Science.gov

Sample records for 4t proton magnetic

  1. Reduced Brain GABA in Primary Insomnia: Preliminary Data from 4T Proton Magnetic Resonance Spectroscopy (1H-MRS)

    PubMed Central

    Winkelman, John W.; Buxton, Orfeu M.; Jensen, J. Eric; Benson, Kathleen L.; O'Connor, Shawn P.; Wang, Wei; Renshaw, Perry F.

    2008-01-01

    Study Objectives: Both basic and clinical data suggest a potential significant role for GABA in the etiology and maintenance of primary insomnia (PI). Proton magnetic resonance spectroscopy (1H-MRS) can non-invasively determine GABA levels in human brain. Our objective was to assess GABA levels in unmedicated individuals with PI, using 1H-MRS. Design and Setting: Matched-groups, cross-sectional study conducted at two university-based hospitals. Participants: Sixteen non-medicated individuals (8 women) with PI (mean age = 37.3 +/− 8.1) and 16 (7 women) well-screened normal sleepers (mean age = 37.6 +/− 4.5). Methods and Measurements: PI was established with an unstructured clinical interview, a Structured Clinical Interview for DSM-IV (SCID), sleep diary, actigraphy and polysomnography (PSG). 1H-MRS data were collected on a Varian 4 Tesla magnetic resonance imaging/spectroscopy scanner. Global brain GABA levels were averaged from samples in the basal ganglia, thalamus, and temporal, parietal, and occipital white-matter and cortex. Results: Average brain GABA levels were nearly 30% lower in patients with PI (.18 +/− .06) compared to controls (.25 +/− .11). GABA levels were negatively correlated with wake after sleep onset (WASO) on two independent PSGs (r = −0.71, p = 0.0024 and −0.70, p = 0.0048). Conclusions: Our preliminary finding of a global reduction in GABA in non-medicated individuals with PI is the first demonstration of a neurochemical difference in the brains of those with PI compared to normal sleeping controls. 1H-MRS is a valuable tool to assess GABA in vivo, and may provide a means to shed further light on the neurobiology of insomnia. Citation: Winkelman JW; Buxton OM; Jensen JE; Benson KL; O'Connor SP; Wang W; Renshaw PF. Reduced brain GABA in primary insomnia: preliminary data from 4T proton magnetic resonance spectroscopy (1H-MRS). SLEEP 2008;31(11):1499–1506. PMID:19014069

  2. Quench protection design of a 9.4 T whole-body MRI superconducting magnet

    NASA Astrophysics Data System (ADS)

    Chen, Shunzhong; Li, Yi; Dai, Yinming; Lei, Yuanzhong; Yan, Luguang

    2014-02-01

    A 9.4 T MRI superconducting magnet with a 800 mm clear warm bore in diameter is designed and fabricated for bioscience research. The superconducting magnet consisting of five coaxial solenoid coils is fabricated with NbTi Wire-in-Channel (WIC) conductor where the ratios of copper to non-copper are from 5 to 10. The four compensation solenoid coils are with rectangular NbTi/Cu strand wires. The magnet will be operated in a relative low nominal current of 224.5 A with a high level of stored energy, about 138 MJ. A protection method with the cold diodes and resistors in series across the subdivided sections and active trigger heater to accelerate quench is adopted to avoid the damage of the magnet. In the paper, the quench simulation results of currents, voltages and hot-spot temperatures based on the protection scheme are analyzed in details.

  3. Subchronic in vivo effects of a high static magnetic field (9.4 T) in rats.

    PubMed

    High, W B; Sikora, J; Ugurbil, K; Garwood, M

    2000-07-01

    The potential adverse biologic effects of sub chronic (cumulatively 10 weeks) exposure to a high magnetic field (9.4 T) were evaluated in young adult male and female Fischer rats as well as in their progeny. Biologic end points in adult rats included changes in daily clinical observations; spatial memory tests; weekly heart rates, body weights, food and water consumption, and the feed efficiency ratio; terminal hematologic, blood biochemical and urinary parameter changes; gross pathologic findings; and major organ weights. In offspring, biologic end points included the gestation period, number of live births, number of pups, ratio of male to female pups/litter; postnatal time period of eye opening; birth and weekly body weights, behavioral changes, central nervous system responses, as well as hematologic, blood biochemistry, and urinary parameter changes; and gross pathologic findings. Findings from this study showed that there were no adverse biologic effects in male and female adult rats or their progeny that could be attributed to 10-week exposure to a 9.4-T static magnetic field.

  4. Recording visual evoked potentials and auditory evoked P300 at 9.4T static magnetic field.

    PubMed

    Arrubla, Jorge; Neuner, Irene; Hahn, David; Boers, Frank; Shah, N Jon

    2013-01-01

    Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4 T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4 T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4 T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4 T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4 T were not different from those recorded at 0 T. The amplitudes of ERPs were higher at 9.4 T when compared to recordings at 0 T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses.

  5. Suppressive effects of a proton beam on tumor growth and lung metastasis through the inhibition of metastatic gene expression in 4T1 orthotopic breast cancer model.

    PubMed

    Kwon, Yun-Suk; Lee, Kyu-Shik; Chun, So-Young; Jang, Tae Jung; Nam, Kyung-Soo

    2016-07-01

    A proton beam is a next generation tool to treat intractable cancer. Although the therapeutic effects of a proton beam are well known, the effect on tumor metastasis is not fully described. Here, we investigated the effects of a proton beam on metastasis in highly invasive 4T1 murine breast cancer cells and their orthotopic breast cancer model. Cells were irradiated with 2, 4, 8 or 16 Gy proton beam, and changes in cell proliferation, survival, and migration were observed by MTT, colony forming and wound healing assays. 4T1 breast cancer cell-implanted BALB/c mice were established and the animals were randomly divided into 4 groups when tumor size reached 200 mm3. Breast tumors were selectively irradiated with 10, 20 or 30 Gy proton beam. Breast tumor sizes were measured twice a week, and breast tumor and lung tissues were pathologically observed. Metastasis-regulating gene expression was assessed with quantitative RT-PCR. A proton beam dose-dependently decreased cell proliferation, survival and migration in 4T1 murine breast cancer cells. Also, growth of breast tumors in the 4T1 orthotopic breast cancer model was significantly suppressed by proton beam irradiation without significant change of body weight. Furthermore, fewer tumor nodules metastasized from breast tumor into lung in mice irradiated with 30 Gy proton beam, but not with 10 and 20 Gy, than in control. We observed correspondingly lower expression levels of urokinase plasminogen activator (uPA), uPA receptor, cyclooxygenase (COX)-2, and vascular endothelial growth factor (VEGF), which are important factors in cancer metastasis, in breast tumor irradiated with 30 Gy proton beam. Proton beam irradiation did not affect expressions of matrix metalloproteinase (MMP)-9 and MMP-2. Taken together, the data suggest that, although proton beam therapy is an effective tool for breast cancer treatment, a suitable dose is necessary to prevent metastasis-linked relapse and poor prognosis.

  6. Chemical Principles Revisited. Proton Magnetic Resonance Spectroscopy.

    ERIC Educational Resources Information Center

    McQuarrie, Donald A.

    1988-01-01

    Discusses how to interpret nuclear magnetic resonance (NMR) spectra and how to use them to determine molecular structures. This discussion is limited to spectra that are a result of observation of only the protons in a molecule. This type is called proton magnetic resonance (PMR) spectra. (CW)

  7. Nuclear magnetic resonance studies reveal stabilization of parallel G-quadruplex DNA [d(T2G4T)]4 upon binding to protoberberine alkaloid coralyne.

    PubMed

    Padmapriya, Kumar; Barthwal, Ritu

    2016-10-15

    Stabilization of G-quadruplex DNA structures in human telomeric and proto-oncogenic promoter regions upon ligand binding has evolved as a viable anti-cancer strategy. We have studied interaction of coralyne, a human telomerase inhibiting protoberberine alkaloid, with parallel stranded tetrameric G-quadruplex DNA [d(T2G4T)]4 using Circular Dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy. Appearance of induced CD band and the Diffusion Ordered NMR Spectroscopy (DOSY) experiments confirm the formation of well defined coralyne-DNA complex. (1)H and (31)P NMR studies reveal that coralyne specifically recognizes T2pG3 and G6pT7 steps in DNA. Guanine imino protons indicate that coralyne binding induces thermal stabilization of the G-quadruplex DNA by >20°C. The observed specific changes and thermal stabilization of DNA upon binding may be attributed to inhibition of telomerase by coralyne.

  8. Polywater: proton nuclear magnetic resonance spectrum.

    PubMed

    Page, T F; Jakobsen, R J; Lippincott, E R

    1970-01-02

    In the presence of water, the resonance of the strongly hydrogenbonded protons characteristic of polywater appears at 5 parts per million lower applied magnetic field than water. Polywater made by a new method confirms the infrared spectrum reported originally.

  9. Proton magnetic resonance spectrum of polywater.

    PubMed

    Petsko, G A

    1970-01-09

    With the aid of a time average computer, the proton magnetic resonance spectrum of anomalous water (polywater) is obtained. The spectrum conisists of a single broad resonance shifted approximately 300 hertz downfield from the resonance of ordinary water.

  10. Design of a conduction-cooled 9.4 T REBCO magnet for whole-body MRI systems

    NASA Astrophysics Data System (ADS)

    Miyazaki, Hiroshi; Iwai, Sadanori; Otani, Yasumi; Takahashi, Masahiko; Tosaka, Taizo; Tasaki, Kenji; Nomura, Shunji; Kurusu, Tsutomu; Ueda, Hiroshi; Noguchi, So; Ishiyama, Atsushi; Urayama, Shinichi; Fukuyama, Hidenao

    2016-10-01

    A project on the development of REBa2Cu3O7-δ (REBCO) magnets for ultra-high-field magnetic resonance imaging (MRI) was started in 2013. Since REBCO-coated conductors feature high mechanical strength under tensile stress and high critical current density, use of REBCO coils would allow superconducting magnets to be made smaller and lighter than conventional ones. In addition, a conduction-cooled superconducting magnet is simpler to use than one cooled by a liquid helium bath because the operation and maintenance of the cryogenic system become simpler, without the need to handle cryogenic fluid. Superconducting magnets for MRI require homogeneous, stable magnetic fields. The homogeneity of the magnetic field is highly dependent on the coil shape and position. Moreover, in REBCO magnets, the screening-current-induced magnetic field, which changes the magnetic field distribution of the magnet, is one of the critical issues. In order to evaluate the magnetic field homogeneity and the screening-current-induced magnetic field, a 1 T model magnet and some test coils were fabricated. From an evaluation of the 1 T model magnet, it was found that the main reason for magnetic field inhomogeneity was the tolerances in the z-axis positions of the coils, and therefore, it is important to control the gap between the single pancakes. In addition, we have already demonstrated the generation of an 8.27 T central magnetic field at 10 K with a small test coil. The screening-current-induced magnetic field was 0.43 T and was predictable by using an electromagnetic field simulation program. These results were reflected in the design of a conduction-cooled 9.4 T REBCO magnet for whole-body MRI systems. The magnet was composed of six main coils and two active shield coils. The total conductor length was 581 km, and the stored energy was 293 kJ. The field inhomogeneity was 24 ppm peak to peak and 3 ppm volume-root-mean-square (VRMS) for a 500 mm diameter spherical volume (DSV). The axial

  11. Protonation of deoxycytidine residues in dC4 tetraloops: UV spectrophotometric study of dC10 and d(A14C4T14).

    PubMed

    Raukas, E; Kooli, K

    2003-06-01

    It is shown that component analysis could be applied to study the UV difference spectra of cytidine oligomers and hairpin oligonucleotides with cytidines in the loop region in order to account for the melting and titration results in terms of cytidine stacking and protonation. Upon acid titration, the dC(10) oligomer undergoes cooperative conformational transition at pH 6.3 accompanied by protonation and formation of the i-structure with half of the residues protonated. The stability of the hemiprotonated structure increases with decreasing pH, the i-structure persisting still in the region of pH4)T(14)). It is shown that upon titration, the 50% level of protonation of the deoxycytidine tetraloop is attained at pH 5.0. Simultaneously, the stacking interactions of cytidine residues reach the maximum at this pH with two residues stacked, and thereafter decline again. Only marginal stabilization of the oligomer hairpin (DeltaT(m)=1.5 degrees C) is found to accompany the formation of this single hemiprotonated dC.dC(+) base pair. We propose that at pH 5 the cytidines of the dC(4) loop form a hemiprotonated dC.dC(+) pair stacked with the last dA.dT base pair of the hairpin stem.

  12. Proton magnetic resonance spectroscopy in multiple sclerosis

    SciTech Connect

    Wolinsky, J.S.; Narayana, P.A.; Fenstermacher, M.J. )

    1990-11-01

    Regional in vivo proton magnetic resonance spectroscopy provides quantitative data on selected chemical constituents of brain. We imaged 16 volunteers with clinically definite multiple sclerosis on a 1.5 tesla magnetic resonance scanner to define plaque-containing volumes of interest, and obtained localized water-suppressed proton spectra using a stimulated echo sequence. Twenty-five of 40 plaque-containing regions provided spectra of adequate quality. Of these, 8 spectra from 6 subjects were consistent with the presence of cholesterol or fatty acids; the remainder were similar to those obtained from white matter of normal volunteers. This early experience with regional proton spectroscopy suggests that individual plaques are distinct. These differences likely reflect dynamic stages of the evolution of the demyelinative process not previously accessible to in vivo investigation.

  13. Imaging Intelligence with Proton Magnetic Resonance Spectroscopy

    ERIC Educational Resources Information Center

    Jung, Rex E.; Gasparovic, Charles; Chavez, Robert S.; Caprihan, Arvind; Barrow, Ranee; Yeo, Ronald A.

    2009-01-01

    Proton magnetic resonance spectroscopy ([to the first power]H-MRS) is a technique for the assay of brain neurochemistry "in vivo." N-acetylaspartate (NAA), the most prominent metabolite visible within the [to the first power]H-MRS spectrum, is found primarily within neurons. The current study was designed to further elucidate NAA-cognition…

  14. Proton acceleration from magnetized overdense plasmas

    NASA Astrophysics Data System (ADS)

    Kuri, Deep Kumar; Das, Nilakshi; Patel, Kartik

    2017-01-01

    Proton acceleration by an ultraintense short pulse circularly polarized laser from an overdense three dimensional (3D) particle-in-cell (PIC) 3D-PIC simulations. The axial magnetic field modifies the dielectric constant of the plasma, which causes a difference in the behaviour of ponderomotive force in case of left and right circularly polarized laser pulse. When the laser is right circularly polarized, the ponderomotive force gets enhanced due to cyclotron effects generating high energetic electrons, which, on reaching the target rear side accelerates the protons via target normal sheath acceleration process. On the other hand, in case of left circular polarization, the effects get reversed causing a suppression of the ponderomotive force at a short distance and lead towards a rise in the radiation pressure, which results in the effective formation of laser piston. Thus, the axial magnetic field enhances the effect of radiation pressure in case of left circularly polarized laser resulting in the generation of high energetic protons at the target front side. The transverse motion of protons get reduced as they gyrate around the axial magnetic field which increases the beam collimation to some extent. The optimum thickness of the overdense plasma target is found to be increased in the presence of an axial magnetic field.

  15. Magnetic monopole catalysis of proton decay

    SciTech Connect

    Marciano, W.J.; Salvino, D.

    1986-09-01

    Catalysis of proton decay by GUT magnetic monopoles (the Rubakov-Callan effect) is discussed. Combining a short-distance cross section calculation by Bernreuther and Craigie with the long-distance velocity dependent distortion factors of Arafune and Fukugita, catalysis rate predictions which can be compared with experiment are obtained. At present, hydrogen rich detectors such as water (H/sub 2/O) and methane (CH/sub 4/) appear to be particularly well suited for observing catalysis by very slow monopoles. 17 refs., 1 fig.

  16. Soft x-ray magnetic circular dichroism study of valence and spin states in FeT2O4 (T = V, Cr) spinel oxides

    NASA Astrophysics Data System (ADS)

    Kang, J.-S.; Hwang, Jihoon; Kim, D. H.; Lee, Eunsook; Kim, W. C.; Kim, C. S.; Lee, Han-Koo; Kim, J.-Y.; Han, S. W.; Hong, S. C.; Kim, Bongjae; Min, B. I.

    2013-05-01

    Electronic structures of spinel oxides FeT2O4 (T = V, Cr) have been investigated by employing soft x-ray magnetic circular dichroism (XMCD) and soft x-ray absorption spectroscopy (XAS). XAS reveals that Cr and V ions are trivalent, and that Fe ions are nearly divalent in FeT2O4 (T = V, Cr). Finite XMCD signals are observed in FeV2O4 at T = 80 K, while they are very weak in FeCr2O4. XMCD shows that Fe spins are antiparallel to V and Cr spins, with the V and Cr spins being canted from Fe spins, which suggests a Yafet-Kittel type triangular spin configuration in FeT2O4 (T = V, Cr).

  17. Enhanced proton acceleration in an applied longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Arefiev, A.; Toncian, T.; Fiksel, G.

    2016-10-01

    Using two-dimensional particle-in-cell simulations, we examine how an externally applied strong magnetic field impacts proton acceleration in laser-irradiated solid-density targets. We find that a kT-level external magnetic field can sufficiently inhibit transverse transport of hot electrons in a flat laser-irradiated target. While the electron heating by the laser remains mostly unaffected, the reduced electron transport during proton acceleration leads to an enhancement of maximum proton energies and the overall number of energetic protons. The resulting proton beam is much better collimated compared to a beam generated without applying a kT-level magnetic field. A factor of three enhancement of the laser energy conversion efficiency into multi-MeV protons is another effect of the magnetic field. The required kT-level magnetic fields are becoming feasible due to a significant progress that has been made in generating magnetic fields with laser-driven coils using ns-long laser pulses. The possibility of improving characteristics of laser-driven proton beams using such fields is a strong motivation for further development of laser-driven magnetic field capabilities.

  18. Enhanced proton acceleration in an applied longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Toncian, Toma; Arefiev, Alexey; Fiksel, Gennady

    2016-10-01

    Using two-dimensional particle-in-cell simulations, we examine how an externally applied strong magnetic impacts proton acceleration in laser-irradiated solid-density targets. We find that a kT-level external magnetic field can sufficiently inhibit transverse transport of hot electrons in a flat laser-irradiated target. While the electron heating by the laser remains mostly unaffected, the reduced electron transport during proton acceleration leads to an enhancement of maximum proton energies and the overall number of energetic protons. The resulting proton beam is much better collimated compared to a beam generated without applying a kT-level magnetic field. A factor of three enhancement of the laser energy conversion efficiency into multi-MeV protons is another effect of the magnetic field. The required kT magnetic fields are becoming feasible due to a significant progress that has been made in generating magnetic fields with laser-driven coils using ns-long laser pulses. The predicted improved characteristics of laser-driven proton beams would be critical for a number of applications. The work was supported by U.S. Department of Energy - National Nuclear Security Administration Cooperative Agreement No. DE-NA0002008. HPC resources were provided by the Texas Advanced Computing Center at The University of Texas.

  19. Effects of magnetic fields of up to 9.4 T on resolution and contrast of PET images as measured with an MR-BrainPET.

    PubMed

    Shah, N Jon; Herzog, Hans; Weirich, Christoph; Tellmann, Lutz; Kaffanke, Joachim; Caldeira, Liliana; Kops, Elena Rota; Qaim, Syed M; Coenen, Heinz H; Iida, Hidehiro

    2014-01-01

    Simultaneous, hybrid MR-PET is expected to improve PET image resolution in the plane perpendicular to the static magnetic field of the scanner. Previous papers have reported this either by simulation or experiment with simple sources and detector arrangements. Here, we extend those studies using a realistic brain phantom in a recently installed MR-PET system comprising a 9.4 T MRI-scanner and an APD-based BrainPET insert in the magnet bore. Point and line sources and a 3D brain phantom were filled with 18F (low-energy positron emitter), 68Ga (medium energy positron emitter) or 120I, a non-standard positron emitter (high positron energies of up to 4.6 MeV). Using the BrainPET insert, emission scans of the phantoms were recorded at different positions inside and outside the magnet bore such that the magnetic field was 0 T, 3 T, 7 T or 9.4 T. Brain phantom images, with the 'grey matter' compartment filled with 18F, showed no obvious resolution improvement with increasing field. This is confirmed by practically unchanged transaxial FWHM and 'grey/white matter' ratio values between at 0T and 9.4T. Field-dependent improvements in the resolution and contrast of transaxial PET images were clearly evident when the brain phantom was filled with 68Ga or 120I. The grey/white matter ratio increased by 7.3% and 16.3%, respectively. The greater reduction of the FWTM compared to FWHM in 68Ga or 120I line-spread images was in agreement with the improved contrast of 68Ga or 120I images. Notwithstanding elongations seen in the z-direction of 68Ga or 120I point source images acquired in foam, brain phantom images show no comparable extension. Our experimental study confirms that integrated MR-PET delivers improved PET image resolution and contrast for medium- and high-energy positron emitters even though the positron range is reduced only in directions perpendicular to the magnetic field.

  20. Effects of Magnetic Fields of up to 9.4 T on Resolution and Contrast of PET Images as Measured with an MR-BrainPET

    PubMed Central

    Shah, N. Jon; Herzog, Hans; Weirich, Christoph; Tellmann, Lutz; Kaffanke, Joachim; Caldeira, Liliana; Kops, Elena Rota; Qaim, Syed M.; Coenen, Heinz H.; Iida, Hidehiro

    2014-01-01

    Simultaneous, hybrid MR-PET is expected to improve PET image resolution in the plane perpendicular to the static magnetic field of the scanner. Previous papers have reported this either by simulation or experiment with simple sources and detector arrangements. Here, we extend those studies using a realistic brain phantom in a recently installed MR-PET system comprising a 9.4 T MRI-scanner and an APD-based BrainPET insert in the magnet bore. Point and line sources and a 3D brain phantom were filled with 18F (low-energy positron emitter), 68Ga (medium energy positron emitter) or 120I, a non-standard positron emitter (high positron energies of up to 4.6 MeV). Using the BrainPET insert, emission scans of the phantoms were recorded at different positions inside and outside the magnet bore such that the magnetic field was 0 T, 3 T, 7 T or 9.4 T. Brain phantom images, with the ‘grey matter’ compartment filled with 18F, showed no obvious resolution improvement with increasing field. This is confirmed by practically unchanged transaxial FWHM and ‘grey/white matter’ ratio values between at 0T and 9.4T. Field-dependent improvements in the resolution and contrast of transaxial PET images were clearly evident when the brain phantom was filled with 68Ga or 120I. The grey/white matter ratio increased by 7.3% and 16.3%, respectively. The greater reduction of the FWTM compared to FWHM in 68Ga or 120I line-spread images was in agreement with the improved contrast of 68Ga or 120I images. Notwithstanding elongations seen in the z-direction of 68Ga or 120I point source images acquired in foam, brain phantom images show no comparable extension. Our experimental study confirms that integrated MR-PET delivers improved PET image resolution and contrast for medium- and high-energy positron emitters even though the positron range is reduced only in directions perpendicular to the magnetic field. PMID:24755872

  1. Helical Dipole Magnets for Polarized Protons in RHIC

    NASA Astrophysics Data System (ADS)

    Syphers, M.; Courant, E.; Fischer, W.; Luccio, A.; Mariam, F.; Peggs, S.; Pilat, F.; Roser, T.; Tepikian, S.; Tsoupas, N.; Willen, E.; Katayama, T.; Hatanaka, K.; Kawaguchi, T.; Okamura, M.; Tominaka, T.; Wu, H.; Ptitsin, V.; Shatunov, Y.

    1997-05-01

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) will be able to support experiments using polarized proton beams. Siberian Snakes are used to maintain polarization in this high energy superconducting collider. To make efficient use of available space while taking advantage of high field superconducting magnets, 4 Tesla helical dipole magnets will be used. These magnets generate a central dipole field in which the field direction rotates through 360^circ about the longitudinal axis over the length of the device. An arrangement of four such magnets can produce the desired change in the spin direction while keeping the proton orbit outside of the ``Snake'' unaltered. Similar magnet arrangements will be used to produce longitudinal polarization at the two major interaction points in RHIC. The basic requirements and layout of these magnets are described, as well as tolerances on field quality and integrated field strengths. First results of tests of prototype helical magnets will be discussed.

  2. Helical dipole magnets for polarized protons in RHIC

    SciTech Connect

    Syphers, M.; Courant, E.; Fischer, W.

    1997-07-01

    Superconducting helical dipole magnets will be used in the Brookhaven Relativistic Heavy Ion Collider (RHIC) to maintain polarization of proton beams and to perform localized spin rotations at the two major experimental detector regions. Requirements for the helical dipole system are discussed, and magnet prototype work is reported.

  3. Pion Production from Proton Synchrotron Radiation in Strong Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Maruyama, Tomoyuki; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.

    We study pion production by proton synchrotron radiation in the presence of a strong magnetic field. In this study we find that the decay width satisfies a robust scaling relation. This scaling implies that one can infer the decay width in more realistic magnetic fields of 1015 G, where ni,f ˜ 1012-1013, from the results for ni,f ˜ 104-105. Then, we present the resultant pion intensity and angular distributions for realistic magnetic field strengths.

  4. Magnetic resonance spectroscopy study of the glutamatergic system in adolescent males with high-functioning autistic disorder: a pilot study at 4T.

    PubMed

    Joshi, Gagan; Biederman, Joseph; Wozniak, Janet; Goldin, Rachel L; Crowley, Dave; Furtak, Stephannie; Lukas, Scott E; Gönenç, Atilla

    2013-08-01

    The pilot study aimed at examining the neural glutamatergic activity in autism. Seven adolescent males (mean age: 14 ± 1.8; age range: 12-17 years) with intact intellectual capacity (mean IQ: 108 ± 14.26; IQ range: 85-127) suffering from autistic disorder and an equal number of age- and sex-matched healthy controls underwent a two-dimensional magnetic resonance spectroscopy scan at 4T. Results indicated significantly high glutamate (Glu) levels in the anterior cingulate cortex of autistic disorder versus control subjects (paired t test p = 0.01) and a trend for lower Glu in the right medial temporal lobe, which was not statistically different between the groups (paired t test p = 0.06). These preliminary findings support the glutamatergic dysregulation hypothesis in autism and need to be replicated in a larger sample.

  5. Proton magnetic relaxation dispersion in aqueous biopolymer systems

    NASA Astrophysics Data System (ADS)

    Conti, S.

    Investigation of the magnetic field dependence of proton spin-lattice relaxation in solutions of bovine fibrinogen has been performed for Larmor frequencies between 50 Hz and 60 MHz, and complemented with measurements of spin-spin relaxation rates at 2 kHz and 25 MHz. A thorough analysis of experimental data, including the effects of protein concentration, temperature, pH and isotopic dilution, leads to an overall relaxation scheme consistent with T1 and T2 values at both low and high magnetic fields. The scheme involves water molecules slightly anisotropically bound on proteins as well as slow exchanging protein protons magnetically coupled to solute nuclei. A coherent picture, reminiscent of the traditional hydration layer, can be obtained for bound water. A major conclusion is that transfer of single protons may contribute substantially to the chemical exchange between free and bound water.

  6. On the Importance of Exchangeable NH Protons in Creatine for the Magnetic Coupling of Creatine Methyl Protons in Skeletal Muscle

    NASA Astrophysics Data System (ADS)

    Kruiskamp, M. J.; Nicolay, K.

    2001-03-01

    The methyl protons of creatine in skeletal muscle exhibit a strong off-resonance magnetization transfer effect. The mechanism of this process is unknown. We previously hypothesized that the exchangeable amide/amino protons of creatine might be involved. To test this the characteristics of the creatine magnetization transfer effect were investigated in excised rat hindleg skeletal muscle that was equilibrated in either H2O or D2O solutions containing creatine. The efficiency of off-resonance magnetization transfer to the protons of mobile creatine in excised muscle was similar to that previously reported in intact muscle in vivo. Equilibrating the isolated muscle in D2O solution had no effect on the magnetic coupling to the immobile protons. It is concluded that exchangeable protons play a negligible role in the magnetic coupling of creatine methyl protons in muscle.

  7. Proton magnetic relaxation and internal rotations in tetramethylammonium cadmium chloride

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Utton, D. B.

    1976-01-01

    Nuclear magnetic resonance (NMR) and relaxation studies of the proton spin-lattice relaxation time (PSLRT) and proton second moment (PSM) are reported. Tetramethylammonium cadmium chloride (TMCC) was selected as a diamagnetic member of the isomorphic series, and hence proton data relate directly to the motion of the tetramethylammonium ion in the absence of paramagnetic ions. In the model adopted, the correlation time for hindered motion of one of the methyl groups differs from that of the other three groups in the low-temperature phase below 104 K. PSLRT and PSM values agree closely with experimental data with this model. Crystallographic phase transitions in TMCC occur at 104 K and 119 K according to the PSLRT measurements. Dipolar interactions between adjacent protons account for the PSLR rates below 104 K.

  8. Mercury's Surface Magnetic Field Determined from Proton-Reflection Magnetometry

    NASA Technical Reports Server (NTRS)

    Winslow, Reka M.; Johnson, Catherine L.; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Lillis, Robert J.; Korth, Haje; Slavin, James A.; Solomon, Sean C.; Zurbuchen, Thomas H.; Zuber, Maria T.

    2014-01-01

    Solar wind protons observed by the MESSENGER spacecraft in orbit about Mercury exhibit signatures of precipitation loss to Mercury's surface. We apply proton-reflection magnetometry to sense Mercury's surface magnetic field intensity in the planet's northern and southern hemispheres. The results are consistent with a dipole field offset to the north and show that the technique may be used to resolve regional-scale fields at the surface. The proton loss cones indicate persistent ion precipitation to the surface in the northern magnetospheric cusp region and in the southern hemisphere at low nightside latitudes. The latter observation implies that most of the surface in Mercury's southern hemisphere is continuously bombarded by plasma, in contrast with the premise that the global magnetic field largely protects the planetary surface from the solar wind.

  9. Magnetic Field Distribution and Signal Decay in Functional MRI in Very High Fields (up to 9.4 T) Using Monte Carlo Diffusion Modeling

    PubMed Central

    Mueller-Bierl, Bernd Michael; Uludag, Kamil; Pereira, Philippe L.; Schick, Fritz

    2007-01-01

    Extravascular signal decay rate R2 or R2∗ as a function of blood oxygenation, geometry, and field strength was calculated using a Monte Carlo (MC) algorithm for a wider parameter range than hitherto by others. The relaxation rates of gradient-recalled-echo (GRE) and Hahn-spin-echo (HSE) imaging in the presence of blood vessels (ranging from capillaries to veins) have been computed for a wide range of field strengths up to 9.4T and 50% blood deoxygenation. The maximum HSE decay was found to be shifted to lower radii in higher compared to lower field strengths. For GRE, however, the relaxation rate was greatest for large vessels at any field strength. In addition, assessments of computational reliability have been carried out by investigating the influence of the time step, the Monte Carlo step procedure, boundary conditions, the number of angles between the vessel and the exterior field B0, the influence of neighboring vessels having the same orientation as the central vessel, and the number of proton spins. The results were compared with those obtained from a field distribution of the vessel computed by an analytic formula describing the field distribution of an ideal object (an infinitely long cylinder). It was found that the time step is not critical for values equal to or lower than 200 microseconds. The choice of the MC step procedure (three-dimensional Gaussian diffusion, constant one- or three-dimensional diffusion step) also failed to influence the results significantly; in contrast, the free boundary conditions, as well as taking too few angles into account, did introduce errors. Next neighbor vessels with the same orientation as the main vessel did not contribute significantly to signal decay. The total number of particles simulated was also found to play a minor role in computing R2/ R2∗. PMID:18273394

  10. Magnetic Moment of Proton Drip-Line Nucleus (9)C

    NASA Technical Reports Server (NTRS)

    Matsuta, K.; Fukuda, M.; Tanigaki, M.; Minamisono, T.; Nojiri, Y.; Mihara, M.; Onishi, T.; Yamaguchi, T.; Harada, A.; Sasaki, M.

    1994-01-01

    The magnetic moment of the proton drip-line nucleus C-9(I(sup (pi)) = 3/2, T(sub 1/2) = 126 ms) has been measured for the first time, using the beta-NMR detection technique with polarized radioactive beams. The measure value for the magnetic moment is 1mu(C-9)! = 1.3914 +/- 0.0005 (mu)N. The deduced spin expectation value of 1.44 is unusually larger than any other ones of even-odd nuclei.

  11. Superconducting Magnet Technology for Future High Energy Proton Colliders

    NASA Astrophysics Data System (ADS)

    Gourlay, Stephen

    2017-01-01

    Interest in high field dipoles has been given a boost by new proposals to build a high-energy proton-proton collider to follow the LHC and programs around the world are taking on the task to answer the need. Studies aiming toward future high-energy proton-proton colliders at the 100 TeV scale are now being organized. The LHC and current cost models are based on technology close to four decades old and point to a broad optimum of operation using dipoles with fields between 5 and 12T when site constraints, either geographical or political, are not a factor. Site geography constraints that limit the ring circumference can drive the required dipole field up to 20T, which is more than a factor of two beyond state-of-the-art. After a brief review of current progress, the talk will describe the challenges facing future development and present a roadmap for moving high field accelerator magnet technology forward. This work was supported by the Director, Office of Science, High Energy Physics, US Department of Energy, under contract No. DE-AC02-05CH11231.

  12. Proton magnetic resonance spectroscopy: technique for the neuroradiologist.

    PubMed

    Cecil, Kim M

    2013-08-01

    Magnetic resonance spectroscopy (MRS) provides information on neuronal and axonal viability, energetics of cellular structures, and status of cellular membranes. Proton MRS appeals to clinicians and scientists because its application in the clinical setting can increase the specificity of MR imaging. The objective of this article is to provide descriptive concepts of the technique and its application in vivo for a variety of patient populations. When appropriately incorporating MRS into the neuroradiologic evaluation, this technique produces relevant information to radiologists and clinicians for their understanding of adult and pediatric neurologically based disease processes.

  13. Proton magnetic resonance spectroscopy of a gray matter heterotopia.

    PubMed

    Marsh, L; Lim, K O; Sullivan, E V; Lane, B; Spielman, D

    1996-12-01

    We used proton magnetic resonance spectroscopy to examine resonances representing metabolites containing N-acetyl (NA) groups (predominantly N-acetyl aspartate), choline, and creatine within a large left-hemispheric gray matter heterotopia (GMH) in a 35-year-old man with corpus callosum agenesis. In contrast to normal brain tissue, including gray matter regions, heterotopic gray matter was characterized by relatively increased choline and creatine resonances and a normal NA signal. These data suggest increased cellular activity or persistent immature neuronal tissue in GMH relative to unaffected tissue.

  14. ENERGETIC PROTONS, RADIONUCLIDES, AND MAGNETIC ACTIVITY IN PROTOSTELLAR DISKS

    SciTech Connect

    Turner, N. J.; Drake, J. F.

    2009-10-01

    We calculate the location of the magnetically inactive dead zone in the minimum-mass protosolar disk, under ionization scenarios including stellar X-rays, long- or short-lived radionuclide decay, and energetic protons arriving from the general interstellar medium, from a nearby supernova explosion, from the disk corona, or from the corona of the young star. The disk contains a dead zone in all scenarios except those with small dust grains removed and a fraction of the short-lived radionuclides remaining in the gas. All the cases without exception have an 'undead zone' where intermediate resistivities prevent magneto-rotational turbulence while allowing shear-generated large-scale magnetic fields. The mass column in the undead zone is typically greater than the column in the turbulent surface layers. The results support the idea that the dead and undead zones are robust consequences of cold, dusty gas with mass columns exceeding 1000 g cm{sup -2}.

  15. Capture and Transport of Laser Accelerated Protons by Pulsed Magnetic Fields: Advancements Toward Laser-Based Proton Therapy

    NASA Astrophysics Data System (ADS)

    Burris-Mog, Trevor J.

    The interaction of intense laser light (I > 10 18 W/cm2) with a thin target foil leads to the Target Normal Sheath Acceleration mechanism (TNSA). TNSA is responsible for the generation of high current, ultra-low emittance proton beams, which may allow for the development of a compact and cost effective proton therapy system for the treatment of cancer. Before this application can be realized, control is needed over the large divergence and the 100% kinetic energy spread that are characteristic of TNSA proton beams. The work presented here demonstrates control over the divergence and energy spread using strong magnetic fields generated by a pulse power solenoid. The solenoidal field results in a parallel proton beam with a kinetic energy spread DeltaE/E = 10%. Assuming that next generation lasers will be able to operate at 10 Hz, the 10% spread in the kinetic energy along with the 23% capture efficiency of the solenoid yield enough protons per laser pulse to, for the first time, consider applications in Radiation Oncology. Current lasers can generate proton beams with kinetic energies up to 67.5 MeV, but for therapy applications, the proton kinetic energy must reach 250 MeV. Since the maximum kinetic energy Emax of the proton scales with laser light intensity as Emax ∝ I0.5, next generation lasers may very well accelerate 250 MeV protons. As the kinetic energy of the protons is increased, the magnetic field strength of the solenoid will need to increase. The scaling of the magnetic field B with the kinetic energy of the protons follows B ∝ E1/2. Therefor, the field strength of the solenoid presented in this work will need to be increased by a factor of 2.4 in order to accommodate 250 MeV protons. This scaling factor seems reasonable, even with present technology. This work not only demonstrates control over beam divergence and energy spread, it also allows for us to now perform feasibility studies to further research what a laser-based proton therapy system

  16. Nuclear magnetic resonance in sedimentary rocks: Effect of proton desorption rate

    NASA Astrophysics Data System (ADS)

    Mendelson, Kenneth S.

    1982-09-01

    In a discussion of nuclear magnetic resonance of protons in the pore fluid of sedimentary rocks, Cohen and Mendelson assumed that the desorption rate of protons from the rock surface is much faster than the relaxation rate of the magnetization for protons on the surface. In the present paper it is shown that this assumption is not necessary and conditions are established under which the analysis of Cohen and Mendelson is valid.

  17. Blood species discrimination using proton nuclear magnetic resonance spectroscopy.

    PubMed

    Zailer, Elina; Diehl, Bernd W K; Monakhova, Yulia B

    2016-11-25

    Blood species identification is an important challenge in forensic science. Conventional methods used for blood species analysis are destructive and associated with time-consuming sample preparation steps. Nuclear magnetic resonance (NMR) spectroscopy is known for its nondestructive properties and fast results. This research study presents a proton ((1)H) NMR method to discriminate blood species including human, cat, dog, elephant, and bison. Characteristic signals acting as markers are observed for each species. Moreover, the data are evaluated by principle component analysis (PCA) and support vector machines (SVM). A 100% correct species recognition between human and nonhuman species is achieved using radial basis kernel function (RBF) and standardized data. The research study shows that (1)H NMR spectroscopy is a powerful tool for differentiating human and nonhuman blood showing a great significance to forensic science.

  18. Brain proton magnetic resonance spectroscopy for hepatic encephalopathy

    NASA Astrophysics Data System (ADS)

    Ong, Chin-Sing; McConnell, James R.; Chu, Wei-Kom

    1993-08-01

    Liver failure can induce gradations of encephalopathy from mild to stupor to deep coma. The objective of this study is to investigate and quantify the variation of biochemical compounds in the brain in patients with liver failure and encephalopathy, through the use of water- suppressed, localized in-vivo Proton Magnetic Resonance Spectroscopy (HMRS). The spectral parameters of the compounds quantitated are: N-Acetyl Aspartate (NAA) to Creatine (Cr) ratio, Choline (Cho) to Creatine ratio, Inositol (Ins) to Creatine ratio and Glutamine-Glutamate Amino Acid (AA) to Creatine ratio. The study group consisted of twelve patients with proven advanced chronic liver failure and symptoms of encephalopathy. Comparison has been done with results obtained from five normal subjects without any evidence of encephalopathy or liver diseases.

  19. Calibration of a compact magnetic proton recoil neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfu; Ouyang, Xiaoping; Zhang, Xianpeng; Ruan, Jinlu; Zhang, Guoguang; Zhang, Xiaodong; Qiu, Suizheng; Chen, Liang; Liu, Jinliang; Song, Jiwen; Liu, Linyue; Yang, Shaohua

    2016-04-01

    Magnetic proton recoil (MPR) neutron spectrometer is considered as a powerful instrument to measure deuterium-tritium (DT) neutron spectrum, as it is currently used in inertial confinement fusion facilities and large Tokamak devices. The energy resolution (ER) and neutron detection efficiency (NDE) are the two most important parameters to characterize a neutron spectrometer. In this work, the ER calibration for the MPR spectrometer was performed by using the HI-13 tandem accelerator at China Institute of Atomic Energy (CIAE), and the NDE calibration was performed by using the neutron generator at CIAE. The specific calibration techniques used in this work and the associated accuracies were discussed in details in this paper. The calibration results were presented along with Monte Carlo simulation results.

  20. Rabi, the proton magnetic moment, and the ‘2-wire' magnet, 1931-34

    NASA Astrophysics Data System (ADS)

    Forman, Paul

    2001-04-01

    With the assistance of Gregory Breit, I.I. Rabi, at Columbia University, worked out in 1931 a method to determine the spin (not the magnetic moment) of atomic nuclei by deflecting an atomic beam of the isotope in question in a weak, but long, inhomogeneous magnetic field. Crucial to this method was that it required no exact knowledge of that field. When the sensational result -- µp = 2.5µ_Bohr(m_e/m_p) -- from Otto Stern's deflection of a beam of hydrogen molecules in a strong magnetic field became known late in 1932, its confirmation by another laboratory, preferably by another method, seemed urgent. No one else had the refined technique to reproduce Stern's experiment. But because the hydrogen electronic wave function was known, the Breit-Rabi technique was susceptible of extension in this case to the measurement of the magnetic moment of the proton - - but only with accurate knowledge of the magnetic field and field gradient traversed by the atomic hydrogen beam. To this end Rabi introduced the '2-wire' magnet, producing a weak field and uniform gradient that could be calculated rather than measured. This field configuration quickly came to be used in all magnetic deflection experiments in Rabi's laboratory, first as produced directly by electric currents, and subsequently as emulated in iron electromagnets in order to achieve the higher magnetic fields required by molecular beam magnetic resonance experiments from 1937 onward.

  1. Rabi, the proton magnetic moment, and the ¡2-wire¢ magnet, 1931-34

    NASA Astrophysics Data System (ADS)

    Forman, Paul

    2001-04-01

    With the assistance of Gregory Breit, I.I. Rabi, at Columbia University, worked out in 1931 a method to determine the spin (not the magnetic moment) of atomic nuclei by deflecting an atomic beam of the isotope in question in a weak, but long, inhomogeneous magnetic field. Crucial to this method was that it required no exact knowledge of that field. When the sensational result: p = 2.5:_Bohr(m_e/m_p) from Otto Stern's deflection of a beam of hydrogen molecules in a strong magnetic field became known late in 1932, its confirmation by another laboratory, preferably by another method, seemed urgent. No one else had the refined technique to reproduce Stern's experiment. But because the hydrogen electronic wave function was known, the Breit Rabi technique was susceptible of extension in this case to the measurement of the magnetic moment of the proton but only with accurate knowledge of the magnetic field and field gradient traversed by the atomic hydrogen beam. To this end Rabi introduced the '2 wire' magnet, producing a weak field and uniform gradient that could be calculated rather than measured. This field configuration quickly came to be used in all magnetic deflection experiments in Rabi's laboratory, first as produced directly by electric currents, and subsequently as emulated in iron electromagnets in order to achieve the higher magnetic fields required by molecular beam magnetic resonance experiments from 1937 onward.

  2. Skyrme model study of proton and neutron properties in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    He, Bing-Ran

    2017-02-01

    The proton and neutron properties in a uniform magnetic field are investigated. The Gell-Mann-Nishijima formula is shown to be satisfied for baryon states. It is found that with increasing magnetic field strength, the proton mass first decreases and then increases, while the neutron mass always increases. The ratio between magnetic moment of proton and neutron increases with the increase of the magnetic field strength. With increasing magnetic field strength, the size of proton first increases and then decreases, while the size of neutron always decreases. The present analysis implies that in the core part of the magnetar, the equation of state depend on the magnetic field, which modifies the mass limit of the magnetar.

  3. Proton nuclear magnetic resonance studies on brain edema

    SciTech Connect

    Naruse, S.; Horikawa, Y.; Tanaka, C.; Hirakawa, K.; Nishikawa, H.; Yoshizaki, K.

    1982-06-01

    The water in normal and edematous brain tissues of rats was studied by the pulse nuclear magnetic resonance (NMR) technique, measuring the longitudinal relaxation time (T1) and the transverse relaxation time (T2). In the normal brain, T1 and T2 were single components, both shorter than in pure water. Prolongation and separation of T2 into two components, one fast and one slow, were the characteristic findings in brain edema induced by both cold injury and triethyl tin (TET), although some differences between the two types of edema existed in the content of the lesion and in the degree of changes in T1 and T2 values. Quantitative analysis of T1 and T2 values in their time course relating to water content demonstrated that prolongation of T1 referred to the volume of increased water in tissues examined, and that two phases of T2 reflected the distribution and the content of the edema fluid. From the analysis of the slow component of T2 versus water content during edema formation, it was demonstrated that the increase in edema fluid was steady, and its content was constant during formation of TET-induced edema. On the contrary, during the formation of cold-injury edema, water-rich edema fluid increased during the initial few hours, and protein-rich edema fluid increased thereafter. It was concluded that proton NMR relaxation time measurements may provide new understanding in the field of brain edema research.

  4. Measurement of the ratio of the proton's electric to magnetic form factors by recoil polarization

    SciTech Connect

    Mark K. Jones; Hall A Collaboration

    1999-03-01

    The longitudinal and transverse polarizations of the outgoing proton were measured for the reaction {sup 1}H(e,e' p) at four-momentum transfer squared of 0.5 to 3.5 GeV{sup 2}. The ratio of the electric to magnetic form factors of the proton is proportional to the ratio of the transverse to longitudinal polarizations.

  5. 31P nuclear magnetic resonance study of the proton-irradiated KTiOPO4

    NASA Astrophysics Data System (ADS)

    Kim, Se-Hun; Lee, Cheol Eui

    2013-08-01

    31P nuclear magnetic resonance (NMR) was employed to study the effects of proton irradiation on KTiOPO4 (KTP) in view of the previously studied paramagnetic impurity doping effects. High-resolution 31P NMR measurements showed significant increase in the isotropic chemical shifts of the two inequivalent phosphorus sites in the proton-irradiated KTP system, indicating decrease in the electron density around the phosphorous nuclei. The 31P NMR linewidths of the KTP system manifested anomalies associated with the superionic transition and with the polaron formation, which became much weaker after proton irradiation. Besides, the activation energy of the charge carriers increased significantly after proton irradiation.

  6. Proton flare and magnetic storm effect in the vicinity of the Earth.

    PubMed

    Nealy, J E; Wilson, J W; Shea, M A; Smart, D F

    1994-10-01

    We have developed a model and associated computational procedure for estimating energetic proton exposures during a major solar proton event that occur in combination with a large magnetic storm. Transmission functions for solar protons are computed using geomagnetic vertical cutoff data for quiescent and disturbed conditions. Predicted exposures in low altitude polar orbit are found to be orders of magnitude greater for severe magnetic storm conditions than are corresponding exposures in the absence of major disturbances. We examine the response scenario for the events of November 1960 as an example.

  7. Direct high-precision measurement of the magnetic moment of the proton.

    PubMed

    Mooser, A; Ulmer, S; Blaum, K; Franke, K; Kracke, H; Leiteritz, C; Quint, W; Rodegheri, C C; Smorra, C; Walz, J

    2014-05-29

    One of the fundamental properties of the proton is its magnetic moment, µp. So far µp has been measured only indirectly, by analysing the spectrum of an atomic hydrogen maser in a magnetic field. Here we report the direct high-precision measurement of the magnetic moment of a single proton using the double Penning-trap technique. We drive proton-spin quantum jumps by a magnetic radio-frequency field in a Penning trap with a homogeneous magnetic field. The induced spin transitions are detected in a second trap with a strong superimposed magnetic inhomogeneity. This enables the measurement of the spin-flip probability as a function of the drive frequency. In each measurement the proton's cyclotron frequency is used to determine the magnetic field of the trap. From the normalized resonance curve, we extract the particle's magnetic moment in terms of the nuclear magneton: μp = 2.792847350(9)μN. This measurement outperforms previous Penning-trap measurements in terms of precision by a factor of about 760. It improves the precision of the forty-year-old indirect measurement, in which significant theoretical bound state corrections were required to obtain µp, by a factor of 3. By application of this method to the antiproton magnetic moment, the fractional precision of the recently reported value can be improved by a factor of at least 1,000. Combined with the present result, this will provide a stringent test of matter/antimatter symmetry with baryons.

  8. Direct high-precision measurement of the magnetic moment of the proton

    NASA Astrophysics Data System (ADS)

    Mooser, A.; Ulmer, S.; Blaum, K.; Franke, K.; Kracke, H.; Leiteritz, C.; Quint, W.; Rodegheri, C. C.; Smorra, C.; Walz, J.

    2014-05-01

    One of the fundamental properties of the proton is its magnetic moment, µp. So far µp has been measured only indirectly, by analysing the spectrum of an atomic hydrogen maser in a magnetic field. Here we report the direct high-precision measurement of the magnetic moment of a single proton using the double Penning-trap technique. We drive proton-spin quantum jumps by a magnetic radio-frequency field in a Penning trap with a homogeneous magnetic field. The induced spin transitions are detected in a second trap with a strong superimposed magnetic inhomogeneity. This enables the measurement of the spin-flip probability as a function of the drive frequency. In each measurement the proton's cyclotron frequency is used to determine the magnetic field of the trap. From the normalized resonance curve, we extract the particle's magnetic moment in terms of the nuclear magneton: μp = 2.792847350(9)μN. This measurement outperforms previous Penning-trap measurements in terms of precision by a factor of about 760. It improves the precision of the forty-year-old indirect measurement, in which significant theoretical bound state corrections were required to obtain µp, by a factor of 3. By application of this method to the antiproton magnetic moment, the fractional precision of the recently reported value can be improved by a factor of at least 1,000. Combined with the present result, this will provide a stringent test of matter/antimatter symmetry with baryons.

  9. Carbon-13 and proton magnetic resonance of mouse muscle.

    PubMed Central

    Fung, B M

    1977-01-01

    It is shown that roughly 4 mmol carbon atoms/g mouse muscle can give rise to a "high resolution" 13C NMR spectrum. From the 13C spectrum, it is estimated that the protons from mobile organic molecules or molecular segments amount to 6-8%of total nonrigid protons (organic plus water) in muscle. Their spin-spin relaxation times (T2) are of the order of 0.4-2 ms. At 37 degrees C, the proton spin-echo decay of mouse muscle changes rapidly with time after death, while that of mouse brain does not. PMID:890043

  10. Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas

    PubMed Central

    Zhang, Wei; Kong, Lingfei; Wang, Lifu; Zuo, Panli; Vallines, Ignacio; Schmitt, Benjamin; Tian, Jie; Song, Xiaolei; Zhou, Jinyuan; Wang, Meiyun

    2017-01-01

    Using noninvasive magnetic resonance imaging techniques to accurately evaluate the grading and cellularity of gliomas is beneficial for improving the patient outcomes. Amide proton transfer imaging is a noninvasive molecular magnetic resonance imaging technique based on chemical exchange saturation transfer mechanism that detects endogenous mobile proteins and peptides in biological tissues. Between August 2012 and November 2015, a total number of 44 patients with pathologically proven gliomas were included in this study. We compared the capability of amide proton transfer magnetic resonance imaging with that of noninvasive diffusion-weighted imaging and noninvasive 3-dimensional pseudo-continuous arterial spin imaging in evaluating the grading and cellularity of gliomas. Our results reveal that amide proton transfer magnetic resonance imaging is a superior imaging technique to diffusion-weighted imaging and 3-dimensional pseudo-continuous arterial spin imaging in the grading of gliomas. In addition, our results showed that the Ki-67 index correlated better with the amide proton transfer-weighted signal intensity than with the apparent diffusion coefficient value or the cerebral blood flow value in the gliomas. Amide proton transfer magnetic resonance imaging is a promising method for predicting the grading and cellularity of gliomas. PMID:27992380

  11. Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas.

    PubMed

    Bai, Yan; Lin, Yusong; Zhang, Wei; Kong, Lingfei; Wang, Lifu; Zuo, Panli; Vallines, Ignacio; Schmitt, Benjamin; Tian, Jie; Song, Xiaolei; Zhou, Jinyuan; Wang, Meiyun

    2017-01-24

    Using noninvasive magnetic resonance imaging techniques to accurately evaluate the grading and cellularity of gliomas is beneficial for improving the patient outcomes. Amide proton transfer imaging is a noninvasive molecular magnetic resonance imaging technique based on chemical exchange saturation transfer mechanism that detects endogenous mobile proteins and peptides in biological tissues. Between August 2012 and November 2015, a total number of 44 patients with pathologically proven gliomas were included in this study. We compared the capability of amide proton transfer magnetic resonance imaging with that of noninvasive diffusion-weighted imaging and noninvasive 3-dimensional pseudo-continuous arterial spin imaging in evaluating the grading and cellularity of gliomas. Our results reveal that amide proton transfer magnetic resonance imaging is a superior imaging technique to diffusion-weighted imaging and 3-dimensional pseudo-continuous arterial spin imaging in the grading of gliomas. In addition, our results showed that the Ki-67 index correlated better with the amide proton transfer-weighted signal intensity than with the apparent diffusion coefficient value or the cerebral blood flow value in the gliomas. Amide proton transfer magnetic resonance imaging is a promising method for predicting the grading and cellularity of gliomas.

  12. Binding of calcium to phosphatidylcholines as determined by proton magnetic resonance and infrared spectroscopy.

    PubMed

    Yabusaki, K K; Wells, M A

    1975-01-14

    The interactions of calcium, magnesium, and the rare earth cations, cerium, neodymium, and praseodymium, with phosphatidylcholines were studied by proton magnetic resonance and infared spectroscopy. The calcium-induced chemical shifts for the various protons of phosphatidylcholine were C alpha choline greater than C beta choline greater than N(CH3)3 greater than C3 glycerol. No significant chemical shifts were observed for the C1 and C2 glycerol protons. None of the acyl chain protons were affected by the presence of calcium. Analysis of the salt-induced chemical shifts yielded binding curves with an excellent fit with the theoretical. The vicinal coupling constants for the various protons of phosphatidylcholine did not appear to change in the presence of calcium. The lanthanide-induced isotropic shifts for the protons of phosphatidylcholines followed the order Cbeta choline greater than C3 glycerol greater than Calpha choline greater than N(CH3)3. Examination of the P=O stretching band (1150-1300 cm-1) of phosphatidylcholines by differential infrared spectroscopy showed that this band shifted to shorter wavelengths in the presence of calcium. The site of calcium binding to phosphatidylcholines as deduced from the proton magnetic resonance and infrared data is discussed in light of the high specificity for calcium in enhancing the amino-catalyzed methanolysis of phosphatidylcholines.

  13. WE-D-17A-04: Magnetically Focused Proton Irradiation of Small Volume Targets

    SciTech Connect

    McAuley, G; Slater, J; Wroe, A

    2014-06-15

    Purpose: To explore the advantages of magnetic focusing for small volume proton irradiations and the potential clinical benefits for radiosurgery targets. The primary goal is to create narrow elongated proton beams of elliptical cross section with superior dose delivery characteristics compared to current delivery modalities (eg, collimated beams). In addition, more general beam shapes are also under investigation. Methods: Two prototype magnets consisting of 24 segments of samarium-cobalt (Sm2Co17) permanent magnetic material adhered into hollow cylinders were manufactured for testing. A single focusing magnet was placed on a positioning track on our Gantry 1 treatment table and 15 mm diameter proton beams with energies and modulation relevant to clinical radiosurgery applications (127 to 186 MeV, and 0 to 30 mm modulation) were delivered to a terminal water tank. Beam dose distributions were measured using a PTW diode detector and Gafchromic EBT2 film. Longitudinal and transverse dose profiles were analyzed and compared to data from Monte Carlo simulations analogous to the experimental setup. Results: The narrow elongated focused beam spots showed high elliptical symmetry indicating high magnet quality. In addition, when compared to unfocused beams, peak-to-entrance depth dose ratios were 11 to 14% larger (depending on presence or extent of modulation), and minor axis penumbras were 11 to 20% smaller (again depending on modulation) for focused beams. These results suggest that the use of rare earth magnet assemblies is practical and could improve dose-sparing of normal tissue and organs at risk while delivering enhanced dose to small proton radiosurgery targets. Conclusion: Quadrapole rare earth magnetic assemblies are a promising and inexpensive method to counteract particle out scatter that tends to degrade the peak to entrance performance of small field proton beams. Knowledge gained from current experiments will inform the design of a prototype treatment

  14. Direct high-precision measurement of the magnetic moment of the proton

    NASA Astrophysics Data System (ADS)

    Quint, Wolfgang

    2015-05-01

    The challenge to measure the properties of the proton with great precision inspires very different branches of physics. The magnetic moment of the proton is a fundamental property of this particle. So far it has only been measured indirectly, by analyzing the spectrum of an atomic hydrogen maser in a magnetic field. Here we report the direct high-precision measurement of the magnetic moment of a single proton using the double Penning-trap technique. We drive proton-spin quantum jumps by a radio-frequency field in a Penning trap with a homogeneous magnetic field. The induced spin transitions are detected in a second trap with a strong superimposed magnetic inhomogeneity. This enables the measurement of the spin-flip probability as a function of the drive frequency. In each measurement the proton's cyclotron frequency is used to determine the magnetic field of the trap. From the normalized resonance curve, we extract the particle's magnetic moment in terms of the nuclear magneton: μp = 2.792 847 350 (9) μN. This measurement outperforms previous Penning-trap measurements in terms of precision by a factor of about 760. It improves the precision of the forty year-old indirect measurement by D. Kleppner et al., in which significant theoretical bound-state corrections were required to obtain μp, by a factor of 3. By application of this method to the antiproton magnetic moment, the fractional precision of the recently reported value can be improved by a factor of at least 1,000. Combined with the present result, this will provide a stringent test of matter/antimatter symmetry with baryons. Deutsche Forschungsgemeinschaft, grant QU122/3.

  15. An analytical solution to proton Bragg peak deflection in a magnetic field.

    PubMed

    Wolf, Russell; Bortfeld, Thomas

    2012-09-07

    The role of MR imaging for image-guided radiation therapy (IGRT) is becoming more and more important thanks to the excellent soft tissue contrast offered by MRI. Hybrid therapy devices with integrated MRI scanners are under active development for x-ray therapy. The combination of proton therapy with MRI imaging has only been investigated at the theoretical or conceptual level. Of concern is the deflection of the proton beam in the homogeneous magnetic field. A previous publication has come to the conclusion that the impact of a 0.5 T magnetic field on the dose distribution for proton therapy is very small and lateral deflections stay well below 2 mm. The purpose of this study is to provide new insights into the effects of magnetic fields on a proton beam coming to rest in a patient. We performed an analytical calculation of the lateral deflection of protons with initial energies between 50 MeV and 250 MeV, perpendicular to the beam direction and the magnetic field. We used a power-law range-energy relationship and the Lorentz force in both relativistic and non-relativistic conditions. Calculations were done for protons coming to rest in water or soft tissue, and generalized to other uniform and non-uniform media. Results were verified by comparisons with numerical calculations and Monte Carlo simulations. A key result of our calculations is that the maximum lateral deflection at the end of range is proportional to the third power of the initial energy. Accordingly, due to the strong dependence on the energy, even a relatively small magnetic field of 0.5 T will cause a deflection of the proton beam by 1 cm at the end of range of a 200 MeV beam. The maximum deflection at 200 MeV is more than 10 times larger than that of a 90 MeV beam. Relativistic corrections of the deflection are generally small but they can become non-negligible at higher energies around 200 MeV and above. Contrary to previous findings, the lateral deflection of a proton beam can be significant (1

  16. Dynamics of the penetration boundaries of solar protons during a strong magnetic storm

    NASA Technical Reports Server (NTRS)

    Glukhov, G. A.; Kratenko, Y. P.; Mineev, Y. V.

    1985-01-01

    The variations in the equatorial penetration boundary of solar protons with E sub p = 0.9 to 8.0 MeV during a strong magnetic storm of April 3 to 5, were analyzed. The dynamics of this boundary is compared with the dynamics of the outer trapping boundary of electrons with E sub e = - 0.3 to 0.6 MeV. The solar-proton penetration and the structure of the real magnetic field are studied. The unique data on the thin structure of development of a magnetospheric substorm were obtained for the first time.

  17. Magnetic Resonance Studies of Proton Loss from Carotenoid Radical Cations

    SciTech Connect

    Kispert, Lowell D; Focsan, A Ligia; Konovalova, Tatyana A; Lawrence, Jesse; Bowman, Michael K; Dixon, David A; Molnar, Peter; Deli, Jozsef

    2007-06-11

    Carotenoids, intrinsic components of reaction centers and pigment-protein complexes in photosynthetic membranes, play a photoprotective role and serve as a secondary electron donor. Before optimum use of carotenoids can be made in artificial photosynthetic systems, their robust nature in living materials requires extensive characterization of their electron transfer, radical trapping ability, stability, structure in and on various hosts, and photochemical behavior. Pulsed ENDOR and 2D-HYSCORE studies combined with DFT calculations reveal that photo-oxidation of natural zeaxanthin (I) and violaxanthin (II) on silica-alumina produces not only the carotenoid radical cations (Car•+) but also neutral radicals (#Car•) by proton loss from the methyl groups at positions 5 or 5', and possibly 9 or 9' and 13 or 13'. Notably, the proton loss favored in I at the 5 position by DFT calculations, is unfavorable in II due to the epoxide at the 5, 6 position. DFT calculations predict the isotropic methyl proton couplings of 8-10 MHz for Car•+ which agree with the ENDOR for carotenoid α-conjugated radical cations. Large α-proton hyperfine coupling constants (>10 MHz) determined from HYSCORE are assigned from the DFT calculations to neutral carotenoid radicals. Proton loss upon photolysis was also examined as a function of carotenoid polarity [Lycopene (III) versus 8'-apo-β-caroten-8'-al (IV)]; hydrogen bonding [Lutein (V) versus III]; host [silica-alumina versus MCM-41 molecular sieve]; and substituted metal in MCM-41. Loss of H+ from the 5(5'), 9(9') or 13(13') methyl positions has importance in photoprotection. Photoprotection involves nonphotochemical quenching (NPQ) in which 1Ch1* decays via energy transfer to the carotenoid which returns to the ground state by thermal dissipation; or via electron transfer to form a charge transfer state (I •+…Chl•-), lower in energy than 1Chl*. Formation of I •+ results in bond lengthening, a mechanism for nonradiative energy

  18. First application of proton reflection magnetometry with MESSENGER to estimate Mercury's surface magnetic field strength (Invited)

    NASA Astrophysics Data System (ADS)

    Winslow, R. M.; Johnson, C. L.; Anderson, B. J.; Gershman, D. J.; Raines, J. M.; Lillis, R. J.; Korth, H.; Slavin, J. A.; Solomon, S. C.

    2013-12-01

    We present the first use of proton reflection magnetometry, a novel adaptation of electron reflectometry, to estimate Mercury's surface field strength. We use measurements of protons by MESSENGER's Fast Imaging Plasma Spectrometer (FIPS) in 8-s integration times. Because of the limited field of view of FIPS, we average pitch-angle distributions by accumulating proton data from multiple integration periods and orbits over selected geographical regions. Proton loss cones are evident in both the northern hemisphere cusp region as well as on the nightside at low latitudes in the southern hemisphere. The existence of the loss cones provides confirmation of proton precipitation to the surface in these regions. The loss cone pitch-angle cut-offs are gradual rather than sharp, which we attribute in part to wave-particle scattering causing pitch-angle diffusion. Fitting diffusion curves to the pitch-angle distributions yields estimates of both the cut-off pitch angle, αc, and an average Dαt, where Dα is the pitch-angle diffusion coefficient and t is the diffusion time. The in-situ magnetic field together with αc provide an estimate of the surface magnetic field strength. The results are within 10% of a magnetospheric model for the surface field at the mapped surface locations, but are systematically lower than the model predictions. This discrepancy is consistent with the presence of near-surface plasma, which locally lowers the actual total magnetic field at the surface but is not included in the vacuum-field magnetospheric model. As consistency checks, we have confirmed that the loss cone size decreases with increasing altitude and that the surface magnetic field strength increases with increasing latitude. Our results confirm the offset dipole structure at the surface and demonstrate that proton reflection magnetometry is a practical method for inferring the surface magnetic field strength at Mercury. Further observations may resolve regional-scale structure in the

  19. Proton-nuclear magnetic resonance relaxation times in brain edema

    SciTech Connect

    Kamman, R.L.; Go, K.G.; Berendsen, H.J. )

    1990-01-01

    Proton relaxation times of protein solutions, bovine brain, and edematous feline brain tissue were studied as a function of water concentration, protein concentration, and temperature. In accordance with the fast proton exchange model for relaxation, a linear relation could be established between R1 and the inverse of the weight fraction of tissue water. This relation also applied to R2 of gray matter and of protein solutions. No straightforward relation with water content was found for R2 of white matter. Temperature-dependent studies indicated that in this case, the slow exchange model for relaxation had to be applied. The effect of macromolecules in physiological relevant concentrations on the total relaxation behavior of edematous tissue was weak. Total water content changes predominantly affected the relaxation rates. The linear relation may have high clinical potential for assessment of the status of cerebral edema on the basis of T1 and T2 readings from MR images.

  20. Correlation between proton anisotropy and magnetic field direction in the distant geotail

    NASA Technical Reports Server (NTRS)

    Klecker, B.; Scholer, M.; Hovestadt, D.; Gloeckler, G.; Ipavich, F. M.; Smith, E. J.; Tsurutani, B. T.

    1984-01-01

    A statistical analysis has been conducted of the anisotropy of suprathermal protons and the polarity of the magnetic field during April 10-16, 1983. At this time, ISEE-3 was at lunar distances in the geomagnetic tail of the earth, and well within the nominal magnetopause. The first-order anisotropy is presently correlated with the latitude angle and the z-component of the magnetic field. The anisotropy direction's frequency distribution is strongly peaked in the earthward and tailward direction, indicating fast earthward and tailward flows. For large anisotropies, and within 5 earth radii of the nominal neutral sheet position, a strong correlation is found between the earthward-streaming suprathermal protons and the northward polarity of the magnetic field; large tailward anisotropies are generally correlated with southward magnetic field polarity. This correlation is most simply interpreted in terms of a neutral line or reconnection model.

  1. Variations in proton scanned beam dose delivery due to uncertainties in magnetic beam steering.

    PubMed

    Peterson, Stephen; Polf, Jerimy; Ciangaru, George; Frank, Steven J; Bues, Martin; Smith, Al

    2009-08-01

    The purpose of this work was to develop a method to calculate and study the impact of fluctuations in the magnetic field strengths within the steering magnets in a proton scanning beam treatment nozzle on the dose delivered to the patient during a proton therapy treatment. First, an analytical relationship between magnetic field uncertainties in the steering magnets and the resulting lateral displacements in the position of the delivered scanned beam "dose spot" was established. Next, using a simple 3D dose calculation code and data from a validated Monte Carlo model of the proton scanning beam treatment nozzle, the uniform dose delivery to a 3D treatment volume was calculated. The dose distribution was then recalculated using the calculated lateral displacements due to magnetic field fluctuations to the proton pencil beam position. Using these two calculated dose distributions, the clinical effects of the magnetic field fluctuations were determined. A deliberate displacement of four adjacent spots either toward or away from each other was used to determine the "maximum" dose impact, while a random displacement of all spots was used to establish a more realistic clinical dose impact. Changes in the dose volume histogram (DVH) and the presence of hot and cold spots in the treatment volume were used to quantify the impact of dose-spot displacement. A general analytical relationship between magnetic field uncertainty and final dose-spot position is presented. This analytical relationship was developed such that it can be applied to study magnetic beam steering for any scanned beam nozzle design. Using this relationship the authors found for the example beam steering nozzle used in this study that deliberate lateral displacements of 0.5 mm or random lateral displacements of up to 1.0 mm produced a noticeable dose impact (5% hot spot) in the treatment volume. A noticeable impact (3% decrease in treatment volume coverage) on the DVH was observed for random displacements

  2. Glutamatergic Effects of Divalproex in Adolescents with Mania: A Proton Magnetic Resonance Spectroscopy Study

    ERIC Educational Resources Information Center

    Strawn, Jeffrey R.; Patel, Nick C.; Chu, Wen-Jang; Lee, Jing-Huei; Adler, Caleb M.; Kim, Mi Jung; Bryan, Holly S.; Alfieri, David C.; Welge, Jeffrey A.; Blom, Thomas J.; Nandagopal, Jayasree J.; Strakowski, Stephen M.; DelBello, Melissa P.

    2012-01-01

    Objectives: This study used proton magnetic resonance spectroscopy ([superscript 1]H MRS) to evaluate the in vivo effects of extended-release divalproex sodium on the glutamatergic system in adolescents with bipolar disorder, and to identify baseline neurochemical predictors of clinical remission. Method: Adolescents with bipolar disorder who were…

  3. Evaluation of brain edema using magnetic resonance proton relaxation times

    SciTech Connect

    Fu, Y.; Tanaka, K.; Nishimura, S. )

    1990-01-01

    Experimental and clinical studies on the evaluation of water content in cases of brain edema were performed in vivo, using MR proton relaxation times (longitudinal relaxation time, T1; transverse relaxation time, T2). Brain edema was produced in the white matter of cats by the direct infusion method. The correlations between proton relaxation times obtained from MR images and the water content of white matter were studied both in autoserum-infused cats and in saline-infused cats. The correlations between T1 as well as T2 and the water content in human vasogenic brain edema were also examined and compared with the data obtained from the serum group. T1 and T2 showed good correlations with the water content of white matter not only in the experimental animals but also in the clinical cases. The quality of the edema fluid did not influence relaxation time and T1 seemed to represent almost solely the water content of the tissue. T2, however, was affected by the nature of existence of water and was more sensitive than T1 in detecting extravasated edema fluid. It seems feasible therefore to evaluate the water content of brain edema on the basis of T1 values.

  4. Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current

    DOE PAGES

    Gao, Lan; Ji, Hantao; Fiksel, Gennady; ...

    2016-04-15

    Magnetic fields generated by a current flowing through a U-shaped coil connecting two copper foils were measured using ultrafast proton radiography. Two ~ 1.25 kJ, 1-ns laser pulses propagated through laser entrance holes in the front foil and were focused to the back foil with an intensity of ~ 3 x 1016 W/cm2. The intense laser-solid interaction induced a high voltage between the copper foils and generated a large current in the connecting coil. The proton data show ~ 40-50 T magnetic fields at the center of the coil ~ 3-4 ns after laser irradiation. In conclusion, the experiments providemore » significant insight for future target designs that aim to develop a powerful source of external magnetic fields for various applications in high-energy-density science.« less

  5. Magnetic Fluctuation Power Near Proton Temperature Anisotropy Instability Thresholds in the Solar Wind

    SciTech Connect

    Bale, S. D.; Kasper, J. C.; Howes, G. G.; Quataert, E.; Salem, C.; Sundkvist, D.

    2009-11-20

    The proton temperature anisotropy in the solar wind is known to be constrained by the theoretical thresholds for pressure-anisotropy-driven instabilities. Here, we use approximately 1x10{sup 6} independent measurements of gyroscale magnetic fluctuations in the solar wind to show for the first time that these fluctuations are enhanced along the temperature anisotropy thresholds of the mirror, proton oblique firehose, and ion cyclotron instabilities. In addition, the measured magnetic compressibility is enhanced at high plasma beta (beta{sub ||} > or approx. 1) along the mirror instability threshold but small elsewhere, consistent with expectations of the mirror mode. We also show that the short wavelength magnetic fluctuation power is a strong function of collisionality, which relaxes the temperature anisotropy away from the instability conditions and reduces correspondingly the fluctuation power.

  6. Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current

    SciTech Connect

    Gao, Lan; Ji, Hantao; Fiksel, Gennady; Fox, William; Evans, Michelle; Alfonso, Noel

    2016-04-15

    Magnetic fields generated by a current flowing through a U-shaped coil connecting two copper foils were measured using ultrafast proton radiography. Two ~ 1.25 kJ, 1-ns laser pulses propagated through laser entrance holes in the front foil and were focused to the back foil with an intensity of ~ 3 x 1016 W/cm2. The intense laser-solid interaction induced a high voltage between the copper foils and generated a large current in the connecting coil. The proton data show ~ 40-50 T magnetic fields at the center of the coil ~ 3-4 ns after laser irradiation. In conclusion, the experiments provide significant insight for future target designs that aim to develop a powerful source of external magnetic fields for various applications in high-energy-density science.

  7. Development of a compact magnetic proton recoil spectrometer for measurement of deuterium-tritium neutrons.

    PubMed

    Zhang, Jianfu; Ouyang, Xiaoping; Qiu, Suizheng; Zhang, Guoguang; Ruan, Jinlu; Zhang, Xiaodong; Zhang, Xianpeng; Yang, Shaohua; Song, Jiwen; Liu, Linyue; Li, Hongyun

    2015-12-01

    A new compact magnetic proton recoil (MPR) neutron spectrometer has been designed for precise measurement of deuterium-tritium (DT) neutrons. This design is presented emphasizing the magnetic analyzing system, which is based on a compact quadrupole-dipole (QD) electromagnet. The focal plane detector (FPD) is also discussed with respect to application for the next step. The characteristics of the MPR spectrometer were calculated by using Monte Carlo simulation. A preliminary experiment was performed to test the magnetic analyzing system and the proton images of the FPD. Since the QD electromagnet design allows for a larger foil thickness and solid angle to be utilized, the MPR spectrometer defined in this paper can achieve neutron detection efficiency more than 5 × 10(-7) at an energy resolution of 1.5% for measuring DT neutrons.

  8. Development of a compact magnetic proton recoil spectrometer for measurement of deuterium-tritium neutrons

    SciTech Connect

    Zhang, Jianfu Ouyang, Xiaoping; Zhang, Xianpeng; Qiu, Suizheng; Zhang, Guoguang; Ruan, Jinlu; Zhang, Xiaodong; Yang, Shaohua; Song, Jiwen; Liu, Linyue; Li, Hongyun

    2015-12-15

    A new compact magnetic proton recoil (MPR) neutron spectrometer has been designed for precise measurement of deuterium-tritium (DT) neutrons. This design is presented emphasizing the magnetic analyzing system, which is based on a compact quadrupole-dipole (QD) electromagnet. The focal plane detector (FPD) is also discussed with respect to application for the next step. The characteristics of the MPR spectrometer were calculated by using Monte Carlo simulation. A preliminary experiment was performed to test the magnetic analyzing system and the proton images of the FPD. Since the QD electromagnet design allows for a larger foil thickness and solid angle to be utilized, the MPR spectrometer defined in this paper can achieve neutron detection efficiency more than 5 × 10{sup −7} at an energy resolution of 1.5% for measuring DT neutrons.

  9. Magnetic fluctuation power near proton temperature anisotropy instability thresholds in the solar wind.

    PubMed

    Bale, S D; Kasper, J C; Howes, G G; Quataert, E; Salem, C; Sundkvist, D

    2009-11-20

    The proton temperature anisotropy in the solar wind is known to be constrained by the theoretical thresholds for pressure-anisotropy-driven instabilities. Here, we use approximately 1x10;{6} independent measurements of gyroscale magnetic fluctuations in the solar wind to show for the first time that these fluctuations are enhanced along the temperature anisotropy thresholds of the mirror, proton oblique firehose, and ion cyclotron instabilities. In addition, the measured magnetic compressibility is enhanced at high plasma beta (beta_{ parallel} greater, similar1) along the mirror instability threshold but small elsewhere, consistent with expectations of the mirror mode. We also show that the short wavelength magnetic fluctuation power is a strong function of collisionality, which relaxes the temperature anisotropy away from the instability conditions and reduces correspondingly the fluctuation power.

  10. Magnetism in MoS{sub 2} induced by proton irradiation

    SciTech Connect

    Mathew, S.; Gopinadhan, K.; Dhar, S.; Venkatesan, T.; Chan, T. K.; Yu, X. J.; Zhan, D.; Shen, Z. X.; Cao, L.; Rusydi, A.; Breese, M. B. H.; Thong, John T. L.

    2012-09-03

    Molybdenum disulphide, a diamagnetic layered dichalcogenide solid, is found to show magnetic ordering at room temperature when exposed to a 2 MeV proton beam. The temperature dependence of magnetization displays ferrimagnetic behavior with a Curie temperature of 895 K. A disorder mode corresponding to a zone-edge phonon and a Mo valence higher than +4 has been detected in the irradiated samples using Raman and x-ray photoelectron spectroscopy, respectively. The possible origins of long-range magnetic ordering in irradiated MoS{sub 2} samples are discussed.

  11. The effect of magnetically induced linear aggregates on proton transverse relaxation rates of aqueous suspensions of polymer coated magnetic nanoparticles.

    PubMed

    Saville, Steven L; Woodward, Robert C; House, Michael J; Tokarev, Alexander; Hammers, Jacob; Qi, Bin; Shaw, Jeremy; Saunders, Martin; Varsani, Rahi R; St Pierre, Tim G; Mefford, O Thompson

    2013-03-07

    It has been recently reported that for some suspensions of magnetic nanoparticles the transverse proton relaxation rate, R(2), is dependent on the time that the sample is exposed to an applied magnetic field. This time dependence has been linked to the formation of linear aggregates or chains in an applied magnetic field via numerical modeling. It is widely known that chain formation occurs in more concentrated ferrofluids systems and that this has an affect on the ferrofluid properties. In this work we examine the relationships between colloidal stability, the formation of these linear structures, and changes observed in the proton transverse relaxation rate of aqueous suspensions of magnetic particles. A series of iron oxide nanoparticles with varying stabilizing ligand brush lengths were synthesized. These systems were characterized with dynamic light scattering, transmission electron microscopy, dark-field optical microscopy, and proton transverse relaxation rate measurements. The dark field optical microscopy and R(2) measurements were made in similar magnetic fields over the same time scale so as to correlate the reduction of the transverse relaxivity with the formation of linear aggregates. Our results indicate that varying the ligand length has a direct effect on the colloidal arrangement of the system in a magnetic field, producing differences in the rate and size of chain formation, and hence systematic changes in transverse relaxation rates over time. With increasing ligand brush length, attractive inter-particle interactions are reduced, which results in slower aggregate formation and shorter linear aggregate length. These results have implications for the stabilization, characterization and potentially the toxicity of magnetic nanoparticle systems used in biomedical applications.

  12. New method to determine proton trajectories in the equatorial plane of a dipole magnetic field.

    PubMed

    Ioanoviciu, Damaschin

    2015-01-01

    A parametric description of proton trajectories in the equatorial plane of Earth's dipole magnetic field has been derived. The exact expression of the angular coordinate contains an integral to be performed numerically. The radial coordinate results from the initial conditions by basic mathematical operations and by using trigonometric functions. With the approximate angular coordinate formula, applicable for a wide variety of cases of protons trapped in Earth's radiation belts, no numerical integration is needed. The results of exact and approximate expressions were compared for a specific case and small differences were found.

  13. The effects of 8 Helios observed solar proton events of interplanetary magnetic field fluctuations

    NASA Technical Reports Server (NTRS)

    ValdezGalicia, J. F.; Alexander, P.; Otaola, J. A.

    1995-01-01

    There have been recent suggestions that large fluxes during solar energetic particle events may produce their own turbulence. To verify this argument it becomes essential to find out whether these flows cause an enhancement of interplanetary magnetic field fluctuations. In the present work, power and helicity spectra of the IMF before, during and after 8 Helios-observed solar proton events in the range 0.3 - 1 AU are analyzed. In order to detect proton self generated waves, the time evolution of spectra are followed.

  14. Ion cooling in the plasmasphere during magnetic storm initial phase: modeling the proton temperature dynamics.

    NASA Astrophysics Data System (ADS)

    Kotova, Galina; Verigin, Mikhail; Bezrukikh, Vladilen

    The effect of ion temperature decreasing at L ¡ 3 during geomagnetic storm development was recently revealed by INTERBALL 2 and MAGION 5 thermal plasma data. A model of proton drift outward from the Earth caused by magnetic field decreasing in the inner plasmasphere is considered. Conservation of the first adiabatic invariant results in proton cooling during their outward motion. It is shown that model temperatures well agree with experimental data. The work is partially supported by the RAS programs P16 and OFN 15.

  15. Alternating-gradient canted cosine theta superconducting magnets for future compact proton gantries

    NASA Astrophysics Data System (ADS)

    Wan, Weishi; Brouwer, Lucas; Caspi, Shlomo; Prestemon, Soren; Gerbershagen, Alexander; Schippers, Jacobus Maarten; Robin, David

    2015-10-01

    We present a design of superconducting magnets, optimized for application in a gantry for proton therapy. We have introduced a new magnet design concept, called an alternating-gradient canted cosine theta (AG-CCT) concept, which is compatible with an achromatic layout. This layout allows a large momentum acceptance. The 15 cm radius of the bore aperture enables the application of pencil beam scanning in front of the SC-magnet. The optical and dynamic performance of a gantry based on these magnets has been analyzed using the fields derived (via Biot-Savart law) from the actual windings of the AG-CCT combined with the full equations of motion. The results show that with appropriate higher order correction, a large 3D volume can be rapidly scanned with little beam shape distortion. A very big advantage is that all this can be done while keeping the AG-CCT fields fixed. This reduces the need for fast field ramping of the superconducting magnets between the successive beam energies used for the scanning in depth and it is important for medical application since this reduces the technical risk (e.g., a quench) associated with fast field changes in superconducting magnets. For proton gantries the corresponding superconducting magnet system holds promise of dramatic reduction in weight. For heavier ion gantries there may furthermore be a significant reduction in size.

  16. Multimodal neuroimaging in humans at 9.4 T: a technological breakthrough towards an advanced metabolic imaging scanner.

    PubMed

    Shah, N Jon

    2015-07-01

    The aim of this paper is twofold: firstly, to explore the potential of simultaneously acquiring multimodal MR-PET-EEG data in a human 9.4 T scanner to provide a platform for metabolic brain imaging. Secondly, to demonstrate that the three modalities are complementary, with MRI providing excellent structural and functional imaging, PET providing quantitative molecular imaging, and EEG providing superior temporal resolution. A 9.4 T MRI scanner equipped with a PET insert and a commercially available EEG device was used to acquire in vivo proton-based images, spectra, and sodium- and oxygen-based images with MRI, EEG signals from a human subject in a static 9.4 T magnetic field, and demonstrate hybrid MR-PET capability in a rat model. High-resolution images of the in vivo human brain with an isotropic resolution of 0.5 mm and post-mortem brain images of the cerebellum with an isotropic resolution of 320 µm are presented. A (1)H spectrum was also acquired from 2 × 2 × 2 mm voxel in the brain allowing 12 metabolites to be identified. Imaging based on sodium and oxygen is demonstrated with isotropic resolutions of 2 and 5 mm, respectively. Auditory evoked potentials measured in a static field of 9.4 T are shown. Finally, hybrid MR-PET capability at 9.4 T in the human scanner is demonstrated in a rat model. Initial progress on the road to 9.4 T multimodal MR-PET-EEG is illustrated. Ultra-high resolution structural imaging, high-resolution images of the sodium distribution and proof-of-principle (17)O data are clearly demonstrated. Further, simultaneous MR-PET data are presented without artefacts and EEG data successfully corrected for the cardioballistic artefact at 9.4 T are presented.

  17. Measurement of lateral diffusion rates in membranes by pulsed magnetic field gradient, magic angle spinning-proton nuclear magnetic resonance.

    PubMed

    Gawrisch, Klaus; Gaede, Holly C

    2007-01-01

    Membrane organization, including the presence of domains, can be characterized by measuring lateral diffusion rates of lipids and membrane-bound substances. Magic angle spinning (MAS) yields well-resolved proton nuclear magnetic resonance (NMR) of lipids in biomembranes. When combined with pulsed-field gradient NMR (rendering what is called "pulsed magnetic field gradients-MAS-NMR"), it permits precise diffusion measurements on the micrometer lengths scale for any substance with reasonably well-resolved proton MAS-NMR resonances, without the need of preparing oriented samples. Sample preparation procedures, the technical requirements for the NMR equipment, and spectrometer settings are described. Additionally, equations for analysis of diffusion data obtained from unoriented samples, and a method for correcting the data for liposome curvature are provided.

  18. SU-D-304-02: Magnetically Focused Proton Irradiation of Small Field Targets

    SciTech Connect

    McAuley, GA; Slater, JM; Slater, JD; Wroe, AJ

    2015-06-15

    Purpose: To investigate the use of magnetic focusing for small field proton irradiations. It is hypothesized that magnetic focusing will provide significant dose distribution benefits over standard collimated beams for fields less than 10 mm diameter. Methods: Magnets consisting of 24 segments of radiation hard samarium-cobalt adhered into hollow cylinders were designed and manufactured. Two focusing magnets were placed on a positioning track on our Gantry 1 treatment table. Proton beams with energies of 127 and 157 MeV, 15 and 30 mm modulation, and 8 mm initial diameters were delivered to a water tank using single-stage scattering. Depth dose distributions were measured using a PTW PR60020 diode detector and transverse profiles were measured with Gafchromic EBT3 film. Monte Carlo simulations were also performed - both for comparison with experimental data and to further explore the potential of magnetic focusing in silica. For example, beam spot areas (based on the 90% dose contour) were matched at Bragg depth between simulated 100 MeV collimated beams and simulated beams focused by two 400 T/m gradient magnets. Results: Preliminary experimental results show 23% higher peak to entrance dose ratios and flatter spread out Bragg peak plateaus for 8 mm focused beams compared with uncollimated beams. Monte Carlo simulations showed 21% larger peak to entrance ratios and a ∼9 fold more efficient dose to target delivery compared to spot-sized matched collimated beams. Our latest results will be presented. Conclusion: Our results suggest that rare earth focusing magnet assemblies could reduce skin dose and beam number while delivering dose to nominally spherical radiosurgery targets over a much shorter time compared to unfocused beams. Immediate clinical applications include those associated with proton radiosurgery and functional radiosurgery of the brain and spine, however expanded treatment sites can be also envisaged.

  19. Nuclear magnetic resonance multiwindow analysis of proton local fields and magnetization distribution in natural and deuterated mouse muscle.

    PubMed Central

    Peemoeller, H; Pintar, M M

    1979-01-01

    The proton free-induction decays, spin-spin relaxation times, local fields in the rotating frame, and spin-lattice relaxation times in the laboratory and rotating frames, in natural and fully deuterated mouse muscle, are reported. Measurements were taken above and below freezing temperature and at two time windows on the free-induction decay. A comparative analysis show that the magnetization fractions deduced from the different experiments are in good agreement. The main conclusion is that the resolution of the (heterogeneous) muscle nuclear magnetic resonance (NMR) response is improved by the multiwindow analysis. PMID:262554

  20. Proton magnetic resonance spectroscopy for the diagnosis and management of cerebral disorders.

    PubMed

    Rudkin, T M; Arnold, D L

    1999-08-01

    The use of magnetism in medicine has a long and colorful history since its legendary discovery in the Western world by the shepherd Magnes. More recent use of magnetism has centered on nuclear magnetic resonance. Magnetic resonance spectroscopy (MRS) provides chemical information on tissue metabolites. Both hydrogen 1 (1H) and phosphorus 31 resonances have been used to study brain tissue, but the magnetic resonance sensitivity for protons is far greater than it is for phosphorus. One of the most important contributions of 1H-MRS to clinical neurology is its ability to quantify neuronal loss and to demonstrate reversible neuronal damage. 1H-magnetic resonance spectroscopy has been found to be a useful research tool in elucidating the pathophysiology underlying certain diseases. This review focuses on the use of proton MRS to study various neurologic diseases, including epilepsy, multiple sclerosis, brain tumors, human immunodeficiency virus 1-associated neurologic disorders, as well as cerebrovascular, neurodegenerative, and metabolic diseases. It highlights the contributions of 1H-MRS to the diagnosis and the monitoring of these neurologic diseases that make it a useful adjunct in patient management.

  1. Amplification of Collective Magnetic Fluctuations in Magnetized Bi-Maxwellian Plasmas for Parallel Wave Vectors. I. Electron-Proton Plasma

    NASA Astrophysics Data System (ADS)

    Vafin, S.; Schlickeiser, R.; Yoon, P. H.

    2016-09-01

    The general electromagnetic fluctuation theory is a powerful tool to analyze the magnetic fluctuation spectrum of a plasma. Recent works utilizing this theory for a magnetized non-relativistic isotropic Maxwellian electron-proton plasma have demonstrated that the equilibrium ratio of | δ B| /{B}0 can be as high as 10-12. This value results from the balance between spontaneous emission of fluctuations and their damping, and it is considerably smaller than the observed value | δ B| /{B}0 in the solar wind at 1 au, where {10}-3≲ | δ B| /{B}0≲ {10}-1. In the present manuscript, we consider an anisotropic bi-Maxwellian distribution function to investigate the effect of plasma instabilities on the magnetic field fluctuations. We demonstrate that these instabilities strongly amplify the magnetic field fluctuations and provide a sufficient mechanism to explain the observed value of | δ B| /{B}0 in the solar wind at 1 au.

  2. Magnetic properties of proton irradiated BiFeO{sub 3}

    SciTech Connect

    Han, Seungkyu; Jin Kim, Sam; Sung Kim, Chul

    2013-05-07

    The crystal structure and magnetic properties of BiFeO{sub 3} samples, proton-irradiated with 0, 10, and 20 pC/{mu}m{sup 2}, were investigated with x-ray diffraction (XRD), vibrating sample magnetometer, and Moessbauer spectroscopy measurements. From the Rietveld refinement analysis of the XRD patterns, the crystal structure of BiFeO{sub 3} is determined to be rhombohedral with the space group of R3c. We have observed the decrease in the lattice constant and oxygen occupancy with proton irradiation. The magnetization hysteresis (M-H) curves show the appearance of the weak ferromagnetic behavior in the proton irradiated BiFeO{sub 3} samples. The Moessbauer spectra of proton irradiated BiFeO{sub 3} samples at 295 K were analyzed with two-sextets (B{sub 1} and B{sub 2}) and doublet. From the isomer shift ({delta}) values, ionic states were determined to be Fe{sup 3+}. Compared to non-irradiated sample, having the antiferromagnetic area ratio (two-sextets) of 45.47, 54.53% the antiferromagnetic and paramagnetic area ratios (doublet) of 10 and 20 pC/{mu}m{sup 2} proton irradiated BiFeO{sub 3} samples are 41.36, 51.26, and 7.38% and 41.03, 50.90, and 8.07%, respectively. Our experimental observation suggests that the increase in the paramagnetic area ratio is due to the disappearance of superexchange interaction, resulted from the removal of the oxygen with proton irradiation. Also, the appearance of the weak ferromagnetic behavior is caused by the breaking of the antiferromagnetic coupling.

  3. [Experiment and analyse on the effect of magnetic nanoparticles upon relaxation time of proton in molecular recognition by MRI].

    PubMed

    Hu, Lili; Song, Tao; Yang, Wenhui; Wang, Ming; Zhang, Fang; Tao, Chunjing

    2007-06-01

    To research on the effect of three different magnetic nanoparticles upon relaxation time of proton. The detection by magnetic resonance imaging (MRI) indicates that there is the effect of marked difference to right control experiment and to analyze the difference from theory. The result discloses that will be able to perform the experiment of molecular recognition using magnetic nanoparticles later.

  4. High-field proton magnetic resonance spectroscopy reveals metabolic effects of normal brain aging.

    PubMed

    Harris, Janna L; Yeh, Hung-Wen; Swerdlow, Russell H; Choi, In-Young; Lee, Phil; Brooks, William M

    2014-07-01

    Altered brain metabolism is likely to be an important contributor to normal cognitive decline and brain pathology in elderly individuals. To characterize the metabolic changes associated with normal brain aging, we used high-field proton magnetic resonance spectroscopy in vivo to quantify 20 neurochemicals in the hippocampus and sensorimotor cortex of young adult and aged rats. We found significant differences in the neurochemical profile of the aged brain when compared with younger adults, including lower aspartate, ascorbate, glutamate, and macromolecules, and higher glucose, myo-inositol, N-acetylaspartylglutamate, total choline, and glutamine. These neurochemical biomarkers point to specific cellular mechanisms that are altered in brain aging, such as bioenergetics, oxidative stress, inflammation, cell membrane turnover, and endogenous neuroprotection. Proton magnetic resonance spectroscopy may be a valuable translational approach for studying mechanisms of brain aging and pathology, and for investigating treatments to preserve or enhance cognitive function in aging.

  5. Magnetism in C{sub 60} films induced by proton irradiation

    SciTech Connect

    Mathew, S.; Satpati, B.; Joseph, B.; Dev, B. N.; Nirmala, R.; Malik, S. K.; Kesavamoorthy, R.

    2007-02-15

    It is shown that polycrystalline fullerene thin films on hydrogen-passivated Si(111) substrates irradiated by 2 MeV protons display ferromagneticlike behavior at 5 K. At 300 K, both the pristine and the irradiated film show diamagnetic behavior. Magnetization data in the temperature range of 2-300 K in 1 T applied field, for the irradiated film show much stronger temperature dependence compared to the pristine film. Possible origins of ferromagneticlike signals in the irradiated films are discussed.

  6. Proton nuclear magnetic resonance of intact friend leukemia cells: phosphorylcholine increase during differentiation

    SciTech Connect

    Agris, P.F.; Campbell, I.D.

    1982-06-18

    Proton nuclear magnetic resonance of intact Friend leukemia cells was used to analyze their erythroid-like differentiation. The technique, which requires only 10/sup 8/ to 10/sup 9/ cells and approximately 2 minutes for acquisition of each spectrum, demonstrated the occurrence of many signal changes during differentiation. With cell extracts, 64 signals were assigned to 12 amino acids and 19 other intermediary metabolites, and a dramatic signal change was attributed to a fourfrease in cytoplasmic phosphorylcholines.

  7. Magnetic moment of proton drip-line nucleus {sup 9}C

    SciTech Connect

    Matsuta, K.; Fukuda, M.; Tanigaki, M.; Minamisono, T.; Nojiri, Y.; Mihara, M.; Onishi, T.; Yamaguchi, T.; Harada, A.; Sasaki, M.

    1994-10-01

    The magnetic moment of the proton drip-line nucleus {sup 9}C(I{sup {pi}}=3/2{sup -}, T{sub {1/2}}=126 ms) has been measured for the first time, using the {beta}-NMR detection technique with polarized radioactive beams. The measured value for the magnetic moment is {vert_bar} {mu}({sup 9}C) {vert_bar} = 1.3914{+-}0.0005 {mu}{sub N}. The deduced spin expectation value<{sigma}> of 1.44 is unusually larger than an other ones of even-odd nuclei.

  8. Measurement of pulsed-power-driven magnetic fields via proton deflectometry

    SciTech Connect

    Mariscal, D.; McGuffey, C.; Valenzuela, J.; Beg, F. N.; Wei, M. S.; Chittenden, J. P.; Niasse, N.; Presura, R.; Haque, S.; Wallace, M.; Arias, A.; Covington, A.; Sawada, H.; Wiewior, P.

    2014-12-01

    Measuring magnetic field and current distribution in Z-pinch plasma systems is crucial to the validation of Z-pinch theory. In this letter, the demonstration of proton deflectometry to pulsed-power-driven loads at the mega-amp scale is presented, which is capable of making more detailed field maps in high-density regions of plasmas. In this method, a laser-driven, broad-spectrum, MeV-energy proton beam is directed through a pulsed-power-driven plasma system, and the resulting deflections are measured to examine configuration of magnetic fields and to infer the currents that support them. The technique was first demonstrated on simple short-circuit loads, and the results are in excellent agreement with numerical simulations providing reliable estimates of the field and current configurations. It was then applied to a more complex—radial foil—plasma load. The measurements show unexpected proton deflections that exhibit the complexity of the plasma load and that with further analysis will reveal details about the current and magnetic field topology in this complex configuration.

  9. Ulysses observations of electron and proton components in a magnetic cloud and related wave activity

    NASA Technical Reports Server (NTRS)

    Osherovich, V. A.; Fainberg, J.; Stone, R. G.; MacDowall, R. J.; Phillips, J. L.; Balogh, A.

    1995-01-01

    In addition to a smooth rotation of the magnetic field vector, magnetic clouds have a low proton temperature T(sub p). Their expansion in the solar wind leads to depletion and therefore the ion component cools down. It has been shown recently that the electron component in magnetic clouds behaves differently: when the cloud expands, electron temperature Te anti correlates with density and therefore Te increases in the cloud, creating favorable conditions for the rise of ion-acoustic waves. For the magnetic cloud observed by Ulysses on June 10 - 12, 1993 at 4.64 AU at S 32.5 deg, we present observations for both electron and proton components and related plasma wave activity. Our results confirm the anti correlation between T(sub e) and electron density and also exhibit a high ratio of T(sub e)/T(sub P) in the cloud. Since Landau damping is not effective for T(sub e)/T(sub p) much greater than 1, Doppler shifted ion acoustic waves are expected in the cloud. Calculation of ion acoustic wave frequencies in the cloud and comparison with observed wave activity confirm this expectation. As in our previous work, we show that the electron component in the cloud obeys a polytropic law with gamma is less than 1 (gamma approximately equals 0.3-0.4). The dynamics of the magnetic cloud are determined to a large degree by the dominating electron pressure.

  10. In vivo1H NMR spectroscopy of the human brain at 9.4 T: Initial results

    NASA Astrophysics Data System (ADS)

    Deelchand, Dinesh Kumar; Moortele, Pierre-François Van de; Adriany, Gregor; Iltis, Isabelle; Andersen, Peter; Strupp, John P.; Thomas Vaughan, J.; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2010-09-01

    In vivo proton NMR spectroscopy allows non-invasive detection and quantification of a wide range of biochemical compounds in the brain. Higher field strength is generally considered advantageous for spectroscopy due to increased signal-to-noise and increased spectral dispersion. So far 1H NMR spectra have been reported in the human brain up to 7 T. In this study we show that excellent quality short echo time STEAM and LASER 1H NMR spectra can be measured in the human brain at 9.4 T. The information content of the human brain spectra appears very similar to that measured in the past decade in rodent brains at the same field strength, in spite of broader linewidth in human brain. Compared to lower fields, the T1 relaxation times of metabolites were slightly longer while T2 relaxation values of metabolites were shorter (<100 ms) at 9.4 T. The linewidth of the total creatine (tCr) resonance at 3.03 ppm increased linearly with magnetic field (1.35 Hz/T from 1.5 T to 9.4 T), with a minimum achievable tCr linewidth of around 12.5 Hz at 9.4 T. At very high field, B0 microsusceptibility effects are the main contributor to the minimum achievable linewidth.

  11. Proton magnetic resonance imaging using a nitrogen-vacancy spin sensor

    NASA Astrophysics Data System (ADS)

    Rugar, D.; Mamin, H. J.; Sherwood, M. H.; Kim, M.; Rettner, C. T.; Ohno, K.; Awschalom, D. D.

    2015-02-01

    Magnetic resonance imaging, with its ability to provide three-dimensional, elementally selective imaging without radiation damage, has had a revolutionary impact in many fields, especially medicine and the neurosciences. Although challenging, its extension to the nanometre scale could provide a powerful new tool for the nanosciences, especially if it can provide a means for non-destructively visualizing the full three-dimensional morphology of complex nanostructures, including biomolecules. To achieve this potential, innovative new detection strategies are required to overcome the severe sensitivity limitations of conventional inductive detection techniques. One successful example is magnetic resonance force microscopy, which has demonstrated three-dimensional imaging of proton NMR with resolution on the order of 10 nm, but with the requirement of operating at cryogenic temperatures. Nitrogen-vacancy (NV) centres in diamond offer an alternative detection strategy for nanoscale magnetic resonance imaging that is operable at room temperature. Here, we demonstrate two-dimensional imaging of 1H NMR from a polymer test sample using a single NV centre in diamond as the sensor. The NV centre detects the oscillating magnetic field from precessing protons as the sample is scanned past the NV centre. A spatial resolution of ˜12 nm is shown, limited primarily by the scan resolution.

  12. Irradiation effects on magnetic properties in neutron and proton irradiated reactor pressure vessel steel

    SciTech Connect

    Park, D.G.; Hong, J.H.; Kim, I.S.; Kim, H.C.

    1999-09-01

    The effects of neutron and proton dose on the magnetic properties of a reactor pressure vessel (RPV) steel were investigated. The coercivity and maximum induction increased in two stages with respect to neutron dose, being nearly constant up to a dose of 1.5 x 10{sup {minus}7} dpa, followed by a rapid increase up to a dose of 1.5 x 10{sup {minus}5} dpa. The coercivity and maximum induction in the proton irradiated specimens also showed a two stage variation with respect to proton dose, namely a rapid increase up to a dose of 0.2 x 10{sup {minus}2} dpa, then a decrease up to 1.2 x 10{sup {minus}2} dpa. The Barkhausen noise (BN) amplitude in neutron irradiated specimens also varied in two stages in a reverse manner, the transition at the same dose of 1.5 x 10{sup {minus}7} dpa. The BN amplitude in proton irradiated specimens decreased by 60% up to 0.2 x 10{sup {minus}2} dpa followed by an increase up to 1.2 x 10{sup {minus}2} dpa. The results were in good accord with the one dimensional domain wall model considering the density of defects and wall energy.

  13. A Nested Phosphorus and Proton Coil Array for Brain Magnetic Resonance Imaging and Spectroscopy

    PubMed Central

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Parasoglou, Prodromos

    2015-01-01

    A dual-nuclei radiofrequency coil array was constructed for phosphorus and proton magnetic resonance imaging and spectroscopy of the human brain at 7 Tesla. An eight-channel transceive degenerate birdcage phosphorus module was implemented to provide whole-brain coverage and significant sensitivity improvement over a standard dual-tuned loop coil. A nested eight-channel proton module provided adequate sensitivity for anatomical localization without substantially sacrificing performance on the phosphorus module. The developed array enabled phosphorus spectroscopy, a saturation transfer technique to calculate the global creatine kinase forward reaction rate, and single-metabolite whole-brain imaging with 1.4 cm nominal isotropic resolution in 15 min (2.3 cm actual resolution), while additionally enabling 1 mm isotropic proton imaging. This study demonstrates that a multi-channel array can be utilized for phosphorus and proton applications with improved coverage and/or sensitivity over traditional single-channel coils. The efficient multi-channel coil array, time-efficient pulse sequences, and the enhanced signal strength available at ultra-high fields can be combined to allow volumetric assessment of the brain and could provide new insights into the underlying energy metabolism impairment in several neurodegenerative conditions, such as Alzheimer’s and Parkinson’s diseases, as well as mental disorders such as schizophrenia. PMID:26375209

  14. Modeling the inner plasma sheet protons and magnetic field under enhanced convection

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Ping; Lyons, Larry R.; Chen, Margaret W.; Wolf, Richard A.; Toffoletto, Frank R.

    2003-02-01

    In order to understand the evolution of the protons and magnetic field in the inner plasma sheet from quiet to disturbed conditions, we incorporate a modified version of the Magnetospheric Specification Model (MSM) with a modified version of the Tsyganenko 96 (T96) magnetic field model to simulate the protons and magnetic field under an increasing convection electric field with two-dimensional (2-D) force balance maintained along the midnight meridian. The local time dependent proton differential fluxes assigned to the model boundary are a mixture of hot plasma from the mantle and cooler plasma from the low latitude boundary layer (LLBL). We previously used this model to simulate the inner plasma sheet under weak convection corresponding to a cross polar cap potential drop (ΔΦPC) equal to 26 kV and obtained 2-D quiet time equilibrium for proton and magnetic field that agrees well with observations. We start our simulation for enhanced convection with this quiet time equilibrium and time-independent boundary particle sources and increase ΔΦPC steadily from 26 to 146 kV in 5 hours. Simulations are also run separately to steady states by keeping ΔΦPC constant after it is increased to 98 and 146 kV. The magnitudes of proton pressure, number density, and temperature and their increase from quiet to moderate activity (ΔΦPC = 98 kV) are consistent with most observations. Our simulation at high activity (ΔΦPC = 146 kV) underestimates the observed pressure and temperature. This disagreement indicates possible dependence of the boundary particle sources on activity and possible effects of solar wind dynamic pressure enhancements that have not yet been included in our simulation. The simulated equatorial pressures and temperatures show stronger enhancement on the dusk side than on the dawn side as convection is increased, while density profiles show an increase on the dawn side and a decrease on the dusk side. The simulated proton flow speed at the equatorial plane

  15. Low energy proton bidirectional anisotropies and their relation to transient interplanetary magnetic structures: ISEE-3 observations

    NASA Technical Reports Server (NTRS)

    Marsden, R. G.; Sanderson, T. R.; Wenzel, K. P.; Smith, E. J.

    1985-01-01

    It is known that the interplanetary medium in the period approaching solar maximum is characterized by an enhancement in the occurrence of transient solar wind streams and shocks and that such systems are often associated with looplike magnetic structures or clouds. There is observational evidence that bidirectional, field aligned flows of low energy particles could be a signature of such looplike structures, although detailed models for the magnetic field configuration and injection mechanisms do not exist at the current time. Preliminary results of a survey of low energy proton bidirectional anisotropies measured on ISEE-3 in the interplanetary medium between August 1978 and May 1982, together with magnetic field data from the same spacecraft are presented.

  16. Initial test results of the Los Alamos proton-storage-ring bump-magnet system

    SciTech Connect

    Rose, C.R.; Barlow, D.B.; Redd, D.B.

    1997-09-01

    An upgrade program for increasing the stored beam current in the LANSCE Proton Storage is presently under way. Part of the upgrade effort has been to design, specify, and add four bump-magnet/modulator systems to the ring. This paper describes the initial test results of the first bump-magnet/modulator system. The paper begins with an overview of the pulsed-power system including important specifications of the modulator, magnet, cabling, and control system. In the main portion of the paper, waveforms and test data are included showing the accuracy, repeatability, and stability of the magnet-current pulses. These magnet pulses are programmable both in rise and fall time as well as in amplitude. The amplitude can be set between 50 and 300 A, the rise-time is fixed at 1 ms, and the linear fall-time can be varied between 500 {mu}s and 1500 {mu}s. Other issues such as loading effects and power dissipation in the magnet-bore beamtube are examined and reported.

  17. Strange magnetic form factor of the proton at $Q^2 = 0.23$ GeV$^2$

    SciTech Connect

    Wang, Ping; Leinweber, Derek; Thomas, Anthony; Young, Ross

    2009-06-01

    We determine the $u$ and $d$ quark contributions to the proton magnetic form factor at finite momentum transfer by applying chiral corrections to quenched lattice data. Heavy baryon chiral perturbation theory is applied at next to leading order in the quenched, and full QCD cases for the valence sector using finite range regularization. Under the assumption of charge symmetry these values can be combined with the experimental values of the proton and neutron magnetic form factors to deduce a relatively accurate value for the strange magnetic form factor at $Q^2=0.23$ GeV$^2$, namely $G_M^s=-0.034 \\pm 0.021$ $\\mu_N$.

  18. The effect of polymer coatings on proton transverse relaxivities of aqueous suspensions of magnetic nanoparticles.

    PubMed

    Carroll, Matthew R J; Huffstetler, Phillip P; Miles, William C; Goff, Jonathon D; Davis, Richey M; Riffle, Judy S; House, Michael J; Woodward, Robert C; St Pierre, Timothy G

    2011-08-12

    Iron oxide magnetic nanoparticles are good candidates for magnetic resonance imaging (MRI) contrast agents due to their high magnetic susceptibilities. Here we investigate 19 polyether-coated magnetite nanoparticle systems comprising three series. All systems were synthesized from the same batch of magnetite nanoparticles. A different polyether was used for each series. Each series comprised systems with systematically varied polyether loadings per particle. A highly significant (p < 0.0001) linear correlation (r = 0.956) was found between the proton relaxivity and the intensity-weighted average diameter measured by dynamic light scattering in the 19 particle systems studied. The intensity-weighted average diameter measured by dynamic light scattering is sensitive to small number fractions of larger particles/aggregates. We conclude that the primary effect leading to differences in proton relaxivity between systems arises from the small degree of aggregation within the samples, which appears to be determined by the nature of the polymer and, for one system, the degree of polymer loading of the particles. For the polyether coatings used in this study, any changes in relaxivity from differences in water exclusion or diffusion rates caused by the polymer are minor in comparison with the changes in relaxivity resulting from variations in the degree of aggregation.

  19. Analyzing power in pion-proton bremsstrahlung, and the. Delta. sup ++ (1232) magnetic moment

    SciTech Connect

    Bosshard, A.; Amsler, C.; Doebeli, M.; Doser, M.; Schaad, M.; Riedlberger, J.; Truoel, P. ); Bistirlich, J.A.; Crowe, K.M.; Ljungfelt, S.; Meyer, C.A. ); van den Brandt, B.; Konter, J.A.; Mango, S.; Renker, D. ); Loude, J.F.; Perroud, J.P. ); Haddock, R.P. ); Sober, D.I. )

    1991-10-01

    We report on a first measurement of the polarized-target asymmetry of the pion-proton bremsstrahlung cross section ({pi}{sup +}{ital p}{r arrow}{pi}{sup {minus}}{ital p}{gamma}). As in previous cross section measurements the pion energy (298 MeV) and the detector geometry for this experiment was chosen to optimize the sensitivity to the radiation from the magnetic dipole moment of the {Delta}{sup ++}(1232) resonance {mu}{sub {Delta}}. Comparison to a recent isobar model for pion-nucleon bremsstrahlung yields {mu}{sub {Delta}}=(1.62{plus minus}0.18){mu}{sub {ital p}}, where {mu}{sub {ital p}} is the proton magnetic moment. Since the asymmetry depends less than the cross section on the choice of the other input parameters for the model, their uncertainties affect this analysis by less than the experimental error. However the theory fails to represent both the cross section and the asymmetry data at the highest photon energies. Hence further improvements in the calculations are needed before the model dependence of the magnetic moment analysis can be fully assessed. The present result agrees with bag-model corrections to the SU(6) prediction {mu}{sub {Delta}}=2{mu}{sub {ital p}}. As a by-product, the analyzing power for elastic {pi}{sup +}{ital p} scattering at 415 MeV/{ital c} was also measured. This second result is in good agreement with phase shift calculations.

  20. Magnetic dipole moment of the doubly-closed-shell plus one proton nucleus 49Sc.

    PubMed

    Ohtsubo, T; Stone, N J; Stone, J R; Towner, I S; Bingham, C R; Gaulard, C; Köster, U; Muto, S; Nikolov, J; Nishimura, K; Simpson, G S; Soti, G; Veskovic, M; Walters, W B; Wauters, F

    2012-07-20

    The nucleus 49Sc, having a single f(7/2) proton outside doubly magic 48Ca (Z=20, N=28), is one of the very few isotopes which makes possible testing of the fundamental theory of nuclear magnetism. The magnetic moment has been measured by online β NMR of nuclei oriented at milli-Kelvin temperatures to be (+)5.616(25)  μ(N). The result is discussed in terms of a detailed theory of the structure of the magnetic moment operator, showing excellent agreement with calculated departure from the f(7/2) Schmidt limit extreme single-particle value. The measurement completes the sequence of moments of Sc isotopes with even numbers of f(7/2) neutrons: the first such isotopic chain between two major shells for which a full set of moment measurements exists. The result further completes the isotonic sequence of ground-state moments of nuclei with an odd number of f(7/2) protons coupled to a closed subshell of f(7/2) neutrons. Comparison with a recent shell-model calculation of the latter sequence is made.

  1. Temperature dependence of proton NMR relaxation times at earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Niedbalski, Peter; Kiswandhi, Andhika; Parish, Christopher; Ferguson, Sarah; Cervantes, Eduardo; Oomen, Anisha; Krishnan, Anagha; Goyal, Aayush; Lumata, Lloyd

    The theoretical description of relaxation processes for protons, well established and experimentally verified at conventional nuclear magnetic resonance (NMR) fields, has remained untested at low fields despite significant advances in low field NMR technology. In this study, proton spin-lattice relaxation (T1) times in pure water and water doped with varying concentrations of the paramagnetic agent copper chloride have been measured from 6 to 92oC at earth's magnetic field (1700 Hz). Results show a linear increase of T1 with temperature for each of the samples studied. Increasing the concentration of the copper chloride greatly reduced T1 and reduced dependence on temperature. The consistency of the results with theory is an important confirmation of past results, while the ability of an ultra-low field NMR system to do contrast-enhanced magnetic resonance imaging (MRI) is promising for future applicability to low-cost medical imaging and chemical identification. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and the Robert A. Welch Foundation Grant No. AT-1877.

  2. Characterization of the ELIMED Permanent Magnets Quadrupole system prototype with laser-driven proton beams

    NASA Astrophysics Data System (ADS)

    Schillaci, F.; Pommarel, L.; Romano, F.; Cuttone, G.; Costa, M.; Giove, D.; Maggiore, M.; Russo, A. D.; Scuderi, V.; Malka, V.; Vauzour, B.; Flacco, A.; Cirrone, G. A. P.

    2016-07-01

    Laser-based accelerators are gaining interest in recent years as an alternative to conventional machines [1]. In the actual ion acceleration scheme, energy and angular spread of the laser-driven beams are the main limiting factors for beam applications and different solutions for dedicated beam-transport lines have been proposed [2,3]. In this context a system of Permanent Magnet Quadrupoles (PMQs) has been realized [2] by INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) researchers, in collaboration with SIGMAPHI company in France, to be used as a collection and pre-selection system for laser driven proton beams. This system is meant to be a prototype to a more performing one [3] to be installed at ELI-Beamlines for the collection of ions. The final system is designed for protons and carbons up to 60 MeV/u. In order to validate the design and the performances of this large bore, compact, high gradient magnetic system prototype an experimental campaign have been carried out, in collaboration with the group of the SAPHIR experimental facility at LOA (Laboratoire d'Optique Appliquée) in Paris using a 200 TW Ti:Sapphire laser system. During this campaign a deep study of the quadrupole system optics has been performed, comparing the results with the simulation codes used to determine the setup of the PMQ system and to track protons with realistic TNSA-like divergence and spectrum. Experimental and simulation results are good agreement, demonstrating the possibility to have a good control on the magnet optics. The procedure used during the experimental campaign and the most relevant results are reported here.

  3. Ion hydration effects in aqueous solutions of strong electrolytes, according to proton magnetic relaxation measurements

    NASA Astrophysics Data System (ADS)

    Melnichenko, N. A.

    2014-12-01

    The concentration dependences of proton magnetic relaxation (PMR) rates measured at different temperatures in aqueous electrolyte solutions and concentrated seawater (SW) in a wide range of salt concentrations and for different seawater salinities are presented, along with the concentration dependences of PMR rates determined in salts dissolved directly in seawater. The coordination numbers of the basic ions in seawater were determined from the complete solvation limits and compared with those measured in single-component water-salt solutions. The attaining of complete solvation limits was determined using the PMR data for ions of different hydration signs.

  4. High-resolution proton nuclear magnetic resonance characterization of seminolipid from bovine spermatozoa.

    PubMed

    Alvarez, J G; Storey, B T; Hemling, M L; Grob, R L

    1990-06-01

    The high-resolution one- and two-dimensional proton nuclear magnetic resonance (1H-NMR) characterization of seminolipid from bovine spermatozoa is presented. The 1H-NMR data was confirmed by gas-liquid chromatography-mass spectrometric analysis of the partially methylated alditol acetates of the sugar unit, mild alkaline methanolysis of the glyceryl ester, mobility on normal phase and diphasic thin-layer chromatography (HPTLC), and fast atom bombardment mass spectrometry (FAB-MS). The structure of the molecule corresponds to 1-O-hexadecyl-2-O-hexadecanoyl-3-O-beta-D-(3'-sulfo)-galactopyranosyl- sn-glycerol.

  5. Isotropic proton-detected local-field nuclear magnetic resonancein solids

    SciTech Connect

    Havlin, Robert H.; Walls, Jamie D.; Pines, Alexander

    2004-08-04

    A new nuclear magnetic resonance (NMR) method is presented which produces linear, isotropic proton-detected local-field spectra for InS spin systems in powdered samples. The method, HETeronuclear Isotropic Evolution (HETIE), refocuses the anisotropic portion of the heteronuclear dipolar coupling frequencies by evolving the system under a series of specially designed Hamiltonians and evolution pathways. The theory behind HETIE is represented along with experimental studies conducted on a powdered sample of ferrocene, demonstrating the methodology outlined in this paper. Applications of HETIE for structural determination in solid-state NMR are discussed.

  6. Non-destructive ripeness sensing by using proton NMR (Nuclear Magnetic Resonance)

    SciTech Connect

    Cho, Seong In; Krutz, G.W.; Stroshine, R.L. . Dept. of Agricultural Engineering); Bellon, V. , 34 - Montpellier )

    1990-01-01

    More than 80 kinds of fruits and vegetables are available in the United States. But only about 6 of them have their quality standards (Dull, 1986). In the 1990 Fresh Trends survey (Zind, 1990), consumers were asked to rate 16 characteristics important to their decision to purchase fresh produce. The four top ranking factors were ripeness/freshness, taste/flavor, appearance/condition and nutritional value. Of these surveyed, 96% rated ripeness/freshness as extremely important or very important. Therefore, the development of reliable grading or sorting techniques for fresh commodities is essential. Determination of fruit quality often involves cutting and tasting. Non-destructive quality control in fruit and vegetables is a goal of growers and distributors, as well as the food processing industry. Many nondestructive techniques have been evaluated including soft x-ray, optical transmission, near infrared radiation, and machine vision. However, there are few reports of successful non-destructive measurement of sugar content directly in fruit. Higher quality fruit could be harvested and available to consumers if a nondestructive sensor that detects ripeness level directly by measuring sugar content were available. Using proton Nuclear Magnetic Resonance (NMR) principle is the possibility. A nondestructive ripeness (or sweetness) sensor for fruit quality control can be developed with the proton NMR principle (Cho, 1989). Several feasibility studies were necessary for the ripeness sensor development. Main objectives in this paper was to investigate the feasibilities (1) to detect ripeness (or sweetness level) of raw fruit tissue with an high resolution proton NMR spectroscopy (200 MHz) and (2) to measure sugar content of intact fruit with a low resolution proton NMR spectroscopy (10 MHz). 7 refs., 4 figs.

  7. Non-destructive Ripeness Sensing by Using Proton NMR [Nuclear Magnetic Resonance

    DOE R&D Accomplishments Database

    Cho, Seong In; Krutz, G. W.; Stroshine, R. L.; Bellon, V.

    1990-01-01

    More than 80 kinds of fruits and vegetables are available in the United States. But only about 6 of them have their quality standards (Dull, 1986). In the 1990 Fresh Trends survey (Zind, 1990), consumers were asked to rate 16 characteristics important to their decision to purchase fresh produce. The four top ranking factors were ripeness/freshness, taste/flavor, appearance/condition and nutritional value. Of these surveyed, 96% rated ripeness/freshness as extremely important or very important. Therefore, the development of reliable grading or sorting techniques for fresh commodities is essential. Determination of fruit quality often involves cutting and tasting. Non-destructive quality control in fruit and vegetables is a goal of growers and distributors, as well as the food processing industry. Many nondestructive techniques have been evaluated including soft x-ray, optical transmission, near infrared radiation, and machine vision. However, there are few reports of successful non-destructive measurement of sugar content directly in fruit. Higher quality fruit could be harvested and available to consumers if a nondestructive sensor that detects ripeness level directly by measuring sugar content were available. Using proton Nuclear Magnetic Resonance (NMR) principle is the possibility. A nondestructive ripeness (or sweetness) sensor for fruit quality control can be developed with the proton NMR principle (Cho, 1989). Several feasibility studies were necessary for the ripeness sensor development. Main objectives in this paper was to investigate the feasibilities (1) to detect ripeness (or sweetness level) of raw fruit tissue with an high resolution proton NMR spectroscopy (200 MHz) and (2) to measure sugar content of intact fruit with a low resolution proton NMR spectroscopy (10 MHz).

  8. Proton Magnetic Form Factor from Existing Elastic e-p Cross Section Data

    NASA Astrophysics Data System (ADS)

    Ou, Longwu; Christy, Eric; Gilad, Shalev; Keppel, Cynthia; Schmookler, Barak; Wojtsekhowski, Bogdan

    2015-04-01

    The proton magnetic form factor GMp, in addition to being an important benchmark for all cross section measurements in hadron physics, provides critical information on proton structure. Extraction of GMp from e-p cross section data is complicated by two-photon exchange (TPE) effects, where available calculations still have large theoretical uncertainties. Studies of TPE contributions to e-p scattering have observed no nonlinear effects in Rosenbluth separations. Recent theoretical investigations show that the TPE correction goes to 0 when ɛ approaches 1, where ɛ is the virtual photon polarization parameter. In this talk, existing e-p elastic cross section data are reanalyzed by extrapolating the reduced cross section for ɛ approaching 1. Existing polarization transfer data, which is supposed to be relatively immune to TPE effects, are used to produce a ratio of electric and magnetic form factors. The extrapolated reduced cross section and polarization transfer ratio are then used to calculate GEp and GMp at different Q2 values.

  9. Proton and deuteron nuclear magnetic resonance studies of amorphous hydrogenated silicon, carbon, and carbon alloys

    NASA Astrophysics Data System (ADS)

    Kernan, Mary Jane Wurth

    Despite the profound influence of semiconductors and the changes they have produced, many fundamental questions remain unanswered. We have used proton and deuteron nuclear magnetic resonance (NMR) to explore the role of hydrogens in amorphous silicon and amorphous carbon and carbon alloy films. In the carbon films, dipolar filtering techniques reveal a two-component shifted lineshape in the proton NMR spectra and deuteron magnetic resonance (DMR) data demonstrate a feedstock gas dependence in the film deposition process. In these measurements, DMR is used to examine the effect of hydrogen on the photovoltaic properties of amorphous silicon thin films. We have measured the effects of photoillumination on amorphous silicon, particularly with respect to the process of metastable defect formation (the Staebler-Wronski effect). The creation and passivation of dangling silicon bonds is observed and quantified. We report large-scale light-induced atomic rearrangements which produce shifts and broadenings of the DMR lineshapes. The deuterium NMR lineshape component most affected by atomic rearrangements is a broad central feature which is shown to be molecular in origin. This spectral feature includes hydrogens trapped and immobile on surfaces created by strains and dislocations in the material. Narrowing of the lineshape at elevated temperatures indicates motion with a small activation energy. The substantial population represented by this feature is shown to account for at least 15% of the total hydrogens in high-quality amorphous silicon samples.

  10. Quantifying solid-fluid interfacial phenomena in porous rocks with proton nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Schmidt, Ehud J.; Velasco, Katherine K.; Nur, Amos M.

    1986-04-01

    The three order-of-magnitude variation in the proton nuclear magnetic resonance (NMR) longitudinal relaxation time T1 of water adsorbed on silica surfaces versus that of bulk water makes proton NMR studies of porous materials powerful tools to study the effects of adsorption. Recent theory permits the utilization of this different response to obtain pore space surface-to-volume (S/V) distribution functions by inverting the decay of the z component of magnetization of fully saturated porous rocks; information can likewise be obtained on the fluid distribution at partially saturated conditions. A computer program has been developed to invert the NMR relaxation curves for the S/V distribution function, assuming an isolated pore regime, the ramifications of which are examined. The program has been applied to experimental results from water, porous sandstones, and tight gas sands at various pore fluid saturations and varying electrolyte content. For the fully saturated case, the results show promise in the application of NMR to describing pore space geometries in rock samples with widely varying surface-to-volume ratios. For partially saturated rocks, the results reflect the preferential early draining of the large pores at high water saturations, connectivity percolation phenomena at intermediate saturations, and the dominating role of adsorbed water films at low water saturations. Experiments on rocks saturated with saline solutions disclose the importance of the effects of alteration of the active sites on the rock surfaces as well as the role of electrolytes in modifying the structural properties of bulk solution.

  11. SUPERCONDUCTING MAGNET SYSTEM AT THE 50 GEV PROTON BEAM LINE FOR THE J-PARC NEUTRINO EXPERIMENT.

    SciTech Connect

    WANDERER,P.; ET AL.

    2003-06-15

    A neutrino oscillation experiment using the J-PARC SO GeV 0.75 MW proton beam is planned as a successor to the K2K project currently being operated at KEK. A superconducting magnet system is required for the arc section of the primary proton beam line to be within the space available at the site. A system with 28 combined function magnets is proposed to simplify the system and optimize the cost. The required fields for the magnets are 2.6 T dipole and 19 T/m quadrupole. The magnets are also required to have a large aperture, 173.4 mm diameter, to accommodate the large beam emittance. The magnets will be protected by cold diodes and cooled by forced flow supercritical helium produced by a 4.5 K, 2 {approx} 2.5 kW refrigerator. This paper reports the system overview and the design status.

  12. {sup 1}H and {sup 31}P nuclear magnetic resonance study of proton-irradiated KH{sub 2}PO{sub 4}

    SciTech Connect

    Kim, Se-Hun; Lee, Kyu Won; Oh, B. H.; Lee, Cheol Eui; Hong, K. S.

    2007-11-01

    We have studied the microscopic structure and dynamics in a proton-irradiated KH{sub 2}PO{sub 4} single crystal. Our {sup 1}H and {sup 31}P nuclear magnetic resonance measurements indicate that proton irradiation gives rise to a decrease in the local dipolar order of the rigid lattice protons and an increase in interstitial protons as well as structural distortion of the PO{sub 4} tetrahedra.

  13. Localized proton magnetic resonance spectroscopy of the cerebellum in detoxifying alcoholics.

    PubMed

    Seitz, D; Widmann, U; Seeger, U; Nägele, T; Klose, U; Mann, K; Grodd, W

    1999-01-01

    An increased daily alcohol consumption results in neurological symptoms and morphological central nervous system changes, e.g. shrinkage of the frontal lobes and the cerebellar vermis. Brain shrinkage can be due to neuronal loss, gliosis, or alterations of (cell) membrane constitutes/myelin. Neuronal, glial, and metabolic changes can be measured in vivo with proton magnetic resonance spectroscopy. A total of 11 alcoholics and 10 age-matched volunteers were examined by magnetic resonance imaging and localized magnetic resonance spectroscopy at an echo time of 135 and 5 msec. Peak integral values were calculated for N-acetylaspartate (NAA), choline (Cho), myo-inositol (ml), glutamate/glutamine (Glx), and normalized to phosphocreatine/creatine (Cr). Patients had a significant shrinkage of the cerebellar vermis. NAA/Cr and Cho/Cr ratios were reduced in both sequences, but the NAA/Cr reduction was only significant in long echo time, although the Cho/Cr reduction was significant in short echo time. The ml/Cr and Glx/Cr ratios did not show any significant difference between volunteers and patients. The decrease of NAA/Cr in alcohol dependent patients is consistent with neuronal loss. The Cho/Cr decrease and an unchanged ml/Cr may reflect cell membrane modification or myelin alterations in alcohol-dependent patients. These changes lead to brain shrinkage, although hydration effects and gliosis are less likely.

  14. Utility of cerebral proton magnetic resonance spectroscopy in differential diagnosis of HIV-related dementia.

    PubMed

    Swindells, S; McConnell, J R; McComb, R D; Gendelman, H E

    1995-09-01

    Opportunistic infections often coexist with human immunodeficiency virus (HIV) infection in brain. Making the correct diagnosis is often difficult despite recent advances in neuroimaging techniques. 1H magnetic resonance spectroscopy (1H MRS) is an emerging non-invasive examination for diagnosis and monitoring of brain disorders. 1H MRS measures a variety of organic compounds using magnetism and radio waves. Biochemical aberrations in brain, not shown by conventional tests, may be demonstrated by 1H MRS testing. A patient coinfected with HIV and hepatitis B (HBV) presented with progressive dementia. Clinical, neuroradiological and cerebrospinal fluid (CSF) examinations failed to provide a diagnosis in support of either HIV-1-associated cognitive/motor complex or HBV-induced hepatic encephalopathy (HE), 1H MRS was used in an attempt to discriminate between these diagnoses. Spectroscopy demonstrated increased glutamine and normal N-acetyl aspartate (NAA) levels, metabolic changes consistent with HE. These findings were later confirmed pathologically. Proton magnetic resonance spectroscopy is a non-invasive test with utility for the differential diagnosis of HIV-associated dementia.

  15. Metabolic Profiling of Dividing Cells in Live Rodent Brain by Proton Magnetic Resonance Spectroscopy (1HMRS) and LCModel Analysis

    PubMed Central

    Park, June-Hee; Lee, Hedok; Makaryus, Rany; Yu, Mei; Smith, S. David; Sayed, Kasim; Feng, Tian; Holland, Eric; Van der Linden, Annemie; Bolwig, Tom G.; Enikolopov, Grigori; Benveniste, Helene

    2014-01-01

    Rationale Dividing cells can be detected in the live brain by positron emission tomography or optical imaging. Here we apply proton magnetic resonance spectroscopy (1HMRS) and a widely used spectral fitting algorithm to characterize the effect of increased neurogenesis after electroconvulsive shock in the live rodent brain via spectral signatures representing mobile lipids resonating at ∼1.30 ppm. In addition, we also apply the same 1HMRS methodology to metabolically profile glioblastomas with actively dividing cells growing in RCAS-PDGF mice. Methods 1HMRS metabolic profiles were acquired on a 9.4T MRI instrument in combination with LCModel spectral analysis of: 1) rat brains before and after ECS or sham treatments and 2) RCAS-PDGF mice with glioblastomas and wild-type controls. Quantified 1HMRS data were compared to post-mortem histology. Results Dividing cells in the rat hippocampus increased ∼3-fold after ECS compared to sham treatment. Quantification of hippocampal metabolites revealed significant decreases in N-acetyl-aspartate but no evidence of an elevated signal at ∼1.3 ppm (Lip13a+Lip13b) in the ECS compared to the sham group. In RCAS-PDGF mice a high density (22%) of dividing cells characterized glioblastomas. Nile Red staining revealed a small fraction (3%) of dying cells with intracellular lipid droplets in the tumors of RCAS-PDGF mice. Concentrations of NAA were lower, whereas lactate and Lip13a+Lip13b were found to be significantly higher in glioblastomas of RCAS-PDGF mice, when compared to normal brain tissue in the control mice. Conclusions Metabolic profiling using 1HMRS in combination with LCModel analysis did not reveal correlation between Lip13a+Lip13b spectral signatures and an increase in neurogenesis in adult rat hippocampus after ECS. However, increases in Lip13a+Lip13b were evident in glioblastomas suggesting that a higher density of actively dividing cells and/or the presence of lipid droplets is necessary for LCModel to reveal

  16. High order magnetic optics for high dynamic range proton radiography at a kinetic energy of 800 MeV

    NASA Astrophysics Data System (ADS)

    Sjue, S. K. L.; Mariam, F. G.; Merrill, F. E.; Morris, C. L.; Saunders, A.

    2016-01-01

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the proton imaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane. Comparison with a series of static calibration images demonstrates the model's accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.

  17. High order magnetic optics for high dynamic range proton radiography at a kinetic energy of 800 MeV

    SciTech Connect

    Sjue, S. K. L. Mariam, F. G.; Merrill, F. E.; Morris, C. L.; Saunders, A.

    2016-01-15

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the proton imaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane. Comparison with a series of static calibration images demonstrates the model’s accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.

  18. A proton magnetic resonance spectroscopic study in autism spectrum disorders: amygdala and orbito-frontal cortex.

    PubMed

    Mori, Kenji; Toda, Yoshihiro; Ito, Hiromichi; Mori, Tatsuo; Goji, Aya; Fujii, Emiko; Miyazaki, Masahito; Harada, Masafumi; Kagami, Shoji

    2013-02-01

    We previously reported neural dysfunction in the anterior cingulate cortex and dorsolateral prefrontal cortex in autistic patients using proton magnetic resonance spectroscopy ((1)H-MRS). In this investigation, we measured chemical metabolites in the left amygdala and the bilateral orbito-frontal cortex (OFC), which are the main components of the social brain. We also examined the association between these metabolic findings and social abilities in subjects with autism. The study group included 77 autistic patients (3-6years old; mean age 4.1; 57 boys and 20 girls). The control subjects were 31 children (3-6years old; mean age 4.0; 23 boys and 8 girls). Conventional proton MR spectra were obtained using the STEAM sequence with parameters of TR=5 sec and TE=15 msec by a 1.5-tesla clinical MRI system. We analyzed the concentrations of N-acetylaspartate (NAA), creatine/phosphocreatine (Cr), and choline-containing compounds (Cho) using LCModel (Ver. 6.1). The concentrations of NAA in the left amygdala and the bilateral OFC in autistic patients were significantly decreased compared to those in the control group. In the autistic patients, the NAA concentrations in these regions correlated with their social quotient. These findings suggest the presence of neuronal dysfunction in the amygdala and OFC in autism. Dysfunction in the amygdala and OFC may contribute to the pathogenesis of autism.

  19. Absolute quantification for benzoic acid in processed foods using quantitative proton nuclear magnetic resonance spectroscopy.

    PubMed

    Ohtsuki, Takashi; Sato, Kyoko; Sugimoto, Naoki; Akiyama, Hiroshi; Kawamura, Yoko

    2012-09-15

    The absolute quantification method of benzoic acid (BA) in processed foods using solvent extraction and quantitative proton nuclear magnetic resonance spectroscopy was developed and validated. BA levels were determined using proton signals (δ(H) 7.53 and 7.98) referenced to 2-dimethyl-2-silapentane-5-sulfonate-d(6) sodium salt (DSS-d(6)) after simple solvent extraction from processed foods. All recoveries from several kinds of processed foods, spiked at their specified maximum Japanese usage levels (0.6-2.5 g kg(-1)) and at 0.13 g kg(-1) and 0.063 g kg(-1), were greater than 80%. The limit of quantification was confirmed as 0.063 g kg(-1) in processed foods, which was sufficiently low for the purposes of monitoring BA. The accuracy of the proposed method is equivalent to the conventional method using steam-distillation extraction and high-performance liquid chromatography. The proposed method was both rapid and simple. Moreover, it provided International System of Units traceability without the need for authentic analyte standards. Therefore, the proposed method is a useful and practical tool for determining BA levels in processed foods.

  20. Proton nuclear magnetic resonance characterization of resins from the family pinaceae.

    PubMed

    Lambert, Joseph B; Kozminski, Michael A; Fahlstrom, Carl A; Santiago-Blay, Jorge A

    2007-02-01

    Proton magnetic resonance spectra were recorded for solutions of resinous materials harvested from 82 species in seven genera of the gymnospermous plant family Pinaceae. Data were recorded in both one and two (COSY) dimensions. Approximately 11 peaks in the 1D spectra and 10 cross-peaks in the 2D spectra were present in almost all pinacean spectra, providing a familial diagnostic. Some 40 1D peaks or peak clusters and 60 2D cross-peaks or clusters were considered significant and are reported, when present, for all species. Whereas previous solid-state 13C data were diagnostic primarily at the family level, the patterns of 1D and 2D peaks may provide diagnostic information at the genus and species levels. These spectra constitute the first broad use of 1H NMR to study plant exudates in general and to provide taxonomic characterization in particular.

  1. Sickle cell disease painful crisis and steady state differentiation by proton magnetic resonance.

    PubMed

    Fernández, Adolfo A; Cabal, Carlos A; Lores, Manuel A; Losada, Jorge; Pérez, Enrique R

    2009-01-01

    The delay time of the Hb S polymerization process was investigated in 63 patients with sickle cell disease during steady state and 10 during painful crisis starting from spin-spin proton magnetic resonance (PMR) time behavior measured at 36 degrees C and during spontaneous deoxygenation. We found a significant decrease of delay time as a result of the crisis (36 +/- 10%) and two well-differentiated ranges of values for each state: 273-354 min for steady state and 166-229 min for crisis with an uncertainty region of 15%. It is possible to use PMR as an objective and quantitative method in order to differentiate both clinical conditions of the sickle cell patient, but a more clear differentiation can be established comparing the delay time (td) value of one patient during crisis with his own td value during steady state.

  2. Proton Magnetic Resonance Spectroscopy: Relevance of Glutamate and GABA to Neuropsychology.

    PubMed

    Ende, Gabriele

    2015-09-01

    Proton Magnetic Resonance Spectroscopy (MRS) has been widely used to study the healthy and diseased brain in vivo. The availability of whole body MR scanners with a field strength of 3 Tesla and above permit the quantification of many metabolites including the neurotransmitters glutamate (Glu) and γ-aminobutyric acid (GABA). The potential link between neurometabolites identified by MRS and cognition and behavior has been explored in numerous studies both in healthy subjects and in patient populations. Preliminary findings suggest direct or opposite associations between GABA or Glu with impulsivity, anxiety, and dexterity. This chapter is intended to provide an overview of basic principles of MRS and the literature reporting correlations between GABA or Glu and results of neuropsychological assessments.

  3. [A new method of distinguishing weak and overlapping signals of proton magnetic resonance spectroscopy].

    PubMed

    Jiang, Gang; Quan, Hong; Wang, Cheng; Gong, Qiyong

    2012-12-01

    In this paper, a new method of combining translation invariant (TI) and wavelet-threshold (WT) algorithm to distinguish weak and overlapping signals of proton magnetic resonance spectroscopy (1H-MRS) is presented. First, the 1H-MRS spectrum signal is transformed into wavelet domain and then its wavelet coefficients are obtained. Then, the TI method and WT method are applied to detect the weak signals overlapped by the strong ones. Through the analysis of the simulation data, we can see that both frequency and amplitude information of small-signals can be obtained accurately by the algorithm, and through the combination with the method of signal fitting, quantitative calculation of the area under weak signals peaks can be realized.

  4. Use of proton magnetic resonance spectroscopy in the treatment of psychiatric disorders: a critical update.

    PubMed

    Bustillo, Juan R

    2013-09-01

    Because of the wide availability of hardware as well as of standardized analytic quantification tools, proton magnetic resonance spectroscopy ((1)H-MRS) has become widely used to study psychiatric disorders. (1)H-MRS allows measurement of brain concentrations of more traditional singlet neurometabolites like N-acetylaspartate, choline, and creatine. More recently, quantification of the more complex multiplet spectra for glutamate, glutamine, inositol, and γ-aminobutyric acid have also been implemented. Here we review applications of (1)H-MRS in terms of informing treatment options in schizophrenia, bipolar disorder, and major depressive disorders. We first discuss recent meta-analytic studies reporting the most reliable findings. Then we evaluate the more sparse literature focused on 1H-MRS-detected neurometabolic effects of various treatment approaches in psychiatric populations. Finally we speculate on future developments that may result in translation of these tools to improve the treatment of psychiatric disorders.

  5. Proton Magnetic Resonance Spectroscopy and MRI Reveal No Evidence for Brain Mitochondrial Dysfunction in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Corrigan, Neva M.; Shaw, Dennis. W. W.; Richards, Todd L.; Estes, Annette M.; Friedman, Seth D.; Petropoulos, Helen; Artru, Alan A.; Dager, Stephen R.

    2012-01-01

    Brain mitochondrial dysfunction has been proposed as an etiologic factor in autism spectrum disorder (ASD). Proton magnetic resonance spectroscopic imaging ([superscript 1]HMRS) and MRI were used to assess for evidence of brain mitochondrial dysfunction in longitudinal samples of children with ASD or developmental delay (DD), and cross-sectionally…

  6. Proton nuclear magnetic resonance and spectrophotometric studies of nickel(II)-iron(II) hybrid hemoglobins

    SciTech Connect

    Shibayama, N.; Inubushi, T.; Morimoto, H.; Yonetani, T.

    1987-04-21

    Ni(II)-Fe(II) hybrid hemoglobins, ..cap alpha..(Fe)/sub 2/..beta..(Ni)/sub 2/ and ..cap alpha..(Ni)/sub 2/..beta..(Fe)/sub 2/, have been characterized by proton nuclear magnetic resonance with Ni(II) protoporphyrin IX (Ni-PP) incorporated in apoprotein, which serves as a permanent deoxyheme. ..cap alpha..(Fe)/sub 2/..beta..(Ni)/sub 2/, ..cap alpha..(Ni)/sub 2/..beta..(Fe)/sub 2/, and NiHb commonly show exchangeable proton resonances at 11 and 14 ppm, due to hydrogen-bonded protons in a deoxy-like structure. Upon binding of carbon monoxide (CO) to ..cap alpha..(Fe)/sub 2/..beta..(Ni)/sub 2/, these resonances disappear at pH 6.5 to pH 8.5. On the other hand, the complementary hybrid ..cap alpha..(Ni)/sub 2/..beta..(Fe-CO)/sub 2/ showed the 11 and 14 ppm resonances at low pH. Upon raising pH, the intensities of both resonances are reduced, although these changes are not synchronized. Electronic absorption spectra and hyperfine-shifted proton resonances indicate that the ligation of CO in the ..beta..(Fe) subunits induced changes in the coordination and spin states of Ni-PP in the ..cap alpha.. subunits. In a deoxy-like structure, the coordination of Ni-PP in the ..cap alpha.. subunits is predominantly in a low-spin (S = 0) four-coordination state, whereas in an oxy-like structure the contribution of a high-spin (S = 1) five-coordination state markedly increased. Ni-PP in the ..beta.. subunits always takes a high-spin five-coordination state regardless of solution conditions and the state of ligation in the partner ..cap alpha..(Fe) subunits. In the ..beta..(Ni) subunits, a significant downfield shift of the proximal histidyl N/sub delta/H resonance and a change in the absorption spectrum of Ni-PP were detected, upon changing the quaternary structure of the hybrid. The chemical shifts were analyzed in terms of the E11-Val methyls vs. the porphyrin rings in hybrid Hbs.

  7. Search for Magnetic Monopoles with the MoEDAL Forward Trapping Detector in 13 TeV Proton-Proton Collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Acharya, B.; Alexandre, J.; Baines, S.; Benes, P.; Bergmann, B.; Bernabéu, J.; Branzas, H.; Campbell, M.; Caramete, L.; Cecchini, S.; de Montigny, M.; De Roeck, A.; Ellis, J. R.; Fairbairn, M.; Felea, D.; Flores, J.; Frank, M.; Frekers, D.; Garcia, C.; Hirt, A. M.; Janecek, J.; Kalliokoski, M.; Katre, A.; Kim, D.-W.; Kinoshita, K.; Korzenev, A.; Lacarrère, D. H.; Lee, S. C.; Leroy, C.; Lionti, A.; Mamuzic, J.; Margiotta, A.; Mauri, N.; Mavromatos, N. E.; Mermod, P.; Mitsou, V. A.; Orava, R.; Parker, B.; Pasqualini, L.; Patrizii, L.; Pǎvǎlaş, G. E.; Pinfold, J. L.; Popa, V.; Pozzato, M.; Pospisil, S.; Rajantie, A.; Ruiz de Austri, R.; Sahnoun, Z.; Sakellariadou, M.; Sarkar, S.; Semenoff, G.; Shaa, A.; Sirri, G.; Sliwa, K.; Soluk, R.; Spurio, M.; Srivastava, Y. N.; Suk, M.; Swain, J.; Tenti, M.; Togo, V.; Tuszyński, J. A.; Vento, V.; Vives, O.; Vykydal, Z.; Whyntie, T.; Widom, A.; Willems, G.; Yoon, J. H.; Zgura, I. S.; MoEDAL Collaboration

    2017-02-01

    MoEDAL is designed to identify new physics in the form of long-lived highly ionizing particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detection techniques. We present here the results of a first search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8 TeV data during LHC Run 1. A total of 222 kg of MoEDAL trapping detector samples was exposed in the forward region and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges exceeding half the Dirac charge are excluded in all samples and limits are placed for the first time on the production of magnetic monopoles in 13 TeV p p collisions. The search probes mass ranges previously inaccessible to collider experiments for up to five times the Dirac charge.

  8. Search for Magnetic Monopoles with the MoEDAL Forward Trapping Detector in 13 TeV Proton-Proton Collisions at the LHC.

    PubMed

    Acharya, B; Alexandre, J; Baines, S; Benes, P; Bergmann, B; Bernabéu, J; Branzas, H; Campbell, M; Caramete, L; Cecchini, S; de Montigny, M; De Roeck, A; Ellis, J R; Fairbairn, M; Felea, D; Flores, J; Frank, M; Frekers, D; Garcia, C; Hirt, A M; Janecek, J; Kalliokoski, M; Katre, A; Kim, D-W; Kinoshita, K; Korzenev, A; Lacarrère, D H; Lee, S C; Leroy, C; Lionti, A; Mamuzic, J; Margiotta, A; Mauri, N; Mavromatos, N E; Mermod, P; Mitsou, V A; Orava, R; Parker, B; Pasqualini, L; Patrizii, L; Păvălaş, G E; Pinfold, J L; Popa, V; Pozzato, M; Pospisil, S; Rajantie, A; Ruiz de Austri, R; Sahnoun, Z; Sakellariadou, M; Sarkar, S; Semenoff, G; Shaa, A; Sirri, G; Sliwa, K; Soluk, R; Spurio, M; Srivastava, Y N; Suk, M; Swain, J; Tenti, M; Togo, V; Tuszyński, J A; Vento, V; Vives, O; Vykydal, Z; Whyntie, T; Widom, A; Willems, G; Yoon, J H; Zgura, I S

    2017-02-10

    MoEDAL is designed to identify new physics in the form of long-lived highly ionizing particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detection techniques. We present here the results of a first search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8 TeV data during LHC Run 1. A total of 222 kg of MoEDAL trapping detector samples was exposed in the forward region and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges exceeding half the Dirac charge are excluded in all samples and limits are placed for the first time on the production of magnetic monopoles in 13 TeV pp collisions. The search probes mass ranges previously inaccessible to collider experiments for up to five times the Dirac charge.

  9. 9.4T Human MRI: Preliminary Results

    PubMed Central

    Vaughan, Thomas; DelaBarre, Lance; Snyder, Carl; Tian, Jinfeng; Akgun, Can; Shrivastava, Devashish; Liu, Wanzahn; Olson, Chris; Adriany, Gregor; Strupp, John; Andersen, Peter; Gopinath, Anand; van de Moortele, Pierre-Francois; Garwood, Michael; Ugurbil, Kamil

    2014-01-01

    This work reports the preliminary results of the first human images at the new high-field benchmark of 9.4T. A 65-cm-diameter bore magnet was used together with an asymmetric 40-cm-diameter head gradient and shim set. A multichannel transmission line (transverse electromagnetic (TEM)) head coil was driven by a programmable parallel transceiver to control the relative phase and magnitude of each channel independently. These new RF field control methods facilitated compensation for RF artifacts attributed to destructive interference patterns, in order to achieve homogeneous 9.4T head images or localize anatomic targets. Prior to FDA investigational device exemptions (IDEs) and internal review board (IRB)-approved human studies, preliminary RF safety studies were performed on porcine models. These data are reported together with exit interview results from the first 44 human volunteers. Although several points for improvement are discussed, the preliminary results demonstrate the feasibility of safe and successful human imaging at 9.4T. PMID:17075852

  10. DESIGN OF SUPERCONDUCTING COMBINED FUNCTION MAGNETS FOR THE 50 GEV PROTON BEAM LINE FOR THE J-PARC NEUTRINO EXPERIMENT.

    SciTech Connect

    WANDERER,P.; ET AL.

    2003-06-15

    Superconducting combined function magnets will be utilized for the 50GeV-750kW proton beam line for the J-PARC neutrino experiment and an R and D program has been launched at KEK. The magnet is designed to provide a combined function with a dipole field of 2.59 T and a quadrupole field of 18.7 T/m in a coil aperture of 173.4 mm. A single layer coil is proposed to reduce the fabrication cost and the coil arrangement in the 2-D cross-section results in left-right asymmetry. This paper reports the design study of the magnet.

  11. Electron Cloud Generation and Trapping in a Quadrupole Magnet at the Los Alamos Proton Storage Ring

    SciTech Connect

    Macek, Robert J.; Browman, Andrew A.; Ledford, John E.; Borden, Michael J.; O'Hara, James F.; McCrady, Rodney C.; Rybarcyk, Lawrence J.; Spickermann, Thomas; Zaugg, Thomas J.; Pivi, Mauro T.F.; /SLAC

    2008-03-17

    Recent beam physics studies on the two-stream e-p instability at the LANL proton storage ring (PSR) have focused on the role of the electron cloud generated in quadrupole magnets where primary electrons, which seed beam-induced multipacting, are expected to be largest due to grazing angle losses from the beam halo. A new diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Beam studies using this diagnostic show that the 'prompt' electron flux striking the wall in a quadrupole is comparable to the prompt signal in the adjacent drift space. In addition, the 'swept' electron signal, obtained using the sweeping feature of the diagnostic after the beam was extracted from the ring, was larger than expected and decayed slowly with an exponential time constant of 50 to 100 {micro}s. Other measurements include the cumulative energy spectra of prompt electrons and the variation of both prompt and swept electron signals with beam intensity. Experimental results were also obtained which suggest that a good fraction of the electrons observed in the adjacent drift space for the typical beam conditions in the 2006 run cycle were seeded by electrons ejected from the quadrupole.

  12. Proton magnetic resonance spectroscopy in pediatric obsessive-compulsive disorder: longitudinal study before and after treatment.

    PubMed

    Lázaro, Luisa; Bargalló, Núria; Andrés, Susana; Falcón, Carles; Morer, Astrid; Junqué, Carme; Castro-Fornieles, Josefina

    2012-01-30

    Abnormalities in neurochemical compounds in obsessive-compulsive disorder (OCD) may help increase our knowledge of neurobiological abnormalities in the fronto-subcortical circuits. The aims of this exploratory study were to identify with in vivo magnetic resonance spectroscopy ((1)H-MRS) the possible alterations in neurometabolites in a group of drug naïve children and adolescents with OCD in comparison with a control group and to determine whether there was any effect of treatment on the metabolite levels. Eleven OCD children and adolescents (age range 9-17 years; 6 male, 5 female) and twelve healthy subjects with similar age, sex and estimated intellectual quotient were studied. Proton magnetic resonance spectroscopy at 1.5 T was used. We placed 3 voxels, one bilaterally located involving anterior cingulate-medial frontal regions, and one in each striatal region involving the caudate and putaminal regions. Concentrations of creatine (Cr), myo-inositol (mI), total Cho (glycerophosphocholine+phosphocholine), total NAA (N-acetyl aspartate+N-acetyl aspartylglutamate), and total Glx (glutamate+glutamine) were calculated. We found significantly lower concentrations of total Cho in left striatum in OCD patients compared with healthy subjects. The difference in Cho concentrations in left striatum between the two groups did not change over time and persisted at follow-up assessment. Like the control subjects, OCD patients undergoing pharmacological treatment and clinical recovery showed no significant changes in neurometabolic activity between the first and second evaluations.

  13. Neurochemistry of Drug Action: Insights from Proton Magnetic Resonance Spectroscopic Imaging And Their Relevance to Addiction

    PubMed Central

    Licata, Stephanie C.; Renshaw, Perry F.

    2011-01-01

    Proton magnetic resonance spectroscopy (1H MRS) is a non-invasive imaging technique that permits measurement of particular compounds or metabolites within the tissue of interest. In the brain, 1H MRS provides a snapshot of the neurochemical environment within a defined volume of interest. A search of the literature demonstrates the widespread utility of this technique for characterizing tumors, tracking the progress of neurodegenerative disease, and for understanding the neurobiological basis of psychiatric disorders. As of relatively recently, 1H MRS has found its way into substance abuse research, and it is beginning to become recognized as a valuable complement in the brain imaging toolbox that also contains positron emission tomography (PET), single photon emission computed tomography (SPECT), and functional magnetic resonance imaging (fMRI). Drug abuse studies employing 1H MRS have identified a number biochemical changes in the brain. The most consistent alterations across drug class were reductions in N-acetylaspartate and elevations in myo-inositol, while changes in choline, creatine, and amino acid transmitters also were abundant. Together, the studies discussed herein provide evidence that drugs of abuse may have a profound impact on neuronal health, energy metabolism and maintenance, inflammatory processes, cell membrane turnover, and neurotransmission, and these biochemical changes may underlie the neuropathology within brain tissue that subsequently gives rise to the cognitive and behavioral impairments associated with drug addiction. PMID:20201852

  14. NMR spin locking of proton magnetization under a frequency-switched Lee-Goldburg pulse sequence.

    PubMed

    Fu, Riqiang; Tian, Changlin; Cross, Timothy A

    2002-01-01

    The spin dynamics of NMR spin locking of proton magnetization under a frequency-switched Lee-Goldburg (FSLG) pulse sequence is investigated for a better understanding of the line-narrowing mechanism in PISEMA experiments. For the sample of oriented 15N(1,3,5,7)-labeled gramicidin A in hydrated DMPC bilayers, it is found that the spin-lattice relaxation time T(1rho)(H) in the tilted rotating frame is about five times shorter when the 1H magnetization is spin locked at the magic angle by the FSLG sequence compared to the simple Lee-Goldburg sequence. It is believed that the rapid phase alternation of the effective fields during the FSLG cycles results in averaging of the spin lock field so that the spin lock becomes less efficient. A FSLG supercycle has been suggested here to slow the phase alternation. It has been demonstrated experimentally that a modified PISEMA pulse sequence with such supercycles gives rise to about 30% line narrowing in the dipolar dimension in the PISEMA spectra compared to a standard PISEMA pulse sequence.

  15. Neurochemistry of drug action: insights from proton magnetic resonance spectroscopic imaging and their relevance to addiction.

    PubMed

    Licata, Stephanie C; Renshaw, Perry F

    2010-02-01

    Proton magnetic resonance spectroscopy ((1)H MRS) is a noninvasive imaging technique that permits measurement of particular compounds or metabolites within the tissue of interest. In the brain, (1)H MRS provides a snapshot of the neurochemical environment within a defined volume of interest. A search of the literature demonstrates the widespread utility of this technique for characterizing tumors, tracking the progress of neurodegenerative disease, and for understanding the neurobiological basis of psychiatric disorders. As of relatively recently, (1)H MRS has found its way into substance abuse research, and it is beginning to become recognized as a valuable complement in the brain imaging toolbox that also contains positron emission tomography, single-photon-emission computed tomography, and functional magnetic resonance imaging. Drug abuse studies using (1)H MRS have identified several biochemical changes in the brain. The most consistent alterations across drug class were reductions in N-acetylaspartate and elevations in myo-inositol, whereas changes in choline, creatine, and amino acid transmitters also were abundant. Together, the studies discussed herein provide evidence that drugs of abuse may have a profound effect on neuronal health, energy metabolism and maintenance, inflammatory processes, cell membrane turnover, and neurotransmission, and these biochemical changes may underlie the neuropathology within brain tissue that subsequently gives rise to the cognitive and behavioral impairments associated with drug addiction.

  16. Brain metabolite alterations in children with primary nocturnal enuresis using proton magnetic resonance spectroscopy.

    PubMed

    Zhang, Jing; Lei, Du; Ma, Jun; Wang, Mengxing; Shen, Guohua; Wang, Hui; Yang, Guang; Du, Xiaoxia

    2014-07-01

    Nocturnal enuresis is a common developmental disorder in children; primary monosymptomatic nocturnal enuresis (PMNE) is the dominant subtype. Previous literature has suggested that the prefrontal cortex and the pons are both involved in micturition control. This study aimed to investigate the metabolic levels of the left prefrontal cortex and the pons in children with PMNE by proton magnetic resonance spectroscopy (1H-MRS). Twenty-five children with PMNE and 25 healthy children took part in our experiments. Magnetic resonance examinations were performed on a Siemens 3T Trio Tim scanner. For each subject, localized 1H-MRS was acquired from the left prefrontal cortex (mainly in brodmann area 9) and the pons with a point-resolved spectroscopy sequence with repetition time 2,000 ms, echo time 30 ms and 64 averages. The LCModel software package was used to analyze the MRS raw data, and two-sample t tests were used to determine significant differences between the two groups. The results revealed a significant reduction in metabolite to total creatine ratios of N-acetylaspartate (NAA/tCr) in the left prefrontal cortex and the pons for children with PMNE compared to healthy children. Our study suggests that metabolism is disturbed in the prefrontal cortex and the pons in children with PMNE, which may be associated with the symptoms of enuresis.

  17. Particle selection and beam collimation system for laser-accelerated proton beam therapy.

    PubMed

    Luo, Wei; Fourkal, Eugene; Li, Jinsheng; Ma, Chang-Ming

    2005-03-01

    In a laser-accelerated proton therapy system, the initial protons have broad energy and angular distributions, which are not suitable for direct therapeutic applications. A compact particle selection and collimation device is needed to deliver small pencil beams of protons with desired energy spectra. In this work, we characterize a superconducting magnet system that produces a desired magnetic field configuration to spread the protons with different energies and emitting angles for particle selection. Four magnets are set side by side along the beam axis; each is made of NbTi wires which carry a current density of approximately 10(5) A/cm2 at 4.2 K, and produces a magnetic field of approximately 4.4 T in the corresponding region. Collimation is applied to both the entrance and the exit of the particle selection system to generate a desired proton pencil beam. In the middle of the magnet system, where the magnetic field is close to zero, a particle selection collimator allows only the protons with desired energies to pass through for therapy. Simulations of proton transport in the presence of the magnetic field show that the selected protons have successfully refocused on the beam axis after passing through the magnetic field with the optimal magnet system. The energy spread for any given characteristic proton energy has been obtained. It is shown that the energy spread is a function of the magnetic field strength and collimator size and reaches the full width at half maximum of 25 MeV for 230 MeV protons. Dose distributions have also been calculated with the GEANT3 Monte Carlo code to study the dosimetric properties of the laser-accelerated proton beams for radiation therapy applications.

  18. Detection of necrosis in human tumour xenografts by proton magnetic resonance imaging.

    PubMed Central

    Jakobsen, I.; Kaalhus, O.; Lyng, H.; Rofstad, E. K.

    1995-01-01

    Tumours with necrotic regions have an inadequate blood supply and are expected to differ from well-vascularised tumours in response to treatment. The purpose of the present work was to investigate whether proton magnetic resonance imaging (MRI) might be used to detect necrotic regions in tumours. MR images and histological sections from individual tumours of three different amelanotic human melanoma xenograft lines (BEX-t, HUX-t, SAX-t) were analysed in pairs. MRI was performed at 1.5 T using two spin-echo pulse sequences, one with a repetition time (TR) of 600 ms and echo times (TEs) of 20, 40, 60 and 80 ms and the other with a TR of 2000 ms and TEs of 20, 40, 60 and 80 ms. Spin-lattice relaxation time (T1), spin-spin relaxation time (T2) and proton density (N0) were calculated for each volume element corresponding to a pixel. Synthetic MR images, pure T1, T2 and N0 images and spin-echo images with chosen values for TR and TE were generated from these data. T1, T2 and N0 distributions of tumour subregions, corresponding to necrotic regions and regions of viable tissue as defined by histological criteria, were also generated. T1 and T2 were significantly shorter in the necrotic regions than in the regions of viable tissue in all tumours. These differences were sufficiently large to allow the generation of synthetic spin-echo images showing clear contrast between necrosis and viable tissue. Maximum contrast was achieved with TRs within the range 2800-4000 ms and TEs within the range 160-200 ms. Necrotic tissue could also be distinguished from viable tissue in pure T1 and T2 images. Consequently, the possibility exists that MRI might be used for detection of necrotic regions in tumours and hence for prediction of tumour treatment response. Images Figure 4 Figure 5 PMID:7880724

  19. Status of intense permanent magnet proton source for China-accelerator driven sub-critical system Linac

    SciTech Connect

    Wu, Q. Ma, H. Y.; Yang, Y.; Sun, L. T.; Zhang, X. Z.; Zhang, Z. M.; Zhao, H. Y.; He, Y.; Zhao, H. W.

    2016-02-15

    Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.

  20. Proton nuclear magnetic resonance spectroscopic detection and determination of ethylene glycol dimethacrylate as a contaminant of methyl methacrylate raw material.

    PubMed

    Hanna, G M; Lau-Cam, C A

    1995-01-01

    A simple, specific, and accurate proton nuclear magnetic resonance (1H NMR) spectroscopic method is presented for detection and assay of ethylene glycol dimethacrylate dimer as a contaminant of methyl methacrylate monomer. In addition to minimizing exposure of the analyst to the irritant and toxic methacrylic acid esters, the proposed method requires no sample preparation. Quantitations are based on integrals for signals of methylene protons of ethylene glycol dimethacrylate at 4.37 ppm and methyl protons of methyl methacrylate at 3.70 ppm. Analysis of 10 synthetic mixtures of the monomer with 1-11% of dimer yielded a dimer recovery of 100.5 +/- 2.05% (mean +/- standard deviation). Correspondence (correlation coefficient, r = 0.9999) between the amount of dimer added and the amount found was excellent. The proposed method measures as little as 1% of dimer.

  1. High order magnetic optics for high dynamic range proton radiography at a kinetic energy 800 MeV

    SciTech Connect

    Sjue, Sky K. L.; Morris, Christopher L.; Merrill, Frank Edward; Mariam, Fesseha Gebre; Saunders, Alexander

    2016-01-14

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the protonimaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane. Furthermore, comparison with a series of static calibrationimages demonstrates the model’s accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.

  2. High order magnetic optics for high dynamic range proton radiography at a kinetic energy 800 MeV

    DOE PAGES

    Sjue, Sky K. L.; Morris, Christopher L.; Merrill, Frank Edward; ...

    2016-01-14

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the protonimaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane.more » Furthermore, comparison with a series of static calibrationimages demonstrates the model’s accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.« less

  3. A systematic review of proton magnetic resonance spectroscopy findings in sport-related concussion.

    PubMed

    Gardner, Andrew; Iverson, Grant L; Stanwell, Peter

    2014-01-01

    Traditional structural neuroimaging techniques are normal in athletes who sustain sport-related concussions and are only considered to be clinically helpful in ruling out a more serious brain injury. There is a clinical need for more sophisticated, non-invasive imaging techniques capable of detecting changes in neurophysiology after injury. Concussion is associated with neurometabolic changes including neuronal depolarization, release of excitatory neurotransmitters, ionic shifts, changes in glucose metabolism, altered cerebral blood flow, and impaired axonal function. Proton magnetic resonance spectroscopy ((1)H-MRS, or simply MRS) is capable of measuring brain biochemistry and has the potential to identify and quantify physiologic changes after concussion. The focus of the current review is to provide an overview of research findings using MRS in sport-related concussion. A systematic review of articles published in the English language, up to February 2013, was conducted. Articles were retrieved via the databases: PsychINFO, Medline, Embase, SportDiscus, Scopus, Web of Science, and Informit using key terms: magnetic resonance spectroscopy, nuclear magnetic resonance spectroscopy, neurospectroscopy, spectroscopy, two-dimensional nuclear magnetic resonance spectroscopy, correlation spectroscopy, J-spectroscopy, exchange spectroscopy, nuclear overhauser effect spectroscopy, NMR, MRS, COSY, EXSY, NOESY, 2D NMR, craniocerebral trauma, mild traumatic brain injury, mTBI, traumatic brain injury, brain concussion, concussion, brain damage, sport, athletic, and athlete. Observational, cohort, correlational, cross-sectional, and longitudinal studies were all included in the current review. The review identified 11 publications that met criteria for inclusion, comprised of data on 200 athletes and 116 controls. Nine of 11 studies reported a MRS abnormality consistent with an alteration in neurochemistry. The results support the use of MRS as a research tool for identifying

  4. High-resolution proton nuclear magnetic resonance spectroscopy of ovarian cyst fluid.

    PubMed

    Boss, E A; Moolenaar, S H; Massuger, L F; Boonstra, H; Engelke, U F; de Jong, J G; Wevers, R A

    2000-08-01

    Most ovarian tumors are cystic structures containing variable amounts of fluid. Several studies of ovarian cyst fluid focus on one specific metabolite using conventional assay systems. We examined the potential of (1)H-nuclear magnetic resonance spectroscopy in evaluation of the overall metabolic composition of cyst fluid from different ovarian tumors. Ovarian cyst fluid samples obtained from 40 patients with a primary ovarian tumor (12 malignant and 28 benign) were examined. After deproteinization and pD standardization, we performed (1)H-NMR spectroscopy on a 600 MHz instrument. With (1)H-NMR spectroscopy we found detectable concentrations of 36 metabolites with high intersample variation. A number of unassigned resonances as well as unexpected metabolites were found. We introduce an overall inventory of the low-molecular-weight metabolites in ovarian cyst fluid with corresponding resonances. Significant differences in concentration (p < 0.01) were found for several metabolites (including an unknown metabolite) between malignant and benign ovarian cysts. Furthermore, higher concentrations in malignant- and lower in benign fluids were found compared to normal serum values, indicating local cyst wall metabolic processes in case of malignant transformation. We conclude that (1)H-nuclear magnetic resonance spectroscopy can give an overview of low-molecular-weight proton-containing metabolities present in ovarian cyst fluid samples. The metabolic composition of cyst fluid differs significantly between benign and malignant ovarian tumors. Furthermore, differences between benign subgroups possibly related to histopathological behaviour can be detected. The presence of N-acetyl aspartic acid and 5-oxoproline exclusively in serous cystadenoma samples is remarkable. Future studies will concentrate on these findings and explore the possibilities of extrapolating information from the in vitro studies to in vivo practice, in which metabolic differences between malignant and

  5. Investigation of the neuroprotective effects of bee-venom acupuncture in a mouse model of Parkinson's disease by using immunohistochemistry and In-vivo 1H magnetic resonance spectroscopy at 9.4 T

    NASA Astrophysics Data System (ADS)

    Yoon, Moon-Hyun; Lee, Do-Wan; Kim, Hyun-Jin; Chung, Jin-Yeung; Doo, Ah-Reum; Park, Hi-Joon; Kim, Seung-Nam; Choe, Bo-Young

    2013-01-01

    Neuroprotective therapeutics slows down the degeneration process in animal models of Parkinson's disease (PD). The neuronal survival in PD animal models is often measured by using immunohistochemistry. However, dynamic changes in the pathology of the brain cannot be explored with this technique. Application of in-vivo 1H magnetic resonance spectroscopy (1H MRS) can cover this shortcoming, as these techniques are non-invasive and can be repeated over time in the same animal. Thus, the sensitivity of both techniques to measure changes in the PD pathology was explored in an experiment studying the neuroprotective effects of the vigilance enhancer bee-venom (BV) in a mouse model of PD. The mice were pre-treated with 0.02-ml BV administered to the acupuncture point GB34 (Yangneungcheon) once every 3 days for 2 weeks. Three groups were classified as control, MPTP-intoxicated PD model and BV-treated mice. Outer volume suppression combined with the ultra-short echo-time STEAM (TE = 2.2 ms, TM = 20 ms, TR = 5000 ms) was used for localized in-vivo 1H MRS. Based on the 1H MRS spectral analysis, substantial changes of the neurochemical profiles were evaluated in the three investigated groups. In particular, the glutamate complex (Glx)/creatine (Cr) ratio (7.72 ± 1.25) in the PD group was significantly increased compared to that in the control group (3.93 ± 2.21, P = 0.001). Compared to the baseline values, the Glx/Cr ratio of the BV-treated group was significantly decreased 2 weeks after MPTP intoxication (one-way ANOVA, p < 0.05). In conclusion, the present study demonstrated that neurochemical alterations occurred in the three groups and that the neuroprotective effects of the BV acupuncture in a mouse model of PD could be quantified by using immunohistochemistry and 1H MRS.

  6. Absolute quantification of carnosine in human calf muscle by proton magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Özdemir, Mahir S.; Reyngoudt, Harmen; DeDeene, Yves; Sazak, Hakan S.; Fieremans, Els; Delputte, Steven; D'Asseler, Yves; Derave, Wim; Lemahieu, Ignace; Achten, Eric

    2007-12-01

    Carnosine has been shown to be present in the skeletal muscle and in the brain of a variety of animals and humans. Despite the various physiological functions assigned to this metabolite, its exact role remains unclear. It has been suggested that carnosine plays a role in buffering in the intracellular physiological pHi range in skeletal muscle as a result of accepting hydrogen ions released in the development of fatigue during intensive exercise. It is thus postulated that the concentration of carnosine is an indicator for the extent of the buffering capacity. However, the determination of the concentration of this metabolite has only been performed by means of muscle biopsy, which is an invasive procedure. In this paper, we utilized proton magnetic resonance spectroscopy (1H MRS) in order to perform absolute quantification of carnosine in vivo non-invasively. The method was verified by phantom experiments and in vivo measurements in the calf muscles of athletes and untrained volunteers. The measured mean concentrations in the soleus and the gastrocnemius muscles were found to be 2.81 ± 0.57/4.8 ± 1.59 mM (mean ± SD) for athletes and 2.58 ± 0.65/3.3 ± 0.32 mM for untrained volunteers, respectively. These values are in agreement with previously reported biopsy-based results. Our results suggest that 1H MRS can provide an alternative method for non-invasively determining carnosine concentration in human calf muscle in vivo.

  7. Characterization of urban aerosol using aerosol mass spectrometry and proton nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cleveland, M. J.; Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Lefer, B.; Rappenglück, B.

    2012-07-01

    Particulate matter was measured during August and September of 2006 in Houston as part of the Texas Air Quality Study II Radical and Aerosol Measurement Project. Aerosol size and composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Aerosol was dominated by sulfate (4.1 ± 2.6 μg m-3) and organic material (5.5 ± 4.0 μg m-3), with contributions of organic material from both primary (˜32%) and secondary (˜68%) sources. Secondary organic aerosol appears to be formed locally. In addition, 29 aerosol filter samples were analyzed using proton nuclear magnetic resonance (1H NMR) spectroscopy to determine relative concentrations of organic functional groups. Houston aerosols are less oxidized than those observed elsewhere, with smaller relative contributions of carbon-oxygen double bonds. These particles do not fit 1H NMR source apportionment fingerprints for identification of secondary, marine, and biomass burning organic aerosol, suggesting that a new fingerprint for highly urbanized and industrially influenced locations be established.

  8. Nuclear magnetic resonance and proton relaxation times in experimental heterotopic heart transplantation

    SciTech Connect

    Eugene, M.; Lechat, P.; Hadjiisky, P.; Teillac, A.; Grosgogeat, Y.; Cabrol, C.

    1986-01-01

    It should be possible to detect heart transplant rejection by nuclear magnetic resonance (NMR) imaging if it induces myocardial T1 and T2 proton relaxation time alterations or both. We studied 20 Lewis rats after a heterotopic heart transplantation. In vitro measurement of T1 and T2 was performed on a Minispec PC20 (Bruker) 3 to 9 days after transplantation. Histologic analysis allowed the quantification of rejection process based on cellular infiltration and myocardiolysis. Water content, a major determinant of relaxation time, was also studied. T1 and T2 were significantly prolonged in heterotopic vs orthotopic hearts (638 +/- 41 msec vs 606 +/- 22 msec for T1, p less than 0.01 and 58.2 +/- 8.4 msec vs 47.4 +/- 1.9 msec for T2, p less than 0.001). Water content was also increased in heterotopic hearts (76.4 +/- 2.3 vs 73.8 +/- 1.0, p less than 0.01). Most importantly, we found close correlations between T1 and especially T2 vs water content, cellular infiltration, and myocardiolysis. We conclude that rejection reaction should be noninvasively detected by NMR imaging, particularly with pulse sequences emphasizing T2.

  9. Magnetization Transfer and Amide Proton Transfer MRI of Neonatal Brain Development.

    PubMed

    Zheng, Yang; Wang, Xiaoming; Zhao, Xuna

    2016-01-01

    Purpose. This study aims to evaluate the process of brain development in neonates using combined amide proton transfer (APT) imaging and conventional magnetization transfer (MT) imaging. Materials and Methods. Case data were reviewed for all patients hospitalized in our institution's neonatal ward. Patients underwent APT and MT imaging (a single protocol) immediately following the routine MR examination. Single-slice APT/MT axial imaging was performed at the level of the basal ganglia. APT and MT ratio (MTR) measurements were performed in multiple brain regions of interest (ROIs). Data was statistically analyzed in order to assess for significant differences between the different regions of the brain or correlation with patient gestational age. Results. A total of 38 neonates were included in the study, with ages ranging from 27 to 41 weeks' corrected gestational age. There were statistically significant differences in both APT and MTR measurements between the frontal lobes, basal ganglia, and occipital lobes (APT: frontal lobe versus occipital lobe P = 0.031 and other groups P = 0.00; MTR: frontal lobe versus occipital lobe P = 0.034 and other groups P = 0.00). Furthermore, APT and MTR in above brain regions exhibited positive linear correlations with patient gestational age. Conclusions. APT/MT imaging can provide valuable information about the process of the neonatal brain development at the molecular level.

  10. Magnetization Transfer and Amide Proton Transfer MRI of Neonatal Brain Development

    PubMed Central

    Zhao, Xuna

    2016-01-01

    Purpose. This study aims to evaluate the process of brain development in neonates using combined amide proton transfer (APT) imaging and conventional magnetization transfer (MT) imaging. Materials and Methods. Case data were reviewed for all patients hospitalized in our institution's neonatal ward. Patients underwent APT and MT imaging (a single protocol) immediately following the routine MR examination. Single-slice APT/MT axial imaging was performed at the level of the basal ganglia. APT and MT ratio (MTR) measurements were performed in multiple brain regions of interest (ROIs). Data was statistically analyzed in order to assess for significant differences between the different regions of the brain or correlation with patient gestational age. Results. A total of 38 neonates were included in the study, with ages ranging from 27 to 41 weeks' corrected gestational age. There were statistically significant differences in both APT and MTR measurements between the frontal lobes, basal ganglia, and occipital lobes (APT: frontal lobe versus occipital lobe P = 0.031 and other groups P = 0.00; MTR: frontal lobe versus occipital lobe P = 0.034 and other groups P = 0.00). Furthermore, APT and MTR in above brain regions exhibited positive linear correlations with patient gestational age. Conclusions. APT/MT imaging can provide valuable information about the process of the neonatal brain development at the molecular level. PMID:27885356

  11. Proton nuclear magnetic resonance of regenerating rat liver after partial hepatectomy

    SciTech Connect

    de Certaines, J.D.; Moulinoux, J.P.; Benoist, L.; Benard, A.; Rivet, P.

    1982-08-09

    Spin-lattice (T/sub 1/) and spin-spin (T/sub 2/) proton nuclear magnetic resonance relaxation times were measured over a 48-hours period of experimental liver regeneration in Wistar rats, T/sub 2/ showed an early significant increase reaching a plateau 30% above baseline from the 10th hrs onwards. Laparotomized control animals showed no change in T/sub 2/ values. The increase in T/sub 1/ occurred at a later stage but was no different from that in laparotomized controls. T/sub 1/ reached a peak, 20% above baseline, around the 30th hr. The changes observed were far less marked than those previously described for cancer tissue, which showed about a 60% increase in T/sub 1/ fluctuations followed a circadian pattern, with a minimum at night's end and a maximum around mid-day. No circadian rhythm was seen for T/sub 2/. The observed T/sub 1/ and T/sub 2/ changes are discussed with respect to mitotic and metabolic events known to occur during regeneration of the liver.

  12. Proton magnetic resonance spectroscopy of late-life major depressive disorder.

    PubMed

    Chen, Cheng-Sheng; Chiang, I-Chan; Li, Chun-Wei; Lin, Wei-Chen; Lu, Chia-Ying; Hsieh, Tsyh-Jyi; Liu, Gin-Chung; Lin, Hsiu-Fen; Kuo, Yu-Ting

    2009-06-30

    The primary goal of this study was to examine the biochemical abnormalities of late-life major depression by using 3-tesla (3-T) proton magnetic resonance spectroscopy ((1)H-MRS). The antidepressant effects on the biochemical abnormalities were investigated as well. Study participants were 27 elderly patients with major depressive disorders (among which 9 were on antidepressant medication) and 19 comparison elderly subjects. (1)H-MRS spectra were acquired from voxels that were placed in the left frontal white matter, left periventricular white matter, and left basal ganglia. Ratios of N-acetylaspartate (NAA), choline (Cho) and myo-inositol to creatine were calculated. Patients with late-life major depressive disorder had a significantly lower NAA/creatine ratio in the left frontal white matter, and higher Cho/creatine and myo-inositol/creatine ratios in the left basal ganglia when compared with the control subjects. The myo-inositol correlated with global cognitive function among the patients. The biochemical abnormalities in late-life major depressive disorder were found on the left side of the frontal white matter and the basal ganglia. Neuron degeneration in the frontal white matter and second messenger system dysfunction or glial dysfunction in the basal ganglia are suggested to be associated with late-life depression.

  13. Reliability of glutamate and GABA quantification using proton magnetic resonance spectroscopy.

    PubMed

    Yasen, Alia L; Smith, Jolinda; Christie, Anita D

    2017-03-16

    The consistency and reliability of proton magnetic resonance spectroscopy ((1)H-MRS) assessments of neurotransmitter concentration has not been widely examined over multiple days. The purpose of this study was to determine the reliability of glutamate and GABA measures using a single-voxel (1)H-MRS protocol in healthy men and women. Glutamate and GABA quantitations were obtained from the primary motor cortex (M1) and the dorsolateral prefrontal cortex (DLPFC) in 13 healthy individuals across 3 data collection sessions, including a baseline (Visit 1), 2-week (Visit 2), and 2-month time point (Visit 3). Glutamate concentrations were similar across visits in M1 (p=0.72) and the DLPFC (p=0.52). Reliability across days was excellent in M1 (R=0.93), and in the DLPFC (R=0.99). GABA concentrations were similar across visits in M1 (p=0.44) and in the DLPFC (p=0.59). Reliability of GABA concentration across days was excellent in M1 (R=0.93), and in the DLPFC (R=0.97). (1)H-MRS is a reliable method for quantifying glutamate and GABA concentration in M1 and the DLPFC in humans.

  14. Probing astrocyte metabolism in vivo: proton magnetic resonance spectroscopy in the injured and aging brain

    PubMed Central

    Harris, Janna L.; Choi, In-Young; Brooks, William M.

    2015-01-01

    Following a brain injury, the mobilization of reactive astrocytes is part of a complex neuroinflammatory response that may have both harmful and beneficial effects. There is also evidence that astrocytes progressively accumulate in the normal aging brain, increasing in both number and size. These astrocyte changes in normal brain aging may, in the event of an injury, contribute to the exacerbated injury response and poorer outcomes observed in older traumatic brain injury (TBI) survivors. Here we present our view that proton magnetic resonance spectroscopy (1H-MRS), a neuroimaging approach that probes brain metabolism within a defined region of interest, is a promising technique that may provide insight into astrocyte metabolic changes in the injured and aging brain in vivo. Although 1H-MRS does not specifically differentiate between cell types, it quantifies certain metabolites that are highly enriched in astrocytes (e.g., Myo-inositol, mlns), or that are involved in metabolic shuttling between astrocytes and neurons (e.g., glutamate and glutamine). Here we focus on metabolites detectable by 1H-MRS that may serve as markers of astrocyte metabolic status. We review the physiological roles of these metabolites, discuss recent 1H-MRS findings in the injured and aging brain, and describe how an astrocyte metabolite profile approach might be useful in clinical medicine and clinical trials. PMID:26578948

  15. [Effects of echo time on the liver fat quantification using proton magnetic resonance spectroscopy].

    PubMed

    Liu, Zaiyi; Liu, Xiaoying; Xu, Li; Li, Yan; Wang, Qiushi; Zheng, Junhui; Liang, Changhong

    2010-08-01

    This study was aimed to evaluate the effects of different echo time (TE) on the liver fat quantification using proton magnetic resonance spectroscopy (1H-MRS). Liver 1H-MRS was performed on 24 adult male wistar rats on a 1.5 T superconductor MR scanner. Spectrums were collected with a TR of 1500 ms and different TE of 35, 45, 55, 65, 75, 85, 95, 105, 144 ms, respectively. The water and lipid peaks, baseline of the spectrum and lipid to water ratio were evaluated. With the increment of TE, the amplitude and integrated area of the water and lipid peaks decreased, and the baseline of the spectrum and the lipid to water ratio became unstable. The lipid to water ratio determined by 1H-MRS was highly correlated with the liver fat content determined by pathological analysis at TE between 35 and 55 ms (r > 0.9) and poorly to moderately correlated at TE > or =65 ms (r < 0.9). The results indicated that long TE would compromise the liver fat quantification using 1H-MRS, and therefore short TE was strongly recommended for liver fat quantification.

  16. ISEE 3 observations of low-energy proton bidirectional events and their relation to isolated interplanetary magnetic structures

    NASA Technical Reports Server (NTRS)

    Marsden, R. G.; Sanderson, T. R.; Tranquille, C.; Wenzel, K.-P.; Smith, E. J.

    1987-01-01

    The paper represents the results of a comprehensive survey of low-energy proton bidirectional anisotropies and associated transient magnetic structures as observed in the 35-1600 keV energy range on ISEE-3 during the last solar maximum. The majority of observed bidirectional flow (BDF) events (more than 70 percent) are associated with isolated magnetic structures which are postulated to be an interplanetary manifestation of coronal mass ejection (CME) events. The observed BDF events can be qualitatively grouped into five classes depending on the field signature of the related magnetic structure and the association (or lack of association) with an interplanetary shock. Concerning the topology of the CME-related magnetic structures, the observations are interpreted as being consistent with a detached bubble, comprising closed loops or tightly wound helices.

  17. The effects of the RHIC E-lenses magnetic structure layout on the proton beam trajectory

    SciTech Connect

    Gu, X.; Pikin, A.; Luo, Y.; Okamura, M.; Fischer, W.; Gupta, R.; Hock, J.; Raparia, D.

    2011-03-28

    We are designing two electron lenses (E-lens) to compensate for the large beam-beam tune spread from proton-proton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). They will be installed in RHIC IR10. First, the layout of these two E-lenses is introduced. Then the effects of e-lenses on proton beam are discussed. For example, the transverse fields of the e-lens bending solenoids and the fringe field of the main solenoids will shift the proton beam. For the effects of the e-lens on proton beam trajectory, we calculate the transverse kicks that the proton beam receives in the electron lens via Opera at first. Then, after incorporating the simplified E-lens lattice in the RHIC lattice, we obtain the closed orbit effect with the Simtrack Code.

  18. Apoptotic depletion of CD4+ T cells in idiopathic CD4+ T lymphocytopenia.

    PubMed Central

    Laurence, J; Mitra, D; Steiner, M; Lynch, D H; Siegal, F P; Staiano-Coico, L

    1996-01-01

    Progressive loss of CD4+ T lymphocytes, accompanied by opportunistic infections characteristic of the acquired immune deficiency syndrome, ahs been reported in the absence of any known etiology. The pathogenesis of this syndrome, a subset of idiopathic CD4+ T lymphocytopenia (ICL), is uncertain. We report that CD4+ T cells from seven of eight ICL patients underwent accelerated programmed cell death, a process facilitated by T cell receptor cross-linking. Apoptosis was associated with enhanced expression of Fas and Fas ligand in unstimulated cell populations, and partially inhibited by soluble anti-Fas mAb. In addition, apoptosis was suppressed by aurintricarboxylic acid, an inhibitor of calcium-dependent endonucleases and proteases, in cells from four of seven patients, The in vivo significance of these findings was supported by three factors: the absence of accelerated apoptosis in persons with stable, physiologic CD4 lymphopenia without clinical immune deficiency; detection of serum antihistone H2B autoantibodies, one consequence of DNA fragmentation, in some patients; and its selectivity, with apoptosis limited to the CD4 population in some, and occurring among CD8+ T cells predominantly in those individuals with marked depletion of both CD4+ T lymphocytes linked to clinical immune suppression have evidence for accelerated T cell apoptosis in vitro that may be pathophysiologic and amenable to therapy with apoptosis inhibitors. PMID:8609222

  19. About possibility of primary cosmic rays proton acceleration up to super-high relativistic energies in the Neutral Layer of the Interplanetary Magnetic Field (IMF)

    NASA Astrophysics Data System (ADS)

    Khazaradze, Nodar; Vanishvili, George; Bakradze, Themur; Kordzadze, Lia; Elizbarashvili, Misha; Bazerashvili, Eka

    2013-02-01

    Theoretical considerations concerning of the charged particles acceleration in general, and in particular, the peculiarities of protons acceleration in the Neutral Layer of Cosmic Space, in the frame of Maxwell Electro-Magnetic Field Theory have been reviewed on the article. A brief historical review of events is given, indicating that protons can be speeding up to ultra-relativistic energies in the Neutral Layer of the Interplanetary Magnetic Field, which is affirmed by anomalously high number of cosmic μ-mesons, generated by protons, through the decay of π- and -mesons, have been discovered in lower layers of the Earth's Atmosphere, as well as in a great depths of underground

  20. Role of LAP+CD4+ T cells in the tumor microenvironment of colorectal cancer

    PubMed Central

    Zhong, Wu; Jiang, Zhi-Yuan; Zhang, Lei; Huang, Jia-Hao; Wang, Shi-Jun; Liao, Cun; Cai, Bin; Chen, Li-Sheng; Zhang, Sen; Guo, Yun; Cao, Yun-Fei; Gao, Feng

    2017-01-01

    AIM To investigate the abundance and potential functions of LAP+CD4+ T cells in colorectal cancer (CRC). METHODS Proportions of LAP+CD4+ T cells were examined in peripheral blood and tumor/paratumor tissues of CRC patients and healthy controls using flow cytometry. Expression of phenotypic markers such as forkhead box (Fox)p3, cytotoxic T-lymphocyte-associated protein (CTLA)-4, chemokine CC receptor (CCR)4 and CCR5 was measured using flow cytometry. LAP-CD4+ and LAP+CD4+ T cells were isolated using a magnetic cell-sorting system and cell purity was analyzed by flow cytometry. Real-time quantitative polymerase chain reaction was used to measure expression of cytokines interleukin (IL)-10 and transforming growth factor (TGF)-β. RESULTS The proportion of LAP+CD4+ T cells was significantly higher in peripheral blood from patients (9.44% ± 3.18%) than healthy controls (1.49% ± 1.00%, P < 0.001). Among patients, the proportion of LAP+CD4+ T cells was significantly higher in tumor tissues (11.76% ± 3.74%) compared with paratumor tissues (3.87% ± 1.64%, P < 0.001). We also observed positive correlations between the proportion of LAP+CD4+ T cells and TNM stage (P < 0.001), distant metastasis (P < 0.001) and serum level of carcinoembryonic antigen (P < 0.05). Magnetic-activated cell sorting gave an overall enrichment of LAP+CD4+ T cells (95.02% ± 2.87%), which was similar for LAP-CD4+ T cells (94.75% ± 2.76%). In contrast to LAP-CD4+ T cells, LAP+CD4+ T cells showed lower Foxp3 expression but significantly higher levels of CTLA-4, CCR4 and CCR5 (P < 0.01). LAP+CD4+ T cells expressed significantly larger amounts of IL-10 and TGF-β but lower levels of IL-2, IL-4, IL-17 and interferon-γ, compared with LAP-CD4+ T cells. CONCLUSION LAP+CD4+ T cells accumulated in the tumor microenvironment of CRC patients and were involved in immune evasion mediated by IL-10 and TGF-β. PMID:28210081

  1. Complete Proton and Carbon Assignment of Triclosan via One- and Two- Dimensional Nuclear Magnetic Resonance Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Students from an upper-division undergraduate spectroscopy class analyzed one- and two-dimensional 400 MHz NMR spectroscopic data from triclosan in CDCl3. Guided assignment of all proton and carbon signals was completed via 1D proton and carbon, nuclear Overhauser effect (nOe), distortionless enhanc...

  2. Individual variation in macronutrient regulation measured by proton magnetic resonance spectroscopy of human plasma.

    PubMed

    Park, Youngja; Kim, Seoung Bum; Wang, Bing; Blanco, Roberto A; Le, Ngoc-Anh; Wu, Shaoxiong; Accardi, Carolyn J; Alexander, R Wayne; Ziegler, Thomas R; Jones, Dean P

    2009-07-01

    Proton nuclear magnetic resonance ((1)H-NMR) spectroscopy of plasma provides a global metabolic profiling method that shows promise for clinical diagnostics. However, cross-sectional studies are complicated by a lack of understanding of intraindividual variation, and this limits experimental design and interpretation of data. The present study determined the diurnal variation detected by (1)H NMR spectroscopy of human plasma. Data reduction methods revealed three time-of-day metabolic patterns, which were associated with morning, afternoon, and night. Major discriminatory regions for these time-of-day patterns included the various kinds of lipid signals (-CH(2)- and -CH(2)OCOR), and the region between 3 and 4 ppm heavily overlapped with amino acids that had alpha-CH and alpha-CH(2). The phasing and duration of time-of-day patterns were variable among individuals, apparently because of individual difference in food processing/digestion and absorption and clearance of macronutrient energy sources (fat, protein, carbohydrate). The times of day that were most consistent among individuals, and therefore most useful for cross-sectional studies, were fasting morning (0830-0930), postprandial afternoon (1430-1630), and nighttime samples (0430-0530). Importantly, the integrated picture of metabolism provided by (1)H-NMR spectroscopy of plasma suggests that this approach is suitable to study complex regulatory processes, including eating patterns/eating disorders, upper gastrointestinal functions (gastric emptying, pancreatic, biliary functions), and absorption/clearance of macronutrients. Hence, (1)H-NMR spectroscopy of plasma could provide a global metabolic tolerance test to assess complex processes involved in disease, including eating disorders and the range of physiological processes causing dysregulation of energy homeostasis.

  3. Acoustic noise reduction in a 4 T MRI scanner.

    PubMed

    Mechefske, Chris K; Geris, Ryan; Gati, Joseph S; Rutt, Brian K

    2002-01-01

    High-field, high-speed magnetic resonance imaging (MRI) can generate high levels of noise. There is ongoing concern in the medical and imaging research communities regarding the detrimental effects of high acoustic levels on auditory function, patient anxiety, verbal communication between patients and health care workers and ultimately MR image quality. In order to effectively suppress the noise levels inside MRI scanners, the sound field needs to be accurately measured and characterized. This paper presents the results of measurements of the sound radiation from a gradient coil cylinder within a 4 T MRI scanner under a variety of conditions. These measurement results show: (1) that noise levels can be significantly reduced through the use of an appropriately designed passive acoustic liner; and (2) the true noise levels that are experienced by patients during echo planar imaging.

  4. Predicting the outcome of grade II glioma treated with temozolomide using proton magnetic resonance spectroscopy

    PubMed Central

    Guillevin, R; Menuel, C; Taillibert, S; Capelle, L; Costalat, R; Abud, L; Habas, C; De Marco, G; Hoang-Xuan, K; Chiras, J; Vallée, J-N

    2011-01-01

    Background: This study was designed to evaluate proton magnetic resonance spectroscopy (1H-MRS) for monitoring the WHO grade II glioma (low-grade glioma (LGG)) treated with temozolomide (TMZ). Methods: This prospective study included adult patients with progressive LGG that was confirmed by magnetic resonance imaging (MRI). Temozolomide was administered at every 28 days. Response to TMZ was evaluated by monthly MRI examinations that included MRI with volumetric calculations and 1H-MRS for assessing Cho/Cr and Cho/NAA ratios. Univariate, multivariate and receiver-operating characteristic statistical analyses were performed on the results. Results: A total of 21 LGGs from 31 patients were included in the study, and followed for at least n=14 months during treatment. A total of 18 (86%) patients experienced a decrease in tumour volume with a greater decrease of metabolic ratios. Subsequently, five (28%) of these tumours resumed growth despite the continuation of TMZ administration with an earlier increase of metabolic ratios of 2 months. Three (14%) patients did not show any volume or metabolic change. The evolutions of the metabolic ratios, mean(Cho/Cr)n and mean(Cho/NAA)n, were significantly correlated over time (Spearman ρ=+0.95) and followed a logarithmic regression (P>0.001). The evolutions over time of metabolic ratios, mean(Cho/Cr)n and mean(Cho/NAA)n, were significantly correlated with the evolution of the mean relative decrease of tumour volume, mean(ΔVn/Vo), according to a linear regression (P<0.001) in the ‘response/no relapse' patient group, and with the evolution of the mean tumour volume (meanVn), according to an exponential regression (P<0.001) in the ‘response/relapse' patient group. The mean relative decrease of metabolic ratio, mean(Δ(Cho/Cr)n/(Cho/Cr)o), at n=3 months was predictive of tumour response over the 14 months of follow-up. The mean relative change between metabolic ratios, mean((Cho/NAA)n−(Cho/Cr)n)/(Cho/NAA)n, at n=4 months was

  5. MO-G-18C-07: Improving T2 Determination and Quantification of Lipid Methylene Protons in Proton Magnetic Resonance Spectroscopy at 3 T

    SciTech Connect

    Breitkreutz, D.; Fallone, B. G.; Yahya, A.

    2014-06-15

    Purpose: To improve proton magnetic resonance spectroscopy (MRS) transverse relaxation (T{sub 2}) determination and quantification of lipid methylene chain (1.3 ppm) protons by rewinding their J-coupling evolution. Methods: MRS experiments were performed on four lipid phantoms, namely, almond, corn, sunflower and oleic acid, using a 3 T Philips MRI scanner with a transmit/receive birdcage head coil. Two PRESS (Point RESolved Spectroscopy) pulse sequences were used. The first PRESS sequence employed standard bandwidth (BW) (∼550 Hz) RF (radiofrequency) refocussing pulses, while the second used refocussing pulses of narrow BW (∼50 Hz) designed to rewind J-coupling evolution of the methylene protons in the voxel of interest. Signal was acquired with each sequence from a 5×5×5 mm{sup 3} voxel, with a repetition time (TR) of 3000 ms, and with echo times (TE) of 100 to 200 ms in steps of 20 ms. 2048 sample points were measured with a 2000 Hz sampling bandwidth. Additionally, 30 mm outer volume suppression slabs were used to suppress signal outside the voxel of interest. The frequency of the RF pulses was set to that of the methylene resonance. Methylene peak areas were calculated and fitted in MATLAB to a monexponentially decaying function of the form M{sub 0}exp(-TE/T{sub 2}), where M{sub 0} is the extrapolated area when TE = 0 ms and yields a measure of concentration. Results: The determined values of M{sub 0} and T{sub 2} increased for all fatty acids when using the PRESS sequence with narrow BW refocussing pulses. M{sub 0} and T{sub 2} values increased by an average amount (over all the phantoms) of 31% and 14%, respectively. Conclusion: This investigation has demonstrated that J-coupling interactions of lipid methylene protons causes non-negligible signal losses which, if not accounted for, Result in underestimations of their levels and T{sub 2} values when performing MRS measurements. Funded by the Natural Sciences and Engineering Research Council of Canada

  6. A carbon-13 and proton nuclear magnetic resonance study of some experimental referee broadened-specification /ERBS/ turbine fuels

    NASA Technical Reports Server (NTRS)

    Dalling, D. K.; Pugmire, R. J.

    1982-01-01

    Preliminary results of a nuclear magnetic resonance (NMR) spectroscopy study of alternative jet fuels are presented. A referee broadened-specification (ERBS) aviation turbine fuel, a mixture of 65 percent traditional kerosene with 35 percent hydrotreated catalytic gas oil (HCGO) containing 12.8 percent hydrogen, and fuels of lower hydrogen content created by blending the latter with a mixture of HCGO and xylene bottoms were studied. The various samples were examined by carbon-13 and proton NMR at high field strength, and the resulting spectra are shown. In the proton spectrum of the 12.8 percent hydrogen fuel, no prominent single species is seen while for the blending stock, many individual lines are apparent. The ERBS fuels were fractionated by high-performance liquid chromatography and the resulting fractions analyzed by NMR. The species found are identified.

  7. 32 CFR 1630.46 - Class 4-T: Treaty alien.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Class 4-T: Treaty alien. 1630.46 Section 1630.46 National Defense Other Regulations Relating to National Defense SELECTIVE SERVICE SYSTEM CLASSIFICATION RULES § 1630.46 Class 4-T: Treaty alien. In Class 4-T shall be placed any registrant who is an alien...

  8. 32 CFR 1630.46 - Class 4-T: Treaty alien.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Class 4-T: Treaty alien. 1630.46 Section 1630.46 National Defense Other Regulations Relating to National Defense SELECTIVE SERVICE SYSTEM CLASSIFICATION RULES § 1630.46 Class 4-T: Treaty alien. In Class 4-T shall be placed any registrant who is an alien...

  9. 32 CFR 1630.46 - Class 4-T: Treaty alien.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Class 4-T: Treaty alien. 1630.46 Section 1630.46 National Defense Other Regulations Relating to National Defense SELECTIVE SERVICE SYSTEM CLASSIFICATION RULES § 1630.46 Class 4-T: Treaty alien. In Class 4-T shall be placed any registrant who is an alien...

  10. 32 CFR 1630.46 - Class 4-T: Treaty alien.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Class 4-T: Treaty alien. 1630.46 Section 1630.46 National Defense Other Regulations Relating to National Defense SELECTIVE SERVICE SYSTEM CLASSIFICATION RULES § 1630.46 Class 4-T: Treaty alien. In Class 4-T shall be placed any registrant who is an alien...

  11. 32 CFR 1630.46 - Class 4-T: Treaty alien.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Class 4-T: Treaty alien. 1630.46 Section 1630.46 National Defense Other Regulations Relating to National Defense SELECTIVE SERVICE SYSTEM CLASSIFICATION RULES § 1630.46 Class 4-T: Treaty alien. In Class 4-T shall be placed any registrant who is an alien...

  12. Nuclear Magnetic Resonance Spectroscopy Applications: Proton NMR In Biological Objects Subjected To Magic Angle Spinning

    SciTech Connect

    Wind, Robert A.; Hu, Jian Zhi

    2005-01-01

    Proton NMR in Biological Objects Submitted to Magic Angle Spinning, In Encyclopedia of Analytical Science, Second Edition (Paul J. Worsfold, Alan Townshend and Colin F. Poole, eds.), Elsevier, Oxford 6:333-342. Published January 1, 2005. Proposal Number 10896.

  13. High resolution proton magnetic resonance spectroscopy of human brain and liver

    SciTech Connect

    Barany, M.; Spigos, D.G.; Mok, E.; Venkatasubramanian, P.N.; Wilbur, A.C.; Langer, B.G.

    1987-01-01

    Water-suppressed and slice-selective proton spectra of live human brain exhibited several resonances that were tentatively assigned to metabolites such as N-acetylaspartate, glutamate, phosphocreatine and creatine, choline derivatives, and taurine. In the liver spectrum of a healthy volunteer, the major resonance was tentatively assigned to a fatty acyl methylene and the minor resonances to protons in carnitine, taurine, glutamate, and glutamine. In the spectrum of a cancerous liver, resonances in addition to those present in the normal liver were seen. Protein degradation in the liver with cancer was indicated by resonances from urea and from the ring protons in tryptophan, tyrosine, and phenylalanine. Furthermore, increased nucleic acid synthesis was indicated by resonances from nucleotide protons.

  14. Pion production via proton synchrotron radiation in strong magnetic fields in relativistic field theory: Scaling relations and angular distributions

    SciTech Connect

    Maruyama, Tomoyuki; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.

    2016-03-26

    We study pion production by proton synchrotron radiation in the presence of a strong magnetic field when the Landau numbers of the initial and final protons are n(i, f) similar to 10(4)-10(5). We find in our relativistic field theory calculations that the pion decay width depends only on the field strength parameter which previously was only conjectured based upon semi-classical arguments. Moreover, we also find new results that the decay width satisfies a robust scaling relation, and that the polar angular distribution of emitted pion momenta is very narrow and can be easily obtained. This scaling implies that one can infer the decay width in more realistic magnetic fields of 10(15) G, where n(i, f) similar to 10(12)-10(13), from the results for n(i, f) similar to 10(4)-10(5). The resultant pion intensity and angular distributions for realistic magnetic field strengths are presented and their physical implications discussed. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).

  15. Pion production via proton synchrotron radiation in strong magnetic fields in relativistic field theory: Scaling relations and angular distributions

    DOE PAGES

    Maruyama, Tomoyuki; Cheoun, Myung-Ki; Kajino, Toshitaka; ...

    2016-03-26

    We study pion production by proton synchrotron radiation in the presence of a strong magnetic field when the Landau numbers of the initial and final protons are n(i, f) similar to 10(4)-10(5). We find in our relativistic field theory calculations that the pion decay width depends only on the field strength parameter which previously was only conjectured based upon semi-classical arguments. Moreover, we also find new results that the decay width satisfies a robust scaling relation, and that the polar angular distribution of emitted pion momenta is very narrow and can be easily obtained. This scaling implies that one canmore » infer the decay width in more realistic magnetic fields of 10(15) G, where n(i, f) similar to 10(12)-10(13), from the results for n(i, f) similar to 10(4)-10(5). The resultant pion intensity and angular distributions for realistic magnetic field strengths are presented and their physical implications discussed. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less

  16. Monitoring of organic contaminants in sediments using low field proton nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Rupert, Yuri

    2016-04-01

    The effective monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts. Recent geophysical methods such as electrical resistivity, complex conductivity, and ground penetrating radar have been successfully applied to characterize organic contaminants in the subsurface and to monitor remediation process both in laboratory and in field. Low field proton nuclear magnetic resonance (NMR) is a geophysical tool sensitive to the molecular-scale physical and chemical environment of hydrogen-bearing fluids in geological materials and shows promise as a novel method for monitoring contaminant remediation. This laboratory research focuses on measurements on synthetic samples to determine the sensitivity of NMR to the presence of organic contaminants and improve understanding of relationships between NMR observables, hydrological properties of the sediments, and amount and state of contaminants in porous media. Toluene, a light non-aqueous phase liquid (LNAPL) has been selected as a representative organic contaminant. Three types of porous media (pure silica sands, montmorillonite clay, and various sand-clay mixtures with different sand/clay ratios) were prepared as synthetic sediments. NMR relaxation time (T2) and diffusion-relaxation (D - T2) correlation measurements were performed in each sediment saturated with water and toluene mixed fluid at assorted concentrations (0% toluene and 100% water, 1% toluene and 99% water, 5% toluene and 95% water, 25% toluene and 75% water, and 100% toluene and 0% water) to 1) understand the effect of different porous media on the NMR responses in each fluid mixture, 2) investigate the role of clay content on T2 relaxation of each fluid, 3) quantify the amount hydrocarbons in the presence of water in each sediment, and 4) resolve hydrocarbons from water in D - T2 map. Relationships between the compositions of porous media, hydrocarbon concentration, and hydraulic

  17. The protons and electrons trapped in the Jovian dipole magnetic field region and their interaction with Io

    NASA Technical Reports Server (NTRS)

    Simpson, J. A.; Hamilton, D. C.; Mckibben, R. B.; Mogro-Campero, A.; Pyle, K. R.; Tuzzolino, A. J.

    1974-01-01

    Detailed analysis of electrons equal to or greater than 3 MeV and of protons 0.5 to 1.8 MeV and equal to or greater than 35 MeV for both the inbound and the outbound passes of the Pioneer 10 spacecraft. Conclusive evidence is obtained that the trapped radiation in Jupiter's inner magnetosphere is maintained and supplied by inward diffusion from the outer regions of the trapped radiation zone. It is shown that the time required for isotropization of an anisotropic flux by pitch angle scattering inside L approximately equal to 6 is long in comparison with the time required for particles to diffuse inward from L approximately equal to 6 to L approximately equal to 3, that the high-energy protons were not injected at high energies by the Crand (cosmic ray albedo neutron decay) process but were accelerated in the magnetosphere of Jupiter, and that the main conclusions of this analysis are unaffected by use of either the D sub 1 or the D sub 2 magnetic field models. Theoretical studies of the capture of trapped electrons and protons by Io have been carried out, and it is found that the probability of capture by Io depends strongly upon the particle species and kinetic energy.

  18. Protons and Electrons in Jupiter's Magnetic Field: Results from the University of Chicago Experiment on Pioneer 10.

    PubMed

    Simpson, J A; Hamilton, D; Lentz, G; McKibben, R B; Mogro-Campero, A; Perkins, M; Pyle, K R; Tuzzolino, A J; O'gallagher, J J

    1974-01-25

    Fluxes of high energy electrons and protons are found to be highly concentrated near the magnetic equatorial plane from distances of ~ 30 to ~ 100 Jovian radii (R(J)). The 10-hour period of planetary rotation is observed as an intensity variation, which indicates that the equatorial zone of high particle fluxes is inclined with respect to the rotation axis of the planet. At radial distances [unknown] 20 R(J) the synchrotron-radiation-producing electrons with energies greater, similar 3 million electron volts rise steeply to a maximum intensity of ~ 5 x 10(8) electrons per square centimeter per second near the periapsis at 2.8 R(J). The flux of protons with energies greater, similar 30 million electron volts reaches a maximum intensity of ~ 4 x 10(6) protons per square centimeter per second at ~ 3.5 R(J) with the intensity decreasing inside this radial distance. Only for radial distances [unknown] 20 R(J) does the radiation behave in a manner which is similar to that at the earth. Burst of electrons with energies up to 30 million electron volts, each lasting about 2 days, were observed in interplanetary space beginning approximately 1 month before encounter. This radiation appears to have escaped from the Jovian bow shock or magnetosphere.

  19. Quantification of N-Acetyl Aspartyl Glutamate in Human Brain using Proton Magnetic Resonance Spectroscopy at 7 T

    NASA Astrophysics Data System (ADS)

    Elywa, M.

    2015-07-01

    The separation of N-acetyl aspartyl glutamate (NAAG) from N-acetyl aspartate (NAA) and other metabolites, such as glutamate, by in vivo proton magnetic resonance spectroscopy at 7 T is described. This method is based on the stimulated echo acquisition mode (STEAM), with short and long echo time (TE) and allows quantitative measurements of NAAG in the parietal and pregenual anterior cingulate cortex (pgACC) of human brain. Two basesets for the LCModel have been established using nuclear magnetic resonance simulator software (NMR-SIM). Six healthy volunteers (age 25-35 years) have been examined at 7 T. It has been established that NAAG can be separated and quantified in the parietal location and does not get quantified in the pgACC location when using a short echo time, TE = 20 ms. On the other hand, by using a long echo time, TE = 74 ms, NAAG can be quantified in pgACC structures.

  20. Structural and Quantitative Analysis of Three C-Glycosylflavones by Variable Temperature Proton Quantitative Nuclear Magnetic Resonance

    PubMed Central

    Liu, Yang; Dai, Zhong

    2017-01-01

    Quantitative nuclear magnetic resonance is a powerful tool in drug analysis because of its speed, precision, and efficiency. In present study, the application of variable temperature proton quantitative nuclear magnetic resonance (VT-1H-qNMR) for the calibration of three C-glycosylflavones including orientin, isoorientin, and schaftoside as reference substances was reported. Since there was conformational equilibrium due to the restricted rotation around the C(sp3)-C(sp2) bond in C-glycosylflavones, the conformational behaviors were investigated by VT-NMR and verified by molecular mechanics (MM) calculation. The VT-1H-qNMR method was validated including the linearity, limit of quantification, precision, and stability. The results were consistent with those obtained from mass balance approach. VT-1H-qNMR can be deployed as an effective tool in analyzing C-glycosylflavones. PMID:28243484

  1. Effects of magnetic non-linearities on a stored proton beam and their implications for superconducting storage rings

    SciTech Connect

    Cornacchia, M.; Evans, L.

    1985-06-01

    A nonlinear lens may be used to study the effect of high-order multipolar field imperfections on a stored proton beam. Such a nonlinear lens is particulary suitable to simulate field imperfections of the types encountered in coil dominated superconducting magnets. We have studied experimentally at the SPS the effect of high order (5th and 8th) single isolated resonances driven by the nonlinear lens. The width of these resonances is of the order one expects to be caused by field errors in superconducting magnets of the SSC type. The experiment shows that, in absence of tune modulation, these resonances are harmless. Slow crossings of the resonance, on the other hand, have destructive effects on the beam, much more so than fast crossings caused by synchrotron oscillations. In the design of future storage rings, sources of low-frequency tune modulation should be avoided as a way to reduce the harmful effects of high order multipolar field imperfection.

  2. Characterization of heteronuclear decoupling through proton spin dynamics in solid-state nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    De Paëpe, Gaël; Eléna, Bénédicte; Emsley, Lyndon

    2004-08-01

    The work presented here aims at understanding the performance of phase modulated heteronuclear decoupling sequences such as Cosine Modulation or Two Pulse Phase Modulation. To that end we provide an analytical description of the intrinsic behavior of Cosine Modulation decoupling with respect to radio-frequency-inhomogeneity and the proton-proton dipolar coupling network. We discover through a Modulation Frame average Hamiltonian analysis that best decoupling is obtained under conditions where the heteronuclear interactions are removed but notably where homonuclear couplings are recoupled at a homonuclear Rotary Resonance (HORROR) condition in the Modulation Frame. These conclusions are supported by extensive experimental investigations, and notably through the introduction of proton nutation experiments to characterize spin dynamics in solids under decoupling conditions. The theoretical framework presented in this paper allows the prediction of the optimum parameters for a given set of experimental conditions.

  3. Findings of proton magnetic resonance spectometry in the dorsolateral prefrontal cortex in adolescents with first episodes of psychosis.

    PubMed

    Zabala, Arantzazu; Sánchez-González, Javier; Parellada, Mara; Moreno, Dolores María; Reig, Santiago; Burdalo, María Teresa; Robles, Olalla; Desco, Manuel; Arango, Celso

    2007-10-15

    Knowledge of the neurobiology of early onset psychosis is limited. We used proton magnetic resonance spectroscopy to investigate the possible existence of dorsolateral prefrontal brain biochemical abnormalities in adolescents with psychosis and to determine possible differential effects related to specific psychotic diagnoses. We measured the ratios of N-acetyl-aspartate (NAA), choline (Cho), and creatine (Cr) to water in two groups of adolescents with a first episode of psychosis (schizophrenia n=8; non-schizophrenia n=15) and in 32 healthy controls matched for age, gender, and years of education. Proton magnetic resonance spectroscopy at 1.5 T was used to study two 6.75-cc voxels placed in the left and right dorsolateral prefrontal region. The schizophrenia patients presented statistically significant reductions in NAA/water levels in the left dorsolateral prefrontal voxel as compared with non-schizophrenia patients and healthy controls. No significant differences were detected between groups for NAA/water in the right dorsolateral prefrontal voxel or for Cho/water and Cr/water levels in any hemisphere. A reduction of the NAA/water level in the left dorsolateral prefrontal region may be selectively present at the onset of psychosis during adolescence in patients who later progress to schizophrenia, but not in those who later progress to other psychotic disorders.

  4. Multinuclear solid state nuclear magnetic resonance investigation of water penetration in proton exchange membrane Nafion-117 by mechanical spinning.

    PubMed

    Sabarinathan, Venkatachalam; Wu, Zhen; Cheng, Ren-Hao; Ding, Shangwu

    2013-05-30

    (1)H, (17)O, and (19)F solid state NMR spectroscopies have been used to investigate water penetration in Nafion-117 under mechanical spinning. It is found that both (1)H and (17)O spectra depend on the orientation of the membrane with respect to the magnetic field. The intensities of the side chain (19)F spectra depend slightly on the orientation of membrane with respect to the magnetic field, but the backbone (19)F spectra do not exhibit orientation dependence. By analyzing the orientation dependent (1)H and (17)O spectra and time-resolved (1)H spectra, we show that the water loaded in Nafion-117, under high spinning speed, may penetrate into regions that are normally inaccessible by water. Water penetration is enhanced as the spinning speed is increased or the spinning time is increased. In the meantime, mechanical spinning accelerates water exchange. It is also found that water penetration by mechanical spinning is persistent; i.e., after spinning, water remains in those newly found regions. While water penetration changes the pores and channels in Nafion, (19)F spectra indicate that the chemical environments of the polymer backbone do not show change. These results provide new insights about the structure and dynamics of Nafion-117 and related materials. They are relevant to proton exchange membrane aging and offer enlightening points of view on antiaging and modification of this material for better proton conductivity. It is also interesting to view this phenomenon in the perspective of forced nanofiltration.

  5. Abdominal visceral adiposity influences CD4+ T cell cytokine production in pregnancy.

    PubMed

    Ozias, Marlies K; Li, Shengqi; Hull, Holly R; Brooks, William M; Petroff, Margaret G; Carlson, Susan E

    2015-02-01

    Women with pre-gravid obesity are at risk for pregnancy complications. While the macrophage response of obese pregnant women categorized by body mass index (BMI) has been documented, the relationship between the peripheral CD4(+) T cell cytokine profile and body fat compartments during pregnancy is unknown. In this study, third trimester peripheral CD4(+) T cell cytokine profiles were measured in healthy pregnant women [n=35; pre-pregnancy BMI: 18.5-40]. CD4(+) T cells were isolated from peripheral blood mononuclear cells and stimulated to examine their capacity to generate cytokines. Between 1 and 3weeks postpartum, total body fat was determined by dual-energy X-ray absorptiometry and abdominal subcutaneous and visceral fat masses were determined by magnetic resonance imaging. Pearson's correlation was performed to assess relationships between cytokines and fat mass. Results showed that greater abdominal visceral fat mass was associated with a decrease in stimulated CD4(+) T cell cytokine expression. IFN-gamma, TNF-alpha, IL-12p70, IL-10 and IL-17A were inversely related to visceral fat mass. Chemokines CCL3 and IL-8 and growth factors G-CSF and FLT-3L were also inversely correlated. Additionally, total body fat mass was inversely correlated with FGF-2 while abdominal subcutaneous fat mass and BMI were unrelated to any CD4(+) T cell cytokine. In conclusion, lower responsiveness of CD4(+) T cell cytokines associated with abdominal visceral fat mass is a novel finding late in gestation.

  6. In vivo (1)H-MRS hepatic lipid profiling in nonalcoholic fatty liver disease: an animal study at 9.4 T.

    PubMed

    Lee, Yunjung; Jee, Hee-Jung; Noh, Hyungjoon; Kang, Geun-Hyung; Park, Juyeun; Cho, Janggeun; Cho, Jee-Hyun; Ahn, Sangdoo; Lee, Chulhyun; Kim, Ok-Hee; Oh, Byung-Chul; Kim, Hyeonjin

    2013-09-01

    The applicability of the in vivo proton magnetic resonance spectroscopy hepatic lipid profiling (MR-HLP) technique in nonalcoholic fatty liver disease was investigated. Using magnetic resonance spectroscopy, the relative fractions of diunsaturated (fdi), monounsaturated (fmono), and saturated (fsat) fatty acids as well as total hepatic lipid content were estimated in the livers of 8 control and 23 CCl4-treated rats at 9.4 T. The mean steatosis, necrosis, inflammation, and fibrosis scores of the treated group were all significantly higher than those of the control group (P < 0.01). There was a strong correlation between the histopathologic parameters and the MR-HLP parameters (r = 0.775, P < 0.01) where both steatosis and fibrosis are positively correlated with fmono and negatively correlated with fdi. Both necrosis and inflammation, however, were not correlated with any of the MR-HLP parameters. Hepatic lipid composition appears to be changed in association with the severity of steatosis and fibrosis in nonalcoholic fatty liver disease, and these changes can be depicted in vivo by using the MR-HLP method at 9.4 T. Thus, while it may not likely be that MR-HLP helps differentiate between steatohepatitis in its early stages and simple steatosis, these findings altogether are in support of potential applicability of in vivo MR-HLP at high field in nonalcoholic fatty liver disease.

  7. Investigation of Magnetic Field Geometry in Exploding Wire Z-Pinches via Proton Deflectometry

    NASA Astrophysics Data System (ADS)

    Mariscal, Derek; Beg, Farhat; Wei, Mingsheng; Chittenden, Jeremy; Presura, Radu

    2012-10-01

    It is often difficult to determine the configuration of B-fields within z-pinch plasma systems. Typical laser probing diagnostics are limited by the critical density, and electrical diagnostics are prone to failure as well as perturbation of the system. The use of proton beams launched by high intensity lasers, and the subsequent tracking of their deflected trajectories, will enable access to field measurements in previously inaccessible plasma densities.The experimental testing of this method is performed at the Nevada Test Facility (NTF) using the 10J 0.3ps Leopard laser coupled to the 1.6MA ZEBRA pulsed power generator. MHD simulations of the z-pinch plasmas are performed with the 3D resistive MHD code, GORGON. Protons are then injected and tracked through the plasma using the 3D PIC Large Scale Plasma code in order to produce possible proton image plane data. The first computational demonstration of protons propagating through single wire and x-pinch plasmas, along with comparison to recent experimental data will be presented.

  8. Structural Determination of Biomolecular Interfaces by Nuclear Magnetic Resonance of Proteins with Reduced Proton Density

    PubMed Central

    Ferrage, Fabien; Dutta, Kaushik; Shekhtman, Alexander; Cowburn, David

    2013-01-01

    Protein interactions are important for understanding many molecular mechanisms underlying cellular processes. So far, interfaces between interacting proteins have been characterized by NMR spectroscopy mostly by using chemical shift perturbations and cross-saturation via intermolecular cross-relaxation. Although powerful, these techniques cannot provide unambiguous estimates of intermolecular distances between interacting proteins. Here, we present an alternative approach, called REDSPRINT (REDduced/Standard PRoton density INTerface identification), to map protein interfaces with greater accuracy by using multiple NMR probes. Our approach is based on monitoring the cross-relaxation from a source protein (or from an arbitrary ligand that need not be a protein) with high proton density to a target protein (or other biomolecule) with low proton density using isotope-filtered nuclear Overhauser spectroscopy (NOESY). This methodology uses different isotropic labeling for the source and target proteins to identify the source-target interface and also determine the proton density of the source protein at the interface for protein-protein or protein-ligand docking. The utility of this technique, including a method for direct determination of the protein surface, is demonstrated for two different protein-protein complexes. PMID:20372977

  9. Desipramine attenuates forced swim test-induced behavioral and neurochemical alterations in mice: an in vivo(1)H-MRS study at 9.4T.

    PubMed

    Kim, Sang-Young; Lee, Yun-Jung; Kim, Hyeonjin; Lee, Do-Wan; Woo, Dong-Cheol; Choi, Chi-Bong; Chae, Jeong-Ho; Choe, Bo-Young

    2010-08-12

    The forced swim test (FST) is a behavioral paradigm that is predicative of antidepressant activity in rodents. The objective of this study was to examine the effects of desipramine (DMI) pretreatment on behavioral and regional neurochemical responses in the left dorsolateral prefrontal cortex (DLPFC) and hippocampus of mice exposed to the FST using proton magnetic resonance spectroscopy ((1)H-MRS). An ultra short echo stimulated echo acquisition (STEAM) localization sequence (TR/TM/TE=5000/20/2.2ms) was used to measure in vivo proton spectra from the left DLPFC (voxel volume: 7microl) and hippocampus (6microl) of C57BL/6 mice at 9.4T and acquired proton spectra post-processed offline with LCModel. The FST induced significant increase of glutamate (Glu) and myo-inositol (mIns) concentrations in the left DLPFC and hippocampus, respectively. In addition, creatine+phosphocreatine (Cr+PCr) concentrations in the left DLPFC were significantly decreased as compared to control. The metabolic alterations induced by the FST were reverted to level similar to control by acute DMI administration. Our results suggest that glutamatergic activity and glial cell dysfunction may contribute to the pathophysiological mechanisms underlying depression and that modulation of synaptic neurotransmitter concentrations represents a potential target for antidepressant drug development.

  10. Study of anisotropy in nuclear magnetic resonance relaxation times of water protons in skeletal muscle.

    PubMed Central

    Kasturi, S R; Chang, D C; Hazlewood, C F

    1980-01-01

    The anisotropy of the spin-lattice relaxation time (T1) and the spin-spin relaxation times (T2) of water protons in skeletal muscle tissue have been studied by the spin-echo technique. Both T1 and T2 have been measured for the water protons of the tibialis anterior muscle of mature male rats for theta = 0, 55, and 90 degrees, where theta is the orientation of the muscle fiber with respect to the static field. The anisotropy in T1 and T2 has been measured at temperatures of 28, -5 and -10 degrees C. No significant anisotropy was observed in the T1 of the tissue water, while an average anisotropy of approximately 5% was observed in T2 at room temperature. The average anisotropy of T2 at -5 and -10 degrees C was found to be approximately 2 and 1.3%, respectively. PMID:6266530

  11. Novel generation of pH indicators for proton magnetic resonance spectroscopic imaging.

    PubMed

    Soler-Padrós, Jordi; Pérez-Mayoral, Elena; Domínguez, Laura; López-Larrubia, Pilar; Soriano, Elena; Marco-Contelles, José Luis; Cerdan, Sebastian; Ballesteros, Paloma

    2007-09-06

    We describe the synthesis of 1,omega-di-1H-imidazoles 2 and 3, derived from l-threitol and d-mannitol, respectively, showing suitable magnetic and toxicological properties, as novel extracellular pH indicators for 1H spectroscopic imaging by magnetic resonance methods.

  12. In vivo proton magnetic resonance spectroscopy of liver metabolites in non-alcoholic fatty liver disease in rats: T2 relaxation times in methylene protons.

    PubMed

    Song, Kyu-Ho; Baek, Hyeon-Man; Lee, Do-Wan; Choe, Bo-Young

    2015-10-01

    The aim of this study was to evaluate the transverse relaxation time of methylene resonance as compared to other lipid resonances. The examinations were performed using a 3.0 T scanner with a point-resolved spectroscopy (PRESS) sequence. Lipid relaxation time in a lipid phantom filled with canola oil was estimated with a repetition time (TR) of 6000ms and echo time (TE) of 40-550ms. For in vivo proton magnetic resonance spectroscopy ((1)H-MRS), eight male Sprague-Dawley rats were given free access to a normal-chow (NC) and another eight male Sprague-Dawley rats were given free access to a high-fat (HF) diet. Both groups drank water ad libitum. T2 measurements in the rats' livers were conducted at a fixed TR of 6000ms and TE of 40-220ms. Exponential curve fitting quality was calculated through the coefficients of determination (R(2)). Chemical analyses of the phantom and livers were not performed, but T2 decay curves were acquired. The T2 relaxation time of methylene resonance was estimated as follows: NC rats, 37.1±4.3ms; HF rats, 31.4±1.8ms (p<0.05). The extrapolated M0 values were higher in HF rats than in NC rats (p<0.005). This study of (1)H MRS led to sufficient spectral resolution and signal-to-noise ratio differences to characterize the T2 relaxation times of methylene resonance. (1)H MRS relaxation times may be useful for quantitative characterization of various liver diseases, including fatty liver disease.

  13. Continuous monitoring of the zinc-phosphate acid-base cement setting reaction by proton nuclear magnetic relaxation

    NASA Astrophysics Data System (ADS)

    Apih, T.; Lebar, A.; Pawlig, O.; Trettin, R.

    2001-06-01

    Proton nuclear magnetic relaxation is a well-established technique for continuous and non destructive monitoring of hydration of conventional Portland building cements. Here, we demonstrate the feasibility of nuclear magnetic resonance (NMR) monitoring of the setting reaction of zinc-phosphate acid-base dental cements, which harden in minutes as compared to days, as in the case of Portland cements. We compare the setting of cement powder (mainly, zinc oxide) prepared with clinically used aluminum-modified orthophosphoric acid solution with the setting of a model system where cement powder is mixed with pure orthophosphoric acid solution. In contrast to previously published NMR studies of setting Portland cements, where a decrease of spin-lattice relaxation time is attributed to enhanced relaxation at the growing internal surface, spin-lattice relaxation time T1 increases during the set of clinically used zinc-phosphate cement. Comparison of these results with a detailed study of diffusion, viscosity, and magnetic-field dispersion of T1 in pure and aluminum-modified orthophosphoric acid demonstrates that the increase of T1 in the setting cement is connected with the increase of molecular mobility in the residual phosphoric acid solution. Although not taken into account so far, such effects may also significantly influence the relaxation times in setting Portland cements, particularly when admixtures with an effect on water viscosity are used.

  14. Oral glycine administration increases brain glycine/creatine ratios in men: a proton magnetic resonance spectroscopy study

    PubMed Central

    Kaufman, Marc J.; Prescot, Andrew P.; Ongur, Dost; Evins, A. Eden; Barros, Tanya L.; Medeiros, Carissa L.; Covell, Julie; Wang, Liqun; Fava, Maurizio; Renshaw, Perry F.

    2009-01-01

    Oral high-dose glycine administration has been used as an adjuvant treatment for schizophrenia to enhance glutamate neurotransmission and mitigate glutamate system hypofunction thought to contribute to the disorder. Prior studies in schizophrenia subjects documented clinical improvements after 2 weeks of oral glycine administration, suggesting that brain glycine levels are sufficiently elevated to evoke a clinical response within that time frame. However, no human study has reported on brain glycine changes induced by its administration. We utilized a noninvasive proton magnetic resonance spectroscopy (1H-MRS) technique termed echo time-averaged (TEAV) 1H-MRS, which permits noninvasive quantification of brain glycine in vivo, to determine whether 2 weeks of oral glycine administration (peak dose of 0.8g/kg/day) increased brain glycine/creatine (Gly/Cr) ratios in 11 healthy adult men. In scans obtained 17 hours after the last glycine dose, brain (Gly/Cr) ratios were significantly increased. The data indicate that it is possible to measure brain glycine changes with proton spectroscopy. Developing a more comprehensive understanding of human brain glycine dynamics may lead to optimized use of glycine site agonists and glycine transporter inhibitors to treat schizophrenia, and possibly to treat other disorders associated with glutamate system dysfunction. PMID:19556112

  15. Comparative proton nuclear magnetic resonance studies of amantadine complexes formed in aqueous solutions with three major cyclodextrins.

    PubMed

    Lis-Cieplak, Agnieszka; Sitkowski, Jerzy; Kolodziejski, Waclaw

    2014-01-01

    Host-guest complexes of alpha-, beta-, and gamma-cyclodextrins (α-CD, β-CD, and γ-CD, respectively) with amantadine (1-aminoadamantane, AMA; an antiviral agent) were characterized in aqueous solutions using proton nuclear magnetic resonance (NMR) spectroscopy. Host-guest molecular interactions were manifested by changes in the chemical shifts of AMA protons. NMR Job's plots showed that the stoichiometry of all the studied complexes was 1:1. Two-dimensional T-ROESY experiments demonstrated that the complexes were formed by different degrees of incorporation of the adamantyl group of AMA into the CD cavity. The mode of AMA binding was proposed. The AMA molecule came into the α-CD cavity (the smallest size) or β-CD cavity (the intermediate size) through its wide entrance to become shallowly or deeply accommodated, respectively. In the complex of AMA with γ-CD (the largest cavity size), the adamantyl group was also quite deeply inserted into the CD cavity, but it arrived there through the narrow cavity entrance. It was found that the adamantyl group of AMA was best accommodated by the β-CD cavity. The binding constants Kaa of the studied complexes (in M(-1) ), determined from DOSY NMR, were fairly high; their values in an ascending order were: α-CD (183) < γ-CD (306) ≪ β-CD (5150).

  16. Early identification of hypoxic-ischemic encephalopathy by combination of magnetic resonance (MR) imaging and proton MR spectroscopy

    PubMed Central

    Guo, Lili; Wang, Dehang; Bo, Genji; Zhang, Hui; Tao, Weijing; Shi, Ying

    2016-01-01

    Brain damage following a perinatal hypoxic-ischemic encephalopathy (HIE) can be diagnosed by different techniques. The aim of the present study was to combine magnetic resonance (MR) imaging with proton MR spectroscopy in HIE diagnosis and to evaluate their correlation with outcome. A prospective observational cohort study was performed between February 2012 and February 2013. Consecutive newborns, 24 full-term neonates with HIE (mild to moderate and severe group) and 5 normal neonates, were included. Two sequential MR studies were performed; a conventional MR imaging for observation in T1 weighted image (WI) and T2WI, and proton MR spectroscopy for observation in the left or right basal ganglia and thalamus. MR images were assessed and scored by two neuroradiologists who were blinded to the clinical condition of the infants. The mild to moderate group (n=13) and severe group (n=11) were similar in the visualization of punctate hyperintensity lesions on T1WI and brain edema on T2WI. The differences of N-acetylaspartate/creatine (Cr), choline/Cr and lactate/Cr in the basal ganglia and thalamus in the HIE group were significantly different (P<0.05) compared with the control group, while no significant difference was identified between the mild to moderate and severe group (P>0.05). In conclusion, MR spectroscopy is a complementary tool for the diagnosis of HIE. PMID:27882082

  17. Early identification of hypoxic-ischemic encephalopathy by combination of magnetic resonance (MR) imaging and proton MR spectroscopy.

    PubMed

    Guo, Lili; Wang, Dehang; Bo, Genji; Zhang, Hui; Tao, Weijing; Shi, Ying

    2016-11-01

    Brain damage following a perinatal hypoxic-ischemic encephalopathy (HIE) can be diagnosed by different techniques. The aim of the present study was to combine magnetic resonance (MR) imaging with proton MR spectroscopy in HIE diagnosis and to evaluate their correlation with outcome. A prospective observational cohort study was performed between February 2012 and February 2013. Consecutive newborns, 24 full-term neonates with HIE (mild to moderate and severe group) and 5 normal neonates, were included. Two sequential MR studies were performed; a conventional MR imaging for observation in T1 weighted image (WI) and T2WI, and proton MR spectroscopy for observation in the left or right basal ganglia and thalamus. MR images were assessed and scored by two neuroradiologists who were blinded to the clinical condition of the infants. The mild to moderate group (n=13) and severe group (n=11) were similar in the visualization of punctate hyperintensity lesions on T1WI and brain edema on T2WI. The differences of N-acetylaspartate/creatine (Cr), choline/Cr and lactate/Cr in the basal ganglia and thalamus in the HIE group were significantly different (P<0.05) compared with the control group, while no significant difference was identified between the mild to moderate and severe group (P>0.05). In conclusion, MR spectroscopy is a complementary tool for the diagnosis of HIE.

  18. Measurements of the Backstreaming Proton IONS in the Self-Magnetic Pinch (SMP) Diode Utilizing Copper Activation Technique

    NASA Astrophysics Data System (ADS)

    Mazarakis, Michael; Cuneo, Michael; Fournier, Sean; Johnston, Mark; Kiefer, Mark; Leckbee, Joshua; Simpson, Sean; Renk, Timothy; Webb, Timothy; Bennett, Nichelle

    2016-10-01

    The results presented here were obtained with an SMP diode mounted at the front high voltage end of the 8-10-MV RITS Self-Magnetically Insulated Transmission Line (MITL) voltage adder. Our experiments had two objectives: first, to measure the contribution of the back-streaming proton currents emitted from the anode target, and second, to evaluate the energy of those ions and hence the actual Anode-Cathode (A-K) gap voltage. The accelerating voltage quoted in the literature is estimated utilizing para-potential flow theories. Thus, it is interesting to have another independent measurement of the A-K voltage. We have measured the back-streaming protons emitted from the anode and propagating through a hollow cathode tip for various diode configurations and different techniques of target cleaning treatment, namely, heating at very high temperatures with DC and pulsed current, with RF plasma cleaning, and with both plasma cleaning and heating. We have also evaluated the A-K gap voltage by energy filtering techniques. Sandia is operated by Sandia Corporation, a subsidiary of Lockheed Martin Company, for the US DOE NNSA under Contract No. DE-AC04-94AL85000.

  19. Brain ketones detected by proton magnetic resonance spectroscopy in an infant with Ohtahara syndrome treated with ketogenic diet.

    PubMed

    Cecil, Kim M; Mulkey, Sarah B; Ou, Xiawei; Glasier, Charles M

    2015-01-01

    Atypical resonances on proton magnetic resonance spectroscopy (MRS) examinations are occasionally found in children undergoing a metabolic evaluation for neurological conditions. While a radiologist's first instinct is to suspect a pathological metabolite, usually the origin of the resonance arises from an exogenous source. We report the appearance of distinct resonances associated with a ketogenic diet in a male infant presenting with Ohtahara syndrome. These resonances can be confused in interpretation with lactate and glutamate. To confirm assignments, the basis set for quantification was supplemented with simulations of β-hydroxybutyrate, acetone and acetoacetate in LCModel spectroscopy processing software. We were able to quantitate the levels of end products of a ketogenic diet and illustrate how to distinguish these resonances.

  20. Proton nuclear magnetic resonance studies on the variant-3 neurotoxin from Centruroides sculpturatus Ewing: Sequential assignment of resonances

    SciTech Connect

    Nettesheim, D.G.; Klevit, R.E.; Drobny, G.; Watt, D.D.; Krishna, N.R. )

    1989-02-21

    The authors report the sequential assignment of resonances to specific residues in the proton nuclear magnetic resonance spectrum of the variant-3 neurotoxin from the scorpion Centruroides sculpturatus Ewing (range southwestern U.S.A.). A combination of two-dimensional NMR experiments such as 2D-COSY, 2D-NOESY, and single- and double-RELAY coherence transfer spectroscopy has been employed on samples of the protein dissolved in D{sub 2}O and in H{sub 2}O for assignment purposes. These studies provide a basis for the determination of the solution-phase conformation of this protein and for undertaking detailed structure-function studies of these neurotoxins that modulate the flow of sodium current by binding to the sodium channels of excitable membranes.

  1. NOTE: Detection limits for ferrimagnetic particle concentrations using magnetic resonance imaging based proton transverse relaxation rate measurements

    NASA Astrophysics Data System (ADS)

    Pardoe, H.; Chua-anusorn, W.; St. Pierre, T. G.; Dobson, J.

    2003-03-01

    A clinical magnetic resonance imaging (MRI) system was used to measure proton transverse relaxation rates (R2) in agar gels with varying concentrations of ferrimagnetic iron oxide nanoparticles in a field strength of 1.5 T. The nanoparticles were prepared by coprecipitation of ferric and ferrous ions in the presence of either dextran or polyvinyl alcohol. The method of preparation resulted in loosely packed clusters (dextran) or branched chains (polyvinyl alcohol) of particles containing of the order of 600 and 400 particles, respectively. For both methods of particle preparation, concentrations of ferrimagnetic iron in agar gel less than 0.01 mg ml-1 had no measurable effect on the value of R2 for the gel. The results indicate that MRI-based R2 measurements using 1.5 T clinical scanners are not quite sensitive enough to detect the very low concentrations of nanoparticulate biogenic magnetite reported in human brain tissue.

  2. Glutamine and Glutamate Levels in Children and Adolescents with Bipolar Disorder: A 4.0-T Proton Magnetic Resonance Spectroscopy Study of the Anterior Cingulate Cortex

    ERIC Educational Resources Information Center

    Moore, Constance M.; Frazier, Jean A.; Glod, Carol A.; Breeze, Janis L.; Dieterich, Megan; Finn, Chelsea T.; deB. Frederick, Blaise; Renshaw, Perry F.

    2007-01-01

    Objective: The purpose of this study was to use proton magnetic resonance spectroscopy, at 4.0 T, to explore the glutamine and glutamate levels in the anterior cingulate cortex of children and adolescents with bipolar disorder (BPD; medicated and unmedicated) and healthy comparison subjects (HCSs). We hypothesized that unmedicated children with…

  3. Angular, spectral, and time distributions of highest energy protons and associated secondary gamma rays and neutrinos propagating through extragalactic magnetic and radiation fields

    SciTech Connect

    Aharonian, F. A.; Kelner, S. R.; Prosekin, A. Yu.

    2010-08-15

    The angular, spectral, and temporal features of the highest energy protons and, accompanying them, secondary neutrinos and synchrotron gamma rays propagating through the intergalactic magnetic and radiation fields are studied using the analytical solutions of the Boltzmann transport equation obtained in the limit of the small-angle and continuous-energy-loss approximation.

  4. Assessment of Anterior Cingulate Cortex (ACC) and Left Cerebellar Metabolism in Asperger's Syndrome with Proton Magnetic Resonance Spectroscopy (MRS)

    PubMed Central

    Goji, Aya; Ito, Hiromichi; Mori, Kenji; Harada, Masafumi; Hisaoka, Sonoka; Toda, Yoshihiro; Mori, Tatsuo; Abe, Yoko; Miyazaki, Masahito; Kagami, Shoji

    2017-01-01

    Purpose Proton magnetic resonance spectroscopy (1H MRS) is a noninvasive neuroimaging method to quantify biochemical metabolites in vivo and it can serve as a powerful tool to monitor neurobiochemical profiles in the brain. Asperger’s syndrome (AS) is a type of autism spectrum disorder, which is characterized by impaired social skills and restrictive, repetitive patterns of interest and activities, while intellectual levels and language skills are relatively preserved. Despite clinical aspects have been well-characterized, neurometabolic profiling in the brain of AS remains to be clear. The present study used proton magnetic resonance spectroscopy (1H MRS) to investigate whether pediatric AS is associated with measurable neurometabolic abnormalities that can contribute new information on the neurobiological underpinnings of the disorder. Methods Study participants consisted of 34 children with AS (2–12 years old; mean age 5.2 (±2.0); 28 boys) and 19 typically developed children (2–11 years old; mean age 5.6 (±2.6); 12 boys) who served as the normal control group. The 1H MRS data were obtained from two regions of interest: the anterior cingulate cortex (ACC) and left cerebellum. Results In the ACC, levels of N-acetylaspartate (NAA), total creatine (tCr), total choline-containing compounds (tCho) and myo-Inositol (mI) were significantly decreased in children with AS compared to controls. On the other hand, no significant group differences in any of the metabolites were found in the left cerebellum. Neither age nor sex accounted for the metabolic findings in the regions. Conclusion The finding of decreased levels of NAA, tCr, tCho, and mI in the ACC but not in left cerebellar voxels in the AS, suggests a lower ACC neuronal density in the present AS cohort compared to controls. PMID:28060873

  5. Proton NMR study of spin dynamics in the magnetic organic chains M (hfac)3 NITEt (M =Eu3 +,Gd3 + )

    NASA Astrophysics Data System (ADS)

    Mariani, M.; Lascialfari, A.; Caneschi, A.; Ammannato, L.; Gatteschi, D.; Rettori, A.; Pini, M. G.; Cucci, C.; Borsa, F.

    2016-04-01

    In this work, we present a nuclear magnetic resonance (NMR) study of the spin dynamics in the rare-earth-based low-dimensional molecular magnetic chains Eu (hfac) 3NITEt and Gd (hfac) 3NITEt (in short, Eu-Et and Gd-Et). Although both samples are based on the same chemical building block, [(hfac) 3NITEt ] , their magnetic properties change dramatically when the Eu3 + ion, which is nonmagnetic at low temperatures, is substituted by the magnetic Gd3 + ion. The present proton NMR investigation shows that, down to the lowest investigated temperature (T =1.5 K for Gd-Et and T =3 K for Eu-Et), the Eu-Et chain behaves as a one-dimensional Heisenberg model with antiferromagnetic exchange coupling (J =-20 K) between s =1 /2 organic radicals, and has a T -independent exchange frequency (ωe=2.6 ×1012 rad/s). In the Gd-Et chain, in contrast, a competition arises between nearest-neighbor ferromagnetic coupling and next-nearest-neighbor antiferromagnetic coupling; moreover, two phase transitions have previously been found, in agreement with Villain's conjecture: a first transition, at T0=2.2 K, from a high temperature paramagnetic phase to a chiral spin liquid phase, and a second transition, at TN=1.9 K, to a three-dimensional helical spin solid phase. Contrary to the Eu-Et chain (whose three-dimensional ordering temperature is estimated to insurge at very low, TN≈0.3 K), critical spin dynamics effects have been measured in the Gd-Et chain on approaching TN=1.9 K: namely, a divergence of the proton nuclear spin-lattice relaxation rate 1 /T1 , which in turn produces a sudden wipe-out of the NMR signal in a very narrow (Δ T ˜0.04 K) temperature range above TN. Below TN, an inhomogeneous broadening of the NMR line indicates a complete spin freezing. At T0=2.2 K, instead, such critical effects are not observed because NMR measurements probe the two-spin correlation function, while the chiral spin liquid phase transition is associated with a divergence of the four

  6. Rat brain MRI at 16.4T using a capacitively tunable patch antenna in combination with a receive array.

    PubMed

    Shajan, G; Hoffmann, Jens; Balla, Dávid Z; Deelchand, Dinesh K; Scheffler, Klaus; Pohmann, Rolf

    2012-10-01

    For MRI at 16.4T, with a proton Larmor frequency of 698 MHz, one of the principal RF engineering challenges is to generate a spatially homogeneous transmit field over a larger volume of interest for spin excitation. Constructing volume coils large enough to house a receive array along with the subject and to maintain the quadrature symmetry for different loading conditions is difficult at this frequency. This calls for new approaches to RF coil design for ultra-high field MR systems. A remotely placed capacitively tunable patch antenna, which can easily be adjusted to different loading conditions, was used to generate a relatively homogeneous excitation field covering a large imaging volume with a transversal profile similar to that of a birdcage coil. Since it was placed in front of the animal, this created valuable free space in the narrow magnet bore around the subject for additional hardware. To enhance the reception sensitivity, the patch antenna was combined with an actively detunable 3-channel receive coil array. In addition to increased SNR compared to a quadrature transceive surface coil, we were able to get high quality gradient echo and spin-echo images covering the whole rat brain.

  7. Prediction and compensation of magnetic beam deflection in MR-integrated proton therapy: a method optimized regarding accuracy, versatility and speed.

    PubMed

    Schellhammer, Sonja M; Hoffmann, Aswin L

    2017-02-21

    The integration of magnetic resonance imaging (MRI) and proton therapy for on-line image-guidance is expected to reduce dose delivery uncertainties during treatment. Yet, the proton beam experiences a Lorentz force induced deflection inside the magnetic field of the MRI scanner, and several methods have been proposed to quantify this effect. We analyze their structural differences and compare results of both analytical and Monte Carlo models. We find that existing analytical models are limited in accuracy and applicability due to critical approximations, especially including the assumption of a uniform magnetic field. As Monte Carlo simulations are too time-consuming for routine treatment planning and on-line plan adaption, we introduce a new method to quantify and correct for the beam deflection, which is optimized regarding accuracy, versatility and speed. We use it to predict the trajectory of a mono-energetic proton beam of energy E 0 traversing a water phantom behind an air gap within an omnipresent uniform transverse magnetic flux density B 0. The magnetic field induced dislocation of the Bragg peak is calculated as function of E 0 and B 0 and compared to results obtained with existing analytical and Monte Carlo methods. The deviation from the Bragg peak position predicted by Monte Carlo simulations is smaller for the new model than for the analytical models by up to 2 cm. The model is faster than Monte Carlo methods, less assumptive than the analytical models and applicable to realistic magnetic fields. To compensate for the predicted Bragg peak dislocation, a numerical optimization strategy is introduced and evaluated. It includes an adjustment of both the proton beam entrance angle and energy of up to 25° and 5 MeV, depending on E 0 and B 0. This strategy is shown to effectively reposition the Bragg peak to its intended location in the presence of a magnetic field.

  8. Prediction and compensation of magnetic beam deflection in MR-integrated proton therapy: a method optimized regarding accuracy, versatility and speed

    NASA Astrophysics Data System (ADS)

    Schellhammer, Sonja M.; Hoffmann, Aswin L.

    2017-02-01

    The integration of magnetic resonance imaging (MRI) and proton therapy for on-line image-guidance is expected to reduce dose delivery uncertainties during treatment. Yet, the proton beam experiences a Lorentz force induced deflection inside the magnetic field of the MRI scanner, and several methods have been proposed to quantify this effect. We analyze their structural differences and compare results of both analytical and Monte Carlo models. We find that existing analytical models are limited in accuracy and applicability due to critical approximations, especially including the assumption of a uniform magnetic field. As Monte Carlo simulations are too time-consuming for routine treatment planning and on-line plan adaption, we introduce a new method to quantify and correct for the beam deflection, which is optimized regarding accuracy, versatility and speed. We use it to predict the trajectory of a mono-energetic proton beam of energy E 0 traversing a water phantom behind an air gap within an omnipresent uniform transverse magnetic flux density B 0. The magnetic field induced dislocation of the Bragg peak is calculated as function of E 0 and B 0 and compared to results obtained with existing analytical and Monte Carlo methods. The deviation from the Bragg peak position predicted by Monte Carlo simulations is smaller for the new model than for the analytical models by up to 2 cm. The model is faster than Monte Carlo methods, less assumptive than the analytical models and applicable to realistic magnetic fields. To compensate for the predicted Bragg peak dislocation, a numerical optimization strategy is introduced and evaluated. It includes an adjustment of both the proton beam entrance angle and energy of up to 25° and 5 MeV, depending on E 0 and B 0. This strategy is shown to effectively reposition the Bragg peak to its intended location in the presence of a magnetic field.

  9. Design of a compact, permanent magnet electron cyclotron resonance ion source for proton and H{sub 2}{sup +} beam production

    SciTech Connect

    Jia Xianlu; Zhang Tianjue; Wang Chuan; Zheng Xia; Yin Zhiguo; Zhong Junqing; Wu Longcheng; Qin Jiuchang; Luo Shan

    2010-02-15

    A 2.45 GHz microwave ion source was developed at China Institute of Atomic Energy (CIAE) for proton beam production of over 60 mA [B.-Q. Cui, Y.-W. Bao, L.-Q. Li, W.-S. Jiang, and R.-W. Wang, Proceedings of the High Current Electron Cyclotron Resonance (ECR) Ion Source for Proton Accelerator, APAC-2001, 2001 (unpublished)]. For various proton beam applications, another 2.45 GHz microwave ion source with a compact structure is designed and will be built at CIAE as well for high current proton beam production. It is also considered to be used for the test of H{sub 2}{sup +} beam, which could be injected into the central region model cyclotron at CIAE, and accelerated to 5 MeV before extraction by stripping. The required ECR magnetic field is supplied by all the permanent magnets rather than electrical solenoids and six poles. The magnetic field distribution provided by this permanent magnets configuration is a large and uniformly volume of ECR zone, with central magnetic field of a magnitude of {approx}875 Gs[T. Taylor and J. S. C. Wills, Nucl. Instrum. Methods Phys. Res. A 309, 37 (1991)]. The field adjustment at the extraction end can be implemented by moving the position of the magnet blocks. The results of plasma, coupling with 2.45 GHz microwave in the ECR zone inside the ion source are simulated by particle-in-cell code to optimize the density by adjusting the magnetic field distribution. The design configuration of the ion source will be summarized in the paper.

  10. Seasonal and temporal characterization of dissolved organic matter in rainwater by proton nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Seaton, Pamela J.; Kieber, Robert J.; Willey, Joan D.; Avery, G. Brooks; Dixon, Joshua L.

    2013-02-01

    Dissolved organic carbon in rainwater was concentrated by two separate techniques and characterized by 1H-NMR. The total 1H-NMR integral of lyophilized rainwater was higher in every rain sample than that of C18 solid phase extracted samples and always contained a higher percentage integral in the region of protons bound to carbon atoms singly bound to oxygen (H-C-O), such as alcohols, polyols and carbohydrate-like compounds. C18 extracted samples had higher % integral in the alkyl region, consistent with reverse phase extraction of more hydrophobic components in rainwater. Differences in both the 1H-NMR integration and spectral pattern of lyophilized rainwater samples were especially apparent between spring and winter rains, with spring samples having higher percent carbohydrate (H-C-O) signal and winter rains having higher percent alkyl protons and a spectral pattern consistent with the presence of saturated fatty acids. Spring rains are characterized by lower % Alkyl signal coupled with higher % H-C-O than all other events while marine winter events appear in regions characterized by relatively high % Alkyl and average % H-C-O, consistent with increased abundance of fatty acids or fatty acid oxidation products. The 1H-NMR data presented in this manuscript are important because they provide spectral data relating to the source and chemical characteristics of dissolved organic carbon in rainwater as a function of season and air mass back trajectory.

  11. SU-E-J-229: Magnetic Resonance Imaging of Small Fiducial Markers for Proton Beam Therapy

    SciTech Connect

    Hu, Y; James, J; Panda, A; Vargas, C; Silva, A; Liu, W; Shen, J; Ding, X; Paden, R; Hanson, J; Wong, W; Schild, S; Bues, M

    2015-06-15

    Purpose: For proton beam therapy, small fiducial markers are preferred for patient alignment due to less interference with the proton beam. Visualizing small fiducial markers can be challenging in MRI. This study intends to investigate MRI imaging protocols for better visualization of small fiducial markers. Methods: Two carbon and two coil-shaped gold markers were placed into a gel phantom. Both carbon markers had a diameter of 1mm and a length of 3mm. Both gold markers had a length of 5mm. One gold marker had a diameter of 0.5mm and the other had a diameter of 0.75mm. T1 VIBE, T2 SPACE, TrueFISP and susceptibility weighted (SW) images were acquired. To improve marker contrast, high spatial resolution was used to reduce partial volume effect. Slice thickness was 1.5mm for all four sequences and in-plane resolution was 0.6mm for TrueFISP, 0.7mm for T1 VIBE, and 0.8mm for T2 SPACE and SW. For comparison purpose, a 3D T1 VIBE image set at 3mm slice thickness and 1.2mm in-plane resolution was also acquired. Results: All markers were visible in all high-resolution image sets. In each image set, marker-induced signal void was the smallest (in diameter) for carbon markers, followed by the 0.5mm gold marker and the largest for the 0.75mm gold marker. The SW images had the largest marker-induced signal void. However, those might be confused by susceptibility-gradient-induced signal voids. T1 VIBE had good visualization of markers with nicely defined edges. T2 SPACE had reasonable visualization of markers but edges were slightly blurred. TrueFISP had good visualization of markers only if they were not masked by banding artifacts. As a comparison, all markers were hardly visible in the standard resolution T1 VIBE images. Conclusion: 3D high-resolution T1 VIBE and SW have great potential in providing good visualization of small fiducial markers for proton beam therapy.

  12. Effect of mica content on pore-size distribution and porosity of sandy sediment using proton nuclear magnetic resonance measurement

    NASA Astrophysics Data System (ADS)

    Kimura, S.

    2015-12-01

    As a part of a Japanese National hydrate research program (MH21, funded by METI), we performed a study on effect of mica content on pore size distribution and porosity of sandy sediment. This study used proton nuclear magnetic resonance (NMR) to measure the pore-size distribution and porosity of specimen to investigate mica content effect in sandy sediment. A mixture of silica sand No. 7 and mica (mica of 0 wt. %, 5 wt. % and 20 wt. %) was used in this study. The median D50 by laser diffraction method was obtained as 215.7 μm of silica sand No. 7 and 278.9 μm of mica. Pore-size distributions of specimens by the distribution of transverse magnetic relaxation time (T2) measurement by NMR were performed for the water-saturated sample under effective confining pressure of 1.0 MPa. The peaks of pore-size distribution curves decreased and showed finer shifts with increasing of mica content. The porosity of silica sand No. 7 specimen was 46.3%, and that of mica 5% and 20 % were 45.9% and 42.2%m, respectively. A change in pore-size distribution and porosity were observed with an increasing ratio of mica.

  13. EXOTIC MAGNETS FOR ACCELERATORS.

    SciTech Connect

    WANDERER, P.

    2005-09-18

    Over the last few years, several novel magnet designs have been introduced to meet the requirements of new, high performance accelerators and beam lines. For example, the FAIR project at GSI requires superconducting magnets ramped at high rates ({approx} 4 T/s) in order to achieve the design intensity. Magnets for the RIA and FAIR projects and for the next generation of LHC interaction regions will need to withstand high doses of radiation. Helical magnets are required to maintain and control the polarization of high energy protons at RHIC. In other cases, novel magnets have been designed in response to limited budgets and space. For example, it is planned to use combined function superconducting magnets for the 50 GeV proton transport line at J-PARC to satisfy both budget and performance requirements. Novel coil winding methods have been developed for short, large aperture magnets such as those used in the insertion region upgrade at BEPC. This paper will highlight the novel features of these exotic magnets.

  14. Precision measurement of the proton and helium flux in primary cosmic rays with the Alpha Magnetic Spectrometer on the International Space Station

    NASA Astrophysics Data System (ADS)

    Heil, M.

    2016-11-01

    The precise measurements of the proton and helium flux in primary cosmic rays based on on data collected by the Alpha Magnetic Spectrometer during the first 30 months of operation (May 19, 2012 to November 26, 2013) onboard the International Space Station are presented. Knowledge of the rigidity dependence of the proton and helium flux is important in understanding the origin, acceleration, and propagation of cosmic rays in our galaxy. The high statistics of the measurements (300 mio. protons, 50 mio. helium) allow to study the detailed variations with rigidity of the fluxes spectral index. The spectral index of both the proton and the helium flux progressively hardens at rigidities larger than 100 GV. The rigidity dependence of the helium flux spectral index is similar to that of the proton spectral index though the magnitudes are different. Remarkably, the spectral index of the proton to helium flux ratio increases with rigidity up to 45 GV and then becomes constant; the flux ratio above 45 GV is well described by a single power law.

  15. High resolution NMR study of T{sub 1} magnetic relaxation dispersion. IV. Proton relaxation in amino acids and Met-enkephalin pentapeptide

    SciTech Connect

    Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Ivanov, Konstantin L.; Vieth, Hans-Martin

    2014-10-21

    Nuclear Magnetic Relaxation Dispersion (NMRD) of protons was studied in the pentapeptide Met-enkephalin and the amino acids, which constitute it. Experiments were run by using high-resolution Nuclear Magnetic Resonance (NMR) in combination with fast field-cycling, thus enabling measuring NMRD curves for all individual protons. As in earlier works, Papers I–III, pronounced effects of intramolecular scalar spin-spin interactions, J-couplings, on spin relaxation were found. Notably, at low fields J-couplings tend to equalize the apparent relaxation rates within networks of coupled protons. In Met-enkephalin, in contrast to the free amino acids, there is a sharp increase in the proton T{sub 1}-relaxation times at high fields due to the changes in the regime of molecular motion. The experimental data are in good agreement with theory. From modelling the relaxation experiments we were able to determine motional correlation times of different residues in Met-enkephalin with atomic resolution. This allows us to draw conclusions about preferential conformation of the pentapeptide in solution, which is also in agreement with data from two-dimensional NMR experiments (rotating frame Overhauser effect spectroscopy). Altogether, our study demonstrates that high-resolution NMR studies of magnetic field-dependent relaxation allow one to probe molecular mobility in biomolecules with atomic resolution.

  16. Properties of a large-scale interplanetary loop structure as deduced from low-energy proton anisotropy and magnetic field measurements

    NASA Technical Reports Server (NTRS)

    Tranquille, C.; Sanderson, T. R.; Marsden, R. G.; Wenzel, K.-P.; Smith, E. J.

    1987-01-01

    Correlated particle and magnetic field measurements by the ISEE 3 spacecraft are presented for the loop structure behind the interplanetary traveling shock event of Nov. 12, 1978. Following the passage of the turbulent shock region, strong bidirectional streaming of low-energy protons is observed for approximately 6 hours, corresponding to a loop thickness of about 0.07 AU. This region is also characterized by a low relative variance of the magnetic field, a depressed proton intensity, and a reduction in the magnetic power spectral density. Using quasi-linear theory applied to a slab model, a value of 3 AU is derived for the mean free path during the passage of the closed loop. It is inferred from this observation that the proton regime associated with the loop structure is experiencing scatter-free transport and that either the length of the loop is approximately 3 AU between the sun and the earth or else the protons are being reflected at both ends of a smaller loop.

  17. Electron-proton spectrometer

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.

    1973-01-01

    An electron-proton spectrometer was designed to measure the geomagnetically trapped radiation in a geostationary orbit at 6.6 earth radii in the outer radiation belt. This instrument is to be flown on the Applications Technology Satellite-F (ATS-F). The electron-proton spectrometer consists of two permanent magnet surface barrier detector arrays and associated electronics capable of selecting and detecting electrons in three energy ranges: (1) 30-50 keV, (2) 150-200 keV, and (3) 500 keV and protons in three energy ranges. The electron-proton spectrometer has the capability of measuring the fluxes of electrons and protons in various directions with respect to the magnetic field lines running through the satellite. One magnet detector array system is implemented to scan between EME north and south through west, sampling the directional flux in 15 steps. The other magnet-detector array system is fixed looking toward EME east.

  18. Optically transmitted and inductively coupled electric reference to access in vivo concentrations for quantitative proton-decoupled ¹³C magnetic resonance spectroscopy.

    PubMed

    Chen, Xing; Pavan, Matteo; Heinzer-Schweizer, Susanne; Boesiger, Peter; Henning, Anke

    2012-01-01

    This report describes our efforts on quantification of tissue metabolite concentrations in mM by nuclear Overhauser enhanced and proton decoupled (13) C magnetic resonance spectroscopy and the Electric Reference To access In vivo Concentrations (ERETIC) method. Previous work showed that a calibrated synthetic magnetic resonance spectroscopy-like signal transmitted through an optical fiber and inductively coupled into a transmit/receive coil represents a reliable reference standard for in vivo (1) H magnetic resonance spectroscopy quantification on a clinical platform. In this work, we introduce a related implementation that enables simultaneous proton decoupling and ERETIC-based metabolite quantification and hence extends the applicability of the ERETIC method to nuclear Overhauser enhanced and proton decoupled in vivo (13) C magnetic resonance spectroscopy. In addition, ERETIC signal stability under the influence of simultaneous proton decoupling is investigated. The proposed quantification method was cross-validated against internal and external reference standards on human skeletal muscle. The ERETIC signal intensity stability was 100.65 ± 4.18% over 3 months including measurements with and without proton decoupling. Glycogen and unsaturated fatty acid concentrations measured with the ERETIC method were in excellent agreement with internal creatine and external phantom reference methods, showing a difference of 1.85 ± 1.21% for glycogen and 1.84 ± 1.00% for unsaturated fatty acid between ERETIC and creatine-based quantification, whereas the deviations between external reference and creatine-based quantification are 6.95 ± 9.52% and 3.19 ± 2.60%, respectively.

  19. Maturation of limbic regions in Asperger syndrome: a preliminary study using proton magnetic resonance spectroscopy and structural magnetic resonance imaging.

    PubMed

    O'Brien, Finian M; Page, Lisa; O'Gorman, Ruth L; Bolton, Patrick; Sharma, Ajay; Baird, Gillian; Daly, Eileen; Hallahan, Brian; Conroy, Ronán M; Foy, Catherine; Curran, Sarah; Robertson, Dene; Murphy, Kieran C; Murphy, Declan G M

    2010-11-30

    People with autistic spectrum disorders (ASD, including Asperger syndrome) may have developmental abnormalities in the amygdala-hippocampal complex (AHC). However, in vivo, age-related comparisons of both volume and neuronal integrity of the AHC have not yet been carried out in people with Asperger syndrome (AS) versus controls. We compared structure and metabolic activity of the right AHC of 22 individuals with AS and 22 healthy controls aged 10-50 years and examined the effects of age between groups. We used structural magnetic resonance imaging (sMRI) to measure the volume of the AHC, and magnetic resonance spectroscopy ((1)H-MRS) to measure concentrations of N-acetyl aspartate (NAA), creatine+phosphocreatine (Cr+PCr), myo-inositol (mI) and choline (Cho). The bulk volume of the amygdala and the hippocampus did not differ significantly between groups, but there was a significant difference in the effect of age on the hippocampus in controls. Compared with controls, young (but not older) people with AS had a significantly higher AHC concentration of NAA and a significantly higher NAA/Cr ratio. People with AS, but not controls, had a significant age-related reduction in NAA and the NAA/Cr ratio. Also, in people with AS, but not controls, there was a significant relationship between concentrations of choline and age so that choline concentrations reduced with age. We therefore suggest that people with AS have significant differences in neuronal and lipid membrane integrity and maturation of the AHC.

  20. Neurodegenerative evidences during early onset of depression in CMS rats as detected by proton magnetic resonance spectroscopy at 7 T.

    PubMed

    Hemanth Kumar, B S; Mishra, Sushanta Kumar; Rana, Poonam; Singh, Sadhana; Khushu, Subash

    2012-06-15

    Depression is a complex psychiatric disorder characterized by anhedonia and feeling of sadness and chronic mild stress (CMS) seems to be a valuable animal model of depression. CMS animal model was induced and validated using behavioral studies. In the present study we investigated the neuro-metabolite changes occurring in prefrontal cortex and hippocampus during the onset of depression, in CMS rat model using in vivo proton magnetic resonance spectroscopy ((1)H MRS) at field strength of 7 T. Results showed that CMS caused depression-like behavior in rats, as indicated by the decrease in sucrose consumption and locomotor activity. (1)H MRS was performed in both control and CMS rats (n=10, in each group) and the quantitative assessment of the neurometabolites was done using LC model. Relative concentrations of all the metabolites along with the macromolecules were calculated for analysis. The results revealed a significant decrease of glutamate (Glu), glutamine (Gln), NAA+NAAG, Glx and GABA levels in both hippocampus and prefrontal cortex of CMS animals and an elevated level of myo-ionisitol (mI) and taurine (Tau) was observed only in hippocampus. These metabolite fluctuations revealed by proton MRS indicate that there might be change in the neuronal integrity of the glial cells and neurons within prefrontal cortex and hippocampus in CMS model of depression. The present study also suggests that there may be a degenerative process concerning the brain morphology in the CMS rats. The overall finding using (1)H MRS suggests that, there might be a major role of the glia and neuron in the onset of depression.

  1. Hydrogenated Graphenes by Birch Reduction: Influence of Electron and Proton Sources on Hydrogenation Efficiency, Magnetism, and Electrochemistry.

    PubMed

    Eng, Alex Yong Sheng; Sofer, Zdeněk; Huber, Štěpán; Bouša, Daniel; Maryško, Miroslav; Pumera, Martin

    2015-11-16

    Interest in chemical functionalisation of graphenes today is largely driven by associated changes to its physical and material properties. Functionalisation with hydrogen was employed to obtain hydrogenated graphenes (also termed graphane if fully hydrogenated), which exhibited properties including fluorescence, magnetism and a tuneable band gap. Although the classical Birch reduction has been employed for hydrogenation of graphite oxide, variation exists between the choice of alkali metals and alcohols/water as quenching agents. A systematic study of electron (Li, Na, K, Cs) and proton sources (tBuOH, iPrOH, MeOH, H2O) has been performed to identify optimal conditions. The proton source exerted a great influence on the resulting hydrogenation with water and out-performed alcohols, and the lowest carbon-to-hydrogen ratio was observed with sodium and water with composition of C1.4H1O0.3. Although ferromagnetism at room temperature correlates well with increasing hydrogen concentrations, small contributions from trace iron impurities cannot be completely eliminated. In contrast, hydrogenated graphenes exhibit a significant paramagnetic moment at low temperatures that has no correlation with impurities, and therefore, originates from the carbon system. This is in comparison to graphene, which is strongly diamagnetic, and concentrations of paramagnetic centres in hydrogenated graphenes are one order of magnitude larger than that in graphite. Nonetheless, hydrogenation over a particular level might also excessively disrupt intrinsic sp(2) conjugation, resulting in unintended reduction of electrochemical properties. This was observed with heterogeneous electron-transfer rates and it was postulated that hydrogenated graphenes should generally have high defect densities, but only moderately high hydrogenation, should they be employed as electrode materials.

  2. Proton nuclear magnetic resonance identification and discrimination of side chain isomers of phytosterols using a lanthanide shift reagent.

    PubMed

    Iida, T; Tamura, T; Matsumoto, T

    1980-03-01

    Proton nuclear magnetic resonance (1H-NMR) spectra at 90 MHz were measured for a number of side chain isomers of phytosterols (sterols with a C8H17 side chain, and delta 24-, 24-methylene, delta 22-, 24-ethylidene, 24-methly, 24-ethyl, 24-methyl-delta 22-, 24-ethyl delta 22-, and 24-ethyl-delta 22,25(27)-sterols) with or without a lanthanide shift reagent, tris[1,1,1,2,2,3,3 - heptafluoro - 7,7 - dimethyloctane - 4,6 - dionato]ytterbium, Yb(fod)3, and the effect of Yb(fod)3 on the side chain methyl protons is discussed. The change of the chemical shifts induced Yb(fod)3 for the side chain methyls was expressed in terms of the induced shift ratios (ISR values), i.e., the ratios of the induced chemical shifts of the respective side chain methyls to that of the fastest moving side chain methyl. The ISR values were sentitive to minor structural and stereochemical differences, but almost independent of ring structures and of substrate concentrations, thus providing confirmatory evidence for the side chain structures. Also, the Yb(fod)3-induced spectral patterns observed in the high-field methyl region bore the fingerprints of the side chain structures. Several isomeric pairs of sterols, which differ only in the geometry of double bonds or the absolute configuration at C-24 in the side chain, i.e., cis- and trans-isomers of delta 22-and 24-ethylidene sterols, 24R/alpha- and 24S/beta-methyl sterols, 24R/alpha- and 24S/beta-ethyl sterols, and 24S/alpha- and 24R/beta-ethyl-delta 22-sterols, could be differentiated from each other under the influence of Yb(fod)3, even though they were measured at 90 MHz.

  3. Multicomponent analysis of radiolytic products in human body fluids using high field proton nuclear magnetic resonance (NMR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Grootveld, Martin C.; Herz, Herman; Haywood, Rachel; Hawkes, Geoffrey E.; Naughton, Declan; Perera, Anusha; Knappitt, Jacky; Blake, David R.; Claxson, Andrew W. D.

    1994-05-01

    High field proton Hahn spin-echo nuclear magnetic resonance (NMR) spectroscopy has been employed to investigate radiolytic damage to biomolecules present in intact human body fluids. γ-Radiolysis of healthy or rheumatoid human serum (5.00 kGy) in the presence of atmospheric O 2 gave rise to reproducible elevations in the concentration of NMR-detectable acetate which are predominantly ascribable to the prior oxidation of lactate to pyruvate by hydroxyl radical (·OH) followed by oxidative decarboxylation of pyruvate by radiolytically-generated hydrogen peroxide (H 2O 2) and/or further ·OH radical. Increases in the serum levels of non-protein-bound, low-molecular-mass components such as citrate and glutamine were also observed subsequent to γ-radiolysis, an observation which may reflect their mobilisation from protein binding-sites by ·OH radical, superoxide anion and/or H 2O 2. Moreover, substantial radiolytically-mediated elevations in the concentration of serum formate were also detectable. In addition to the above modifications, γ-radiolysis of inflammatory knee-joint synovial fluid (SF) generated a low-molecular-mass oligosaccharide species derived from the radiolytic fragmentation of hyaluronate. The radiolytically-mediated production of acetate in SF samples was markedly greater than that observed in serum samples, a consequence of the much higher levels of ·OH radical-scavenging lactate present. Indeed, increases in SF acetate concentration were detectable at doses as low as 48 Gy. We conclude that high field proton NMR analysis provides much useful information regarding the relative radioprotectant abilities of endogenous components and the nature, status and levels of radiolytic products generated in intact biofluids. We also suggest that NMR-detectable radiolytic products with associated toxicological properties (e.g. formate) may play a role in contributing to the deleterious effects observed following exposure of living organisms to sources of

  4. Effect of Triplet Magnet Vibrations on RHIC Performance with High Energy Protons

    SciTech Connect

    Minty, M.

    2010-05-23

    In this report we present recent experimental data from the Relativistic Heavy Ion Collider (RHIC) illustrating effects resulting from {approx}10 Hz vibrations of the triplet quadrupole magnets in the interactions regions and evaluate the impact of these vibrations on RHIC collider performance. Measurements revealed modulation of the betatron tunes of appreciable magnitude relative to the total beam-beam parameter. Comparison of the discrete frequencies in the spectra of the measured beam positions and betatron tunes confirmed a common source. The tune modulations were shown to result from feed-down in the sextupole magnets in the interaction regions. In addition we show that the distortions to the closed orbit of the two counter-rotating beams produced a modulated crossing angle at the interaction point(s).

  5. Dysregulation of CD4(+) T Cell Subsets in Intracranial Aneurysm.

    PubMed

    Zhang, Hai-Feng; Zhao, Ming-Guang; Liang, Guo-Biao; Yu, Chun-Yong; He, Wenxiu; Li, Zhi-Qing; Gao, Xu

    2016-02-01

    Intracranial aneurysms (IAs) and potential IA rupture are one of the direct causes of permanent brain damage and mortality. Interestingly, the major risk factors of IA development, including hemodynamic stress, hypertension, smoking, and genetic predispositions, are closely associated with a proinflammatory immune status. Therefore, we examined the roles of CD4(+) T cells in IA pathogenesis. IA patients exhibited peripheral CD4(+) T-cell imbalance, with overrepresented T helper 1 (Th1) and Th17 activities and underrepresented Th2 and regulatory T (Treg) activities, including increased IFN-γ, TNF-α, and IL-17 production and decreased IL-10 production from total CD4(+) T cells. Chemokine receptors CXCR3 and CCR6 were used to identify Th1, Th2, and Th17 cell subsets, and CD4(+)CD25(hi) was used to identify Treg cells. Based on these markers, the data then showed altered cytokine production by each cell type and shifted subpopulation frequency. Moreover, this shift in frequency was directly correlated with IA severity. To examine the underlying mechanism of CD4(+) T cell skewing, we cocultured CD4(+) T cells with autologous monocytes and found that coculture with monocytes could significantly increase IFN-γ and IL-17 production through contact-independent mechanisms, demonstrating that monocytes could potentially contribute to the altered CD4(+) T cell composition in IA. Analyzing mRNA transcripts revealed significantly upregulated IL-1β and TNF-α expression by monocytes from IA patients. We found a loss of CD4(+) T cell subset balance that was likely to promote a higher state of inflammation in IA, which may exacerbate the disease through a positive feedback loop.

  6. Normalization of CD4+ T Cell Metabolism Reverses Lupus

    PubMed Central

    Yin, Yiming; Choi, Seung-Chul; Xu, Zhiwei; Perry, Daniel J.; Seay, Howard; Croker, Byron P.; Sobel, Eric S.; Brusko, Todd M.; Morel, Laurence

    2015-01-01

    Systemic Lupus Erythematosus (SLE) is an autoimmune disease in which autoreactive CD4+ T cells play an essential role. CD4+ T cells rely on glycolysis for inflammatory effector functions, but recent studies have shown that mitochondrial metabolism supports their chronic activation. How these processes contribute to lupus is unclear. Here, we show that both glycolysis and mitochondrial oxidative metabolism are elevated in CD4+ T cells from lupus-prone B6.Sle1.Sle2.Sle3 (TC) mice as compared to non-autoimmune controls. In vitro, both the mitochondrial metabolism inhibitor metformin and the glucose metabolism inhibitor 2-Deoxy-D-glucose (2DG) reduced IFNγ production, although at different stages of activation. Metformin also restored the defective IL-2 production by TC CD4+ T cells. In vivo, treatment of TC mice and other lupus models with a combination of metformin and 2DG normalized T cell metabolism and reversed disease biomarkers. Further, CD4+ T cells from SLE patients also exhibited enhanced glycolysis and mitochondrial metabolism that correlated with their activation status, and their excessive IFNγ production was significantly reduced by metformin in vitro. These results suggest that normalization of T cell metabolism through the dual inhibition of glycolysis and mitochondrial metabolism is a promising therapeutic venue for SLE. PMID:25673763

  7. Proton magnetic resonance characterization of phoratoxins and homologous proteins related to crambin

    SciTech Connect

    Lecomte, J.T.J.; Kaplan, D.; Llinas, M.; Thunberg, E.; Samuelsson, G.

    1987-02-24

    The mistletoe protein toxins, phoratoxins A and B, viscotoxins A3 and B have been investigated by /sup 1/H NMR spectroscopy at 300 and 600 MHz. The five polypeptides define a set of closely related homologues, containing 46 amino acid residues each, in a structure constrained by three cystine bridges. Their methyl and aromatic spectra were analyzed and a number of signals identified and assigned via comparative criteria, two-dimensional chemical-shift correlated spectroscopy, acid-base titration, and proton Overhauser experiments in /sup 1/H/sub 2/O. The spectra indicate a compact globular conformation and a common folding pattern for the toxins. In particular, use was made of well-resolved aliphatic and aromatic resonances in order to compare the mistletoe proteins with the thionins, a set of homologous toxins from gramineae, and with crambin, a closely related polypeptide from a crucifer. The authors observe that while all the investigated proteins have very similar secondary and tertiary structures, they differ widely in their dynamic characteristics as probed by the amide NH /sup 1/H-/sup 2/H exchange kinetics in deuteriated solvents. The temperature dependence of the /sup 1/H NMR spectrum also indicates that the toxins are endowed with a thermally very stable native (ground-state) structure, with little evidence of large amplitude structural breathings up to approx.370 K, although irreversible chemical degradation (denaturation) becomes evident at temperatures greater than or equal to 350 K. It is concluded that the mistletoe toxins afford valuable rigid structures for NMR conformation studies.

  8. Nuclear magnetic resonance of external protons using continuous dynamical decoupling with shallow NV centers

    NASA Astrophysics Data System (ADS)

    de Las Casas, Charles; Ohno, Kenichi; Awschalom, David D.

    2015-03-01

    The nitrogen vacancy (NV) center in diamond is a paramagnetic defect with excellent spin properties that can reside within a few nanometers of the diamond surface, enabling atomic-scale magnetic resonance sensing of external nuclear spins. Here we use rotating frame longitudinal spin relaxation (T1ρ) based sensing schemes, known as Continuous Dynamical Decoupling (CDD), to detect external nuclear spins with shallow NV centers (<5 nm from the surface). Distinguishing neighboring nuclear spins from each other requires the NV center be near enough to create differences in the hyperfine shifts and coupling strengths of the nuclei. However, spin coherence time and consequently the sensitivity of dynamical decoupling techniques degrade sharply as NVs become shallower. We use strong continuous driving to overcome this fast decoherence and detect an ensemble of external nuclear spins using a single shallow NV center with a short T2 (<2 μs) at magnetic fields as high as 0.5 Tesla. The increased sensitivity of this method relative to pulsed dynamical decoupling techniques demonstrates the benefits of CDD for sensing with very shallow NV centers. This work was supported by DARPA, AFOSR, and the DIAMANT program.

  9. Elevated prefrontal cortex GABA in patients with major depressive disorder after TMS treatment measured with proton magnetic resonance spectroscopy

    PubMed Central

    Dubin, Marc J.; Mao, Xiangling; Banerjee, Samprit; Goodman, Zachary; Lapidus, Kyle A.B.; Kang, Guoxin; Liston, Conor; Shungu, Dikoma C.

    2016-01-01

    Background GABAergic and glutamatergic neurotransmitter systems are central to the pathophysiology of depression and are potential targets of repetitive transcranial magnetic stimulation (rTMS). We assessed the effect of 10-Hz rTMS over the left dorsolateral prefrontal cortex (DLPFC) of patients with major depressive disorder on the levels of medial prefrontal cortex (MPFC) γ-aminobutyric acid (GABA) and the combined resonance of glutamate and glutamine (Glx) as assessed in vivo with proton magnetic resonance spectroscopy (1H MRS). Methods Currently depressed individuals between the ages of 23 and 68 years participated in a 5-week naturalistic, open-label treatment study of rTMS, with 1H MRS measurements of MPFC GABA and Glx levels at baseline and following 5 weeks of the rTMS intervention. We applied rTMS pulses over the left DLPFC at 10 Hz and 80%–120% of motor threshold for 25 daily sessions, with each session consisting of 3000 pulses. We assessed therapeutic response using the 24-item Hamilton Rating Scale for Depression (HAMD24). The GABA and Glx levels are expressed as ratios of peak areas relative to the area of the synchronously acquired and similarly fitted unsuppressed voxel water signal (W). Results Twenty-three currently depressed individuals (7 men) participated in the study. GABA/W in the MPFC increased 13.8% (p = 0.013) in all depressed individuals. There were no significant effects of rTMS on Glx/W. GABA/W and Glx/W were highly correlated in severely depressed patients at baseline but not after TMS. Limitations The primary study limitations are the open-label design and the inclusion of participants currently taking stable regimens of antidepressant medications. Conclusion These results implicate GABAergic and glutamatergic systems in the mechanism of action of rTMS for major depression, warranting further investigation in larger samples. PMID:26900793

  10. Choline-containing compounds detected by proton magnetic resonance spectroscopy in the basal ganglia in bipolar disorder.

    PubMed Central

    Kato, T; Hamakawa, H; Shioiri, T; Murashita, J; Takahashi, Y; Takahashi, S; Inubushi, T

    1996-01-01

    Choline-containing compounds (Cho) were examined by proton magnetic resonance spectroscopy (1H-MRS) in the left subcortical region, including basal ganglia, in 19 euthymic patients with bipolar disorder and 19 age-matched normal controls. Ten of the patients were treated with lithium; the remaining 9 were not treated with lithium for at least 30 d. The Cho to creatine + phosphocreatine (Cr) peak ratio in the bipolar patients (0.75 +/- 0.38 [mean +/- SD]) was higher than that in the normal controls (0.52 +/- 0.26, P < 0.05). There was no significant difference in the Cho:Cr peak ratio between patients treated with lithium (0.63 +/- 0.36) and without lithium (0.89 +/- 0.35). These results do not support the hypothesis that lithium increases the brain choline-containing compounds, but rather imply that membrane breakdown may occur in the basal ganglia of patients with bipolar disorder. Images Figure 1 PMID:8754593

  11. Three dimensional structure prediction and proton nuclear magnetic resonance analysis of toxic pesticides in human blood plasma.

    PubMed

    Sharma, Amit Kumar; Tiwari, Rajeev Kumar; Gaur, Mulayam Singh

    2012-05-01

    The purpose of this study was to investigate the nuclear magnetic resonance (NMR) assignments of hydrolyzed products extracted from human blood plasma. The correlations between chemical, functional and structural properties of highly toxic pesticides were investigated using the PreADME analysis. We observed that toxic pesticides possessed higher molecular weight and, more hydrogen bond donors and acceptors when compared with less toxic pesticides. The occurrence of functional groups and structural properties was analyzed using (1)H-NMR. The (1)H-NMR spectra of the phosphomethoxy class of pesticides were characterized by methyl resonances at 3.7-3.9 ppm (δ) with the coupling constants of 11-16 Hz (JP-CH3 ). In phosphoethoxy pesticides, the methyl resonance was about 1.4 ppm (δ) with the coupling constant of 10 Hz (JP-CH2 ) and the methylene resonances was 4.2-4.4 ppm (δ) with the coupling constant of 0.8 Hz (JP-CH3 ), respectively. Our study shows that the values of four parameters such as chemical shift, coupling constant, integration and relaxation time correlated with the concentration of toxic pesticides, and can be used to characterise the proton groups in the molecular structures of toxic pesticides.

  12. A case-control proton magnetic resonance spectroscopy study confirms cerebellar dysfunction in benign adult familial myoclonic epilepsy

    PubMed Central

    Long, Lili; Song, Yanmin; Zhang, Linlin; Hu, Chongyu; Gong, Jian; Xu, Lin; Long, Hongyu; Zhou, Luo; Zhang, Yunci; Zhang, Yong; Xiao, Bo

    2015-01-01

    Background Benign adult familial myoclonic epilepsy (BAFME) is a rare form of epilepsy syndrome. The pathogenesis of BAFME remains unclear, though it seems to involve dysfunction of the cerebellum. Objectives The purpose of this study was to use proton magnetic resonance spectroscopy (1H-MRS) to investigate whether neurochemical changes underlie abnormal brain function in BAFME. Methods Twelve BAFME patients from one family and 12 age- and sex-matched healthy controls were enrolled in this study. The ratios of NAA/Cr, NAA/Cho, Cho/Cr, and NAA/(Cr+Cho) were analyzed. Results The BAFME patients exhibited a decreased N-acetylaspartate (NAA)/choline (Cho) ratio in the cerebellar cortex, whereas there were no significant differences in the NAA/creatine (Cr), Cho/Cr, and NAA/(Cr+Cho) ratios compared with healthy controls. There were no significant differences in 1H-MRS values in the frontal cortex or thalamus between the BAFME patients and controls. No correlation was detected between the NAA/Cho ratio in the cerebellar cortex and disease duration, myoclonus severity, or tremor severity. Conclusion Our results indicate clear cerebellar dysfunction in BAFME. 1H-MRS is a useful tool for the diagnosis of BAFME in combination with family history and electrophysiological examination. PMID:25750529

  13. Evaluating Human Breast Ductal Carcinomas with High-Resolution Magic-Angle Spinning Proton Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cheng, Leo Ling; Chang, I.-Wen; Smith, Barbara L.; Gonzalez, R. Gilberto

    1998-11-01

    We report the results of a study of human breast ductal carcinomas, conducted by using high resolution magic angle spinning proton magnetic resonance spectroscopy (HRMAS 1HMRS). This recently developed spectroscopic technique can measure tissue metabolism from intact pathological specimens and identify tissue biochemical changes, which closely correspond to tumorin vivostate. This procedure objectively indicates diagnostic parameters, independent of the skill and experience of the investigator, and has the potential to reduce the sampling errors inherently associated with procedures of conventional histopathology. In this study, we measured 19 cases of female ductal carcinomas. Our results demonstrate that: (1) highly resolved spectra of intact specimens of human breast ductal carcinomas can be obtained; (2) carcinoma-free tissues and carcinomas are distinguishable by alterations in the intensities and the spin-spin relaxation time T2 of cellular metabolites; and (3) tumor metabolic markers, such as phosphocholine, lactate, and lipids, may correlate with the histopathological grade determined from evaluation of the adjacent specimen. Our results suggest that biochemical markers thus measured may function as a valuable adjunct to histopathology to improve the accuracy of and reduce the time frame required for the diagnosis of human breast cancer.

  14. Application of proton magnetic resonance spectroscopy and computerized tomography in the diagnosis and treatment of nonalcoholic fatty liver disease.

    PubMed

    Wang, Nan; Dong, Hui; Wei, Shichao; Lu, Fuer

    2008-06-01

    In order to investigate the application of proton magnetic resonance spectroscopy ((1)H-MRS) and computerized tomography (CT) in the quantitative diagnosis of nonalcoholic fatty liver disease (NAFLD) and evaluation of therapeutic effects, 22 patients with NAFLD were selected according to the Chinese Medical Association's (CMA) standard of the NAFLD in comparison with 20 healthy volunteers (as control group). Blood samples for biochemistry were collected. The severity of hepatosteatosis was evaluated by (1)H-MRS scan and CT scan of liver. The intrahepatic content of lipid (IHCL) and CT value ratio of liver to spleen were calculated. The patients in NAFLD group were treated with Ganzhixiao Capsule for 8 weeks. The changes in IHCL and CT value ratio of liver to spleen were observed before and after treatment. In NAFLD group serum ALT, TG, IHCL calculated by (1)HMRS were increased and CT value ratio of liver to spleen decreased significantly as compared with control group. After treatment for 8 weeks serum ALT, TG, IHCL were decreased significantly, while CT value ratio of liver to spleen increased significantly in NAFLD group. It was suggested that IHCL could be measured precisely by (1)HMRS. NAFLD was treated effectively by Ganzhixiao capsule.

  15. Alterations of GABA and glutamate-glutamine levels in premenstrual dysphoric disorder: a 3T proton magnetic resonance spectroscopy study.

    PubMed

    Liu, Bo; Wang, Guangbin; Gao, Dongmei; Gao, Fei; Zhao, Bin; Qiao, Mingqi; Yang, Huan; Yu, Yanhong; Ren, Fuxin; Yang, Ping; Chen, Weibo; Rae, Caroline D

    2015-01-30

    Increasing evidence has suggested that the GABAergic neurotransmitter system is involved in the pathogenesis of premenstrual dysphoric disorder (PMDD). We used proton magnetic resonance spectroscopy ((1)H MRS) to investigate whether PMDD is associated with alterations in brain GABA levels. Levels of glutamate-glutamine (Glx) were also explored. Participants comprised 22 women with PMDD and 22 age-matched healthy controls who underwent 3T (1)H MRS during the late luteal phase of the menstrual cycle. GABA+ and Glx levels were quantified in the anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC) and the left basal ganglia (ltBG). Water-scaled GABA+ concentrations and GABA+/tCr ratios were significantly lower in both the ACC/mPFC and ltBG regions of PMDD women than in healthy controls. Glx/tCr ratios were significantly higher in the ACC/mPFC region of PMDD women than healthy controls. Our preliminary findings provide the first report of abnormal levels of GABA+ and Glx in mood-related brain regions of women with PMDD, indicating that dysregulation of the amino acid neurotransmitter system may be an important neurobiological mechanism in the pathogenesis of PMDD.

  16. Brain metabolite changes in patients with type 2 diabetes and cerebral infarction using proton magnetic resonance spectroscopy.

    PubMed

    Zhang, Min; Sun, Xinhai; Zhang, Zhengjun; Meng, Qiang; Wang, Yuzhong; Chen, Jing; Ma, Xueqin; Geng, Houfa; Sun, Lin

    2014-01-01

    The aim of this study was to investigate the possible brain metabolic alterations in patients with type 2 diabetes mellitus (T2DM) and cerebral infarction (DMCI) using proton magnetic resonance spectroscopy (MRS). Thirty-four patients with T2DM and DMCI were scanned together with 33 patients with nondiabetic cerebral infarction (NDCI) on a 1.5-T MRI/MRS imager. Voxels were placed in the infarcted area and the contralateral normal area in the basal ganglia. N-acetylaspartate (NAA)/creatine (Cr), choline (Cho)/Cr, and lactate (Lac)/Cr ratios were calculated. Cerebral NAA/Cr ratios in the infarcted area were lower than those in the contralateral normal area of the NDCI group. There was a significant decrease in NAA/Cr in the infarcted area of the DMCI group as compared with the infarcted area of the NDCI group. NAA/Cr ratios in the contralateral normal area of DMCI group were lower than those of the NDCI group. Lac/Cr ratios were increased in the infarcted area of both the DMCI group and NDCI group, and Lac/Cr ratios tended to be higher in the infarcted area of the DMCI group than those of the NDCI group. Glycosylated hemoglobin (HbA1c) levels were negatively correlated with NAA/Cr ratios. The study suggested that the metabolite changes were different between DMCI patients and NDCI patients, which may provide important information in the treatment of DMCI.

  17. Amide proton transfer magnetic resonance imaging in detecting intracranial hemorrhage at different stages: a comparative study with susceptibility weighted imaging

    PubMed Central

    Ma, Xiaoyue; Bai, Yan; Lin, Yusong; Hong, Xiaohua; Liu, Taiyuan; Ma, Lun; Haacke, E Mark; Zhou, Jinyuan; Wang, Jian; Wang, Meiyun

    2017-01-01

    Amide proton transfer (APT) imaging is a noninvasive molecular magnetic resonance imaging (MRI) technique based on the chemical exchange-dependent saturation transfer mechanism. The purpose of this study was to investigate the diagnostic performance of APT MRI in detecting intracranial hemorrhage (ICH) at hyperacute, acute and subacute stages by comparing with susceptibility weighted imaging (SWI). APT MRI and SWI were performed on 33 included patients with ICH by using a 3-T MRI unit. A two-sided Mann-Whitney U test was used to detect differences in APT-weighted (APTw) and SWI signal intensities of ICH at hyperacute, acute and subacute stages. Receiver operating characteristic analysis was used to assess the diagnostic utilities of APT MRI and SWI. Our results showed that APT MRI could detect ICH at hyperacute, acute and subacute stages. Therefore, APTw signal intensity may serve as a reliable, noninvasive imaging biomarker for detecting ICH at hyperacute, acute and subacute stages. Moreover, APT MRI could provide additional information for the ICH compared with SWI. PMID:28374764

  18. Proton magnetic resonance neurospectroscopy and EEG cartography in corticobasal degeneration: correlations with neuropsychological signs

    PubMed Central

    Vion-Dury, J; Rochefort, N; Michotey, P; Planche, D; Ceccaldi, M

    2004-01-01

    Methods: Eight patients with probable CBD were included in the study after full neurological examination and extensive neuropsychological testing, single photon emission computed tomography, anatomical x ray tomodensitometry (TDM), magnetic resonance imaging, and MRS examination. Results: MR spectra were abnormal in all seven patients in whom the examination could be completed. The EEG was also always modified in the CBD patients, and the abnormalities were enhanced by activation procedures. There was a good correlation between MRS anomalies and clinical presentation, between EEG modifications and neuropsychological patterns, and between metabolic (MRS) impairment and electrophysiological (EEG) slowing. Conclusions: These results confirm the asymmetrical features of CBD. Combined EEGq/MRS examinations at disease onset and during its subsequent course could provide strong diagnostic evidence of CBD. PMID:15314134

  19. Quantitative proton nuclear magnetic resonance for the structural and quantitative analysis of atropine sulfate.

    PubMed

    Shen, Shi; Yao, Jing; Shi, Yaqin

    2014-02-01

    This study assessed a general method of quantitative nuclear magnetic resonance (qNMR) for the calibration of atropine sulfate (Active Pharmaceutical Ingredient, API) as reference standard. The spectra were acquired in D2O using maleic acid as the internal standard. Conformational behaviors of tropane ring were observed and studied by means of NMR and ROESY experiments at different temperature, which showed that the azine methyl group was at equilibrium for axial and equatorial conformations at room temperature. Signal delay and monitor signals of qNMR experimentation were optimized for quantification. The study reported here validated the method's linearity, range, limit of quantification, stability and precision. The results were consistent with the results obtained from mass balance approach.

  20. Proton-conductive magnetic metal-organic frameworks, {NR3(CH2COOH)}[M(a)(II)M(b)(III)(ox)3]: effect of carboxyl residue upon proton conduction.

    PubMed

    Ōkawa, Hisashi; Sadakiyo, Masaaki; Yamada, Teppei; Maesato, Mitsuhiko; Ohba, Masaaki; Kitagawa, Hiroshi

    2013-02-13

    Proton-conductive magnetic metal-organic frameworks (MOFs), {NR(3)(CH(2)COOH)}[M(a)(II)M(b)(III)(ox)(3)] (abbreviated as R-M(a)M(b): R = ethyl (Et), n-butyl (Bu); M(a)M(b) = MnCr, FeCr, FeFe) have been studied. The following six MOFs were prepared: Et-MnCr·2H(2)O, Et-FeCr·2H(2)O, Et-FeFe·2H(2)O, Bu-MnCr, Bu-FeCr, and Bu-FeFe. The structure of Bu-MnCr was determined by X-ray crystallography. Crystal data: trigonal, R3c (#161), a = 9.3928(13) Å, c = 51.0080(13) Å, Z = 6. The crystal consists of oxalate-bridged bimetallic layers interleaved by {NBu(3)(CH(2)COOH)}(+) ions. Et-MnCr·2H(2)O and Bu-MnCr (R-MnCr MOFs) show a ferromagnetic ordering with T(C) of 5.5-5.9 K, and Et-FeCr·2H(2)O and Bu-FeCr (R-FeCr MOFs) also show a ferromagnetic ordering with T(C) of 11.0-11.5 K. Et-FeFe·2H(2)O and Bu-FeFe (R-FeFe MOFs) belong to the class II of mixed-valence compounds and show the magnetism characteristic of Néel N-type ferrimagnets. The Et-MOFs (Et-MnCr·2H(2)O, Et-FeCr·2H(2)O and Et-FeFe·2H(2)O) show high proton conduction, whereas the Bu-MOFs (Bu-MnCr, Bu-FeCr, and Bu-FeFe) show moderate proton conduction. Together with water adsorption isotherm studies, the significance of the carboxyl residues as proton carriers is revealed. The R-MnCr MOFs and the R-FeCr MOFs are rare examples of coexistent ferromagnetism and proton conduction, and the R-FeFe MOFs are the first examples of coexistent Néel N-type ferrimagnetism and proton conduction.

  1. Comparisons of Simulated and Observed Stormtime Magnetic Intensities, Ion Plasma Parameters, and ENA Proton Flux in the Ring Current During Storms

    NASA Astrophysics Data System (ADS)

    Chen, M. W.; Lemon, C.; Guild, T. B.; Schulz, M.; Roeder, J. L.; Le, G.; Lui, T.; Goldstein, J.

    2010-12-01

    In this study we compare simulated and observed stormtime magnetic intensities, proton flux spectra and/or ENA fluxes for two storm events to test how well self-consistent simulations can simultaneously reproduce these quantities. We simulate the ring current and plasma sheet using the magnetically and electrostatically self-consistent Rice Convection Model-Equilibrium (RCM-E) [Lemon et al., JGR, 2004] with a time-varying magnetopause driven by upstream solar wind and interplanetary magnetic field (IMF) conditions. Using either in-situ data (e.g., LANL/MPA and SOPA) or the empirical IMF-dependent model of Tsyganenko and Mukai [JGR, 2003], we specify the plasma sheet pressure and density at 10 Earth radii as the plasma boundary location in the RCM-E. We compare the simulated magnetic intensity with the magnetic intensity measured by magnetometers on the GOES satellites at geosynchronous altitude (6.6 Earth radii) and any other available satellite. We simulate a larger (11 August 2000; minimum Dst = -106 nT) and a smaller (6 April 2010; minimum Dst = 73 nT) storm. For the 11 August 2000 storm, we compare simulated and observed proton spectra (LANL/MPA and SOPA and Polar/CAMMICE). For the more recent 6 April 2010 storm we compare simulated and observed proton spectra (THEMIS) and energetic neutral atom (ENA) flux (TWINS). We discuss the response of the ring current magnetic field and ion flux distribution to expansions and compressions of the magnetosphere associated with the dynamic solar wind pressure for these storm events.

  2. Proton and phosphorus magnetic resonance spectroscopy of the healthy human breast at 7 T

    PubMed Central

    Stehouwer, Bertine L.; Boer, Vincent O.; Luijten, Peter R.; Klomp, Dennis W.J.; Wijnen, Jannie P.

    2016-01-01

    In vivo water‐ and fat‐suppressed 1H magnetic resonance spectroscopy (MRS) and 31P magnetic resonance adiabatic multi‐echo spectroscopic imaging were performed at 7 T in duplicate in healthy fibroglandular breast tissue of a group of eight volunteers. The transverse relaxation times of 31P metabolites were determined, and the reproducibility of 1H and 31P MRS was investigated. The transverse relaxation times for phosphoethanolamine (PE) and phosphocholine (PC) were fitted bi‐exponentially, with an added short T 2 component of 20 ms for adenosine monophosphate, resulting in values of 199 ± 8 and 239 ± 14 ms, respectively. The transverse relaxation time for glycerophosphocholine (GPC) was also fitted bi‐exponentially, with an added short T 2 component of 20 ms for glycerophosphatidylethanolamine, which resonates at a similar frequency, resulting in a value of 177 ± 6 ms. Transverse relaxation times for inorganic phosphate, γ‐ATP and glycerophosphatidylcholine mobile phospholipid were fitted mono‐exponentially, resulting in values of 180 ± 4, 19 ± 3 and 20 ± 4 ms, respectively. Coefficients of variation for the duplicate determinations of 1H total choline (tChol) and the 31P metabolites were calculated for the group of volunteers. The reproducibility of inorganic phosphate, the sum of phosphomonoesters and the sum of phosphodiesters with 31P MRS imaging was superior to the reproducibility of 1H MRS for tChol. 1H and 31P data were combined to calculate estimates of the absolute concentrations of PC, GPC and PE in healthy fibroglandular tissue, resulting in upper limits of 0.1, 0.1 and 0.2 mmol/kg of tissue, respectively. PMID:28032377

  3. Proton magnetic resonance spectroscopy of human brain in vivo in the evaluation of multiple sclerosis: Assessment of the load of disease

    SciTech Connect

    Arnold, D.L.; Matthews, P.M.; Francis, G.; Antel, J. )

    1990-04-01

    Image localized, water-suppressed proton magnetic resonance spectra were obtained from affected brain in patients with multiple sclerosis. In patients with moderate to severe chronic disease, spectra revealed a decreased ratio of N-acetylaspartate to creatine resonance intensities. A normal ratio was obtained from a large recently symptomatic MRI plaque that resolved without sequelae. We propose that the observed metabolite changes can be useful as an index of irreversible CNS injury.

  4. Characterization of proton exchange membrane materials for fuel cells by solid state nuclear magnetic resonance

    SciTech Connect

    Kong, Zueqian

    2010-01-01

    Solid-state nuclear magnetic resonance (NMR) has been used to explore the nanometer-scale structure of Nafion, the widely used fuel cell membrane, and its composites. We have shown that solid-state NMR can characterize chemical structure and composition, domain size and morphology, internuclear distances, molecular dynamics, etc. The newly-developed water channel model of Nafion has been confirmed, and important characteristic length-scales established. Nafion-based organic and inorganic composites with special properties have also been characterized and their structures elucidated. The morphology of Nafion varies with hydration level, and is reflected in the changes in surface-to-volume (S/V) ratio of the polymer obtained by small-angle X-ray scattering (SAXS). The S/V ratios of different Nafion models have been evaluated numerically. It has been found that only the water channel model gives the measured S/V ratios in the normal hydration range of a working fuel cell, while dispersed water molecules and polymer ribbons account for the structures at low and high hydration levels, respectively.

  5. Investigating the Dissolution Performance of Amorphous Solid Dispersions Using Magnetic Resonance Imaging and Proton NMR.

    PubMed

    Tres, Francesco; Coombes, Steven R; Phillips, Andrew R; Hughes, Leslie P; Wren, Stephen A C; Aylott, Jonathan W; Burley, Jonathan C

    2015-09-10

    We have investigated the dissolution performance of amorphous solid dispersions of poorly water-soluble bicalutamide in a Kollidon VA64 polymeric matrix as a function of the drug loading (5% vs. 30% bicalutamide). A combined suite of state-of-the-art analytical techniques were employed to obtain a clear picture of the drug release, including an integrated magnetic resonance imaging UV-Vis flow cell system and 1H-NMR. Off-line 1H-NMR was used for the first time to simultaneously measure the dissolution profiles and rates of both the drug and the polymer from a solid dispersion. MRI and 1H-NMR data showed that the 5% drug loading compact erodes linearly, and that bicalutamide and Kollidon VA64 are released at approximately the same rate from the molecular dispersion. For the 30% extrudate, data indicated a slower water ingress into the compact which corresponds to a slower dissolution rate of both bicalutamide and Kollidon VA64.

  6. Diet treatment of branched chain ketoaciduria studied by proton magnetic resonance spectroscopy.

    PubMed

    Pontoni, G; Rotondo, F; Vacchiano, T M; Pinto, L; Perrotta, V; Pietra, D D; Cartenì-Farina, M; Zappia, V

    1996-03-01

    A novel nuclear magnetic resonance method is proposed for the diagnosis and follow-up of patients affected by branched chain ketoaciduria. The method allows quantitation of the branched chain amino acids (BCAA's) such as leucine, isoleucine and valine and of related keto- and hydroxy acids by means of a single spectrum. The method implies short time of analysis, as opposed to the very long time required by the techniques currently in use (amino acid analyzer combined with gaschromatography/mass spectrometry of keto- and hydroxyacids), it is easy and suitable for adjustements of the dietary treatment even on a daily basis. The case of a 15 days old newborn child, presenting muscular hypertonicity was unambiguously diagnosed in few minutes by means of one single NMR spectrum of urine. More interestingly, NMR spectra of serum in the following days were suitable for quantitating amino-, and keto acids as well as other metabolites of relevance in the follow up of the dietary treatment of the disease. After a diet lacking of BCAA's, to eliminate keto acids, a low BCAA diet was introduced, that succeeded in keeping the serum levels of the three amino acids within the normal range, while dropping the related keto acids.

  7. New magnetic monopole flux limits from the IMB proton decay detector

    SciTech Connect

    Becker-Szendy, R.; Bratton, C.B.; Breault, J.; Casper, D.; Dye, S.T.; Ganezer, K.; Gajewski, W.; Goldhaber, M.; Haines, T.J.; Halverson, P.G.; Kielczewska, D.; Kropp, W.R.; Learned, J.G.; LoSecco, J.; Matsuno, S.; McGrath, G.; McGrew, C.; Miller, R.S.; Price, L.; Reines, F.; Schultz, J.; Sobel, H.W.; Stone, J.L.; Sulak, L.R.; Svoboda, R. |||||||||

    1994-03-01

    An improved limit on the flux of magnetic monopoles in the vicinity of the solar system is obtained, assuming that monopoles strongly catalyze nucleon decay (the Rubakov-Callan effect). Flux limits are presented for monopole velocities from 10{sup {minus}5}{ital c} to 10{sup {minus}1}{ital c} and for monopole-nucleon cross sections between 10{sup {minus}27} cm{sup 2} and 10{sup {minus}21} cm{sup 2}. For a representative velocity {beta}{approx}10{sup {minus}3}, and cross section {sigma}{approx}10{sup {minus}24} cm{sup 2}, we obtain a limit {ital F}{sub {ital m}}{lt}2.7{times}10{sup {minus}15} cm{sup {minus}2} sr{minus}1 sec {sup {minus}1} and for {sigma}{approx}10{sup {minus}25} cm{sup 2}, {ital F}{sub {ital m}}{lt}1.0{times}10{sup {minus}15} cm{sup {minus}2}sr{sup {minus}1}sec{sup {minus}1} at 90% C.L.

  8. Proton: the particle.

    PubMed

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10(80). Protons were created at 10(-6) -1 second after the Big Bang at ≈1.37 × 10(10) years beforethe present. Proton life span has been experimentally determined to be ≥10(34) years; that is, the age of the universe is 10(-24)th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W(+), W(-), Z(0), and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter.

  9. Proton: The Particle

    SciTech Connect

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10{sup 80}. Protons were created at 10{sup −6} –1 second after the Big Bang at ≈1.37 × 10{sup 10} years beforethe present. Proton life span has been experimentally determined to be ≥10{sup 34} years; that is, the age of the universe is 10{sup −24}th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W{sup +}, W{sup −}, Z{sup 0}, and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter.

  10. Proton Nuclear Magnetic Resonance-Spectroscopic Discrimination of Wines Reflects Genetic Homology of Several Different Grape (V. vinifera L.) Cultivars

    PubMed Central

    Zhu, Yong; Wen, Wen; Zhang, Fengmin; Hardie, Jim W.

    2015-01-01

    Background and Aims Proton nuclear magnetic resonance spectroscopy coupled multivariate analysis (1H NMR-PCA/PLS-DA) is an important tool for the discrimination of wine products. Although 1H NMR has been shown to discriminate wines of different cultivars, a grape genetic component of the discrimination has been inferred only from discrimination of cultivars of undefined genetic homology and in the presence of many confounding environmental factors. We aimed to confirm the influence of grape genotypes in the absence of those factors. Methods and Results We applied 1H NMR-PCA/PLS-DA and hierarchical cluster analysis (HCA) to wines from five, variously genetically-related grapevine (V. vinifera) cultivars; all grown similarly on the same site and vinified similarly. We also compared the semi-quantitative profiles of the discriminant metabolites of each cultivar with previously reported chemical analyses. The cultivars were clearly distinguishable and there was a general correlation between their grouping and their genetic homology as revealed by recent genomic studies. Between cultivars, the relative amounts of several of the cultivar-related discriminant metabolites conformed closely with reported chemical analyses. Conclusions Differences in grape-derived metabolites associated with genetic differences alone are a major source of 1H NMR-based discrimination of wines and 1H NMR has the capacity to discriminate between very closely related cultivars. Significance of the Study The study confirms that genetic variation among grape cultivars alone can account for the discrimination of wine by 1H NMR-PCA/PLS and indicates that 1H NMR spectra of wine of single grape cultivars may in future be used in tandem with hierarchical cluster analysis to elucidate genetic lineages and metabolomic relations of grapevine cultivars. In the absence of genetic information, for example, where predecessor varieties are no longer extant, this may be a particularly useful approach. PMID

  11. Proton magnetic resonance spectroscopy assessment of metabolite status of the anterior cingulate cortex in chronic pain patients and healthy controls

    PubMed Central

    Ito, Takahiro; Tanaka-Mizuno, Sachiko; Iwashita, Narihito; Tooyama, Ikuo; Shiino, Akihiko; Miura, Katsuyuki; Fukui, Sei

    2017-01-01

    Background Chronic pain is a common cause of reduced quality of life. Recent studies suggest that chronic pain patients have a different brain neurometabolic status to healthy people. Proton magnetic resonance spectroscopy (1H-MRS) can determine the concentrations of metabolites in a specific region of the brain without being invasive. Patients and methods We recruited 56 chronic pain patients and 60 healthy controls to compare brain metabolic characteristics. The concentrations of glutamic acid (Glu), myo-inositol (Ins), N-acetylaspartate (NAA), Glu + glutamine (Glx), and creatine + phosphocreatine (total creatine [tCr]) in the anterior cingulate cortex of participants were measured using 1H-MRS. We used age- and gender-adjusted general linear models and receiver-operating characteristic analyses for this investigation. Patients were also assessed using the Hospital Anxiety and Depression Scale (HADS) to reveal the existence of any mental health issues. Results Our analysis indicates that pain patients have statistically significantly higher levels of Glu/tCr (p=0.039) and Glx/tCr (p<0.001) and lower levels of NAA/tCr than controls, although this did not reach statistical significance (p=0.052). Receiver-operating characteristic analysis performed on the combination of Glx/tCr, Ins/tCr, and NAA/tCr effectively discriminated chronic pain patients from healthy controls. Patients with higher HADS-Depression scores had increased Glx/rCr levels (p=0.015), and those with higher HADS-Anxiety scores had increased NAA/tCr levels (p=0.018). Conclusion Chronic pain patients have a different metabolite status in the anterior cingulate cortex to controls. Within the pain patient group, HADS scores had a positive relationship with NAA/tCr and Glx/tCr levels. 1H-MRS successfully detected metabolic changes in patients’ brains in a noninvasive manner, revealing its potential as a superior diagnostic tool for pain patients. PMID:28203104

  12. The emergence of proton nuclear magnetic resonance metabolomics in the cardiovascular arena as viewed from a clinical perspective

    PubMed Central

    Rankin, Naomi J.; Preiss, David; Welsh, Paul; Burgess, Karl E.V.; Nelson, Scott M.; Lawlor, Debbie A.; Sattar, Naveed

    2014-01-01

    The ability to phenotype metabolic profiles in serum has increased substantially in recent years with the advent of metabolomics. Metabolomics is the study of the metabolome, defined as those molecules with an atomic mass less than 1.5 kDa. There are two main metabolomics methods: mass spectrometry (MS) and proton nuclear magnetic resonance (1H NMR) spectroscopy, each with its respective benefits and limitations. MS has greater sensitivity and so can detect many more metabolites. However, its cost (especially when heavy labelled internal standards are required for absolute quantitation) and quality control is sub-optimal for large cohorts. 1H NMR is less sensitive but sample preparation is generally faster and analysis times shorter, resulting in markedly lower analysis costs. 1H NMR is robust, reproducible and can provide absolute quantitation of many metabolites. Of particular relevance to cardio-metabolic disease is the ability of 1H NMR to provide detailed quantitative data on amino acids, fatty acids and other metabolites as well as lipoprotein subparticle concentrations and size. Early epidemiological studies suggest promise, however, this is an emerging field and more data is required before we can determine the clinical utility of these measures to improve disease prediction and treatment. This review describes the theoretical basis of 1H NMR; compares MS and 1H NMR and provides a tabular overview of recent 1H NMR-based research findings in the atherosclerosis field, describing the design and scope of studies conducted to date. 1H NMR metabolomics-CVD related research is emerging, however further large, robustly conducted prospective, genetic and intervention studies are needed to advance research on CVD risk prediction and to identify causal pathways amenable to intervention. PMID:25299963

  13. Proton magnetic resonance studies on peptide fragments of troponin-C containing single calcium-binding sites.

    PubMed

    Leavis, P C; Evans, J S; Levine, B A

    1982-07-01

    Proton magnetic resonance spectroscopy has been employed to study the solution conformation of three cleavage fragments of troponin-C, each containing a single Ca(II)-binding site and corresponding to different regions in the primary sequence; viz. CB8 (residues 46-77), CB9 (residues 85-134) and TH2 (residues 121-159). Although all three peptides lack a well-defined tertiary fold in the absence of metal ions, several spectral features indicate the presence of local conformational constraints in each apo-peptide. Ca(II) binding led to spectral changes consistent with increased restriction of backbone motility and the adoption of a more compact conformation. Studies using paramagnetic ions as conformational probes support current views concerning the nature of the ligands at the metal binding sites. The nature and kinetics of the structural influence of metal binding suggest that the conformational constraints existing in the CB8 apo-peptide provide an adequate Ca(II)-binding configuration. In contrast, the CB9 and TH2 peptides exhibit spectral changes consistent with an increased local structure in the region of helix E (residues 94-102) in the case of CB9 and helix H (residues 148-159) in the case of TH2. In CB9, conformation changes also appear to be transmitted to a portion of the sequence (residues 87-93) preceding helix E, a putative site of interaction between troponin-C and troponin-I. These data are discussed with reference to the contribution of long-range (interdomain) interactions within troponin-C and the modulation of troponin subunit protein-protein interactions by Ca(II) binding.

  14. Dose-Volume Differences for Computed Tomography and Magnetic Resonance Imaging Segmentation and Planning for Proton Prostate Cancer Therapy

    SciTech Connect

    Yeung, Anamaria R.; Vargas, Carlos E. Falchook, Aaron; Louis, Debbie C.; Olivier, Kenneth; Keole, Sameer; Yeung, Daniel; Mendenhall, Nancy P.; Li Zuofeng

    2008-12-01

    Purpose: To determine the influence of magnetic-resonance-imaging (MRI)-vs. computed-tomography (CT)-based prostate and normal structure delineation on the dose to the target and organs at risk during proton therapy. Methods and Materials: Fourteen patients were simulated in the supine position using both CT and T2 MRI. The prostate, rectum, and bladder were delineated on both imaging modalities. The planning target volume (PTV) was generated from the delineated prostates with a 5-mm axial and 8-mm superior and inferior margin. Two plans were generated and analyzed for each patient: an MRI plan based on the MRI-delineated PTV, and a CT plan based on the CT-delineated PTV. Doses of 78 Gy equivalents (GE) were prescribed to the PTV. Results: Doses to normal structures were lower when MRI was used to delineate the rectum and bladder compared with CT: bladder V50 was 15.3% lower (p = 0.04), and rectum V50 was 23.9% lower (p = 0.003). Poor agreement on the definition of the prostate apex was seen between CT and MRI (p = 0.007). The CT-defined prostate apex was within 2 mm of the apex on MRI only 35.7% of the time. Coverage of the MRI-delineated PTV was significantly decreased with the CT-based plan: the minimum dose to the PTV was reduced by 43% (p < 0.001), and the PTV V99% was reduced by 11% (p < 0.001). Conclusions: Using MRI to delineate the prostate results in more accurate target definition and a smaller target volume compared with CT, allowing for improved target coverage and decreased doses to critical normal structures.

  15. Binge Toluene Exposure Alters Glutamate, Glutamine and GABA in the Adolescent Rat Brain as Measured by Proton Magnetic Resonance Spectroscopy*

    PubMed Central

    Perrine, Shane A.; O'Leary-Moore, Shonagh K.; Galloway, Matthew P.; Hannigan, John H.; Bowen, Scott E.

    2010-01-01

    Despite the high incidence of toluene abuse in adolescents, little is known regarding the effect of binge exposure on neurochemical profiles during this developmental stage. In the current study, the effects of binge toluene exposure during adolescence on neurotransmitter levels were determined using high-resolution proton magnetic resonance spectroscopy ex vivo at 11.7 T. Adolescent male Sprague-Dawley rats were exposed to toluene (0, 8,000 , or 12,000 ppm) for 15 min twice daily from postnatal day 28 (P28) through P34 and then euthanized either one or seven days later (on P35 or P42) to assess glutamate, glutamine, and GABA levels in intact tissue punches from the medial prefrontal cortex (mPFC), anterior striatum and hippocampus. In the mPFC, toluene reduced glutamate one day after exposure, with no effect on GABA, while after seven days, glutamate was no longer affected but there was an increase in GABA levels. In the hippocampus, neither GABA nor glutamate was altered one day after exposure, whereas seven days after exposure, increases were observed in GABA and glutamate. Striatal glutamate and GABA levels measured after either one or seven days were not altered after toluene exposure. These findings show that one week of binge toluene inhalation selectively alters these neurotransmitters in the mPFC and hippocampus in adolescent rats, and that some of these effects endure at least one week after the exposure. The results suggest that age-dependent, differential neurochemical responses to toluene may contribute to the unique behavioral patterns associated with drug abuse among older children and young teens. PMID:21126832

  16. Altered white matter metabolism in delayed neurologic sequelae after carbon monoxide poisoning: A proton magnetic resonance spectroscopic study.

    PubMed

    Kuroda, Hiroshi; Fujihara, Kazuo; Mugikura, Shunji; Takahashi, Shoki; Kushimoto, Shigeki; Aoki, Masashi

    2016-01-15

    Proton magnetic resonance spectroscopy ((1)H-MRS) was recently used to examine altered metabolism in the white matter (WM) of patients experiencing carbon monoxide (CO) poisoning; however, only a small number of patients with delayed neurologic sequelae (DNS) were analyzed. We aimed to detect altered metabolism in the WM of patients with DNS using (1)H-MRS; to explore its clinical relevance in the management of patients experiencing CO poisoning. Patients experiencing acute CO poisoning underwent (1)H-MRS and cerebrospinal fluid (CSF) examination within 1week and at 1month after acute poisoning. Metabolites including choline-containing compounds (Cho), creatine (Cr), N-acetylaspartate (NAA), and lactate were measured from the periventricular WM. Myelin basic protein (MBP) concentrations were measured in CSF. Fifty-two patients experiencing acute CO poisoning (15 with DNS, 37 without DNS; median age, 49years; 65% males) underwent (1)H-MRS. Within 1week, NAA/Cr ratios, reflecting neuroaxonal viability, were lower in patients with DNS than in those without DNS (P<0.05). At 1month, when 9 of 15 patients (60%) developed DNS, Cho/Cr ratios were higher, and NAA/Cr and NAA/Cho ratios lower in patients with DNS (P=0.0001, <0.0001, and <0.0001, respectively), indicating increased membrane metabolism and decreased neuroaxonal viability. (1)H-MRS parameter abnormalities correlated with the elevation of MBP in CSF. The presence of a lactate peak was a predictor for a poor long-term outcome. (1)H-MRS within 1week may be useful for predicting DNS development; (1)H-MRS at 1month may be useful for discriminating patients with DNS and predicting long-term outcomes.

  17. The emergence of proton nuclear magnetic resonance metabolomics in the cardiovascular arena as viewed from a clinical perspective.

    PubMed

    Rankin, Naomi J; Preiss, David; Welsh, Paul; Burgess, Karl E V; Nelson, Scott M; Lawlor, Debbie A; Sattar, Naveed

    2014-11-01

    The ability to phenotype metabolic profiles in serum has increased substantially in recent years with the advent of metabolomics. Metabolomics is the study of the metabolome, defined as those molecules with an atomic mass less than 1.5 kDa. There are two main metabolomics methods: mass spectrometry (MS) and proton nuclear magnetic resonance ((1)H NMR) spectroscopy, each with its respective benefits and limitations. MS has greater sensitivity and so can detect many more metabolites. However, its cost (especially when heavy labelled internal standards are required for absolute quantitation) and quality control is sub-optimal for large cohorts. (1)H NMR is less sensitive but sample preparation is generally faster and analysis times shorter, resulting in markedly lower analysis costs. (1)H NMR is robust, reproducible and can provide absolute quantitation of many metabolites. Of particular relevance to cardio-metabolic disease is the ability of (1)H NMR to provide detailed quantitative data on amino acids, fatty acids and other metabolites as well as lipoprotein subparticle concentrations and size. Early epidemiological studies suggest promise, however, this is an emerging field and more data is required before we can determine the clinical utility of these measures to improve disease prediction and treatment. This review describes the theoretical basis of (1)H NMR; compares MS and (1)H NMR and provides a tabular overview of recent (1)H NMR-based research findings in the atherosclerosis field, describing the design and scope of studies conducted to date. (1)H NMR metabolomics-CVD related research is emerging, however further large, robustly conducted prospective, genetic and intervention studies are needed to advance research on CVD risk prediction and to identify causal pathways amenable to intervention.

  18. Neurochemical alterations in methamphetamine-dependent patients treated with cytidine-5'-diphosphate choline: a longitudinal proton magnetic resonance spectroscopy study.

    PubMed

    Yoon, Sujung J; Lyoo, In Kyoon; Kim, Hengjun J; Kim, Tae-Suk; Sung, Young Hoon; Kim, Namkug; Lukas, Scott E; Renshaw, Perry F

    2010-04-01

    Cytidine-5'-diphosphate choline (CDP-choline), as an important intermediate for major membrane phospholipids, may exert neuroprotective effects in various neurodegenerative disorders. This longitudinal proton magnetic resonance spectroscopy ((1)H-MRS) study aimed to examine whether a 4-week CDP-choline treatment could alter neurometabolite levels in patients with methamphetamine (MA) dependence and to investigate whether changes in neurometabolite levels would be associated with MA use. We hypothesized that the prefrontal levels of N-acetyl-aspartate (NAA), a neuronal marker, and choline-containing compound (Cho), which are related to membrane turnover, would increase with CDP-choline treatment in MA-dependent patients. We further hypothesized that this increase would correlate with the total number of negative urine results. Thirty-one treatment seekers with MA dependence were randomly assigned to receive CDP-choline (n=16) or placebo (n=15) for 4 weeks. Prefrontal NAA and Cho levels were examined using (1)H-MRS before medication, and at 2 and 4 weeks after treatment. Generalized estimating equation regression analyses showed that the rate of change in prefrontal NAA (p=0.005) and Cho (p=0.03) levels were greater with CDP-choline treatment than with placebo. In the CDP-choline-treated patients, changes in prefrontal NAA levels were positively associated with the total number of negative urine results (p=0.03). Changes in the prefrontal Cho levels, however, were not associated with the total number of negative urine results. These preliminary findings suggest that CDP-choline treatment may exert potential neuroprotective effects directly or indirectly because of reductions in drug use by the MA-dependent patients. Further studies with a larger sample size of MA-dependent patients are warranted to confirm a long-term efficacy of CDP-choline in neuroprotection and abstinence.

  19. Accuracy and stability of measuring GABA, glutamate, and glutamine by proton magnetic resonance spectroscopy: A phantom study at 4 Tesla

    NASA Astrophysics Data System (ADS)

    Henry, Michael E.; Lauriat, Tara L.; Shanahan, Meghan; Renshaw, Perry F.; Jensen, J. Eric

    2011-02-01

    Proton magnetic resonance spectroscopy has the potential to provide valuable information about alterations in gamma-aminobutyric acid (GABA), glutamate (Glu), and glutamine (Gln) in psychiatric and neurological disorders. In order to use this technique effectively, it is important to establish the accuracy and reproducibility of the methodology. In this study, phantoms with known metabolite concentrations were used to compare the accuracy of 2D J-resolved MRS, single-echo 30 ms PRESS, and GABA-edited MEGA-PRESS for measuring all three aforementioned neurochemicals simultaneously. The phantoms included metabolite concentrations above and below the physiological range and scans were performed at baseline, 1 week, and 1 month time-points. For GABA measurement, MEGA-PRESS proved optimal with a measured-to-target correlation of R2 = 0.999, with J-resolved providing R2 = 0.973 for GABA. All three methods proved effective in measuring Glu with R2 = 0.987 (30 ms PRESS), R2 = 0.996 (J-resolved) and R2 = 0.910 (MEGA-PRESS). J-resolved and MEGA-PRESS yielded good results for Gln measures with respective R2 = 0.855 (J-resolved) and R2 = 0.815 (MEGA-PRESS). The 30 ms PRESS method proved ineffective in measuring GABA and Gln. When measurement stability at in vivo concentration was assessed as a function of varying spectral quality, J-resolved proved the most stable and immune to signal-to-noise and linewidth fluctuation compared to MEGA-PRESS and 30 ms PRESS.

  20. Toward a quantitative analysis of in vivo proton magnetic resonance spectroscopic signals using the continuous Morlet wavelet transform

    NASA Astrophysics Data System (ADS)

    Suvichakorn, A.; Ratiney, H.; Bucur, A.; Cavassila, S.; Antoine, J. P.

    2009-10-01

    We apply the Morlet wavelet transform (MWT) for quantitatively analyzing proton magnetic resonance spectroscopic (MRS) signals, more precisely signals acquired at short echo time. These signals contain many resonating components whose frequencies are characteristic of the observed metabolites, and amplitudes are directly related to the concentrations of these metabolites. With these powerful properties, in vivo MRS can be considered as a unique non-invasive tool to explore biochemical compounds of living tissues. However, the analysis and quantification of these metabolite contributions are difficult due to the low signal-to-noise ratio, the number of overlapping frequencies and the contamination of the signal of interest with water and a baseline originating from macromolecules and lipids. The baseline is a major obstacle for MRS quantification as its shape and intensity are generally not known a priori. In this paper, we present the methodology to quantify the signals by the MWT. We assess the ability of the proposed method to recover parameters such as metabolite amplitudes, frequencies and damping factors while facing successively quantification challenges arising from the non-Lorentzian lineshapes, overlapping frequencies, and noise or baseline. Tests of the method are performed on simulated signals alone or combined with either in vitro acquisition and/or in vivo macromolecular signal acquired on a horizontal 4.7 T scanner. In presence of the macromolecules, the amplitude parameter is correctly derived by the method, thanks to the time-scale representation of the wavelet which enables us to distinguish the two signals by their time decays and without any additional pre-processing.

  1. Proton magnetic resonance spectroscopy of brain metabolic shifts induced by acute administration of 2-deoxy-d-glucose and lipopolysaccharides.

    PubMed

    Moshkin, Mikhail P; Akulov, Andrey E; Petrovski, Dmitriy V; Saik, Olga V; Petrovskiy, Evgeny D; Savelov, Andrey A; Koptyug, Igor V

    2014-04-01

    In vivo proton magnetic resonance spectroscopy ((1) H MRS) of outbred stock ICR male mice (originating from the Institute of Cancer Research) was used to study the brain (hippocampus) metabolic response to the pro-inflammatory stimulus and to the acute deficiency of the available energy, which was confirmed by measuring the maximum oxygen consumption. Inhibition of glycolysis by means of an injection with 2-deoxy-d-glucose (2DG) reduced the levels of gamma-aminobutyric acid (GABA, p < 0.05, in comparison with control, least significant difference (LSD) test), N-acetylaspartate (NAA, p < 0.05, LSD test) and choline compounds, and at the same time increased the levels of glutamate and glutamine. An opposite effect was found after injection with bacterial lipopolysaccharide (LPS) - a very common pro-inflammatory inducer. An increase in the amounts of GABA, NAA and choline compounds in the brain occurred in mice treated with LPS. Different metabolic responses to the energy deficiency and the pro-inflammatory stimuli can explain the contradictory results of the brain (1) H MRS studies under neurodegenerative pathology, which is accompanied by both mitochondrial dysfunction and inflammation. The prevalence of the excitatory metabolites such as glutamate and glutamine in 2DG treated mice is in good agreement with excitation observed during temporary reduction of the available energy under acute hypoxia or starvation. In turn, LPS, as an inducer of the sickness behavior, which was manifested as depression, sleepiness, loss of appetite etc., shifts the brain metabolic pattern toward the prevalence of the inhibitory neurotransmitter GABA.

  2. Diet-Quality Scores and Prevalence of Nonalcoholic Fatty Liver Disease: A Population Study Using Proton-Magnetic Resonance Spectroscopy

    PubMed Central

    Chan, Ruth; Wong, Vincent Wai-Sun; Chu, Winnie Chiu-Wing; Wong, Grace Lai-Hung; Li, Liz Sin; Leung, Jason; Chim, Angel Mei-Ling; Yeung, David Ka-Wai; Sea, Mandy Man-Mei; Woo, Jean; Chan, Francis Ka-Leung; Chan, Henry Lik-Yuen

    2015-01-01

    Dietary pattern analysis is an alternative approach to examine the association between diet and nonalcoholic fatty liver disease (NAFLD). This study examined the association of two diet-quality scores, namely Diet Quality Index-International (DQI-I) and Mediterranean Diet Score (MDS) with NAFLD prevalence. Apparently healthy Chinese adults (332 male, 465 female) aged 18 years or above were recruited through a population screening between 2008 and 2010 in a cross-sectional population-based study in Hong Kong. DQI-I and MDS, as well as major food group and nutrient intakes were calculated based on dietary data from a food frequency questionnaire. NAFLD was defined as intrahepatic triglyceride content at ≥5% by proton-magnetic resonance spectroscopy. Multivariate logistic regression models were used to examine the association between each diet-quality score or dietary component and prevalent NAFLD with adjustment for potential lifestyle, metabolic and genetic factors. A total of 220 subjects (27.6%) were diagnosed with NAFLD. DQI-I but not MDS was associated with the prevalence of NAFLD. A 10-unit decrease in DQI-I was associated with 24% increase in the likelihood of having NAFLD in the age and sex adjusted model (95% CI: 1.06–1.45, p = 0.009), and the association remained significant when the model was further adjusted for other lifestyle factors, metabolic and genetic factors [OR: 1.26 (95% CI: 1.03–1.54), p = 0.027]. Multivariate regression analyses showed an inverse association of the intake of vegetables and legumes, fruits and dried fruits, as well as vitamin C with the NAFLD prevalence (p<0.05). In conclusion, a better diet quality as characterized by a higher DQI-I and a higher consumption of vegetables, legumes and fruits was associated with a reduced likelihood of having NAFLD in Hong Kong Chinese. PMID:26418083

  3. Metabolite profile in the basal ganglia of children with cerebral palsy: a proton magnetic resonance spectroscopy study.

    PubMed

    Kulak, Wojciech; Sobaniec, Wojciech; Smigielska-Kuzia, Joanna; Kubas, Bozena; Walecki, Jerzy

    2006-04-01

    This prospective study determined metabolite profile in the left and right basal ganglia of children with spastic cerebral palsy (CP) compared with children without disabilities, by using proton magnetic resonance spectroscopy (1HMRS). Twenty-three patients with spastic CP (12 males, 11 females; mean age 11y 9mo [SD 4y 2mo], range 4-17y) were examined. Twenty children had spastic diplegia and three had quadriplegia. Twenty-four normally developing children (13 females, 11 males; mean age 10y 3mo [SD 4y 8mo], range 4-17y) served as a comparison group. The relative concentrations of N-acetylaspartate (NAA), choline (Cho), myo-inositol (mI), and gamma-aminobutyric acid (GABA) were measured relative to creatine (Cr) and different combinations of metabolites within 8cm3 brain voxels. Children with CP showed reduced ratios of NAA:Cr, NAA:Cho, NAA:mI, and GABA:Cr in the basal ganglia relative to a matched comparison group. Patients demonstrated a significant age-dependent increase in NAA:Cr and NAA:Cho in the basal ganglia. No sex-dependent difference was shown in children with CP nor in the comparison group for all tested metabolite ratios. Significant correlation between Apgar score and ratio of mI:Cr in the group with CP was found. None of the tested metabolite ratios were correlated with the severity scale of CP in children with CP. NAA:Cr ratios were negatively correlated with learning disability in patients with CP. Results indicate the association of the metabolite ratios in basal ganglia with learning disability.

  4. Investigation of Heschl's Gyrus and Planum Temporale in Patients with Schizophrenia and Bipolar Disorder: a Proton Magnetic Resonance Spectroscopy Study

    PubMed Central

    Atagün, M.İ.; Şıkoğlu, E.M.; Can, S.S.; Karakaş-Uğurlu, G.; Ulusoy-Kaymak, S.; Çayköylü, A.; Algın, O.; Phillips, M.L.; Moore, C.M.; Öngür, D.

    2014-01-01

    Background Superior temporal cortices include brain regions dedicated to auditory processing and several lines of evidence suggest structural and functional abnormalities in both schizophrenia and bipolar disorder within this brain region. However, possible glutamatergic dysfunction within this region has not been investigated in adult patients. Methods Thirty patients with schizophrenia (38.67 ± 12.46 years of age), 28 euthymic patients with bipolar I disorder (35.32 ± 9.12 years of age), and 30 age-, gender- and education- matched healthy controls were enrolled. Proton Magnetic Resonance Spectroscopy data were acquired using a 3.0T Siemens MAGNETOM TIM Trio MR system and single voxel Point REsolved Spectroscopy Sequence (PRESS) in order to quantify brain metabolites within the left and right Heschl's Gyrus and Planum Temporale of superior temporal cortices. Results There were significant abnormalities in Glutamate (Glu) (F(2,78)=8.52, p<0.0001), n-Acetyl Aspartate (tNAA) (F(2,81)=5.73, p=0.005), Creatine (tCr) (F(2,83)=5.91, p=0.004) and Inositol (Ins) (F(2,82)=8.49, p<0.0001) concentrations in the left superior temporal cortex. In general, metabolite levels were lower for bipolar disorder patients when compared to healthy participants. Moreover, patients with bipolar disorder exhibited significantly lower tCr and Ins concentrations when compared to schizophrenia patients. In addition, we have found significant correlations between the superior temporal cortex metabolites and clinical measures. Conclusion As the left auditory cortices are associated with language and speech, left hemisphere specific abnormalities may have clinical significance. Our findings are suggestive of shared glutamatergic abnormalities in schizophrenia and bipolar disorder. PMID:25480359

  5. Multimodality imaging using proton magnetic resonance spectroscopic imaging and 18F-fluorodeoxyglucose-positron emission tomography in local prostate cancer

    PubMed Central

    Shukla-Dave, Amita; Wassberg, Cecilia; Pucar, Darko; Schöder, Heiko; Goldman, Debra A; Mazaheri, Yousef; Reuter, Victor E; Eastham, James; Scardino, Peter T; Hricak, Hedvig

    2017-01-01

    AIM To assess the relationship using multimodality imaging between intermediary citrate/choline metabolism as seen on proton magnetic resonance spectroscopic imaging (1H-MRSI) and glycolysis as observed on 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) in prostate cancer (PCa) patients. METHODS The study included 22 patients with local PCa who were referred for endorectal magnetic resonance imaging/1H-MRSI (April 2002 to July 2007) and 18F-FDG-PET/CT and then underwent prostatectomy as primary or salvage treatment. Whole-mount step-section pathology was used as the standard of reference. We assessed the relationships between PET parameters [standardized uptake value (SUVmax and SUVmean)] and MRSI parameters [choline + creatine/citrate (CC/Cmax and CC/Cmean) and total number of suspicious voxels] using spearman’s rank correlation, and the relationships of PET and 1H-MRSI index lesion parameters to surgical Gleason score. RESULTS Abnormal intermediary metabolism on 1H-MRSI was present in 21/22 patients, while abnormal glycolysis on 18F-FDG-PET/CT was detected in only 3/22 patients. Specifically, index tumor localization rates were 0.95 (95%CI: 0.77-1.00) for 1H-MRSI and 0.14 (95%CI: 0.03-0.35) for 18F-FDG-PET/CT. Spearman rank correlations indicated little relationship (ρ = -0.36-0.28) between 1H-MRSI parameters and 18F-FDG-PET/CT parameters. Both the total number of suspicious voxels (ρ = 0.55, P = 0.0099) and the SUVmax (ρ = 0.46, P = 0.0366) correlated weakly with the Gleason score. No significant relationship was found between the CC/Cmax, CC/Cmean or SUVmean and the Gleason score (P = 0.15-0.79). CONCLUSION The concentration of intermediary metabolites detected by 1H MRSI and glycolytic flux measured 18F-FDG PET show little correlation. Furthermore, only few tumors were FDG avid on PET, possibly because increased glycolysis represents a late and rather ominous event in the progression of PCa.

  6. CD4 T-cell memory generation and maintenance.

    PubMed

    Gasper, David J; Tejera, Melba Marie; Suresh, M

    2014-01-01

    Immunologic memory is the adaptive immune system's powerful ability to remember a previous antigen encounter and react with accelerated vigor upon antigen re-exposure. It provides durable protection against reinfection with pathogens and is the foundation for vaccine-induced immunity. Unlike the relatively restricted immunologic purview of memory B cells and CD8 T cells, the field of CD4 T-cell memory must account for multiple distinct lineages with diverse effector functions, the issue of lineage commitment and plasticity, and the variable distribution of memory cells within each lineage. Here, we discuss the evidence for lineage-specific CD4 T-cell memory and summarize the known factors contributing to memory-cell generation, plasticity, and long-term maintenance.

  7. Protonation of carbon single-walled nanotubes studied using 13C and 1H-13C cross polarization nuclear magnetic resonance and Raman spectroscopies.

    PubMed

    Engtrakul, Chaiwat; Davis, Mark F; Gennett, Thomas; Dillon, Anne C; Jones, Kim M; Heben, Michael J

    2005-12-14

    The reversible protonation of carbon single-walled nanotubes (SWNTs) in sulfuric acid and Nafion was investigated using solid-state nuclear magnetic resonance (NMR) and Raman spectroscopies. Magic-angle spinning (MAS) was used to obtain high-resolution 13C and 1H-13C cross polarization (CP) NMR spectra. The 13C NMR chemical shifts are reported for bulk SWNTs, H2SO4-treated SWNTs, SWNT-Nafion polymer composites, SWNT-AQ55 polymer composites, and SWNTs in contact with water. Protonation occurs without irreversible oxidation of the nanotube substrate via a charge-transfer process. This is the first report of a chemically induced change in a SWNT 13C resonance brought about by a reversible interaction with an acidic proton, providing additional evidence that carbon nanotubes behave as weak bases. Cross polarization was found to be a powerful technique for providing an additional contrast mechanism for studying nanotubes in contact with other chemical species. The CP studies confirmed polarization transfer from nearby protons to nanotube carbon atoms. The CP technique was also applied to investigate water adsorbed on carbon nanotube surfaces. Finally, the degree of bundling of the SWNTs in Nafion films was probed with the 1H-13C CP-MAS technique.

  8. Graphene oxide-Fe{sub 3}O{sub 4} nanoparticle composite with high transverse proton relaxivity value for magnetic resonance imaging

    SciTech Connect

    Venkatesha, N.; Srivastava, Chandan; Poojar, Pavan; Geethanath, Sairam; Qurishi, Yasrib

    2015-04-21

    The potential of graphene oxide–Fe{sub 3}O{sub 4} nanoparticle (GO-Fe{sub 3}O{sub 4}) composite as an image contrast enhancing material in magnetic resonance imaging has been investigated. Proton relaxivity values were obtained in three different homogeneous dispersions of GO-Fe{sub 3}O{sub 4} composites synthesized by precipitating Fe{sub 3}O{sub 4} nanoparticles in three different reaction mixtures containing 0.01 g, 0.1 g, and 0.2 g of graphene oxide. A noticeable difference in proton relaxivity values was observed between the three cases. A comprehensive structural and magnetic characterization revealed discrete differences in the extent of reduction of the graphene oxide and spacing between the graphene oxide sheets in the three composites. The GO-Fe{sub 3}O{sub 4} composite framework that contained graphene oxide with least extent of reduction of the carboxyl groups and largest spacing between the graphene oxide sheets provided the optimum structure for yielding a very high transverse proton relaxivity value. It was found that the GO-Fe{sub 3}O{sub 4} composites possessed good biocompatibility with normal cell lines, whereas they exhibited considerable toxicity towards breast cancer cells.

  9. CD4+ T Cells: guardians of the phagosome.

    PubMed

    Tubo, Noah J; Jenkins, Marc K

    2014-04-01

    CD4(+) T cells are key cells of the adaptive immune system that use T cell antigen receptors to recognize peptides that are generated in endosomes or phagosomes and displayed on the host cell surface bound to major histocompatibility complex molecules. These T cells participate in immune responses that protect hosts from microbes such as Mycobacterium tuberculosis, Cryptococcus neoformans, Leishmania major, and Salmonella enterica, which have evolved to live in the phagosomes of macrophages and dendritic cells. Here, we review studies indicating that CD4(+) T cells control phagosomal infections asymptomatically in most individuals by secreting cytokines that activate the microbicidal activities of infected phagocytes but in a way that inhibits the pathogen but does not eliminate it. Indeed, we make the case that localized, controlled, persistent infection is necessary to maintain large numbers of CD4(+) effector T cells in a state of activation needed to eradicate systemic and more pathogenic forms of the infection. Finally, we posit that current vaccines for phagosomal infections fail because they do not produce this "periodic reminder" form of CD4(+) T cell-mediated immune control.

  10. Cellular Plasticity of CD4+ T Cells in the Intestine

    PubMed Central

    Brucklacher-Waldert, Verena; Carr, Edward J.; Linterman, Michelle A.; Veldhoen, Marc

    2014-01-01

    Barrier sites such as the gastrointestinal tract are in constant contact with the environment, which contains both beneficial and harmful components. The immune system at the epithelia must make the distinction between these components to balance tolerance, protection, and immunopathology. This is achieved via multifaceted immune recognition, highly organized lymphoid structures, and the interaction of many types of immune cells. The adaptive immune response in the gut is orchestrated by CD4+ helper T (Th) cells, which are integral to gut immunity. In recent years, it has become apparent that the functional identity of these Th cells is not as fixed as initially thought. Plasticity in differentiated T cell subsets has now been firmly established, in both health and disease. The gut, in particular, utilizes CD4+ T cell plasticity to mold CD4+ T cell phenotypes to maintain its finely poised balance of tolerance and inflammation and to encourage biodiversity within the enteric microbiome. In this review, we will discuss intestinal helper T cell plasticity and our current understanding of its mechanisms, including our growing knowledge of an evolutionarily ancient symbiosis between microbiota and malleable CD4+ T cell effectors. PMID:25339956

  11. Studies related to primitive chemistry. A proton and nitrogen-14 nuclear magnetic resonance amino acid and nucleic acid constituents and a and their possible relation to prebiotic

    NASA Technical Reports Server (NTRS)

    Manatt, S. L.; Cohen, E. A.; Shiller, A. M.; Chan, S. I.

    1973-01-01

    Preliminary proton nuclear magnetic resonance (NMR) studies were made to determine the applicability of this technique for the study of interactions between monomeric and polymeric amino acids with monomeric nucleic acid bases and nucleotides. Proton NMR results for aqueous solutions (D2O) demonstrated interactions between the bases cytosine and adenine and acidic and aromatic amino acids. Solutions of 5'-AMP admixed with amino acids exhibited more complex behavior but stacking between aromatic rings and destacking at high amino acids concentration was evident. The multisite nature of 5'-AMP was pointed out. Chemical shift changes for adenine and 5'-AMP with three water soluble polypeptides demonstrated that significant interactions exist. It was found that the linewidth-pH profile of each amino acid is unique. It is concluded that NMR techniques can give significant and quantitative data on the association of amino acid and nucleic acid constituents.

  12. Non-additive response of blends of rice and potato starch during heating at intermediate water contents: A differential scanning calorimetry and proton nuclear magnetic resonance study.

    PubMed

    Bosmans, Geertrui M; Pareyt, Bram; Delcour, Jan A

    2016-02-01

    The impact of different hydration levels, on gelatinization of potato starch (PS), rice starch (RS) and a 1:1 blend thereof, was investigated by differential scanning calorimetry and related to nuclear magnetic resonance proton distributions of hydrated samples, before and after heating. At 20% or 30% hydration, the visual appearance of all samples was that of a wet powder, and limited, if any, gelatinization occurred upon heating. At 30% hydration, changes in proton distributions were observed and related to plasticization of amorphous regions in the granules. At 50% hydration, the PS-RS blend appeared more liquid-like than other hydrated samples and showed more pronounced gelatinization than expected based on additive behavior of pure starches. This was due to an additional mobile water fraction in the unheated PS-RS blend, originating from differences in water distribution due to altered stacking of granules and/or altered hydration of PS due to presence of cations in RS.

  13. Amide proton exchange in the. cap alpha. -amylase polypeptide inhibitor tendamistat studied by two-dimensional /sup 1/H nuclear magnetic resonance

    SciTech Connect

    Wang, O.; Kline, A.D.; Wuethrich, K.

    1987-10-06

    The individual amide proton exchange rates in Tendamistat at pH 3.0 and 50/sup 0/C were measured by using two-dimensional ..cap alpha..H nuclear magnetic resonance. Overall, it was found that the distribution of exchange rates along the sequence is dominated by the interstrand hydrogen bonds of the ..beta..-sheet structures. The slowly exchanging protons in the core of the two ..beta..-sheets were shown to exchange via an EX2 mechanism. Further analysis of the data indicates that different large-scale structure fluctuations are responsible for the exchange from the two ..beta..-sheets, even though the three-dimensional structure of Tendamistat appears to consist of a single structural domain.

  14. Cytotoxic activity of CD4+ T cells against autologous tumor cells.

    PubMed

    Konomi, Y; Sekine, T; Takayama, T; Fuji, M; Tanaka, T

    1995-09-01

    The 51Cr-release assay is mostly applied to detecting the cytotoxic activity of CD8+ T cells, and little is known about the activity of CD4+ T cells. Therefore, the correlation between the cytotoxic activity of CD4+ or CD8+ T cells and the incubation period with autologous tumor cells was analyzed by two methods. The incubation periods were 4 and 20 h (4 h and 20 h assay) for the 51Cr-release assay. Eight pairs of tumor cells and T cells were assayed. T cells were fractionated into CD4+ and CD8+ T cells by using magnetic beads and panning methods, and those cells were activated by culture with recombinant interleukin-2 and immobilized anti-CD3 monoclonal antibody. In 6 out of 8 cases, no cytotoxic activity of CD4+ T cells was detected by the 4 h assay, whereas cytotoxic activity was detected in all cases in the 20 h assay. The cytotoxic activities in 20 h assay of CD4+ T cells were increased 67-fold in comparison with the activities in 4 h assay (range: 5-197). In the case of CD8+ T cells, cytotoxic activities were detected in 6 out of 8 cases in the 4 h assay. The lytic unit ratio of CD4+ and CD8+ T cells was calculated as 1.5 in the 20 h assay (range: 0.2- > 7.2) versus 0.4 in the 4 h assay (range: < 0.1-1.3). Cytotoxic activities in colorimetric assay using Crystal Violet with a 24 h incubation were similar to those in the 20 h 51Cr-release assay in all eight cases. These results indicate that CD4+ T cells have cytotoxic activity as strong as that of CD8+ T cells towards autologous tumor cells.

  15. Recommendations for Review of TRADOC Pam 351-4(T).

    DTIC Science & Technology

    1981-07-08

    CHAPTER 8 TRADOC PAM 351-4(T) A generic procedure must be qualified with statement like: Do x except in cases of... Do x only when circumstance y...may also not be practical or necessary in every case . 59 Neeker: It should be DTD for the endorsement of JTA plans. BOWLES: The big problem is what is...Task analsls is different when you deal with new equipment or procedures. Menchaca: In some cases of this type I have used vendors’ manuals. 90 If

  16. Measurements of the generalized electric and magnetic polarizabilities of the proton at low Q2 using the virtual Compton scattering reaction

    NASA Astrophysics Data System (ADS)

    Bourgeois, P.; Sato, Y.; Shaw, J.; Alarcon, R.; Bernstein, A. M.; Bertozzi, W.; Botto, T.; Calarco, J.; Casagrande, F.; Distler, M. O.; Dow, K.; Farkondeh, M.; Georgakopoulos, S.; Gilad, S.; Hicks, R.; Holtrop, M.; Hotta, A.; Jiang, X.; Karabarbounis, A.; Kirkpatrick, J.; Kowalski, S.; Milner, R.; Miskimen, R.; Nakagawa, I.; Papanicolas, C. N.; Sarty, A. J.; Sirca, S.; Six, E.; Sparveris, N. F.; Stave, S.; Stiliaris, E.; Tamae, T.; Tsentalovich, G.; Tschalaer, C.; Turchinetz, W.; Zhou, Z.-L.; Zwart, T.

    2011-09-01

    Experimental details of a virtual Compton scattering (VCS) experiment performed on the proton at the MIT-Bates out-of-plane scattering facility are presented. The VCS response functions PLL-PTT/PTTɛɛ and PLT have been measured at Q2=0.057GeV2/c2. The generalized electric and magnetic polarizabilities, α(Q2) and β(Q2), and the mean-square electric polarizability radius are obtained from a dispersion analysis of the data. The results are in good agreement with O(p3) heavy baryon chiral perturbation and indicate the dominance of mesonic effects in the polarizabilities.

  17. Carbon-13 and proton nuclear magnetic resonance analysis of shale-derived refinery products and jet fuels and of experimental referee broadened-specification jet fuels

    NASA Technical Reports Server (NTRS)

    Dalling, D. K.; Bailey, B. K.; Pugmire, R. J.

    1984-01-01

    A proton and carbon-13 nuclear magnetic resonance (NMR) study was conducted of Ashland shale oil refinery products, experimental referee broadened-specification jet fuels, and of related isoprenoid model compounds. Supercritical fluid chromatography techniques using carbon dioxide were developed on a preparative scale, so that samples could be quantitatively separated into saturates and aromatic fractions for study by NMR. An optimized average parameter treatment was developed, and the NMR results were analyzed in terms of the resulting average parameters; formulation of model mixtures was demonstrated. Application of novel spectroscopic techniques to fuel samples was investigated.

  18. Development of promyelocytic leukemia zinc finger-expressing innate CD4 T cells requires stronger T-cell receptor signals than conventional CD4 T cells.

    PubMed

    Qiao, Yu; Zhu, Lingqiao; Sofi, Hanief; Lapinski, Philip E; Horai, Reiko; Mueller, Kristen; Stritesky, Gretta L; He, Xi; Teh, Hung-Sia; Wiest, David L; Kappes, Dietmar J; King, Philip D; Hogquist, Kristin A; Schwartzberg, Pamela L; Sant'Angelo, Derek B; Chang, Cheong-Hee

    2012-10-02

    MHC class II-expressing thymocytes and thymic epithelial cells can mediate CD4 T-cell selection resulting in functionally distinct thymocyte-selected CD4 (T-CD4) and epithelial-selected CD4 (E-CD4) T cells, respectively. However, little is known about how T-cell receptor (TCR) signaling influences the development of these two CD4 T-cell subsets. To study TCR signaling for T-CD4 T-cell development, we used a GFP reporter system of Nur77 in which GFP intensity directly correlates with TCR signaling strength. T-CD4 T cells expressed higher levels of GFP than E-CD4 T cells, suggesting that T-CD4 T cells received stronger TCR signaling than E-CD4 T cells during selection. Elimination of Ras GTPase-activating protein enhanced E-CD4 but decreased T-CD4 T-cell selection efficiency, suggesting a shift to negative selection. Conversely, the absence of IL-2-inducible T-cell kinase that causes poor E-CD4 T-cell selection due to insufficient TCR signaling improved T-CD4 T-cell generation, consistent with rescue from negative selection. Strong TCR signaling during T-CD4 T-cell development correlates with the expression of the transcription factor promyelocytic leukemia zinc finger protein. However, although modulation of the signaling strength affected the efficiency of T-CD4 T-cell development during positive and negative selection, the signaling strength is not as important for the effector function of T-CD4 T cells. These findings indicate that innate T-CD4 T cells, together with invariant natural killer T cells and γδ T cells, receive strong TCR signals during their development and that signaling requirements for the development and the effector functions are distinct.

  19. A multi-slot surface coil for MRI of dual-rat imaging at 4 T

    NASA Astrophysics Data System (ADS)

    Solis, S. E.; Wang, R.; Tomasi, D.; Rodriguez, A. O.

    2011-06-01

    A slotted surface coil inspired by the hole-and-slot cavity magnetron was developed for magnetic resonance imaging of obese rats at 4 T. Full-wave analysis of the magnetic field was carried out at 170 MHz for both the slotted and circular-shaped coils. The noise figure values of two coils were investigated via the numerical calculation of the quality factors. Fat simulated phantoms to mimic overweight rats were included in the analysis with weights ranging from 300 to 900 g. The noise figures were 1.2 dB for the slotted coil and 2.4 dB for the circular coil when loaded with 600 g of simulated phantom. A slotted surface coil with eight circular slots and a circular coil with similar dimensions were built and operated in the transceiver mode, and their performances were experimentally compared. The imaging tests in phantoms demonstrated that the slotted surface coil has a deeper RF-sensitivity and better field uniformity than the single-loop RF-coil. High quality images of two overweight Zucker rats were acquired simultaneously with the slotted surface coil using standard spin-echo pulse sequences. Experimental results showed that the slotted surface coil outperformed the circular coil for imaging considerably overweight rats. Thus, the slotted surface coil can be a good tool for MRI experiments in rats on a human whole-body 4 T scanner.

  20. A multi-slot surface coil for MRI of dual-rat imaging at 4T

    SciTech Connect

    Solis, S.E.; Tomasi, D.; Solis, S.E.; Wang, R.; Tomasi, D.; Rodriguez, A.O.

    2011-07-01

    A slotted surface coil inspired by the hole-and-slot cavity magnetron was developed for magnetic resonance imaging of obese rats at 4 T. Full-wave analysis of the magnetic field was carried out at 170 MHz for both the slotted and circular-shaped coils. The noise figure values of two coils were investigated via the numerical calculation of the quality factors. Fat simulated phantoms to mimic overweight rats were included in the analysis with weights ranging from 300 to 900 g. The noise figures were 1.2 dB for the slotted coil and 2.4 dB for the circular coil when loaded with 600 g of simulated phantom. A slotted surface coil with eight circular slots and a circular coil with similar dimensions were built and operated in the transceiver mode, and their performances were experimentally compared. The imaging tests in phantoms demonstrated that the slotted surface coil has a deeper RF-sensitivity and better field uniformity than the single-loop RF-coil. High quality images of two overweight Zucker rats were acquired simultaneously with the slotted surface coil using standard spin-echo pulse sequences. Experimental results showed that the slotted surface coil outperformed the circular coil for imaging considerably overweight rats. Thus, the slotted surface coil can be a good tool for MRI experiments in rats on a human whole-body 4 T scanner.

  1. Functional aortic stiffness: role of CD4(+) T lymphocytes.

    PubMed

    Majeed, Beenish A; Eberson, Lance S; Tawinwung, Supannikar; Larmonier, Nicolas; Secomb, Timothy W; Larson, Douglas F

    2015-01-01

    The immune system is suggested to be essential in vascular remodeling and stiffening. To study the dependence upon lymphocytes in vascular stiffening, we compared an angiotensin II-model of vascular stiffening in normal C57BL/6J mice with lymphocyte-deficient RAG 1(-/-) mice and additionally characterized the component of vascular stiffness due to vasoconstriction vs. vascular remodeling. Chronic angiotensin II increased aortic pulse wave velocity, effective wall stiffness, and effective Young's modulus in C57BL/6J mice by three-fold but caused no change in the RAG 1(-/-) mice. These functional measurements were supported by aortic morphometric analysis. Adoptive transfer of CD4(+) T helper lymphocytes restored the angiotensin II-mediated aortic stiffening in the RAG 1(-/-) mice. In order to account for the hydraulic vs. material effects of angiotensin II on pulse wave velocity, subcutaneous osmotic pumps were removed after 21 days of angiotensin II-infusion in the WT mice to achieve normotensive values. The pulse wave velocity (PWV) decreased from three- to two-fold above baseline values up to 7 days following pump removal. This study supports the pivotal role of the CD4(+) T-lymphocytes in angiotensin II-mediated vascular stiffening and that angiotensin II-mediated aortic stiffening is due to the additive effect of active vascular smooth muscle vasoconstriction and vascular remodeling.

  2. Non-invasive tracking of CD4+ T cells with a paramagnetic and fluorescent nanoparticle in brain ischemia

    PubMed Central

    Jin, Wei-Na; Yang, Xiaoxia; Li, Zhiguo; Li, Minshu; Shi, Samuel Xiang-Yu; Wood, Kristofer; Fu, Ying; Han, Wei; Xu, Yun; Shi, Fu-Dong; Liu, Qiang

    2015-01-01

    Recent studies have demonstrated that lymphocytes play a key role in ischemic brain injury. However, there is still a lack of viable approaches to non-invasively track infiltrating lymphocytes and reveal their key spatiotemporal events in the inflamed central nervous system (CNS). Here we describe an in vivo imaging approach for sequential monitoring of brain-infiltrating CD4+ T cells in experimental ischemic stroke. We show that magnetic resonance imaging (MRI) or Xenogen imaging combined with labeling of SPIO-Molday ION Rhodamine-B (MIRB) can be used to monitor the dynamics of CD4+ T cells in a passive transfer model. MIRB-labeled CD4+ T cells can be longitudinally visualized in the mouse brain and peripheral organs such as the spleen and liver after cerebral ischemia. Immunostaining of tissue sections showed similar kinetics of MIRB-labeled CD4+ T cells when compared with in vivo observations. Our results demonstrated the use of MIRB coupled with in vivo imaging as a valid method to track CD4+ T cells in ischemic brain injury. This approach will facilitate future investigations to identify the dynamics and key spatiotemporal events for brain-infiltrating lymphocytes in CNS inflammatory diseases. PMID:26661207

  3. Theoretical evaluation of structural models of the S2 state in the oxygen evolving complex of Photosystem II: protonation states and magnetic interactions.

    PubMed

    Ames, William; Pantazis, Dimitrios A; Krewald, Vera; Cox, Nicholas; Messinger, Johannes; Lubitz, Wolfgang; Neese, Frank

    2011-12-14

    Protonation states of water ligands and oxo bridges are intimately involved in tuning the electronic structures and oxidation potentials of the oxygen evolving complex (OEC) in Photosystem II, steering the mechanistic pathway, which involves at least five redox state intermediates S(n) (n = 0-4) resulting in the oxidation of water to molecular oxygen. Although protons are practically invisible in protein crystallography, their effects on the electronic structure and magnetic properties of metal active sites can be probed using spectroscopy. With the twin purpose of aiding the interpretation of the complex electron paramagnetic resonance (EPR) spectroscopic data of the OEC and of improving the view of the cluster at the atomic level, a complete set of protonation configurations for the S(2) state of the OEC were investigated, and their distinctive effects on magnetic properties of the cluster were evaluated. The most recent X-ray structure of Photosystem II at 1.9 Å resolution was used and refined to obtain the optimum structure for the Mn(4)O(5)Ca core within the protein pocket. Employing this model, a set of 26 structures was constructed that tested various protonation scenarios of the water ligands and oxo bridges. Our results suggest that one of the two water molecules that are proposed to coordinate the outer Mn ion (Mn(A)) of the cluster is deprotonated in the S(2) state, as this leads to optimal experimental agreement, reproducing the correct ground state spin multiplicity (S = 1/2), spin expectation values, and EXAFS-derived metal-metal distances. Deprotonation of Ca(2+)-bound water molecules is strongly disfavored in the S(2) state, but dissociation of one of the two water ligands appears to be facile. The computed isotropic hyperfine couplings presented here allow distinctions between models to be made and call into question the assumption that the largest coupling is always attributable to Mn(III). The present results impose limits for the total charge

  4. High-resolution three-dimensional macromolecular proton fraction mapping for quantitative neuroanatomical imaging of the rodent brain in ultra-high magnetic fields.

    PubMed

    Naumova, Anna V; Akulov, Andrey E; Khodanovich, Marina Yu; Yarnykh, Vasily L

    2017-02-15

    A well-known problem in ultra-high-field MRI is generation of high-resolution three-dimensional images for detailed characterization of white and gray matter anatomical structures. T1-weighted imaging traditionally used for this purpose suffers from the loss of contrast between white and gray matter with an increase of magnetic field strength. Macromolecular proton fraction (MPF) mapping is a new method potentially capable to mitigate this problem due to strong myelin-based contrast and independence of this parameter of field strength. MPF is a key parameter determining the magnetization transfer effect in tissues and defined within the two-pool model as a relative amount of macromolecular protons involved into magnetization exchange with water protons. The objectives of this study were to characterize the two-pool model parameters in brain tissues in ultra-high magnetic fields and introduce fast high-field 3D MPF mapping as both anatomical and quantitative neuroimaging modality for small animal applications. In vivo imaging data were obtained from four adult male rats using an 11.7T animal MRI scanner. Comprehensive comparison of brain tissue contrast was performed for standard R1 and T2 maps and reconstructed from Z-spectroscopic images two-pool model parameter maps including MPF, cross-relaxation rate constant, and T2 of pools. Additionally, high-resolution whole-brain 3D MPF maps were obtained with isotropic 170µm voxel size using the single-point synthetic-reference method. MPF maps showed 3-6-fold increase in contrast between white and gray matter compared to other parameters. MPF measurements by the single-point synthetic reference method were in excellent agreement with the Z-spectroscopic method. MPF values in rat brain structures at 11.7T were similar to those at lower field strengths, thus confirming field independence of MPF. 3D MPF mapping provides a useful tool for neuroimaging in ultra-high magnetic fields enabling both quantitative tissue

  5. The variation of protons, alpha particles, and the magnetic field across the bow shock of Comet Halley

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.; Goldstein, B. E.; Goldstein, R.; Neubauer, F. M.; Balsiger, H.; Fuselier, S. A.

    1987-01-01

    Data from the Ion Mass Spectrometer and the magnetometer on the Giotto spacecraft are used to examine the structure of the inbound crossing of the Comet Halley bow shock on March 13, 1986. It is found that the velocity decrease, the field strength increase, and the heating of picked up cometary protons occurred over a broad region corresponding to several heavy-ion gyroradii. The solar-wind protons and alphas, on the other hand, were compressed and heated at a narrow structure on the leading edge of the broad shock region.

  6. Control of inflammatory heart disease by CD4+ T cells.

    PubMed

    Barin, Jobert G; Čiháková, Daniela

    2013-05-01

    This review focuses on autoimmune myocarditis and its sequela, inflammatory dilated cardiomyopathy (DCMI), and the inflammatory and immune mechanisms underlying the pathogenesis of these diseases. Several mouse models of myocarditis and DCMI have improved our knowledge of the pathogenesis of these diseases, informing more general problems of cardiac remodeling and heart failure. CD4(+) T cells are critical in driving the pathogenesis of myocarditis. We discuss in detail the role of T helper cell subtypes in the pathogenesis of myocarditis, the biology of T cell-derived effector cytokines, and the participation of other leukocytic effectors in mediating disease pathophysiology. We discuss interactions between these subsets in both suppressive and collaborative fashions. These findings indicate that cardiac inflammatory disease, and autoimmunity in general, may be more diverse in divergent effector mechanisms than has previously been appreciated.

  7. Plasticity of Human CD4 T Cell Subsets

    PubMed Central

    Geginat, Jens; Paroni, Moira; Maglie, Stefano; Alfen, Johanna Sophie; Kastirr, Ilko; Gruarin, Paola; De Simone, Marco; Pagani, Massimiliano; Abrignani, Sergio

    2014-01-01

    Human beings are exposed to a variety of different pathogens, which induce tailored immune responses and consequently generate highly diverse populations of pathogen-specific T cells. CD4+ T cells have a central role in adaptive immunity, since they provide essential help for both cytotoxic T cell- and antibody-mediated responses. In addition, CD4+ regulatory T cells are required to maintain self-tolerance and to inhibit immune responses that could damage the host. Initially, two subsets of CD4+ helper T cells were identified that secrete characteristic effector cytokines and mediate responses against different types of pathogens, i.e., IFN-γ secreting Th1 cells that fight intracellular pathogens, and IL-4 producing Th2 cells that target extracellular parasites. It is now well established that this dichotomy is insufficient to describe the complexity of CD4+ T cell differentiation, and in particular the human CD4 compartment contains a myriad of T cell subsets with characteristic capacities to produce cytokines and to home to involved tissues. Moreover, it has become increasingly clear that these T cell subsets are not all terminally differentiated cells, but that the majority is plastic and that in particular central memory T cells can acquire different properties and functions in secondary immune responses. In addition, there is compelling evidence that helper T cells can acquire regulatory functions upon chronic stimulation in inflamed tissues. The plasticity of antigen-experienced human T cell subsets is highly relevant for translational medicine, since it opens new perspectives for immune-modulatory therapies for chronic infections, autoimmune diseases, and cancer. PMID:25566245

  8. Sensitivity and Source of Amine Proton EXchange (APEX) and Amide Proton Transfer (APT) MRI in Cerebral Ischemia

    PubMed Central

    Zong, Xiaopeng; Wang, Ping; Kim, Seong-Gi; Jin, Tao

    2013-01-01

    Purpose Amide proton transfer (APT) and amine-water proton exchange (APEX) can be viable to map pH-decreasing ischemic regions. However, their exact contributions are unclear. Methods We measured APEX- and APT-weighted magnetization transfer ratio asymmetry (denoted as APEXw and APTw), ADC, T2 and T1 images, and localized proton spectra in rats with permanent middle cerebral artery occlusion at 9.4 T. Phantoms and theoretical studies were also performed. Results Within one hour post-occlusion, APEXw and APTw maps showed hyperintensity (3.1% of M0) and hypointensity (−1.8%), respectively, in regions with decreased ADC. Ischemia increased lactate and gamma aminobutyric acid (GABA) concentrations, but decreased glutamate and taurine concentrations. Over time, the APEXw contrast decreased with glutamate, taurine and creatine, while the APTw contrast and lactate level were similar. Phantom and theoretical studies suggest that the source of APEXw signal is mainly from proteins at normal pH, while at decreased pH, GABA and glutamate contributions increase, inducing the positive APEXw contrast in ischemic regions. The APTw contrast is sensitive to lactate concentration and pH, but contaminated from contributions of the faster amine-water proton exchange processes. Conclusion Positive APEXw contrast is more sensitive to ischemia than negative APTw contrast. They may provide complementary tissue metabolic information. PMID:23401310

  9. Nuclear magnetic relaxation studies of water in frozen biological tissues. Cross-relaxation effects between protein and bound water protons

    NASA Astrophysics Data System (ADS)

    Escanyé, J. M.; Canet, D.; Robert, J.

    Water proton longitudinal relaxation has been investigated in frozen mouse tissues including tumors. The nonfreezable water which gives rise to a relatively sharp NMR signal at this temperature (263 K) is identified as water bound to macromolecules. Measurements have been carried out by the nonselective inversion-recovery method at 90 and 6 MHz. Partially selective inversion has been achieved at 90 MHz by the DANTE sequence. The experimental data are analyzed by means of Solomon-type equations. This analysis provides the cross-relaxation term from which the dipolar contribution to water relaxation rate, arising from interactions with macromolecular protons, is calculated. This contribution seems to be dominant. The number of water protons interacting with a given macromolecular proton is found to be of the order of 10. The data at both frequencies can be consistently interpreted in terms of water diffusion, with a characteristic time of about 10 -9 sec. These conclusions are valid for all the tissues investigated here, their relaxation parameters exhibiting only slight differences.

  10. Experimental characterization of the hydride 1H shielding tensors for HIrX2(PR3)2 and HRhCl2(PR3)2: extremely shielded hydride protons with unusually large magnetic shielding anisotropies.

    PubMed

    Garbacz, Piotr; Terskikh, Victor V; Ferguson, Michael J; Bernard, Guy M; Kędziorek, Mariusz; Wasylishen, Roderick E

    2014-02-20

    The hydride proton magnetic shielding tensors for a series of iridium(III) and rhodium(III) complexes are determined. Although it has long been known that hydridic protons for transition-metal hydrides are often extremely shielded, this is the first experimental determination of the shielding tensors for such complexes. Isolating the (1)H NMR signal for a hydride proton requires careful experimental strategies because the spectra are generally dominated by ligand (1)H signals. We show that this can be accomplished for complexes containing as many as 66 ligand protons by substituting the latter with deuterium and by using hyperbolic secant pulses to selectively irradiate the hydride proton signal. We also demonstrate that the quality of the results is improved by performing experiments at the highest practical magnetic field (21.14 T for the work presented here). The hydride protons for iridium hydride complexes HIrX2(PR3)2 (X = Cl, Br, or I; R = isopropyl, cyclohexyl) are highly shielded with isotropic chemical shifts of approximately -50 ppm and are also highly anisotropic, with spans (=δ11 - δ33) ranging from 85.1 to 110.7 ppm. The hydridic protons for related rhodium complexes HRhCl2(PR3)2 also have unusual magnetic shielding properties with chemical shifts and spans of approximately -32 and 85 ppm, respectively. Relativistic density functional theory computations were performed to determine the orientation of the principal components of the hydride proton shielding tensors and to provide insights into the origin of these highly anisotropic shielding tensors. The results of our computations agree well with experiment, and our conclusions concerning the importance of relativistic effects support those recently reported by Kaupp and co-workers.

  11. VARIATIONS OF SOLAR ELECTRON AND PROTON FLUX IN MAGNETIC CLOUD BOUNDARY LAYERS AND COMPARISONS WITH THOSE ACROSS THE SHOCKS AND IN THE RECONNECTION EXHAUSTS

    SciTech Connect

    Wang, Y.; Wei, F. S.; Feng, X. S.; Zuo, P. B.; Guo, J. P.; Xu, X. J.; Li, Z.

    2012-04-10

    The magnetic cloud boundary layer (BL) is a dynamic region formed by the interaction of the magnetic cloud (MC) and the ambient solar wind. In the present study, we comparatively investigate the proton and electron mean flux variations in the BL, in the interplanetary reconnection exhaust (RE), and across the MC-driven shock by using the Wind data from 1995 to 2006. In general, the proton flux has higher increments at lower energy bands compared with the ambient solar wind. Inside the BL, the core electron flux increases quasi-isotropically and the increments decrease monotonously with energy from {approx}30% (at 18 eV) to {approx}10% (at 70 eV); the suprathermal electron flux usually increases in either parallel or antiparallel direction; the correlation coefficient of electron flux variations in parallel and antiparallel directions changes sharply from {approx}0.8 below 70 eV to {approx}0 above 70 eV. Similar results are also found for RE. However, different phenomena are found across the shock where the electron flux variations first increase and then decrease with a peak increment (>200%) near 100 eV. The correlation coefficient of electron flux variations in parallel and antiparallel directions is always around 0.8. The similar behavior of flux variations in BL and RE suggests that reconnection may commonly occur in BL. Our work also implies that the strong energy dependence and direction selectivity of electron flux variations, which were previously thought to have not enough relevance to magnetic reconnection, could be considered as an important signature of solar wind reconnection in the statistical point of view.

  12. Ultrasensitive detection and phenotyping of CD4+ T cells with optimized HLA class II tetramer staining.

    PubMed

    Scriba, Thomas J; Purbhoo, Marco; Day, Cheryl L; Robinson, Nicola; Fidler, Sarah; Fox, Julie; Weber, Jonathan N; Klenerman, Paul; Sewell, Andrew K; Phillips, Rodney E

    2005-11-15

    HLA class I tetramers have revolutionized the study of Ag-specific CD8+ T cell responses. Technical problems and the rarity of Ag-specific CD4+ Th cells have not allowed the potential of HLA class II tetramers to be fully realized. Here, we optimize HLA class II tetramer staining methods through the use of a comprehensive panel of HIV-, influenza-, CMV-, and tetanus toxoid-specific tetramers. We find rapid and efficient staining of DR1- and DR4-restricted CD4+ cell lines and clones and show that TCR internalization is not a requirement for immunological staining. We combine tetramer staining with magnetic bead enrichment to detect rare Ag-specific CD4+ T cells with frequencies as low as 1 in 250,000 (0.0004% of CD4+ cells) in human PBLs analyzed directly ex vivo. This ultrasensitive detection allowed phenotypic analysis of rare CD4+ T lymphocytes that had experienced diverse exposure to Ag during the course of viral infections. These cells would not be detectable with normal flow-cytometric techniques.

  13. Proton nuclear magnetic resonance characterization of the aromatic residues in the variant-3 neurotoxin from Centruroides sculpturatus Ewing

    SciTech Connect

    Krishna, N.R.; Nettesheim, D.G.; Klevit, R.E.; Drobny, G.; Watt, D.D.; Bugg, C.E. )

    1989-02-21

    The amino acid sequence for the variant-3 (CsE-v3) toxin from the venom of the scorpion Centruroides sculpturatus Ewing contains eight aromatic residues. By use of 2D NMR spectroscopic methods, the resonances from the individual protons (NH, C{sup alpha}H, C{sup beta}H{prime}, H{double prime}, and the ring) for each of the individual aromatic residues have been completely assigned. The spatial arrangement of the aromatic ring systems with respect to each other has been qualitatively analyzed by 2D-NOESY techniques. The results show that Trp-47, Tyr-4, and Tyr-42 are in close spatial proximity to each other. The NOESY contacts and the ring current induced shifts in the resonances of the individual protons of Tyr-4 and Trp-47 suggest that the aromatic ring planes of these residues are in an orthogonal arrangement. A comparison with the published crystal structure suggests that there is a minor rearrangement of the aromatic rings in the solution phase. No 2D-NOESY contacts involving Phe-44 and Tyr-14 to any other aromatic ring protons have been observed. The pH dependence of the aromatic ring proton chemical shifts has also been studied. These results suggest that the Tyr-58 phenolic group is experiencing a hydrogen-bonding interaction with a positively charged group, while Tyr-4, -14, -38, and -40 are experiencing through-space interactions with proximal negatively charged groups. These studies define the microenvironment of the aromatic residues in the variant-3 neurotoxin in aqueous solution.

  14. Effect of N-acetylaspartic acid on the diffusion coefficient of water: a proton magnetic resonance phantom method for measurement of osmolyte-obligated water.

    PubMed

    Baslow, Morris H; Guilfoyle, David N

    2002-12-15

    N-acetyl-L-aspartic acid (NAA) is an amino acid present in the vertebrate brain that is synthesized and stored primarily in neurons, although it cannot be hydrolyzed in these cells. Nonetheless, neuronal NAA is dynamic and turns over more than once each day by cycling, via extracellular fluids (ECF), between neurons and catabolic compartments in oligodendrocytes. One important role of the NAA intercompartmental cycle appears to be osmoregulatory, and in this role it may be the primary mechanism for the removal of metabolic water, against a water gradient, from myelinated neurons. However, the number of water molecules that might be cotransported to ECF per NAA molecule released is as yet unclear. In this investigation, using a proton nuclear magnetic resonance method and diffusion measurements at two magnetic field strengths on water and NAA phantoms in vitro, the effect of NAA on the diffusion coefficient of water has been measured, and a ratio (K) of obligated water molecules per molecule of NAA has been determined. For NAA measured at 100mM and 3 Tesla K=24 and at 7 Tesla K=14. Based on these results, apparent K(NAA) varies inversely with field strength, and with a computed field strength factor of 2.55mmol water/unit Tesla, K(NAA) in the absence of any applied magnetic field strength would be 32.

  15. Traditional Korean medicine (SCRT) modulate Th1/Th2 specific cytokine production in mice CD4+ T cell.

    PubMed

    Ko, Eunjung; Rho, Samwoong; Lee, Eui-Joon; Seo, Young-Ho; Cho, Chongwoon; Lee, Yongwon; Min, Byung-Il; Shin, Min-Kyu; Hong, Moo-Chang; Bae, Hyunsu

    2004-05-01

    Traditional Korea medicine, So-Cheong-Ryong-Tang (SCRT) also called as Xiao-qing-long-tang or Sho-seiru-to, contains eight species of medicinal plants and has been used for treating allergic diseases, such as allergic rhinitis and asthma, for hundreds of years in Asian countries. CD4+ T cells were highly purified by using magnetic bead from splenocytes of BALB/c mice. SCRT treatment slightly decreased the expression of cell surface protein CD69 on CD4+ T cell in the flow cytometry analysis. In RT-PCR analysis, SCRT increases the expression of IL-2 and IL2R-alpha mRNA, and decreases the expression of IL-4 mRNA, which is an important cytokine of Th2 cell development. On the other hand, SCRT treatment increases IFN-gamma expression, which is one of the key cytokines for Th1 cell development. Present study implies that SCRT can correct Th2 dominant condition directly affecting to the CD4+ T cell without significantly depressing general T cell activities. These results also suggest that the effect on CD4+ T cell may be the one of key pharmacological effect point for treating IgE medicated allergic asthma by SCRT.

  16. In-Vivo Proton Magnetic Resonance Spectroscopy of 2-Hydroxyglutarate in Isocitrate Dehydrogenase-Mutated Gliomas: A Technical Review for Neuroradiologists

    PubMed Central

    Kim, Sungjin; Lee, Hyeong Hun; Heo, Hwon

    2016-01-01

    The diagnostic and prognostic potential of an onco-metabolite, 2-hydroxyglutarate (2HG) as a proton magnetic resonance spectroscopy (1H-MRS) detectable biomarker of the isocitrate dehydrogenase (IDH)-mutated (IDH-MT) gliomas has drawn attention of neuroradiologists recently. However, due to severe spectral overlap with background signals, quantification of 2HG can be very challenging. In this technical review for neuroradiologists, first, the biochemistry of 2HG and its significance in the diagnosis of IDH-MT gliomas are summarized. Secondly, various 1H-MRS methods used in the previous studies are outlined. Finally, wereview previous in vivo studies, and discuss the current status of 1H-MRS in the diagnosis of IDH-MT gliomas. PMID:27587950

  17. N-acetylaspartate levels of left frontal cortex are associated with verbal intelligence in women but not in men: a proton magnetic resonance spectroscopy study.

    PubMed

    Pfleiderer, B; Ohrmann, P; Suslow, T; Wolgast, M; Gerlach, A L; Heindel, W; Michael, N

    2004-01-01

    The left frontal cortex plays an important role in executive function and complex language processing inclusive of spoken language. The purpose of this work was to assess metabolite levels in the left and right prefrontal cortex and left anterior cingulum by proton magnetic resonance spectroscopy and relate results to verbal intelligence (Wechsler Adult Intelligence Scale revised) in a sample of college-educated healthy volunteers (dorsolateral prefrontal cortex [DLPFC]: n=52, 23 females, and left anterior cingulum: n=62, 22 females; age range: 20-75 years). In women only, N-acetylaspartate in the DLPFC and in the left anterior cingulate cortex was positively correlated with vocabulary scores. Our data support the hypothesis of existing gender differences regarding the involvement of the left frontal cortex in verbal processing as reflected in different correlations of specific metabolites with verbal scores.

  18. g factor of the J/sup. pi. / = 25/2/sup +/ isomer in /sup 205/Tl and the anomalous orbital magnetism of the proton

    SciTech Connect

    Maier, K.H.; Becker, J.A.; Carlson, J.B.; Lanier, R.G.; Mann, L.G.; Struble, G.L.; Nail, T.; Sheline, R.K.; Stoeffl, W.; Ussery, L.

    1982-02-15

    The nuclear gyromagnetic ratio of the 3291-keV J/sup ..pi../ = 25/2/sup +/ /sup 205/Tl level has been measured with use of ..gamma..-ray perturbed angular distribution techniques with the result g = 0.544 +- 0.008. The state was populated with the reaction /sup 204/Hg(t,2n)/sup 205/Tl. With use of the known quantities g(/sup 206/Pb 7/sup -/; E/sub x/ = 2200 keV) and g(/sup 209/Bi 9/2/sup +/; E/sub x/ = 0 keV) the proton orbital magnetic g factor for the 1h orbital was deduced to be g/sub 1/ = 1.115 +- 0.02. This result has been corrected for wave-function admixtures and core polarization effects.

  19. Influence of the magnetic field on the density distribution of solar wind protons and cometary ions in the shock layer ahead of cometary ionospheres

    NASA Astrophysics Data System (ADS)

    Baranov, V. B.; Alexashov, D. B.

    2017-02-01

    The "mass loading" of the solar wind by cometary ions produced by the photoionization of neutral molecules outflowing from the cometary nucleus plays a major role in the interaction of the solar wind with cometary atmospheres. In particular, this process leads to a decrease in the solar wind velocity with a transition from supersonic velocities to subsonic ones through the bow shock. The so-called single-fluid approximation, in which the interacting plasma flows are considered as a single fluid, is commonly used in modeling such an interaction. However, it is occasionally necessary to know the distribution of parameters for the components of the interacting plasma flows. For example, when the flow of the cometary dust component in the interplanetary magnetic field is considered, the dust particle charge, which depends significantly on the composition of the surrounding plasma, needs to be known. In this paper, within the framework of a three-dimensional magnetohydrodynamic model of the solar wind flow around cometary ionospheres, we have managed to separately obtain the density distributions of solar wind protons and cometary ions between the bow shock and the cometary ionopause (in the shock layer). The influence of the interplanetary magnetic field on the position of the point of intersection between the densities with the formation of a region near the ionopause where the proton density is essentially negligible compared to the density of cometary ions is investigated. Such a region was experimentally detected by the Vega-2 spacecraft when investigating Comet Halley in March 1986. The results of the model considered below are compared with some experimental data obtained by the Giotto spacecraft under the conditions of flow around Comets Halley and Grigg-Skjellerup in 1986 and 1992, respectively. Unfortunately, our results of calculations on Comet Churyumov-Gerasimenko are only predictive in character, because the trajectory of the Rosetta spacecraft, which

  20. Proton Therapy

    MedlinePlus

    ... for e-updates Please leave this field empty Proton Therapy SHARE Home > Treatment and Care > Treatments Listen ... a nucleus, which holds two types of particles—protons and neutrons. The nucleus is surrounded by electrons. ...

  1. Enantioselective Protonation

    PubMed Central

    Mohr, Justin T.; Hong, Allen Y.; Stoltz, Brian M.

    2010-01-01

    Enantioselective protonation is a common process in biosynthetic sequences. The decarboxylase and esterase enzymes that effect this valuable transformation are able to control both the steric environment around the proton acceptor (typically an enolate) and the proton donor (typically a thiol). Recently, several chemical methods to achieve enantioselective protonation have been developed by exploiting various means of enantiocontrol in different mechanisms. These laboratory transformations have proven useful for the preparation of a number of valuable organic compounds. PMID:20428461

  2. 26 CFR 1.469-4T - Definition of activity (temporary).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 6 2014-04-01 2014-04-01 false Definition of activity (temporary). 1.469-4T Section 1.469-4T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Taxable Year for Which Deductions Taken § 1.469-4T Definition of activity (temporary). (a)...

  3. 17 CFR 240.11a1-4(T) - Bond transactions on national securities exchanges.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Bond transactions on national securities exchanges. 240.11a1-4(T) Section 240.11a1-4(T) Commodity and Securities Exchanges SECURITIES AND....11a1-4(T) Bond transactions on national securities exchanges. A transaction in a bond, note,...

  4. Cardiovascular Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Pelc, Norbert

    2000-03-01

    Cardiovascular diseases are a major source of morbidity and mortality in the United States. Early detection of disease can often be used to improved outcomes, either through direct interventions (e.g. surgical corrections) or by causing the patient to modify his or her behavior (e.g. smoking cessation or dietary changes). Ideally, the detection process should be noninvasive (i.e. it should not be associated with significant risk). Magnetic Resonance Imaging (MRI) refers to the formation of images by localizing NMR signals, typically from protons in the body. As in other applications of NMR, a homogeneous static magnetic field ( ~0.5 to 4 T) is used to create ``longitudinal" magnetization. A magnetic field rotating at the Larmor frequency (proportional to the static field) excites spins, converting longitudinal magnetization to ``transverse" magnetization and generating a signal. Localization is performed using pulsed gradients in the static field. MRI can produce images of 2-D slices, 3-D volumes, time-resolved images of pseudo-periodic phenomena such as heart function, and even real-time imaging. It is also possible to acquire spatially localized NMR spectra. MRI has a number of advantages, but perhaps the most fundamental is the richness of the contrast mechanisms. Tissues can be differentiated by differences in proton density, NMR properties, and even flow or motion. We also have the ability to introduce substances that alter NMR signals. These contrast agents can be used to enhance vascular structures and measure perfusion. Cardiovascular MRI allows the reliable diagnosis of important conditions. It is possible to image the blood vessel tree, quantitate flow and perfusion, and image cardiac contraction. Fundamentally, the power of MRI as a diagnostic tool stems from the richness of the contrast mechanisms and the flexibility in control of imaging parameters.

  5. Initial in vivo Rodent Sodium and Proton MR Imaging at 21.1 T

    PubMed Central

    Schepkin, Victor D.; Brey, William W.; Gor’kov, Peter L.; Grant, Samuel C.

    2009-01-01

    The first in vivo sodium and proton MR images and localized spectra of rodents were attained using the wide bore (105 mm) high resolution 21.1 T magnet, built and operated at the National High Magnetic Field Laboratory (Tallahassee, FL). Head images of normal mice (C57BL/6J) and Fisher rats (~ 250 g) were acquired with custom designed RF probes at frequencies of 237/900 MHz for sodium and proton, respectively. Sodium MRI resolutions of ~0.125 μL for mouse and rat heads were achieved by using a 3D back-projection pulse sequence. A gain in SNR of ~ 3 for sodium and of ~ 2 times for proton were found relative to corresponding MR images acquired at 9.4 T. 3D FLASH proton mouse images (50×50×50 μm3) were acquired in 90 min and corresponding rat images (100×100×100 μm3) within a total time of 120 min. Both in vivo large rodent MR imaging and localized spectroscopy at the extremely high field of 21.1 T are feasible and demonstrate improved resolution and sensitivity valuable for structural and functional brain analysis. PMID:20045599

  6. Severe TSH Elevation and Pituitary Enlargement After Changing Thyroid Replacement to Compounded T4/T3 Therapy.

    PubMed

    Pappy, Adlai L; Oyesiku, Nelson; Ioachimescu, Adriana

    2016-01-01

    We present the first case of iatrogenic hypothyroidism as a result of compounded thyroid hormone (T4/T3) therapy. The thyroid replacement was changed from 175 µg levothyroxine (LT4) to 57/13.5 µg compounded T4/T3 daily in order to improve the T3 level, despite normal thyroid-stimulating hormone (TSH). This resulted in clinical manifestations of hypothyroidism and high TSH level (150 µIU/mL). Six months later, the patient was referred to our clinic for abnormal pituitary magnetic resonance imaging. On reinitiating a physiologic dose of LT4, clinical and biochemical abnormalities resolved and the pituitary gland size decreased. Our case emphasizes the importance of using TSH level to gauge dose adjustments in primary hypothyroidism. Also, it underscores the current American Thyroid Association recommendation against routine use of compounded thyroid hormone therapy.

  7. Proton nuclear magnetic resonance studies of hydrogen diffusion and electron tunneling in Ni-Nb-Zr-H glassy alloys

    SciTech Connect

    Niki, Haruo; Okuda, Hiroyuki; Oshiro, Morihito; Yogi, Mamoru; Seki, Ichiro; Fukuhara, Mikio

    2012-06-15

    Using the Fourier transform of the echo envelope, the proton line shapes, spin-lattice relaxation time, and spin-spin relaxation time have been measured in a (Ni{sub 0.36}Nb{sub 0.24}Zr{sub 0.40}){sub 90}H{sub 10} glassy alloy at 1.83 T ({approx}78 MHz) and at temperatures between 1.8 and 300 K. First, the spectral line width decreases abruptly between 1.8 and 2.1 K. Next, it remains almost constant at 13 kHz up to {approx}150 K. Finally, the line width decreases as the temperature increases from {approx}150 to 300 K. The initial decrease in the spectral line width is ascribed to the distribution of the external field, which is caused by the penetration of vortices in the superconducting state. The subsequent leveling off in the spectral line width is ascribed to the dipole-dipole interaction between protons when hydrogen atoms are trapped into vacancies among the Zr-centered icosahedral Zr{sub 5}Ni{sub 5}Nb{sub 3} clusters. The final decrease in the spectral line width is ascribed to the motional narrowing of the width that is caused by the movement of hydrogen atoms. The temperature dependences of the spin-lattice and spin-spin relaxation time showed that at temperature above 150 K and the activation energy of 8.7 kJ/mol allowed the hydrogen atoms to migrate among the clusters. The distance between the hydrogen atoms is estimated to be 2.75 A. Hydrogen occupancies among clusters in the (Ni{sub 0.36}Nb{sub 0.24}Zr{sub 0.40}){sub 90}H{sub 10} glassy alloy play an important role in the diffusion behavior and in the electronic properties of this alloy.

  8. Cerebellar Volume and Proton Magnetic Resonance Spectroscopy at Term, and Neurodevelopment at 2 Years of Age in Preterm Infants

    ERIC Educational Resources Information Center

    van Kooij, Britt J. M.; Benders, Manon J. N. L.; Anbeek, Petronella; van Haastert, Ingrid C.; de Vries, Linda S.; Groenendaal, Floris

    2012-01-01

    Aim: To assess the relation between cerebellar volume and spectroscopy at term equivalent age, and neurodevelopment at 24 months corrected age in preterm infants. Methods: Magnetic resonance imaging of the brain was performed around term equivalent age in 112 preterm infants (mean gestational age 28wks 3d [SD 1wk 5d]; birthweight 1129g [SD 324g]).…

  9. Determining the mechanism of cusp proton aurora.

    PubMed

    Xiao, Fuliang; Zong, Qiugang; Su, Zhenpeng; Yang, Chang; He, Zhaoguo; Wang, Yongfu; Gao, Zhonglei

    2013-01-01

    Earth's cusp proton aurora occurs near the prenoon and is primarily produced by the precipitation of solar energetic (2-10 keV) protons. Cusp auroral precipitation provides a direct source of energy for the high-latitude dayside upper atmosphere, contributing to chemical composition change and global climate variability. Previous studies have indicated that magnetic reconnection allows solar energetic protons to cross the magnetopause and enter the cusp region, producing cusp auroral precipitation. However, energetic protons are easily trapped in the cusp region due to a minimum magnetic field existing there. Hence, the mechanism of cusp proton aurora has remained a significant challenge for tens of years. Based on the satellite data and calculations of diffusion equation, we demonstrate that EMIC waves can yield the trapped proton scattering that causes cusp proton aurora. This moves forward a step toward identifying the generation mechanism of cusp proton aurora.

  10. Determining the mechanism of cusp proton aurora

    PubMed Central

    Xiao, Fuliang; Zong, Qiugang; Su, Zhenpeng; Yang, Chang; He, Zhaoguo; Wang, Yongfu; Gao, Zhonglei

    2013-01-01

    Earth's cusp proton aurora occurs near the prenoon and is primarily produced by the precipitation of solar energetic (2–10 keV) protons. Cusp auroral precipitation provides a direct source of energy for the high-latitude dayside upper atmosphere, contributing to chemical composition change and global climate variability. Previous studies have indicated that magnetic reconnection allows solar energetic protons to cross the magnetopause and enter the cusp region, producing cusp auroral precipitation. However, energetic protons are easily trapped in the cusp region due to a minimum magnetic field existing there. Hence, the mechanism of cusp proton aurora has remained a significant challenge for tens of years. Based on the satellite data and calculations of diffusion equation, we demonstrate that EMIC waves can yield the trapped proton scattering that causes cusp proton aurora. This moves forward a step toward identifying the generation mechanism of cusp proton aurora. PMID:23575366

  11. Rosenbluth Award: First observations of Rayleigh-Taylor-induced magnetic fields in laser-produced plasmas using x rays and protons

    NASA Astrophysics Data System (ADS)

    Manuel, Mario

    2014-10-01

    Recent experiments [Manuel, PRL 108 (2012)] demonstrated the existence of self-generated B-fields from the Rayleigh-Taylor (RT) instability in laser-produced plasmas, as originally predicted by Mima et al. [Mima PRL 41 (1978)]. Misaligned density and temperature gradients caused by RT growth in ablatively driven targets generate B-fields in the plasma through the Biermann battery source. X-ray and proton radiography diagnosed areal-density and B-field perturbations in laser-irradiated targets with seeded sinusoidal surface perturbations. Inferred B-field strengths indicated ratios of thermal to magnetic pressures (β) near the ablation surface of 104-105, suggesting no magnetic effects on ablative RT during the linear growth phase. However, the magnitude of this self-generated field increases with the perturbation height [Srinivasan, PRL 108 (2012)] and can affect morphology in the nonlinear regime. The detailed structure of highly nonlinear RT spikes is important to understand the inner wall expansion of hohlraums in indirect-drive inertial fusion and in multiple astrophysical systems, including the explosion phase of core-collapse supernovae and formation of planetary nebulae. Numerical calculations investigating the magnetic effects on nonlinear RT-spike evolution under conditions similar to previous measurements will be covered and implications discussed. Support for this work was provided by NASA through Einstein Postdoctoral Fellowship grant number PF3-140111 awarded by the Chandra X-ray Center, which is operated by the Astrophysical Observatory for NASA under Contract NAS8-03060. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasma under Grant Number DE-NA0001840. Previous work described here was supported in part by NLUF (DE-NA0000877), FSC/UR (415023-G), DoE (DE-FG52-09NA29553), LLE (414090-G), and LLNL (B580243).

  12. Laboratory Studies to Assess the Potential for Detection of Light Non-aqueous Phase Liquid in Contaminated Soils with Proton Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Bryar, T. R.; Knight, R. J.; Nielsen, T. P.

    2001-12-01

    The objective of this study was to determine the conditions necessary for the detection of LNAPL (Light Non-aqueous Phase Liquid) in contaminated soils using NMR (nuclear magnetic resonance) measurements. The study used toluene as the LNAPL and well characterized kaolinite and sand samples as the porous media; proton NMR measurements were made on partially saturated sand, clay and sand-clay mixtures. Proton NMR has the advantage over other surface geophysical techniques that it only responds to H atoms. However, since water is ubiquitous in the near surface, one of our main concerns was whether the signal from water would interfere with the detection of organic contaminants. We established that water and toluene were not resolved for sand or sand-clay mixtures with paramagnetic iron impurities less than or equal to 1.5 mg/g. However, for a sand-clay mixture for which the iron concentration was 1.9 mg/g, the two fluids were clearly resolved by laboratory NMR. These levels of paramagnetic materials are common in soils, especially those with some clay content. Provided that the soil has sufficient paramagnetic content for contaminant signal to be distinguishable from that of water, we found that the detection limit improves with signal to noise ratio (S/N) of the NMR data. For detection of LNAPL in the presence of water, NMR was capable of detecting as little as 20 mg toluene/g water, under ideal conditions in the laboratory. When we reduced signal quality to S/N = 80, the detection limit was only 140 mg toluene/g water. We also showed with synthetic data that the currently available surface loop NMR instrument (capable of S/N ~5) would be incapable of distinguishing organic contaminant at any concentration from water. The instrument would have to be improved to S/N = 20 to reliably detect even 1g LNAPL/g water.

  13. A Model Study of the Impact of Magnetic Field Reversal on Atmospheric Composition during Solar Proton Events

    NASA Technical Reports Server (NTRS)

    Sinnhuber, Miaiam; Jackman, Charles H.; Burrows, John P.; Chipperfield, Martyn P.; Kallenrode, May-Britt; Kunzi, Klaus F.; Quack, Manual

    2003-01-01

    During a polarity transition of the Earth's magnetic field, the structure and strength of the field change significantly from their present values. This will alter the global pattern of charged particle precipitation into the atmosphere. Thus, particle precipitation is possible into regions that are at the moment effectively shielded by the Earth's magnetic field. A two-dimensional global fbHy coupled chemistry, radiation, and transport model of the atmosphere has been used to investigate how the increased particle precipitation affects the chemical composition of the middle and lower atmosphere. Ozone losses resulting from large energetic particle events are found to increase significantly, with resultant losses similar to those observed m the Antarctic ozone hole of the 1990s. This results in significant increases in surface UV-B radiation as well as changes in stratospheric temperature and circulation over a period of several months after large particle events.

  14. TGF-β receptor maintains CD4 T helper cell identity during chronic viral infections

    PubMed Central

    Lewis, Gavin M.; Wehrens, Ellen J.; Labarta-Bajo, Lara; Streeck, Hendrik; Zuniga, Elina I.

    2016-01-01

    Suppression of CD8 and CD4 T cells is a hallmark in chronic viral infections, including hepatitis C and HIV. While multiple pathways are known to inhibit CD8 T cells, the host molecules that restrict CD4 T cell responses are less understood. Here, we used inducible and CD4 T cell–specific deletion of the gene encoding the TGF-β receptor during chronic lymphocytic choriomeningitis virus infection in mice, and determined that TGF-β signaling restricted proliferation and terminal differentiation of antiviral CD4 T cells. TGF-β signaling also inhibited a cytotoxic program that includes granzymes and perforin expression at both early and late stages of infection in vivo and repressed the transcription factor eomesodermin. Overexpression of eomesodermin was sufficient to recapitulate in great part the phenotype of TGF-β receptor–deficient CD4 T cells, while SMAD4 was necessary for CD4 T cell accumulation and differentiation. TGF-β signaling also restricted accumulation and differentiation of CD4 T cells and reduced the expression of cytotoxic molecules in mice and humans infected with other persistent viruses. These data uncovered an eomesodermin-driven CD4 T cell program that is continuously suppressed by TGF-β signaling. During chronic viral infection, this program limits CD4 T cell responses while maintaining CD4 T helper cell identity. PMID:27599295

  15. Translational Approaches for Studying Neurodevelopmental Disorders Utilizing in Vivo Proton (+H) Magnetic Resonance Spectroscopic Imaging in Rats

    NASA Technical Reports Server (NTRS)

    Ronca, April E.

    2014-01-01

    Intrauterine complications have been implicated in the etiology of neuripsychiatric disorders including schizophrenia, autism and ADHD. This presentation will describe new translational studies derived from in vivo magnetic resonance imaging of developing and adult brain following perinatal asphyxia (PA). Our findings reveal significant effects of PA on neurometabolic profiles at one week of age, and significant relationships between early metabolites and later life phenotypes including behavior and brain morphometry

  16. In vivo measurement of regional brain metabolic response to hyperventilation using magnetic resonance: proton echo planar spectroscopic imaging (PEPSI).

    PubMed

    Posse, S; Dager, S R; Richards, T L; Yuan, C; Ogg, R; Artru, A A; Müller-Gärtner, H W; Hayes, C

    1997-06-01

    A new rapid spectroscopic imaging technique with improved sensitivity and lipid suppression, referred to as Proton Echo Planar Spectroscopic Imaging (PEPSI), has been developed to measure the 2-dimensional distribution of brain lactate increases during hyperventilation on a conventional clinical scanner equipped with a head surface coil phased array. PEPSI images (nominal voxel size: 1.125 cm3) in five healthy subjects from an axial section approximately 20 mm inferior to the intercommissural line were obtained during an 8.5-min baseline period of normocapnia and during the final 8.5 min of a 10-min period of capnometry-controlled hyperventilation (end-tidal PCO2 of 20 mmHg). The lactate/N-acetyl aspartate signal increased significantly from baseline during hyperventilation for the insular cortex, temporal cortex, and occipital regions of both the right and left hemisphere, but not in the basal ganglia. Regional or hemispheric right-to-left differences were not found. The study extends previous work using single-voxel MR spectroscopy to dynamically study hyperventilation effects on brain metabolism.

  17. Combination of high-resolution magic angle spinning proton magnetic resonance spectroscopy and microscale genomics to type brain tumor biopsies.

    PubMed

    Tzika, A Aria; Astrakas, Loukas; Cao, Haihui; Mintzopoulos, Dionyssios; Andronesi, Ovidiu C; Mindrinos, Michael; Zhang, Jiangwen; Rahme, Laurence G; Blekas, Konstantinos D; Likas, Aristidis C; Galatsanos, Nikolas P; Carroll, Rona S; Black, Peter M

    2007-08-01

    Advancements in the diagnosis and prognosis of brain tumor patients, and thus in their survival and quality of life, can be achieved using biomarkers that facilitate improved tumor typing. We introduce and implement a combinatorial metabolic and molecular approach that applies state-of-the-art, high-resolution magic angle spinning (HRMAS) proton (1H) MRS and gene transcriptome profiling to intact brain tumor biopsies, to identify unique biomarker profiles of brain tumors. Our results show that samples as small as 2 mg can be successfully processed, the HRMAS 1H MRS procedure does not result in mRNA degradation, and minute mRNA amounts yield high-quality genomic data. The MRS and genomic analyses demonstrate that CNS tumors have altered levels of specific 1H MRS metabolites that directly correspond to altered expression of Kennedy pathway genes; and exhibit rapid phospholipid turnover, which coincides with upregulation of cell proliferation genes. The data also suggest Sonic Hedgehog pathway (SHH) dysregulation may play a role in anaplastic ganglioglioma pathogenesis. That a strong correlation is seen between the HRMAS 1H MRS and genomic data cross-validates and further demonstrates the biological relevance of the MRS results. Our combined metabolic/molecular MRS/genomic approach provides insights into the biology of anaplastic ganglioglioma and a new potential tumor typing methodology that could aid neurologists and neurosurgeons to improve the diagnosis, treatment, and ongoing evaluation of brain tumor patients.

  18. Proton evolved local field solid-state nuclear magnetic resonance using Hadamard encoding: theory and application to membrane proteins.

    PubMed

    Gopinath, T; Mote, Kaustubh R; Veglia, Gianluigi

    2011-08-21

    NMR anisotropic parameters such as dipolar couplings and chemical shifts are central to structure and orientation determination of aligned membrane proteins and liquid crystals. Among the separated local field experiments, the proton evolved local field (PELF) scheme is particularly suitable to measure dynamically averaged dipolar couplings and give information on local molecular motions. However, the PELF experiment requires the acquisition of several 2D datasets at different mixing times to optimize the sensitivity for the complete range of dipolar couplings of the resonances in the spectrum. Here, we propose a new PELF experiment that takes the advantage of the Hadamard encoding (HE) to obtain higher sensitivity for a broad range of dipolar couplings using a single 2D experiment. The HE scheme is obtained by selecting the spin operators with phase switching of hard pulses. This approach enables one to detect four spin operators, simultaneously, which can be processed into two 2D spectra covering a broader range of dipolar couplings. The advantages of the new approach are illustrated for a U-(15)N NAL single crystal and the U-(15)N labeled single-pass membrane protein sarcolipin reconstituted in oriented lipid bicelles. The HE-PELF scheme can be implemented in other multidimensional experiments to speed up the characterization of the structure and dynamics of oriented membrane proteins and liquid crystalline samples.

  19. CD4+ T cells potently induce epithelial-mesenchymal-transition in premalignant and malignant pancreatic ductal epithelial cells–novel implications of CD4+ T cells in pancreatic cancer development

    PubMed Central

    Goebel, Lisa; Grage-Griebenow, Evelin; Gorys, Artur; Helm, Ole; Genrich, Geeske; Lenk, Lennart; Wesch, Daniela; Ungefroren, Hendrik; Freitag-Wolf, Sandra; Sipos, Bence; Röcken, Christoph; Schäfer, Heiner; Sebens, Susanne

    2015-01-01

    Chronic pancreatitis (CP) is a risk factor of pancreatic ductal adenocarcinoma (PDAC) and characterized by a pronounced desmoplastic reaction with CD4+ T cells accounting for the majority of the stromal T cell infiltrate. Epithelial-mesenchymal-transition (EMT) is a critical process for metastasis by which epithelial/carcinoma cells become enabled to disseminate probably prior to tumor formation. To investigate whether CD4+ T cells induce EMT in human pancreatic ductal epithelial cells, premalignant H6c7 cells were mono- or co-cultured with human CD4+CD25+CD127−CD49d− regulatory T cells (T-regs) or CD4+CD25− T-effector cells (T-effs) being isolated by negative magnetic bead separation from blood of healthy donors. Particularly in the presence of activated T-effs, H6c7 cells acquired a spindle-shaped morphology, reduced E-cadherin expression, and elevated expression of the mesenchymal proteins vimentin, L1CAM, and ZEB-1. This was accompanied by an increased invasive behavior. Moreover, activated T-effs exerted similar effects in the PDAC cell line T3M4. Blocking of TNF-α and IL-6 being released at greater amounts into supernatants during co-cultures with activated T-effs attenuated the EMT-associated alterations in H6c7 cells. Supporting these findings, EMT-associated alterations (exemplified by reduced E-cadherin expression and enhanced expression of vimentin and L1CAM) were predominantly detected in ductal epithelium of CP tissues surrounded by a dense stroma enriched with CD4+ T cells. Overall this study points to a novel role of CD4+ T cells beyond their immune function in pancreatic tumorigenesis and underscores the view that EMT induction in pancreatic ductal epithelial cells represents an early event in PDAC development being essentially promoted by inflammatory processes. PMID:26137395

  20. Bystander CD4+ T lymphocytes survive in HIV-infected human lymphoid tissue

    NASA Technical Reports Server (NTRS)

    Grivel, Jean-Charles; Biancotto, Angelique; Ito, Yoshinori; Lima, Rosangela G.; Margolis, Leonid B.

    2003-01-01

    HIV infection is associated with depletion of CD4(+) T cells. The mechanisms of this phenomenon remain to be understood. In particular, it remains controversial whether and to what extent uninfected ("bystander") CD4(+) T cells die in HIV-infected individuals. We address this question using a system of human lymphoid tissue ex vivo. Tissue blocks were inoculated with HIV-1. After productive infection was established, they were treated with the reverse transcriptase inhibitor nevirapine to protect from infection those CD4(+) T cells that had not yet been infected. These CD4(+) T cells residing in HIV-infected tissue are by definition bystanders. Our results demonstrate that after nevirapine application the number of bystander CD4(+) T cells is conserved. Thus, in the context of HIV-infected human lymphoid tissue, productive HIV infection kills infected cells but is not sufficient to cause the death of a significant number of uninfected CD4(+) T cells.

  1. Diagnosis of Alzheimer-type dementia: a preliminary comparison of positron emission tomography and proton magnetic resonance

    SciTech Connect

    Friedland, R.P.; Budinger, T.F.; Brant-Zawadzki, M.; Jagust, W.J.

    1984-11-16

    The use of positron emission tomography with (18F)-2-fluoro-2-deoxy-D-glucose (FDG) to study glucose metabolism in dementia is described and compared with the use of magnetic resonance imaging. These studies suggest that physiological imaging with PET may be superior to MR as it is currently used in the diagnosis of dementia-like diseases. Pet is currently limited to a few centers; however, single photon emission CT can provide regional physiological data without the need for a local cyclotron. 15 references, 2 tables.

  2. Proton therapy in the clinic.

    PubMed

    DeLaney, Thomas F

    2011-01-01

    The clinical advantage for proton radiotherapy over photon approaches is the marked reduction in integral dose to the patient, due to the absence of exit dose beyond the proton Bragg peak. The integral dose with protons is approximately 60% lower than that with any external beam photon technique. Pediatric patients, because of their developing normal tissues and anticipated length of remaining life, are likely to have the maximum clinical gain with the use of protons. Proton therapy may also allow treatment of some adult tumors to much more effective doses, because of normal tissue sparing distal to the tumor. Currently, the most commonly available proton treatment technology uses 3D conformal approaches based on (a) distal range modulation, (b) passive scattering of the proton beam in its x- and y-axes, and (c) lateral beam-shaping. It is anticipated that magnetic pencil beam scanning will become the dominant mode of proton delivery in the future, which will lower neutron scatter associated with passively scattered beam lines, reduce the need for expensive beam-shaping devices, and allow intensity-modulated proton radiotherapy. Proton treatment plans are more sensitive to variations in tumor size and normal tissue changes over the course of treatment than photon plans, and it is expected that adaptive radiation therapy will be increasingly important for proton therapy as well. While impressive treatment results have been reported with protons, their cost is higher than for photon IMRT. Hence, protons should ideally be employed for anatomic sites and tumors not well treated with photons. While protons appear cost-effective for pediatric tumors, their cost-effectiveness for treatment of some adult tumors, such as prostate cancer, is uncertain. Comparative studies have been proposed or are in progress to more rigorously assess their value for a variety of sites. The utility of proton therapy will be enhanced by technological developments that reduce its cost

  3. TNF-α blockade induces IL-10 expression in human CD4+ T cells

    NASA Astrophysics Data System (ADS)

    Evans, Hayley G.; Roostalu, Urmas; Walter, Gina J.; Gullick, Nicola J.; Frederiksen, Klaus S.; Roberts, Ceri A.; Sumner, Jonathan; Baeten, Dominique L.; Gerwien, Jens G.; Cope, Andrew P.; Geissmann, Frederic; Kirkham, Bruce W.; Taams, Leonie S.

    2014-02-01

    IL-17+ CD4+ T (Th17) cells contribute to the pathogenesis of several human inflammatory diseases. Here we demonstrate that TNF inhibitor (TNFi) drugs induce the anti-inflammatory cytokine IL-10 in CD4+ T cells including IL-17+ CD4+ T cells. TNFi-mediated induction of IL-10 in IL-17+ CD4+ T cells is Treg-/Foxp3-independent, requires IL-10 and is overcome by IL-1β. TNFi-exposed IL-17+ CD4+ T cells are molecularly and functionally distinct, with a unique gene signature characterized by expression of IL10 and IKZF3 (encoding Aiolos). We show that Aiolos binds conserved regions in the IL10 locus in IL-17+ CD4+ T cells. Furthermore, IKZF3 and IL10 expression levels correlate in primary CD4+ T cells and Aiolos overexpression is sufficient to drive IL10 in these cells. Our data demonstrate that TNF-α blockade induces IL-10 in CD4+ T cells including Th17 cells and suggest a role for the transcription factor Aiolos in the regulation of IL-10 in CD4+ T cells.

  4. ESTABLISHING MEAN CD4+ T CELL VALUES AMONG HEALTHY JAVANESE ADULTS IN INDONESIA.

    PubMed

    Prasetyo, Afiono Agung; Zaini, Khilyat Ulin Nur

    2015-07-01

    The objective of this study was to establish mean CD4+ T cell values among healthy Javanese adults in Indonesia. Two hundred forty-one healthy adults (119 women and 122 men), aged 18-65 years, were enrolled in the study. CD4+ T cells were analyzed by immunophenotyping. The mean absolute CD4+ T cell count was 753.3 ± 270.3 cells/µl (median = 725.0 cells/µl) and the mean CD4+ T cell percentage was 32.6 ± 7.7%, (median = 31.0%). Women had a slightly higher mean absolute CD4+ T cell count and CD4+ T cell percentage (779.1 ± 271.0 cells/ µl; 33.4 ± 8.2%) than men (728.2 ± 268.3 cells/µl; 31.8 ± 7.1%), but the differences were not statistically significant (p = 0.126, p = 0.216, respectively). The mean absolute CD4+ T cell varied significantly by age group (p = 0.002). Sixty-one point seven percent of men studied (37/60) had a CD4+ T cell count less than 500 cells/µl (OR 1.8; 95% CI = 1.001-3.300). Absolute CD4+ T cell counts among Javanese Indonesians varied significantly by age.

  5. Divergent CD4+ T memory stem cell dynamics in pathogenic and nonpathogenic simian immunodeficiency virus infections.

    PubMed

    Cartwright, Emily K; McGary, Colleen S; Cervasi, Barbara; Micci, Luca; Lawson, Benton; Elliott, Sarah T C; Collman, Ronald G; Bosinger, Steven E; Paiardini, Mirko; Vanderford, Thomas H; Chahroudi, Ann; Silvestri, Guido

    2014-05-15

    Recent studies have identified a subset of memory T cells with stem cell-like properties (T(SCM)) that include increased longevity and proliferative potential. In this study, we examined the dynamics of CD4(+) T(SCM) during pathogenic SIV infection of rhesus macaques (RM) and nonpathogenic SIV infection of sooty mangabeys (SM). Whereas SIV-infected RM show selective numeric preservation of CD4(+) T(SCM), SIV infection induced a complex perturbation of these cells defined by depletion of CD4(+)CCR5(+) T(SCM), increased rates of CD4(+) T(SCM) proliferation, and high levels of direct virus infection. The increased rates of CD4(+) T(SCM) proliferation in SIV-infected RM correlated inversely with the levels of central memory CD4(+) T cells. In contrast, nonpathogenic SIV infection of SM evidenced preservation of both CD4(+) T(SCM) and CD4(+) central memory T cells, with normal levels of CD4(+) T(SCM) proliferation, and lack of selective depletion of CD4(+)CCR5(+) T(SCM). Importantly, SIV DNA was below the detectable limit in CD4(+) T(SCM) from 8 of 10 SIV-infected SM. We propose that increased proliferation and infection of CD4(+) T(SCM) may contribute to the pathogenesis of SIV infection in RM.

  6. A study of coal extraction with electron paramagnetic resonance (EPR) and proton nuclear magnetic resonance relaxation techniques. Quarterly technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Doetschman, D.C.; Mehlenbacher, R.C.; Ito, O.

    1993-09-01

    An electron spin and proton magnetic relaxation study is presented on the effects of the solvent extraction of coal on the macromoleculer network of the coal and on the mobile molecular species that are initially within the coal. The eight Argonne Premium coals were extracted at room temperature with a 1:1 (v/v) N-methylpyrrolidinone (NMP)-CS2 solvent mixture under an inert atmosphere. As much solvent as possible was removed from extract and residue by treatment in a vacuum. The mobilization of molecular free radicals by the solvent and the exposure of free radicals in the macromoleculer matrix to solvent or to species dissolved in the solvent, results in a preferential survival of residue radicals of types that depend on the particular coal and results in the apparently fairly uniform loss of all types of radicals in bituminous coal extracts. The surviving extract and residue free radicals are more predominantly of the odd- alternate hydrocarbon free radical type. The spin-lattice relaxation (SLR) of these coal free radicals has previously been inferred (Doetschman and Dwyer, Energy Fuels, 1992, 6, 783) to be from the modulation of the intramolecular electron-nuclear dipole-interactions of the CH groups in a magnetic field by rocldng motions of the radical in the coal matrix. Such a modulation would depend not only on the rocking amplitude and frequency but also upon the electron spin density at the CH groups in the radical. The observed SLR rates decrease with coal rank in agreement with the smaller spin densities and the lower rocidng amplitudes that are expected for the larger polycondensed ring systems in coals of higher rank. The SLR rates are found to be generally faster in the extracts (than residues) where the molecular species would be expected to have a smaller polycondensed ring system than in the macromoleculer matrix of the residue.

  7. Specific patterns of spinal metabolites underlying α-Me-5-HT-evoked pruritus compared with histamine and capsaicin assessed by proton nuclear magnetic resonance spectroscopy.

    PubMed

    Liu, Taotao; He, Zhigang; Tian, Xuebi; Kamal, Ghulam Mustafa; Li, Zhixiao; Liu, Zeyuan; Liu, Huili; Xu, Fuqiang; Wang, Jie; Xiang, Hongbing

    2017-03-23

    The mechanism behind itching is not well understood. Proton nuclear magnetic resonance ((1)H-NMR) spectroscopic analysis of spinal cord extracts provides a quick modality for evaluating the specific metabolic activity of α-Me-5-HT-evoked pruritus mice. In the current study, four groups of young adult male C57Bl/6 mice were investigated; one group treated with saline, while the other groups intradermally injected with α-Me-5-HT (histamine independent pruritogen), histamine (histamine dependent pruritogen) and capsaicin (algogenic substance), respectively. The intradermal microinjection of α-Me-5-HT and histamine resulted in a dramatic increase in the itch behavior. Furthermore, the results of NMR studies of the spinal cord extracts revealed that the metabolites show very different patterns for these different drugs, especially when comparing α-Me-5-HT and capsaicin. All the animals in the groups of α-Me-5-HT and capsaicin were completely separated using the metabolite parameters and principal component analysis. For α-Me-5-HT, the concentrations of glutamate, GABA, glycine and aspartate increased significantly, especially for GABA (increased 17.2%, p=0.008). Furthermore, the concentration of NAA increased, but there was no significant difference (increased 11.3%, p=0.191) compared to capsaicin (decreased 29.1%, p=0.002). Thus the application of magnetic resonance spectroscopy technique, coupled with statistical analysis, could further explain the mechanism behind itching evoked by α-Me-5-HT or other drugs. It can thus improve our understanding of itch pathophysiology and pharmacological therapies which may contribute to itch relief.

  8. Relationship between Proton Magnetic Resonance Spectroscopy of Frontoinsular Gray Matter and Neurodevelopmental Outcomes in Very Low Birth Weight Children at the Age of 4.

    PubMed

    Durlak, Wojciech; Herman-Sucharska, Izabela; Urbanik, Andrzej; Klimek, Małgorzata; Karcz, Paulina; Dutkowska, Grażyna; Nitecka, Magdalena; Kwinta, Przemko

    2016-01-01

    Very low birth weight is associated with long term neurodevelopmental complications. Macroscopic brain abnormalities in prematurity survivors have been investigated in several studies. However, there is limited data regarding local cerebral metabolic status and neurodevelopmental outcomes. The purpose of this study was to characterize the relationship between proton magnetic resonance spectra in basal ganglia, frontal white matter and frontoinsular gray matter, neurodevelopmental outcomes assessed with the Leiter scale and the Developmental Test of Visual Perception and selected socioeconomic variables in a cohort of very low birth weight children at the age of four. Children were divided in three groups based on the severity of neurodevelopmental impairment. There were no differences in spectroscopy in basal ganglia and frontal white matter between the groups. Lower concentrations of N-acetylaspartate (NAA), choline (Cho) and myoinositol (mI) were observed in the frontoinsular cortex of the left hemisphere in children with neurodevelopmental impairment compared to children with normal neurodevelopmental outcomes. Higher parental education, daycare attendance and breastfeeding after birth were associated with more favorable neurodevelopmental prognosis, whereas rural residence was more prevalent in children with moderate and severe impairment. Our study demonstrates the role of long term neurometabolic disruption in the left frontoinsular cortex and selected socioeconomic variables in determination of neurodevelopmental prognosis in prematurity survivors.

  9. Identification of endogenous metabolites in human sperm cells using proton nuclear magnetic resonance ((1) H-NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS).

    PubMed

    Paiva, C; Amaral, A; Rodriguez, M; Canyellas, N; Correig, X; Ballescà, J L; Ramalho-Santos, J; Oliva, R

    2015-05-01

    The objective of this study was to contribute to the first comprehensive metabolomic characterization of the human sperm cell through the application of two untargeted platforms based on proton nuclear magnetic resonance ((1) H-NMR) spectroscopy and gas chromatography coupled to mass spectrometry (GC-MS). Using these two complementary strategies, we were able to identify a total of 69 metabolites, of which 42 were identified using NMR, 27 using GC-MS and 4 by both techniques. The identity of some of these metabolites was further confirmed by two-dimensional (1) H-(1) H homonuclear correlation spectroscopy (COSY) and (1) H-(13) C heteronuclear single-quantum correlation (HSQC) spectroscopy. Most of the metabolites identified are reported here for the first time in mature human spermatozoa. The relationship between the metabolites identified and the previously reported sperm proteome was also explored. Interestingly, overrepresented pathways included not only the metabolism of carbohydrates, but also of lipids and lipoproteins. Of note, a large number of the metabolites identified belonged to the amino acids, peptides and analogues super class. The identification of this initial set of metabolites represents an important first step to further study their function in male gamete physiology and to explore potential reasons for dysfunction in future studies. We also demonstrate that the application of NMR and MS provides complementary results, thus constituting a promising strategy towards the completion of the human sperm cell metabolome.

  10. Metabolic Changes in the Bilateral Visual Cortex of the Monocular Blind Macaque: A Multi-Voxel Proton Magnetic Resonance Spectroscopy Study.

    PubMed

    Wu, Lingjie; Tang, Zuohua; Feng, Xiaoyuan; Sun, Xinghuai; Qian, Wen; Wang, Jie; Jin, Lixin; Jiang, Jingxuan; Zhong, Yufeng

    2017-02-01

    The metabolic changes accompanied with adaptive plasticity in the visual cortex after early monocular visual loss were unclear. In this study, we detected the metabolic changes in bilateral visual cortex of normal (group A) and monocular blind macaque (group B) for studying the adaptive plasticity using multi-voxel proton magnetic resonance spectroscopy ((1)H-MRS) at 32 months after right optic nerve transection. Then, we compared the N-Acetyl aspartate (NAA)/Creatine (Cr), myoinositol (Ins)/Cr, choline (Cho)/Cr and Glx (Glutamate + glutamine)/Cr ratios in the visual cortex between two groups, as well as between the left and right visual cortex of group A and B. Compared with group A, in the bilateral visual cortex, a decreased NAA/Cr and Glx/Cr ratios in group B were found, which was more clearly in the right visual cortex; whereas the Ins/Cr and Cho/Cr ratios of group B were increased. All of these findings were further confirmed by immunohistochemical staining. In conclusion, the difference of metabolic ratios can be detected by multi-voxel (1)H-MRS in the visual cortex between groups A and B, which was valuable for investigating the adaptive plasticity of monocular blind macaque.

  11. Accuracy and uncertainty of asymmetric magnetization transfer ratio quantification for amide proton transfer (APT) imaging at 3T: a Monte Carlo study.

    PubMed

    Yuan, Jing; Zhang, Qinwei; Wang, Yi-Xiang; Wei, Juan; Zhou, Jinyuan

    2013-01-01

    Amide proton transfer (APT) imaging offers a novel and powerful MRI contrast mechanism for quantitative molecular imaging based on the principle of chemical exchange saturation transfer (CEST). Asymmetric magnetization transfer ratio (MTR(asym)) quantification is crucial for Z-spectrum analysis of APT imaging, but is still challenging, particularly at clinical field strength. This paper studies the accuracy and uncertainty in the quantification of MTR(asym) for APT imaging at 3T, by using high-order polynomial fitting of Z-spectrum through Monte Carlo simulation. Results show that polynomial fitting is a biased estimator that consistently underestimates MTR(asym). For a fixed polynomial order, the accuracy of MTR(asym) is almost constant with regard to signal-to-noise ratio (SNR) while the uncertainty decreases exponentially with SNR. The higher order polynomial fitting increases both the accuracy and the uncertainty of MTR(asym). For different APT signal intensity levels, the relative accuracy and the absolute uncertainty keep constant for a fixed polynomial order. These results indicate the limitations and pitfalls of polynomial fitting for MTR(asym) quantification so better quantification technique for MTR(asym) estimation is warranted.

  12. Determination of regional brain temperature using proton magnetic resonance spectroscopy to assess brain-body temperature differences in healthy human subjects.

    PubMed

    Childs, Charmaine; Hiltunen, Yrjö; Vidyasagar, Rishma; Kauppinen, Risto A

    2007-01-01

    Proton magnetic resonance spectroscopy ((1)H MRS) was used to determine brain temperature in healthy volunteers. Partially water-suppressed (1)H MRS data sets were acquired at 3T from four different gray matter (GM)/white matter (WM) volumes. Brain temperatures were determined from the chemical-shift difference between the CH(3) of N-acetyl aspartate (NAA) at 2.01 ppm and water. Brain temperatures in (1)H MRS voxels of 2 x 2 x 2 cm(3) showed no substantial heterogeneity. The volume-averaged temperature from single-voxel spectroscopy was compared with body temperatures obtained from the oral cavity, tympanum, and temporal artery regions. The mean brain parenchyma temperature was 0.5 degrees C cooler than readings obtained from three extra-brain sites (P < 0.01). (1)H MRS imaging (MRSI) data were acquired from a slice encompassing the single-voxel volumes to assess the ability of spectroscopic imaging to determine regional brain temperature within the imaging slice. Brain temperature away from the center of the brain determined by MRSI differed from that obtained by single-voxel MRS in the same brain region, possibly due to a poor line width (LW) in MRSI. The data are discussed in the light of proposed brain-body temperature gradients and the use of (1)H MRSI to monitor brain temperature in pathologies, such as brain trauma.

  13. Liquid chromatography-mass spectrometry and proton nuclear magnetic resonance characterization of trace level condensation products formed between lactose and the amine-containing diuretic hydrochlorothiazide.

    PubMed

    Harmon, P A; Yin, W; Bowen, W E; Tyrrell, R J; Reed, R A

    2000-07-01

    Trace levels of condensation products between lactose and the amine-containing diuretic hydrochlorothiazide are formed when a mixture of the two solids containing 30% weight water is heated at 60 degrees C for 2 weeks. The two most abundant condensation products were characterized by liquid chromatography-mass spectrometry (LC-MS) and proton nuclear magnetic resonance ((1)H NMR) spectroscopy. Under these relatively mild conditions of formation, the amine-lactose reaction products are limited to those involving the elimination of only a single molecule of water, rather than the multiple-water eliminations associated with later stages of the Maillard reaction. The spectroscopic data clearly show that the primary condensation products are cyclic N-substituted glycosylamines rather than Schiff base, 1,2-enolic forms, or Amadori rearrangement products of identical mass. In solution, the two most abundant N-substituted glycosylamines are shown to be in a kinetically slow equilibrium with each other, most likely through a mutarotation involving the intermediate formation of the acyclic Schiff base.

  14. Proton nuclear magnetic resonance and fluorescence spectroscopic studies of segmental mobility in aequorin and a green fluorescent protein from Aequorea forskalea

    SciTech Connect

    Nageswara Rao, B.D.; Kemple, M.D.; Prendergast, F.G.

    1980-10-01

    Aequorin is a protein of low molecular weight (20,000) isolated from the jellyfish Aequorea forskalea which emits blue light upon the binding of Ca/sup 2 +/ ions. This bioluminescence requires neither exogenous oxygen nor any other cofactors. The light emission occurs from an excited state of a chromophore (an imidazolopyrazinone) which is tightly and noncovalently bound to the protein. Apparently the binding of Ca/sup 2 +/ by the protein induces changes in the protein conformation which allow oxygen, already bound or otherwise held by the protein, to react with and therein oxidize the chromophore. The resulting discharged protein remains intact, with the Ca/sup 2 +/ and the chromophore still bound, but is incapable of further luminescence. The fluorescence spectrum of this discharged protein and the bioluminescence spectrum of the original charged aequorin are identical. A green fluorescent protein (GFP) of approx. 30,000 mol wt isolated from the same organism, functions in vivo as an acceptor of energy from aequorin and subsequently emits green light. We are applying proton nuclear magnetic resonance (NMR) spectroscopy and fluorescence spectroscopy to examine structural details of, and fluctuations associated with the luminescent reaction of aequorin and the in vivo energy transfer from aequorin to the GFP.

  15. Separation of Intra- and Extramyocellular Lipid Signals in Proton MR Spectra by Determination of Their Magnetic Field Distribution

    NASA Astrophysics Data System (ADS)

    Steidle, G.; Machann, J.; Claussen, C. D.; Schick, F.

    2002-02-01

    In skeletal musculature intramyocellular (IMCL) and extramyocellular lipids (EMCL) are stored in compartments of different geometry and experience different magnetic field strengths due to geometrical susceptibility effects. The effect is strong enough to-at least partly-separate IMCL and EMCL contributions in 1H MR spectroscopy, despite IMCL and EMCL consisting of the same substances. The assessment of intramyocellular lipid stores in skeletal musculature by 1H MR spectroscopy plays an important role for studying physiological and pathological aspects of lipid metabolism. Therefore, a method using mathematical tools of Fourier analysis is developed to obtain the magnetic field distribution (MFD) from the measured spectra by deconvolution. A reference lipid spectrum is required which was recorded in tibial yellow bone marrow. It is shown that the separation of IMCL contributions can be performed more precisely-compared to other methods-based on the MFD. Examples of deconvolution in model systems elucidate the principle. Applications of the proposed approach on in vivo examinations in m. soleus and m. tibialis anterior are presented. Fitting the IMCL part of the MFD by a Gaussian lineshape with a linewidth kept fixed with respect to the linewidth of creatine and with the assumption of a smooth but not necessarily symmetrical shape for the EMCL part, the only free fit parameter, the amplitude of the IMCL part, is definite and subtraction leads to the EMCL part in the MFD. This procedure is especially justified for the soleus muscle showing a severely asymmetrical distribution which might lead to a marked overestimation of IMCL using common line fitting procedures.

  16. Differential T cell receptor-mediated signaling in naive and memory CD4 T cells.

    PubMed

    Farber, D L; Acuto, O; Bottomly, K

    1997-08-01

    Naive and memory CD4 T cells differ in cell surface phenotype, function, activation requirements, and modes of regulation. To investigate the molecular bases for the dichotomies between naive and memory CD4 T cells and to understand how the T cell receptor (TCR) directs diverse functional outcomes, we investigated proximal signaling events triggered through the TCR/CD3 complex in naive and memory CD4 T cell subsets isolated on the basis of CD45 isoform expression. Naive CD4 T cells signal through TCR/CD3 similar to unseparated CD4 T cells, producing multiple tyrosine-phosphorylated protein species overall and phosphorylating the T cell-specific ZAP-70 tyrosine kinase which is recruited to the CD3zeta subunit of the TCR. Memory CD4 T cells, however, exhibit a unique pattern of signaling through TCR/CD3. Following stimulation through TCR/CD3, memory CD4 T cells produce fewer species of tyrosine-phosphorylated substrates and fail to phosphorylate ZAP-70, yet unphosphorylated ZAP-70 can associate with the TCR/CD3 complex. Moreover, a 26/28-kDa phosphorylated doublet is associated with CD3zeta in resting and activated memory but not in naive CD4 T cells. Despite these differences in the phosphorylation of ZAP-70 and CD3-associated proteins, the ZAP-70-related kinase, p72syk, exhibits similar phosphorylation in naive and memory T cell subsets, suggesting that this kinase could function in place of ZAP-70 in memory CD4 T cells. These results indicate that proximal signals are differentially coupled to the TCR in naive versus memory CD4 T cells, potentially leading to distinct downstream signaling events and ultimately to the diverse functions elicited by these two CD4 T cell subsets.

  17. The CD4+ T cell methylome contributes to a distinct CD4+ T cell transcriptional signature in Mycobacterium bovis-infected cattle

    PubMed Central

    Doherty, Rachael; Whiston, Ronan; Cormican, Paul; Finlay, Emma K.; Couldrey, Christine; Brady, Colm; O’Farrelly, Cliona; Meade, Kieran G.

    2016-01-01

    We hypothesised that epigenetic regulation of CD4+ T lymphocytes contributes to a shift toward a dysfunctional T cell phenotype which may impact on their ability to clear mycobacterial infection. Combined RNA-seq transcriptomic profiling and Reduced Representation Bisulfite Sequencing identified 193 significantly differentially expressed genes and 760 differentially methylated regions (DMRs), between CD4+ T cells from M. bovis infected and healthy cattle. 196 DMRs were located within 10 kb of annotated genes, including GATA3 and RORC, both of which encode transcription factors that promote TH2 and TH17 T helper cell subsets respectively. Gene-specific DNA methylation and gene expression levels for the TNFRSF4 and Interferon-γ genes were significantly negatively correlated suggesting a regulatory relationship. Pathway analysis of DMRs identified enrichment of genes involved in the anti-proliferative TGF-β signaling pathway and TGFB1 expression was significantly increased in peripheral blood leukocytes from TB-infected cattle. This first analysis of the bovine CD4+ T cell methylome suggests that DNA methylation directly contributes to a distinct gene expression signature in CD4+ T cells from cattle infected with M. bovis. Specific methylation changes proximal to key inflammatory gene loci may be critical to the emergence of a non-protective CD4+ T cell response during mycobacterial infection in cattle. PMID:27507428

  18. Proton Transport

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The transport of protons across membranes is an essential process for both bioenergetics of modern cells and the origins of cellular life. All living systems make use of proton gradients across cell walls to convert environmental energy into a high-energy chemical compound, adenosine triphosphate (ATP), synthesized from adenosine diphosphate. ATP, in turn, is used as a source of energy to drive many cellular reactions. The ubiquity of this process in biology suggests that even the earliest cellular systems were relying on proton gradient for harvesting environmental energy needed to support their survival and growth. In contemporary cells, proton transfer is assisted by large, complex proteins embedded in membranes. The issue addressed in this Study was: how the same process can be accomplished with the aid of similar but much simpler molecules that could have existed in the protobiological milieu? The model system used in the study contained a bilayer membrane made of phospholipid, dimyristoylphosphatidylcholine (DMPC) which is a good model of the biological membranes forming cellular boundaries. Both sides of the bilayer were surrounded by water which simulated the environment inside and outside the cell. Embedded in the membrane was a fragment of the Influenza-A M$_2$ protein and enough sodium counterions to maintain system neutrality. This protein has been shown to exhibit remarkably high rates of proton transport and, therefore, is an excellent model to study the formation of proton gradients across membranes. The Influenza M$_2$ protein is 97 amino acids in length, but a fragment 25 amino acids long. which contains a transmembrane domain of 19 amino acids flanked by three amino acids on each side. is sufficient to transport protons. Four identical protein fragments, each folded into a helix, aggregate to form small channels spanning the membrane. Protons are conducted through a narrow pore in the middle of the channel in response to applied voltage. This

  19. DIFFERENTIATION OF AURANTII FRUCTUS IMMATURUS AND FRUCTUS PONICIRI TRIFOLIATAE IMMATURUS BY FLOW-INJECTION WITH ULTRAVIOLET SPECTROSCOPIC DETECTION AND PROTON NUCLEAR MAGNETIC RESONANCE USING PARTIAL LEAST-SQUARES DISCRIMINANT ANALYSIS.

    PubMed

    Zhang, Mengliang; Zhao, Yang; Harrington, Peter de B; Chen, Pei

    2016-03-01

    Two simple fingerprinting methods, flow-injection coupled to ultraviolet spectroscopy and proton nuclear magnetic resonance, were used for discriminating between Aurantii fructus immaturus and Fructus poniciri trifoliatae immaturus. Both methods were combined with partial least-squares discriminant analysis. In the flow-injection method, four data representations were evaluated: total ultraviolet absorbance chromatograms, averaged ultraviolet spectra, absorbance at 193, 205, 225, and 283 nm, and absorbance at 225 and 283 nm. Prediction rates of 100% were achieved for all data representations by partial least-squares discriminant analysis using leave-one-sample-out cross-validation. The prediction rate for the proton nuclear magnetic resonance data by partial least-squares discriminant analysis with leave-one-sample-out cross-validation was also 100%. A new validation set of data was collected by flow-injection with ultraviolet spectroscopic detection two weeks later and predicted by partial least-squares discriminant analysis models constructed by the initial data representations with no parameter changes. The classification rates were 95% with the total ultraviolet absorbance chromatograms datasets and 100% with the other three datasets. Flow-injection with ultraviolet detection and proton nuclear magnetic resonance are simple, high throughput, and low-cost methods for discrimination studies.

  20. Brain Changes in Long-Term Zen Meditators Using Proton Magnetic Resonance Spectroscopy and Diffusion Tensor Imaging: A Controlled Study

    PubMed Central

    Fayed, Nicolás; Lopez del Hoyo, Yolanda; Andres, Eva; Serrano-Blanco, Antoni; Bellón, Juan; Aguilar, Keyla; Cebolla, Ausias; Garcia-Campayo, Javier

    2013-01-01

    Introduction This work aimed to determine whether 1H magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) are correlated with years of meditation and psychological variables in long-term Zen meditators compared to healthy non-meditator controls. Materials and Methods Design. Controlled, cross-sectional study. Sample. Meditators were recruited from a Zen Buddhist monastery. The control group was recruited from hospital staff. Meditators were administered questionnaires on anxiety, depression, cognitive impairment and mindfulness. 1H-MRS (1.5 T) of the brain was carried out by exploring four areas: both thalami, both hippocampi, the posterior superior parietal lobule (PSPL) and posterior cingulate gyrus. Predefined areas of the brain were measured for diffusivity (ADC) and fractional anisotropy (FA) by MR-DTI. Results Myo-inositol (mI) was increased in the posterior cingulate gyrus and Glutamate (Glu), N-acetyl-aspartate (NAA) and N-acetyl-aspartate/Creatine (NAA/Cr) was reduced in the left thalamus in meditators. We found a significant positive correlation between mI in the posterior cingulate and years of meditation (r = 0.518; p = .019). We also found significant negative correlations between Glu (r = −0.452; p = .045), NAA (r = −0.617; p = .003) and NAA/Cr (r = −0.448; P = .047) in the left thalamus and years of meditation. Meditators showed a lower Apparent Diffusion Coefficient (ADC) in the left posterior parietal white matter than did controls, and the ADC was negatively correlated with years of meditation (r = −0.4850, p = .0066). Conclusions The results are consistent with the view that mI, Glu and NAA are the most important altered metabolites. This study provides evidence of subtle abnormalities in neuronal function in regions of the white matter in meditators. PMID:23536796

  1. Association between proton magnetic resonance spectroscopy measurements and CAG repeat number in patients with spinocerebellar ataxias 2, 3, or 6.

    PubMed

    Wang, Po-Shan; Chen, Hung-Chieh; Wu, Hsiu-Mei; Lirng, Jiing-Feng; Wu, Yu-Te; Soong, Bing-Wen

    2012-01-01

    The aim of this study was to correlate magnetic resonance spectroscopy (MRS) measurements, including that for the N-acetyl aspartate (NAA)/creatine (Cr) ratio in the vermis (denoted V-NAA), right cerebellar hemisphere (R-NAA), and left (L-NAA) cerebellar hemisphere, with the clinical scale for the assessment and rating of ataxia (SARA) score for patients with spinocerebellar ataxia (SCA) types 2, 3, and 6. A total of 24 patients with SCA2, 48 with SCA3, and 16 with SCA6 were recruited; 12 patients with SCA2, 43 with SCA3, and 8 with SCA6 underwent detailed magnetic resonance neuroimaging. Forty-four healthy, age-matched individuals without history of neurologic disease served as control subjects. V-NAA and patient age were used to calculate the predicted age at which a patient with SCA2 or SCA3 would reach an onset V-NAA value. Results showed the following: the NAA/Cr ratio decreased with increasing age in patients with SCA but not in control subjects; the SARA score increased progressively with age and duration of illness; V-NAA showed a better correlation with SARA score than R-NAA in patients with SCA2 or SCA3; the ratio of age to V-NAA correlated well with CAG repeat number; the retrospectively predicted age of onset for SCA2 and SCA3 was consistent with patient-reported age of onset; R-NAA showed a better correlation with SARA score than V-NAA in patients with SCA6; V-NAA and R-NAA correlated with clinical severity (SARA score) in patients with SCA. The correlation between CAG repeat number and age could be expressed as a simple linear function, which might explain previous observations claiming that the greater the CAG repeat number, the earlier the onset of illness and the faster the disease progression. These findings support the use of MRS values to predict age of disease onset and to retrospectively evaluate the actual age of disease onset in SCA.

  2. RNA-Seq Transcriptome Analysis of Direction-Selective T4/T5 Neurons in Drosophila

    PubMed Central

    Pankova, Katarina; Borst, Alexander

    2016-01-01

    Neuronal computation underlying detection of visual motion has been studied for more than a half-century. In Drosophila, direction-selective T4/T5 neurons show supralinear signal amplification in response to stimuli moving in their preferred direction, in agreement with the prediction made by the Hassenstein-Reichardt detector. Nevertheless, the molecular mechanism explaining how the Hassenstein-Reichardt model is implemented in T4/T5 cells has not been identified yet. In the present study, we utilized cell type-specific transcriptome profiling with RNA-seq to obtain a complete gene expression profile of T4/T5 neurons. We analyzed the expression of genes that affect neuronal computational properties and can underlie the molecular implementation of the core features of the Hassenstein-Reichardt model to the dendrites of T4/T5 neurons. Furthermore, we used the acquired RNA-seq data to examine the neurotransmitter system used by T4/T5 neurons. Surprisingly, we observed co-expression of the cholinergic markers and the vesicular GABA transporter in T4/T5 neurons. We verified the previously undetected expression of vesicular GABA transporter in T4/T5 cells using VGAT-LexA knock-in line. The provided gene expression dataset can serve as a useful source for studying the properties of direction-selective T4/T5 neurons on the molecular level. PMID:27684367

  3. Polyfunctional cytokine responses by central memory CD4+T cells in response to bovine tuberculosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CD4 T cells are crucial in immunity to tuberculosis (TB). Polyfunctional CD4 T cells simultaneously produce interferon-gamma (IFN-gamma), interleukin-2 (IL-2) and tumor necrosis factor-alpha (TNF-alpha) and play relevant roles in several chronic infections, including human TB and HIV. Mycobacterium ...

  4. Polyfunctional cytokine responses by central memory CD4*T cells in response to bovine tuberculosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CD4 T cells are crucial in immunity to tuberculosis (TB). Polyfunctional CD4 T cells simultaneously produce interferon-gamma (IFN-gamma), interleukin-2 (IL-2) and tumor necrosis factor-alpha (TNF-alpha) and play relevant roles in several chronic infections, including human TB. Mycobacterium bovis in...

  5. Chronic exposure to trichloroethylene increases DNA methylation of the Ifng promoter in CD4(+) T cells.

    PubMed

    Gilbert, Kathleen M; Blossom, Sarah J; Erickson, Stephen W; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Li, Jingyun; Cooney, Craig A

    2016-10-17

    CD4(+) T cells in female MRL+/+ mice exposed to solvent and water pollutant trichloroethylene (TCE) skew toward effector/memory CD4(+) T cells, and demonstrate seemingly non-monotonic alterations in IFN-γ production. In the current study we examined the mechanism for this immunotoxicity using effector/memory and naïve CD4(+) T cells isolated every 6 weeks during a 40 week exposure to TCE (0.5mg/ml in drinking water). A time-dependent effect of TCE exposure on both Ifng gene expression and IFN-γ protein production was observed in effector/memory CD4(+) T cells, with an increase after 22 weeks of exposure and a decrease after 40 weeks of exposure. No such effect of TCE was observed in naïve CD4(+) T cells. A cumulative increase in DNA methylation in the CpG sites of the promoter of the Ifng gene was observed in effector/memory, but not naïve, CD4(+) T cells over time. Also unique to the Ifng promoter was an increase in methylation variance in effector/memory compared to naïve CD4(+) T cells. Taken together, the CpG sites of the Ifng promoter in effector/memory CD4(+) T cells were especially sensitive to the effects of TCE exposure, which may help explain the regulatory effect of the chemical on this gene.

  6. Selective culling of high avidity antigen-specific CD4+ T cells after virulent Salmonella infection.

    PubMed

    Ertelt, James M; Johanns, Tanner M; Mysz, Margaret A; Nanton, Minelva R; Rowe, Jared H; Aguilera, Marijo N; Way, Sing Sing

    2011-12-01

    Typhoid fever is a persistent infection caused by host-adapted Salmonella strains adept at circumventing immune-mediated host defences. Given the importance of T cells in protection, the culling of activated CD4+ T cells after primary infection has been proposed as a potential immune evasion strategy used by this pathogen. We demonstrate that the purging of activated antigen-specific CD4+ T cells after virulent Salmonella infection requires SPI-2 encoded virulence determinants, and is not restricted only to cells with specificity to Salmonella-expressed antigens, but extends to CD4+ T cells primed to expand by co-infection with recombinant Listeria monocytogenes. Unexpectedly, however, the loss of activated CD4+ T cells during Salmonella infection demonstrated using a monoclonal population of adoptively transferred CD4+ T cells was not reproduced among the endogenous repertoire of antigen-specific CD4+ T cells identified with MHC class II tetramer. Analysis of T-cell receptor variable segment usage revealed the selective loss and reciprocal enrichment of defined CD4+ T-cell subsets after Salmonella co-infection that is associated with the purging of antigen-specific cells with the highest intensity of tetramer staining. Hence, virulent Salmonella triggers the selective culling of high avidity activated CD4+ T-cell subsets, which re-shapes the repertoire of antigen-specific T cells that persist later after infection.

  7. 26 CFR 1.469-4T - Definition of activity (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... at the management office relate to transactions in which customers take physical possession at... 26 Internal Revenue 6 2010-04-01 2010-04-01 false Definition of activity (temporary). 1.469-4T... TAX (CONTINUED) INCOME TAXES Taxable Year for Which Deductions Taken § 1.469-4T Definition of...

  8. 26 CFR 1.1001-4T - Modifications of certain derivative contracts (temporary).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 11 2013-04-01 2013-04-01 false Modifications of certain derivative contracts (temporary). 1.1001-4T Section 1.1001-4T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... section applies to transfers or assignments of derivative contracts on or after July 22, 2011....

  9. Increased brain tissue sodium concentration in Huntington's Disease - a sodium imaging study at 4 T.

    PubMed

    Reetz, Kathrin; Romanzetti, Sandro; Dogan, Imis; Saß, Christian; Werner, Cornelius J; Schiefer, Johannes; Schulz, Jörg B; Shah, N Jon

    2012-10-15

    The neuropathological hallmark of the autosomal dominantly inherited, neurodegenerative disorder Huntington's disease is progressive striatal loss starting several years prior to symptom manifestation. Magnetic resonance (MR) imaging has been widely used to detect altered structure in premanifest and early Huntington's disease. Given that neurodegeneration is likely preceded by substantial neuronal dysfunction, we used in vivo sodium MR imaging, which has been shown to be sensitive to cell death and viability, to investigate cellular and metabolic integrity of Huntington's disease brain tissue. We studied a total of thirteen healthy controls and thirteen Huntington's disease gene carriers (11 manifest and 2 premanifest). The manifest Huntington's disease group was subdivided into stages 1 and 2 according to their Total Functional Capacity scores. Clinical total motor and cognitive scores, as well as calibrated sodium and T1-weighted MR images were obtained with a 4 T Siemens MR scanner. Sodium images were acquired by means of a constant time imaging technique with an ultra-short "echo time". T1-weighted MR images were further analysed with voxel-based morphometry. The absolute total sodium concentration and grey matter values were measured in several Huntington's disease-specific and also non-specific areas. Statistical analysis of variance and Pearson correlation were applied. In Huntington's disease subjects, we found an increase of total sodium concentration of the entire brain compared to controls. Increased total sodium concentration values were found in structurally affected, but also in some non-affected, regions. The highest total sodium concentration values were found in the bilateral caudate, which was associated with caudate grey matter atrophy and CAG repeat length. In all Huntington's disease subjects we further found a profound increase of total sodium concentration in the putamen, pallidum, thalamus, hippocampus, insula, precuneus and occipital

  10. Spectrum of solar flare protons

    NASA Astrophysics Data System (ADS)

    Podgorny, I. M.; Balabin, Yu. V.; Podgorny, A. I.; Vashenyuk, E. V.

    2010-08-01

    Most of big solar flares are accompanied by relativistic protons. The prompt component of relativistic protons moves along the interplanetary magnetic field lines and arrives at the Earth's orbit when the flare favorably located in the western solar hemisphere. The neutron monitor measurements reveal an exponential law energy spectrum. Calculations of relativistic proton acceleration in the flare current sheet with magnetic and electric fields found from 3D MHD simulations also demonstrate an exponential law spectrum. A comparison of the measured and calculated spectra permits to estimate the rate of reconnection in the Bastille flare (14 July 2000) as ˜107cm/s. The delay component of relativistic protons exhibits a power law energy spectrum.

  11. Proton Nuclear Magnetic Resonance Spectroscopy as a Technique for Gentamicin Drug Susceptibility Studies with Escherichia coli ATCC 25922

    PubMed Central

    García-Álvarez, Lara; Busto, Jesús H.; Avenoza, Alberto; Sáenz, Yolanda; Peregrina, Jesús Manuel

    2015-01-01

    Antimicrobial drug susceptibility tests involving multiple time-consuming steps are still used as reference methods. Today, there is a need for the development of new automated instruments that can provide faster results and reduce operating time, reagent costs, and labor requirements. Nuclear magnetic resonance (NMR) spectroscopy meets those requirements. The metabolism and antimicrobial susceptibility of Escherichia coli ATCC 25922 in the presence of gentamicin have been analyzed using NMR and compared with a reference method. Direct incubation of the bacteria (with and without gentamicin) into the NMR tube has also been performed, and differences in the NMR spectra were obtained. The MIC, determined by the reference method found in this study, would correspond with the termination of the bacterial metabolism observed with NMR. Experiments carried out directly into the NMR tube enabled the development of antimicrobial drug susceptibility tests to assess the effectiveness of the antibiotic. NMR is an objective and reproducible method for showing the effects of a drug on the subject bacterium and can emerge as an excellent tool for studying bacterial activity in the presence of different antibiotic concentrations. PMID:25972417

  12. Probing protein hydration and aging of food materials by the magnetic field dependence of proton spin-lattice relaxation times.

    PubMed

    Godefroy, Sophie; Korb, Jean-Pierre; Creamer, Lawrence K; Watkinson, Philip J; Callaghan, Paul T

    2003-11-15

    Most cheeses can be considered as solid emulsions of milk fat in a matrix of water and proteins. Regions of each of the phases can be liquid during processing and maturation. Identifying these regions and monitoring changes in them is important as a prelude to controlling the structure of the final cheese. We concentrate on the behavior of water in the vicinity of proteins as a function of cheese aging. Our method utilizes nuclear magnetic relaxation dispersion (NMRD) associated with the frequency dependence of water spin-lattice relaxation rates using the field cycling NMR technique. This method provides insight into the dynamical behavior of water molecules on a very large time scale. Moreover, we can distinguish between molecular motion in bulk and motion in the vicinity of a source of relaxation, such as proteins. A fit of our dispersion data using a theory developed by J.-P. Korb and R.G. Bryant (J. Chem. Phys. 115 (2001) 23) allowed us to determine the degree of hydration of proteins as a function of aging. In particular, we find that protein hydration increases with ripening.

  13. Enhanced critical currents of commercial 2G superconducting coated conductors through proton irradiation

    NASA Astrophysics Data System (ADS)

    Welp, Ulrich; Leroux, M.; Kihlstrom, K. J.; Kwok, W.-K.; Koshelev, A. E.; Miller, D. J.; Rupich, M. W.; Fleshler, S.; Malozemoff, A. P.; Kayani, A.

    2015-03-01

    We report on magnetization and transport measurements of the critical current density, Jc, of commercial 2G YBCO coated conductors before and after proton irradiation. The samples were irradiated along the c-axis with 4 MeV protons. Proton irradiation produces a mixed pinning landscape composed of pre-existing rare earth particles and a uniform distribution of irradiation induced nm-sized defects. This pinning landscape strongly reduces the suppression of Jc in magnetic fields resulting in a doubling of Jc in a field of ~ 4T. The irradiation dose-dependence of Jc is characterized by a temperature and field dependent sweat spot that at 5 K and 6 T occurs around 20x1016 p/cm2. Large-scale time dependent Ginzburg-Landau simulations yield a good description of our results. This work supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. D.O.E., Office of Science, Office of Basic Energy Sciences (KK, ML, AEK) and by the D.O.E, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 (UW, WKK).

  14. Spin-locking versus chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons.

    PubMed

    Jin, Tao; Autio, Joonas; Obata, Takayuki; Kim, Seong-Gi

    2011-05-01

    Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of nonequivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolite phantoms with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: (i) on-resonance SL is most sensitive to chemical exchanges in the intermediate-exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. (ii) Offset frequency-dependent SL and CEST spectra are very similar and can be explained well with an SL model recently developed by Trott and Palmer (J Magn Reson 2002;154:157-160). (iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. (iv) The asymmetry of the magnetization transfer ratio (MTR(asym)) is highly dependent on the choice of saturation pulse power. In the intermediate-exchange regime, MTR(asym) becomes complicated and should be interpreted with care.

  15. Proton Therapy

    MedlinePlus

    ... effects of the treatment. top of page What equipment is used? Proton beam therapy uses special machines, ... tumor cells. top of page Who operates the equipment? With backgrounds in mechanical, electrical, software, hardware and ...

  16. Proton conduction in biopolymer exopolysaccharide succinoglycan

    NASA Astrophysics Data System (ADS)

    Kweon, Jin Jung; Lee, Kyu Won; Kim, Hyojung; Lee, Cheol Eui; Jung, Seunho; Kwon, Chanho

    2014-07-01

    Protonic currents play a vital role in electrical signalling in living systems. It has been suggested that succinoglycan plays a specific role in alfalfa root nodule development, presumably acting as the signaling molecules. In this regard, charge transport and proton dynamics in the biopolymer exopolysaccharide succinoglycan have been studied by means of electrical measurements and nuclear magnetic resonance (NMR) spectroscopy. In particular, a dielectric dispersion in the system has revealed that the electrical conduction is protonic rather electronic. Besides, our laboratory- and rotating-frame 1H NMR measurements have elucidated the nature of the protonic conduction, activation of the protonic motion being associated with a glass transition.

  17. Proton conduction in biopolymer exopolysaccharide succinoglycan

    SciTech Connect

    Kweon, Jin Jung; Lee, Kyu Won; Kim, Hyojung; Lee, Cheol Eui; Jung, Seunho; Kwon, Chanho

    2014-07-07

    Protonic currents play a vital role in electrical signalling in living systems. It has been suggested that succinoglycan plays a specific role in alfalfa root nodule development, presumably acting as the signaling molecules. In this regard, charge transport and proton dynamics in the biopolymer exopolysaccharide succinoglycan have been studied by means of electrical measurements and nuclear magnetic resonance (NMR) spectroscopy. In particular, a dielectric dispersion in the system has revealed that the electrical conduction is protonic rather electronic. Besides, our laboratory- and rotating-frame {sup 1}H NMR measurements have elucidated the nature of the protonic conduction, activation of the protonic motion being associated with a glass transition.

  18. Itk Signals Promote Neuroinflammation by Regulating CD4+ T-Cell Activation and Trafficking

    PubMed Central

    Kannan, Arun K.; Kim, Do-Geun

    2015-01-01

    Here we demonstrate that interleukin-2-inducible T-cell kinase (Itk) signaling in cluster of differentiation 4-positive (CD4+) T cells promotes experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). We show that Itk−/− mice exhibit reduced disease severity, and transfer of Itk−/− CD4+ T cells into T cell-deficient recipients results in lower disease severity. We observed a significant reduction of CD4+ T cells in the CNS of Itk−/− mice or recipients of Itk−/− CD4+ T cells during EAE, which is consistent with attenuated disease. Itk−/− CD4+ T cells exhibit defective response to myelin antigen stimulation attributable to displacement of filamentous actin from the CD4+ coreceptor. This results in inadequate transmigration of Itk−/− CD4+ T cells into the CNS and across brain endothelial barriers in vitro. Finally, Itk−/− CD4+ T cells show significant reduction in production of T-helper 1 (Th1) and Th17 cytokines and exhibit skewed T effector/T regulatory cell ratios. These results indicate that signaling by Itk promotes autoimmunity and CNS inflammation, suggesting that it may be a viable target for treatment of MS. PMID:25568116

  19. 26 CFR 1.103(n)-4T - Elective carryforward of unused private activity bond limit (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... bond limit (temporary). 1.103(n)-4T Section 1.103(n)-4T Internal Revenue INTERNAL REVENUE SERVICE... Excluded from Gross Income § 1.103(n)-4T Elective carryforward of unused private activity bond limit... carryforward for any one or more projects described in A-5 of this § 1.103(n)-4T (carryforward projects)....

  20. 26 CFR 1.103(n)-4T - Elective carryforward of unused private activity bond limit (temporary).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... bond limit (temporary). 1.103(n)-4T Section 1.103(n)-4T Internal Revenue INTERNAL REVENUE SERVICE... Excluded from Gross Income § 1.103(n)-4T Elective carryforward of unused private activity bond limit... carryforward for any one or more projects described in A-5 of this § 1.103(n)-4T (carryforward projects)....

  1. 26 CFR 1.103(n)-4T - Elective carryforward of unused private activity bond limit (temporary).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... bond limit (temporary). 1.103(n)-4T Section 1.103(n)-4T Internal Revenue INTERNAL REVENUE SERVICE... Excluded from Gross Income § 1.103(n)-4T Elective carryforward of unused private activity bond limit... carryforward for any one or more projects described in A-5 of this § 1.103(n)-4T (carryforward projects)....

  2. DJ-1/Park7 Sensitive Na(+) /H(+) Exchanger 1 (NHE1) in CD4(+) T Cells.

    PubMed

    Zhou, Yuetao; Shi, Xiaolong; Chen, Hong; Zhang, Shaqiu; Salker, Madhuri S; Mack, Andreas F; Föller, Michael; Mak, Tak W; Singh, Yogesh; Lang, Florian

    2016-08-10

    DJ-1/Park7 is a redox-sensitive chaperone protein counteracting oxidation and presumably contributing to the control of oxidative stress responses and thus inflammation. DJ-1 gene deletion exacerbates the progression of Parkinson's disease presumably by augmenting oxidative stress. Formation of reactive oxygen species (ROS) is paralleled by activation of the Na(+) /H(+) exchanger 1 (NHE1). ROS formation in CD4(+) T cells plays a decisive role in regulating inflammatory responses. In the present study we explored whether DJ-1 is expressed in CD4(+) T cells and affects ROS production as well as NHE1 in those cells. To this end, DJ-1 and NHE1 transcript and protein levels were quantified by qRT-PCR and Western blotting respectively, intracellular pH (pHi) utilizing bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) fluorescence, NHE activity from realkalinization after an ammonium pulse, and ROS production utilizing 2',7' -dichlorofluorescin diacetate (DCFDA) fluorescence. As a result DJ-1 was expressed in CD4(+) T cells. ROS formation, NHE1 transcript levels, NHE1 protein, and NHE activity were higher in CD4(+) T cells from DJ-1 deficient mice than in CD4(+) T cells from wild type mice. Antioxidant N-acetyl-cysteine (NAC) and protein tyrosine kinase (PTK) inhibitor staurosporine decreased the NHE activity in DJ-1 deficient CD4(+) T cells, and blunted the difference between DJ-1(-/-) and DJ-1(+/+) CD4(+) T cells, an observation pointing to a role of ROS in the up-regulation of NHE1 in DJ-1(-/-) CD4(+) T cells. In conclusion, DJ-1 is a powerful regulator of ROS production as well as NHE1 expression and activity in CD4(+) T cells. This article is protected by copyright. All rights reserved.

  3. Evaluation of intracranial neoplasia and noninfectious meningoencephalitis in dogs by use of short echo time, single voxel proton magnetic resonance spectroscopy at 3.0 Tesla.

    PubMed

    Carrera, Inés; Richter, Henning; Beckmann, Katrin; Meier, Dieter; Dennler, Matthias; Kircher, Patrick R

    2016-05-01

    OBJECTIVE To investigate metabolite concentrations of the brains of dogs with intracranial neoplasia or noninfectious meningoencephalitis by use of short echo time, single voxel proton magnetic resonance spectroscopy ((1)H MRS) at 3.0 T. ANIMALS 29 dogs with intracranial lesions (14 with neoplasia [3 oligodendromas, 3 glioblastomas multiformes, 3 astrocytomas, 2 lymphomas, and 3 meningiomas] and 15 is with noninfectious meningoencephalitis) and 10 healthy control dogs. PROCEDURES Short echo time, single voxel (1)H-MRS at 3.0 T was performed on neoplastic and noninfectious inflammatory intracranial lesions identified with conventional MRI. Metabolites of interest included N-acetyl aspartate (NAA), total choline, creatine, myoinositol, the glutamine-glutamate complex (Glx), glutathione, taurine, lactate, and lipids. Data were analyzed with postprocessing fitting algorithm software. Metabolite concentrations relative to brain water content were calculated and compared with results for the healthy control dogs, which had been previously evaluated with the same (1)H MRS technique. RESULTS NAA, creatine, and Glx concentrations were reduced in the brains of dogs with neoplasia and noninfectious meningoencephalitis, whereas choline concentration was increased. Concentrations of these metabolites differed significantly between dogs with neoplasia and dogs with noninfectious meningoencephalitis. Concentrations of NAA, creatine, and Glx were significantly lower in dogs with neoplasia, whereas the concentration of choline was significantly higher in dogs with neoplasia. Lipids were predominantly found in dogs with high-grade intra-axial neoplasia, meningioma, and necrotizing meningoencephalitis. A high concentration of taurine was found in 10 of 15 dogs with noninfectious meningoencephalitis. CONCLUSIONS AND CLINICAL RELEVANCE (1)H MRS provided additional metabolic information about intracranial neoplasia and noninfectious meningoencephalitis in dogs.

  4. Evaluation of Focal Liver Reaction after Proton Beam Therapy for Hepatocellular Carcinoma Examined Using Gd-EOB-DTPA Enhanced Hepatic Magnetic Resonance Imaging

    PubMed Central

    Yamamoto, Kazutaka; Maeda, Yoshikazu; Kawamura, Mariko; Shibata, Satoshi; Sato, Yoshitaka; Terashima, Kazuki; Shimizu, Yasuhiro; Tameshige, Yuji; Sasaki, Makoto; Asahi, Satoko; Kondou, Tamaki; Kobayashi, Satoshi; Matsui, Osamu; Gabata, Toshifumi

    2016-01-01

    Background Proton beam therapy (PBT) achieves good local control for hepatocellular carcinoma (HCC), and toxicity tends to be lower than for photon radiotherapy. Focal liver parenchymal damage in radiotherapy is described as the focal liver reaction (FLR); the threshold doses (TDs) for FLR in the background liver have been analyzed in stereotactic ablative body radiotherapy and brachytherapy. To develop a safer approach for PBT, both TD and liver volume changes are considered clinically important in predicting the extent of damage before treatment, and subsequently in reducing background liver damage. We investigated appearance time, TDs and volume changes regarding FLR after PBT for HCC. Material and Methods Patients who were treated using PBT and were followed up using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (Gd-EOB-DTPA MRI) after PBT were enrolled. Sixty-eight lesions in 58 patients were eligible for analysis. MRI was acquired at the end of treatment, and at 1, 2, 3 and 6 months after PBT. We defined the FLR as a clearly depicted hypointense area on the hepatobiliary phase of Gd-EOB-DTPA MRI, and we monitored TDs and volume changes in the FLR area and the residual liver outside of the FLR area. Results FLR was depicted in all lesions at 3 months after PBT. In FLR expressed as the 2-Gy equivalent dose (α/β = 3 Gy), TDs did not differ significantly (27.0±6.4 CGE [10 fractions [Fr] vs. 30.5±7.3 CGE [20 Fr]). There were also no correlations between the TDs and clinical factors, and no significant differences between Child-Pugh A and B scores. The volume of the FLR area decreased and the residual liver volume increased, particularly during the initial 3 months. Conclusion This study established the FLR dose for liver with HCC, which might be useful in the prediction of remnant liver volume for PBT. PMID:27907063

  5. Advanced MR imaging techniques in the evaluation of nonenhancing gliomas: perfusion-weighted imaging compared with proton magnetic resonance spectroscopy and tumor grade.

    PubMed

    Sahin, Neslin; Melhem, Elias R; Wang, Sumei; Krejza, Jaroslaw; Poptani, Harish; Chawla, Sanjeev; Verma, Gaurav

    2013-10-01

    A significant number of nonenhancing (NE) gliomas are reported to be malignant. The purpose of this study was to compare the value of advanced MR imaging techniques, including T2*-dynamic susceptibility contrast PWI (DSC-PWI) and proton magnetic resonance spectroscopy ((1)HMRS) in the evaluation of NE gliomas. Twenty patients with NE gliomas underwent MRI including DSC-PWI and (1)HMRS. The relative CBV (rCBV) measurements were obtained from regions of maximum perfusion. The peak ratios of choline/creatine (Cho/Cr) and myo-inositol/creatine (mIns/Cr) were measured at a TE of 30 ms. Demographic features, tumor volumes, and PWI- and (1)HMRS-derived measures were compared between low-grade gliomas (LGGs) and high-grade gliomas (HGGs). In addition, the association of initial rCBV ratio with tumor progression was evaluated in LGGs. No significant difference was noted in age, sex or tumor size between LGGs and HGGs. Cho/Cr ratios were significantly higher in HGGs (1.7±0.63) than in LGGs (1.2±0.38). The receiver operating characteristic analysis demonstrated that a Cho/Cr ratio with a cutoff value of 1.3 could differentiate between LGG and HGG with a specificity of 100% and a sensitivity of 71.4%. There was no significant difference in the rCBV ratio and the mIns/Cr ratio between LGG and HGG. However, higher rCBV ratios were observed with more rapid progressions in LGGs. The results imply that Cho/Cr ratios are useful in distinguishing NE LGG from HGG and can be helpful in preoperative grading and biopsy guidance. On the other hand, rCBV ratios do not help in the distinction.

  6. Effects of fluoxetine on the amygdala and the hippocampus after administration of a single prolonged stress to male Wistar rates: In vivo proton magnetic resonance spectroscopy findings.

    PubMed

    Han, Fang; Xiao, Bing; Wen, Lili; Shi, Yuxiu

    2015-05-30

    Posttraumatic stress disorder (PTSD) is an anxiety- and memory-based disorder. The hippocampus and amygdala are key areas in mood regulation. Fluoxetine was found to improve the anxiety-related symptoms of PTSD patients. However, little work has directly examined the effects of fluoxetine on the hippocampus and the amygdala. In the present study, male Wistar rats received fluoxetine or vehicle after exposure to a single prolonged stress (SPS), an animal model of PTSD. In vivo proton magnetic resonance spectroscopy ((1)H-MRS) was performed -1, 1, 4, 7 and 14 days after SPS to examine the effects of fluoxetine on neurometabolite changes in amygdala, hippocampus and thalamus. SPS increased the N-acetylaspartate (NAA)/creatine (Cr) and choline moieties (Cho)/Cr ratios in the bilateral amygdala on day 4, decreased the NAA/Cr ratio in the left hippocampus on day 1, and increased both ratios in the right hippocampus on day 14. But no significant change was found in the thalamus. Fluoxetine treatment corrected the SPS increases in the NAA/Cr and Cho/Cr levels in the amygdala on day 4 and in the hippocampus on day 14, but it failed to normalise SPS-associated decreases in NAA/Cr levels in the left hippocampus on day 1. These results suggested that metabolic abnormalities in the amygdala and the hippocampus were involved in SPS, and different effects of fluoxetine in correcting SPS-induced neurometabolite changes among the three areas. These findings have implications for fluoxetine treatment in PTSD.

  7. Analysis of brain metabolism by proton magnetic resonance spectroscopy (1H-MRS) in attention-deficit/hyperactivity disorder suggests a generalized differential ontogenic pattern from controls.

    PubMed

    Arcos-Burgos, Mauricio; Londoño, Ana C; Pineda, David A; Lopera, Francisco; Palacio, Juan David; Arbelaez, Andres; Acosta, Maria T; Vélez, Jorge I; Castellanos, Francisco Xavier; Muenke, Maximilian

    2012-12-01

    Attention-deficit/hyperactivity disorder (ADHD) is the most common behavioral disorder of childhood. Preliminary studies with proton magnetic resonance spectroscopy ((1)H-MRS) of the brain have reported differences in brain metabolite concentration-to-Cr ratios between individuals with ADHD and unaffected controls in several frontal brain regions including anterior cingulate cortex. Using multivoxel (1)H-MRS, we compared 14 individuals affected with ADHD to 20 individuals without ADHD from the same genetic isolate. After controlling by sex, age, and multiple testing, we found significant differences at the right posterior cingulate of the Glx/Cr ratio density distribution function between ADHD cases and controls (P < 0.05). Furthermore, we found several interactions of metabolite concentration-to-Cr ratio, age, and ADHD status: Ins/Cr and Glx/Cr ratios at the left posterior cingulate, and NAA/Cr at the splenius, right posterior cingulate, and at the left posterior cingulate. We also found a differential metabolite ratio interaction between ADHD cases and controls for Ins/Cr and NAA/Cr at the right striatum. These results show that: (1) NAA/Cr, Glx/Cr, and Ins/Cr ratios, as reported in other studies, exhibit significant differences between ADHD cases and controls; (2) differences of these metabolite ratios between ADHD cases and controls evolve in specific and recognizable patterns throughout age, a finding that replicates previous results obtained by structural MRI, where is demonstrated that brain ontogeny follows a different program in ADHD cases and controls; (3) Ins/Cr and NAA/Cr ratios, at the right striatum, interact in a differential way between ADHD cases and controls. As a whole, these results replicate previous 1H-MRS findings and add new intriguing differential metabolic and ontogeny patterns between ADHD cases and controls that warrant further pursue.

  8. Cortico-Striatal GABAergic and Glutamatergic Dysregulations in Subjects at Ultra-High Risk for Psychosis Investigated with Proton Magnetic Resonance Spectroscopy

    PubMed Central

    Reyes-Madrigal, Francisco; Mao, Xiangling; León-Ortiz, Pablo; Rodríguez-Mayoral, Oscar; Solís-Vivanco, Rodolfo; Favila, Rafael; Graff-Guerrero, Ariel; Shungu, Dikoma C.

    2016-01-01

    Background: Dysregulations of the major inhibitory and excitatory amino neurotransmitter systems of γ-aminobutyric acid and glutamate, respectively, have been described in patients with schizophrenia. However, it is unclear whether these abnormalities are present in subjects at ultra-high risk for psychosis. Methods: Twenty-three antipsychotic naïve subjects at ultra-high risk and 24 healthy control subjects, matched for age, sex, handedness, cigarette smoking, and parental education, underwent proton magnetic resonance spectroscopy scans in the dorsal caudate bilaterally and the medial prefrontal cortex at 3T. Levels of γ-aminobutyric acid and of the combined resonance of glutamate and glutamine (Glx) were obtained using the standard J-editing technique and expressed as peak area ratios relative to the synchronously acquired unsuppressed voxel water signal. Results: Higher levels of γ-aminobutyric acid (P<.001) and Glx (P=.007) were found in the dorsal caudate of the subjects at ultra-high risk than in the healthy controls. In the medial prefrontal cortex, likewise, both γ-aminobutyric acid (P=.03) and Glx (P=.006) levels were higher in the ultra-high risk group than in the healthy controls. No group differences were found for any of the other metabolites (N-acetylaspartate, total choline, or total creatine) in the 2 regions of interest. Conclusions: This study presents the first evidence of abnormal elevations, in subjects at ultra-high risk, of γ-aminobutyric acid and Glx in 2 brain regions that have been implicated in the pathophysiology of psychosis, warranting longitudinal studies to assess whether these neurotransmitter abnormalities can serve as noninvasive biomarkers of conversion risk to psychosis as well as of illness progression and treatment response. PMID:26364273

  9. A Pilot In Vivo Proton Magnetic Resonance Spectroscopy Study of Amino Acid Neurotransmitter Response to Ketamine Treatment of Major Depressive Disorder

    PubMed Central

    Milak, Matthew S.; Proper, Caitlin J.; Mulhern, Stephanie T.; Parter, Amy L.; Kegeles, Lawrence S.; Ogden, R. Todd; Mao, Xiangling; Rodriguez, Carolyn I.; Oquendo, Maria A.; Suckow, Raymond F.; Cooper, Thomas B.; Keilp, John C.; Shungu, Dikoma C.; Mann, J. John

    2015-01-01

    The NMDA receptor antagonist ketamine can improve major depressive disorder (MDD) within hours. To evaluate the putative role of glutamatergic and GABAergic systems in ketamine’s antidepressant action, medial prefrontal cortical (mPFC) levels of glutamate + glutamine (Glx) and γ-aminobutyric acid (GABA) were measured before, during, and after ketamine administration using proton magnetic resonance spectroscopy. Ketamine (0.5 mg/kg i.v.) was administered to eleven depressed patients with MDD. Glx and GABA mPFC responses were measured as ratios relative to unsuppressed voxel tissue water (W) successfully in 8/11 patients. Ten of 11 patients remitted (50% reduction in 24-item Hamilton Depression Rating Scale and total ≤ 10) within 230 minutes of commencing ketamine. mPFC Glx/W and GABA/W peaked at 37.8%±7.5% and 38.0%±9.1% above baseline in ~26 minutes. Mean areas under the curve (AUC) for Glx/W (p = 0.025) and GABA/W (p = 0.005) increased and correlated (r = 0.796; p=0.018). Clinical improvement correlated with 90-minute norketamine concentration (df=6, r=−0.78, p=0.023), but no other measures. Rapid increases in Glx and GABA in MDD following ketamine administration support the postulated antidepressant role of glutamate and for the first time raises the question of GABA’s role in the antidepressant action of ketamine. These data support the hypothesis1 that ketamine administration may cause an initial increase in glutamate that potentially activates mammalian target of rapamycin (mTOR) pathway via AMPA receptors, since ketamine blocks NMDA receptors. The role of the contemporaneous surge in GABA remains to be determined.2 PMID:26283639

  10. Complete genome sequence of the Aneurinibacillus soli CB4(T) from soil of mountain.

    PubMed

    Lee, Jung-Sook; Lee, Keun Chul; Kim, Kwang Kyu; Lee, Byungwook

    2016-03-10

    Aneurinibacillus soli CB4(T) is a Gram-positive, motile rods and strictly aerobic bacterium. Here we present the 4.1-Mb genome sequence of the type strain of A. soli CB4(T), which consists a chromosome for the total 4,116,770bp with a G+C content of 45.9mol%. Genes related to diverse secondary metabolites were detected in this genome. The genomic data is expected to understand the possibility of industrial and commercial use by strain CB4(T).

  11. The positive effects of high-frequency right dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation on memory, correlated with increases in brain metabolites detected by proton magnetic resonance spectroscopy in recently detoxified alcohol-dependent patients

    PubMed Central

    Qiao, Jun; Jin, Guixing; Lei, Licun; Wang, Lan; Du, Yaqiang; Wang, Xueyi

    2016-01-01

    Objective To explore the effect of right dorsolateral prefrontal cortex (DLPFC) repetitive transcranial magnetic stimulation (rTMS) on memory, and its correlation with levels of hippocampal brain metabolites detected by proton magnetic resonance spectroscopy (1H-MRS) in recently detoxified alcohol-dependent patients. Materials and methods In this randomized, double-blind sham-controlled trial, alcohol-dependent patients were enrolled and randomized into two groups: the experimental group (rTMS, 10 Hz, on right DLPFC, 20 sessions) and the control group (sham stimulation). Memory function was assessed using Hopkins Verbal Learning Test-Revised (HVLT-R) and Brief Visuospatial Memory Test-Revised (BVMT-R) before and after treatment. 1H-MRS was used to detect the levels of N-acetyl aspartic acid (NAA), choline (Cho), and creatine (Cr) in bilateral hippocampi before and after treatment. Results Thirty-eight patients (18 in the experimental group and 20 in the control group) were included in the analyses. The experimental group showed significantly greater changes in HVLT-R, BVMT-R, NAA/Cr, and Cho/Cr after rTMS from baseline than the control group. The percentage change in BVMT-R and HVLT-R correlated with the percentage change in NAA/Cr and Cho/Cr in the right brain. Conclusion High-frequency right DLPFC rTMS was associated with improvement in memory dysfunction, which is correlated with levels of hippocampal brain metabolites detected by 1H-MRS in recently detoxified alcohol-dependent patients. PMID:27695332

  12. Small animal simultaneous PET/MRI: initial experiences in a 9.4T microMRI

    SciTech Connect

    Maramraju, S.H.; Schlyer, D.; Maramraju, S.H.; Smith, S.D.; Junnarkar, S.S.; Schulz, D.; Stoll, S.; Ravindranath, B.; Purschke, M.L.; Rescia, S.; Southekal, S.; Pratte, J.-F.; Vaska, P.; Woody, C.L.; Schlyer, D.J.

    2011-03-25

    We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 x 8 array of lutetium oxyorthosilicate crystals (2.22 x 2.22 x 5 mm{sup 3}) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [{sup 11}C]raclopride and 2-deoxy-2-[{sup 18}F]fluoro-d-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.

  13. Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI

    NASA Astrophysics Data System (ADS)

    Harsha Maramraju, Sri; Smith, S. David; Junnarkar, Sachin S.; Schulz, Daniela; Stoll, Sean; Ravindranath, Bosky; Purschke, Martin L.; Rescia, Sergio; Southekal, Sudeepti; Pratte, Jean-François; Vaska, Paul; Woody, Craig L.; Schlyer, David J.

    2011-04-01

    We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 × 8 array of lutetium oxyorthosilicate crystals (2.22 × 2.22 × 5 mm3) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [11C]raclopride and 2-deoxy-2-[18F]fluoro-d-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.

  14. IL-21 induces IL-22 production in CD4+ T cells.

    PubMed

    Yeste, Ada; Mascanfroni, Ivan D; Nadeau, Meghan; Burns, Evan J; Tukpah, Ann-Marcia; Santiago, Andrezza; Wu, Chuan; Patel, Bonny; Kumar, Deepak; Quintana, Francisco J

    2014-05-06

    Interleukin (IL)-22 produced by innate lymphoid cells (ILCs) and CD4+ T cells plays an important role in host defence and mucosal homeostasis, thus it is important to investigate the mechanisms that regulate IL-22 production. We investigated the regulation IL-22 production by CD4+ T cells. Here we show that IL-21 triggers IL-22, but not IL-17 production by CD4+ T cells. STAT3, activated by IL-21, controls the epigenetic status of the il22 promoter and its interaction with the aryl hydrocarbon receptor (AhR). Moreover, IL-21 and AhR signalling in T cells control IL-22 production and the development of dextran sodium sulphate-induced colitis in ILC-deficient mice. Thus, we have identified IL-21 as an inducer of IL-22 production in CD4+ T cells in vitro and in vivo.

  15. Polyfunctional and IFN-γ monofunctional human CD4+ T cell populations are molecularly distinct

    PubMed Central

    Burel, Julie G.; Apte, Simon H.; Groves, Penny L.; McCarthy, James S.; Doolan, Denise L.

    2017-01-01

    Pathogen-specific polyfunctional T cell responses have been associated with favorable clinical outcomes, but it is not known whether molecular differences exist between polyfunctional and monofunctional cytokine-producing T cells. Here, we report that polyfunctional CD4+ T cells induced during Plasmodium falciparum (P. falciparum) blood-stage infection in humans have a unique transcriptomic profile compared with IFN-γ monofunctional CD4+ T cells and, thus, are molecularly distinct. The 14-gene signature revealed in P. falciparum–reactive polyfunctional T cells is associated with cytokine signaling and lymphocyte chemotaxis, and systems biology analysis identified IL-27 as an upstream regulator of the polyfunctional gene signature. Importantly, the polyfunctional gene signature is largely conserved in Influenza-reactive polyfunctional CD4+ T cells, suggesting that polyfunctional T cells have core characteristics independent of pathogen specificity. This study provides the first evidence to our knowledge that consistent molecular differences exist between polyfunctional and monofunctional CD4+ T cells. PMID:28194431

  16. Fighting Viral Infections and Virus-Driven Tumors with Cytotoxic CD4+ T Cells

    PubMed Central

    Muraro, Elena; Merlo, Anna; Martorelli, Debora; Cangemi, Michela; Dalla Santa, Silvia; Dolcetti, Riccardo; Rosato, Antonio

    2017-01-01

    CD4+ T cells have been and are still largely regarded as the orchestrators of immune responses, being able to differentiate into distinct T helper cell populations based on differentiation signals, transcription factor expression, cytokine secretion, and specific functions. Nonetheless, a growing body of evidence indicates that CD4+ T cells can also exert a direct effector activity, which depends on intrinsic cytotoxic properties acquired and carried out along with the evolution of several pathogenic infections. The relevant role of CD4+ T cell lytic features in the control of such infectious conditions also leads to their exploitation as a new immunotherapeutic approach. This review aims at summarizing currently available data about functional and therapeutic relevance of cytotoxic CD4+ T cells in the context of viral infections and virus-driven tumors. PMID:28289418

  17. Clonally expanded CD4+ T cells can produce infectious HIV-1 in vivo.

    PubMed

    Simonetti, Francesco R; Sobolewski, Michele D; Fyne, Elizabeth; Shao, Wei; Spindler, Jonathan; Hattori, Junko; Anderson, Elizabeth M; Watters, Sarah A; Hill, Shawn; Wu, Xiaolin; Wells, David; Su, Li; Luke, Brian T; Halvas, Elias K; Besson, Guillaume; Penrose, Kerri J; Yang, Zhiming; Kwan, Richard W; Van Waes, Carter; Uldrick, Thomas; Citrin, Deborah E; Kovacs, Joseph; Polis, Michael A; Rehm, Catherine A; Gorelick, Robert; Piatak, Michael; Keele, Brandon F; Kearney, Mary F; Coffin, John M; Hughes, Stephen H; Mellors, John W; Maldarelli, Frank

    2016-02-16

    Reservoirs of infectious HIV-1 persist despite years of combination antiretroviral therapy and make curing HIV-1 infections a major challenge. Most of the proviral DNA resides in CD4(+)T cells. Some of these CD4(+)T cells are clonally expanded; most of the proviruses are defective. It is not known if any of the clonally expanded cells carry replication-competent proviruses. We report that a highly expanded CD4(+) T-cell clone contains an intact provirus. The highly expanded clone produced infectious virus that was detected as persistent plasma viremia during cART in an HIV-1-infected patient who had squamous cell cancer. Cells containing the intact provirus were widely distributed and significantly enriched in cancer metastases. These results show that clonally expanded CD4(+)T cells can be a reservoir of infectious HIV-1.

  18. Interleukin-7 is required for CD4+ T cell activation and autoimmune neuroinflammation

    PubMed Central

    Lawson, Brian R.; Gonzalez-Quintial, Rosana; Eleftheriadis, Theodoros; Farrar, Michael A.; Miller, Stephen D.; Sauer, Karsten; McGavern, Dorian B.; Kono, Dwight H.; Baccala, Roberto; Theofilopoulos, Argyrios N.

    2015-01-01

    IL-7 is known to be vital for T cell homeostasis but has previously been presumed to be dispensable for TCR-induced activation. Here, we show that IL-7 is critical for the initial activation of CD4+ T cells in that it provides some of the necessary early signaling components, such as activated STAT5 and Akt. Accordingly, short-term in vivo IL-7Rα blockade inhibited the activation and expansion of autoantigen-specific CD4+ T cells and, when used to treat experimental autoimmune encephalomyelitis (EAE), prevented and ameliorated disease. Our studies demonstrate that IL-7 signaling is a prerequisite for optimal CD4+ T cell activation and that IL-7R antagonism may be effective in treating CD4+ T cell-mediated neuroinflammation and other autoimmune inflammatory conditions. PMID:26319414

  19. Whole brain MP2RAGE-based mapping of the longitudinal relaxation time at 9.4T.

    PubMed

    Hagberg, G E; Bause, J; Ethofer, T; Ehses, P; Dresler, T; Herbert, C; Pohmann, R; Shajan, G; Fallgatter, A; Pavlova, M A; Scheffler, K

    2017-01-01

    Mapping of the longitudinal relaxation time (T1) with high accuracy and precision is central for neuroscientific and clinical research, since it opens up the possibility to obtain accurate brain tissue segmentation and gain myelin-related information. An ideal, quantitative method should enable whole brain coverage within a limited scan time yet allow for detailed sampling with sub-millimeter voxel sizes. The use of ultra-high magnetic fields is well suited for this purpose, however the inhomogeneous transmit field potentially hampers its use. In the present work, we conducted whole brain T1 mapping based on the MP2RAGE sequence at 9.4T and explored potential pitfalls for automated tissue classification compared with 3T. Data accuracy and T2-dependent variation of the adiabatic inversion efficiency were investigated by single slice T1 mapping with inversion recovery EPI measurements, quantitative T2 mapping using multi-echo techniques and simulations of the Bloch equations. We found that the prominent spatial variation of the transmit field at 9.4T (yielding flip angles between 20% and 180% of nominal values) profoundly affected the result of image segmentation and T1 mapping. These effects could be mitigated by correcting for both flip angle and inversion efficiency deviations. Based on the corrected T1 maps, new, 'flattened', MP2RAGE contrast images were generated, that were no longer affected by variations of the transmit field. Unlike the uncorrected MP2RAGE contrast images acquired at 9.4T, these flattened images yielded image segmentations comparable to 3T, making bias-field correction prior to image segmentation and tissue classification unnecessary. In terms of the T1 estimates at high field, the proposed correction methods resulted in an improved precision, with test-retest variability below 1% and a coefficient-of-variation across 25 subjects below 3%.

  20. CD4 T-Cell Subsets in Malaria: TH1/TH2 Revisited

    PubMed Central

    Perez-Mazliah, Damian; Langhorne, Jean

    2015-01-01

    CD4+ T-cells have been shown to play a central role in immune control of infection with Plasmodium parasites. At the erythrocytic stage of infection, IFN-γ production by CD4+ T-cells and CD4+ T-cell help for the B-cell response are required for control and elimination of infected red blood cells. CD4+ T-cells are also important for controlling Plasmodium pre-erythrocytic stages through the activation of parasite-specific CD8+ T-cells. However, excessive inflammatory responses triggered by the infection have been shown to drive pathology. Early classical experiments demonstrated a biphasic CD4+ T-cell response against erythrocytic stages in mice, in which T helper (Th)1 and antibody-helper CD4+ T-cells appear sequentially during a primary infection. While IFN-γ-producing Th1 cells do play a role in controlling acute infections, and they contribute to acute erythrocytic-stage pathology, it became apparent that a classical Th2 response producing IL-4 is not a critical feature of the CD4+ T-cell response during the chronic phase of infection. Rather, effective CD4+ T-cell help for B-cells, which can occur in the absence of IL-4, is required to control chronic parasitemia. IL-10, important to counterbalance inflammation and associated with protection from inflammatory-mediated severe malaria in both humans and experimental models, was originally considered be produced by CD4+ Th2 cells during infection. We review the interpretations of CD4+ T-cell responses during Plasmodium infection, proposed under the original Th1/Th2 paradigm, in light of more recent advances, including the identification of multifunctional T-cells such as Th1 cells co-expressing IFN-γ and IL-10, the identification of follicular helper T-cells (Tfh) as the predominant CD4+ T helper subset for B-cells, and the recognition of inherent plasticity in the fates of different CD4+ T-cells. PMID:25628621

  1. CD4 T cell activation by B cells in human Leishmania (Viannia) infection

    PubMed Central

    2014-01-01

    Background An effective adaptive immune response requires activation of specific CD4 T cells. The capacity of B cells to activate CD4 T cells in human cutaneous leishmaniasis caused by Leishmania (Viannia) has not been evaluated. Methods CD4 T cell activation by B cells of cutaneous leishmaniasis patients was evaluated by culture of PBMCs or purified B cells and CD4 T cells with Leishmania panamensis antigens. CD4 T cell and B cell activation markers were evaluated by flow cytometry and 13 cytokines were measured in supernatants with a bead-based capture assay. The effect of Leishmania antigens on BCR-mediated endocytosis of ovalbumin was evaluated in the Ramos human B cell line by targeting the antigen with anti-IgM-biotin and anti-biotin-ovalbumin-FITC. Results Culture of PBMCs from cutaneous leishmaniasis patients with Leishmania antigens resulted in upregulation of the activation markers CD25 and CD69 as well as increased frequency of CD25hiCD127- cells among CD4 T cells. Concomitantly, B cells upregulated the costimulatory molecule CD86. These changes were not observed in PBMCs from healthy subjects, indicating participation of Leishmania-specific lymphocytes expanded in vivo. Purified B cells from these patients, when interacting with purified CD4 T cells and Leishmania antigens, were capable of inducing significant increases in CD25 and CD69 expression and CD25hiCD127- frequency in CD4 T cells. These changes were associated with upregulation of CD86 in B cells. Comparison of changes in CD4 T cell activation parameters between PBMC and B cell/CD4 T cell cultures showed no statistically significant differences; further, significant secretion of IFN-γ, TNF-α, IL-6 and IL-13 was induced in both types of cultures. Additionally, culture with Leishmania antigens enhanced BCR-mediated endocytosis of ovalbumin in Ramos human B cells. Conclusions The capacity of B cells specific for Leishmania antigens in peripheral blood of cutaneous leishmaniasis patients to

  2. Tracking Virus-Specific CD4+ T Cells during and after Acute Hepatitis C Virus Infection

    PubMed Central

    Pfafferot, Katja; Heeg, Malte H.J.; Gaudieri, Silvana; Grüner, Norbert; Rauch, Andri; Gerlach, J. Tilman; Jung, Maria-Christina; Zachoval, Reinhart; Pape, Gerd R.; Schraut, Winfried; Santantonio, Teresa; Nitschko, Hans; Obermeier, Martin; Phillips, Rodney; Scriba, Thomas J.; Semmo, Nasser; Day, Cheryl; Weber, Jonathan N.; Fidler, Sarah; Thimme, Robert; Haberstroh, Anita; Baumert, Thomas F.; Klenerman, Paul; Diepolder, Helmut M.

    2007-01-01

    Background CD4+ T cell help is critical in maintaining antiviral immune responses and such help has been shown to be sustained in acute resolving hepatitis C. In contrast, in evolving chronic hepatitis C CD4+ T cell helper responses appear to be absent or short-lived, using functional assays. Methodology/Principal Findings Here we used a novel HLA-DR1 tetramer containing a highly targeted CD4+ T cell epitope from the hepatitis C virus non-structural protein 4 to track number and phenotype of hepatitis C virus specific CD4+ T cells in a cohort of seven HLA-DR1 positive patients with acute hepatitis C in comparison to patients with chronic or resolved hepatitis C. We observed peptide-specific T cells in all seven patients with acute hepatitis C regardless of outcome at frequencies up to 0.65% of CD4+ T cells. Among patients who transiently controlled virus replication we observed loss of function, and/or physical deletion of tetramer+ CD4+ T cells before viral recrudescence. In some patients with chronic hepatitis C very low numbers of tetramer+ cells were detectable in peripheral blood, compared to robust responses detected in spontaneous resolvers. Importantly we did not observe escape mutations in this key CD4+ T cell epitope in patients with evolving chronic hepatitis C. Conclusions/Significance During acute hepatitis C a CD4+ T cell response against this epitope is readily induced in most, if not all, HLA-DR1+ patients. This antiviral T cell population becomes functionally impaired or is deleted early in the course of disease in those where viremia persists. PMID:17653276

  3. A simple theoretical framework for understanding heterogeneous differentiation of CD4+ T cells

    PubMed Central

    2012-01-01

    Background CD4+ T cells have several subsets of functional phenotypes, which play critical yet diverse roles in the immune system. Pathogen-driven differentiation of these subsets of cells is often heterogeneous in terms of the induced phenotypic diversity. In vitro recapitulation of heterogeneous differentiation under homogeneous experimental conditions indicates some highly regulated mechanisms by which multiple phenotypes of CD4+ T cells can be generated from a single population of naïve CD4+ T cells. Therefore, conceptual understanding of induced heterogeneous differentiation will shed light on the mechanisms controlling the response of populations of CD4+ T cells under physiological conditions. Results We present a simple theoretical framework to show how heterogeneous differentiation in a two-master-regulator paradigm can be governed by a signaling network motif common to all subsets of CD4+ T cells. With this motif, a population of naïve CD4+ T cells can integrate the signals from their environment to generate a functionally diverse population with robust commitment of individual cells. Notably, two positive feedback loops in this network motif govern three bistable switches, which in turn, give rise to three types of heterogeneous differentiated states, depending upon particular combinations of input signals. We provide three prototype models illustrating how to use this framework to explain experimental observations and make specific testable predictions. Conclusions The process in which several types of T helper cells are generated simultaneously to mount complex immune responses upon pathogenic challenges can be highly regulated, and a simple signaling network motif can be responsible for generating all possible types of heterogeneous populations with respect to a pair of master regulators controlling CD4+ T cell differentiation. The framework provides a mathematical basis for understanding the decision-making mechanisms of CD4+ T cells, and it can be

  4. The transcriptome of HIV-1 infected intestinal CD4+ T cells exposed to enteric bacteria

    PubMed Central

    Dillon, Stephanie M.; Phang, Tzu; Lee, Eric J.; Helm, Karen; Kappes, John C.; McCarter, Martin D.

    2017-01-01

    Global transcriptome studies can help pinpoint key cellular pathways exploited by viruses to replicate and cause pathogenesis. Previous data showed that laboratory-adapted HIV-1 triggers significant gene expression changes in CD4+ T cell lines and mitogen-activated CD4+ T cells from peripheral blood. However, HIV-1 primarily targets mucosal compartments during acute infection in vivo. Moreover, early HIV-1 infection causes extensive depletion of CD4+ T cells in the gastrointestinal tract that herald persistent inflammation due to the translocation of enteric microbes to the systemic circulation. Here, we profiled the transcriptome of primary intestinal CD4+ T cells infected ex vivo with transmitted/founder (TF) HIV-1. Infections were performed in the presence or absence of Prevotella stercorea, a gut microbe enriched in the mucosa of HIV-1-infected individuals that enhanced both TF HIV-1 replication and CD4+ T cell death ex vivo. In the absence of bacteria, HIV-1 triggered a cellular shutdown response involving the downregulation of HIV-1 reactome genes, while perturbing genes linked to OX40, PPAR and FOXO3 signaling. However, in the presence of bacteria, HIV-1 did not perturb these gene sets or pathways. Instead, HIV-1 enhanced granzyme expression and Th17 cell function, inhibited G1/S cell cycle checkpoint genes and triggered downstream cell death pathways in microbe-exposed gut CD4+ T cells. To gain insights on these differential effects, we profiled the gene expression landscape of HIV-1-uninfected gut CD4+ T cells exposed to bacteria. Microbial exposure upregulated genes involved in cellular proliferation, MAPK activation, Th17 cell differentiation and type I interferon signaling. Our findings reveal that microbial exposure influenced how HIV-1 altered the gut CD4+ T cell transcriptome, with potential consequences for HIV-1 susceptibility, cell survival and inflammation. The HIV-1- and microbe-altered pathways unraveled here may serve as a molecular blueprint

  5. Genome sequence of Corynebacterium nuruki S6-4 T, isolated from alcohol fermentation starter.

    PubMed

    Shin, Na-Ri; Whon, Tae Woong; Roh, Seong Woon; Kim, Min-Soo; Jung, Mi-Ja; Lee, Jina; Bae, Jin-Woo

    2011-08-01

    Corynebacterium nuruki S6-4(T), isolated from Korean alcohol fermentation starter, is a strictly aerobic, nonmotile, Gram-positive, and rod-shaped bacterium belonging to the genus Corynebacterium and the actinomycete group. We report here the draft genome sequence of C. nuruki strain S6-4(T) (3,106,595 bp, with a G+C content of 69.5%).

  6. Genome Sequence of Corynebacterium nuruki S6-4T, Isolated from Alcohol Fermentation Starter▿

    PubMed Central

    Shin, Na-Ri; Whon, Tae Woong; Roh, Seong Woon; Kim, Min-Soo; Jung, Mi-Ja; Lee, Jina; Bae, Jin-Woo

    2011-01-01

    Corynebacterium nuruki S6-4T, isolated from Korean alcohol fermentation starter, is a strictly aerobic, nonmotile, Gram-positive, and rod-shaped bacterium belonging to the genus Corynebacterium and the actinomycete group. We report here the draft genome sequence of C. nuruki strain S6-4T (3,106,595 bp, with a G+C content of 69.5%). PMID:21685278

  7. The Transcription Factor Hobit Identifies Human Cytotoxic CD4+ T Cells

    PubMed Central

    Oja, Anna E.; Vieira Braga, Felipe A.; Remmerswaal, Ester B. M.; Kragten, Natasja A. M.; Hertoghs, Kirsten M. L.; Zuo, Jianmin; Moss, Paul A.; van Lier, René A. W.; van Gisbergen, Klaas P. J. M.; Hombrink, Pleun

    2017-01-01

    The T cell lineage is commonly divided into CD4-expressing helper T cells that polarize immune responses through cytokine secretion and CD8-expressing cytotoxic T cells that eliminate infected target cells by virtue of the release of cytotoxic molecules. Recently, a population of CD4+ T cells that conforms to the phenotype of cytotoxic CD8+ T cells has received increased recognition. These cytotoxic CD4+ T cells display constitutive expression of granzyme B and perforin at the protein level and mediate HLA class II-dependent killing of target cells. In humans, this cytotoxic profile is found within the human cytomegalovirus (hCMV)-specific, but not within the influenza- or Epstein–Barr virus-specific CD4+ T cell populations, suggesting that, in particular, hCMV infection induces the formation of cytotoxic CD4+ T cells. We have previously described that the transcription factor Homolog of Blimp-1 in T cells (Hobit) is specifically upregulated in CD45RA+ effector CD8+ T cells that arise after hCMV infection. Here, we describe the expression pattern of Hobit in human CD4+ T cells. We found Hobit expression in cytotoxic CD4+ T cells and accumulation of Hobit+ CD4+ T cells after primary hCMV infection. The Hobit+ CD4+ T cells displayed highly overlapping characteristics with Hobit+ CD8+ T cells, including the expression of cytotoxic molecules, T-bet, and CX3CR1. Interestingly, γδ+ T cells that arise after hCMV infection also upregulate Hobit expression and display a similar effector phenotype as cytotoxic CD4+ and CD8+ T cells. These findings suggest a shared differentiation pathway in CD4+, CD8+, and γδ+ T cells that may involve Hobit-driven acquisition of long-lived cytotoxic effector function. PMID:28392788

  8. HIV-specific cytolytic CD4 T cell responses during acute HIV infection predict disease outcome

    PubMed Central

    Soghoian, Damien Z.; Jessen, Heiko; Flanders, Michael; Sierra-Davidson, Kailan; Cutler, Sam; Pertel, Thomas; Ranasinghe, Srinika; Lindqvist, Madelene; Davis, Isaiah; Lane, Kimberly; Rychert, Jenna; Rosenberg, Eric S.; Piechocka-Trocha, Alicja; Brass, Abraham L.; Brenchley, Jason M.; Walker, Bruce D.; Streeck, Hendrik

    2013-01-01

    Early immunological events during acute HIV infection are thought to fundamentally influence long-term disease outcome. Whereas the contribution of HIV-specific CD8 T cell responses to early viral control is well established, the role of HIV-specific CD4 T cell responses in the control of viral replication following acute infection is unknown. A growing body of evidence suggests that CD4 T cells - besides their helper function - have the capacity to directly recognize and kill virally infected cells. In a longitudinal study of a cohort of individuals acutely infected with HIV, we observed that subjects able to spontaneously control HIV replication in the absence of antiretroviral therapy showed a significant expansion of HIV-specific CD4 T cell responses—but not CD8 T cell responses–compared to subjects who progressed to a high viral set point (p=0.038). Strikingly, this expansion occurred prior to differences in viral load or CD4 T cell count and was characterized by robust cytolytic activity and expression of a distinct profile of perforin and granzymes at the earliest time point. Kaplan-Meier analysis revealed that the emergence of Granzyme A+ HIV-specific CD4 T cell responses at baseline was highly predictive of slower disease progression and clinical outcome (average days to CD4 T cell count <350/μl was 575 versus 306, p=0.001). These data demonstrate that HIV-specific CD4 T cell responses can be used during the earliest phase of HIV infection as an immunological predictor of subsequent viral set point and disease outcome. Moreover, these data suggest that expansion of Granzyme A+ HIV-specific cytolytic CD4 T cell responses early during acute HIV infection contributes substantially to the control of viral replication. PMID:22378925

  9. Cocaine Enhances HIV-1–Induced CD4+ T-Cell Apoptosis

    PubMed Central

    Pandhare, Jui; Addai, Amma B.; Mantri, Chinmay K.; Hager, Cynthia; Smith, Rita M.; Barnett, Louis; Villalta, Fernando; Kalams, Spyros A.; Dash, Chandravanu

    2015-01-01

    Substance abuse is a major barrier in eradication of the HIV epidemic because it serves as a powerful cofactor for viral transmission, disease progression, and AIDS-related mortality. Cocaine, one of the commonly abused drugs among HIV-1 patients, has been suggested to accelerate HIV disease progression. However, the underlying mechanism remains largely unknown. Therefore, we tested whether cocaine augments HIV-1–associated CD4+ T-cell decline, a predictor of HIV disease progression. We examined apoptosis of resting CD4+ T cells from HIV-1–negative and HIV-1–positive donors in our study, because decline of uninfected cells plays a major role in HIV-1 disease progression. Treatment of resting CD4+ T cells with cocaine (up to 100 μmol/L concentrations) did not induce apoptosis, but 200 to 1000 μmol/L cocaine induced apoptosis in a dose-dependent manner. Notably, treatment of CD4+ T cells isolated from healthy donors with both HIV-1 virions and cocaine significantly increased apoptosis compared with the apoptosis induced by cocaine or virions alone. Most important, our biochemical data suggest that cocaine induces CD4+ T-cell apoptosis by increasing intracellular reactive oxygen species levels and inducing mitochondrial depolarization. Collectively, our results provide evidence of a synergy between cocaine and HIV-1 on CD4+ T-cell apoptosis that may, in part, explain the accelerated disease observed in HIV-1–infected drug abusers. PMID:24486327

  10. Stephanthraniline A suppressed CD4(+) T cell-mediated immunological hepatitis through impairing PKCθ function.

    PubMed

    Chen, Feng-Yang; Zhou, Li-Fei; Li, Xiao-Yu; Zhao, Jia-Wen; Xu, Shi-Fang; Huang, Wen-Hai; Gao, Li-Juan; Hao, Shu-Juan; Ye, Yi-Ping; Sun, Hong-Xiang

    2016-10-15

    Stephanthraniline A (STA), a C21 steroid isolated from Stephanotis mucronata (Blanco) Merr., was previously shown to inhibit T cells activation and proliferation in vitro and in vivo. The purpose of this study was to further evaluate the in vivo immunosuppressive activity of STA and to elucidate its potential mechanisms. The results showed that pretreatment with STA significantly attenuated concanavalin A (Con A)-induced hepatitis and reduced CD4(+) T cells activation and aggregation in hepatic tissue in mice. STA directly suppressed the activation and proliferation of Con A-induced CD4(+) T cells, and inhibited NFAT, NFκB and MAPK signaling cascades in activated CD4(+) T cells in vitro. Moreover, it was proved that STA inhibited T cells activation and proliferation through proximal T cell-receptor (TCR) signaling- and Ca(2+) signaling-independent way. The molecular docking studies predicted that STA could tight bind to PKCθ via five hydrogen. The further findings indicated STA directly inhibited PKCθ kinase activity, and its phosphorylation in activated CD4(+) T cells in vitro. Collectively, the present study indicated that STA could protect against CD4(+) T cell-mediated immunological hepatitis in mice through PKCθ and its downstream NFAT, NFκB and MAPK signaling cascades. These results highlight the potential of STA as an effective leading compound for use in the treatment of CD4(+) T cell-mediated inflammatory and autoimmune diseases.

  11. Altered Intracellular ATP Production by Activated CD4+ T-Cells in Very Preterm Infants

    PubMed Central

    Corvaglia, Luigi; Gabrielli, Liliana; Chiereghin, Angela; Lazzarotto, Tiziana

    2016-01-01

    Background. The neonatal immune system is not fully developed at birth; newborns have adequate lymphocytes counts but these cells lack function. Objective. To assess the activity of T-cells and the influence of the main perinatal factors in very preterm infants (birth weight < 1500 g). Design. Blood samples from 59 preterm infants (21/59 were dizygotic twins) were collected at birth and at 30 days of life to measure CD4+ T-cell activity using the ImmuKnow™ assay. Fifteen healthy adults were included as a control group. Results. CD4+ T-cell activity was lower in VLBW infants compared with adults (p < 0.001). Twins showed lower immune activity compared to singletons (p = 0.005). Infants born vaginally showed higher CD4+ T-cell activity compared to those born by C-section (p = 0.031); infants born after prolonged Premature Rupture of Membranes (pPROM) showed higher CD4+ T-cell activity at birth (p = 0.002) compared to infants born without pPROM. Low CD4+ T-cell activity at birth is associated with necrotizing enterocolitis (NEC) in the first week of life (p = 0.049). Conclusions. Preterm infants show a lack in CD4+ T-cell activity at birth. Perinatal factors such as intrauterine inflammation, mode of delivery, and zygosity can influence the adaptive immune activation capacity at birth and can contribute to exposing these infants to serious complications such as NEC. PMID:28070527

  12. Impact of nicotine on the interplay between human periodontal ligament cells and CD4+ T cells.

    PubMed

    Ge, Xin; Liu, Ying-Feng; Wong, Yong; Wu, Li-Zheng; Tan, Ling; Liu, Fen; Wang, Xiao-Jing

    2016-09-01

    Periodontitis is a common infectious disease associated with destruction of periodontal ligaments and alveolar bones. CD4(+) T cell-mediated immune response is involved in the progression of periodontitis. Tobacco consumption increases the risk of periodontal disease. However, the impact of nicotine on the interaction between human periodontal ligament (PDL) cells and CD4(+) T cells remains unrevealed. Our study aims to investigate the effect of nicotine on PDL cells and the cocultured CD4(+) T cells. The PDL cell cultures were established by explants from healthy individuals, exposed to nicotine or α-bungarotoxin (α-BTX), and incubated solely or in combination with CD4(+) T cells. Afterwards, cell viability, secreted cytokines, and matrix metalloproteinases (MMPs) were evaluated. In monoculture of PDL cells, nicotine dramatically repressed cell viability and increased apoptosis. Meanwhile, α-BTX largely reversed the nicotine-induced apoptosis and increased viability of PDL cells. Compared with the monoculture, MMP-1, MMP-3, interleukin (IL)-1β, IL-6, IL-17, and IL-21 in supernatant of cocultures were markedly elevated after treatment with nicotine. Moreover, α-BTX significantly attenuated nicotine-triggered production of these components either in mono- or co-cultures. In addition, PDL cell-derived CXCL12 following nicotine treatment recruited CD4(+) T cells. Above all, nicotine deteriorated periodontitis partially by promoting PDL cell-CD4(+) T cell-mediated inflammatory response and matrix degradation.

  13. Expression of fas protein on CD4+T cells irradiated by low level He-Ne

    NASA Astrophysics Data System (ADS)

    Nie, Fan; Zhu, Jing; Zhang, Hui-Guo

    2005-07-01

    Objective: To investigate the influence on the Expression of Fas protein on CD4+ T cells irradiated by low level He-Ne laser in the cases of psoriasis. Methods:the expression of CD4+ T Fas protein was determined in the casee of psoriasis(n=5) pre and post-low level laser irradiation(30 min、60min and 120min)by flow cytometry as compared withthe control(n=5). Results:In the cases of psoriasis,the expression of CD4+T FAS protein 21.4+/-3.1% was increased significantly than that of control group 16.8+/-2.1% pre-irradiation, p<0.05in the control,there is no difference between pre and post- irradiation,p>0.05in the cases , the expression of CD4+T Fas protein wae positively corelated to the irradiation times, when the energy density arrived to 22.92J/cm2(60 minutes)and 45.84J/cm2(120minutes), the expression of CD4+ T Fas protein was increased significantly as compared with pre-irradiation,p<0.05.Conclusion: The expression of CD4+T Fas protein may be increased by low level He-Ne laser irradiation ,the uncontrolled status of apoptosis could be corrected.

  14. Key role for CD4 T cells during mixed antibody mediated rejection of renal allografts

    PubMed Central

    Gaughan, A.; Wang, J.; Pelletier, R.P.; Nadasdy, T.; Brodsky, S.; Roy, S.; Lodder, M.; Bobek, D.; Mofatt-Bruce, S.; Fairchild, R.L.; Henry, M.L.; Hadley, G.A.

    2014-01-01

    We utilized mouse models to elucidate the immunologic mechanisms of functional graft loss during mixed antibody mediated rejection of renal allografts (mixed AMR), in which humoral and cellular responses to the graft occur concomitantly. Although the majority of T cells in the graft at the time of rejection were CD8 T cells with only a minor population of CD4 T cells, depletion of CD4 but not CD8 cells prevented acute graft loss during mixed AMR. CD4 depletion eliminated anti-donor alloantibodies and conferred protection from destruction of renal allografts. ELISPOT revealed that CD4 T effectors responded to donor alloantigens by both the direct and indirect pathways of allorecognition. In transfer studies, CD4 T effectors primed to donor alloantigens were highly effective at promoting acute graft dysfunction, and exhibited the attributes of effector T cells. Laser capture microdissection and confirmatory immunostaining studies revealed that CD4 T cells infiltrating the graft produced effector molecules with graft destructive potential. Bioluminescent imaging confirmed that CD4 T effectors traffic to the graft site in immune replete hosts. These data document that host CD4 T cells can promote acute dysfunction of renal allografts by directly mediating graft injury in addition to facilitating anti-donor alloantibody responses. PMID:24410909

  15. ACCELERATING POLARIZED PROTONS TO HIGH ENERGY.

    SciTech Connect

    BAI, M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; BEEBE-WANG, J.; BLASKIEWICZ, M.; BRAVAR, A.; BRENNAN, J.M.; BRUNO, D.; BUNCE, G.; ET AL.

    2006-10-02

    The Relativistic Heavy Ion Collider (RHIC) is designed to provide collisions of high energy polarized protons for the quest of understanding the proton spin structure. Polarized proton collisions at a beam energy of 100 GeV have been achieved in RHIC since 2001. Recently, polarized proton beam was accelerated to 250 GeV in RHIC for the first time. Unlike accelerating unpolarized protons, the challenge for achieving high energy polarized protons is to fight the various mechanisms in an accelerator that can lead to partial or total polarization loss due to the interaction of the spin vector with the magnetic fields. We report on the progress of the RHIC polarized proton program. We also present the strategies of how to preserve the polarization through the entire acceleration chain, i.e. a 200 MeV linear accelerator, the Booster, the AGS and RHIC.

  16. Upregulation of Bcl-2 and Its Promoter Signals in CD4+ T Cells during Neuromyelitis Optica Remission

    PubMed Central

    Yang, Tao; Wang, Su; Yang, Xiao; Zheng, Qi; Wang, Lei; Li, Qian; Wei, Mingyan; Du, Zongpan; Fan, Yongping

    2017-01-01

    The homeostatic balance between production and elimination of CD4+ T cells in peripheral blood plays an important role in patients with neuromyelitis optica (NMO). The objective of the present study was to evaluate the anti-apoptosis genes Bcl-2 and its promoter signal (nuclear factor kappa-light-chain-enhancer of activated B cells, NFκB) in CD4+ T cells. Healthy subjects (HS, n = 25) and patients with multiple sclerosis (MS) (n = 25) and NMO (n = 30) in remission were consecutively enrolled in this prospective study between May and December 2015. CD4+ T cells were isolated using magnetic beads coated with anti-CD4 monoclonal antibodies, and gene expression of Bcl-2, NFκB, phosphatidylinositol-4, 5-bisphosphate 3-kinase/protein kinase B (PI3K/Akt), and MAP kinase kinase kinase 7 (MAP3K7) was measured by real-time reverse transcription-polymerase chain reaction (rt-PCR). Cytokines of tumor necrosis factor (TNF)-α and interleukin (IL)-1β were detected using human cytokine multiplex assay. Bcl-2 and NFκB gene expressions were elevated in NMO patients (1.63 ± 0.25; 2.35 ± 0.25) compared with those of HS (0.90 ± 0.11; 1.42 ± 0.22) and/or MS patients (1.03 ± 0.18; 1.55 ± 0.20) (P < 0.05). MAP3K7, but not Akt, was increased in NMO patients (1.23 ± 0.18; 1.56 ± 0.22) (P < 0.01) and was a significant factor related to elevated NFκB gene expressions (P < 0.001). On the other hand, IL-1β and TNF-α were also detected in the study and the results showed that both were elevated in NMO patients (23.84 ± 1.81; 56.40 ± 2.45) (P < 0.01; P < 0.05, respectively). We propose that MAP3K7 induced by IL-1β and TNF-α but not Akt promotes NFκB expression and, in turn, prolongs Bcl-2–mediated survival of CD4+ T cells in NMO patients. PMID:28174515

  17. Proton Therapy

    MedlinePlus

    ... Liver Breast Esophagus Rectum Skull base sarcomas Pediatric brain tumors Head and neck - see the Head and Neck Cancer page Eye ... Intensity-Modulated Radiation Therapy (IMRT) Brain Tumor Treatment Brain Tumors Prostate Cancer Lung Cancer ... related to Proton Therapy Videos related ...

  18. Proton Radiobiology

    PubMed Central

    Tommasino, Francesco; Durante, Marco

    2015-01-01

    In addition to the physical advantages (Bragg peak), the use of charged particles in cancer therapy can be associated with distinct biological effects compared to X-rays. While heavy ions (densely ionizing radiation) are known to have an energy- and charge-dependent increased Relative Biological Effectiveness (RBE), protons should not be very different from sparsely ionizing photons. A slightly increased biological effectiveness is taken into account in proton treatment planning by assuming a fixed RBE of 1.1 for the whole radiation field. However, data emerging from recent studies suggest that, for several end points of clinical relevance, the biological response is differentially modulated by protons compared to photons. In parallel, research in the field of medical physics highlighted how variations in RBE that are currently neglected might actually result in deposition of significant doses in healthy organs. This seems to be relevant in particular for normal tissues in the entrance region and for organs at risk close behind the tumor. All these aspects will be considered and discussed in this review, highlighting how a re-discussion of the role of a variable RBE in proton therapy might be well-timed. PMID:25686476

  19. 4T1 Murine Mammary Carcinoma Cells Enhance Macrophage-Mediated Innate Inflammatory Responses

    PubMed Central

    Madera, Laurence; Greenshields, Anna; Coombs, Melanie R. Power; Hoskin, David W.

    2015-01-01

    Tumor progression and the immune response are intricately linked. While it is known that cancers alter macrophage inflammatory responses to promote tumor progression, little is known regarding how cancers affect macrophage-dependent innate host defense. In this study, murine bone-marrow-derived macrophages (BMDM) were exposed to murine carcinoma-conditioned media prior to assessment of the macrophage inflammatory response. BMDMs exposed to 4T1 mammary carcinoma-conditioned medium demonstrated enhanced production of pro-inflammatory cytokines tumor necrosis factor α, interleukin-6, and CCL2 in response to lipopolysaccharide (LPS) while production of interleukin-10 remained unchanged. The increased LPS-induced production of pro-inflammatory cytokines was transient and correlated with enhanced cytokine production in response to other Toll-like receptor agonists, including peptidoglycan and flagellin. In addition, 4T1-conditioned BMDMs exhibited strengthened LPS-induced nitric oxide production and enhanced phagocytosis of Escherichia coli. 4T1-mediated augmentation of macrophage responses to LPS was partially dependent on the NFκB pathway, macrophage-colony stimulating factor, and actin polymerization, as well as the presence of 4T1-secreted extracellular vesicles. Furthermore, peritoneal macrophages obtained from 4T1 tumor-bearing mice displayed enhanced pro-inflammatory cytokine production in response to LPS. These results suggest that uptake of 4T1-secreted factors and actin-mediated ingestion of 4T1-secreted exosomes by macrophages cause a transient enhancement of innate inflammatory responses. Mammary carcinoma-mediated regulation of innate immunity may have significant implications for our understanding of host defense and cancer progression. PMID:26177198

  20. TNFAIP3 promotes survival of CD4 T cells by restricting MTOR and promoting autophagy.

    PubMed

    Matsuzawa, Yu; Oshima, Shigeru; Takahara, Masahiro; Maeyashiki, Chiaki; Nemoto, Yasuhiro; Kobayashi, Masanori; Nibe, Yoichi; Nozaki, Kengo; Nagaishi, Takashi; Okamoto, Ryuichi; Tsuchiya, Kiichiro; Nakamura, Tetsuya; Ma, Averil; Watanabe, Mamoru

    2015-01-01

    Autophagy plays important roles in metabolism, differentiation, and survival in T cells. TNFAIP3/A20 is a ubiquitin-editing enzyme that is thought to be a negative regulator of autophagy in cell lines. However, the role of TNFAIP3 in autophagy remains unclear. To determine whether TNFAIP3 regulates autophagy in CD4 T cells, we first analyzed Tnfaip3-deficient naïve CD4 T cells in vitro. We demonstrated that Tnfaip3-deficient CD4 T cells exhibited reduced MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) puncta formation, increased mitochondrial content, and exaggerated reactive oxygen species (ROS) production. These results indicate that TNFAIP3 promotes autophagy after T cell receptor (TCR) stimulation in CD4 T cells. We then investigated the mechanism by which TNFAIP3 promotes autophagy signaling. We found that TNFAIP3 bound to the MTOR (mechanistic target of rapamycin) complex and that Tnfaip3-deficient cells displayed enhanced ubiquitination of the MTOR complex and MTOR activity. To confirm the effects of enhanced MTOR activity in Tnfaip3-deficient cells, we analyzed cell survival following treatment with Torin1, an MTOR inhibitor. Tnfaip3-deficient CD4 T cells exhibited fewer cell numbers than the control cells in vitro and in vivo. In addition, the impaired survival of Tnfaip3-deficient cells was ameliorated with Torin1 treatment in vitro and in vivo. The effect of Torin1 was abolished by Atg5 deficiency. Thus, enhanced MTOR activity regulates the survival of Tnfaip3-deficient CD4 T cells. Taken together, our findings illustrate that TNFAIP3 restricts MTOR signaling and promotes autophagy, providing new insight into the manner in which MTOR and autophagy regulate survival in CD4 T cells.

  1. Assessment of alterations in X-ray irradiation-induced DNA damage of glioma cells by using proton nuclear magnetic resonance spectroscopy.

    PubMed

    Li, Hongxia; Xu, Yanjie; Shi, Wenqi; Li, Fuyan; Zeng, Qingshi; Yi, Cui

    2017-03-01

    Glioma is one of the most common types of brain tumors. DNA damage is closely associated with glioma cell apoptosis induced by X-ray irradiation. Alterations of metabolites in glioma can be detected noninvasively by proton nuclear magnetic resonance (1H NMR) spectroscopy. To noninvasively explore the micro mechanism in X-ray irradiation-induced apoptosis, the relationship between metabolites and DNA damage in glioma cells was investigated. Three glioma cell lines (C6, U87 and U251) were randomly designated as control (0Gy) and treatment groups (1, 5, 10, 15Gy). After X-ray exposure, each group was separated into four parts: (i) to detect metabolites by 1H NMR spectroscopy; (ii) to make cell colonies; (iii) to detect cell cycle distribution and apoptosis rate by flow cytometry; and (iv) to measure DNA damage by comet assay. The metabolite ratios of lactate/creatine and succinate/creatine decreased (lactate/creatine: C6, 22.17-66.27%; U87, 15.93-44.56%; U251, 26.27-74.48%. succinate/creatine: C6, 14.41-48.35%; U87, 22.03-70.62%; U251, 17.33-60.06%) and choline/creatine increased (C6, 52.22-389.68%; U87, 56.15-82.36%; U251, 31.87-278.62%) in the treatment groups compared with the control group (each P<0.05), which linearly depended on DNA damage. An increasing dose of X-ray irradiation increased numbers of apoptotic cells (P<0.01), and the DNA damage parameters were dose-dependent (P<0.05). The colony-forming rate declined (P<0.01) and the percentage of cells at G1 stage increased when exposed to 1Gy X-ray (three cell lines, P<0.05). Metabolite alterations detected by 1H NMR spectroscopy can be used to determine DNA damage induced by X-ray irradiation. 1H NMR spectroscopy is a noninvasive method to predict DNA damage of glioma cell at the micro level.

  2. Proton magnetic resonance spectroscopy reveals significant decline in the contents of N-acetylaspartylglutamate in the hippocampus of aged healthy subjects

    PubMed Central

    Chang, Ruiting; Zhu, Qingfeng; Song, Zhenhu; Wang, Ya

    2016-01-01

    Introduction To characterize the contents of choline (Cho), creatine (Cr) and N-acetylaspartylglutamate (NAA) in the hippocampus of healthy volunteers, we investigated the contents and their correlationship with age, gender and laterality. Material and methods Volunteers were grouped into a young, a middle and an old age. The Cho, Cr and NAA contents were determined with proton magnetic resonance spectroscopy (1H-MRS), and the correlationship was analyzed with Pearson correlation Results The concentration of NAA in the bilateral hippocampi was markedly lower in the old than in the young and the middle (LSD test, all p < 0.025). Furthermore, NAA/Cr in the bilateral hippocampi head (left: 1.10 ±0.40 vs. 1.54 ±0.49 or 1.43 ±0.49; right: 1.04 ±0.42 vs. 1.35 ±0.40 or 1.30 ±0.42), region 1 of the bilateral hippocampal body (left: 1.24 ±0.53 vs. 1.58 ±0.58 or 1.35 ±0.44; right: 1.30 ±0.43 vs. 1.54 ±0.51 or 1.35 ±0.51) and region 2 of the left hippocampal body (1.21 ±0.32 vs. 1.46 ±0.36 or 1.36 ±0.44) and the left hippocampal tail (1.11 ±0.40 vs. 1.36 ±0.47 or 1.15 ±0.32) was significantly higher in the old than in the young and the middle, respectively (all p < 0.026). The NAA content in the bilateral hippocampal head, body and tail negatively correlated with age. Moreover, the NAA, Cho and Cr contents in the hippocampal body and the tail were higher in the right than the left. Conclusions The NAA content of the hippocampal head, body and tail were significantly decreased in the old compared with younger persons, and it negatively correlates with age. The NAA, Cho and Cr contents exhibit laterality in the hippocampal body and tail. PMID:28144264

  3. The Effect of Insulin Infusion on the Metabolites in Cerebral Tissues Assessed With Proton Magnetic Resonance Spectroscopy in Young Healthy Subjects With High and Low Insulin Sensitivity

    PubMed Central

    Karczewska-Kupczewska, Monika; Tarasów, Eugeniusz; Nikołajuk, Agnieszka; Stefanowicz, Magdalena; Matulewicz, Natalia; Otziomek, Elżbieta; Górska, Maria; Strączkowski, Marek; Kowalska, Irina

    2013-01-01

    OBJECTIVE Insulin may play important roles in brain metabolism. Proton magnetic resonance spectroscopy (1H-MRS) of the central nervous system gives information on neuronal viability, cellular energy, and membrane status. To elucidate the specific role of insulin action in the brain, we estimated neurometabolites with 1H-MRS and assessed their regulation by insulin infusion and their relationship with insulin sensitivity. RESEARCH DESIGN AND METHODS We studied 16 healthy young men. 1H-MRS was performed at baseline and after 240 min of euglycemic-hyperinsulinemic clamp. Voxels were positioned in the left frontal lobe, left temporal lobe, and left thalamus. The ratios of N-acetylaspartate (NAA), choline-containing compounds (Cho), myo-inositol, and glutamate/glutamine/γ-aminobutyric acid complex (Glx) to creatine (Cr) and nonsuppressed water signal were determined. The participants were divided into subgroups of high (high IS) and low (low IS) insulin sensitivity. RESULTS Baseline neurometabolic substrates were not different between the groups. Insulin infusion resulted in an increase in frontal NAA/Cr and NAA/H2O and frontal and temporal Glx/Cr and Glx/H2O and a decrease in frontal Cho/Cr and temporal Cho/H2O and myo-inositol/H2O (all P < 0.05, except temporal Glx/H2O, P = 0.054, NS) in the high-IS, but not in the low-IS, group. Insulin sensitivity correlated positively with frontal NAA/Cr and NAA/H2O and temporal Glx/H2O and negatively with temporal myo-inositol/Cr and myo-inositol/H2O assessed during the second 1H-MRS (all P < 0.05). CONCLUSIONS Insulin might influence cerebral metabolites, and this action is impaired in subjects with low whole-body insulin sensitivity. Thus, our results provide a potential link between insulin resistance and altered metabolism of the central nervous system. PMID:23596182

  4. Proton therapy - Present and future.

    PubMed

    Mohan, Radhe; Grosshans, David

    2017-01-15

    In principle, proton therapy offers a substantial clinical advantage over conventional photon therapy. This is because of the unique depth-dose characteristics of protons, which can be exploited to achieve significant reductions in normal tissue doses proximal and distal to the target volume. These may, in turn, allow escalation of tumor doses and greater sparing of normal tissues, thus potentially improving local control and survival while at the same time reducing toxicity and improving quality of life. Protons, accelerated to therapeutic energies ranging from 70 to 250MeV, typically with a cyclotron or a synchrotron, are transported to the treatment room where they enter the treatment head mounted on a rotating gantry. The initial thin beams of protons are spread laterally and longitudinally and shaped appropriately to deliver treatments. Spreading and shaping can be achieved by electro-mechanical means to treat the patients with "passively-scattered proton therapy" (PSPT) or using magnetic scanning of thin "beamlets" of protons of a sequence of initial energies. The latter technique can be used to treat patients with optimized intensity modulated proton therapy (IMPT), the most powerful proton modality. Despite the high potential of proton therapy, the clinical evidence supporting the broad use of protons is mixed. It is generally acknowledged that proton therapy is safe, effective and recommended for many types of pediatric cancers, ocular melanomas, chordomas and chondrosarcomas. Although promising results have been and continue to be reported for many other types of cancers, they are based on small studies. Considering the high cost of establishing and operating proton therapy centers, questions have been raised about their cost effectiveness. General consensus is that there is a need to conduct randomized trials and/or collect outcomes data in multi-institutional registries to unequivocally demonstrate the advantage of protons. Treatment planning and plan

  5. Imaging CD4+ T cell interstitial migration in the inflamed dermis

    PubMed Central

    Gaylo, Alison; Overstreet, Michael G.; Fowell, Deborah J.

    2017-01-01

    The ability of CD4+ T cells to carry out effector functions is dependent upon the rapid and efficient migration of these cells in inflamed peripheral tissues through an as-yet undefined mechanism. The application of multiphoton microscopy to the study of the immune system provides a tool to measure the dynamics of immune responses within intact tissues. Here we present a protocol for non-invasive intravital multiphoton imaging of CD4+ T cells in the inflamed mouse ear dermis. Use of a custom imaging platform and a venous catheter allows for the visualization of CD4+ T cell dynamics in the dermal interstitium, with the ability to interrogate these cells in real-time via the addition of blocking antibodies to key molecular components involved in motility. This system provides advantages over both in vitro models and surgically invasive imaging procedures. Understanding the pathways used by CD4+ T cells for motility may ultimately provide insight into the basic function of CD4+ T cells as well as the pathogenesis of both autoimmune diseases and pathology from chronic infections. PMID:27078264

  6. A colitogenic memory CD4+ T cell population mediates gastrointestinal graft-versus-host disease

    PubMed Central

    Zhou, Vivian; Agle, Kimberle; Chen, Xiao; Beres, Amy; Komorowski, Richard; Belle, Ludovic; Taylor, Carolyn; Zhu, Fenlu; Haribhai, Dipica; Williams, Calvin B.; Verbsky, James; Blumenschein, Wendy; Sadekova, Svetlana; Bowman, Eddie; Ballantyne, Christie; Weaver, Casey; Serody, David A.; Vincent, Benjamin; Serody, Jonathan; Cua, Daniel J.; Drobyski, William R.

    2016-01-01

    Damage to the gastrointestinal tract is a major cause of morbidity and mortality in graft-versus-host disease (GVHD) and is attributable to T cell–mediated inflammation. In this work, we identified a unique CD4+ T cell population that constitutively expresses the β2 integrin CD11c and displays a biased central memory phenotype and memory T cell transcriptional profile, innate-like properties, and increased expression of the gut-homing molecules α4β7 and CCR9. Using several complementary murine GVHD models, we determined that adoptive transfer and early accumulation of β2 integrin–expressing CD4+ T cells in the gastrointestinal tract initiated Th1-mediated proinflammatory cytokine production, augmented pathological damage in the colon, and increased mortality. The pathogenic effect of this CD4+ T cell population critically depended on coexpression of the IL-23 receptor, which was required for maximal inflammatory effects. Non–Foxp3-expressing CD4+ T cells produced IL-10, which regulated colonic inflammation and attenuated lethality in the absence of functional CD4+Foxp3+ T cells. Thus, the coordinate expression of CD11c and the IL-23 receptor defines an IL-10–regulated, colitogenic memory CD4+ T cell subset that is poised to initiate inflammation when there is loss of tolerance and breakdown of mucosal barriers. PMID:27500496

  7. The mechanism of phosphorylation of anti-HIV D4T by nucleoside diphosphate kinase.

    PubMed

    Schneider, B; Biondi, R; Sarfati, R; Agou, F; Guerreiro, C; Deville-Bonne, D; Veron, M

    2000-05-01

    The last step in the intracellular activation of antiviral nucleoside analogs is the addition of the third phosphate by nucleoside diphosphate (NDP) kinase resulting in the synthesis of the viral reverse transcriptase substrates. We have previously shown that dideoxynucleotide analogs and 3'-deoxy-3'-azidothymidine (AZT) as di- or triphosphate are poor substrates for NDP kinase. By use of protein fluorescence, we monitor the phosphotransfer between the enzyme and the nucleotide analog. Here, we have studied the reactivity of D4T (2',3'-dideoxy-2',3'-didehydrothymidine; stavudine) as di- (DP) or triphosphate (TP) at the pre-steady state. The catalytic efficiency of D4T-DP or -TP is increased by a factor of 10 compared with AZT-DP or -TP, respectively. We use an inactive mutant of NDP kinase to monitor the binding of a TP derivative, and show that the affinity for D4T-TP is in the same range as for the natural substrate deoxythymidine triphosphate, but is 30 times higher than for AZT-TP. Our results indicate that D4T should be efficiently phosphorylated after intracellular maturation of a prodrug into D4T-monophosphate.

  8. Computational modeling of heterogeneity and function of CD4+ T cells

    PubMed Central

    Carbo, Adria; Hontecillas, Raquel; Andrew, Tricity; Eden, Kristin; Mei, Yongguo; Hoops, Stefan; Bassaganya-Riera, Josep

    2014-01-01

    The immune system is composed of many different cell types and hundreds of intersecting molecular pathways and signals. This large biological complexity requires coordination between distinct pro-inflammatory and regulatory cell subsets to respond to infection while maintaining tissue homeostasis. CD4+ T cells play a central role in orchestrating immune responses and in maintaining a balance between pro- and anti- inflammatory responses. This tight balance between regulatory and effector reactions depends on the ability of CD4+ T cells to modulate distinct pathways within large molecular networks, since dysregulated CD4+ T cell responses may result in chronic inflammatory and autoimmune diseases. The CD4+ T cell differentiation process comprises an intricate interplay between cytokines, their receptors, adaptor molecules, signaling cascades and transcription factors that help delineate cell fate and function. Computational modeling can help to describe, simulate, analyze, and predict some of the behaviors in this complicated differentiation network. This review provides a comprehensive overview of existing computational immunology methods as well as novel strategies used to model immune responses with a particular focus on CD4+ T cell differentiation. PMID:25364738

  9. Single wall carbon nanotube electrode system capable of quantitative detection of CD4(+) T cells.

    PubMed

    Kim, Joonhyub; Park, Gayoung; Lee, Seoho; Hwang, Suk-Won; Min, Namki; Lee, Kyung-Mi

    2017-04-15

    Development of CNT-based CD4(+) T cell imunosensors remains in its infancy due to the poor immobilization efficiency, lack of reproducibility, and difficulty in providing linear quantification. Here, we developed a fully-integrated single wall carbon nanotube (SWCNT)-based immunosensor capable of selective capture and linear quantification of CD4(+) T cells with greater dynamic range. By employing repeated two-step oxygen (O2) plasma treatment processes with 35 days of recovery periods, we achieved the enhanced functionalization of the CNT surface and the removal of the byproduct of spray-coated SWCNTs that hinders charge transfer and stable CD4(+) T cell sensing. As a result, a linear electrochemical signal was generated in direct proportion to the bound cells. The slope of a SWCNT electrode in a target concentration range (10(2)~10(6)cells/mL) was 4.55×10(-2)μA per concentration decade, with the lowest detection limit of 1×10(2)cells/mL. Since the reduced number of CD4(+) T cell counts in patients' peripheral blood corresponds to the progression of HIV disease, our CD4(+) T cell-immunosensor provides a simple and low-cost platform which can fulfill the requirement for the development of point-of-care (POC) diagnostic technologies for human immunodeficiency virus (HIV) patients in resource-limited countries.

  10. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection

    NASA Astrophysics Data System (ADS)

    Doitsh, Gilad; Galloway, Nicole L. K.; Geng, Xin; Yang, Zhiyuan; Monroe, Kathryn M.; Zepeda, Orlando; Hunt, Peter W.; Hatano, Hiroyu; Sowinski, Stefanie; Muñoz-Arias, Isa; Greene, Warner C.

    2014-01-01

    The pathway causing CD4 T-cell death in HIV-infected hosts remains poorly understood although apoptosis has been proposed as a key mechanism. We now show that caspase-3-mediated apoptosis accounts for the death of only a small fraction of CD4 T cells corresponding to those that are both activated and productively infected. The remaining over 95% of quiescent lymphoid CD4 T cells die by caspase-1-mediated pyroptosis triggered by abortive viral infection. Pyroptosis corresponds to an intensely inflammatory form of programmed cell death in which cytoplasmic contents and pro-inflammatory cytokines, including IL-1β, are released. This death pathway thus links the two signature events in HIV infection--CD4 T-cell depletion and chronic inflammation--and creates a pathogenic vicious cycle in which dying CD4 T cells release inflammatory signals that attract more cells to die. This cycle can be broken by caspase 1 inhibitors shown to be safe in humans, raising the possibility of a new class of `anti-AIDS' therapeutics targeting the host rather than the virus.

  11. Development of an immune function assay by measuring intracellular adenosine triphosphate (iATP) levels in mitogen-stimulated CD4+ T lymphocytes.

    PubMed

    Naderi, Hadi; Najafi, Alireza; Khoshroo, Mohammad; Tajik, Nader

    2016-01-01

    We developed an immune function assay for monitoring CD4+ T cells activity based on changes in intracellular adenosine triphosphate (iATP) levels after phytohemagglutinin (PHA) stimulation. Blood samples were obtained from 40 healthy subjects and 30 RTRs and incubated with 5 µg/mL of PHA for 15-18 hr at 37°C and 5% CO2. Afterward, the CD4+ T cells were separated by antibody-coated magnetic beads and lysed. Then, iATP content in unstimulated and stimulated conditions was measured by luciferin-luciferase reaction using a log-log standard curve. The iATP levels showed significant increase in CD4+ T cells in both healthy persons (mean: 550 ± 142 ng/mL vs. 109 ± 54 ng/mL) and RTRs (mean: 394 ± 160 ng/mL vs. 52 ± 37 ng/mL) after PHA stimulation (P < 0.001). However, the iATP production in RTRs was significantly lower than that in healthy individuals; both prior to and after stimulation with PHA (P < 0.001). No gender-specific difference in iATP production was observed between women and men subjects. This rapid and low-cost assay reflects the degree of immune cell function through assessment of CD4+ T cells activation. Thus, it can be used for evaluation of immune system status in immunodeficient individuals as well as in immunosuppressed transplant recipients who needs drug adjustment.

  12. Improvement of persistent magnetic field trapping in bulk Y-Ba-Cu-O superconductors

    NASA Technical Reports Server (NTRS)

    Chen, In-Gann; Weinstein, Roy

    1993-01-01

    For type-II superconductors, magnetic field can be trapped due to persistent internal supercurrent. Quasi-persistent magnetic fields near 2 T at 60 K (and 1.4 T at 77 K) have been measured in minimagnets made of proton-irradiated melt-textured Y-Ba-Cu-O (MT-Y123) samples. Using the trapping effect, high-field permanent magnets with dipole, quadrupole, or more complicated configurations can be made of existing MT-Y123 material, thus bypassing the need for high-temperature superconductor (HTS) wires. A phenomenological current model has been developed to account for the trapped field intensity and profile in HTS samples. This model is also a guide to select directions of materials development to further improve field trapping properties. General properties such as magnetic field intensities, spatial distributions, stabilities, and temperature dependence of trapped field are discussed.

  13. 800-MeV magnetic-focused flash proton radiography for high-contrast imaging of low-density biologically-relevant targets using an inverse-scatter collimator

    NASA Astrophysics Data System (ADS)

    Freeman, Matthew S.; Allison, Jason; Espinoza, Camilo; Goett, John Jerome; Hogan, Gary; Hollander, Brian; Kwiatkowski, Kris; Lopez, Julian; Mariam, Fesseha; Martinez, Michael; Medina, Jason; Medina, Patrick; Merrill, Frank E.; Morley, Deborah; Morris, Chris; Murray, Matthew; Nedrow, Paul; Saunders, Alexander; Schurman, Tamsen; Sisneros, Thomas; Tainter, Amy; Trouw, Frans; Tupa, Dale; Tybo, Josh; Wilde, Carl

    2016-03-01

    Proton radiography shows great promise as a tool to guide proton beam therapy (PBT) in real time. Here, we demonstrate two ways in which the technology may progress towards that goal. Firstly, with a proton beam that is 800 MeV in energy, target tissue receives a dose of radiation with very tight lateral constraint. This could present a benefit over the traditional treatment energies of ~200 MeV, where up to 1 cm of lateral tissue receives scattered radiation at the target. At 800 MeV, the beam travels completely through the object with minimal deflection, thus constraining lateral dose to a smaller area. The second novelty of this system is the utilization of magnetic quadrupole refocusing lenses that mitigate the blur caused by multiple Coulomb scattering within an object, enabling high resolution imaging of thick objects, such as the human body. This system is demonstrated on ex vivo salamander and zebrafish specimens, as well as on a realistic hand phantom. The resulting images provide contrast sufficient to visualize thin tissue, as well as fine detail within the target volumes, and the ability to measure small changes in density. Such a system, combined with PBT, would enable the delivery of a highly specific dose of radiation that is monitored and guided in real time.

  14. CD4+ T cell anergy prevents autoimmunity and generates regulatory T cell precursors

    PubMed Central

    Kalekar, Lokesh A.; Schmiel, Shirdi E.; Nandiwada, Sarada L.; Lam, Wing Y.; Barsness, Laura O.; Zhang, Na; Stritesky, Gretta L.; Malhotra, Deepali; Pauken, Kristen E.; Linehan, Jonathan L.; O’Sullivan, M. Gerard; Fife, Brian T.; Hogquist, Kristin A.; Jenkins, Marc K.; Mueller, Daniel L.

    2015-01-01

    The role that anergy, an acquired state of T cell functional unresponsiveness, plays in natural peripheral tolerance remains unclear. In this study, we demonstrate that anergy is selectively induced in fetal antigen-specific maternal CD4+ T cells during pregnancy. A naturally occurring subpopulation of anergic polyclonal CD4+ T cells, enriched in self antigen-specific T cell receptors, is also observed in healthy hosts. Neuropilin-1 expression in anergic conventional CD4+ T cells is associated with thymic regulatory T cell (Treg cell)-related gene hypomethylation, and this correlates with their capacity to differentiate into Foxp3+ Treg cells that suppress immunopathology. Thus, our data suggest that not only is anergy induction important in preventing autoimmunity, but it also generates the precursors for peripheral Treg cell differentiation. PMID:26829766

  15. Cell-to-cell transfer of M. tuberculosis antigens optimizes CD4 T cell priming.

    PubMed

    Srivastava, Smita; Ernst, Joel D

    2014-06-11

    During Mycobacterium tuberculosis and other respiratory infections, optimal T cell activation requires pathogen transport from the lung to a local draining lymph node (LN). However, the infected inflammatory monocyte-derived dendritic cells (DCs) that transport M. tuberculosis to the local lymph node are relatively inefficient at activating CD4 T cells, possibly due to bacterial inhibition of antigen presentation. We found that infected migratory DCs release M. tuberculosis antigens as soluble, unprocessed proteins for uptake and presentation by uninfected resident lymph node DCs. This transfer of bacterial proteins from migratory to local DCs results in optimal priming of antigen-specific CD4 T cells, which are essential in controlling tuberculosis. Additionally, this mechanism does not involve transfer of the whole bacterium and is distinct from apoptosis or exosome shedding. These findings reveal a mechanism that bypasses pathogen inhibition of antigen presentation by infected cells and generates CD4 T cell responses that control the infection.

  16. Development of a device for selective removal of CD4+ T cells.

    PubMed

    Onodera, Hirokazu; Ninomiya, Kasumi; Yoshida, Makoto; Matsuo, Hidenori; Shibuya, Noritoshi

    2003-06-01

    To control antigen (Ag)-specific immune cells is important in the treatment of autoimmune diseases. In particular, controlling the immune response of autoimmune T cells is effective in the treatment of these diseases. The development of a device that can remove CD4+ T cells specifically by extracorporeal circulation is now in progress, with the aim to deplete autoimmune T cells. We developed a removal material made of polypropylene non-woven fabrics with anti human CD4 monoclonal antibody immobilized on the surface. Using a column packed with the removal material, we succeeded in removing CD4+ T cells specifically from peripheral whole blood by direct perfusion. Moreover, CD4+ T cells can be specifically removed even from blood with lower surface antigen density by in vitro activation.

  17. Innate-like CD4 T cells selected by thymocytes suppress adaptive immune responses against bacterial infections

    PubMed Central

    Qiao, Yu; Gray, Brian M.; Sofi, Mohammed H.; Bauler, Laura D.; Eaton, Kathryn A.; O'Riordan, Mary X. D.; Chang, Cheong-Hee

    2012-01-01

    We have reported a new innate-like CD4 T cell population that expresses cell surface makers of effector/memory cells and produce Th1 and Th2 cytokines immediately upon activation. Unlike conventional CD4 T cells that are selected by thymic epithelial cells, these CD4 T cells, named T-CD4 T cells, are selected by MHC class II expressing thymocytes. Previously, we showed that the presence of T-CD4 T cells protected mice from airway inflammation suggesting an immune regulatory role of T-CD4 T cells. To further understand the function of T-CD4 T cells, we investigated immune responses mediated by T-CD4 T cells during bacterial infection because the generation of antigen specific CD4 T cells contributes to clearance of infection and for the development of immune memory. The current study shows a suppressive effect of T-CD4 T cells on both CD8 and CD4 T cell-mediated immune responses during Listeria and Helicobacter infections. In the mouse model of Listeria monocytogenes infection, T-CD4 T cells resulted in decreasedfrequency of Listeria-specific CD8 T cells and the killing activity of them. Furthermore, mice with T-CD4 T cells developed poor immune memory, demonstrated by reduced expansion of antigen-specific T cells and high bacterial burden upon re-infection. Similarly, the presence of T-CD4 T cells suppressed the generation of antigen-specific CD4 T cells in Helicobacter pylori infected mice. Thus, our studies reveal a novel function of T-CD4 T cells in suppressing anti-bacterial immunity. PMID:23264931

  18. A quartz nanopillar hemocytometer for high-yield separation and counting of CD4+ T lymphocytes

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Joo; Seol, Jin-Kyeong; Wu, Yu; Ji, Seungmuk; Kim, Gil-Sung; Hyung, Jung-Hwan; Lee, Seung-Yong; Lim, Hyuneui; Fan, Rong; Lee, Sang-Kwon

    2012-03-01

    We report the development of a novel quartz nanopillar (QNP) array cell separation system capable of selectively capturing and isolating a single cell population including primary CD4+ T lymphocytes from the whole pool of splenocytes. Integrated with a photolithographically patterned hemocytometer structure, the streptavidin (STR)-functionalized-QNP (STR-QNP) arrays allow for direct quantitation of captured cells using high content imaging. This technology exhibits an excellent separation yield (efficiency) of ~95.3 +/- 1.1% for the CD4+ T lymphocytes from the mouse splenocyte suspensions and good linear response for quantitating captured CD4+ T-lymphoblasts, which is comparable to flow cytometry and outperforms any non-nanostructured surface capture techniques, i.e. cell panning. This nanopillar hemocytometer represents a simple, yet efficient cell capture and counting technology and may find immediate applications for diagnosis and immune monitoring in the point-of-care setting.We report the development of a novel quartz nanopillar (QNP) array cell separation system capable of selectively capturing and isolating a single cell population including primary CD4+ T lymphocytes from the whole pool of splenocytes. Integrated with a photolithographically patterned hemocytometer structure, the streptavidin (STR)-functionalized-QNP (STR-QNP) arrays allow for direct quantitation of captured cells using high content imaging. This technology exhibits an excellent separation yield (efficiency) of ~95.3 +/- 1.1% for the CD4+ T lymphocytes from the mouse splenocyte suspensions and good linear response for quantitating captured CD4+ T-lymphoblasts, which is comparable to flow cytometry and outperforms any non-nanostructured surface capture techniques, i.e. cell panning. This nanopillar hemocytometer represents a simple, yet efficient cell capture and counting technology and may find immediate applications for diagnosis and immune monitoring in the point-of-care setting

  19. Increased Mucosal CD4+ T Cell Activation in Rhesus Macaques following Vaccination with an Adenoviral Vector

    PubMed Central

    Bukh, Irene; Calcedo, Roberto; Roy, Soumitra; Carnathan, Diane G.; Grant, Rebecca; Qin, Qiuyue; Boyd, Surina; Ratcliffe, Sarah J.; Veeder, Christin L.; Bellamy, Scarlett L.; Betts, Michael R.

    2014-01-01

    ABSTRACT The possibility that vaccination with adenovirus (AdV) vectors increased mucosal T cell activation remains a central hypothesis to explain the potential enhancement of HIV acquisition within the Step trial. Modeling this within rhesus macaques is complicated because human adenoviruses, including human adenovirus type 5 (HAdV-5), are not endogenous to macaques. Here, we tested whether vaccination with a rhesus macaque-derived adenoviral vector (simian adenovirus 7 [SAdV-7]) enhances mucosal T cell activation within rhesus macaques. Following intramuscular SAdV-7 vaccination, we observed a pronounced increase in SAdV-7-specific CD4+ T cell responses in peripheral blood and, more dramatically, in rectal mucosa tissue. Vaccination also induced a significant increase in the frequency of activated memory CD4+ T cells in SAdV-7- and HAdV-5-vaccinated animals in the rectal mucosa but not in peripheral blood. These fluctuations within the rectal mucosa were also associated with a pronounced decrease in the relative frequency of naive resting CD4+ T cells. Together, these results indicate that peripheral vaccination with an AdV vector can increase the activation of mucosal CD4+ T cells, potentially providing an experimental model to further evaluate the role of host-vector interactions in increased HIV acquisition after AdV vector vaccination. IMPORTANCE The possibility that vaccination with a human adenovirus 5 vector increased mucosal T cell activation remains a central hypothesis to explain the potential enhancement of human immunodeficiency virus (HIV) acquisition within the Step trial. In this study, we tested whether vaccination with a rhesus macaque-derived adenoviral vector in rhesus macaques enhances mucosal CD4+ T cell activation, the main cell target of simian immunodeficiency virus (SIV)/HIV. The results showed that vaccination with an adenoviral vector indeed increases activation of mucosal CD4+ T cells and potentially increases susceptibility to SIV

  20. Epigenetic Alterations May Regulate Temporary Reversal of CD4+ T Cell Activation Caused by Trichloroethylene Exposure

    PubMed Central

    Gilbert, Kathleen M.; Nelson, Ashley R.; Cooney, Craig A.; Reisfeld, Brad; Blossom, Sarah J.

    2012-01-01

    Previous studies have shown that short-term (4 weeks) or chronic (32 weeks) exposure to trichloroethylene (TCE) in drinking water of female MRL+/+ mice generated CD4+ T cells that secreted increased levels of interferon (IFN)-γ and expressed an activated (CD44hiCD62Llo) phenotype. In contrast, the current study of subchronic TCE exposure showed that midway in the disease process both of these parameters of CD4+ T cell activation were reversed. This phase of the disease process may represent an attempt by the body to counteract the inflammatory effects of TCE. The decrease in CD4+ T cell production of IFN-γ following subchronic TCE exposure could not be attributed to skewing toward a Th2 or Th17 phenotype or to an increase in Treg cells. Instead, the suppression corresponded to alterations in markers used to assess DNA methylation, namely increased expression of retrotransposons Iap (intracisternal A particle) and Muerv (murine endogenous retrovirus). Also observed was an increase in the expression of Dnmt1 (DNA methyltransferase-1) and decreased expression of several genes known to be downregulated by DNA methylation, namely Ifng, Il2, and Cdkn1a. CD4+ T cells from a second study in which MRL+/+ mice were treated for 17 weeks with TCE showed a similar increase in Iap and decrease in Cdkn1a. In addition, DNA collected from the CD4+ T cells in the second study showed TCE-decreased global DNA methylation. Thus, these results described the biphasic nature of TCE-induced alterations in CD4+ T cell function and suggested that these changes represented potentially reversible alterations in epigenetic processes. PMID:22407948

  1. [Levels of antiplatelet factor 4-heparin antibodies and 4T score for heparin induced thrombocytopenia].

    PubMed

    Martinuzzo, Marta E; Cerrato, Graciela S; Iglesias Varela, Maria L; Adamczuk, Yolanda P; Pombo, Gonzalo; Forastiero, Ricardo R

    2012-01-01

    Heparin induced thrombocytopenia (HIT) is an immune-mediated disorder due to antibodies anti platelet factor 4-heparin (HPIA). Thrombocytopenia is often moderate but certain patients can develop morbid thrombotic complications. HPIA detection by ELISA has high sensitivity but low specificity, and low titers (without clinical significance) are frequent. A pretest clinical score (4T's) was developed in order to recognize patients that are at high risk of HIT. The aim of this study was to correlate HPIA levels and the 4T's score of consecutive patients derived to our center. We evaluated 84 patients (35 of them developed thrombosis); the clinical questionnaire was sent along with the sample and was analyzed by an investigator who did not know the patients' characteristics, and 4T's scores were calculated before performing the laboratory tests. HPIA were measured by ELISA (Asserachrom HPIA) that detects IgG, IgM and IgA isotypes, (the only reagent available in our country). 4T's score correlated with HPIA levels (rho spearman 0.472, p < 0.001). Patients with 4T's = 6 had higher absorbance percentages than those with = 5 (67 vs. 39%, p < 0.001), and patients with thrombosis also presented higher titers (59 vs. 39%, p = 0.017) than those who did not develop this complication. In conclusion, high titers of HPIA measured by EIA which detects the 3 isotypes, clearly correlate with 4T's score = 6 and are more frequent in patients who develop thrombosis, just as reported when an IgG specific ELISA is used.

  2. Quorum-Sensing in CD4+ T Cell Homeostasis: A Hypothesis and a Model

    PubMed Central

    Almeida, Afonso R. M.; Amado, Inês F.; Reynolds, Joseph; Berges, Julien; Lythe, Grant; Molina-París, Carmen; Freitas, Antonio A.

    2012-01-01

    Homeostasis of lymphocyte numbers is believed to be due to competition between cellular populations for a common niche of restricted size, defined by the combination of interactions and trophic factors required for cell survival. Here we propose a new mechanism: homeostasis of lymphocyte numbers could also be achieved by the ability of lymphocytes to perceive the density of their own populations. Such a mechanism would be reminiscent of the primordial quorum-sensing systems used by bacteria, in which some bacteria sense the accumulation of bacterial metabolites secreted by other elements of the population, allowing them to “count” the number of cells present and adapt their growth accordingly. We propose that homeostasis of CD4+ T cell numbers may occur via a quorum-sensing-like mechanism, where IL-2 is produced by activated CD4+ T cells and sensed by a population of CD4+ Treg cells that expresses the high-affinity IL-2Rα-chain and can regulate the number of activated IL-2-producing CD4+ T cells and the total CD4+ T cell population. In other words, CD4+ T cell populations can restrain their growth by monitoring the number of activated cells, thus preventing uncontrolled lymphocyte proliferation during immune responses. We hypothesize that malfunction of this quorum-sensing mechanism may lead to uncontrolled T cell activation and autoimmunity. Finally, we present a mathematical model that describes the key role of IL-2 and quorum-sensing mechanisms in CD4+ T cell homeostasis during an immune response. PMID:22654881

  3. Homeostatically Maintained Resting Naive CD4+ T Cells Resist Latent HIV Reactivation

    PubMed Central

    Tsunetsugu-Yokota, Yasuko; Kobayahi-Ishihara, Mie; Wada, Yamato; Terahara, Kazutaka; Takeyama, Haruko; Kawana-Tachikawa, Ai; Tokunaga, Kenzo; Yamagishi, Makoto; Martinez, Javier P.; Meyerhans, Andreas

    2016-01-01

    Homeostatic proliferation (HSP) is a major mechanism by which long-lived naïve and memory CD4+ T cells are maintained in vivo and suggested to contribute to the persistence of the latent HIV-1 reservoir. However, while many in vitro latency models rely on CD4+ T cells that were initially differentiated via T-cell receptor (TCR) stimulation into memory/effector cells, latent infection of naïve resting CD4+ T cells maintained under HSP conditions has not been fully addressed. Here, we describe an in vitro HSP culture system utilizing the cytokines IL-7 and IL-15 that allows studying latency in naïve resting CD4+ T cells. CD4+ T cells isolated from several healthy donors were infected with HIV pseudotypes expressing GFP and cultured under HSP conditions or TCR conditions as control. Cell proliferation, phenotype, and GFP expression were analyzed by flow cytometry. RNA expression was quantified by qRT-PCR. Under HSP culture conditions, latently HIV-1 infected naïve cells are in part maintained in the non-dividing (= resting) state. Although a few HIV-1 provirus+ cells were present in these resting GFP negative cells, the estimated level of GFP transcripts per infected cell seems to indicate a block at the post-transcriptional level. Interestingly, neither TCR nor the prototypic HDAC inhibitor SAHA were able to reactivate HIV-1 provirus from these cells. This lack of reactivation was not due to methylation of the HIV LTR. These results point to a mechanism of HIV control in HSP-cultured resting naïve CD4+ T cells that may be distinct from that in TCR-stimulated memory/effector T cells. PMID:27990142

  4. Proton maser

    NASA Astrophysics Data System (ADS)

    Ensley, D. L.

    1988-01-01

    New calculations are reported which confirm the ability of an a priori random, initial-phase proton beam to drive a simple, single-stage microwave cavity maser or transit-time oscillator (TTO) to saturation conversion efficiencies of about 11 percent. The required initial TE(011) mode field can be provided from beam ramp-up bandwidth of excitation to a low level from an external source. A saturation field of 45 tesla and output power of 0.2 TW are calculated using an electron insulation field of 10 tesla and a 3 MeV, 400 Ka/sq cm beam. Results are compared to those for an electron beam of the same energy and geometry, and it is shown that proton beams potentially can provide a three order of magnitude increase in overall microwave power production density over that obtainable from electron beam TTOs.

  5. Gene Editing of CCR5 in Autologous CD4 T Cells of Persons Infected with HIV

    PubMed Central

    Tebas, Pablo; Stein, David; Tang, Winson W.; Frank, Ian; Wang, Shelley Q.; Lee, Gary; Spratt, S. Kaye; Surosky, Richard T.; Giedlin, Martin A.; Nichol, Geoff; Holmes, Michael C.; Gregory, Philip D.; Ando, Dale G.; Kalos, Michael; Collman, Ronald G.; Binder-Scholl, Gwendolyn; Plesa, Gabriela; Hwang, Wei-Ting; Levine, Bruce L.; June, Carl H.

    2014-01-01

    BACKGROUND CCR5 is the major coreceptor for human immunodeficiency virus (HIV). We investigated whether site-specific modification of the gene (“gene editing”) — in this case, the infusion of autologous CD4 T cells in which the CCR5 gene was rendered permanently dysfunctional by a zinc-finger nuclease (ZFN) — is safe. METHODS We enrolled 12 patients in an open-label, nonrandomized, uncontrolled study of a single dose of ZFN-modified autologous CD4 T cells. The patients had chronic aviremic HIV infection while they were receiving highly active antiretroviral therapy. Six of them underwent an interruption in antiretroviral treatment 4 weeks after the infusion of 10 billion autologous CD4 T cells, 11 to 28% of which were genetically modified with the ZFN. The primary outcome was safety as assessed by treatment-related adverse events. Secondary outcomes included measures of immune reconstitution and HIV resistance. RESULTS One serious adverse event was associated with infusion of the ZFN-modified autologous CD4 T cells and was attributed to a transfusion reaction. The median CD4 T-cell count was 1517 per cubic millimeter at week 1, a significant increase from the preinfusion count of 448 per cubic millimeter (P<0.001). The median concentration of CCR5-modified CD4 T cells at 1 week was 250 cells per cubic millimeter. This constituted 8.8% of circulating peripheral-blood mononuclear cells and 13.9% of circulating CD4 T cells. Modified cells had an estimated mean half-life of 48 weeks. During treatment interruption and the resultant viremia, the decline in circulating CCR5-modified cells (−1.81 cells per day) was significantly less than the decline in unmodified cells (−7.25 cells per day) (P = 0.02). HIV RNA became undetectable in one of four patients who could be evaluated. The blood level of HIV DNA decreased in most patients. CONCLUSIONS CCR5-modified autologous CD4 T-cell infusions are safe within the limits of this study. (Funded by the National

  6. Occurrence of 4-tert-butylphenol (4-t-BP) biodegradation in an aquatic sample caused by the presence of Spirodela polyrrhiza and isolation of a 4-t-BP-utilizing bacterium.

    PubMed

    Ogata, Yuka; Toyama, Tadashi; Yu, Ning; Wang, Xuan; Sei, Kazunari; Ike, Michihiko

    2013-04-01

    Although 4-tert-butylphenol (4-t-BP) is a serious aquatic pollutant, its biodegradation in aquatic environments has not been well documented. In this study, 4-t-BP was obviously and repeatedly removed from water from four different environments in the presence of Spirodela polyrrhiza, giant duckweed, but 4-t-BP persisted in the environmental waters in the absence of S. polyrrhiza. Also, 4-t-BP was not removed from autoclaved pond water with sterilized S. polyrrhiza. These results suggest that the 4-t-BP removal from the environmental waters was caused by biodegradation stimulated by the presence of S. polyrrhiza rather than by uptake by the plant. Moreover, Sphingobium fuliginis OMI capable of utilizing 4-t-BP as a sole carbon and energy source was isolated from the S. polyrrhiza rhizosphere. Strain OMI degraded 4-t-BP via a meta-cleavage pathway, and also degraded a broad range of alkylphenols with linear or branched alkyl side chains containing two to nine carbon atoms. Root exudates of S. polyrrhiza stimulated 4-t-BP degradation and cell growth of strain OMI. Thus, the stimulating effects of S. polyrrhiza root exudates on 4-t-BP-degrading bacteria might have contributed to 4-t-BP removal in the environmental waters with S. polyrrhiza. These results demonstrate that the S. polyrrhiza-bacteria association may be applicable to the removal of highly persistent 4-t-BP from wastewaters or polluted aquatic environments.

  7. Numerical study of remote detection outside the magnet with travelling wave Magnetic Resonance Imaging at 3T

    NASA Astrophysics Data System (ADS)

    López, M.; Vázquez, F.; Solís-Nájera, S.; Rodriguez, A. O.

    2015-01-01

    The use of the travelling wave approach for high magnetic field magnetic resonance imaging has been used recently with very promising results. This approach offer images one with greater field-of-view and a reasonable signal-to-noise ratio using a circular waveguide. This scheme has been proved to be successful at 7 T and 9.4 T with whole-body imager. Images have also been acquired with clinical magnetic resonance imaging systems whose resonant frequencies were 64 MHz and 128 MHz. These results motivated the use of remote detection of the magnetic resonance signal using a parallel-plate waveguide together with 3 T clinical scanners, to acquired human leg images. The cut-off frequency of this waveguide is zero for the principal mode, allowing us to overcome the barrier of transmitting waves at lower frequency than 300 MHz or 7 T for protons. These motivated the study of remote detection outside the actual magnet. We performed electromagnetic field simulations of a parallel-plate waveguide and a phantom. The signal transmission was done at 128 MHz and using a circular surface coil located almost 200 cm away for the magnet isocentre. Numerical simulations demonstrated that the magnetic field of the principal mode propagate inside a waveguide outside the magnet. Numerical results were compared with previous experimental-acquired image data under similar conditions.

  8. 26 CFR 1.468A-4T - Treatment of nuclear decommissioning fund (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 6 2010-04-01 2010-04-01 false Treatment of nuclear decommissioning fund...-4T Treatment of nuclear decommissioning fund (temporary). (a) In general. A nuclear decommissioning... income earned by the assets of the nuclear decommissioning fund. (b) Modified gross income. For...

  9. Identification of beryllium-dependent peptides recognized by CD4+ T cells in chronic beryllium disease

    PubMed Central

    Falta, Michael T.; Mack, Douglas G.; Tinega, Alex N.; Crawford, Frances; Giulianotti, Marc; Santos, Radleigh; Clayton, Gina M.; Wang, Yuxiao; Zhang, Xuewu; Maier, Lisa A.; Marrack, Philippa; Kappler, John W.

    2013-01-01

    Chronic beryllium disease (CBD) is a granulomatous disorder characterized by an influx of beryllium (Be)-specific CD4+ T cells into the lung. The vast majority of these T cells recognize Be in an HLA-DP–restricted manner, and peptide is required for T cell recognition. However, the peptides that stimulate Be-specific T cells are unknown. Using positional scanning libraries and fibroblasts expressing HLA-DP2, the most prevalent HLA-DP molecule linked to disease, we identified mimotopes and endogenous self-peptides that bind to MHCII and Be, forming a complex recognized by pathogenic CD4+ T cells in CBD. These peptides possess aspartic and glutamic acid residues at p4 and p7, respectively, that surround the putative Be-binding site and cooperate with HLA-DP2 in Be coordination. Endogenous plexin A peptides and proteins, which share the core motif and are expressed in lung, also stimulate these TCRs. Be-loaded HLA-DP2–mimotope and HLA-DP2–plexin A4 tetramers detected high frequencies of CD4+ T cells specific for these ligands in all HLA-DP2+ CBD patients tested. Thus, our findings identify the first ligand for a CD4+ T cell involved in metal-induced hypersensitivity and suggest a unique role of these peptides in metal ion coordination and the generation of a common antigen specificity in CBD. PMID:23797096

  10. The differentiation and protective function of cytolytic CD4 T cells in influenza infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CD4 T cells that recognize peptide antigen in the context of Class II MHC can differentiate into various subsets that are characterized by their helper functions. However, increasing evidence indicates that CD4 cells with direct cytolytic activity play a role in chronic, as well as, acute infections...

  11. 26 CFR 1.883-4T - Qualified shareholder stock ownership test (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Qualified shareholder stock ownership test... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Foreign Corporations § 1.883-4T Qualified shareholder stock...)(B). (C) If the individual directly owns stock in the corporation seeking qualified...

  12. Interleukin 4-producing CD4+ T cells in the skin of cats with allergic dermatitis.

    PubMed

    Roosje, P J; Dean, G A; Willemse, T; Rutten, V P M G; Thepen, T

    2002-03-01

    Lesional skin of cats with allergic dermatitis has a cellular infiltrate and a CD4/CD8 ratio comparable to that in humans with atopic dermatitis. CD4+ helper T cells and in particular cells belonging to the Th2 subset play an important role in disease pathogenesis in humans. We investigated the cytokine pattern of CD4+ T cells in situ, with special emphasis on the putative presence of cells producing interleukin 4 (IL4), in cats with allergic dermatitis. Immunohistochemical procedures were used to determine that CD4+ T cells in lesional and nonlesional skin of cats with allergic dermatitis can produce IL4, as occurs in humans. Lesional and nonlesional skin of cats with allergic dermatitis had significantly more IL4+ T cells (P = 0.001) than did skin of healthy control cats. Double staining indicated that all IL4+ cells were positive for pan-T or CD4 markers. Double labeling for mast cell chymase and IL4 stained primarily different cells. Western blotting demonstrated cross-reactivity between the antibody against human IL4 and a feline recombinant IL4. These results indicate that IL4 is primarily produced by CD4+ T cells and is also present in clinically uninvolved skin, indicating a role in the pathogenesis of allergic dermatitis in cats.

  13. Bromelain treatment reduces CD25 expression on activated CD4+ T cells in vitro✩

    PubMed Central

    Secor, Eric R.; Singh, Anurag; Guernsey, Linda A.; McNamara, Jeff T.; Zhan, Lijun; Maulik, Nilanjana; Thrall, Roger S.

    2009-01-01

    Bromelain (Br), an extract from pineapple stem with cysteine protease activity, exerts anti-inflammatory effects in a number of inflammatory models. We have previously shown that Br treatment decreased activated CD4+ T cells and has a therapeutic role in an ovalbumin-induced murine model of allergic airway disease. The current study was designed to determine the effect of Br on CD4+ T cell activation, specifically the expression of CD25 in vitro. CD25 is up regulated upon T cell activation, found as a soluble fraction (sCD25) and is a therapeutic target in inflammation, autoimmunity and allergy. Br treatment of anti-CD3 stimulated CD4+ T cells reduced CD25 expression in a dose and time dependent manner. This reduction of CD25 was dependent on the proteolytic action of Br as the addition of E64 (a cysteine protease inhibitor) abrogated this response. The concentration of sCD25 was increased in supernatants of Br treated activated CD4+ T cells as compared to control cells, suggesting that Br proteolytically cleaved cell-surface CD25. This novel mechanism of action identifies how Br may exert its therapeutic benefits in inflammatory conditions. PMID:19162239

  14. 26 CFR 1.892-4T - Commercial activities (temporary regulations).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 9 2011-04-01 2011-04-01 false Commercial activities (temporary regulations). 1... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Miscellaneous Provisions § 1.892-4T Commercial... the conduct of a commercial activity or income received by a controlled commercial entity or...

  15. 26 CFR 1.892-4T - Commercial activities (temporary regulations).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Commercial activities (temporary regulations). 1... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Miscellaneous Provisions § 1.892-4T Commercial activities... of a commercial activity or income received by a controlled commercial entity or received...

  16. 26 CFR 1.1001-4T - Modifications of certain derivative contracts (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 11 2012-04-01 2012-04-01 false Modifications of certain derivative contracts... Recognition of Gain Or Loss § 1.1001-4T Modifications of certain derivative contracts (temporary). (a) Certain assignments. For purposes of § 1.1001-1(a), the transfer or assignment of a derivative contract is not...

  17. In situ depletion of CD4+ T cells in human skin by Zanolimumab.

    PubMed

    Villadsen, L S; Skov, L; Dam, T N; Dagnaes-Hansen, F; Rygaard, J; Schuurman, J; Parren, P W H I; van de Winkel, J G J; Baadsgaard, O

    2007-02-01

    CD4(+) T cells, in activated or malignant form, are involved in a number of diseases including inflammatory skin diseases such as psoriasis, and T cell lymphomas such as the majority of cutaneous T cell lymphomas (CTCL). Targeting CD4 with an antibody that inhibits and/or eliminates disease-driving T cells in situ may therefore be a useful approach in the treatment of inflammatory and malignant skin diseases. Depletion of CD4(+) T cells in intact inflamed human skin tissue by Zanolimumab, a fully human therapeutic monoclonal antibody (IgG1, kappa) against CD4, was studied in a human psoriasis xenograft mouse model. Zanolimumab treatment was shown to induce a significant reduction in the numbers of inflammatory mononuclear cells in upper dermis. This reduction in inflammatory mononuclear cells in situ was primarily due to a significant reduction in the numbers of skin-infiltrating CD4(+), but not CD8(+) CD3(+) T cells. The capacity of Zanolimumab to deplete the CD4(+) T cells in the skin may be of importance in diseases where CD4(+) T cells play a central role. Indeed, in a phase II clinical trial Zanolimumab has shown a dose-dependent clinical response in patients with CTCL and the antibody is currently in a phase III clinical trial for CTCL, a disease for which there is no safe and effective treatment available today.

  18. 17 CFR 240.11a1-4(T) - Bond transactions on national securities exchanges.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Bond transactions on national....11a1-4(T) Bond transactions on national securities exchanges. A transaction in a bond, note, debenture, or other form of indebtedness effected on a national securities exchange by a member for its...

  19. 17 CFR 240.11a1-4(T) - Bond transactions on national securities exchanges.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Bond transactions on national....11a1-4(T) Bond transactions on national securities exchanges. A transaction in a bond, note, debenture, or other form of indebtedness effected on a national securities exchange by a member for its...

  20. 17 CFR 240.11a1-4(T) - Bond transactions on national securities exchanges.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Bond transactions on national....11a1-4(T) Bond transactions on national securities exchanges. A transaction in a bond, note, debenture, or other form of indebtedness effected on a national securities exchange by a member for its...

  1. 17 CFR 240.11a1-4(T) - Bond transactions on national securities exchanges.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Bond transactions on national....11a1-4(T) Bond transactions on national securities exchanges. A transaction in a bond, note, debenture, or other form of indebtedness effected on a national securities exchange by a member for its...

  2. Registration of tufted-naked seed in upland cotton germplasm 9023n4t

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A naked-tufted mutant called 9023n4t (PI 667553) was developed from the cultivar SC 9023 (Gossypium hirsutum L.) through chemical mutagenesis. This germplasm was developed by the Department of Plant and Soil Science, Texas Tech University and released in April, 2013. This mutant is quite unique sinc...

  3. Salmonella enterica serovar Typhi impairs CD4 T cell responses by reducing antigen availability.

    PubMed

    Atif, Shaikh M; Winter, Sebastian E; Winter, Maria G; McSorley, Stephen J; Bäumler, Andreas J

    2014-06-01

    Salmonella enterica serovar Typhi is associated with a disseminated febrile illness in humans, termed typhoid fever, while Salmonella enterica serovar Typhimurium causes localized gastroenteritis in immunocompetent individuals. One of the genetic differences between both pathogens is the presence in S. Typhi of TviA, a regulatory protein that shuts down flagellin (FliC) expression when bacteria transit from the intestinal lumen into the intestinal mucosa. Here we investigated the consequences of TviA-mediated flagellum gene regulation on flagellin-specific CD4 T cell responses in a mouse model of S. Typhimurium infection. Introduction of the S. Typhi tviA gene into S. Typhimurium suppressed antigen presentation of dendritic cells to flagellin-specific CD4 T cells in vitro. Furthermore, TviA-mediated repression of flagellin expression impaired the activation and proliferation of naive flagellin-specific CD4 T cells in Peyer's patches and mesenteric lymph nodes, which was accompanied by increased bacterial dissemination to the spleen. We conclude that TviA-mediated repression of flagellin expression reduces antigen availability, thereby weakening flagellin-specific CD4 T cell responses.

  4. The BMP Pathway Participates in Human Naive CD4+ T Cell Activation and Homeostasis

    PubMed Central

    Martínez, Víctor G.; Sacedón, Rosa; Hidalgo, Laura; Valencia, Jaris; Fernández-Sevilla, Lidia M.; Hernández-López, Carmen

    2015-01-01

    Bone Morphogenetic Proteins (BMPs) form a group of secreted factors that belongs to the TGF-β superfamily. Among different roles in a number of immune cell types, BMPs are known to regulate T cell development within the thymus, although the role of BMP signaling in human mature T cells remains elusive. In this study, we demonstrate that canonical BMP signaling is necessary during two critical events that regulate the size and function of human naive CD4+ T cell population: activation and homeostasis. Upon stimulation via TCR, naive CD4+ T cells upregulate the expression of BMP ligands triggering canonical BMP signaling in CD25+ cells. Blockade of BMP signaling severely impairs CD4+ T cell proliferation after activation mainly through regulation of IL-2, since the addition of this cytokine recuperates normal T cell expansion after inhibition of BMP signaling. Similarly, activation of canonical BMP pathway is required for both the maintenance of cell survival and the homeostatic proliferation induced by IL-7, a key factor for T cell homeostasis. Moreover, upregulation of two critical receptors for T cell homeostasis, CXCR4 and CCR9, triggered by IL-7 is also abrogated in the absence of BMP signaling. Collectively, we describe important roles of the canonical BMP signaling in human naive CD4+ T cell activation and homeostasis that could be valuable for clinical application. PMID:26110906

  5. Cytotoxic CD4 T Cells: Differentiation, Function, and Application to Dengue Virus Infection

    PubMed Central

    Tian, Yuan; Sette, Alessandro; Weiskopf, Daniela

    2016-01-01

    Dengue virus (DENV) has spread through most tropical and subtropical areas of the world and represents a serious public health problem. The control of DENV infection has not yet been fully successful due to lack of effective therapeutics or vaccines. Nevertheless, a better understanding of the immune responses against DENV infection may reveal new strategies for eliciting and improving antiviral immunity. T cells provide protective immunity against various viral infections by generating effector cells that cooperate to eliminate antigens and memory cells that can survive for long periods with enhanced abilities to control recurring pathogens. Following activation, CD8 T cells can migrate to sites of infection and kill infected cells, whereas CD4 T cells contribute to the elimination of pathogens by trafficking to infected tissues and providing help to innate immune responses, B cells, as well as CD8 T cells. However, it is now evident that CD4 T cells can also perform cytotoxic functions and induce the apoptosis of target cells. Importantly, accumulating studies demonstrate that cytotoxic CD4 T cells develop following DENV infections and may play a crucial role in protecting the host from severe dengue disease. We review our current understanding of the differentiation and function of cytotoxic CD4 T cells, with a focus on DENV infection, and discuss the potential of harnessing these cells for the prevention and treatment of DENV infection and disease. PMID:28003809

  6. Cytotoxic CD4 T Cells: Differentiation, Function, and Application to Dengue Virus Infection.

    PubMed

    Tian, Yuan; Sette, Alessandro; Weiskopf, Daniela

    2016-01-01

    Dengue virus (DENV) has spread through most tropical and subtropical areas of the world and represents a serious public health problem. The control of DENV infection has not yet been fully successful due to lack of effective therapeutics or vaccines. Nevertheless, a better understanding of the immune responses against DENV infection may reveal new strategies for eliciting and improving antiviral immunity. T cells provide protective immunity against various viral infections by generating effector cells that cooperate to eliminate antigens and memory cells that can survive for long periods with enhanced abilities to control recurring pathogens. Following activation, CD8 T cells can migrate to sites of infection and kill infected cells, whereas CD4 T cells contribute to the elimination of pathogens by trafficking to infected tissues and providing help to innate immune responses, B cells, as well as CD8 T cells. However, it is now evident that CD4 T cells can also perform cytotoxic functions and induce the apoptosis of target cells. Importantly, accumulating studies demonstrate that cytotoxic CD4 T cells develop following DENV infections and may play a crucial role in protecting the host from severe dengue disease. We review our current understanding of the differentiation and function of cytotoxic CD4 T cells, with a focus on DENV infection, and discuss the potential of harnessing these cells for the prevention and treatment of DENV infection and disease.

  7. Genome Sequence of Creatinine-Fermenting Tissierella creatinophila Strain KRE 4T (DSM 6911)

    PubMed Central

    Nacke, Heiko; Daniel, Rolf

    2017-01-01

    ABSTRACT Tissierella creatinophila strain KRE 4T (DSM 6911) is a strictly anaerobic, creatinine-fermenting, and creatine-fermenting organism, which has been isolated from sewage sludge. The draft genome consists of one circular chromosome (2.5 Mb) and harbors 2,533 predicted protein-encoding genes. PMID:28336595

  8. Polyfunctional CD4 T cells in the response to bovine tuberculosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyfunctional CD4 T cells simultaneously produce interferon-gamma (IFN-gamma), interleukin-2 (IL-2) and tumor necrosis factor-alpha (TNF-alpha) and play relevant roles in several chronic infections, including human TB and HIV. However, the assessment of this response in bovine infections was not fe...

  9. Getting the Skinny on CD4+ T Cell Survival in Fatty Livers

    PubMed Central

    Walker, Christopher M.; Lemon, Stanley M.

    2016-01-01

    Non-alcoholic fatty liver disease is associated with hepatocellular carcinoma. In the March 10 issue of Nature, Greten and colleagues report that this metabolic disruption affects tumor surveillance by depleting CD4+ T helper cells through lipotoxic mechanisms associated with NAFLD. PMID:27096315

  10. Nuclear magnetic resonance studies of phosphorus(v) pesticides. Part I. Chemical shifts of protons as a means of identification of pesticides

    USGS Publications Warehouse

    Babad, H.; Herbert, W.; Goldberg, M.C.

    1968-01-01

    Correlations of structural and proton chemical-hift data for 40 commercial phosphorus(V) pesticides are reported. Correlations of structure with the phosphorus coupling constants are discussed, and general trends are noted which aid in the use of NMR as a tool for identification and analysis of phosphorus(V) compounds. ?? 1968.

  11. Proton in SRF Niobium

    SciTech Connect

    Wallace, John Paul

    2011-03-31

    Hydrogen is a difficult impurity to physically deal with in superconducting radio frequency (SRF) niobium, therefore, its properties in the metals should be well understood to allow the metal's superconducting properties to be optimized for minimum loss in the construction of resonant accelerator cavities. It is known that hydrogen is a paramagnetic impurity in niobium from NMR studies. This paramagnetism and its effect on superconducting properties are important to understand. To that end analytical induction measurements aimed at isolating the magnetic properties of hydrogen in SRF niobium are introduced along with optical reflection spectroscopy which is also sensitive to the presence of hydrogen. From the variety, magnitude and rapid kinetics found in the optical and magnetic properties of niobium contaminated with hydrogen forced a search for an atomic model. This yielded quantum mechanical description that correctly generates the activation energy for diffusion of the proton and its isotopes not only in niobium but the remaining metals for which data is available. This interpretation provides a frame work for understanding the individual and collective behavior of protons in metals.

  12. Proton in SRF Niobium

    NASA Astrophysics Data System (ADS)

    Wallace, John Paul

    2011-03-01

    Hydrogen is a difficult impurity to physically deal with in superconducting radio frequency (SRF) niobium, therefore, its properties in the metals should be well understood to allow the metal's superconducting properties to be optimized for minimum loss in the construction of resonant accelerator cavities. It is known that hydrogen is a paramagnetic impurity in niobium from NMR studies. This paramagnetism and its effect on superconducting properties are important to understand. To that end analytical induction measurements aimed at isolating the magnetic properties of hydrogen in SRF niobium are introduced along with optical reflection spectroscopy which is also sensitive to the presence of hydrogen. From the variety, magnitude and rapid kinetics found in the optical and magnetic properties of niobium contaminated with hydrogen forced a search for an atomic model. This yielded quantum mechanical description that correctly generates the activation energy for diffusion of the proton and its isotopes not only in niobium but the remaining metals for which data is available. This interpretation provides a frame work for understanding the individual and collective behavior of protons in metals.

  13. High CD4+ T cell density is associated with poor prognosis in patients with non-muscle-invasive bladder cancer

    PubMed Central

    Zhang, Qinglei; Hao, Chongli; Cheng, Guangzhou; Wang, Lei; Wang, Xiang; Li, Chang; Qiu, Juhui; Ding, Kejia

    2015-01-01

    Purpose: The aim of this study was to investigate the clinical significance of CD4+ T cells in non-muscle-invasive bladder cancer (NMIBC) tissues in situ. Methods: Immunohistochemistry was used to examine the distribution of CD4+ T cells in 131 NMIBC tissues. Kaplan-Meier analysis and Cox proportional hazards regression models were applied to estimate overall survival (OS) and recurrence-free survival (RFS). Results: NMIBC patients were divided into two groups based on the median frequency of CD4+ T cells (median, 1/×400 high resolution). On univariate analysis, CD4+ T cell density was inversely associated with overall survival (P = 0.01). In those patients with high CD4+ T density, 5-year OS rates was only 77%, compared with 86% in those with low density, respectively. Although CD4+ T cell density showed no prognostic significance for RFS (P = 0.36), 5-year RFS rates of patients with high CD4+ T density (58%) was lower than those of patients with low CD4+ T density (65%, respectively). By multivariate analysis, tumor infiltrating CD4+ T cell density emerged as an independent prognostic factor for OS (HR, 2.75; P = 0.004). In addition, no association was found between CD4+ T cell density and any clinicopathological variables (P > 0.05). Conclusion: Our findings suggest that CD4+ T cells could potentially serve as a poor prognostic marker for patients with NMIBC. PMID:26617883

  14. Binding of oxytocin and 8-arginine-vasopressin to neurophysin studied by /sup 15/N NMR using magnetization transfer and indirect detection via protons

    SciTech Connect

    Live, D.H.; Cowburn, D.

    1987-10-06

    NMR was used to monitor the binding to neurophysin of oxytocin and 8-arginine-vasopressin, /sup 15/N labeling being used to identify specific backbone /sup 15/N and /sup 1/H signals. The most significant effects of binding were large downfield shifts in the amino nitrogen resonance of Phe-3 of vasopressin and in its associated proton, providing evidence that the peptide bond between residues 2 and 3 of the hormones is hydrogen-bonded to the protein within hormone-neurophysin complexes. Suggestive evidence for hydrogen bonding of the amino nitrogen of Tyr-2 was also obtained in the form of decreased proton exchange rates on binding; however, the chemical shift changes of this nitrogen and its associated proton indicated that such hydrogen bonding, if present, is probably weak. Shifts in the amino nitrogen of Asn-5 and in the -NH protons of both Asn-5 and Cys-6 demonstrated that these residues are significantly perturbed by binding, suggesting conformational changes of the ring on binding and/or the presence of binding sites on the hormone outside the 1-3 region. No support was obtained for the thesis that there is a significant second binding site for vasopressin on each neutrophysin chain. The behavior of both oxytocin and vasopressin on binding was consistent with formation of 1:1 complexes in slow exchange with the free state under most pH conditions. At low pH there was evidence of an increased exchange rate. Additionally, broadening of /sup 15/N resonances in the bound state at low pH occurred without a corresponding change in the resonances of equilibrating free hormone. The results suggest significant conformational alteration in neurophysin-hormone complexes at low pH possibly associated with protonation of the carboxyl group of the hormone-protein salt bridge.

  15. Estradiol reduces susceptibility of CD4+ T cells and macrophages to HIV-infection.

    PubMed

    Rodriguez-Garcia, Marta; Biswas, Nabanita; Patel, Mickey V; Barr, Fiona D; Crist, Sarah G; Ochsenbauer, Christina; Fahey, John V; Wira, Charles R

    2013-01-01

    The magnitude of the HIV epidemic in women requires urgent efforts to find effective preventive methods. Even though sex hormones have been described to influence HIV infection in epidemiological studies and regulate different immune responses that may affect HIV infection, the direct role that female sex hormones play in altering the susceptibility of target cells to HIV-infection is largely unknown. Here we evaluated the direct effect of 17-β-estradiol (E2) and ethinyl estradiol (EE) in HIV-infection of CD4(+) T-cells and macrophages. Purified CD4(+) T-cells and monocyte-derived macrophages were generated in vitro from peripheral blood and infected with R5 and X4 viruses. Treatment of CD4(+) T-cells and macrophages with E2 prior to viral challenge reduced their susceptibility to HIV infection in a dose-dependent manner. Addition of E2 2 h after viral challenge however did not result in reduced infection. In contrast, EE reduced infection in macrophages to a lesser extent than E2 and had no effect on CD4(+) T-cell infection. Reduction of HIV-infection induced by E2 in CD4(+) T-cells was not due to CCR5 down-regulation, but was an entry-mediated mechanism since infection with VSV-G pseudotyped HIV was not modified by E2. In macrophages, despite the lack of an effect of E2 on CCR5 expression, E2-treatment reduced viral entry 2 h after challenge and increased MIP-1β secretion. These results demonstrate the direct effect of E2 on susceptibility of HIV-target cells to infection and indicate that inhibition of target cell infection involves cell-entry related mechanisms.

  16. Vitamin D Actions on CD4(+) T Cells in Autoimmune Disease.

    PubMed

    Hayes, Colleen Elizabeth; Hubler, Shane L; Moore, Jerott R; Barta, Lauren E; Praska, Corinne E; Nashold, Faye E

    2015-01-01

    This review summarizes and integrates research on vitamin D and CD4(+) T-lymphocyte biology to develop new mechanistic insights into the molecular etiology of autoimmune disease. A deep understanding of molecular mechanisms relevant to gene-environment interactions is needed to deliver etiology-based autoimmune disease prevention and treatment strategies. Evidence linking sunlight, vitamin D, and the risk of multiple sclerosis and type 1 diabetes is summarized to develop the thesis that vitamin D is the environmental factor that most strongly influences autoimmune disease development. Evidence for CD4(+) T-cell involvement in autoimmune disease pathogenesis and for paracrine calcitriol signaling to CD4(+) T lymphocytes is summarized to support the thesis that calcitriol is sunlight's main protective signal transducer in autoimmune disease risk. Animal modeling and human mechanistic data are summarized to support the view that vitamin D probably influences thymic negative selection, effector Th1 and Th17 pathogenesis and responsiveness to extrinsic cell death signals, FoxP3(+)CD4(+) T-regulatory cell and CD4(+) T-regulatory cell type 1 (Tr1) cell functions, and a Th1-Tr1 switch. The proposed Th1-Tr1 switch appears to bridge two stable, self-reinforcing immune states, pro- and anti-inflammatory, each with a characteristic gene regulatory network. The bi-stable switch would enable T cells to integrate signals from pathogens, hormones, cell-cell interactions, and soluble mediators and respond in a biologically appropriate manner. Finally, unanswered questions and potentially informative future research directions are highlighted to speed delivery of etiology-based strategies to reduce autoimmune disease.

  17. Estradiol Reduces Susceptibility of CD4+ T Cells and Macrophages to HIV-Infection

    PubMed Central

    Rodriguez-Garcia, Marta; Biswas, Nabanita; Patel, Mickey V.; Barr, Fiona D.; Crist, Sarah G.; Ochsenbauer, Christina; Fahey, John V.; Wira, Charles R.

    2013-01-01

    The magnitude of the HIV epidemic in women requires urgent efforts to find effective preventive methods. Even though sex hormones have been described to influence HIV infection in epidemiological studies and regulate different immune responses that may affect HIV infection, the direct role that female sex hormones play in altering the susceptibility of target cells to HIV-infection is largely unknown. Here we evaluated the direct effect of 17-β-estradiol (E2) and ethinyl estradiol (EE) in HIV-infection of CD4+ T-cells and macrophages. Purified CD4+ T-cells and monocyte-derived macrophages were generated in vitro from peripheral blood and infected with R5 and X4 viruses. Treatment of CD4+ T-cells and macrophages with E2 prior to viral challenge reduced their susceptibility to HIV infection in a dose-dependent manner. Addition of E2 2 h after viral challenge however did not result in reduced infection. In contrast, EE reduced infection in macrophages to a lesser extent than E2 and had no effect on CD4+ T-cell infection. Reduction of HIV-infection induced by E2 in CD4+ T-cells was not due to CCR5 down-regulation, but was an entry-mediated mechanism since infection with VSV-G pseudotyped HIV was not modified by E2. In macrophages, despite the lack of an effect of E2 on CCR5 expression, E2–treatment reduced viral entry 2 h after challenge and increased MIP-1β secretion. These results demonstrate the direct effect of E2 on susceptibility of HIV-target cells to infection and indicate that inhibition of target cell infection involves cell-entry related mechanisms. PMID:23614015

  18. Complementary Dendritic Cell–activating Function of CD8+ and CD4+ T Cells

    PubMed Central

    Mailliard, Robbie B.; Egawa, Shinichi; Cai, Quan; Kalinska, Anna; Bykovskaya, Svetlana N.; Lotze, Michael T.; Kapsenberg, Martien L.; Storkus, Walter J.; Kalinski, Pawel

    2002-01-01

    Dendritic cells (DCs) activated by CD40L-expressing CD4+ T cells act as mediators of “T helper (Th)” signals for CD8+ T lymphocytes, inducing their cytotoxic function and supporting their long-term activity. Here, we show that the optimal activation of DCs, their ability to produce high levels of bioactive interleukin (IL)-12p70 and to induce Th1-type CD4+ T cells, is supported by the complementary DC-activating signals from both CD4+ and CD8+ T cells. Cord blood– or peripheral blood–isolated naive CD8+ T cells do not express CD40L, but, in contrast to naive CD4+ T cells, they are efficient producers of IFN-γ at the earliest stages of the interaction with DCs. Naive CD8+ T cells cooperate with CD40L-expressing naive CD4+ T cells in the induction of IL-12p70 in DCs, promoting the development of primary Th1-type CD4+ T cell responses. Moreover, the recognition of major histocompatibility complex class I–presented epitopes by antigen-specific CD8+ T cells results in the TNF-α– and IFN-γ–dependent increase in the activation level of DCs and in the induction of type-1 polarized mature DCs capable of producing high levels of IL-12p70 upon a subsequent CD40 ligation. The ability of class I–restricted CD8+ T cells to coactivate and polarize DCs may support the induction of Th1-type responses against class I–presented epitopes of intracellular pathogens and contact allergens, and may have therapeutical implications in cancer and chronic infections. PMID:11854360

  19. Difficulties in precise quantitation of CD4+ T lymphocytes for clinical trials: a review.

    PubMed

    Fei, D T; Paxton, H; Chen, A B

    1993-09-01

    Maintenance of CD4+ T helper lymphocyte counts has been used as a surrogate marker of efficacy for drugs in the treatment of AIDS. In a multicenter clinical trial, subtle improvement of CD4+ T cell counts may be masked and misinterpreted if care is not paid to likely sources that can contribute to the variability of measurement of CD4+ T lymphocytes. This review addresses major areas that can contribute to the variability of measurement of CD4+ T lymphocytes, with emphasis on applications to multicenter clinical trials, and proposes areas of improvement that may not be well recognized by the medical community. Whereas there are excellent guidelines for immunophenotyping, equal attention is needed in hematologic enumeration of WBC and absolute lymphocytes. In particular, allowing the margin of error acceptable to blood cell standards for HIV-infected specimens is unsatisfactory. Special attention should also be given to the stability of lymphocytes in the anticoagulant during storage, the lysing method, the quality assurance programs as well as intrasubject fluctuations which may be derived from exercise, medications and diurnal variations. Awareness of these contributing factors by physicians and technical analysts will expedite the discovery of potential therapy in the treatment of AIDS. For a multicenter clinical trial, it is advisable to select a centralized laboratory adopting a uniform protocol with regard to sample preparation and handling, using more stringent quality controls for hematologic analysers, calibration of instruments and immunophenotyping. Pending a true reference standard that can monitor the variation of the entire analytical procedure, we anticipate that future interlaboratory quality assurance programs will include absolute T lymphocyte count, an important parameter for assessing the accuracy and consistency of CD4+ T helper cell counts generated from a laboratory.

  20. Vitamin D Actions on CD4+ T Cells in Autoimmune Disease

    PubMed Central

    Hayes, Colleen Elizabeth; Hubler, Shane L.; Moore, Jerott R.; Barta, Lauren E.; Praska, Corinne E.; Nashold, Faye E.

    2015-01-01

    This review summarizes and integrates research on vitamin D and CD4+ T-lymphocyte biology to develop new mechanistic insights into the molecular etiology of autoimmune disease. A deep understanding of molecular mechanisms relevant to gene–environment interactions is needed to deliver etiology-based autoimmune disease prevention and treatment strategies. Evidence linking sunlight, vitamin D, and the risk of multiple sclerosis and type 1 diabetes is summarized to develop the thesis that vitamin D is the environmental factor that most strongly influences autoimmune disease development. Evidence for CD4+ T-cell involvement in autoimmune disease pathogenesis and for paracrine calcitriol signaling to CD4+ T lymphocytes is summarized to support the thesis that calcitriol is sunlight’s main protective signal transducer in autoimmune disease risk. Animal modeling and human mechanistic data are summarized to support the view that vitamin D probably influences thymic negative selection, effector Th1 and Th17 pathogenesis and responsiveness to extrinsic cell death signals, FoxP3+CD4+ T-regulatory cell and CD4+ T-regulatory cell type 1 (Tr1) cell functions, and a Th1–Tr1 switch. The proposed Th1–Tr1 switch appears to bridge two stable, self-reinforcing immune states, pro- and anti-inflammatory, each with a characteristic gene regulatory network. The bi-stable switch would enable T cells to integrate signals from pathogens, hormones, cell–cell interactions, and soluble mediators and respond in a biologically appropriate manner. Finally, unanswered questions and potentially informative future research directions are highlighted to speed delivery of etiology-based strategies to reduce autoimmune disease. PMID:25852682

  1. Proton scaling

    SciTech Connect

    Canavan, Gregory H

    2009-01-01

    This note presents analytic estimates of the performance of proton beams in remote surveillance for nuclear materials. The analysis partitions the analysis into the eight steps used by a companion note: (1) Air scattering, (2) Neutron production in the ship and cargo, (3) Target detection probability, (4) Signal produced by target, (5) Attenuation of signal by ship and cargo, (6) Attenuation of signal by air, (7) Geometric dilution, and (8) Detector Efficiency. The above analyses indicate that the dominant air scattering and loss mechanisms for particle remote sensing are calculable with reliable and accepted tools. They make it clear that the conversion of proton beams into neutron sources rapidly goes to completion in all but thinnest targets, which means that proton interrogation is for all purposes executed by neutrons. Diffusion models and limiting approximations to them are simple and credible - apart from uncertainty over the cross sections to be used in them - and uncertainty over the structure of the vessels investigated. Multiplication is essentially unknown, in part because it depends on the details of the target and its shielding, which are unlikely to be known in advance. Attenuation of neutron fluxes on the way out are more complicated due to geometry, the spectrum of fission neutrons, and the details of their slowing down during egress. The attenuation by air is large but less uncertain. Detectors and technology are better known. The overall convolution of these effects lead to large but arguably tolerable levels of attenuation of input beams and output signals. That is particularly the case for small, mobile sensors, which can more than compensate for size with proximity to operate reliably while remaining below flux limits. Overall, the estimates used here appear to be of adequate accuracy for decisions. That assessment is strengthened by their agreement with companion calculations.

  2. Reconstitution of CD4 T Cells in Bronchoalveolar Lavage Fluid after Initiation of Highly Active Antiretroviral Therapy▿

    PubMed Central

    Knox, Kenneth S.; Vinton, Carol; Hage, Chadi A.; Kohli, Lisa M.; Twigg, Homer L.; Klatt, Nichole R.; Zwickl, Beth; Waltz, Jeffrey; Goldman, Mitchell; Douek, Daniel C.; Brenchley, Jason M.

    2010-01-01

    The massive depletion of gastrointestinal-tract CD4 T cells is a hallmark of the acute phase of HIV infection. In contrast, the depletion of the lower-respiratory-tract mucosal CD4 T cells as measured in bronchoalveolar lavage (BAL) fluid is more moderate and similar to the depletion of CD4 T cells observed in peripheral blood (PB). To understand better the dynamics of disease pathogenesis and the potential for the reconstitution of CD4 T cells in the lung and PB following the administration of effective antiretroviral therapy, we studied cell-associated viral loads, CD4 T-cell frequencies, and phenotypic and functional profiles of antigen-specific CD4 T cells from BAL fluid and blood before and after the initiation of highly active antiretroviral therapy (HAART). The major findings to emerge were the following: (i) BAL CD4 T cells are not massively depleted or preferentially infected by HIV compared to levels for PB; (ii) BAL CD4 T cells reconstitute after the initiation of HAART, and their infection frequencies decrease; (iii) BAL CD4 T-cell reconstitution appears to occur via the local proliferation of resident BAL CD4 T cells rather than redistribution; and (iv) BAL CD4 T cells are more polyfunctional than CD4 T cells in blood, and their functional profile is relatively unchanged after the initiation of HAART. Taken together, these data suggest mechanisms for mucosal CD4 T-cell depletion and interventions that might aid in the reconstitution of mucosal CD4 T cells. PMID:20610726

  3. Ring current proton decay by charge exchange

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Hoffman, R. A.; Fritz, T.

    1975-01-01

    Explorer 45 measurements during the recovery phase of a moderate magnetic storm have confirmed that the charge exchange decay mechanism can account for the decay of the storm-time proton ring current. Data from the moderate magnetic storm of 24 February 1972 was selected for study since a symmetrical ring current had developed and effects due to asymmetric ring current losses could be eliminated. It was found that after the initial rapid decay of the proton flux, the equatorially mirroring protons in the energy range 5 to 30 keV decayed throughout the L-value range of 3.5 to 5.0 at the charge exchange decay rate calculated by Liemohn. After several days of decay, the proton fluxes reached a lower limit where an apparent equilibrium was maintained, between weak particle source mechanisms and the loss mechanisms, until fresh protons were injected into the ring current region during substorms. While other proton loss mechanisms may also be operating, the results indicate that charge exchange can entirely account for the storm-time proton ring current decay, and that this mechanism must be considered in all studies involving the loss of proton ring current particles.

  4. Differentiation of distinct long-lived memory CD4 T cells in intestinal tissues after oral Listeria monocytogenes infection.

    PubMed

    Romagnoli, P A; Fu, H H; Qiu, Z; Khairallah, C; Pham, Q M; Puddington, L; Khanna, K M; Lefrançois, L; Sheridan, B S

    2017-03-01

    Mucosal antigen-specific CD4 T-cell responses to intestinal pathogens remain incompletely understood. Here we examined the CD4 T-cell response after oral infection with an internalin A 'murinized' Listeria monocytogenes (Lm). Oral Lm infection induced a robust endogenous listeriolysin O (LLO)-specific CD4 T-cell response with distinct phenotypic and functional characteristics in the intestine. Circulating LLO-specific CD4 T cells transiently expressed the 'gut-homing' integrin α4β7 and accumulated in the intestinal lamina propria and epithelium where they were maintained independent of interleukin (IL)-15. The majority of intestinal LLO-specific CD4 T cells were CD27(-) Ly6C(-) and CD69(+) CD103(-) while the lymphoid LLO-specific CD4 T cells were heterogeneous based on CD27 and Ly6C expression and predominately CD69(-). LLO-specific effector CD4 T cells transitioned into a long-lived memory population that phenotypically resembled their parent effectors and displayed hallmarks of residency. In addition, intestinal effector and memory CD4 T cells showed a predominant polyfunctional Th1 profile producing IFNγ, TNFα, and IL-2 at high levels with minimal but detectable levels of IL-17A. Depletion of CD4 T cells in immunized mice led to elevated bacterial burden after challenge infection highlighting a critical role for memory CD4 T cells in controlling intestinal intracellular pathogens.

  5. Differentiation of distinct long-lived memory CD4 T cells in intestinal tissues after oral Listeria monocytogenes infection

    PubMed Central

    Romagnoli, PA; Fu, HH; Qiu, Z; Khairallah, C; Pham, QM; Puddington, L; Khanna, KM; Lefrançois, L; Sheridan, BS

    2016-01-01

    Mucosal antigen-specific CD4 T cell responses to intestinal pathogens remain incompletely understood. Here we examined the CD4 T cell response after oral infection with an internalin A ‘murinized’ Listeria monocytogenes (Lm). Oral Lm infection induced a robust endogenous listeriolysin O (LLO)-specific CD4 T cell response with distinct phenotypic and functional characteristics in the intestine. Circulating LLO-specific CD4 T cells transiently expressed the ‘gut-homing’ integrin α4β7 and accumulated in the intestinal lamina propria and epithelium where they were maintained independent of IL-15. The majority of intestinal LLO-specific CD4 T cells were CD27− Ly6C− and CD69+ CD103− while the lymphoid LLO-specific CD4 T cells were heterogeneous based on CD27 and Ly6C expression and predominately CD69−. LLO-specific effector CD4 T cells transitioned into a long-lived memory population that phenotypically resembled their parent effectors and displayed hallmarks of residency. In addition, intestinal effector and memory CD4 T cells showed a predominant polyfunctional Th1 profile producing IFNγ, TNFα and IL-2 at high levels with minimal but detectable levels of IL-17A. Depletion of CD4 T cells in immunized mice led to elevated bacterial burden after challenge infection highlighting a critical role for memory CD4 T cells in controlling intestinal intracellular pathogens. PMID:27461178

  6. Human memory, but not naive, CD4+ T cells expressing transcription factor T-bet might drive rapid cytokine production.

    PubMed

    Yu, Si-fei; Zhang, Yan-nan; Yang, Bin-yan; Wu, Chang-you

    2014-12-19

    We found that after stimulation for a few hours, memory but not naive CD4(+) T cells produced a large amount of IFN-γ; however, the mechanism of rapid response of memory CD4(+) T cells remains undefined. We compared the expression of transcription factors in resting or activated naive and memory CD4(+) T cells and found that T-bet, but not pSTAT-1 or pSTAT-4, was highly expressed in resting memory CD4(+) T cells and that phenotypic characteristics of T-bet(+)CD4(+) T cells were CD45RA(low)CD62L(low) CCR7(low). After short-term stimulation, purified memory CD4(+) T cells rapidly produced effector cytokines that were closely associated with the pre-existence of T-bet. By contrast, resting naive CD4(+) T cells did not express T-bet, and they produced cytokines only after sustained stimulation. Our further studies indicated that T-bet was expressed in the nuclei of resting memory CD4(+) T cells, which might have important implications for rapid IFN-γ production. Our results indicate that the pre-existence and nuclear mobilization of T-bet in resting memory CD4(+) T cells might be a possible transcriptional mechanism for rapid production of cytokines by human memory CD4(+) T cells.

  7. Binding of oxytocin and 8-arginine-vasopressin to neurophysin studied by 15N NMR using magnetization transfer and indirect detection via protons.

    PubMed

    Live, D H; Cowburn, D; Breslow, E

    1987-10-06

    NMR was used to monitor the binding to neurophysin of oxytocin and 8-arginine-vasopressin, 15N labeling being used to identify specific backbone 15N and 1H signals. The most significant effects of binding were large downfield shifts in the amino nitrogen resonance of Phe-3 of vasopressin and in its associated proton, providing evidence that the peptide bond between residues 2 and 3 of the hormones is hydrogen-bonded to the protein within hormone-neurophysin complexes. Suggestive evidence of hydrogen bonding of the amino nitrogen of Tyr-2 was also obtained in the form of decreased proton exchange rates on binding; however, the chemical shift changes of this nitrogen and its associated proton indicated that such hydrogen bonding, if present, is probably weak. Shifts in the amino nitrogen of Asn-5 and in the -NH protons of both Asn-5 and Cys-6 demonstrated that these residues are significantly perturbed by binding, suggesting conformational changes of the ring on binding and/or the presence of binding sites on the hormone outside the 1-3 region. No support was obtained for the thesis that there is a significant second binding site for vasopressin on each neurophysin chain. The behavior of both oxytocin and vasopressin on binding was consistent with formation of 1:1 complexes in slow exchange with the free state under most pH conditions. At low pH there was evidence of an increased exchange rate. Additionally, broadening of 15N resonances in the bound state at low pH occurred without a corresponding change in the resonances of equilibrating free hormone.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Addition of maraviroc to antiretroviral therapy decreased interferon-γ mRNA in the CD4+ T cells of patients with suboptimal CD4+ T-cell recovery.

    PubMed

    Minami, Rumi; Takahama, Soichiro; Kaku, Yu; Yamamoto, Masahiro

    2017-01-01

    The CCR5 antagonist, maraviroc (MVC), is associated with an enhanced CD4+ T-cell response independent of virological suppression; however, its mechanism of action has not been elucidated. In this study, we confirmed the effect of MVC on CD4+ T-cell count recovery in immunological non-responders, and compared the conventional combination antiretroviral therapy (cART) with MVC-intensified cART. We also investigated the effect of MVC on interferon-γ (IFN-γ) production in CD4+ T cells in vitro and in vivo, and evaluated the relationship between the mRNA level of IFN-γ and the degree of CD4+ T-cell count recovery. In vitro analysis indicated that MVC significantly decreased mRNA levels of IFN-γ in HIV-Tat stimulated CD4+ T cells from healthy donor peripheral blood mononuclear cells. Of the 18 HIV-infected patients treated with MVC-intensified cART, 12 had a significantly increased CD4+ T-cell count after 24 weeks of additional treatment with MVC. In patients exhibiting a response in CD4+ T-cell counts, mRNA levels of IFN-γ in CD4+ T cells were lower than those in patients showing a non-response at baseline and at week 24, while mRNA levels of IFN-γ decreased in both groups at 24 weeks. In conclusion, MVC decreased the mRNA level of IFN-γ in CD4+ T cells in vitro and in vivo, especially in patients whose CD4+ T-cell count increased significantly. We also found that the lower baseline IFN-γ mRNA level and the larger decreased rate of IFN-γ mRNA in CD4+ T cells were associated with a good response to MVC regarding CD4+ T-cell recovery.

  9. Antigen affinity and antigen dose exert distinct influences on CD4 T-cell differentiation.

    PubMed

    Keck, Simone; Schmaler, Mathias; Ganter, Stefan; Wyss, Lena; Oberle, Susanne; Huseby, Eric S; Zehn, Dietmar; King, Carolyn G

    2014-10-14

    Cumulative T-cell receptor signal strength and ensuing T-cell responses are affected by both antigen affinity and antigen dose. Here we examined the distinct contributions of these parameters to CD4 T-cell differentiation during infection. We found that high antigen affinity positively correlates with T helper (Th)1 differentiation at both high and low doses of antigen. In contrast, follicular helper T cell (TFH) effectors are generated after priming with high, intermediate, and low affinity ligand. Unexpectedly, memory T cells generated after priming with very low affinity antigen remain impaired in their ability to generate secondary Th1 effectors, despite being recalled with high affinity antigen. These data challenge the view that only strongly stimulated CD4 T cells are capable of differentiating into the TFH and memory T-cell compartments and reveal that differential strength of stimulation during primary T-cell activation imprints unique and long lasting T-cell differentiation programs.

  10. CD4+ T-cell survival in the GI tract requires dectin-1 during fungal infection

    PubMed Central

    Drummond, R A; Dambuza, I M; Vautier, S; Taylor, J A; Reid, D M; Bain, C C; Underhill, D M; Masopust, D; Kaplan, D H; Brown, G D

    2016-01-01

    Dectin-1 is an innate antifungal C-type lectin receptor necessary for protective antifungal immunity. We recently discovered that Dectin-1 is involved in controlling fungal infections of the gastrointestinal (GI) tract, but how this C-type lectin receptor mediates these activities is unknown. Here, we show that Dectin-1 is essential for driving fungal-specific CD4+ T-cell responses in the GI tract. Loss of Dectin-1 resulted in abrogated dendritic cell responses in the mesenteric lymph nodes (mLNs) and defective T-cell co-stimulation, causing substantial increases in CD4+ T-cell apoptosis and reductions in the cellularity of GI-associated lymphoid tissues. CD8+ T-cell responses were unaffected by Dectin-1 deficiency. These functions of Dectin-1 have significant implications for our understanding of intestinal immunity and susceptibility to fungal infections. PMID:26349660

  11. Inflammation-induced effector CD4+ T cell interstitial migration is alpha-v integrin dependent

    PubMed Central

    Overstreet, Michael G.; Gaylo, Alison; Angermann, Bastian; Hughson, Angela; Hyun, Young-min; Lambert, Kris; Acharya, Mridu; Billroth-Maclurg, Alison C.; Rosenberg, Alexander F.; Topham, David J.; Yagita, Hideo; Kim, Minsoo; Lacy-Hulbert, Adam; Meier-Schellersheim, Martin; Fowell, Deborah J.

    2014-01-01

    Leukocytes must traverse inflamed tissues to effectively control local infection. Although motility in dense tissues appears to be integrin-independent actin-myosin based, during inflammation changes to the extracellular matrix (ECM) may necessitate distinct motility requirements. Indeed, we found that T cell interstitial motility was critically dependent on RGD-binding integrins in the inflamed dermis. Inflammation-induced deposition of fibronectin was functionally linked to increased αv integrin expression on effector CD4+ T cells. Using intravital multi-photon imaging, we found that CD4+ T cell motility was dependent on αv expression. Selective αv blockade or knockdown arrested TH1 motility in the inflamed tissue and attenuated local effector function. These data show a context-dependent specificity of lymphocyte movement in inflamed tissues that is essential for protective immunity. PMID:23933892

  12. Manipulating Antigenic Ligand Strength to Selectively Target Myelin-Reactive CD4+ T Cells in EAE

    PubMed Central

    Sabatino, Joseph J.; Rosenthal, Kristen M.

    2010-01-01

    The development of antigen-specific therapies for the selective tolerization of autoreactive T cells remains the Holy Grail for the treatment of T-cell-mediated autoimmune diseases such as multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). This quest remains elusive, however, as the numerous antigen-specific strategies targeting myelin-specific T cells over the years have failed to result in clinical success. In this review, we revisit the antigen-based therapies used in the treatment of myelin-specific CD4+ T cells in the context of the functional avidity and the strength of signal of the encephalitogenic CD4+ T cell repertoire. In light of differences in activation thresholds, we propose that autoreactive T cells are not all equal, and therefore tolerance induction strategies must incorporate ligand strength in order to be successful in treating EAE and ultimately the human disease MS. PMID:19904613

  13. Identification of two regulatory elements controlling Fucosyltransferase 7 transcription in murine CD4+ T cells.

    PubMed

    Pink, Matthias; Ratsch, Boris A; Mardahl, Maibritt; Schröter, Micha F; Engelbert, Dirk; Triebus, Julia; Hamann, Alf; Syrbe, Uta

    2014-11-01

    Fucosyltransferase VII encoded by the gene Fut7 is essential in CD4(+) T cells for the generation of E- and P-selectin ligands (E- and P-lig) which facilitate recruitment of lymphocytes into inflamed tissues and into the skin. This study aimed to identify regulatory elements controlling the inducible Fut7 expression in CD4(+) T cells that occurs upon activation and differentiation of naive T cells into effector cells. Comparative analysis of the histone modification pattern in non-hematopoetic cells and CD4(+) T cell subsets revealed a differential histone modification pattern within the Fut7 locus including a conserved non-coding sequence (CNS) identified by cross-species conservation comparison suggesting that regulatory elements are confined to this region. Cloning of the CNS located about 500 bp upstream of the Fut7 locus, into a luciferase reporter vector elicited reporter activity after transfection of the αβ-WT T cell line, but not after transfection of primary murine CD4(+) Th1 cells. As quantification of different Fut7 transcripts revealed a predominance of transcripts lacking the first exons in primary Th1 cells we searched for an alternative promoter. Cloning of an intragenic region spanning a 1kb region upstream of exon 4 into an enhancer-containing vector indeed elicited promoter activity. Interestingly, also the CNS enhanced activity of this intragenic minimal promoter in reporter assays in primary Th1 cells suggesting that both elements interact in primary CD4(+) T cells to induce Fut7 transcription.

  14. Viral Load and CD4+ T-Cell Dynamics in Primary HIV-1 Subtype C Infection