Sample records for 4sosub 4center dot2hsub


    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. CENTER COURTYARD, FROM WEST SIDE OF SOUTHEAST PORTION OF BUILDING, LOOKING WEST. - Oakland Naval Supply Center, Administration Building-Dental Annex-Dispensary, Between E & F Streets, East of Third Street, Oakland, Alameda County, CA

  2. Intercalation of aliphatic amines into the layered structure of vanadyl(IV) hydrogen phosphate hemihydrate (VOHPO[sub 4][center dot]0. 5H[sub 2]O)

    SciTech Connect

    Guliants, V.V.; Benziger, J.B.; Sundaresan, S. )


    The vanadyl(IV) hydrogen phosphate hemihydrate, VOHPO[sub 4][center dot]0.5H[sub 2]O, is a pyrolytic precursor of the vanadyl(IV) pyrophosphate phase, (VO)[sub 2]P[sub 2]O[sub 7], generally believed to be the active phase in the selective oxidation of n-butane into maleic anhydride. Pyrolytic transformation into the pyrophosphate phase occurs with conservation of a morphology of the material. VOHPO[sub 4][center dot]0.5H[sub 2]O is a layered hydrogen phosphate, where -POH groups form interlayer hydrogen bonds with the water molecules shared by two face-linked vanadyl octahedra. The structure of the hemihydrate is similar to that of [alpha]-zirconium hydrogen phosphate ([alpha]-ZrP), where hydrogen bonds are within the same layer and -POH groups are also pointed into the interlayer space. In contrast to [alpha]-ZrP, where extensive data exist, intercalation chemistry of the layered vanadyl(IV) hydrogen phosphate hemihydrate at present is a terra incognita. This paper reports the results of the first systematic study of VOHPO[sub 4][center dot]0.5H[sub 2]O intercalation with aliphatic amines as a new route to novel vanadyl(IV) phosphate phases. N-Alkylamines have been commonly known as excellent intercalation agents for testing the intracrystalline reactivity of layered oxides. Intercalated alkylamines may also facilitate introduction of thermostable guest molecules, or [open quotes]pillars[close quotes], by ion exchange producing microporous materials which can modify catalytic and sorptive properties. 9 refs., 6 figs., 2 tabs.

  3. La2SrCr2O7F2: A Ruddlesden-Popper Oxyfluoride Containing Octahedrally Coordinated Cr(4+) Centers.


    Zhang, Ronghuan; Read, Gareth; Lang, Franz; Lancaster, Tom; Blundell, Stephen J; Hayward, Michael A


    The low-temperature fluorination of the n = 2 Ruddlesden-Popper phase La2SrCr2O7 yields La2SrCr2O7F2 via a topochemical fluorine insertion reaction. The structure-conserving nature of the fluorination reaction means that the chromium centers of the initial oxide phase retain an octahedral coordination environment in the fluorinated product, resulting in a material containing an extended array of apex-linked Cr(4+)O6 units. Typically materials containing networks of octahedrally coordinated Cr(4+) centers can only be prepared at high pressure; thus, the preparation of La2SrCr2O7F2 demonstrates that low-temperature topochemical reactions offer an alternative synthesis route to materials of this type. Neutron diffraction, magnetization, and μ(+)SR data indicate that La2SrCr2O7F2 undergoes a transition to an antiferromagnetic state below TN ≈ 140 K. The structure-property relations of this phase and other Cr(4+) oxide phases are discussed.

  4. Crystal structure of the complex neptunyl(V) chromate CsNpO{sub 2}CrO{sub 4}{center_dot}2H{sub 2}O

    SciTech Connect

    Grigor`ev, M.S.; Plotnikova, T.E.; Baturin, N.A.


    Crystal structure of CsNpO{sub 2}CrO{sub 4}{center_dot}2H{sub 2}O has been determined using a CAD4 autodiffractometer (MoK{sub alpha} radiation, graphite monochromator, {omega}/2{theta} scanning). Crystal data: a = 7.359(3), b = 7.523(2), c = 15.457(3) {angstrom}; space group Pnma, Z = 4, d{sub calc} = 4.30 g cm{sup -3}, {mu}(MoK{sub alpha}) = 163 cm{sup -1}, R = 0.043, and R{sub omega} = 0.057 for 1103 reflections with I > 5{sigma}(I) and sin {theta}/{lambda} > 0.10 {angstrom}{sup -1}. The crystal structure consists of infinite chains with the composition (NpO{sub 2}CrO{sub 4}(H{sub 2}O)){sup n-}{sub n}, in which the coordination polyhedra of Np atoms (pentagonal bipyramids) are linked by common edges through the bridging chromate ions. The IR and electronic absorption spectra are discussed.

  5. Copper uranyl phosphate and arsenate incorporating an organic ligand with a pillared layer structure: [Cu(4,4 Prime -bpy)(UO{sub 2}){sub 0.5}(HPO{sub 4})(H{sub 2}PO{sub 4})]{center_dot}H{sub 2}O and [Cu(4,4 Prime -bpy)(UO{sub 2}){sub 0.5}(HAsO{sub 4})(H{sub 2}AsO{sub 4})]{center_dot}1.5H{sub 2}O

    SciTech Connect

    Wang, Chih-Min; Lii, Kwang-Hwa


    Two mixed-metal uranium compounds, [Cu(4,4 Prime -bpy)(UO{sub 2}){sub 0.5}(HPO{sub 4})(H{sub 2}PO{sub 4})]{center_dot}H{sub 2}O (1) and [Cu(4,4 Prime -bpy)(UO{sub 2}){sub 0.5}(HAsO{sub 4})(H{sub 2}AsO{sub 4})]{center_dot}1.5H{sub 2}O (2) have been synthesized under hydrothermal conditions and structurally characterized by single-crystal X-ray diffraction, fluorescence spectroscopy, and magnetic susceptibility. They are the first examples of mixed-metal uranium phosphate and arsenate incorporating an organic ligand. Their structures contain copper uranyl phosphate/arsenate layers which are covalently linked by 4,4 Prime -bpy pillars to form a 3-D framework structure. The fluorescence spectrum of 1 shows the characteristic vibronic structure of the UO{sub 2}{sup 2+} moiety despite the presence of copper(II) ions in its structure. The two compounds are isostructural and crystallize in the monoclinic space group C2/c with a=20.184(4) A, b=8.921(2) A, c=19.095(3) A, {beta}=115.15(1) Degree-Sign , and R{sub 1}=0.0244 for 1, and a=20.184(1) A, b=9.0210(5) A, c=19.714(1) A, {beta}=114.879(1) Degree-Sign , and R{sub 1}=0.0399 for 2. - Graphical abstract.: A new copper uranyl phosphate and the arsenate analog have been presented. The compounds contain copper uranyl phosphate/arsenate layers covalently linked by 4,4 Prime -bipyridine pillars into an open-framework structure.

  6. Synthesis and crystal structure of 3-ammoniumphenyl sulfone selenate, 3-aminophenyl sulfone [C{sub 12}H{sub 14}N{sub 2}O{sub 2}S]SeO{sub 4} {center_dot} [C{sub 12}H{sub 12}N{sub 2}O{sub 2}S

    SciTech Connect

    Mahroug, A.; Belhouchet, M. Mhiri, T.


    The crystal structure of [C{sub 12}H{sub 14}N{sub 2}O{sub 2}S]SeO{sub 4} {center_dot} [C{sub 12}H{sub 12}N{sub 2}O{sub 2}S] was determined by X-ray diffraction on single crystal. Crystals are orthorhombic, space group Pbca, with cell parameters a = 11.545 (1), b = 8.143 (1), c = 55.783(1)A, V = 5244.2 (8)A{sup 3} and Z = 8. The structure can be described as organic layers built by [C{sub 12}H{sub 14}N{sub 2}O{sub 2}S]{sup 2+} cations and [C{sub 12}H{sub 12}N{sub 2}O{sub 2}S] molecules, parallel to ab plane, between which the inorganic groups SeO{sub 4}{sup 2-} are inserted. In this atomic arrangement, H-bonds between the different species play an important role in the three-dimensional network cohesion.

  7. Microscopic structure of a VH4 center trapped by C in Si

    NASA Astrophysics Data System (ADS)

    Peng, Chao; Zhang, Haoxiang; Stavola, Michael; Fowler, W. Beall; Esham, Benjamin; Estreicher, Stefan K.; Docaj, Andris; Carnel, Lode; Seacrist, Mike


    The Si materials typically used to fabricate solar cells often contain high concentrations of carbon and hydrogen impurities. One of the more thermally stable defects in Si that contains both C and H gives rise to a Si-H vibrational line at 2184.3 cm-1. We show that this center also gives rise to additional weak Si-H and C-H lines at 2214.4 and 2826.9 cm-1 (4.2 K). When D is partially substituted for H, rich isotopic splittings of these IR lines are produced. An analysis of these data reveals that the 2184.3, 2214.4, and 2826.9 cm-1 lines are due to a VH4 defect bound to a substitutional C impurity, i.e., a VH3-HC center.

  8. An Oct4-Centered Protein Interaction Network in Embryonic Stem Cells

    PubMed Central

    van den Berg, Debbie L.C.; Snoek, Tim; Mullin, Nick P.; Yates, Adam; Bezstarosti, Karel; Demmers, Jeroen; Chambers, Ian; Poot, Raymond A.


    Summary Transcription factors, such as Oct4, are critical for establishing and maintaining pluripotent cell identity. Whereas the genomic locations of several pluripotency transcription factors have been reported, the spectrum of their interaction partners is underexplored. Here, we use an improved affinity protocol to purify Oct4-interacting proteins from mouse embryonic stem cells (ESCs). Subsequent purification of Oct4 partners Sall4, Tcfcp2l1, Dax1, and Esrrb resulted in an Oct4 interactome of 166 proteins, including transcription factors and chromatin-modifying complexes with documented roles in self-renewal, but also many factors not previously associated with the ESC network. We find that Esrrb associated with the basal transcription machinery and also detect interactions between transcription factors and components of the TGF-β, Notch, and Wnt signaling pathways. Acute depletion of Oct4 reduced binding of Tcfcp2l1, Dax1, and Esrrb to several target genes. In conclusion, our purification protocol allowed us to bring greater definition to the circuitry controlling pluripotent cell identity. PMID:20362541

  9. Temperature sensitivity (Q10), and dynamics of soil organic matter (SOM) decomposition in permafrost soils with different carbon quality and under experimental warming. R. Bracho1, E.A.G Schuur1, E. Pegoraro1, K.G. Crummer1, S. Natali2, J. Zhou, Y Luo3, J. L. Wu3, M. Tiedje4, K. Konstantinidis5 1Department of Biology, University of Florida, Gainesville, FL. 2Woods Hole Research Center, Falmouth, MA. 3Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK, 4Center for Microbial Ecology, Michigan State University, East Lansing, MI; 5Center for Bioinformatics and Computational Genomics and School of Biology, Georgia Institute of Technology, Atlanta, GA

    NASA Astrophysics Data System (ADS)

    Bracho, R. G.; Schuur, E. A.; Pegoraro, E.; Crummer, K. G.; Natali, S.; Zhou, J.; Wu, L.; Luo, Y.; Tiedje, J. M.; Konstantinidis, K.


    Permafrost soils contain approximately1700 Pg of carbon (C), twice the amount of C in the atmosphere. Temperatures in higher latitudes are increasing, inducing permafrost thaw and subsequent microbial decomposition of previously frozen C. This process is one of the most likely positive feedbacks to climate change. Understanding the temperature sensitivity (Q10) and dynamics of SOM decomposition under warming is essential to predict the future state of the earth - climate system. Alaskan tundra soils were exposed to two winter warming (WW) seasons in the field, which warmed the soils by 4°C to 40 cm depth. Soils were obtained from three depths (0 - 15, 15 - 25 and 45 - 55 cm) and differed in initial amounts of labile and recalcitrant C. Soils were incubated in the lab under aerobic conditions, at 15 and 25°C over 365 days. Q10 was estimated at 14, 100 & 280 days of incubation (DOI); C fluxes were measured periodically and dynamics of SOM decomposition (C pool sizes and decay rates) were estimated by fitting a two pool C model to cumulative respired C (Ccum, mgC/ginitialC). After two WW seasons, initial C content tended to decrease through the soil profile and C:N ratio was significantly decreased in the top 15 cm. After one year of incubation, Ccum was twice as high at 25°C as at 15°C and significantly decreased with depth. No significant WW field treatment was detected, although Ccum tended to be lower in warmed soils. Labile C accounted for up to 5% of initial soil C content in the top 15 cm and decreased with depth. Soils exposed to WW had smaller labile C pools, and higher labile C decay rates in the top 25 cm. Q10 significantly decreased with time and depth as labile pool decreased, especially for WW. This decrease with time indicates a lower temperature sensitivity of the most recalcitrant C pool. The deepest WW soil layer, where warming was more pronounced, had significantly lower Q10 compared to control soils at the same depth. After two seasons, the warming treatment affected decomposition by reducing labile C pools and increasing its decay rates. Warming also reduced temperature sensitivity, showing acclimation of the most recalcitrant C pool in the tundra ecosystem.

  10. Muscular Dystrophy


    ... in Duchenne muscular dystrophy. Dev. Med. Child Neurol. Mar 1995;37(3):260-269. 4. Centers for ... DM1) . The International Myotonic Dystrophy Consortium (IDMC). Neurology. Mar 28 2000;54(6):1218-1221. 5. Harper ...

  11. De-SO sub x catalyst; An XRD study of magnesium aluminate spinel and its solid solutions

    SciTech Connect

    Yoo, J.S.; Bhattacharyya, A.A.; Radlowski, C.A. . Research and Development Dept.)


    This paper reports on a systematic X-ray diffraction study that was undertaken to characterize the stoichiometric spinel (MgAl{sub 2}O{sub 4}), alumina excess spinel (MgAl{sub 2}O{sub 4} {center dot} xAl{sub 2}O{sub 3}) and magnesia excess spinel (MgAl{sub 2}O{sub 4} {center dot} MgO). A Vegard's plot, lattice parameter vs the composition of these solid solutions, reveals that, in alumina excess spinel, a continuous solid solution (x = 0 {minus} {infinity}) exists, while, in magnesia excess material, the solid solution is limited to y = 0-1. When y = 1, a solid solution assumes the composition of MgAl{sub 2}O{sub 4} {center dot} MgO. If y {gt} 1, both periclase and stoichiometric spinel (MgAl{sub 2}O{sub 4}) phases coexist. The SO{sub x} removal activity of various hydrothermally stable cerium oxide containing solid solution spinels was evaluated. In the magnesia excess solid solutions, SO{sub x} removal activity increased as MgO increased and reached maximum at y = 1, which is the CeO{sub 2}/MgAl{sub 2}O{sub 4} {center dot} MgO system. This catalyst is the most widely used SO{sub x} reduction catalyst today.

  12. 75 FR 22439 - Advance Notice of Proposed Rulemaking on Lead Emissions From Piston-Engine Aircraft Using Leaded...

    Federal Register 2010, 2011, 2012, 2013, 2014


    ... Stationary Sources and Emission Guidelines for Existing Sources: Large Municipal Waste Combustors'' 71 FR...:// and ``Municipal Solid Waste Generation, Recycling...\\ National Ambient Air Quality Standards for Lead 73 FR 66965 (Nov. 12, 2008). \\4\\ Centers for...

  13. 18 Percent of Pregnant Women Drink Alcohol during Early Pregnancy


    ... have physical, learning, and/or behavior problems, including Fetal Alcohol Spectrum Disorder (FASD) . 1 These problems are caused by alcohol ... 4. Centers for Disease Control and Prevention. (2011). Fetal alcohol spectrum disorders (FASDs): Facts about FASDs. Retrieved from http: / / www. ...

  14. Photocopy of photograph (original photograph in possession of Atlanta Housing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original photograph in possession of Atlanta Housing Authority, Atlanta, GA). Photographer unknown, June, 1940. VIEW OF STORE AND ADMINISTRATION BUILDING (RIGHT), BUILDING 4 (CENTER) AND BUILDING 5 RIGHT, FROM NORTH FACING SOUTH ALONG TECHWOOD DRIVE. - Techwood Homes (Public Housing), Bounded by North Avenue, Parker Street, William Street & Lovejoy Street, Atlanta, Fulton County, GA

  15. Off-Season Enrollment Building.

    ERIC Educational Resources Information Center

    Wassom, Julie


    Maintains that the winter months are an ideal time to review and refine a child care center's marketing program. Highlights the following target areas for review: (1) marketing plan; (2) action plan; (3) center or company identity package; (4) center brochure; (5) photos; (6) web site; (7) advertisements; (8) publicity; (9) voice mail message;…

  16. Three-Electron Bond Valence-Bond Structures for the Ditetracyanoethylene Dianion.


    Harcourt, Richard D


    Using valence-bond structures of the types Ȧ · Ḃ and A∴B or A-̇B to represent diatomic three-electron bonds, two types of valence-bond structures are constructed for the cyclic 6-electron 4-center bonding unit that is present in the ditetracyanoethylene dianion. These latter valence-bond structures, which are obtained by singlet spin-pairing the antibonding electrons of two three-electron bonds, are examples of increased-valence structures. It is shown that increased-valence structures that use the Ȧ · Ḃ three-electron bond structure, which relate easily to their component Lewis structures, should be preferred to those that involve the A∴B or A-̇B three-electron bond structures. STO-6G weights are reported for the two 6-electron 4-center increased-valence structures for the [C2]2(2-) component of the ditetracyanoethylene dianion.

  17. Chemical and enzyme-mediated oxidation of the serotonergic neurotoxin 5,7-dihydroxytryptamine: mechanistic insights.


    Tabatabaie, T; Dryhurst, G


    The oxidation chemistry and biochemistry of the serotonergic neurotoxin 5,7-dihydroxytryptamine (1) has been studied under anaerobic and aerobic conditions in aqueous solution at physiological pH. Under anaerobic conditions, one-electron oxidants (ferricytochrome c, peroxidase/H2O2, ceruloplasmin, Cu2+) generate a radical intermediate. Dimerization of the C(6)-centered resonance form of this radical followed by secondary oxidations yields 3-(2-aminoethyl)-6-[3-(2-aminoethyl)-1,7-dihydro- 5-hydroxy-7-oxo-6H-indol-6-ylidene]-1-H-indole-5,7(4H,6H)-dione. Under aerobic conditions, molecular O2 attacks the C(4)-centered 1 radical to yield a hydroperoxy radical which decomposes to 5-hydroxytryptamine-4,7-dione (2). Autoxidation of 1 proceeds by primary attack by molecular O2 on a C(4)-centered carbanion to form a superoxide-radical complex. This rearranges to a C(4)-centered hydroperoxide which decomposes to 2. A C(6)-centered carbanion of 1 combines with 2 to give, ultimately, 6,6'-bi-5-hydroxytryptamine-4,7-dione (3). Trace concentrations of transition metal ions (Fe3+, Fe2+, Cu2+, Mn2+) catalyze the autoxidation of 1 by catalytic cycles in which a hydroperoxide intermediate plays key roles. A byproduct of the transition metal-catalyzed oxidation of 1 is superoxide, O2-. Because of its enormous basicity O2- facilitates deprotonation of 1. The C(4)-centered carbanion so produced is oxidized by molecular O2 or by the hydroperoxy radical (HO2) to give radical intermediates and thence 2 and 3. Mechanistic pathways leading to the various products of oxidation of 1 are proposed and the potential roles of oxidation reactions of the indolamine are related to its neurodegenerative properties. PMID:1319496

  18. Xyloglucan oligosaccharides promote growth and activate cellulase: Evidence for a role of cellulase in cell expansion. [Pisum sativum L

    SciTech Connect

    McDougall, G.J.; Fry, S.C. )


    Oligosaccharides produced by the action of fungal cellulase on xyloglucans promoted the elongation of etiolated pea (Pisum sativum L.) stem segments in a straight-growth bioassay designed for the determination of auxins. The oligosaccharides were most active at about 1 micromolar. We tested the relative growth-promoting activities of four HPLC-purified oligosaccharides which shared a common glucose{sub 4} {center dot} xylose{sub 3} (XG7) core. The substituted oligosaccharides XG8 (glucose{sub 4} {center dot} xylose{sub 3} {center dot} galactose) and XG9n (glucose{sub 4} {center dot} xylose{sub 3} {center dot} galactose{sub 2}) were more effective than XG7 itself and XG9 (glucose{sub 4} {center dot} xylose{sub 3} {center dot} galactose {center dot} fucose). The same oligosaccharides also promoted the degradation, assayed viscometrically, of xyloglucan by an acidic cellulase from bean (Phaseolus vulgaris L.) leaves. The oligosaccharides were highly active at 10{sup {minus}4} molar, causing up to a fourfold increase in activity, but the effect was still detectable at 1 micromolar. Those oligosaccharides (XG8 and XG9n) which best promoted growth, stimulated cellulase activity to the greatest extent. The oligosaccharides did not stimulate the action of the cellulase in an assay based on the conversion of ({sup 3}H)xyloglucan to ethanol-soluble fragments. This suggests that the oligosaccharides enhanced the midchain hydrolysis of xyloglucan molecules (which would rapidly reduce the viscosity of the solution), at the expense of cleavage near the termini (which would yield ethanol-soluble products).

  19. Zinc bioavailability in pork loin

    SciTech Connect

    Hortin, A.E.; Bechtel, P.J. Baker, D.H. )


    Pork loins were uniformly trimmed and divided into three groups: raw, roasted and braised. Following cooking, the loins were freeze dried and then ground to a fine granular consistency. Zinc levels of 51, 60 and 63 mg/kg dry matter (DM) were contained in the raw, roasted and braised products, respectively. The chick bioavailability (BV) assay employed a Zn-deficient soy isolate basal diet that was supplemented with 0, 5 or 10 mg Zn/kg from ZnSO{sub 4}{center dot}H{sub 2}O to produce a standard straight-line response in tibia Zn as a function of supplemental Zn intake. Experimental Zn sources were also added to the basal diet to provide 10 mg Zn/kg. Standard curve methodology indicated that Zn BV was unaffected by cooking. Roasted pork lion had a Zn BV of 184% relative to ZnSO{sub 4}{center dot}H{sub 2}O. Addition of 0.40% L-cysteine to the diet containing 10 mg Zn/kg from ZnSO{sub 4}{center dot}H{sub 2}O increased Zn BV to 175%. Results with histidine as a Zn-enhancing factor were variable. It is apparent that pork loin is an excellent source of bioavailable Zn, and SH-containing compounds such as cysteine and glutathione that are present in meat may contribute to enhanced gut absorption of meat-source Zn.

  20. From dihydrated iron(III) phosphate to monohydrated ammonium-iron(II) phosphate: Solvothermal reaction mediated by acetone-urea mixtures

    SciTech Connect

    Alfonso, Belen F.; Pique, Carmen; Blanco, Jesus A.


    By reaction between synthetic phosphosiderite FePO{sub 4}{center_dot}2H{sub 2}O, urea (NH{sub 2}){sub 2}CO, and acetone (CH{sub 3}){sub 2}CO, we report a novel solvothermal synthesis of polycrystalline NH{sub 4}FePO{sub 4}{center_dot}H{sub 2}O. The preparation of other two individual phases, NH{sub 4}Fe{sub 2}(OH)(PO{sub 4}){sub 2}{center_dot}2H{sub 2}O and NH{sub 4}Fe{sub 2}(PO{sub 4}){sub 2}, is also described. The obtained product is a function of the reaction time and the N/P molar ratio in the reagent mixture, and the existence of structural memory in the dissolution-precipitation processes is discussed. Below 25 K, NH{sub 4}FePO{sub 4}{center_dot}H{sub 2}O behaves magnetically in a complex way, because both ferromagnetic and antiferromagnetic signals are superimposed, suggesting the existence of a canting of iron(II) magnetic moments. - Graphical abstract: Solvothermal synthesis of polycrystalline NH{sub 4}FePO{sub 4}{center_dot}H{sub 2}O is presented. The preparation of other two individual phases, NH{sub 4}Fe{sub 2}(OH)(PO{sub 4}){sub 2}{center_dot}2H{sub 2}O and NH{sub 4}Fe{sub 2}(PO{sub 4}){sub 2} as a function of the N/P molar ratio in the reagent mixture and the reaction time, is also described. Highlights: Black-Right-Pointing-Pointer Solvothermal synthesis of NH{sub 4}FePO{sub 4}{center_dot}H{sub 2}O from an Fe(III) phosphate: reduction process. Black-Right-Pointing-Pointer Formation of two intermediate metastable phases: phase diagram. Black-Right-Pointing-Pointer Thermal decomposition in two steps: mass loss of both water and ammonia. Black-Right-Pointing-Pointer Magnetic behaviour: AF+constant spontaneous magnetization.

  1. Cr{sup 6+}-containing phases in the system CaO-Al{sub 2}O{sub 3}-CrO{sub 4}{sup 2-}-H{sub 2}O at 23 Degree-Sign C

    SciTech Connect

    Poellmann, Herbert


    Synthesis and investigation of lamellar calcium aluminium hydroxy salts was performed to study the incorporation of chromate ions in the interlayer of lamellar calcium aluminium hydroxy salts. Different AFm-phases (calcium aluminate hydrate with alumina, ferric oxide, mono-anion phase) containing chromate were synthesized. These AFm-phases belong to the group of layered double hydroxides (LDHs). 3CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}CaCrO{sub 4}{center_dot}nH{sub 2}O and C{sub 3}A{center_dot}1/2Ca(OH){sub 2}{center_dot}1/2CaCrO{sub 4}{center_dot}12H{sub 2}O were obtained as pure phases and their different distinct interlayer water contents and properties determined. Solid solution of chromate-containing phases and tetracalcium-aluminate-hydrate (TCAH) were studied. The uptake of chromate into TCAH from solutions was proven. Chromate contents in solution decrease to <0.2 mg/l. - Graphical abstract: Chromate can be incorporated in LDH-phases with compositions like: 3CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}1/2CaCrO{sub 4}{center_dot}1/2Ca(OH){sub 2}{center_dot}nH{sub 2}O, 3CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}CaCrO{sub 4}{center_dot}nH{sub 2}O, 3CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}1/6CaCrO{sub 4}.{center_dot}5/6Ca(OH){sub 2}{center_dot}nH{sub 2}O, 3CaO{center_dot}Al{sub 2}O{sub 3}(0-x)CaCrO{sub 4}(1-x) Ca(OH){sub 2}{center_dot}12H{sub 2}O, (04}{center_dot}nH{sub 2}O and C{sub 3}A{center_dot}1/2 Ca(OH){sub 2}{center_dot}1/2 CaCrO{sub 4}{center_dot}12 H{sub 2}O are given. Black-Right-Pointing-Pointer Different hydrates of Ca-Al-hydroxysalts (LDH) with chromate-anions synthesized and characterized. Black-Right-Pointing-Pointer Interlayer exchange reaction of 2OH{sup -} and CrO{sub 4}{sup 2-} investigated. Black-Right-Pointing-Pointer Thermal dehydration and change of lattice parameters are given

  2. On the role of the VO(H{sub 2}PO{sub 4}){sub 2} precursor for n-butane oxidation into maleic anhydride

    SciTech Connect

    Sananes, M.T. |; Hutchings, G.J.; Volta, J.C.


    The catalytic role of VO(H{sub 2}PO{sub 4}){sub 2}, the precursor of the VO(PO{sub 3}){sub 2} phase, has been studied for N-butane oxidation to maleic anhydride. By comparison with the activated VPO catalyst, derived from the VOHPO{sub 4} {center_dot} 0.5H{sub 2}O precursor phase, VO(H{sub 2}PO{sub 4}){sub 2} gives a highly selective final catalyst. The total oxidation products CO and CO{sub 2} are not observed under any of the conditions examined, a result confirmed by extensive catalyst testing and carbon mass balances. The final catalyst derived from VO(H{sub 2}PO{sub 4}){sub 2} has a low surface area, ca. 1 m{sup 2}/g, and consequently demonstrates low specific activity on the basis of n-butane conversion per unit mass. However, the intrinsic activity (activity per unit surface area) is found to be higher than that for catalysts derived from VOHPO{sub 4}{center_dot}0.5H{sub 2}O. Since some VO(H{sub 2}PO{sub 4}){sub 2} is present in VOHPO{sub 4}{center_dot}0.5H{sub 2}O, which is the precursor of the industrial catalyst, the results of this study complicate the simple model in which the (VO){sub 2}O{sub 7} phase derived from VOHPO{sub 4} {center_dot}0.5H{sub 2}O is responsible for the selective oxidation of n-butane. The observation that the precursor VO(H{sub 2}PO{sub 4}){sub 2} can generate catalysts of high specific activity and of total selectivity to partial oxidation products might provide a useful insight into the design of a new series of high activity and high selectivity partial oxidation catalysts. 36 refs., 12 figs., 2 tabs.

  3. Isopiestic Determination of the Osmotic and Activity Coefficients of Li2SO4(aq) at T=298.15 and 323.15 K, and Representation with an Extended Ion-Interaction (Pitzer) Model

    SciTech Connect

    Rard, Joseph A.; Clegg, Simon L.; Palmer, Donald


    Isopiestic vapor-pressure measurements were made for Li{sub 2}SO{sub 4}(aq) from 0.1069 to 2.8190 mol{center_dot}kg{sup -1} at 298.15 K, and from 0.1148 to 2.7969 mol{center_dot}kg{sup -1} at 323.15 K, with NaCl(aq) as the reference standard. Published thermodynamic data for this system were reviewed, recalculated for consistency, and critically assessed. The present results and the more reliable published results were used to evaluate the parameters of an extended version of Pitzer's ion-interaction model with an ionic-strength dependent third-virial coefficient, as well as those of the standard Pitzer model, for the osmotic and activity coefficients at both temperatures. Published enthalpies of dilution at 298.15 K were also analyzed to yield the parameters of the ion-interaction models for the relative apparent molar enthalpies of dilution. The resulting models at 298.15 K are valid to the saturated solution molality of the thermodynamically stable phase Li{sub 2}SO{sub 4}{center_dot}H{sub 2}O(cr). Solubilities of Li{sub 2}SO{sub 4}{center_dot}H{sub 2}O(cr) at 298.15 K were assessed and the selected value of m(sat.)=3.13{+-}0.04 mol{center_dot}kg{sup -1} was used to evaluate the thermodynamic solubility product K {sub s}(Li{sub 2}SO{sub 4}{center_dot}H{sub 2}O, cr, 298.15 K) = (2.62{+-}0.19) and a CODATA-compatible standard molar Gibbs energy of formation {Delta}{sub f} G m{sup 0}(Li{sub 2}SO{sub 4}{center_dot}H{sub 2}O, cr, 298.15 K) = -(1564.6{+-}0.5) kJ{center_dot}mol{sup -1}.

  4. Observation of Instabilities of Coherent Transverse Ocillations in the Fermilab Booster

    SciTech Connect

    Alexahin, Y.; Eddy, N.; Gianfelice-Wendt, E.; Lebedev, V.; Marsh, W.; Pellico, W.; Triplett, K.; /Fermilab


    The Fermilab Booster - built more than 40 years ago - operates well above the design proton beam intensity of 4 {center_dot} 10{sup 12} ppp. Still, the Fermilab neutrino experiments call for even higher intensity exceeding 5.5 {center_dot} 10{sup 12} ppp. A multitude of intensity related effects must be overcome in order to meet this goal including suppression of coherent dipole instabilities of transverse oscillations which manifest themselves as a sudden drop in the beam current. In this report we present the results of observation of these instabilities at different tune, coupling and chromaticity settings and discuss possible cures.

  5. Snythesis and characterization of the first main group oxo-centered trinuclear carboxylate

    NASA Technical Reports Server (NTRS)

    Duraj, Stan A.


    The synthesis and structural characterization of the first main group oxo-centered, trinuclear carboxylato-bridged species is reported, namely (Ga3(mu(sub 3)-O) (mu-O2CC6H5)6 (4-Mepy)3) GaCl4 center dot 4-Mepy (compound 1), where 4-Mepy is 4-methylpyridine. Compound 1 is a main group example of a well-established class of complexes, referred to as 'basic carboxylates' of the general formula (M3(mu(sub 3)-O)(mu-O2CR)6L3)(+), previously observed only for transition metals.

  6. Freezing of stratospheric aerosol droplets

    SciTech Connect

    Luo, B.; Peter, T.; Crutzen, P. )


    The authors discuss the freezing of sulfuric acid droplets under stratospheric conditions from a thermodynamic point of view. They argue that the primary candidate for freezing is likely to be sulfuric acid tetrahydrate (H[sub 2]SO[sub 4][center dot]4H[sub 2]O). Their theoretical results suggest that the homogeneous freezing rate of this molecule is too low at stratospheric temperatures to explain measured results. Thus experimental values are likely to be due to heterogeneous freezing. This means that an appropriate nuclei must be present for freezing to commence, and has implications also for the formation of nitric acid trihydrates in the stratosphere.

  7. Isopiestic Determination of the Osmotic and Activity Coefficients of Li2SO4(aq) at T = 298.15 and 323.15 K, and Representation with an Extended Ion-interaction (Pitzer) model

    SciTech Connect

    Rard, J A; Clegg, S L; Palmer, D A


    Isopiestic vapor-pressure measurements were made for Li{sub 2}SO{sub 4}(aq) from 0.1069 to 2.8190 mol {center_dot} kg{sup -1} at 298.15 K, and from 0.1148 to 2.7969 mol {center_dot} kg{sup -1} at 323.15 K, with NaCl(aq) as the reference standard. Published thermodynamic data for this system were reviewed, recalculated for consistency, and critically assessed. The present results and the more reliable published results were used to evaluate the parameters of an extended version of Pitzer's ion-interaction model with an ionic-strength dependent third virial coefficient, as well as those of the standard Pitzer model, for the osmotic and activity coefficients at both temperatures. Published enthalpies of dilution at 298.15 K were also analyzed to yield the parameters of the ion-interaction models for the relative apparent molar enthalpies of dilution. The resulting models at 298.15 K are valid to the saturated solution molality of the thermodynamically stable phase Li{sub 2}SO{sub 4} {center_dot} H{sub 2}O(cr). Solubilities of Li{sub 2}SO{sub 4} {center_dot} H{sub 2}O(cr) at 298.15 K were assessed, and the selected value of m(sat.) = 3.13 {+-} 0.04 mol {center_dot} kg{sup -1} was used to evaluate the thermodynamic solubility product K{sub s}(Li{sub 2}SO{sub 4} {center_dot} H{sub 2}O, cr, 298.15 K) = (2.62 {+-} 0.19) and a CODATA-compatible standard molar Gibbs energy of formation {Delta}{sub f}G{sub m}{sup o} (Li{sub 2}SO{sub 4} {center_dot} H{sub 2}O, cr, 298.15 K) = -(1564.6 {+-} 0.5) kJ {center_dot} mol{sup -1}.


    SciTech Connect



    The results of atomic beam production studies are presented. Improved cooling of the atoms before jet formation in the dissociator cold nozzle apparently reduces the atomic beam velocity spread and improves beam focusing conditions. A carefully designed sextupole separating (and focusing) magnet system takes advantage of the high brightness source. As a result a record beam intensity of a 12.4 {center_dot} 10{sup 16} atoms/s was obtained within 10 mm acceptance at the collision point. The results of the polarization dilution factor measurements (by the hydrogen molecules at the collision point) are also presented.

  9. Probing the Pu4 + magnetic moment in PuF4 with 19F NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Capan, Cigdem; Dempsey, Richard J.; Sinkov, Sergey; McNamara, Bruce K.; Cho, Herman


    The magnetic fields produced by Pu4 + centers have been measured by 19F NMR spectroscopy to elucidate the Pu-F electronic interactions in polycrystalline PuF4. Spectra acquired at applied fields of 2.35 and 7.05 T reveal a linear scaling of the 19F line shape. A model is presented that treats the line broadening and shifts as due to dipolar fields produced by Pu valence electrons in localized noninteracting orbitals. Alternative explanations for the observed line shape involving covalent Pu-F bonding, superexchange interactions, and electronic configurations with enhanced magnetic moments are considered.

  10. New Regularization Method for EXAFS Analysis

    SciTech Connect

    Reich, Tatiana Ye.; Reich, Tobias; Korshunov, Maxim E.; Antonova, Tatiana V.; Ageev, Alexander L.; Moll, Henry


    As an alternative to the analysis of EXAFS spectra by conventional shell fitting, the Tikhonov regularization method has been proposed. An improved algorithm that utilizes a priori information about the sample has been developed and applied to the analysis of U L3-edge spectra of soddyite, (UO2)2SiO4{center_dot}2H2O, and of U(VI) sorbed onto kaolinite. The partial radial distribution functions g1(UU), g2(USi), and g3(UO) of soddyite agree with crystallographic values and previous EXAFS results.

  11. Magnesia-ammonium phosphate-bonded cordierite refractory castables: Phase evolution on heating and mechanical properties

    SciTech Connect

    Hipedinger, Nora E.; Scian, Alberto N.; Aglietti, Esteban F


    A cordierite refractory castable was developed using the MgO-NH{sub 4}H{sub 2}PO{sub 4} reaction. This castable was made with cordierite-mullite aggregates from scrap refractory material and a cement paste based on magnesia, calcined alumina, silica fume, and ammonium dihydrogen phosphate, which forms cordierite (2MgO{center_dot}2Al{sub 2}O{sub 3}{center_dot}5SiO{sub 2}) during heating at high temperature. The mix with water was cast into steel molds; the cold setting occurs within 30 min. The set castables were thermally treated and the evolution of the phases was observed. Struvite (NH{sub 4}{center_dot}MgPO{sub 4}{center_dot}6H{sub 2}O) was identified at room temperature; between 110 and 750 deg. C, the present phosphates were amorphous to X-ray diffraction (XRD). At 1100 deg. C, magnesium orthophosphate (Mg{sub 3}(PO{sub 4}){sub 2}) and aluminum orthophosphate (AlPO{sub 4}) were present. At 1350 deg. C, the main crystalline phases were cordierite and mullite. Cold and hot flexural strength, thermal shock resistance, and physical properties were measured. The properties of magnesia-phosphate-bonded cordierite castables were compared with cordierite material obtained by conventional slip-casting method from aggregates, clay, talc, and calcined alumina.

  12. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature

    PubMed Central

    Deng, Dehui; Chen, Xiaoqi; Yu, Liang; Wu, Xing; Liu, Qingfei; Liu, Yun; Yang, Huaixin; Tian, Huanfang; Hu, Yongfeng; Du, Peipei; Si, Rui; Wang, Junhu; Cui, Xiaoju; Li, Haobo; Xiao, Jianping; Xu, Tao; Deng, Jiao; Yang, Fan; Duchesne, Paul N.; Zhang, Peng; Zhou, Jigang; Sun, Litao; Li, Jianqi; Pan, Xiulian; Bao, Xinhe


    Coordinatively unsaturated (CUS) iron sites are highly active in catalytic oxidation reactions; however, maintaining the CUS structure of iron during heterogeneous catalytic reactions is a great challenge. Here, we report a strategy to stabilize single-atom CUS iron sites by embedding highly dispersed FeN4 centers in the graphene matrix. The atomic structure of FeN4 centers in graphene was revealed for the first time by combining high-resolution transmission electron microscopy/high-angle annular dark-field scanning transmission electron microscopy with low-temperature scanning tunneling microscopy. These confined single-atom iron sites exhibit high performance in the direct catalytic oxidation of benzene to phenol at room temperature, with a conversion of 23.4% and a yield of 18.7%, and can even proceed efficiently at 0°C with a phenol yield of 8.3% after 24 hours. Both experimental measurements and density functional theory calculations indicate that the formation of the Fe═O intermediate structure is a key step to promoting the conversion of benzene to phenol. These findings could pave the way toward highly efficient nonprecious catalysts for low-temperature oxidation reactions in heterogeneous catalysis and electrocatalysis. PMID:26665170

  13. Ammonium removal from landfill leachate by chemical precipitation

    SciTech Connect

    Li, X.Z. . Dept. of Civil and Structural Engineering); Zhao, Q.L. . School of Municipal and Environmental Engineering); Hao, X.D. . The Research Center of Ecological Economics and Environmental Technology)


    The landfill leachate in Hong Kong usually contains quite high NH[sub 4][sup +]-N concentration, which is well known to inhibit nitrification in biological treatment processes. A common pre-treatment for reducing high strength of ammonium (NH[sub 4][sup +]-N) is by an air-stripping process. However, there are some operational problems such as carbonate calling in the process of stripping. For this reason, some technical alternatives for NH[sub 4][sup +]-N removal from leachate need to be studied. In this study, a bench-scale experiment was initiated to investigate the feasibility of selectively precipitating NH[sub 4][sup +]-N in the leachate collected from a local landfill in Hong Kong as magnesium ammonium phosphate (MAP). In the experiment, three combinations of chemicals, MgCl[sub 2] [center dot] 6H[sub 2]O+Na[sub 2]HPO[sub 4] [center dot] 12H[sub 2]O, MgO + 85% H[sub 3]PO[sub 4], and Ca(H[sub 2]PO[sub 4])[sub 2] [center dot] H[sub 2]O + MgSO[sub 4] [center dot] 7H[sub 2]O, were used with the different stoichiometric ratios to generate the MAP precipitate effectively.

  14. Ammonium removal from landfill leachate by chemical precipitation

    SciTech Connect

    Li, X.Z.; Zhao, Q.L.; Hao, X.D.


    The landfill leachate in Hong Kong usually contains quite high NH{sub 4}{sup +}-N concentration, which is well known to inhibit nitrification in biological treatment processes. A common pre-treatment for reducing high strength of ammonium (NH{sub 4}{sup +}-N) is by an air-stripping process. However, there are some operational problems such as carbonate calling in the process of stripping. For this reason, some technical alternatives for NH{sub 4}{sup +}-N removal from leachate need to be studied. In this study, a bench-scale experiment was initiated to investigate the feasibility of selectively precipitating NH{sub 4}{sup +}-N in the leachate collected from a local landfill in Hong Kong as magnesium ammonium phosphate (MAP). In the experiment, three combinations of chemicals, MgCl{sub 2} {center_dot} 6H{sub 2}O+Na{sub 2}HPO{sub 4} {center_dot} 12H{sub 2}O, MgO + 85% H{sub 3}PO{sub 4}, and Ca(H{sub 2}PO{sub 4}){sub 2} {center_dot} H{sub 2}O + MgSO{sub 4} {center_dot} 7H{sub 2}O, were used with the different stoichiometric ratios to generate the MAP precipitate effectively.

  15. Gallium hole traps in irradiated KTiOPO{sub 4}:Ga crystals

    SciTech Connect

    Grachev, V.; Meyer, M.; Malovichko, G.; Hunt, A. W.


    Nominally pure and gallium doped single crystals of potassium titanyl phosphate (KTiOPO{sub 4}) have been studied by Electron Paramagnetic Resonance at low temperatures before and after irradiation. Irradiation with 20 MeV electrons performed at room temperature and liquid nitrogen temperature caused an appearance of electrons and holes. Gallium impurities act as hole traps in KTiOPO{sub 4} creating Ga{sup 4+} centers. Two different Ga{sup 4+} centers were observed, Ga1 and Ga2. The Ga1 centers are dominant in Ga-doped samples. For the Ga1 center, a superhyperfine structure with one nucleus with nuclear spin ½ was registered and attributed to the interaction of gallium electrons with a phosphorus nucleus or proton in its surrounding. In both Ga1 and Ga2 centers, Ga{sup 4+} ions substitute for Ti{sup 4+} ions, but with a preference to one of two electrically distinct crystallographic positions (site selective substitution). The Ga doping eliminates one of the shortcomings of KTP crystals—ionic conductivity of bulk crystals. However, this does not improve significantly the resistance of the crystals to electron and γ-radiation.

  16. Highly reduced organometallics of the Group IV elements: Part One. The study of (trmpe) metal tetracarbonyl complexes of titanium, zirconium, and hafnium. Part Two. The study of bis-arene titanium complexes prepared from arene radical anions

    SciTech Connect

    Blackburn, D.W.


    Potassium naphthalenide reduction of solutions of the Group IV transition metal salts MCl[sub 4][center dot]THF, M = Ti, Zr, and Hf, in the presence of the tridentate phosphine ligand 1,1,1-tris(dimethylphosphinomethyl)ethane (trmpe), at -70[degrees] under Ar, followed by carbonylation at atmospheric pressure, provides the zerovalent carbonylphosphine complexes M(CO)[sub 4](trmpe). Yields range from 5% for Hf to 50% for Ti. The complexes were characterized by [sup 31]P and [sup 13]C NMR studies, and the Zr complex additionally by X-ray crystallography. The titanium complex reacts with triphenylstannide to displace one carbon monoxide ligand, forming the [(trmpe)Ti(CO)[sub 3](Sn(C[sub 6]H[sub 5])[sub 3])] anion. The reduction of TiCl[sub 4][center dot]2THF with arene radical anions provides bis-arene sandwich complexes in high yield (80-95%). For arene = naphthalene, the 18-electron [Ti(C[sub 10]H[sub 8])[sub 2

  17. Gallium hole traps in irradiated KTiOPO4:Ga crystals

    NASA Astrophysics Data System (ADS)

    Grachev, V.; Meyer, M.; Hunt, A. W.; Malovichko, G.


    Nominally pure and gallium doped single crystals of potassium titanyl phosphate (KTiOPO4) have been studied by Electron Paramagnetic Resonance at low temperatures before and after irradiation. Irradiation with 20 MeV electrons performed at room temperature and liquid nitrogen temperature caused an appearance of electrons and holes. Gallium impurities act as hole traps in KTiOPO4 creating Ga4+ centers. Two different Ga4+ centers were observed, Ga1 and Ga2. The Ga1 centers are dominant in Ga-doped samples. For the Ga1 center, a superhyperfine structure with one nucleus with nuclear spin ½ was registered and attributed to the interaction of gallium electrons with a phosphorus nucleus or proton in its surrounding. In both Ga1 and Ga2 centers, Ga4+ ions substitute for Ti4+ ions, but with a preference to one of two electrically distinct crystallographic positions (site selective substitution). The Ga doping eliminates one of the shortcomings of KTP crystals—ionic conductivity of bulk crystals. However, this does not improve significantly the resistance of the crystals to electron and γ-radiation.

  18. Synthesis, structure and luminescence property of 2D lanthanide complexes with 3-fluorophthalate and oxalate

    SciTech Connect

    Cha, Yu-E; Li, Xia; Song, Shuang


    Complexes [Ln{sub 2}(fpht){sub 2}(ox)(H{sub 2}O){sub 4}]{center_dot}H{sub 2}O (Ln=Sm 1, Eu 2, Tb 3 and Dy 4; fpht=3-fluorophthalate and ox=oxalate) have been synthesized and structurally characterized by single crystal X-ray diffraction. The four complexes possess similar 2D framework structures constructed from Ln-fpht double-stranded helices and ox linkages. Complexes 2 and 3 display the characteristic emission {sup 5}D{sub 0}{yields}{sup 7}F{sub J} (J=0-4) transitions of Eu(III) ion and {sup 5}D{sub 4}{yields}{sup 7}F{sub J} (J=6-3) transitions of Tb(III) ion, respectively. The emission decay curves reveal a monoexponential behavior yielding the lifetime values of 0.266{+-}0.002 ms for 2 and 0.733{+-}0.002 ms for 3. The emission spectrum of 1 shows three weak bands corresponding to the characteristic emission {sup 4}G{sub 5/2}{yields}{sup 6}H{sub 5/2}, {sup 4}G{sub 5/2}{yields}{sup 6}H{sub 7/2} and {sup 4}G{sub 5/2}{yields}{sup 6}H{sub 9/2} transitions of Sm(III) ion. The emission spectrum of 4 displays a broad band centered at 438 nm, which comes from the {pi}{sup Low-Asterisk }-{pi} transition of the ligand. - Graphical abstract: Complexes [Ln{sub 2}(fpht){sub 2}(ox)(H{sub 2}O){sub 4}]{center_dot}H{sub 2}O (fpht=3-fluorophthalate, ox=oxalate) possess 2D structures. Sm(III), Eu(III) and Tb(III) complexes show the characteristic fluorescent emission of the Ln(III). Dy(III) complex displays ligand-based luminescent behavior. Highlights: Black-Right-Pointing-Pointer [Ln{sub 2}(fpht){sub 2}(ox)(H{sub 2}O){sub 4}]{center_dot}H{sub 2}O (fpht=3-fluorophthalate; ox=oxalate) show 2D structures. Black-Right-Pointing-Pointer The 2D structures are constructed from Ln-fpht double-stranded helices and ox linkage. Black-Right-Pointing-Pointer The Sm(III), Eu(III) and Tb(III) complexes show the characteristic emission of the Ln(III) ions. Black-Right-Pointing-Pointer Dy(III) complex displays ligand-based luminescent behavior.

  19. Critical Role of Water Content in the Formation and Reactivity of Uraniu, Neptunium, and Plutonium Iodates Under Hydrothermal Conditions: Implications for the Oxidative Dissolution of Spent Nuclear Fuel

    SciTech Connect

    Bray, T. H.; Ling, Jie; Choi, E- Sang; Brooks, James S.; Beitz, James V.; Sykora, Richard E.; Haire, Richard {Dick} G; Stanbury, David M.; Albrecht-Schmitt, Thomas E.


    The reactions of {sup 237}NpO{sub 2} with excess iodate under acidic hydrothermal conditions result in the isolation of the neptunium(IV), neptunium(V), and neptunium(VI) iodates, Np(IO{sub 3}){sub 4}, Np(IO{sub 3}){sub 4}{center_dot}nH{sub 2}O{center_dot}nHIO{sub 3}, NpO2(IO3), NpO2(IO3)2(H2O), and NpO{sub 2}(IO{sub 3}){sub 2}{center_dot}H{sub 2}O, depending on both the pH and the amount of water present in the reactions. Reactions with less water and lower pH favor reduced products. Although the initial redox processes involved in the reactions between {sup 237}NpO{sub 2} or {sup 242}PuO{sub 2} and iodate are similar, the low solubility of Pu(IO{sub 3}){sub 4} dominates product formation in plutonium iodate reactions to a much greater extent than does Np(IO{sub 3}){sub 4} in the neptunium iodate system. UO{sub 2} reacts with iodate under these conditions to yield uranium(VI) iodates solely. The isotypic structures of the actinide(IV) iodates, An(IO{sub 3}){sub 4} (An = Np, Pu), are reported and consist of one-dimensional chains of dodecahedral An(IV) cations bridged by iodate anions. The structure of Np(IO3)4{center_dot}nH2O{center_dot}nHIO3 is constructed from NpO9 tricapped-trigonal prisms that are bridged by iodate into a polar three-dimensional framework structure. Second-harmonic-generation measurements on a polycrystalline sample of the Th analogue of Np(IO{sub 3}){sub 4}{center_dot}nH{sub 2}O{center_dot}nHIO{sub 3} reveal a response of approximately 12x that of {alpha}-SiO{sub 2}. Single-crystal magnetic susceptibility measurements of Np(IO{sub 3}){sub 4} show magnetically isolated Np(IV) ions.

  20. A standardized protocol to reduce cerebrospinal fluid shunt infection: The Hydrocephalus Clinical Research Network Quality Improvement Initiative

    PubMed Central

    Kestle, John R. W.; Riva-Cambrin, Jay; Wellons, John C.; Kulkarni, Abhaya V.; Whitehead, William E.; Walker, Marion L.; Oakes, W. Jerry; Drake, James M.; Luerssen, Thomas G.; Simon, Tamara D.; Holubkov, Richard


    Object Quality improvement techniques are being implemented in many areas of medicine. In an effort to reduce the ventriculoperitoneal shunt infection rate, a standardized protocol was developed and implemented at 4 centers of the Hydrocephalus Clinical Research Network (HCRN). Methods The protocol was developed sequentially by HCRN members using the current literature and prior institutional experience until consensus was obtained. The protocol was prospectively applied at each HCRN center to all children undergoing a shunt insertion or revision procedure. Infections were defined on the basis of CSF, wound, or pseudocyst cultures; wound breakdown; abdominal pseudocyst; or positive blood cultures in the presence of a ventriculoatrial shunt. Procedures and infections were measured before and after protocol implementation. Results Twenty-one surgeons at 4 centers performed 1571 procedures between June 1, 2007, and February 28, 2009. The minimum follow-up was 6 months. The Network infection rate decreased from 8.8% prior to the protocol to 5.7% while using the protocol (p = 0.0028, absolute risk reduction 3.15%, relative risk reduction 36%). Three of 4 centers lowered their infection rate. Shunt surgery after external ventricular drainage (with or without prior infection) had the highest infection rate. Overall protocol compliance was 74.5% and improved over the course of the observation period. Based on logistic regression analysis, the use of BioGlide catheters (odds ratio [OR] 1.91, 95% CI 1.19–3.05; p = 0.007) and the use of antiseptic cream by any members of the surgical team (instead of a formal surgical scrub by all members of the surgical team; OR 4.53, 95% CI 1.43–14.41; p = 0.01) were associated with an increased risk of infection. Conclusions The standardized protocol for shunt surgery significantly reduced shunt infection across the HCRN. Overall protocol compliance was good. The protocol has established a common baseline within the Network, which will

  1. The antioxidant effect of derivatives pyroglutamic lactam

    SciTech Connect

    Rohadi, Atisya; Lazim, Azwani Mat; Hasbullah, Siti Aishah


    Diphenylpicrylhydrazyl (DPPH) is widely used for quickly accessing the ability of polyphenols to transfer labile H atoms to radicals. The antioxidant activity of all the synthesized compounds was screened by DPPH method. Compound (4) showed 54% antioxidant potential while all other compounds were found to have moderate to have moderate to mild antioxidant activity ranging from 47–52%. Pyroglutamic lactams have been synthesized stereoselectively in racemic form from levulinic acid as bifunctional adduct using convertible isocyanide in one-pot Ugi 4-center-3-component condensation reaction (U-4C-3CR). The product formed provides biologically interesting products in excellent yields in a short reaction time. The structures of the synthesized compounds were elucidated using spectroscopic data and elemental analysis.

  2. The antioxidant effect of derivatives pyroglutamic lactam

    NASA Astrophysics Data System (ADS)

    Rohadi, Atisya; Lazim, Azwani Mat; Hasbullah, Siti Aishah


    Diphenylpicrylhydrazyl (DPPH) is widely used for quickly accessing the ability of polyphenols to transfer labile H atoms to radicals. The antioxidant activity of all the synthesized compounds was screened by DPPH method. Compound (4) showed 54% antioxidant potential while all other compounds were found to have moderate to have moderate to mild antioxidant activity ranging from 47-52%. Pyroglutamic lactams have been synthesized stereoselectively in racemic form from levulinic acid as bifunctional adduct using convertible isocyanide in one-pot Ugi 4-center-3-component condensation reaction (U-4C-3CR). The product formed provides biologically interesting products in excellent yields in a short reaction time. The structures of the synthesized compounds were elucidated using spectroscopic data and elemental analysis.

  3. DFT computations support the σ-complex assisted metathesis (σ-CAM) mechanism for the 1,4-Rh shift of Cp*Rh(III)-(η(1)-β-styryl) complexes.


    Li, Yougui; He, Gang; Kantchev, Eric Assen B


    DFT calculations support the σ-complex assisted metathesis (σ-CAM) mechanism recently proposed for the first 1,4-Rh shift of a Rh(III) complex rather than the oxidative addition/reductive elimination pathway characteristic of Rh(i). A single, concerted TS (ΔG(‡) = 27-34 kcal mol(-1)) was found and its electronic structure characterized by Bader's AIM analysis. The 4-centered TS is characterized by a enhanced charge separation (Rh and H atoms - positive, both C atoms - negative) relative to the σ-vinyl Rh starting material and the σ-aryl-Rh product. The AIM topological analysis of the electron density reveals a network of interactions: Rh with H as well as both Rh and H with both C(vinyl) and C(aryl) in the TS and confirms the C(vinyl)-Rh agnostic interaction observed experimentally in the σ-aryl-Rh product.

  4. New limit on the present temporal variation of the fine structure constant

    SciTech Connect

    Peik, E.; Lipphardt, B.; Schnatz, H.; Schneider, T.; Tamm, Chr.; Karshenboim, S.G.


    A comparison of different atomic frequency standards over time can be used to perform a measurement of the present value of the temporal derivative of the fine structure constant {alpha} in a model-independent way without assumptions on constancy or variability of other parameters. We have measured an optical transition frequency at 688 THz in Yb+ with a cesium atomic clock at two times separated by 2.8 years and find that a variation of this frequency can be excluded within a 1{sigma} relative uncertainty of 4.4{center_dot}10-15 yr-1. Combined with recently published values for the constancy of other transition frequencies this measurement provides a limit on the present variability of {alpha} at the level of 2.0{center_dot}10-15 yr-1. Constraints are also derived for the drift rates of other fundamental constants like the electron/proton mass ratio and the proton g-factor.

  5. X-ray analysis of alpha mercuric iodide crystal structure and processing effects

    SciTech Connect

    Keller, L.; Wang, E.X.; Cheng, A.Y.


    X-ray topography and rocking curve experiments were performed on {alpha}-mercuric iodide samples. As-grown crystals were examined for Intrinsic defects and crystallinity. Orientation of certain defects depends on the direction of crystal growth. The propagation of as-grown crystalline features was documented. The extent of crystal damage Introduced during various steps of device fabrication such as sawing, polishing, etching and contact deposition was explored. Coefficients of linear thermal expansion of {alpha}{sub 33} = 54 {plus_minus} 5{center_dot}10{sup {minus}6}/{degrees}C along the tetragonal c-axis, [001] direction and {alpha}{sub 11} = 11 {plus_minus} 4{center_dot}10{sup {minus}6}/{degrees}C in the [100] direction were measured.

  6. Large Grain Superconducting RF Cavities at DESY

    SciTech Connect

    Singer, W.; Brinkmann, A.; Ermakov, A.; Iversen, J.; Kreps, G.; Matheisen, A.; Proch, D.; Reschke, D.; Singer, X.; Spiwek, M.; Wen, H.; Brokmeier, H. G.


    The DESY R and D program on cavities fabricated from large grain niobium explores the potential of this material for the production of approx. 1000 nine-cell cavities for the European XFEL. The program investigates basic material properties, comparing large grain material to standard sheet niobium, as well as fabrication and preparation aspects. Several single-cell cavities of TESLA shape have been fabricated from large grain niobium. A gradient up to 41 MV/m at Q0 = 1.4{center_dot}1010 (TB = 2K) was measured after electropolishing. The first three large grain nine-cell cavities worldwide have been produced under contract of DESY with ACCEL Instruments Co. The first tests have shown that all three cavities reach an accelerating gradient up to 30 MV/m after BCP (Buffered Chemical Polishing) treatment, what exceeds the XFEL requirements for RF test in the vertical cryostat.

  7. Bimolecular decomposition pathways for carboxylic acids of relevance to biofuels.


    Clark, Jared M; Nimlos, Mark R; Robichaud, David J


    The bimolecular thermal reactions of carboxylic acids were studied using quantum mechanical molecular modeling. Previous work1 investigated the unimolecular decomposition of a variety of organic acids, including saturated, α,β-unsaturated, and β,γ-unsaturated acids, and showed that the type and position of the unsaturation resulted in unique branching ratios between dehydration and decarboxylation, [H2O]/[CO2]. In this work, the effect of bimolecular chemistry (water-acid and acid-acid) is considered with a representative of each acid class. In both cases, the strained 4-centered, unimolecular transition state, typical of most organic acids, is opened up to 6- or 8-centered bimolecular geometries. These larger structures lead to a reduction in the barrier heights (20-45%) of the thermal decomposition pathways for organic acids and an increase in the decomposition kinetics. In some cases, they even cause a shift in the branching ratio of the corresponding product slates.

  8. The use of LANDSAT-1 imagery in mapping and managing soil and range resources in the Sand Hills region of Nebraska

    NASA Technical Reports Server (NTRS)

    Seevers, P. M. (Principal Investigator); Drew, J. V.


    The author has identified the following significant results. Evaluation of ERTS-1 imagery for the Sand Hills region of Nebraska has shown that the data can be used to effectively measure several parameters of inventory needs. (1) Vegetative biomass can be estimated with a high degree of confidence using computer compatable tape data. (2) Soils can be mapped to the subgroup level with high altitude aircraft color infrared photography and to the association level with multitemporal ERTS-1 imagery. (3) Water quality in Sand Hills lakes can be estimated utilizing computer compatable tape data. (4) Center pivot irrigation can be inventoried from satellite data and can be monitored regarding site selection and relative success of establishment from high altitude aircraft color infrared photography. (5) ERTS-1 data is of exceptional value in wide-area inventory of natural resource data in the Sand Hills region of Nebraska.

  9. Large-scale synthesis well-dispersed ZnS microspheres and their photoluminescence, photocatalysis properties

    SciTech Connect

    Wang Xinjun Wan Fuquan; Han Kun; Chai Chunxia; Jiang Kai


    Large-scale and well-dispersed ZnS microspheres were prepared by a simple hydrothermal method using ZnSO{sub 4}{center_dot}7H{sub 2}O and SC(NH{sub 2}){sub 2} as main original reactant and poly(vinyl pyrrolidone) (PVP)(Mr {approx} 10,000) as the surfactant. The products were characterized by X-Ray diffraction, scanning electron microscopy and transmission electron microscopy. The growth process involves a special oriented aggregation of PVP stabilized ZnS nanoparticles into microspheres of 1.5 {approx} 2.0 {mu}m in sizes. The photocatalytic activity of as-prepared ZnS microsphere was evaluated by using methylene blue (MB) as a model organic compound. The optical properties of the products were also examined by means of photoluminescence (PL) spectroscopy.

  10. The BATINTREC process for reclaiming used batteries

    SciTech Connect

    Xia Yueqing; Li Guojian


    The Integrated Battery Recycling (BATINTREC) process is an innovative technology for the recycling of used batteries and electronic waste, which combines vacuum metallurgical reprocessing and a ferrite synthesis process. Vacuum metallurgical reprocessing can be used to reclaim the mercury (Hg) in the dry batteries and the cadmium (Cd) in the Ni-Cd batteries. The ferrite synthesis process reclaims the other heavy metals by synthesizing ferrite in a liquid phase. Mixtures of manganese oxide and carbon black are also produced in the ferrite synthesis process. The effluent from the process is recycled, thus significantly minimizing its discharge. The heavy metal contents of the effluent could meet the Integrated Wastewater Discharge Standard of China if the ratio of the crushed battery scrap and powder to FeSO{sub 4}{center_dot}7H{sub 2}O is set at 1:6. This process could not only stabilize the heavy metals, but also recover useful resource from the waste.

  11. Luminescence properties of Cr-doped silica sol gel glasses

    NASA Astrophysics Data System (ADS)

    Strek, Wieslaw; Lukowiak, Edward; Deren, Przemyslaw J.; Maruszewski, K.; Trabjerg, Ib; Koepke, Czeslaw; Malashkevich, G. E.; Gaishun, Vladimir E.


    The emission of Cr-doped silica glass obtained by the sol- gel method is characterized by an orange broad band with a maximum at 610 nm. Its nature is examined by the absorption, excited state absorption, emission, excitation and lifetime measurements over a wide range of temperature and for different concentration of Cr ions. Our measurement show that in spite of fact that the absorption properties of Cr- doped silica sol-gel glass are predominantly associated with Cr4+ centers, the observed in visible range emission can be assigned neither to Cr3+ nor to Cr4+ ions. The discussion of the nature of observed emission was carried out for all possible valencies of the Cr ions. In conclusion is suggested that it may be ascribed to the transitions on the monovalent Cr1+ ion. The reducing agents occurring during the sol-gel process and leading to lowering the Cr valency are discussed.

  12. Synthetic pathways to vanadyl organophosphonates through aqueous media

    SciTech Connect

    Gendraud, P.; Bigey, L.; Roy, M.E. de; Besse, J.P.


    Synthesis of vanadyl(IV) organophosphonates VORPO{sub 3}{center_dot}nH{sub 2}O (with R = CH{sub 3}, C{sub 2}H{sub 5}, C{sub 6}H{sub 5}) has been investigated by reaction of VOSO{sub 4}{center_dot}5H{sub 2}O + RPO{sub 3}H{sub 2} under refluxing conditions in aqueous media. The influence of different parameters is discussed, and compounds are characterized by X-ray powder diffraction, TGA, IR, XANES, and EXAFS. For example, three crystallographic forms of VOC{sub 6}H{sub 5}PO{sub 3}{center_dot}2H{sub 2}O obtained differ from each other in the location of the trans water molecule in the layered structure.

  13. A biomimetic copper water oxidation catalyst with low overpotential.


    Zhang, Teng; Wang, Cheng; Liu, Shubin; Wang, Jin-Liang; Lin, Wenbin


    Simply mixing a Cu(II) salt and 6,6'-dihydroxy-2,2'-bipyridine (H2L) in a basic aqueous solution afforded a highly active water oxidation catalyst (WOC). Cyclic voltammetry of the solution at pH = 12-14 shows irreversible catalytic current with an onset potential of ~0.8 V versus NHE. Catalytic oxygen evolution takes place in controlled potential electrolysis at a relatively low overpotential of 640 mV. Experimental and computational studies suggest that the L ligand participates in electron transfer processes to facilitate the oxidation of the Cu center to lead to an active WOC with low overpotential, akin to the use of the tyrosine radical by Photosystem II to oxidize the CaMn4 center for water oxidation. PMID:24325734

  14. Chrysolcolla Redefined as Spertiniite

    SciTech Connect

    Farges, Francois; Benzerara, Karim; Brown, Gordon E., Jr.; /Stanford U., Geo. Environ. Sci. /SLAC, SSRL


    XAFS and {mu}-XAFS spectra were collected at the Cu K-edge for seven chrysocolla samples (Peru, USA, and Congo). The results suggest that the local structure around Cu is similar to that in Cu(OH){sub 2} (spertiniite). Cu-L{sub 3} STXM imaging and spectroscopy confirm that the chrysocolla samples examined here consist of mesoscopic Cu(II)-rich domains surrounded by Si-rich domains (in agreement with results from infra-red spectroscopy). Hence, we suggest that chrysocolla, which is generally considered to be orthorhombic with composition (Cu,Al){sub 2}H{sub 2}Si{sub 2}O{sub 5}(OH){sub 4} {center_dot} nH{sub 2}O, is in actually a mesoscopic assemblage composed dominantly of spertiniite (Cu(OH){sub 2}), water and amorphous silica (SiO{sub 2}).

  15. Recombination gamma-luminescence at the nanometal Li - dielectric LiF interfaces

    NASA Astrophysics Data System (ADS)

    Ibragimova, E. M.; Mussaeva, M. A.; Buzrikov, Sh. N.


    Recombination 60Co-gamma-luminescence (GL) was studied experimentally in LiF:K,Cu crystals at the dose rate 406 R/s in the temperature range 273-473 K, when localized charge carriers are released from the hole/electron color center traps and Li vacancies are highly mobile. The crystals were preliminary irradiated in the 60Co gamma-source at 300-320 K to doses 107, 108, 109 R to generate F-aggregate centers and nano-colloids of Li. The intensity of GL bands at 570 nm (F4 centers) and 670 nm (F2+ centers) was shown to increase after 106 R above 370 K due to dominant contribution from radiative recombination of the released carries at the interface of nanometal-Li-dielectric-LiF. These bands can be used for gamma-dose measurements at 107-108 R.

  16. Fabrication of an infrared bolometer with a high T sub c superconducting thermometer

    SciTech Connect

    Vergjese, S.; Richards, P.L. . Dept. of Physics Lawrence Berkeley Lab., CA ); Char, K.; Sachtjen, S.A. )


    A sensitive high {Tc} superconducting bolometer has been fabricated on a 20 {mu}m thick sapphire substrate with a YBCO thin film transition edge thermometer. Optical measurements with a He-Ne laser gave a noise equivalent power of 2.4{center dot}10{sup {minus}11} W/Hz{sup 1/2} at 10 Hz and a responsivity of 17 V/W in good agreement with electrical bolometer measurements. Gold black smoke was then deposited on the back side of the assembled bolometer as an absorber. Spectral measurements on a Fourier transform spectrometer show that the bolometer has useful sensitivity from visible wavelengths to beyond {approximately}100 {mu}m. This performance is clearly superior to that of a commercial room temperature pyroelectric detector. Some improvement appears possible. 10 refs., 5 figs.

  17. New Evidence for Hydroxyalkyl Radicals and Light- and Thermally Induced Trapped Electron Reactions in Rhamnose.


    Aalbergsjø, Siv G; Sagstuen, Einar


    Radical formation and trapping of radicals in X-irradiated crystals of rhamnose at 6 K were investigated using electron paramagnetic resonance (EPR), electron-nuclear double resonance (ENDOR) and ENDOR-induced EPR (EIE) techniques, complemented with periodic density functional theory (DFT) calculations. The two major radical species at 6 K were the O4-centered alkoxy radical and the intermolecularly trapped electron (IMTE), previously also detected by other authors. The current experimental results provided hyperfine coupling constants for these two species in good agreement with the previous data, thus providing a consistency check that improves their credibility. In addition to the O4-centered alkoxy radical and the IMTE, the C3-centered and C5-centered hydroxyalkyl radicals are the most prominent primary species at 6 K. The C3-centered radical appears in two slightly different conformations at 6 K, designated C and D. The C5-centered radical exhibits a coupling to a methyl group with tunneling rotation at 6 K, and analysis of one of the rotational substates (A) of the spin system yielded an understanding of the structure of this radical. Visible light bleaching of the IMTE at 6 K led to the C3-centered radical C, and thermal annealing above 6 K resulted in a conversion of the C to the D conformation. In addition, thermal annealing releases the IMTE, apparently resulting in the formation of the C2-centered radical. It is possible that the thermal decay of the IMTE also contributes to a small part of the C3-centered radical (D) population at 85 K. There are several other products trapped in rhamnose crystals directly after irradiation at 6 K, among which are resonance lines due to the C2 H-abstraction product. However, these other products are minority species and were not fully characterized in the current work.

  18. Synthesis and characterization of micrometer Cu/PVP architectures

    SciTech Connect

    Luo, Huajuan; Zhao, Yanbao; Sun, Lei


    Graphical abstract: A simple method for the synthesis of novel micrometer flower-like Cu/PVP architectures was introduced. Highlights: {yields} Micrometer flower-like copper/polyvinylpyrrolidone architectures were obtained by a simple chemical route. {yields} The amount of N{sub 2}H{sub 4}{center_dot}H{sub 2}O, the reaction temperature, the molar ratio of CuCl{sub 2} to PVP and different molecular weights of PVP play an important role in the controlling the morphology of the Cu/PVP architectures. {yields} A possible mechanism of the formation of Cu/PVP architectures was discussed. -- Abstract: Micrometer-sized flower-like Cu/polyvinylpyrrolidone (PVP) architectures are synthesized by the reduction of copper (II) salt with hydrazine hydrate in aqueous solution in the presence of PVP capping agent. The resulting Cu/PVP architectures are investigated by UV-vis spectroscopy, transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM). The Cu/PVP flowers have uniform morphologies with an average diameter of 10 {mu}m, made of several intercrossing plates. The formation of Cu/PVP flowers is a new kinetic control process, and the factors such as the amount of N{sub 2}H{sub 4}{center_dot}H{sub 2}O, reaction temperature, molar ratio of CuCl{sub 2} to PVP and molecular weight of PVP have significant effect on the morphology of Cu/PVP architectures. A possible mechanism of the formation of micrometer Cu/PVP architectures was discussed.

  19. Equilibrium unfolding of dimeric desulfoferrodoxin involves a monomeric intermediate: iron cofactors dissociate after polypeptide unfolding.


    Apiyo, D; Jones, K; Guidry, J; Wittung-Stafshede, P


    Here we report the conformational stability of homodimeric desulfoferrodoxin (dfx) from Desulfovibrio desulfuricans (ATCC 27774). The dimer is formed by two dfx monomers linked through beta-strand interactions in two domains; in addition, each monomer contains two different iron centers: one Fe-(S-Cys)(4) center and one Fe-[S-Cys+(N-His)(4)] center. The dissociation constant for dfx was determined to be 1 microM (DeltaG = 34 kJ/mol of dimer) from the concentration dependence of aromatic residue emission. Upon addition of the chemical denaturant guanidine hydrochloride (GuHCl) to dfx, a reversible fluorescence change occurred at 2-3 M GuHCl. This transition was dependent upon protein concentration, in accord with a dimer to monomer reaction [DeltaG(H(2)O) = 46 kJ/mol of dimer]. The secondary structure did not disappear, according to far-UV circular dichroism (CD), until 6 M GuHCl was added; this transition was reversible (for incubation times of < 1 h) and independent of dfx concentration [DeltaG(H(2)O) = 50 kJ/mol of monomer]. Thus, dfx equilibrium unfolding is at least three-state, involving a monomeric intermediate with native-like secondary structure. Only after complete polypeptide unfolding (and incubation times of > 1 h) did the iron centers dissociate, as monitored by disappearance of ligand-to-metal charge transfer absorption, fluorescence of an iron indicator, and reactivity of cysteines to Ellman's reagent. Iron dissociation took place over several hours and resulted in an irreversibly denatured dfx. It appears as if the presence of the iron centers, the amino acid composition, and, to a lesser extent, the dimeric structure are factors that aid in facilitating dfx's unusually high thermodynamic stability for a mesophilic protein. PMID:11305909

  20. Carbanion substituent effects on 1-disubstituted 4-(4'-pyridyl)pyridinium methylide structures using 13C NMR spectroscopy and DFT method

    NASA Astrophysics Data System (ADS)

    Depature, Ludovic; Surpateanu, Gheorghe


    The structure of 1-disubstituted 4-(4'-pyridyl)pyridinium methylides or 4,4'-bipyridinium monoylides ( 2- 5) with a wide range of carbanion substituents, were determined using 13C NMR signals in dimethylsufoxide (DMSO- d6) solution. For the first time, we developed a systematic determination of 13C NMR chemical shifts of the ylidic carbon using a long-range correlated ( 1H- 13C) HMBC experiments. The chemical shift values are discussed in terms of magnetic and/or electronic effects of the ylidic carbon substituents. From the extracted NMR parameters and the results of accompanying quantum chemical DFT calculations for a three-dimensional (3D)-structure representation, we found a long distance electronic effect where the aromatic heterocycle C2C6 and C4 centers are perturbed according to the electron acceptor strengths of ylidic carbon substituents in all monoylides ( 2- 5c) capable to stabilize in a planar conformation. No significant perturbation on C2C6 and C4 centers are found in all other monoylides ( 2- 5a, b) that adopted a non-planar conformation. Good similar linear dependences of the chemical shift variation Δ (calculated by the differences of analogous C2C6 and C4 chemical shifts in non-planar and planar monoylides) with the ylidic carbon chemical shifts modulated by the strength of electron acceptor substituents pointed out the resonance interaction or the delocalization phenomena of the ylidic carbon charge on the heterocycle.

  1. 18-Membered cyclic esters derived from glycolide and lactide: preparations, structures and coordination to sodium ions

    SciTech Connect

    Chisholm, Malcolm H.; Gallucci, Judith C.; Yin, Hongfeng


    From reactions between glycolide or lactide (4 equiv.) with 4-dimethylaminopyridine, DMAP (1 equiv.) and NaBPh4 (1 equiv.) in benzene at 70 C the cyclic ester adducts (CH{sub 2}C(O)O){sub 6}NaBPh{sub 4} and (CHMeC(O)O){sub 6}NaBPh{sub 4} are formed respectively. The structures of the salts Na[(S,R,S,R,S,R)-(CH{sub 3}CHC(O)O){sub 6}]{sub 2}BPh{sub 4} {center_dot} CH{sub 3}CN and (CH{sub 2}C(O)O){sub 6}NaBPh{sub 4} {center_dot} (CH{sub 3}CN){sub 2} are reported. The cyclic esters were separated by chromatography and the structures of (CH{sub 2}C(O)O){sub 6}, (S,R,R,R,R,R)-(CHMeC(O)O){sub 6} and (S,S,R,R,R,R)-(CHMeC(O)O){sub 6} were determined. The {sup 1}H and {sup 13}C NMR data are reported for one of each of the six enantiomers of (CHMeC(O)O){sub 6} and the two meso isomers. The mechanism for the formation of these 18-membered rings is discussed in terms of an initial reaction between DMAP and NaBPh{sub 4} in hot benzene that produces NaPh and DMAP:BPh{sub 3} in the presence of the monomer lactide. The cyclic esters (CHMeC(O)O){sub 6} can also be obtained from the reaction between polylactide, PLA, in the presence of DMAP and NaBPh{sub 4}. The cyclic esters 3-methyl-1,4-dioxane-2,5-dione and 3,6,6-trimethyl-1,4-dioxane-2,5-dione undergo similar ring enlarging reactions to give cyclic 18-membered ring esters as determined by ESI-MS.

  2. Oral carcinogenicity study with nickel sulfate hexahydrate in Fischer 344 rats

    SciTech Connect

    Heim, Katherine E.; Bates, Hudson K.; Rush, Rusty E.; Oller, Adriana R.


    Until now, existing data on the oral carcinogenicity of nickel substances have been inconclusive. Yet, the assessment of oral carcinogenicity of nickel has serious scientific and regulatory implications. In the present study, nickel sulfate hexahydrate was administered daily to Fischer 344 rats by oral gavage for 2 years (104 weeks) at exposure levels of 10, 30 and 50 mg NiSO{sub 4}{center_dot}6H{sub 2}O/kg. This treatment produced a statistically significant reduction in body weight of male and female rats, compared to controls, in an exposure-related fashion at 30 and 50 mg/kg/day. An exposure-dependent increase in mortality was observed in female rats. However, the overall study survival rate (males and females) was at least 25 animals per group (compliant with OECD guidelines) in the treated animals. Daily oral administration of nickel sulfate hexahydrate did not produce an exposure-related increase in any common tumor type or an increase in any rare tumors. One tumor type was statistically increased in a nickel sulfate-treated group compared to the study controls (keratoacanthoma in the 10 mg NiSO{sub 4}{center_dot}6H{sub 2}O/kg/day males), but there was no exposure-response relationship for this common tumor type. This study achieved sufficient toxicity to reach the Maximum Tolerated Dose (MTD) while maintaining a sufficiently high survival rate to allow evaluation for carcinogenicity. The present study indicated that nickel sulfate hexahydrate does not have the potential to cause carcinogenicity by the oral route of exposure in the Fischer 344 rat. Data from this and other studies demonstrate that inhalation is the only route of exposure that might cause concern for cancer in association with nickel exposures.

  3. Safety and Efficacy of PDpoetin for Management of Anemia in Patients with end Stage Renal Disease on Maintenance Hemodialysis: Results from a Phase IV Clinical Trial.


    Javidan, Abbas Norouzi; Shahbazian, Heshmatollah; Emami, Amirhossein; Yekaninejad, Mir Saeed; Emami-Razavi, Hassan; Farhadkhani, Masoumeh; Ahmadzadeh, Ahmad; Gorjipour, Fazel


    Recombinant human erythropoietin (rHuEPO) is available for correcting anemia. PDpoetin, a new brand of rHuEPO, has been certified by Food and Drug Department of Ministry of Health and Medical Education of Iran for clinical use in patients with chronic kidney disease. We conducted this post-marketing survey to further evaluate the safety and efficacy of PDpoetin for management of anemia in patients on maintenance hemodialysis. Patients from 4 centers in Iran were enrolled for this multicenter, open-label, uncontrolled phase IV clinical trial. Changes in blood chemistry, hemoglobin and hematocrit levels, renal function, and other characteristics of the patients were recorded for 4 months; 501 of the patients recruited, completed this study. Mean age of the patients was 50.9 (±16.2) years. 48.7% of patients were female. Mean of the hemoglobin value in all of the 4 centers was 9.29 (±1.43) g/dL at beginning of the study and reached 10.96 (±2.23) g/dL after 4 months and showed significant increase overall (P<0.001). PDpoetin dose was stable at 50-100 U/kg thrice weekly. Hemorheologic disturbancesand changes in blood electrolytes was not observed. No case of immunological reactions to PDpoetin was observed. Our study, therefore, showed that PDpoetin has significantly raised the level of hemoglobin in the hemodialysis patients (about 1.7±0.6 g/dL). Anemia were successfully corrected in 49% of patients under study. Use of this biosimilar was shown to be safe and effective for the maintenance of hemoglobin in patients on maintenance hemodialysis.

  4. Transport of chromium(VI) through a supported liquid membrane containing tri-n-octylphosphine oxide

    SciTech Connect

    Huang, T.C.; Huang, C.C.; Chen, D.H.


    In this study the transport of chromium(VI) from aqueous solutions of pH 2--4 through a supported liquid membrane (SLM) with tri-n-octylphosphine oxide (TOPO) dissolved in kerosene as a mobile carrier was investigated. The transport flux of Cr(VI) increased with an increase in the concentrations of Cr(VI) in the feed phase and of TOPO in the membrane phase, but with a decrease in pH of the feed phase. Considering the equilibria of various Cr(VI) species in the aqueous phase and of the Cr(VI)-TOPO complexes formed in the membrane phase, a permeation model including the aqueous film diffusion of HCrO{sub 4}{sup {minus}} and Cr{sub 2}O{sub 7}{sup 2{minus}} toward the membrane, the interfacial chemical reaction between them and TOPO, and the membrane diffusion of the Cr(VI)-TOPO complexes ({ovr H{sub 2}CrO{sub 4}{center_dot}(TOPO)} and {ovr H{sub 2}Cr{sub 2}O{sub 7}{center_dot}(TOPO){sub 3}}) was proposed to describe the transport of Cr(VI) through the SLM. By best fitting the transport flux equations of Cr(VI) with the experimental data using the Rosenbrock method, the apparent mass-transfer coefficients of HCrO{sub 4}{sup {minus}} and Cr{sub 2}O{sub 7}{sup 2{minus}} across the aqueous film, and those of {ovr H{sub 2}CrO{sub 4}{center_dot}(TOPO)} and {ovr H{sub 2}Cr{sub 2}O{sub 7}{center_dot}(TOPO){sub 3}} across the membrane phase, were obtained. This work helps to clarify the transport mechanism of Cr(VI) through an SLM.

  5. Erectile Dysfunction in Individuals with Neurologic Disability: A Hospital-based Cross-sectional Study

    PubMed Central

    Gervasi, Giuseppe; Naro, Antonino; de Luca, Rosaria; Marullo, Michelangelo; Bramanti, Placido


    Objective: Neurogenic erectile dysfunction can be broadly defined as an inability to sustain or maintain a penile erection due to neurologic impairment. Sexual problems can occur due to any lesion affecting the central and peripheral nervous system. The aim of this study was to evaluate the prevalence and causes of erectile dysfunction in a group of hospital inpatients suffering from neurologic disorders. Methods: Three-hundred and twenty six male patients admitted to the Neurorehabilitation Unit of IRCCS Centro Neurolesi “Bonino-Pulejo” in Messina Italy from March 2012 to June 2013 were screened for erectile dysfunction using the International Index of Erectile Function questionnaire. The patients who reported erectile dysfuntion underwent vascular, neurophysiological, and hormonal testing, and were divided into two groups according to their lesion sites: G1 (lesions above the S2-S4 center) and G2 (lesions below the S2-S4 center). Results: Of the 326 admitted patients, 126 patients (38.6%), mean age of 54.56±11.74 years (age range 27-82 years), were affected by erectile dysfunction (i.e., scored ≤21). A statistically significant correlation between International Index of Erectile Function questionnaire scores and location of the neurologic lesions was observed in G2 (r=0.22) with an increased risk of erectile dysfuntion of around 2:1 (odds ratio=1.87) without influences related to aging. Conclusion: The occurence of erectile dysfunction is significantly more prevalent among neurologically disabled men, particularly those with lesions below S2-S4, than among men without neurologic disability. Considering the prevalence of erectile dysfunction among neurologically disabled men, sexual functioning should be regularly evaluated during acute and long-term rehabilitation, and any existing sexual dysfunction should be addressed in the treatment plan. PMID:27413582

  6. Safety and Efficacy of PDpoetin for Management of Anemia in Patients with end Stage Renal Disease on Maintenance Hemodialysis: Results from a Phase IV Clinical Trial

    PubMed Central

    Javidan, Abbas Norouzi; Shahbazian, Heshmatollah; Emami, Amirhossein; Yekaninejad, Mir Saeed; Emami-Razavi, Hassan; Farhadkhani, Masoumeh; Gorjipour, Fazel


    Recombinant human erythropoietin (rHuEPO) is available for correcting anemia. PDpoetin, a new brand of rHuEPO, has been certified by Food and Drug Department of Ministry of Health and Medical Education of Iran for clinical use in patients with chronic kidney disease. We conducted this post-marketing survey to further evaluate the safety and efficacy of PDpoetin for management of anemia in patients on maintenance hemodialysis. Patients from 4 centers in Iran were enrolled for this multicenter, open-label, uncontrolled phase IV clinical trial. Changes in blood chemistry, hemoglobin and hematocrit levels, renal function, and other characteristics of the patients were recorded for 4 months; 501 of the patients recruited, completed this study. Mean age of the patients was 50.9 (±16.2) years. 48.7% of patients were female. Mean of the hemoglobin value in all of the 4 centers was 9.29 (±1.43) g/dL at beginning of the study and reached 10.96 (±2.23) g/dL after 4 months and showed significant increase overall (P<0.001). PDpoetin dose was stable at 50-100 U/kg thrice weekly. Hemorheologic disturbancesand changes in blood electrolytes was not observed. No case of immunological reactions to PDpoetin was observed. Our study, therefore, showed that PDpoetin has significantly raised the level of hemoglobin in the hemodialysis patients (about 1.7±0.6 g/dL). Anemia were successfully corrected in 49% of patients under study. Use of this biosimilar was shown to be safe and effective for the maintenance of hemoglobin in patients on maintenance hemodialysis. PMID:25317316

  7. Novel alkaline earth copper germanates with ferro and antiferromagnetic S=1/2 chains

    SciTech Connect

    Brandao, Paula; Reis, Mario S.; Santos, Antonio M. dos


    Two new alkaline earth copper(II) germanates were hydrothermally synthesized: CaCuGeO{sub 4}{center_dot}H{sub 2}O (1) and BaCu{sub 2}Ge{sub 3}O{sub 9}{center_dot}H{sub 2}O (2), and their structures determined by single crystal X-ray diffraction. Compound (1) crystallizes in space group P2{sub 1}/c with a=5.1320(2) Angstrom-Sign , b=16.1637(5) Angstrom-Sign , c=5.4818(2) Angstrom-Sign , {beta}=102.609(2) Degree-Sign , V=443.76(3) Angstrom-Sign {sup 3} and Z=4. This copper germanate contains layers of composition [CuGeO{sub 4}]{sub {infinity}}{sup 2-} comprising CuO{sub 4} square planes and GeO{sub 4} tetrahedra with calcium and water molecules in the inter-layer space. Compound (2) crystallizes in the Cmcm space group with a=5.5593(3) Angstrom-Sign , b=10.8606(9) Angstrom-Sign , c=13.5409(8) Angstrom-Sign , V=817.56(9) Angstrom-Sign {sup 3} and Z=4. This structure contains GeO{sub 6} and CuO{sub 6} octahedra as well as GeO{sub 4} tetrahedra, forming a three-dimensional network of interconnecting six-membered ring channels. The magnetic susceptibility for both samples can be interpreted as S=1/2 chains, in agreement with the copper topology observed in the crystal structure. The susceptibility of (1) exhibits a Bonner-Fisher type behavior, resulting from antiferromagnetic intra-chain interactions without three-dimensional ordering down to 5 K-the lowest measured temperature. This observation, together with the absence of super-exchange paths between the copper chains, make this system particularly promising for the study of low dimensional magnetism. The magnetic properties of (2) show a very weak ferromagnetic near-neighbor interaction along the chain. In this compound a peak the {chi}T plot seems to indicate the onset of interchain antiferromagentic correlations. However, no ordering temperature is detected in the susceptibility data. - Graphical abstract: Copper chains present in CaCuGeO{sub 4}{center_dot}H{sub 2}O and BaCu{sub 2}Ge{sub 3}O{sub 9}{center


    SciTech Connect

    Kevin C. Galbreath; Richard L. Schulz; Donald L. Toman; Carolyn M. Nyberg


    Representative duplicate fly ash samples were obtained from the stacks of 400-MW and 385-MW utility boilers (Unit A and Unit B, respectively) using a modified U.S. Environmental Protection Agency (EPA) Method 17 sampling train assembly as they burned .0.9 and 0.3 wt% S residual oils, respectively, during routine power plant operations. Residual oil fly ash (ROFA) samples were analyzed for nickel (Ni) concentrations and speciation using inductively coupled plasma-atomic emission spectroscopy, x-ray absorption fine structure (XAFS) spectroscopy, x-ray diffraction (XRD), and a water-soluble Ni extraction method. ROFA water extraction residues were also analyzed for Ni speciation using XAFS and XRD. Total Ni concentrations in the ROFAs were similar, ranging from 1.3 to 1.5 wt%; however, stack gas Ni concentrations in the Unit A were {approx}990 {micro}g/Nm{sup 3} compared to {approx}620 {micro}g/Nm{sup 3} for Unit B because of the greater residual oil feed rates employed at Unit A to attain higher load (i.e., MW) conditions with a lower heating value oil. Ni speciation analysis results indicate that ROFAs from Unit A contain about 3 wt% NiSO{sub 4} {center_dot} xH{sub 2}O (where x is assumed to be 6 for calculation purposes) and a Ni-containing spinel compound, similar in composition to (Mg,Ni)(Al,Fe){sub 2}O{sub 4}. ROFAs from Unit B contain on average 2.0 wt% NiSO{sub 4} {center_dot} 6H{sub 2}O and 1.1 wt% NiO. XAFS and XRD analyses did not detect any nickel sulfide compounds, including nickel subsulfide (Ni{sub 3}S{sub 2}) (XAFS detection limit is 5% of the total Ni concentration). In addition, XAFS measurements indicated that inorganic sulfate and organic thiophene species account for >97% of the total sulfur in the ROFAs. The presence of NiSO{sub 4} {center_dot} xH{sub 2}O and nickel oxide compound mixtures and lack of carcinogenic Ni{sub 3}S{sub 2} or nickel sulfide compounds (e.g., NiS, NiS{sub 2}) in ROFAs stack-sampled from 400- and 385-MW boilers are contrary

  9. Synthesis, crystal structures and properties of lanthanide-organic frameworks based benzene carboxylates with two/three-dimensional structure

    SciTech Connect

    Wang, Ping; Fan, Ruiqing; Yang, Yulin; Liu, Xinrong; Cao, Wenwu; Yang, Bin


    A series of lanthanide coordination polymers, {l_brace}[Dy{sub 3}(1,3-BDC){sub 4}(NO{sub 3})(phen){sub 3}]{center_dot}2H{sub 2}O{r_brace}{sub n} (1), {l_brace}[Dy{sub 2}(1,3-BDC){sub 3}(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O{r_brace}{sub n} (2), {l_brace}[Ln{sub 4}(1,3-BDC){sub 6}(DMF)(H{sub 2}O){sub 4}]{center_dot}DMF{center_dot}2H{sub 2}O{r_brace}{sub n} (Ln=Tb (3), Ho (4), Er (5), 1,3-H{sub 2}BDC=1,3-benzenedicarboxylate, phen=1,10-phenanthroline, DMF=N,N-dimethylformamide), have been synthesized and characterized. In coordination polymer 1, each Dy{sup 3+} ion is connected to its neighboring Dy{sup 3+} ion through bridging carboxyl oxygen atoms of the 1,3-BDC{sup 2-} ligands to form a new three-dimensional open-framework structure which the Schlaefli symbol of {l_brace}6{sup 4}{center_dot}8{sup 2}{r_brace}{sub 2}{l_brace}6{sup 6}{r_brace}. In coordination polymer 2, center metal dysprosium ions are interlaced and connected through bridging carboxyl oxygen atoms to form an infinite helix chain. Two helix chains are linked through the 1,3-BDC{sup 2-} ligand to give rise to the two-dimensional layered structure. Coordination polymers 3-5 are isomorphous, which displays a (3,4)-connected net with the point symbol of {l_brace}4{sup 2}{center_dot}6{sup 3}{center_dot}8{r_brace}{l_brace}4{sup 2}{center_dot}6{r_brace}. The solid-state photoluminescence properties and lifetimes of the Dy (1 and 2) and Tb (3) coordination polymers have been measured at room temperature. Highlights: Black-Right-Pointing-Pointer Five lanthanide coordination polymers based on 1,3-H{sub 2}BDC were obtained. Black-Right-Pointing-Pointer The polymers were structurally characterized by single-crystal X-ray diffraction. Black-Right-Pointing-Pointer Coordination polymers 1-5 display different topological structures. Black-Right-Pointing-Pointer They show characteristic emissions of lanthanide ions in the solid state.

  10. Synthesis and Coordination Chemistry of Phosphine Oxide Decorated Dibenzofuran Platforms

    SciTech Connect

    Rosario-Amorin, Daniel; Duesler, Eileen N.; Paine, Robert T.; Hay, Benjamin; Delmau, Laetitia Helene; Reilly, Sean D.; Gaunt, Andrew J.; Scott, Brian L.


    A four-step synthesis for 4,6-bis(diphenylphosphinoylmethyl)dibenzofuran (4) from dibenzofuran and a two-step synthesis for 4,6-bis(diphenylphosphinoyl)dibenzofuran (5) are reported along with coordination chemistry of 4 with In(III), La(III), Pr(III), Nd(III), Er(III), and Pu(IV) and of 5 with Er(III). Crystal structure determinations for the ligands, 4 {center_dot} CH{sub 3}OH and 5, the 1:1 complexes [In(4)(NO{sub 3}){sub 3}], [Pr(4)(NO{sub 3}){sub 3}(CH{sub 3}CN)] {center_dot} 0.5CH{sub 3}CN, [Er(4)(NO{sub 3}){sub 3}(CH{sub 3}CN)] {center_dot} CH{sub 3}CN, [Pu(4)Cl4] {center_dot} THF and the 2:1 complex [Nd(4){sub 2}(NO{sub 3}){sub 2}]{sub 2}(NO{sub 3}){sub 2} {center_dot} (H{sub 2}O) {center_dot} 4(CH{sub 3}OH) are described. In these complexes, ligand 4 coordinates in a bidentate POP{prime}O{prime} mode via the two phosphine oxide O-atoms. The dibenzofuran ring O-atom points toward the central metal cations, but in every case it is more than 4 {angstrom} from the metal. A similar bidentate POP{prime}O{prime} chelate structure is formed between 5 and Er(III) in the complex, {l_brace}[Er(5){sub 2}(NO{sub 3}){sub 2}](NO{sub 3}) {center_dot} 4(CH{sub 3}OH){r_brace}0.5, although the nonbonded Er{hor_ellipsis} O{sub furan} distance is reduced to 3.6 {angstrom}. The observed bidentate chelation modes for 4 and 5 are consistent with results from molecular mechanics computations. The solvent extraction performance of 4 and 5 in 1,2-dichloroethane for Eu(III) and Am(III) in nitric acid solutions is described and compared against the extraction behavior of n-octyl(phenyl)-N,N-diisobutylcarbamoylmethyl phosphine oxide (O{Phi}DiBCMPO) measured under identical conditions.

  11. [Theoretical Investigation of the Electron Paramagnetic Resonance Parameters and Local Structures for Zinc Phosphate Glass Doped with VO2+].


    Li, Chao-ying; Yuang, Xian-Kai; Tu, Qiu; Wang, Wei-yang; Zheng, Xue-mei


    As an important model system, 3d(1) ions (VO2+, V4+ et al) have been extensively investigated by means of electron paramagnetic resonance (EPR), and many experimental results of EPR parameters were also measured. The optical absorption and EPR parameters (g factors g||, g⊥ and hyperfine structure constants A||, A⊥) of a tetragonal V4+ center in zinc phosphate glass are theoretically investigated, using the perturbation formulas for a 3d(1) ion in tetragonally compressed octahedra. Since the spin-orbit coupling parameter r (150 cm(-1)) of ligand O2- is close to that ξp(0) (≈248 cm(-1)) of the central 3d(1) ion in zinc phosphate glass doped VO2+, the effect of the spin-orbit coupling parameter ξp(0) on the EPR spectra and optical absorption spectra should be taken into account. In this work, the relationship between the EPR parameters as well as the optical absorption spectra and the local structure of the impurity center are established based on the superposition model. By fitting the calculated EPR parameters and optical absorption spectra for V4+ center in zinc phosphate glass to the experimental data, the local structure parameters of [VO6](8-) cluster are obtained. According to the investigation, the magnitudes of the metal-ligand distances parallel and perpendicular to the C4-axis of [VO6](8-) cluster are, respectively, R|| ≈ 0.175 nm and R⊥ ≈ 0.197 nm, the local structure around the V4+ ions possesses a compressed tetragonal distortion along C4 axis. Theoretical results of EPR parameters and optical absorption spectra are in good agreement with experimental data, the validity of the calculated results has also been discussed. Thus, perturbation method is effective to the studies the EPR parameters and optical spectra of transition-metal 3d ions in crystals. In addition, based on the studies of the hyperfine structure constants (All and A1), one can found that the large value of kappa indicates a large contribution to the hyperfine constant by the

  12. Improvement of discharge characteristics of latent heat thermal energy storage unit by using carbon fibers

    SciTech Connect

    Fukai, Jun; Oishi, Akira; Kodama, Yoshikazu; Kanou, Makoto; Miyatake, Osamu


    Many phase change materials have unacceptably low thermal conductivities. Metal fins, metal honeycombs and metal matrices have been examined to enhance the thermal conductivity of the PCMs. This study proposed an enhancement technique using carbon fibers with high thermal conductivity. The thermal conductivity of the carbon fibers prepared in this study is 220 W/(m{center_dot}K). Paraffin wax (0.26 W/(m{center_dot}K) in solid phase) and Na{sub 2}SO{sub 4}{center_dot}10H{sub 2}O-mixture (0.8 W/(m{center_dot}K) in solid phase) were selected as heat storage media. The fibers were uniformly mixed with th PCM encapsulated in a cylindrical capsule. The effective thermal conductivities of the fibers/PCM composites were measured. Figure A-1 shows the ratio of the effective thermal conductivity of the composite (k{sub c}) to the thermal conductivity of the phase change material (k{sub m}). The figure demonstrates that the fibers essentially enhance the thermal conductivities of paraffin. For paraffin, there is little dependence of the effective thermal conductivity on the fiber length (L{sub f}). Though the k{sub c}/k{sub m} for Na{sub 2}SO{sub 4}{center_dot}10H{sub 2}O-mixture is lower than that of the paraffin wax, 2% fibers increase the thermal conductivity of the PCM by a factor of about three. This value is almost identical to the thermal conductivity of ice (2.2 W/(m{center_dot}K)). The effect of the carbon fibers on discharge characteristics of a thermal energy storage system was investigated. Capsules containing a carbon fibers/paraffin composite are packed into a thermal energy storage unit. The inlet fluid temperature (T{sub in})and the outlet fluid temperature (T{sub out}) were measured during the discharge process. Figure A-2 shows a typical result of the experiments. Remarkable effect of the fibers is observed after the outlet temperature reaches the phase change temperature ({approx}60 C). That is, the period where the outlet temperature is maintained near the

  13. Inhibited Release of Mobile Contaminants from Hanford Tank Residual Waste

    SciTech Connect

    Cantrell, Kirk J.; Heald, Steve M.; Arey, Bruce W.; Lindberg, Michael J.


    Investigations of contaminant release from Hanford Site tank residual waste have indicated that in some cases certain contaminants of interest (Tc and Cr) exhibit inhibited release. The percentage of Tc that dissolved from residual waste from tanks 241-C-103, 241-C-106, 241-C-202, and 241-C-203 ranged from approximately 6% to 10%. The percent leachable Cr from residual waste from tanks C-103, C 202, and C-203 ranged from approximately 1.1% to 44%. Solid phase characterization results indicate that the recalcitrant forms of these contaminants are associated with iron oxides. X-ray absorption near edge structure analysis of Tc and Cr in residual waste indicates that these contaminants occur in Fe oxide particles as their lower, less soluble oxidation states [Tc(IV) and Cr(III)]. The form of these contaminants is likely as oxides or hydroxides incorporated within the structure of the Fe oxide. Leaching behavior of U from tank residual waste was studied using deionized water, and CaCO3 and Ca(OH)2 saturated solutions as leachants. The release behavior of U from tank residual waste is complex. Initial U concentrations in water and CaCO3 leachants are high due to residual amounts of the highly soluble U mineral cejkaite. As leaching and dilution occur NaUO2PO4 {center_dot} xH2O, Na2U2O7(am) and schoepite (or a similar phase) become the solubility controlling phases for U. In the case of the Ca(OH)2 leachant, U release from tank residual waste is dramatically reduced. Thermodynamic modeling indicates that the solubility of CaUO4(c) controls release of U from residual waste in the Ca(OH)2 leachants. It is assumed the solubility controlling phase is actually a hydrated version of CaUO4 with a variable water content ranging from CaUO4 to CaUO4 {center_dot} (H2O). The critically reviewed value for CaUO4(c) (log KSP0 = 15.94) produced good agreement with our experimental data for the Ca(OH)2 leachates.

  14. Crystal structures, fluorescent and magnetic properties of five new coordination polymers based on biphenyl-3,4 Prime ,5-tricarboxylic acid

    SciTech Connect

    Lu Yingli; Zhao Wenjie; Liu Yu; Liu Bin; Feng Xing; Tan Jinting; Li Xia; Yang Xuwu


    Five new coordination polymers, {l_brace}[Cd{sub 3}(bpt){sub 2}(DMF){sub 2}]{center_dot}(H{sub 2}O){sub 2}{r_brace}{sub n} (1), [Cd(Hbpt)(bipy){sub 0.5}(H{sub 2}O)]{sub n} (2), [Cd{sub 2}(bpt)(phen){sub 2}Cl]{sub n} (3), {l_brace}[Cu{sub 2}(bpt)(phen)({mu}{sub 2}-OH)(H{sub 2}O)]{center_dot}(H{sub 2}O){sub 2}{r_brace}{sub n} (4) and {l_brace}[Mn{sub 5}(Hbpt){sub 4}(phen){sub 4}({mu}{sub 2}-OH){sub 2}(H{sub 2}O){sub 2}]{center_dot}(H{sub 2}O){sub 2}(CH{sub 3}CN){sub 2}{r_brace}{sub n} (5) have been prepared through hydro(solvo)thermal reactions of H{sub 3}bpt (H{sub 3}bpt=biphenyl-3,4 Prime ,5-tricarboxylic acid) with different pyridyl-containing auxiliary ligands (bipy=4,4 Prime -bipyridine and phen=1,10-phenanthroline). Compound 1 represents a 3D ladder-like framework composed of rod-shaped infinite chains. In 2, the bridging ligand bipy links binuclear cadmium ions to generate a 2D layer. Compound 3 features a 1D ladder structure and further linked by {pi}-{pi} stacking interaction to form a 3D supramolecular network. Compound 4 exhibits a binodal 3-connected net which features the Schlafli symbol of (4{center_dot}8{sup 2}). Compound 5 contains trimetallic cluster and binuclear unite which are further linked by Hbpt ligand to form a 2D layer. Moreover, photoluminescent properties of compounds 1-3 were studied in the solid state. Magnetic susceptibility measurements indicate that compound 4 exhibits ferromagnetic exchange interactions, whereas compound 5 displays antiferromagnetic exchange interactions. - Graphical abstract: Five new coordination polymers have been prepared through reactions of H{sub 3}bpt with different pyridyl-containing auxiliary ligands. The bpt exhibits four new kinds of coordination modes with 'V or Y shape'. Highlights: Black-Right-Pointing-Pointer 1 represents a unique (4{center_dot}8)-connected network with a Schlafli symbol (4{sup 6})(4{sup 12}{center_dot}6{sup 12}{center_dot}8{sup 4}). Black-Right-Pointing-Pointer Compound 4 shows

  15. Weathering rates of marble in laboratory and outdoor conditions

    SciTech Connect

    Yerrapragada, S.S.; Chirra, S.R.; Jaynes, J.H.; Bandyopadhyay, J.K.; Gauri, K.L.; Li, S.


    In the modern urban atmosphere SO{sub 2} and NO{sub 2} attack calcite (CaCO{sub 3}) in marble exposed at rain-sheltered surfaces creating largely gypsum (CaSO{sub 4}{center_dot}2H{sub 2}O) crusts that eventually exfoliate. In combination with CO{sub 2} these gases erode the marble at unsheltered surfaces. the authors report the development of mathematical models to predict the rate of growth of crust and the rate of surface recession. To determine the rate of growth of crust the kinetic rate constant, diffusion rate, and the order of reaction were determined by the application of the shrinking-core model applied to data generated in laboratory experiments. Based on these parameters /and average ambient levels of 10 parts per billion (ppb) SO{sub 2} and 25 ppb NO{sub 2} in Louisville, Ky., the rate of crust formation for this metro area was calculated to be 1.8 {micro}m in the first year. However, the rate of recession was modeled from data obtained by exposing marble slabs to rainfalls. A surface recession of 15 {micro}m/yr was calculated. The models predicted well the rate of growth of crust observed at several sites in Louisville and the predicted surface recession compared well with values reported in the literature.

  16. Results of Propellant Mixing Variable Study Using Precise Pressure-Based Burn Rate Calculations

    NASA Technical Reports Server (NTRS)

    Stefanski, Philip L.


    A designed experiment was conducted in which three mix processing variables (pre-curative addition mix temperature, pre-curative addition mixing time, and mixer speed) were varied to estimate their effects on within-mix propellant burn rate variability. The chosen discriminator for the experiment was the 2-inch diameter by 4-inch long (2x4) Center-Perforated (CP) ballistic evaluation motor. Motor nozzle throat diameters were sized to produce a common targeted chamber pressure. Initial data analysis did not show a statistically significant effect. Because propellant burn rate must be directly related to chamber pressure, a method was developed that showed statistically significant effects on chamber pressure (either maximum or average) by adjustments to the process settings. Burn rates were calculated from chamber pressures and these were then normalized to a common pressure for comparative purposes. The pressure-based method of burn rate determination showed significant reduction in error when compared to results obtained from the Brooks' modification of the propellant web-bisector burn rate determination method. Analysis of effects using burn rates calculated by the pressure-based method showed a significant correlation of within-mix burn rate dispersion to mixing duration and the quadratic of mixing duration. The findings were confirmed in a series of mixes that examined the effects of mixing time on burn rate variation, which yielded the same results.


    SciTech Connect

    Robert C. Brown; Maohong Fan; Adrienne Cooper


    Absorption of sulfur dioxide from a simulated flue gas was investigated for the production of polymeric ferric sulfate (PFS), a highly effective coagulant useful in treatment of drinking water and wastewater. The reaction for PFS synthesis took place near atmospheric pressure and at temperatures of 30-80 C. SO{sub 2} removal efficiencies greater than 90% were achieved, with ferrous iron concentrations in the product less than 0.1%. A factorial analysis of the effect of temperature, oxidant dosage, SO{sub 2} concentration, and gas flow rate on SO{sub 2} removal efficiency was carried out, and statistical analyses are conducted. The solid PFS was also characterized with different methods. Characterization results have shown that PFS possesses both crystalline and non-crystalline structure. The kinetics of reactions among FeSO{sub 4} {center_dot} 7H{sub 2}O, NaHSO{sub 3} and NaClO{sub 3} was investigated. The PFS product was used in pilot-scale tests at a municipal water treatment facility and gave good results in removal of turbidity and superior results in removal of disinfection byproduct precursors (TOC, DOC, UV-254) when compared with equal doses of ferric chloride.

  18. Determination of Nickel Species in Stack Emissions from Eight Residual Oil-Fired Utility Steam-Generating Units

    SciTech Connect

    F Huggins; K Galbreath; K Eylands; L Van Loon; J Olson; E Zillioux; S Ward; P Lynch; P Chu


    XAFS spectroscopy has been used to determine the Ni species in particulate matter collected on quartz thimble filters in the stacks of eight residual (No. 6 fuel) oil-burning electric utility steam-generating units. Proper speciation of nickel in emitted particulate matter is necessary to correctly anticipate potential health risks. Analysis of the spectroscopic data using least-squares linear combination methods and a newly developed method specific for small quantities of Ni sulfide compounds in such emissions show that potentially carcinogenic Ni sulfide compounds are absent within the detection limits of the method ({le}3% of the total Ni) in the particulate matter samples investigated. In addition to the major nickel sulfate phase (NiSO{sub 4} {center_dot} 6H{sub 2}O), lesser amounts of (Ni,Mg)O and/or NiFe{sub 2}O{sub 4} were also identified in most emission samples. On the basis of the results from these emission characterization studies, the appropriateness of the U.S. Environmental Protection Agency's assumption that the Ni compound mixture emitted from residual oil-fired power plants is 50% as carcinogenic as nickel subsulfide (Ni{sub 3}S{sub 2}) should be re-evaluated.

  19. Solubility of triuranyl diphosphate tetrahydrate (TDT) and Na autunite at 23 and 50 degrees C

    SciTech Connect

    Armstrong, Christopher R.; Felmy, Andrew R.; Clark, Sue B.


    In this report we present experimental solubility data for well-characterized triuranyl diphosphate tetrahydrate (TDT: (UO2)(3)(PO4)(2)center dot 4H(2)O) and Na autunite (Na[UO2PO4]center dot xH(2)O) at 23 and 50 degrees C in NaClO4-HClO4 solutions at pC(H+) = 2. Duplicate samples of TDT in 0.1, 0.5, 1.0, 2.0 and 5.0 in solutions were equilibrated at 23 and 50 degrees C. TDT solid was synthesized and characterized with ICP-OES, ATR-IR and powder XRD before and after solubility experiments. The pH of the suspensions were monitored throughout the experiments. Equilibrium was achieved from undersaturation with respect to TDT and oversaturation for Na autunite. Steady-state conditions were achieved in all cases within 82 d. TDT was unstable at ionic strengths above 0.1 m, where its complete conversion to Na autunite was observed. The ion-interaction model was used to interpret the experimental solubility data. The solubility product, log K-sp, for TDT was determined to be -49.7 and -51.3 at 23 and 50 degrees C respectively. log K for Na autunite was determined to be -24.4 (23 degrees C) and -24.1 +/- 0.2 (50 degrees C).

  20. Zero-order and first-derivative spectrophotometric determination of trace amounts of ruthenium after extraction of its ion association complex with 2,4,6-tris(2 prime -pyridyl)-1,3,5-triazine and picrate

    SciTech Connect

    Morales, A.; Toral, M.I.; Richter, P.; Silva, M. )


    A solvent extraction-spectrophotometric determination of trace amounts of ruthenium has been developed, based on the formation of an ion association complex of ruthenium (III) with 2,4,6-tris(2{prime}-pyridyl)-1,3,5-triazine as primary ligand and picrate as counter-ion; this complex is then extracted into 1,2-dichloroethane. The complex is formed at pH 2.0-7.0, upon heating at 90 C for 60 min, and the ruthenium concentration can be determined by measuring the absorbance directly in the organic phase. Beer's law is obeyed over the concentration range 1.0-10.0 {mu}g ml{sup {minus}1} corresponding to 0.050-0.500 {mu}g ml{sup {minus}1} of ruthenium in the aqueous solution. The apparent molar absorptivity and the Sandell's sensitivity were found to be 3.4 {center dot} 10{sup 5} 1 mol{sup {minus}1} cm{sup {minus}1} and 0.30 ng cm{sup {minus}2}, respectively. The interference of various ions was examined and the serious interferences from iron and other metals of the VIII group were minimized by employing the derivative spectrophotometric technique in conjunction with appropriate masking agents.

  1. Theoretical approach for enhanced mass transfer effects in-duct flue gas desulfurization processes

    SciTech Connect

    Not Available


    During this reporting period, bench- and pilot-scale experiments have been concluded to measure mass transfer and kinetic rates at simulated duct injection conditions. Section 2 describes the tank reactor test results. Present work is focused on running the slurry absorption model for solution compositions which are representative of the tests performed in the stirred tank reactor. The slurry absorption model has been run successfully to simulate most of the clear solution experiments. Section 3 presents the results of a special study investigating the use of Epsom Salt (magnesium sulfate heptahydrate, MgSO{sub 4}{center dot}7H{sub 2}O) as an additive for in-duct dry injection to reduce the amount of water needed for humidification. Industrial grade Epsom Salt was injected into a 50-cfm pilot plant at {approximately}3.4 lb/h. Section 4 summarizes the status of slaking modification tests. The present study focuses on an evaluation of techniques for the production of a fine particulate Ca(OH){sub 2} during slaking. Section 5 reports on differential reactor (Task 4) tests. The reactor has been modified to allow contact of solids containing varying amounts of surface water with humidified flue gas for 10--120 s. Preliminary gas and wet solids experiments have been performed using lime/flyash mixtures containing 5--40 percent initial free moisture. 3 refs., 14 figs., 10 tabs.

  2. Lethal and sublethal effects of copper on redbreast sunfish, Lepomis auritus

    SciTech Connect

    Esman, L.A.; La Point, T.W.


    The popularity of redbreast sunfish (Lepomis auritus) as a sport fishery has been steadily increasing in South Carolina and the southeastern region of the United States. However, little is known about the toxicological sensitivity of this species. Expanding urban and suburban development threatens an increasing number of Piedmont streams with point and nonpoint source toxic discharges. As a result, redbreast sunfish face a greater influx of heavy metals, including copper, into the environment. In addition, the soft waters (10--20 mg/L as CaCO{sub 3}) characteristic of South Carolina increases the bioavailability of metals causing increased toxicity to fish. The authors determined the effect of copper, as copper sulfate (CuSO{sub 4}{center_dot}5H{sub 2}O) on redbreast sunfish using a static renewal toxicity test, monitoring mortality at frequent intervals. The overall 96hr LC50 was 0.18 mg/L Cu. A critical concentration leading to rapid time-to-death appears to fall within the range of 0.15--0.28 mg/L Cu. Normal social behavior is important for successful propagation of this species in the wild. Preliminary testing indicates that predatory behavior is unaffected at concentrations up to 50% LC50. Ultimately, such stress will lower population fitness. Therefore, the authors are determining at what concentration they see behavioral effects on feeding (e.g. handling time, capture efficiency) begin. Results of these experiments expand the behavioral and toxicological data on this species.

  3. Accuracy of navigation-assisted acetabular component positioning studied by computed tomography measurements: methods and results.


    Ybinger, Thomas; Kumpan, W; Hoffart, H E; Muschalik, B; Bullmann, W; Zweymüller, K


    The postoperative position of the acetabular component is key for the outcome of total hip arthroplasty. Various aids have been developed to support the surgeon during implant placement. In a prospective study involving 4 centers, the computer-recorded cup alignment of 37 hip systems at the end of navigation-assisted surgery was compared with the cup angles measured on postoperative computerized tomograms. This comparison showed an average difference of 3.5 degrees (SD, 4.4 degrees ) for inclination and 6.5 degrees (SD, 7.3 degrees ) for anteversion angles. The differences in inclination correlated with the thickness of the soft tissue overlying the anterior superior iliac spine (r = 0.44; P = .007), whereas the differences in anteversion showed a correlation with the thickness of the soft tissue overlying the pubic tubercles (r = 0.52; P = .001). In centers experienced in the use of navigational tools, deviations were smaller than in units with little experience in their use. PMID:17826270

  4. Simulation of Adsorption of Carbon Dioxide and Methane on Graphene Sheet

    NASA Astrophysics Data System (ADS)

    Maiga, Sidi; Gatica, Silvina

    Carbon dioxide (CO2) and Methane (CH4) constitute 90% of the annual greenhouse emission. These gases are emitted from multitude of sources such as: power station, transportation fuels, industrial processes, and agricultural byproducts. Scientists around the globe are looking for materials capable of capturing, separating, and storing these gases. Graphene with its high specific surface area provides a great platform for gas adsorption and separation. Adsorption is defined as the attachment of atoms, or molecules of a gas, liquid or dissolved solid onto a surface, creating a film or monolayer of material onto the adsorbing surface. Using the Method of Grand Canonical Monte Carlo, we computed the adsorption of carbon dioxide (CO2) and methane (CH4) on a monolayer graphene sheet, at various temperatures for each gas. For each temperature, we compute the adsorption isotherm, Energy gas-surface and Energy gas-gas. We compare the uptake pressures of CO2 and CH4. Using the Ideal Adsorbed Solution Theory (IAST), we predict the selectivity of a mixture CO2/CH4. Center for Integrated Quantum Materials (CIQM), NSF Grant No. DMR-1231319.

  5. Fouling of inorganic membrane and flux enhancement in membrane-coupled anaerobic bioreactor

    SciTech Connect

    Yoon, S.H.; Kang, I.J.; Lee, C.H.


    The fouling mechanism of an inorganic membrane was studied during the operation of a membrane-coupled anaerobic bioreactor (MCAB) when alcohol distillery wastewater was used as a digester feed. It was observed that the fouling mechanism of an inorganic membrane was significantly different from that of conventional membrane filtration processes. The main foulant was identified to be an inorganic precipitate, struvite (MgNH{sub 4}PO{sub 4}{center_dot}6H{sub 2}O), rather than anaerobic microbial flocs. Struvite appears to be precipitated not only on the membrane surface but also inside the membrane pores. The amount of struvite generated during the bioreaction was estimated to be about 2 g/L alcohol distillery wastewater. The inorganic foulant was not easily removed by general physical cleaning such as depressurization, lumen flushing, and backflushing. Based on these findings, the membrane fouling was alleviated and thus flux was enhanced by adopting a backfeeding mode which has dual purpose of feeding and backflushing with particle-free acidic wastewater used as the feed for anaerobic digestion.


    SciTech Connect

    Michael W. Grutzeck; Maria DiCola; Paul Brenner


    Flue gas desulphurization (FGD) materials are produced in abundant quantities by coal burning utilities. Due to environmental restrains, flue gases must be ''cleaned'' prior to release to the atmosphere. They are two general methods to ''scrub'' flue gas: wet and dry. The choice of scrubbing material is often defined by the type of coal being burned, i.e. its composition. Scrubbing is traditionally carried out using a slurry of calcium containing material (slaked lime or calcium carbonate) that is made to contact exiting flue gas as either a spay injected into the gas or in a bubble tower. The calcium combined with the SO{sub 2} in the gas to form insoluble precipitates. Some plants have been using dry injection of these same materials or their own Class C fly ash to scrub. In either case the end product contains primarily hannebachite (CaSO{sub 3} {center_dot} 1/2H{sub 2}O) with smaller amounts of gypsum (CaSO{sub 4} {center_dot} 2H{sub 2}O). These materials have little commercial use. Experiments were carried out that were meant to explore the feasibility of using blends of hannebachite and fly ash mixed with concentrated sodium hydroxide to make masonry products. The results suggest that some of these mixtures could be used in place of conventional Portland cement based products such as retaining wall bricks and pavers.

  7. Separation of Flue-Gas Scrubber Sludge into Marketable Products

    SciTech Connect


    The reduction of sulfur oxides from high sulfur coal burning utility companies has resulted in the production of huge quantities of wet flue-gas desulfurization scrubber sludge. A typical 400 MW power station burning a coal containing 3.5% sulfur by weight and using a limestone absorbent would produce approximately 177,000 tons (dry weight) of scrubber sludge per year. This brownish colored, finely divided material contains calcium sulfite (CaSO{sub 3} {center_dot} 1/2 H{sub 2}O), calcium sulfate (CaSO{sub 4} {center_dot} 2H{sub 2}O), unreacted limestone (CaCO{sub 3}), and various other impurities such as fly-ash and iron oxide particles. The physical separation of the components of scrubber sludge would result in the re-use of this material. The primary use would be conversion to a highly pure synthetic gypsum. This technical report concentrates on the effect of baffle configuration on the separation of calcium sulfite/sulfate from limestone. The position of the baffles as they related to the feed inlet, and the quantity of the baffles were examined. A clean calcium sulfite/sulfate (less than 2.0% limestone by weight) was achieved with the combination of water-only cyclone and horizontally baffled column.

  8. Adjuvant Therapeutic Modalities in Primary Small Cell Carcinoma of Esophagus Patients

    PubMed Central

    Zou, Bingwen; Li, Tao; Zhou, Qiang; Ma, Daiyuan; Chen, Yongshun; Huang, Meijuan; Peng, Feng; Xu, Yong; Zhu, Jiang; Ding, Zhenyu; Zhou, Lin; Wang, Jin; Ren, Li; Yu, Min; Gong, Youling; Li, Yanying; Chen, Longqi; Lu, You


    Abstract To evaluate the treatment pattern and survival of patients receiving radical resection for primary small cell carcinoma of the esophagus (PSCCE). This retrospective study included 150 patients who received radical resection of PSCCE. Data were retrieved from 4 centers in Western China. Thirty-nine of 150 patients received postoperative chemo-radiotherapy, 62 received postoperative chemotherapy, and 49 received radical resection only. The median radiation dosage was 50 Gy. The chemotherapeutic regimen was platinum-based and lasted for 2 to 6 cycles (median, 3). Median disease-free survival (mDFS) and overall survival (mOS) were 12.0 and 18.3 months, respectively. Subgroup analysis revealed that postoperative therapy did not improve survival in limited stage I (LSI) disease, whereas postoperative chemotherapy improved survival in limited stage II (LSII) disease. Relative to chemotherapy alone, chemoradiotherapy did not improve survival in patients with completely resected LSII disease. A multivariate analysis indicated an association of no postoperative chemotherapy with shorter DFS (P = 0.050) and OS (P = 0.010). Higher lymph node stage and length of disease longer than 3 cm were poor prognostic factors for both DFS and OS. Adjuvant chemotherapy improves survival in PSCCE patients with completely resected LSII disease. Adjuvant treatment with postoperative chemotherapy alone or postoperative chemo-radiotherapy does not increase survival in completely resected LSI disease. PMID:27124057


    SciTech Connect

    Anton, D.; James, C.; Cortes-Concepcion, J.; Tamburello, D.; Brinkman, K.; Gray, J.


    To make commercially acceptable condensed phase hydrogen storage systems, it is important to understand quantitatively the risks involved in using these materials. A rigorous set of environmental reactivity tests have been developed based on modified testing procedures codified by the United Nations for the transportation of dangerous goods. Potential hydrogen storage material, 2LiBH4{center_dot}MgH2 and NH3BH3, have been tested using these modified procedures to evaluate the relative risks of these materials coming in contact with the environment in hypothetical accident scenarios. It is apparent that an ignition event will only occur if both a flammable concentration of hydrogen and sufficient thermal energy were available to ignite the hydrogen gas mixture. In order to predict hydride behavior for hypothesized accident scenarios, an idealized finite element model was developed for dispersed hydride from a breached system. Empirical thermodynamic calculations based on precise calorimetric experiments were performed in order to quantify the energy and hydrogen release rates and to quantify the reaction products resulting from water and air exposure. Both thermal and compositional predictions were made with identification of potential ignition event scenarios.

  10. Effects of salts on preparation and use of calcium silicates for flue gas desulfurization

    SciTech Connect

    Kind, K.K.; Wassermann, P.D.; Rochelle, G.T. )


    High surface area calcium silicate hydrates that are highly reactive with SO[sub 2] can be made by slurrying fly ash and lime in water at elevated temperatures for several hours. This concept is the basis for the ADVACATE (ADVAnced siliCATE) process for flue gas desulfurization. This paper examines the impact of salts on such a system. Two low calcium fly ashes, from the Shawnee and Clinch River power plants, were examined. The addition of gypsum (CaSO[sub 4][center dot]2H[sub 2]O) or calcium chloride to the slurry system increased the dissolved calcium concentration, allowing the reaction rate to increase and the maximum surface area to more than double in some cases. This increase came despite a lower solution hydroxide level. The salts also enhanced the reaction of the sorbent with sulfur dioxide. This resulted from the higher equilibrium moisture on the sorbent at any humidity due to the deliquescent properties of some of the salts used (calcium chloride and calcium nitrate). Solids made without the deliquescent salts exhibited equilibrium moisture adsorption consistent with a type-II BET isotherm while the deliquescent salts caused hysteresis in the adsorption/desorption isotherm. 22 refs., 10 figs., 2 tabs.

  11. Photochemical reaction of sulfur hexafluoride with water in low-temperature xenon matrices

    SciTech Connect

    Yamada, Yasuhiro; Tamura, Hiroyuki; Takeda, Daisuke


    Sulfur hexafluoride SF{sub 6} is a very stable molecule with which very few reactions with other molecules have been reported. Here, we report a photochemical reaction of SF{sub 6} with water molecules using a matrix-isolation technique, where SF{sub 6} and H{sub 2}O were co-condensed in Xe matrices, and the products were observed using infrared spectroscopy. Irradiation at 193 nm from an ArF excimer laser caused the simultaneous decomposition of SF{sub 6} and H{sub 2}O, which resulted in the production of novel species. Infrared spectra and molecular orbital calculations of the species showed that the product was a SF{sub 4}{center_dot}{center_dot}{center_dot}HF{center_dot}{center_dot}{center_dot}HOF complex, which consists of hydrogen bonds and charge transfer interaction between S and F atoms. The assignment of the species was confirmed by isotope shifts using D and {sup 18}O isotope substitutions.

  12. Separation of flue-gas scrubber sludge into marketable products. Third year, first quarterly technical progress report Quarter No. 9, September 1, 1995--November 30, 1995

    SciTech Connect

    Kawatra, S.K.; Eisele, T.C.


    To reduce their sulfur emissions, many coal-fired electric power plants use wet flue-gas scrubbers. These scrubbers convert sulfur oxides into solid sulfate and sulfite sludge, which must then be disposed of This sludge is a result of reacting limestone with sulfur dioxide to precipitate calcium sulfite and calcium sulfate. It consists of calcium sulfite (CaSO{sub 3}{center_dot}0.5H{sub 2}O), gypsum (CaSO{sub 4}{center_dot}2H{sub 2}O), and unreacted limestone (CaCO{sub 3}) or lime (Ca(OH){sub 2}), with miscellaneous objectionable impurities such as iron oxides, silicates, and magnesium, sodium, and potassium oxides or salts. These impurities prevent many sludges from being utilized as a replacement for natural gypsum, and as a result they must be disposed of in landfills, which presents a serious disposal problem. Knowledge of scrubber sludge characteristics is necessary for the development of purification technologies which will make it possible to directly utilize scrubber sludges rather than landfilling them. This project is studying the use of minimal-reagent froth flotation as the purification process, using the surface properties of the particles of unreacted limestone to remove them and their associated impurities from the material, leaving a purified calcium sulfite/gypsum product.

  13. Heavy metals in wastewater: Modelling the hydroxide precipitation of copper(II) from wastewater using lime as the precipitant

    SciTech Connect

    Baltpurvins, K.A.; Burns, R.C.; Lawrance, G.A.


    The effect of effluent composition (Cl{sup {minus}}, SO{sub 4}{sup 2{minus}} or CO{sub 3}{sup 2{minus}}) on the efficiency of the hydroxide precipitation of Cu(II) modelling lime (CaO) as the precipitant has been predicted using the solubility domain approach and has been experimentally validated. Solubility domains were based on the phases that were found to be solubility-limiting for systems representing potential effluent chemical composition limits. The generated solubility domains generally encompassed the experimentally observed solubilities, thereby providing effluent treatment quality assurance ranges for the hydroxide precipitation process. The presence of gypsum (CaSO{sub 4{center_dot}}2H{sub 2}O) and calcite (CaCO{sub 3}) as secondary precipitates had little effect on the observed residual Cu(II) solubilities, with Cu(II) mobility being governed by the least-soluble kinetically precipitated (rather than thermodynamically favored) phase in the system under study.

  14. Uptake of chloride and carbonate ions by calcium monosulfoaluminate hydrate

    SciTech Connect

    Mesbah, Adel; Cau-dit-Coumes, Celine; Frizon, Fabien


    Decommissioning of old nuclear reactors may produce waste streams containing chlorides and carbonates, including radioactive {sup 36}Cl{sup -} and {sup 14}CO{sub 3}{sup 2-}. Their insolubilization by calcium monosulfoaluminate hydrate was investigated. Carbonates were readily depleted from the solution, giving at thermodynamic equilibrium monocarboaluminate, monocarboaluminate + calcite, or calcite only, depending on the initial ratio between the anion and calcium monosulfoaluminate hydrate. Chloride ions reacted more slowly and were precipitated as Kuzel's salt, Kuzel's and Friedel's salts, or Friedel's salt only. Rietveld refinement of X-Ray powder diffraction patterns was successfully used to quantify the phase distributions, which were compared to thermodynamic calculations. Moreover, analysing the lattice parameters of Kuzel's salt as a function of its chloride content showed the occurrence of a restricted solid solution towards the sulfate side with general formula 3CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}xCaCl{sub 2}{center_dot}(1 - x)CaSO{sub 4}{center_dot}(12 - 2x){center_dot}H{sub 2}O (0.36 {<=} x {<=} 0.50).

  15. Influence of the Torsion Angle in 3,3'-Dimethyl-2,2'-bipyridine on the Intermediate Valence of Yb in (C5Me5)2 Yb(3,3'-Me2-bipy)

    SciTech Connect

    Nocton, Grégory; Booth, Corwin H.; Maron, Laurent; Andersen, Richard A.


    The synthesis and X-ray crystal structures of Cp-2*Yb(3,3'-Me(2)bipy) and [Cp-2 Yb(3,3'-Me(2)bipy)][Cp-2 YbCl1.6I0.4]center dot CH2Cl2 are described. In both complexes, the NCCN torsion angles are approximately 40 degrees. The temperature-independent value of n(f) of 0.17 shows that the valence of ytterbium in the neutral adduct is multiconfigurational, in reasonable agreement with a CASSCF calculation that yields a n(f) value of 0.27; that is, the two configurations in the wave function are f(13)(pi(1))(1) and f(14)(pi(1))(0) in a ratio of 0.27:0.73, respectively, and the open-shell singlet lies 0.28 eV below the triplet state (n(f) accounts for f-hole occupancy; that is, n(f) = 1 when the configuration is f(13) and n(f) = 0 when the configuration is f(14)). A correlation is outlined between the value of nf and the individual ytterbocene and bipyridine fragments such that, as the reduction potentials of the ytterbocene cation and the free x,x'-R-2-bipy ligands approach each other, the value of nf and therefore the f(13):f(14) ratio reaches a maximum; conversely, the ratio is minimized as the disparity increases.

  16. Enantioselective nitrile anion cyclization to substituted pyrrolidines. A highly efficient synthesis of (3S,4R)-N-tert-butyl-4-arylpyrrolidine-3-carboxylic acid.


    Chung, John Y L; Cvetovich, Raymond; Amato, Joseph; McWilliams, J Christopher; Reamer, Robert; DiMichele, Lisa


    [reaction: see text] A practical asymmetric synthesis of N-tert-butyl disubstituted pyrrolidines via a nitrile anion cyclization strategy is described. The five-step chromatography-free synthesis of (3S,4R)-1-tert-butyl-4-(2,4-difluorophenyl)pyrrolidine-3-carboxylic acid (2) from 2-chloro-1-(2,4-difluorophenyl)-ethanone achieved a 71% overall yield. The cyclization substrate was prepared via a catalytic CBS asymmetric reduction, t-butylamine displacement of the chlorohydrin, and a conjugate addition of the hindered secondary amine to acrylonitrile. The key nitrile anion 5-exo-tet cyclization concomitantly formed the pyrrolidine ring with clean inversion of the C-4 center to afford 1,3,4-trisubstituted chiral pyrrolidine in >95% yield and 94-99% ee. Diethyl chlorophosphate and lithium hexamethyldisilazide were shown to be the respective optimum activating group and base in this cyclization. The trans-cis mixture of the pyrrolidine nitrile undergoes a kinetically controlled epimerization/ saponification to afford the pure trans-pyrrolidine carboxylic acid target compound in >99.9% chemical and optical purity. This chemistry was also shown to be applicable to both electronically neutral and rich substituted phenyl substrates.

  17. Reinforcing of QA/QC programs in radiotherapy departments in Croatia: Results of treatment planning system verification

    SciTech Connect

    Jurković, Slaven; Švabić, Manda; Diklić, Ana; Smilović Radojčić, Đeni; Dundara, Dea; Kasabašić, Mladen; Ivković, Ana; Faj, Dario


    Implementation of advanced techniques in clinical practice can greatly improve the outcome of radiation therapy, but it also makes the process much more complex with a lot of room for errors. An important part of the quality assurance program is verification of treatment planning system (TPS). Dosimetric verifications in anthropomorphic phantom were performed in 4 centers where new systems were installed. A total of 14 tests for 2 photon energies and multigrid superposition algorithms were conducted using the CMS XiO TPS. Evaluation criteria as specified in the International Atomic Energy Agency Technical Reports Series (IAEA TRS) 430 were employed. Results of measurements are grouped according to the placement of the measuring point and the beam energy. The majority of differences between calculated and measured doses in the water-equivalent part of the phantom were in tolerance. Significantly more out-of-tolerance values were observed in “nonwater-equivalent” parts of the phantom, especially for higher-energy photon beams. This survey was done as a part of continuous effort to build up awareness of quality assurance/quality control (QA/QC) importance in the Croatian radiotherapy community. Understanding the limitations of different parts of the various systems used in radiation therapy can systematically improve quality as well.

  18. Total shoulder arthroplasty outcome for treatment of osteoarthritis: a multicenter study using a contemporary implant.


    Wright, Thomas W; Flurin, Pierre-Henri; Crosby, Lynn; Struk, Aimee M; Zuckerman, Joseph D


    In this article, we present clinical results of primary total shoulder arthroplasty for osteoarthritis using an implant that provides dual eccentricity and variable neck and version angles for reconstruction of proximal humeral anatomy. Two hundred one patients with symptomatic osteoarthritis underwent 218 total shoulder arthroplasties with a fourth-generation anatomical shoulder and a replicator plate at 4 centers between August 1, 2006, and December 31, 2010. Fourth-generation implants allow for varying humeral neck and version angles and have dual eccentricity so as to be consistently able to cover the humeral head cut. At a mean follow-up of 3 years (minimum, 2 years), there was an 81% follow-up rate. At final follow-up, 3 objective measures were significantly (P < .05) improved over preoperative levels: average active elevation (preoperative, 92°; postoperative, 137°), active external rotation (pre, 15°; post, 42°), and active internal rotation (pre, S3; post, L2). The functional outcome scores that were significantly (P < .05) improved at final follow-up were Constant normalized (pre, 39; post, 79), Shoulder Pain and Disability Index (pre, 86; post, 20), Simple Shoulder Test (pre, 3.3; post, 10), UCLA Shoulder Rating Scale (pre, 13; post, 31), and American Shoulder and Elbow Surgeons Shoulder Assessment (pre, 33; post, 85). Complications were noted in 11% of the shoulders. The most common complications were rotator cuff failure (13, 6%) and infection (5, 2%). PMID:26566554

  19. A novel analytical method for the determination of residual moisture in plutonium dioxide: Supercritical fluid extraction/Fourier transform infrared spectroscopy

    SciTech Connect

    Martinez, A.M.; Hollis, W.K.; Rubin, J.B.; Taylor, C.M.V.; Jasperson, M.N.; Vance, D.E.; Rodriguez, J.B.


    A novel approach has been developed at the Los Alamos National Laboratory for the quantitative determination of moisture content in impure plutonium oxide. The method combines a commercial supercritical fluid extraction instrument using supercritical carbon dioxide (SCCO{sub 2}) with on-line detection using a high-pressure Fourier Transform Infrared Spectroscopy (FTIR) cell. The combined SCCO{sub 2}/FTIR system has been modified for use inside a fully enclosed glove box. A series of validation experiments were performed using a pure, surrogate oxide (ThO{sub 2}) and an inorganic hydrate (CaSO{sub 4}{center_dot}2H{sub 2}O). The level of agreement between LOI and SCCO{sub 2}/FTIR for the surrogate oxide is excellent. The results for the inorganic hydrate showed excellent correlation with the known amount of water present. Results obtained for a group of nominally pure PuO{sub 2} samples were verified by independent measurement. The results of SCCO{sub 2}/FTIR for impure PuO{sub 2} samples is consistently lower than the results of obtained from the current analytical method (Loss On Ignition), indicating that the current method is inadequate for analytical purposes. While further verification experiments of the SCCO{sub 2}/FTIR method are underway, these initial results suggest that SCCO{sub 2}/FTIR could be used as an alternative analytical method for the Materials Identification and Surveillance program.

  20. Decomposition of chrysotile asbestos by fluorosulfonic acid

    SciTech Connect

    Sugama, T.; Sabatini, R.; Petrakis, L.


    The effect of a fluorosulfonic acid (FSO{sub 3}H) aqueous solution on decomposing the chrysotile asbestos fibers was investigated by using FT-IR, XRD, and XPS. From the equilibrium of FSO{sub 3}H in an aqueous medium (FSO{sub 3}H + H{sub 2}O = HF + H{sub 2}SO{sub 4}), the resulting H{sub 2}SO{sub 4} had a strong affinity for the external Mg(OH){sub 2} layers in the tubular, scroll-like chrysotile structure. This acid-base reaction led to the precipitation and lixiviation of MgSO{sub 4}{center_dot}H{sub 2}O, MgO, and Mg{sup 2+} ion. Once the breakage of the outer Mg(OH){sub 2} layers occurred, HF readily diffused into the inner silicious layers and then reacted with silicates, converting them into SiO{sub 2} hydrate and H{sub 2}SiF{sub 6}, while the ionic reaction between lixiviated Mg{sup 2+} and F{sup {minus}} resulted in precipitating MgF{sub 2}, thereby destroying the fibrous nature of the asbestos. An optimum combination of HF and H{sub 2}SO{sub 4} contributed significantly to enhancing the rate of conversion of asbestos into nonfibrous materials in a short treatment time without any physical agitation.

  1. Recovery and utilization of gypsum and limestone from scrubber sludge. Final technical report, September 1, 1992--August 31, 1993

    SciTech Connect

    Kawatra, S.K.; Eisele, T.C.


    Wet flue-gas desulfurization units in coal-fired power plants produce a large amount of sludge which must be disposed of, and which is currently landfilled in most cases. Increasing landfill costs are gradually forcing utilities to find other alternatives. In principle, this sludge can be used to make gypsum (CaSO{sub 4}{center_dot}2H{sub 2}O) for products such as plaster-of-Paris and wallboard, but only if impurities such as unreacted limestone and soluble salts are removed, and the calcium sulfite (CaSO{sub 3}) is oxidized to calcium sulfate (CaSO{sub 4}). This project investigated methods for removing the impurities from the sludge so that high-quality, salable gypsum products can be made. Two processes were studied, both separately and in combination: Water-only cycloning, and froth flotation. A large fraction (30--40%) of the impurities in the sludge are contained in the coarser, higher-density particles, which are readily removed using a water-only cyclone. Much of the remaining impurities are hydrophobic, and can be removed by froth flotation. A combined cyclone/froth flotation process has been found to be suitable for producing a high-purity product from scrubber sludge at low cost.

  2. The effect of the Syrian crisis on organ transplantation in Syria.


    Saeed, Bassam


    The war in Syria that started in March 2011 has destroyed much of the country's infrastructure including many hospitals. The total number of kidney transplants performed in Syria in 2010 was 385 transplants before the number gradually declined to 154 transplants in 2013, a decrease of 60%. In addition, the number of operational kidney transplant centers has decreased from 8 to 4 centers. Unrelated-donor kidney transplant decreased from 70% during the years that preceded the crisis to 47% in 2013. More than 50% of physicians and surgeons involved in kidney transplant are not practicing transplant currently in their centers. Difficulties in the provision of immunosuppressive drugs for all patients in all provinces constitute a major challenge for the health authorities and transplant patients, especially patients who cannot arrange an alternate source. The project to initiate liver transplant came to a halt because foreign trainers could not visit Syria. The autologous bone marrow transplant program continued to function, but in a smaller and irregular manner. The commitment of transplant teams despite the large challenges was, and still is, extraordinary. In conclusion, all aspects of organ transplant have been affected, paralyzing new projects and negatively affecting existing programs.

  3. Increased fluorescence intensity in CaTiO3:Pr3+ phosphor due to NH3 treatment and Nb Co-doping

    NASA Astrophysics Data System (ADS)

    Holliday, K. S.; Kohlgruber, T. A.; Tran, I. C.; Åberg, D.; Seeley, Z. M.; Bagge-Hansen, M.; Srivastava, A. M.; Cherepy, N. J.; Payne, S. A.


    Development of next generation red phosphors for commercial lighting requires understanding of how increased luminescence is achieved by various treatment strategies. In this work, we compare co-doping with Nb to NH3 treatment of CaTiO3:Pr phosphors to reveal a general mechanism responsible for the increased luminescence. The phosphors were synthesized using standard solid-state synthesis techniques and the fluorescence was characterized for potential use in fluorescent lighting, with 254 nm excitation. The lifetime of the fluorescence was determined and used to identify a change in a trap state by the co-doping of Nb5+ in the phosphor. The oxidation state of the Pr was probed by NEXAFS and revealed that both Nb5+ co-doping and NH3 treatment reduced the number of non-fluorescing Pr4+ centers. Calculations were performed to determine the energetically favorable defects. Vacuum annealing was also used to further probe the nature of the trap state. It was determined that NH3 treatments reduce the number of Pr4+ non-fluorescing centers, while Nb5+ co-doping additionally reduces the number of excess oxygen trap states that quench the fluorescence.

  4. Fast electronic structure methods for strongly correlated molecular systems

    NASA Astrophysics Data System (ADS)

    Head-Gordon, Martin; Beran, Gregory J. O.; Sodt, Alex; Jung, Yousung


    A short review is given of newly developed fast electronic structure methods that are designed to treat molecular systems with strong electron correlations, such as diradicaloid molecules, for which standard electronic structure methods such as density functional theory are inadequate. These new local correlation methods are based on coupled cluster theory within a perfect pairing active space, containing either a linear or quadratic number of pair correlation amplitudes, to yield the perfect pairing (PP) and imperfect pairing (IP) models. This reduces the scaling of the coupled cluster iterations to no worse than cubic, relative to the sixth power dependence of the usual (untruncated) coupled cluster doubles model. A second order perturbation correction, PP(2), to treat the neglected (weaker) correlations is formulated for the PP model. To ensure minimal prefactors, in addition to favorable size-scaling, highly efficient implementations of PP, IP and PP(2) have been completed, using auxiliary basis expansions. This yields speedups of almost an order of magnitude over the best alternatives using 4-center 2-electron integrals. A short discussion of the scope of accessible chemical applications is given.

  5. Multiscale Assessment of Methylarsenic Reactivity in Soil. 2. Distribution and Speciation in Soil

    SciTech Connect

    M Shimizu; Y Arai; D Sparks


    Methylated forms of arsenic (As), monomethylarsenate (MMA) and dimethylarsenate (DMA), have historically been used as herbicides and pesticides. Because of their large application to agriculture fields and the toxicity of MMA and DMA, the distribution, speciation, and sorption of methylated As to soils requires investigation. Monomethylarsenate and DMA were reacted with a soil up to one year under aerobic and anaerobic conditions. Microsynchrotron based X-ray fluorescence ({mu}-SXRF) mapping studies showed that MMA and DMA were heterogeneously distributed in the soil and were mainly associated with iron oxyhydroxides, e.g., goethite, in the soil. Micro-X-ray absorption near edge structure (XANES) spectra collected from As hotspots showed MMA and DMA were demethylated to arsenate over one year incubation under aerobic conditions. Monomethylarsenate was methylated to DMA, and DMA was maintained as DMA over a 3 month incubation under anaerobic conditions. Arsenic-iron precipitation, such as the formation of scorodite (FeAsO{sub 4} {center_dot} 2H{sub 2}O), was not observed, indicating that MMA and DMA were mainly associated with Fe-oxyhydroxides as sorption complexes.

  6. Patterns of fecal coliform contamination in day-care centers.


    Holaday, B; Pantell, R; Lewis, C; Gilliss, C L


    During a six-month period, on four separate occasions, six licensed day-care centers had cultures taken from environmental surfaces as well as the hands of children and teachers. Fecal coliforms were recovered from 64 (9.5%) of the 675 surfaces sampled. Recovery rate was not influenced by a center's socioeconomic status, time of year, or presence of children who were not toilet trained. Recovery rates did differ significantly in different areas, with the kitchen showing a relatively high recovery rate (19%), and toys and toilets showing remarkably low rates (2% and 4%). Centers with formal hand-washing procedures had lower recovery rates than those without such practices. We also demonstrated a high recovery rate from hands of staff (16%); 6% of children had positive cultures. Contamination of hands and classroom objects is a potential source for the transmission of enteric diseases for children in day-care centers. A program directed at reducing contamination would be important in preventing the spread of diarrheal illness. PMID:2270220

  7. Doping of MBE grown cubic GaN on 3C-SiC (001) by CBr{sub 4}

    SciTech Connect

    Zado, A.; Tschumak, E.; Lischka, K.; As, D. J.; Gerlach, J. W.


    We report on carbon doping of cubic GaN by CBr{sub 4} using plasma-assisted molecular beam epitaxy on 3C-SiC (001) substrates. The samples consist of a 70 nm thick GaN buffer followed by a 550 nm thick GaN:C layer. Carbon doping is realized with a home-made carbon tetrabromide sublimation source. The CBr{sub 4} beam equivalent pressure was established by a needle valve and was varied between 2x10{sup -9} mbar and 6x10{sup -6} mbar. The growth was controlled by in-situ reflection high energy electron diffraction. The incorporated carbon concentration is obtained from secondary ion mass spectroscopy. Capacitance voltage characteristics were measured using metal-insulator-semiconductor structures. Capacitance voltage measurements on nominally undoped cubic GaN showed n-type conductivity with N{sub D}-N{sub A} = 1x10{sup 17} cm{sup -3}. With increasing CBr{sub 4} flux the conductivity type changes to p-type and for the highest CBr{sub 4} flux N{sub A}-N{sub D} = 4{center_dot}5x10{sup 18} cm{sup -3} was obtained.

  8. Synthesis, structure and properties of (CN{sub 3}H{sub 6}){sub 4}Zn{sub 3}(SeO{sub 3}){sub 5}, the first organically-templated selenite

    SciTech Connect



    An astonishing variety of inorganic networks templated by organic species have been reported over the last 10 years. A great deal of attention has been paid to the structure-directing role of the organic species, and the structural effect of variously coordinated cations, for example distorted octahedral vanadium and pyramidal tin. Less exploratory work has been carried out on the anionic part of the inorganic network, and most groups reported so far (phosphate, germanate, etc.) invariably adopt tetrahedral coordination. The possibilities of incorporating the pyramidal [HP0{sub 3}]{sup 2{minus}} hydrogen phosphite group into extended structures templated by inorganic, alkaline earth cations was explored a few years ago. In this paper the authors report the synthesis, crystal structure, and some properties of (CN{sub 3}H{sub 6}){sub 4}{center_dot}Zn{sub 3}(SeO{sub 3}){sub 5}, the first organically-templated phase to contain the pyramidal selenite [SeO{sub 3}]{sup 2{minus}} anion.

  9. Resonant planar antenna as an inductive plasma source

    SciTech Connect

    Guittienne, Ph.; Lecoultre, S.; Howling, A. A.; Hollenstein, Ch.; Fayet, P.; Larrieu, J.


    A resonant planar antenna as an inductive plasma source operating at 13.56 MHz inside a low pressure vacuum vessel is presented for potential plasma processing applications. Its principle consists in interconnecting elementary resonant meshes composed of inductive and capacitive elements. Due to its structure, the antenna shows a set of resonant modes associated with peaks of the real input impedance. Each of these modes is defined by its own current and voltage distribution oscillating at the frequency of the mode. A rectangular antenna of 0.55mx0.20m has been built, and first results obtained with argon plasmas are presented. Plasma generation is shown to be efficient as densities up to 4{center_dot}10{sup 17}m{sup -3} at 2000 W have been measured by microwave interferometry at a distance of 4 cm from the source plane. It is also demonstrated that the plasma couples inductively with the resonating currents flowing in the antenna above a threshold power of about 60 W. A non-uniformity of less than {+-}5% is obtained at 1000 W at a few centimeters above the antenna over 75% of its surface.

  10. Bioaccumulation of nickel by intercalation into polycrystalline hydrogen uranyl phosphate deposited via an enzymatic mechanism

    SciTech Connect

    Bonthrone, K.M.; Basnakova, G.; Lin, F.; Macaskie, L.E.


    A Citrobacter sp. accumulates uranyl ion (UO{sub 2}{sup 2+}) as crystalline HUO{sub 2}PO{sub 4}{center_dot}4H{sub 2}O (HUP), using enzymatically generated inorganic phosphate. Ni was not removed by this mechanism, but cells already loaded with HUP removed Ni{sup 2+} by intercalative ion-exchange, forming Ni(UO{sub 2}PO{sub 4}){sub 2}{center_dot}7H{sub 2}O, as concluded by x-ray diffraction (XRD) and proton induced x-ray emission (PIXE) analyses. The loaded biomass became saturated with Ni rapidly, with a molar ratio of Ni:U in the cellbound deposit of approx. 1:6; Ni penetration was probably surface-localized. Cochallenge of the cells with Ni{sup 2+} and UO{sub 2}{sup 2+}, and glycerol 2-phosphate (phosphate donor for phosphate release and metal bioprecipitation) gave sustained removal of both metals in a flow through bioreactor, with more extensively accumulated Ni. We propose `Microbially Enhanced Chemisorption of Heavy Metals` (MECHM) to describe this hybrid mechanism of metal bioaccumulation via intercalation into preformed, biogenic crystals, and note also that MECHM can promote the removal of the transuranic radionuclide neptunium, which is difficult to achieve by conventional methods. 42 refs., 1 fig., 1 tab.

  11. In situ encapsulation bench-scale demonstration report FY-94 (for TTP-ID 142012)

    SciTech Connect

    Weidner, J.R.; Shaw, P.G.


    This report describes the test objectives, procedures, and results of the laboratory-scale tests of in situ waste encapsulation of buried waste using a synthetic analogue of natural cement. The products of the reaction FeSO{sub 4} {center_dot} 7H{sub 2}O + Ca(OH){sub 2} = gypsum and iron oxide/hydroxide were examined as a possible waste encapsulation material for application at the Subsurface Disposal Area at the Idaho National Engineering Laboratory. This technique for transuranic waste encapsulation is being pursued by the Buried Waste Integrated Demonstration as a possible candidate containment and stabilization method for geologic time. The data indicate that the iron waste encapsulation materials tested are appropriate choices for the intended purpose. Based on these observations and conclusions, full-scale tests are recommended to determine the performance of the iron waste isolation materials under field conditions and for extended time periods. The viscosity of the reagents indicates that jet grouting is probably an appropriate application method.

  12. 805 MHz Beta = 0.47 Elliptical Accelerating Structure R & D

    SciTech Connect

    S. Bricker; C. Compton; W. Hartung; M. Johnson; F. Marti; J. Popierlarski; R. C. York; et al


    A 6-cell 805 MHz superconducting cavity for acceleration in the velocity range of about 0.4 to 0.53 times the speed of light was designed. After single-cell prototyping, three 6-cell niobium cavities were fabricated. In vertical RF tests of the 6-cell cavities, the measured quality factors (Q{sub 0}) were between 7 {center_dot} 10{sup 9} and 1.4 {center_dot} 10{sup 10} at the design field (accelerating gradient of 8 to 10 MV/m). A rectangular cryomodule was designed to house 4 cavities per cryomodule. The 4-cavity cryomodule could be used for acceleration of ions in a linear accelerator, with focusing elements between the cryomodules. A prototype cryomodule was fabricated to test 2 cavities under realistic operating conditions. Two of the 6-cell cavities were equipped with helium tanks, tuners, and input coupler and installed into the cryomodule. The prototype cryomodule was used to verify alignment, electromagnetic performance, frequency tuning, cryogenic performance, low-level RF control, and control of microphonics.

  13. Sub-surface deposits of hydrous silicates or hydrated magnesium sulfates as hydrogen reservoirs near the Martian equator : plausible or not?

    SciTech Connect

    Fialips, C. I.; Carey, J. W.; Vaniman, D. T.; Feldman, W. C.; Bish, D. L.; Mellon, M. T.


    Neutron maps obtained using the neutron spectrometer (NS) and the high-energy neutron detector aboard the Mars Odyssey spacecraft reveal variations in the concentration of hydrogen over the martian low to middle latitudes, with up to {approx}10 wt% water-equivalent hydrogen in some equatorial regions. Infrared spectroscopic data provide evidence of chemically and/or physically bound H{sub 2}O and/or OH. Likewise, the decrease in flux of epithermal neutrons in Arabia Terra and southwest of Olympus Mons has been attributed to enhanced concentration of water-bearing minerals in the subsurface. The near-surface martian regolith is expected to contain both unweathered and weathered materials. It may contain significant and heterogeneously distributed amounts of hydrous minerals, such as clays, zeolites, and/or salt hydrates, such as MgSO{sub 4} {center_dot} nH{sub 2}O. Experimental studies suggest that if such water-bearing minerals formed in the past on the martian surface, they may retain significant amounts of water under present martian surface conditions. Hydrous minerals could thus account for some or all of the water observed in the martian regolith by Odyssey. Our study uses surface P-T data to predict regions of stability and the hydration state of selected water-bearing minerals from low to middle latitudes and to identify the nature and amount of hydrous minerals that could possibly account for the water observed by NS.

  14. Gold recovery from organic solvents using galvanic stripping

    SciTech Connect

    Flores, C.; O`Keefe, T.J.


    A novel process using solid metals for the direct reduction of more noble metal ions from solvent extraction organics has been developed. Base metals recovery has been the principal focus of investigations to date but feasibility tests have now also been made on galvanically stripping selected precious metals. In this study gold (III) was loaded from an aqueous HAuCl{sub 4}{center_dot}3H{sub 2}O solution into a mixed organic 40 vol.% TBP, 10 vol.% D2EHPA in kerosene. The direct precipitation of metallic gold from the loaded organic phase using zinc powder and iron, aluminum and copper slabs at 70 C was successfully demonstrated. The gold reduction rates were relatively fast even though the conductivity of the organic solutions is very low. The reaction rates were studied as a function of the variables zinc particulate size, oxygen and nitrogen atmosphere, water content in the organic phase, organic ratios and temperature. The gold morphology was usually powdery or dendritic in nature but continuous films were obtained in some instances. Activation energies were calculated and possible reaction mechanisms are discussed. In general, the results obtained were very promising and showed that gold can be successfully cemented from selected organic solvents by galvanic stripping using less noble solid metal reductants.

  15. Elucidating Oxygen Reduction Active Sites in Pyrolyzed Metal–Nitrogen Coordinated Non-Precious-Metal Electrocatalyst Systems

    PubMed Central


    Detailed understanding of the nature of the active centers in non-precious-metal-based electrocatalyst, and their role in oxygen reduction reaction (ORR) mechanistic pathways will have a profound effect on successful commercialization of emission-free energy devices such as fuel cells. Recently, using pyrolyzed model structures of iron porphyrins, we have demonstrated that a covalent integration of the Fe–Nx sites into π-conjugated carbon basal plane modifies electron donating/withdrawing capability of the carbonaceous ligand, consequently improving ORR activity. Here, we employ a combination of in situ X-ray spectroscopy and electrochemical methods to identify the various structural and functional forms of the active centers in non-heme Fe/N/C catalysts. Both methods corroboratively confirm the single site 2e– × 2e– mechanism in alkaline media on the primary Fe2+–N4 centers and the dual-site 2e– × 2e– mechanism in acid media with the significant role of the surface bound coexisting Fe/FexOy nanoparticles (NPs) as the secondary active sites. PMID:24817921

  16. Spectroscopic characterization of 57Fe-reconstituted rubrerythrin, a non-heme iron protein with structural analogies to ribonucleotide reductase.


    Ravi, N; Prickril, B C; Kurtz, D M; Huynh, B H


    Rubrerythrin, a contraction of rubredoxin and hemerythrin, is the trivial name given to a non-heme iron protein isolated from Desulfovibrio vulgaris (Hildenborough). This protein, whose physiological function is unknown, was first characterized by J. LeGall et al. [(1988) Biochemistry 28, 1636] as being a homodimer of subunit M(r) = 21,900 with four Fe per homodimer distributed as two rubredoxin-type FeS4 centers and one hemerythrin-type diiron cluster. Subsequent analysis of the amino acid sequence of the rubrerythrin gene [Kurtz, D. M., Jr., & Prickril, B.C. (1991) Biochem. Biophys. Res. Commun. 181, 137] revealed an internal homology which suggested that each subunit can accommodate one diiron cluster. Here, we report a procedure for reconstitution of the as-isolated D. vulgaris rubrerythrin with 57Fe. The reconstituted protein was characterized by optical, electron paramagnetic resonance, and Mössbauer spectroscopies. The results indicate successful incorporation of 57Fe into the two types of sites and strongly suggest that each subunit of rubrerythrin can indeed accommodate one diiron cluster as well as one rubredoxin-type center. Combined with amino acid sequence analysis, the spectroscopic characterization further suggests that the rubrerythrin subunit contains a diiron site whose structure is more closely related to that in ribonucleotide reductase than to that in hemerythrin.

  17. A new matrix for the ``ageless`` 21.6-keV {sup 151}Eu nuclear gamma ray Moessbauer source

    SciTech Connect

    Wynter, C.I.; Haustein, P.E.; Stadelmaier, H.; Thorpe, A.; Spijkerman, J.J.; Nowik, I.


    Moessbauer spectroscopy has been used over the past two decades to advance the study of europium compounds and alloys, primarily utilizing the 21.6-kev gamma ray emitted from beta decaying {sup 151}Sm. This isotope, which has a 87 year half-life, has been used in either a samarium fluoride (SmF{sup 3}) or samarium oxide (Sm{sub 2}O{sub 3}) matrix. We now report a study involving, europium oxalate decahydrate (Eu2(C{sub 2}O{sub 4}){center_dot}10H{sub 2}O), europium fluoride EuF{sub 3} and EuBe{sub l3} as absorbers at known thicknesses. Our data supports the view that Sm{sub 2}(C{sub 2}O{sub 4}){sub 3}{center_dot}H{sub 2}O will provide a better source matrix than either the fluoride or oxide due to the narrower linewidth and comparable ``f`` factor to {sup 151}SmF{sub 3}.

  18. A new matrix for the ageless'' 21. 6-keV [sup 151]Eu nuclear gamma ray Moessbauer source

    SciTech Connect

    Wynter, C.I. . Dept. of Chemistry); Haustein, P.E. ); Stadelmaier, H. ); Thorpe, A. . Dept. of Physics); Spijkerman, J.J. ); Nowik, I.


    Moessbauer spectroscopy has been used over the past two decades to advance the study of europium compounds and alloys, primarily utilizing the 21.6-kev gamma ray emitted from beta decaying [sup 151]Sm. This isotope, which has a 87 year half-life, has been used in either a samarium fluoride (SmF[sup 3]) or samarium oxide (Sm[sub 2]O[sub 3]) matrix. We now report a study involving, europium oxalate decahydrate (Eu2(C[sub 2]O[sub 4])[center dot]10H[sub 2]O), europium fluoride EuF[sub 3] and EuBe[sub l3] as absorbers at known thicknesses. Our data supports the view that Sm[sub 2](C[sub 2]O[sub 4])[sub 3][center dot]H[sub 2]O will provide a better source matrix than either the fluoride or oxide due to the narrower linewidth and comparable f'' factor to [sup 151]SmF[sub 3].

  19. Dynamic HypA zinc site is essential for acid viability and proper urease maturation in Helicobacter pylori

    PubMed Central

    Johnson, Ryan C.; Hu, Heidi Q.; Merrell, D. Scott; Maroney, Michael J.


    Helicobacter pylori requires urease activity in order to survive in the acid environment of the human stomach. Urease is regulated in part by nickelation, a process that requires the HypA protein, which is a putative nickel metallochaperone that is generally associated with hydrogenase maturation. However, in H. pylori, HypA plays a dual role. In addition to an N-terminal nickel binding site, HypA proteins also contain a structural zinc site that is coordinated by two rigorously conserved CXXC sequences, which in H. pylori are flanked by His residues. These structural Zn sites are known to be dynamic, converting from Zn(Cys)4 centers at pH 7.2 to Zn(Cys)2(His)2 centers at pH 6.3 in the presence of Ni(II) ions. In this study, mutant strains of H. pylori that express zinc site variants of the HypA protein are used to show that the structural changes in the zinc site are important for the acid viability of the bacterium, and that a reduction in acid viability in these variants can be traced in large measure to deficient urease activity. This in turn leads to a model that connects the Zn(Cys)4 coordination to urease maturation. PMID:25608738

  20. Crystal structures of cis-[Ru(bpy){sub 2}(PPh{sub 2}(o-tol))Cl][ClO{sub 4}]. 1.5 (CH{sub 2}Cl{sub 2}), a structure containing both ordered and disordered dichloromethane molecules of crystallization

    SciTech Connect

    Churchill, M.R.; Krajkowski, L.M.; Huynh, M.H.V.; Takeuchi, K.J.


    The complex cis-[Ru(bpy){sub 2}(PPh{sub 2}(o-tol))Cl][ClO{sub 4}]{center_dot}1.5 (CH{sub 2}Cl){sub 2} crystallizes from dichloromethane as the sesqui-dischloromethane solvate. The complex crystallizes in the monoclinic space group P2{sub 1}/n with Z=4. The structure was refined to R-5.50% for those 2552 independent reflections with F{sub o}>6{sigma}(F{sub o}). The octahedral Ru(II) cation is associated with the following bond lengths: Ru-PPh{sub 2}(o-tol)=2.360(3){angstrom}, Ru-Cl=2.433(2){angstrom} and Ru-N(bpy)=2.041(8)-2.095(8){angstrom}. Both the perchlorate anion and the dichloromethane molecules of solvation exhibit large amplitudes of vibration. One dichloromethane molecule lies in general position, the other lies about an inversion center and suffers from disorder.

  1. Measurements of hadron form factors at BESIII

    NASA Astrophysics Data System (ADS)

    Morales, Cristina Morales


    BEPCII is a symmetric e+e--collider located in Beijing running at center-of-mass energies between 2.0 and 4.6 GeV. This energy range allows the BESIII-experiment to measure hadron form factors both from direct e+e--annihilation and from initial state radiation processes. In this paper, results on e+e- → p p ¯ based on data collected by BESIII in 2011 and 2012 are presented. We also present preliminary results on e+e- → Λ Λ ¯ based on the same data samples at 4 center-of-mass energies. BESIII results obtained from e+e- → π+π- using the initial state radiation technique at the center-of-mass energy of 3.773 GeV are also summarized. Finally, expectations on the measurement of baryon electromagnetic form factors from the BESIII high luminosity energy scan in 2015 and from initial state radiation processes at different center-of-mass energies are also explained.

  2. Dax1 associates with Esrrb and regulates its function in embryonic stem cells.


    Uranishi, Kousuke; Akagi, Tadayuki; Sun, Chuanhai; Koide, Hiroshi; Yokota, Takashi


    Self-renewal capacity and pluripotency, which are controlled by the Oct3/4-centered transcriptional regulatory network, are major characteristics of embryonic stem (ES) cells. Nuclear hormone receptor Dax1 is one of the crucial factors in the network. Here, we identified an orphan nuclear receptor, Esrrb (estrogen-related receptor beta), as a Dax1-interacting protein. Interaction of Dax1 and Esrrb was mediated through LXXLL motifs of Dax1 and the activation- and ligand-binding domains of Esrrb. Furthermore, Esrrb enhanced the promoter activity of the Dax1 gene via direct binding to Esrrb-binding site 1 (ERRE1, where "ERRE" represents "Esrrb-responsive element") of the promoter. Expression of Dax1 was suppressed followed by Oct3/4 repression; however, overexpression of Esrrb maintained expression of Dax1 even in the absence of Oct3/4, indicating that Dax1 is a direct downstream target of Esrrb and that Esrrb can regulate Dax1 expression in an Oct3/4-independent manner. We also found that the transcriptional activity of Esrrb was repressed by Dax1. Furthermore, we revealed that Oct3/4, Dax1, and Esrrb have a competitive inhibition capacity for each complex. These data, together with previous findings, suggest that Dax1 functions as a negative regulator of Esrrb and Oct3/4, and these molecules form a regulatory loop for controlling the pluripotency and self-renewal capacity of ES cells. PMID:23508100

  3. Extraction of phenol using sulfuric acid salts of trioctylamine in a supported liquid membrane

    SciTech Connect

    Wang, M.L.; Hu, K.H. )


    The extraction of phenol by trioctylamine sulfate salts in a supported-liquid membrane (SLM) process was investigated. In the extraction process, a transport model, which included the film diffusion of phenol in the aqueous phase, the membrane diffusion within the SLM, and the interfacial chemical reaction, was built. The experimental parameters, such as the cell constant ([beta]), the diffusivity of (TOA)[sub 2]H[sub 2]SO[sub 4][center dot]PhOH in the SLM (D[sub c,b]), and the mass-transfer coefficient of phenol in the aqueous solution (K[sub L]), were determined from experiments. On the basis of the experimental data and the results obtained from the transport model, the rate-controlling step of the extraction of phenol by an SLM during permeation is discussed. The effects of the operating variables and parameters, such as the initial concentration of phenol in the aqueous phase, sulfuric acid, sodium hydroxide, and trioctylamine sulfate salts, on the extraction of phenol were examined.

  4. Optical integration and verification of LINC-NIRVANA

    NASA Astrophysics Data System (ADS)

    Moreno-Ventas, J.; Baumeister, H.; Bertram, Thomas; Bizenberger, P.; Briegel, F.; Greggio, D.; Kittmann, F.; Marafatto, L.; Mohr, L.; Radhakrishnan, K.; Schray, H.


    The LBT (Large Binocular Telescope) located in Mount Graham near Tucson/Arizona at an altitude of about 3200m, is an innovative project being undertaken by institutions from Europe and USA. The structure of the telescope incorporates two 8.4-meter telescopes on a 14.4 center-to-center common mount. This configuration provides the equivalent collecting area of a 12m single-dish telescope. LINC-NIRVANA is an instrument to combine the light from both LBT primary mirrors in an imaging Fizeau interferometer. Many requirements must be fulfilled in order to get a good interferometric combination of the beams, being among the most important plane wavefronts, parallel input beams, homotheticity and zero optical path difference (OPD) required for interferometry. The philosophy is to have an internally aligned instrument first, and then align the telescope to match the instrument. The sum of different subsystems leads to a quite ambitious system, which requires a well-defined strategy for alignment and testing. In this paper I introduce and describe the followed strategy, as well as the different solutions, procedures and tools used during integration. Results are presented at every step.

  5. Synthesis of ZrO{sub 2} and Y{sub 2}O{sub 3}-doped ZrO{sub 2} thin films using self-assembled monolayers

    SciTech Connect

    Agarwal, M.; DeGuire, M.R.; Heuer, A.H.


    Undoped or Y{sub 2}O{sub 3}-doped ZrO{sub 2} thin films were deposited on self-assembled monolayers (SAMs) with either sulfonate or methyl terminal functionalities on single-crystal silicon substrates. The undoped films were formed by enhanced hydrolysis of zirconium sulfate (Zr(SO{sub 4}) {center_dot} 4H{sub 4}O) solutions in the presence of HCl at 70 C. Typically, these films were a mixture of two phases: nanocrystalline tetragonal- (t-) ZrO{sub 2} and an amorphous basic zirconium sulfate. However, films with little or no amorphous material could be produced. The mechanism of film formation and the growth kinetics have been explained through a coagulation model involving homogeneous nucleation, particle adhesion, and aggregation onto the substrate. Annealing of these films at 500 C led to complete crystallization to t-ZrO{sub 2}. Amorphous Y{sub 2}O{sub 3}-containing ZrO{sub 2} films were prepared from a precursor solution containing zirconium sulfate, yttrium sulfate (Y{sub 2}(SO{sub 4}){sub 3} {center_dot} 8H{sub 2}O), and urea (NH{sub 2}CONH{sub 2}) at pH 2.2--3.0 at 80 C. These films also were fully crystalline after annealing at 500 C.

  6. Synthesis and crystal structure of the coordination compound of pyridoxine with manganese sulfate

    SciTech Connect

    Furmanova, N. G. Verin, I. A.; Shyityeva, N.; Sulaimankulov, K. S.; Berdalieva, Zh.; Resnyanskii, V. F.; Duishenbaeva, A. T.


    The reaction of pyridoxine with manganese sulfate in an aqueous solution gave the coordination compound MnSO{sub 4} {center_dot} 2C{sub 8}H{sub 11}O{sub 3}N {center_dot} 2H{sub 2}O (I). The structure of I was determined from single-crystal X-ray diffraction data. In the centrosymmetric complex (sp. gr. P1-bar, Z = 1), the Mn atom is coordinated by two pyridoxine molecules and two water molecules, thus adopting an octahedral coordination. The sulfate anion is also at a center of symmetry and, consequently, is disordered. The pyridoxine molecules are coordinated to the metal atom through the oxygen atoms of the deprotonated hydroxyl group and the CH{sub 2}OH group that retains the hydrogen atom. The nitrogen atom is protonated in such a way that the heterocycle assumes a pyridinium character. The crystal structure also contains six water molecules of crystallization. A thermogravimetric study showed that the decomposition of I occurs in several successive steps, such as dehydration, the combustion of organic ligands, and the formation of an inorganic residue.

  7. Follicular lymphoma cell niche: identification of a preeminent IL-4-dependent T(FH)-B cell axis

    PubMed Central

    Pangault, Céline; Amé-Thomas, Patricia; Ruminy, Philippe; Rossille, Delphine; Caron, Gersende; Baia, Maryse; De Vos, John; Roussel, Mikael; Monvoisin, Céline; Lamy, Thierry; Tilly, Hervé; Gaulard, Philippe; Tarte, Karin; Fest, Thierry


    Follicular lymphoma (FL) B cells contract tight connections with their microenvironment, which governs the pathogenesis and progression of the disease. Indeed, specific immune response gene signatures, obtained on whole biopsy samples, have been associated with patient survival. In this study we performed gene expression profiling of purified B-cell and non-B cell compartments obtained from FL and reactive lymph nodes. We identified 677 nonredundant genes defining the FL interface and involving 26 FL-specific functional networks. This approach highlighted an IL-4-centered pathway associated with an activation of STAT6 that favors overexpression of IL-4-target genes. In addition, FL microenvironment was characterized by a strong enrichment in follicular helper T cells (TFH), as demonstrated through transcriptomic and flow cytometry analyses. The majority of phospho-STAT6pos B cells were located at the vicinity of cells expressing the PD-1 TFH marker. Moreover, purified FL-derived TFH, expressed IL4 at very high levels compared to purified tonsil-derived TFH or non-TFH microenvironment. Altogether, our study demonstrated that tumor-infiltrating TFH specifically express functional IL-4 in FL, creating an IL-4-dependent TFH-B cell axis. This crosstalk could sustain FL pathogenesis and represent a new potential therapeutic target. PMID:20944673

  8. An electronic aromaticity index for large rings.


    Matito, Eduard


    We introduce a new electronic aromaticity index, AV1245, consisting of an average of the 4-center multicenter indices (MCI) along the ring that keeps a positional relationship of 1, 2, 4, 5. AV1245 measures the extent of transferability of the delocalized electrons between bonds 1-2 and 4-5, which is expected to be large in conjugated circuits and, therefore, in aromatic molecules. A new algorithm for the calculation of MCI for large rings is also introduced and used to produce the data for the calibration of the new aromaticity index. AV1245 does not rely on reference values, does not suffer from large numerical precision errors, and it does not present any limitation on the nature of atoms, the molecular geometry or the level of calculation. It is a size-extensive measure with low computational cost that grows linearly with the number of ring members. Therefore, it is especially suitable to study the aromaticity of large molecular rings such as those occurring in belt-shaped Möbius structures or porphyrins. The analysis of AV1245 in free-base and bis-metalated Pd [32]octaphyrins(1,0,1,0,1,0,1,0) completes this study. PMID:26878146

  9. Unprecedented structural variations in trinuclear mixed valence Co(II/III) complexes: theoretical studies, pnicogen bonding interactions and catecholase-like activities.


    Hazari, Alokesh; Kanta Das, Lakshmi; Kadam, Ramakant M; Bauzá, Antonio; Frontera, Antonio; Ghosh, Ashutosh


    Three new mixed valence trinuclear Co(II/III) compounds cis-[Co3L2(MeOH)2(N3)2(μ1,1-N3)2] (1), trans-[Co3L2(H2O)2(N3)2(μ1,1-N3)2]·(H2O)2 (2) and [Co3L(R)2(N3)3(μ1,3-N3)] (3) have been synthesized by reacting a di-Schiff base ligand (H2L) or its reduced form [H2LR] (where H2L= N,N'-bis(salicylidene)-1,3-propanediamine and H2LR= N,N'-bis(2-hydroxybenzyl)-1,3-propanediamine) with cobalt perchlorate hexahydrate and sodium azide. All three products have been characterized by IR, UV-Vis and EPR spectroscopies, ESI-MS, elemental, powder and single crystal X-ray diffraction analyses. Complex 2 is an angular trinuclear species in which two terminal octahedral Co(III)N2O4 centers coordinate to the central octahedral cobalt(II) ion through μ2-phenoxido oxygen and μ1,1-azido nitrogen atoms along with two mutually cis-oxygen atoms of methanol molecules. On the other hand, in linear trinuclear complex , in addition to the μ2-phenoxido and μ1,1-azido bridges with terminal octahedral Co(III) centres, the central Co(II) is bonded with two mutually trans-oxygen atoms of water molecules. Thus the cis-trans configuration of the central Co(II) is solvent dependent. In complex 3, the two terminal octahedral Co(III)N2O4 centers coordinate to the central penta-coordinated Co(II) ion through double phenoxido bridges along with the nitrogen atom of a terminal azido ligand. In addition, the two terminal Co(III) are connected through a μ1,3-azido bridge that participates in pnicogen bonding interactions (intermolecular N-N interaction) as an acceptor. Both the cis and trans isomeric forms of 1 and 2 have been optimized using density functional theory (DFT) calculations and it is found that the cis configuration is energetically more favorable than the trans one. However, the trans configuration of 2 is stabilized by the hydrogen bonding network involving a water dimer. The pnicogen bonding interactions have been demonstrated using MEP surfaces and CSD search which support the counter

  10. Clinical experience with technetium-99m teboroxime, a neutral, lipophilic myocardial perfusion imaging agent

    SciTech Connect

    Johnson, L.L.; Seldin, D.W. )


    Technetium-99m (Tc-99m) teboroxime is a new technetium-based myocardial perfusion imaging agent (investigational code = SQ30217 (Cardiotec, Squibb Diagnostics)). A member of a class of neutral, lipophilic, technetium-containing complexes known as boronic acid adducts of technetium dioxime (BATO) complexes, this agent is chemically very different from the cationic tracer thallium-201 (Tl-201) and from the cationic technetium complex Tc-99m sestamibi (Cardiolite, Du Pont Imaging Agents). Tc-99m teboroxime has high myocardial extraction, rapid blood clearance, little lung uptake and rapid myocardial washout. A biexponential pattern of myocardial washout is demonstrated in animals and in man. Effective half-lives of the 2 washout components in man are 5.2 minutes and 3.8 hours and represent approximately 66 and 33% of the myocardial activity, respectively. The first half-life for the myocardium is approximately 11 minutes. As the agent washes out of the heart, hepatic uptake occurs, peaking at about 5 minutes after injection. The liver is the major organ of excretion and receives, along with the large bowel, the largest radiation dose. Rapid imaging protocols using standard cameras have achieved good myocardial counts from 3 planar views acquired over a 4- to 5-minute period or for single photon emission computed tomography (SPECT) images acquired over a 10-minute period. An entire stress/rest procedure can be completed in 1 hour. Analysis of data from 155 patients from 4 centers using planar or SPECT imaging showed a sensitivity and specificity for blinded readings of 82 and 91%, respectively, when compared against overall clinical impression. 13 references.


    PubMed Central

    Waring, George; Dougherty, Paul J.; Chayet, Arturo; Fischer, Jeffery; Fant, Barbara; Stevens, Gary; Bains, Harkaran S.


    Purpose To assess the efficacy, predictability, and safety of topography-guided laser in situ keratomileusis (LASIK) for the surgical correction of low to moderate myopia with astigmatism using the Nidek CXIII excimer laser equipped with the customized aspheric treatment zone (CATz) algorithm. Methods In a multicenter US Food and Drug Administration study of topography-guided LASIK, 4 centers enrolled 135 eyes with manifest refraction sphere that ranged from −0.50 to −7.00 D (mean, −3.57 ± 1.45) with up to −4.00 D of astigmatism (mean, −1.02 ± 0.64 D). The intended outcome was plano in all eyes. Refractive outcomes and higher-order aberrations were analyzed preoperatively and postoperatively. Patient satisfaction was assessed using both the validated Refractive Status and Vision Profile (RSVP) questionnaire and a questionnaire designed for this study. Six-month postoperative outcomes are reported here. Results By 6 months postoperatively, the manifest refraction spherical equivalent (MRSE) for all eyes was −0.09 ± 0.31 D. Six months postoperatively, 116 of 131 eyes (88.55%) had an uncorrected visual acuity of 20/20 or better, and 122 of 131 eyes (93.13%) had a MRSE within ±0.50 D. Distance best spectacle-corrected visual acuity (BSCVA) increased by 2 or more lines in 21 of 131 eyes (19.01%), and no eyes lost 2 lines or more of BSCVA. The total ocular higher-order aberrations root-mean-square increased by 0.04 μm postoperatively. Patients reported significantly fewer night driving and glare and halo symptoms postoperatively than preoperatively. Conclusions Nidek CXIII CATz treatment of myopia with astigmatism is safe, efficacious, and predictable, and it reduces patient symptoms associated with night driving and glare and halo symptoms. PMID:18427614

  12. Electrosynthesis of Rh2(dpf)4(R) where dpf = N,N'-diphenylformamidinate anion and R = CH3, C2H5, C3H7, C4H9 or C5H11.


    Bear, J L; Van Caemelbecke, E; Ngubane, S; Da-Riz, V; Kadish, K M


    The electrosynthesis of Rh(2)(dpf)(4)(R) where dpf is the N,N'-diphenylformamidinate anion and R = CH(3), C(2)H(5), C(3)H(7), C(4)H(9) or C(5)H(11) was carried out in THF containing 0.2 M tetra-n-butylammonium perchlorate (TBAP) and one of several alkyl iodides represented as RI. The initial step in the reaction involved a one-electron reduction of the Rh(2)(4+) unit in Rh(2)(dpf)(4) to its Rh(2)(3+) form followed by a homogeneous reaction involving electrogenerated [Rh(2)(dpf)(4)](-) and the alkyl iodide in solution to give Rh(2)(dpf)(4)(R). The homogeneously generated Rh(2)(5+) product was then immediately reduced by a second electron at the potential where [Rh(2)(dpf)(4)(R)](-) is generated, giving [Rh(2)(dpf)(4)(R)](-) which contains a Rh(2)(4+) center as a final product of an electrochemical ECE mechanism. The electrosynthesized [Rh(2)(dpf)(4)(CH(3))](-) derivative could be reoxidized to Rh(2)(dpf)(4)(CH(3)) on the reverse potential sweep and both forms of the CH(3) bonded derivative were in situ characterized by cyclic voltammetry combined with UV-visible and/or ESR spectroscopy. The reversible Rh(2)(4+/3+) process of Rh(2)(dpf)(4) is located at E(1/2) = -1.11 V in THF, 0.2 M TBAP while the electrogenerated Rh(2)(dpf)(4)(R) products are substantially easier to reduce, with E(p) values for the Rh(2)(5+/4+) couples ranging from -0.50 to -0.54 V vs. SCE depending upon the specific R group.

  13. Patient counseling program to improve the compliance to imatinib in chronic myeloid leukemia patients.


    Moon, Joon Ho; Sohn, Sang Kyun; Kim, Shi Nae; Park, Seon Yang; Yoon, Sung Soo; Kim, In Ho; Kim, Hyeoung Joon; Kim, Yeo Kyeoung; Min, Yoo Hong; Cheong, June Won; Kim, Jin Seok; Jung, Chul Won; Kim, Dong Hwan


    To achieve successful therapeutic outcomes in chronic myeloid leukemia (CML), continuous and adequate imatinib (Gleevec(®), Glivec(®), Novartis Pharmaceuticals, Basel, Switzerland) dosing is essential. Here, we report a patient counseling program ("Care club", "Happy club" in Korea) performed to improve patient compliance with imatinib. From January 2006 to December 2008, patients diagnosed with chronic phase CML and taking imatinb were eligible for this retrospective study. A total of 114 patients from 4 centers in Korea were recruited at a 50:50 ratio for Happy club group versus non-Happy club group at each center. During 36-month follow-up, persistency (the number of days of imatinib prescribed versus 1 year) was higher in the Happy club group (98.2 ± 0.03%) than in the non-Happy club group (79.3 ± 0.16%, P = 0.001), whereas dose compliance (miligrams of imatinib that were actually taken versus miligrams that should have been taken) was not different between two groups; 96.5 ± 0.6% and 96.6 ± 0.7% in the Happy club and non-Happy club (P = 0.958). Overall compliance (the product of persistency and dose compliance) improved in the Happy club group (93.0 ± 2.3%) compared with the non-Happy club group (76.2 ± 7.4%, P = 0.001). The patient counseling program was efficient especially in patients who needed high-dose imatinib (>400 mg/day), and overall compliance was 87.8 ± 6.0% in the Happy club group versus 65.5 ± 16.1% in the non-Happy club group (P = 0.017). In conclusion, the patient counseling program was effective in persisting imatinib medication, resulting in the improvement of overall compliance.

  14. Rare-earth-free red-emitting K2Ge4O9:Mn(4+) phosphor excited by blue light for warm white LEDs.


    Ding, Xin; Wang, Qian; Wang, Yuhua


    A series of novel K2Ge4O9:Mn(4+) phosphors with red emission under blue light excitation have been synthesized successfully by traditional high-temperature solid-state reaction. The structure of K2Ge4O9 has been investigated by high-resolution transmission electron microscopy, scanning electron microscopy and X-ray powder diffraction with Rietveld refinement. The PL properties have been investigated by measuring diffuse reflection spectra, emission spectra, excitation spectra, decay curves and temperature-dependent spectra. The KGO:0.1% Mn(4+) phosphor can emit red light peaking at 663 nm under UV or blue light excitation. The critical quenching concentration of Mn(4+) was about 0.1 mol%. The concentration quenching mechanism could be a d-d interaction for the Mn(4+) center. The CIE chromaticity coordinates and FWHM are (0.702, 0.296) and 20 nm, which demonstrated that the K2Ge4O9:Mn(4+) has a high color purity. By tuning the weight ratio of yellow and red phosphors, the fabricated white LEDs, using a 455 nm InGaN blue chip combined with a blend of the yellow phosphor YAG:Ce(3+) and the red-emitting KGO:Mn(4+) phosphor driven by a 40 mA current, can get white light with chromaticity coordinates (0.405, 0.356) and CCT 3119 K. These results indicated that K2Ge4O9:Mn(4+) is a potential red phosphor to match blue LED chips to get warm white light. PMID:26923078

  15. Reduction of SeO{sub 4}{sup 2{minus}} anions and anoxic formation of iron(II)-Iron(III) hydroxy-selenate green rust

    SciTech Connect

    Refait, P.; Simon, L.; Genin, J.M.R.


    Iron(II)-iron(III) hydroxy-salts known as green rusts were recently discovered as minerals present in hydromorphic soils and sediments. Due to their high reactivity, they are envisioned as potential reducing agents of a number of pollutants such as nitrate, chromate, or selenate. The interaction of selenate ions with such iron(II)-containing hydroxy compounds was studied by monitoring the oxidation processes of the iron phases with transmission Moessbauer spectroscopy measured at 14 K and by following the evolution of Se(VI) in solution by capillary electrophoresis. This interaction involved the hydroxy-selenate green rust, a compound isomorphous to the hydroxy-sulfate GR(SO{sub 4}{sup 2{minus}}). Its chemical composition, Fe{sub y}{sup II}Fe{sub 2}{sup III}(OH){sub 2(y+2)}SeO{sub 4}{center_dot}8H{sub 2}O, varied with time since y starts at 5.5 and ends at 4. GR(SeO{sub 4}{sup 2{minus}}) was obtained from Fe(OH){sub 2} precipitates by simultaneous accumulation of SeO{sub 4}{sup 2{minus}} anions inside the solid phase and reduction of an equal amount of SeO{sub 4}{sup 2{minus}} anions to Se(IV) species. These species were found to be less mobile, partially bound to iron compounds and/or forming iron salts. Finally, the hydroxy-selenate GR2(SeO{sub 4}{sup 2{minus}}) can form without any other oxidizing agent than selenate itself.

  16. ALMA Observations of HD 141569’s Circumstellar Disk

    NASA Astrophysics Data System (ADS)

    White, J. A.; Boley, A. C.; Hughes, A. M.; Flaherty, K. M.; Ford, E.; Wilner, D.; Corder, S.; Payne, M.


    We present ALMA band 7 (345 GHz) continuum and 12CO(J = 3-2) observations of the circumstellar disk surrounding HD 141569. At an age of about 5 Myr, the disk has a complex morphology that may be best interpreted as a nascent debris system with gas. Our 870 μm ALMA continuum observations resolve a dust disk out to approximately 56 au from the star (assuming a distance of 116 pc) with 0.″38 resolution and 0.07 mJy beam-1 sensitivity. We measure a continuum flux density for this inner material of 3.8 ± 0.4 mJy (including calibration uncertainties). The 12CO(3-2) gas is resolved kinematically and spatially from about 30 to 210 au. The integrated 12CO(3-2) line flux density is 15.7 ± 1.6 Jy km s-1. We estimate the mass of the millimeter debris and 12CO(3-2) gas to be ≳0.04 M ⊕ and ˜2 × 10-3 M ⊕, respectively. If the millimeter grains are part of a collisional cascade, then we infer that the inner disk (<50 au) has ˜160 M ⊕ contained within objects less than 50 km in radius, depending on the planetesimal size distribution and density assumptions. Markov Chain Monte Carlo modeling of the system reveals a disk morphology with an inclination of 53.°4 centered around an M = 2.39 M ⊙ host star (Msin(i) = 1.92 M ⊙). We discuss whether the gas in HD 141569's disk may be second generation. If it is, the system can be used to study the clearing stages of planet formation.

  17. Mineralogical characterization of arsenic in gold mine tailings from three sites in Nova Scotia

    SciTech Connect

    M Corriveau; H Jamieson; M Parsons; G Hall


    Chronic exposure to high concentrations of arsenic (As) in windblown and vehicle-raised dust from tailings sites in Nova Scotia poses a potential health risk to recreational users of these areas and to nearby residents. The exposure may involve inhalation of dust, as well as oral ingestion of particles. It is important to understand the mineralogy and morphology of As-bearing dust particles in order to evaluate the risk posed by near-surface particulates in As-bearing tailings fields, as this will influence the stability and toxicity of As in the wastes. Optical mineralogy, scanning electron microscopy, electron microprobe, X-ray diffraction, synchrotron-based micro-X-ray diffraction ({mu}XRD) and micro-X-ray absorption near edge structure ({mu}XANES), and sequential leach extractions were applied to tailings samples from three sites in eastern Nova Scotia. Arsenic occurs naturally in these gold deposits mainly in arsenopyrite (FeAsS). In the near-surface material of the tailings fields, sulphide minerals have almost completely oxidized to secondary minerals such as scorodite (FeAsO{sub 4}{center_dot}2H{sub 2}O) and Ca-Fe arsenates. Iron oxyhydroxides contain variable amounts of As{sub 2}O{sub 5} from trace to 30 wt.% and CaO up to 8 wt.%. The presence of multiple As-hosting solid phases, including relatively soluble Ca-Fe arsenates and Fe oxyhydroxides with adsorbed As has important implications for human health risk assessment and remediation design.

  18. International, collaborative assessment of limitations of chromosome-specific probes (CSP) and fluorescent in situ hybridization (FISH): Analysis of expected detections in 73,000 prenatal cases

    SciTech Connect

    Evans, M.I.; Henry, G.P.; Miller, W.A.


    FISH and CSP have been proposed to reduce karyotyping need. The purpose of this study was to assess the potential efficacy of CSP-FISH using currently available probes (13, 18, 21, X, & Y) in large, prenatal diagnostic centers. Results (1990-1993) from 7 centers in 4 countries were divided by those expected to be detectable by currently available probes, and those which would be missed assuming 10% probe efficacy. 72,994 karyotypes included 699 trisomy 21`s, 352 trisomy 18`s, 136 trisomy 13`s, 358 sex chromosome aneuploidies, 70 triploidies, and 855 others (translocations, inversions, deletions, markers). Of 2,613 abnormalities, 1,745 would be detectable (66.8%). [Detroit 55.7%, Stockholm 68.3%, Boston 52.6%, Denver 61.3%, Muenster 77.0%, London 84.5%, Philadelphia 69.4%]. Centers with high proportions of referrals for ultrasound anomalies had the highest CSP-FISH positives secondary to increased T 18 & 13. We conclude: (1) 73,000 karyotypes show relatively consistent incidences of the common trisomies, sex chromosome abnormalities, and other chromosome abnormalities among the centers. (2) The proportion expected detectable by FISH-CSP technology varies from 52.6% to 84.5%, averaging 66.8%. (3) 1/3 of the karyotypic abnormalities would be missed, and therefore, replacement of complete karyotyping with FISH would have unacceptably high false-negative rates for routine evaluation. (4) FISH-CSP, while useful when positive for anomalies, is not sufficient when negative to obviate the need for a complete karyotype.

  19. Novel alkaline earth copper germanates with ferro and antiferromagnetic S=1/2 chains

    SciTech Connect

    Brandao, Paula; Reis, Mario S; Gai, Zheng; Moreira Dos Santos, Antonio F


    Two new alkaline earth copper(II) germanates were hydrothermally synthesized: CaCuGeO4 center dot H2O (1) and BaCu2Ge3O9 center dot H2O (2), and their structures determined by single crystal X-ray diffraction. Compound (1) crystallizes in space group P2(1)/c with a=5.1320(2) angstrom, b=16.1637(5) angstrom, c=5.4818(2) angstrom, beta=102.609(2)degrees, V=443.76(3) angstrom(3) and Z=4. This copper germanate contains layers of composition [CuGeO4](infinity)(2-) comprising CuO4 square planes and GeO4 tetrahedra with calcium and water molecules in the inter-layer space. Compound (2) crystallizes in the Cmcm space group with a=5.5593(3) angstrom, b=10.8606(9) angstrom, c=13.5409(8) angstrom, V=817.56(9) angstrom(3) and Z=4. This structure contains GeO6 and CuO6 octahedra as well as GeO4 tetrahedra, forming a three-dimensional network of interconnecting six-membered ring channels. The magnetic susceptibility for both samples can be interpreted as S=1/2 chains, in agreement with the copper topology observed in the crystal structure. The susceptibility of (1) exhibits a Bonner-Fisher type behavior, resulting from antiferromagnetic intra-chain interactions without three-dimensional ordering down to 5 K-the lowest measured temperature. This observation, together with the absence of super-exchange paths between the copper chains, make this system particularly promising for the study of low dimensional magnetism. The magnetic properties of (2) show a very weak ferromagnetic near-neighbor interaction along the chain. In this compound a peak the chi T plot seems to indicate the onset of interchain antiferromagentic correlations. However, no ordering temperature is detected in the susceptibility data.

  20. The use of FBC wastes in the reclamation of coal slurry solids. Technical report, March 1, 1992--May 31, 1992

    SciTech Connect

    Dreher, G.B.; Roy, W.R.; Steele, J.D.


    Fluidized bed combustion (FBC) is a relatively new technology that is used commercially for the combustion of coal. In Illinois, this technology is valuable because it allows the combustion of Illinois high sulfur coal without pollution of the atmosphere with vast quantities of sulfur oxides. In FBC, coal is mixed with limestone or dolomite either before injection into the combustion chamber or in the combustion chamber. As the coal burns, sulfur in the coal is oxidized to S0{sub 2} and this is trapped by reaction with the limestone or dolomite to form gypsum (CaSO{sub 4} {center_dot} 2H{sub 2}O). Solid by-products from FBC are generally a mixture of calcium oxide, gypsum, coal ash, and unburned coal. The present research project is designed to provide initial data on one possible use of FBC waste. FBC wastes from five different locations in Illinois are mixed with coal slurry solids (CSS) from two different coal preparation plants at Illinois coal mines. In mixtures of FBC waste and coal slurry solids, the alkaline components of the FBC waste are expected to react with acid produced by the oxidation of pyrite in the coal slurry solid. An objective of this research is to determine the chemical composition of aqueous leachates from mixtures of FBC wastes, generated under various operating conditions, and the coal slurry solids. These data will be used in future research into the ability of such mixtures to support seed germination and plant growth. The final goal of this and future research is to determine whether mixed FBC waste and coal slurry solids can be used as a satisfactory growing medium in slurry pond reclamation. The chemical analyses of the 8 starting solids (5 FBC wastes, 2 Css samples, and 1 agricultural limestone sample) were completed.

  1. Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY

    SciTech Connect

    Cummings, D.E.; Fendorf, S.; Rosenzweig, R.F.; Caccavo, F. Jr.


    The mobility of arsenic commonly increases as reducing conditions are established within sediments or flooded soils. Although the reduction of arsenic increases its solubility at circumneutral pH, hydrous ferric oxides (HFO) strongly sorb both As(V) (arsenate) and As(III) (arsenite), the two primary inorganic species. Thus, in the presence of excess HFO, reductive dissolution of iron may be the dominant mechanism by which As is released into solution. In this paper, the authors report that the dissimilatory iron-reducing bacterium Shewanella alga strain BrY promoted As mobilization from a crystalline ferric arsenate as well as from sorption sites within whole sediments. S. alga cells released arsenate from the mineral scorodite (FeAsO{sub 4}{center_dot}2H{sub 2}O) as a result of dissimilatory reduction of Fe(III) to Fe(II). Solid-phase analysis with SEM-EDS and XAFS (X-ray absorption fine structure) spectroscopy revealed that the valence states of Fe and As in the solid-phase product were identical to those in solution, i.e., Fe(II) and AS(V). Additionally, As(V) sorbed to sediments from Lake Coeur d`Alene, ID, a mining-impacted environment enriched in both Fe and As, was solubilized by the activity of S. alga BrY. In neither experiment was As(III) detected. The authors conclude that arsenic mobility can be enhanced by the activity of dissimilatory iron-reducing bacteria in the absence of arsenic reduction.

  2. Changes in Zinc Speciation with Mine Tailings Acidification in a Semiarid Weathering Environment

    SciTech Connect

    Hayes, Sarah M.; O’Day, Peggy A.; Webb, Sam M.; Maier, Raina M.; Chorover, Jon


    High concentrations of residual metal contaminants in mine tailings can be transported easily by wind and water, particularly when tailings remain unvegetated for decades following mining cessation, as is the case in semiarid landscapes. Understanding the speciation and mobility of contaminant metal(loid)s, particularly in surficial tailings, is essential to controlling their phytotoxicities and to revegetating impacted sites. In prior work, we showed that surficial tailings samples from the Klondyke State Superfund Site (AZ, USA), ranging in pH from 5.4 to 2.6, represent a weathering series, with acidification resulting from sulfide mineral oxidation, long-term Fe hydrolysis, and a concurrent decrease in total (6000 to 450 mg kg{sup -1}) and plant-available (590 to 75 mg kg{sup -1}) Zn due to leaching losses and changes in Zn speciation. Here, we used bulk and microfocused Zn K-edge X-ray absorption spectroscopy (XAS) data and a six-step sequential extraction procedure to determine tailings solid phase Zn speciation. Bulk sample spectra were fit by linear combination using three references: Zn-rich phyllosilicate (Zn{sub 0.8}talc), Zn sorbed to ferrihydrite (Zn{sub adsFeOx}), and zinc sulfate (ZnSO{sub 4} {center_dot} 7H{sub 2}O). Analyses indicate that Zn sorbed in tetrahedral coordination to poorly crystalline Fe and Mn (oxyhydr)oxides decreases with acidification in the weathering sequence, whereas octahedral zinc in sulfate minerals and crystalline Fe oxides undergoes a relative accumulation. Microscale analyses identified hetaerolite (ZnMn{sub 2}O{sub 4}), hemimorphite (Zn{sub 4}Si{sub 2}O{sub 7}(OH){sub 2} {center_dot} H{sub 2}O) and sphalerite (ZnS) as minor phases. Bulk and microfocused spectroscopy complement the chemical extraction results and highlight the importance of using a multimethod approach to interrogate complex tailings systems.

  3. Molecular subtype profiling of invasive breast cancers weakly positive for estrogen receptor.


    Sheffield, Brandon S; Kos, Zuzana; Asleh-Aburaya, Karama; Wang, Xiu Qing; Leung, Samuel; Gao, Dongxia; Won, Jennifer; Chow, Christine; Rachamadugu, Rakesh; Stijleman, Inge; Wolber, Robert; Gilks, C Blake; Myles, Nickolas; Thomson, Tom; Hayes, Malcolm M; Bernard, Philip S; Nielsen, Torsten O; Chia, Stephen K L


    The estrogen receptor (ER) is a key predictive biomarker in the treatment of breast cancer. There is uncertainty regarding the use of hormonal therapy in the setting of weakly positive ER by immunohistochemistry (IHC). We report intrinsic subtype classification on a cohort of ER weakly positive early-stage breast cancers. Consecutive cases of breast cancer treated by primary surgical resection were retrospectively identified from 4 centers that engage in routine external proficiency testing for breast biomarkers. ER-negative (Allred 0 and 2) and ER weakly positive (Allred 3-5) cases were included. Gene expression profiling was performed using qRT-PCR. Intrinsic subtype prediction was made based upon the PAM50 gene expression signature. 148 cases were included in the series: 60 cases originally diagnosed as ER weakly positive and 88 ER negative. Of the cases originally assessed as ER weakly positive, only 6 (10 %) were confirmed to be of luminal subtype by gene expression profiling; the remaining 90 % of cases were classified as basal-like or HER2-enriched subtypes. This was not significantly different than the fraction of luminal cases identified in the IHC ER-negative cohort (5 (5 %) luminal, 83(95 %) non-luminal). Recurrence-free, and overall, survival rates were similar in both groups (p = 0.4 and 0.5, respectively) despite adjuvant hormonal therapy prescribed in the majority (59 %) of weakly positive ER cases. Weak ER expression by IHC is a poor correlate of luminal subtype in invasive breast cancer. In the setting of highly sensitive and robust IHC methodology, cutoffs for ER status determination and subsequent systemic therapy should be revisited. PMID:26846986

  4. Performances and first experimental results of BACH, the beamline for dichroism and scattering experiments at ELETTRA

    SciTech Connect

    Zangrando, M.; Zacchigna, M.; Bondino, F.; Finazzi, M.; Pardini, T.; Plate, M.; Rochow, R.; Cocco, D.; Parmigiani, F.


    BACH, the new soft x-ray beamline for polarization dependent experiments at the Italian synchrotron radiation facility ELETTRA, has been commissioned, characterized and opened to external users. Based on two APPLE II undulators, it covers an energy range between 35 eV and 1600 eV with the control of the light polarization. The monochromator works either in high resolution or high flux mode. Resolving powers of 16000 at 50 eV, 12000 at 90 eV, more than 12000 at 400 eV, 15000 at 534 eV and 6600 at 867 eV have been achieved with the three high resolution gratings. The resolving powers of the high flux grating, which covers the 290 - 1600 eV range, have been measured reaching 7000 at 400 eV and 2200 at 867 eV. The fluxes, in the high resolution mode, range between 4{center_dot}1011 photons/s at 125 eV and 2{center_dot}1010 photons/s at about 1100 eV. Using the high flux grating with the best resolution achievable 1.7{center_dot}1011 photons/s impinge on the sample at 900 eV. Two branches are installed after the monochromator allowing the set-up of two different experimental stations. One of them, besides several facilities for surface preparation and analysis, hosts a compact inelastic soft x-ray spectrometer (ComIXS) dedicated to x-ray emission experiments exploiting the small spot (10 {mu}m in the vertical direction) on the sample. The other branch hosts a liquid helium cryostat equipped with a superconducting coil to perform absorption and transmission experiments with temperatures down to 2 K and magnetic field up to {+-}7 T.

  5. Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries

    SciTech Connect

    Sun Liang; Qiu Keqiang


    Graphical abstract: Display Omitted Highlights: Black-Right-Pointing-Pointer Vacuum pyrolysis as a pretreatment was used to separate cathode material from aluminum foils. Black-Right-Pointing-Pointer Cobalt and lithium can be leached using oxalate while cobalt can be directly precipitated as cobalt oxalate. Black-Right-Pointing-Pointer Cobalt and lithium can be separated efficiently from each other only in the oxalate leaching process. Black-Right-Pointing-Pointer High reaction efficiency of LiCoO{sub 2} was obtained with oxalate. - Abstract: Spent lithium-ion batteries containing lots of strategic resources such as cobalt and lithium are considered as an attractive secondary resource. In this work, an environmentally compatible process based on vacuum pyrolysis, oxalate leaching and precipitation is applied to recover cobalt and lithium from spent lithium-ion batteries. Oxalate is introduced as leaching reagent meanwhile as precipitant which leaches and precipitates cobalt from LiCoO{sub 2} and CoO directly as CoC{sub 2}O{sub 4}{center_dot}2H{sub 2}O with 1.0 M oxalate solution at 80 Degree-Sign C and solid/liquid ratio of 50 g L{sup -1} for 120 min. The reaction efficiency of more than 98% of LiCoO{sub 2} can be achieved and cobalt and lithium can also be separated efficiently during the hydrometallurgical process. The combined process is simple and adequate for the recovery of valuable metals from spent lithium-ion batteries.

  6. The use of FBC wastes in the reclamation of coal slurry solids. Technical report, September 1--November 30, 1991

    SciTech Connect

    Dreher, G.B.


    Fluidized bed combustion (FBC) is a relatively new technology that is used commercially for the combustion of coal. In Illinois, this technology is valuable because it allows the combustion of Illinois high sulfur coal without pollution of the atmosphere with vast quantities of sulfur oxides. In FBC, coal is mixed with limestone or dolomite either before injection into the combustion chamber or in the combustion chamber. As the coal burns, sulfur in the coal is oxidized to SO{sub 2} and this is trapped by reaction with the limestone or dolomite to form gypsum (CaSO{sub 4}{center_dot}2H{sub 2}O). Solid by-products from FBC are generally a mixture of calcium oxide, gypsum, coal ash, and unburned coal. The present research project is designed to provide initial data on one possible use of FBC waste. FBC wastes from five different locations in the Illinois are mixed with coal slurry solids from two different coal preparation plants at Illinois coal mines. In mixtures of FBC waste and coal slurry solids, the alkaline components of the FBC waste are expected to react with acid produced by the oxidation of pyrite in the coal slurry solid. An objective of this research is to determine the chemical composition of aqueous leachates from mixtures of FBC wastes, generated under various operating conditions, and the coal slurry solids. These data will be used in future research into the ability of such mixtures to support seed germination and plant growth. The ultimate of this and future research is to determine whether mixed FBC waste and coal slurry solids can be slurry pond reclamation.

  7. The use of FBC wastes in the reclamation of coal slurry solids

    SciTech Connect

    Dreher, G.B.


    Fluidized bed combustion (FBC) is a relatively new technology that is used commercially for the combustion of coal. In Illinois, this technology is valuable because it allows the combustion of Illinois high sulfur coal without pollution of the atmosphere with vast quantities of sulfur oxides. In FBC, coal is mixed with limestone or dolomite either before injection into the combustion chamber or in the combustion chamber. As the coal burns, sulfur in the coal is oxidized to SO{sub 2} and this is trapped by reaction with the limestone or dolomite to form gypsum (CaSO{sub 4}{center dot}2H{sub 2}O). Solid by-products from FBC are generally a mixture of calcium oxide, gypsum, coal ash, and unburned coal. The present research project is designed to provide initial data on one possible use of FBC waste. FBC wastes from five different locations in the Illinois are mixed with coal slurry solids from two different coal preparation plants at Illinois coal mines. In mixtures of FBC waste and coal slurry solids, the alkaline components of the FBC waste are expected to react with acid produced by the oxidation of pyrite in the coal slurry solid. An objective of this research is to determine the chemical composition of aqueous leachates from mixtures of FBC wastes, generated under various operating conditions, and the coal slurry solids. These data will be used in future research into the ability of such mixtures to support seed germination and plant growth. The ultimate of this and future research is to determine whether mixed FBC waste and coal slurry solids can be slurry pond reclamation.

  8. Transport of Impurity Ions in the Wendelstein 7-AS Stellarator Plasma

    SciTech Connect

    Burhenn, Rainer; Baldzuhn, Juergen; Beidler, Craig; Brakel, Rudolf; Ehmler, Hartmut; Giannone, Louis; Grigull, Peter; Hirsch, Matthias; Knauer, Jens; Krychowiak, Maciej; Maassberg, Henning; McCormick, Kent; Pasch, Ekkehard; Weller, Arthur; Ida, Katsumi


    The impact of global plasma parameters on impurity transport in the stellarator W7-AS was investigated by laser blow-off technique. Both, density and heating power were identified to have a strong influence on impurity confinement {tau}{sub I} {approx} n{sub e}{sup 1.2}/P{sub ECRH}{sup 0.8}. In spite of stationary conditions at lower densities, an increasing trend for accumulation was observed at plasma densities beyond 5{center_dot}1019 m-3 due to reduction of the diffusion coefficients. Up to densities of at least 9{center_dot}1019 m-3, launching of electron cyclotron resonance heating (ECRH) power of 1.2 MW is able to counteract the impurity accumulation by deterioration of the impurity confinement with heating power according to the scaling law as given above. In neutral beam injection (NBI) heated plasmas at densities higher than 1{center_dot}1020m-3, long confinement times were observed, often accompanied by loss of density control and degradation of plasma energy due to increasing radiation losses. The installation of island divertor allowed a general extension of the range of accessible densities up to 4{center_dot}1020m-3: beyond a certain power-dependent threshold density (1.5-2.1{center_dot}1020m-3), the plasma enters the High Density H-mode (HDH) regime and the impurity confinement time drops to values comparable to the energy confinement time. High density plasmas could be sustained quasi-stationary with a low level of impurity radiation. The favourable impurity behavior goes along with a reduction of the inward impurity convection in the core plasma and possible changes in the edge transport. For the characterization of the general impurity behavior in W7-AS plasmas the usual transport models for axisymmetric devices are not sufficient and additional stellarator specific processes have to be considered.

  9. High Resolution Imaging of Io's Volcanoes with LBTI

    NASA Astrophysics Data System (ADS)

    Conrad, Al; Leisenring, Jarron; de Kleer, Katherine; Skemer, Andy; Hinz, Philip; Skrutskie, Michael; Veillet, Christian; de Pater, Imke; Bertero, Mario; Boccacci, Patrizia; Defrère, Denis; Hofmann, Karl-Heinz; La Camera, Andrea; Schertl, Dieter; Spencer, John; Weigelt, Gerd; Woodward, Charles E.


    The Large Binocular Telescope (LBT), located on Mount Graham in eastern Arizona, employs two 8.4 meter mirrors with a 14.4 center-to-center separation on a common mount. Coherent combination of these two AO-corrected apertures via the LBT Interferometer (LBTI) produces Fizeau interferometric images with spatial resolution consistent with the diffraction limit of the 22.8-meter aperture. In particular LBTI resolves thermal signatures (i.e., features observed at M-band) on the surface of Io down to ~150 kilometers; a two-fold improvement over what has previously been possible from the ground. We show images collected with LBTI on December 24, 2013, in which Loki's shape is clearly resolved and at least fourteen additional volcanic hot spots are detected.We analyze three locations in the LBTI data: emission features within Loki Patera, the area near Rarog and Heno Patarae, and a hot spot seen in the Colchis Regio.For Loki Patera, we interpret spatially resolved variation in the emission within that region. With M-band resolution that is comparable to what has previously been achievable only at K-band, we compare localized emission features with what has been seen in earlier observations at shorter wavelengths.Thermal emission from activity at Rarog and Heno Patarae is well resolved in these images, while a third hot-spot in the nearby Lerna Regio is also clearly resolved. This area is of special interest since it was the site of two high-effusion outbursts on August 15th, 2013 [de Pater et al. (2014) Icarus].Lastly, we explore a hot-spot seen in the Colchis Regio that may be a remnant of a violent outburst detected on August 29th, 2013 [de Kleer et al. (2014) Icarus].

  10. First examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands

    SciTech Connect

    Wang Lamei; Fan Yong; Wang Yan; Xiao Lina; Hu Yangyang; Peng Yu; Wang Tiegang; Gao Zhongmin; Zheng Dafang; Cui Xiaobing; Xu Jiqing


    Two new organic-inorganic compounds based on polyoxometalates, metal halide clusters and organic ligands: [BW{sub 12}O{sub 40}]{sub 2}[Cu{sub 2}(Phen){sub 4}Cl](H{sub 2}4, 4 Prime -bpy){sub 4}{center_dot}H{sub 3}O{center_dot}5H{sub 2}O (1) and [HPW{sub 12}O{sub 40}][Cd{sub 2}(Phen){sub 4}Cl{sub 2}](4, 4 Prime -bpy) (2) (Phen=1, 10-phenanthroline, bpy=bipyridine), have been prepared and characterized by IR, UV-vis, XPS, XRD and single crystal X-ray diffraction analyses. Crystal structure analyses reveal that compound 1 is constructed from [BW{sub 12}O{sub 40}]{sup 5-}, metal halide clusters [Cu{sub 2}(Phen){sub 4}Cl]{sup +}and 4, 4 Prime -bpy ligands, while compound 2 is constructed from [PW{sub 12}O{sub 40}]{sup 3-}, metal halide cluster [Cd{sub 2}(Phen){sub 4}Cl{sub 2}]{sup 2+} and 4, 4 Prime -bpy ligands. Compound 1 and compound 2 are not common hybrids based on polyoxometalates and metal halide clusters, they also contain dissociated organic ligands, therefore, compound 1 and 2 are the first examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands. - Graphical Abstract: Two new compounds have been synthesized and characterized. Structure analyses revealed that the two compounds are the first examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands. Highlights: Black-Right-Pointing-Pointer First examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands. Black-Right-Pointing-Pointer Two different kinds of metal halide clusters. Black-Right-Pointing-Pointer Supramolecular structures based on polyoxometalates, metal halide clusters and organic ligands. Black-Right-Pointing-Pointer Hybridization of three different of building blocks.

  11. Small non-polar complexes exhibiting significant piezoelectric properties: Solvothermal synthesis and crystal structures of MO{sub 5}V(tren){center_dot}H{sub 2}O (M=Mo and W; tren=tris(2-aminoethyl)amine)

    SciTech Connect

    Rasmussen, M.; Naether, C.; Bismayer, U.; Bensch, W.


    The two isostructural complexes MO{sub 5}V(tren){center_dot}H{sub 2}O (M=Mo (1) and W (2)) were synthesized under solvothermal conditions at pH Almost-Equal-To 12 crystallizing in the non-centrosymmetric space group P2{sub 1}2{sub 1}2{sub 1}. The structures are constructed by a distorted tetrahedral [MO{sub 4}]{sup 2-} anion bound via one shared oxygen atom to a severely distorted [V{sup IV}N{sub 4}O]{sup 2+} complex completing the octahedral coordination around the V centre. The two O atoms in the VN{sub 4}O{sub 2} octahedron are in cis position. The two compounds represent rare examples where the [MO{sub 4}]{sup 2-} anion is acting as a ligand. Both compounds exhibit a piezoelectric effect which is more pronounced for M=Mo. The samples are further characterized with IR and UV/Vis spectroscopy and thermal analysis. - Graphical abstract: The complexes [(V(tren)O)(MO4)]{center_dot}H2O (M = Mo, W; tren = tris(2-aminoethyl)amine)) composed of vertex-linked [MO4]{sup 2-} tetrahedron and [VN4O6]{sup 2+}octahedron. Highlights: Black-Right-Pointing-Pointer [MO{sub 4}]{sup 2-} tetrahedron (M=Mo, W) acting as ligand. Black-Right-Pointing-Pointer Jahn-Teller and steric distortion of the [VN{sub 4}O{sub 2}]{sup 2+} octahedron. Black-Right-Pointing-Pointer Non-centrosymmetric complexes exhibiting pronounced piezoelectric effect.

  12. Long term follow-up study to evaluate immunogenicity and safety of a single dose of live attenuated hepatitis a vaccine in children.


    Mitra, Monjori; Shah, Nitin; Faridi, Mma; Ghosh, Apurba; Sankaranarayanan, V S; Aggarwal, Anju; Chatterjee, Suparna; Bhattacharyya, Nisha; Kadhe, Ganesh; Vishnoi, Gaurav; Mane, Amey


    Worldwide, viral hepatitis continues to be a cause of considerable morbidity and mortality. Mass immunization with a single dose of live attenuated HAV has been shown to significantly reduce disease burden in the community. This was a phase IV, 5-year follow up study carried out at 4 centers (Kolkata, Delhi, Mumbai and Chennai) across India. The subjects with antibody titer <20 mIU/mL at baseline were evaluated for long term immunogenicity. Of the 503 subjects enrolled, 349 subjects were baseline seronegative with an anti-HAV antibody titer <20 mIU/mL. Overall, 343 subjects could be followed up at some point of time during this 5 y post vaccination period. In the last year (60 months) of follow-up, 108 subjects (97.3%) of 111 subjects (who came for follow-up at the end of 5 y) had a protective antibody titer (anti-HAV antibody titer >20 mIU/mL). The seroconversion rates considering seroprotection levels of anti-HAV antibody titer >20 mIU/mL, following vaccination starting from 6 weeks, 6 months, 12 months, 24 months, 36 months, 48 months and 60 months were 95.1%, 97.9%, 98.3%, 96.2%, 97.8%, 92.6% and 97.3%, respectively. The geometric mean concentration (GMC) over the years increased from 64.9 mIU/mL at 6 weeks to 38.1 mIU/mL and 135.2 mIU/mL at 6 months and 12 months, respectively and was maintained at 127.1 mIU/mL at 60 months. In conclusion, the result of this 5-year follow up study showed that the single dose of live attenuated vaccine is well tolerated and provides long-term immunogenicity in healthy Indian children.

  13. Revealing the Mechanisms behind SnO[subscript 2] Nanoparticle Formation and Growth during Hydrothermal Synthesis: An In Situ Total Scattering Study

    SciTech Connect

    Jensen, Kirsten M.Ø.; Christensen, Mogens; Juhas, Pavol; Tyrsted, Christoffer; Bøjesen, Espen D.; Lock, Nina; Billinge, Simon J.L.; Iversen, Bo B.


    The formation and growth mechanisms in the hydrothermal synthesis of SnO{sub 2} nanoparticles from aqueous solutions of SnCl{sub 4} {center_dot} 5H{sub 2}O have been elucidated by means of in situ X-ray total scattering (PDF) measurements. The analysis of the data reveals that when the tin(IV) chloride precursor is dissolved, chloride ions and water coordinate octahedrally to tin(IV), forming aquachlorotin(IV) complexes of the form [SnCl{sub x}(H{sub 2}O){sub 6-x}]{sup (4-x)+} as well as hexaaquatin(IV) complexes [Sn(H{sub 2}O){sub 6-y}(OH){sub y}]{sup (4-y)+}. Upon heating, ellipsoidal SnO{sub 2} nanoparticles are formed uniquely from hexaaquatin(IV). The nanoparticle size and morphology (aspect ratio) are dependent on both the reaction temperature and the precursor concentration, and particles as small as 2 nm can be synthesized. Analysis of the growth curves shows that Ostwald ripening only takes place above 200 C, and in general the growth is limited by diffusion of precursor species to the growing particle. The c-parameter in the tetragonal lattice is observed to expand up to 0.5% for particle sizes down to 2-3 nm as compared to the bulk value. SnO{sub 2} nanoparticles below 3-4 nm do not form in the bulk rutile structure, but as an orthorhombic structural modification, which previously has only been reported at pressures above 5 GPa. Thus, adjustment of the synthesis temperature and precursor concentration not only allows control over nanoparticle size and morphology but also the structure.

  14. Sulfur K-edge X-ray absorption spectroscopy of 2Fe-2S ferredoxin: covalency of the oxidized and reduced 2Fe forms and comparison to model complexes.


    Anxolabéhère-Mallart, E; Glaser, T; Frank, P; Aliverti, A; Zanetti, G; Hedman, B; Hodgson, K O; Solomon, E I


    Ligand K-edge X-ray absorption spectroscopy (XAS) provides a direct experimental probe of ligand-metal bonding. In previous studies, this method has been applied to mononuclear Fe-S and binuclear 2Fe-2S model compounds as well as to rubredoxins and the Rieske protein. These studies are now extended to the oxidized and reduced forms of ferredoxin I from spinach. Because of its high instability, the mixed-valence state was generated electrochemically in the protein matrix, and ligand K-edge absorption spectra were recorded using an XAS spectroelectrochemical cell. The experimental setup is described. The XAS edge data are analyzed to independently determine the covalencies of the iron-sulfide and -thiolate bonds. The results are compared with those obtained previously for the Rieske protein and for 2Fe-2S model compounds. It is found that the sulfide covalency is significantly lower in oxidized FdI compared to that of the oxidized model complex. This decrease is interpreted in terms of H bonding present in the protein, and its contribution to the reduction potential E degrees is estimated. Further, a significant increase in covalency for the Fe(III)-sulfide bond and a decrease of the Fe(II)-sulfide bond are observed in the reduced Fe(III)Fe(II) mixed-valence species compared to those of the Fe(III)Fe(III) homovalent site. This demonstrates that, upon reduction, the sulfide interactions with the ferrous site decrease, allowing greater charge donation to the remaining ferric center. That is the dominant change in electronic structure of the Fe(2)S(2)RS(4) center upon reduction and can contribute to the redox properties of this active site.

  15. Modeling Spitzer Observations of VV Ser. II. An Extended Quantum-heated Nebula and a Disk Shadow

    NASA Astrophysics Data System (ADS)

    Pontoppidan, Klaus M.; Dullemond, Cornelis P.; Blake, Geoffrey A.; Evans, Neal J., II; Geers, Vincent C.; Harvey, Paul M.; Spiesman, William


    We present mid-infrared Spitzer IRAC and MIPS images of the UX Orionis star VV Ser and the surrounding cloud. The 5.6-70 μm images show bright, localized, and nebulous emission extended over 4' centered on VV Ser. This nebulosity is due to transiently heated grains excited by UV photons emitted by VV Ser. Imprinted on the nebulosity is a wedge-shaped dark band, centered on the star. We interpret this as the shadow cast by the inner regions of a near-edge-on disk, allowing the PAHs to be excited only outside of this shadow. We extend an axisymmetric radiative transfer model of the VV Ser disk described in a companion paper to include quantum-heated PAH molecules and very small grains (VSGs) in the thermal cooling approximation. The presence of a disk shadow strongly constrains the inclination as well as the position angle of the disk. The nebulosity at 5.6-8.0 μm and the 2175 Å absorption feature seen in an archival spectrum from the IUE can be fit using only PAHs, consistent with the main carrier of the 2175 Å feature being due to the graphite-like structure of the PAHs. The PAH component is found to be relatively smoothly distributed in the cloud, while the population of VSGs emitting at 20-70 μm is strongly concentrated ~50'' to the southeast of VV Ser. Depending on the adopted PAH opacity, the abundance of PAHs in the surrounding cloud is constrained to 5%+/-2% of the total dust mass. Although relatively rare, quantum-heated nebulosities surrounding single, well-defined stars are well-suited for gaining unique insights into the physics of very small particles in molecular clouds.

  16. Some aspects of the atmospheric corrosion of copper in the presence of sodium chloride

    SciTech Connect

    Strandberg, H.; Johansson, L.G.


    The effect of NaCl in combination with O{sub 3} and SO{sub 2} on the atmospheric corrosion of copper was investigated. Corrosion products formed after 4 weeks exposure were characterized qualitatively by X-ray diffraction and quantitatively by gravimetry and ion chromatography of leaching solutions. Studies of SO{sub 2} deposition and O{sub 3} consumption were performed using on-line gas analysis. Large amounts of cuprite (Cu{sub 2}O) formed in all environments at 70 and 90% relative humidity. The corrosive effect of salt was strong in pure humid air and in air containing O{sub 3} or SO{sub 2}. Corrosion rate was correlated to the amount of chloride applied to the surface and to humidity. In an atmosphere containing a combination of SO{sub 2} and O{sub 3} at 90% relative humidity, corrosion was rapid in the absence of NaCl. In this case, small additions of NaCl resulted in a marked decrease in corrosion rate. In the absence of SO{sub 2}, tenorite (CuO), nantokite (CuCl), clinoatacamite [Cu{sub 2}(OH){sub 3}Cl], and malachite [Cu{sub 2}(OH){sub 2}CO{sub 3}] were identified. In the presence of SO{sub 2}, brochantite [Cu{sub 4}(OH){sub 6}SO{sub 4}], soluble sulfate, and an unknown phase occurred, while no tenorite or malachite was formed. The combination of SO{sub 2} and O{sub 3} resulted in the formation of antlerite [Cu{sub 3}(OH){sub 4}SO{sub 4}] and Cu{sub 2.5}(OH){sub 3}SO{sub 4}{center_dot}2H{sub 2}O as well.

  17. Luminescence and creation of electron centers in UV-irradiated YAlO{sub 3} single crystals

    SciTech Connect

    Grigorjeva, L.; Krasnikov, A.; Zazubovich, S.; Laguta, V. V.; Nikl, M.


    Luminescence and defect creation processes were studied by the photoluminescence, thermally stimulated luminescence, and electron paramagnetic resonance methods in the UV-irradiated single crystals of undoped YAlO{sub 3}, containing small amounts of Ce, Mo, and Ti ions as accidental impurities. The luminescence of the electron antisite Y{sub Al}{sup 2+}-type centers of different structures was found around 2.45 eV and studied at 4.2-500 K. The luminescence of the Ti{sup 3+}-related centers (2.03 and 1.73 eV) and Ti{sup 4+} centers (2.78 eV) was observed as well. Dependences of the number of the Y{sub Al}{sup 2+}-type and Ti{sup 3+}-related centers on the UV irradiation energy, temperature, and duration, as well as on various crystal heat-treatment procedures were examined. As a result of the photostimulated electron transfer from the O{sup 2-} ligand ions to Mo{sup 4+} and Ti{sup 4+} ions, the paramagnetic hole O{sup -}-type centers and electron Ti{sup 3+} and Mo{sup 3+} centers are created. The antisite Y{sub Al}{sup 2+}-type centers are created due to the photostimulated release of electrons mainly from the Mo{sup 3+} centers to the conduction band and their subsequent trapping at the Y{sub Al}{sup 3+} ions located near an oxygen vacancy or a defect at the neighboring Y{sup 3+} site.

  18. Designing lead-free and stable perovskite materials for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Sun, Yiyang; Zhang, Shengbai

    A critical barrier for large-scale deployment of the current perovskite solar materials is the use of Pb to achieve high power conversion efficiency. While this appears to be a technical issue, there are more fundamental reasons behind. The current research has mainly focused on the replacement of Pb by other elements, in particular, Sn. However, in halide perovskites (i.e., I-II-VII3 composition), Sn is in its less stable 2 + state. The formation of more stable 4 + centers in the Sn(II)-based materials under ambient conditions makes the device efficiency very low. Worse, there might be no other elements across the Periodic Table that can replace Pb while maintaining the desirable properties, such as band gap. Out-of-the-box ideas are therefore called for to stimulate the research in this field. In this talk, two approaches are proposed based on state-of-the-art first-principles calculations. Through a screening of chalcogenide perovskite materials, CaTiS3, BaZrS3, CaZrSe3, and CaHfSe3 have been predicted to have suitable band gaps for making solar cells. Among these materials, BaZrS3 have been synthesized experimentally. Another proposed approach is to introduce dual anions (i.e., splitting the anion sites) that allow the composition to satisfy charge neutrality, while replacing Pb by more environmentally benign elements. One of the candidate materials is CH3NH3BiSI2, which is predicted to have band gap around 1.4 eV and high optical absorption.

  19. Documentation of chemotherapy infusion preparation costs in academic- and community-based oncology practices.


    Brixner, Diana I; Oderda, Gary M; Nickman, Nancy A; Beveridge, Roy; Jorgenson, James A


    Significant changes in Medicare reimbursement for outpatient oncology services were proposed as part of the Medicare Modernization Act of 2003. The purpose of this study was to identify the "true cost" associated with drug-related handling for the preparation and delivery of chemotherapy doses to estimate the impact of changing reimbursement schema by Medicare. Two academic medical outpatient infusion centers and 2 community cancer centers provided data used to estimate all costs (excluding drug cost) associated with the preparation of chemotherapy doses. The data included both fixed costs (drug storage, space, equipment, and information resources) and variable costs (insurance management, inventory, waste management, pharmacy staff payroll, supplies, and shipping). The average cost for the preparation of chemotherapy doses across all sites was dollar 34.27 (range, dollar 32.08-dollar 41.23). A time-and-motion study was also performed to determine what tasks were conducted by pharmacy staff and how much time was spent in the preparation of the top 15 chemotherapeutic drugs and regimens used in the 4 sites. Data from the 4 centers was projected to show that if 3,990,495 million chemotherapy infusions were administered to a national Medicare population in 2003, when multiplied by the average cost of preparation for infusions determined by the current study (dollar 34.27), the estimated total annual cost to Medicare for chemotherapy preparation by pharmacists is dollar 136,754,263.65. The pharmacists spent most of their days (90% or more) performing tasks directly related to the preparation of these agents. These data provide scientific support for the consideration of appropriate reimbursement for chemotherapy services provided by pharmacists to Medicare beneficiaries. PMID:16507268

  20. Analysis of BCLI, N363S and ER22/23EK Polymorphisms of the Glucocorticoid Receptor Gene in Adrenal Incidentalomas

    PubMed Central

    Reimondo, Giuseppe; Chiodini, Iacopo; Puglisi, Soraya; Pia, Anna; Morelli, Valentina; Kastelan, Darko; Cannavo, Salvatore; Berchialla, Paola; Giachino, Daniela; Perotti, Paola; Cuccurullo, Alessandra; Paccotti, Piero; Beck-Peccoz, Paolo; De Marchi, Mario; Terzolo, Massimo


    Context Patients with adrenal incidentalomas (AI) may experience detrimental consequences due to a minimal cortisol excess sustained by adrenal adenoma. SNPs of the glucocorticoid receptor gene (NR3C1) modulate individual sensitivity to glucocorticoids and may interfere with the clinical presentation. Objective To compare the frequency of N363S, ER22/23EK and BclI SNPs in patients with AI with the general population and to evaluate whether these SNPs are linked to consequences of cortisol excess. Setting Multicentric, retrospective analysis of patients referred from 2010 to 2014 to 4 centers (Orbassano, Milano, Messina [Italy] and Zagreb [Croatia]). Patients 411 patients with AI; 153 males and 258 females and 186 from blood donors. Main outcomes measures All patients and controls were genotyped for BclI, N363S and ER22/23EK and SNPs frequency was associated with clinical and hormonal features. Results SNP frequency was: SNP frequency was: N363S 5.4% (MAF 0.027), BclI 54.7% (MAF 0.328), ER22/23EK 4.4% (MAF 0.022), without any significant difference between patients and controls. N363S was more frequent in hypertensive patients (p = 0.03) and was associated with hypertension (p = 0.015) in patients with suppressed cortisol after the 1-mg DST. Conclusions Our results demonstrate that SNPs of the glucocorticoid receptor gene do not play a pathogenetic role for AI. The impact of any single SNP on the phenotypic expression of minimal cortisol excess is limited and their analysis does not provide additional data that may be exploited for patient management. PMID:27649075

  1. Prospective Genomic Characterization of the German Enterohemorrhagic Escherichia coli O104:H4 Outbreak by Rapid Next Generation Sequencing Technology

    PubMed Central

    Zentz, Emily B.; Leopold, Shana R.; Rico, Alain; Prior, Karola; Szczepanowski, Rafael; Ji, Yongmei; Zhang, Wenlan; McLaughlin, Stephen F.; Henkhaus, John K.; Leopold, Benjamin; Bielaszewska, Martina; Prager, Rita; Brzoska, Pius M.; Moore, Richard L.; Guenther, Simone; Rothberg, Jonathan M.; Karch, Helge


    An ongoing outbreak of exceptionally virulent Shiga toxin (Stx)-producing Escherichia coli O104:H4 centered in Germany, has caused over 830 cases of hemolytic uremic syndrome (HUS) and 46 deaths since May 2011. Serotype O104:H4, which has not been detected in animals, has rarely been associated with HUS in the past. To prospectively elucidate the unique characteristics of this strain in the early stages of this outbreak, we applied whole genome sequencing on the Life Technologies Ion Torrent PGM™ sequencer and Optical Mapping to characterize one outbreak isolate (LB226692) and a historic O104:H4 HUS isolate from 2001 (01-09591). Reference guided draft assemblies of both strains were completed with the newly introduced PGM™ within 62 hours. The HUS-associated strains both carried genes typically found in two types of pathogenic E. coli, enteroaggregative E. coli (EAEC) and enterohemorrhagic E. coli (EHEC). Phylogenetic analyses of 1,144 core E. coli genes indicate that the HUS-causing O104:H4 strains and the previously published sequence of the EAEC strain 55989 show a close relationship but are only distantly related to common EHEC serotypes. Though closely related, the outbreak strain differs from the 2001 strain in plasmid content and fimbrial genes. We propose a model in which EAEC 55989 and EHEC O104:H4 strains evolved from a common EHEC O104:H4 progenitor, and suggest that by stepwise gain and loss of chromosomal and plasmid-encoded virulence factors, a highly pathogenic hybrid of EAEC and EHEC emerged as the current outbreak clone. In conclusion, rapid next-generation technologies facilitated prospective whole genome characterization in the early stages of an outbreak. PMID:21799941

  2. Evaluation of a Combined Ultraviolet Photocatalytic Oxidation(UVPCO)/Chemisorbent Air Cleaner for Indoor Air Applications

    SciTech Connect

    Hodgson, Alfred T.; Destaillats, Hugo; Hotchi, Toshifumi; Fisk,William J.


    buildings containing typical VOC sources. The magnitude of the expected increase will depend upon a number of interrelated factors. Series of experiments were conducted to determine if the oxidizer, sodium permanganate (NaMnO{sub 4}{center_dot}H{sub 2}O), has sufficient reaction rates and capacity to counteract formaldehyde and acetaldehyde production and enable a 50 % reduction in building ventilation rate without net increases in indoor aldehyde concentrations. A commercially produced filter element and two laboratory-fabricated media beds containing NaMnO{sub 4}{center_dot}H{sub 2}O chemisorbent media were evaluated. The effectiveness of a device for removal of formaldehyde, acetaldehyde and other VOCs was determined by measurement of concentrations immediately upstream and downstream of the device. In some experiments, conversion efficiencies and byproduct generation by the UVPCO device also were determined. Six experiments were conducted with the commercial filter element installed downstream of the UVPCO reactor. Eleven experiments were conducted with a single panel media bed (30 cm by 61 cm by 2.5 cm deep) installed downstream of the UVPCO reactor; in these, the effects of temperature and air residence time on conversion efficiency were examined. Two experiments were conducted with a four-panel, folded, media bed (approximately four times the size of the single panel bed) installed downstream of the reactor. Because the commercial unit contained activated carbon as an additional component, it was effective at removing lower volatility compounds that typically have low oxidation rates in the UVPCO reactor. The filter element also met the minimum efficiency objective for formaldehyde. However, the removal of acetaldehyde was less than required. The air residence time in the single panel bed was not optimized as the removal efficiencies for both formaldehyde and acetaldehyde were strongly inversely related to the air flow rate through the device. In addition, the

  3. Iron sulfide oxidation and the chemistry of acid generation

    SciTech Connect

    Sullivan, P.J.; Yelton, J.L. ); Reddy, K.J. )


    Acid mine drainage, produced from the oxidation of iron sulfides, often contains elevated levels of dissolved aluminum (Al), iron (Fe), and sulfate (SO{sub 4}) and low pH. Understanding the interactions of these elements associated with acid mine drainage is necessary for proper solid waste management planning. Two eastern oil shales were leached using humidity cell methods. This study used a New Albany Shale (4.6% pyrite) and a Chattanooga Shale (1.5% pyrite) were used. The leachates from the humidity cells were filtered, and the filtrates were analyzed for total concentrations of cations and anions. After correcting for significant solution species and complexes, ion activities were calculated from total concentrations. The results show that the activities of Fe{sup 3+}, Fe{sup 2+}, Al{sup 3+}, and SO{sub 4}{sup 2{minus}} increased due to the oxidation of pyrite. Furthermore, the oxidation of pyrite resulted in a decreased pH and an increased pe + pH (redox-potential). The Fe{sup 3+} and Fe{sup 2+} activities appeared to be controlled by amorphous Fe(OH){sub 3} solid phase above a pH of 6.0 and below pe + pH 11.0. The Fe{sup 3+}, Fe{sup 2+}, and SO{sub 4}{sup 2{minus}} activities reached saturation with respect to FeOHSO{sub 4} solid phase between pH 3.0 and 6.0 and below pe + pH 11.0. Below a pH of 3.0 and above a pe + pH of 11.0, Fe{sup 2+}, Fe{sup 3+}, and SO{sub 4}{sup 2{minus}} activities are supported by FeSO{sub 4}{center dot}7H{sub 2}O solid phase. Above a pH of 6.0, the Al{sup 3+} activity showed an equilibrium with amorphous Al(OH){sub 3} solid phase. Below pH 6.0, Al{sup 3+} and SO{sub 4}{sup 2{minus}} activities are regulated by the AlOHSO{sub 4} solid phase, irrespective of pe + pH. The results of this study suggest that under oxidizing conditions with low to high leaching potential, activities of Al and Fe can be predicted on the basis of secondary mineral formation over a wide range of pH and redox.

  4. Metal-metal and metal-ligand bonding at a QTAIM catastrophe: a combined experimental and theoretical charge density study on the alkylidyne cluster Fe3(μ-H)(μ-COMe)(CO)10.


    Farrugia, Louis J; Senn, Hans Martin


    The charge density in the tri-iron methoxymethylidyne cluster Fe(3)(μ-H)(μ-COMe)(CO)(10) (1) has been studied experimentally at 100 K and by DFT calculations on the isolated molecule using the Quantum Theory of Atoms in Molecules (QTAIM). The COMe ligand acts as a nearly symmetric bridge toward two of the Fe atoms (Fe-C = 1.8554(4), 1.8608(4) Å) but with a much longer interaction to the third Fe atom, Fe-C = 2.6762(4) Å. Complex 1 provides a classic example where topological QTAIM catastrophes render an exact structure description ambiguous. While all experimental and theoretical studies agree in finding no direct metal-metal interaction for the doubly bridged Fe-Fe vector, the chemical bonding between the Fe(CO)(4) unit and the Fe(2)(μ-H)(μ-COMe)(CO)(6) moiety in terms of conventional QTAIM descriptors is much less clear. Bond paths implying direct Fe-Fe interactions and a weak interaction between the COMe ligand and the Fe(CO)(4) center are observed, depending on the experimental or theoretical density model examined. Theoretical studies using the Electron Localizability Indicator (ELI-D) suggest the metal-metal bonding is more significant, while the delocalization indices imply that both Fe-Fe bonding and Fe···C(alkylidyne) bonding are equally important. The source functions at various interfragment reference points are similar and highly delocalized. The potential-energy surface (PES) for the migration of the alkylidyne group from a μ(2) to a semi-μ(3) coordination mode has been explored by DFT calculations on 1 and the model complexes M(3)(μ-H)(μ-CH)(CO)(10) (M = Fe, 2; Ru, 3; and Os, 4). These calculations confirm a semi-μ(3) bridging mode for the alkylidyne ligand as the minimum-energy geometry for compounds 2-4 and demonstrate that, for 1, both Fe-Fe and Fe···C(alkylidyne) interactions are important in the cluster bonding. The PES between μ(2) and semi-μ(3) alkylidyne coordination for 1 is extremely soft, and the interconversion between

  5. Syntheses, structures and photoelectric properties of a series of Cd(II)/Zn(II) coordination polymers and coordination supramolecules

    SciTech Connect

    Jin Jing; Han Xiao; Meng Qin; Li Dan; Chi Yuxian; Niu Shuyun


    Five Cd(II)/Zn(II) complexes [Cd(1,2-bdc)(pz){sub 2}(H{sub 2}O)]{sub n} (1), [Cd1Cd2(btec)(H{sub 2}O){sub 6}]{sub n} (2), [Cd(3,4-pdc) (H{sub 2}O)]{sub n} (3), [Zn(2,5-pdc)(H{sub 2}O){sub 4}]{center_dot}2H{sub 2}O (4) and {l_brace} [Zn(2,5-pdc)(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O{r_brace} {sub n} (5) (H{sub 2}bdc=1,2-benzenedicarboxylic acid, pz=pyrazole, H{sub 4}btec=1,2,4,5-benzenetetracarboxylic acid, H{sub 2}pdc=pyridine-dicarboxylic acid) were hydrothermally synthesized and characterized by single-crystal X-ray diffraction, surface photovoltage spectroscopy, XRD, TG analysis, IR and UV-vis spectra and elemental analysis. Structural analyses show that complexes 1-3 are 1D, 2D and 3D Cd(II) coordination polymers, respectively. Complex 4 is a mononuclear Zn(II) complex. Complex 5 is a 3D Zn(II) coordination polymer. The surface photoelectric properties of complexes were investigated by SPS. The results indicate that all complexes exhibit photoelectric responses in the range of 300-600 nm, which reveals that they all possess certain photoelectric conversion properties. By the comparative analyses, it can be found that the species and coordination micro-environment of central metal ion, the species and property of ligands affect the intensity and scope of photoelectric response. - Graphical abstract: Five Cd(II)/Zn(II) complexes have been hydrothermally synthesized and characterized. The photoelectric properties were studied with SPS. The species and coordination micro-environment of central metal ion, the species and property of ligands all affect the photoelectric responses. Highlights: Black-Right-Pointing-Pointer Five Cd/Zn complexes have been synthesized and characterized. Black-Right-Pointing-Pointer The SPS results indicate they possess obvious photoelectric conversion property. Black-Right-Pointing-Pointer The species and coordination environment of central metal ion affect SPS. Black-Right-Pointing-Pointer The species and property of ligands affect SPS

  6. Heat, pressure and light-induced interconversion of bisdithiazolyl radicals and dimers.


    Lekin, Kristina; Phan, Hoa; Winter, Stephen M; Wong, Joanne W L; Leitch, Alicea A; Laniel, Dominique; Yong, Wenjun; Secco, Richard A; Tse, John S; Desgreniers, Serge; Dube, Paul A; Shatruk, Michael; Oakley, Richard T


    The heterocyclic bisdithiazolyl radical 1b (R1 = Me, R2 = F) crystallizes in two phases. The α-phase, space group P2₁/n, contains two radicals in the asymmetric unit, both of which adopt slipped π-stack structures. The β-phase, space group P2₁/c, consists of cross-braced π-stacked arrays of dimers in which the radicals are linked laterally by hypervalent 4-center 6-electron S···S-S···S σ-bonds. Variable-temperature magnetic susceptibility measurements on α-1b indicate Curie-Weiss behavior (with Θ = -14.9 K), while the dimer phase β-1b is diamagnetic, showing no indication of thermal dissociation below 400 K. High-pressure crystallographic measurements indicate that the cross-braced π-stacked arrays of dimers undergo a wine-rack compression, but the dimer remains intact up to 8 GPa (at ambient temperature). The resistance of β-1b to dissociate under pressure, also observed in its conductivity versus pressure profile, is in marked contrast to the behavior of the related dimer β-1a (R1 = Et, R2 = F), which readily dissociates into a pair of radicals at 0.8 GPa. The different response of the two dimers to pressure has been rationalized in terms of differences in their linear compressibilities occasioned by changes in the degree of cross-bracing of the π-stacks. Dissociation of both dimers can be effected by irradiation with visible (λ = 650 nm) light; the transformation has been monitored by optical spectroscopy, magnetic susceptibility measurements, and single crystal X-ray diffraction. The photoinduced radical pairs persist up to temperatures of 150 K (β-1b) and 242 K (β-1a) before reverting to the dimer state. Variable-temperature optical measurements on β-1b and β-1a have afforded Arrhenius activation energies of 8.3 and 19.6 kcal mol(-1), respectively, for the radical-to-dimer reconversion. DFT and CAS-SCF calculations have been used to probe the ground and excited electronic state structures of the dimer and radical pair. The results

  7. Intervalence charge transfer luminescence: The anomalous luminescence of cerium-doped Cs{sub 2}LiLuCl{sub 6} elpasolite

    SciTech Connect

    Seijo, Luis; Barandiarán, Zoila


    The existence of intervalence charge transfer (IVCT) luminescence is reported. It is shown that the so called anomalous luminescence of Ce-doped elpasolite Cs{sub 2}LiLuCl{sub 6}, which is characterized mainly by a very large Stokes shift and a very large band width, corresponds to an IVCT emission that takes place in Ce{sup 3+}–Ce{sup 4+} pairs, from the 5de{sub g} orbital of Ce{sup 3+} to 4f orbitals of Ce{sup 4+}. Its Stokes shift is the sum of the large reorganization energies of the Ce{sup 4+} and Ce{sup 3+} centers formed after the fixed-nuclei electron transfer and it is equal to the energy of the IVCT absorption commonly found in mixed-valence compounds, which is predicted to exist in this material and to be slightly larger than 10 000 cm{sup −1}. The large band width is the consequence of the large offset between the minima of the Ce{sup 3+}–Ce{sup 4+} and Ce{sup 4+}–Ce{sup 3+} pairs along the electron transfer reaction coordinate. This offset is approximately 2√(3) times the difference of Ce–Cl equilibrium distances in the Ce{sup 3+} and Ce{sup 4+} centers. It is shown that the energies of the peaks and the widths of IVCT absorption and emission bands can be calculated ab initio with reasonable accuracy from diabatic energy surfaces of the ground and excited states and that these can be obtained, in turn, from independent calculations on the donor and acceptor active centers. We obtained the energies of the Ce{sup 3+} and Ce{sup 4+} active centers of Ce-doped Cs{sub 2}LiLuCl{sub 6} by means of state-of-the-art wave-function-theory spin-orbit coupling relativistic calculations on the donor cluster (CeCl{sub 6}Li{sub 6}Cs{sub 8}){sup 11+} and the acceptor cluster (CeCl{sub 6}Li{sub 6}Cs{sub 8}){sup 12+} embedded in a quantum mechanical embedding potential of the host. The calculations provide interpretations of unexplained experimental observations as due to higher energy IVCT absorptions, and allow to reinterpret others. The existence of

  8. An investigation on the defect structures and spin Hamiltonian parameters for the two orthorhombic Ti3+ centers in ZnWO4

    NASA Astrophysics Data System (ADS)

    Ding, Chang-Chun; Wu, Shao-Yi; Zhu, Qing-Sheng; Zhang, Zhi-Hong; Teng, Bao-Hua; Wu, Ming-He


    By employing the perturbation formulae of the spin Hamiltonian parameters (SHPs) (g factors gxx, gyy, gzz, hyperfine structure constants Axx, Ayy, Azz and superhyperfine parameters Axx', Ayy', Azz') for a 3d1 ion in orthorhombically elongated octahedra and tetrahedra, the defect structures and the experimental EPR spectra are theoretically and systematically investigated for the two orthorhombic Ti3+ centers C1 and C2 in ZnWO4. Center C1 is ascribed to the impurity Ti3+ at host W6+ site associated with two nearest neighbor oxygen vacancies due to charge compensation. The resultant tetrahedral [TiO4]5- cluster is determined to undergo the local orthorhombic elongation distortion, characterized by the axial distortion angle Δθ (=θ-θ0≈-6.84°) of the local impurity-ligand bond angle θ related to θ0 (≈54.74°) and the perpendicular distortion angle Δε (=ε-ε0≈2.5°) related to ε0 (≈45°) of an ideal tetrahedron because of the Jahn-Teller effect. Center C2 is attributed to Ti3+ on Zn2+ site, and this octahedral [TiO6]9- cluster may experience the local axial elongation ΔZ (≈0.001 Ǻ) and the planar bond angle variation Δφ (≈9.1°) due to the Jahn-Teller effect, resulting in a more regular oxygen octahedron. All the calculated SHPs (i.e., g factors for both centers, the hyperfine structure constants for center C2 and superhyperfine parameters of next nearest neighbor ligand W for center C1) show good agreement with the observed values. However, the theoretical results based on the previous assignment of center C1 as Ti3+ on W6+ site with only one nearest planar oxygen vacancy (i.e., five-fold coordinated octahedral [TiO5]7- cluster) show much worse agreement with the experimental data. The defect structures and the SHPs (especially the g anisotropies) are discussed for both centers. The present studies on the superhyperfine parameters of ligand W6+ for center C1 would be helpful to further investigations on the superhyperfine interactions of

  9. Homolytic dissociation of the vulcanization accelerator tetramethylthiuram disulfide (TMTD) and structures and stabilities of the related radicals Me2NCSn* (n = 1-4).


    Steudel, Ralf; Steudel, Yana; Mak, Adrian Matthew; Wong, Ming Wah


    The homolytic dissociation of the important vulcanization accelerator tetramethylthiuram disulfide (TMTD) has been studied by ab initio calculations according to the G3X(MP2) and G3X(MP2)-RAD theories. Homolytic cleavage of the SS bond requires a low enthalpy of 150.0 kJ mol-1, whereas 268.0 kJ mol-1 is needed for the dissociation of one of the C-S single bonds. To cleave one of the SS bonds of the corresponding trisulfide (TMTT) requires 191.1 kJ mol-1. Me2NCS2* is a particularly stable sulfur radical as reflected in the low S-H bond dissociation enthalpy of the corresponding acid Me2NC(=S)SH (301.7 kJ mol-1). Me2NCS2* (2B2) is a sigma radical characterized by the unpaired spin density shared equally between the two sulfur atoms and by a 4-center (NCS2) delocalized pi system. The ESR g-tensors of the radicals Me2NCSn* (n = 1-3) have been calculated. Both TMTD and the mentioned radicals form stable chelate complexes with a Li+ cation, which here serves as a model for the zinc ions used in accelerated rubber vulcanization. Although the binding energy of the complex [Li(TMTD)]+ is larger than that of the isomeric species [Li(S2CNMe2)2]+ (12), the dissociation enthalpy of TMTD as a ligand is smaller (125.5 kJ mol-1) than that of free TMTD. In other words, the homolytic dissociation of the SS bonds of TMTD is facilitated by the presence of Li+ ions. The sulfurization of TMTD in the presence of Li+ to give the paramagnetic complex [Li(S3CNMe2)2]+ is strongly exothermic. These results suggest that TMTD reacts with naked zinc ions as well as with the surface atoms of solid zinc oxide particles in an analogous manner producing highly reactive complexes, which probably initiate the crosslinking process during vulcanization reactions of natural or synthetic rubber accelerated by TMTD/ZnO. PMID:17137356

  10. [Catheter ablation of atrial fibrillation: Health Technology Assessment Report from the Italian Association of Arrhythmology and Cardiac Pacing (AIAC)].


    Themistoclakis, Sakis; Tritto, Massimo; Bertaglia, Emanuele; Berto, Patrizia; Bongiorni, Maria Grazia; Catanzariti, Domenico; De Fabrizio, Giuseppe; De Ponti, Roberto; Grimaldi, Massimo; Pandozi, Claudio; Tondo, Claudio; Gulizia, Michele


    Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and significantly impact patients' quality of life, morbidity and mortality. The number of affected patients is expected to increase as well as the costs associated with AF management, mainly driven by hospitalizations. Over the last decade, catheter ablation techniques targeting pulmonary vein isolation have demonstrated to be effective in treating AF and preventing AF recurrence. This Health Technology Assessment report of the Italian Association of Arrhythmology and Cardiac Pacing (AIAC) aims to define the current role of catheter ablation of AF in terms of effectiveness, efficiency and appropriateness. On the basis of an extensive review of the available literature, this report provides (i) an overview of the epidemiology, clinical impact and socio-economic burden of AF; (ii) an evaluation of therapeutic options other than catheter ablation of AF; and (iii) a detailed presentation of clinical outcomes and cost-benefit ratio associated with catheter ablation. The costs of catheter ablation of AF in Italy were obtained using a bottom-up analysis of a resource utilization survey of 52 hospitals that were considered a representative sample, including 4 Centers that contributed with additional unit cost information in a separate questionnaire. An analysis of budget impact was also performed to evaluate the impact of ablation on the management costs of AF. Results of this analysis show that (1) catheter ablation is effective, safe and superior to antiarrhythmic drug therapy in maintaining sinus rhythm; (2) the cost of an ablation procedure in Italy typically ranges from €8868 to €9455, though current reimbursement remains insufficient, covering only about 60% of the costs; (3) the costs of follow-up are modest (about 8% of total costs); (4) assuming an adjustment of reimbursement to the real cost of an ablation procedure and a 5-10% increase in the annual rate of ablation procedures, after

  11. A series of 2D metal-quinolone complexes: Syntheses, structures, and physical properties

    SciTech Connect

    He, Jiang-Hong; Xiao, Dong-Rong; Chen, Hai-Yan; Sun, Dian-Zhen; Yan, Shi-Wei; Wang, Xin; Ye, Zhong-Li; Luo, Qun-Li; Wang, En-Bo


    Six novel 2D metal-quinolone complexes, namely [Cd(cfH)(bpdc)]{center_dot}H{sub 2}O (1), [M(norfH)(bpdc)]{center_dot}H{sub 2}O (M=Cd (2) and Mn (3)), [Mn{sub 2}(cfH)(odpa)(H{sub 2}O){sub 3}]{center_dot}0.5H{sub 2}O (4), [Co{sub 2}(norfH)(bpta)({mu}{sub 2}-H{sub 2}O)(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O (5) and [Co{sub 3}(saraH){sub 2}(Hbpta){sub 2}(H{sub 2}O){sub 4}]{center_dot}9H{sub 2}O (6) (cfH=ciprofloxacin, norfH=norfloxacin, saraH=sarafloxacin, bpdc=4,4 Prime -biphenyldicarboxylate, odpa=4,4 Prime -oxydiphthalate, bpta=3,3 Prime ,4,4 Prime -biphenyltetracarboxylate) have been synthesized and characterized. Compounds 1-3 consist of 2D arm-shaped layers based on the 1D {l_brace}M(COO){r_brace}{sub n}{sup n+} chains. Compounds 4 and 5 display 2D structures based on tetranuclear manganese or cobalt clusters with (3,6)-connected kgd topology. Compound 6 exhibits a 2D bilayer structure, which represents the first example of metal-quinolone complexes with 2D bilayer structure. By inspection of the structures of 1-6, it is believed that the long aromatic polycarboxylate ligands are important for the formation of 2D metal-quinolone complexes. The magnetic properties of compounds 3-6 was studied, indicating the existence of antiferromagnetic interactions. Furthermore, the luminescent properties of compounds 1-2 are discussed. - Graphical abstract: Six novel 2D metal-quinolone complexes have been prepared by self-assemblies of the quinolones and metal salts in the presence of long aromatic polycarboxylates. Highlights: Black-Right-Pointing-Pointer Compounds 1-3 consist of novel 2D arm-shaped layers based on the 1D {l_brace}M(COO){r_brace}{sub n}{sup n+} chains. Black-Right-Pointing-Pointer Compounds 4 and 5 are two novel 2D layers based on tetranuclear Mn or Co clusters with kgd topology. Black-Right-Pointing-Pointer Compound 6 is the first example of metal-quinolone complexes with 2D bilayer structure. Black-Right-Pointing-Pointer Compounds 1-6 represent six unusual

  12. Chemical and Mineralogical Characterization of Arsenic, Lead, Chromium, and Cadmium in a Metal-contaminated Histosol

    SciTech Connect

    Gao, X.; Schulze, D


    The chemical and mineralogical forms of As, Pb, Cr, and Cd were studied in a metal-contaminated organic soil (Histosol) that received runoff and seepage water from a site that was once occupied by a lead smelter. Soil samples were collected from different depth intervals during both wet and dry seasons and analyzed using bulk powder X-ray diffraction (XRD), synchrotron-based micro X-ray diffraction ({mu}-XRD), and micro X-ray fluorescence ({mu}-SXRF) spectroscopy. There was a clear pattern of mineral distribution with depth that indicated the presence of an intense redox gradient. The oxidized reddish brown surface layer (0-10 cm) was dominated by goethite ({alpha}-FeOOH) and poorly crystalline akaganeite ({beta}-FeOOH). Lead and arsenic were highly associated with these Fe oxides, possibly by forming inner-sphere surface complexes. Gypsum (CaSO{sub 4} {center_dot} 2H{sub 2}O) was abundant in the layer as well, particularly for samples collected during dry periods. Fe(II)-containing minerals, such as magnetite (Fe{sub 3}O{sub 4}) and siderite (FeCO{sub 3}), were identified in the intermediate layers (10-30 cm) where the reductive dissolution of Fe(III) oxides occurred. A number of high-temperature minerals, such as mullite (3Al{sub 2}O{sub 3} {center_dot} 2Si{sub 2}O), corundum ({alpha}-Al{sub 2}O{sub 3}), hematite ({alpha}-Fe{sub 2}O{sub 3}), and wustite (FeO) were identified in the subsurface and they probably formed as a result of a burning event. Several sulfide minerals were identified in the most reduced layers at depths > 30 cm. They included realgar (AsS), alacranite (As{sub 4}S{sub 4}), galena (PbS), and sphalerite (Zn, Fe{sup 2+})S, and a series of Fe sulfides, including greigite (Fe{sup 2+}Fe{sub 2}{sup 3+} S{sub 4}), pyrrhotite (Fe{sub 1-x}S), mackinawite (FeS), marcasite (FeS{sub 2}), and pyrite (FeS{sub 2}). Most of these minerals occurred as almost pure phases in sub-millimeter aggregates and appeared to be secondary phases that had precipitated from

  13. Versatility of Y-family Sulfolobus solfataricus DNA Polymerase Dpo4 in Translesion Synthesis Past Bulky N[superscript 2]-Alkylguanine Adducts

    SciTech Connect

    Zhang, Huidong; Eoff, Robert L.; Kozekov, Ivan D.; Rizzo, Carmelo J.; Egli, Martin; Guengerich, F. Peter


    In contrast to replicative DNA polymerases, Sulfolobus solfataricus Dpo4 showed a limited decrease in catalytic efficiency (k{sub cat}/K{sub m}) for insertion of dCTP opposite a series of N{sup 2}-alkylguanine templates of increasing size from (methyl (Me) to (9-anthracenyl)-Me (Anth)). Fidelity was maintained with increasing size up to (2-naphthyl)-Me (Naph). The catalytic efficiency increased slightly going from the N{sup 2}-NaphG to the N{sup 2}-AnthG substrate, at the cost of fidelity. Pre-steady-state kinetic bursts were observed for dCTP incorporation throughout the series (N{sup 2}-MeG to N{sup 2}-AnthG), with a decrease in the burst amplitude and k{sub pol}, the rate of single-turnover incorporation. The pre-steady-state kinetic courses with G and all of the six N{sup 2}-alkyl G adducts could be fit to a general DNA polymerase scheme to which was added an inactive complex in equilibrium with the active ternary Dpo4 {center_dot} DNA {center_dot} dNTP complex, and only the rates of equilibrium with the inactive complex and phosphodiester bond formation were altered. Two crystal structures of Dpo4 with a template N{sup 2}-NaphG (in a post-insertion register opposite a 3'-terminal C in the primer) were solved. One showed N{sup 2}-NaphG in a syn conformation, with the naphthyl group located between the template and the Dpo4 'little finger' domain. The Hoogsteen face was within hydrogen bonding distance of the N4 atoms of the cytosine opposite N{sup 2}-NaphG and the cytosine at the -2 position. The second structure showed N{sup 2}-Naph G in an anti conformation with the primer terminus largely disordered. Collectively these results explain the versatility of Dpo4 in bypassing bulky G lesions.

  14. Source Signatures of Fine Particulate Matter from Petroleum Refining and Fuel Use

    SciTech Connect

    Gerald P. Huffman; Frank E. Huggins; Naresh Shah; Robert Huggins


    Combustion experiments were carried out on four different residual fuel oils in a 732 kW boiler. Particulate matter (PM) emission samples were separated aerodynamically by a cyclone into fractions that were nominally less than and greater than 2.5 microns in diameter. However, examination of several of the samples by computer-controlled scanning electron microscopy (CCSEM) revealed that part of the <2.5 micron fraction (PM{sub 2.5}) in fact consists of carbonaceous cenospheres and vesicular particles that range up to 10 microns in diameter. X-ray absorption fine structure (XAFS) spectroscopy data were obtained at the S, V, Ni, Fe, Cu, Zn, and As Kedges, and at the Pb L-edge. Deconvolution of the x-ray absorption near edge structure (XANES) region of the S spectra established that the dominant molecular forms of S present were sulfate (26-84% of total S) and thiophene (13-39% of total S). Sulfate was greater in the PM{sub 2.5} samples than in the >2.5 micron samples (PM{sub 2.5+}). Inorganic sulfides and elemental sulfur were present in lower percentages. The Ni XANES spectra from all of the samples agree fairly well with that of NiSO4, while most of the V spectra closely resemble that of vanadyl sulfate (VO{center_dot}SO{sub 4}{center_dot}xH{sub 2}O). The other metals investigated (Fe, Cu, Zn, and Pb) were also present predominantly as sulfates. Arsenic is present as an arsenate (As{sup +5}). X-ray diffraction patterns of the PM{sub 2.5} fraction exhibit sharp lines due to sulfate compounds (Zn, V, Ni, Ca, etc.) superimposed on broad peaks due to amorphous carbons. All of the samples contain a significant organic component, with the LOI ranging from 64 to 87 % for the PM{sub 2.5} fraction and from 88 to 97% for the PM{sub 2.5+} fraction. {sup 13}C nuclear magnetic resonance (NMR) analysis indicates that the carbon is predominantly condensed in graphitic structures. Aliphatic structure was detected in only one of seven samples examined.

  15. Homolytic dissociation of the vulcanization accelerator tetramethylthiuram disulfide (TMTD) and structures and stabilities of the related radicals Me2NCSn* (n = 1-4).


    Steudel, Ralf; Steudel, Yana; Mak, Adrian Matthew; Wong, Ming Wah


    The homolytic dissociation of the important vulcanization accelerator tetramethylthiuram disulfide (TMTD) has been studied by ab initio calculations according to the G3X(MP2) and G3X(MP2)-RAD theories. Homolytic cleavage of the SS bond requires a low enthalpy of 150.0 kJ mol-1, whereas 268.0 kJ mol-1 is needed for the dissociation of one of the C-S single bonds. To cleave one of the SS bonds of the corresponding trisulfide (TMTT) requires 191.1 kJ mol-1. Me2NCS2* is a particularly stable sulfur radical as reflected in the low S-H bond dissociation enthalpy of the corresponding acid Me2NC(=S)SH (301.7 kJ mol-1). Me2NCS2* (2B2) is a sigma radical characterized by the unpaired spin density shared equally between the two sulfur atoms and by a 4-center (NCS2) delocalized pi system. The ESR g-tensors of the radicals Me2NCSn* (n = 1-3) have been calculated. Both TMTD and the mentioned radicals form stable chelate complexes with a Li+ cation, which here serves as a model for the zinc ions used in accelerated rubber vulcanization. Although the binding energy of the complex [Li(TMTD)]+ is larger than that of the isomeric species [Li(S2CNMe2)2]+ (12), the dissociation enthalpy of TMTD as a ligand is smaller (125.5 kJ mol-1) than that of free TMTD. In other words, the homolytic dissociation of the SS bonds of TMTD is facilitated by the presence of Li+ ions. The sulfurization of TMTD in the presence of Li+ to give the paramagnetic complex [Li(S3CNMe2)2]+ is strongly exothermic. These results suggest that TMTD reacts with naked zinc ions as well as with the surface atoms of solid zinc oxide particles in an analogous manner producing highly reactive complexes, which probably initiate the crosslinking process during vulcanization reactions of natural or synthetic rubber accelerated by TMTD/ZnO.

  16. FY04 Engineering Technology Reports Laboratory Directed Research and Development

    SciTech Connect

    Sharpe, R M


    areas. Their LDRD projects are the key resources to attain this competency, and, as such, nearly all of Engineering's portfolio falls under one of the five Centers. The Centers and their Directors are: (1) Center for Computational Engineering: Robert M. Sharpe; (2) Center for Microtechnology and Nanotechnology: Raymond P. Mariella, Jr.; (3) Center for Nondestructive Characterization: Harry E. Martz, Jr.; (4) Center for Precision Engineering: Keith Carlisle; and (5) Center for Complex Distributed Systems: Gregory J. Suski, Acting Director.

  17. Hydrothermal syntheses, crystal structures and luminescence properties of zinc(II) and cadmium(II) coordination polymers based on bifunctional 3,2 Prime :6 Prime ,3 Prime Prime -terpyridine-4 Prime -carboxylic acid

    SciTech Connect

    Li, Na; Guo, Hui-Lin; Hu, Huai-Ming; Song, Juan; Xu, Bing; Yang, Meng-Lin; Dong, Fa-Xin; Xue, Gang-Lin


    Five new coordination polymers, [Zn{sub 2}(ctpy){sub 2}Cl{sub 2}]{sub n} (1), [Zn{sub 2}(ctpy){sub 2}(ox)(H{sub 2}O){sub 2}]{sub n} (2), [Zn{sub 2}(ctpy)(3-btc)(H{sub 2}O)]{sub n}{center_dot}0.5nH{sub 2}O (3), [Cd(ctpy){sub 2}(H{sub 2}O)]{sub n} (4), [Cd{sub 4}(ctpy){sub 2}(2-btc){sub 2}(H{sub 2}O){sub 2}]{sub n}{center_dot}2nH{sub 2}O (5), (Hctpy=3,2 Prime :6 Prime ,3 Prime Prime -terpyridine-4 Prime -carboxylic acid, H{sub 2}ox=oxalic acid, H{sub 3}(3-btc)=1,3,5-benzenetricarboxylic acid, H{sub 3}(2-btc)=1,2,4-benzenetricarboxylic acid) have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR spectroscopy, and single-crystal X-ray diffraction. Compounds 1-2 are a one-dimensional chain with weak interactions to form 3D supramolecular structures. Compound 3 is a 4-nodal 3D topology framework comprised of binuclear zinc units and (ctpy){sup -} anions. Compound 4 shows two dimensional net. Compound 5 is a (4,5,6)-connected framework with {l_brace}4{sup 4}{center_dot}6{sup 2}{r_brace}{l_brace}4{sup 6}{center_dot}6{sup 4}{r_brace}{sub 2}{l_brace}4{sup 9}{center_dot}6{sup 6}{r_brace} topology. In addition, the thermal stabilities and photoluminescence properties of 1-5 were also studied in the solid state. - Graphical abstract: Five new Zn/Cd compounds with 3,2 Prime :6 Prime ,3 Prime Prime -terpyridine-4 Prime -carboxylic acid were prepared. The photoluminescence and thermal stabilities properties of 1-5 were investigated in the solid state. Highlights: Black-Right-Pointing-Pointer Five new zinc/cadmium metal-organic frameworks have been hydrothermal synthesized. Black-Right-Pointing-Pointer The structural variation is attributed to the diverse metal ions and auxiliary ligand. Black-Right-Pointing-Pointer Compounds 1-5 exhibit 1D ring chain, 2D layer and 3D open-framework, respectively. Black-Right-Pointing-Pointer These compounds exhibit strong solid state luminescence emission at room temperature.

  18. Novel Potent Hepatitis C Virus NS3 Serine Protease Inhibitors Derived from Proline-Based Macrocycles

    SciTech Connect

    Chen, Kevin X.; Njoroge, F. George; Arasappan, Ashok; Venkatraman, Srikanth; Vibulbhan, Bancha; Yang, Weiying; Parekh, Tejal N.; Pichardo, John; Prongay, Andrew; Cheng, Kuo-Chi; Butkiewicz, Nancy; Yao, Nanhua; Madison, Vincent; Girijavallabhan, Viyyoor


    The hepatitis C virus (HCV) NS3 protease is essential for viral replication. It has been a target of choice for intensive drug discovery research. On the basis of an active pentapeptide inhibitor, 1, we envisioned that macrocyclization from the P2 proline to P3 capping could enhance binding to the backbone Ala156 residue and the S4 pocket. Thus, a number of P2 proline-based macrocyclic {alpha}-ketoamide inhibitors were prepared and investigated in an HCV NS3 serine protease continuous assay (K*{sub i}). The biological activity varied substantially depending on factors such as the ring size, number of amino acid residues, number of methyl substituents, type of heteroatom in the linker, P3 residue, and configuration at the proline C-4 center. The pentapeptide inhibitors were very potent, with the C-terminal acids and amides being the most active ones (24, K*{sub i} = 8 nM). The tetrapeptides and tripeptides were less potent. Sixteen- and seventeen-membered macrocyclic compounds were equally potent, while fifteen-membered analogues were slightly less active. gem-Dimethyl substituents at the linker improved the potency of all inhibitors (the best compound was 45, K*{sub i} = 6 nM). The combination of tert-leucine at P3 and dimethyl substituents at the linker in compound 47 realized a selectivity of 307 against human neutrophil elastase. Compound 45 had an IC{sub 50} of 130 nM in a cellular replicon assay, while IC{sub 50} for 24 was 400 nM. Several compounds had excellent subcutaneous AUC and bioavailability in rats. Although tripeptide compound 40 was 97% orally bioavailable, larger pentapeptides generally had low oral bioavailability. The X-ray crystal structure of compounds 24 and 45 bound to the protease demonstrated the close interaction of the macrocycle with the Ala156 methyl group and S4 pocket. The strategy of macrocyclization has been proved to be successful in improving potency (>20-fold greater than that of 1) and in structural depeptization.

  19. Synthesis, electrochemistry, and spectroscopic properties of six-coordinate monooxomolybdenum(VI) complexes containing tridentate Schiff base and bidentate catecholate ligands. Crystal and molecular structure of (N-salicylidene-2-aminophenolato)(naphthalene-2,3-diolato)oxomolybdenum(VI)

    SciTech Connect

    Mondal, J.U.; Schultz, F.A.; Brennan, T.D.; Scheidt, W.R.


    Six-coordinate monooxomolybdenum(VI) complexes, MoO(cat)(Sap), where Sap/sup 2 -/ = the Schiff base dianion N-salicylidene-2-aminophenolate and cat/sup 2 -/ = catecholate Cat/sup 2 -/, naphthalene-2,3-diolate (Naphcat/sup 2 -/), or 3,5-di-tert-butylcatecholate (DTBcat/sup 2 -/), are prepared by reacting the Mo(VI) dimer. (MoO/sub 2/(Sap))/sub 2/, with the appropriate catechol. The products are characterized by cyclic voltammetry, mass spectrometry, and uv/vis, ir, and /sup 95/Mo NMR spectroscopy. The MoO(cat)(Sap) complexes represent the first examples of a mononuclear MoO/sup 4 +/ center with a coordination number of six. The crystal structure of the MoO-(Naphcat)(Sap) derivative is reported, confirming the six-coordinate, distorted octahedrla environment about Mo(VI). Bond angles in the coordination group deviate from the ideal value of 90/degrees/ as a consequence of the ligand bite constraints and because all four O-Mo-O angles involving the terminal oxo ligand are larger than the ideal 90/degrees/ value. MoO(cat)(Sap) complexes undergo reversible one-electronic reduction at -0.5 to -0.7 V versus Fc /sup +/0/ followed by irreversible one-electron reduction at -1.6 to -1.9 V. Reversible MoO/sup 4 +//MoO/sup 3 +/ electrochemistry is attributed to the fact that the Mo d/sub xy/orbital of MoO(cat)(Sap) can be singly occupied upon reduction to Mo(V) without unfavorable interaction with the four bonds in its equatorial plane. This contrasts with the irreversible electrochemical behavior of seven-coordinate MoO/sup 4 +/ complexes, which contain five such bonds. The /sup 95/Mo NMR chemical shift of MoO(Naphcat)(Sap) is +385 ppM versus external molybdate; this value is highly deshielded with respect to seven-coordinate MoO/sup 4 +/ and six-coordinate MoO/sub 2//sup 2 +/ complexes with O and N donors. 35 references, 4 figures, 5 tables.

  20. Planar CoB18- Cluster: a New Motif for - and Metallo-Borophenes

    NASA Astrophysics Data System (ADS)

    Chen, Teng-Teng; Jian, Tian; Lopez, Gary; Li, Wan-Lu; Chen, Xin; Li, Jun; Wang, Lai-Sheng


    Combined Photoelectron Spectroscopy (PES) and theoretical calculations have found that anion boron clusters (Bn-) are planar and quasi-planar up to B25-. Recent works show that anion pure boron clusters continued to be planar at B27-,B30-,B35- and B36-. B35- and B36- provide the first experimental evidence for the viability of the two-dimensional (2D) boron sheets (Borophene). The 2D to three-dimensional (3D) transitions are shown to happen at B40-,B39- and B28-, which possess cage-like structures. These fullerene-like boron cage clusters are named as Borospherene. Recently, borophenes or similar structures are claimed to be synthesized by several groups. Following an electronic design principle, a series of transition-metal-doped boron clusters (M©Bn-, n=8-10) are found to possess the monocyclic wheel structures. Meanwhile, CoB12- and RhB12- are revealed to adopt half-sandwich-type structures with the quasi-planar B12 moiety similar to the B12- cluster. Very lately, we show that the CoB16- cluster possesses a highly symmetric Cobalt-centered drum-like structure, with a new record of coordination number at 16. Here we report the CoB18- cluster to possess a unique planar structure, in which the Co atom is doped into the network of a planar boron cluster. PES reveals that the CoB18- cluster is a highly stable electronic system with the first adiabatic detachment energy (ADE) at 4.0 eV. Global minimum searches along with high-level quantum calculations show the global minimum for CoB18- is perfectly planar and closed shell (1A1) with C2v symmetry. The Co atom is bonded with 7 boron atoms in the closest coordination shell and the other 11 boron atoms in the outer coordination shell. The calculated vertical detachment energy (VDE) values match quite well with our experimental results. Chemical bonding analysis by the Adaptive Natural Density Partitioning (AdNDP) method shows the CoB18- cluster is π-aromatic with four 4-centered-2-electron (4c-2e) π bonds and one 19

  1. Barium uranyl diphosphonates

    SciTech Connect

    Nelson, Anna-Gay D.; Alekseev, Evgeny V.; Ewing, Rodney C.; Albrecht-Schmitt, Thomas E.


    Three Ba{sup 2+}/UO{sub 2}{sup 2+} methylenediphosphonates have been prepared from mild hydrothermal treatment of uranium trioxide, methylendiphosphonic acid (C1P2) with barium hydroxide octahydrate, barium iodate monohydrate, and small aliquots of HF at 200 Degree-Sign C. These compounds, Ba[UO{sub 2}[CH{sub 2}(PO{sub 3}){sub 2}]{center_dot}1.4H{sub 2}O (Ba-1), Ba{sub 3}[(UO{sub 2}){sub 4}(CH{sub 2}(PO{sub 3}){sub 2}){sub 2}F{sub 6}]{center_dot}6H{sub 2}O (Ba-2), and Ba{sub 2}[(UO{sub 2}){sub 2}(CH{sub 2}(PO{sub 3}){sub 2})F{sub 4}]{center_dot}5.75H{sub 2}O (Ba-3) all adopt layered structures based upon linear uranyl groups and disphosphonate molecules. Ba-2 and Ba-3 are similar in that they both have UO{sub 5}F{sub 2} pentagonal bipyramids that are bridged and chelated by the diphosphonate moiety into a two-dimensional zigzag anionic sheet (Ba-2) and a one-dimensional ribbon anionic chain (Ba-3). Ba-1, has a single crystallographically unique uranium metal center where the C1P2 ligand solely bridges to form [UO{sub 2}[CH{sub 2}(PO{sub 3}){sub 2}]{sup 2-} sheets. The interlayer space of the structures is occupied by Ba{sup 2+}, which, along with the fluoride ion, mediates the structure formed and maintains overall charge balance. - Graphical abstract: Illustration of the stacking of the layers in Ba{sub 3}[(UO{sub 2}){sub 4}(CH{sub 2}(PO{sub 3}){sub 2}){sub 2})F{sub 6}]{center_dot}6H{sub 2}O viewed along the c-axis. The structure is constructed from UO{sub 7} pentagonal bipyramidal units, U(1)O{sub 7}=gray, U(2)O{sub 7}=yellow, barium=blue, phosphorus=magenta, fluorine=green, oxygen=red, carbon=black, and hydrogen=light peach. Highlights: Black-Right-Pointing-Pointer The polymerization of the UO{sub 2}{sup 2+} sites to form uranyl dimers leads to structural variations in compounds. Black-Right-Pointing-Pointer Barium cations stitch uranyl diphosphonate anionic layers together, and help mediate structure formation. Black-Right-Pointing-Pointer HF acts as both a

  2. Hydrothermal syntheses, structures and characterizations of two luminescent cadmium(II) complexes with p-xylenediphosphonic acid and N-donor ligands

    SciTech Connect

    Sun Yanqiong; Hu Jin; Zhang Hanhui; Chen Yiping


    Two novel cadmium diphosphonates [Cd(cis-H{sub 4}BDPP)(2,2 Prime -bipy){sub 2}]{center_dot}(trans-H{sub 2}BDPP)]{sub n} (1) and [Cd(trans-H{sub 2}BDPP)(phen)]{sub n} (2) (H{sub 4}BDPP=p-xylenediphosphonic acid, phen=1,10-phenanthroline, 2,2 Prime -bipy=2,2 Prime -bipyridine) were hydrothermally synthesized from p-xylenediphosphonic acid and CdSO{sub 4}{center_dot}3H{sub 2}O with phen or 2,2 Prime -bipy as second ligand components and characterized by means of elemental analyses, IR, TG analysis, luminescence spectroscopy and single crystal X-ray diffraction. Compound 1 consists of a novel one-dimensional (1D) sinusoidal [Cd(cis-H{sub 4}BDPP)(2,2 Prime -bipy){sub 2}] chains and trans-H{sub 2}BDPP anions. Compound 2 possesses a three-dimensional architecture built from double zigzag -Cd-O-P-O-Cd- chains pillared by trans-p-xylylenediphosphonate ligands from four different directions. There are hexagonal channels running along the c-axis and the coordinated phen ligands suspend in the hexagonal channels. The results indicate that p-xylenediphosphonic acid can adopt varied coordination modes and conformations in the formation of the complexes and the influence of the N-donor ligands on the structure of the complexes is discussed. - Graphical abstract: Two new cadmium diphosphonates were obtained by using two different auxiliary ligands. The influence of the N-donor ligands on the structure of the complexes is discussed. Highlights: Black-Right-Pointing-Pointer The first example of cadmium(II)-p-xylenediphosphonates templated by second ligand. Black-Right-Pointing-Pointer The role of size of the auxiliary ligand on the structure of cadmium p-xylenediphosphonates. Black-Right-Pointing-Pointer The cis and trans configurations of p-xylenediphosphonates exist in the same crystal structure. Black-Right-Pointing-Pointer Three-dimensional 4-connected framework with PtS network topology.

  3. Synthesis, characterization, and reactivity of sulfided hexanuclear molybdenum cluster compounds

    SciTech Connect

    Spink, D.


    Hexanuclear molybdenum clusters with mixed chloride and sulfide bridging ligands were prepared by reacting {alpha}-MoCl{sub 2} with sodium hydrosulfide in the presence of sodium butoxide. The resulting species, Mo{sub 6}Cl{sub (8-x)}S{sub x}{center dot}npy(x {congruent} 3.6, n {congruent} 4, py = pyridine), was pyrophoric and insoluble. The mixed sulfide chloride cluster species Mo{sub 6}S{sub 4}Cl{sub 4}{center dot}6OPEt{sub 3} and Mo{sub 6}S{sub {approximately}5}Cl{sub {approximately}3}{center dot}6PEt{sub 3} and Mo{sub 6}S{sub 8}{center dot}6PEt{sub 3} were isolated and characterized. Phosphorus-31 nuclear magnetic resonance, electron paramagnetic resonance, and UV/visible spectra were obtained for each fraction. The completely sulfided cluster, Mo{sub 6}S{sub 8}{center dot}6PEt{sub 3}, was prepared similarly and used in various experiments as a possible precursor to Chevrel phase materials of the type Mo{sub 6}S{sub 8}or M{sub n}Mo{sub 6}S{sub 8}. With the goal of removing all of the triethylphosphine ligands, Mo{sub 6}S{sub 8}{center dot}6PEt{sub 3} was reacted with the transition metal carbonyls molybdenum hexacarbonyl and dicobalt octacarbonyl. Reaction on the molecular sulfide cluster with copper(I) chloride in toluene gave a completely insoluble product. The reaction of Mo{sub 6}S{sub 8}{center dot}6PEt{sub 3} with propylene sulfide gave a product whose infrared spectra showed only very weak peaks associated with coordinated triethylphosphine. The elemental analysis of this product fit the formula Mo{sub 6}S{sub 8}{center dot}5SPEt{sub 3}. Reactivity of the outer ligands of the Mo{sub 6}S{sub 8}{center dot}npy and Mo{sub 6}S{sub 8}{center dot}(6{minus}x)PrNH{sub x} clusters were investigated. Crystalline Mo{sub 6}S{sub 8}{center dot}6THT was recovered from the reaction of the n-propylamine derivative with THT. A crystal structure determination was done. 87 refs., 12 fig., 15 tabs.

  4. Nurnet- A case of crowdsourcing for geographic knowledge production.

    NASA Astrophysics Data System (ADS)

    Spanu, Valentina; Demontis, Roberto; Lorrai, Eva; Muscas, Laura


    Nurnet - The net of the Nuraghes ( is a Foundation of Participation aiming to promote the culture of the Pre-Nuragical (3200-2700 BC) and Nuragical period (up to the 2nd century AD) in the island of Sardinia (Italy). It is fed by a net of conventional social connections or through social web- networks empowered by private citizens, agents and public administrations sharing the same goals and interests. CRS4 (Center for Advanced Studies, Research and Development in Sardinia), in collaboration with Nurnet Foundation, developed a geoportal ( on the web, at the moment as a beta version, enable the users to access and share information. The application is based on Geographic Information System (GIS) and Participatory Geographic Information System (PGIS) and it manages several types of information like archaeological sites, artifacts and museum information. Such information comes from the users of the portal and from other sources that make the data available, according to the "open data" philosophy: free data accessible to anyone. The users are encouraged to generate and manage information of archaeological sites in the Italian island of Sardinia about location, history, preservation of the archaeological patrimony, pictures and videos to enrich a wide geo-database pertaining the big heritage of this region in every place there are nuraghes, dolmens domus de janas, menhirs, villages and sacred pits. A specific data model has been created, the geo-attribute is in WGS84 and it can be a point, a line or a polygon. There are three types of actors: viewers, editors and validators. The viewer can query data with a map or a form; the editor can insert and update data through maps using Google or Open Street Map as base layer; the validators are the experts working behind the geoportal: they evaluate and validate the data quality (archaeologists for example). To implement the geoportal, open source software has been used and

  5. Manufacture of ammonium sulfate fertilizer from FGD-gypsum. Quarterly report, 1 December 1994--28 February 1995

    SciTech Connect

    Chou, M.I.M.; Rostam-Abadi, M.; Lytle, J.M.; Bruinius, J.A.; Hoeft, R.; Dewey, S.; Achorn, F.


    The overall goal of this project is to assess the technical and economic feasibility for producing feasibility-grade ammonium sulfate from gypsum produced as part of limestone flue gas desulfurization (FGD) processes. This is a cooperative effort among the ISGS, the UIUC, AlliedSignal, SE-ME, Henry Fertilizer, Illinois Power Co. (IP), and Central Illinois Public Services (CIPS). Bench-scale experiments will be conducted to obtain process engineering data for the manufacture of ammonium sulfate from FGD-gypsum and to help evaluate technical and economic feasibility of the process. Controlled greenhouse experiments will be conducted at UIUC to evaluate the chemical impact of coal-derived impurities in ammonium sulfate produced from FGD-gypsum on soil properties. A process flow sheet will be proposed and market demand for the products will be established. An engineering team at IP will provide an independent review of the economics of the process. AlliedSignal will be involved in testing and quality evaluation of ammonium sulfate samples and is interested in an agreement to market the finished product. CIPS will provide technical assistance and samples of FGD -gypsum for the project. In this quarter, with an exception of the neutron activation analysis, analyses of FGD-gypsum samples that were generated by two power stations were completed. The high quality FGD-gypsum sample produced from the Abbott power plant in Champaign, IL was 98.36% gypsum, CaSO{sub 4}{center_dot}2H{sub 2}O, and less than 0.01% calcium`` sulfite, CaSO{sub 3}. The low quality sample from CIPS`s Newton Power Plant at Jasper, Illinois, was only 7.36% of gypsum. It was 87.54% calcium sulfite. A literature search provided the information to set up a batch, bench-scale reactor system. Reactions were conducted at 70{degrees}C for a range of times which resulted in 82% conversion of calcium sulfate to ammonium sulfate.

  6. Reaction of H{sub 2} and H{sub 2}S with CoMoO{sub 4} and NiMoO{sub 4}: TPR, XANES, time-resolved XRD, and molecular-orbital studies

    SciTech Connect

    Rodriguez, J.A.; Chaturvedi, S.; Hanson, J.C.; Brito, J.L.


    The combination of two metals in an oxide matrix can produce materials with novel physical and chemical properties. The reactivity of a series of cobalt and nickel molybdates ({alpha}-AMoO{sub 4}, {beta}-AMoO{sub 4}, and AmoO{sub 4}{center_dot}nH{sub 2}O; A = Co or Ni) toward H{sub 2} and H{sub 2}S was examined using temperature programmed reduction (TPR), synchrotron-based X-ray powder diffraction (XRD), and X-ray absorption near-edge-spectroscopy (XANES). In general, the cobalt and nickel molybdates are more reactive toward H{sub 2} and easier to reduce than pure molybdenum oxides: MoO{sub 2} < MoO{sub 3} < CoMoO{sub 4} < NiMoO{sub 4}. The interaction of H{sub 2} with surfaces of {alpha}-NiMoO{sub 4}, {alpha}-CoMoO{sub 4}, and {alpha}-MoO{sub 3} was investigated using ab initio SCF calculations and cluster models. The mixed-metal oxides are easier to reduce due to the combination of two factors. First, it is easier to adsorb and dissociate H{sub 2} on Ni or Co sites than on Mo sites of an oxide. And second, as a result of differences in the strength of the metal-oxygen bonds, it is easier to remove oxygen as water from the nickel and cobalt molybdates than from MoO{sub 3} or MoO{sub 2}. The extra reactivity that the Co and Ni atoms provide also makes the rate of sulfidation of the cobalt and nickel molybdates faster than that of pure molybdenum oxides. For the adsorption of H{sub 2}S, HS, and S on {alpha}-NiMoO{sub 4} and {alpha}-MoO{sub 3} clusters, the results of ab initio SCF calculations show bigger bonding energies on the Ni sites than on the Mo sites. In these systems, the oxidation state of the Ni atoms is substantially lower (i.e., larger electron density) than that of the Mo atoms, favoring the formation of Ni {r_arrow} SH and Ni {r_arrow} S dative bonds. Results of time-resolved XRD and XANES indicate that the reduced AMoO{sub 4} compounds can be regenerated by reaction with O{sub 2} at high temperatures (350--450 C). A similar procedure (S{sub a} + O

  7. Tungsten(VI) hexahydride complexes supported by chelating triphosphine ligands: Protonation to give [eta][sup 2]-dihydrogen complexes and catalytic dehydrogenation of cyclooctane to cyclooctene

    SciTech Connect

    Michos, D.; Xiaoliang Luo; Faller, J.W.; Crabtree, R.H. )


    Reactions of WCl[sub 4](PPh[sub 3])[sub 2][center dot]CH[sub 2]Cl[sub 2] with the chelating triphosphine (triphos) ligands PPh(CH[sub 2]CH[sub 2]PPh[sub 2])[sub 2] (PP[sub 2]), PPh(C[sub 6]H[sub 4]-o-PPh[sub 2])[sub 2] (TP), and MeC(CH[sub 2]PPh[sub 2])[sub 3] (P[sub 3]) in refluxing benzene or toluene give WCl[sub 4](triphos) (triphos = PP[sub 2] (1), TP (2), (3)). Treat of 1-3 with LiAlH[sub 4] in Et[sub 2]O at room temperature followed by hydrolysis in THF at 0[degrees]C affords WH[sub 6](triphos) (triphos = PP[sub 2] (4), TP (5), P[sub 3] (6)), which are the first tungsten polyhydride complexes supported by a chelating triphosphine ligand. Variable-temperature [sup 1]H NMR spectra and T[sub 1] data of 4-6 are consistent with the formulation of them as classical hexahydride complexes containing no [eta][sup 2]-H[sub 2] ligands. Reaction of 4 with Ph[sub 3]SiH in refluxing THF gives the rare silyl polyhydride complex WH[sub 5](SiPh[sub 3])(PP[sub 2]) (7). Protonation of 4-6 with HBF[sub 4][center dot]OEt[sub 2] in CD[sub 2]Cl[sub 2] at 193 K affords the cationic nonclassical [eta][sup 2]-H[sub 2] complexes [WH[sub 7[minus]2x]([eta][sup 2]-H[sub 2])[sub x](triphos)][sup +] (triphos = PP[sub 2] (8), TP (9), P[sub 3] (10); x = 1-3). Deprotonation of 8-10 with NEt[sub 3] regenerates the parent hexahydrides 4-6 quantitatively. The variable-temperature [sup 1]H NMR T[sub 1] data for the hydride resonances of 8-10 are consistent with the nonclassical [eta][sup 2]-H[sub 2] coordination. In the presence of tert-butylethylene as a hydrogen acceptor, complexes 4 and ReH[sub 5](PP[sub 2]) (11) are active catalysts for the thermal dehydrogenation of cyclooctane to cyclooctene, whereas their analogues containing monodentate phosphine ligands are inactive under similar conditions. 42 refs., 1 fig., 1 tab.

  8. The high-pressure-high-temperature behavior of bassanite

    SciTech Connect

    Comodi, Paola; Nazzareni, Sabrina; Dubrovinsky, Leonid; Merlini, Marco


    The pressure evolution of bassanite (CaSO{sub 4} {center_dot} 1/2 H{sub 2}O) was investigated by synchrotron X-ray powder diffraction along three isotherms: at room temperature up to 33 GPa, at 109 C up to 22 GPa, and at 200 C up to 12 GPa. The room-temperature cell-volume data, from 0.001 to 33 GPa, were fitted to a third-order Birch-Murnaghan equation-of-state, and a bulk modulus K{sub 0} = 86(7) GPa with K' = 2.5(3) was obtained. The axial compressibility values are {beta}{sub a} = 3.7(2), {beta}{sub b} = 3.6(1), and {beta}{sub c} = 2.8(1) GPa{sup -1} (x10{sup -3}) showing a slightly anisotropic behavior, with the least compressible direction along c axis. The strain tensor analysis shows that the main deformation occurs in the (010) plane in a direction 18{sup o} from the a axis. The bulk moduli for isotherms 109 and 200 C, were obtained by fitting cell-volume data with a second-order Birch-Murnaghan equation-of-state, with K' fixed at 4, and were found to be K{sub 109} = 79(4) GPa and K{sub 200} = 63(7) GPa, respectively. The axial compressibility values for isotherm 109 C are {beta}{sub a} = 2.4(1), {beta}{sub b} = 3.0(1), {beta}{sub c} = 2.5(1) (x10{sup -3}) GPa{sup -1}, and for isotherm 200 C they are {beta}{sub a} = 3.5(3), {beta}{sub b} = 3.4(3), {beta}{sub c} = 2.6(4) (x10{sup -3}) GPa{sup -1}. These two bulk moduli and the 20 C bulk modulus, K{sub 0,20} = 69(8) recalculated to a second-order Birch-Murnaghan EoS to be consistent, as well as the axial compressibilities, are similar for the three isotherms indicating that the thermal effect on the bulk moduli is not significant up to 200 C. The size variation of the pseudo-hexagonal channel with pressure and temperature indicates that the sulfate 'host' lattice and the H{sub 2}O 'guest' molecule in bassanite do not undergo strong change up to 33 GPa and 200 C.

  9. FY04 Engineering Technology Reports Technology Base

    SciTech Connect

    Sharpe, R M


    exploration of selected technology areas with high strategic potential, such as assessment of university, laboratory, and industrial partnerships. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, focus and guide longer-term investments within Engineering. The Centers attract and retain top staff, develop and maintain critical core technologies, and enable programs. Through their technology-base projects, they oversee the application of known engineering approaches and techniques to scientific and technical problems. The Centers and their Directors are as follows: (1) Center for Computational Engineering: Robert M. Sharpe; (2) Center for Microtechnology and Nanotechnology: Raymond P. Mariella, Jr. (3) Center for Nondestructive Characterization: Harry E. Martz, Jr.; (4) Center for Precision Engineering: Keith Carlisle; and (5) Center for Complex Distributed Systems: Gregory J. Suski, Acting Director.

  10. Synthesis, structure, and properties of low-spin manganese(III)-poly(pyrazolyl)borate complexes.


    Hossain, Ferdaus; Rigsby, Matthew A; Duncan, Cole T; Milligan, Paul L; Lord, Richard L; Baik, Mu-Hyun; Schultz, Franklin A


    The manganese(III)-bis[poly(pyrazolyl)borate] complexes, Mn(pzb)2SbF6, where pzb- = tetrakis(pyrazolyl)borate (pzTp) (1), hydrotris(pyrazolyl)borate (Tp) (2), or hydrotris(3,5-dimethylpyrazolyl)borate (Tp*) (3), have been synthesized by oxidation of the corresponding Mn(pzb)2 compounds with NOSbF6. The Mn(III) complexes are low-spin in solution and the solid state (microeff = 2.9-3.8 microB). X-ray crystallography confirms their uncommon low-spin character. The close conformity of mean Mn-N distances of 1.974(4), 1.984(5), and 1.996(4) A in 1, 2, and 3, respectively, indicates absence of the characteristic Jahn-Teller distortion of a high-spin d4 center. N-Mn-N bite angles of slightly less than 90 degrees within the facially coordinated pzb- ligands produce a small trigonal distortion and effective D3d symmetry in 1 and 2. These angles increase to 90.0(4)degrees in 3, yielding an almost perfectly octahedral disposition of N donors in Mn(Tp*)2+. Examination of structural data from 23 metal-bis(pzb) complexes reveals systematic changes within the metal-(pyrazolyl)borate framework as the ligand is changed from pzTp to Tp to Tp*. These deformations consist of significant increases in M-N-N, N-B-N, and N-N-B angles and a minimal increase in Mn-N distance as a consequence of the steric demands of the 3-methyl groups. Less effective overlap of pyrazole lone pairs with metal atom orbitals resulting from the M-N-N angular displacement is suggested to contribute to the lower ligand field strength of Tp* complexes. Mn(pzb)2+ complexes undergo electrochemical reduction and oxidation in CH3CN. The electrochemical rate constant (ks,h) for reduction of t2g4 Mn(pzb)2+ to t2g3eg2 Mn(pzb)2 (a coupled electron-transfer and spin-crossover reaction) is 1-2 orders of magnitude smaller than that for oxidation of t2g4 Mn(pzb)2+ to t2g3 Mn(pzb)22+. ks,h values decrease as Tp* > pzTp > Tp for the Mn(pzb)2+/0 electrode reactions, which contrasts with the behavior of the comparable Fe(pzb)2

  11. Separation of flue-gas scrubber sludge into marketable products

    SciTech Connect

    Kawatra, S.K.; Eisele, T.C.


    A tremendous amount of wet flue-gas desulfurization scrubber sludge (estimated 20 million metric tons per year in the US) is currently being landfilled at a huge cost to utility companies. Scrubber sludge is the solid precipitate produced during desulfurization of flue-gas from burning high sulfur coal. The amount of this sludge is expected to increase in the near future due to ever increasing governmental regulation concerning the amount of sulfur emissions. Scrubber sludge is a fine, grey colored powder that contains calcium sulfite hemihydrate (CaSO{sub 3} {center_dot} 1/2H{sub 2}), calcium sulfate dihydrate (CaSO{sub 4} {center_dot} 2H{sub 2}O), limestone (CaCO{sub 3}), silicates, and iron oxides. This material can continue to be landfilled at a steadily increasing cost, or an alternative for utilizing this material can be developed. This study explores the characteristics of a naturally oxidized wet flue-gas desulfurization scrubber sludge and uses these characteristics to develop alternatives for recycling this material. In order for scrubber sludge to be used as a feed material for various markets, it was necessary to process it to meet the specifications of these markets. A physical separation process was therefore needed to separate the components of this sludge into useful products at a low cost. There are several physical separation techniques available to separate fine particulates. These techniques can be divided into four major groups: magnetic separation, electrostatic separation, physico-chemical separation, and density-based separation. The properties of this material indicated that two methods of separation were feasible: water-only cycloning (density-based separation), and froth flotation (physico-chemical separation). These processes could be used either separately, or in combination. The goal of this study was to reduce the limestone impurity in this scrubber sludge from 5.6% by weight to below 2.0% by weight. The resulting clean calcium


    SciTech Connect

    Robert C. Brown; Maohong Fan; Adrienne Cooper


    Absorption of sulfur dioxide from a simulated flue gas was investigated for the production of polymeric ferric sulfate (PFS), a highly effective coagulant useful in treatment of drinking water and wastewater. The reaction for PFS synthesis took place near atmospheric pressure and at temperatures of 30-80 C. SO{sub 2} removal efficiencies greater than 90% were achieved, with ferrous iron concentrations in the product less than 0.1%. A factorial analysis of the effect of temperature, oxidant dosage, SO{sub 2} concentration, and gas flow rate on SO{sub 2} removal efficiency was carried out, and statistical analyses are conducted. The solid PFS was also characterized with different methods. Characterization results have shown that PFS possesses both crystalline and non-crystalline structure. The kinetics of reactions among FeSO{sub 4} {center_dot} 7H{sub 2}O, NaHSO{sub 3} and NaClO{sub 3} was investigated. Characterizations of dry PFS synthesized from SO{sub 2} show the PFS possesses amorphous structure, which is desired for it to be a good coagulant in water and wastewater treatment. A series of lab-scale experiments were conducted to evaluate the performance of PFS synthesized from waste sulfur dioxide, ferrous sulfate and sodium chlorate. The performance assessments were based on the comparison of PFS and other conventional and new coagulants for the removal of turbidity and arsenic under different laboratory coagulant conditions. Pilot plant studies were conducted at Des Moines Water Works in Iowa and at the City of Savannah Industrial and Domestic (I&D) Water Treatment Plant in Port Wentworth, Georgia. PFS performances were compared with those of conventional coagulants. The tests in both water treatment plants have shown that PFS is, in general, comparable or better than other coagulants in removal of turbidity and organic substances. The corrosion behavior of polymeric ferric sulfate (PFS) prepared from SO{sub 2} and ferric chloride (FC) were compared. Results

  13. Five new Zn(II) and Cd(II) coordination polymers constructed by 3,5-bis-oxyacetate-benzoic acid: Syntheses, crystal structures, network topologies and luminescent properties

    SciTech Connect

    Jiang Xianrong; Yuan Hongyan; Feng Yunlong


    Five Zn(II) and Cd(II) coordination polymers, [Zn{sub 2}(BOABA)(bpp)(OH)]{center_dot}0.5H{sub 2}O (1), [Cd{sub 3}(BOABA){sub 2}(bpp){sub 2}(H{sub 2}O){sub 6}]{center_dot}2H{sub 2}O (2), [Cd{sub 3}(BOABA){sub 2}(2,2 Prime -bipy){sub 3}(H{sub 2}O){sub 4}]{center_dot}5.5H{sub 2}O (3), [CdNa(BOABA)(H{sub 2}O)]{sub 2}{center_dot}H{sub 2}O (4) and [Cd{sub 2}(BOABA)(bimb)Cl(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O (5) (H{sub 3}BOABA=3,5-bis-oxyacetate-benzoic acid, bpp=1,3-bi(4-pyridyl)propane, 2,2 Prime -bipy=2,2 Prime -bipyridine, bimb=1,4-bis(imidazol-1 Prime -yl)butane), have been solvothermally synthesized and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra and TG analyses. 1 is an uninodal 4-connected 2D square grid network based on binuclear zinc clusters. 2 is 2D wavelike layer structure and further linked by hydrogen bonds into the final 3D (5,6,6)-connected topology network. 3 is 3-connected 2D topology network and the 2,2 Prime -bipy ligands decorate in two different types. 4 is a (4,8)-connected 2D topology network with heterocaryotic {l_brace}Cd{sub 2}Na{sub 2}{r_brace} clusters and BOABA{sup 3-} ligands. 5 can be rationalized as a (3,10)-connected 3D topology network with tetranuclear {l_brace}Cd{sub 4}Cl{sub 2}{r_brace} clusters and BOABA{sup 3-} ligands. Meanwhile, photoluminescence studies revealed that these five coordination polymers display strong fluorescent emission bands in the solid state at room temperature. - Graphical abstract: Five new d{sup 10} metal(II) coordination polymers based on H{sub 3}BOABA ligand were obtained and characterized. They display different topological structures and luminescent properties. Highlights: Black-Right-Pointing-Pointer Five d{sup 10} metal(II) polymers based on 3,5-bis-oxyacetate-benzoic acid were obtained. Black-Right-Pointing-Pointer The polymers were structurally characterized by single-crystal X-ray diffraction. Black-Right-Pointing-Pointer Polymers 1-5 display different

  14. Holocene evolution of a wave-dominated fan-delta: Godavari delta, India

    NASA Astrophysics Data System (ADS)

    Saito, Y.; Nageswara Rao, K.; Nagakumar, K.; Demudu, G.; Rajawat, A.; Kubo, S.; Li, Z.


    The Godavari delta is one of the world's largest wave-dominated deltas. The Godavari River arises in the Western Ghats near the west coast of India and drains an area of about 3.1x10^5 km^2, flowing about 1465 km southeast across the Indian peninsula to the Bay of Bengal. The Godavari delta consists of a gentle seaward slope from its apex (12 m elevation) at Rajahmundry and a coastal beach-ridge plain over a distance of about 75 km and covers ~5200 km^2 as a delta plain. The river splits into two major distributary channels, the Gautami and the Vasishta, at a barrage constructed in the mid-1800s. The coastal environment of the deltaic coast is microtidal (~1 m mean tidal range) and wave-dominated (~1.5 m mean wave height in the June-September SW monsoon season, ~0.8 m in the NE monsoon season). Models of the Holocene evolution of the Godavari delta have changed from a zonal progradation model (e.g. Nageswara Rao & Sadakata, 1993) to a truncated cuspate delta model (Nageswara Rao et al., 2005, 2012). Twelve borehole cores (340 m total length), taken in the coastal delta plain during 2010-2013, yielded more than 100 C-14 dates. Sediment facies and C-14 dates from these and previous cores and remote-sensing data support a new delta evolution model. The Holocene coastal delta plain is divided into two parts by a set of linear beach ridges 12-14 km landward from the present shoreline in the central part of the delta. The location of the main depocenter (lobe) has shifted during the Holocene from 1) the center to 2) the west, 3) east, 4) center, 5) west, and 6) east. The linear beach ridges separate the first three from the last three stages. These lobe shifts are controlled by river channel shifts near the apex. Just as the current linear shoreline of the central part of the delta and the concave-up nearshore topography are the result of coastal erosion of a cuspate delta, the linear beach ridges indicate a former eroded shoreline. An unconformity within the deltaic

  15. Redgillite, Cu[subscript 6](OH)1 0(SO[subscript 4]).2H[subscript 2]O, a new mineral from Caldbeck Fells, Cumbria, England, UK: Description and crystal structure

    SciTech Connect

    Pluth, J.J.; Steele, I.M.; Kampf, A.R.; Green, D.I.


    Redgillite, Cu{sub 6}(OH){sub 10}(SO{sub 4}) {center_dot} H{sub 2}O, space group P2{sub 1}/c, a 3.155(3) {angstrom}, b 10.441(8) {angstrom}, c 19.436(16) {angstrom}, {beta} 90.089(13){sup o}, V = 640.2(9) {angstrom}{sup 3}, Z = 2, is a new mineral from Silver Gill, Caldbeck Fells, Cumbria, England. The strongest six lines of the X-ray powder-diffraction pattern [d in {angstrom}, (I) (hkl)] are: 9.72 (90) (002), 7.11 (100) (012), 4.60 (30) (022), 4.068 (20) (023), 2.880 (30) (112,11{bar 2}), 2.318 (50) (131,13{bar 1}). It occurs as translucent to transparent grass-green bladed crystals up to 0.15 mm long with squared-off or tapering terminations; usually in radiating groups. Forms observed are {l_brace}001{r_brace} prominent, {l_brace}010{r_brace} as composite stepped faces, and {l_brace}100{r_brace} irregular. Redgillite has white streak, vitreous lustre and Mohs hardness of {approx}2. Blades are slightly flexible with irregular fracture and exhibit a perfect {l_brace}001{r_brace} cleavage and good {l_brace}100{r_brace} and {l_brace}010{r_brace} cleavages. The measured density (by sink-float) is 3.45(5) g/cm{sup 3}; the calculated density is 3.450 g/cm{sup 3}. The mineral dissolves slowly in dilute HCl. Redgillite is biaxial-negative with {alpha} = 1.693(2), {beta} = 1.721(2), {gamma} = 1.723(2), 2V = 30(2){sup o} (meas.) and 30{sup o} (calc.); dispersion is r > v, medium; pleochroism: Y blue-green > X blue-green > Z yellow-green; orientation: X c, Y = b, Z a. Electron microprobe analyses yielded CuO 68.9, SO{sub 3} 11.6, total 80.5. With water inferred from the structure analysis, the empirical formula is: Cu{sub 5.995}(OH){sub 9.991}(SO{sub 4}){sub 1.003} {center_dot} H{sub 2}O. Redgillite is typically found in thin fractures in partly oxidized sulphides where it is commonly associated with langite and more rarely with malachite, cuprite, connellite and brochantite. The name is for the Red Gill mine, from which the mineral is best known. The crystal structure of

  16. Nanomaterials for LightManagement in Electro-Optical Devices

    SciTech Connect

    Truong, Vo-Van; Singh, Jai; Tanemura, Sakae; Hu, Michael Z.


    . have presented their studies on the synthesis, characterization, and electrochromic applications of porous WO{sub 3} thin films with different nanocrystalline phases. Asymmetric type electrochromic devices have been constructed using hexagonal, monoclinic, and orthorhombic porous WO{sub 3} thin porous films, and their enhanced electrochromic functionality has been well demonstrated. The paper on smart materials by Chen et al. presents the synthesis of thermochromic W-doped VO{sub 2} (monoclinic/rutile) nanopowders using a novel and simple solution-based process as opposed to other conventional techniques such as excimer laser-assisted metal organic deposition and magnetron sputtering. This simple process is based on the reaction of ammonium metavanadate (NH{sub 4}VO{sub 3}) and oxalic acid dihydrate (C{sub 2}H{sub 2}O{sub 4} {center_dot} 2H{sub 2}O) followed by addition of appropriate ammonium tungstate (N{sub 5}H{sub 37}W{sub 6}O{sub 24} {center_dot} H{sub 2}O).

  17. Refractory Materials for Flame Deflector Protection System Corrosion Control: Refractory Ceramics Literature Survey

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark; Perusich, Stephen; Whitten, Mary C.; Trejo, David; Zidek, Jason; Sampson, Jeffrey W.; Coffman, Brekke E.


    Ceramics can be defmed as a material consisting of hard brittle properties produced from inorganic and nonmetallic minerals made by firing at high temperatures. These materials are compounds between metallic and nonmetallic elements and are either totally ionic, or predominately ionic but having some covalent character. This definition allows for a large range of materials, not all applicable to refractory applications. As this report is focused on potential ceramic materials for high temperature, aggressive exposure applications, the ceramics reviewed as part of this report will focus on refractory ceramics specifically designed and used for these applications. Ceramic materials consist of a wide variety of products. Callister (2000) 1 characterized ceramic materials into six classifications: glasses, clay products, refractories, cements, abrasives, and advanced ceramics. Figure 1 shows this classification system. This review will focus mainly on refractory ceramics and cements as in general, the other classifications are neither applicable nor economical for use in large structures such as the flame trench. Although much work has been done in advanced ceramics over the past decade or so, these materials are likely cost prohibitive and would have to be fabricated off-site, transported to the NASA facilities, and installed, which make these even less feasible. Although the authors reviewed the literature on advanced ceramic refractories 2 center dot 3 center dot 4 center dot 5 center dot 6 center dot 7 center dot 8 center dot 9 center dot 10 center dot 11 center dot 12 after the review it was concluded that these materials should not be ' the focus of this report. A review is in progress on materials and systems for prefabricated refractory ceramic panels, but this review is focusing more on typical refractory materials for prefabricated systems, which could make the system more economically feasible. Refractory ceramics are used for a wide variety of applications


    SciTech Connect

    Bannochie, C.; Pareizs, J.; Click, D.; Zamecnik, J.


    A sample of PUREX sludge from Tank 4 was characterized, and subsequently combined with a Tank 51 sample (Tank 51-E1) received following Al dissolution, but prior to a supernate decant by the Tank Farm, to perform a settling and washing study to support Sludge Batch 6 preparation. The sludge source for the majority of the Tank 51-E1 sample is Tank 12 HM sludge. The Tank 51-E1 sample was decanted by SRNL prior to use in the settling and washing study. The Tank 4 sample was analyzed for chemical composition including noble metals. The characterization of the Tank 51-E1 sample, used here in combination with the Tank 4 sample, was reported previously. SRNL analyses on Tank 4 were requested by Liquid Waste Engineering (LWE) via Technical Task Request (TTR) HLE-TTR-2009-103. The sample preparation work is governed by Task Technical and Quality Assurance Plan (TTQAP), and analyses were controlled by an Analytical Study Plan and modifications received via customer communications. Additional scope included a request for a settling study of decanted Tank 51-E1 and a blend of decanted Tank 51-E1 and Tank 4, as well as a washing study to look into the fate of undissolved sulfur observed during the Tank 4 characterization. The chemistry of the Tank 4 sample was modeled with OLI Systems, Inc. StreamAnalyzer to determine the likelihood that sulfate could exist in this sample as insoluble Burkeite (2Na{sub 2}SO{sub 4} {center_dot} Na{sub 2}CO{sub 3}). The OLI model was also used to predict the composition of the blended tank materials for the washing study. The following conclusions were drawn from the Tank 4 analytical results reported here: (1) Any projected blend of Tank 4 and the current Tank 51 contents will produce a SB6 composition that is lower in Ca and U than the current SB5 composition being processed by DWPF. (2) Unwashed Tank 4 has a relatively large initial S concentration of 3.68 wt% on a total solids basis, and approximately 10% of the total S is present as an

  19. DUSEL Facility Cooling Water Scaling Issues

    SciTech Connect

    Daily, W D


    Precipitation (crystal growth) in supersaturated solutions is governed by both kenetic and thermodynamic processes. This is an important and evolving field of research, especially for the petroleum industry. There are several types of precipitates including sulfate compounds (ie. barium sulfate) and calcium compounds (ie. calcium carbonate). The chemical makeup of the mine water has relatively large concentrations of sulfate as compared to calcium, so we may expect that sulfate type reactions. The kinetics of calcium sulfate dihydrate (CaSO4 {center_dot} 2H20, gypsum) scale formation on heat exchanger surfaces from aqueous solutions has been studied by a highly reproducible technique. It has been found that gypsum scale formation takes place directly on the surface of the heat exchanger without any bulk or spontaneous precipitation in the reaction cell. The kinetic data also indicate that the rate of scale formation is a function of surface area and the metallurgy of the heat exchanger. As we don't have detailed information about the heat exchanger, we can only infer that this will be an issue for us. Supersaturations of various compounds are affected differently by temperature, pressure and pH. Pressure has only a slight affect on the solubility, whereas temperature is a much more sensitive parameter (Figure 1). The affect of temperature is reversed for calcium carbonate and barium sulfate solubilities. As temperature increases, barium sulfate solubility concentrations increase and scaling decreases. For calcium carbonate, the scaling tendencies increase with increasing temperature. This is all relative, as the temperatures and pressures of the referenced experiments range from 122 to 356 F. Their pressures range from 200 to 4000 psi. Because the cooling water system isn't likely to see pressures above 200 psi, it's unclear if this pressure/scaling relationship will be significant or even apparent. The most common scale minerals found in the oilfield include

  20. Response of atmosphere circulation on global and regional scales to the two El Niño flavors

    NASA Astrophysics Data System (ADS)

    Zheleznova, Irina; Gushchina, Daria


    Indonesia, south to the equator prevails air descent. During El Niño Modoki anomalous air rising occurs over the central equatorial Pacific, while descending motion develop to the east (mainly in the equatorial regions of the Southern Hemisphere) and to the west (in the Northern Hemisphere). The structure of the anomalies of vertical cells outside the Pacific region differ over the Western Indian Ocean and East Africa, South America and the Caribbean. The analysis of regional circulation response to the El Niño revealed that in the Northern Hemisphere the intensity of the response is comparable for two types of El Niño, while in the Southern Hemisphere the circulation anomalies are more pronounced during the El Niño Modoki. All atmosphere centers of actions under investigation were divided into four groups according to the character of circulation response to the two types of El Niño: 1 - centers of action with similar response to both types of El Niño; 2 - centers of action with different response to canonical and Modoki El Niño; 3 - centers of action, having significant correlations with only one type of El Niño; 4 - centers of action with no significant relationships with two types of El Niño. It is suggested that the difference in weather anomalies observed during the two types of El Niño are mostly associated to the circulation anomalies in the centers of action and in the vertical cells which differs between canonical and Modoki El Niño. References: 1. Ashok K., Behera S. K., Rao S. A., Weng H., Yamagata, T. El Nino Modoki and its possible teleconnection. J. Geophys. Res. 2007, 112, C11007, doi:10.1029/2006JC003798. 2. Kug, J.S., Jin F.F. and An S.I. Two types of El Niño events:Cold tongue El Niño and warm pool El Niño. // J. Clim., 2009, vol. 22, pp. 1499-1515. 3. Mo, K. C., Interdecadal modulation of the impact of ENSO on precipitation and temperature over the United States, J. Clim., 2010, 23, 3639-3656, doi:10.1175/2010JCLI3553.1. 4. Weng H., Behera

  1. New images of Mercury in the 210-350°W longitude range

    NASA Astrophysics Data System (ADS)

    Ksanfomality, L. V.


    apparently similar to the structure of Caloris Planitia area, having, most likely, an impact origin, as suggested earlier [1]. The rim of Basin S has a more or less regular shape, as is seen in the image (a). The feature may be revealed both by shadows of the east rim and by albedo effects. The unsharp mask operation used in creating Fig. 1, involves a compromise choice. Therefore the actual tone, either of Basin S and of dark mare on the limb, are darker, than on Fig. 1. The sector 265-350oW of longitudes of Mercury is enriched by contrast features in comparison with the sector 210-285oW (Fig. 1b). A few large features in Fig. 1a attract the attention. On the very limb, to the south of equator, a big dark crater mare of the genuine lunar type is seen as a dark at the left, with the center near 25°S, 330°W. Its diameter is about 700 kms. This is the first detection of such a lunar type mare on Mercury. Along the limb, from North Pole up to 20°S, a line of bright craters extends. The brightest is placed in northern part of the planet, at 65°N, 330°W, approximately. The crater is small, its diameter is 90-100 kms; to the north and south sides there are two linear structures adjoining, extending for 400-500 kms. Such opposingly directed rays of debris from an impact crater are unusual; it may be a result of a low tangent trajectory of an impactor [4]. Centered approximately at 0°, 300°W there is a huge crater with the conditional nickname "Medallion". Its northern periphery is overlapped in part with the southwest extremity of Basin S. Details of the crater "Medallion" are presented in Fig. 2, in negative versions. The visibility in this version unveils petals of the "medallion" in more detail. In the center of "Medallion" there is a dark (in negative) nucleus («the central hill» in the lunar terminology), having diameter about 110 kms, surrounded with a crater bottom, diameter about 320 kms (extents are given in the meridian direction). The extensive terrace of debris