calcification in the tolerance of calcareous plants to NH4-N stress, we studied the effects of increased HCO3(-) and additional NH4-N on calcification and utilization of dissolve inorganic carbon (DIC) in Chara vulgaris Linn in a 7-d sub-acute experiment (light:dark 12:12h) carried out in an open experimental system in lab. Results revealed that calcification was dependent of utilization of dissolve inorganic carbon. Additional HCO3(-) significantly decreased the increase of pH while additional NH4-N did not. And additional HCO3(-) significantly improved calcification while NH4-N did in versus in relation to the variation of DIC concentration. However, addition of both HCO3(-) and NH4-N increased utilization of DIC. This resulted in calcification to utilization of DIC ratio decreased under additional NH4-N condition while increased under additional HCO3(-) conditions in response to the variation of solution pH. In the present study, external HCO3(-) decreased the increase of solution pH by increasing calcification, which correspondingly mitigated the toxic effect of high NH4-N. And we argue that the mitigating effect of increased HCO3(-) on NH4-N toxicity is dependent of plant calcification, and it is a positive feedback mechanism, potentially leading to the dominance of calcareous plants in meso-eutrophic water bodies.

  7. The mitigating effect of calcification-dependent of utilization of inorganic carbon of Chara vulgaris Linn on NH4-N toxicity.

    PubMed

    Wang, Heyun; Ni, Leyi; Xie, Ping

    2013-09-01

    Increased ammonium (NH4-N) concentrations in water bodies have been reported to adversely affect the dominant species of submersed vegetation in meso-eutrophic waters worldwide. However calcareous plants were lowly sensitive to NH4-N toxicity. In order to make clear the function of calcification in the tolerance of calcareous plants to NH4-N stress, we studied the effects of increased HCO3(-) and additional NH4-N on calcification and utilization of dissolve inorganic carbon (DIC) in Chara vulgaris Linn in a 7-d sub-acute experiment (light:dark 12:12h) carried out in an open experimental system in lab. Results revealed that calcification was dependent of utilization of dissolve inorganic carbon. Additional HCO3(-) significantly decreased the increase of pH while additional NH4-N did not. And additional HCO3(-) significantly improved calcification while NH4-N did in versus in relation to the variation of DIC concentration. However, addition of both HCO3(-) and NH4-N increased utilization of DIC. This resulted in calcification to utilization of DIC ratio decreased under additional NH4-N condition while increased under additional HCO3(-) conditions in response to the variation of solution pH. In the present study, external HCO3(-) decreased the increase of solution pH by increasing calcification, which correspondingly mitigated the toxic effect of high NH4-N. And we argue that the mitigating effect of increased HCO3(-) on NH4-N toxicity is dependent of plant calcification, and it is a positive feedback mechanism, potentially leading to the dominance of calcareous plants in meso-eutrophic water bodies. PMID:23755986

  8. Forging successful academic-community partnerships with community health centers: the California statewide Area Health Education Center (AHEC) experience.

    PubMed

    Fowkes, Virginia; Blossom, H John; Mitchell, Brenda; Herrera-Mata, Lydia

    2014-01-01

    Increased access to insurance under the Affordable Care Act will increase demands for clinical services in community health centers (CHCs). CHCs also have an increasingly important educational role to train clinicians who will remain to practice in community clinics. CHCs and Area Health Education Centers (AHECs) are logical partners to prepare the health workforce for the future. Both are sponsored by the Health Resources and Services Administration, and they share a mission to improve quality of care in medically underserved communities. AHECs emphasize the educational side of the mission, and CHCs the service side. Building stronger partnerships between them can facilitate a balance between education and service needs.From 2004 to 2011, the California Statewide AHEC program and its 12 community AHECs (centers) reorganized to align training with CHC workforce priorities. Eight centers merged into CHC consortia; others established close partnerships with CHCs in their respective regions. The authors discuss issues considered and approaches taken to make these changes. Collaborative innovative processes with program leadership, staff, and center directors revised the program mission, developed common training objectives with an evaluation plan, and defined organizational, functional, and impact characteristics for successful AHECs in California. During this planning, centers gained confidence as educational arms for the safety net and began collaborations with statewide programs as well as among themselves. The AHEC reorganization and the processes used to develop, strengthen, and identify standards for centers forged the development of new partnerships and established academic-community trust in planning and implementing programs with CHCs. PMID:24280858

  9. Occupational Profiles in the European Steel Industry.

    ERIC Educational Resources Information Center

    Franz, Hans-Werner; And Others

    The steel industry in Europe has faced great changes, with resulting layoffs and restructuring. Now that the most basic changes seem to be over, it has become evident that the remaining steel industry requires more highly trained workers than was the case previously. Although steel maintenance employees were always highly skilled, steel production…

  10. Improving the toughness of ultrahigh strength steel

    SciTech Connect

    Soto, Koji

    2002-08-15

    The ideal structural steel combines high strength with high fracture toughness. This dissertation discusses the toughening mechanism of the Fe/Co/Ni/Cr/Mo/C steel, AerMet 100, which has the highest toughness/strength combination among all commercial ultrahigh strength steels. The possibility of improving the toughness of this steel was examined by considering several relevant factors.

  11. Determining a Structural Distortion and Anion Ordering in La2Si4N6C via Computation and Experiment.

    PubMed

    Hermus, Martin; Mansouri Tehrani, Aria; Brgoch, Jakoah

    2016-09-19

    A structural instability in the orthorhombic carbonitridosilicate La2Si4N6C arises when calculating the ab initio phonon dispersion curves. The presence of imaginary modes indicates the compound reported in space group Pnma is dynamically unstable with the eigenvectors showing a monoclinic distortion pathway leading to space group P21/c. Synthesizing La2Si4N6C using a high-temperature route and conducting a co-refinement with high-resolution synchrotron X-ray and neutron powder diffraction shows the predicted peak splitting confirming the predicted lower symmetry crystal structure. Further, the combination of ab initio computation, neutron diffraction, and a total scattering analysis based on a neutron pair distribution function analysis supports that the anions are fully ordered and that carbon is only found on the central position of a star-shaped C(SiN3)4 unit. These results illustrate the power of combining computation and experiment to unequivocally solve crystal structures from polycrystalline powders.

  12. Determination of 2-ethylhexyl 4-(N-methyl-N-nitrosamino) benzoate in commercial sunscreens and cosmetic products.

    PubMed

    Chou, H J; Yates, R L; Havery, D C; Wenninger, J A

    1995-01-01

    An analytical method has been developed for determination of 2-ethylhexyl 4-(N-methyl-N-nitrosamino) benzoate (NMPABAO), a nitrosamine contaminant in sunscreen products containing 2-ethylhexyl 4-(N,N-dimethylamino) benzoate (Padimate O). The method involves extraction of NMPABAO by column chromatography followed by liquid chromatographic separation and analysis wit a nitric oxide detector. To confirm the presence of NMPABAO in sunscreen products, the N-nitrosamine was synthesized and its structure was determined by infrared spectrophotometry, nuclear magnetic resonance spectrometry, and mass spectrometry (MS). For method validation, recovery studies were performed on a commercial suntan lotion, cream, and gel. Recoveries of NMPABAO added to representative test samples averaged 83%. The method has an estimated detection limit of 30 ppb. The method was used to analyze 25 commercial cosmetic and sunscreen products containing Padimate O. Eleven products contained NMPABAO at levels ranging from 160 to 21000 ppb. NMPABAO presence in 4 products was confirmed by MS at levels > or = 4000 ppb. The highest levels of NMPABAO were associated with products that contained the nitrite-releasing preservative 2-bromo-2-nitro-1,3-propanediol.

  13. DNA replication checkpoint signaling depends on a Rad53-Dbf4 N-terminal interaction in Saccharomyces cerevisiae.

    PubMed

    Chen, Ying-Chou; Kenworthy, Jessica; Gabrielse, Carrie; Hänni, Christine; Zegerman, Philip; Weinreich, Michael

    2013-06-01

    Dbf4-dependent kinase (DDK) and cyclin-dependent kinase (CDK) are essential to initiate DNA replication at individual origins. During replication stress, the S-phase checkpoint inhibits the DDK- and CDK-dependent activation of late replication origins. Rad53 kinase is a central effector of the replication checkpoint and both binds to and phosphorylates Dbf4 to prevent late-origin firing. The molecular basis for the Rad53-Dbf4 physical interaction is not clear but occurs through the Dbf4 N terminus. Here we found that both Rad53 FHA1 and FHA2 domains, which specifically recognize phospho-threonine (pT), interacted with Dbf4 through an N-terminal sequence and an adjacent BRCT domain. Purified Rad53 FHA1 domain (but not FHA2) bound to a pT Dbf4 peptide in vitro, suggesting a possible phospho-threonine-dependent interaction between FHA1 and Dbf4. The Dbf4-Rad53 interaction is governed by multiple contacts that are separable from the Cdc5- and Msa1-binding sites in the Dbf4 N terminus. Importantly, abrogation of the Rad53-Dbf4 physical interaction blocked Dbf4 phosphorylation and allowed late-origin firing during replication checkpoint activation. This indicated that Rad53 must stably bind to Dbf4 to regulate its activity.

  14. Decrease of NH4+-N by bacterioplankton accelerated the removal of cyanobacterial blooms in aerated aquatic ecosystem.

    PubMed

    Yang, Xi; Xie, Ping; Ma, Zhimei; Wang, Qing; Fan, Huihui; Shen, Hong

    2013-11-01

    We used aerated systems to assess the influence of the bacterioplankton community on cyanobacterial blooms in algae/post-bloom of Lake Taihu, China. Bacterioplankton community diversity was evaluated by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprinting. Chemical analysis and nitrogen dynamic changes illustrated that NH4+-N was nitrified to NO2--N and NO3--N by bacterioplankton. Finally, NH4+-N was exhausted and NO3--N was denitrified to NO2--N, while the accumulation of NO2--N indicated that bacterioplankton with completely aerobic denitrification ability were lacking in the water samples collected from Lake Taihu. We suggested that adding completely aerobic denitrification bacteria (to denitrify NO2--N to N2) would improve the water quality. PCR-DGGE and sequencing results showed that more than1/3 of the bacterial species were associated with the removal of nitrogen, and Acidovorax temperans was the dominant one. PCR-DGGE, variation of nitrogen, removal efficiencies of chlorophyll-a and canonical correspondence analysis indicated that the bacterioplanktonsignificantly influenced the physiological and biochemical changes of cyanobacteria. Additionally, the unweighted pair-group method with arithmetic means revealed there was no obvious harm to the microecosystem from aeration. The present study demonstrated that bacterioplankton can play crucial roles in aerated ecosystems, which could control the impact of cyanobacterial blooms in eutrophicated fresh water systems.

  15. Determining a Structural Distortion and Anion Ordering in La2Si4N6C via Computation and Experiment.

    PubMed

    Hermus, Martin; Mansouri Tehrani, Aria; Brgoch, Jakoah

    2016-09-19

    A structural instability in the orthorhombic carbonitridosilicate La2Si4N6C arises when calculating the ab initio phonon dispersion curves. The presence of imaginary modes indicates the compound reported in space group Pnma is dynamically unstable with the eigenvectors showing a monoclinic distortion pathway leading to space group P21/c. Synthesizing La2Si4N6C using a high-temperature route and conducting a co-refinement with high-resolution synchrotron X-ray and neutron powder diffraction shows the predicted peak splitting confirming the predicted lower symmetry crystal structure. Further, the combination of ab initio computation, neutron diffraction, and a total scattering analysis based on a neutron pair distribution function analysis supports that the anions are fully ordered and that carbon is only found on the central position of a star-shaped C(SiN3)4 unit. These results illustrate the power of combining computation and experiment to unequivocally solve crystal structures from polycrystalline powders. PMID:27598316

  16. Transparent half metallic g-C4N3 nanotubes: potential multifunctional applications for spintronics and optical devices.

    PubMed

    Hu, Tao; Hashmi, Arqum; Hong, Jisang

    2014-08-14

    Multifunctional material brings many interesting issues because of various potential device applications. Using first principles calculations, we predict that the graphitic carbon nitride (g-C4N3) nanotubes can display multifunctional properties for both spintronics and optical device applications. Very interestingly, armchair tubes (n, n) with n = 2, 3, 4, 5, 6 and (5, 0) zigzag tubes are found to be half metallic, while zigzag tubes (n, 0) with n = 4, 6 show an antiferromagnetic ground state with band gaps. However, larger zigzag tubes of (7, 0), (8, 0), and (10, 0) are turned out to be half metallic. Along with the half metallic behavior of the tubes, those tubes seem to be optically transparent in the visible range. Due to these magnetic and optical properties, we suggest that the g-C4N3 nanotubes (CNNTs) can be used for both ideal spintronics and transparent electrode materials. We also explored the stability of magnetic state and nanotube structure using ab initio molecular dynamics. The CNNTs were found to be thermally stable and the magnetic moment was robust against the structural deformation at 300 K. Overall, our theoretical prediction in one dimensional CNNTs may provide a new physics in spintronics and also in other device applications because of potential multifunctional properties.

  17. Irradiation effects in ferritic steels

    NASA Astrophysics Data System (ADS)

    Lechtenberg, Thomas

    1985-08-01

    Since 1979 the Alloy Development for Irradiation Performance (ADIP) task funded by the US Department of Energy has been studying the 2-12Cr class of ferritic steels to establish the feasibility of using them in fusion reactor first wall/breeding blanket (FW/B) applications. The advantages of ferritic steels include superior swelling resistance, low thermal stresses compared to austenitic stainless steels, attractive mechanical properties up to 600°C. and service histories exceeding 100 000 h. These steels are commonly used in a range of microstructural conditions which include ferritic, martensitic. tempered martensitic, bainitic etc. Throughout this paper where the term "ferritic" is used it should be taken to mean any of these microstructures. The ADIP task is studying several candidate alloy systems including 12Cr-1MoWV (HT-9), modified 9Cr-1MoVNb, and dual-phased steels such as EM-12 and 2 {1}/{4}Cr-Mo. These materials are ferromagnetic (FM), body centered cubic (bcc), and contain chromium additions between 2 and 12 wt% and molybdenum additions usually below 2%. The perceived issues associated with the application of this class of steel to fusion reactors are the increase in the ductile-brittle transition temperature (DBTT) with neutron damage, the compatibility of these steels with liquid metals and solid breeding materials, and their weldability. The ferromagnetic character of these steels can also be important in reactor design. It is the purpose of this paper to review the current understanding of these bcc steels and the effects of irradiation. The major points of discussion will be irradiation-induced or -enhanced dimensional changes such as swelling and creep, mechanical properties such as tensile strength and various measurements of toughness, and activation by neutron interactions with structural materials.

  18. Bottom-up substitution assembly of AuF4-n0,-+nPO3 (n = 1-4): a theoretical study of novel oxyfluoride hyperhalogen molecules and anions AuF4-n(PO3)n0,-

    NASA Astrophysics Data System (ADS)

    Yang, Yi-fan; Cui, Zhong-hua; Ding, Yi-hong

    2014-06-01

    Compounds with high electron affinity, i.e. superhalogens, have continued to attract chemists' attention, due to their potential importance in fundamental chemistry and materials science. It has now proven very effective to build up novel superhalogens with multi-positively charged centres, which are usually called 'hyperhalogens'. Herein, using AuF4- and PO3 as the model building blocks, we made the first attempt to design the Au,P-based hyperhalogen anions AuF4-n(PO3)n- (n = 1-4) at the B3LYP/6-311+G(d)&SDD and CCSD(T)/6-311+G(d)&SDD (single-point) levels (6-311+G(d) for O, F, P and SDD for Au). Notably, for all the considered Au,P systems, the ground state bears a dioxo-bonded structure with n ≤ 3, which is significantly more stable than the usually presumed mono-oxo-bonded one. Moreover, the clustering of the -PO3 moieties becomes energetically favoured for n ≥ 3. The ground states of AuP4O120,- are the first reported cage-like oxide hyperhalogens. Thus, the -PO3 moiety cannot be retained during the 'bottom-up' assembly. The vertical detachment energy (VDE) value of the most stable AuF4-n(PO3)n- (n = 1-4) ranges from 7.16 to 8.20 eV, higher than the VDE values of the corresponding building blocks AuF4- (7.08 eV) and PO3- (4.69 eV). The adiabatic detachment energy values of these four hyperhalogens exceed 6.00 eV. Possible generation routes for AuF4-n(PO3)n- (n = 1-4) were discussed. The presently designed oxyfluorides not only enriches the family of hyperhalogens, but also demonstrates the great importance of considering the structural transformation during the superhalogen → hyperhalogen design such as for the present Au-P based systems.

  19. Welding tritium exposed stainless steel

    SciTech Connect

    Kanne, W.R. Jr.

    1994-11-01

    Stainless steels that are exposed to tritium become unweldable by conventional methods due to buildup of decay helium within the metal matrix. With longer service lives expected for tritium containment systems, methods for welding on tritium exposed material will become important for repair or modification of the systems. Solid-state resistance welding and low-penetration overlay welding have been shown to mitigate helium embrittlement cracking in tritium exposed 304 stainless steel. These processes can also be used on stainless steel containing helium from neutron irradiation, such as occurs in nuclear reactors.

  20. Advanced steel reheat furnace

    SciTech Connect

    Moyeda, D.; Sheldon, M.; Koppang, R.; Lanyi, M.; Li, X.; Eleazer, B.

    1997-10-01

    Energy and Environmental Research Corp. (EER) under a contract from the Department of Energy is pursuing the development and demonstration of an Advanced Steel Reheating Furnace. This paper reports the results of Phase 1, Research, which has evaluated an advanced furnace concept incorporating two proven and commercialized technologies previously applied to other high temperature combustion applications: EER`s gas reburn technology (GR) for post combustion NOx control; and Air Product`s oxy-fuel enrichment air (OEA) for improved flame heat transfer in the heating zones of the furnace. The combined technologies feature greater production throughput with associated furnace efficiency improvements; lowered NOx emissions; and better control over the furnace atmosphere, whether oxidizing or reducing, leading to better control over surface finish.

  1. 2169 steel waveform experiments.

    SciTech Connect

    Furnish, Michael David; Alexander, C. Scott; Reinhart, William Dodd; Brown, Justin L.

    2012-11-01

    In support of LLNL efforts to develop multiscale models of a variety of materials, we have performed a set of eight gas gun impact experiments on 2169 steel (21% Cr, 6% Ni, 9% Mn, balance predominantly Fe). These experiments provided carefully controlled shock, reshock and release velocimetry data, with initial shock stresses ranging from 10 to 50 GPa (particle velocities from 0.25 to 1.05 km/s). Both windowed and free-surface measurements were included in this experiment set to increase the utility of the data set, as were samples ranging in thickness from 1 to 5 mm. Target physical phenomena included the elastic/plastic transition (Hugoniot elastic limit), the Hugoniot, any phase transition phenomena, and the release path (windowed and free-surface). The Hugoniot was found to be nearly linear, with no indications of the Fe phase transition. Releases were non-hysteretic, and relatively consistent between 3- and 5-mmthick samples (the 3 mm samples giving slightly lower wavespeeds on release). Reshock tests with explosively welded impactors produced clean results; those with glue bonds showed transient releases prior to the arrival of the reshock, reducing their usefulness for deriving strength information. The free-surface samples, which were steps on a single piece of steel, showed lower wavespeeds for thin (1 mm) samples than for thicker (2 or 4 mm) samples. A configuration used for the last three shots allows release information to be determined from these free surface samples. The sample strength appears to increase with stress from ~1 GPa to ~ 3 GPa over this range, consistent with other recent work but about 40% above the Steinberg model.

  2. Inhibitory effect of high NH4(+)-N concentration on anaerobic biotreatment of fresh leachate from a municipal solid waste incineration plant.

    PubMed

    Liu, Zhao; Dang, Yan; Li, Caihua; Sun, Dezhi

    2015-09-01

    Fresh leachate from municipal solid waste (MSW) incineration plants generally contains extremely high NH4(+)-N concentration which could inhibit the bioactivity of microorganisms. The inhibitory effect of high NH4(+)-N concentration on anaerobic biotreatment of fresh leachate from a MSW incineration plant in China has been investigated in this study. The inhibition processes was studied by both static tests and a laboratory-scale expanded granular sludge bed (EGSB) reactor. The specific methanogenic activity (SMA) of the microorganisms in anaerobic granular sludge was inhibited with the NH4(+)-N concentration increasing to 1000mg/L in static tests. As well the chemical oxygen demand (COD) removal efficiency and the methane yield decreased in the EGSB reactor, while the volatile fatty acids (VFAs) accumulated and extracellular polymeric substances (EPS) of the anaerobic granular sludge increased with NH4(+)-N concentration rising to 1000mg/L, without any rebounding during 30days of operation. Decreasing NH4(+)-N concentration to 500mg/L in influent, the COD removal efficiency recovered to about 85% after 26days. 1000mg/L of NH4(+)-N in leachate was suggested to be the inhibition threshold in EGSB reactor. High-throughput sequencing results showed little changes in microbial communities of the sludge for a high NH4(+)-N concentration, indicating that the survival of most microorganisms was not affected under such a condition. It inhibited the bioactivity of the microorganisms, resulting in decrease of the COD removal efficiency.

  3. Corrosion of Steels in Steel Reinforced Concrete in Cassava Juice

    NASA Astrophysics Data System (ADS)

    Oluwadare, G. O.; Agbaje, O.

    The corrosion of two types of construction steels, ST60Mn and RST37-2♦, in a low cyanide concentration environment (cassava juice) and embedded in concrete had been studied. The ST60 Mn was found to be more corrosion resistant in both ordinary water and the cassava juice environment. The cyanide in cassava juice does not attack the steel but it provides an environment of lower pH around the steel in the concrete which leads to breakdown of the passivating film provided by hydroxyl ions from cement. Other factors such as the curing time of the concrete also affect the corrosion rates of the steel in the concrete. The corrosion rate of the steel directly exposed to cassava juice i.e., steel not embedded in concrete is about twice that in concrete. Long exposure of concrete structure to cassava processing effluent might result in deterioration of such structures. Careful attention should therefore be paid to disposal of cassava processing effluents, especially in a country like Nigeria where such processing is now on the increase.

  4. Great Lakes Steel -- PCI facility

    SciTech Connect

    Eichinger, F.T.; Dake, S.H.; Wagner, E.D.; Brown, G.S.

    1997-12-31

    This paper discusses the planning, design, and start-up of the 90 tph PCI facility for National Steel`s Great Lakes Steel Division in River Rouge, MI. This project is owned and operated by Edison Energy Services, and was implemented on a fast-track basis by Raytheon Engineers and Constructors, Babcock Material Handling, and Babcock and Wilcox. This paper presents important process issues, basic design criteria, an the challenges of engineering and building a state-of-the-art PCI facility in two existing plants. Pulverized coal is prepared at the River Rouge Power Plant of Detroit Edison, is pneumatically conveyed 6,000 feet to a storage silo at Great Lakes Steel, and is injected into three blast furnaces.

  5. Hydrogen embrittlement of structural steels.

    SciTech Connect

    Somerday, Brian P.

    2010-06-01

    Carbon-manganese steels are candidates for the structural materials in hydrogen gas pipelines, however it is well known that these steels are susceptible to hydrogen embrittlement. Decades of research and industrial experience have established that hydrogen embrittlement compromises the structural integrity of steel components. This experience has also helped identify the failure modes that can operate in hydrogen containment structures. As a result, there are tangible ideas for managing hydrogen embrittement in steels and quantifying safety margins for steel hydrogen containment structures. For example, fatigue crack growth aided by hydrogen embrittlement is a key failure mode for steel hydrogen containment structures subjected to pressure cycling. Applying appropriate structural integrity models coupled with measurement of relevant material properties allows quantification of safety margins against fatigue crack growth in hydrogen containment structures. Furthermore, application of these structural integrity models is aided by the development of micromechanics models, which provide important insights such as the hydrogen distribution near defects in steel structures. The principal objective of this project is to enable application of structural integrity models to steel hydrogen pipelines. The new American Society of Mechanical Engineers (ASME) B31.12 design code for hydrogen pipelines includes a fracture mechanics-based design option, which requires material property inputs such as the threshold for rapid cracking and fatigue crack growth rate under cyclic loading. Thus, one focus of this project is to measure the rapid-cracking thresholds and fatigue crack growth rates of line pipe steels in high-pressure hydrogen gas. These properties must be measured for the base materials but more importantly for the welds, which are likely to be most vulnerable to hydrogen embrittlement. The measured properties can be evaluated by predicting the performance of the pipeline

  6. Results of crack-arrest tests on irradiated a 508 class 3 steel

    SciTech Connect

    Iskander, S.K.; Milella, P.P.; Pini, M.A.

    1998-02-01

    Ten crack-arrest toughness values for irradiated specimens of A 508 class 3 forging steel have been obtained. The tests were performed according to the American Society for Testing and Materials (ASTM) Standard Test Method for Determining Plane-Strain Crack-Arrest Fracture Toughness, K{sub la} of Ferritic Steels, E 1221-88. None of these values are strictly valid in all five ASTM E 1221-88 validity criteria. However, they are useful when compared to unirradiated crack-arrest specimen toughness values since they show the small (averaging approximately 10{degrees}C) shifts in the mean and lower-bound crack-arrest toughness curves. This confirms that a low copper content in ASTM A 508 class 3 forging material can be expected to result in small shifts of the transition toughness curve. The shifts due to neutron irradiation of the lower bound and mean toughness curves are approximately the same as the Charpy V-notch (CVN) 41-J temperature shift. The nine crack-arrest specimens were irradiated at temperatures varying from 243 to 280{degrees}C, and to a fluence varying from 1.7 to 2.7 x 10{sup 19} neutrons/cm{sup 2} (> 1 MeV). The test results were normalized to reference values that correspond to those of CVN specimens irradiated at 284{degrees}C to a fluence of 3.2 x 10{sup 19} neutrons/cm{sup 2} (> 1 MeV) in the same capsule as the crack-arrest specimens. This adjustment resulted in a shift to lower temperatures of all the data, and in particular moved two data points that appeared to lie close to or lower than the American Society of Mechanical Engineers K{sub la} curve to positions that seemed more reasonable with respect to the remaining data. A special fixture was designed, fabricated, and successfully used in the testing. For reasons explained in the text, special blocks to receive the Oak Ridge National Laboratory clip gage were designed, and greater-than-standard crack-mouth opening displacements measured were accounted for. 24 refs., 13 figs., 12 tabs.

  7. Wear of steel by rubber

    NASA Technical Reports Server (NTRS)

    Gent, A. N.; Pulford, C. T. R.

    1978-01-01

    Wear of a steel blade used as a scraper to abrade rubber surfaces has been found to take place much more rapidly on a cis-polyisoprene (natural rubber) surface than on a cis-polybutadiene surface, and much more rapidly in an inert atmosphere than in air. These observations are attributed to the direct attack upon steel of free-radical species generated by mechanical rupture of elastomer molecules during abrasion.

  8. Fatigue handbook: Offshore steel structures

    SciTech Connect

    Almarnaess, A.

    1985-01-01

    The contents of this book are: Overview of Offshore Steel Structures; Loads on Ocean Structures; Fracture Mechanics As a Tool in Fatigue Analysis; Basic Fatigue Properties of Welded Joints; Significance of Defects; Improving the Fatigue Strength of Welded Joints; Effects of Marine Environment and Cathodic Protection on Fatigue of Structural Steels Fatigue of Tubular Joints; Unstable Fracture; Fatigue Life Calculations; and Fatigue in Building Codes Background and Applications.

  9. Feature Scale Simulation of PECVD of SiO2 in SiH4/N2O Mixture

    NASA Astrophysics Data System (ADS)

    Liu, Xuan; Ge, Jie; Yang, Yi; Song, Yixu; Ren, Tianling

    2014-04-01

    In this paper, to simulate the process of PECVD (plasma enhanced chemical vapor deposition) of SiO2, the plasma chemistry and plasma density of SiH4/N2O mixture have been studied with an inductive coupled plasma model, and the level set methodology has been used to obtain the feature scale variation during the process. In this simulation, the goal is to fill a trench. We studied how ion sputtering and chamber pressure affect the feature scale model. After the simulation, we found that the trench will close up at the top after a few steps, and if we add the ion sputtering into the surface reactions, the trench top will close up a little later. When the chamber pressure is improved, the plasma density will increase, so the trench top will close up earlier. In semiconductor device manufacture, people can control the trench's feature scale through adjusting these two parameters.

  10. Synthesis and aromatase inhibitory evaluation of 4-N-nitrophenyl substituted amino-4H-1,2,4-triazole derivatives.

    PubMed

    Song, Zhidan; Liu, Yanchun; Dai, Zhoutong; Liu, Wei; Zhao, Kai; Zhang, Tongcun; Hu, Yanying; Zhang, Xiuli; Dai, Yujie

    2016-10-01

    In this paper, 13 4-N-nitrophenyl substituted amino-4H-1,2,4-triazole derivatives were synthesized and their aromatase inhibitory activities were measured. The results show that the substitution of the groups on benzyl group can further improve their bioactivity and the compound with Cl on the para position of benzyl has the highest bioactivity (IC50=9.02nM). A QSAR model was constructed from the 13 compounds with genetic function approximation using DS 2.1 package. This model can explain 90.09% of the variance (R(2)Adj), while it can predict 84.95% of the variance (R(2)cv) with the confidence interval of 95%. PMID:27567077

  11. Cross section limits for the Cm248(Mg25,4n-5n)Hs268,269 reactions

    NASA Astrophysics Data System (ADS)

    Dvorak, J.; Brüchle, W.; Düllmann, Ch. E.; Dvorakova, Z.; Eberhardt, K.; Eichler, R.; Jäger, E.; Nagame, Y.; Qin, Z.; Schädel, M.; Schausten, B.; Schimpf, E.; Schuber, R.; Semchenkov, A.; Thörle, P.; Türler, A.; Wegrzecki, M.; Yakushev, A.

    2009-03-01

    We report on an attempt to produce and detect Hs268 and Hs269 in the nuclear fusion reaction Mg25+Cm248 using the gas phase chemistry apparatus COMPACT. No decay chains attributable to the decay of hassium isotopes were observed during the course of this experiment. From the nonobservation of Hs269 we derive a cross section limit of 0.4 pb (63% confidence limit) for the reaction Cm248(Mg25,4n)Hs269 at a center-of-target beam energy of 140 MeV. The evaluated cross section limit for the Cm248(Mg25,5n)Hs268 reaction depends on the assumed half-life of unknown Hs268. Current systematics of the half-lives for even-even Hs isotopes suggests a value of 0.5 s, resulting in a cross section limit of 1.3 pb.

  12. Electronic structure and magnetism in g-C{sub 4}N{sub 3} controlled by strain engineering

    SciTech Connect

    Liu, L. Z.; Liu, X. X.; Wu, X. L. E-mail: paul.chu@cityu.edu.hk; Chu, Paul K. E-mail: paul.chu@cityu.edu.hk

    2015-03-30

    Regulation of magnetism and half-metallicity has attracted much attention because of its potential in spintronics. The magnetic properties and electronic structure of graphitic carbon nitride (g-C{sub 4}N{sub 3}) with external strain are determined theoretically based on the density function theory and many-body perturbation theory (G{sub 0}W{sub 0}). Asymmetric deformation induced by uniaxial strain not only regulates the magnetic characteristics but also leads to a transformation from half-metallicity to metallicity. However, this transition cannot occur in the structure with symmetric deformation induced by biaxial strain. Our results suggest the use of strain engineering in metal-free spintronics applications.

  13. Crystal growth, spectral, structural and optical studies of π-conjugated stilbazolium crystal: 4-bromobenzaldehyde-4'-N'-methylstilbazolium tosylate.

    PubMed

    Krishna Kumar, M; Sudhahar, S; Bhagavannarayana, G; Mohan Kumar, R

    2014-05-01

    Nonlinear optical (NLO) organic compound, 4-bromobenzaldehyde-4'-N'-methylstilbazolium tosylate was synthesized by reflux method. The formation of molecular complex was confirmed from (1)H NMR, FT-IR and FT-Raman spectral analyses. The single crystals were grown by slow evaporation solution growth method and the crystal structure and atomic packing of grown crystal was identified. The morphology and growth axis of grown crystal were determined. The crystal perfection was analyzed using high resolution X-ray diffraction study on (001) plane. Thermal stability, decomposition stages and melting point of the grown crystal were analyzed. The optical absorption coefficient (α) and energy band gap (E(g)) of the crystal were determined using UV-visible absorption studies. Second harmonic generation efficiency of the grown crystal was examined by Kurtz powder method with different particle size using 1064 nm laser. Laser induced damage threshold study was carried out for the grown crystal using Nd:YAG laser. PMID:24531108

  14. Measurements of the dielectric and viscoelastic constants in mixtures of 4,4'-n-octyl-cyanobiphenyl and biphenyl.

    PubMed

    Oswald, Patrick; Scalliet, Camille

    2014-03-01

    We performed measurements of the dielectric constants, splay elastic constant, and rotational viscosity of the nematic phase of mixtures of 4,4'-n-octyl-cyanobiphenyl (8CB) and biphenyl (BP). In contrast with previous results of DasGupta et al. [Phys. Rev. E 63, 041703 (2001); Phys. Lett. A 288, 323 (2001)], we do not find any anomaly of these constants when the smectic-A phase is approached at all concentrations of BP. These results are compatible with recent calorimetric measurements of Denolf et al. [Phys. Rev. Lett. 97, 107801 (2006); Phys. Rev. E 76, 051702 (2007)] and the absence of a tricritical point in the phase diagram. The origin of the anomalies observed by DasGupta et al. at large concentration of BP is also briefly discussed and a likely explanation in terms of biphenyl evaporation is proposed.

  15. Development of New Stainless Steel

    SciTech Connect

    Robert F. Buck

    2005-08-30

    A new family of innovative martensitic stainless steels, 521-A, 521-B, and 521-C has been developed by Advanced Steel Technology, LLC (Trafford, PA) as high strength fastener (bolt) materials for use at moderate temperatures in turbine engines, including steam turbines, gas turbines, and aircraft engines. The primary objective of the development program was to create a martensitic stainless steel with high strength at moderate temperatures, and which could replace the expensive nickel-based superalloy IN 718 in some fasteners applications. A secondary objective was to replace conventional 12Cr steels such as AISI 422 used as blades, buckets and shafts that operate at intermediate temperatures in turbine engines with stronger steel. The composition of the new alloys was specifically designed to produce excellent mechanical properties while integrating heat treatment steps into production to reduce energy consumption during manufacturing. As a result, production costs and energy consumption during production of rolled bar products is significantly lower than conventional materials. Successful commercialization of the new alloys would permit the installed cost of certain turbine engines to be reduced without sacrificing high availability or operational flexibility, thereby enhancing the global competitiveness of U.S. turbine engine manufacturers. Moreover, the domestic specialty steel industry would also benefit through increased productivity and reduced operating costs, while increasing their share of the international market for turbine engine fasteners, blades, buckets and shafts.

  16. A Termolecular Reaction Mechanism for Nitrogen Incorporation in Aerosol Produced by Far UV Irradiation of CH4-N2 Atmospheres

    NASA Astrophysics Data System (ADS)

    Hicks, R. K.; Trainer, M. G.; Jimenez, J. L.; Yung, Y. L.; Toon, O. B.; Tolbert, M. A.

    2012-12-01

    Results from the Aerosol Collector and Pyrolyser located onboard the Huygens lander reveal the presence of carbon and nitrogen in Titan's aerosols. Nitrogen incorporation is thought to be initiated by energy sources strong enough to break the N-N triple bond of molecular nitrogen (9.8eV). Such energy sources include extreme UV photons (λ <120 nm) and electrons from Saturn's magnetosphere. Less energetic photons in the far UV (120-200 nm) penetrate to the stratosphere of Titan and are only expected to affect hydrocarbon photochemistry there. However, recent results from our laboratory indicate a surprising amount of nitrogen incorporation- up to 16% by mass- in Titan aerosol analog produced by photochemistry initiated by far UV irradiation of CH4/N2 mixtures. The termolecular reaction CH + N2 + M --> HCN2 has been proposed to account for this observation. Here, we test this hypothesis by using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) to measure the mass loading and chemical composition of aerosol produced at a range of pressures from roughly 0.1 to 1 atm. Even though these gas mixtures spanned an order of magnitude in pressure, they experienced the same residence time in the photochemical chamber and had the same methane optical depth. We report a 150% increase in aerosol mass loading across the range of pressures studied, indicating that the mechanism controlling the total mass produced depends on pressure. We also report an overall increase with pressure in the ratio of nitrogen-bearing organic species to hydrocarbon-only species. These observations support the hypothesis that the termolecular reaction above is responsible for the incorporation of nitrogen into Titan aerosol analog produced from CH4/N2 gas mixtures irradiated in the far UV. These findings have implications for our understanding of the evolution of Titan's atmosphere, and the atmospheric synthesis of biologically relevant N-containing molecules.

  17. Improvement of RNA-SIP by pyrosequencing to identify putative 4-n-nonylphenol degraders in activated sludge.

    PubMed

    Zemb, O; Lee, M; Gutierrez-Zamora, M L; Hamelin, J; Coupland, K; Hazrin-Chong, N H; Taleb, I; Manefield, M

    2012-03-01

    Nonylphenols (NP) have estrogenic potential because of their phenolic ring, but the organisms involved in the degradation of this alkylated phenol remain unidentified. Using 16S ribosomal RNA (rRNA)-based stable isotope probing (SIP) and a new method based on pyrosequencing, we identified the bacteria involved in the degradation of the aromatic ring of [U-ring-(13)C] 4-n-NP in aerobic sludge. The first order degradation rate of 4-n-NP was 5.5d(-1). Single strand conformation polymorphism of density-separated labeled and unlabeled 16S rRNA showed significant differences and enabled selection of four representative fractions for pyrosequencing. Nineteen phylotypes showed a significant enrichment in the heavy fraction in the labeled pulse. The relative abundances of these phylotypes were combined with the RNA concentration of each fraction to yield a simple model of the distribution of each phylotype across the gradient. This model was used to estimate the percentage of labeling for each phylotype. The sequences showing the highest labeling (11%) were closely related to Afipia sp. but represented only 2 % of the RNA in the heavy fraction of the labeled pulse. The sequences representing the largest proportion of the RNA in the heavy fraction were related to Propionibacterium acnes and Frateuria aurantia, which are known to possess enzymes for phenol degradation. The model shows that despite Afipia having the highest (13)C enrichment, other species encoding phenol degradation pathways are responsible for more (13)C incorporation. Last, we showed that some species represent 12% of the total RNA but contain only 1% (13)C above natural abundance.

  18. Conversion electron Mössbauer spectroscopy of plasma immersion ion implanted H13 tool steel

    NASA Astrophysics Data System (ADS)

    Terwagne, G.; Collins, G. A.; Hutchings, R.

    1994-12-01

    Conversion electron Mössbauer spectroscopy (CEMS) has been used to investigate nitride formation in AISI-H13 tool steel after treatment by plasma immersion ion implantation (PI3) at 350 °C. With only slight variation in the plasma conditions, it is possible to influence the kinetics of nitride precipitation so as to obtain nitrogen concentrations that range from those associated with ɛ-Fe2N through ɛ-Fe3N to γ'-Fe4N. The CEMS results enable a more definite identification of the nitrides than that obtained by glancing-angle X-ray diffraction and nuclear reaction analysis alone.

  19. Nitride precipitation in salt-bath nitrided interstitial-free steel

    SciTech Connect

    Lee, Tae-Ho; Oh, Chang-Seok; Lee, Min-Ku; Han, Sang-Won

    2010-10-15

    Nitride precipitation and its effect on microstrain in salt-bath nitrided interstitial-free steel were investigated using transmission electron microscopy and neutron diffraction. As the cooling rate after nitriding decreased, two nitrides, {gamma}'-Fe{sub 4}N and {alpha}{sup -}Fe{sub 16}N{sub 2}, were identified in diffusion zone. Combined analyses using Rietveld whole-profile fitting and size-strain analysis revealed that the microstrain in the nitrided specimen increased due to nitrogen supersaturation and then decreased after nitride precipitation, whereas the effective particle size continuously decreased. It was found that microstrain is the dominant factor in peak broadening of the nitrided specimen.

  20. Hydrogen Permeation in Nanostructured Bainitic Steel

    NASA Astrophysics Data System (ADS)

    Kazum, Oluwole; Beladi, Hossein; Timokhina, Ilana B.; He, Yinghe; Bobby Kannan, M.

    2016-07-01

    Hydrogen permeation of nanostructured bainitic steel, produced at two different transformation temperatures, i.e., 473.15 K (200 °C) BS-200 and 623.15 K (350 °C) BS-350, was determined using Devanathan-Stachurski hydrogen permeation cell and compared with that of mild steel. Nanostructured bainitic steel showed lower effective diffusivity of hydrogen as compared to the mild steel. The BS-200 steel, which exhibited higher volume fraction of bainitic ferrite phase, showed lower effective diffusivity than BS-350 steel. The finer microstructural constituents (bainitic ferrite laths and retained austenite films) and higher dislocation density in the bainitic ferrite phase of BS-200 steel can be attributed to its lower effective diffusivity as compared to BS-350 steel and mild steel.

  1. Hydrogen Permeation in Nanostructured Bainitic Steel

    NASA Astrophysics Data System (ADS)

    Kazum, Oluwole; Beladi, Hossein; Timokhina, Ilana B.; He, Yinghe; Bobby Kannan, M.

    2016-10-01

    Hydrogen permeation of nanostructured bainitic steel, produced at two different transformation temperatures, i.e., 473.15 K (200 °C) BS-200 and 623.15 K (350 °C) BS-350, was determined using Devanathan-Stachurski hydrogen permeation cell and compared with that of mild steel. Nanostructured bainitic steel showed lower effective diffusivity of hydrogen as compared to the mild steel. The BS-200 steel, which exhibited higher volume fraction of bainitic ferrite phase, showed lower effective diffusivity than BS-350 steel. The finer microstructural constituents (bainitic ferrite laths and retained austenite films) and higher dislocation density in the bainitic ferrite phase of BS-200 steel can be attributed to its lower effective diffusivity as compared to BS-350 steel and mild steel.

  2. Adsorption of 4-n-Nonylphenol and Bisphenol-A on Magnetic Reduced Graphene Oxides: A Combined Experimental and Theoretical Studies.

    PubMed

    Jin, Zhongxiu; Wang, Xiangxue; Sun, Yubing; Ai, Yuejie; Wang, Xiangke

    2015-08-01

    Adsorption of 4-n-nonylphenol (4-n-NP) and bisphenol A (BPA) on magnetic reduced graphene oxides (rGOs) as a function of contact time, pH, ionic strength and humic acid were investigated by batch techniques. Adsorption of 4-n-NP and BPA were independent of pH at 3.0- 8.0, whereas the slightly decreased adsorption was observed at pH 8.0-11.0. Adsorption kinetics and isotherms of 4-n-NP and BPA on magnetic rGOs can be satisfactorily fitted by pseudo-second-order kinetic and Freundlich model, respectively. The maximum adsorption capacities of magnetic rGOs at pH 6.5 and 293 K were 63.96 and 48.74 mg/g for 4-n-NP and BPA, respectively, which were significantly higher than that of activated carbon. Based on theoretical calculations, the higher adsorption energy of rGOs + 4-n-NP was mainly due to π-π stacking and flexible long alkyl chain of 4-n-NP, whereas adsorption of BPA on rGOs was energetically favored by a lying-down configuration due to π-π stacking and dispersion forces, which was further demonstrated by FTIR analysis. These findings indicate that magnetic rGOs is a promising adsorbent for the efficient elimination of 4-n-NP/BPA from aqueous solutions due to its excellent adsorption performance and simple magnetic separation, which are of great significance for the remediation of endocrine-disrupting chemicals in environmental cleanup. PMID:26161689

  3. A novel yellow-emitting SrAlSi4N7:Ce3+ phosphor for solid state lighting: Synthesis, electronic structure and photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Ruan, Jian; Xie, Rong-Jun; Funahashi, Shiro; Tanaka, Yoshinori; Takeda, Takashi; Suehiro, Takayuki; Hirosaki, Naoto; Li, Yuan-Qiang

    2013-12-01

    Ce3+-doped and Ce3+/Li+-codoped SrAlSi4N7 phosphors were synthesized by gas pressure sintering of powder mixtures of Sr3N2, AlN, α-Si3N4, CeN and Li3N. The phase purity, electronic crystal structure, photoluminescence properties of SrAlSi4N7:Ce3+(Ce3+/Li+) were investigated in this work. The band structure calculated by the DMol3 code shows that SrAlSi4N7 has a direct band gap of 3.87 eV. The single crystal analysis of Ce3+-doped SrAlSi4N7 indicates a disordered Si/Al distribution and nitrogen vacnacy defects. SrAlSi4N7 was identified as a major phase of the fired powders, and Sr5Al5Si21N35O2 and AlN as minor phases. Both Ce3+ and Ce3+/Li+ doped SrAlSi4N7 phosphors can be efficiently excited by near-UV or blue light and show a broadband yellow emission peaking around 565 nm. A highest external quantum efficiency of 38.3% under the 450 nm excitation was observed for the Ce3+/Li+-doped SrAlSi4N7 (5 mol%). A white light LED lamp with color temperature of 6300 K and color rendering index of Ra=78 was achieved by combining Sr0.97Al1.03Si3.997N\\94\\maccounttest14=t0005_18193 7:Ce3+0.03 with a commercial blue InGaN chip. It indicates that SrAlSi4N7:Ce3+ is a promising yellow emitting down-conversion phosphor for white LEDs.

  4. Review on Cold-Formed Steel Connections

    PubMed Central

    Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448

  5. Review on cold-formed steel connections.

    PubMed

    Lee, Yeong Huei; Tan, Cher Siang; Mohammad, Shahrin; Tahir, Mahmood Md; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed.

  6. Review on cold-formed steel connections.

    PubMed

    Lee, Yeong Huei; Tan, Cher Siang; Mohammad, Shahrin; Tahir, Mahmood Md; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448

  7. 38. Photocopy of photograph. STEEL PLANT, BOILERS UNDER CONSTRUCTION IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. Photocopy of photograph. STEEL PLANT, BOILERS UNDER CONSTRUCTION IN BOILER PLANT LOCATED EAST OF MAIN STEEL PLANT, 1909. (From the Bethlehem Steel Corporation collection, Seattle, WA) - Irondale Iron & Steel Plant, Port Townsend, Jefferson County, WA

  8. Microstructure Evolution in an Advanced 9 pct Cr Martensitic Steel during Creep at 923 K (650 °C)

    NASA Astrophysics Data System (ADS)

    Fedorova, Irina; Kipelova, Alla; Belyakov, Andrey; Kaibyshev, Rustam

    2013-01-01

    Crept microstructures were examined in a 9 pct Cr martensitic steel with low carbon content. The steel was hot forged at 1323 K (1050 °C) followed by air cooling and then tempered at 1023 K (750 °C) for 3 hours. The tempered microstructure included numerous precipitates of MX-type carbonitrides and a small amount of M23C6-type carbides. Two groups of the MX-type particles were observed. The nanoscale MX-type precipitates appeared in the form of plate- and round-shaped particles. The plate-shaped MX-type particles were approximately 15 nm in the longitudinal direction and approximately 3 nm in thickness, and the round-shaped MX-type particles were 10 nm in diameter. In addition to the fine particles, the tempered martensite contained relatively coarse MX-type particles, which have a size of approximately 90 nm. The structural changes that occurred during the creep test were associated with an increase in the sizes of the lath and second-phase particles. Moreover, the creep was accompanied by appearance of Laves and Z-phase particles.

  9. Fatigue curve needs for higher strength 2-1/4Cr-1Mo steel for petroleum process vessels

    SciTech Connect

    Jaske, C.E. )

    1990-11-01

    This paper reviews the data needed to develop fatigue design rules for pressure vessels fabricated from heat-treated 2-1/4Cr-1Mo steel (SA-387, Grade 22, Class 2 plates and SA-336, Grade F22 forgings) that are operated or designed to operate at temperatures greater than 371 C (700F). The available data were reviewed, and the results of that review were used to develop recommendations for needed analytical and experimental work. Extension of the fatigue-curve approach currently used for temperatures up to 371 C (700F) and development of a fracture-mechanics-based, crack-growth approach were addressed. Both of these two approaches must include means for assessing the time-dependent effects of oxidation and/or creep when fatigue cycling occurs at low stain rates or includes hold times. The recommendations of this study provide a plan for the development of fatigue design rules for the use of heat-treated 2-1/4Cr-1Mo steel at temperatures in the range of 371 to 482 C (700 to 900 F).

  10. Anodized Steel Electrodes for Supercapacitors.

    PubMed

    Sagu, Jagdeep S; Wijayantha, K G Upul; Bohm, Mallika; Bohm, Siva; Kumar Rout, Tapan

    2016-03-01

    Steel was anodized in 10 M NaOH to enhance its surface texture and internal surface area for application as an electrode in supercapacitors. A mechanism was proposed for the anodization process. Field-emission gun scanning electron microscopy (FEGSEM) studies of anodized steel revealed that it contains a highly porous sponge like structure ideal for supercapacitor electrodes. X-ray photoelectron spectroscopy (XPS) measurements showed that the surface of the anodized steel was Fe2O3, whereas X-ray diffraction (XRD) measurements indicated that the bulk remained as metallic Fe. The supercapacitor performance of the anodized steel was tested in 1 M NaOH and a capacitance of 18 mF cm(-2) was obtained. Cyclic voltammetry measurements showed that there was a large psueudocapacitive contribution which was due to oxidation of Fe to Fe(OH)2 and then further oxidation to FeOOH, and the respective reduction of these species back to metallic Fe. These redox processes were found to be remarkably reversible as the electrode showed no loss in capacitance after 10000 cycles. The results demonstrate that anodization of steel is a suitable method to produce high-surface-area electrodes for supercapacitors with excellent cycling lifetime. PMID:26891093

  11. Anodized Steel Electrodes for Supercapacitors.

    PubMed

    Sagu, Jagdeep S; Wijayantha, K G Upul; Bohm, Mallika; Bohm, Siva; Kumar Rout, Tapan

    2016-03-01

    Steel was anodized in 10 M NaOH to enhance its surface texture and internal surface area for application as an electrode in supercapacitors. A mechanism was proposed for the anodization process. Field-emission gun scanning electron microscopy (FEGSEM) studies of anodized steel revealed that it contains a highly porous sponge like structure ideal for supercapacitor electrodes. X-ray photoelectron spectroscopy (XPS) measurements showed that the surface of the anodized steel was Fe2O3, whereas X-ray diffraction (XRD) measurements indicated that the bulk remained as metallic Fe. The supercapacitor performance of the anodized steel was tested in 1 M NaOH and a capacitance of 18 mF cm(-2) was obtained. Cyclic voltammetry measurements showed that there was a large psueudocapacitive contribution which was due to oxidation of Fe to Fe(OH)2 and then further oxidation to FeOOH, and the respective reduction of these species back to metallic Fe. These redox processes were found to be remarkably reversible as the electrode showed no loss in capacitance after 10000 cycles. The results demonstrate that anodization of steel is a suitable method to produce high-surface-area electrodes for supercapacitors with excellent cycling lifetime.

  12. High-temperature brazing of stainless steel

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Heisman, R. M.; Mitchell, M. J.

    1978-01-01

    Prevention of iron contamination of platens is eliminated by placing alumina/silica ceramic-fiber blankets between platens and carbon-steel plate. Carbon-steel plates provide rigidity and improve heat transfer.

  13. Steel erected at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Workers erect the first fabricated steel girders to arrive at the A-3 Test Stand at Stennis Space Center. Steel work began at the construction site Oct. 29 and is scheduled to continue into next spring.

  14. Corrosion control of steel-reinforced concrete

    NASA Astrophysics Data System (ADS)

    Chung, D. D. L.

    2000-10-01

    The methods and materials for corrosion control of steel-reinforced concrete are reviewed. The methods are steel surface treatment, the use of admixtures in concrete, surface coating on concrete, and cathodic protection.

  15. Comparative study on the inclusion behavior between meso-tetrakis(4- N-ethylpyridiniurmyl)porphyrin and β-cyclodextrin derivatives

    NASA Astrophysics Data System (ADS)

    Xiliang, Guo; Shaomin, Shuang; Chuan, Dong; Feng, Feng; Wong, M. S.

    2005-01-01

    5,10,15,20-Tetrakis(4- N-ethylpyridiniurmyl)porphyrin (TEPyP) formed 1:1 stoichiometry inclusion complexes with β-cyclodextrin (β-CD) and its derivatives including hydroxypropyl-β-cyclodextrin (HP-β-CD), sulfobutylether-β-cyclodextrin (SBE-β-CD) in basic aqueous solution. The supramolecular system was investigated by the methods of fluorescence, UV-vis absorption spectroscopy, nuclear magnetic resonance (NMR) technique. The inclusion ability of cyclodextrins exhibited remarkable difference for β-CD, HP-β-CD and SBE-β-CD. Association constants as high as K=1.1×10 4 M -1 in the case of HP-β-CD/TEPyP and 2.0×10 5 M -1 in the case of SBE-β-CD/TEPyP complexes were determined, whereas a lower value ( K=550 M -1) was given in the case of β-CD/TEPyP. The results showed that hydrogen bonding and charge attraction play important roles in the processes of host-guest interaction. The interaction mechanism of inclusion processes could be explained by the analysis of NMR spectroscopy. The supramolecular assembly was formed. β-CD and HP-β-CD approached from the primary face of cavities of CDs.

  16. Comparative study on the inclusion behavior between meso-tetrakis(4-N-ethylpyridiniurmyl)porphyrin and beta-cyclodextrin derivatives.

    PubMed

    Xiliang, Guo; Shaomin, Shuang; Chuan, Dong; Feng, Feng; Wong, M S

    2005-01-14

    5,10,15,20-Tetrakis(4-N-ethylpyridiniurmyl)porphyrin (TEPyP) formed 1:1 stoichiometry inclusion complexes with beta-cyclodextrin (beta-CD) and its derivatives including hydroxypropyl-beta-cyclodextrin (HP-beta-CD), sulfobutylether-beta-cyclodextrin (SBE-beta-CD) in basic aqueous solution. The supramolecular system was investigated by the methods of fluorescence, UV-vis absorption spectroscopy, nuclear magnetic resonance (NMR) technique. The inclusion ability of cyclodextrins exhibited remarkable difference for beta-CD, HP-beta-CD and SBE-beta-CD. Association constants as high as K=1.1 x 10(4) M(-1) in the case of HP-beta-CD/TEPyP and 2.0 x 10(5) M(-1) in the case of SBE-beta-CD/TEPyP complexes were determined, whereas a lower value (K=550 M(-1)) was given in the case of beta-CD/TEPyP. The results showed that hydrogen bonding and charge attraction play important roles in the processes of host-guest interaction. The interaction mechanism of inclusion processes could be explained by the analysis of NMR spectroscopy. The supramolecular assembly was formed. beta-CD and HP-beta-CD approached from the primary face of cavities of CDs.

  17. A "high 4He/3He" mantle material detected under the East Pacific Rise (15°4'N)

    NASA Astrophysics Data System (ADS)

    Mougel, Berengere; Moreira, Manuel; Agranier, Arnaud

    2015-03-01

    We investigate in details helium isotope data reported in Mougel et al. (2014) for 14 basaltic samples collected on the East Pacific Rise by submersible (15°4'N) where the ridge interacts with the Mathematician seamounts. Samples locations are separated by only few hundred meters across a 15 km along-axis profile. The data reveal a strong geochemical variability that has never been observed at such high spatial resolution for helium isotope compositions. Moreover, they reveal an unusually high 4He/3He mantle component also characterized by unradiogenic lead, atypical in oceanic basalts. He-Pb systematics suggests a mixture between a nonradiogenic lead and radiogenic helium pyroxenitic component, recycled from the deep continental lithosphere and the ambient peridotitic mantle. The He isotope difference between these two end-members can be interpreted as a time evolution of two distinct mantle sources after a slight (U + Th)/3He fractionation, likely due to some ancient degassing during the formation of deep continental pyroxenites.

  18. Photodynamic Therapy of the Murine LM3 Tumor Using Meso-Tetra (4-N,N,N-Trimethylanilinium) Porphine

    PubMed Central

    Colombo, L. L.; Juarranz, A.; Cañete, M.; Villanueva, A.; Stockert, J. C.

    2007-01-01

    Photodynamic therapy (PDT) of cancer is based on the cytotoxicity induced by a photosensitizer in the presence of oxygen and visible light, resulting in cell death and tumor regression. This work describes the response of the murine LM3 tumor to PDT using meso-tetra (4-N,N,N-trimethylanilinium) porphine (TMAP). BALB/c mice with intradermal LM3 tumors were subjected to intravenous injection of TMAP (4 mg/kg) followed 24 h later by blue-red light irradiation (λmax: 419, 457, 650 nm) for 60 min (total dose: 290 J/cm2) on depilated and glycerol-covered skin over the tumor of anesthetized animals. Control (drug alone, light alone) and PDT treatments (drug + light) were performed once and repeated 48 h later. No significant differences were found between untreated tumors and tumors only treated with TMAP or light. PDT-treated tumors showed almost total but transitory tumor regression (from 3 mm to less than 1 mm) in 8/9 animals, whereas no regression was found in 1/9. PDT response was heterogeneous and each tumor showed different regression and growth delay. The survival of PDT-treated animals was significantly higher than that of TMAP and light controls, showing a lower number of lung metastasis but increased tumor-draining lymph node metastasis. Repeated treatment and reduction of tissue light scattering by glycerol could be useful approaches in studies on PDT of cancer. PMID:23675051

  19. Competitive sorption between 17alpha-ethinyl estradiol and bisphenol A/4-n-nonylphenol by soils.

    PubMed

    Li, Jianzhong; Jiang, Lu; Xiang, Xi; Xu, Shuang; Wen, Rou; Liu, Xiang

    2013-06-01

    The sorption of 17alpha-ethinyl estradiol (EE2), bisphenol A (BPA), and 4-n-nonylphenol (NP) in single systems and the sorption of EE2 with different initial aqueous concentrations of BPA or NP were examined using three soils. Results showed that all sorption isotherms were nonlinear and fit the Freundlich model. The degree of nonlinearity was in the order BPA (0.537-0.686) > EE2 (0.705-0.858) > NP (0.875-0.0.951) in single systems. The isotherm linearity index of EE2 sorption calculated by the Freundlich model for Loam, Silt Loam and Silt increased from 0.758, 0.705 and 0.858, to 0.889, 0.910 and 0.969, respectively, when BPA concentration increased from 0 to 1000 microg/L, but the effect of NP was comparably minimal. Additionally, EE2 significantly suppressed the sorption of BPA, but insignificantly suppressed that of NP. These findings can be attributed to the difference of sorption affinity of EE2, NP and BPA on the hard carbon (e.g., black carbon) of soil organic matter that dominated the sorption in the low equilibrium aqueous concentration range of endocrine-disrupting chemicals (EDCs). Competitive sorption among EDCs presents new challenges for predicting the transport and fate of EDCs under the influence of co-solutes.

  20. Transition metal complexes of Vanillin- 4N-(2-pyridyl) thiosemicarbazone (H 2VPT); thermal, structural and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    El-Reash, Gaber Abu; El-Ayaan, Usama; Gabr, I. M.; El-Rachawy, El-Bastawesy

    2010-04-01

    The present work carried out a study on the ligational behavior of the new ligand, Vanillin- 4N-(2-pyridyl) thiosemicarbazone (H 2VPT) 1 towards some transition metal ions namely, Mn 2+, Co 2+, Ni 2+, Cu 2+, Zn 2+,Cd 2+, Hg 2+ and U 6+. These complexes namely [Mn(HVPT)Cl] 2, [Co(VPT)(H 2O)] 2H 2O 3, [Ni(HVPT)Cl(H 2O)] 4, [Cu(HVPT)Cl(H 2O)] 5, [Zn(VPT)(H 2O)]H 2O 6, [Cd(HVPT)Cl(H 2O)] 7, [Hg(VPT)(H 2O)]H 2O 8 and [UO 2(H 2VPT)(OAc) 2]H 2O 9, were characterized by elemental analysis, spectral (IR, 1H NMR and UV-vis) and magnetic moment measurements. The suggested structures were confirmed by applying geometry optimization and conformational analysis. Thermal properties and decomposition kinetics of all compounds are investigated. The interpretation, mathematical analysis and evaluation of kinetic parameters ( E, A, Δ H, Δ S and Δ G) of all thermal decomposition stages have been evaluated using Coats-Redfern equation. ESR spectra of [Cu(HVPT)Cl]H 2O at room temperature show broad signal, indicating spin-exchange interactions between copper(II) ions.