Science.gov

Sample records for 4t1 mouse breast

  1. Optimizing non-invasive radiofrequency hyperthermia treatment for improving drug delivery in 4T1 mouse breast cancer model

    PubMed Central

    Ware, Matthew J.; Krzykawska-Serda, Martyna; Chak-Shing Ho, Jason; Newton, Jared; Suki, Sarah; Law, Justin; Nguyen, Lam; Keshishian, Vazrik; Serda, Maciej; Taylor, Kimberly; Curley, Steven A.; Corr, Stuart J.

    2017-01-01

    Interactions of high-frequency radio waves (RF) with biological tissues are currently being investigated as a therapeutic platform for non-invasive cancer hyperthermia therapy. RF delivers thermal energy into tissues, which increases intra-tumoral drug perfusion and blood-flow. Herein, we describe an optical-based method to optimize the short-term treatment schedules of drug and hyperthermia administration in a 4T1 breast cancer model via RF, with the aim of maximizing drug localization and homogenous distribution within the tumor microenvironment. This method, based on the analysis of fluorescent dyes localized into the tumor, is more time, cost and resource efficient, when compared to current analytical methods for tumor-targeting drug analysis such as HPLC and LC-MS. Alexa-Albumin 647 nm fluorphore was chosen as a surrogate for nab-paclitaxel based on its similar molecular weight and albumin driven pharmacokinetics. We found that RF hyperthermia induced a 30–40% increase in Alexa-Albumin into the tumor micro-environment 24 h after treatment when compared to non-heat treated mice. Additionally, we showed that the RF method of delivering hyperthermia to tumors was more localized and uniform across the tumor mass when compared to other methods of heating. Lastly, we provided insight into some of the factors that influence the delivery of RF hyperthermia to tumors. PMID:28287120

  2. Optimizing non-invasive radiofrequency hyperthermia treatment for improving drug delivery in 4T1 mouse breast cancer model

    NASA Astrophysics Data System (ADS)

    Ware, Matthew J.; Krzykawska-Serda, Martyna; Chak-Shing Ho, Jason; Newton, Jared; Suki, Sarah; Law, Justin; Nguyen, Lam; Keshishian, Vazrik; Serda, Maciej; Taylor, Kimberly; Curley, Steven A.; Corr, Stuart J.

    2017-03-01

    Interactions of high-frequency radio waves (RF) with biological tissues are currently being investigated as a therapeutic platform for non-invasive cancer hyperthermia therapy. RF delivers thermal energy into tissues, which increases intra-tumoral drug perfusion and blood-flow. Herein, we describe an optical-based method to optimize the short-term treatment schedules of drug and hyperthermia administration in a 4T1 breast cancer model via RF, with the aim of maximizing drug localization and homogenous distribution within the tumor microenvironment. This method, based on the analysis of fluorescent dyes localized into the tumor, is more time, cost and resource efficient, when compared to current analytical methods for tumor-targeting drug analysis such as HPLC and LC-MS. Alexa-Albumin 647 nm fluorphore was chosen as a surrogate for nab-paclitaxel based on its similar molecular weight and albumin driven pharmacokinetics. We found that RF hyperthermia induced a 30–40% increase in Alexa-Albumin into the tumor micro-environment 24 h after treatment when compared to non-heat treated mice. Additionally, we showed that the RF method of delivering hyperthermia to tumors was more localized and uniform across the tumor mass when compared to other methods of heating. Lastly, we provided insight into some of the factors that influence the delivery of RF hyperthermia to tumors.

  3. Optimizing non-invasive radiofrequency hyperthermia treatment for improving drug delivery in 4T1 mouse breast cancer model.

    PubMed

    Ware, Matthew J; Krzykawska-Serda, Martyna; Chak-Shing Ho, Jason; Newton, Jared; Suki, Sarah; Law, Justin; Nguyen, Lam; Keshishian, Vazrik; Serda, Maciej; Taylor, Kimberly; Curley, Steven A; Corr, Stuart J

    2017-03-13

    Interactions of high-frequency radio waves (RF) with biological tissues are currently being investigated as a therapeutic platform for non-invasive cancer hyperthermia therapy. RF delivers thermal energy into tissues, which increases intra-tumoral drug perfusion and blood-flow. Herein, we describe an optical-based method to optimize the short-term treatment schedules of drug and hyperthermia administration in a 4T1 breast cancer model via RF, with the aim of maximizing drug localization and homogenous distribution within the tumor microenvironment. This method, based on the analysis of fluorescent dyes localized into the tumor, is more time, cost and resource efficient, when compared to current analytical methods for tumor-targeting drug analysis such as HPLC and LC-MS. Alexa-Albumin 647 nm fluorphore was chosen as a surrogate for nab-paclitaxel based on its similar molecular weight and albumin driven pharmacokinetics. We found that RF hyperthermia induced a 30-40% increase in Alexa-Albumin into the tumor micro-environment 24 h after treatment when compared to non-heat treated mice. Additionally, we showed that the RF method of delivering hyperthermia to tumors was more localized and uniform across the tumor mass when compared to other methods of heating. Lastly, we provided insight into some of the factors that influence the delivery of RF hyperthermia to tumors.

  4. Transfer of the IL-37b gene elicits anti-tumor responses in mice bearing 4T1 breast cancer

    PubMed Central

    Wang, Wei-qiang; Zhao, Dan; Zhou, Yu-shan; Hu, Xiao-yu; Sun, Zhi-na; Yu, Gang; Wu, Wan-tong; Chen, Song; Kuang, Jiu-long; Xu, Guo-gang; Han, Zhong-chao; Wang, Bang-mao; Yang, Jing-xian; Feng, Xiao-ming

    2015-01-01

    Aim: IL-37b has shown anti-cancer activities in addition to its anti-inflammatory properties. In this study, we investigated the effects of IL-37b on breast carcinoma growth in mice and to determine the involvement of T cell activation in the effects. Methods: IL-37b gene was transferred into mouse breast carcinoma cell line 4T1 (4T1-IL37b cells), the expression of secretory IL-37b by the cells was detected, and the effects of IL-37b expression on the cell proliferation in vitro was evaluated. After injection of 4T1 cells or 4T1-IL37b cells into immunocompetent BALB/c mice, immunodeficient BALB/c nude mice and NOD-SCID mice, the tumor growth and survival rate were measured. The proliferation of T cells in vitro was also detected. Results: IL-37b was detected in the supernatants of 4T1-IL37b cells with a concentration of 12.02±0.875 ng/mL. IL-37b expression did not affect 4T1 cell proliferation in vitro. BALB/c mice inoculated with 4T1-IL37b cells showed significant retardation of tumor growth. BALB/c mice inoculated with both 4T1 cells and mitomycin C-treated 4T1-IL37b cells also showed significant retardation of tumor growth. But the anti-cancer activity of IL-37b was abrogated in BALB/c nude mice and NOD-SCID mice inoculated with 4T1-IL37b cells. Recombinant IL-37b slightly promoted CD4+ T cell proliferation without affecting CD8+ T cell proliferation. Conclusion: IL-37b exerts anti-4T1 breast carcinoma effects in vivo by modulating the tumor microenvironment and influencing T cell activation. PMID:25832432

  5. Low local blood perfusion, high white blood cell and high platelet count are associated with primary tumor growth and lung metastasis in a 4T1 mouse breast cancer metastasis model.

    PubMed

    Wang, Chuan; Chen, Ying-Ge; Gao, Jian-Li; Lyu, Gui-Yuan; Su, Jie; Zhang, Q I; Ji, Xin; Yan, Ji-Zhong; Qiu, Qiao-Li; Zhang, Yue-Li; Li, Lin-Zi; Xu, Han-Ting; Chen, Su-Hong

    2015-08-01

    It was originally thought that no single routine blood test result would be able to indicate whether or not a patient had cancer; however, several novel studies have indicated that the median survival and prognosis of cancer patients were markedly associated with the systemic circulation features of cancer patients. In addition, certain parameters, such as white blood cell (WBC) count, were largely altered in malignant tumors. In the present study, routine blood tests were performed in order to observe the change of blood cells in tumor-bearing mice following the implantation of 4T1 breast cancer cells into the mammary fat pad; in addition, blood flow in breast tumor sites was measured indirectly using laser Doppler perfusion imaging (LDPI), in an attempt to explain the relevance between the blood circulation features and the growth or metastasis of breast cancer in mice model. The LDPI and blood test results indicated that the implantation of 4T1 breast cancer cells into BALB/c mice led to thrombosis as well as high WBC count, high platelet count, high plateletcrit and low blood perfusion. Following implantation of the 4T1 cells for four weeks, the lung metastatic number was determined and the Pearson correlation coefficient revealed that the number of visceral lung metastatic sites had a marked negative association with the ratio of basophils (BASO%; r=-0.512; P<0.01) and the mean corpuscular hemoglobin was significantly correlated with primary tumor weight (r=0.425; P<0.05). In conclusion, the results of the present study demonstrated that tumor growth led to thrombosis and acute anemia in mice; in addition, when blood BASO% was low, an increased number of lung metastases were observed in tumor-bearing mice.

  6. NF-κB signaling regulates cell-autonomous regulation of CXCL10 in breast cancer 4T1 cells

    PubMed Central

    Jin, Won Jong; Kim, Bongjun; Kim, Darong; Park Choo, Hea-Young; Kim, Hong-Hee; Ha, Hyunil; Lee, Zang Hee

    2017-01-01

    The chemokine CXCL10 and its receptor CXCR3 play a role in breast cancer metastasis to bone and osteoclast activation. However, the mechanism of CXCL10/CXCR3-induced intracellular signaling has not been fully investigated. To evaluate CXCL10-induced cellular events in the mouse breast cancer cell line 4T1, we developed a new synthetic CXCR3 antagonist JN-2. In this study, we observed that secretion of CXCL10 in the supernatant of 4T1 cells was gradually increased during cell growth. JN-2 inhibited basal and CXCL10-induced CXCL10 expression and cell motility in 4T1 cells. Treatment of 4T1 cells with CXCL10 increased the expression of P65, a subunit of the NF-κB pathway, via activation of the NF-κB transcriptional activity. Ectopic overexpression of P65 increased CXCL10 secretion and blunted JN-2-induced suppression of CXCL10 secretion, whereas overexpression of IκBα suppressed CXCL10 secretion. These results indicate that the CXCL10/CXCR3 axis creates a positive feedback loop through the canonical NF-κB signaling pathway in 4T1 cells. In addition, treatment of osteoblasts with conditioned medium from JN-2-treated 4T1 cells inhibited the expression of RANKL, a crucial cytokine for osteoclast differentiation, which resulted in an inhibitory effect on osteoclast differentiation in the co-culture system of bone marrow-derived macrophages and osteoblasts. Direct intrafemoral injection of 4T1 cells induced severe bone destruction; however, this effect was suppressed by the CXCR3 antagonist via downregulation of P65 expression in an animal model. Collectively, these results suggest that the CXCL10/CXCR3-mediated NF-κB signaling pathway plays a role in the control of autonomous regulation of CXCL10 and malignant tumor properties in breast cancer 4T1 cells. PMID:28209986

  7. High Resolution X-Ray Microangiography of 4T1 Tumor in Mouse Using Synchrotron Radiation

    SciTech Connect

    Sun Jianqi; Liu Ping; Gu Xiang; Liu Xiaoxia; Zhao Jun; Xiao Tiqiao; Xu, Lisa X.

    2010-07-23

    Angiogenesis is very important in tumor growth and metastasis. But in clinic, only vessels lager than 200 {mu}m in diameter, can be observed using conventional medical imaging. Synchrotron radiation (SR) phase contrast imaging, whose spatial resolution can reach as high as 1 {mu}m, has great advantages in imaging soft tissue structures, such as blood vessels and tumor tissues. In this paper, the morphology of newly formed micro-vessels in the mouse 4T1 tumor samples was firstly studied with contrast agent. Then, the angiogenesis in nude mice tumor window model was observed without contrast agent using the SR phase contrast imaging at the beamline for X-ray imaging and biomedical applications, Shanghai Synchrotron Radiation Facility (SSRF). The images of tumors showed dense, irregular and tortuous tumor micro-vessels with the smallest size of 20-30 {mu}m in diameter.

  8. The immunostimulatory effect of biogenic selenium nanoparticles on the 4T1 breast cancer model: an in vivo study.

    PubMed

    Yazdi, Mohammad Hossein; Mahdavi, Mehdi; Varastehmoradi, Bardia; Faramarzi, Mohammad Ali; Shahverdi, Ahmad Reza

    2012-10-01

    Selenium salts as well as elemental selenium nanoparticles are attracting the attention of researchers due to their excellent biological properties. The aim of the present work was to study immunomodulation by applying elemental Se NPs to stimulate the immune response of mice bearing 4 T1 breast cancer tumors. Six- to 8-week-old female inbred BALB/c mice were divided into two groups of test and control, each containing 15 mice. Every day, for 2 weeks prior to tumor induction, selenium nanoparticles were orally administered to the mice at a dose of 100 μg/day. Then, 1 × 10(6) cells from a 4 T1 cell line were injected subcutaneously to each mouse. Oral nanoparticle administration was continued daily for 3 weeks after tumor induction. Different immunological parameters were then evaluated including cytokine level, delayed type hypersensitivity (DTH) response as well as tumor growth and the survival rates in all treated or nontreated animals. The production of Th1 cytokines, such as IFN-γ and IL-12, in spleen cell culture was increased in the test mice-administered selenium nanoparticles. The DTH response of test mice also showed a significant increase when compared to the control mice. The survival rate was notably higher for the selenium nanoparticle-treated mice compared to the control mice. Our results suggest that selenium nanoparticle administration can result in considerable induction of the Th1 platform of immune response through the elevation of IFN-γ and IL-12 and may be a cause for better prognosis in mice with tumors.

  9. Selection of Novel Peptides Homing the 4T1 CELL Line: Exploring Alternative Targets for Triple Negative Breast Cancer.

    PubMed

    Silva, Vera L; Ferreira, Debora; Nobrega, Franklin L; Martins, Ivone M; Kluskens, Leon D; Rodrigues, Ligia R

    2016-01-01

    The use of bacteriophages to select novel ligands has been widely explored for cancer therapy. Their application is most warranted in cancer subtypes lacking knowledge on how to target the cancer cells in question, such as the triple negative breast cancer, eventually leading to the development of alternative nanomedicines for cancer therapeutics. Therefore, the following study aimed to select and characterize novel peptides for a triple negative breast cancer murine mammary carcinoma cell line- 4T1. Using phage display, 7 and 12 amino acid random peptide libraries were screened against the 4T1 cell line. A total of four rounds, plus a counter-selection round using the 3T3 murine fibroblast cell line, was performed. The enriched selective peptides were characterized and their binding capacity towards 4T1 tissue samples was confirmed by immunofluorescence and flow cytometry analysis. The selected peptides (4T1pep1 -CPTASNTSC and 4T1pep2-EVQSSKFPAHVS) were enriched over few rounds of selection and exhibited specific binding to the 4T1 cell line. Interestingly, affinity to the human MDA-MB-231 cell line was also observed for both peptides, promoting the translational application of these novel ligands between species. Additionally, bioinformatics analysis suggested that both peptides target human Mucin-16. This protein has been implicated in different types of cancer, as it is involved in many important cellular functions. This study strongly supports the need of finding alternative targeting systems for TNBC and the peptides herein selected exhibit promising future application as novel homing peptides for breast cancer therapy.

  10. Selection of Novel Peptides Homing the 4T1 CELL Line: Exploring Alternative Targets for Triple Negative Breast Cancer

    PubMed Central

    Nobrega, Franklin L.; Martins, Ivone M.

    2016-01-01

    The use of bacteriophages to select novel ligands has been widely explored for cancer therapy. Their application is most warranted in cancer subtypes lacking knowledge on how to target the cancer cells in question, such as the triple negative breast cancer, eventually leading to the development of alternative nanomedicines for cancer therapeutics. Therefore, the following study aimed to select and characterize novel peptides for a triple negative breast cancer murine mammary carcinoma cell line– 4T1. Using phage display, 7 and 12 amino acid random peptide libraries were screened against the 4T1 cell line. A total of four rounds, plus a counter-selection round using the 3T3 murine fibroblast cell line, was performed. The enriched selective peptides were characterized and their binding capacity towards 4T1 tissue samples was confirmed by immunofluorescence and flow cytometry analysis. The selected peptides (4T1pep1 –CPTASNTSC and 4T1pep2—EVQSSKFPAHVS) were enriched over few rounds of selection and exhibited specific binding to the 4T1 cell line. Interestingly, affinity to the human MDA-MB-231 cell line was also observed for both peptides, promoting the translational application of these novel ligands between species. Additionally, bioinformatics analysis suggested that both peptides target human Mucin-16. This protein has been implicated in different types of cancer, as it is involved in many important cellular functions. This study strongly supports the need of finding alternative targeting systems for TNBC and the peptides herein selected exhibit promising future application as novel homing peptides for breast cancer therapy. PMID:27548261

  11. Lunasin Attenuates Obesity-Associated Metastasis of 4T1 Breast Cancer Cell through Anti-Inflammatory Property

    PubMed Central

    Hsieh, Chia-Chien; Wang, Chih-Hsuan; Huang, Yu-Shan

    2016-01-01

    Obesity prevalence is increasing worldwide and is accompanied by low-grade inflammation with macrophage infiltration, which is linked with a poorer breast cancer prognosis. Lunasin is a natural seed peptide with chemopreventive properties and multiple bioactivities. This is the first study to explore the chemopreventive effects of lunasin in the obesity-related breast cancer condition using 4T1 breast cancer cells, 3T3-L1 adipocytes, and conditioned media. An obesity-related environment, such as leptin-treatment or adipocyte-conditioned medium (Ad-CM), promoted 4T1 cell proliferation and metastasis. Lunasin treatment inhibited metastasis of breast cancer cells, partially through modestly inhibiting production of the angiogenesis-mediator vascular endothelial growth factor (VEGF) and significantly by inhibiting secretion in the Ad-CM condition. Subsequently, two adipocytes inflammation models, 3T3-L1 adipocytes were stimulated by tumor necrosis factor (TNF)-α, and RAW 264.7 cell-conditioned medium (RAW-CM) was used to mimic the obese microenvironment. Lunasin significantly inhibited interleukin (IL)-6 and macrophage chemoattractant protein (MCP)-1 secretion by TNF-α stimulation, and MCP-1 secretion in the RAW-CM model. This study highlights that lunasin suppressed 3T3-L1 adipocyte inflammation and inhibited 4T1 breast cancer cell migration. Interestingly, lunasin exerted more effective anti-metastasis activity in the obesity-related condition models, indicating that it possesses anti-inflammatory properties and blocks adipocyte-cancer cell cross-talk. PMID:27983683

  12. Extract of Azadirachta indica (Neem) Leaf Induces Apoptosis in 4T1 Breast Cancer BALB/c Mice

    PubMed Central

    Othman, Fauziah; Motalleb, Gholamreza; Lam Tsuey Peng, Sally; Rahmat, Asmah; Fakurazi, Sharida; Pei Pei, Chong

    2011-01-01

    Objective: Azadirachta indica (Neem) has been used traditionally for many centuries. Some impressive therapeutic qualities have been discovered. However, the therapeutic effect of neem leaf extract in 4T1 breast cancer has not been documented. The purpose of the present study is to investigate the therapeutic effect of ethanolic Neem leaf extract in an in vivo 4T1 breast cancer model in mice. Materials and Methods: A total of 84 female BALB/c mice were divided randomly into 7 groups (3 non-cancerous groups and 4 cancerous groups) consisting of 12 mice per group. The 3 non-cancerous groups were normal mice treated with 0.5% of Tween 20 in phosphate buffer saline (PBS) (NC), 250 mg/kg Neem (N250) or 500 mg/kg Neem (N500). The 4 cancerous groups were; cancer controls treated with 0.5% of Tween 20 in PBS (CC), and cancerous mice treated with 0.5 µg/mL tamoxifen citrate (CT), 250 mg/kg Neem leaf extract (CN 250) or 500 mg/kg Neem leaf extract (CN 500). Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were used to evaluate apoptosis (cell death) in the breast cancer tissues. SPSS software, version 14 was used for statistical analysis. Statistical significance was defined as p≤0.05. Non parametric analysis of variance (ANOVA) was performed with the Kruskal Wallis test for the TUNEL assays. Parametric data among the groups was compared using ANOVA. Results: TUNEL assays showed that the CN 250 and CN 500 groups had a higher incidence of apoptosis compared with the cancer controls. Conclusion: The findings showed that neem leaf extract induces apoptosis in 4T1 breast cancer BALB/c mice. PMID:23507990

  13. Anticancer Activity of Saponins from Allium chinense against the B16 Melanoma and 4T1 Breast Carcinoma Cell

    PubMed Central

    Yu, Zhihui; Zhang, Tong; Zhou, Fengjuan; Xiao, Xiuqing; Ding, Xuezhi; He, Hao; Rang, Jie; Quan, Meifang; Wang, Ting; Zuo, Mingxing; Xia, Liqiu

    2015-01-01

    The cytotoxic substance of A. chinense saponins (ACSs) was isolated using ethanol extraction and purified with the D101 macroporous adsorption resin approach. We investigated the anticancer activity of ACSs in the B16 melanoma and 4T1 breast carcinoma cell lines. Methylthioninium chloride and hematoxylin-eosin staining with Giemsa dyestuff were used when the cells were treated with ACSs. The results showed that the cells morphologies changed significantly; ACSs induced cell death in B16 and 4T1 cells based on acridine orange/ethidium bromide double fluorescence staining, with the number and degree of apoptotic tumor cells increasing as ACS concentration increased. ACSs inhibited the proliferation of B16 and 4T1 cells in a dose-dependent manner. They also inhibited cell migration and colony formation and exhibited a concentration-dependent effect. In addition, ACSs apparently inhibited the growth of melanoma in vivo. The preliminary antitumor in vivo assay revealed that early medication positively affected tumor inhibition action and effectively protected the liver and spleen of C57 BL/6 mice from injury. This study provides evidence for the cytotoxicity of ACSs and a strong foundation for further research to establish the theoretical basis for cell death and help in the design and development of new anticancer drugs. PMID:26146506

  14. Rapamycin Promotes Mouse 4T1 Tumor Metastasis that Can Be Reversed by a Dendritic Cell-Based Vaccine.

    PubMed

    Lin, Tien-Jen; Liang, Wen-Miin; Hsiao, Pei-Wen; M S, Pradeep; Wei, Wen-Chi; Lin, Hsin-Ting; Yin, Shu-Yi; Yang, Ning-Sun

    2015-01-01

    Suppression of tumor metastasis is a key strategy for successful cancer interventions. Previous studies indicated that rapamycin (sirolimus) may promote tumor regression activity or enhance immune response against tumor targets. However, rapamycin also exhibits immunosuppressant effects and is hence used clinically as an organ transplantation drug. We hypothesized that the immunosuppressive activities of rapamycin might also negatively mediate host immunity, resulting in promotion of tumor metastasis. In this study, the effects of rapamycin and phytochemical shikonin were investigated in vitro and in vivo in a 4T1 mouse mammary tumor model through quantitative assessment of immunogenic cell death (ICD), autophagy, tumor growth and metastasis. Tumor-bearing mice were immunized with test vaccines to monitor their effect on tumor metastasis. We found that intraperitoneal (ip) administration of rapamycin after a tumor-resection surgery drastically increased the metastatic activity of 4T1 tumors. Possible correlation of this finding to human cancers was suggested by epidemiological analysis of data from Taiwan's National Health Insurance Research Database (NHIRD). Since our previous studies showed that modified tumor cell lysate (TCL)-pulsed, dendritic cell (DC)-based cancer vaccines can effectively suppress metastasis in mouse tumor models, we assessed whether such vaccines may help offset this rapamycin-promoted metastasis. We observed that shikonin efficiently induced ICD of 4T1 cells in culture, and DC vaccines pulsed with shikonin-treated TCL (SK-TCL-DC) significantly suppressed rapamycin-enhanced metastasis and Treg cell expansion in test mice. In conclusion, rapamycin treatment in mice (and perhaps in humans) promotes metastasis and the effect may be offset by treatment with a DC-based cancer vaccine.

  15. Effects of Combined Soy Isoflavone Extract and Docetaxel Treatment on Murine 4T1 Breast Tumor Model

    PubMed Central

    Hejazi, Ehsan; Nasrollahzadeh, Javad; Fatemi, Ramina; Barzegar-Yar Mohamadi, Leila; Saliminejad, Kioomars; Amiri, Zohre; Kimiagar, Masoud; Houshyari, Mohammad; Tavakoli, Maryam; Idali, Farah

    2015-01-01

    Background Emergence of drug resistance has brought major problems in chemotherapy. Using nutrients in combination with chemotherapy could be beneficial for improvement of sensitivity of tumors to drug resistance. Soybean-derived isoflavones have been suggested as chemopreventive agents for certain types of cancer, particularly breast cancer. In this study, the synergistic effects of soy isoflavone extract in combination with docetaxel in murine 4T1 breast tumor model were investigated. Methods In this study, mice were divided into 4 groups (15 mice per group) of control, the dietary Soy Isoflavone Extract (SIE, 100 mg/kg diet), the Docetaxel (DOCE, 10 mg/kg) injection and the combination of dietary soy isoflavone extract and intravenous docetaxel injection (DOCE+SIE). After 3 injections of docetaxel (once a week), 7 mice were sacrificed to analyze MKI67 gene and protein expressions and the rest were monitored for diet consumption, tumor growth and survival rates. Results In DOCE+SIE group, diet consumption was significantly higher than DOCE group. While lifespan showed a trend towards improvement in DOCE+SIE group, no significant difference was observed among the 4 studied groups. Tumor volume was not significantly affected in treated groups. A lower but not significant MKI67 protein expression was detected in western blot in DOCE+SIE group. The mRNA expression was not significantly different among groups. Conclusion The results suggest that the combination of soy isoflavone as an adjunct to docetaxel chemotherapy can be effective in improving diet consumption in breast cancer. PMID:25926948

  16. Theranostic probe for simultaneous in vivo photoacoustic imaging and confined photothermolysis by pulsed laser at 1064 nm in 4T1 breast cancer model

    NASA Astrophysics Data System (ADS)

    Zhou, Min; Ku, Geng; Pageon, Laura; Li, Chun

    2014-11-01

    Here, we report that polyethylene glycol (PEG)-coated copper(ii) sulfide nanoparticles (PEG-CuS NPs) with their peak absorption tuned to 1064 nm could be used both as a contrast agent for photoacoustic tomographic imaging of mouse tumor vasculature and as a mediator for confined photothermolysis of tumor cells in an orthotopic syngeneic 4T1 breast tumor model. PEG-CuS NPs showed stronger photoacoustic signal than hollow gold nanospheres and single-wall carbon nanotubes at 1064 nm. MicroPET imaging of 4T1 tumor-bearing mice showed a gradual accumulation of the NPs in the tumor over time. About 6.5% of injected dose were taken up in each gram of tumor tissue at 24 h after intravenous injection of 64Cu-labeled PEG-CuS NPs. For both photoacoustic imaging and therapeutic studies, nanosecond (ns)-pulsed laser was delivered with Q-switched Nd:YAG at a wavelength of 1064 nm. Unlike conventional photothermal ablation therapy mediated by continuous wave laser with which heat could spread to the surrounding normal tissue, interaction of CuS NPs with short pulsed laser deliver heat rapidly to the treatment volume keeping the thermal damage confined to the target tissues. Our data demonstrated that it is possible to use a single-compartment nanoplatform to achieve both photoacoustic tomography and highly selective tumor destruction at 1064 nm in small animals.Here, we report that polyethylene glycol (PEG)-coated copper(ii) sulfide nanoparticles (PEG-CuS NPs) with their peak absorption tuned to 1064 nm could be used both as a contrast agent for photoacoustic tomographic imaging of mouse tumor vasculature and as a mediator for confined photothermolysis of tumor cells in an orthotopic syngeneic 4T1 breast tumor model. PEG-CuS NPs showed stronger photoacoustic signal than hollow gold nanospheres and single-wall carbon nanotubes at 1064 nm. MicroPET imaging of 4T1 tumor-bearing mice showed a gradual accumulation of the NPs in the tumor over time. About 6.5% of injected dose were

  17. Suppressive effects of a proton beam on tumor growth and lung metastasis through the inhibition of metastatic gene expression in 4T1 orthotopic breast cancer model.

    PubMed

    Kwon, Yun-Suk; Lee, Kyu-Shik; Chun, So-Young; Jang, Tae Jung; Nam, Kyung-Soo

    2016-07-01

    A proton beam is a next generation tool to treat intractable cancer. Although the therapeutic effects of a proton beam are well known, the effect on tumor metastasis is not fully described. Here, we investigated the effects of a proton beam on metastasis in highly invasive 4T1 murine breast cancer cells and their orthotopic breast cancer model. Cells were irradiated with 2, 4, 8 or 16 Gy proton beam, and changes in cell proliferation, survival, and migration were observed by MTT, colony forming and wound healing assays. 4T1 breast cancer cell-implanted BALB/c mice were established and the animals were randomly divided into 4 groups when tumor size reached 200 mm3. Breast tumors were selectively irradiated with 10, 20 or 30 Gy proton beam. Breast tumor sizes were measured twice a week, and breast tumor and lung tissues were pathologically observed. Metastasis-regulating gene expression was assessed with quantitative RT-PCR. A proton beam dose-dependently decreased cell proliferation, survival and migration in 4T1 murine breast cancer cells. Also, growth of breast tumors in the 4T1 orthotopic breast cancer model was significantly suppressed by proton beam irradiation without significant change of body weight. Furthermore, fewer tumor nodules metastasized from breast tumor into lung in mice irradiated with 30 Gy proton beam, but not with 10 and 20 Gy, than in control. We observed correspondingly lower expression levels of urokinase plasminogen activator (uPA), uPA receptor, cyclooxygenase (COX)-2, and vascular endothelial growth factor (VEGF), which are important factors in cancer metastasis, in breast tumor irradiated with 30 Gy proton beam. Proton beam irradiation did not affect expressions of matrix metalloproteinase (MMP)-9 and MMP-2. Taken together, the data suggest that, although proton beam therapy is an effective tool for breast cancer treatment, a suitable dose is necessary to prevent metastasis-linked relapse and poor prognosis.

  18. Radio-Photothermal Therapy Mediated by a Single Compartment Nanoplatform Depletes Tumor Initiating Cells and Reduces Lung Metastasis in Orthotopic 4T1 Breast Tumor Model

    PubMed Central

    Zhou, Min; Zhao, Jun; Tian, Mei; Song, Shaoli; Zhang, Rui; Gupta, Sanjay; Tan, Dongfeng; Shen, Haifa; Ferrari, Mauro; Li, Chun

    2016-01-01

    Tumor Initiating Cells (TICs) are resistant to radiotherapy and chemotherapy, and are believed to be responsible for tumor recurrence and metastasis. Combination therapies can overcome the limitation of conventional cancer treatments, and has demonstrated promising application in clinic. Here, we show that dual modality radiotherapy (RT) and photothermal therapy (PTT) mediated by a single compartment nanosystem copper-64-labeled copper sulfide nanoparticles ([64Cu]CuS NPs) could suppress breast tumor metastasis through eradication of TICs. Positron electron tomography (PET) imaging and biodistribution studies showed that more than 90% of [64Cu]CuS NPs was retained in subcutaneously grown BT474 breast tumor 24 h after intratumoral (i.t.) injection, indicating the NPs is suitable for the combination therapy. Combined RT/PTT therapy resulted in significant tumor growth delay in subcutaneous BT474 breast cancer model. Moreover, RT/PTT treatment significantly prolonged the survival of mice bearing orthotopic 4T1 breast tumors compared to no treatment, RT alone, or PTT alone. The RT/PTT combination therapy significantly reduced the number of tumor nodules in the lung and the formation of tumor mammospheres from treated 4T1 tumors. No obvious side effects of the CuS NPs were noted in the treated mice in a pilot toxicity study. Taken together, our data support the feasibility of a therapeutic approach for suppression of tumor metastasis through localized RT/PTT therapy. PMID:26376843

  19. In Vivo Anti-Tumor Effects of Flavokawain A in 4T1 Breast Cancer Cell-Challenged Mice.

    PubMed

    Abu, Nadiah; Mohamed, Nurul Elyani; Yeap, Swee Keong; Lim, Kian Lam; Akhtar, M Nadeem; Zulfadli, Aimi Jamil; Kee, Beh Boon; Abdullah, Mohd Puad; Omar, Abdul Rahman; Alitheen, Noorjahan Banu

    2015-01-01

    Flavokawain A is a chalcone that can be found in the kava-kava plant (Piper methsyticum) extract. The kava-kava plant has been reported to possess anti-cancer, anti-inflammatory and antinociceptive activities. The state of the immune system, and the inflammatory process play vital roles in the progression of cancer. The immunomodulatary effects and the anti-inflammatory effects of flavokawain A in a breast cancer murine model have not been studied yet. Thus, this study aimed to elucidate the basic mechanism as to how flavokawain A regulates and enhance the immune system as well as impeding the inflammatory process in breast cancer-challenged mice. Based on our study, it is interesting to note that flavokawain A increased the T cell population; both Th1 cells and CTLs, aside from the natural killer cells. The levels of IFN-γ and IL-2 were also elevated in the serum of flavokawain A-treated mice. Apart from that, flavokawain A also decreased the weight and volume of the tumor, and managed to induce apoptosis in them. In terms of inflammation, flavokawain A-treated mice had reduced level of major pro-inflammatory mediators; NO, iNOS, NF-KB, ICAM and COX-2. Overall, flavokawain A has the potential to not only enhance antitumor immunity, but also prevents the inflammatory process in a cancer-prone microenvironment.

  20. Radio-photothermal therapy mediated by a single compartment nanoplatform depletes tumor initiating cells and reduces lung metastasis in the orthotopic 4T1 breast tumor model

    NASA Astrophysics Data System (ADS)

    Zhou, Min; Zhao, Jun; Tian, Mei; Song, Shaoli; Zhang, Rui; Gupta, Sanjay; Tan, Dongfeng; Shen, Haifa; Ferrari, Mauro; Li, Chun

    2015-11-01

    Tumor Initiating Cells (TICs) are resistant to radiotherapy and chemotherapy, and are believed to be responsible for tumor recurrence and metastasis. Combination therapies can overcome the limitation of conventional cancer treatments, and have demonstrated promising application in the clinic. Here, we show that dual modality radiotherapy (RT) and photothermal therapy (PTT) mediated by a single compartment nanosystem copper-64-labeled copper sulfide nanoparticles ([64Cu]CuS NPs) could suppress breast tumor metastasis through eradication of TICs. Positron electron tomography (PET) imaging and biodistribution studies showed that more than 90% of [64Cu]CuS NPs was retained in subcutaneously grown BT474 breast tumor 24 h after intratumoral (i.t.) injection, indicating the NPs are suitable for the combination therapy. Combined RT/PTT therapy resulted in significant tumor growth delay in the subcutaneous BT474 breast cancer model. Moreover, RT/PTT treatment significantly prolonged the survival of mice bearing orthotopic 4T1 breast tumors compared to no treatment, RT alone, or PTT alone. The RT/PTT combination therapy significantly reduced the number of tumor nodules in the lung and the formation of tumor mammospheres from treated 4T1 tumors. No obvious side effects of the CuS NPs were noted in the treated mice in a pilot toxicity study. Taken together, our data support the feasibility of a therapeutic approach for the suppression of tumor metastasis through localized RT/PTT therapy.Tumor Initiating Cells (TICs) are resistant to radiotherapy and chemotherapy, and are believed to be responsible for tumor recurrence and metastasis. Combination therapies can overcome the limitation of conventional cancer treatments, and have demonstrated promising application in the clinic. Here, we show that dual modality radiotherapy (RT) and photothermal therapy (PTT) mediated by a single compartment nanosystem copper-64-labeled copper sulfide nanoparticles ([64Cu]CuS NPs) could suppress

  1. Effect of Neem Leaf Extract (Azadirachta indica) on c-Myc Oncogene Expression in 4T1 Breast Cancer Cells of BALB/c Mice

    PubMed Central

    Othman, Fauziah; Motalleb, Gholamreza; Lam Tsuey Peng, Sally; Rahmat, Asmah; Basri, Rusliza; Pei Pei, Chong

    2012-01-01

    Objective: Breast cancer is the most common cause of cancer-related deaths in women both worldwide and in Malaysia. Azadirachta indica (A. Juss), commonly known as neem, is one of the most versatile medicinal plants that has gained worldwide prominence due to its medicinal properties. However, the anticancer effect of ethanolic neem leaf extract against breast cancer has not been documented. The purpose of the present study is to investigate the effect of neem leaf extract on c-Myc oncogene expression in 4T1 breast cancer BALB/c mice. Materials and Methods: In this experimental study, A total of 48 female BALB/c mice were divided randomly into four groups of 12 mice per group: i.cancer control (CC) treated with 0.5% Tween 20 in PBS, ii. 0.5 µg/mL tamoxifen citrate (CT), iii. 250 mg/kg neem leaf extract (C250), and iv. 500 mg/kg neem leaf extract (C500). in situ reverse transcription polymerase chain reaction (in situ RT-PCR) was applied to evaluate suppression of c-Myc oncogene expression in breast cancer tissue. Results: The C500 group showed significant (p<0.05) suppression of c-Myc oncogene expression compared to the CC group. Conclusion: c-Myc was found to be down regulated under the effect of 500 mg/kg ethanolic neem leaf extract. PMID:23626938

  2. Ascorbate supplementation inhibits growth and metastasis of B16FO melanoma and 4T1 breast cancer cells in vitamin C-deficient mice.

    PubMed

    Cha, John; Roomi, M Waheed; Ivanov, Vadim; Kalinovsky, Tatiana; Niedzwiecki, Aleksandra; Rath, Matthias

    2013-01-01

    Degradation of the extracellular matrix (ECM) plays a critical role in the formation of tumors and metastasis and has been found to correlate with the aggressiveness of tumor growth and invasiveness of cancer. Ascorbic acid, which is known to be essential for the structural integrity of the intercellular matrix, is not produced by humans and must be obtained from the diet. Cancer patients have been shown to have very low reserves of ascorbic acid. Our main objective was to determine the effect of ascorbate supplementation on metastasis, tumor growth and tumor immunohistochemistry in mice unable to synthesize ascorbic acid [gulonolactone oxidase (gulo) knockout (KO)] when challenged with B16FO melanoma or 4T1 breast cancer cells. Gulo KO female mice 36-38 weeks of age were deprived of or maintained on ascorbate in food and water for 4 weeks prior to and 2 weeks post intraperitoneal (IP) injection of 5x105 B16FO murine melanoma cells or to injection of 5x105 4T1 breast cancer cells into the mammary pad of mice. Ascorbate-supplemented gulo KO mice injected with B16FO melanoma cells demonstrated significant reduction (by 71%, p=0.005) in tumor metastasis compared to gulo KO mice on the control diet. The mean tumor weight in ascorbate supplemented mice injected with 4T1 cells was reduced by 28% compared to tumor weight in scorbutic mice. Scorbutic tumors demonstrated large dark cores, associated with increased necrotic areas and breaches to the tumor surface, apoptosis and matrix metalloproteinase-9 (MMP-9), and weak, disorganized or missing collagen I tumor capsule. In contrast, the ascorbate-supplemented group tumors had smaller fainter colored cores and confined areas of necrosis/apoptosis with no breaches from the core to the outside of the tumor and a robust collagen I tumor capsule. In both studies, ascorbate supplementation of gulo KO mice resulted in profoundly decreased serum inflammatory cytokine interleukin (IL)-6 (99% decrease, p=0.01 in the B16F0

  3. Recognition of tumor antigens in 4T1 cells by natural IgM from three strains of mice with different susceptibilities to spontaneous breast cancer

    PubMed Central

    Díaz-Zaragoza, Mariana; Hernández-Ávila, Ricardo; Ostoa-Saloma, Pedro

    2017-01-01

    The issue of antibody responses to tumors is potentially important to cancer immunologists. Early detection of cancer represents one of the most promising approaches to reduce the growing cancer burden. Natural immunoglobulin (Ig)M antibodies have been associated with the recognition and elimination of cancerous and precancerous cells. Using natural IgM antibodies, the present study identified a set of antigens in healthy mice from three different strains and examined whether the global patterns of antibodies are able to discriminate between a condition of more or less susceptibility to breast cancer. The current study performed two-dimensional (2D) immunoblotting to detect antigens from 4T1 cells using natural IgM from serum of healthy female mice from three different strains. The t-test was used to analyze the total number of spots. There were no significant differences in the numbers of antigens recognized in each strain. However, differences in patterns were observed on 2D immunoblots among the three strains. The reactivity patterns of natural IgM antibodies to particular antigens exhibited non-random clustering, which discriminated between strains with different susceptibilities to spontaneous breast cancer. The results demonstrated that the patterns of reactivity to defined subsets of antigens are able to provide information regarding differential diagnosis associated with breast cancer sensitivity. Therefore, it may be concluded that it is possible to segregate the IgM humoral immune response toward cancer antigens according to the genetic background of individuals. In addition, it is possible to identify the recognized antigens that allow grouping or discriminate between the different IgM antibodies expressed. The possible association between a particular antigen and cancer susceptibility requires further study, but the methodology exposed in the present study may identify potential candidates for this possible association. PMID:28123554

  4. Comparison of the Adipose and Luminal Mammary Gland Compartment as Orthotopic Inoculation Sites in a 4T1-Based Immunocompetent Preclinical Model for Triple-Negative Breast Cancer.

    PubMed

    Steenbrugge, Jonas; Breyne, Koen; Denies, Sofie; Dekimpe, Melissa; Demeyere, Kristel; De Wever, Olivier; Vermeulen, Peter; Van Laere, Steven; Sanders, Niek N; Meyer, Evelyne

    2016-12-01

    Breast tumorigenesis is classically studied in mice by inoculating tumor cells in the fat pad, the adipose compartment of the mammary gland. Alternatively, the mammary ducts, which constitute the luminal mammary gland compartment, also provide a suitable inoculation site to induce breast cancer in murine models. The microenvironments in these compartments influence tumor cell progression, yet this effect has not been investigated in an immunocompetent context. Here, we compared both mammary gland compartments as distinct inoculation sites, taking into account the immunological aspect by inoculating 4T1 tumor cells in immunocompetent mice. Following tumor cell inoculation in the adipose compartment of non-pretreated/naive, hormonally pretreated/naive and non-pretreated/lactating mice, the primary tumors developed similarly. However, a slower onset of primary tumor growth was found after inoculations in the luminal compartment of non-pretreated/lactating mice. Despite this difference in tumor development rate, metastasis to the liver and lungs was equally observed and was accompanied by lymphatic spreading of tumor cells and progressive splenomegaly with both inoculation types. Chitinase 3-like 1 (CHI3L1) and lipocalin 2 (LCN2) served as innovative biomarkers for disease progression showing increased levels in primary tumors and sera of the non-pretreated/lactating inoculation groups. A slower increase in circulating CHI3L1 but not LCN2 levels, was observed after inoculations in the luminal compartment which corroborated the slower tumor development at this inoculation site. Our results highlight the critical impact of different mammary gland compartments on tumor development in syngeneic murine models and support the use of novel tumor progression biomarkers in an immune-competent environment.

  5. Synthesis, Characterization and in Vitro Evaluation of Manganese Ferrite (MnFe2O4) Nanoparticles for Their Biocompatibility with Murine Breast Cancer Cells (4T1).

    PubMed

    Kanagesan, Samikannu; Aziz, Sidek Bin Ab; Hashim, Mansor; Ismail, Ismayadi; Tamilselvan, Subramani; Alitheen, Noorjahan Banu Binti Mohammed; Swamy, Mallappa Kumara; Purna Chandra Rao, Bandaru

    2016-03-11

    Manganese ferrite (MnFe2O4) magnetic nanoparticles were successfully prepared by a sol-gel self-combustion technique using iron nitrate and manganese nitrate, followed by calcination at 150 °C for 24 h. Calcined sample was systematically characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and vibrational sample magnetometry (VSM) in order to identify the crystalline phase, functional group, morphology, particle size, shape and magnetic behavior. It was observed that the resultant spinal ferrites obtained at low temperature exhibit single phase, nanoparticle size and good magnetic behavior. The study results have revealed the existence of a potent dose dependent cytotoxic effect of MnFe2O4 nanoparticles against 4T1 cell lines at varying concentrations with IC50 values of 210, 198 and 171 μg/mL after 24 h, 48 h and 72 h of incubation, respectively. Cells exposed to higher concentrations of nanoparticles showed a progressive increase of apoptotic and necrotic activity. Below 125 μg/mL concentration the nanoparticles were biocompatible with 4T1 cells.

  6. Combined effect of aerobic interval training and selenium nanoparticles on expression of IL-15 and IL-10/TNF-α ratio in skeletal muscle of 4T1 breast cancer mice with cachexia.

    PubMed

    Molanouri Shamsi, M; Chekachak, S; Soudi, S; Quinn, L S; Ranjbar, K; Chenari, J; Yazdi, M H; Mahdavi, M

    2017-02-01

    Cancer cachexia is characterized by inflammation, loss of skeletal muscle and adipose tissue mass, and functional impairment. Oxidative stress and inflammation are believed to regulate pathways controlling skeletal muscle wasting. The aim of this study was to determine the effects of aerobic interval training and the purported antioxidant treatment, selenium nanoparticle supplementation, on expression of IL-15 and inflammatory cytokines in 4T1 breast cancer-bearing mice with cachexia. Selenium nanoparticle supplementation accelerated cachexia symptoms in tumor-bearing mice, while exercise training prevented muscle wasting in tumor-bearing mice. Also, aerobic interval training enhanced the anti-inflammatory indices IL-10/TNF-α ratio and IL-15 expression in skeletal muscle in tumor-bearing mice. However, combining exercise training and antioxidant supplementation prevented cachexia and muscle wasting and additionally decreased tumor volume in 4T1 breast cancer mice. These finding suggested that combining exercise training and antioxidant supplementation could be a strategy for managing tumor volume and preventing cachexia in breast cancer.

  7. Curcumin improves the therapeutic efficacy of Listeria(at)-Mage-b vaccine in correlation with improved T-cell responses in blood of a triple-negative breast cancer model 4T1.

    PubMed

    Singh, Manisha; Ramos, Ilyssa; Asafu-Adjei, Denise; Quispe-Tintaya, Wilber; Chandra, Dinesh; Jahangir, Arthee; Zang, Xingxing; Aggarwal, Bharat B; Gravekamp, Claudia

    2013-08-01

    Success of cancer vaccination is strongly hampered by immune suppression in the tumor microenvironment (TME). Interleukin (IL)-6 is particularly and highly produced by triple-negative breast cancer (TNBC) cells, and has been considered as an important contributor to immune suppression in the TME. Therefore, we hypothesized that IL-6 reduction may improve efficacy of vaccination against TNBC cancer through improved T-cell responses. To prove this hypothesis, we investigated the effect of curcumin, an inhibitor of IL-6 production, on vaccination of a highly attenuated Listeria monocytogenes (Listeria(at)), encoding tumor-associated antigens (TAA) Mage-b in a TNBC model 4T1. Two therapeutic vaccination strategies with Listeria(at)-Mage-b and curcumin were tested. The first immunization strategy involved all Listeria(at)-Mage-b vaccinations and curcumin after tumor development. As curcumin has been consumed all over the world, the second immunization strategy involved curcumin before and all therapeutic vaccinations with Listeria(at)-Mage-b after tumor development. Here, we demonstrate that curcumin significantly improves therapeutic efficacy of Listeria(at)-Mage-b with both immunization strategies particularly against metastases in a TNBC model (4T1). The combination therapy was slightly but significantly more effective against the metastases when curcumin was administered before compared to after tumor development. With curcumin before tumor development in the combination therapy, the production of IL-6 was significantly decreased and IL-12 increased by myeloid-derived suppressor cells (MDSC), in correlation with improved CD4 and CD8 T-cell responses in blood. Our study suggests that curcumin improves the efficacy of Listeria(at)-Mage-b vaccine against metastases in TNBC model 4T1 through reversal of tumor-induced immune suppression.

  8. Lx2-32c–loaded polymeric micelles with small size for intravenous drug delivery and their inhibitory effect on tumor growth and metastasis in clinically associated 4T1 murine breast cancer

    PubMed Central

    Chen, Li-qing; Huang, Wei; Gao, Zhong-gao; Fang, Wei-shuo; Jin, Ming-ji

    2016-01-01

    Lx2-32c is a novel taxane derivative with a strong antitumor activity. In this study, we developed Lx2-32c–loaded polymeric micelles (Lx2-32c-PMs) with small size and investigated their antitumor efficacy against tumor growth and metastasis on 4T1 murine breast cancer cell line with Cremophor EL–based Lx2-32c solution as the control. In this study, copolymer monomethoxy polyethylene glycol2000–polylactide1300 was used to prepare Lx2-32c-PMs by film hydration method, and their physicochemical properties were characterized as well, according to morphology, particle size, zeta potential, in vitro drug release, and reconstitution stability. Under confocal laser scanning microscopy, it was observed that Lx2-32c-PMs could be effectively taken up by 4T1 cells in a time-dependent manner. Cell Counting Kit-8 assay showed that the IC50 of Lx2-32c-PMs was 0.3827 nM. Meanwhile, Lx2-32c-PMs had better ability to promote apoptosis and induce G2/M cycle block and polyploidy formation, compared with Lx2-32c solution. More importantly, in vivo animal studies showed that compared to Lx2-32c solution, Lx2-32c-PMs possessed better ability not only to effectively inhibit the tumor growth, but also to significantly suppress spontaneous and postoperative metastasis to distant organs in 4T1 orthotopic tumor-bearing mice. Consequently, Lx2-32c-PMs have significantly prolonged the survival lifetime of tumor-bearing mice. Thus, our study reveals that Lx2-32c-PMs had favorable antitumor activity and exhibited a good prospect for application in the field of antitumor therapy. PMID:27799769

  9. Curcumin improves the therapeutic efficacy of Listeriaat-Mage-b vaccine in correlation with improved T-cell responses in blood of a triple-negative breast cancer model 4T1

    PubMed Central

    Singh, Manisha; Ramos, Ilyssa; Asafu-Adjei, Denise; Quispe-Tintaya, Wilber; Chandra, Dinesh; Jahangir, Arthee; Zang, Xingxing; Aggarwal, Bharat B; Gravekamp, Claudia

    2013-01-01

    Abstract Success of cancer vaccination is strongly hampered by immune suppression in the tumor microenvironment (TME). Interleukin (IL)-6 is particularly and highly produced by triple-negative breast cancer (TNBC) cells, and has been considered as an important contributor to immune suppression in the TME. Therefore, we hypothesized that IL-6 reduction may improve efficacy of vaccination against TNBC cancer through improved T-cell responses. To prove this hypothesis, we investigated the effect of curcumin, an inhibitor of IL-6 production, on vaccination of a highly attenuated Listeria monocytogenes (Listeriaat), encoding tumor-associated antigens (TAA) Mage-b in a TNBC model 4T1. Two therapeutic vaccination strategies with Listeriaat-Mage-b and curcumin were tested. The first immunization strategy involved all Listeriaat-Mage-b vaccinations and curcumin after tumor development. As curcumin has been consumed all over the world, the second immunization strategy involved curcumin before and all therapeutic vaccinations with Listeriaat-Mage-b after tumor development. Here, we demonstrate that curcumin significantly improves therapeutic efficacy of Listeriaat-Mage-b with both immunization strategies particularly against metastases in a TNBC model (4T1). The combination therapy was slightly but significantly more effective against the metastases when curcumin was administered before compared to after tumor development. With curcumin before tumor development in the combination therapy, the production of IL-6 was significantly decreased and IL-12 increased by myeloid-derived suppressor cells (MDSC), in correlation with improved CD4 and CD8 T-cell responses in blood. Our study suggests that curcumin improves the efficacy of Listeriaat-Mage-b vaccine against metastases in TNBC model 4T1 through reversal of tumor-induced immune suppression. This study is focused on improving cancer vaccination by reducing immune suppression. Here we demonstrate that curcumin improves vaccine

  10. Green tea (Camellia sinensis) extract inhibits both the metastasis and osteolytic components of mammary cancer 4T1 lesions in mice.

    PubMed

    Luo, Ke-Wang; Ko, Chun-Hay; Yue, Grace Gar-Lee; Lee, Julia Kin-Ming; Li, Kai-Kai; Lee, Michelle; Li, Gang; Fung, Kwok-Pui; Leung, Ping-Chung; Lau, Clara Bik-San

    2014-04-01

    Green tea (Camellia sinensis, CS), a kind of Chinese tea commonly consumed as a healthy beverage, has been demonstrated to have various biological activities, including antioxidation, antiobesity and anticancer. Our study aims to investigate the antitumor, antimetastasis and antiosteolytic effects of CS aqueous extract both in vitro and in vivo using metastasis-specific mouse mammary carcinoma 4T1 cells. Our results showed that treatment of 4T1 cells with CS aqueous extract resulted in significant inhibition of 4T1 cell proliferation. CS extract induced 4T1 apoptosis in a dose-dependent manner as assessed by annexin-V and propidium iodide staining and caspase-3 activity. Western blot analysis showed that CS increased the expression of Bax-to-Bcl-2 ratio and activated caspase-8 and caspase-3 to induce apoptosis. CS also inhibited 4T1 cell migration and invasion at 0.06-0.125 mg/ml. In addition, CS extract (0.6 g/kg, orally fed daily for 4 weeks) was effective in decreasing the tumor weight by 34.8% in female BALB/c mice against water treatment control (100%). Apart from the antitumor effect, CS extract significantly decreased lung and liver metastasis in BALB/c mice bearing 4T1 tumors by 54.5% and 72.6%, respectively. Furthermore, micro-computed tomography and in vitro osteoclast staining analysis suggested that CS extract was effective in bone protection against breast cancer-induced bone destruction. In conclusion, the present study demonstrated that the CS aqueous extract, which closely mimics green tea beverage, has potent antitumor and antimetastasis effects in breast cancer and could protect the bone from breast cancer-induced bone destruction.

  11. A novel protein with anti-metastasis activity on 4T1 carcinoma from medicinal fungus Cordyceps militaris.

    PubMed

    Yang, Qing; Yin, Yalin; Yu, Guojun; Jin, Yanxia; Ye, Xiangdong; Shrestha, Alok; Liu, Wei; Yu, Wenhui; Sun, Hui

    2015-09-01

    Cordyceps militaris is a famous fungus used in traditional Chinese medicine for nearly one thousand years. And its fruiting body is known to possess anticancer and immunomodulatory activities. This study describes the isolation, characterization, and test of antitumor activity of a C. militaris protein, called here as "C. militaris immunoregulatory protein" (CMIP). CMIP was purified through a three-step chromatographic procedure. The MS analyses showed that CMIP corresponded to an uncharacterized protein (CCM_01955) in the C. militaris transcriptional database. Circular dichroism of CMIP revealed the composition of 35.5% β-sheet, 18.5% α-helix, 17.0% turn and 29.0% random coil. No significant cytotoxicity of CMIP was observed on HeLa, HepG2 and 4T1 tumor cells. However, CMIP demonstrated anti-metastasis activity on a mouse model of 4T1 breast cancer lung metastasis. It reduced the number of tumor nodules in the lung of tumor-bearing mice and prolonged their survival time. Furthermore, proliferation of the 4T1 cells was inhibited by macrophage-CMIP conditioned media. And the mRNA levels of cytokines TNF-α, IL-1β and IL-6 were increased significantly in peritoneal macrophages treated by CMIP. These results reveal the antitumor potential of CMIP, thus reinforcing the importance of biochemical prospecting of C. militaris.

  12. Secretion of N- and O-linked Glycoproteins from 4T1 Murine Mammary Carcinoma Cells

    PubMed Central

    Phang, Wai-Mei; Tan, Aik-Aun; Gopinath, Subash C.B.; Hashim, Onn H.; Kiew, Lik Voon; Chen, Yeng

    2016-01-01

    Breast cancer is one of the most common cancers that affect women globally and accounts for ~23% of all cancers diagnosed in women. Breast cancer is also one of the leading causes of death primarily due to late stage diagnoses and a lack of effective treatments. Therefore, discovering protein expression biomarkers is mandatory for early detection and thus, critical for successful therapy. Two-dimensional electrophoresis (2D-E) coupled with lectin-based analysis followed by mass spectrometry were applied to identify potential biomarkers in the secretions of a murine mammary carcinoma cell line. Comparisons of the protein profiles of the murine 4T1 mammary carcinoma cell line and a normal murine MM3MG mammary cell line indicated that cadherin-1 (CDH), collagenase 3 (MMP-13), Viral envelope protein G7e (VEP), Gag protein (GAG) and Hypothetical protein LOC433182 (LOC) were uniquely expressed by the 4T1 cells, and pigment epithelium-derived factor (PEDF) was exclusively secreted by the MM3MG cells. Further analysis by a lectin-based study revealed that aberrant O-glycosylated CDH, N-glycosylated MMP-13 and LOC were present in the 4T1 medium. These differentially expressed N- and O-linked glycoprotein candidates, which were identified by combining lectin-based analysis with 2D-E, could serve as potential diagnostic and prognostic markers for breast cancer. PMID:27226773

  13. Knockdown of ROS1 gene sensitizes breast tumor growth to doxorubicin in a syngeneic mouse model.

    PubMed

    Tiash, Snigdha; Chua, Ming Jang; Chowdhury, Ezharul Hoque

    2016-06-01

    Treatment of breast cancer, the second leading cause of female deaths worldwide, with classical drugs is often accompanied by treatment failure and relapse of disease condition. Development of chemoresistance and drug toxicity compels compromising the drug concentration below the threshold level with the consequence of therapeutic inefficacy. Moreover, amplification and over-activation of proto-oncogenes in tumor cells make the treatment more challenging. The oncogene, ROS1 which is highly expressed in diverse types of cancers including breast carcinoma, functions as a survival protein aiding cancer progression. Thus we speculated that selective silencing of ROS1 gene by carrier-mediated delivery of siRNA might sensitize the cancer cells to the classical drugs at a relatively low concentration. In this investigation we showed that intracellular delivery of c-ROS1-targeting siRNA using pH-sensitive inorganic nanoparticles of carbonate apatite sensitizes mouse breast cancer cells (4T1) to doxorubicin, but not to cisplatin or paclitaxel, with the highest enhancement in chemosensitivity obtained at 40 nM of the drug concentration. Although intravenous administrations of ROS1-loaded nanoparticles reduced growth of the tumor, a further substantial effect on growth retardation was noted when the mice were treated with the siRNA- and Dox-bound particles, thus suggesting that silencing of ROS1 gene could sensitize the mouse breast cancer cells both in vitro and in vivo to doxorubicin as a result of synergistic effect of the gene knockdown and the drug action, eventually preventing activation of the survival pathway protein, AKT1. Our findings therefore provide valuable insight into the potential cross-talk between the pathways of ROS1 and doxorubicin for future development of effective therapeutics for breast cancer.

  14. Liposomal Nanoparticles Carrying anti-IL6R Antibody to the Tumour Microenvironment Inhibit Metastasis in Two Molecular Subtypes of Breast Cancer Mouse Models

    PubMed Central

    Guo, Chunlei; Chen, Yanan; Gao, Wenjuan; Chang, Antao; Ye, Yujie; Shen, Wenzhi; Luo, Yunping; Yang, Shengyong; Sun, Peiqing; Xiang, Rong; Li, Na

    2017-01-01

    Tumour microenvironment (TME) contributes significantly towards potentiating the stemness and metastasis properties of cancer cells. IL6-Stat3 is one of the important cell signaling pathways in mediating the communication between tumour and immune cells. Here, we have systematically developed a novel anti-CD44 antibody-mediated liposomal nanoparticle delivery system loaded with anti-IL6R antibody, which could specifically target the TME of CD44+ breast cancer cells in different mouse models for triple negative and luminal breast cancer. This nanoparticle had an enhanced and specific tumour targeting efficacy with dramatic anti-tumour metastasis effects in syngeneic BALB/c mice bearing 4T1 cells as was in the syngeneic MMTV-PyMT mice. It inhibited IL6R-Stat3 signaling and moderated the TME, characterized by the reduced expression of genes encoding Stat3, Sox2, VEGFA, MMP-9 and CD206 in the breast tissues. Furthermore, this nanoparticle reduced the subgroups of Sox2+ and CD206+ cells in the lung metastatic foci, demonstrating its inhibitory effect on the lung metastatic niche for breast cancer stem cells. Taken together, the CD44 targeted liposomal nanoparticles encapsulating anti-IL6R antibody achieved a significant effect to inhibit the metastasis of breast cancer in different molecular subtypes of breast cancer mouse models. Our results shed light on the application of nanoparticle mediated cancer immune-therapy through targeting TME. PMID:28255366

  15. RNAi-mediated gene silencing of vascular endothelial growth factor C suppresses growth and induces apoptosis in mouse breast cancer in vitro and in vivo

    PubMed Central

    Liu, Yong-Chao; Ma, Wen-Hui; Ge, Yin-Lin; Xue, Mei-Lan; Zhang, Zheng; Zhang, Jin-Yu; Hou, Lin; Mu, Run-Hong

    2016-01-01

    Vascular endothelial cell growth factor (VEGF)-C promotes tumorigenesis by allowing lymph node metastasis and lymphangiogenesis, among other actions. RNA interference (RNAi) is a novel technique for suppressing target gene expression and may increase the effectiveness of cancer treatments. The present study assessed the influence of VEGF-C RNAi on the apoptosis and proliferation of mouse breast cancer cells in vitro and in vivo. A total of three pairs of small interfering RNA (siRNA) targeting mouse VEGF-C were designed and synthesized prior to transfection into 4T1 cells via a liposomal approach. Reverse transcription polymerase chain reaction, western blot analysis, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Hoechst 33258 staining and flow cytometry were performed in vitro to analyze VEGF-C expression, cleaved caspase-3 protein expression and 4T1 cell proliferation and apoptosis. Experiments were also conducted in vivo on BALB/c mice with breast cancer. Tumor weight and volume were measured and the number of apoptotic cells in tumor tissues was assessed by a TUNEL assay. Immunohistochemical assays and an enzyme-linked immunosorbent assay were used to measure the expression of VEGF-C in tumor tissues. The results demonstrated that the three pairs of siRNA, particularly siV2, significantly reduced VEGF-C mRNA and protein levels in 4T1 cells. siV2 was deemed to be the most efficient siRNA and therefore was selected to be used in subsequent experiments. Furthermore, in vitro studies indicated that VEGF-C RNAi significantly decreased cell growth, induced apoptosis and upregulated the expression of cleaved caspase-3 protein. Tumor weight and volume in breast cancer in vivo models was reduced by the intratumoral injection of siV2. Antitumor efficacy was associated with decreased VEGF-C expression and increased induction of apoptosis. The present study therefore indicated that VEGF-C RNAi inhibited mouse breast cancer growth in vitro and in

  16. 4T1 Murine Mammary Carcinoma Cells Enhance Macrophage-Mediated Innate Inflammatory Responses

    PubMed Central

    Madera, Laurence; Greenshields, Anna; Coombs, Melanie R. Power; Hoskin, David W.

    2015-01-01

    Tumor progression and the immune response are intricately linked. While it is known that cancers alter macrophage inflammatory responses to promote tumor progression, little is known regarding how cancers affect macrophage-dependent innate host defense. In this study, murine bone-marrow-derived macrophages (BMDM) were exposed to murine carcinoma-conditioned media prior to assessment of the macrophage inflammatory response. BMDMs exposed to 4T1 mammary carcinoma-conditioned medium demonstrated enhanced production of pro-inflammatory cytokines tumor necrosis factor α, interleukin-6, and CCL2 in response to lipopolysaccharide (LPS) while production of interleukin-10 remained unchanged. The increased LPS-induced production of pro-inflammatory cytokines was transient and correlated with enhanced cytokine production in response to other Toll-like receptor agonists, including peptidoglycan and flagellin. In addition, 4T1-conditioned BMDMs exhibited strengthened LPS-induced nitric oxide production and enhanced phagocytosis of Escherichia coli. 4T1-mediated augmentation of macrophage responses to LPS was partially dependent on the NFκB pathway, macrophage-colony stimulating factor, and actin polymerization, as well as the presence of 4T1-secreted extracellular vesicles. Furthermore, peritoneal macrophages obtained from 4T1 tumor-bearing mice displayed enhanced pro-inflammatory cytokine production in response to LPS. These results suggest that uptake of 4T1-secreted factors and actin-mediated ingestion of 4T1-secreted exosomes by macrophages cause a transient enhancement of innate inflammatory responses. Mammary carcinoma-mediated regulation of innate immunity may have significant implications for our understanding of host defense and cancer progression. PMID:26177198

  17. Aging, Breast Cancer and the Mouse Model

    DTIC Science & Technology

    2005-05-01

    Presenescent or senescent hBF (1.2 or 18x×10 4/well, respectively) [M, Stampfer , P. Yaswen, Lawrence Berkeley National Laboratory wdre suspended in 60 l cold...2.8 1 2.8 Inducing a human-like senescent phenotype in mouse fibroblasts Jean-Philihoo Copp , Simona Parrinello, Ana Krtolica, Christopher K. Patil...MAMMARY EPITHELIAL CELL PROLIFERATION AND TUMORIGENESIS: A MOUSE MODEL FOR HUMAN AGING. Jean-Philippe Coppe, Simona Parrinello, Ana Krtolica, Christopher

  18. Human mammary microenvironment better regulates the biology of human breast cancer in humanized mouse model.

    PubMed

    Zheng, Ming-Jie; Wang, Jue; Xu, Lu; Zha, Xiao-Ming; Zhao, Yi; Ling, Li-Jun; Wang, Shui

    2015-02-01

    During the past decades, many efforts have been made in mimicking the clinical progress of human cancer in mouse models. Previously, we developed a human breast tissue-derived (HB) mouse model. Theoretically, it may mimic the interactions between "species-specific" mammary microenvironment of human origin and human breast cancer cells. However, detailed evidences are absent. The present study (in vivo, cellular, and molecular experiments) was designed to explore the regulatory role of human mammary microenvironment in the progress of human breast cancer cells. Subcutaneous (SUB), mammary fat pad (MFP), and HB mouse models were developed for in vivo comparisons. Then, the orthotopic tumor masses from three different mouse models were collected for primary culture. Finally, the biology of primary cultured human breast cancer cells was compared by cellular and molecular experiments. Results of in vivo mouse models indicated that human breast cancer cells grew better in human mammary microenvironment. Cellular and molecular experiments confirmed that primary cultured human breast cancer cells from HB mouse model showed a better proliferative and anti-apoptotic biology than those from SUB to MFP mouse models. Meanwhile, primary cultured human breast cancer cells from HB mouse model also obtained the migratory and invasive biology for "species-specific" tissue metastasis to human tissues. Comprehensive analyses suggest that "species-specific" mammary microenvironment of human origin better regulates the biology of human breast cancer cells in our humanized mouse model of breast cancer, which is more consistent with the clinical progress of human breast cancer.

  19. In vivo functional differences in microvascular response of 4T1 and Caki-1 tumors after treatment with OXi4503.

    PubMed

    Wankhede, Mamta; Dedeugd, Casey; Siemann, Dietmar W; Sorg, Brian S

    2010-03-01

    4T1 mouse mammary adenocarcinomas and Caki-1 human renal cell carcinomas grown in mouse dorsal window chambers were serially treated with the vascular disrupting agent (VDA) OXi4503 and their responses compared. The real-time in vivo response was assessed using spectral imaging of microvascular hemoglobin saturation. To our knowledge this is the first use of spectral imaging technology for investigation of vascular disrupting agents. Previous research showing tumor size dependence in the treatment response to VDAs suggested that for the size of tumors used in this study only a moderate response would be observed; however, the tumors unexpectedly had very different responses to treatment. Caki-1 tumors showed little permanent vessel damage and experienced transient vessel collapse with time-dependent oxygenation changes followed by recovery starting at 6 h after treatment. Caki-1 tumors did not manifest necrotic avascular regions even after repeated treatments. These results are consistent with those obtained using other imaging modalities and histology. In contrast, similarly sized 4T1 tumors showed extensive vessel disintegration, minor vascular collapse, and a drop in tumor oxygenation up to 6 h post-treatment, after which reperfusion of collapsed vessels and extensive vascular remodeling and neovascularization of the tumor rim occurred from 8-48 h. The completely disintegrated vessels did not recover and left behind avascular and apparently necrotic regions in the tumor core. Spectral imaging appears to be a useful technique for in vivo investigation of vascular disrupting agents. The differential responses of these two tumor-types suggest that further investigation of the mechanisms of action of VDAs and individual characterization of tumor VDA-responses may be needed for optimal clinical use of these agents.

  20. Mouse Model of Human Breast Cancer Initiated by a Fusion Oncogene

    DTIC Science & Technology

    2006-09-01

    AD_________________ Award Number: W81XWH-05-1-0502 TITLE: Mouse Model of Human Breast Cancer ...TYPE Final 3. DATES COVERED (From - To) 15 AUG 2005 - 14 AUG 2006 4. TITLE AND SUBTITLE Mouse Model of Human Breast Cancer Initiated by a Fusion...SUPPLEMENTARY NOTES 14. ABSTRACT: In this study, we generated a novel mouse model of human breast cancer based on a recurrent chromosomal

  1. Cytotoxicity and Apoptosis Induction of Ardisia crispa and Its Solvent Partitions against Mus musculus Mammary Carcinoma Cell Line (4T1)

    PubMed Central

    Nordin, Muhammad Luqman; Zakaria, Zainul Amiruddin; Othman, Fauziah; Abdullah, Muhammad Nazrul Hakim

    2017-01-01

    This study was conducted to investigate the cytotoxicity and apoptosis effect of A. crispa extract and its solvent partition (ethyl acetate and aqueous extract) against Mus musculus mammary carcinoma cell line (4T1). The normal mouse fibroblast cell line (NIH3T3) was used as comparison for selective cytotoxicity properties. The cytotoxicity evaluation was assessed using MTT assay. AO/PI dual fluorescent staining assay and Annexin V-FITC were used for apoptosis analysis. Results showed that 80% methanol extract from leaves showed most promising antimammary cancer agent with IC50 value of 42.26 ± 1.82 μg/mL and selective index (SI) value of 10.22. Ethyl acetate was cytotoxic for both cancer and normal cell while aqueous extract exhibited poor cytotoxic effect. 4T1 cells labelled with AO/PI and Annexin V-FITC and treated with 80% methanol extract demonstrated that the extract induces apoptosis to 4T1 mammary cancer cells. In conclusion, 80% methanol extract of A. crispa was selectively cytotoxic towards 4T1 cells but less cytotoxic towards NIH3T3 cells and induced the cancerous cells into apoptotic stage as early as 6 hours.

  2. In vivo anticancer synergy mechanism of doxorubicin and verapamil combination treatment is impaired in BALB/c mice with metastatic breast cancer.

    PubMed

    McCarthy, Michelle; Auda, Gregory; Agrawal, Suchi; Taylor, Amy; Backstrom, Zack; Mondal, Debasis; Moroz, Krzysztof; Dash, Srikanta

    2014-08-01

    The development of resistance to anticancer drugs is a major unsolved problem in the chemotherapy treatment of metastatic breast cancer. We have shown that increased expression of P-glycoprotein (P-gp) prevented nuclear entry of the doxorubicin molecules into murine breast cancer cells (4T1-R) leading to doxorubicin chemoresistance. This study was performed to test whether inhibition of P-gp using verapamil could overcome doxorubicin chemoresistance and eliminate multiorgan metastasis 4T1-R cells in BALB/c mouse. The 4T1-R cells were treated with doxorubicin alone, verapamil alone, and a combination of both. Multiorgan metastasis of 4T1-R cells in the presence and in the absence of combination treatment was determined in the BALB/c mouse model. Verapamil induced nuclear translocation of doxorubicin, G2-phase growth arrest and synergistically induced 100% cytotoxicity in 4T1-R cells in culture. However, the combination treatment using verapamil and doxorubicin did not improve the overall survival of BALB/c mice with metastatic breast cancer. Our results indicate that the combination treatment of verapamil and doxorubicin did not inhibit tumor growth in the lungs and liver indicating that the anticancer synergy mechanism of verapamil and doxorubicin is impaired in vivo in BALB/c mouse model with metastatic breast cancer. We propose that understanding the mechanisms as to why the combination of doxorubicin and verapamil treatment was impaired in the mouse model should allow novel approaches to improve chemotherapy response of metastatic breast cancer.

  3. Inoculated Cell Density as a Determinant Factor of the Growth Dynamics and Metastatic Efficiency of a Breast Cancer Murine Model

    PubMed Central

    Gregório, Ana C.; Fonseca, Nuno A.; Moura, Vera; Lacerda, Manuela; Figueiredo, Paulo; Simões, Sérgio; Dias, Sérgio; Moreira, João Nuno

    2016-01-01

    4T1 metastatic breast cancer model have been widely used to study stage IV human breast cancer. However, the frequent inoculation of a large number of cells, gives rise to fast growing tumors, as well as to a surprisingly low metastatic take rate. The present work aimed at establishing the conditions enabling high metastatic take rate of the triple-negative murine 4T1 syngeneic breast cancer model. An 87% 4T1 tumor incidence was observed when as few as 500 cancer cells were implanted. 4T1 cancer cells colonized primarily the lungs with 100% efficiency, and distant lesions were also commonly identified in the mesentery and pancreas. The drastic reduction of the number of inoculated cells resulted in increased tumor doubling times and decreased specific growth rates, following a Gompertzian tumor expansion. The established conditions for the 4T1 mouse model were further validated in a therapeutic study with peguilated liposomal doxorubicin, in clinical used in the setting of metastatic breast cancer. Inoculated cell density was proven to be a key methodological aspect towards the reproducible development of macrometastases in the 4T1 mouse model and a more reliable pre-clinical assessment of antimetastatic therapies. PMID:27820870

  4. A Novel Gene Gun-Mediated IL-12 Gene Therapy for Breast Cancer

    DTIC Science & Technology

    1999-10-01

    The overall goal of our research is to develop an immunological approach for breast cancer gene therapy . The results of the first year study...described in our previous Annual Report, show that gene gun-mediated Th-12 gene therapy is effective against breast tumors in mouse models. During the second...effect of IL-l2 gene therapy against 4T1 tumor is not mediated by T cells, but rather involves NK cells. From several different immunomodulatory genes

  5. Estrous influence on surgical cure of a mouse breast cancer

    PubMed Central

    1988-01-01

    We have studied the effect of estrous stage, as reflected by vaginal cellularity, at the time of surgical resection of an estrogen receptor- bearing mammary adenocarcinoma upon the metastatic potential of that tumor in the C3HeB/FeJ mouse. Presence of the tumor prolonged the length of the estrous cycle by approximately 25% and removal of the tumor returned the cycle to its usual duration. Neither estrous stage at tumor implant nor size of tumor at resection (within a small range) had significant independent effects upon differences observed in the incidence of subsequent pulmonary metastases. However, estrous stage at time of surgical removal of the tumor, as reflected by cell types in vaginal smear, markedly affected whether or not metastases ultimately appeared. Because the estrous cycle in mice, comparable to the human menstrual cycle, reflects high-amplitude, rhythmic changes in hormone concentrations, it may be that the hormonal status of a women at the time of tumor resection is an important determinant of whether or not that breast cancer ultimately metastasizes. PMID:3397703

  6. Downregulation of survivin expression exerts antitumoral effects on mouse breast cancer cells in vitro and in vivo

    PubMed Central

    MA, WEN-HUI; LIU, YONG-CHAO; XUE, MEI-LAN; ZHENG, ZHENG; GE, YIN-LIN

    2016-01-01

    Metastasis constantly occurs in the majority of cases of primary breast cancer at late stage or following surgical treatment. Survivin, a member of the inhibitor of apoptosis protein family, has long been recognized as a promising anticancer target, but its antitumor effects remain largely unexplored. In order to elucidate the role of survivin in breast cancer metastasis, short interfering RNA (siRNA) was used in the present study to specifically downregulate survivin expression in the murine breast cancer cell line 4T1. The results demonstrated that blocking the expression of survivin by siRNA inhibited the proliferation, migration and invasion abilities of murine breast cancer cells in vitro. Vascular endothelial growth factor (VEGF)-C is a lymphatic endothelial cell-stimulating factor that may lead to the formation of lymphatic vessels in lymph nodes. In the present study, the inhibition of survivin by siRNA was able to reduce the overexpression of VEGF-C in 4T1 cells. Furthermore, intratumoral injections of the survivin-siRNA significantly inhibited the growth of orthotopically transplanted 4T1 tumors in vivo. In addition, the number of pulmonary metastases and the microlymphatic vessel density were significantly reduced in vivo, following transfection with survivin-siRNA. The results of the present study suggested that the Akt/hypoxia-inducible factor-1α signaling pathway participates in the survivin-mediated downregulation of VEGF-C expression observed in breast cancer cells treated with survivin-siRNA. Therefore, the use of siRNA specifically targeting survivin may be a potential anticancer method in the future. PMID:26870183

  7. A Novel Gene Gun-Mediated IL-12 Gene Therapy for Breast Cancer

    DTIC Science & Technology

    1999-01-01

    gene therapy . The results of the first year study, described in our previous Annual Report, show that gene gun-mediated IL-12 gene therapy is effective against breast tumors in mouse models. During the second year of this study we demonstrated that 4T1 tumor is weakly immunogenic, and it can induce a low level immune response. However, the anti-metastatic effect of IL-12 gene therapy against 4T1 tumor is not mediated by T cells, but rather involves NK cells. From several different immunomidulatory genes tested in combination with

  8. Serotonin transporter antagonists target tumor-initiating cells in a transgenic mouse model of breast cancer

    PubMed Central

    Hallett, Robin M.; Girgis-Gabardo, Adele; Gwynne, William D.; Giacomelli, Andrew O.; Bisson, Jennifer N.P.; Jensen, Jeremy E.; Dvorkin-Gheva, Anna; Hassell, John A.

    2016-01-01

    Accumulating data suggests that the initiation and progression of human breast tumors is fueled by a rare subpopulation of tumor cells, termed breast tumor-initiating cells (BTIC), which resist radiotherapy and chemotherapy. Consequently, therapies that abrogate BTIC activity are needed to achieve durable cures for breast cancer patients. To identify such therapies we used a sensitive assay to complete a high-throughput screen of small molecules, including approved drugs, with BTIC-rich mouse mammary tumor cell populations. We found that inhibitors of the serotonin reuptake transporter (SERT) and serotonin receptors, which include approved drugs used to treat mood disorders, were potent inhibitors of mouse BTIC activity as determined by functional sphere-forming assays and the initiation of tumor formation by transplant of drug-exposed tumor cells into syngeneic mice. Moreover, sertraline (Zoloft), a selective serotonin reuptake inhibitor (SSRI), synergized with docetaxel (Taxotere) to shrink mouse breast tumors in vivo. Hence drugs targeting the serotonergic system might be repurposed to treat breast cancer patients to afford more durable breast cancer remissions. PMID:27447971

  9. Serum inhibits the immunosuppressive function of myeloid-derived suppressor cells isolated from 4T1 tumor-bearing mice.

    PubMed

    Hamilton, Melisa J; Banáth, Judit P; Lam, Vivian; Lepard, Nancy E; Krystal, Gerald; Bennewith, Kevin L

    2012-05-01

    As more groups investigate the role of myeloid-derived suppressor cells (MDSCs) in promoting the growth of primary tumors and distant tumor metastases, it is imperative to ensure the accurate detection and quantification of MDSC immunosuppression ex vivo. MDSCs are defined by their ability to suppress immune responses. Although different in vitro culture conditions have been used to study MDSCs, the effect of different culture conditions on MDSC immunosuppression is unknown. We therefore isolated MDSCs from the lungs and spleens of 4T1 murine mammary tumor-bearing mice and assayed MDSC-mediated suppression of T cell responses under different culture conditions. We found that 4T1-induced MDSCs effectively suppressed T cell proliferation under serum-free conditions, but not when fetal calf serum (FCS) was present. FCS neither altered the immunosuppressive activities of other myeloid cell types (i.e., peritoneal or tumor-associated macrophages) nor modified the susceptibility of T cells to myeloid cell-mediated suppression, but instead acted directly on 4T1-induced MDSCs to significantly reduce their immunosuppressive function. Importantly, we found that bovine serum albumin was a major contributor to the antagonistic effects of FCS on 4T1-induced MDSC immunosuppression by inhibiting reactive oxygen species production from MDSCs. This work reveals that in vitro culture conditions influence the immunosuppressive properties of MDSCs and highlights the importance of testing different culture conditions on MDSC phenotype to ensure that MDSC immunosuppression is not being masked. These data have important implications for the accurate detection and identification of MDSCs, as well as for determining the influence of MDSC-mediated immunosuppression on primary and metastatic tumor growth.

  10. Therapeutic application of injectable thermosensitive hydrogel in preventing local breast cancer recurrence and improving incision wound healing in a mouse model.

    PubMed

    Lei, Na; Gong, ChangYang; Qian, ZhiYong; Luo, Feng; Wang, Cheng; Wang, HeLan; Wei, YuQuan

    2012-09-21

    Many drug delivery systems (DDSs) have been investigated for local targeting of malignant disease with the intention of increasing anti-tumor activity and minimizing systemic toxicity. An injectable thermosensitive hydrogel was applied to prevent locoregional recurrence of 4T1 breast cancer in a mouse model. The presented hydrogel, which is based on poly(ethyleneglycol)-poly(ε-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE), flows freely at normal temperature, forms a gel within seconds in situ at body temperature, and eventually releases the drug in a consistent and sustained fashion as it gradually biodegrades. Locoregional recurrence after primary tumor removal was significantly inhibited in mice treated with the paclitaxel (PTX)-loaded PECE hydrogel subcutaneously (9.1%) administered, compared with the blank hydrogel (80.0%), systemic (77.8%) and locally (75.0%) administered PTX, and the control group (100%) (P < 0.01). In addition, tensile strength measurements of the surgical incisions showed that the PECE hydrogel accelerates wound healing at postoperative day 7 (P < 0.05), and days 4 and 14 (P > 0.05), in agreement with histopathological examinations. This novel DDSs represents a promising approach for local adjuvant therapy in malignant disease.

  11. Breast cancer incidence highest in the range of one species of house mouse, Mus domesticus

    PubMed Central

    Stewart, T H M; Sage, R D; Stewart, A F R; Cameron, D W

    2000-01-01

    Incidence of human breast cancer (HBC) varies geographically, but to date no environmental factor has explained this variation. Previously, we reported a 44% reduction in the incidence of breast cancer in women fully immunosuppressed following organ transplantation (Stewart et al (1995) Lancet346: 796–798). In mice infected with the mouse mammary tumour virus (MMTV), immunosuppression also reduces the incidence of mammary tumours. DNA with 95% identity to MMTV is detected in 40% of human breast tumours (Wang et al (1995) Cancer Res55: 5173–5179). These findings led us to ask whether the incidence of HBC could be correlated with the natural ranges of different species of wild mice. We found that the highest incidence of HBC worldwide occurs in lands where Mus domesticus is thse resident native or introduced species of house mouse. Given the similar responses of humans and mice to immunosuppression, the near identity between human and mouse MTV DNA sequences, and the close association between HBC incidence and mouse ranges, we propose that humans acquire MMTV from mice. This zoonotic theory for a mouse-viral cause of HBC allows testable predictions and has potential importance in prevention. © 2000 Cancer Research Campaign PMID:10646903

  12. Expression of Cadherin-17 Promotes Metastasis in a Highly Bone Marrow Metastatic Murine Breast Cancer Model

    PubMed Central

    Kurabayashi, Atsushi; Furihata, Mutsuo

    2017-01-01

    We previously established 4T1E/M3 highly bone marrow metastatic mouse breast cancer cells through in vivo selection of 4T1 cells. But while the incidence of bone marrow metastasis of 4T1E/M3 cells was high (~80%) when injected intravenously to mice, it was rather low (~20%) when injected subcutaneously. Therefore, using 4T1E/M3 cells, we carried out further in vitro and in vivo selection steps to establish FP10SC2 cells, which show a very high incidence of metastasis to lungs (100%) and spines (85%) after subcutaneous injection into mice. qRT-PCR and western bolt analysis revealed that cadherin-17 gene and protein expression were higher in FP10SC2 cells than in parental 4T1E/M3 cells. In addition, immunostaining revealed the presence of cadherin-17 at sites of bone marrow and lung metastasis after subcutaneous injection of FP10SC2 cells into mice. Suppressing cadherin-17 expression in FP10SC2 cells using RNAi dramatically decreased the cells' anchorage-independent growth and migration in vitro and their metastasis to lung and bone marrow in vivo. These findings suggest that cadherin-17 plays a crucial role in mediating breast cancer metastasis to bone marrow. PMID:28197418

  13. Aptamer-conjugated Magnetic Nanoparticles as Targeted Magnetic Resonance Imaging Contrast Agent for Breast Cancer

    PubMed Central

    Keshtkar, Mohammad; Shahbazi-Gahrouei, Daryoush; Khoshfetrat, Seyyed Mehdi; Mehrgardi, Masoud A.; Aghaei, Mahmoud

    2016-01-01

    Early detection of breast cancer is the most effective way to improve the survival rate in women. Magnetic resonance imaging (MRI) offers high spatial resolution and good anatomic details, and its lower sensitivity can be improved by using targeted molecular imaging. In this study, AS1411 aptamer was conjugated to Fe3O4@Au nanoparticles for specific targeting of mouse mammary carcinoma (4T1) cells that overexpress nucleolin. In vitro cytotoxicity of aptamer-conjugated nanoparticles was assessed on 4T1 and HFFF-PI6 (control) cells. The ability of the synthesized nanoprobe to target specifically the nucleolin overexpressed cells was assessed with the MRI technique. Results show that the synthesized nanoprobe produced strongly darkened T2-weighted magnetic resonance (MR) images with 4T1 cells, whereas the MR images of HFFF-PI6 cells incubated with the nanoprobe are brighter, showing small changes compared to water. The results demonstrate that in a Fe concentration of 45 μg/mL, the nanoprobe reduced by 90% MR image intensity in 4T1 cells compared with the 27% reduction in HFFF-PI6 cells. Analysis of MR signal intensity showed statistically significant signal intensity difference between 4T1 and HFFF-PI6 cells treated with the nanoprobe. MRI experiments demonstrate the high potential of the synthesized nanoprobe as a specific MRI contrast agent for detection of nucleolin-expressing breast cancer cells. PMID:28028501

  14. Fetoprotein Derived Short Peptide Coated Nanostructured Amphiphilic Surfaces for Targeting Mouse Breast Cancer Cells

    NASA Astrophysics Data System (ADS)

    Brown, Alexandra M.; Miranda-Alarćon, Yoliem S.; Knoll, Grant A.; Santora, Anthony M.; Banerjee, Ipsita A.

    In this work, self-assembled tumor targeting nanostructured surfaces were developed from a newly designed amphiphile by conjugating boc protected isoleucine with 2,2‧ ethylenedioxy bis ethylamine (IED). To target mouse mammary tumor cells, a short peptide sequence derived from the human alpha-fetoprotein (AFP), LSEDKLLACGEG was attached to the self-assembled nanostructures. Tumor targeting and cell proliferation were examined in the presence of nanoscale assemblies. To further obliterate mouse breast tumor cells, the chemotherapeutic drug tamoxifen was then entrapped into the nanoassemblies. Our studies indicated that the targeting systems were able to efficiently encapsulate and release tamoxifen. Cell proliferation studies showed that IED-AFP peptide loaded with tamoxifen decreased the proliferation of breast cancer cells while in the presence of the IED-AFP peptide nanoassemblies alone, the growth was relatively slower. In the presence of human dermal fibroblasts however cell proliferation continued similar to controls. Furthermore, the nanoscale assemblies were found to induce apoptosis in mouse breast cancer cells. To examine live binding interactions, SPR analysis revealed that tamoxifen encapsulated IED-AFP peptide nanoassemblies bound to the breast cancer cells more efficiently compared to unencapsulated assemblies. Thus, we have developed nanoscale assemblies that can specifically bind to and target tumor cells, with increased toxicity in the presence of a chemotherapeutic drug.

  15. Quantitation of fixative-induced morphologic and antigenic variation in mouse and human breast cancers.

    PubMed

    Cardiff, Robert D; Hubbard, Neil E; Engelberg, Jesse A; Munn, Robert J; Miller, Claramae H; Walls, Judith E; Chen, Jane Q; Velásquez-García, Héctor A; Galvez, Jose J; Bell, Katie J; Beckett, Laurel A; Li, Yue-Ju; Borowsky, Alexander D

    2013-04-01

    Quantitative Image Analysis (QIA) of digitized whole slide images for morphometric parameters and immunohistochemistry of breast cancer antigens was used to evaluate the technical reproducibility, biological variability, and intratumoral heterogeneity in three transplantable mouse mammary tumor models of human breast cancer. The relative preservation of structure and immunogenicity of the three mouse models and three human breast cancers was also compared when fixed with representatives of four distinct classes of fixatives. The three mouse mammary tumor cell models were an ER+/PR+ model (SSM2), a Her2+ model (NDL), and a triple negative model (MET1). The four breast cancer antigens were ER, PR, Her2, and Ki67. The fixatives included examples of (1) strong cross-linkers, (2) weak cross-linkers, (3) coagulants, and (4) combination fixatives. Each parameter was quantitatively analyzed using modified Aperio Technologies ImageScope algorithms. Careful pre-analytical adjustments to the algorithms were required to provide accurate results. The QIA permitted rigorous statistical analysis of results and grading by rank order. The analyses suggested excellent technical reproducibility and confirmed biological heterogeneity within each tumor. The strong cross-linker fixatives, such as formalin, consistently ranked higher than weak cross-linker, coagulant and combination fixatives in both the morphometric and immunohistochemical parameters.

  16. Cisplatin Prodrug-Conjugated Gold Nanocluster for Fluorescence Imaging and Targeted Therapy of the Breast Cancer

    PubMed Central

    Zhou, Fangyuan; Feng, Bing; Yu, Haijun; Wang, Dangge; Wang, Tingting; Liu, Jianping; Meng, Qingshuo; Wang, Siling; Zhang, Pengcheng; Zhang, Zhiwen; Li, Yaping

    2016-01-01

    Theranostic nanomedicine has emerged as a promising modality for cancer diagnosis and treatment. In this study, we report the fabrication of fluorescence gold nanoclusters (GNC) conjugated with a cisplatin prodrug and folic acid (FA) (FA-GNC-Pt) for fluorescence imaging and targeted chemotherapy of breast cancer. The physio-chemical properties of FA-GNC-Pt nanoparticles are thoroughly characterized by fluorescence/UV-Vis spectroscopic measurement, particle size and zeta-potential examination. We find that FA-modification significantly accelerated the cellular uptake and increased the cytotoxicity of GNC-Pt nanoparticles in murine 4T1 breast cancer cells. Fluorescence imaging in vivo using 4T1 tumor bearing nude mouse model shows that FA-GNC-Pt nanoparticles selectively accumulate in the orthotopic 4T1 tumor and generate strong fluorescence signal due to the tumor targeting effect of FA. Moreover, we demonstrate that FA-GNC-Pt nanoparticles significantly inhibit the growth and lung metastasis of the orthotopically implanted 4T1 breast tumors. All these data imply a good potential of the GNC-based theranostic nanoplatform for fluorescence tumor imaging and cancer therapy. PMID:27022415

  17. Cisplatin Prodrug-Conjugated Gold Nanocluster for Fluorescence Imaging and Targeted Therapy of the Breast Cancer.

    PubMed

    Zhou, Fangyuan; Feng, Bing; Yu, Haijun; Wang, Dangge; Wang, Tingting; Liu, Jianping; Meng, Qingshuo; Wang, Siling; Zhang, Pengcheng; Zhang, Zhiwen; Li, Yaping

    2016-01-01

    Theranostic nanomedicine has emerged as a promising modality for cancer diagnosis and treatment. In this study, we report the fabrication of fluorescence gold nanoclusters (GNC) conjugated with a cisplatin prodrug and folic acid (FA) (FA-GNC-Pt) for fluorescence imaging and targeted chemotherapy of breast cancer. The physio-chemical properties of FA-GNC-Pt nanoparticles are thoroughly characterized by fluorescence/UV-Vis spectroscopic measurement, particle size and zeta-potential examination. We find that FA-modification significantly accelerated the cellular uptake and increased the cytotoxicity of GNC-Pt nanoparticles in murine 4T1 breast cancer cells. Fluorescence imaging in vivo using 4T1 tumor bearing nude mouse model shows that FA-GNC-Pt nanoparticles selectively accumulate in the orthotopic 4T1 tumor and generate strong fluorescence signal due to the tumor targeting effect of FA. Moreover, we demonstrate that FA-GNC-Pt nanoparticles significantly inhibit the growth and lung metastasis of the orthotopically implanted 4T1 breast tumors. All these data imply a good potential of the GNC-based theranostic nanoplatform for fluorescence tumor imaging and cancer therapy.

  18. Mouse mammary tumor like virus sequences in breast milk from healthy lactating women.

    PubMed

    Johal, Harpreet; Ford, Caroline; Glenn, Wendy; Heads, Joy; Lawson, James; Rawlinson, William

    2011-08-01

    Mouse mammary tumor virus (MMTV) has been a long standing candidate as a potential cause of some human breast cancers. Forty years ago, electron microscopic images of MMTV-like particles were identified in milk from 5% of healthy lactating women. These observations, however, have not been confirmed by modern methods. The purpose of this study was to confirm the presence of MMTV-like DNA sequences in human milk from normal lactating women. Standard and in situ PCR analyses were conducted on DNA extracted from fresh breast milk samples collected from a group of 91 healthy lactating women volunteers. The MMTV-like viral positive PCR products were sequenced and a phylogenetic tree was constructed to compare these sequences. Immunohistochemistry analyses were performed on breast milk cells using polyclonal rabbit antibodies against affinity-purified MMTV envelope glycoproteins 52/36. MMTV-like envelope gene sequences were identified by PCR in 5% (4/91) of breast milk samples from healthy lactating women volunteers. These observations were confirmed by in situ PCR and immunohistochemistry using MMTV gp52/36 antibodies. These findings confirm the presence of MMTV-like gene sequences in human milk. As MMTV is transmitted via milk from mouse mothers to their newborn pups to cause mammary tumors when they become adults, this indicates a means of transmission of this virus in humans.

  19. Photodynamic therapy for breast cancer in a BALB/c mouse model

    PubMed Central

    Ahn, Tae-Gyu; Lee, Byoung-Rai; Choi, Eun-Young; Kim, Dong Won

    2012-01-01

    Objective Photodynamic therapy (PDT) has been used for superficial neoplasms and its usage has been recently extended to deeper lesions. The purpose of this study was to observe whether or not PDT can cure breast cancer in the solid tumor model, and to define the critical point of laser amount for killing the cancer cells. Methods Twenty four BALB/c mouse models with subcutaneous EMT6 mammary carcinomas were prepared. Mice were divided into eight groups depending on the amount of illumination, and the tumor size was between 8 mm and 10 mm. We began by peritoneal infiltration with a photosensitizer 48 hours prior to applying the laser light, and then we applied a non-thermal laser light. The energy was from 350 J/cm2 to 30 J/cm2 to the cancer. Results Regardless of the tumor size from 8 mm to 10 mm, all mice apparently showed positive results via PDT. We also did not find any recurrence over 90 J/cm2. In all models, the color of the breast cancer lesions began to vary to dark on 2 days post PDT and the tumor regression began simultaneously. Also, we confirmed the complete regression of the breast cancer 21 days after PDT. Conclusion We confirmed that PDT may treat breast cancers that are sized less 10 mm in mouse models. The moderate energy to destruct the breast cancer cells may be 90 J/cm2. Therefore, we can expcect that PDT may be utilized to treat breast cancer, but we need more experience, skills and processing for clinical trials. PMID:22523628

  20. IMP1, an mRNA binding protein that reduces the metastatic potential of breast cancer in a mouse model

    PubMed Central

    Nwokafor, Chiso U.; Sellers, Rani S.; Singer, Robert H.

    2016-01-01

    Cells that are able to localize β-actin mRNA efficiently have decreased metastatic potential. Invasive carcinoma cells derived from primary mammary tumors have reduced levels of an RNA binding protein IMP1/ZBP1/IGF2BP1, required for β-actin mRNA localization. We showed previously that in human breast carcinoma cells in vitro, this protein suppresses invasion. In this work we examined whether its re-expression can suppress breast cancer metastasis in a breast cancer mouse model. We developed a mouse conditionally expressing IMP1-GFP (hereinafter referred to as the IMP1 transgene) specifically in the mammary gland of a PYMT breast cancer mouse. We found that mice conditionally expressing the IMP1 transgene showed little or no metastases to the lungs from the primary tumor in contrast to PYMT mice not expressing IMP1, which uniformly develop metastases at an early stage. PMID:27655671

  1. Detection and identification of mouse mammary tumor virus-like DNA sequences in blood and breast tissues of breast cancer patients.

    PubMed

    Naushad, Wasifa; Bin Rahat, Talha; Gomez, Miriam Kathleen; Ashiq, Muhammad Taimoor; Younas, Muhammad; Sadia, Hajra

    2014-08-01

    Mouse mammary tumor virus (MMTV) is a well-known cause of mammary tumors in mice transmitted as endogenous proviruses or exogenously as infectious virions. The hypothesis that a retrovirus homologous to MMTV is involved in human breast cancers has resulted in renewed interest in the etiology of human breast cancer. Therefore, the detection of MMTV-like exogenous sequences in 30-40 % of invasive breast cancer has increased attention towards this hypothesis. To detect the prevalence of MMTV in Pakistani population, 666-bp-long MMTV envelop and 630-bp LTR sequences were amplified from breast cancer patient samples (tissue biopsies and peripheral blood) using mouse with mammary tumor as control. MMTV-like virus env and LTR DNA sequences were detected in 20 and 26 % of breast tumor samples, respectively, from the total of 80 breast cancer patients' blood and tissue samples. No significant association was observed between age, grade of disease, and lymph node involvement with the prevalence of MMTV-like sequences. Our data add to the growing number of studies implicating MMTV-like virus in human breast cancer, but still clear causal association of MMTV to breast cancer remains to be reputable.

  2. Variable epitope library carrying heavily mutated survivin-derived CTL epitope variants as a new class of efficient vaccine immunogen tested in a mouse model of breast cancer

    PubMed Central

    NoeDominguez-Romero, Allan; Zamora-Alvarado, Rubén; Servín-Blanco, Rodolfo; Pérez-Hernández, Erendira G; Castrillon-Rivera, Laura E; Munguia, Maria Elena; Acero, Gonzalo; Govezensky, Tzipe; Gevorkian, Goar; Manoutcharian, Karen

    2014-01-01

    The antigenic variability of tumor cells leading to dynamic changes in cancer epitope landscape along with escape from immune surveillance by down-regulating tumor antigen expression/presentation and immune tolerance are major obstacles for the design of effective vaccines. We have developed a novel concept for immunogen construction based on introduction of massive mutations within the epitopes targeting antigenically variable pathogens and diseases. Previously, we showed that these immunogens carrying large combinatorial libraries of mutated epitope variants, termed as variable epitope libraries (VELs), induce potent, broad and long lasting CD8+IFN-γ+ T-cell response as well as HIV-neutralizing antibodies. In this proof-of-concept study, we tested immunogenic properties and anti-tumor effects of the VELs bearing survivin-derived CTL epitope (GWEPDDNPI) variants in an aggressive metastatic mouse 4T1 breast tumor model. The constructed VELs had complexities of 10,500 and 8,000 individual members, generated as combinatorial M13 phage display and synthetic peptide libraries, respectively, with structural composition GWXPXDXPI, where X is any of 20 natural amino acids. Statistically significant tumor growth inhibition was observed in BALB/c mice immunized with the VELs in both prophylactic and therapeutic settings. Vaccinated mice developed epitope-specific spleen cell and CD8+ IFN-γ+ T-cell responses that recognize more than 50% of the panel of 87 mutated epitope variants, as demonstrated in T-cell proliferation assays and FACS analysis. These data indicate the feasibility of the application of this new class of immunogens based on VEL concept as an alternative approach for the development of molecular vaccines against cancer. PMID:25483665

  3. Variable epitope library carrying heavily mutated survivin-derived CTL epitope variants as a new class of efficient vaccine immunogen tested in a mouse model of breast cancer.

    PubMed

    NoeDominguez-Romero, Allan; Zamora-Alvarado, Rubén; Servín-Blanco, Rodolfo; Pérez-Hernández, Erendira G; Castrillon-Rivera, Laura E; Munguia, Maria Elena; Acero, Gonzalo; Govezensky, Tzipe; Gevorkian, Goar; Manoutcharian, Karen

    2014-01-01

    The antigenic variability of tumor cells leading to dynamic changes in cancer epitope landscape along with escape from immune surveillance by down-regulating tumor antigen expression/presentation and immune tolerance are major obstacles for the design of effective vaccines. We have developed a novel concept for immunogen construction based on introduction of massive mutations within the epitopes targeting antigenically variable pathogens and diseases. Previously, we showed that these immunogens carrying large combinatorial libraries of mutated epitope variants, termed as variable epitope libraries (VELs), induce potent, broad and long lasting CD8+IFN-γ+ T-cell response as well as HIV-neutralizing antibodies. In this proof-of-concept study, we tested immunogenic properties and anti-tumor effects of the VELs bearing survivin-derived CTL epitope (GWEPDDNPI) variants in an aggressive metastatic mouse 4T1 breast tumor model. The constructed VELs had complexities of 10,500 and 8,000 individual members, generated as combinatorial M13 phage display and synthetic peptide libraries, respectively, with structural composition GWXPXDXPI, where X is any of 20 natural amino acids. Statistically significant tumor growth inhibition was observed in BALB/c mice immunized with the VELs in both prophylactic and therapeutic settings. Vaccinated mice developed epitope-specific spleen cell and CD8+ IFN-γ+ T-cell responses that recognize more than 50% of the panel of 87 mutated epitope variants, as demonstrated in T-cell proliferation assays and FACS analysis. These data indicate the feasibility of the application of this new class of immunogens based on VEL concept as an alternative approach for the development of molecular vaccines against cancer.

  4. Inhibitory effect of MyoD on the proliferation of breast cancer cells

    PubMed Central

    CAI, CHANGJING; QIN, XIAOQUN; WU, ZIYI; SHEN, QIXIA; YANG, WENQIAN; ZHANG, SHUJUN; DUAN, JINLING; LIANG, FENGLAN; LIU, CHI

    2016-01-01

    Skeletal muscle is rich in lymphatic vessels, with an abundant blood supply, and it is an infrequent site of cancer metastasis. Previous studies have demonstrated that enhanced secretion of MyoD may occur when skeletal muscle is injured or becomes cancerous. It was hypothesized that MyoD may act as an endogenous cytokine to inhibit the proliferation of cancer cells. To verify the possible effect of this protein on tumor cell proliferation, C2C12 mouse skeletal muscle cells and 4T1 mouse breast cancer cells were co-cultured using embedded Transwell plates. Following co-culture, cell cycle analysis revealed that C2C12 muscle cells were able to inhibit the proliferation of the breast cancer cells. Subsequently, MyoD was silenced in C2C12 cells to assess its effect on 4T1 cell proliferation. Following co-culture with MyoD-silenced cells, a 5-ethynyl-20-deoxyuridine assay indicated that MyoD silencing prevented the reduction in proliferation of 4T1 cells induced by untransfected C2C12 cells. In summary, the results indicated that MyoD inhibits the proliferation of breast cancer cells and may be a tumor suppressor factor. PMID:27284360

  5. Proteome and Transcriptome Profiles of a Her2/Neu-driven Mouse Model of Breast Cancer

    SciTech Connect

    Schoenherr, Regine M.; Kelly-Spratt, Karen S.; Lin, Chen Wei; Whiteaker, Jeffrey R.; Liu, Tao; Holzman, Ted; Coleman, Ilsa; Feng, Li-Chia; Lorentzen, Travis D.; Krasnoselsky, Alexei L.; Wang, Pei; Liu, Yan; Gurley, Kay E.; Amon, Lynn M.; Schepmoes, Athena A.; Moore, Ronald J.; Camp, David G.; Chodosh, Lewis A.; Smith, Richard D.; Nelson, Peter S.; McIntosh, Martin; Kemp, Christopher; Paulovich, Amanda G.

    2011-04-01

    In recent years, mouse models have proven to be invaluable in expanding our understanding of cancer biology. We have amassed a tremendous amount of proteomics and transcriptomics data profiling blood and tissues from a Her2-driven mouse model of breast cancer that closely recapitulates the pathology and natural history of human breast cancer. The purpose of this report is to make all of these data publicly available in raw and processed forms, as a resource to the community. Importantly, high quality biospecimens from this same mouse model are freely available through a sample repository that we established, so researchers can readily obtain samples to test biological hypotheses without the need of breeding animals and collecting biospecimens. Specifically, six proteomics and six transcriptomics datasets are available, with the former encompassing 841 liquid chromatography-tandem mass spectrometry (LC-MS/MS) experiments of both plasma and tissue samples, and the latter including 255 individual microarray analyses of five different tissue types (thymus, spleen, liver, blood cells, and breast ± laser capture microdissection). A total of 18,880 unique peptides were identified with a PeptideProphet error rate ≤1%, with 3884 non-redundant protein groups identified in five plasma datasets, and 1659 non-redundant protein groups in a tissue dataset (4977 non-redundant protein groups in total). We anticipate that these data will be of use to the community for software tool development, investigations of analytical variation in MS/MS data, development of quality control tools (multiple technical replicates are provided for a subset of the data), empirical selection of proteotypic peptides for multiple reaction monitoring mass spectrometry, and for advancing our understanding of cancer biology.

  6. Targeted delivery of doxorubicin to breast cancer cells by aptamer functionalized DOTAP/DOPE liposomes.

    PubMed

    Song, Xingli; Ren, Yi; Zhang, Jing; Wang, Gang; Han, Xuedong; Zheng, Wei; Zhen, Linlin

    2015-10-01

    Doxorubicin is used to treat numerous types of tumors including breast cancer, yet dose-associated toxicities limit its clinical application. Here, we demonstrated a novel strategy by which to deliver doxorubicin to breast cancer cells by conjugating cancer cell-specific single-strand DNA aptamers with doxorubicin-encapsulated DOTAP:DOPE nanoparticles (NPs). We utilizing a whole-cell-SELEX strategy, and 4T1 cells with high invasive and metastatic potential were used as target cells, while non-invasive and non-metastatic 67NR cells were used as subtractive cells. Ten potential aptamers were generated after multi-pool selection. Studies on the selected aptamers revealed that SRZ1 had the highest and specific binding affinity to 4T1 cells. Then we developed SRZ1 aptamer-carried DOTAP:DOPE-DOX NPs. In vitro uptake results which were conducted by FACS indicated that the aptamer significantly promoted the uptake efficiency of DOTAP:DOPE-DOX NPs by 4T1 cells. ATPlite assay was performed to test 4T1, 67NR and NMuMG cell viability after treatment with free doxorubicin, DOTAP:DOPE-DOX particles and aptamer‑loaded DOTAP:DOPE-DOX particles. As expected, the aptamers effectively enhanced accumulation of doxorubicin in the 4T1 tumor tissues as determined by in vivo mouse body images and biodistribution analysis. Consistent with the in vitro findings, aptamer-conjugated doxorubicin-loaded DOTAP:DOPE particles markedly suppressed tumor growth and significantly increased the survival rate of 4T1 tumor-bearing mice. These studies demonstrated that aptamer SRZ1 could be a promising molecule for chemotherapeutic drug targeting deliver.

  7. Imaging exosome transfer from breast cancer cells to stroma at metastatic sites in orthotopic nude-mouse models.

    PubMed

    Suetsugu, Atsushi; Honma, Kimi; Saji, Shigetoyo; Moriwaki, Hisataka; Ochiya, Takahiro; Hoffman, Robert M

    2013-03-01

    Exosomes play an important role in cell-to-cell communication to promote tumor metastasis. In order to image the fate of cancer-cell-derived exosomes in orthotopic nude mouse models of breast cancer, we used green fluorescent protein (GFP)-tagged CD63, which is a general marker of exosomes. Breast cancer cells transferred their own exosomes to other cancer cells and normal lung tissue cells in culture. In orthotopic nude-mouse models, breast cancer cells secreted exosomes into the tumor microenvironment. Tumor-derived exosomes were incorporated into tumor-associated cells as well as circulating in the blood of mice with breast cancer metastases. These results suggest that tumor-derived exosomes may contribute to forming a niche to promote tumor growth and metastasis. Our results demonstrate the usefulness of GFP imaging to investigate the role of exosomes in cancer metastasis.

  8. Modeling Prolactin Actions in Breast Cancer in vivo: Insights from the NRL-PRL Mouse

    PubMed Central

    O'Leary, Kathleen A.; Shea, Michael P.; Schuler, Linda A.

    2016-01-01

    Elevated exposure to prolactin is epidemiologically associated with an increased risk of aggressive ER+ breast cancer. To understand the underlying mechanisms and crosstalk with other oncogenic factors, we developed the NRL-PRL mouse. In this model, mammary expression of a rat prolactin transgene raises local exposure to prolactin without altering estrous cycling. Nulliparous females develop metastatic, histotypically diverse mammary carcinomas independent from ovarian steroids, and most are ER+. These characteristics resemble the human clinical disease, facilitating study of tumorigenesis, and identification of novel preventive and therapeutic approaches. PMID:25472540

  9. Tumor-induced inflammation in mammary adipose tissue stimulates a vicious cycle of autotaxin expression and breast cancer progression.

    PubMed

    Benesch, Matthew G K; Tang, Xiaoyun; Dewald, Jay; Dong, Wei-Feng; Mackey, John R; Hemmings, Denise G; McMullen, Todd P W; Brindley, David N

    2015-09-01

    Compared to normal tissues, many cancer cells overexpress autotaxin (ATX). This secreted enzyme produces extracellular lysophosphatidate, which signals through 6 GPCRs to drive cancer progression. Our previous work showed that ATX inhibition decreases 4T1 breast tumor growth in BALB/c mice by 60% for about 11 d. However, 4T1 cells do not produce significant ATX. Instead, the ATX is produced by adjacent mammary adipose tissue. We investigated the molecular basis of this interaction in human and mouse breast tumors. Inflammatory mediators secreted by breast cancer cells increased ATX production in adipose tissue. The increased lysophosphatidate signaling further increased inflammatory mediator production in adipose tissue and tumors. Blocking ATX activity in mice bearing 4T1 tumors with 10 mg/kg/d ONO-8430506 (a competitive ATX inhibitor, IC90 = 100 nM; Ono Pharma Co., Ltd., Osaka, Japan) broke this vicious inflammatory cycle by decreasing 20 inflammatory mediators by 1.5-8-fold in cancer-inflamed adipose tissue. There was no significant decrease in inflammatory mediator levels in fat pads that did not bear tumors. ONO-8430506 also decreased plasma TNF-α and G-CSF cytokine levels by >70% and leukocyte infiltration in breast tumors and adjacent adipose tissue by >50%. Hence, blocking tumor-driven inflammation by ATX inhibition is effective in decreasing tumor growth in breast cancers where the cancer cells express negligible ATX.

  10. Screening and analysis of breast cancer genes regulated by the human mammary microenvironment in a humanized mouse model

    PubMed Central

    Zheng, Mingjie; Wang, Jue; Ling, Lijun; Xue, Dandan; Wang, Shui; Zhao, Yi

    2016-01-01

    Tumor microenvironments play critical regulatory roles in tumor growth. Although mouse cancer models have contributed to the understanding of human tumor biology, the effectiveness of mouse cancer models is limited by the inability of the models to accurately present humanized tumor microenvironments. Previously, a humanized breast cancer model in severe combined immunodeficiency mice was established, in which human breast cancer tissue was implanted subcutaneously, followed by injection of human breast cancer cells. It was demonstrated that breast cancer cells showed improved growth in the human mammary microenvironment compared with a conventional subcutaneous mouse model. In the present study, the novel mouse model and microarray technology was used to analyze changes in the expression of genes in breast cancer cells that are regulated by the human mammary microenvironment. Humanized breast and conventional subcutaneous mouse models were established, and orthotopic tumor cells were obtained from orthotopic tumor masses by primary culture. An expression microarray using Illumina HumanHT-12 v4 Expression BeadChip and database analyses were performed to investigate changes in gene expression between tumors from each microenvironment. A total of 94 genes were differentially expressed between the primary cells cultured from the humanized and conventional mouse models. Significant upregulation of genes that promote cell proliferation and metastasis or inhibit apoptosis, such as SH3-domain binding protein 5 (BTK-associated), sodium/chloride cotransporter 3 and periostin, osteoblast specific factor, and genes that promote angiogenesis, such as KIAA1618, was also noted. Other genes that restrain cell proliferation and accelerate cell apoptosis, including tripartite motif containing TRIM36 and NES1, were downregulated. The present results revealed differences in various aspects of tumor growth and metabolism between the two model groups and indicated the functional

  11. Umbelliprenin is Potentially Toxic Against the HT29, CT26, MCF-7, 4T1, A172, and GL26 Cell Lines, Potentially Harmful Against Bone Marrow-Derived Stem Cells, and Non-Toxic Against Peripheral Blood Mononuclear Cells

    PubMed Central

    Rashidi, Mohsen; Ziai, Seyed Ali; Moini Zanjani, Taraneh; Khalilnezhad, Ahad; Jamshidi, Hamidreza; Amani, Davar

    2016-01-01

    Background Resistance to chemotherapy is a growing concern, thus natural anticancer agents are drawing the attention of many scientists and clinicians. One natural anticancer agent, umbelliprenin, is a coumarin produced by many species of Ferula. Objectives We aimed to examine the inhibitory effect of umbelliprenin on human and mouse bone marrow-derived stem cells (BMDSCs), peripheral blood mononuclear cells (PBMCs), and different cancer cell lines. Materials and Methods In this in vitro experimental study, the HT29, CT26, MCF-7, 4T1, A172, and GL26 cancer cells and human and mouse BMDSCs and PBMCs were cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS), incubated at 37°C for 24 hours in a 5% CO2 atmosphere, and then were treated with different concentrations of umbelliprenin dissolved in dimethyl sulfoxide (DMSO) (3, 6, 12, 25, 50, 100, and 200 µg/mL) for 24, 48, and 72 hours at 37°C. Each experiment was performed in triplicate. Finally, the cell survival rate was assessed by MTT assay. The IC50 values were calculated based on the log values using GraphPad Prism version 5 software for windows (La Jolla CA, USA) and were expressed as mean ± SEM. Results Umbelliprenin inhibited the cancer cells in a concentration-dependent (P < 0.05) but not time-dependent manner (P > 0.05). The most sensitive and resistant cell lines at the 24-hour incubation time were 4T1 (IC50, 30.9 ± 3.1 µg/mL) and A172 (IC50, 51.9 ± 6.7 µg/mL); at the 48-hour incubation time: 4T1 (IC50, 30.6 ± 2.6 µg/mL) and CT26 (IC50, 53.2 ± 3.6 µg/mL); and at the 72-hour incubation time: HT29 (IC50, 37.1 ± 1.4 µg/mL) and 4T1 (IC50, 62.2 ± 4.8 µg/mL). Both human and mouse BMDSCs showed the highest resistance at the 24-hour incubation time (IC50s, 254.7 ± 21 and 204.4 ± 4.5 µg/mL, respectively) and the highest sensitivity at the 72-hour incubation time (IC50s, 120.4 ± 5 and 159.0 ± 7.3 µg/mL, respectively). The PBMCs of both human and mouse origin revealed very

  12. Epstein-Barr Virus, Human Papillomavirus and Mouse Mammary Tumour Virus as Multiple Viruses in Breast Cancer

    PubMed Central

    Glenn, Wendy K.; Heng, Benjamin; Delprado, Warick; Iacopetta, Barry; Whitaker, Noel J.; Lawson, James S.

    2012-01-01

    Background The purpose of this investigation is to determine if Epstein Barr virus (EBV), high risk human papillomavirus (HPV), and mouse mammary tumour viruses (MMTV) co-exist in some breast cancers. Materials and Methods All the specimens were from women residing in Australia. For investigations based on standard PCR, we used fresh frozen DNA extracts from 50 unselected invasive breast cancers. For normal breast specimens, we used DNA extracts from epithelial cells from milk donated by 40 lactating women. For investigations based on in situ PCR we used 27 unselected archival formalin fixed breast cancer specimens and 18 unselected archival formalin fixed normal breast specimens from women who had breast reduction surgery. Thirteen of these fixed breast cancer specimens were ductal carcinoma in situ (dcis) and 14 were predominantly invasive ductal carcinomas (idc). Results EBV sequences were identified in 68%, high risk HPV sequences in 50%, and MMTV sequences in 78% of DNA extracted from 50 invasive breast cancer specimens. These same viruses were identified in selected normal and breast cancer specimens by in situ PCR. Sequences from more than one viral type were identified in 72% of the same breast cancer specimens. Normal controls showed these viruses were also present in epithelial cells in human milk – EBV (35%), HPV, 20%) and MMTV (32%) of 40 milk samples from normal lactating women, with multiple viruses being identified in 13% of the same milk samples. Conclusions We conclude that (i) EBV, HPV and MMTV gene sequences are present and co-exist in many human breast cancers, (ii) the presence of these viruses in breast cancer is associated with young age of diagnosis and possibly an increased grade of breast cancer. PMID:23183846

  13. Immunization of stromal cell targeting fibroblast activation protein providing immunotherapy to breast cancer mouse model.

    PubMed

    Meng, Mingyao; Wang, Wenju; Yan, Jun; Tan, Jing; Liao, Liwei; Shi, Jianlin; Wei, Chuanyu; Xie, Yanhua; Jin, Xingfang; Yang, Li; Jin, Qing; Zhu, Huirong; Tan, Weiwei; Yang, Fang; Hou, Zongliu

    2016-08-01

    Unlike heterogeneous tumor cells, cancer-associated fibroblasts (CAF) are genetically more stable which serve as a reliable target for tumor immunotherapy. Fibroblast activation protein (FAP) which is restrictively expressed in tumor cells and CAF in vivo and plays a prominent role in tumor initiation, progression, and metastasis can function as a tumor rejection antigen. In the current study, we have constructed artificial FAP(+) stromal cells which mimicked the FAP(+) CAF in vivo. We immunized a breast cancer mouse model with FAP(+) stromal cells to perform immunotherapy against FAP(+) cells in the tumor microenvironment. By forced expression of FAP, we have obtained FAP(+) stromal cells whose phenotype was CD11b(+)/CD34(+)/Sca-1(+)/FSP-1(+)/MHC class I(+). Interestingly, proliferation capacity of the fibroblasts was significantly enhanced by FAP. In the breast cancer-bearing mouse model, vaccination with FAP(+) stromal cells has significantly inhibited the growth of allograft tumor and reduced lung metastasis indeed. Depletion of T cell assays has suggested that both CD4(+) and CD8(+) T cells were involved in the tumor cytotoxic immune response. Furthermore, tumor tissue from FAP-immunized mice revealed that targeting FAP(+) CAF has induced apoptosis and decreased collagen type I and CD31 expression in the tumor microenvironment. These results implicated that immunization with FAP(+) stromal cells led to the disruption of the tumor microenvironment. Our study may provide a novel strategy for immunotherapy of a broad range of cancer.

  14. Paternal overweight is associated with increased breast cancer risk in daughters in a mouse model

    PubMed Central

    Fontelles, Camile Castilho; Carney, Elissa; Clarke, Johan; Nguyen, Nguyen M.; Yin, Chao; Jin, Lu; Cruz, M. Idalia; Ong, Thomas Prates; Hilakivi-Clarke, Leena; de Assis, Sonia

    2016-01-01

    While many studies have shown that maternal weight and nutrition in pregnancy affects offspring’s breast cancer risk, no studies have investigated the impact of paternal body weight on daughters’ risk of this disease. Here, we show that diet-induced paternal overweight around the time of conception can epigenetically reprogram father’s germ-line and modulate their daughters’ birth weight and likelihood of developing breast cancer, using a mouse model. Increased body weight was associated with changes in the miRNA expression profile in paternal sperm. Daughters of overweight fathers had higher rates of carcinogen-induced mammary tumors which were associated with delayed mammary gland development and alterations in mammary miRNA expression. The hypoxia signaling pathway, targeted by miRNAs down-regulated in daughters of overweight fathers, was activated in their mammary tissues and tumors. This study provides evidence that paternal peri-conceptional body weight may affect daughters’ mammary development and breast cancer risk and warrants further studies in other animal models and humans. PMID:27339599

  15. Paternal overweight is associated with increased breast cancer risk in daughters in a mouse model.

    PubMed

    Fontelles, Camile Castilho; Carney, Elissa; Clarke, Johan; Nguyen, Nguyen M; Yin, Chao; Jin, Lu; Cruz, M Idalia; Ong, Thomas Prates; Hilakivi-Clarke, Leena; de Assis, Sonia

    2016-06-24

    While many studies have shown that maternal weight and nutrition in pregnancy affects offspring's breast cancer risk, no studies have investigated the impact of paternal body weight on daughters' risk of this disease. Here, we show that diet-induced paternal overweight around the time of conception can epigenetically reprogram father's germ-line and modulate their daughters' birth weight and likelihood of developing breast cancer, using a mouse model. Increased body weight was associated with changes in the miRNA expression profile in paternal sperm. Daughters of overweight fathers had higher rates of carcinogen-induced mammary tumors which were associated with delayed mammary gland development and alterations in mammary miRNA expression. The hypoxia signaling pathway, targeted by miRNAs down-regulated in daughters of overweight fathers, was activated in their mammary tissues and tumors. This study provides evidence that paternal peri-conceptional body weight may affect daughters' mammary development and breast cancer risk and warrants further studies in other animal models and humans.

  16. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models

    PubMed Central

    Liu, Huiping; Patel, Manishkumar R.; Prescher, Jennifer A.; Patsialou, Antonia; Qian, Dalong; Lin, Jiahui; Wen, Susanna; Chang, Ya-Fang; Bachmann, Michael H.; Shimono, Yohei; Dalerba, Piero; Adorno, Maddalena; Lobo, Neethan; Bueno, Janet; Dirbas, Frederick M.; Goswami, Sumanta; Somlo, George; Condeelis, John; Contag, Christopher H.; Gambhir, Sanjiv Sam; Clarke, Michael F.

    2010-01-01

    To examine the role of breast cancer stem cells (BCSCs) in metastasis, we generated human-in-mouse breast cancer orthotopic models using patient tumor specimens, labeled with optical reporter fusion genes. These models recapitulate human cancer features not captured with previous models, including spontaneous metastasis in particular, and provide a useful platform for studies of breast tumor initiation and progression. With noninvasive imaging approaches, as few as 10 cells of stably labeled BCSCs could be tracked in vivo, enabling studies of early tumor growth and spontaneous metastasis. These advances in BCSC imaging revealed that CD44+ cells from both primary tumors and lung metastases are highly enriched for tumor-initiating cells. Our metastatic cancer models, combined with noninvasive imaging techniques, constitute an integrated approach that could be applied to dissect the molecular mechanisms underlying the dissemination of metastatic CSCs (MCSCs) and to explore therapeutic strategies targeting MCSCs in general or to evaluate individual patient tumor cells and predict response to therapy. PMID:20921380

  17. Hyperinsulinemia Promotes Metastasis to the Lung in a Mouse Model of Her2-mediated Breast Cancer

    PubMed Central

    Ferguson, Rosalyn; Gallagher, Emily; Cohen, Dara; Tobin-Hess, Aviva; Alikhani, Nyosha; Novosyadlyy, Ruslan; Haddad, Nadine; Yakar, Shoshana; LeRoith, Derek

    2014-01-01

    The Her2 oncogene is expressed in approximately 25% of human breast cancers and is associated with metastatic progression and poor outcome. Epidemiological studies report that breast cancer incidence and mortality rates are higher in women with type 2 diabetes. Here we use a mouse model of Her2-mediated breast cancer on a background of hyperinsulinemia to determine how elevated circulating insulin levels affect Her2-mediated primary tumor growth and lung metastasis. Hyperinsulinemic (MKR+/+) mice were crossed with doxycycline-inducible NeuNT (MTB/TAN) mice to produce the MTB/TAN/MKR+/+ mouse model. Both MTB/TAN and MTB/TAN/MKR+/+ mice were administered doxycycline in drinking water to induce NeuNT mammary tumor formation. In tumor tissues removed at two, four and six weeks of Neu-NT overexpression, we observed increased tumor mass and higher phosphorylation of the insulin receptor (IR)/insulin-like growth factor receptor 1 (IGF-1R), suggesting that activation of these receptors in conditions of hyperinsulinemia could contribute to the increased growth of mammary tumors. After 12 weeks on doxycycline, although no significant further increase in tumor weight was observed in MTB/TAN/MKR+/+ compared to MTB/TAN mice, the number of lung metastases was significantly higher in MTB/TAN/MKR+/+ mice compared to controls (MTB/TAN/MKR+/+ 16.41 ± 4.18 vs. MTB/TAN 5.36 ± 2.72). In tumors at the six week time-point, we observed an increase in vimentin, a cytoskeletal protein and marker of mesenchymal cells, associated with epithelial-to-mesenchymal transition and cancer associated fibroblasts. We conclude that hyperinsulinemia in MTB/TAN/MKR+/+ mice resulted in larger primary tumors, with more mesenchymal cells and therefore, more aggressive tumors with more numerous pulmonary metastases. PMID:23572162

  18. The protective effects of paeonol against epirubicin-induced hepatotoxicity in 4T1-tumor bearing mice via inhibition of the PI3K/Akt/NF-kB pathway.

    PubMed

    Wu, Jing; Xue, Xia; Zhang, Bin; Jiang, Wen; Cao, Hongmei; Wang, Rongmei; Sun, Deqing; Guo, Ruichen

    2016-01-25

    Epirubicin is widely used for the treatment of various breast cancers; however, it has serious adverse side effects, such as hepatotoxicity, which require dose-adjustment or therapy substitution. Paeonol, an active component from Moutan Cortex, has a variety of biological activities, including preventing or reducing various toxicities induced by antineoplastics. Protection by paeonol against hepatotoxicity induced by epirubicin and the underlying mechanism of action were investigated in this study. Cytosolic enzymes in the serum and oxidative stress indices in the liver were determined. The protective effects were determined using the MTT assay in vitro or by evaluating the expression of apoptotic factors and crucial proteins in the PI3K/Akt/NF-kB pathway using western blot analysis. It is concluded that paeonol alleviates epirubicin-induced hepatotoxicity in 4T1-tumor bearing mice by inhibiting the PI3K/Akt/NF-kB pathway.

  19. In-silico QTL mapping of postpubertal mammary ductal development in the mouse uncovers potential human breast cancer risk loci

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic background plays a dominant role in mammary gland development and breast cancer (BrCa). Despite this, the role of genetics is only partially understood. This study used strain-dependent variation in an inbred mouse mapping panel, to identify quantitative trait loci (QTL) underlying structura...

  20. The effects of a novel hormonal breast cancer therapy, endoxifen, on the mouse skeleton.

    PubMed

    Gingery, Anne; Subramaniam, Malayannan; Pitel, Kevin S; Reese, Jordan M; Cicek, Muzaffer; Lindenmaier, Laurence B; Ingle, James N; Goetz, Matthew P; Turner, Russell T; Iwaniec, Urszula T; Spelsberg, Thomas C; Hawse, John R

    2014-01-01

    Endoxifen has recently been identified as the predominant active metabolite of tamoxifen and is currently being developed as a novel hormonal therapy for the treatment of endocrine sensitive breast cancer. Based on past studies in breast cancer cells and model systems, endoxifen classically functions as an anti-estrogenic compound. Since estrogen and estrogen receptors play critical roles in mediating bone homeostasis, and endoxifen is currently being implemented as a novel breast cancer therapy, we sought to comprehensively characterize the in vivo effects of endoxifen on the mouse skeleton. Two month old ovariectomized C57BL/6 mice were treated with vehicle or 50 mg/kg/day endoxifen hydrochloride via oral gavage for 45 days. Animals were analyzed by dual-energy x-ray absorptiometry, peripheral quantitative computed tomography, micro-computed tomography and histomorphometry. Serum from control and endoxifen treated mice was evaluated for bone resorption and bone formation markers. Gene expression changes were monitored in osteoblasts, osteoclasts and the cortical shells of long bones from endoxifen treated mice and in a human fetal osteoblast cell line. Endoxifen treatment led to significantly higher bone mineral density and bone mineral content throughout the skeleton relative to control animals. Endoxifen treatment also resulted in increased numbers of osteoblasts and osteoclasts per tissue area, which was corroborated by increased serum levels of bone formation and resorption markers. Finally, endoxifen induced the expression of osteoblast, osteoclast and osteocyte marker genes. These studies are the first to examine the in vivo and in vitro impacts of endoxifen on bone and our results demonstrate that endoxifen increases cancellous as well as cortical bone mass in ovariectomized mice, effects that may have implications for postmenopausal breast cancer patients.

  1. Role of breast milk in a mouse model of maternal transmission of asthma susceptibility.

    PubMed

    Leme, Adriana S; Hubeau, Cedric; Xiang, Yuhong; Goldman, Alejandra; Hamada, Kaoru; Suzaki, Yasue; Kobzik, Lester

    2006-01-15

    Epidemiologic data suggest a link between nursing by asthmatic mothers and increased risk of allergy in babies. We sought to experimentally test the potential contribution of breast milk mediator(s) in a mouse model of maternal transmission of asthma risk by evaluating the effect of adoptive nursing on asthma susceptibility in the offspring. We measured airway hyperresponsiveness (AHR) and allergic airway inflammation (AI) after an intentionally suboptimal OVA Ag sensitization, tested the allergen independence of the maternal effect by using a second allergen, casein, for sensitization of the baby mice, and tested the potential role of cytokines by measuring their levels in breast milk. Offspring of asthmatic, but not normal, mothers showed AHR and AI, indicating a maternal transfer of asthma risk. After adoptive nursing, both groups (litters born to asthmatic mothers and nursed by normal mothers, and normal babies nursed by asthmatic mothers) showed AHR (enhanced pause after methacholine aerosol, 50 mg/ml, 3.7 +/- 0.7, 4.2 +/- 0.5, respectively, vs 1.1 +/- 0.1 normal controls, n = 25, p < 0.01) and AI, seen as eosinophilia on histology and bronchoalveolar lavage (40.7 +/- 4.5%, 28.7 +/- 3.7%, vs 1.0 +/- 0.5% normals, n = 25, p < 0.01) after OVA sensitization. Similar results using casein allergen were observed. Multiplex assays for cytokines (IFN-gamma, IL-2, IL-4, IL-5, TNF-alpha, and IL-13) in breast milk were negative. Breast milk is sufficient, but not necessary, to mediate allergen-independent maternal transmission of asthma risk to offspring.

  2. Enhancing photodynamic therapy of a metastatic mouse breast cancer by immune stimulation

    NASA Astrophysics Data System (ADS)

    Castano, Ana P.; Hamblin, Michael R.

    2006-02-01

    One in 8 women in the United States will develop breast cancer during her lifetime and 40,000 die each year. Deaths are due to tumors that have metastasized despite local control. Photodynamic therapy (PDT) is a promising cancer treatment in which a photosensitizer (PS) accumulates in tumors and is subsequently activated by visible light of an appropriate wavelength. The energy of the light is transferred to molecular oxygen to produce reactive oxygen species that produce cell death and tumor ablation. Mechanisms include cytotoxicity to tumor cells, shutting down of the tumor vasculature, and the induction of a host immune response. The precise mechanisms involved in the PDT-mediated induction of anti-tumor immunity are not yet understood. Potential contributing factors are alterations in the tumor microenvironment via stimulation of proinflammatory cytokines and direct effects of PDT on the tumor that increase immunogenicity. We have studied PDT of 410.4 variant 4T1 tumors growing in the mammary fat pad (orthotopic) in Balb/c mice and which produce metastasis. We have shown that a PDT regimen that produces vascular shutdown and tumor necrosis leads to initial tumor ablation but the tumors recur at the periphery. We studied the combination of PDT with immunostimulating therapies. Low dose cyclophosphamide (CY) is a specific mechanism to deplete the regulatory T cells (CD4+CD25+), these cells play an important role in the immunosuppression activity of tumors. In combination with PDT that produces release of tumor specific antigens, this immunostimulation may lead to generation of cytotoxic CD8 T-lymphocytes that recognize and destroy the tumor. The second alternative therapy is the use of a novel combination of the immunostimulant CpG oligodeoxynucleotides (CpG-ODN) and PDT. CpG-ODN is recognized by Toll-like receptor 9 and directly or indirectly triggers B cells, NK cells, monocyte-macrophages and dendritic cells to proliferate, mature and secrete cytokines

  3. Deletion of the amino acid transporter Slc6a14 suppresses tumour growth in spontaneous mouse models of breast cancer.

    PubMed

    Babu, Ellappan; Bhutia, Yangzom D; Ramachandran, Sabarish; Gnanaprakasam, Jaya P; Prasad, Puttur D; Thangaraju, Muthusamy; Ganapathy, Vadivel

    2015-07-01

    SLC6A14 mediates Na(+)/Cl(-)-coupled concentrative uptake of a broad-spectrum of amino acids. It is expressed at low levels in many tissues but up-regulated in certain cancers. Pharmacological blockade of SLC6A14 causes amino acid starvation in estrogen receptor positive (ER+) breast cancer cells and suppresses their proliferation in vitro and in vivo. In the present study, we interrogated the role of this transporter in breast cancer by deleting Slc6a14 in mice and monitoring the consequences of this deletion in models of spontaneous breast cancer (Polyoma middle T oncogene-transgenic mouse and mouse mammary tumour virus promoter-Neu-transgenic mouse). Slc6a14-knockout mice are viable, fertile and phenotypically normal. The plasma amino acids were similar in wild-type and knockout mice and there were no major compensatory changes in the expression of other amino acid transporter mRNAs. There was also no change in mammary gland development in the knockout mouse. However, when crossed with PyMT-Tg mice or MMTV/Neu (mouse mammary tumour virus promoter-Neu)-Tg mice, the development and progression of breast cancer were markedly decreased on Slc6a14(-/-) background. Analysis of transcriptomes in tumour tissues from wild-type mice and Slc6a14-null mice indicated no compensatory changes in the expression of any other amino acid transporter mRNA. However, the tumours from the null mice showed evidence of amino acid starvation, decreased mTOR signalling and decreased cell proliferation. These studies demonstrate that SLC6A14 is critical for the maintenance of amino acid nutrition and optimal mammalian target of rapamycin (mTOR) signalling in ER+ breast cancer and that the transporter is a potential target for development of a novel class of anti-cancer drugs targeting amino acid nutrition in tumour cells.

  4. Clinical applications of mouse models for breast cancer engaging HER2/neu

    PubMed Central

    Fry, Elizabeth A.; Taneja, Pankaj; Inoue, Kazushi

    2016-01-01

    Human c-ErbB2 (HER2) has long been used as a marker of breast cancer (BC) for sub-categorization for the prediction of prognosis, and determination of therapeutic strategies. HER2 overexpressing BCs are more invasive/metastatic; but patients respond to monoclonal antibody therapy with trastuzumab or tyrosine kinase inhibitors, at least at early stages. To date, numerous mouse models that faithfully reproduce HER2(+) BCs have been created in mice. We recently reviewed different mouse models of BC overexpressing wild type or mutant neu driven by MMTV, neu, or doxycycline-inducible promoters. These mice have been used to demonstrate the histopathology, oncogenic signaling pathways initiated by aberrant overexpression of HER2 in the mammary epithelium, and interaction between oncogenes and tumor suppressor genes at molecular levels. In this review, we focus on their clinical applications. They can be used to test the efficacy of HER(2) inhibitors before starting clinical trials, characterize the tumor-initiating cells that could be the cause of relapse after therapy as well as to analyze the molecular mechanisms of therapeutic resistance targeting HER2. MMTV-human ErbB2 (HER2) mouse models have recently been established since the monoclonal antibody to HER2 (trastuzumab; Herceptin®) does not recognize the rat neu protein. It has been reported that early intervention with HER2 monoclonal antibody would be beneficial for preventing mammary carcinogenesis. MDA-7/IL-24 as well as naturally-occurring chemicals have also been tested using MMTV-neu models. Recent studies have shown that MMTV-neu models are useful to develop vaccines to HER2 for immunotherapy. The mouse models employing HER2/neu will be essential for future antibody or drug screenings to overcome resistance to trastuzumab or HER(2)-specific tyrosine kinase inhibitors. PMID:28133539

  5. No association between Epstein-Barr Virus and Mouse Mammary Tumor Virus with Breast Cancer in Mexican Women

    PubMed Central

    Morales-Sánchez, Abigail; Molina-Muñoz, Tzindilú; Martínez-López, Juan L. E.; Hernández-Sancén, Paulina; Mantilla, Alejandra; Leal, Yelda A.; Torres, Javier; Fuentes-Pananá, Ezequiel M.

    2013-01-01

    Breast cancer is the most frequent malignancy affecting women worldwide. It has been suggested that infection by Epstein Barr Virus (EBV), Mouse Mammary Tumor Virus or a similar virus, MMTV-like virus (MMTV-LV), play a role in the etiology of the disease. However, studies looking at the presence of these viruses in breast cancer have produced conflicting results, and this possible association remains controversial. Here, we used polymerase chain reaction assay to screen specific sequences of EBV and MMTV-LV in 86 tumor and 65 adjacent tissues from Mexican women with breast cancer. Neither tumor samples nor adjacent tissue were positive for either virus in a first round PCR and only 4 tumor samples were EBV positive by a more sensitive nested PCR. Considering the study's statistical power, these results do not support the involvement of EBV and MMTV-LV in the etiology of breast cancer. PMID:24131889

  6. No association between Epstein-Barr Virus and Mouse Mammary Tumor Virus with Breast Cancer in Mexican Women

    NASA Astrophysics Data System (ADS)

    Morales-Sánchez, Abigail; Molina-Muñoz, Tzindilú; Martínez-López, Juan L. E.; Hernández-Sancén, Paulina; Mantilla, Alejandra; Leal, Yelda A.; Torres, Javier; Fuentes-Pananá, Ezequiel M.

    2013-10-01

    Breast cancer is the most frequent malignancy affecting women worldwide. It has been suggested that infection by Epstein Barr Virus (EBV), Mouse Mammary Tumor Virus or a similar virus, MMTV-like virus (MMTV-LV), play a role in the etiology of the disease. However, studies looking at the presence of these viruses in breast cancer have produced conflicting results, and this possible association remains controversial. Here, we used polymerase chain reaction assay to screen specific sequences of EBV and MMTV-LV in 86 tumor and 65 adjacent tissues from Mexican women with breast cancer. Neither tumor samples nor adjacent tissue were positive for either virus in a first round PCR and only 4 tumor samples were EBV positive by a more sensitive nested PCR. Considering the study's statistical power, these results do not support the involvement of EBV and MMTV-LV in the etiology of breast cancer.

  7. Intratumoral heterogeneity in a p53 null mouse model of human breast cancer

    PubMed Central

    Zhang, Mei; Tsimelzon, Anna; Chang, Chi-Hsuan; Fan, Cheng; Wolff, Andrew; Perou, Charles M.; Hilsenbeck, Susan G.; Rosen, Jeffrey M.

    2015-01-01

    Intratumoral heterogeneity correlates with clinical outcome and reflects the cellular complexity and dynamics within a tumor. Such heterogeneity is thought to contribute to radio- and chemoresistance since many treatments may only target certain tumor cell subpopulations. A better understanding of the functional interactions between various subpopulations of cells, therefore, may help in the development of effective cancer treatments. We identified a unique subpopulation of tumor cells expressing mesenchymal-like markers in a p53 null mouse model of basal-like breast cancer using fluorescence-activated cell sorting and microarray analysis. Both in vitro and in vivo experiments revealed the existence of crosstalk between these “mesenchymal-like” cells and tumor-initiating cells. Knockdown of genes encoding ligands upregulated in the mesenchymal cells and their corresponding receptors in the tumor-initiating cells resulted in reduced tumorigenicity and increased tumor latency. These studies illustrate the non-cell autonomous properties and importance of cooperativity between tumor subpopulations. PMID:25735774

  8. Selenium analogues of raloxifene as promising antiproliferative agents in treatment of breast cancer.

    PubMed

    Arsenyan, Pavel; Paegle, Edgars; Domracheva, Ilona; Gulbe, Anita; Kanepe-Lapsa, Iveta; Shestakova, Irina

    2014-11-24

    Synthetic protocols for the preparation of selenium analogues of raloxifene were elaborated. General aim of the current research is to improve the positive impact of selenium atom introduction in drug design. Antiproliferative activity on CCL-8 (mouse sarcoma), MDA-MB-435s (human melanoma), MES-SA (human uterus sarcoma), MCF-7 (human breast adenocarcinoma), HT-1080 (human fibrosarcoma), MG-22A (mouse hepatoma) tumor cell lines, and normal cell line NIH 3T3 (mouse fibroblasts) was studied. Influence of aminoethoxy "tail" and benzoyl group position on SAR was discussed. Results of in vivo studies on BALB/c female mice with 4T1 cell induced breast cancer model showed that selenium analogue of raloxifene is able to suppress estrogen-depending tumor growth.

  9. Mammary Stem Cell Based Somatic Mouse Models Reveal Breast Cancer Drivers Causing Cell Fate Dysregulation

    PubMed Central

    Zhang, Zheng; Christin, John R.; Wang, Chunhui; Ge, Kai; Oktay, Maja H.; Guo, Wenjun

    2016-01-01

    SUMMARY Cancer genomics have provided an unprecedented opportunity for understanding genetic causes of human cancer. However, distinguishing which mutations are functionally relevant to cancer pathogenesis remains a major challenge. We describe here a mammary stem cell (MaSC) organoid-based approach for rapid generation of somatic GEMMs (genetically engineered mouse models). By using RNAi and CRISPR-mediated genome engineering in MaSC-GEMMs, we have discovered that inactivation of Ptpn22 or Mll3, two genes mutated in human breast cancer, greatly accelerated PI3K-driven mammary tumorigenesis. Using these tumor models, we have also identified genetic alterations promoting tumor metastasis and causing resistance to PI3K-targeted therapy. Both Ptpn22 and Mll3 inactivation resulted in disruption of mammary gland differentiation and an increase in stem cell activity. Mechanistically, Mll3 deletion enhanced stem cell activity through activation of the HIF pathway. Thus, our study established a robust in vivo platform for functional cancer genomics and discovered functional breast cancer mutations. PMID:27653681

  10. The landscape of chromosomal aberrations in breast cancer mouse models reveals driver-specific routes to tumorigenesis

    PubMed Central

    Ben-David, Uri; Ha, Gavin; Khadka, Prasidda; Jin, Xin; Wong, Bang; Franke, Lude; Golub, Todd R.

    2016-01-01

    Aneuploidy and copy-number alterations (CNAs) are a hallmark of human cancer. Although genetically engineered mouse models (GEMMs) are commonly used to model human cancer, their chromosomal landscapes remain underexplored. Here we use gene expression profiles to infer CNAs in 3,108 samples from 45 mouse models, providing the first comprehensive catalogue of chromosomal aberrations in cancer GEMMs. Mining this resource, we find that most chromosomal aberrations accumulate late during breast tumorigenesis, and observe marked differences in CNA prevalence between mouse mammary tumours initiated with distinct drivers. Some aberrations are recurrent and unique to specific GEMMs, suggesting distinct driver-dependent routes to tumorigenesis. Synteny-based comparison of mouse and human tumours narrows critical regions in CNAs, thereby identifying candidate driver genes. We experimentally validate that loss of Stratifin (SFN) promotes HER2-induced tumorigenesis in human cells. These results demonstrate the power of GEMM CNA analysis to inform the pathogenesis of human cancer. PMID:27374210

  11. Licoricidin, an Active Compound in the Hexane/Ethanol Extract of Glycyrrhiza uralensis, Inhibits Lung Metastasis of 4T1 Murine Mammary Carcinoma Cells

    PubMed Central

    Park, So Young; Kwon, Soo Jin; Lim, Soon Sung; Kim, Jin-Kyu; Lee, Ki Won; Park, Jung Han Yoon

    2016-01-01

    Licorice extracts containing glycyrrhizin exhibit anti-carcinogenic properties. Because glycyrrhizin induces severe hypokalemia and hypertension, we prepared a hexane/ethanol extract of Glycyrrhiza uralensis (HEGU) that lacks glycyrrhizin, and showed that HEGU induces apoptosis and G1 cell cycle arrest and inhibits migration of DU145 human prostate cancer cells. Our previous in vitro studies identified two active components in HEGU: isoangustone A, which induces apoptosis and G1 cycle arrest, and licoricidin, which inhibits metastasis. This study examined whether HEGU and licoricidin inhibit metastasis using the 4T1 mammary cancer model. Both HEGU and licoricidin treatment reduced pulmonary metastasis and the expression of CD45, CD31, HIF-1α, iNOS, COX-2, and VEGF-A in tumor tissues. Additionally, a decrease in protein expression of VEGF-R2, VEGF-C, VEGF-R3, and LYVE-1 was noted in tumor tissues of licoricidin-treated mice. Furthermore, the blood concentrations of MMP-9, ICAM-1, VCAM-1, and VEGF-A were decreased in HEGU-treated mice. In vitro 4T1 cell culture results showed that both HEGU and licoricidin inhibited cell migration, MMP-9 secretion, and VCAM expression. The present study demonstrates that the licoricidin in HEGU inhibits lung metastasis of 4T1 mammary carcinoma cells, which may be mediated via inhibition of cancer cell migration, tumor angiogenesis, and lymphangiogenesis. PMID:27314329

  12. Licoricidin, an Active Compound in the Hexane/Ethanol Extract of Glycyrrhiza uralensis, Inhibits Lung Metastasis of 4T1 Murine Mammary Carcinoma Cells.

    PubMed

    Park, So Young; Kwon, Soo Jin; Lim, Soon Sung; Kim, Jin-Kyu; Lee, Ki Won; Park, Jung Han Yoon

    2016-06-14

    Licorice extracts containing glycyrrhizin exhibit anti-carcinogenic properties. Because glycyrrhizin induces severe hypokalemia and hypertension, we prepared a hexane/ethanol extract of Glycyrrhiza uralensis (HEGU) that lacks glycyrrhizin, and showed that HEGU induces apoptosis and G1 cell cycle arrest and inhibits migration of DU145 human prostate cancer cells. Our previous in vitro studies identified two active components in HEGU: isoangustone A, which induces apoptosis and G1 cycle arrest, and licoricidin, which inhibits metastasis. This study examined whether HEGU and licoricidin inhibit metastasis using the 4T1 mammary cancer model. Both HEGU and licoricidin treatment reduced pulmonary metastasis and the expression of CD45, CD31, HIF-1α, iNOS, COX-2, and VEGF-A in tumor tissues. Additionally, a decrease in protein expression of VEGF-R2, VEGF-C, VEGF-R3, and LYVE-1 was noted in tumor tissues of licoricidin-treated mice. Furthermore, the blood concentrations of MMP-9, ICAM-1, VCAM-1, and VEGF-A were decreased in HEGU-treated mice. In vitro 4T1 cell culture results showed that both HEGU and licoricidin inhibited cell migration, MMP-9 secretion, and VCAM expression. The present study demonstrates that the licoricidin in HEGU inhibits lung metastasis of 4T1 mammary carcinoma cells, which may be mediated via inhibition of cancer cell migration, tumor angiogenesis, and lymphangiogenesis.

  13. Stabilin-1 is expressed in human breast cancer and supports tumor growth in mammary adenocarcinoma mouse model

    PubMed Central

    Riabov, Vladimir; Yin, Shuiping; Song, Bin; Avdic, Aida; Schledzewski, Kai; Ovsiy, Ilja; Gratchev, Alexei; Verdiell, Maria Llopis; Sticht, Carsten; Schmuttermaier, Christina; Schönhaber, Hiltrud; Weiss, Christel; Fields, Alan P.; Simon-Keller, Katja; Pfister, Frederick; Berlit, Sebastian; Marx, Alexander; Arnold, Bernd; Goerdt, Sergij; Kzhyshkowska, Julia

    2016-01-01

    Stabilin-1 is a multifunctional scavenger receptor expressed on alternatively-activated macrophages. Stabilin-1 mediates phagocytosis of “unwanted-self” components, intracellular sorting, and endocytic clearance of extracellular ligands including SPARC that modulates breast cancer growth. The expression of stabilin-1 was found on tumor-associated macrophages (TAM) in mouse and human cancers including melanoma, lymphoma, glioblastoma, and pancreatic insulinoma. Despite its tumor-promoting role in mouse models of melanoma and lymphoma the expression and functional role of stabilin-1 in breast cancer was unknown. Here, we demonstrate that stabilin-1 is expressed on TAM in human breast cancer, and its expression is most pronounced on stage I disease. Using stabilin-1 knockout (ko) mice we show that stabilin-1 facilitates growth of mouse TS/A mammary adenocarcinoma. Endocytosis assay on stabilin-1 ko TAM demonstrated impaired clearance of stabilin-1 ligands including SPARC that was capable of inducing cell death in TS/A cells. Affymetrix microarray analysis on purified TAM and reporter assays in stabilin-1 expressing cell lines demonstrated no influence of stabilin-1 expression on intracellular signalling. Our results suggest stabilin-1 mediated silent clearance of extracellular tumor growth-inhibiting factors (e.g. SPARC) as a mechanism of stabilin-1 induced tumor growth. Silent clearance function of stabilin-1 makes it an attractive candidate for delivery of immunomodulatory anti-cancer therapeutic drugs to TAM. PMID:27105498

  14. Selective resistance to the PARP inhibitor olaparib in a mouse model for BRCA1-deficient metaplastic breast cancer

    PubMed Central

    Henneman, Linda; van Miltenburg, Martine H.; Michalak, Ewa M.; Braumuller, Tanya M.; Jaspers, Janneke E.; Drenth, Anne Paulien; de Korte-Grimmerink, Renske; Gogola, Ewa; Szuhai, Karoly; Schlicker, Andreas; Bin Ali, Rahmen; Pritchard, Colin; Huijbers, Ivo J.; Berns, Anton; Rottenberg, Sven; Jonkers, Jos

    2015-01-01

    Metaplastic breast carcinoma (MBC) is a rare histological breast cancer subtype characterized by mesenchymal elements and poor clinical outcome. A large fraction of MBCs harbor defects in breast cancer 1 (BRCA1). As BRCA1 deficiency sensitizes tumors to DNA cross-linking agents and poly(ADP-ribose) polymerase (PARP) inhibitors, we sought to investigate the response of BRCA1-deficient MBCs to the PARP inhibitor olaparib. To this end, we established a genetically engineered mouse model (GEMM) for BRCA1-deficient MBC by introducing the MET proto-oncogene into a BRCA1-associated breast cancer model, using our novel female GEMM ES cell (ESC) pipeline. In contrast to carcinomas, BRCA1-deficient mouse carcinosarcomas resembling MBC show intrinsic resistance to olaparib caused by increased P-glycoprotein (Pgp) drug efflux transporter expression. Indeed, resistance could be circumvented by using another PARP inhibitor, AZD2461, which is a poor Pgp substrate. These preclinical findings suggest that patients with BRCA1-associated MBC may show poor response to olaparib and illustrate the value of GEMM-ESC models of human cancer for evaluation of novel therapeutics. PMID:26100884

  15. Selective resistance to the PARP inhibitor olaparib in a mouse model for BRCA1-deficient metaplastic breast cancer.

    PubMed

    Henneman, Linda; van Miltenburg, Martine H; Michalak, Ewa M; Braumuller, Tanya M; Jaspers, Janneke E; Drenth, Anne Paulien; de Korte-Grimmerink, Renske; Gogola, Ewa; Szuhai, Karoly; Schlicker, Andreas; Bin Ali, Rahmen; Pritchard, Colin; Huijbers, Ivo J; Berns, Anton; Rottenberg, Sven; Jonkers, Jos

    2015-07-07

    Metaplastic breast carcinoma (MBC) is a rare histological breast cancer subtype characterized by mesenchymal elements and poor clinical outcome. A large fraction of MBCs harbor defects in breast cancer 1 (BRCA1). As BRCA1 deficiency sensitizes tumors to DNA cross-linking agents and poly(ADP-ribose) polymerase (PARP) inhibitors, we sought to investigate the response of BRCA1-deficient MBCs to the PARP inhibitor olaparib. To this end, we established a genetically engineered mouse model (GEMM) for BRCA1-deficient MBC by introducing the MET proto-oncogene into a BRCA1-associated breast cancer model, using our novel female GEMM ES cell (ESC) pipeline. In contrast to carcinomas, BRCA1-deficient mouse carcinosarcomas resembling MBC show intrinsic resistance to olaparib caused by increased P-glycoprotein (Pgp) drug efflux transporter expression. Indeed, resistance could be circumvented by using another PARP inhibitor, AZD2461, which is a poor Pgp substrate. These preclinical findings suggest that patients with BRCA1-associated MBC may show poor response to olaparib and illustrate the value of GEMM-ESC models of human cancer for evaluation of novel therapeutics.

  16. Oncogenic and tumor-suppressive mouse models for breast cancer engaging HER2/neu.

    PubMed

    Fry, Elizabeth A; Taneja, Pankaj; Inoue, Kazushi

    2017-02-01

    The human c-ErbB2 (HER2) gene is amplified in ∼20% of human breast cancers (BCs), but the protein is overexpressed in ∼30% of the cases indicating that multiple different mechanisms contribute to HER2 overexpression in tumors. It has long been used as a molecular marker of BC for subcategorization for the prediction of prognosis and determination of therapeutic strategies. In comparison to ER(+) BCs, HER2-positive BCs are more invasive, but the patients respond to monoclonal antibody therapy with trastuzumab or tyrosine kinase inhibitors at least at early stages. To understand the pathophysiology of HER2-driven carcinogenesis and test HER2-targeting therapeutic agents in vivo, numerous mouse models have been created that faithfully reproduce HER2(+) BCs in mice. They include MMTV-neu (active mutant or wild type, rat neu or HER2) models, neu promoter-driven neuNT-transgenic mice, neuNT-knock-in mice at the neu locus and doxycycline-inducible neuNT-transgenic models. HER2/neu activates the Phosphatidylinositol-3 kinase-AKT-NF-κB pathway to stimulate the mitogenic cyclin D1/Cdk4-Rb-E2F pathway. Of note, overexpression of HER2 also stimulates the cell autonomous Dmp1-Arf-p53 tumor suppressor pathway to quench oncogenic signals to prevent the emergence of cancer cells. Hence tumor development by MMTV-neu mice was dramatically accelerated in mice that lack Dmp1, Arf or p53 with invasion and metastasis. Expressions of neuNT under the endogenous promoter underwent gene amplification, closely recapitulating human HER2(+) BCs. MMTV-HER2 models have been shown to be useful to test humanized monoclonal antibodies to HER2. These mouse models will be useful for the screening of novel therapeutic agents against BCs with HER2 overexpression.

  17. Genomic Analyses as a Guide to Target Identification and Preclinical Testing of Mouse Models of Breast Cancer

    PubMed Central

    Bennett, Christina N; Green, Jeffrey E.

    2012-01-01

    Cross-species genomic analyses have proven useful for identifying common genomic alterations that occur in human cancers and mouse models designed to recapitulate human tumor development. High-throughput molecular analyses provide a valuable tool for identifying particular animal models that may represent aspects of specific subtypes of human cancers. Corresponding alterations in gene copy number and expression in tumors from mouse and human suggest that these conserved changes may be mechanistically essential for cancer development and progression, and therefore, they may be critical targets for therapeutic intervention. Using a cross-species analysis approach, mouse models in which the functions of p53, Rb, and BRCA1 have been disrupted demonstrate molecular features of human, triple-negative (ER-, PR-, and ERBB2-), basal-type breast cancer. Using mouse tumor models based on the targeted abrogation of p53 and Rb function, we identified a large, integrated genetic network that correlates to poor outcome in several human epithelial cancers. This gene signature is highly enriched for genes involved in DNA replication and repair, chromosome maintenance, cell cycle regulation, and apoptosis. Current studies are determining whether inactivation of specific members within this signature, using drugs or siRNA, will identify potentially important new targets to inhibit triple-negative, basal-type breast cancer for which no targeted therapies currently exist. PMID:20080934

  18. Silencing of atp6v1c1 prevents breast cancer growth and bone metastasis.

    PubMed

    Feng, Shengmei; Zhu, Guochun; McConnell, Matthew; Deng, Lianfu; Zhao, Qiang; Wu, Mengrui; Zhou, Qi; Wang, Jinshen; Qi, Jin; Li, Yi-Ping; Chen, Wei

    2013-01-01

    Previous studies have shown that Atp6v1c1, a regulator of the assembly of the V0 and V1 domains of the V-ATPase complex, is up-regulated in metastatic oral tumors. Despite these studies, the function of Atp6v1c1 in tumor growth and metastasis is still unknown. Atp6v1c1's expression in metastatic oral squamous cell carcinoma indicates that Atp6v1c1 has an important function in cancer growth and metastasis. We hypothesized that elevated expression of Atp6v1c1 is essential to cancer growth and metastasis and that Atp6v1c1 promotes cancer growth and metastasis through activation of V-ATPase activity. To test this hypothesis, a Lentivirus-mediated RNAi knockdown approach was used to study the function of Atp6v1c1 in mouse 4T1 mammary tumor cell proliferation and migration in vitro and cancer growth and metastasis in vivo. Our data revealed that silencing of Atp6v1c1 in 4T1 cancer cells inhibited lysosomal acidification and severely impaired 4T1 cell growth, migration, and invasion through Matrigel in vitro. We also show that Atp6v1c1 knockdown with Lenti-c1s3, a lentivirus targeting Atp6v1c1 for shRNA mediated knockdown, can significantly inhibit 4T1 xenograft tumor growth, metastasis, and osteolytic lesions in vivo. Our study demonstrates that Atp6v1c1 may promote breast cancer growth and bone metastasis through regulation of lysosomal V-ATPase activity, indicating that Atp6v1c1 may be a viable target for breast cancer therapy and silencing of Atp6v1c1 may be an innovative therapeutic approach for the treatment and prevention of breast cancer growth and metastasis.

  19. A GM-CSF and CD40L bystander vaccine is effective in a murine breast cancer model

    PubMed Central

    Soliman, Hatem; Mediavilla-Varela, Melanie; Antonia, Scott J

    2015-01-01

    Background There is increasing interest in using cancer vaccines to treat breast cancer patients in the adjuvant setting to prevent recurrence in high risk situations or in combination with other immunomodulators in the advanced setting. Current peptide vaccines are limited by immunologic compatibility issues, and engineered autologous cellular vaccines are difficult to produce on a large scale. Using standardized bystander cell lines modified to secrete immune stimulating adjuvant substances can greatly enhance the ability to produce immunogenic cellular vaccines using unmodified autologous cells or allogeneic medical grade tumor cell lines as targets. We investigated the efficacy of a cellular vaccine using B78H1 bystander cell lines engineered to secrete granulocyte macrophage-colony stimulating factor and CD40 ligand (BCG) in a murine model of breast cancer. Methods Five-week-old female BALB/c mice were injected orthotopically in the mammary fat pad with 4T1 tumor cells. Treatment consisted of irradiated 4T1 ± BCG cells given subcutaneously every 4 days and was repeated three times per mouse when tumors became palpable. Tumors were measured two to three times per week for 25 days. The vaccine’s activity was confirmed in a second experiment using Lewis lung carcinoma (LLC) cells in C57BL/6 mice to exclude a model specific effect. Interferon-γ (IFN-γ) and interleukin-2 (IL-2) enzyme-linked immunospots (ELISPOTS) were performed on splenic lymphocytes incubated with 4T1 lysates along with immunohistochemistry for CD3 on tumor sections. Results Tumor growth was significantly inhibited in the 4T1-BCG and LLC-BCG treatment groups when compared to 4T1 and LLC treatment groups. There were higher levels of IL-2 and IFN-γ secreting T-cells on ELISPOT for BCG treated groups, and a trend for higher numbers of tumor infiltrating CD3+ lymphocytes. Some tumors in the 4T1-BCG demonstrated organized lymphoid structures within the tumor microenvironment as well. Conclusion

  20. Aurora kinase-A overexpression in mouse mammary epithelium induces mammary adenocarcinomas harboring genetic alterations shared with human breast cancer.

    PubMed

    Treekitkarnmongkol, Warapen; Katayama, Hiroshi; Kai, Kazuharu; Sasai, Kaori; Jones, Jennifer Carter; Wang, Jing; Shen, Li; Sahin, Aysegul A; Gagea, Mihai; Ueno, Naoto T; Creighton, Chad J; Sen, Subrata

    2016-12-01

    Recent data from The Cancer Genome Atlas analysis have revealed that Aurora kinase A (AURKA) amplification and overexpression characterize a distinct subset of human tumors across multiple cancer types. Although elevated expression of AURKA has been shown to induce oncogenic phenotypes in cells in vitro, findings from transgenic mouse models of Aurora-A overexpression in mammary glands have been distinct depending on the models generated. In the present study, we report that prolonged overexpression of AURKA transgene in mammary epithelium driven by ovine β-lactoglobulin promoter, activated through multiple pregnancy and lactation cycles, results in the development of mammary adenocarcinomas with alterations in cancer-relevant genes and epithelial-to-mesenchymal transition. The tumor incidence was 38.9% (7/18) in Aurora-A transgenic mice at 16 months of age following 4-5 pregnancy cycles. Aurora-A overexpression in the tumor tissues accompanied activation of Akt, elevation of Cyclin D1, Tpx2 and Plk1 along with downregulation of ERα and p53 proteins, albeit at varying levels. Microarray comparative genomic hybridization (CGH) analyses of transgenic mouse mammary adenocarcinomas revealed copy gain of Glp1r and losses of Ercc5, Pten and Tcf7l2 loci. Review of human breast tumor transcriptomic data sets showed association of these genes at varying levels with Aurora-A gain of function alterations. Whole exome sequencing of the mouse tumors also identified gene mutations detected in Aurora-A overexpressing human breast cancers. Our findings demonstrate that prolonged overexpression of Aurora-A can be a driver somatic genetic event in mammary adenocarcinomas associated with deregulated tumor-relevant pathways in the Aurora-A subset of human breast cancer.

  1. Functional and molecular characterisation of EO771.LMB tumours, a new C57BL/6-mouse-derived model of spontaneously metastatic mammary cancer.

    PubMed

    Johnstone, Cameron N; Smith, Yvonne E; Cao, Yuan; Burrows, Allan D; Cross, Ryan S N; Ling, Xiawei; Redvers, Richard P; Doherty, Judy P; Eckhardt, Bedrich L; Natoli, Anthony L; Restall, Christina M; Lucas, Erin; Pearson, Helen B; Deb, Siddhartha; Britt, Kara L; Rizzitelli, Alexandra; Li, Jason; Harmey, Judith H; Pouliot, Normand; Anderson, Robin L

    2015-03-01

    The translation of basic research into improved therapies for breast cancer patients requires relevant preclinical models that incorporate spontaneous metastasis. We have completed a functional and molecular characterisation of a new isogenic C57BL/6 mouse model of breast cancer metastasis, comparing and contrasting it with the established BALB/c 4T1 model. Metastatic EO771.LMB tumours were derived from poorly metastatic parental EO771 mammary tumours. Functional differences were evaluated using both in vitro assays and spontaneous metastasis assays in mice. Results were compared to non-metastatic 67NR and metastatic 4T1.2 tumours of the 4T1 model. Protein and transcript levels of markers of human breast cancer molecular subtypes were measured in the four tumour lines, as well as p53 (Tp53) tumour-suppressor gene status and responses to tamoxifen in vivo and in vitro. Array-based expression profiling of whole tumours identified genes and pathways that were deregulated in metastatic tumours. EO771.LMB cells metastasised spontaneously to lung in C57BL/6 mice and displayed increased invasive capacity compared with parental EO771. By immunohistochemical assessment, EO771 and EO771.LMB were basal-like, as was the 4T1.2 tumour, whereas 67NR had a luminal phenotype. Primary tumours from all lines were negative for progesterone receptor, Erb-b2/Neu and cytokeratin 5/6, but positive for epidermal growth factor receptor (EGFR). Only 67NR displayed nuclear estrogen receptor alpha (ERα) positivity. EO771 and EO771.LMB expressed mutant p53, whereas 67NR and 4T1.2 were p53-null. Integrated molecular analysis of both the EO771/EO771.LMB and 67NR/4T1.2 pairs indicated that upregulation of matrix metalloproteinase-3 (MMP-3), parathyroid hormone-like hormone (Pthlh) and S100 calcium binding protein A8 (S100a8) and downregulation of the thrombospondin receptor (Cd36) might be causally involved in metastatic dissemination of breast cancer.

  2. Functional and molecular characterisation of EO771.LMB tumours, a new C57BL/6-mouse-derived model of spontaneously metastatic mammary cancer

    PubMed Central

    Johnstone, Cameron N.; Smith, Yvonne E.; Cao, Yuan; Burrows, Allan D.; Cross, Ryan S. N.; Ling, Xiawei; Redvers, Richard P.; Doherty, Judy P.; Eckhardt, Bedrich L.; Natoli, Anthony L.; Restall, Christina M.; Lucas, Erin; Pearson, Helen B.; Deb, Siddhartha; Britt, Kara L.; Rizzitelli, Alexandra; Li, Jason; Harmey, Judith H.; Pouliot, Normand; Anderson, Robin L.

    2015-01-01

    The translation of basic research into improved therapies for breast cancer patients requires relevant preclinical models that incorporate spontaneous metastasis. We have completed a functional and molecular characterisation of a new isogenic C57BL/6 mouse model of breast cancer metastasis, comparing and contrasting it with the established BALB/c 4T1 model. Metastatic EO771.LMB tumours were derived from poorly metastatic parental EO771 mammary tumours. Functional differences were evaluated using both in vitro assays and spontaneous metastasis assays in mice. Results were compared to non-metastatic 67NR and metastatic 4T1.2 tumours of the 4T1 model. Protein and transcript levels of markers of human breast cancer molecular subtypes were measured in the four tumour lines, as well as p53 (Tp53) tumour-suppressor gene status and responses to tamoxifen in vivo and in vitro. Array-based expression profiling of whole tumours identified genes and pathways that were deregulated in metastatic tumours. EO771.LMB cells metastasised spontaneously to lung in C57BL/6 mice and displayed increased invasive capacity compared with parental EO771. By immunohistochemical assessment, EO771 and EO771.LMB were basal-like, as was the 4T1.2 tumour, whereas 67NR had a luminal phenotype. Primary tumours from all lines were negative for progesterone receptor, Erb-b2/Neu and cytokeratin 5/6, but positive for epidermal growth factor receptor (EGFR). Only 67NR displayed nuclear estrogen receptor alpha (ERα) positivity. EO771 and EO771.LMB expressed mutant p53, whereas 67NR and 4T1.2 were p53-null. Integrated molecular analysis of both the EO771/EO771.LMB and 67NR/4T1.2 pairs indicated that upregulation of matrix metalloproteinase-3 (MMP-3), parathyroid hormone-like hormone (Pthlh) and S100 calcium binding protein A8 (S100a8) and downregulation of the thrombospondin receptor (Cd36) might be causally involved in metastatic dissemination of breast cancer. PMID:25633981

  3. Photo-nano immunotherapy for metastatic breast cancer using synergistic single-walled carbon nanotubes and glycated chitosan

    NASA Astrophysics Data System (ADS)

    Zhou, Feifan; Hasanjee, Aamr; Doughty, Austin; West, Connor; Liu, Hong; Chen, Wei R.

    2015-03-01

    In our previous work, we constructed a multifunctional nano system, using single-walled carbon nanotube (SWNT) and glycated chitosan (GC), which can synergize photothermal and immunological effects. To further confirm the therapy efficacy, with a metastatic mouse mammary tumor model (4T1), we investigate the therapy effects and immune response induced by SWNT-GC, under laser irradiation. Laser+SWNT-GC treatment not only suppressed the prime tumor, but also induced antitumor immune response. It could be developed into a promising treatment modality for the metastatic breast cancer.

  4. Use of the immune adherence hemagglutination test for titration of breast cancer patients' sea cross-reacting with purified mouse mammary tumor virus.

    PubMed

    Nagayoshi, S; Imai, M; Tsutsui, Y; Saga, S; Takahashi, M; Hoshino, M

    1981-02-01

    Ninety-two sera from patients with breast cancer, 42 sera from patients with neoplastic diseases other than breast cancer and 59 sera from apparently healthy women were examined by means of the immune adherence hemagglutination (IAHA) test using purified mouse mammary tumor virus (MMTV) fron RII mouse milk. It was found that 36.4% (34/96) of the sera from breast cancer patients, 7.1% (3/42) of the sera from patients with other neoplastic diseases and 5.1% (3/59) of the sera from apparently healthy women showed a positive reaction. Among the IAHA positive sera from breast cancer patients, 82.9% (29/35) showed a titer of more than 1:16. On the other hand, none of the positive sera from patients with cancers other than breast cancer showed a titer of more than 1:16. The sera from 4 breast cancer patients, which showed a positive reaction with RII MMTV in the IAHA test, were tested to examine the specificity of the reaction by using milk samples from sources other than RII mice, including C57BL mice, dogs, cattle and humans. None of the 4 sera showed a positive reaction with milk samples from sources other than the RIII mouse.

  5. KLF17 is a negative regulator of epithelial-mesenchymal transition and metastasis in breast cancer

    PubMed Central

    Gumireddy, Kiranmai; Li, Anping; Gimotty, Phyllis A.; Klein-Szanto, Andres J.; Showe, Louise C.; Katsaros, Dionyssios; Coukos, George; Zhang, Lin; Huang, Qihong

    2009-01-01

    Metastasis is a complex multi-step process requiring the concerted action of many genes and is the primary cause of cancer deaths. Pathways that regulate metastasis enhancement and suppression both contribute to tumor dissemination process. In order to identify novel metastasis suppressors, we set up a forward genetic screen in a mouse model. We transduced a genome-wide RNAi library into the non-metastatic 168FARN breast cancer cell line, orthotopically transplanted the cells into mouse mammary fat pads, and then selected for cells that could metastasize to the lung and identified an RNAi for the KLF17 gene. Conversely, we demonstrate that ectopic expression of KLF17 in highly metastatic 4T1 breast cancer cell line inhibited their ability to metastasize from the mammary fat pad to the lung. We also show that suppression of KLF17 expression promotes breast cancer cell invasion and epithelial-mesenchymal transition (EMT) and that KLF17 functions by directly binding to the promoter of Id-1, a key metastasis regulator in breast cancer, to inhibit its transcription. Finally, we demonstrate that KLF17 expression is significantly down-regulated in primary human breast cancer samples and that the combined expression patterns of KLF17 and Id-1 can serve as a potential biomarker for lymph node metastasis in breast cancer. PMID:19801974

  6. MDA-7/IL-24 functions as a tumor suppressor gene in vivo in transgenic mouse models of breast cancer.

    PubMed

    Menezes, Mitchell E; Shen, Xue-Ning; Das, Swadesh K; Emdad, Luni; Guo, Chunqing; Yuan, Fang; Li, You-Jun; Archer, Michael C; Zacksenhaus, Eldad; Windle, Jolene J; Subler, Mark A; Ben-David, Yaacov; Sarkar, Devanand; Wang, Xiang-Yang; Fisher, Paul B

    2015-11-10

    Melanoma differentiation associated gene-7/Interleukin-24 (MDA-7/IL-24) is a novel member of the IL-10 gene family that selectively induces apoptosis and toxic autophagy in a broad spectrum of human cancers, including breast cancer, without harming normal cells or tissues. The ability to investigate the critical events underlying cancer initiation and progression, as well as the capacity to test the efficacy of novel therapeutics, has been significantly advanced by the development of genetically engineered mice (GEMs) that accurately recapitulate specific human cancers. We utilized three transgenic mouse models to better comprehend the in vivo role of MDA-7/IL-24 in breast cancer. Using the MMTV-PyMT spontaneous mammary tumor model, we confirmed that exogenously introducing MDA-7/IL-24 using a Cancer Terminator Virus caused a reduction in tumor burden and also produced an antitumor "bystander" effect. Next we performed xenograft studies in a newly created MMTV-MDA-7 transgenic model that over-expresses MDA-7/IL-24 in the mammary glands during pregnancy and lactation, and found that MDA-7/IL-24 overexpression delayed tumor growth following orthotopic injection of a murine PDX tumor cell line (mPDX) derived from a tumor formed in an MMTV-PyMT mouse. We also crossed the MMTV-MDA-7 line to MMTV-Erbb2 transgenic mice and found that MDA-7/IL-24 overexpression delayed the onset of mammary tumor development in this model of spontaneous mammary tumorigenesis as well. Finally, we assessed the role of MDA-7/IL-24 in immune regulation, which can potentially contribute to tumor suppression in vivo. Our findings provide further direct in vivo evidence for the role of MDA-7/IL-24 in tumor suppression in breast cancer in immune-competent transgenic mice.

  7. Morphine does not facilitate breast cancer progression in two preclinical mouse models for human invasive lobular and HER2⁺ breast cancer.

    PubMed

    Doornebal, Chris W; Vrijland, Kim; Hau, Cheei-Sing; Coffelt, Seth B; Ciampricotti, Metamia; Jonkers, Jos; de Visser, Karin E; Hollmann, Markus W

    2015-08-01

    Morphine and other opioid analgesics are potent pain-relieving agents routinely used for pain management in patients with cancer. However, these drugs have recently been associated with a worse relapse-free survival in patients with surgical cancer, thus suggesting that morphine adversely affects cancer progression and relapse. In this study, we evaluated the impact of morphine on breast cancer progression, metastatic dissemination, and outgrowth of minimal residual disease. Using preclinical mouse models for metastatic invasive lobular and HER2 breast cancer, we show that analgesic doses of morphine do not affect mammary tumor growth, angiogenesis, and the composition of tumor-infiltrating immune cells. Our studies further demonstrate that morphine, administered in the presence or absence of surgery-induced tissue damage, neither facilitates de novo metastatic dissemination nor promotes outgrowth of minimal residual disease after surgery. Together, these findings indicate that opioid analgesics can be used safely for perioperative pain management in patients with cancer and emphasize that current standards of "good clinical practice" should be maintained.

  8. In vivo magnetic resonance imaging investigating the development of experimental brain metastases due to triple negative breast cancer.

    PubMed

    Hamilton, Amanda M; Foster, Paula J

    2017-02-01

    Triple negative breast cancer (TNBC), when associated with poor outcome, is aggressive in nature with a high incidence of brain metastasis and the shortest median overall patient survival after brain metastasis development compared to all other breast cancer subtypes. As therapies that control primary cancer and extracranial metastatic sites improve, the incidence of brain metastases is increasing and the management of patients with breast cancer brain metastases continues to be a significant clinical challenge. Mouse models have been developed to permit in depth evaluation of breast cancer metastasis to the brain. In this study, we compare the efficiency and metastatic potential of two experimental mouse models of TNBC. Longitudinal MRI analysis and end point histology were used to quantify initial cell arrest as well as the number and volume of metastases that developed in mouse brain over time. We showed significant differences in MRI appearance, tumor progression and model efficiency between the syngeneic 4T1-BR5 model and the xenogeneic 231-BR model. Since TNBC does not respond to many standard breast cancer treatments and TNBC brain metastases lack effective targeted therapies, these preclinical TNBC models represent invaluable tools for the assessment of novel systemic therapeutic approaches. Further pursuits of therapeutics designed to bypass the blood tumor barrier and permit access to the brain parenchyma and metastatic cells within the brain will be paramount in the fight to control and treat lethal metastatic cancer.

  9. A New Mouse Model for the Study of Human Breast Cancer Metastasis

    PubMed Central

    Iorns, Elizabeth; Drews-Elger, Katherine; Ward, Toby M.; Dean, Sonja; Clarke, Jennifer; Berry, Deborah; Ashry, Dorraya El; Lippman, Marc

    2012-01-01

    Breast cancer is the most common cancer in women, and this prevalence has a major impact on health worldwide. Localized breast cancer has an excellent prognosis, with a 5-year relative survival rate of 85%. However, the survival rate drops to only 23% for women with distant metastases. To date, the study of breast cancer metastasis has been hampered by a lack of reliable metastatic models. Here we describe a novel in vivo model using human breast cancer xenografts in NOD scid gamma (NSG) mice; in this model human breast cancer cells reliably metastasize to distant organs from primary tumors grown within the mammary fat pad. This model enables the study of the entire metastatic process from the proper anatomical site, providing an important new approach to examine the mechanisms underlying breast cancer metastasis. We used this model to identify gene expression changes that occur at metastatic sites relative to the primary mammary fat pad tumor. By comparing multiple metastatic sites and independent cell lines, we have identified several gene expression changes that may be important for tumor growth at distant sites. PMID:23118918

  10. Histone deacetylase inhibitors deplete myeloid-derived suppressor cells induced by 4T1 mammary tumors in vivo and in vitro.

    PubMed

    Wang, Hai-Fang; Ning, Fen; Liu, Zong-Cai; Wu, Long; Li, Zi-Qian; Qi, Yi-Fei; Zhang, Ge; Wang, Hong-Sheng; Cai, Shao-Hui; Du, Jun

    2017-03-01

    Myeloid-derived suppressor cells (MDSC) have been identified as a population of immature myeloid cells that suppress anti-tumor immunity. MDSC are increased in tumor-bearing hosts; thus, depletion of MDSC may enhance anti-tumor immunity. Histone deacetylase inhibitors (HDACi) are chemical agents that are primarily used against hematologic malignancies. The ability of these agents to modulate anticancer immunity has recently been extensively studied. However, the effect of HDACi on MDSC has remained largely unexplored. In the present study, we provide the first demonstration that HDACi treatment decreases MDSC accumulation in the spleen, blood and tumor bed but increases the proportion of T cells (particularly the frequency of IFN-γ- or perforin-producing CD8(+) T cells) in BALB/C mice with 4T1 mammary tumors. In addition, HDACi exposure of bone marrow (BM) cells significantly eliminated the MDSC population induced by GM-CSF or the tumor burden in vitro, which was further demonstrated as functionally important to relieve the inhibitory effect of MDSC-enriched BM cells on T cell proliferation. Mechanistically, HDACi increased the apoptosis of Gr-1(+) cells (almost MDSC) compared with that of Gr-1(-) cells, which was abrogated by the ROS scavenger N-acetylcysteine, suggesting that the HDACi-induced increase in MDSC apoptosis due to increased intracellular ROS might partially account for the observed depletion of MDSC. These findings suggest that the elimination of MDSC using an HDACi may contribute to the overall anti-tumor properties of these agents, highlighting a novel property of HDACi as potent MDSC-targeting agents, which may be used to enhance the efficacy of immunotherapeutic regimens.

  11. TRAIL-R2 promotes skeletal metastasis in a breast cancer xenograft mouse model

    PubMed Central

    Hauser, Charlotte; von Au, Anja; El-Sheikh, Doaa; Campbell, Graeme M.; Alp, Göhkan; Schewe, Denis; Hübner, Sebastian; Tiwari, Sanjay; Kownatzki, Daniel; Boretius, Susann; Adam, Dieter; Jonat, Walter; Becker, Thomas; Glüer, Claus C.; Zöller, Margot; Kalthoff, Holger

    2015-01-01

    Despite improvements in detection, surgical approaches and systemic therapies, breast cancer remains typically incurable once distant metastases occur. High expression of TRAIL-R2 was found to be associated with poor prognostic parameters in breast cancer patients, suggesting an oncogenic function of this receptor. In the present study, we aimed to determine the impact of TRAIL-R2 on breast cancer metastasis. Using an osteotropic variant of MDA-MB-231 breast cancer cells, we examine the effects of TRAIL-R2 knockdown in vitro and in vivo. Strikingly, in addition to the reduced levels of the proliferation-promoting factor HMGA2 and corresponding inhibition of cell proliferation, knockdown of TRAIL-R2 increased the levels of E-Cadherin and decreased migration. In vivo, these cells were strongly impaired in their ability to form bone metastases after intracardiac injection. Evaluating possible underlying mechanisms revealed a strong downregulation of CXCR4, the receptor for the chemokine SDF-1 important for homing of cancers cells to the bone. In accordance, cell migration towards SDF-1 was significantly impaired by TRAIL-R2 knockdown. Conversely, overexpression of TRAIL-R2 upregulated CXCR4 levels and enhanced SDF-1-directed migration. We therefore postulate that inhibition of TRAIL-R2 expression could represent a promising therapeutic strategy leading to an effective impairment of breast cancer cell capability to form skeletal metastases. PMID:25909161

  12. Identification of Tumor Rejection Antigens for Breast Cancer Using a Mouse Tumor Rejection Model

    DTIC Science & Technology

    2007-05-01

    of the mouse antigens. This comprehensive evaluation will only be performed to the antigens that show tumor protection effect in mice ; 3) test the...from the same mouse . The expression profile of these antigens were examined using real time RT-PCR. RNA was extracted from 3 normal...than tumor bearing mice is more likely to yield therapeutically relevant targets. We recognize that tumor implant model is not optimal in testing

  13. A novel mouse monoclonal antibody targeting ErbB2 suppresses breast cancer growth.

    PubMed

    Kawa, Seiji; Matsushita, Hirohisa; Ohbayashi, Hirokazu; Semba, Kentaro; Yamamoto, Tadashi

    2009-07-03

    Overexpression of ErbB2 in breast cancer is associated with increased recurrence and worse prognosis. Accumulating evidences suggest that molecular targeted therapy is a promising anticancer strategy. In this study, we produced a novel anti-ErbB2 monoclonal antibody, 6G10, that recognized an epitope distinct from the trastuzumab binding site. 6G10 induced aggregation of BT474 breast cancer cells and inhibited proliferation of various breast cancer cell lines including BT474. A growth inhibition assay showed that 6G10 had EC(50) values comparable to trastuzumab, indicating that the drugs have a similar level of potency. Furthermore, intraperitoneal administration of 6G10 completely inhibited the growth of xenografted tumors derived from BT474 and SK-BR-3 cells. These data suggested that 6G10 has great therapeutic potential and could be administered to patients alternatively, or synergistically, with trastuzumab.

  14. Transcutaneous in vivo Raman spectroscopic studies in a mouse model: evaluation of changes in the breast associated with pregnancy and lactation

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Tanmoy; Maru, Girish; Ingle, Arvind; Krishna, C. Murali

    2013-04-01

    Raman spectroscopy (RS) has been extensively explored as an alternative diagnostic tool for breast cancer. This can be attributed to its sensitivity to malignancy-associated biochemical changes. However, biochemical changes due to nonmalignant conditions like benign lesions, inflammatory diseases, aging, menstrual cycle, pregnancy, and lactation may act as confounding factors in diagnosis of breast cancer. Therefore, in this study, the efficacy of RS to classify pregnancy and lactation-associated changes as well as its effect on breast tumor diagnosis was evaluated. Since such studies are difficult in human subjects, a mouse model was used. Spectra were recorded transcutaneously from the breast region of six Swiss bare mice postmating, during pregnancy, and during lactation. Data were analyzed using multivariate statistical tool Principal Component-Linear Discriminant Analysis. Results suggest that RS can differentiate breasts of pregnant/lactating mice from those of normal mice, the classification efficiencies being 100%, 60%, and 88% for normal, pregnant, and lactating mice, respectively. Frank breast tumors could be classified with 97.5% efficiency, suggesting that these physiological changes do not affect the ability of RS to detect breast tumors.

  15. Meroxest improves the prognosis of immunocompetent C57BL/6 mice with allografts of E0771 mouse breast tumor cells

    PubMed Central

    Carrasco, Esther; Garrido, Jose Manuel; Álvarez, Pablo Juan; Álvarez-Manzaneda, Enrique; Chahboun, Rachid; Messouri, Ibtissam; Melguizo, Consolación; Aránega, Antonia

    2016-01-01

    Introduction Recently, we have reported the antitumor properties of a new family of synthetic merosesquiterpenes, among which meroxest is highlighted, since it has high activity and specificity for ER+ breast cancer cells. In this paper, we characterize allografts of ER+ E0771 mouse breast tumor cells in immunocompetent C57BL/6 mice, and also analyze the effect of meroxest on the prognosis of the disease. Material and methods Twenty female C57BL/6 mice were injected with 106 E0771 cells. Once the tumors reached the appropriate size, the mice were divided into two groups, one control and another treated orally with 15 mg/kg of meroxest. After 20 days, tumor samples were taken for histopathological study and for determination of the expression of the prognostic markers Ki67 and vascular endothelial growth factor (VEGF) by immunofluorescence. Results In sections stained with hematoxylin-eosin, we observed that tumors have a well-defined capsule enclosing E0771 tumor cells. The central area of tumors contains necrotic regions with leukocyte infiltration. Meroxest treatment significantly reduces tumor size (68%, p < 0.05), induces changes in its structure, decreases the degree of leukocyte infiltration, and significantly reduces the expression of Ki67 (33%, p < 0.05) and VEGF (82%, p < 0.05). Conclusions Meroxest improves the prognosis of mice since it reduces leukocyte infiltration, and decreases the expression of Ki67 and VEGF markers. Consequently, the merosesquiterpene could become a useful antiangiogenic drug in the treatment of breast cancer. These results encourage us to deepen the study of meroxest, in order to find more evidence that supports the convenience of its evaluation in a clinical study or trial. PMID:27695480

  16. A model of spontaneous mouse mammary tumor for human estrogen receptor- and progesterone receptor-negative breast cancer

    PubMed Central

    ZHENG, LIXIANG; ZHOU, BUGAO; MENG, XIANMING; ZHU, WEIFENG; ZUO, AIREN; WANG, XIAOMIN; JIANG, RUNDE; YU, SHIPING

    2014-01-01

    Breast cancer (BC) is the most frequently malignancy in women. Therefore, establishment of an animal model for the development of preventative measures and effective treatment for tumors is required. A novel heterogeneous spontaneous mammary tumor animal model of Kunming mice was generated. The purpose of this study was to characterize the spontaneous mammary tumor model. Histopathologically, invasive nodular masses of pleomorphic tubular neoplastic epithelial cells invaded fibro-vascular stroma, adjacent dermis and muscle tissue. Metastatic spread through blood vessel into liver and lungs was observed by hematoxylin eosin staining. No estrogen receptor (ER) or progesterone receptor (PR) immunoreactivity was detected in their associated malignant tumors, human epidermal growth factor receptor-2 (HER-2) protein weak expression was found by immunohistochemistry. High expression of vascular endothelial growth factor (VEGF), moderate or high expression of c-Myc and cyclin D1 were observed in tumor sections at different stages (2, 4, 6 and 8 weeks after cancer being found) when compared with that of the normal mammary glands. The result showed that the model is of an invasive ductal carcinoma. Remarkably in the mouse model, ER and PR-negative and HER2 weak positivity are observed. The high or moderate expressions of breast cancer markers (VEGF, c-Myc and cyclin D1) in mammary cancer tissue change at different stages. To our knowledge, this is the first report of a spontaneous mammary model displaying colony-strain, outbred mice. This model will be an attractive tool to understand the biology of anti-hormonal breast cancer in women. PMID:25230850

  17. Stat3 accelerates Myc induced tumor formation while reducing growth rate in a mouse model of breast cancer

    PubMed Central

    Jhan, Jing-Ru; Andrechek, Eran R.

    2016-01-01

    Elevated Myc expression has been noted in basal breast cancer but therapies targeting Myc directly are lacking. It is therefore critical to characterize the interaction of Myc with other genes and pathways to uncover future potential therapeutic strategies. In this study, we bioinformatically predicted a role for Stat3 in Myc induced mammary tumors and tested it using mouse models. During normal mammary function, loss of Stat3 in Myc transgenic dams resulted in lethality of pups due to lactation deficiencies. We also observed that deletion of Stat3 in the mammary glands of MMTV-Myc mice unexpectedly resulted in increased and earlier hyperplasia and expedited tumorigenesis. However, despite arising earlier, Myc tumors lacking Stat3 grew more slowly with alterations in the resulting histological subtypes, including a dramatic increase in EMT-like tumors. We also observed that these tumors had impaired angiogenesis and a slight decrease in lung metastases. This metastatic finding is distinct from previously published findings in both MMTV-Neu and MMTV-PyMT mouse models. Together, the literature and our current research demonstrate that Stat3 can function as an oncogene or as a tumor repressor depending on the oncogenic driver and developmental context. PMID:27589562

  18. Blockade of Fas signaling in breast cancer cells suppresses tumor growth and metastasis via disruption of Fas signaling-initiated cancer-related inflammation.

    PubMed

    Liu, Qiuyan; Tan, Qinchun; Zheng, Yuanyuan; Chen, Kun; Qian, Cheng; Li, Nan; Wang, Qingqing; Cao, Xuetao

    2014-04-18

    Mechanisms for cancer-related inflammation remain to be fully elucidated. Non-apoptotic functions of Fas signaling have been proposed to play an important role in promoting tumor progression. It has yet to be determined if targeting Fas signaling can control tumor progression through suppression of cancer-related inflammation. In the current study we found that breast cancer cells with constitutive Fas expression were resistant to apoptosis induction by agonistic anti-Fas antibody (Jo2) ligation or Fas ligand cross-linking. Higher expression of Fas in human breast cancer tissue has been significantly correlated with poorer prognosis in breast cancer patients. To determine whether blockade of Fas signaling in breast cancer could suppress tumor progression, we prepared an orthotopic xenograft mouse model with mammary cancer cells 4T1 and found that blockade of Fas signaling in 4T1 cancer cells markedly reduced tumor growth, inhibited tumor metastasis in vivo, and prolonged survival of tumor-bearing mice. Mechanistically, blockade of Fas signaling in cancer cells significantly decreased systemic or local recruitment of myeloid derived suppressor cells (MDSCs) in vivo. Furthermore, blockade of Fas signaling markedly reduced IL-6, prostaglandin E2 production from breast cancer cells by impairing p-p38, and activity of the NFκB pathway. In addition, administration of a COX-2 inhibitor and anti-IL-6 antibody significantly reduced MDSC accumulation in vivo. Therefore, blockade of Fas signaling can suppress breast cancer progression by inhibiting proinflammatory cytokine production and MDSC accumulation, indicating that Fas signaling-initiated cancer-related inflammation in breast cancer cells may be a potential target for treatment of breast cancer.

  19. Single Unpurified Breast Tumor-Initiating Cells from Multiple Mouse Models Efficiently Elicit Tumors in Immune-Competent Hosts

    PubMed Central

    Kurpios, Natasza A.; Girgis-Gabardo, Adele; Hallett, Robin M.; Rogers, Stephen; Gludish, David W.; Kockeritz, Lisa; Woodgett, James; Cardiff, Robert; Hassell, John A.

    2013-01-01

    The tumor-initiating cell (TIC) frequency of bulk tumor cell populations is one of the criteria used to distinguish malignancies that follow the cancer stem cell model from those that do not. However, tumor-initiating cell frequencies may be influenced by experimental conditions and the extent to which tumors have progressed, parameters that are not always addressed in studies of these cells. We employed limiting dilution cell transplantation of minimally manipulated tumor cells from mammary tumors of several transgenic mouse models to determine their tumor-initiating cell frequency. We determined whether the tumors that formed following tumor cell transplantation phenocopied the primary tumors from which they were isolated and whether they could be serially transplanted. Finally we investigated whether propagating primary tumor cells in different tissue culture conditions affected their resident tumor-initiating cell frequency. We found that tumor-initiating cells comprised between 15% and 50% of the bulk tumor cell population in multiple independent mammary tumors from three different transgenic mouse models of breast cancer. Culture of primary mammary tumor cells in chemically-defined, serum-free medium as non-adherent tumorspheres preserved TIC frequency to levels similar to that of the primary tumors from which they were established. By contrast, propagating the primary tumor cells in serum-containing medium as adherent populations resulted in a several thousand-fold reduction in their tumor-initiating cell fraction. Our findings suggest that experimental conditions, including the sensitivity of the transplantation assay, can dramatically affect estimates of tumor initiating cell frequency. Moreover, conditional on cell culture conditions, the tumor-initiating cell fraction of bulk mouse mammary tumor cell preparations can either be maintained at high or low frequency in vitro thus permitting comparative studies of tumorigenic and non-tumorigenic cancer cells

  20. Study on mouse model of triple-negative breast cancer: association between higher parity and triple-negative breast cancer.

    PubMed

    Huang, Chun; Wang, Xuan; Sun, Baocun; Li, Man; Zhao, Xiulan; Gu, Yanjun; Cui, Yanfen; Li, Yan

    2015-03-01

    To investigate the association between high parity and triple-negative breast cancer (TNBC), and explore the etiologic mechanisms of TNBC in Tientsin Albinao 2 (TA2) mice model. After the TA2 mice model with high parity and TNBC had been established, the cell proliferation and apoptosis were detected by immunohistochemical and TUNEL staining in mammary epithelia from different conditions, which included non-pregnancy, low and high gravidity in pregnancy, and carcinogenesis. Apoptotic signaling was analyzed by measuring bcl-2, bax, caspase-3, and caspase-9 expression using immunohistochemistry (IHC), western blot, and real-time PCR technique. Estrogen receptor α (ERα) and progesterone receptor (PR) were determined by immunohistochemical staining and real-time PCR. Both proliferation and apoptosis in mammary epithelia changed with the increasing of parity. Immunohistochemistry revealed increased cell proliferation and apoptosis were related with upregulation of ERα, PR, bcl-2, bax, caspase-3, and caspase-9 expression, especially during the fourth pregnancy. Mammary gland in the fourth pregnancy stage was the closest to precancerous. In precancerous mammary gland, cell proliferation rate was much higher than apoptosis rate. High parity could increase the ovarian hormones level and alter ovarian hormone receptor levels in TA2 mice, and their sensitivity to ovarian hormones result in the imbalance between cell proliferation and apoptosis in precancerous mammary epithelial cells.

  1. Modulation of breast cancer cell viability by a cannabinoid receptor 2 agonist, JWH-015, is calcium dependent

    PubMed Central

    Hanlon, Katherine E; Lozano-Ondoua, Alysia N; Umaretiya, Puja J; Symons-Liguori, Ashley M; Chandramouli, Anupama; Moy, Jamie K; Kwass, William K; Mantyh, Patrick W; Nelson, Mark A; Vanderah, Todd W

    2016-01-01

    Introduction Cannabinoid compounds, both nonspecific as well as agonists selective for either cannabinoid receptor 1 (CB1) or cannabinoid receptor 2 (CB2), have been shown to modulate the tumor microenvironment by inducing apoptosis in tumor cells in several model systems. The mechanism of this modulation remains only partially delineated, and activity induced via the CB1 and CB2 receptors may be distinct despite significant sequence homology and structural similarity of ligands. Methods The CB2-selective agonist JWH-015 was used to investigate mechanisms downstream of CB2 activation in mouse and human breast cancer cell lines in vitro and in a murine mammary tumor model. Results JWH-015 treatment significantly reduced primary tumor burden and metastasis of luciferase-tagged murine mammary carcinoma 4T1 cells in immunocompetent mice in vivo. Furthermore, JWH-015 reduced the viability of murine 4T1 and human MCF7 mammary carcinoma cells in vitro by inducing apoptosis. JWH-015-mediated reduction of breast cancer cell viability was not dependent on Gαi signaling in vitro or modified by classical pharmacological blockade of CB1, GPR55, TRPV1, or TRPA1 receptors. JWH-015 effects were calcium dependent and induced changes in MAPK/ERK signaling. Conclusion The results of this work characterize the actions of a CB2-selective agonist on breast cancer cells in a syngeneic murine model representing how a clinical presentation of cancer progression and metastasis may be significantly modulated by a G-protein-coupled receptor. PMID:27186076

  2. Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellular matrix.

    PubMed

    Eckhardt, Bedrich L; Parker, Belinda S; van Laar, Ryan K; Restall, Christina M; Natoli, Anthony L; Tavaria, Michael D; Stanley, Kym L; Sloan, Erica K; Moseley, Jane M; Anderson, Robin L

    2005-01-01

    A clinically relevant model of spontaneous breast cancer metastasis to multiple sites, including bone, was characterized and used to identify genes involved in metastatic progression. The metastatic potential of several genetically related tumor lines was assayed using a novel real-time quantitative RT-PCR assay of tumor burden. Based on this assay, the tumor lines were categorized as nonmetastatic (67NR), weakly metastatic to lymph node (168FARN) or lung (66cl4), or highly metastatic to lymph node, lung, and bone (4T1.2 and 4T1.13). In vitro assays that mimic stages of metastasis showed that highly metastatic tumors lines were more adhesive, invasive, and migratory than the less metastatic lines. To identify metastasis-related genes in this model, each metastatic tumor was array profiled against the nonmetastatic 67NR using 15,000 mouse cDNA arrays. A significant proportion of genes relating to the extracellular matrix had elevated expression in highly metastatic tumors. The role of one of these genes, POEM, was further investigated in the model. In situ hybridization showed that POEM expression was specific to the tumor epithelium of highly metastatic tumors. Decreased POEM expression in 4T1.2 tumors significantly inhibited spontaneous metastasis to the lung, bone, and kidney. Taken together, our data support a role for the extracellular matrix in metastatic progression and describe, for the first time, a role for POEM in this process.

  3. A Novel Gene Gun-Mediated IL-12 Gene Therapy for Breast Cancer

    DTIC Science & Technology

    1997-10-01

    immunogenic 4T1 tumor, primary tumor growth was not affected by IL-12 gene therapy , although lung metastasis was significantly reduced. The anti...metastatically effect in the 4T1 model appears to be T cell independent, and we are investigating its mechanism. These results suggest that a similar gene therapy protocol may be useful in human breast cancer treatment.

  4. Identification of Tumor Rejection Antigens for Breast Cancer Using a Mouse Tumor Rejection Model

    DTIC Science & Technology

    2009-05-01

    high throughput antigen discovery tools have been developed that have greatly helped the identification of immunogenic proteins in breast cancer...streptomycin and L-glutamine. T cell enrichment Tumor-infiltrating lymphocytes (TIL) were harvested by mincing the tu- mor and screening. The TIL were...kinase 1. Multiple proteins involved in the Rho/Rho-associated, coiled coil–containing protein kinase (Rock) signal transduction pathway were found to

  5. Mucin 1-specific immunotherapy in a mouse model of spontaneous breast cancer.

    PubMed

    Mukherjee, Pinku; Madsen, Cathy S; Ginardi, Amelia R; Tinder, Teresa L; Jacobs, Fred; Parker, Joanne; Agrawal, Babita; Longenecker, B Michael; Gendler, Sandra J

    2003-01-01

    Human mucin 1 (MUC1) is an epithelial mucin glycoprotein that is overexpressed in 90% of all adenocarcinomas including breast, lung, pancreas, prostate, stomach, colon, and ovary. MUC1 is a target for immune intervention, because, in patients with solid adenocarcinomas, low-level cellular and humoral immune responses to MUC1 have been observed, which are not sufficiently strong to eradicate the growing tumor. The hypothesis for this study is that enhancing MUC1-specific immunity will result in antitumor immunity. To test this, the authors have developed a clinically relevant breast cancer model that demonstrates peripheral and central tolerance to MUC1 and develops spontaneous tumors of the mammary gland. In these mice, the authors tested a vaccine formulation comprised of liposomal-MUC1 lipopeptide and human recombinant interleukin-2. Results indicate that when compared with untreated mice, immunized mice develop T cells that express intracellular IFN-gamma, are reactive with MHC class I H-2Db/MUC1 tetramer, and are cytotoxic against MUC1-expressing tumor cells in vitro. The presence of MUC1-specific CTL did not translate into a clinical response as measured by time of tumor onset, tumor burden, and survival. The authors demonstrate that some of the immune-evasion mechanisms used by the tumor cells include downregulation of MHC-class I molecule, expression of TGF-beta2, and decrease in IFN-gamma -expressing effector T cells as tumors progress. Finally, utilizing an injectable breast cancer model, the authors show that targeting a single tumor antigen may not be an effective antitumor treatment, but that immunization with dendritic cells fed with whole tumor lysate is effective in breaking tolerance and protecting mice from subsequent tumor challenge. A physiologically relevant spontaneous breast cancer model has been developed to test improved immunotherapeutic approaches.

  6. Assessing a Drosophila Metastasis Model in Mouse and Human Breast Cancer

    DTIC Science & Technology

    2009-05-01

    Upper right: Cyclopamine reduced lung metastases (arrow) in In a syngeneic breast cancer 4TI xenograft. Imaging at day 5. Bone metastases model...hepatitis B virus, or hepatitis C virus; 5. Pregnant, breastfeeding , or of childbearing potential without using dual forms of effective contraception...assessed by bioluminenscence imaging on days 2, 7 and 9 after tumor injection (Fig.2c). This data indicates that Hh inhibitors could be effective

  7. Innovation and fusion of x-ray and optical tomography for mouse studies of breast cancer

    NASA Astrophysics Data System (ADS)

    Wang, Ge; Cong, Wenxiang; Yang, Qingsong; Pian, Qi; Zhu, Shouping; Liang, Jimin; Barroso, Margarida; Intes, Xavier

    2016-10-01

    For early detection and targeted therapy, receptor expression profiling is instrumental to classifying breast cancer into sub-groups. In particular, human epidermal growth factor receptor 2 (HER2) expression has been shown to have both prognostic and predictive values. Recently, an increasingly more complex view of HER2 in breast cancer has emerged from genome sequencing that highlights the role of inter- and intra-tumor heterogeneity in therapy resistance. Studies on such heterogeneity demand high-content, high-resolution functional and molecular imaging in vivo, which cannot be achieved using any single imaging tool. Clearly, there is a critical need to develop a multimodality approach for breast cancer imaging. Since 2006, grating-based x-ray imaging has been developed for much-improved x-ray images. In 2014, the demonstration of fluorescence molecular tomography (FMT) guided by x-ray grating-based micro-CT was reported with encouraging results and major drawbacks. In this paper, we propose to integrate grating-based x-ray tomography (GXT) and high-dimensional optical tomography (HOT) into the first-of-its-kind truly-fused GXT-HOT (pronounced as "Get Hot") system for imaging of breast tumor heterogeneity, HER2 expression and dimerization, and therapeutic response. The primary innovation lies in developing a brand-new high-content, high-throughput x-ray optical imager based on several contemporary techniques to have MRI-type soft tissue contrast, PET-like sensitivity and specificity, and micro-CT-equivalent resolution. This system consists of two orthogonal x-ray Talbot-Lau interferometric imaging chains and a hyperspectral time-resolved single-pixel optical imager. Both the system design and pilot results will be reported in this paper, along with relevant issues under further investigation.

  8. Bioorthogonal two-component drug delivery in HER2(+) breast cancer mouse models

    PubMed Central

    Hapuarachchige, Sudath; Kato, Yoshinori; Artemov, Dmitri

    2016-01-01

    The HER2 receptor is overexpressed in approximately 20% of breast cancers and is associated with tumorigenesis, metastasis, and a poor prognosis. Trastuzumab is a first-line targeted drug used against HER2(+) breast cancers; however, at least 50% of HER2(+) tumors develop resistance to trastuzumab. To treat these patients, trastuzumab-based antibody-drug conjugates (ACDs) have been developed and are currently used in the clinic. Despite their high efficacy, the long circulation half-life and non-specific binding of cytotoxic ADCs can result in systemic toxicity. In addition, standard ADCs do not provide an image-guided mode of administration. Here, we have developed a two-component, two-step, pre-targeting drug delivery system integrated with image guidance to circumvent these issues. In this strategy, HER2 receptors are pre-labeled with a functionalized trastuzumab antibody followed by the delivery of drug-loaded nanocarriers. Both components are cross-linked by multiple bioorthogonal click reactions in situ on the surface of the target cell and internalized as nanoclusters. We have explored the efficacy of this delivery strategy in HER2(+) human breast cancer models. Our therapeutic study confirms the high therapeutic efficacy of the new delivery system, with no significant toxicity. PMID:27068794

  9. Bioorthogonal two-component drug delivery in HER2(+) breast cancer mouse models.

    PubMed

    Hapuarachchige, Sudath; Kato, Yoshinori; Artemov, Dmitri

    2016-04-12

    The HER2 receptor is overexpressed in approximately 20% of breast cancers and is associated with tumorigenesis, metastasis, and a poor prognosis. Trastuzumab is a first-line targeted drug used against HER2(+) breast cancers; however, at least 50% of HER2(+) tumors develop resistance to trastuzumab. To treat these patients, trastuzumab-based antibody-drug conjugates (ACDs) have been developed and are currently used in the clinic. Despite their high efficacy, the long circulation half-life and non-specific binding of cytotoxic ADCs can result in systemic toxicity. In addition, standard ADCs do not provide an image-guided mode of administration. Here, we have developed a two-component, two-step, pre-targeting drug delivery system integrated with image guidance to circumvent these issues. In this strategy, HER2 receptors are pre-labeled with a functionalized trastuzumab antibody followed by the delivery of drug-loaded nanocarriers. Both components are cross-linked by multiple bioorthogonal click reactions in situ on the surface of the target cell and internalized as nanoclusters. We have explored the efficacy of this delivery strategy in HER2(+) human breast cancer models. Our therapeutic study confirms the high therapeutic efficacy of the new delivery system, with no significant toxicity.

  10. Bioorthogonal two-component drug delivery in HER2(+) breast cancer mouse models

    NASA Astrophysics Data System (ADS)

    Hapuarachchige, Sudath; Kato, Yoshinori; Artemov, Dmitri

    2016-04-01

    The HER2 receptor is overexpressed in approximately 20% of breast cancers and is associated with tumorigenesis, metastasis, and a poor prognosis. Trastuzumab is a first-line targeted drug used against HER2(+) breast cancers; however, at least 50% of HER2(+) tumors develop resistance to trastuzumab. To treat these patients, trastuzumab-based antibody-drug conjugates (ACDs) have been developed and are currently used in the clinic. Despite their high efficacy, the long circulation half-life and non-specific binding of cytotoxic ADCs can result in systemic toxicity. In addition, standard ADCs do not provide an image-guided mode of administration. Here, we have developed a two-component, two-step, pre-targeting drug delivery system integrated with image guidance to circumvent these issues. In this strategy, HER2 receptors are pre-labeled with a functionalized trastuzumab antibody followed by the delivery of drug-loaded nanocarriers. Both components are cross-linked by multiple bioorthogonal click reactions in situ on the surface of the target cell and internalized as nanoclusters. We have explored the efficacy of this delivery strategy in HER2(+) human breast cancer models. Our therapeutic study confirms the high therapeutic efficacy of the new delivery system, with no significant toxicity.

  11. Evaluation Frequency of Merkel Cell Polyoma, Epstein-Barr and Mouse Mammary Tumor Viruses in Patients with Breast Cancer in Kerman, Southeast of Iran.

    PubMed

    Reza, Malekpour Afshar; Reza, Mollaie Hamid; Mahdiyeh, Lashkarizadeh; Mehdi, Fazlalipour; Hamid, Zeinali Nejad

    2015-01-01

    Breast cancer is the most common cancer among women worldwide. Roles of the Epstein-Barr, Merkel cell polyoma and mouse mammary tumor viruses in breast carcinogenesis are still controversial although any relationship would clearly be important for breast cancer etiology, early detection and prevention. In the present study associations between EBV, MMTV and Merkel cell polyoma virus and breast cancer in 100 Iranian patients were evaluated using paraffin-embedded tissues. EBER RNA and expression of p53 and large T antigen were evaluated by real time PCR and CD34, p63, HER2, PR and ER markers were studied by immunohistochemistry. EBV was detected in 8/100 (8%), MMTV in 12/100 (12%), MPy in 3/100 (3%) and EBER RNA in 18/100 (18%) cases. None of the control samples demonstrated any of the viruses. p53 was suppressed in EBV, MPy and MMTV positive samples. The large T antigen rate was raised in MPy positive samples. Our results showed that EBV, MMTV and the Merkel cell polyoma virus are foundwith some proportion of breast cancers in our patients, suggesting that these viruses might have a significant role in breast cancer in Kerman, southeast of Iran.

  12. Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors

    PubMed Central

    2013-01-01

    Introduction Mesenchymal stem cells (MSCs) are known to migrate to tumor tissues. This behavior of MSCs has been exploited as a tumor-targeting strategy for cell-based cancer therapy. However, the effects of MSCs on tumor growth are controversial. This study was designed to determine the effect of MSCs on the growth of breast and prostate tumors. Methods Bone marrow-derived MSCs (BM-MSCs) were isolated and characterized. Effects of BM-MSCs on tumor cell proliferation were analyzed in a co-culture system with mouse breast cancer cell 4T1 or human prostate cancer cell DU145. Tumor cells were injected into nude mice subcutaneously either alone or coupled with BM-MSCs. The expression of cell proliferation and angiogenesis-related proteins in tumor tissues were immunofluorescence analyzed. The angiogenic effect of BM-MSCs was detected using a tube formation assay. The effects of the crosstalk between tumor cells and BM-MSCs on expression of angiogenesis related markers were examined by immunofluorescence and real-time PCR. Results Both co-culturing with mice BM-MSCs (mBM-MSCs) and treatment with mBM-MSC-conditioned medium enhanced the growth of 4T1 cells. Co-injection of 4T1 cells and mBM-MSCs into nude mice led to increased tumor size compared with injection of 4T1 cells alone. Similar experiments using DU145 cells and human BM-MSCs (hBM-MSCs) instead of 4T1 cells and mBM-MSCs obtained consistent results. Compared with tumors induced by injection of tumor cells alone, the blood vessel area was greater in tumors from co-injection of tumor cells with BM-MSCs, which correlated with decreased central tumor necrosis and increased tumor cell proliferation. Furthermore, both conditioned medium from hBM-MSCs alone and co-cultures of hBM-MSCs with DU145 cells were able to promote tube formation ability of human umbilical vein endothelial cells. When hBM-MSCs are exposed to the DU145 cell environment, the expression of markers associated with neovascularization (macrophage

  13. Tamoxifen inhibits ER-negative breast cancer cell invasion and metastasis by accelerating Twist1 degradation.

    PubMed

    Ma, Gang; He, Jianjun; Yu, Yang; Xu, Yixiang; Yu, Xiaobin; Martinez, Jarrod; Lonard, David M; Xu, Jianming

    2015-01-01

    Twist1 is a transcription factor driving epithelial-mesenchymal transition, invasion and metastasis of breast cancer cells. Mice with germ-line Twist1 knockout are embryonic lethal, while adult mice with inducible Twist1 knockout have no obvious health problems, suggesting that Twist1 is a viable therapeutic target for the inhibition of invasion and metastasis of breast cancer in adult patients. In this study, we expressed a luciferase protein or a Twist1-luciferase fusion protein in HeLa cells as part of a high throughput system to screen 1280 compounds in the Library of Pharmacologically Active Compounds (LOPAC) from Sigma-Aldrich for their effects on Twist1 protein expression. One of the most interesting compounds identified is tamoxifen, a selective estrogen receptor (ER) modulator used to treat ER-positive breast cancer. Tamoxifen treatment significantly accelerated Twist1 degradation in multiple cell lines including HEK293 human kidney cells, 4T1 and 168FARN mouse mammary tumor cells with either ectopically or endogenously expressed Twist1. Tamoxifen-induced Twist1 degradation could be blocked by the MG132 proteasome inhibitor, suggesting that tamoxifen induces Twist1 degradation through the ubiquitination-proteasome pathway. However, tamoxifen-induced Twist1 degradation was independent of Twist1 mRNA expression, estrogen signaling and MAPK-mediated Twist1 phosphorylation in these cells. Importantly, tamoxifen also significantly inhibited invasive behavior in Matrigel and lung metastasis in SCID-bg mice of ER-negative 4T1 mammary tumor cells, which depend on endogenous Twist1 to invade and metastasize. These results indicate that tamoxifen can significantly accelerate Twist1 degradation to suppress cancer cell invasion and metastasis, suggesting that tamoxifen can be used not only to treat ER-positive breast cancers but also to reduce Twist1-mediated invasion and metastasis in ER-negative breast cancers.

  14. 4-tert-Octylphenol stimulates the expression of cathepsins in human breast cancer cells and xenografted breast tumors of a mouse model via an estrogen receptor-mediated signaling pathway.

    PubMed

    Lee, Hye-Rim; Choi, Kyung-Chul

    2013-02-08

    Endocrine disrupting chemicals (EDCs) are defined as environmental compounds that modulate steroid hormone receptor-dependent responses an abnormal manner, resulting in adverse health problems for humans such as cancer growth and metastasis. Cathepsins are proteases that have been implicated in cancer progression. However, there have been few studies about the association between cathepsins and estrogenic chemicals during the cancer progression. In this study, we examined the effect(s) of 4-tert-octylphenol (OP), a potent EDC, on the expression of cathepsins B and D in human MCF-7 breast cancer cells and a xenograft mouse model. Treatment with OP significantly induced the proliferation MCF-7 cells in an MTT assay. In addition, the expression of cathepsins B and D was markedly enhanced in MCF-7 cells at both the transcriptional and the translational levels following treatment with E2 or OP up to 48h. These results demonstrated the ability of OP to disrupt normal transcriptional regulation of cathepsins B and D in human breast cancer cells. However, the effects of OP on cell growth or overexpression of cathepsins by inhibiting ER-mediated signaling were abolished by an ER antagonist and siRNA specific for ERα. In conclusion, our findings suggest that OP at 10(-6)M, like E2, may accelerate breast cancer cell proliferation and the expression of cathepsins through an ER-mediated signaling pathway. In addition, the breast cancer cells exposed with OP to a xenograft mouse model were more aggressive according to our histological analysis and showed markedly increased expression of cathepsin B. These effects of mouse model resulted in an increased potential for metastasis in breast cancer. Taken together, we determined that OP can adversely affect human health by promoting cancer proliferation and metastasis through the amplification of cathepsins B and D via the ER-mediated signaling pathway.

  15. Morphine Modulates Interleukin-4- or Breast Cancer Cell-induced Pro-metastatic Activation of Macrophages.

    PubMed

    Khabbazi, Samira; Goumon, Yannick; Parat, Marie-Odile

    2015-06-16

    Interactions between cancer cells and stromal cells in the tumour microenvironment play a key role in the control of invasiveness, metastasis and angiogenesis. Macrophages display a range of activation states in specific pathological contexts and alternatively activated (M2) macrophages can promote tumour aggressiveness. Opioids are able to modulate tumour growth and metastasis. We tested whether morphine modulates the activation of macrophages induced by (i) interleukin-4 (IL-4), the prototypical M2 polarization-inducing cytokine, or (ii) coculture with breast cancer cells. We showed that IL-4 causes increased MMP-9 production and expression of the alternative activation markers arginase-1 and MRC-1. Morphine prevented IL-4-induced increase in MMP-9 in a naloxone- and methylnaltrexone-reversible fashion. Morphine also prevented IL-4-elicited alternative activation of RAW264.7 macrophages. Expression of MMP-9 and arginase-1 were increased when RAW264.7 were subjected to paracrine activation by 4T1 cells, and this effect was prevented by morphine via an opioid receptor-mediated mechanism. Morphine further decreased 4T1 breast cancer cell invasion elicited by co-culture with RAW264.7. Reduction of MMP-9 expression and alternative activation of macrophages by morphine was confirmed using mouse bone marrow-derived macrophages. Taken together, our results indicate that morphine may modulate tumour aggressiveness by regulating macrophage protease production and M2 polarization within the tumour microenvironment.

  16. Targeting single-walled carbon nanotubes for the treatment of breast cancer using photothermal therapy

    NASA Astrophysics Data System (ADS)

    Neves, Luís F. F.; Krais, John J.; Van Rite, Brent D.; Ramesh, Rajagopal; Resasco, Daniel E.; Harrison, Roger G.

    2013-09-01

    This paper focuses on the targeting of single-walled carbon nanotubes (SWNTs) for the treatment of breast cancer with minimal side effects using photothermal therapy. The human protein annexin V (AV) binds specifically to anionic phospholipids expressed externally on the surface of tumour cells and endothelial cells that line the tumour vasculature. A 2 h incubation of the SWNT-AV conjugate with proliferating endothelial cells followed by washing and near-infrared (NIR) irradiation at a wavelength of 980 nm was enough to induce significant cell death; there was no significant cell death with irradiation or the conjugate alone. Administration of the same conjugate i.v. in BALB/c female mice with implanted 4T1 murine mammary at a dose of 0.8 mg SWNT kg-1 and followed one day later by NIR irradiation of the tumour at a wavelength of 980 nm led to complete disappearance of implanted 4T1 mouse mammary tumours for the majority of the animals by 11 days since the irradiation. The combination of the photothermal therapy with the immunoadjuvant cyclophosphamide resulted in increased survival. The in vivo results suggest the SWNT-AV/NIR treatment is a promising approach to treat breast cancer.

  17. An MMP13-Selective Inhibitor Delays Primary Tumor Growth and the Onset of Tumor-Associated Osteolytic Lesions in Experimental Models of Breast Cancer

    PubMed Central

    Shah, Manisha; Huang, Dexing; Blick, Tony; Connor, Andrea; Reiter, Lawrence A.; Hardink, Joel R.; Lynch, Conor C.; Waltham, Mark; Thompson, Erik W.

    2012-01-01

    We investigated the effects of the matrix metalloproteinase 13 (MMP13)-selective inhibitor, 5-(4-{4-[4-(4-fluorophenyl)-1,3-oxazol-2-yl]phenoxy}phenoxy)-5-(2-methoxyethyl) pyrimidine-2,4,6(1H,3H,5H)-trione (Cmpd-1), on the primary tumor growth and breast cancer-associated bone remodeling using xenograft and syngeneic mouse models. We used human breast cancer MDA-MB-231 cells inoculated into the mammary fat pad and left ventricle of BALB/c Nu/Nu mice, respectively, and spontaneously metastasizing 4T1.2-Luc mouse mammary cells inoculated into mammary fat pad of BALB/c mice. In a prevention setting, treatment with Cmpd-1 markedly delayed the growth of primary tumors in both models, and reduced the onset and severity of osteolytic lesions in the MDA-MB-231 intracardiac model. Intervention treatment with Cmpd-1 on established MDA-MB-231 primary tumors also significantly inhibited subsequent growth. In contrast, no effects of Cmpd-1 were observed on soft organ metastatic burden following intracardiac or mammary fat pad inoculations of MDA-MB-231 and 4T1.2-Luc cells respectively. MMP13 immunostaining of clinical primary breast tumors and experimental mice tumors revealed intra-tumoral and stromal expression in most tumors, and vasculature expression in all. MMP13 was also detected in osteoblasts in clinical samples of breast-to-bone metastases. The data suggest that MMP13-selective inhibitors, which lack musculoskeletal side effects, may have therapeutic potential both in primary breast cancer and cancer-induced bone osteolysis. PMID:22253746

  18. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer

    PubMed Central

    Takai, Ken; Le, Annie; Weaver, Valerie M.; Werb, Zena

    2016-01-01

    Increased collagen expression in tumors is associated with increased risk of metastasis, and triple-negative breast cancer (TNBC) has the highest propensity to develop distant metastases when there is evidence of central fibrosis. Transforming growth factor-β (TGF-β) ligands regulated by cancer-associated fibroblasts (CAFs) promote accumulation of fibrosis and cancer progression. In the present study, we have evaluated TNBC tumors with enhanced collagen to determine whether we can reduce metastasis by targeting the CAFs with Pirfenidone (PFD), an anti-fibrotic agent as well as a TGF-β antagonist. In patient-derived xenograft models, TNBC tumors exhibited accumulated collagen and activated TGF-β signaling, and developed lung metastasis. Next, primary CAFs were established from 4T1 TNBC homograft tumors, TNBC xenograft tumors and tumor specimens of breast cancer patients. CAFs promoted primary tumor growth with more fibrosis and TGF-β activation and lung metastasis in 4T1 mouse model. We then examined the effects of PFD in vitro and in vivo. We found that PFD had inhibitory effects on cell viability and collagen production of CAFs in 2D culture. Furthermore, CAFs enhanced tumor growth and PFD inhibited the tumor growth induced by CAFs by causing apoptosis in the 3D co-culture assay of 4T1 tumor cells and CAFs. In vivo, PFD alone inhibited tumor fibrosis and TGF-β signaling but did not inhibit tumor growth and lung metastasis. However, PFD inhibited tumor growth and lung metastasis synergistically in combination with doxorubicin. Thus, PFD has great potential for a novel clinically applicable TNBC therapy that targets tumor-stromal interaction. PMID:27756881

  19. Tumor tropism of intravenously injected human-induced pluripotent stem cell-derived neural stem cells and their gene therapy application in a metastatic breast cancer model.

    PubMed

    Yang, Jing; Lam, Dang Hoang; Goh, Sally Sallee; Lee, Esther Xingwei; Zhao, Ying; Tay, Felix Chang; Chen, Can; Du, Shouhui; Balasundaram, Ghayathri; Shahbazi, Mohammad; Tham, Chee Kian; Ng, Wai Hoe; Toh, Han Chong; Wang, Shu

    2012-05-01

    Human pluripotent stem cells can serve as an accessible and reliable source for the generation of functional human cells for medical therapies. In this study, we used a conventional lentiviral transduction method to derive human-induced pluripotent stem (iPS) cells from primary human fibroblasts and then generated neural stem cells (NSCs) from the iPS cells. Using a dual-color whole-body imaging technology, we demonstrated that after tail vein injection, these human NSCs displayed a robust migratory capacity outside the central nervous system in both immunodeficient and immunocompetent mice and homed in on established orthotopic 4T1 mouse mammary tumors. To investigate whether the iPS cell-derived NSCs can be used as a cellular delivery vehicle for cancer gene therapy, the cells were transduced with a baculoviral vector containing the herpes simplex virus thymidine kinase suicide gene and injected through tail vein into 4T1 tumor-bearing mice. The transduced NSCs were effective in inhibiting the growth of the orthotopic 4T1 breast tumor and the metastatic spread of the cancer cells in the presence of ganciclovir, leading to prolonged survival of the tumor-bearing mice. The use of iPS cell-derived NSCs for cancer gene therapy bypasses the sensitive ethical issue surrounding the use of cells derived from human fetal tissues or human embryonic stem cells. This approach may also help to overcome problems associated with allogeneic transplantation of other types of human NSCs.

  20. A Small Molecule Inhibitor of Human RAD51 Potentiates Breast Cancer Cell Killing by Therapeutic Agents in Mouse Xenografts

    PubMed Central

    Huang, Fei; Mazin, Alexander V.

    2014-01-01

    The homologous recombination pathway is responsible for the repair of DNA double strand breaks. RAD51, a key homologous recombination protein, promotes the search for homology and DNA strand exchange between homologous DNA molecules. RAD51 is overexpressed in a variety of cancer cells. Downregulation of RAD51 by siRNA increases radio- or chemo-sensitivity of cancer cells. We recently developed a specific RAD51 small molecule inhibitor, B02, which inhibits DNA strand exchange activity of RAD51 in vitro. In this study, we used human breast cancer cells MDA-MB-231 to investigate the ability of B02 to inhibit RAD51 and to potentiate an anti-cancer effect of chemotherapeutic agents including doxorubicin, etoposide, topotecan, and cisplatin. We found that the combination of B02 with cisplatin has the strongest killing effect on the cancer cells. We then tested the effect of B02 and cisplatin on the MDA-MB-231 cell proliferation in mouse xenografts. Our results showed that B02 significantly enhances the therapeutic effect of cisplatin on tumor cells in vivo. Our current data demonstrate that use of RAD51-specific small molecule inhibitor represents a feasible strategy of a combination anti-cancer therapy. PMID:24971740

  1. Time-lapse imaging of primary preneoplastic mammary epithelial cells derived from genetically engineered mouse models of breast cancer.

    PubMed

    Nakles, Rebecca E; Millman, Sarah L; Cabrera, M Carla; Johnson, Peter; Mueller, Susette; Hoppe, Philipp S; Schroeder, Timm; Furth, Priscilla A

    2013-02-08

    Time-lapse imaging can be used to compare behavior of cultured primary preneoplastic mammary epithelial cells derived from different genetically engineered mouse models of breast cancer. For example, time between cell divisions (cell lifetimes), apoptotic cell numbers, evolution of morphological changes, and mechanism of colony formation can be quantified and compared in cells carrying specific genetic lesions. Primary mammary epithelial cell cultures are generated from mammary glands without palpable tumor. Glands are carefully resected with clear separation from adjacent muscle, lymph nodes are removed, and single-cell suspensions of enriched mammary epithelial cells are generated by mincing mammary tissue followed by enzymatic dissociation and filtration. Single-cell suspensions are plated and placed directly under a microscope within an incubator chamber for live-cell imaging. Sixteen 650 μm x 700 μm fields in a 4x4 configuration from each well of a 6-well plate are imaged every 15 min for 5 days. Time-lapse images are examined directly to measure cellular behaviors that can include mechanism and frequency of cell colony formation within the first 24 hr of plating the cells (aggregation versus cell proliferation), incidence of apoptosis, and phasing of morphological changes. Single-cell tracking is used to generate cell fate maps for measurement of individual cell lifetimes and investigation of cell division patterns. Quantitative data are statistically analyzed to assess for significant differences in behavior correlated with specific genetic lesions.

  2. Genomic DNA of MCF-7 breast cancer cells not an ideal choice as positive control for PCR amplification based detection of Mouse Mammary Tumor Virus-Like Sequences.

    PubMed

    Kulkarni, Bhushan B; Hiremath, Shivaprakash V; Kulkarni, Suyamindra S; Hallikeri, Umesh R; Patil, Basavaraj R; Gai, Pramod B

    2013-11-01

    The identification of the etiology of breast cancer is a crucial research issue for the development of an effective preventive and treatment strategies. Researchers are exploring the possible involvement of Mouse Mammary Tumor Virus (MMTV) in causing human breast cancer. Hence, it becomes very important to use a consistent positive control agent in PCR amplification based detection of MMTV-Like Sequence (MMTV-LS) in human breast cancer for accurate and reproducible results. This study was done to investigate the feasibility of using genomic DNA of MCF-7 breast cancer cells to detect MMTV-LS using PCR amplification based detection. MMTV env and SAG gene located at the 3' long terminal repeat (LTR) sequences were targeted for the PCR based detection. No amplification was observed in case of the genomic DNA of MCF-7 breast cancer cells. However, the 2.7 kb DNA fragment comprising MMTV env and SAG LTR sequences yielded the products of desired size. From these results it can be concluded that Genomic DNA of MCF-7 cell is not a suitable choice as positive control for PCR or RT-PCR based detection of MMTV-LS. It is also suggested that plasmids containing the cloned genes or sequences of MMTV be used as positive control for detection of MMTV-LS.

  3. An improved syngeneic orthotopic murine model of human breast cancer progression.

    PubMed

    Rashid, Omar M; Nagahashi, Masayuki; Ramachandran, Suburamaniam; Dumur, Catherine; Schaum, Julia; Yamada, Akimitsu; Terracina, Krista P; Milstien, Sheldon; Spiegel, Sarah; Takabe, Kazuaki

    2014-10-01

    Breast cancer drug development costs nearly $610 million and 37 months in preclinical mouse model trials with minimal success rates. Despite these inefficiencies, there are still no consensus breast cancer preclinical models. Murine mammary adenocarcinoma 4T1-luc2 cells were implanted subcutaneous (SQ) or orthotopically percutaneous (OP) injection in the area of the nipple, or surgically into the chest 2nd mammary fat pad under direct vision (ODV) in Balb/c immunocompetent mice. Tumor progression was followed by in vivo bioluminescence and direct measurements, pathology and survival determined, and tumor gene expression analyzed by genome-wide microarrays. ODV produced less variable-sized tumors and was a reliable method of implantation. ODV implantation into the chest 2nd mammary pad rather than into the abdominal 4th mammary pad, the most common implantation site, better mimicked human breast cancer progression pattern, which correlated with bioluminescent tumor burden and survival. Compared to SQ, ODV produced tumors that differentially expressed genes whose interaction networks are of importance in cancer research. qPCR validation of 10 specific target genes of interest in ongoing clinical trials demonstrated significant differences in expression. ODV implantation into the chest 2nd mammary pad provides the most reliable model that mimics human breast cancer compared from subcutaneous implantation that produces tumors with different genome expression profiles of clinical significance. Increased understanding of the limitations of the different preclinical models in use will help guide new investigations and may improve the efficiency of breast cancer drug development .

  4. Pt-Mal-LHRH, a Newly Synthesized Compound Attenuating Breast Cancer Tumor Growth and Metastasis by Targeting Overexpression of the LHRH Receptor.

    PubMed

    Calderon, Lindsay E; Keeling, Jonathan K; Rollins, Joseph; Black, Carrie A; Collins, Kendall; Arnold, Nova; Vance, Diane E; Ndinguri, Margaret W

    2017-02-15

    A new targeting chemotherapeutic agent, Pt-Mal-LHRH, was synthesized by linking activated cisplatin to luteinizing hormone releasing hormone (LHRH). The compound's efficacy and selectivity toward 4T1 breast cancer cells were evaluated. Carboplatin was selected as the comparative platinum complex, since the Pt-Mal-LHRH malonate linker chelates platinum in a similar manner to carboplatin. Breast cancer and normal cell viability were analyzed by an MTT assay comparing Pt-Mal-LHRH with carboplatin. Cells were also treated with either Pt-Mal-LHRH or carboplatin to evaluate platinum uptake by ICP-MS and cell migration using an in vitro scratch-migration assay. Tumor volume and metastasis were evaluated using an in vivo 4T1 mouse tumor model. Mice were administered Pt-Mal-LHRH (carboplatin molar equivalent dosage) through ip injection and compared to those treated with carboplatin (5 (mg/kg)/week), no treatment, and LHRH plus carboplatin (unbound) controls. An MTT assay showed a reduction in cell viability (p < 0.01) in 4T1 and MDA-MB-231 breast cancer cells treated with Pt-Mal-LHRH compared to carboplatin. Pt-Mal-LHRH was confirmed to be cytotoxic by flow cytometry using a propidium iodide stain. Pt-Mal-LHRH displayed a 20-fold increase in 4T1 cellular uptake compared to carboplatin. There was a decrease (p < 0.0001) in 4T1 cell viability compared to 3T3 normal fibroblast cells. Treatment with Pt-Mal-LHRH also resulted in a significant decrease in cell-migration compared to carboplatin. In vivo testing found a significant reduction in tumor volume (p < 0.05) and metastatic tumor colonization in the lungs with Pt-Mal-LHRH compared to carboplatin. There was a slight decrease in lung weight and no difference in liver weight between treatment groups. Together, our data indicate that Pt-Mal-LHRH is a more potent and selective chemotherapeutic agent than untargeted carboplatin.

  5. Hypoxia pathway and hypoxia-mediated extensive extramedullary hematopoiesis are involved in ursolic acid's anti-metastatic effect in 4T1 tumor bearing mice

    PubMed Central

    Gao, Jian-Li; Shui, Yan-Mei; Jiang, Wei; Huang, En-Yi; Shou, Qi-Yang; Ji, Xin; He, Bai-Cheng; Lv, Gui-Yuan; He, Tong-Chuan

    2016-01-01

    Hypoxic in the tumor mass is leading to the myeloproliferative-like disease (leukemoid reaction) and anemia of body, which characterized by strong extensive extramedullary hematopoiesis (EMH) in spleen. As the key transcription factor of hypoxia, hypoxia-inducible factor-1 (HIF-1) activates the expression of genes essential for EMH processes including enhanced blood cell production and angiogenesis. We found ursolic acid (UA), a natural pentacyclic triterpenoid carboxylic acid, inhibited growth of breast cancer both in vivo and in vitro. The suppression was mediated through the inhibition of multiple cell pathways linked to inflammation, proliferation, angiogenesis, and metastasis. UA also suppressed the leukemoid reaction and the EMH phenomenon of the tumor bearing mice without any significant suppression on body weight (i.p. by 20 mg/kg for 28 days). This is associated with the significant decrease in white blood cells (WBC), platelets (PLT) and spleen weight. During this process, we also detected the down-regulation of cell proliferative genes (PCNA, and β-catenin), and metastatic genes (VEGF, and HIF-1α), as well as the depression of nuclear protein intensity of HIF-1α. Furthermore, the expression of E2F1, p53 and MDM2 genes were increased in UA group when the VEGF and HIF-1α was over-expressed. Cancer cells were sensitive to UA treating after the silencing of HIF-1α and the response of Hypoxic pathway reporter to UA was suppressed when HIF-1α was over expressed. Overall, our results from experimental and predictive studies suggest that the anticancer activity of UA may be at least in part caused by suppressing the cancer hypoxia and hypoxia-mediated EMH. PMID:27708244

  6. Therapeutic efficacy and molecular mechanisms of snake (Walterinnesia aegyptia) venom-loaded silica nanoparticles in the treatment of breast cancer- and prostate cancer-bearing experimental mouse models.

    PubMed

    Badr, Gamal; Al-Sadoon, Mohamed K; Rabah, Danny M

    2013-12-01

    The treatment of drug-resistant cancer is a clinical challenge, and thus screening for novel anticancer drugs is critically important. We recently demonstrated a strong enhancement of the antitumor activity of snake (Walterinnesia aegyptia) venom (WEV) in vitro in breast carcinoma, prostate cancer, and multiple myeloma cell lines but not in normal cells when the venom was combined with silica nanoparticles (WEV+NP). In the present study, we investigated the in vivo therapeutic efficacy of WEV+NP in breast cancer- and prostate cancer-bearing experimental mouse models. Xenograft breast and prostate tumor mice models were randomized into 4 groups for each cancer model (10 mice per group) and were treated with vehicle (control), NP, WEV, or WEV+NP daily for 28 days post tumor inoculation. The tumor volumes were monitored throughout the experiment. On Day 28 post tumor inoculation, breast and prostate tumor cells were collected and either directly cultured for flow cytometry analysis or lysed for Western blot and ELISA analysis. Treatment with WEV+NP or WEV alone significantly reduced both breast and prostate tumor volumes compared to treatment with NP or vehicle alone. Compared to treatment with WEV alone, treatment of breast and prostate cancer cells with WEV+NP induced marked elevations in the levels of reactive oxygen species (ROS), hydroperoxides, and nitric oxide; robust reductions in the levels of the chemokines CXCL9, CXCL10, CXCL12, CXCL13, and CXCL16 and decreased surface expression of their cognate chemokine receptors CXCR3, CXCR4, CXCR5, and CXCR6; and subsequent reductions in the chemokine-dependent migration of both breast and prostate cancer cells. Furthermore, we found that WEV+NP strongly inhibited insulin-like growth factor 1 (IGF-1)- and epidermal growth factor (EGF)-mediated proliferation of breast and prostate cancer cells, respectively, and enhanced the induction of apoptosis by increasing the activity of caspase-3,-8, and -9 in both breast and

  7. Anti-angiogenic action of redox modulating Mn(III) ortho tetrakis N-ethylpyridylporphyrin, MnTE-2-PyP5+via suppression of oxidative stress in a mouse model of breast tumor

    PubMed Central

    Rabbani, Zahid N.; Spasojevic, Ivan; Zhang, XiuWu; Moeller, Benjamin J.; Haberle, Sinisa; Vasquez-Vivar, Jeannette; Dewhirst, Mark W.; Vujaskovic, Zeljko; Batinic-Haberle, Ines

    2009-01-01

    MnTE-2-PyP5+ is a potent catalytic scavenger of reactive oxygen and nitrogen species, primarily superoxide and peroxynitrite. It therefore not only attenuates primary oxidative damage, but was found to modulate redox-based signaling pathways (HIF-1α, NF-κB, SP-1 and AP-1), and thus in turn secondary oxidative injury also. Cancer has been widely considered as an oxidative stress condition. The goal of the present study was to prove if and why a catalytic SOD mimic/peroxynitrite scavenger would exert anti-cancer effects; i.e. to evaluate whether the attenuation of the oxidative stress by MnTE-2-PyP5+ could suppress tumor growth in a 4T1 mouse breast tumor model. Tumor cells were implanted into Balb/C mouse flanks. Three groups of mice (n=25) were studied: control (PBS), 2 mg/kg/day and 15 mg/kg/day of MnTE-2-PyP5+ given subcutaneously twice daily starting when the tumors averaged 200 mm3 (until they reached ~5-fold of initial volum). Intratumoral hypoxia (pimonidazole, carbonic anhydrase, CAIX), HIF-1α, VEGF, proliferating capillary index (CD105), microvessel density (CD31), protein nitration, DNA oxidation (8-OHdG) NADPH oxidase (Nox-4), apoptosis (CD31), macrophage infiltration (CD68) and tumor drug levels were assessed. With 2 mg/kg/day a trend toward tumor growth delay was observed and was significant with 15 mg/kg/day. The 7.5-fold increase in drug dose was accompanied by similar (6-fold) increase in drug tumor levels. Oxidative stress was largely attenuated as was observed through the decreased levels of DNA damage, protein 3-nitrotyrosine, macrophage infiltration and NADPH oxidase. Further, hypoxia was significantly decreased as were the levels of HIF-1α and VEGF. Consequently, suppression of angiogenesis was observed; both the microvessel density and the endothelial cell proliferation were markedly decreased. Our study indicates for the first time that MnTE-2-PyP5+ has anti-cancer activity in its own right. The anti-cancer activity via HIF/VEGF pathways

  8. Identification of osteopontin-dependent signaling pathways in a mouse model of human breast cancer

    PubMed Central

    Mi, Zhiyong; Guo, Hongtao; Kuo, Paul C

    2009-01-01

    Background Osteopontin (OPN) is a secreted phosphoprotein which functions as a cell attachment protein and cytokine that signals through two cell adhesion molecules, αvβ3-integrin and CD44, to regulate cancer growth and metastasis. However, the signaling pathways associated with OPN have not been extensively characterized. In an in vivo xenograft model of MDA-MB-231 human breast cancer, we have previously demonstrated that ablation of circulating OPN with an RNA aptamer blocks interaction with its cell surface receptors to significantly inhibit adhesion, migration and invasion in vitro and local progression and distant metastases. Findings In this study, we performed microarray analysis to compare the transcriptomes of primary tumor in the presence and absence of aptamer ablation of OPN. The results were corroborated with RT-PCR and Western blot analysis. Our results demonstrate that ablation of OPN cell surface receptor binding is associated with significant alteration in gene and protein expression critical in apoptosis, vascular endothelial growth factor (VEGF), platelet derived growth factor (PDGF), interleukin-10 (IL-10), granulocyte-macrophage colony stimulating factor (GM-CSF) and proliferation signaling pathways. Many of these proteins have not been previously associated with OPN. Conclusion We conclude that secreted OPN regulates multiple signaling pathways critical for local tumor progression. PMID:19570203

  9. New potential beneficial effects of actein, a triterpene glycoside isolated from Cimicifuga species, in breast cancer treatment

    PubMed Central

    Yue, Grace Gar-Lee; Xie, Sida; Lee, Julia Kin-Ming; Kwok, Hin-Fai; Gao, Si; Nian, Yin; Wu, Xiao-Xiao; Wong, Chun-Kwok; Qiu, Ming-Hua; Lau, Clara Bik-San

    2016-01-01

    Actein is a triterpene glycoside isolated from the rhizomes of Cimicifuga foetida (Chinese herb “shengma”) which could inhibit the growth of breast cancer cells. Nevertheless, the effect of actein on angiogenesis, which is an essential step for tumor growth and metastasis, has never been reported. Hence, this study aimed to investigate the in vitro and in vivo effects of actein on angiogenesis using human microvascular endothelial cells (HMEC-1), matrigel plug and tumor-bearing mouse models. Our results showed that actein significantly inhibited the proliferation, reduced the migration and motility of endothelial cells, and it could suppress the protein expressions of VEGFR1, pJNK and pERK, suggesting that JNK/ERK pathways were involved. In vivo results showed that oral administration of actein at 10 mg/kg for 7 days inhibited blood vessel formation in the growth factor-containing matrigel plugs. Oral actein treatments (10–15 mg/kg) for 28 days resulted in decreasing mouse 4T1 breast tumor sizes and metastasis to lungs and livers. The apparent reduced angiogenic proteins (CD34 and Factor VIII) expressions and down-regulated metastasis-related VEGFR1 and CXCR4 gene expressions were observed in breast tumors. Our novel findings provide insights into the use of actein for development of anti-angiogenic agents for breast cancer. PMID:27731376

  10. Longitudinal MRI Evaluation of Intracranial Development and Vascular Characteristics of Breast Cancer Brain Metastases in a Mouse Model

    PubMed Central

    Zhou, Heling; Chen, Min; Zhao, Dawen

    2013-01-01

    Longitudinal MRI was applied to monitor intracranial initiation and development of brain metastases and assess tumor vascular volume and permeability in a mouse model of breast cancer brain metastases. Using a 9.4T system, high resolution anatomic MRI and dynamic susceptibility contrast (DSC) perfusion MRI were acquired at different time points after an intracardiac injection of brain-tropic breast cancer MDA-MB231BR-EGFP cells. Three weeks post injection, multifocal brain metastases were first observed with hyperintensity on T2-weighted images, but isointensity on T1-weighted post contrast images, indicating that blood-tumor-barrier (BTB) at early stage of brain metastases was impermeable. Follow-up MRI revealed intracranial tumor growth and increased number of metastases that distributed throughout the whole brain. At the last scan on week 5, T1-weighted post contrast images detected BTB disruption in 160 (34%) of a total of 464 brain metastases. Enhancement in some of the metastases was only seen in partial regions of the tumor, suggesting intratumoral heterogeneity of BTB disruption. DSC MRI measurements of relative cerebral blood volume (rCBV) showed that rCBV of brain metastases was significantly lower (mean  = 0.89±0.03) than that of contralateral normal brain (mean  = 1.00±0.03; p<0.005). Intriguingly, longitudinal measurements revealed that rCBV of individual metastases at early stage was similar to, but became significantly lower than that of contralateral normal brain with tumor growth (p<0.05). The rCBV data were concordant with histological analysis of microvascular density (MVD). Moreover, comprehensive analysis suggested no significant correlation among tumor size, rCBV and BTB permeability. In conclusion, longitudinal MRI provides non-invasive in vivo assessments of spatial and temporal development of brain metastases and their vascular volume and permeability. The characteristic rCBV of brain metastases may have a diagnostic value. PMID

  11. Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice.

    PubMed

    Le, Hanh K; Graham, Laura; Cha, Esther; Morales, Johanna K; Manjili, Masoud H; Bear, Harry D

    2009-07-01

    Myeloid derived suppressor cells (MDSCs) accumulate in 4T1 mammary carcinoma bearing mice and present a barrier to the success of adoptive immunotherapy (AIT) by suppressing T cell immunity. In this study, we investigated the inhibition of MDSCs by gemcitabine (GEM), a chemotherapy agent that may have favorable immunologic effects. BALB/c mice were inoculated with 4T1 mammary carcinoma cells and treated with GEM either once a week starting 5 days after tumor inoculation (EARLY GEM) or as a single dose at days 20-25 (LATE GEM). Splenic mononuclear cells were isolated, activated in vitro, expanded, and stimulated with tumor antigen. T cells were then used for AIT to treat tumor-bearing mice. EARLY GEM treatment of 4T1 tumor-bearing mice significantly inhibited tumor growth, reduced splenomegaly, and significantly decreased MDSC proportion in the spleen. Support for a direct effect was demonstrated through suppression of MDSCs in spleens, bone marrow, and blood harvested 24 and 48 h after LATE GEM treatment, despite no significant decrease in tumor burden. Interestingly, treatment of tumor-bearing mice with GEM augmented in vitro expansion of splenic T cells and boosted IFN-gamma secretion in response to stimulation by tumor antigen. However, despite GEM-mediated inhibition of MDSC suppression, splenic T cells from mice with advanced tumors were ineffective in vivo against established tumors. This study provides support for direct inhibition of MDSCs and direct reduction of tumor burden by GEM in 4T1 tumor-bearing mice. GEM treatment of mice with advanced tumors improves T cell function and growth in vitro.

  12. RUNX2 correlates with subtype-specific breast cancer in a human tissue microarray, and ectopic expression of Runx2 perturbs differentiation in the mouse mammary gland.

    PubMed

    McDonald, Laura; Ferrari, Nicola; Terry, Anne; Bell, Margaret; Mohammed, Zahra M; Orange, Clare; Jenkins, Alma; Muller, William J; Gusterson, Barry A; Neil, James C; Edwards, Joanne; Morris, Joanna S; Cameron, Ewan R; Blyth, Karen

    2014-05-01

    RUNX2, a master regulator of osteogenesis, is oncogenic in the lymphoid lineage; however, little is known about its role in epithelial cancers. Upregulation of RUNX2 in cell lines correlates with increased invasiveness and the capacity to form osteolytic disease in models of breast and prostate cancer. However, most studies have analysed the effects of this gene in a limited number of cell lines and its role in primary breast cancer has not been resolved. Using a human tumour tissue microarray, we show that high RUNX2 expression is significantly associated with oestrogen receptor (ER)/progesterone receptor (PR)/HER2-negative breast cancers and that patients with high RUNX2 expression have a poorer survival rate than those with negative or low expression. We confirm RUNX2 as a gene that has a potentially important functional role in triple-negative breast cancer. To investigate the role of this gene in breast cancer, we made a transgenic model in which Runx2 is specifically expressed in murine mammary epithelium under the control of the mouse mammary tumour virus (MMTV) promoter. We show that ectopic Runx2 perturbs normal development in pubertal and lactating animals, delaying ductal elongation and inhibiting lobular alveolar differentiation. We also show that the Runx2 transgene elicits age-related, pre-neoplastic changes in the mammary epithelium of older transgenic animals, suggesting that elevated RUNX2 expression renders such tissue more susceptible to oncogenic changes and providing further evidence that this gene might have an important, context-dependent role in breast cancer.

  13. Biodistribution and imaging of fluorescently-tagged iron oxide nanoparticles in a breast cancer mouse model

    NASA Astrophysics Data System (ADS)

    Tate, Jennifer A.; Savellano, Mark D.; Hoopes, P. Jack

    2013-02-01

    Iron oxide nanoparticle (IONP) hyperthermia is an emerging treatment that shows great potential as a cancer therapy both alone and in synergy with conventional modalities. Pre-clinical studies are attempting to elucidate the mechanisms of action and distributions of IONP in various in vitro and in vivo models, however these studies would greatly benefit from real-time imaging of IONP locations both in cellular and in mammalian systems. To this end, fluorescently-tagged IONP (fIONP) have been employed for real time tracking and co-registration of IONP with iron content. Starch-coated IONP were fluorescently-tagged, purified and analyzed for fluorescent signal at various concentrations. fIONP were incubated with MTGB cells for varying times and cellular uptake analyzed using confocal microscopy, flow cytometry and inductively-coupled plasma mass spectrometry (ICP-MS). fIONP were also injected into a bilateral mouse tumor model for radiation modification of tumor tissue and enhanced fIONP deposition assessed using a Xenogen IVIS fluorescent imager. Results demonstrated that fIONP concentrations in vitro correlated with ICPMS iron readings. fIONP could be tracked in vitro as well as in tissue samples from an in vivo model. Future work will employ whole animal fluorescent imaging to track the biodistribution of fIONP over time.

  14. Importance of CD200 expression by tumor or host cells to regulation of immunotherapy in a mouse breast cancer model.

    PubMed

    Curry, Anna; Khatri, Ismat; Kos, Olha; Zhu, Fang; Gorczynski, Reginald

    2017-01-01

    Cell-surface CD200 expression by mouse EMT6 breast tumor cells increased primary tumor growth and metastasis to the draining lymph nodes (DLN) in normal (WT) BALB/c female recipients, while lack of CD200R1 expression in a CD200R1-/- host negated this effect. Silencing CD200 expression in EMT6siCD200 tumor cells also reduced their ability to grow and metastasize in WT animals. The cellular mechanisms responsible for these effects have not been studied in detail. We report characterization of tumor infiltrating (TILs) and draining lymph node (DLN) cells in WT and CD200-/- BALB/c mice, receiving WT tumor cells, or EMT6 lacking CD200 expression (EMT6siCD200 cells). Our data show an important correlation with augmented CD8+ cytotoxic T cells and resistance to tumor growth in mice lacking exposure (on either host cells or tumor) to the immunoregulatory molecule CD200. Confirmation of the importance of such CD8+ cells came from monitoring tumor growth and characterization of the TILs and DLN cells in WT mice challenged with EMT6 and EMT6siCD200 tumors and treated with CD8 and CD4 depleting antibodies. Finally, we have assessed the mechanisms(s) whereby addition of metformin as an augmenting chemotherapeutic agent in CD200-/- animals given EMT6 tumors and treated with a previously established immunotherapy regime can increase host resistance. Our data support the hypothesis that increased autophagy in the presence of metformin increases CD8+ responses and tumor resistance, an effect attenuated by the autophagy inhibitor verteporfin.

  15. Importance of CD200 expression by tumor or host cells to regulation of immunotherapy in a mouse breast cancer model

    PubMed Central

    Curry, Anna; Khatri, Ismat; Kos, Olha; Zhu, Fang; Gorczynski, Reginald

    2017-01-01

    Cell-surface CD200 expression by mouse EMT6 breast tumor cells increased primary tumor growth and metastasis to the draining lymph nodes (DLN) in normal (WT) BALB/c female recipients, while lack of CD200R1 expression in a CD200R1-/- host negated this effect. Silencing CD200 expression in EMT6siCD200 tumor cells also reduced their ability to grow and metastasize in WT animals. The cellular mechanisms responsible for these effects have not been studied in detail. We report characterization of tumor infiltrating (TILs) and draining lymph node (DLN) cells in WT and CD200-/- BALB/c mice, receiving WT tumor cells, or EMT6 lacking CD200 expression (EMT6siCD200 cells). Our data show an important correlation with augmented CD8+ cytotoxic T cells and resistance to tumor growth in mice lacking exposure (on either host cells or tumor) to the immunoregulatory molecule CD200. Confirmation of the importance of such CD8+ cells came from monitoring tumor growth and characterization of the TILs and DLN cells in WT mice challenged with EMT6 and EMT6siCD200 tumors and treated with CD8 and CD4 depleting antibodies. Finally, we have assessed the mechanisms(s) whereby addition of metformin as an augmenting chemotherapeutic agent in CD200-/- animals given EMT6 tumors and treated with a previously established immunotherapy regime can increase host resistance. Our data support the hypothesis that increased autophagy in the presence of metformin increases CD8+ responses and tumor resistance, an effect attenuated by the autophagy inhibitor verteporfin. PMID:28234914

  16. The synergistic effects of radiofrequency ablation (RFA) with glycated chitosan for inhibiting the metastasis of breast cancer

    NASA Astrophysics Data System (ADS)

    Chiu, Hsin-Yu; Leu, Jyh-Der; Chen, Wei R.; Lee, Yi-Jang

    2016-03-01

    Breast cancer is increasing with years in Taiwan because of dietary style, life behavior and several social-physiological factors. According to the record of Bureau of Health Promotion in Taiwan, the incidence of breast cancer is top one, and the mortality of that is top one cancer type in women. Compared with USA, most of breast cancer cases found in Taiwanese women have reached to stage 2 or 3. Current therapeutic strategies for breast cancer include surgery, radiation therapy, chemotherapy, hormone therapy and targeted therapy. However, these methods used for curing the late-stage breast cancer remains rare. Because the metastasis is the major problem of late-stage breast cancer, it is of interest to investigate whether a systemic therapy can reduce the symptoms of cancer. The immunotherapy, particularly an induction of autoimmune system, is probably important for the treatment of late-stage breast cancer. Glycated chitosan (GC) is derived from chitosan, a linear polysaccharide composed of D-glucosamine and N-acetyl-D-glucosamine through β-(1-4) linkage. Several lines of evidence have shown that GC is an immunoadjuvant that can target on primary and metastatic tumors formed in animal and human patients. In our previous data, GC was demonstrated to decrease the motility and invasion of mammalian breast cancer cells in vitro and in vivo. Radiofrequency ablation (RFA) is dependent on a small generator that delivers high frequency alternating electric current directly to burn a tumor lesion. Therefore, the temperature may reach up to above 60 °C. In this study, we used 4T1 mouse breast cancer cell that is the approximately equal to stage 4 of human breast cancer. And triple modality reporter gene (3R) was delivered into the cells using transfected piggyBac, a transposable element for observation of tumor growth and metastasis in vivo. Data showed that growth and metastasis of tumors smaller than 500mm3 were entirely suppressed by RFA-GC combination treatment

  17. The Role of Megakaryocytes in Breast Cancer Metastasis to Bone.

    PubMed

    Jackson, Walter; Sosnoski, Donna M; Ohanessian, Sara E; Chandler, Paige; Mobley, Adam W; Meisel, Kacey D; Mastro, Andrea M

    2017-02-15

    Little is known about how megakaryocytes affect metastasis apart from serving as the source of platelets. We noted an increase in the number of megakaryocytes in the femurs of metastases-bearing athymic mice four weeks following intracardiac inoculation of MDA-MB-231 human breast cancer cells. How did the megakaryocytes relate to the metastases? Did megakaryocytes prepare a niche or did they increase in response to metastases? To test these possibilities, we examined two models of experimental metastasis, intracardiac inoculation of human MDA-MB-231 into athymic mice, and intramammary injection of mouse tumor cells, 4T1.2 (metastatic) or 67NR (non-metastatic) in BALB/c mice. In both models, metastatic, but not primary tumor growth was associated with increased megakaryopoiesis. At 4 weeks post injection, megakaryocytes increased ~ two-fold in the bone marrow of mice with MDA-MB-231 bone metastasis. BALB/c mice injected orthotopically with murine 4T1.2 cells showed extramedullary hematopoiesis resulting in a four-fold increase in megakaryocytes in the spleen. These findings led us to speculate that a reduction in megakaryocytes would result in reduced metastasis. Thrombopoietin knockout mice exhibited a 90% decrease in megakaryocytes compared to wild type mice. Nonetheless, they developed more aggressive metastasis than wild type. We also found with human clinical samples, an increase in megakaryocytes in the bone marrow of 75% (6/8) of patients with metastatic breast cancer compared to age and gender matched controls. The data suggested that the increase in megakaryocytes occurs in response to metastatic cells in the bone, and that megakaryocytes are in some measure protective against metastases.

  18. 2’-Behenoyl-Paclitaxel Conjugate Containing Lipid Nanoparticles for the Treatment of Metastatic Breast Cancer

    PubMed Central

    Ma, Ping; Benhabbour, S. Rahima; Feng, Lan; Mumper, Russell J

    2012-01-01

    The aim of these studies was to develop a novel 2’-behenoyl-paclitaxel (C22-PX) conjugate nanoparticle (NP) formulation for the treatment of metastatic breast cancer. A lipophilic paclitaxel derivative C22-PX was synthesized and incorporated into lipid-based NPs. Free C22-PX and its NP formulation were evaluated in a series of in-vitro and in-vivo studies. The results demonstrated that C22-PX NPs were much better tolerated and had significantly higher plasma and tumor AUCs compared to Taxol at the maximum tolerated dose (MTD) in a subcutaneous 4T1 mouse mammary carcinoma model. These benefits resulted in significantly improved antitumor efficacy with the NP-based formulation. PMID:22902506

  19. Synergistic effect of therapeutic stem cells expressing cytosine deaminase and interferon-beta via apoptotic pathway in the metastatic mouse model of breast cancer.

    PubMed

    Yi, Bo-Rim; Kim, Seung U; Choi, Kyung-Chul

    2016-02-02

    As an approach to improve treatment of breast cancer metastasis to the brain, we employed genetically engineered stem cells (GESTECs, HB1.F3 cells) consisting of neural stem cells (NSCs) expressing cytosine deaminase and the interferon-beta genes, HB1.F3.CD and HB1.F3.CD.IFN-β. In this model, MDA-MB-231/Luc breast cancer cells were implanted in the right hemisphere of the mouse brain, while pre-stained GESTECs with redfluorescence were implanted in the contralateral brain. Two days after stem cells injection, 5-fluorocytosine (5-FC) was administrated via intraperitoneal injection. Histological analysis of extracted brain confirmed the therapeutic efficacy of GESTECs in the presence of 5-FC based on reductions in density and aggressive tendency of breast cancer cells, as well as pyknosis, karyorrhexis, and karyolysis relative to a negative control. Additionally, expression of PCNA decreased in the stem cells treated group. Treatment of breast cancer cells with 5-fluorouracil (5-FU) increased the expression of pro-apoptotic and anti-proliferative factor, BAX and p21 protein through phosphorylation of p53 and p38. Moreover, analysis of stem cell migratory ability revealed that MDA-MB-231 cells endogenously secreted VEGF, and stem cells expressed their receptor (VEGFR2). To confirm the role of VEGF/VEGFR2 signaling in tumor tropism of stem cells, samples were treated with the VEGFR2 inhibitor, KRN633. The number of migrated stem cells decreased significantly in response to KRN633 due to Erk1/2 activation and PI3K/Akt inhibition. Taken together, these results indicate that treatment with GESTECs, particularly HB1.F3.CD.IFN-β co-expressing CD.IFN-β, may be a useful strategy for treating breast cancer metastasis to the brain in the presence of a prodrug.

  20. Multiple functions of CXCL12 in a syngeneic model of breast cancer

    PubMed Central

    2010-01-01

    Background A growing body of work implicates chemokines, in particular CXCL12 and its receptors, in the progression and site-specific metastasis of various cancers, including breast cancer. Various agents have been used to block the CXCL12-CXCR4 interaction as a means of inhibiting cancer metastasis. However, as a potent chemotactic factor for leukocytes, CXCL12 also has the potential to enhance anti-cancer immunity. To further elucidate its role in breast cancer progression, CXCL12 and its antagonist CXCL12(P2G) were overexpressed in the syngeneic 4T1.2 mouse model of breast carcinoma. Results While expression of CXCL12(P2G) significantly inhibited metastasis, expression of wild-type CXCL12 potently inhibited both metastasis and primary tumor growth. The effects of wild-type CXCL12 were attributed to an immune response characterized by the induction of CD8+ T cell activity, enhanced cell-mediated cytotoxicity, increased numbers of CD11c+ cells in the tumor-draining lymph nodes and reduced accumulation of myeloid-derived suppressor cells in the spleen. Conclusions This study highlights the need to consider carefully therapeutic strategies that block CXCL12 signaling. Therapies that boost CXCL12 levels at the primary tumor site may prove more effective in the treatment of metastatic breast cancer. PMID:20849618

  1. In vivo visualization and ex vivo quantification of murine breast cancer cells in the mouse brain using MRI cell tracking and electron paramagnetic resonance.

    PubMed

    Danhier, Pierre; Magat, Julie; Levêque, Philippe; De Preter, Géraldine; Porporato, Paolo E; Bouzin, Caroline; Jordan, Bénédicte F; Demeur, Gladys; Haufroid, Vincent; Feron, Olivier; Sonveaux, Pierre; Gallez, Bernard

    2015-03-01

    Cell tracking could be useful to elucidate fundamental processes of cancer biology such as metastasis. The aim of this study was to visualize, using MRI, and to quantify, using electron paramagnetic resonance (EPR), the entrapment of murine breast cancer cells labeled with superparamagnetic iron oxide particles (SPIOs) in the mouse brain after intracardiac injection. For this purpose, luciferase-expressing murine 4 T1-luc breast cancer cells were labeled with fluorescent Molday ION Rhodamine B SPIOs. Following intracardiac injection, SPIO-labeled 4 T1-luc cells were imaged using multiple gradient-echo sequences. Ex vivo iron oxide quantification in the mouse brain was performed using EPR (9 GHz). The long-term fate of 4 T1-luc cells after injection was characterized using bioluminescence imaging (BLI), brain MRI and immunofluorescence. We observed hypointense spots due to SPIO-labeled cells in the mouse brain 4 h after injection on T2 *-weighted images. Histology studies showed that SPIO-labeled cancer cells were localized within blood vessels shortly after delivery. Ex vivo quantification of SPIOs showed that less than 1% of the injected cells were taken up by the mouse brain after injection. MRI experiments did not reveal the development of macrometastases in the mouse brain several days after injection, but immunofluorescence studies demonstrated that these cells found in the brain established micrometastases. Concerning the metastatic patterns of 4 T1-luc cells, an EPR biodistribution study demonstrated that SPIO-labeled 4 T1-luc cells were also entrapped in the lungs of mice after intracardiac injection. BLI performed 6 days after injection of 4 T1-luc cells showed that this cell line formed macrometastases in the lungs and in the bones. Conclusively, EPR and MRI were found to be complementary for cell tracking applications. MRI cell tracking at 11.7 T allowed sensitive detection of isolated SPIO-labeled cells in the mouse brain, whereas EPR

  2. Poly (I: C) modulates the immunosuppressive activity of myeloid-derived suppressor cells in a murine model of breast cancer.

    PubMed

    Forghani, Parvin; Waller, Edmund K

    2015-08-01

    Polyinosinic-polycytidylic acid [Poly (I: C)], a ligand for Toll-like receptor (TLR-3), is used as an adjuvant to enhance anti-tumor immunity because of its prominent effects on CD8 T cells and NK cells. Myeloid-derived suppressor cells (MDSCs) are one of the main immunosuppressive factors in cancer, and their abnormal accumulation is correlated with the clinical stage of breast cancer and is an important mechanism of tumor immune evasion. Although Poly (I: C) is thought to have direct anti-tumor activity in different cell lines, its effect on immunosuppressive MDSCs in tumor-bearing animals has not been studied. 4T1-Luc, a metastatic breast cancer mouse cell line, was injected into the left flank of female BALB/c mice. Tumor-bearing mice were treated with i.p. injection of Poly (I: C) or PBS beginning on day 7 after tumor inoculation. WBCs and MDSCs were counted using coulter counter and stained for flow cytometry, respectively. Bioluminescent imaging was used to monitor tumor burden at multiple time points during the course of tumor growth. Poly (I: C) treatment led to a decrease in MDSC frequencies in BM, blood, and tumor compared to saline-treated control mice. Poly (I: C) treatment also abrogated the immunosuppressive function of MDSCs, concomitant with an increase in local T cell response of the immune system in a murine model of breast cancer. Poly (I: C) treatment decreases MDSC frequency and immunosuppressive function in 4T1-tumor-bearing hosts and effectively augments the activity of breast cancer immunotherapy.

  3. An inducible transgenic mouse breast cancer model for the analysis of tumor antigen specific CD8+ T-cell responses

    PubMed Central

    Bruns, Michael; Wanger, Jara; Utermöhlen, Olaf; Deppert, Wolfgang

    2015-01-01

    In Simian virus 40 (SV40) transgenic BALB/c WAP-T mice tumor development and progression is driven by SV40 tumor antigens encoded by inducible transgenes. WAP-T mice constitute a well characterized mouse model for breast cancer with strong similarities to the corresponding human disease. BALB/c mice mount only a weak cellular immune response against SV40 T-antigen (T-Ag). For studying tumor antigen specific CD8+ T-cell responses against transgene expressing cells, we created WAP-TNP mice, in which the transgene additionally codes for the NP118–126-epitope contained within the nucleoprotein of lymphocytic choriomeningitis virus (LCMV), the immune-dominant T-cell epitope in BALB/c mice. We then investigated in WAP-TNP mice the immune responses against SV40 tumor antigens and the NP-epitope within the chimeric T-Ag/NP protein (T-AgNP). Analysis of the immune-reactivity against T-Ag in WAP-T and of T-AgNP in WAP-TNP mice revealed that, in contrast to wild type (wt) BALB/c mice, WAP-T and WAP-TNP mice were non-reactive against T-Ag. However, like wtBALB/c mice, WAP-T as well as WAP-TNP mice were highly reactive against the immune-dominant LCMV NP-epitope, thereby allowing the analysis of NP-epitope specific cellular immune responses in WAP-TNP mice. LCMV infection of WAP-TNP mice induced a strong, LCMV NP-epitope specific CD8+ T-cell response, which was able to specifically eliminate T-AgNP expressing mammary epithelial cells both prior to tumor formation (i.e. in cells of lactating mammary glands), as well as in invasive tumors. Elimination of tumor cells, however, was only transient, even after repeated LCMV infections. Further studies showed that already non-infected WAP-TNP tumor mice contained LCMV NP-epitope specific CD8+ T-cells, albeit with strongly reduced, though measurable activity. Functional impairment of these ‘endogenous’ NP-epitope specific T-cells seems to be caused by expression of the programmed death-1 protein (PD1), as anti-PD1 treatment of

  4. Inhibitors of STAT3, β-catenin, and IGF-1R sensitize mouse PIK3CA-mutant breast cancer to PI3K inhibitors.

    PubMed

    Merino, Vanessa F; Cho, Soonweng; Liang, Xiaohui; Park, Sunju; Jin, Kideok; Chen, Qian; Pan, Duojia; Zahnow, Cynthia A; Rein, Alan R; Sukumar, Saraswati

    2017-03-15

    Although mutations in the phosphoinositide 3-kinase catalytic subunit (PIK3CA) are common in breast cancer, PI3K inhibitors alone have shown modest efficacy. We sought to identify additional pathways altered in PIK3CA-mutant tumors that might be targeted in combination with PI3K inhibitors. We generated two transgenic mouse models expressing the human PIK3CA-H1047R- and the -E545K hotspot-mutant genes in the mammary gland and evaluated their effects on development and tumor formation. Molecular analysis identified pathways altered in these mutant tumors, which were also targeted in multiple cell lines derived from the PIK3CA tumors. Finally, public databases were analyzed to determine whether novel pathways identified in the mouse tumors were altered in human tumors harboring mutant PIK3CA. Mutant mice showed increased branching and delayed involution of the mammary gland compared to parental FVB/N mice. Mammary tumors arose in 30% of the MMTV-PIK3CA-H1047R and in 13% of -E545K mice. Compared to MMTV-Her-2 transgenic mouse mammary tumors, H1047R tumors showed increased upregulation of Wnt/β-catenin/Axin2, hepatocyte growth factor (Hgf)/Stat3, insulin-like growth factor 2 (Igf-2), and Igf-1R pathways. Inhibitors of STAT3, β-catenin, and IGF-1R sensitized H1047R-derived mouse tumor cells and PIK3CA-H1047R overexpressing human HS578T breast cancer cells to the cytotoxic effects of PI3K inhibitors. Analysis of The Cancer Genome Atlas database showed that, unlike primary PIK3CA-wild-type and HER-2(+) breast carcinomas, PIK3CA-mutant tumors display increased expression of AXIN2, HGF, STAT3, IGF-1, and IGF-2 mRNA and activation of AKT, IGF1-MTOR, and WNT canonical signaling pathways. Drugs targeting additional pathways that are altered in PIK3CA-mutant tumors may improve treatment regimens using PI3K inhibitors alone.

  5. Evaluation of Listeria Monocytogenes Based Vaccines for HER-2/neu in Mouse Transgenic Models of Breast Cancer

    DTIC Science & Technology

    2007-09-01

    surrounding vessels in commonly studied mouse tumors. We have identified two autochthonous mouse mammary tumor models, MMTV-infected and MMTV-neu mice , with...Generate mammary specific inducible Tie2Ex mice a. Cross MMTV-rtTA mice with TRE-Tie2Ex mice (FVB and C3H strain). The Transgenic Mouse Facility...at Penn generated C3H/HeN TRE-Tie2Ex and FVB TRE-Tie2Ex transgenic mice using a TRE-Tie2Ex plasmid. Mouse lines that stably transmitted the

  6. [Combination of TLR7 agonist T7-ethacrynic acid conjugate with ROR1 has a stronger anti-breast cancer effect].

    PubMed

    Zhang, Na; Jin, Guangyi; Jin, Zhenchao; Liu, Bing; Peng, Boya; Gao, Ningning; Hu, Yunlong; Tang, Li

    2016-07-01

    Objective To investigate the synergistic anti-breast cancer effect of Toll-like receptor 7 agonist T7-ethacrynic acid conjugate (T7-EA) in combination with receptor-tyrosine-kinase-like orphan receptor 1 (ROR1). Methods ROR1 cytotoxic T lymphocyte (CTL) epitope was predicted using Syfpeithi online software. Mouse spleen lymphocytes and bone marrow dendritic cells (DCs) were separately stimulated with 4 μmol/L T7-EA and 4 μmol/L ROR1 alone or in combination. ELISA assay was used to measure the levels of interferon-γ (IFN-γ), interleukin 12 (IL-12) and tumor necrosis factor-α (TNF-α). Xenograft model was established via subcutaneous injection of mouse breast cancer 4T1 cells. The mice were weekly treated through intraperitoneal administration of 3 mg/kg T7-EA, 15 mg/kg ROR1 or the combination of T7-EA and ROR1. After four rounds of treatment, tumor tissues were weighed. Serum level of anti-4T1 tumor protein IgG was measured by ELISA. Specific CTL activity was detected by lactate dehydrogenase (LDH) assay. Results The peptide PYCDETSSV was chosen as an antigen epitope of breast cancer. The T7-EA highly activated in vitro lymphocytes in a dose-dependent manner, which wasn't affected by other relevant peptides. The combination of T7-EA and ROR1 stimulated the secretion of IFN-γ and IL-12 by lymphocytes and TNF-α by bone marrow DCs. The growth of tumor in vivo was significantly inhibited by T7-EA combined with ROR1 compared with T7-EA or ROR1 alone. The specific CTL activity triggered by T7-EA combined with ROR1 was much stronger than that triggered by T7-EA or ROR1 alone. The titer of anti-4T1 tumor protein IgG induced by T7-EA combined with ROR1 was higher than that induced by T7-EA or ROR1. Conclusion The combination of T7-EA and ROR1 has a better killing effect on breast cancer.

  7. Detection and Evaluation of Early Breast Cancer via Magnetic Resonance Imaging: Studies of Mouse Models and Clinical Implementation

    DTIC Science & Technology

    2009-03-01

    Hiroyuki Abe, Robert A. Schmidt, and Gillian M . Newstead. ”Differentiation between benign and malignant breast lesions detected by bilateral dynamic...Gregory S. Karczmar, Hiroyuki Abe, Robert A. Schmidt, Maryellen Giger and Gillian M . Newstead.”DCEMRI of breast lesions: Is kinetic analysis equally...93. 4. Sanaz A. Jansen, Akiko Shimacuhi, Lindsay Zak, Xiaobing Fan, Abbie M . Wood, Gregory Karczmar and Gillian M Newstead. ”Kinetic curves of

  8. Investigating the Role of Indoleamine 2,3-dioxygenase (IDO) in Breast Cancer Metastasis

    DTIC Science & Technology

    2011-09-01

    2,3-dioxygenase (IDO) in Breast Cancer Metastasis PRINCIPAL INVESTIGATOR: Courtney Smith, Ph.D...5a. CONTRACT NUMBER Investigating the Role of Indoleamine 2,3-dioxygenase (IDO) in Breast Cancer Metastasis 5b. GRANT NUMBER W81XWH-09-1-0667...the malignant 4T1 breast carcinoma cell line exhibit metastatic spread to organs similar to that seen in human breast cancer with pulmonary metastases

  9. Vascular targeting of a gold nanoparticle to breast cancer metastasis

    PubMed Central

    Peiris, Pubudu M.; Deb, Partha; Doolittle, Elizabeth; Doron, Gilad; Goldberg, Amy; Govender, Priya; Shah, Shruti; Rao, Swetha; Carbone, Sarah; Cotey, Thomas; Sylvestre, Meilyn; Singh, Sohaj; Schiemann, William P.; Lee, Zhenghong; Karathanasis, Efstathios

    2015-01-01

    The vast majority of breast cancer deaths are due to metastatic disease. While deep tissue targeting of nanoparticles is suitable for some primary tumors, vascular targeting may be a more attractive strategy for micrometastasis. This study combined a vascular targeting strategy with the enhanced targeting capabilities of a nanoparticle to evaluate the ability of a gold nanoparticle to specifically target the early spread of metastatic disease. As a ligand for the vascular targeting strategy, we utilized a peptide targeting alpha(v) beta(3) integrin, which is functionally linked to the development of micrometastases at a distal site. By employing a straightforward radiolabeling method to incorporate Technetium-99m into the gold nanoparticles, we used the high sensitivity of radionuclide imaging to monitor the longitudinal accumulation of the nanoparticles in metastatic sites. Animal and histological studies showed that vascular targeting of the nanoparticle facilitated highly accurate targeting of micrometastasis in the 4T1 mouse model of breast cancer metastasis using radionuclide imaging and a low dose of the nanoparticle. Due to the efficient targeting scheme, 14% of the injected AuNP deposited at metastatic sites in the lungs within 60 min after injection, indicating that the vascular bed of metastasis is a viable target site for nanoparticles. PMID:26036431

  10. Associated expressions of FGFR-2 and FGFR-3: from mouse mammary gland physiology to human breast cancer.

    PubMed

    Cerliani, Juan P; Vanzulli, Silvia I; Piñero, Cecilia Pérez; Bottino, María C; Sahores, Ana; Nuñez, Myriam; Varchetta, Romina; Martins, Rubén; Zeitlin, Eduardo; Hewitt, Stephen M; Molinolo, Alfredo A; Lanari, Claudia; Lamb, Caroline A

    2012-06-01

    Fibroblast growth factor receptors (FGFRs) are tyrosine kinase receptors which have been implicated in breast cancer. The aim of this study was to evaluate FGFR-1, -2, -3, and -4 protein expressions in normal murine mammary gland development, and in murine and human breast carcinomas. Using immunohistochemistry and Western blot, we report a hormonal regulation of FGFR during postnatal mammary gland development. Progestin treatment of adult virgin mammary glands resulted in changes in localization of FGFR-3 from the cytoplasm to the nucleus, while treatment with 17-β-estradiol induced changes in the expressions and/or localizations of FGFR-2 and -3. In murine mammary carcinomas showing different degrees of hormone dependence, we found progestin-induced increased expressions, mainly of FGFR-2 and -3. These receptors were constitutively activated in hormone-independent variants. We studied three luminal human breast cancer cell lines growing as xenografts, which particularly expressed FGFR-2 and -3, suggesting a correlation between hormonal status and FGFR expression. Most importantly, in breast cancer samples from 58 patients, we found a strong association (P < 0.01; Spearman correlation) between FGFR-2 and -3 expressions and a weaker correlation of each receptor with estrogen receptor expression. FGFR-4 correlated with c-erbB2 over expression. We conclude that FGFR-2 and -3 may be mechanistically linked and can be potential targets for treatment of estrogen receptor-positive breast cancer patients.

  11. EphrinA1-EphA2 interaction-mediated apoptosis and Flt3L-induced immunotherapy inhibits tumor growth in a breast cancer mouse model

    PubMed Central

    Tandon, Manish; Vemula, Sai V.; Sharma, Anurag; Ahi, Yadvinder S.; Mittal, Shalini; Bangari, Dinesh S.; Mittal, Suresh K.

    2014-01-01

    Background The receptor tyrosine kinase EphA2 is overexpressed in several types of cancers and is currently being pursued as a target for breast cancer therapeutics. The EphA2 ligand EphrinA1 induces EphA2 phosphorylation and intracellular internalization and degradation, thus inhibiting tumor progression. The hematopoietic growth factor, FMS-like tyrosine kinase receptor ligand (Flt3L), promotes expansion and mobilization of functional dendritic cells. Methods We tested the EphrinA1-EphA2 interaction in MDA-MB-231 breast cancer cells focusing on the receptor-ligand-mediated apoptosis of breast cancer cells. In order to determine whether the EphrinA1-EphA2 interaction-associated apoptosis and Flt3L-mediated immunotherapy would have an additive effect in inhibiting tumor growth, we used an immunocompetent mouse model of breast cancer to evaluate intratumoral (i.t.) inoculation strategies with human adenovirus (HAd) vectors expressing either EphrinA1 (HAd-EphrinA1-Fc), Flt3L (HAd-Flt3L) or a combination of EphrinA1-Fc + Flt3L (HAd-EphrinA1-Fc + HAd-Flt3L). Results In vitro analysis demonstrated that an EphrinA1-EphA2 interaction led to apoptosis-related changes in breast cancer cells. In vivo, three i.t. inoculations of HAd-EphrinA1-Fc showed potent inhibition of tumor growth. Furthermore, increased inhibition in tumor growth was observed with the combination of HAd-EphrinA1-Fc and HAd-Flt3L accompanied by the generation of an anti-tumor adaptive immune response. Conclusions The results indicating induction of apoptosis and inhibition of mammary tumor growth show the potential therapeutic benefits of HAd-EphrinA1-Fc. In combination with HAd-Flt3L, this represents a promising strategy to effectively induce mammary tumor regression by HAd vector-based therapy. PMID:22228563

  12. Human amniotic fluid-derived stem cells expressing cytosine deaminase and thymidine kinase inhibits the growth of breast cancer cells in cellular and xenograft mouse models.

    PubMed

    Kang, N-H; Hwang, K-A; Yi, B-R; Lee, H J; Jeung, E-B; Kim, S U; Choi, K-C

    2012-06-01

    As human amniotic fluid-derived stem cells (hAFSCs) are capable of multiple lineage differentiation, extensive self-renewal and tumor targeting, they may be valuable for clinical anticancer therapies. In this study, we used hAFSCs as vehicles for targeted delivery of therapeutic suicide genes to breast cancer cells. hAFSCs were engineered to produce AF2.CD-TK cells in order to express two suicide genes encoding bacterial cytosine deaminase (CD) and herpes simplex virus thymidine kinase (HSV-TK) that convert non-toxic prodrugs, 5-fluorocytosine (5-FC) and mono-phosphorylate ganciclovir (GCV-MP), into cytotoxic metabolites, 5-fluorouracil (5-FU) and triphosphate ganciclovir (GCV-TP), respectively. In cell viability test in vitro, AF2.CD-TK cells inhibited the growth of MDA-MB-231 human breast cancer cells in the presence of the 5-FC or GCV prodrugs, or a combination of these two reagents. When the mixture of 5-FC and GCV was treated together, an additive cytotoxic effect was observed in the cell viability. In animal experiments using female BALB/c nude mouse xenografts, which developed by injecting MDA-MB-231 cells, treatment with AF2.CD-TK cells in the presence of 5-FC and GCV significantly reduced tumor volume and weight to the same extent seen in the mice treated with 5-FU. Histopathological and fluorescent staining assays further showed that AF2.CD-TK cells were located exactly at the site of tumor formation. Furthermore, breast tissues treated with AF2.CD-TK cells and two prodrugs maintained their normal structures (for example, the epidermis and reticular layers) while breast tissue structures in 5-FU-treated mice were almost destroyed by the potent cytotoxicity of the drug. Taken together, these results indicate that AF2.CD-TK cells can serve as excellent vehicles in a novel therapeutic cell-based gene-directed prodrug system to selectively target breast malignancies.

  13. Oil-filled Lipid Nanoparticles Containing 2’-(2-bromohexadecanoyl)-docetaxel for the Treatment of Breast Cancer

    PubMed Central

    Feng, Lan; Benhabbour, Soumya R.; Mumper, Russell J.

    2013-01-01

    A docetaxel (DX) lipid conjugate 2’-(2-bromohexadecanoyl)-docetaxel (2-Br-C16-DX) is synthesized to enhance the drug loading, entrapment and retention in liquid oil-filled lipid nanoparticles (NPs). The conjugate is successfully entrapped in the previously optimized NPs with an entrapment efficiency of 56.8%. In-vitro release studies in 100% mouse plasma show an initial 45% burst release with no additional release within 8 hr. The conjugate is able to be hydrolyzed to release DX by esterases in-vitro. The conjugate is less potent than unmodified DX in DU-145 and 4T1 cells. However, NPs containing the conjugate show significantly higher cytotoxicity compared to its free form especially in 4T1 cells. In-vivo, the AUC0-∞ value of NP-formulated 2-Br-C16-DX is about 100-fold higher than DX formulated in Taxotere. Furthermore, 2-Br-C16-DX NPs improve DX AUC 4.3-fold compared to Taxotere. The high concentration and prolonged exposure of both 2-Br-C16-DX and DX from 2-Br-C16-DX NPs in circulation result in a 10-fold and 1.5-fold higher accumulation of 2-Br-C16-DX and DX, respectively, in tumors compared to Taxotere. In mice bearing syngeneic 4T1 tumors, 2-Br-C16-DX NPs show markedly greater anticancer efficacy as well as survival benefit over all controls. The results of these studies support that the oil-filled NPs containing hydrolyzable lipophilic DX prodrug 2-Br-C16-DX improve the therapeutic index of DX and are more efficacious in the treatment of breast cancer. PMID:23606545

  14. Polyphenol-rich Avicennia marina leaf extracts induce apoptosis in human breast and liver cancer cells and in a nude mouse xenograft model

    PubMed Central

    Tu, Ming-Chin; Chang, Jia-Hua; Chen, Yen-Ju; Tu, Yu-Hsuan; Huang, Hsiu-Chen

    2016-01-01

    Avicennia marina is the most abundant and common mangrove species and has been used as a traditional medicine for skin diseases, rheumatism, ulcers, and smallpox. However, its anticancer activities and polyphenol contents remain poorly characterized. Thus, here we investigated anticancer activities of secondary A. marina metabolites that were purified by sequential soxhlet extraction in water, ethanol, methanol, and ethyl acetate (EtOAc). Experiments were performed in three human breast cancer cell lines (AU565, MDA-MB-231, and BT483), two human liver cancer cell lines (HepG2 and Huh7), and one normal cell line (NIH3T3). The chemotherapeutic potential of A. marina extracts was evaluated in a xenograft mouse model. The present data show that EtOAc extracts of A. marina leaves have the highest phenolic and flavonoid contents and anticancer activities and, following column chromatography, the EtOAc fractions F2-5, F3-2-9, and F3-2-10 showed higher cytotoxic effects than the other fractions. 1H-NMR and 13C-NMR profiles indicated that the F3-2-10 fraction contained avicennones D and E. EtOAc extracts of A. marina leaves also suppressed xenograft MDA-MB-231 tumor growth in nude mice, suggesting that EtOAc extracts of A. marina leaves may provide a useful treatment for breast cancer. PMID:27078842

  15. WE-EF-BRA-10: Prophylactic Cranial Irradiation Reduces the Incidence of Brain Metastasis in a Mouse Model of Metastatic Breast Cancerr

    SciTech Connect

    Smith, D; Debeb, B; Larson, R; Diagaradjane, P; Woodward, W

    2015-06-15

    Purpose: Prophylactic cranial irradiation (PCI) is a clinical technique used to reduce the incidence of brain metastasis and improve overall survival in select patients with acute lymphoblastic leukemia and small-cell lung cancer. We examined whether PCI could benefit breast cancer patients at high risk of developing brain metastases. Methods: We utilized our mouse model in which 500k green fluorescent protein (GFP)-labeled breast cancer cells injected into the tail vein of SCID/Beige mice resulted in brain metastases in approximately two-thirds of untreated mice. To test the efficacy of PCI, one set of mice was irradiated five days after cell injection with a single fraction of 4-Gy (two 2-Gy opposing fields) whole-brain irradiation on the XRAD 225Cx small-animal irradiator. Four controls were included: a non-irradiated group, a group irradiated two days prior to cell injection, and two groups irradiated 3 or 6 weeks after cell injection. Mice were sacrificed four and eight weeks post-injection and were evaluated for the presence of brain metastases on a fluorescent stereomicroscope. Results: The incidence of brain metastasis in the non-irradiated group was 77% and 90% at four and eight weeks, respectively. The PCI group had a significantly lower incidence, 20% and 30%, whereas the other three control groups had incidence rates similar to the non-treated control (70% to 100%). Further, the number of metastases and the metastatic burden were also significantly lower in the PCI group compared to all other groups. Conclusion: The timing of irradiation to treat subclinical disease is critical, as a small dose of whole-brain irradiation given five days after cell injection abrogated tumor burden by greater than 90%, but had no effect when administered twenty-one days after cell injection. PCI is likely to benefit breast cancer patients at high risk of developing brain metastases and should be strongly considered in the clinic.

  16. Ink4a/Arf(-/-) and HRAS(G12V) transform mouse mammary cells into triple-negative breast cancer containing tumorigenic CD49f(-) quiescent cells.

    PubMed

    Kai, K; Iwamoto, T; Kobayashi, T; Arima, Y; Takamoto, Y; Ohnishi, N; Bartholomeusz, C; Horii, R; Akiyama, F; Hortobagyi, G N; Pusztai, L; Saya, H; Ueno, N T

    2014-01-23

    Intratumoral heterogeneity within individual breast tumors is a well-known phenomenon that may contribute to drug resistance. This heterogeneity is dependent on several factors, such as types of oncogenic drivers and tumor precursor cells. The purpose of our study was to engineer a mouse mammary tumor model with intratumoral heterogeneity by using defined genetic perturbations. To achieve this, we used mice with knockout (-/-) of Ink4a/Arf, a tumor suppressor locus; these mice are known to be susceptible to non-mammary tumors such as fibrosarcoma. To induce mammary tumors, we retrovirally introduced an oncogene, HRAS(G12V), into Ink4a/Arf(-/-) mammary cells in vitro, and those cells were inoculated into syngeneic mice mammary fat pads. We observed 100% tumorigenesis. The tumors formed were negative for estrogen receptor, progesterone receptor and HER2. Further, they had pathological features similar to those of human triple-negative breast cancer (TNBC) (for example, pushing borders, central necrosis). The tumors were found to be heterogeneous and included two subpopulations: CD49f(-) quiescent cells and CD49f(+)cells. Contrary to our expectation, CD49f(-) quiescent cells had high tumor-initiating potential and CD49f(+)cells had relatively low tumor-initiating potential. Gene expression analysis revealed that CD49f(-) quiescent cells overexpressed epithelial-to-mesenchymal transition-driving genes, reminiscent of tumor-initiating cells and claudin-low breast cancer. Our animal model with intratumoral heterogeneity, derived from defined genetic perturbations, allows us to test novel molecular targeted drugs in a setting that mimics the intratumoral heterogeneity of human TNBC.

  17. Dose-dependent benefits of quercetin on tumorigenesis in the C3(1)/SV40Tag transgenic mouse model of breast cancer

    PubMed Central

    Steiner, JL; Davis, JM; McClellan, JL; Enos, RT; Carson, JA; Fayad, R; Nagarkatti, M; Nagarkatti, PS; Altomare, D; Creek, KE; Murphy, EA

    2014-01-01

    Breast cancer is the leading cause of cancer related death in women. Quercetin is a flavonol shown to have anti-carcinogenic actions. However, few studies have investigated the dose-dependent effects of quercetin on tumorigenesis and none have used the C3(1)/SV40 Tag breast cancer mouse model. At 4 weeks of age female C3(1)/SV40 Tag mice were randomized to one of four dietary treatments (n = 15–16/group): control (no quercetin), low-dose quercetin (0.02% diet), moderate-dose quercetin (0.2% diet), or high-dose quercetin (2% diet). Tumor number and volume was assessed twice a week and at sacrifice (20 wks). Results showed an inverted ‘U’ dose-dependent effect of dietary quercetin on tumor number and volume; at sacrifice the moderate dose was most efficacious and reduced tumor number 20% and tumor volume 78% compared to control mice (C3-Con: 9.0 ± 0.9; C3-0.2%: 7.3 ± 0.9) and (C3-Con: 2061.8 ± 977.0 mm3; and C3-0.2%: 462.9 ± 75.9 mm3). Tumor volume at sacrifice was also reduced by the moderate dose compared to the high and low doses (C3-2%: 1163.2 ± 305.9 mm3; C3-0.02%: 1401.5 ± 555.6 mm3), as was tumor number (C3-2%: 10.7 ± 1.3 mm3; C3-0.02%: 8.1 ± 1.1 mm3). Gene expression microarray analysis performed on mammary glands from C3-Con and C3-0.2% mice determined that 31 genes were down-regulated and 9 genes were up-regulated more than 2-fold (P < 0.05) by quercetin treatment. We report the novel finding that there is a distinct dose-dependent effect of quercetin on tumor number and volume in a transgenic mouse model of human breast cancer, which is associated with a specific gene expression signature related to quercetin treatment. PMID:25482952

  18. Functional imaging of the angiogenic switch in a transgenic mouse model of human breast cancer by dynamic contrast enhanced magnetic resonance imaging.

    PubMed

    Consolino, Lorena; Longo, Dario Livio; Dastrù, Walter; Cutrin, Juan Carlos; Dettori, Daniela; Lanzardo, Stefania; Oliviero, Salvatore; Cavallo, Federica; Aime, Silvio

    2016-07-15

    Tumour progression depends on several sequential events that include the microenvironment remodelling processes and the switch to the angiogenic phenotype, leading to new blood vessels recruitment. Non-invasive imaging techniques allow the monitoring of functional alterations in tumour vascularity and cellularity. The aim of this work was to detect functional changes in vascularisation and cellularity through Dynamic Contrast Enhanced (DCE) and Diffusion Weighted (DW) Magnetic Resonance Imaging (MRI) modalities during breast cancer initiation and progression of a transgenic mouse model (BALB-neuT mice). Histological examination showed that BALB-neuT mammary glands undergo a slow neoplastic progression from simple hyperplasia to invasive carcinoma, still preserving normal parts of mammary glands. DCE-MRI results highlighted marked functional changes in terms of vessel permeability (K(trans) , volume transfer constant) and vascularisation (vp , vascular volume fraction) in BALB-neuT hyperplastic mammary glands if compared to BALB/c ones. When breast tissue progressed from simple to atypical hyperplasia, a strong increase in DCE-MRI biomarkers was observed in BALB-neuT in comparison to BALB/c mice (K(trans)  = 5.3 ± 0.7E-4 and 3.1 ± 0.5E-4; vp  = 7.4 ± 0.8E-2 and 4.7 ± 0.6E-2 for BALB-neuT and BALB/c, respectively) that remained constant during the successive steps of the neoplastic transformation. Consistent with DCE-MRI observations, microvessel counting revealed a significant increase in tumour vessels. Our study showed that DCE-MRI estimates can accurately detect the angiogenic switch at early step of breast cancer carcinogenesis. These results support the view that this imaging approach is an excellent tool to characterize microvasculature changes, despite only small portions of the mammary glands developed neoplastic lesions in a transgenic mouse model.

  19. Chemoprevention activity of 25-hydroxyvitamin D in the MMTV-PyMT mouse model of breast cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of oncologic conditions is often linked to inadequate vitamin D status. The chemoprevention ability of this molecule is of high interest for breast cancer, the most common malignancy in women worldwide. Current effective vitamin D analogs including the naturally occurring active metabol...

  20. Mouse breast cancer resistance protein (Bcrp1/Abcg2) mediates etoposide resistance and transport, but etoposide oral availability is limited primarily by P-glycoprotein.

    PubMed

    Allen, John D; Van Dort, Sonja C; Buitelaar, Marije; van Tellingen, Olaf; Schinkel, Alfred H

    2003-03-15

    The breast cancer resistance protein [BCRP (BCRP/ABCG2)] has not previously been directly identified as a source of resistance to epipodophyllotoxins.However, when P-glycoprotein (P-gp)- and Mrp1-deficient mouse fibroblast and kidney cell lines were selected for resistance to etoposide, amplification and overexpression of Bcrp1 emerged as the dominant resistance mechanism in five of five cases. Resistance was accompanied by reduced intracellular etoposide accumulation. Bcrp1 sequence in all of the resistant lines was wild-type in the region spanning the R482 mutation hot spot known to alter the substrate specificity of mouse Bcrp1 (mouse cognate of BCRP) and human BCRP. Transduced wild-type Bcrp1 cDNA mediated resistance to etoposide and teniposide in fibroblast lines and trans-epithelial etoposide transport in polarized Madin-Darby canine kidney II cells. Bcrp1-mediated etoposide resistance was reversed by two structurally different BCRP/Bcrp1 inhibitors, GF120918 and Ko143. BCRP/Bcrp1 (inhibition) might thus impact on the antitumor activity and pharmacokinetics of epipodophyllotoxins. However, treatment of P-gp-deficient mice with GF120918 did not improve etoposide oral uptake, suggesting that Bcrp1 activity is not a major limiting factor in this process. In contrast, use of GF120918 to inhibit P-gp in wild-type mice increased the plasma levels of etoposide after oral administration 4-5-fold. It may thus be worthwhile to test inhibition of P-gp in humans to improve the oral availability of etoposide.

  1. Rad51c- and Trp53-double-mutant mouse model reveals common features of homologous recombination-deficient breast cancers.

    PubMed

    Tumiati, M; Munne, P M; Edgren, H; Eldfors, S; Hemmes, A; Kuznetsov, S G

    2016-09-01

    Almost half of all hereditary breast cancers (BCs) are associated with germ-line mutations in homologous recombination (HR) genes. However, the tumor phenotypes associated with different HR genes vary, making it difficult to define the role of HR in BC predisposition. To distinguish between HR-dependent and -independent features of BCs, we generated a mouse model in which an essential HR gene, Rad51c, is knocked-out specifically in epidermal tissues. Rad51c is one of the key mediators of HR and a well-known BC predisposition gene. Here, we demonstrate that deletion of Rad51c invariably requires inactivation of the Trp53 tumor suppressor (TP53 in humans) to produce mammary carcinomas in 63% of female mice. Nonetheless, loss of Rad51c shortens the latency of Trp53-deficient mouse tumors from 11 to 6 months. Remarkably, the histopathological features of Rad51c-deficient mammary carcinomas, such as expression of hormone receptors and luminal epithelial markers, faithfully recapitulate the histopathology of human RAD51C-mutated BCs. Similar to other BC models, Rad51c/p53 double-mutant mouse mammary tumors also reveal a propensity for genomic instability, but lack the focal amplification of the Met locus or distinct mutational signatures reported for other HR genes. Using the human mammary epithelial cell line MCF10A, we show that deletion of TP53 can rescue RAD51C-deficient cells from radiation-induced cellular senescence, whereas it exacerbates their centrosome amplification and nuclear abnormalities. Altogether, our data indicate that a trend for genomic instability and inactivation of Trp53 are common features of HR-mediated BCs, whereas histopathology and somatic mutation patterns are specific for different HR genes.

  2. Combination treatment of human umbilical cord matrix stem cell-based interferon-beta gene therapy and 5-fluorouracil significantly reduces growth of metastatic human breast cancer in SCID mouse lungs.

    PubMed

    Rachakatla, Raja Shekar; Pyle, Marla M; Ayuzawa, Rie; Edwards, Sarah M; Marini, Frank C; Weiss, Mark L; Tamura, Masaaki; Troyer, Deryl

    2008-08-01

    Umbilical cord matrix stem (UCMS) cells that were engineered to express interferon-beta (IFN-beta) were transplanted weekly for three weeks into MDA 231 breast cancer xenografts bearing SCID mice in combination with 5-fluorouracil (5-FU). The UCMS cells were found within lung tumors but not in other tissues. Although both treatments significantly reduced MDA 231 tumor area in the SCID mouse lungs, the combined treatment resulted in a greater reduction in tumor area than by either treatment used alone. These results indicate that a combination treatment of UCMS-IFN-beta cells and 5-FU is a potentially effective therapeutic procedure for breast cancer.

  3. Induction of Monocyte Chemoattractant Proteins in Macrophages via the Production of Granulocyte/Macrophage Colony-Stimulating Factor by Breast Cancer Cells

    PubMed Central

    Yoshimura, Teizo; Imamichi, Tomozumi; Weiss, Jonathan M.; Sato, Miwa; Li, Liangzhu; Matsukawa, Akihiro; Wang, Ji Ming

    2016-01-01

    Monocyte chemoattractant protein-1 (MCP-1)/CCL2 plays an important role in the initiation and progression of cancer. We previously reported that in 4T1 murine breast cancer, non-tumor stromal cells, including macrophages, were the major source of MCP-1. In the present study, we analyzed the potential mechanisms by which MCP-1 is upregulated in macrophages infiltrating 4T1 tumors. We found that cell-free culture supernatants of 4T1 cells (4T1-sup) markedly upregulated MCP-1 production by peritoneal inflammatory macrophages. 4T1-sup also upregulated other MCPs, such as MCP-3/CCL7 and MCP-5/CCL12, but modestly upregulated neutrophil chemotactic chemokines, such as KC/CXCL1 or MIP-2/CXCL2. Physicochemical analysis indicated that an approximately 2–3 kDa 4T1 cell product was responsible for the capacity of 4T1-sup to upregulate MCP-1 expression by macrophages. A neutralizing antibody against granulocyte/macrophage colony-stimulating factor (GM-CSF), but not macrophage CSF, almost completely abrogated MCP-1-inducing activity of 4T1-sup, and recombinant GM-CSF potently upregulated MCP-1 production by macrophages. The expression levels of GM-CSF in 4T1 tumors in vivo were higher than other tumors, such as Lewis lung carcinoma. Treatment of mice with anti-GM-CSF antibody significantly reduced the growth of 4T1 tumors at the injection sites but did not reduce MCP-1 production or lung metastasis in tumor-bearing mice. These results indicate that 4T1 cells have the capacity to directly upregulate MCP-1 production by macrophages by releasing GM-CSF; however, other mechanisms are also involved in increased MCP-1 levels in the 4T1 tumor microenvironment. PMID:26834744

  4. Inhibition of FGFR signaling by PD173074 improves antitumor immunity and impairs breast cancer metastasis.

    PubMed

    Ye, Tinghong; Wei, Xiawei; Yin, Tao; Xia, Yong; Li, Deliang; Shao, Bin; Song, Xuejiao; He, Sisi; Luo, Min; Gao, Xiang; He, Zhiyao; Luo, Can; Xiong, Ying; Wang, Ningyu; Zeng, Jun; Zhao, Lifeng; Shen, Guobo; Xie, Yongmei; Yu, Luoting; Wei, Yuquan

    2014-02-01

    Aberrant fibroblast growth factor (FGF) and FGF receptor (FGFR) system have been associated with breast cancer. The objectives of our study were to investigate the effects and mechanisms of FGFR inhibition on tumor growth and metastasis on breast cancer. Our studies showed that the FGFR inhibitor PD173074 decreased the viability of several human breast cancer cells, as well as 4T1 murine mammary tumor cells. Therefore, we chose 4T1 cells to study PD173074's antitumor mechanism. Flow cytometry showed that PD173074 induced 4T1 cell apoptosis in a concentration-dependent manner. Western blot demonstrated that PD173074-induced apoptosis was correlated with the inhibition of Mcl-1 and survivin. Moreover, PD173074 also significantly increased the ratio of Bax/Bcl-2. PD173074 could also block 4T1 cell migration and invasion in vitro. In 4T1 tumor-bearing mice, PD173074 significantly inhibited tumor growth without obvious side effects. Meanwhile, PD173074 functionally reduced microvessel density and proliferation index and induced tumor apoptosis. Importantly, we found that FGFR inhibition by PD173074 reduced myeloid-derived suppressor cells (MDSCs) in the blood, spleens and tumors, accompanied by the increased infiltration of CD4(+) and CD8(+) T cells in the spleens and tumors. Furthermore, PD173074 significantly inhibited breast tumor metastasis to the lung of inoculated 4T1 breast cancer cells, which was accompanied by a reduction in MDSCs. Our findings suggested that FGFR inhibition could delay breast tumor progression, impair lung metastasis and break immunosuppression by effecting on tumor microenvironment, which may provide a promising therapeutic approach for breast cancer patient.

  5. Versican G3 Promotes Mouse Mammary Tumor Cell Growth, Migration, and Metastasis by Influencing EGF Receptor Signaling

    PubMed Central

    Du, William Weidong; Yang, Burton B.; Shatseva, Tatiana A.; Yang, Bing L.; Deng, Zhaoqun; Shan, Sze Wan; Lee, Daniel Y.; Seth, Arun; Yee, Albert J.

    2010-01-01

    Increased versican expression in breast tumors is predictive of relapse and has negative impact on survival rates. The C-terminal G3 domain of versican influences local and systemic tumor invasiveness in pre-clinical murine models. However, the mechanism(s) by which G3 influences breast tumor growth and metastasis is not well characterized. Here we evaluated the expression of versican in mouse mammary tumor cell lines observing that 4T1 cells expressed highest levels while 66c14 cells expressed low levels. We exogenously expressed a G3 construct in 66c14 cells and analyzed its effects on cell proliferation, migration, cell cycle progression, and EGFR signaling. Experiments in a syngeneic orthotopic animal model demonstrated that G3 promoted tumor growth and systemic metastasis in vivo. Activation of pERK correlated with high levels of G3 expression. In vitro, G3 enhanced breast cancer cell proliferation and migration by up-regulating EGFR signaling, and enhanced cell motility through chemotactic mechanisms to bone stromal cells, which was prevented by inhibitor AG 1478. G3 expressing cells demonstrated increased CDK2 and GSK-3β (S9P) expression, which were related to cell growth. The activity of G3 on mouse mammary tumor cell growth, migration and its effect on spontaneous metastasis to bone in an orthotopic model was modulated by up-regulating the EGFR-mediated signaling pathway. Taken together, EGFR-signaling appears to be an important pathway in versican G3-mediated breast cancer tumor invasiveness and metastasis. PMID:21079779

  6. An Improved Syngeneic Orthotopic Murine Model of Human Breast Cancer Progression

    PubMed Central

    Rashid, Omar M.; Nagahashi, Masayuki; Ramachandran, Suburamaniam; Dumur, Catherine; Schaum, Julia; Yamada, Akimitsu; Terracina, Krista P.; Milstien, Sheldon; Spiegel, Sarah; Takabe, Kazuaki

    2014-01-01

    Purpose Breast cancer drug development costs nearly $610 million and 37 months in preclinical mouse model trials with minimal success rates. Despite these inefficiencies, there are still no consensus breast cancer preclinical models. Methods Murine mammary adenocarcinoma 4T1-luc2 cells were implanted subcutaneous (SQ) or orthotopically percutaneous injection in the area of the nipple (OP), or surgically into the chest 2nd mammary fat pad under direct vision (ODV) in Balb/c immunocompetent mice. Tumor progression was followed by in vivo bioluminescence and direct measurements, pathology and survival determined, and tumor gene expression analyzed by genome-wide microarrays. Results ODV produced less variable sized tumors and was a reliable method of implantation. ODV implantation into the chest 2nd mammary pad rather than into the abdominal 4th mammary pad, the most common implantation site, better mimicked human breast cancer progression pattern, which correlated with bioluminescent tumor burden and survival. Compared to SQ, ODV produced tumors that differentially expressed genes whose interaction networks are of importance in cancer research. qPCR validation of 10 specific target genes of interest in ongoing clinical trials demonstrated significant differences in expression. Conclusions ODV implantation into the chest 2nd mammary pad provides the most reliable model that mimics human breast cancer compared from subcutaneous implantation that produces tumors with different genome expression profiles of clinical significance. Increased understanding of the limitations of the different preclinical models in use will help guide new investigations and may improve the efficiency of breast cancer drug development. PMID:25200444

  7. β-Bisabolene, a Sesquiterpene from the Essential Oil Extract of Opoponax (Commiphora guidottii), Exhibits Cytotoxicity in Breast Cancer Cell Lines.

    PubMed

    Yeo, Syn Kok; Ali, Ahmed Y; Hayward, Olivia A; Turnham, Daniel; Jackson, Troy; Bowen, Ifor D; Clarkson, Richard

    2016-03-01

    The essential oils from Commiphora species have for centuries been recognized to possess medicinal properties. Here, we performed gas chromatography-mass spectrometry on the essential oil from opoponax (Commiphora guidotti) and identified bisabolene isomers as the main constituents of this essential oil. Opoponax essential oil, a chemical component; β-bisabolene and an alcoholic analogue, α-bisabolol, were tested for their ability to selectively kill breast cancer cells. Only β-bisabolene, a sesquiterpene constituting 5% of the essential oil, exhibited selective cytotoxic activity for mouse cells (IC50 in normal Eph4: >200 µg/ml, MG1361: 65.49 µg/ml, 4T1: 48.99 µg/ml) and human breast cancer cells (IC50 in normal MCF-10A: 114.3 µg/ml, MCF-7: 66.91 µg/ml, MDA-MB-231: 98.39 µg/ml, SKBR3: 70.62 µg/ml and BT474: 74.3 µg/ml). This loss of viability was because of the induction of apoptosis as shown by Annexin V-propidium iodide and caspase-3/7 activity assay. β-bisabolene was also effective in reducing the growth of transplanted 4T1 mammary tumours in vivo (37.5% reduction in volume by endpoint). In summary, we have identified an anti-cancer agent from the essential oil of opoponax that exhibits specific cytotoxicity to both human and murine mammary tumour cells in vitro and in vivo, and this warrants further investigation into the use of β-bisabolene in the treatment of breast cancers.

  8. Molecular Mechanism of Lymph Node Metastasis in Breast Cancer

    DTIC Science & Technology

    2009-09-01

    inflammatory leukocytes to lymph nodes. CXCL21 is primarily expressed in LECs and functions as a chemoattractant for CCR7 -expressing dendritic cells and T...binding of HA to LYVE-1 regulates SLC production in LECs, which functions as chemoattractant for CCR7 - expressing breast cancer cells. Results...regulates SLC production in LECs, which functions as chemoattractant for CCR7 -expressing breast cancer cells. (Months 1-12) Generation of 4T1 cells

  9. Bisphenol A (BPA) Exposure In Utero Leads to Immunoregulatory Cytokine Dysregulation in the Mouse Mammary Gland: A Potential Mechanism Programming Breast Cancer Risk.

    PubMed

    Fischer, Catha; Mamillapalli, Ramanaiah; Goetz, Laura G; Jorgenson, Elisa; Ilagan, Ysabel; Taylor, Hugh S

    2016-08-01

    Bisphenol-A (BPA) is a ubiquitous estrogen-like endocrine disrupting compound (EDC). BPA exposure in utero has been linked to breast cancer and abnormal mammary gland development in mice. The recent rise in incidence of human breast cancer and decreased age of first detection suggests a possible environmental etiology. We hypothesized that developmental programming of carcinogenesis may involve an aberrant immune response. Both innate and adaptive immunity play a role in tumor suppression through cytolytic CD8, NK, and Th1 T-cells. We hypothesized that BPA exposure in utero would lead to dysregulation of both innate and adaptive immunity in the mammary gland. CD1 mice were exposed to BPA in utero during gestation (days 9-21) via osmotic minipump. At 6 weeks, the female offspring were ovariectomized and estradiol was given at 8 weeks. RNA and protein were extracted from the posterior mammary glands, and the mRNA and protein levels were measured by PCR array, qRT-PCR, and western blot. In mouse mammary tissue, BPA exposure in utero significantly decreased the expression of members of the chemokine CXC family (Cxcl2, Cxcl4, Cxcl14, and Ccl20), interleukin 1 (Il1) gene family (Il1β and Il1rn), interleukin 2 gene family (Il7 receptor), and interferon gene family (interferon regulatory factor 9 (Irf9), as well as immune response gene 1 (Irg1). Additionally, BPA exposure in utero decreased Esr1 receptor gene expression and increased Esr2 receptor gene expression. In utero exposure of BPA resulted in significant changes to inflammatory modulators within mammary tissue. We suggest that dysregulation of inflammatory cytokines, both pro-inflammatory and anti-inflammatory, leads to a microenvironment that may promote disordered cell growth through inhibition of the immune response that targets cancer cells.

  10. Mouse breast cancer model-dependent changes in metabolic syndrome-associated phenotypes caused by maternal dioxin exposure and dietary fat.

    PubMed

    La Merrill, Michele; Baston, David S; Denison, Michael S; Birnbaum, Linda S; Pomp, Daniel; Threadgill, David W

    2009-01-01

    Diets high in fat are associated with increased susceptibility to obesity and metabolic syndrome. Increased adipose tissue that is caused by high-fat diets (HFD) results in altered storage of lipophilic toxicants like 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which may further increase susceptibility to metabolic syndrome. Because both TCDD and HFD are associated with increased breast cancer risk, we examined their effects on metabolic syndrome-associated phenotypes in three mouse models of breast cancer: 7,12-dimethylbenz[a]anthracene (DMBA), Tg(MMTV-Neu)202Mul/J (HER2), and TgN(MMTV-PyMT)634Mul/J (PyMT), all on an FVB/N genetic background. Pregnant mice dosed with 1 microg/kg of TCDD or vehicle on gestational day 12.5 were placed on a HFD or low-fat diet (LFD) at parturition. Body weights, percent body fat, and fasting blood glucose were measured longitudinally, and triglycerides were measured at study termination. On HFD, all cancer models reached the pubertal growth spurt ahead of FVB controls. Among mice fed HFD, the HER2 model had a greater increase in body weight and adipose tissue from puberty through adulthood compared with the PyMT and DMBA models. However, the DMBA model consistently had higher fasting blood glucose levels than the PyMT and HER2 models. TCDD only impacted serum triglycerides in the PyMT model maintained on HFD. Because the estrogenic activity of the HFD was three times lower than that of the LFD, differential dietary estrogenic activities did not drive the observed phenotypic differences. Rather, the HFD-dependent changes were cancer model dependent. These results show that cancer models can have differential effects on metabolic syndrome-associated phenotypes even before cancers arise.

  11. p53 deficiency induces cancer stem cell pool expansion in a mouse model of triple-negative breast tumors.

    PubMed

    Chiche, A; Moumen, M; Romagnoli, M; Petit, V; Lasla, H; Jézéquel, P; de la Grange, P; Jonkers, J; Deugnier, M-A; Glukhova, M A; Faraldo, M M

    2016-10-24

    Triple-negative breast cancer is a heterogeneous disease characterized by the expression of basal cell markers, no estrogen or progesterone receptor expression and a lack of HER2 overexpression. Triple-negative tumors often display activated Wnt/β-catenin signaling and most have impaired p53 function. We studied the interplay between p53 loss and Wnt/β-catenin signaling in stem cell function and tumorigenesis, by deleting p53 from the mammary epithelium of K5ΔNβcat mice displaying a constitutive activation of Wnt/β-catenin signaling in basal cells. K5ΔNβcat transgenic mice present amplification of the basal stem cell pool and develop triple-negative mammary carcinomas. The loss of p53 in K5ΔNβcat mice led to an early expansion of mammary stem/progenitor cells and accelerated the formation of triple-negative tumors. In particular, p53-deficient tumors expressed high levels of integrins and extracellular matrix components and were enriched in cancer stem cells. They also overexpressed the tyrosine kinase receptor Met, a feature characteristic of human triple-negative breast tumors. The inhibition of Met kinase activity impaired tumorsphere formation, demonstrating the requirement of Met signaling for cancer stem cell growth in this model. Human basal-like breast cancers with predicted mutated p53 status had higher levels of MET expression than tumors with wild-type p53. These results connect p53 loss and β-catenin activation to stem cell regulation and tumorigenesis in triple-negative cancer and highlight the role of Met signaling in maintaining cancer stem cell properties, revealing new cues for targeted therapies.Oncogene advance online publication, 24 October 2016; doi:10.1038/onc.2016.396.

  12. Investigating the Role of Indoleamine 2,3- dioxygenase (IDO) in Breast Cancer Metastasis

    DTIC Science & Technology

    2012-09-01

    in Breast Cancer Metastasis” PRINCIPAL INVESTIGATOR: Courtney Smith, Ph.D. CONTRACTING ORGANIZATION: Lankenau Institute for Medical...4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W Investigating the Role of Indoleamine 2,3-Dioxygenase (IDO) in Breast Cancer Metastasis 5b. GRANT...2,3-dioxygenase) has since been implicated in tumor escape from the host immune system. Primary tumor growth of the metastatic 4T1 breast cancer

  13. Identifying Breast Cancer Oncogenes

    DTIC Science & Technology

    2010-10-01

    utilizing mouse intestinal cells and rat fibroblasts suggest that PTK6 may be required for cell death triggered by specific stimuli such as DNA damage [41...Parallel data of 12 normal breast organoids RNA samples and 7 bulk normal breast tissue specimens were used as normal control. Array probe data were...JJ, Tyner AL (2009) Induction of protein tyrosine kinase 6 in mouse intestinal crypt epithelial cells promotes DNA damage-induced apoptosis

  14. Antitumor activity of [Pt(O,O'-acac)(γ-acac)(DMS)] in mouse xenograft model of breast cancer

    PubMed Central

    Muscella, A; Vetrugno, C; Migoni, D; Biagioni, F; Fanizzi, F P; Fornai, F; De Pascali, S A; Marsigliante, S

    2014-01-01

    The higher and selective cytotoxicity of [Pt(O,O′-acac)(γ-acac)(DMS)] toward cancer cell in both immortalized cell lines and in breast cancer cells in primary cultures, stimulated a pre-clinical study so as to evaluate its therapeutic potential in vivo. The efficacy of [Pt(O,O′-acac)(γ-acac)(DMS)] was assessed using a xenograft model of breast cancer developed by injection of MCF-7 cells in the flank of BALB/c nude mice. Treatment of solid tumor-bearing mice with [Pt(O,O′-acac)(γ-acac)(DMS)] induced up to 50% reduction of tumor mass compared with an average 10% inhibition recorded in cisplatin-treated animals. Thus, chemotherapy with [Pt(O,O′-acac)(γ-acac)(DMS)] was much more effective than cisplatin. We also demonstrated enhanced in vivo pharmacokinetics, biodistribution and tolerability of [Pt(O,O′-acac)(γ-acac)(DMS)] when compared with cisplatin administered in Wistar rats. Pharmacokinetics studies with [Pt(O,O′-acac)(γ-acac)(DMS)] revealed prolonged Pt persistence in systemic blood circulation and decreased nefrotoxicity and hepatotoxicity, major target sites of cisplatin toxicity. Overall, [Pt(O,O′-acac)(γ-acac)(DMS)] turned out to be extremely promising in terms of greater in vivo anticancer activity, reduced nephrotoxicity and acute toxicity compared with cisplatin. PMID:24457958

  15. Evaluation of magnetic nanoparticles coated by 5-fluorouracil imprinted polymer for controlled drug delivery in mouse breast cancer model.

    PubMed

    Hashemi-Moghaddam, Hamid; Kazemi-Bagsangani, Saeed; Jamili, Mahdi; Zavareh, Saeed

    2016-01-30

    Nanoparticles (NPs) have been extensively investigated to improve delivery efficiency of therapeutic and diagnostic agents. In this study, magnetic molecularly imprinted polymer (MIP) was synthesized by using polydopamine. Synthesized MIP was used for controlled 5-fluorouracil (5-FU) delivery in a spontaneous model of breast adenocarcinoma in Balb/c mice in the presence of an external magnetic field. Antitumor effectiveness of 5-FU imprinted polymer (5-FU-IP) was evaluated in terms of tumor-growth delay, tumor-doubling time, inhibition ratio, and histopathology. Results showed higher efficacy of 5-FU-IP in the presence of magnetic field upon suppressing tumor growth than free 5-FU and 5-FU-IP without magnetic field. The 5-FU and Fe distribution among tissues were evaluated by high-performance liquid chromatography and flame atomic absorption spectrometry, respectively. The obtained results, showed significantly deposition of 5-FU in the 5-FU-IP treated group with magnetic field. Thus, magnetic 5-FU-IP is promising for breast cancer therapy with high efficacy.

  16. Mena invasive (MenaINV) promotes multicellular streaming motility and transendothelial migration in a mouse model of breast cancer.

    PubMed

    Roussos, Evanthia T; Balsamo, Michele; Alford, Shannon K; Wyckoff, Jeffrey B; Gligorijevic, Bojana; Wang, Yarong; Pozzuto, Maria; Stobezki, Robert; Goswami, Sumanta; Segall, Jeffrey E; Lauffenburger, Douglas A; Bresnick, Anne R; Gertler, Frank B; Condeelis, John S

    2011-07-01

    We have shown previously that distinct Mena isoforms are expressed in invasive and migratory tumor cells in vivo and that the invasion isoform (Mena(INV)) potentiates carcinoma cell metastasis in murine models of breast cancer. However, the specific step of metastatic progression affected by this isoform and the effects on metastasis of the Mena11a isoform, expressed in primary tumor cells, are largely unknown. Here, we provide evidence that elevated Mena(INV) increases coordinated streaming motility, and enhances transendothelial migration and intravasation of tumor cells. We demonstrate that promotion of these early stages of metastasis by Mena(INV) is dependent on a macrophage-tumor cell paracrine loop. Our studies also show that increased Mena11a expression correlates with decreased expression of colony-stimulating factor 1 and a dramatically decreased ability to participate in paracrine-mediated invasion and intravasation. Our results illustrate the importance of paracrine-mediated cell streaming and intravasation on tumor cell dissemination, and demonstrate that the relative abundance of Mena(INV) and Mena11a helps to regulate these key stages of metastatic progression in breast cancer cells.

  17. Circadian Regulation of Benzo[a]Pyrene Metabolism and DNA Adduct Formation in Breast Cells and the Mouse Mammary Gland.

    PubMed

    Schmitt, Emily E; Barhoumi, Rola; Metz, Richard P; Porter, Weston W

    2017-03-01

    The circadian clock plays a role in many biologic processes, yet very little is known about its role in metabolism of drugs and carcinogens. The purpose of this study was to define the impact of circadian rhythms on benzo-a-pyrene (BaP) metabolism in the mouse mammary gland and develop a circadian in vitro model for investigating changes in BaP metabolism resulting from cross-talk between the molecular clock and aryl hydrocarbon receptor. Female 129sv mice (12 weeks old) received a single gavage dose of 50 mg/kg BaP at either noon or midnight, and mammary tissues were isolated 4 or 24 hours later. BaP-induced Cyp1a1 and Cyp1b1 mRNA levels were higher 4 hours after dosing at noon than at 4 hours after dosing at midnight, and this corresponded with parallel changes in Per gene expression. In our in vitro model, we dosed MCF10A mammary cells at different times after serum shock to study how time of day shifts drug metabolism in cells. Analysis of CYP1A1 and CYP1B1 gene expression showed the maximum enzyme-induced metabolism response 12 and 20 hours after shock, as determined by ethoxyresorufin-O-deethylase activity, metabolism of BaP, and formation of DNA-BaP adducts. The pattern of PER-, BMAL-, and aryl hydrocarbon receptor-induced P450 gene expression and BaP metabolism was similar to BaP-induced Cyp1A1 and Cyp1B1 and molecular clock gene expression in mouse mammary glands. These studies indicate time-of-day exposure influences BaP metabolism in mouse mammary glands and describe an in vitro model that can be used to investigate the circadian influence on the metabolism of carcinogens.

  18. Developing an anticancer copper(II) pro-drug based on the nature of cancer cell and human serum albumin carrier IIA subdomain: mouse model of breast cancer

    PubMed Central

    Qi, Jinxu; Chen, Shifang; Zhou, Zuping; Wu, Xiaoyang; Liang, Hong; Yang, Feng

    2016-01-01

    Human serum albumin (HSA)-based drug delivery systems are promising for improving delivery efficiency, anticancer activity and selectivity of anticancer agents. To rationally guide to design HSA carrier for anticancer metal agent, we built a breast mouse model on developing anti-cancer copper (Cu) pro-drug based on the nature of IIA subdomain of HSA carrier and cancer cells. Thus, we first synthesized a new Cu(II) compound derived from tridentate (E)-N'-(5-bromo-2-hydroxybenzylidene)benzohydrazide Schiff base ligand (HL) containing 2 potential leaving groups [indazole (Ind) and NO3−], namely, [Cu(L)(Ind)NO3]. Structural analysis of the HSA complex showed that Cu(L)(Ind)(NO3) could bind to the hydrophobic pocket of the HSA IIA subdomain. Lys199 and His242 coordinate with Cu2+ by replacing the indazole and NO3 ligands of [Cu(L)(Ind)NO3]. The release behavior of the Cu compound from the HSA complex is different at different pH levels. [Cu(L)(Ind)NO3] can enhance cytotoxicity by 2 times together with HSA specifically in cancer cells but has no such effect on normal cells in vitro. Importantly, our in vivo results showed that the HSA complex displayed increased selectivity and capacity to inhibit tumor growth and was less toxic than [Cu(L)(Ind)NO3] alone. PMID:27564255

  19. Quantification of Ultrasonic Scattering Properties of In Vivo Tumor Cell Death in Mouse Models of Breast Cancer1

    PubMed Central

    Tadayyon, Hadi; Sannachi, Lakshmanan; Sadeghi-Naini, Ali; Al-Mahrouki, Azza; Tran, William T.; Kolios, Michael C.; Czarnota, Gregory J.

    2015-01-01

    INTRODUCTION: Quantitative ultrasound parameters based on form factor models were investigated as potential biomarkers of cell death in breast tumor (MDA-231) xenografts treated with chemotherapy. METHODS: Ultrasound backscatter radiofrequency data were acquired from MDA-231 breast cancer tumor–bearing mice (n = 20) before and after the administration of chemotherapy drugs at two ultrasound frequencies: 7 MHz and 20 MHz. Radiofrequency spectral analysis involved estimating the backscatter coefficient from regions of interest in the center of the tumor, to which form factor models were fitted, resulting in estimates of average scatterer diameter and average acoustic concentration (AAC). RESULTS: The ∆AAC parameter extracted from the spherical Gaussian model was found to be the most effective cell death biomarker (at the lower frequency range, r2 = 0.40). At both frequencies, AAC in the treated tumors increased significantly (P = .026 and .035 at low and high frequencies, respectively) 24 hours after treatment compared with control tumors. Furthermore, stepwise multiple linear regression analysis of the low-frequency data revealed that a multiparameter quantitative ultrasound model was strongly correlated to cell death determined histologically posttreatment (r2 = 0.74). CONCLUSION: The Gaussian form factor model–based scattering parameters can potentially be used to track the extent of cell death at clinically relevant frequencies (7 MHz). The 20-MHz results agreed with previous findings in which parameters related to the backscatter intensity (i.e., AAC) increased with cell death. The findings suggested that, in addition to the backscatter coefficient parameter ∆AAC, biological features including tumor heterogeneity and initial tumor volume were important factors in the prediction of cell death response. PMID:26692527

  20. Periostin is identified as a putative metastatic marker in breast cancer-derived exosomes

    PubMed Central

    Vardaki, Ioulia; Ceder, Sophia; Rutishauser, Dorothea; Baltatzis, George; Foukakis, Theodoros; Panaretakis, Theocharis

    2016-01-01

    Breast cancer (BrCa) is the most frequent cancer type in women and a leading cause of cancer related deaths in the world. Despite the decrease in mortality due to better diagnostics and palliative care, there is a lack of prognostic markers of metastasis. Recently, the exploitation of liquid biopsies and in particular of the extracellular vesicles has shown promise in the identification of such prognostic markers. In this study we compared the proteomic content of exosomes derived from metastatic and non-metastatic human (MCF7 and MDA-MB-231) and mouse (67NR and 4T1) cell lines. We found significant differences not only in the amount of secreted exosomes but most importantly in the protein content of exosomes secreted from metastatic versus non-metastatic ones. We identified periostin as a protein that is enriched in exosomes secreted by metastatic cells and validated its presence in a pilot cohort of breast cancer patient samples with localized disease or lymph node (LN) metastasis. PMID:27589561

  1. New use of an old drug: inhibition of breast cancer stem cells by benztropine mesylate

    PubMed Central

    Cui, Jihong; Hollmén, Maija; Li, Lina; Chen, Yong; Proulx, Steven T.; Reker, Daniel; Schneider, Gisbert; Detmar, Michael

    2017-01-01

    Cancer stem cells (CSCs) play major roles in cancer initiation, metastasis, recurrence and therapeutic resistance. Targeting CSCs represents a promising strategy for cancer treatment. The purpose of this study was to identify selective inhibitors of breast CSCs (BCSCs). We carried out a cell-based phenotypic screening with cell viability as a primary endpoint, using a collection of 2,546 FDA-approved drugs and drug-like molecules in spheres formed by malignant human breast gland-derived cells (HMLER-shEcad cells, representing BCSCs) and control immortalized non-tumorigenic human mammary cells (HMLE cells, representing normal stem cells). 19 compounds were identified from screening. The chemically related molecules benztropine mesylate and deptropine citrate were selected for further validation and both potently inhibited sphere formation and self-renewal of BCSCs in vitro. Benztropine mesylate treatment decreased cell subpopulations with high ALDH activity and with a CD44+/CD24− phenotype. In vivo, benztropine mesylate inhibited tumor-initiating potential in a 4T1 mouse model. Functional studies indicated that benztropine mesylate inhibits functions of CSCs via the acetylcholine receptors, dopamine transporters/receptors, and/or histamine receptors. In summary, our findings identify benztropine mesylate as an inhibitor of BCSCs in vitro and in vivo. This study also provides a screening platform for identification of additional anti-CSC agents. PMID:27894093

  2. Macrophage mediated biomimetic delivery system for the treatment of lung metastasis of breast cancer.

    PubMed

    Fu, Jijun; Wang, Dan; Mei, Dong; Zhang, Haoran; Wang, Zhaoyang; He, Bing; Dai, Wenbing; Zhang, Hua; Wang, Xueqing; Zhang, Qiang

    2015-04-28

    The biomimetic delivery system (BDS) based on special types of endogenous cells like macrophages and T cells, has been emerging as a novel strategy for cancer therapy, due to its tumor homing property and biocompatibility. However, its development is impeded by complicated construction, low drug loading or negative effect on the cell bioactivity. The present report constructed a BDS by loading doxorubicin (DOX) into a mouse macrophage-like cell line (RAW264.7). It was found that therapeutically meaningful amount of DOX could be loaded into the RAW264.7 cells by simply incubation, without significantly affecting the viability of the cells. Drug could release from the BDS and maintain its activity. RAW264.7 cells exhibited obvious tumor-tropic capacity towards 4T1 mouse breast cancer cells both in vitro and in vivo, and drug loading did not alter this tendency. Importantly, the DOX loaded macrophage system showed promising anti-cancer efficacy in terms of tumor suppression, life span prolongation and metastasis inhibition, with reduced toxicity. In conclusion, it is demonstrated that the BDS developed here seems to overcome some of the main issues related to a BDS. The DOX loaded macrophages might be a potential BDS for targeted cancer therapy.

  3. Conditional Knockout of Breast Carcinoma Amplified Sequence 2 (BCAS2) in Mouse Forebrain Causes Dendritic Malformation via β-catenin

    PubMed Central

    Huang, Chu-Wei; Chen, Yi-Wen; Lin, Yi-Rou; Chen, Po-Han; Chou, Meng-Hsuan; Lee, Li-Jen; Wang, Pei-Yu; Wu, June-Tai; Tsao, Yeou-Ping; Chen, Show-Li

    2016-01-01

    Breast carcinoma amplified sequence 2 (BCAS2) is a core component of the hPrP19 complex that controls RNA splicing. Here, we performed an exon array assay and showed that β-catenin is a target of BCAS2 splicing regulation. The regulation of dendrite growth and morphology by β-catenin is well documented. Therefore, we generated conditional knockout (cKO) mice to eliminate the BCAS2 expression in the forebrain to investigate the role of BCAS2 in dendrite growth. BCAS2 cKO mice showed a microcephaly-like phenotype with a reduced volume in the dentate gyrus (DG) and low levels of learning and memory, as evaluated using Morris water maze analysis and passive avoidance, respectively. Golgi staining revealed shorter dendrites, less dendritic complexity and decreased spine density in the DG of BCAS2 cKO mice. Moreover, the cKO mice displayed a short dendrite length in newborn neurons labeled by DCX, a marker of immature neurons, and BrdU incorporation. To further examine the mechanism underlying BCAS2-mediated dendritic malformation, we overexpressed β-catenin in BCAS2-depleted primary neurons and found that the dendritic growth was restored. In summary, BCAS2 is an upstream regulator of β-catenin gene expression and plays a role in dendrite growth at least partly through β-catenin. PMID:27713508

  4. A multimodality imaging model to track viable breast cancer cells from single arrest to metastasis in the mouse brain

    PubMed Central

    Parkins, Katie M.; Hamilton, Amanda M.; Makela, Ashley V.; Chen, Yuanxin; Foster, Paula J.; Ronald, John A.

    2016-01-01

    Cellular MRI involves sensitive visualization of iron-labeled cells in vivo but cannot differentiate between dead and viable cells. Bioluminescence imaging (BLI) measures cellular viability, and thus we explored combining these tools to provide a more holistic view of metastatic cancer cell fate in mice. Human breast carcinoma cells stably expressing Firefly luciferase were loaded with iron particles, injected into the left ventricle, and BLI and MRI were performed on days 0, 8, 21 and 28. The number of brain MR signal voids (i.e., iron-loaded cells) on day 0 significantly correlated with BLI signal. Both BLI and MRI signals decreased from day 0 to day 8, indicating a loss of viable cells rather than a loss of iron label. Total brain MR tumour volume on day 28 also correlated with BLI signal. Overall, BLI complemented our sensitive cellular MRI technologies well, allowing us for the first time to screen animals for successful injections, and, in addition to MR measures of cell arrest and tumor burden, provided longitudinal measures of cancer cell viability in individual animals. We predict this novel multimodality molecular imaging framework will be useful for evaluating the efficacy of emerging anti-cancer drugs at different stages of the metastatic cascade. PMID:27767185

  5. A multimodality imaging model to track viable breast cancer cells from single arrest to metastasis in the mouse brain

    NASA Astrophysics Data System (ADS)

    Parkins, Katie M.; Hamilton, Amanda M.; Makela, Ashley V.; Chen, Yuanxin; Foster, Paula J.; Ronald, John A.

    2016-10-01

    Cellular MRI involves sensitive visualization of iron-labeled cells in vivo but cannot differentiate between dead and viable cells. Bioluminescence imaging (BLI) measures cellular viability, and thus we explored combining these tools to provide a more holistic view of metastatic cancer cell fate in mice. Human breast carcinoma cells stably expressing Firefly luciferase were loaded with iron particles, injected into the left ventricle, and BLI and MRI were performed on days 0, 8, 21 and 28. The number of brain MR signal voids (i.e., iron-loaded cells) on day 0 significantly correlated with BLI signal. Both BLI and MRI signals decreased from day 0 to day 8, indicating a loss of viable cells rather than a loss of iron label. Total brain MR tumour volume on day 28 also correlated with BLI signal. Overall, BLI complemented our sensitive cellular MRI technologies well, allowing us for the first time to screen animals for successful injections, and, in addition to MR measures of cell arrest and tumor burden, provided longitudinal measures of cancer cell viability in individual animals. We predict this novel multimodality molecular imaging framework will be useful for evaluating the efficacy of emerging anti-cancer drugs at different stages of the metastatic cascade.

  6. The antiepileptic drug lamotrigine is a substrate of mouse and human breast cancer resistance protein (ABCG2).

    PubMed

    Römermann, Kerstin; Helmer, Renate; Löscher, Wolfgang

    2015-06-01

    Resistance to antiepileptic drugs (AEDs) is the major problem in the treatment of epilepsy. One hypothesis to explain AED resistance suggests that seizure-induced overexpression of efflux transporters at the blood-brain barrier (BBB) restricts AEDs to reach their brain targets. Various studies examined whether AEDs are substrates of P-glycoprotein (Pgp; MDR1; ABCB1), whereas information about the potential role of breast cancer resistance protein (BCRP; ABCG2) is scanty. We used a highly sensitive in vitro assay (concentration equilibrium transport assay; CETA) with MDCKII cells transduced with murine Bcrp1 or human BCRP to evaluate whether AEDs are substrates of this major efflux transporter. Six of 7 AEDs examined, namely phenytoin, phenobarbital, carbamazepine, levetiracetam, topiramate, and valproate, were not transported by Bcrp at therapeutic concentrations, whereas lamotrigine exhibited a marked asymmetric, Bcrp-mediated transport in the CETA, which could be almost completely inhibited with the Bcrp inhibitor Ko143. Significant but less marked transport of lamotrigine was determined in MDCK cells transfected with human BCRP. Lamotrigine is also a substrate of human Pgp, so that this drug is the first AED that has been identified as a dual substrate of the two major human efflux transporters at the BBB. Previous in vivo studies have demonstrated a synergistic or cooperative role of Pgp and Bcrp in the efflux of dual substrates at the BBB, so that transport of lamotrigine by Pgp and BCRP may be an important mechanism of pharmacoresistance in epilepsy patients in whom both transporters are overexpressed.

  7. Anti-HER2 antibody and ScFvEGFR-conjugated antifouling magnetic iron oxide nanoparticles for targeting and magnetic resonance imaging of breast cancer.

    PubMed

    Chen, Hongwei; Wang, Liya; Yu, Qiqi; Qian, Weiping; Tiwari, Diana; Yi, Hong; Wang, Andrew Y; Huang, Jing; Yang, Lily; Mao, Hui

    2013-01-01

    Antifouling magnetic iron oxide nanoparticles (IONPs) coated with block copolymer poly(ethylene oxide)-block-poly(γ-methacryloxypropyltrimethoxysilane) (PEO-b-PγMPS) were investigated for improving cell targeting by reducing nonspecific uptake. Conjugation of a HER2 antibody, Herceptin®, or a single chain fragment (ScFv) of antibody against epidermal growth factor receptor (ScFvEGFR) to PEO-b-PγMPS-coated IONPs resulted in HER2-targeted or EGFR-targeted IONPs (anti-HER2-IONPs or ScFvEGFR-IONPs). The anti-HER2-IONPs bound specifically to SK-BR-3, a HER2-overexpressing breast cancer cell line, but not to MDA-MB-231, a HER2-underexpressing cell line. On the other hand, the ScFvEGFR-IONPs showed strong reactivity with MDA-MB-231, an EGFR-positive human breast cancer cell line, but not with MDA-MB-453, an EGFR-negative human breast cancer cell line. Transmission electron microscopy revealed internalization of the receptor-targeted nanoparticles by the targeted cancer cells. In addition, both antibody-conjugated and non-antibody-conjugated IONPs showed reduced nonspecific uptake by RAW264.7 mouse macrophages in vitro. The developed IONPs showed a long blood circulation time (serum half-life 11.6 hours) in mice and low accumulation in both the liver and spleen. At 24 hours after systemic administration of ScFvEGFR-IONPs into mice bearing EGFR-positive breast cancer 4T1 mouse mammary tumors, magnetic resonance imaging revealed signal reduction in the tumor as a result of the accumulation of the targeted IONPs.

  8. MMTV-PyMT and Derived Met-1 Mouse Mammary Tumor Cells as Models for Studying the Role of the Androgen Receptor in Triple-Negative Breast Cancer Progression.

    PubMed

    Christenson, Jessica L; Butterfield, Kiel T; Spoelstra, Nicole S; Norris, John D; Josan, Jatinder S; Pollock, Julie A; McDonnell, Donald P; Katzenellenbogen, Benita S; Katzenellenbogen, John A; Richer, Jennifer K

    2017-04-01

    Triple-negative breast cancer (TNBC) has a faster rate of metastasis compared to other breast cancer subtypes, and no effective targeted therapies are currently FDA-approved. Recent data indicate that the androgen receptor (AR) promotes tumor survival and may serve as a potential therapeutic target in TNBC. Studies of AR in disease progression and the systemic effects of anti-androgens have been hindered by the lack of an AR-positive (AR+) immunocompetent preclinical model. In this study, we identified the transgenic MMTV-PyMT (mouse mammary tumor virus-polyoma middle tumor-antigen) mouse mammary gland carcinoma model of breast cancer and Met-1 cells derived from this model as tools to study the role of AR in breast cancer progression. AR protein expression was examined in late-stage primary tumors and lung metastases from MMTV-PyMT mice as well as in Met-1 cells by immunohistochemistry (IHC). Sensitivity of Met-1 cells to the AR agonist dihydrotestosterone (DHT) and anti-androgen therapy was examined using cell viability, migration/invasion, and anchorage-independent growth assays. Late-stage primary tumors and lung metastases from MMTV-PyMT mice and Met-1 cells expressed abundant nuclear AR protein, while negative for estrogen and progesterone receptors. Met-1 sensitivity to DHT and AR antagonists demonstrated a reliance on AR for survival, and AR antagonists inhibited invasion and anchorage-independent growth. These data suggest that the MMTV-PyMT model and Met-1 cells may serve as valuable tools for mechanistic studies of the role of AR in disease progression and how anti-androgens affect the tumor microenvironment.

  9. MicroRNA-376b promotes breast cancer metastasis by targeting Hoxd10 directly

    PubMed Central

    An, Ning; Luo, Xinmei; Zhang, Ming; Yu, Ruilian

    2017-01-01

    Breast cancer is the most common malignant disease in women, and metastasis formed at distant anatomic sites was the major cause of cancer-related mortality. Thus, a novel therapy target and progression biomarker for breast cancer metastasis was necessary. microRNA (miR)-376b has been demonstrated to regulate angiogenesis; however, its role in cancer metastasis remains elusive. In the present study, the expression of miR-376b in normal breast tissue, JC and 4T1 cells was determined by qPCR. Furthermore, in vitro and in vivo experiments were performed to determine the effect of miR-376b on breast cancer metastasis. The direct target of miR-376b was determined by the luciferase assay and western blotting. The results indicated that silencing of miR-376b by the miR-376-mimic significantly inhibited 4T1 cell migration and invasion in vitro. Lung metastasis was also evidently decreased after silencing of miR-376b in 4T1 cells. Moreover, the luciferase assay and western blotting identified that Hoxd10 is the direct target of miR-376b during the regulation of breast cancer metastasis. To the best of our knowledge, the present study was the first to demonstrate the promoting breast cancer metastasis role of miR-376b by directly targeting Hoxd10. Therefore, it would be a novel therapy target and prognostic biomarker for breast cancer. PMID:28123472

  10. The role of inflammation induced by radiation or lipopolysaccharides in the metastatic process in a mouse model of breast cancer

    NASA Astrophysics Data System (ADS)

    Mitterer, Chantal

    Mortality from breast cancer is primarily due to metastatic disease, which often appears years after treatment of the primary tumor. Radiation as well as bacterial infection induces inflammation, which by releasing cytokines can be implicated in metastatic processes. Using in vitro and in vivo models, the ability of radiation to awaken dormant lung metastases was assessed as well as the capacity of a bacterial infection to enhance metastatic progression in already proliferating lung metastases. As models, we used the D2.0R (dormant) and D2A1 (proliferative) cell lines, which are derived from spontaneous murine mammary tumors. The ability of radiation to awaken dormant D2.0R mammary cancer cells was assessed in a 3-dimension (3D) cell culture system, which resulted in the formation of microspheres of cancer cells. The addition of prostaglandin E2 (PGE2; 100ng/m1) or conditioned media from irradiated (5 Gy) CALU-3 human bronchial epithelial cells stimulated the proliferation of the dormant D2.0R cells resulting in microspheres with a larger diameter compared to the untreated cells. Regarding the proliferative D2A1 microspheres, their rate of proliferation was not further increased by adding PGE2 or the conditioned media of irradiated CALU-3 cells. In Balb/c mice bearing dormant lung D2.0R micrometastases, our data showed that a fractionated radiation dose (5x7.5 Gy) to the mammary gland resulted in a significant increase in the development of metastases, as measured 42 days post-irradiation by bioluminescent reaction. We also evaluated whether a bacterial infection could stimulate the growth of D2A1 cancer cells. Gram-negative bacteria release the lipopolysaccharide (LPS) that induces an inflammatory response. In lungs of mice treated with LPS, a higher level of interleukin-1beta (IL-1beta) was measured supporting the induction of an inflammation. This was accompanied by an increase of cell adhesion molecules (VCAM-1 and ICAM-1) 5 hours after treatment. The ability

  11. The application of surgical navigation system using optical molecular imaging technology in orthotopic breast cancer and metastasis studies

    NASA Astrophysics Data System (ADS)

    Chi, Chongwei; Zhang, Qian; Kou, Deqiang; Ye, Jinzuo; Mao, Yamin; Qiu, Jingdan; Wang, Jiandong; Yang, Xin; Du, Yang; Tian, Jie

    2014-02-01

    Currently, it has been an international focus on intraoperative precise positioning and accurate resection of tumor and metastases. The methods such as X-rays, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role in preoperative accurate diagnosis. However, most of them are inapplicable for intraoperative surgery. We have proposed a surgical navigation system based on optical molecular imaging technology for intraoperative detection of tumors and metastasis. This system collects images from two CCD cameras for real-time fluorescent and color imaging. For image processing, the template matching algorithm is used for multispectral image fusion. For the application of tumor detection, the mouse breast cancer cell line 4T1-luc, which shows highly metastasis, was used for tumor model establishment and a model of matrix metalloproteinase (MMP) expressing breast cancer. The tumor-bearing nude mice were given tail vein injection of MMP 750FAST (PerkinElmer, Inc. USA) probe and imaged with both bioluminescence and fluorescence to assess in vivo binding of the probe to the tumor and metastases sites. Hematoxylin and eosin (H&E) staining was performed to confirm the presence of tumor and metastasis. As a result, one tumor can be observed visually in vivo. However liver metastasis has been detected under surgical navigation system and all were confirmed by histology. This approach helps surgeons to find orthotopic tumors and metastasis during intraoperative resection and visualize tumor borders for precise positioning. Further investigation is needed for future application in clinics.

  12. DNA methyltransferase inhibition increases efficacy of adoptive cellular immunotherapy of murine breast cancer.

    PubMed

    Terracina, Krista P; Graham, Laura J; Payne, Kyle K; Manjili, Masoud H; Baek, Annabel; Damle, Sheela R; Bear, Harry D

    2016-09-01

    Adoptive T cell immunotherapy is a promising approach to cancer treatment that currently has limited clinical applications. DNA methyltransferase inhibitors (DNAMTi) have known potential to affect the immune system through multiple mechanisms that could enhance the cytotoxic T cell responses, including: upregulation of tumor antigen expression, increased MHC class I expression, and blunting of myeloid derived suppressor cells (MDSCs) expansion. In this study, we have investigated the effect of combining the DNAMTi, decitabine, with adoptive T cell immunotherapy in the murine 4T1 mammary carcinoma model. We found that expression of neu, MHC class I molecules, and several murine cancer testis antigens (CTA) was increased by decitabine treatment of 4T1 cells in vitro. Decitabine also increased expression of multiple CTA in two human breast cancer cell lines. Decitabine-treated 4T1 cells stimulated greater IFN-gamma release from tumor-sensitized lymphocytes, implying increased immunogenicity. Expansion of CD11b + Gr1 + MDSC in 4T1 tumor-bearing mice was significantly diminished by decitabine treatment. Decitabine treatment improved the efficacy of adoptive T cell immunotherapy in mice with established 4T1 tumors, with greater inhibition of tumor growth and an increased cure rate. Decitabine may have a role in combination with existing and emerging immunotherapies for breast cancer.

  13. Photo activation of HPPH encapsulated in “Pocket” liposomes triggers multiple drug release and tumor cell killing in mouse breast cancer xenografts

    PubMed Central

    Sine, Jessica; Urban, Cordula; Thayer, Derek; Charron, Heather; Valim, Niksa; Tata, Darrell B; Schiff, Rachel; Blumenthal, Robert; Joshi, Amit; Puri, Anu

    2015-01-01

    We recently reported laser-triggered release of photosensitive compounds from liposomes containing dipalmitoylphosphatidylcholine (DPPC) and 1,2 bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC8,9PC). We hypothesized that the permeation of photoactivated compounds occurs through domains of enhanced fluidity in the liposome membrane and have thus called them “Pocket” liposomes. In this study we have encapsulated the red light activatable anticancer photodynamic therapy drug 2-(1-Hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH) (Ex/Em410/670 nm) together with calcein (Ex/Em490/517 nm) as a marker for drug release in Pocket liposomes. A mole ratio of 7.6:1 lipid:HPPH was found to be optimal, with >80% of HPPH being included in the liposomes. Exposure of liposomes with a cw-diode 660 nm laser (90 mW, 0–5 minutes) resulted in calcein release only when HPPH was included in the liposomes. Further analysis of the quenching ratios of liposome-entrapped calcein in the laser treated samples indicated that the laser-triggered release occurred via the graded mechanism. In vitro studies with MDA-MB-231-LM2 breast cancer cell line showed significant cell killing upon treatment of cell-liposome suspensions with the laser. To assess in vivo efficacy, we implanted MDA-MB-231-LM2 cells containing the luciferase gene along the mammary fat pads on the ribcage of mice. For biodistribution experiments, trace amounts of a near infrared lipid probe DiR (Ex/Em745/840 nm) were included in the liposomes. Liposomes were injected intravenously and laser treatments (90 mW, 0.9 cm diameter, for an exposure duration ranging from 5–8 minutes) were done 4 hours postinjection (only one tumor per mouse was treated, keeping the second flank tumor as control). Calcein release occurred as indicated by an increase in calcein fluorescence from laser treated tumors only. The animals were observed for up to 15 days postinjection and tumor volume and luciferase expression was measured. A

  14. Cancer Cell Expression of Autotaxin Controls Bone Metastasis Formation in Mouse through Lysophosphatidic Acid-Dependent Activation of Osteoclasts

    PubMed Central

    David, Marion; Wannecq, Estelle; Descotes, Françoise; Jansen, Silvia; Deux, Blandine; Ribeiro, Johnny; Serre, Claire-Marie; Grès, Sandra; Bendriss-Vermare, Nathalie; Bollen, Mathieu; Saez, Simone; Aoki, Junken; Saulnier-Blache, Jean-Sébastien; Clézardin, Philippe; Peyruchaud, Olivier

    2010-01-01

    Background Bone metastases are highly frequent complications of breast cancers. Current bone metastasis treatments using powerful anti-resorbtive agents are only palliative indicating that factors independent of bone resorption control bone metastasis progression. Autotaxin (ATX/NPP2) is a secreted protein with both oncogenic and pro-metastatic properties. Through its lysosphospholipase D (lysoPLD) activity, ATX controls the level of lysophosphatidic acid (LPA) in the blood. Platelet-derived LPA promotes the progression of osteolytic bone metastases of breast cancer cells. We asked whether ATX was involved in the bone metastasis process. We characterized the role of ATX in osteolytic bone metastasis formation by using genetically modified breast cancer cells exploited on different osteolytic bone metastasis mouse models. Methodology/Principal Findings Intravenous injection of human breast cancer MDA-B02 cells with forced expression of ATX (MDA-B02/ATX) to inmmunodeficiency BALB/C nude mice enhanced osteolytic bone metastasis formation, as judged by increased bone loss, tumor burden, and a higher number of active osteoclasts at the metastatic site. Mouse breast cancer 4T1 cells induced the formation of osteolytic bone metastases after intracardiac injection in immunocompetent BALB/C mice. These cells expressed active ATX and silencing ATX expression inhibited the extent of osteolytic bone lesions and decreased the number of active osteoclasts at the bone metastatic site. In vitro, osteoclast differentiation was enhanced in presence of MDA-B02/ATX cell conditioned media or recombinant autotaxin that was blocked by the autotaxin inhibitor vpc8a202. In vitro, addition of LPA to active charcoal-treated serum restored the capacity of the serum to support RANK-L/MCSF-induced osteoclastogenesis. Conclusion/Significance Expression of autotaxin by cancer cells controls osteolytic bone metastasis formation. This work demonstrates a new role for LPA as a factor that stimulates

  15. Necrosis avid near infrared fluorescent cyanines for imaging cell death and their use to monitor therapeutic efficacy in mouse tumor models.

    PubMed

    Xie, Bangwen; Stammes, Marieke A; van Driel, Pieter B A A; Cruz, Luis J; Knol-Blankevoort, Vicky T; Löwik, Martijn A M; Mezzanotte, Laura; Que, Ivo; Chan, Alan; van den Wijngaard, Jeroen P H M; Siebes, Maria; Gottschalk, Sven; Razansky, Daniel; Ntziachristos, Vasilis; Keereweer, Stijn; Horobin, Richard W; Hoehn, Mathias; Kaijzel, Eric L; van Beek, Ermond R; Snoeks, Thomas J A; Löwik, Clemens W G M

    2015-11-17

    Quantification of tumor necrosis in cancer patients is of diagnostic value as the amount of necrosis is correlated with disease prognosis and it could also be used to predict early efficacy of anti-cancer treatments. In the present study, we identified two near infrared fluorescent (NIRF) carboxylated cyanines, HQ5 and IRDye 800CW (800CW), which possess strong necrosis avidity. In vitro studies showed that both dyes selectively bind to cytoplasmic proteins of dead cells that have lost membrane integrity. Affinity for cytoplasmic proteins was confirmed using quantitative structure activity relations modeling. In vivo results, using NIRF and optoacoustic imaging, confirmed the necrosis avid properties of HQ5 and 800CW in a mouse 4T1 breast cancer tumor model of spontaneous necrosis. Finally, in a mouse EL4 lymphoma tumor model, already 24 h post chemotherapy, a significant increase in 800CW fluorescence intensity was observed in treated compared to untreated tumors. In conclusion, we show, for the first time, that the NIRF carboxylated cyanines HQ5 and 800CW possess strong necrosis avid properties in vitro and in vivo. When translated to the clinic, these dyes may be used for diagnostic or prognostic purposes and for monitoring in vivo tumor response early after the start of treatment.

  16. Necrosis avid near infrared fluorescent cyanines for imaging cell death and their use to monitor therapeutic efficacy in mouse tumor models

    PubMed Central

    Xie, Bangwen; Stammes, Marieke A.; van Driel, Pieter B.A.A.; Cruz, Luis J.; Knol-Blankevoort, Vicky T.; Löwik, Martijn A.M.; Mezzanotte, Laura; Que, Ivo; Chan, Alan; van den Wijngaard, Jeroen P.H.M.; Siebes, Maria; Gottschalk, Sven; Razansky, Daniel; Ntziachristos, Vasilis; Keereweer, Stijn; Horobin, Richard W.; Hoehn, Mathias; Kaijzel, Eric L.; van Beek, Ermond R.; Snoeks, Thomas J.A.; Löwik, Clemens W.G.M.

    2015-01-01

    Quantification of tumor necrosis in cancer patients is of diagnostic value as the amount of necrosis is correlated with disease prognosis and it could also be used to predict early efficacy of anti-cancer treatments. In the present study, we identified two near infrared fluorescent (NIRF) carboxylated cyanines, HQ5 and IRDye 800CW (800CW), which possess strong necrosis avidity. In vitro studies showed that both dyes selectively bind to cytoplasmic proteins of dead cells that have lost membrane integrity. Affinity for cytoplasmic proteins was confirmed using quantitative structure activity relations modeling. In vivo results, using NIRF and optoacoustic imaging, confirmed the necrosis avid properties of HQ5 and 800CW in a mouse 4T1 breast cancer tumor model of spontaneous necrosis. Finally, in a mouse EL4 lymphoma tumor model, already 24 h post chemotherapy, a significant increase in 800CW fluorescence intensity was observed in treated compared to untreated tumors. In conclusion, we show, for the first time, that the NIRF carboxylated cyanines HQ5 and 800CW possess strong necrosis avid properties in vitro and in vivo. When translated to the clinic, these dyes may be used for diagnostic or prognostic purposes and for monitoring in vivo tumor response early after the start of treatment. PMID:26472022

  17. Breast Cancer

    MedlinePlus

    ... version of this page please turn Javascript on. Breast Cancer What is Breast Cancer? How Tumors Form The body is made up ... tumors form in the breast tissue. Who Gets Breast Cancer? Breast cancer is one of the most common ...

  18. Methionine deprivation suppresses triple-negative breast cancer metastasis in vitro and in vivo

    PubMed Central

    Jang, Young Jin; Son, Joe Eun; Kwon, Jung Yeon; Lim, Tae-gyu; Kim, Sunghoon; Park, Jung Han Yoon; Kim, Jong-Eun; Lee, Ki Won

    2016-01-01

    Nutrient deprivation strategies have been proposed as an adjuvant therapy for cancer cells due to their increased metabolic demand. We examined the specific inhibitory effects of amino acid deprivation on the metastatic phenotypes of the human triple-negative breast cancer (TNBC) cell lines MDA-MB-231 and Hs 578T, as well as the orthotopic 4T1 mouse TNBC tumor model. Among the 10 essential amino acids tested, methionine deprivation elicited the strongest inhibitory effects on the migration and invasion of these cancer cells. Methionine deprivation reduced the phosphorylation of focal adhesion kinase, as well as the activity and mRNA expression of matrix metalloproteinases MMP-2 and MMP-9, two major markers of metastasis, while increasing the mRNA expression of tissue inhibitor of metalloproteinase 1 in MDA-MB-231 cells. Furthermore, methionine restriction downregulated the metastasis-related factor urokinase plasminogen activatior and upregulated plasminogen activator inhibitor 1 mRNA expression. Animals on the methionine-deprived diet showed lower lung metastasis rates compared to mice on the control diet. Taken together, these results suggest that methionine restriction could provide a potential nutritional strategy for more effective cancer therapy. PMID:27579534

  19. ApoA-I mimetic administration, but not increased apoA-I-containing HDL, inhibits tumour growth in a mouse model of inherited breast cancer

    PubMed Central

    Cedó, Lídia; García-León, Annabel; Baila-Rueda, Lucía; Santos, David; Grijalva, Victor; Martínez-Cignoni, Melanie Raquel; Carbó, José M.; Metso, Jari; López-Vilaró, Laura; Zorzano, Antonio; Valledor, Annabel F.; Cenarro, Ana; Jauhiainen, Matti; Lerma, Enrique; Fogelman, Alan M.; Reddy, Srinivasa T.; Escolà-Gil, Joan Carles; Blanco-Vaca, Francisco

    2016-01-01

    Low levels of high-density lipoprotein cholesterol (HDLc) have been associated with breast cancer risk, but several epidemiologic studies have reported contradictory results with regard to the relationship between apolipoprotein (apo) A-I and breast cancer. We aimed to determine the effects of human apoA-I overexpression and administration of specific apoA-I mimetic peptide (D-4F) on tumour progression by using mammary tumour virus-polyoma middle T-antigen transgenic (PyMT) mice as a model of inherited breast cancer. Expression of human apoA-I in the mice did not affect tumour onset and growth in PyMT transgenic mice, despite an increase in the HDLc level. In contrast, D-4F treatment significantly increased tumour latency and inhibited the development of tumours. The effects of D-4F on tumour development were independent of 27-hydroxycholesterol. However, D-4F treatment reduced the plasma oxidized low-density lipoprotein (oxLDL) levels in mice and prevented oxLDL-mediated proliferative response in human breast adenocarcinoma MCF-7 cells. In conclusion, our study shows that D-4F, but not apoA-I-containing HDL, hinders tumour growth in mice with inherited breast cancer in association with a higher protection against LDL oxidative modification. PMID:27808249

  20. In-Vivo Characterization of Mammalian Polarity Genes as Novel Tumor Suppressors Involved in Breast Cancer Development and Progression in a Mouse Model

    DTIC Science & Technology

    2006-03-01

    Spring Harbor Laboratory Cold Spring Harbor , New York 11724 REPORT DATE: March...PERFORMING ORGANIZATION REPORT NUMBER Cold Spring Harbor Laboratory Cold Spring Harbor , New York 11724...Development and Progression in a Mouse Model PRINCIPAL INVESTIGATOR: Avi Z. Rosenberg CONTRACTING

  1. Cryoablation and Meriva have strong therapeutic effect on triple-negative breast cancer

    PubMed Central

    Chandra, Dinesh; Jahangir, Arthee; Cornelis, Francois; Rombauts, Klara; Meheus, Lydie; Jorcyk, Cheryl L; Gravekamp, Claudia

    2016-01-01

    Interleukin-6, a cytokine produced particularly by triple-negative breast cancers, strongly inhibits T cell responses in the tumor microenvironment. Here we tested cryoablation combined with Meriva (a lecithin delivery system of curcumin with improved bioavailability) in mice with metastatic breast cancer (4T1). Cryoablation involves killing of tumor cells through freezing and thawing, resulting in recruitment of tumor-specific T cells, while curcumin stimulates T cells through the reduction of IL-6 in the TME. Cryoablation plus Meriva accumulated and activated CD8+ T cells to multiple tumor-associated antigens such as Mage-b and Survivin (both expressed by 4T1 tumors). This correlated with a nearly complete reduction of 4T1 primary tumors and lung metastases while little effect was observed from saline or Meriva alone (28 d after tumor cell injection). The survival rate in the group of cryoablation plus Meriva was significantly improved compared to all control groups. Using a less aggressive 4T1 model expressing luciferase (4T1.2luc3), we demonstrated that all mice receiving saline or Meriva developed metastases in the lungs and a primary tumor (38 d after tumor cell injection; and died soon after that), but not the mice receiving cryoablation or cryoablation plus Meriva. However, on day 58 the mice receiving cryoablation developed 4T1.2luc3 metastases in the lungs, while mice receiving cryoablation plus Meriva were free of metastases. These results strongly suggest that cryoablation delayed the development of lung metastases on the short-term, but Meriva administered after cryoablation was significantly better in delaying the development of lung metastases and survival on the long-term. PMID:26942057

  2. Breast infection

    MedlinePlus

    ... female breast anatomy Breast infection Female breast References Hunt KK, Mittendorf EA. Diseases of the breast. In: ... Jacobson, MD, Professor of Obstetrics and Gynecology, Loma Linda University School of Medicine, Loma Linda Center for ...

  3. Breast cancer

    MedlinePlus

    ... of a direct link between breast cancer and pesticides. Symptoms Early breast cancer often does not cause ... breast cancer should not drink alcohol at all) Alternative Names Cancer - breast; Carcinoma - ductal; Carcinoma - lobular; DCIS; ...

  4. An Experimental Analysis of the Molecular Effects of Trastuzumab (Herceptin) and Fulvestrant (Falsodex), as Single Agents or in Combination, on Human HR+/HER2+ Breast Cancer Cell Lines and Mouse Tumor Xenografts

    PubMed Central

    Lu, Yunshu; Jia, Yijun; Ding, Longlong; Bai, Fang; Ge, Meixin; Lin, Qing; Wu, Kejin

    2017-01-01

    Purpose To investigate the effects of trastuzumab (herceptin) and fulvestrant (falsodex) either in combination or alone, on downstream cell signaling pathways in lab-cultured human HR+/HER2+ breast cancer cell lines ZR-75-1 and BT-474, as well as on protein expression levels in mouse xenograft tissue. Methods Cells were cultivated in the presence of trastuzumab or fulvestrant or both. Molecular events that resulted in an inhibition of cell proliferation and cell cycle progression or in an increased rate of apoptosis were studied. The distribution and abundance of the proteins p-Akt and p-Erk expressed in these cells in response to single agents or combinatorial treatment were also investigated. In addition, the effects of trastuzumab and fulvestrant, either as single agents or in combination on tumor growth as well as on expression of the protein p-MED1 expressed in in vivo mouse xenograft models was also examined. Results Cell proliferation was increasingly inhibited by trastuzumab or fulvestrant or both, with a CI<1 and DRI>1 in both human cell lines. The rate of apoptosis increased only in the BT-474 cell line and not in the ZR-75-1 cell line upon treatment with fulvestrant and not trastuzumab as a single agent (P<0.05). Interestingly, fulvestrant, in combination with trastuzumab, did not significantly alter the rate of apoptosis (in comparison with fulvestrant alone), in the BT-474 cell line (P>0.05). Cell accumulation in the G1 phase of cell cycle was investigated in all treatment groups (P<0.05), and the combination of trastuzumab and fulvestrant reversed the effects of fulvestrant alone on p-Akt and p-Erk protein expression levels. Using ZR-75-1 or BT-474 to generate in vivo tumor xenografts in BALB/c athymic mouse models, we showed that a combination of both drugs resulted in a stronger inhibition of tumor growth (P<0.05) and a greater decrease in the levels of activated MED1 (p-MED1) expressed in tumor issues compared with the use of either drug as a

  5. The UPR inducer DPP23 inhibits the metastatic potential of MDA-MB-231 human breast cancer cells by targeting the Akt–IKK–NF-κB–MMP-9 axis

    PubMed Central

    Shin, Soon Young; Kim, Chang Gun; Jung, You Jung; Lim, Yoongho; Lee, Young Han

    2016-01-01

    (E)-3-(3,5-dimethoxyphenyl)-1-(2-methoxyphenyl)prop-2-en-1-one (DPP23) is a synthetic polyphenol derivative that selectively induces apoptosis in cancer cells through the unfolded protein response pathway. In the present study, we evaluated the effect of DPP23 on tumour invasion and metastasis. Here, we show that DPP23 inhibited tumour necrosis factor alpha (TNFα)-induced motility, F-actin formation, and the invasive capability of MDA-MB-231 cells. DPP23 inhibited NF-κB-dependent MMP-9 expression at the transcriptional level. Akt is involved in the activation of IKK, an upstream regulator of NF-κB. DPP23 inhibited IKK and Akt, and knockdown of Akt2 significantly inhibited TNFα-induced IKK phosphorylation. We found that DPP23 bound to the catalytic domain of Akt2, as revealed by an in silico molecular docking analysis. These results suggest that DPP23 prevents TNFα-induced invasion of highly metastatic MDA-MB-231 breast cancer cells by inhibiting Akt–IKK–NF-κB axis-mediated MMP-9 gene expression. In addition, DPP23 attenuated experimental liver metastasis in a syngenic intrasplenic transplantation model using 4T1 mouse mammary carcinoma cells. Collectively, these results suggest that DPP23 could be used as a potential platform for the prevention of invasion and metastasis of early-stage breast cancer or as an adjuvant for chemo/radiotherapy. PMID:27658723

  6. Type III Collagen Directs Stromal Organization and Limits Metastasis in a Murine Model of Breast Cancer.

    PubMed

    Brisson, Becky K; Mauldin, Elizabeth A; Lei, Weiwei; Vogel, Laurie K; Power, Ashley M; Lo, Albert; Dopkin, Derek; Khanna, Chand; Wells, Rebecca G; Puré, Ellen; Volk, Susan W

    2015-05-01

    Breast cancer metastasis is the leading cause of cancer-related deaths in women worldwide. Collagen in the tumor microenvironment plays a crucial role in regulating tumor progression. We have shown that type III collagen (Col3), a component of tumor stroma, regulates myofibroblast differentiation and scar formation after cutaneous injury. During the course of these wound-healing studies, we noted that tumors developed at a higher frequency in Col3(+/-) mice compared to wild-type littermate controls. We, therefore, examined the effect of Col3 deficiency on tumor behavior, using the murine mammary carcinoma cell line 4T1. Notably, tumor volume and pulmonary metastatic burden after orthotopic injection of 4T1 cells were increased in Col3(+/-) mice compared to Col3(+/+) littermates. By using murine (4T1) and human (MDA-MB-231) breast cancer cells grown in Col3-poor and Col3-enriched microenvironments in vitro, we found that several major events of the metastatic process were suppressed by Col3, including adhesion, invasion, and migration. In addition, Col3 deficiency increased proliferation and decreased apoptosis of 4T1 cells both in vitro and in primary tumors in vivo. Mechanistically, Col3 suppresses the procarcinogenic microenvironment by regulating stromal organization, including density and alignment of fibrillar collagen and myofibroblasts. We propose that Col3 plays an important role in the tumor microenvironment by suppressing metastasis-promoting characteristics of the tumor-associated stroma.

  7. Homocysteine Is an Oncometabolite in Breast Cancer, Which Promotes Tumor Progression and Metastasis

    DTIC Science & Technology

    2014-09-01

    tissues and compare the expression levels in normal mouse mammary gland . For this, we used biological triplicates by preparing RNA from tumor tissues...homocysteine to be increased 4.5-fold in MMTV-HRAS mouse breast tumor tissues compared to age-matched wild type mouse mammary tissues. Similarly, the...levels of homocysteine went up 7.3-fold in MMTV-PyMT mouse breast cancer tissues 3 compared to age-matched wild type mouse mammary tissues

  8. Functional Characteristics of Tumor-Associated Protein Spot14 and Interacting Proteins in Mouse Mammary Epithelial and Breast Cancer Cell Lines

    DTIC Science & Technology

    2010-09-01

    SUPPLEMENTARY NOTES 14. ABSTRACT Thyroid Hormone Responsive Protein Spot14 (S14) is known to be necessary for high rate de novo fatty acid ...systems. 15. SUBJECT TERMS THRSP (Spot14), Cancer Metabolism, Fatty Acid Synthesis, 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...cancers are often characterized by elevated fatty acid synthesis [2], and those increases correlate with reduced disease free survival of breast cancer

  9. [10]-Gingerol, a major phenolic constituent of ginger root, induces cell cycle arrest and apoptosis in triple-negative breast cancer cells.

    PubMed

    Bernard, Megan M; McConnery, Jason R; Hoskin, David W

    2017-03-16

    The ginger rhizome is rich in bioactive compounds, including [6]-gingerol, [8]-gingerol, and [10]-gingerol; however, to date, most research on the anti-cancer activities of gingerols have focused on [6]-gingerol. In this study, we compared [10]-gingerol with [8]-gingerol and [6]-gingerol in terms of their ability to inhibit the growth of human and mouse mammary carcinoma cells. A colorimetric assay based on the enzymatic reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide revealed that [10]-gingerol was more potent than [6]-gingerol and at least as potent as [8]-gingerol for the inhibition of triple-negative human (MDA-MB-231, MDA-MB-468) and mouse (4T1, E0771) mammary carcinoma cell growth. Further investigation of [10]-gingerol showed that it suppressed the growth of estrogen receptor-bearing (MCF-7, T47D) and HER2-overexpressing (SKBR3) breast cancer cells. The inhibitory effect of [10]-gingerol on the growth of MDA-MB-231 cells was associated with a reduction in the number of rounds of cell division and evidence of S phase-cell cycle arrest, as well as induction of apoptosis due to mitochondrial outer membrane permeabilization and the release of proapoptotic mitochondrial cytochrome c and SMAC/DIABLO into the cytoplasm. Surprisingly, killing of MDA-MB-231 cells by [10]-gingerol was not affected by a pan-caspase inhibitor (zVAD-fmk) or an anti-oxidant (N-acetylcysteine), suggesting that the cytotoxic effect of [10]-gingerol did not require caspase activation or the accumulation of reactive oxygen species. These findings suggest that further investigation of [10]-gingerol is warranted for its possible use in the treatment of breast cancer.

  10. Combination of PDT and a DNA demethylating agent produces anti-tumor immune response in a mouse tumor model

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Hamblin, Michael R.

    2009-06-01

    Epigenetic mechanisms, which involve DNA methylation and histone modifications, result in the heritable silencing of genes without a change in their coding sequence. However, these changes must be actively maintained after each cell division rendering them a promising target for pharmacologic inhibition. DNA methyltransferase inhibitors like 5-aza-deoxycytidine (5-aza-dC) induce and/or up-regulate the expression of MAGE-type antigens in human and mice cancer cells. Photodynamic therapy (PDT) has been shown to be an effective locally ablative anti-cancer treatment that has the additional advantage of stimulating tumor-directed immune response. We studied the effects of a new therapy that combined the demethylating agent 5-aza-dC with PDT in the breast cancer model 4T1 syngenic to immunocompetent BALB/c mice. PDT was used as a locally ablating tumor treatment that is capable of eliciting strong and tumor directed immune response while 5-aza-dC pretreatment was used promote de novo induction of the expression of P1A.protein. This is the mouse homolog of human MAGE family antigens and is reported to function as a tumor rejection antigen in certain mouse tumors. This strategy led to an increase in PDT-mediated immune response and better treatment outcome. These results strongly suggest that the MAGE family antigens are important target for PDT mediated immune response but that their expression can be silenced by epigenetic mechanisms. Therefore the possibility that PDT can be combined with epigenetic strategies to elicit anti-tumor immunity in MAGE-positive tumor models is highly clinically significant and should be studied in detail.

  11. Enhanced Metastatic Recurrence Via Lymphatic Trafficking of a High-Metastatic Variant of Human Triple-Negative Breast Cancer After Surgical Resection in Orthotopic Nude Mouse Models.

    PubMed

    Yano, Shuya; Takehara, Kiyoto; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Kagawa, Shunsuke; Bouvet, Michael; Fujiwara, Toshiyoshi; Hoffman, Robert M

    2017-03-01

    We previously developed and characterized a highly invasive and metastatic triple-negative breast cancer (TNBC) variant by serial orthotopic implantation of MDA-MB-231 human breast cancer cells in nude mice. Eventually, a highly invasive and metastatic variant of human TNBC was isolated after lymph node metastases was harvested and orthotopically re-implanted into the mammary gland of nude mice for two cycles. The variant thereby isolated is highly invasive in the mammary gland and metastasized to lymph nodes in 10 of 12 mice compared to 2 of 12 of the parental cell line. In the present report, we observed that high-metastatic MDA-MB-231H-RFP cells produced significantly larger subcutaneous tumors compared with parental MDA-MB-231 cells in nude mice. Extensive lymphatic trafficking by high-metastatic MDA-MB-231 cells was also observed. High-metastatic MDA-MB-231 developed larger recurrent tumors 2 weeks after tumor resection compared with tumors that were not resected in orthotopic models. Surgical resection of the MDA-MB-231 high-metastatic variant primary tumor in orthotopic models also resulted in rapid and enhanced lymphatic trafficking of residual cancer cells and extensive lymph node and lung metastasis that did not occur in the non-surgical mice. These results suggest that surgical resection of high metastatic TNBC can greatly increase the malignancy of residual cancer. J. Cell. Biochem. 118: 559-569, 2017. © 2016 Wiley Periodicals, Inc.

  12. The administration of milk fermented by the probiotic Lactobacillus casei CRL 431 exerts an immunomodulatory effect against a breast tumour in a mouse model.

    PubMed

    Aragón, Félix; Carino, Silvia; Perdigón, Gabriela; de Moreno de LeBlanc, Alejandra

    2014-06-01

    Antitumour activity is one of the health-promoting effects attributed to probiotics specially analysed from preclinical models, mostly murine. Here, the effect of milk fermented by the probiotic bacterium Lactobacillus casei CRL 431, on a murine breast cancer model was analysed. Mice were fed with milk fermented by Lactobacillus casei or unfermented milk before and after tumour injection. Rate of tumour development, cytokines in serum, IgA, CD4, CD8, F4/80 and cytokines positive cells in mammary glands were determined. Microvasculature in the tumour tissues was monitored. The effect of fermented milk administration after tumour injection was also evaluated. It was observed that probiotic administration delayed or blocked tumour development. This effect was associated to modulation of the immune response triggered by the tumour. The area occupied by blood vessels decreased in the tumours from mice given fermented milk which agrees with their small tumours, and fewer side effects. Finally, it was observed that probiotic administration after tumour detection was also beneficial to delay the tumour growth. In conclusion, we showed in this study the potential of milk fermented by the probiotic Lactobacillus casei CRL431 to stimulate the immune response against this breast tumour, avoiding or delaying its growth when it was preventively administrated and also when the administration started after tumour cells injection.

  13. Harnessing the Power of Light to See and Treat Breast Cancer

    DTIC Science & Technology

    2013-10-01

    Figure 3.4: Effect of breathing hypoxic gas on vascular oxygenation and glucose uptake of 4T1 and 4T07 tumors. A and B. Representative intravital images ...therapeutic agents in vivo. 14. ABSTRACT optical spectroscopy, imaging , fiber-optic, molecular, screening, breast cancer 15. SUBJECT TERMS 16...tumor biology and assay the effect of novel therapeutic agents in vivo. a. Original Statement of Work for 5 Years Aim 1: Optical imaging of margin

  14. Influence of the Tumor Microenvironment on Genomic Changes Conferring Chemoresistance in Breast Cancer

    DTIC Science & Technology

    2013-04-01

    tumor microenvironment on clonal selection using intravital microscopy Jae-Hyun Park 1 , Miriam R. Fein 1 , Mikala Egeblad 1 1 Cold Spring Harbor...used surgically implanted mammary imaging windows in immunocompetent mice and injected “brainbow” expressing, syngeneic 4T1 breast carcinoma cells...under the windows. This allowed us to acquire multiple time- lapse imaging series by spinning disk confocal microscopy of the same tumor, done about 3

  15. Fibroadenoma - breast

    MedlinePlus

    Breast lump - fibroadenoma; Breast lump - noncancerous; Breast lump - benign ... The cause of fibroadenomas is not known. There may be a connection to a problem with genes. Fibroadenoma is the most common benign ...

  16. Breast ultrasound

    MedlinePlus

    ... Sonogram of the breast Images Female breast References Hacker NF, Friedland ML. Breast disease. In: Hacker NF, Gambone JC, Hobel CJ, eds. Hacker and Moore's Essentials of Obstetrics and Gynecology . 6th ...

  17. Breast Pain

    MedlinePlus

    ... before your period and sometimes continuing through your menstrual cycle. The pain may be moderate or severe, and ... breasts. Throughout the month, not related to your menstrual cycle. Postmenopausal women sometimes have breast pain, but breast ...

  18. Inhibition of Breast Cancer Metastasis by Pluronic Copolymers with Moderate Hydrophilic-Lipophilic Balance.

    PubMed

    Sun, Huiping; Meng, Qingshuo; Tang, Shan; Su, Jinghan; Yin, Qi; Chen, Lingli; Gu, Wangwen; Yu, Haijun; Zhang, Zhiwen; Wang, Siling; Li, Yaping

    2015-09-08

    Metastasis is the primary cause resulting in the high mortality of breast cancer. The inherent antimetastasis bioactivity of Pluronic copolymers with a wide range of hydrophilic-lipophilic balance (HLB) including Pluronic L61, P85, P123, F127, F68, and F108 was first explored on metastatic 4T1 breast cancer cells. The results indicated that P85 and P123 could strongly inhibit the migration and invasion of 4T1 cells. The effects of the polymers on cell healing, migration, and invasion exhibited bell-shaped dependencies on HLB of Pluronic copolymers, and the better antimetastasis effects of Pluronic copolymers could be achieved with the HLB between 8 and 16. P85 and P123 themselves could significantly inhibit pulmonary metastasis in 4T1 mammary tumor metastasis model in situ. In addition, a synergetic antimetastasis effect could be achieved during drug combination of doxorubicin hydrochloride (DOX) and P85 or P123 intravenously. The metastasis effects of P85 and P123 both in vitro and in vivo were partially attributed to the downregulation of matrix metalloproteinase-9 (MMP-9). Therefore, Pluronic copolymers with moderate HLB 8-16 such as P85 and P123 could be promising excipients with therapeutics in drug delivery systems to inhibit breast cancer metastasis.

  19. Phospholipid makeup of the breast adipose tissue is impacted by obesity and mammary cancer in the mouse: Results of a pilot study.

    PubMed

    Margolis, Michael; Perez, Osvaldo; Martinez, Mitchell; Santander, Ana M; Mendez, Armando J; Nadji, Mehrdad; Nayer, Ali; Bhattacharya, Sanjoy; Torroella-Kouri, Marta

    2015-01-01

    Obesity, an established risk factor for breast cancer (BC), is associated with systemic inflammation. The breast contains adipose tissue (bAT), yet whether it plays a role in BC progression in obese females is being intensively studied. There is scarce knowledge on the lipid composition of bAT in health and disease. The purpose of this pilot study was: 1) to determine whether obesity and BC are associated with inflammatory changes in bAT 2) to analyze for the first time the lipid profile of bAT in obese and lean mammary tumor-bearing and normal mice. Syngeneic E0771 mammary tumor cells were implanted into the mammary fat pad of lean and diet-induced obese C57BL/6 mice. BATs were analyzed four weeks after tumor cell inoculation by immunohistochemistry and mass spectrometry. Phospholipids were identified and subjected to ratiometric quantification using a TSQ Quantum Access Max triple quadrupole mass spectrometer utilizing precursor ion scan or neutral ion loss scan employing appropriate class specific lipid standards in a two step quantification process. Four main classes of phospholipids were analyzed: phosphatidylcholines phosphatidylserines, phosphatidylethanolamines and phosphatidylinositols. Our results showed that bAT in obese (normal and tumor-bearing) mice contained hypertrophic adipocytes compared with their corresponding samples in lean mice; higher numbers of macrophages and crown-like structures were observed in obese tumor bearers compared to obese normal mice. BAT from normal obese mice revealed higher concentrations of phosphatidylethanolamines. Furthermore, bAT from tumor-bearing mice expressed higher phosphatidylcholines than that from non-tumor bearing mice, suggesting the presence of the tumor is associated with phosphatidylcholines. Conversion of phosphatidylethanolamines to phosphatidylcholines will be investigated in E0771 cells. Additional studies are projected to investigate macrophage activation by these specific classes of phospholipids

  20. What Is Breast Cancer?

    MedlinePlus

    ... Research? Breast Cancer About Breast Cancer What Is Breast Cancer? Breast cancer starts when cells in the breast ... spread, see our section on Cancer Basics . Where breast cancer starts Breast cancers can start from different parts ...

  1. Lipopolysaccharide induces inflammation and facilitates lung metastasis in a breast cancer model via the prostaglandin E2-EP2 pathway.

    PubMed

    Li, Shancheng; Xu, Xiaoya; Jiang, Man; Bi, Yuli; Xu, Jiying; Han, Mingyong

    2015-06-01

    Inflammation is a potent promoter of tumor metastasis. The aim of the present study was to explore the function of systemic inflammation in the formation of lung metastasis of breast cancer cells in a mouse model. BALB/c mice were injected intraperitoneally with lipopolysaccharide (LPS) in order to establish an inflammatory animal model and 4T1 murine breast cancer cells were injected through the tail vein to induce lung metastasis. The levels of proinflammatory cytokines were evaluated by ELISA. Metastases on the surface of the lungs were counted and histologically analyzed by hematoxylin and eosin staining. Angiogenesis in the lungs was examined by CD31 immunofluorescence. Mouse pulmonary endothelial cells (MPVECs) were isolated and used to assay endothelial tube formation and determine the protein expression levels of vascular endothelial growth factor (VEGF) in vitro. Serum levels of VEGF and prostaglandin E2 (PGE2), the number and size of metastatic lesions, and the expression levels of cyclooxygenase‑2 were significantly greater in the lungs of LPS‑treated mice, as compared with those in control mice threated with phosphate‑buffered saline. Blood vessel density was also markedly increased in the LPS‑treated mice. These increases were reversed by treatment with celecoxib. In vitro, the protein expression levels of VEGF produced by the PGE2‑treated cells were significantly increased in a concentration‑dependent manner. In addition, the production of VEGF was increased in response to treatment with the PGE2 receptor (EP2) agonist ONO‑AE1‑259‑01; however, this increase was abrogated by treatment with AH6809, an EP2 receptor antagonist. Treatment with PGE2 or VEGF alone promoted the tube formation of MPVECs and this effect was reversed by treatment with celecoxib. These results demonstrated that PGE2 may regulate the release of VEGF by MPVECs through the EP2 receptor pathway and thereby promoted pulmonary angiogenesis and breast cancer

  2. Endoscopic Breast Surgery in Treating Patients With Breast Cancer

    ClinicalTrials.gov

    2014-02-05

    Male Breast Cancer; Recurrent Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer

  3. T Cells Induce Pre-Metastatic Osteolytic Disease and Help Bone Metastases Establishment in a Mouse Model of Metastatic Breast Cancer

    PubMed Central

    Monteiro, Ana Carolina; Leal, Ana Carolina; Gonçalves-Silva, Triciana; Mercadante, Ana Carolina T.; Kestelman, Fabiola; Chaves, Sacha Braun; Azevedo, Ricardo Bentes; Monteiro, João P.; Bonomo, Adriana

    2013-01-01

    Bone metastases, present in 70% of patients with metastatic breast cancer, lead to skeletal disease, fractures and intense pain, which are all believed to be mediated by tumor cells. Engraftment of tumor cells is supposed to be preceded by changes in the target tissue to create a permissive microenvironment, the pre-metastatic niche, for the establishment of the metastatic foci. In bone metastatic niche, metastatic cells stimulate bone consumption resulting in the release of growth factors that feed the tumor, establishing a vicious cycle between the bone remodeling system and the tumor itself. Yet, how the pre-metastatic niches arise in the bone tissue remains unclear. Here we show that tumor-specific T cells induce osteolytic bone disease before bone colonization. T cells pro-metastatic activity correlate with a pro-osteoclastogenic cytokine profile, including RANKL, a master regulator of osteoclastogenesis. In vivo inhibition of RANKL from tumor-specific T cells completely blocks bone loss and metastasis. Our results unveil an unexpected role for RANKL-derived from T cells in setting the pre-metastatic niche and promoting tumor spread. We believe this information can bring new possibilities for the development of prognostic and therapeutic tools based on modulation of T cell activity for prevention and treatment of bone metastasis. PMID:23935856

  4. Breast Diseases

    MedlinePlus

    ... bumps, and discharges (fluids that are not breast milk). If you have a breast lump, pain, discharge or skin irritation, see your health care provider. Minor and serious breast problems have similar symptoms. Although many women fear cancer, most breast problems are not cancer. Some common ...

  5. Brca1/p53 deficient mouse breast tumor hemodynamics during hyperoxic respiratory challenge monitored by a novel wide-field functional imaging (WiFI) system

    NASA Astrophysics Data System (ADS)

    Moy, Austin; Kim, Jae G.; Lee, Eva Y. H. P.; Tromberg, Bruce; Cerussi, Albert; Choi, Bernard

    2009-02-01

    Current imaging modalities allow precise visualization of tumors but do not enable quantitative characterization of the tumor metabolic state. Such quantitative information would enhance our understanding of tumor progression and response to treatment, and to our overall understanding of tumor biology. To address this problem, we have developed a wide-field functional imaging (WiFI) instrument which combines two optical imaging modalities, spatially modulated imaging (MI) and laser speckle imaging (LSI). Our current WiFI imaging protocol consists of multispectral imaging in the near infrared (650-980 nm) spectrum, over a wide (7 cm × 5 cm) field of view. Using MI, the spatially-resolved reflectance of sinusoidal patterns projected onto the tissue is assessed, and optical properties of the tissue are estimated using a Monte Carlo model. From the spatial maps of local absorption and reduced scattering coefficients, tissue composition information is extracted in the form of oxy-, deoxy-, and total hemoglobin concentrations, and percentage of lipid and water. Using LSI, the reflectance of a 785 nm laser speckle pattern on the tissue is acquired and analyzed to compute maps of blood perfusion in the tissue. Tissue metabolism state is estimated from the values of blood perfusion, volume and oxygenation state. We currently are employing the WiFI instrument to study tumor development in a BRCA1/p53 deficient mice breast tumor model. The animals are monitored with WiFI during hyperoxic respiratory challenge. At present, four tumors have been measured with WiFI, and preliminary data suggest that tumor metabolic changes during hyperoxic respiratory challenge can be determined.

  6. Selenium nanoparticle-enriched Lactobacillus brevis causes more efficient immune responses in vivo and reduces the liver metastasis in metastatic form of mouse breast cancer

    PubMed Central

    2013-01-01

    Background and the purpose of the study Selenium enriched Lactobacillus has been reported as an immunostimulatory agent which can be used to increase the life span of cancer bearing animals. Lactic acid bacteria can reduce selenium ions to elemental selenium nanoparticles (SeNPs) and deposit them in intracellular spaces. In this strategy two known immunostimulators, lactic acid bacteria (LAB) and SeNPs, are concomitantly administered for enhancing of immune responses in cancer bearing mice. Methods Forty five female inbred BALB/c mice were divided into three groups of tests and control, each containing 15 mice. Test mice were orally administered with SeNP-enriched Lactobacillus brevis or Lactobacillus brevis alone for 3 weeks before tumor induction. After that the administration was followed in three cycles of seven days on/three days off. Control group received phosphate buffer saline (PBS) at same condition. During the study the tumor growth was monitored using caliper method. At the end of study the spleen cell culture was carried out for both NK cytotoxicity assay and cytokines measurement. Delayed type hypersensitivity (DTH) responses were also assayed after 72h of tumor antigen recall. Serum lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) levels were measured, the livers of mice were removed and prepared for histopathological analysis. Results High level of IFN-γ and IL-17 besides the significant raised in NK cytotoxicity and DTH responses were observed in SeNP-enriched L. brevis administered mice and the extended life span and decrease in the tumor metastasis to liver were also recorded in this group compared to the control mice or L.brevis alone administered mice. Conclusion Our results suggested that the better prognosis could be achieved by oral administration of SeNP-enriched L. brevis in highly metastatic breast cancer mice model. PMID:23631392

  7. Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling.

    PubMed

    Feys, Lynn; Descamps, Benedicte; Vanhove, Christian; Vral, Anne; Veldeman, Liv; Vermeulen, Stefan; De Wagter, Carlos; Bracke, Marc; De Wever, Olivier

    2015-09-29

    Radiotherapy is a mainstay in the postoperative treatment of breast cancer as it reduces the risks of local recurrence and mortality after both conservative surgery and mastectomy. Despite recent efforts to decrease irradiation volumes through accelerated partial irradiation techniques, late cardiac and pulmonary toxicity still occurs after breast irradiation. The importance of this pulmonary injury towards lung metastasis is unclear. Preirradiation of lung epithelial cells induces DNA damage, p53 activation and a secretome enriched in the chemokines SDF-1/CXCL12 and MIF. Irradiated lung epithelial cells stimulate adhesion, spreading, growth, and (transendothelial) migration of human MDA-MB-231 and murine 4T1 breast cancer cells. These metastasis-associated cellular activities were largely mimicked by recombinant CXCL12 and MIF. Moreover, an allosteric inhibitor of the CXCR4 receptor prevented the metastasis-associated cellular activities stimulated by the secretome of irradiated lung epithelial cells. Furthermore, partial (10%) irradiation of the right lung significantly stimulated breast cancer lung-specific metastasis in the syngeneic, orthotopic 4T1 breast cancer model.Our results warrant further investigation of the potential pro-metastatic effects of radiation and indicate the need to develop efficient drugs that will be successful in combination with radiotherapy to prevent therapy-induced spread of cancer cells.

  8. Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling

    PubMed Central

    Feys, Lynn; Descamps, Benedicte; Vanhove, Christian; Vral, Anne; Veldeman, Liv; Vermeulen, Stefan; De Wagter, Carlos; Bracke, Marc; De Wever, Olivier

    2015-01-01

    Radiotherapy is a mainstay in the postoperative treatment of breast cancer as it reduces the risks of local recurrence and mortality after both conservative surgery and mastectomy. Despite recent efforts to decrease irradiation volumes through accelerated partial irradiation techniques, late cardiac and pulmonary toxicity still occurs after breast irradiation. The importance of this pulmonary injury towards lung metastasis is unclear. Preirradiation of lung epithelial cells induces DNA damage, p53 activation and a secretome enriched in the chemokines SDF-1/CXCL12 and MIF. Irradiated lung epithelial cells stimulate adhesion, spreading, growth, and (transendothelial) migration of human MDA-MB-231 and murine 4T1 breast cancer cells. These metastasis-associated cellular activities were largely mimicked by recombinant CXCL12 and MIF. Moreover, an allosteric inhibitor of the CXCR4 receptor prevented the metastasis-associated cellular activities stimulated by the secretome of irradiated lung epithelial cells. Furthermore, partial (10%) irradiation of the right lung significantly stimulated breast cancer lung-specific metastasis in the syngeneic, orthotopic 4T1 breast cancer model. Our results warrant further investigation of the potential pro-metastatic effects of radiation and indicate the need to develop efficient drugs that will be successful in combination with radiotherapy to prevent therapy-induced spread of cancer cells. PMID:26396176

  9. Peptide mediated active targeting and intelligent particle size reduction-mediated enhanced penetrating of fabricated nanoparticles for triple-negative breast cancer treatment.

    PubMed

    Hu, Guanlian; Chun, Xingli; Wang, Yang; He, Qin; Gao, Huile

    2015-12-01

    Triple-negative breast cancer (TNBC) is one of the most invasively malignant human cancers and its incidence increases year by year. Effective therapeutics against them needs to be developed urgently. In this study, a kind of angiopep-2 modified and intelligently particle size-reducible NPs, Angio-DOX-DGL-GNP, was designed for accomplishing both high accumulation and deep penetration within tumor tissues. On one hand, for improving the cancerous targeting efficiency of NPs, angiopep-2 was anchored on the surface of NPs to facilitate their accumulation via binding with low density lipoprotein-receptor related protein (LRP) overexpressed on TNBC. On the other hand, for achieving high tumor retention and increasing tumor penetration, an intelligently particle size-reducible NPs were constructed through fabricating gelatin NPs (GNP) with doxorubicin (DOX) loaded dendrigraft poly-lysine (DGL). In vitro cellular uptake and ex-vivo imaging proved the tumor targeting effect of Angio-DOX-DGL-GNP. Additionally, the degradation of large-sized Angio-DOX-DGL-GNP by matrix metalloproteinase-2 (MMP-2) led to the size reduction from 185.7 nm to 55.6 nm. More importantly, the penetration ability of Angio-DOX-DGL-GNP after incubation with MMP-2 was dominantly enhanced in tumor spheroids. Due to a combinational effect of active targeting and deep tumor penetration, the tumor growth inhibition rate of Angio-DOX-DGL-GNP was 74.1% in a 4T1 breast cancer bearing mouse model, which was significantly higher than other groups. Taken together, we successfully demonstrated a promising and effective nanoplatform for TNBC treatment.

  10. Breast Reconstruction with Implants

    MedlinePlus

    ... removes your breast to treat or prevent breast cancer. One type of breast reconstruction uses breast implants — silicone devices filled with silicone gel or salt water (saline) — to reshape your breasts. Breast reconstruction ...

  11. Antitumor and antimetastatic activities of a novel benzothiazole-2-thiol derivative in a murine model of breast cancer.

    PubMed

    Hu, XiaoLin; Li, Sen; He, Yan; Ai, Ping; Wu, Shaoyong; Su, Yonglin; Li, Xiaolin; Cai, Lei; Peng, Xingchen

    2017-01-02

    The prognosis of metastatic breast cancer is always very poor. Thus, it is urgent to develop novel drugs with less toxicity against metastatic breast cancer. A new drug (XC-591) derived from benzothiazole-2-thiol was designed and synthesized in our lab. In this study, we tried to assess effects of XC-591 treatment on primary breast cancer and pulmonary metastasis in 4T1 mice model. Furthermore, we tried to discover its possible molecular mechanism of action. MTT experiment showed XC-591 had significant anti-cancer activity on diverse cancer cells. Furthermore, XC-591 significantly suppressed the proliferation of 4T1 cells by colony formation assay. The in vivo results displayed that XC-591 could inhibit the growth and metastasis in 4T1 model. Moreover, histological analysis revealed that XC-591 treatment increased apoptosis, inhibited proliferation and angiogenesis in vivo. In addition, XC-591 did not contribute to obvious drug associated toxicity during the whole study. Molecular mechanism showed XC-591 could inhibit RhoGDI, activate caspase-3 and decrease phosphorylated Akt. The present data may be important to further explore this kind of new small-molecule inhibitor.

  12. Inhibition of Metastatic Potential in Breast Carcinoma In Vivo and In Vitro through Targeting VEGFRs and FGFRs.

    PubMed

    Chien, Ming-Hsien; Lee, Liang-Ming; Hsiao, Michael; Wei, Lin-Hung; Chen, Chih-Hau; Lai, Tsung-Ching; Hua, Kuo-Tai; Chen, Min-Wei; Sun, Chung-Ming; Kuo, Min-Liang

    2013-01-01

    Angiogenesis and lymphangiogenesis are considered to play key roles in tumor metastasis. Targeting receptor tyrosine kinases essentially involved in the angiogenesis and lymphangiogenesis would theoretically prevent cancer metastasis. However, the optimal multikinase inhibitor for metastasis suppression has yet to be developed. In this study, we evaluated the effect of NSTPBP 0100194-A (194-A), a multikinase inhibitor of vascular endothelial growth factor receptors (VEGFRs)/fibroblast growth factor receptors (FGFRs), on lymphangiogenesis and angiogenesis in a mammary fat pad xenograft model of the highly invasive breast cancer cell line 4T1-Luc(+). We investigated the biologic effect of 194-A on various invasive breast cancer cell lines as well as endothelial and lymphatic endothelial cells. Intriguingly, we found that 194-A drastically reduced the formation of lung, liver, and lymph node metastasis of 4T1-Luc(+) and decreased primary tumor growth. This was associated with significant reductions in intratumoral lymphatic vessel length (LVL) and microvessel density (MVD). 194-A blocked VEGFRs mediated signaling on both endothelial and lymphatic endothelial cells. Moreover, 194-A significantly inhibited the invasive capacity induced by VEGF-C or FGF-2 in vitro in both 4T1 and MDA-MB231 cells. In conclusion, these experimental results demonstrate that simultaneous inhibition of VEGFRs/FGFRs kinases may be a promising strategy to prevent breast cancer metastasis.

  13. c-Abl inhibits breast cancer tumorigenesis through reactivation of p53-mediated p21 expression

    PubMed Central

    Thompson, Cheryl L.; Gilmore, Hannah L.; Chang, Jenny C.; Keri, Ruth A.; Schiemann, William P.

    2016-01-01

    We previously reported that constitutive c-Abl activity (CST-Abl) abrogates the tumorigenicity of triple-negative breast cancer cells through the combined actions of two cellular events: downregulated matrix metalloproteinase (MMP) and upregulated p21Waf1/Cip1 expression. We now find decreased c-Abl expression to be significantly associated with diminished relapse-fee survival in breast cancer patients, particularly those exhibiting invasive and basal phenotypes. Moreover, CST-Abl expression enabled 4T1 cells to persist innocuously in the mammary glands of mice, doing so by exhausting their supply of cancer stem cells. Restoring MMP-9 expression and activity in CST-Abl-expressing 4T1 cells failed to rescue their malignant phenotypes; however, rendering these same cells deficient in p21 expression not only delayed their acquisition of senescent phenotypes, but also partially restored their tumorigenicity in mice. Although 4T1 cells lacked detectable expression of p53, those engineered to express CST-Abl exhibited robust production and secretion of TGF-β1 that engendered the reactivated expression of p53. Mechanistically, TGF-β-mediated p53 expression transpired through the combined actions of Smad1/5/8 and Smad2, leading to the dramatic upregulation of p21 and its stimulation of TNBC senescence. Collectively, we identified a novel c-Abl:p53:p21 signaling axis that functions as a powerful suppressor of mammary tumorigenesis and metastatic progression. PMID:27626309

  14. IR-780 Dye as a Sonosensitizer for Sonodynamic Therapy of Breast Tumor

    PubMed Central

    Li, Yekuo; Zhou, Qunfang; Deng, Zhiting; Pan, Min; Liu, Xin; Wu, Junru; Yan, Fei; Zheng, Hairong

    2016-01-01

    Sonodynamic therapy (SDT) has become a new modality for cancer therapy through activating certain chemical sensitizers by ultrasound (US). Discovery and development of novel sonosensitizers are attracting extensive attentions. Here, we introduce IR-780 iodide, a lipophilic heptamethine dye with a peak optical absorption of 780 nm wavelength, which can function as SDT agents for breast cancer treatment. The in vitro cellular uptake, cell viability, and the generation levels of reactive oxygen species (ROS) were examined by using 4T1 breast cancer cells incubated with various concentrations of IR-780 followed by US irradiation. Our results showed a dose- and time-dependent cellular uptake of IR-780 iodide in 4T1 cancer cells. Significant lower viabilities and more necrotic/apoptotic cells were found when these cancer cells were treated with IR-780 iodide with US irradiation. Further analyzing the generation of ROS demonstrated significant increase of 1O2 level and H2O2, but not ⋅OH in the SDT-treated cells. The in vivo anti-tumor efficacy of SDT with IR-780 revealed significant tumor growth inhibition of xenografts of 4T1 cancer cells; it was further confirmed by histological analysis and TUNEL staining. Our results strongly suggest that SDT combined with IR-780 may provide a promising strategy for tumor treatment with minimal side effects. PMID:27174006

  15. ZRBA1, a Mixed EGFR/DNA Targeting Molecule, Potentiates Radiation Response Through Delayed DNA Damage Repair Process in a Triple Negative Breast Cancer Model

    SciTech Connect

    Heravi, Mitra; Kumala, Slawomir; Rachid, Zakaria; Jean-Claude, Bertrand J.; Radzioch, Danuta; Muanza, Thierry M.

    2015-06-01

    Purpose: ZRBA1 is a combi-molecule designed to induce DNA alkylating lesions and to block epidermal growth factor receptor (EGFR) TK domain. Inasmuch as ZRBA1 downregulates the EGFR TK-mediated antisurvival signaling and induces DNA damage, we postulated that it might be a radiosensitizer. The aim of this study was to further investigate the potentiating effect of ZRBA1 in combination with radiation and to elucidate the possible mechanisms of interaction between these 2 treatment modalities. Methods and Materials: The triple negative human breast MDA-MB-468 cancer cell line and mouse mammary cancer 4T1 cell line were used in this study. Clonogenic assay, Western blot analysis, and DNA damage analysis were performed at multiple time points after treatment. To confirm our in vitro findings, in vivo tumor growth delay assay was performed. Results: Our results show that a combination of ZRBA1 and radiation increases the radiation sensitivity of both cell lines significantly with a dose enhancement factor of 1.56, induces significant numbers of DNA strand breaks, prolongs higher DNA damage up to 24 hours after treatment, and significantly increases tumor growth delay in a syngeneic mouse model. Conclusions: Our data suggest that the higher efficacy of this combination could be partially due to increased DNA damage and delayed DNA repair process and to the inhibition of EGFR. The encouraging results of this combination demonstrated a significant improvement in treatment efficiency and therefore could be applicable in early clinical trial settings.

  16. Codelivery of thioridazine and doxorubicin using nanoparticles for effective breast cancer therapy

    PubMed Central

    Jin, Xun; Zou, Bingwen; Luo, Li; Zhong, Chuanhong; Zhang, Peilan; Cheng, Hao; Guo, Yanfang; Gou, Maling

    2016-01-01

    Cancer chemotherapy can benefit from the combination of different anticancer drugs. Here, we prepared doxorubicin (Dox)- and thioridazine (Thio)-coloaded methoxy poly(ethylene glycol)-poly(l-lactic acid) (MPEG-PLA) nanoparticles (NPs) for breast cancer therapy. These NPs have an average particle size of 27 nm. The drug loading efficiencies of Thio and Dox are 4.71% and 1.98%, respectively. Compared to the treatment of Thio or Dox alone, the combination of Thio and Dox exhibited a synergistic effect in inhibiting the growth of 4T1 breast cancer cells in vitro. In addition, the Thio- and Dox-coloaded MPEG-PLA NPs could efficiently suppress the growth of breast cancer cells in vivo. This study suggests that Thio- and Dox-coloaded MPEG-PLA NPs might have potential applications in breast cancer treatment. PMID:27660446

  17. Breast Gangrene

    PubMed Central

    2011-01-01

    Background Breast gangrene is rare in surgical practice. Gangrene of breast can be idiopathic or secondary to some causative factor. Antibiotics and debridement are used for management. Acute inflammatory infiltrate, severe necrosis of breast tissue, necrotizing arteritis, and venous thrombosis is observed on histopathology. The aim of was to study patients who had breast gangrene. Methods A prospective study of 10 patients who had breast gangrene over a period of 6 years were analyzed Results All the patients in the study group were female. Total of 10 patients were encountered who had breast gangrene. Six patients presented with breast gangrene on the right breast whereas four had on left breast. Out of 10 patients, three had breast abscess after teeth bite followed by gangrene, one had iatrogenic trauma by needle aspiration of erythematous area of breast under septic conditions. Four had history of application of belladonna on cutaneous breast abscess and had then gangrene. All were lactating female. Amongst the rest two were elderly, one of which was a diabetic who had gangrene of breast and had no application of belladonna. All except one had debridement under cover of broad spectrum antibiotics. Three patients had grafting to cover the raw area. Conclusion Breast gangrene occurs rarely. Etiology is variable and mutifactorial. Teeth bite while lactation and the iatrogenic trauma by needle aspiration of breast abscess under unsterlised conditions could be causative. Uncontrolled diabetes can be one more causative factor for the breast gangrene. Belladonna application as a topical agent could be inciting factor. Sometimes gangrene of breast can be idiopathic. Treatment is antibiotics and debridement. PMID:21854557

  18. Humanization of the mouse mammary gland.

    PubMed

    Wronski, A; Arendt, L M; Kuperwasser, Charlotte

    2015-01-01

    Although mouse models have provided invaluable information on the mechanisms of mammary gland development, anatomical and developmental differences between human and mice limit full understanding of this fundamental process. Humanization of the mouse mammary gland by injecting immortalized human breast stromal cells into the cleared murine mammary fat pad enables the growth and development of human mammary epithelial cells or tissue. This facilitates the characterization of human mammary gland development or tumorigenesis by utilizing the mouse mammary fat pad. Here we describe the process of isolating human mammary stromal and epithelial cells as well as their introduction into the mammary fat pads of immunocompromised mice.

  19. Breast lift

    MedlinePlus

    ... Planning to have more children Talk with a plastic surgeon if you are considering cosmetic breast surgery. ... before surgery: You may need a mammogram . Your plastic surgeon will do a routine breast exam. You ...

  20. Breast Exam

    MedlinePlus

    ... Your hormone levels fluctuate each month during your menstrual cycle, which causes changes in breast tissue. Swelling begins ... changes that occur at various points in the menstrual cycles. Finding a change or lump in your breast ...

  1. Breast Cysts

    MedlinePlus

    ... discuss your symptoms, their relation to your menstrual cycle and any other relevant information. To prepare for ... one or both breasts? How does your menstrual cycle affect the breast cyst or lump? When was ...

  2. Progesterone receptor isoform functions in normal breast development and breast cancer.

    PubMed

    Kariagina, Anastasia; Aupperlee, Mark D; Haslam, Sandra Z

    2008-01-01

    Progesterone acting through two isoforms of the progesterone receptor (PR), PRA and PRB, regulates proliferation and differentiation in the normal mammary gland in mouse, rat, and human. Progesterone and PR have also been implicated in the etiology and pathogenesis of human breast cancer. The focus of this review is recent advances in understanding the role of the PR isoform-specific functions in the normal breast and in breast cancer. Also discussed is information obtained from rodent studies and their relevance to our understanding of the role of progestins in breast cancer etiology.

  3. A novel histone deacetylase inhibitor augments tamoxifen-mediated attenuation of breast carcinoma growth.

    PubMed

    Restall, Christina; Doherty, Judy; Liu, Hong Bin; Genovese, Rosemary; Paiman, Lisa; Byron, Keith A; Anderson, Robin L; Dear, Anthony E

    2009-07-15

    Earlier we generated novel derivatives of the hydroxamate-based histone deacetylase inhibitor (HDACi), Oxamflatin (Ox), which demonstrate considerable HDACi activity. Here the effects of one such derivative, Metacept-1 (MCT-1), alone or in combination with tamoxifen on mammary tumour growth have been assessed in a syngeneic orthotopic model. MCT-1 alone resulted in a trend towards inhibition of growth of 4T1.2 mammary tumours. Since the combination of MCT-1 and tamoxifen up-regulates estrogen receptor expression in 4T1.2 cells in vitro, we tested this combination and found a significant reduction in primary tumour growth over tamoxifen treatment alone. Taken together, these observations suggest that the novel HDACi MCT-1 may warrant further exploration in the treatment of estrogen receptor positive breast carcinoma, particularly when used in combination with conventional agents such as tamoxifen.

  4. Breast Cancer

    MedlinePlus

    Breast cancer affects one in eight women during their lives. No one knows why some women get breast cancer, but there are many risk factors. Risks that ... who have family members with breast or ovarian cancer may wish to be tested for the genes. ...

  5. MMP-8: A Breast Cancer Bone Metastasis Suppressor Gene

    DTIC Science & Technology

    2005-08-01

    embedded in paraffin and stained with Gomori trichrome. (A) distal femur , control mouse. (B) distal femur , mouse with osteolytic metastasis . Note...A AD_______ Award Number: W81XWH-04-1-0687 TITLE: MMP-8: A Breast Cancer Bone Metastasis Suppressor Gene PRINCIPAL INVESTIGATOR: Nagarajan...CONTRACT NUMBER MMP-8: A Breast Cancer Bone Metastasis Suppressor Gene 5b. GRANT NUMBER W81 XWH-04-1-0687 6c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  6. Novel Approaches to Breast Cancer Prevention and Inhibition of Metastases

    DTIC Science & Technology

    2016-10-01

    annotation of the genome is thus a key challenge for a fundamental understanding of physiology and disease pathogenesis. We combine genetic model...organisms and repairable mutagenesis with in vivo mouse genetics and human cohort studies to functionally characterize candidate breast cancer genes...Using mouse genetics , we showed that RANKL and its receptor RANK are critical regulators of sex hormone and BRCA1 mutation-driven breast cancer

  7. Chemotherapeutic drug-specific alteration of microvascular blood flow in murine breast cancer as measured by diffuse correlation spectroscopy

    PubMed Central

    Ramirez, Gabriel; Proctor, Ashley R.; Jung, Ki Won; Wu, Tong Tong; Han, Songfeng; Adams, Russell R.; Ren, Jingxuan; Byun, Daniel K.; Madden, Kelley S.; Brown, Edward B.; Foster, Thomas H.; Farzam, Parisa; Durduran, Turgut; Choe, Regine

    2016-01-01

    The non-invasive, in vivo measurement of microvascular blood flow has the potential to enhance breast cancer therapy monitoring. Here, longitudinal blood flow of 4T1 murine breast cancer (N=125) under chemotherapy was quantified with diffuse correlation spectroscopy based on layer models. Six different treatment regimens involving doxorubicin, cyclophosphamide, and paclitaxel at clinically relevant doses were investigated. Treatments with cyclophosphamide increased blood flow as early as 3 days after administration, whereas paclitaxel induced a transient blood flow decrease at 1 day after administration. Early blood flow changes correlated strongly with the treatment outcome and distinguished treated from untreated mice individually for effective treatments. PMID:27699124

  8. Optical redox ratio identifies metastatic potential-dependent changes in breast cancer cell metabolism

    PubMed Central

    Alhallak, Kinan; Rebello, Lisa G.; Muldoon, Timothy J.; Quinn, Kyle P.; Rajaram, Narasimhan

    2016-01-01

    The development of prognostic indicators of breast cancer metastatic risk could reduce the number of patients receiving chemotherapy for tumors with low metastatic potential. Recent evidence points to a critical role for cell metabolism in driving breast cancer metastasis. Endogenous fluorescence intensity of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) can provide a label-free method for assessing cell metabolism. We report the optical redox ratio of FAD/(FAD + NADH) of four isogenic triple-negative breast cancer cell lines with varying metastatic potential. Under normoxic conditions, the redox ratio increases with increasing metastatic potential (168FARN>4T07>4T1), indicating a shift to more oxidative metabolism in cells capable of metastasis. Reoxygenation following acute hypoxia increased the redox ratio by 43 ± 9% and 33 ± 4% in the 4T1 and 4T07 cells, respectively; in contrast, the redox ratio decreased 14 ± 7% in the non-metastatic 67NR cell line. These results demonstrate that the optical redox ratio is sensitive to the metabolic adaptability of breast cancer cells with high metastatic potential and could potentially be used to measure dynamic functional changes that are indicative of invasive or metastatic potential. PMID:27895979

  9. Viruses and Breast Cancer

    PubMed Central

    Lawson, James S.; Heng, Benjamin

    2010-01-01

    Viruses are the accepted cause of many important cancers including cancers of the cervix and anogenital area, the liver, some lymphomas, head and neck cancers and indirectly human immunodeficiency virus associated cancers. For over 50 years, there have been serious attempts to identify viruses which may have a role in breast cancer. Despite these efforts, the establishment of conclusive evidence for such a role has been elusive. However, the development of extremely sophisticated new experimental techniques has allowed the recent development of evidence that human papilloma virus, Epstein-Barr virus, mouse mammary tumor virus and bovine leukemia virus may each have a role in the causation of human breast cancers. This is potentially good news as effective vaccines are already available to prevent infections from carcinogenic strains of human papilloma virus, which causes cancer of the uterine cervix. PMID:24281093

  10. In Vivo Measurement of Drug Efficacy in Breast Cancer

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0386 TITLE: In Vivo Measurement of Drug Efficacy in Breast Cancer PRINCIPAL INVESTIGATOR: Dr. Randy J. Giedt CONTRACTING...Measurement of Drug Efficacy in Breast Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0386 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Randy J...and utilizing intravital methods for studying drug and nanoparticle function in mouse breast cancer models. We hypothesize that, firstly, we can

  11. Targeting CD81 to Prevent Metastases in Breast Cancer

    DTIC Science & Technology

    2015-10-01

    expression in breast cancer cells impairs the number of circulating tumor cells . The experiments were performed using a protocol that we standardized for...detection of circulating tumor cells in an immunocompetent syngeneic mouse model of breast cancer using FASTcell™ system. 15. SUBJECT TERMS Breast...cancer metastases, CD81, Circulating Tumor Cells (CTCs) 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF

  12. Breast cancer screening

    MedlinePlus

    Mammogram - breast cancer screening; Breast exam - breast cancer screening; MRI - breast cancer screening ... performed to screen women to detect early breast cancer when it is more likely to be cured. ...

  13. Breast Cancer Overview

    MedlinePlus

    ... Cancer > Breast Cancer > Breast Cancer: Overview Request Permissions Breast Cancer: Overview Approved by the Cancer.Net Editorial Board , ... bean-shaped organs that help fight infection. About breast cancer Cancer begins when healthy cells in the breast ...

  14. Surgery for Breast Cancer

    MedlinePlus

    ... Pregnancy Breast Cancer Breast Cancer Treatment Surgery for Breast Cancer Surgery is a common treatment for breast cancer, ... Relieve symptoms of advanced cancer Surgery to remove breast cancer There are two main types of surgery to ...

  15. Melanin-originated carbonaceous dots for triple negative breast cancer diagnosis by fluorescence and photoacoustic dual-mode imaging.

    PubMed

    Xiao, Wei; Li, Yuan; Hu, Chuan; Huang, Yuan; He, Qin; Gao, Huile

    2017-07-01

    Carbonaceous dots exhibit increasing applications in diagnosis and drug delivery due to excellent photostability and biocompatibility properties. However, relative short excitation and emission of melanin carbonaceous dots (MCDs) limit the applicability in fluorescence bioimaging. Furthermore, the generally poor spatial resolution of fluorescence imaging limits potential in vivo applications. Due to a variety of beneficial properties, in this study, MCDs were prepared exhibiting great potential in fluorescence and photoacoustic dual-mode bioimaging. The MCDs exhibited a long excitation peak at 615nm and emission peak at 650nm, further highlighting the applicability in fluorescence imaging, while the absorbance peak at 633nm renders MCDs suitable for photoacoustic imaging. In vivo, the photoacoustic signal of MCDs was linearly correlated with the concentration of MCDs. Moreover, the MCDs were shown to be taken up into triple negative breast cancer cell line 4T1 in both a time- and concentration-dependent manner. In vivo fluorescence and photoacoustic imaging of subcutaneous 4T1 tumor demonstrated that MCDs could passively target triple negative breast cancer tissue by enhanced permeability and retention effects and may therefore be used for tumor dual-mode imaging. Furthermore, fluorescence distribution in tissue slices suggested that MCDs may distribute in 4T1 tumor with high efficacy. In conclusion, the MCDs studied offer potential application in fluorescence and photoacoustic dual-mode imaging.

  16. Expression of the fusogenic p14 FAST protein from a replication-defective adenovirus vector does not provide a therapeutic benefit in an immunocompetent mouse model of cancer

    PubMed Central

    Wong, C M; Nash, L A; Del Papa, J; Poulin, K L; Falls, T; Bell, J C; Parks, R J

    2016-01-01

    When injected directly into a tumor mass, adenovirus (Ad) vectors only transduce cells immediately along the injection tract. Expression of fusogenic proteins from the Ad vector can lead to syncytium formation, which efficiently spreads the therapeutic effect. Fusogenic proteins can also cause cancer cell death directly, and enhance the release of exosome-like particles containing tumor-associated antigens, which boosts the anti-tumor immune response. In this study, we have examined whether delivery of an early region 1 (E1)-deleted, replication-defective Ad vector encoding the reptilian reovirus p14 fusion-associated small transmembrane (FAST) protein can provide therapeutic efficacy in an immunocompetent mouse tumor model. A high multiplicity of infection of AdFAST is required to induce cell fusion in mouse mammary carcinoma 4T1 cells in vitro, and FAST protein expression caused a modest reduction in cell membrane integrity and metabolic activity compared with cells infected with a control vector. Cells expressing FAST protein released significantly higher quantities of exosomes. In immunocompetent Balb/C mice harboring subcutaneous 4T1 tumors, AdFAST did not induce detectable cancer cell fusion, promote tumor regression or prolong mouse survival compared with untreated mice. This study suggests that in the context of the 4T1 model, Ad-mediated FAST protein expression did not elicit a therapeutic effect. PMID:27740615

  17. Role of Lysophospholipids in the Initiation, Progression and Therapy of Breast Cancer

    DTIC Science & Technology

    2005-06-01

    autotaxin levels areincreased approximately 28 fold in breast cancer cells isolated directly from patients.This should result in increased LPA and S1P ...apoptosis in breast cancer cells.We have utilized a novel Si1P antibody to neutralize S1P in vitro and are currentlytreating mice with breast cancer...epithelium. We have obtained a LPP transgenic mouse to determine theeffects of degradation of LPA and S1P on breast function and tumorigenesis by

  18. Breast Lumps

    MedlinePlus

    ... 2015. Raftery AT, et al. Breast lumps. In: Churchill's Pocketbook of Differential Diagnosis. 4th ed. Philadelphia, Pa.: Churchill Livingston Elsevier; 2014. http://www.clinicalkey.com. Accessed ...

  19. Formulation of Anti-miR-21 and 4-Hydroxytamoxifen Co-loaded Biodegradable Polymer Nanoparticles and Their Antiproliferative Effect on Breast Cancer Cells

    PubMed Central

    2015-01-01

    Breast cancer is the second leading cause of cancer-related death in women. The majority of breast tumors are estrogen receptor-positive (ER+) and hormone-dependent. Neoadjuvant anti-estrogen therapy has been widely employed to reduce tumor mass prior to surgery. Tamoxifen is a broadly used anti-estrogen for early and advanced ER+ breast cancers in women and the most common hormone treatment for male breast cancer. 4-Hydroxytamoxifen (4-OHT) is an active metabolite of tamoxifen that functions as an estrogen receptor antagonist and displays higher affinity for estrogen receptors than that of tamoxifen and its other metabolites. MicroRNA-21 (miR-21) is a small noncoding RNA of 23 nucleotides that regulates several apoptotic and tumor suppressor genes and contributes to chemoresistance in numerous cancers, including breast cancer. The present study investigated the therapeutic potential of 4-OHT and anti-miR-21 coadministration in an attempt to combat tamoxifen resistance, a common problem often encountered in anti-estrogen therapy. A biodegradable poly(d,l-lactide-co-glycolide)-block-poly(ethylene glycol) (PLGA-b-PEG-COOH) copolymer was utilized as a carrier to codeliver 4-OHT and anti-miR-21 to ER+ breast cancer cells. 4-OHT and anti-miR-21 co-loaded PLGA-b-PEG nanoparticles (NPs) were developed using emulsion-diffusion evaporation (EDE) and water-in-oil-in-water (w/o/w) double emulsion methods. The EDE method was found to be best method for 4-OHT loading, and the w/o/w method proved to be more effective for coloading NPs with anti-miR-21 and 4-OHT. The optimal NPs, which were prepared using the double emulsion method, were evaluated for their antiproliferative and apoptotic effects against MCF7, ZR-75-1, and BT-474 human breast cancer cells as well as against 4T1 mouse mammary carcinoma cells. We demonstrated that PLGA-b-PEG NP encapsulation significantly extended 4-OHT’s stability and biological activity compared to that of free 4-OHT. MTT assays indicated that

  20. Formulation of Anti-miR-21 and 4-Hydroxytamoxifen Co-loaded Biodegradable Polymer Nanoparticles and Their Antiproliferative Effect on Breast Cancer Cells.

    PubMed

    Devulapally, Rammohan; Sekar, Thillai V; Paulmurugan, Ramasamy

    2015-06-01

    Breast cancer is the second leading cause of cancer-related death in women. The majority of breast tumors are estrogen receptor-positive (ER+) and hormone-dependent. Neoadjuvant anti-estrogen therapy has been widely employed to reduce tumor mass prior to surgery. Tamoxifen is a broadly used anti-estrogen for early and advanced ER+ breast cancers in women and the most common hormone treatment for male breast cancer. 4-Hydroxytamoxifen (4-OHT) is an active metabolite of tamoxifen that functions as an estrogen receptor antagonist and displays higher affinity for estrogen receptors than that of tamoxifen and its other metabolites. MicroRNA-21 (miR-21) is a small noncoding RNA of 23 nucleotides that regulates several apoptotic and tumor suppressor genes and contributes to chemoresistance in numerous cancers, including breast cancer. The present study investigated the therapeutic potential of 4-OHT and anti-miR-21 coadministration in an attempt to combat tamoxifen resistance, a common problem often encountered in anti-estrogen therapy. A biodegradable poly(d,l-lactide-co-glycolide)-block-poly(ethylene glycol) (PLGA-b-PEG-COOH) copolymer was utilized as a carrier to codeliver 4-OHT and anti-miR-21 to ER+ breast cancer cells. 4-OHT and anti-miR-21 co-loaded PLGA-b-PEG nanoparticles (NPs) were developed using emulsion-diffusion evaporation (EDE) and water-in-oil-in-water (w/o/w) double emulsion methods. The EDE method was found to be best method for 4-OHT loading, and the w/o/w method proved to be more effective for coloading NPs with anti-miR-21 and 4-OHT. The optimal NPs, which were prepared using the double emulsion method, were evaluated for their antiproliferative and apoptotic effects against MCF7, ZR-75-1, and BT-474 human breast cancer cells as well as against 4T1 mouse mammary carcinoma cells. We demonstrated that PLGA-b-PEG NP encapsulation significantly extended 4-OHT's stability and biological activity compared to that of free 4-OHT. MTT assays indicated that

  1. The effect of lipocisplatin on cisplatin efficacy and nephrotoxicity in malignant breast cancer treatment.

    PubMed

    Li, Qun; Tian, Yuantong; Li, Dandi; Sun, Jianfeng; Shi, Donglei; Fang, Lin; Gao, Yong; Liu, Haiyan

    2014-08-01

    A lipid-cisplatin conjugate was synthesized for super-molecular assembly with lipids to form a new generation of liposomal cisplatin formulation, lipocisplatin. In vitro, lipocisplatin has higher efficacy in human ovarian cancer A2780 and human breast cancer MCF-7 with the murine breast cancer cell line 4T1 which is currently an established model for stage IV breast cancer as the most sensitive strain. Moreover, lipocisplatin demonstrated a greater MTD value and relatively longer blood circulation as compared to cisplatin. Lipocisplatin preferentially accumulate drugs to the tumor site, resulting in a better tumor inhibition efficacy. Moreover, lipocisplatin exceeds the size cutoff for kidney clearance, hence it bypasses the nephrotoxicity of cisplatin which is a major curse of one of the most efficient anticancer drugs nowadays in clinic. The results here indicated lipocisplatin may be translated into a new generation of liposomal based cisplatin drug in clinic.

  2. Luminol-based bioluminescence imaging of mouse mammary tumors.

    PubMed

    Alshetaiwi, Hamad S; Balivada, Sivasai; Shrestha, Tej B; Pyle, Marla; Basel, Matthew T; Bossmann, Stefan H; Troyer, Deryl L

    2013-10-05

    Polymorphonuclear neutrophils (PMNs) are the most abundant circulating blood leukocytes. They are part of the innate immune system and provide a first line of defense by migrating toward areas of inflammation in response to chemical signals released from the site. Some solid tumors, such as breast cancer, also cause recruitment and activation of PMNs and release of myeloperoxidase. In this study, we demonstrate that administration of luminol to mice that have been transplanted with 4T1 mammary tumor cells permits the detection of myeloperoxidase activity, and consequently, the location of the tumor. Luminol allowed detection of activated PMNs only two days after cancer cell transplantation, even though tumors were not yet palpable. In conclusion, luminol-bioluminescence imaging (BLI) can provide a pathway towards detection of solid tumors at an early stage in preclinical tumor models.

  3. STC1 expression is associated with tumor growth and metastasis in breast cancer.

    PubMed

    Chang, Andy C-M; Doherty, Judy; Huschtscha, Lily I; Redvers, Richard; Restall, Christina; Reddel, Roger R; Anderson, Robin L

    2015-01-01

    Stanniocalcin-1 (STC1) is a secreted glycoprotein implicated in several pathologies including retinal degeneration, cerebral ischemia, angiogenesis and inflammation. Aberrant STC1 expression has been reported in breast cancer but the significance of this is not clear. High levels of STC1 expression were found in the aggressive 4T1 murine mammary tumor cells and in the MDA-MB-231 human breast cancer line. To investigate its significance, stable clones with STC1 down-regulation using shRNA were generated in both tumor models. The consequences of STC1 down-regulation on cell proliferation, chemotactic invasion, tumor growth and metastasis were assessed. Down-regulation of STC1 in the 4T1 murine mammary tumor cells had a major impact on mammary tumor growth. This observation was replicated in a second tumor model with the MDA-MB-231 human breast cancer line, with a significant reduction in primary tumor formation and a major inhibition of metastasis as well. Interestingly, in both models, proliferation in vitro was not affected. Subsequent microarray gene expression profiling identified 30 genes to be significantly altered by STC1 down-regulation, the majority of which are associated with known hallmarks of carcinogenesis. Furthermore, bioinformatic analysis of breast cancer datasets revealed that high expression of STC1 is associated with poor survival. This is the first study to show definitively that STC1 plays an oncogenic role in breast cancer, and indicates that STC1 could be a potential therapeutic target for treatment of breast cancer patients.

  4. In vivo photoacoustic imaging of breast cancer tumor with HER2-targeted nanodiamonds

    NASA Astrophysics Data System (ADS)

    Zhang, Ti; Cui, Huizhong; Fang, Chia-Yi; Jo, Janggun; Yang, Xinmai; Chang, Huan-Cheng; Forrest, M. Laird

    2013-09-01

    Radiation-damaged nanodiamonds (NDs) are ideal optical contrast agents for photoacoustic (PA) imaging in biological tissues due to their good biocompatibility and high optical absorbance in the near-infrared (NIR) range. Acid treated NDs are oxidized to form carboxyl groups on the surface, functionalized with polyethylene glycol (PEG) and human epidermal growth factor receptor 2 (HER2) targeting ligand for breast cancer tumor imaging. Because of the specific binding of the ligand conjugated NDs to the HER2-overexpressing murine breast cancer cells (4T1.2 neu), the tumor tissues are significantly delineated from the surrounding normal tissue at wavelength of 820 nm under the PA imaging modality. Moreover, HER2 targeted NDs (HER2-PEG-NDs) result in higher accumulation in HER2 positive breast tumors as compared to non-targeted NDs after intravenous injection (i.v.). Longer retention time of HER-PEG-NDs is observed in HER2 overexpressing tumor model than that in negative tumor model (4T1.2). This demonstrates that targeting moiety conjugated NDs have great potential for the sensitive detection of cancer tumors and provide an attractive delivery strategy for anti-cancer drugs.

  5. Breast Tomosynthesis

    MedlinePlus

    ... mammography, that uses a low-dose x-ray system and computer reconstructions to create three-dimensional images of the ... Breast tomosynthesis uses a low-dose x-ray system, electronics and a computer to convert x-ray images of the breast ...

  6. Breast Feeding.

    ERIC Educational Resources Information Center

    International Children's Centre, Paris (France).

    This set of documents consists of English, French, and Spanish translations of four pamphlets on breast-feeding. The pamphlets provide information designed for lay persons, academics and professionals, health personnel and educators, and policy-makers. The contents cover health-related differences between breast and bottle milk; patterns of…

  7. A pH-Responsive Host-guest Nanosystem Loading Succinobucol Suppresses Lung Metastasis of Breast Cancer

    PubMed Central

    Dan, Zhaoling; Cao, Haiqiang; He, Xinyu; Zhang, Zhiwen; Zou, Lili; Zeng, Lijuan; Xu, Yan; Yin, Qi; Xu, Minghua; Zhong, Dafang; Yu, Haijun; Shen, Qi; Zhang, Pengcheng; Li, Yaping

    2016-01-01

    Cancer metastasis is the leading reason for the high mortality of breast cancer. Herein, we report on a pH-responsive host-guest nanosystem of succinobucol (PHN) with pH-stimuli controlled drug release behavior to improve the therapeutic efficacy on lung metastasis of breast cancer. PHN was composed of the host polymer of β-cyclodextrin linked with multiple arms of N,N-diisopropylethylenediamine (βCD-DPA), the guest polymer of adamantyl end-capped methoxy poly(ethylene glycol) (mPEG-Ad), and the active agent of succinobucol. PHN comprises nanometer-sized homogenous spherical particles, and exhibits specific and rapid drug release in response to the intracellular acidic pH-stimuli. Then, the anti-metastatic efficacy of PHN is measured in metastatic 4T1 breast cancer cells, which effectively confirms the superior inhibitory effects on cell migration and invasion activities, VCAM-1 expression and cell-cell binding of RAW 264.7 to 4T1 cells. Moreover, PHN can be specifically delivered to the sites of metastatic nodules in lungs, and result in an obviously improved therapeutic efficacy on lung metastasis of breast cancer. Thereby, the pH-responsive host-guest nanosystem can be a promising drug delivery platform for effective treatment of cancer metastasis. PMID:26909117

  8. Host B7x promotes pulmonary metastasis of breast cancer

    PubMed Central

    Abadi, Yael M.; Jeon, Hyungjun; Ohaegbulam, Kim C.; Scandiuzzi, Lisa; Ghosh, Kaya; Hofmeyer, Kimberly A.; Lee, Jun Sik; Ray, Anjana; Gravekamp, Claudia; Zang, Xingxing

    2013-01-01

    B7x (B7-H4 or B7S1) is an inhibitory member of the B7 family of T cell costimulation. It is expressed in low levels in healthy peripheral tissues such as the lung epithelium, but over-expressed in a variety of human cancers with negative clinical associations including metastasis. However, the function of B7x in the cancer context, whether expressed on cancer cells or on surrounding “host” tissues, has not been elucidated in vivo. We utilized the 4T1 metastatic breast cancer model and B7x knockout (B7x−/−) mice to investigate the effect of host tissue-expressed B7x on cancer. We found that 4T1 cells were B7x negative in vitro and in vivo and B7x−/− mice had significantly fewer lung 4T1 tumor nodules than wildtype mice. Furthermore, B7x−/− mice showed significantly enhanced survival and a memory response to tumor rechallenge. Mechanistic studies revealed that the presence of B7x correlated with reduced general and tumor-specific T cell cytokine responses, as well as with an increased infiltration of immunosuppressive cells, including tumor associated neutrophils (TANs), macrophages, and regulatory T cells into tumor-bearing lungs. Importantly, the TANs strongly bound B7x protein and inhibited proliferation of both CD4 and CD8 T cells. These results suggest that host B7x may enable metastasizing cancer cells to escape local anti-tumor immune responses through interactions with the innate as well as the adaptive immune systems. Targeting the B7x pathway thus holds much promise for improving the efficacy of immunotherapy for metastatic cancer. PMID:23455497

  9. Enhanced MAF Oncogene Expression and Breast Cancer Bone Metastasis

    PubMed Central

    Pavlovic, Milica; Arnal-Estapé, Anna; Rojo, Federico; Bellmunt, Anna; Tarragona, Maria; Guiu, Marc; Planet, Evarist; Garcia-Albéniz, Xabier; Morales, Mónica; Urosevic, Jelena; Gawrzak, Sylwia; Rovira, Ana; Prat, Aleix; Nonell, Lara; Lluch, Ana; Jean-Mairet, Joël; Coleman, Robert; Albanell, Joan

    2015-01-01

    Background: There are currently no biomarkers for early breast cancer patient populations at risk of bone metastasis. Identification of mediators of bone metastasis could be of clinical interest. Methods: A de novo unbiased screening approach based on selection of highly bone metastatic breast cancer cells in vivo was used to determine copy number aberrations (CNAs) associated with bone metastasis. The CNAs associated with bone metastasis were examined in independent primary breast cancer datasets with annotated clinical follow-up. The MAF gene encoded within the CNA associated with bone metastasis was subjected to gain and loss of function validation in breast cancer cells (MCF7, T47D, ZR-75, and 4T1), its downstream mechanism validated, and tested in clinical samples. A multivariable Cox cause-specific hazard model with competing events (death) was used to test the association between 16q23 or MAF and bone metastasis. All statistical tests were two-sided. Results: 16q23 gain CNA encoding the transcription factor MAF mediates breast cancer bone metastasis through the control of PTHrP. 16q23 gain (hazard ratio (HR) for bone metastasis = 14.5, 95% confidence interval (CI) = 6.4 to 32.9, P < .001) as well as MAF overexpression (HR for bone metastasis = 2.5, 95% CI = 1.7 to 3.8, P < .001) in primary breast tumors were specifically associated with risk of metastasis to bone but not to other organs. Conclusions: These results suggest that MAF is a mediator of breast cancer bone metastasis. 16q23 gain or MAF protein overexpression in tumors may help to select patients at risk of bone relapse. PMID:26376684

  10. Eriocalyxin B, a natural diterpenoid, inhibited VEGF-induced angiogenesis and diminished angiogenesis-dependent breast tumor growth by suppressing VEGFR-2 signaling

    PubMed Central

    Zhou, Xunian; Yue, Grace Gar-Lee; Liu, Minghua; Zuo, Zhili; Lee, Julia Kin-Ming; Li, Mingyue; Tsui, Stephen Kwok-Wing; Fung, Kwok-Pui; Sun, Handong; Pu, Jianxin; Lau, Clara Bik-San

    2016-01-01

    Eriocalyxin B (EriB), a natural ent-kaurane diterpenoid isolated from the plant Isodon eriocalyx var. laxiflora, has emerged as a promising anticancer agent. The effects of EriB on angiogenesis were explored in the present study. Here we demonstrated that the subintestinal vein formation was significantly inhibited by EriB treatment (10, 15 μM) in zebrafish embryos, which was resulted from the alteration of various angiogenic genes as shown in transcriptome profiling. In human umbilical vein endothelial cells, EriB treatment (50, 100 nM) could significantly block vascular endothelial growth factors (VEGF)-induced cell proliferation, tube formation, cell migration and cell invasion. Furthermore, EriB also caused G1 phase cell cycle arrest which was correlated with the down-regulation of the cyclin D1 and CDK4 leading to the inhibition of phosphorylated retinoblastoma protein expression. Investigation of the signal transduction revealed that EriB inhibited VEGF-induced phosphorylation of VEGF receptor-2 via the interaction with the ATP-binding sites according to the molecular docking simulations. The suppression of VEGFR-2 downstream signal transduction cascades was also observed. EriB was showed to inhibit new blood vessel formation in Matrigel plug model and mouse 4T1 breast tumor model. EriB (5 mg/kg/day) treatment was able to decrease tumor vascularization and suppress tumor growth and angiogenesis. Taken together, our findings suggested that EriB is a novel inhibitor of angiogenesis through modulating VEGFR-2 signaling pathway, which could be developed as a promising anti-angiogenic agent for treatment of angiogenesis-related human diseases, such as cancer. PMID:27756875

  11. Breast augmentation surgery

    MedlinePlus

    ... the shape of your breasts. Talk with a plastic surgeon if you are considering breast augmentation. Discuss ... mammograms or breast x-rays before surgery. The plastic surgeon will do a routine breast exam. Several ...

  12. Learning about Breast Cancer

    MedlinePlus

    ... genetic terms used on this page Learning About Breast Cancer What do we know about heredity and breast ... Cancer What do we know about heredity and breast cancer? Breast cancer is a common disease. Each year, ...

  13. Breast reconstruction - natural tissue

    MedlinePlus

    ... After a mastectomy , some women choose to have cosmetic surgery to remake their breast. This type of surgery ... augmentation surgery Breast reconstruction - implants Mastectomy Patient Instructions Cosmetic breast surgery - discharge Mastectomy and breast reconstruction - what to ask ...

  14. Breast lump

    MedlinePlus

    ... a woman are often caused by fibrocystic changes, fibroadenomas, and cysts. Fibrocystic changes are painful, lumpy breasts. ... period, and then improve after your period starts. Fibroadenomas are noncancerous lumps that feel rubbery. They move ...

  15. Breast pain

    MedlinePlus

    ... chocolate in your diet helps reduce breast pain. Vitamin E, thiamine, magnesium, and evening primrose oil are not harmful, but most studies have not shown any benefit. Talk to your health care provider before starting ...

  16. Neoadjuvant immunotherapy with chitosan and interleukin-12 to control breast cancer metastasis

    PubMed Central

    Vo, Jimmy LN; Yang, Lirong; Kurtz, Samantha L; Smith, Sean G; Koppolu, Bhanu prasanth; Ravindranathan, Sruthi; Zaharoff, David A

    2015-01-01

    Metastasis accounts for approximately 90% of breast cancer-related deaths. Therefore, novel approaches which prevent or control breast cancer metastases are of significant clinical interest. Interleukin-12 (IL-12)-based immunotherapies have shown promise in controlling metastatic disease, yet modest responses and severe toxicities due to systemic administration of IL-12 in early trials have hindered clinical application. We hypothesized that localized delivery of IL-12 co-formulated with chitosan (chitosan/IL-12) could elicit tumor-specific immunity and provide systemic protection against metastatic breast cancer while minimizing systemic toxicity. Chitosan is a biocompatible polysaccharide derived primarily from the exoskeletons of crustaceans. In a clinically relevant resection model, mice bearing spontaneously metastatic 4T1 mammary adenocarcinomas received intratumoral injections of chitosan/IL-12, or appropriate controls, prior to tumor resection. Neoadjuvant chitosan/IL-12 immunotherapy resulted in long-term tumor-free survival in 67% of mice compared to only 24% or 0% of mice treated with IL-12 alone or chitosan alone, respectively. Antitumor responses following chitosan/IL-12 treatment were durable and provided complete protection against rechallenge with 4T1, but not RENCA renal adenocarcinoma, cells. Lymphocytes from chitosan/IL-12-treated mice demonstrated robust tumor-specific lytic activity and interferon-γ production. Cell-mediated immune memory was confirmed in vivo via clinically relevant delayed-type hypersensitivity (DTH) assays. Comprehensive hematology and toxicology analyses revealed that chitosan/IL-12 induced transient, reversible leukopenia with no changes in critical organ function. Results of this study suggest that neoadjuvant chitosan/IL-12 immunotherapy prior to breast tumor resection is a promising translatable strategy capable of safely inducing to tumor-specific immunity and, in the long term, reducing breast cancer mortality due to

  17. Hydrogen-bonded and reduction-responsive micelles loading atorvastatin for therapy of breast cancer metastasis.

    PubMed

    Xu, Pengfei; Yu, Haijun; Zhang, Zhiwen; Meng, Qingshuo; Sun, Huiping; Chen, Xianzhi; Yin, Qi; Li, Yaping

    2014-08-01

    Metastasis is one of the major obstacles for the successful therapy of breast cancer. Although increased candidate drugs targeting cancer metastasis are tested, their clinical translation is limited by either serve toxicity or low efficacy. In present work, a nano-drug delivery system loading atorvastatin calcium (Ator) was developed for the efficient suppression of the metastasis of breast cancer. The nano-drug delivery system was constructed by a amphiphilic copolymer of methoxy polyethylene glycol-s-s-vitamin E succinate (mPEG-s-s-VES, PSV), which was consisted of a hydrophilic mPEG1k segment and a hydrophobic VES head, which were conjugated with a linker bearing amide and disulfide groups simultaneously. Self-assembly of PSV and Ator formed Ator-loaded PSV micelles (ASM) with good colloidal stability, high drug loading content (up to 50%) and great encapsulation efficiency (99.09 ± 0.28%). In cellular level, it was found that the ASM could efficiently release the Ator payload into cytosol due to detachment of PEG shell at high intracellular glutathione condition. ASM could significantly inhibit the migration and invasion of 4T1 breast cancer cells with inhibitory rates of 79.2% and 88.5%, respectively. In a 4T1 orthotropic mammary tumor metastatic cancer model, it was demonstrated that ASM could completely blocked the lung and liver metastasis of breast cancer with minimal toxicity owing to enhanced Ator accumulation in tumor and lung as compared with that of free Ator. The down-regulations of metastasis-promoting MMP-9, Twist and uPA proteins were demonstrated as the main underlying mechanism. As a result, ASM could be a promising drug delivery system for the efficient therapy of breast cancer metastasis.

  18. Mammaglobin, a Valuable Diagnostic Marker for Metastatic Breast Carcinoma

    PubMed Central

    Wang, Zhiqiang; Spaulding, Betsy; Sienko, Anna; Liang, Yiaoming; Li, Hongbao; Nielsen, Gitte; Yub Gong, Gyung; Ro, Jae Y.; “Jim” Zhai, Qihui

    2009-01-01

    Identification of metastasis and occult micrometastases of breast cancer demands sensitive and specific diagnostic markers. In this study, we assessed the utility of a mouse monoclonal antibody to human mammaglobin for one such purpose. Immunohistochemical stains were performed on paraffin-embedded sections from a total of 284 cases, which consisted of primary breast invasive carcinomas (41 cases) with matched metastases to ipsilateral axillary lymph nodes, metastatic breast carcinoma to liver (1 case) and kidney (1 case), non-breast neoplasms (161 cases), and normal human tissues (39 cases). The results showed 31 of the 41 cases of primary breast cancer with axillary lymph node metastases were positive for mammaglobin (76%). In the meantime, we documented expression of mammaglobin in occasional cases of endometrial carcinoma (17%). Our data further validated that mammaglobin is a valuable diagnostic marker for metastatic carcinoma of breast origin, although endometrial carcinoma should be considered as a major differential diagnosis. PMID:19158935

  19. CD4+ and CD8+ T cells have opposing roles in breast cancer progression and outcome

    PubMed Central

    Zhang, Qunyuan; Ye, Jian; Wang, Fang; Zhang, Yanping; Hunborg, Pamela; Varvares, Mark A.; Hoft, Daniel F.; Hsueh, Eddy C.; Peng, Guangyong

    2015-01-01

    The Cancer Immunoediting concept has provided critical insights suggesting dual functions of immune system during the cancer initiation and development. However, the dynamics and roles of CD4+ and CD8+ T cells in the pathogenesis of breast cancer remain unclear. Here we utilized two murine breast cancer models (4T1 and E0771) and demonstrated that both CD4+ and CD8+ T cells were increased and involved in immune responses, but with distinct dynamic trends in breast cancer development. In addition to cell number increases, CD4+ T cells changed their dominant subsets from Th1 in the early stages to Treg and Th17 cells in the late stages of the cancer progression. We also analyzed CD4+ and CD8+ T cell infiltration in primary breast cancer tissues from cancer patients. We observed that CD8+ T cells are the key effector cell population mediating effective anti-tumor immunity resulting in better clinical outcomes. In contrast, intra-tumoral CD4+ T cells have negative prognostic effects on breast cancer patient outcomes. These studies indicate that CD4+ and CD8+ T cells have opposing roles in breast cancer progression and outcomes, which provides new insights relevant for the development of effective cancer immunotherapeutic approaches. PMID:25968569

  20. A compendium of the mouse mammary tumor biologist: from the initial observations in the house mouse to the development of genetically engineered mice.

    PubMed

    Cardiff, Robert D; Kenney, Nicholas

    2011-06-01

    For over a century, mouse mammary tumor biology and the associated mouse mammary tumor virus (MMTV) have served as the foundation for experimental cancer research, in general, and, in particular, experimental breast cancer research. Spontaneous mouse mammary tumors were the basis for studies of the natural history of neoplasia, oncogenic viruses, host responses, endocrinology and neoplastic progression. However, lacking formal proof of a human mammary tumor virus, the preeminence of the mouse model faded in the 1980s. Since the late 1980s, genetically engineered mice (GEM) have proven extremely useful for studying breast cancer and have become the animal model for human breast cancer. Hundreds of mouse models of human breast cancer have been developed since the first demonstration in 1984. The GEM have attracted a new generation of molecular and cellular biologists eager to apply their skill sets to these surrogates of the human disease. Newcomers often enter the field without an appreciation of the origins of mouse mammary tumor biology and the basis for many of the prevailing concepts. Our purpose in writing this compendium is to extend an "olive branch" while simultaneously deepen the knowledge of the novice mouse mammary tumor biologist as they journey into a field rich in pathology and genetics spanning several centuries.

  1. Targeting Stat3 induces senescence in tumor cells and elicits prophylactic and therapeutic immune responses against breast cancer growth mediated by NK cells and CD4+ T cells.

    PubMed

    Tkach, Mercedes; Coria, Lorena; Rosemblit, Cinthia; Rivas, Martín A; Proietti, Cecilia J; Díaz Flaqué, María Celeste; Beguelin, Wendy; Frahm, Isabel; Charreau, Eduardo H; Cassataro, Juliana; Elizalde, Patricia V; Schillaci, Roxana

    2012-08-01

    Aberrant Stat3 activation and signaling contribute to malignant transformation by promoting cell cycle progression, inhibiting apoptosis, and mediating tumor immune evasion. Stat3 inhibition in tumor cells induces the expression of chemokines and proinflammatory cytokines, so we proposed to apply Stat3-inhibited breast cancer cells as a source of immunogens to induce an antitumor immune response. Studies were performed in two murine breast cancer models in which Stat3 is activated: progestin-dependent C4HD cells and 4T1 cells. We immunized BALB/c mice with irradiated cancer cells previously transfected with a dominant-negative Stat3 vector (Stat3Y705F) in either a prophylactic or a therapeutic manner. Prophylactic administration of breast cancer cells transfected with Stat3Y705F (Stat3Y705F-breast cancer cells) inhibited primary tumor growth compared with administration of empty vector-transfected cells in both models. In the 4T1 model, 50% of the challenged mice were tumor free, and the incidence of metastasis decreased by 90%. In vivo assays of C4HD tumors showed that the antitumor immune response involves the participation of CD4(+) T cells and cytotoxic NK cells. Therapeutic immunization with Stat3Y705F-breast cancer cells inhibited tumor growth, promoted tumor cell differentiation, and decreased metastasis. Furthermore, inhibition of Stat3 activation in breast cancer cells induced cellular senescence, contributing to their immunogenic phenotype. In this work, we provide preclinical proof of concept that ablating Stat3 signaling in breast cancer cells results in an effective immunotherapy against breast cancer growth and metastasis. Moreover, our findings showing that Stat3 inactivation results in induction of a cellular senescence program disclose a potential mechanism for immunotherapy research.

  2. Canine parvovirus NS1 protein exhibits anti-tumor activity in a mouse mammary tumor model.

    PubMed

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Gandham, Ravi Kumar; Sahoo, A P; Harish, D R; Singh, Arvind Kumar; Tiwari, A K

    2016-02-02

    Many viral proteins have the ability to kill tumor cells specifically without harming the normal cells. These proteins, on ectopic expression, cause lysis or induction of apoptosis in the target tumor cells. Parvovirus NS1 is one of such proteins, which is known to kill high proliferating tumor cells. In the present study, we assessed the apoptosis inducing ability of canine parvovirus type 2 NS1 protein (CPV2.NS1) in vitro in 4T1 cells, and found it to cause significant cell death due to induction of apoptosis through intrinsic or mitochondrial pathway. Further, we also evaluated the oncolytic activity of CPV2.NS1 protein in a mouse mammary tumor model. The results suggested that CPV2.NS1 was able to inhibit the growth of 4T1 induced mouse mammary tumor as indicated by significantly reduced tumor volume, mitotic, AgNOR and PCNA indices. Further, inhibition of tumor growth was found to be because of induction of apoptosis in the tumor cells, which was evident by a significant increase in the number of TUNEL positive cells. Further, CPV2.NS1 was also able to stimulate the immune cells against the tumor antigens as indicated by the increased CD4+ and CD8+ counts in the blood of CVP2.NS1 treated mice. Further optimization of the delivery of NS1 protein and use of an adjuvant may further enhance its anti-tumor activity.

  3. Treatment of metastatic breast cancer by combination of chemotherapy and photothermal ablation using doxorubicin-loaded DNA wrapped gold nanorods.

    PubMed

    Wang, Dangge; Xu, Zhiai; Yu, Haijun; Chen, Xianzhi; Feng, Bing; Cui, Zhirui; Lin, Bin; Yin, Qi; Zhang, Zhiwen; Chen, Chunying; Wang, Jun; Zhang, Wen; Li, Yaping

    2014-09-01

    Despite the exciting advances in cancer therapy over past decades, tumor metastasis remains the dominate reason for cancer-related mortality. In present work, DNA-wrapped gold nanorods with doxorubicin (DOX)-loading (GNR@DOX) were developed for treatment of metastatic breast cancer via a combination of chemotherapy and photothermal ablation. The GNR@DOX nanoparticles induced significant temperature elevation and DOX release upon irradiation with near infrared (NIR) light as shown in the test tube studies. It was found that GNR@DOX nanoparticles in combination with laser irradiation caused higher cytotoxicity than free DOX in 4T1 breast cancer cells. Animal experiment with an orthotropic 4T1 mammary tumor model demonstrated that GNR@DOX nanoplatform significantly reduced the growth of primary tumors and suppressed their lung metastasis. The Hematoxylin and Eosin (H&E) and immunohistochemistry (IHC) staining assays confirmed that the tumor growth inhibition and metastasis prevention of GNR@DOX nanoparticles were attributed to their abilities to induce cellular apoptosis/necrosis and ablate intratumoral blood vessels. All these results suggested a considerable potential of GNR@DOX nanoplatform for treatment of metastatic breast cancer.

  4. Effects of a Viral Peptide (Nef) on Growth and Metastasis of Human Breast Cancer

    DTIC Science & Technology

    2009-09-01

    using the gonad fat pad of virgin female mice. The human cancer specimen implants will be analyzed for CXCR4. The growth patterns of the primary...implanted in the gonad fat pad of the SCID mouse. This breast model is used to determine the effect of this novel peptide on primary tumor growth, and...established cell lines. A SCID mouse model using established breast cancer cells injected sub Q, intrasplenic, and via the gonad fat will be used to

  5. Breast Carcinosarcomas

    PubMed Central

    Yakan, Savaş; Sarı, Erdem; Erkan, Nazif; Yıldırım, Mehmet; Vardar, Enver; Coşkun, Ali; Çetin, Durmuş Ali; Eliyatkın, Nükhet

    2014-01-01

    Objective Carcinosarcomas of the breast are rare and aggressive breast tumors. The optimal treatment strategies and the classification of these difficult to diagnose tumors are not clear in the literature due to their very low incidence. In this study, we aimed to evaluate patients who were operated on for breast carcinosarcoma and discuss the current literature. Materials and Methods Ten patients who were treated with a diagnosis of breast carcinosarcoma between January 2000 – March 2013 at the Izmir Bozyaka Teaching and Training Hospital General Surgery Clinics were retrospectively analyzed. Results The mean age of the patients was 59.7 (±13.4) years. Eight patients underwent modified radical mastectomy, one patient lumpectomy and one patient breast conserving surgery + sentinel lymph node biopsy procedures. The TNM stage of patients were identified as stage 1 in 2 patients, stage 2 in 6 patients, and stage 3 in 2 patients. 60-month disease-free survival rate was 52.5% (±18.6). The overall survival rate was 53.3% (±20.5). Four patients died during follow-up. Conclusion It is reported that the prognosis of carcinosarcomas are as poor as triple negative epithelial tumors. In contrast to the literature, in our study the disease-free and overall survival rates according to stage were not different from epithelial tumors. In this regard, prospective studies including more patients are required.

  6. RA-XII inhibits tumour growth and metastasis in breast tumour-bearing mice via reducing cell adhesion and invasion and promoting matrix degradation

    PubMed Central

    Leung, Hoi-Wing; Zhao, Si-Meng; Yue, Grace Gar-Lee; Lee, Julia Kin-Ming; Fung, Kwok-Pui; Leung, Ping-Chung; Tan, Ning-Hua; Lau, Clara Bik-San

    2015-01-01

    Cancer cells acquire invasive ability to degrade and adhere to extracellular matrix (ECM) and migrate to adjacent tissues. This ultimately results metastasis. Hence, the present study investigated the in vitro effects of cyclopeptide glycoside, RA-XII on cell adhesion, invasion, proliferation and matrix degradation, and its underlying mechanism in murine breast tumour cells, 4T1. The effect of RA-XII on tumour growth and metastasis in 4T1-bearing mice was also investigated. Our results showed that RA-XII inhibited tumour cell adhesion to collagen, fibronectin and laminin, RA-XII also reduced the expressions of vascular cell adhesion molecule, intracellular adhesion molecule and integrins, and integrin binding. In addition, RA-XII significantly inhibited breast tumour cell migration via interfering cofilin signaling and chemokine receptors. The activities of matrix metalloproteinase-9 and urokinase-type of plasminogen activator, and the expressions of ECM-associated proteinases were attenuated significantly by RA-XII. Furthermore, RA-XII induced G1 phase arrest and inhibited the expressions of cyclins and cyclin-dependent kinases. RA-XII inhibited the expressions of molecules in PI3K/AKT, NF-kappaB, FAK/pSRC, MAPK and EGFR signaling. RA-XII was also shown to have anti-tumour, anti-angiogenic and anti-metastatic activities in metastatic breast tumour-bearing mice. These findings strongly suggested that RA-XII is a potential anti-metastatic agent for breast cancer. PMID:26592552

  7. The Role of SIRT1 in Breast Cancer Stem Cells

    DTIC Science & Technology

    2014-07-01

    molecular mechanism of SIRT1 inhibitors in blocking EMT and reducing cancer stem cells is likely associated with blocking the Wnt pathway. Several down...sensitivity to chemotherapy in xenograft mouse model. Task 4. Wnt pathway is highly activated in breast CSCs and EMT of human breast cancer...reducing EMT . Task 6. Using cell line in vitro study to demonstrate that SIRT1 regulates CSCs and EMT through activation of Wnt pathway via interaction

  8. Development of Biodegradable Zinc Oxide Nanowires Targeting Breast Cancer Metastasis

    DTIC Science & Technology

    2013-09-01

    potential as a new diagnostic and therapeutic strategy to combat the extremely aggressive TNB that is associated with poor prognosis. Figures... rat anti-mouse CD31 antibody and Cy3-labeled donkey anti- rat IgG (red). Immunofluorescence CD105/CD31 staining of various tissues ex vivo revealed...breast cancer. Hum Pathol, 2013. 44(11): p. 2581-9. 6. Imbert, A.M., et al., CD146 expression in human breast cancer cell lines induces phenotypic and

  9. Seamless Integration of Detection and Therapy for Breast Cancer using Targeted Engineered Nanoparticles

    DTIC Science & Technology

    2007-06-01

    Therapy for Breast Cancer using Targeted Engineered Nanoparticles PRINCIPAL INVESTIGATOR: Naomi J. Halas, Ph.D. CONTRACTING...5a. CONTRACT NUMBER Seamless Integration of Detection and Therapy for Breast Cancer using Targeted Engineered Nanoparticles 5b. GRANT NUMBER... nanoparticles and studying the efficiency of nanoparticle attachment to cancer cells. We have demonstrated in mouse tumor models a number of diagnostic

  10. TH-E-BRF-07: Raman Spectroscopy for Radiation Treatment Response Assessment in a Lung Metastases Mouse Model

    SciTech Connect

    Devpura, S; Barton, K; Brown, S; Siddiqui, F; Chetty, I; Sethi, S; Klein, M

    2014-06-15

    Purpose: Raman spectroscopy is an optical spectroscopic method used to probe chemical information about a target tissue. Our goal was to investigate whether Raman spectroscopy is able to distinguish lung tumors from normal lung tissue and whether this technique can identify the molecular changes induced by radiation. Methods: 4T1 mouse breast cancer cells were implanted subcutaneously into the flanks of 6 Balb/C female mice. Four additional mice were used as “normal lung” controls. After 14 days, 3 mice bearing tumors received 6Gy to the left lung with 6MV photons and the other three were treated as “unirradiated tumor” controls. At a 24-hour time point, lungs were excised and the specimens were sectioned using a cryostat; alternating sections were either stained with hematoxylin and eosin (H and E) for evaluation by a pathologist or unstained for Raman measurements. 240 total Raman spectra were collected; 84 from normal lung controls; 63 from unirradiated tumors and 64 from tumors irradiated with 6Gy in a single fraction. Raman spectra were also collected from normal lung tissues of mice with unirradiated tumors. Principal component analysis (PCA) and discriminant function analysis (DFA) were performed to analyze the data. Results: Raman bands assignable to DNA/RNA showed prominent contributions in tumor tissues while Raman bands associated with hemoglobin showed strong contributions in normal lung tissue. PCA/DFA analysis identified normal lung tissue and tumor with 100% and 98.4% accuracy, respectively, relative to pathologic scoring. Additionally, normal lung tissues from unirradiated mice bearing tumors were classified as normal with 100% accuracy. In a model consisting of unirradiated and irradiated tumors identification accuracy was 79.4% and 93.8% respectively, relative to pathologic assessment. Conclusion: Initial results demonstrate the promise for Raman spectroscopy in the diagnosis normal vs. lung metastases as well as the assessment of

  11. Breast awareness and screening.

    PubMed

    Harmer, Victoria

    Breast cancer is the most commonly diagnosed cancer in the UK. Breast awareness and screening, along with better treatment, can significantly improve outcomes, and more women than ever are now surviving the disease. This article discusses breast awareness and screening, symptoms and risk factors for breast cancer, and how nurses can raise breast awareness and screening uptake.

  12. A Portal Vein Injection Model to Study Liver Metastasis of Breast Cancer

    PubMed Central

    Goddard, Erica T.; Fischer, Jacob; Schedin, Pepper

    2016-01-01

    Breast cancer is the leading cause of cancer-related mortality in women worldwide. Liver metastasis is involved in upwards of 30% of cases with breast cancer metastasis, and results in poor outcomes with median survival rates of only 4.8 - 15 months. Current rodent models of breast cancer metastasis, including primary tumor cell xenograft and spontaneous tumor models, rarely metastasize to the liver. Intracardiac and intrasplenic injection models do result in liver metastases, however these models can be confounded by concomitant secondary-site metastasis, or by compromised immunity due to removal of the spleen to avoid tumor growth at the injection site. To address the need for improved liver metastasis models, a murine portal vein injection method that delivers tumor cells firstly and directly to the liver was developed. This model delivers tumor cells to the liver without complications of concurrent metastases in other organs or removal of the spleen. The optimized portal vein protocol employs small injection volumes of 5 - 10 μl, ≥ 32 gauge needles, and hemostatic gauze at the injection site to control for blood loss. The portal vein injection approach in Balb/c female mice using three syngeneic mammary tumor lines of varying metastatic potential was tested; high-metastatic 4T1 cells, moderate-metastatic D2A1 cells, and low-metastatic D2.OR cells. Concentrations of ≤ 10,000 cells/injection results in a latency of ~ 20 - 40 days for development of liver metastases with the higher metastatic 4T1 and D2A1 lines, and > 55 days for the less aggressive D2.OR line. This model represents an important tool to study breast cancer metastasis to the liver, and may be applicable to other cancers that frequently metastasize to the liver including colorectal and pancreatic adenocarcinomas. PMID:28060292

  13. B7-H4 as a Target for Breast Cancer Immunotherapy

    DTIC Science & Technology

    2013-06-01

    AD_________________ Award Number: W81XWH-11-1-0466 TITLE: B7-H4 as a Target for Breast Cancer ...COVERED 1 June 2011 - 31 May 2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER B7-H4 as a Target for Breast Cancer Immunotherapy 5b. GRANT NUMBER...immune escape generated in breast cancer . Here we report the generation of 84 mouse monoclonal antibodies for the detection of B7-H4 by ELISA, 25 for

  14. Visualizing Breast Cancer Cell Interaction with Tumor-Infiltrating Lymphocytes During Immunotherapy

    DTIC Science & Technology

    2013-04-01

    1 AD_________________ Award Number: W81XWH-12-1-0086 TITLE: “Visualizing Breast Cancer Cell...2013 2. REPORT TYPE Annual Summary 3. DATES COVERED 15 March 2012- 14 March 2013 4. TITLE AND SUBTITLE Visualizing Breast Cancer Cell...NOTES 14. ABSTRACT This project takes advantage of a well-characterized mouse model of metastatic breast cancer and use of two photon microscopy

  15. Understanding a Breast Cancer Diagnosis

    MedlinePlus

    ... Category Cancer A-Z Breast Cancer Understanding a Breast Cancer Diagnosis If you’ve been diagnosed with breast ... cancer or how fast it’s growing. Types of Breast Cancer There are several types of breast cancer. The ...

  16. Breast Reconstruction

    MedlinePlus

    If you need a mastectomy, you have a choice about whether or not to have surgery to rebuild the shape of the breast. Instead of ... be done at the same time as the mastectomy, or it may be done later on. If ...

  17. Breast Implants

    MedlinePlus

    ... sale in the United States: saline-filled and silicone gel-filled. Both types have a silicone outer shell. They vary in size, shell thickness, ... implant them. Provide information on saline-filled and silicone gel-filled breast implants, including data supporting a ...

  18. Breast reduction

    MedlinePlus

    ... fade. The surgeon will make every effort to place the cuts so that scars are hidden. Cuts are usually made on the underside of the breast. Most of the time, the scars should not be noticeable, even in low-cut clothing.

  19. [Breast ductoscopy].

    PubMed

    Sharon, Eran; Avin, Ilan D; Leong, Wey

    2011-02-01

    The majority of benign and malignant breast diseases originate in the ductal system. Breast ductoscopy (BD) allows direct access to this ductal system and thus holds great promise in the diagnosis and surgical management of a number of breast diseases. BD was first developed over 20 years ago to investigate nipple discharge. Indeed, till now, this remains the most common indication. However, BD technology has been further developed for a variety of new clinical applications. For example, BD-guided ductal ravage combined with molecular and genetic analysis can be a powerful screening tool for women at high-risk of breast cancer. BD can also be used during lumpectomy to identify additional radiographically occult disease. This refined intraoperative margin assessment can help surgeons to achieve clear margins at the first excision while optimizing the extent of resection. In the future, this same precise intraoperative margin assessment may facilitate a variety of local ablative techniques including laser Over time, BD is likely to evolve beyond its current technological limitations to realize its full diagnostic and therapeutic potential. The article describes the technique of BD, reviews its evolution and discusses current and future applications.

  20. Beta Human Chorionic Gonadotropin - Induction of Apoptosis in Breast Cancer

    DTIC Science & Technology

    2006-01-01

    rehydrated, and digested with proteinase K (25 ug/ml in TBS) using standard 19 methods. After quenching with 3% hydrogen peroxide , sections were...the 19 Chemicon Mouse to Mouse detection kit. Endogenous peroxidase was blocked with 3% aqueous 20 hydrogen peroxide . Slides were incubated with...Agwarwal, M.L., Das, T., Sa, G., 2002. Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett. 512

  1. Novel Approaches to Breast Cancer Prevention and Inhibition of Metastases

    DTIC Science & Technology

    2015-10-01

    the genome is thus a key challenge for a fundamental understanding of physiology and disease pathogenesis. We combine fly genetics with haploid ES...cell mutagenesis and in vivo mouse genetics to functionally characterize candidate breast cancer genes. Using mouse genetics , we have now shown that...targeting ~ 16500 different genes. We also developed new methods to generate blood vessels from haploid ES cells which allows us to genetically

  2. Correlating MALDI and MRI Biomarkers of Breast Cancer

    DTIC Science & Technology

    2010-07-01

    each of three time points. Acquisition of MALDI data for each mouse is currently underway. Coregistration of proteomic and MRI hind limb data will...invasive imaging techniques. 15. SUBJECT TERMS MRI, MALDI, breast cancer, metastases, proteins, correlation, mouse model, coregistration 16...underway. In contrast to coregistration techniques employed during the first award year using a rat model of brain cancer and featuring the skull as a non

  3. Granzyme B-based cytolytic fusion protein targeting EpCAM specifically kills triple negative breast cancer cells in vitro and inhibits tumor growth in a subcutaneous mouse tumor model.

    PubMed

    Amoury, Manal; Kolberg, Katharina; Pham, Anh-Tuan; Hristodorov, Dmitrij; Mladenov, Radoslav; Di Fiore, Stefano; Helfrich, Wijnand; Kiessling, Fabian; Fischer, Rainer; Pardo, Alessa; Thepen, Theophilus; Hussain, Ahmad F; Nachreiner, Thomas; Barth, Stefan

    2016-03-28

    Triple-negative breast cancer (TNBC) is associated with poor prognosis and high prevalence among young premenopausal women. Unlike in other breast cancer subtypes, no targeted therapy is currently available. Overexpression of epithelial cell adhesion molecule (EpCAM) in 60% of TNBC tumors correlates with poorer prognosis and is associated with cancer stem cell phenotype. Thus, selective elimination of EpCAM(+) TNBC tumor cells is of clinical importance. Therefore, we constructed a fully human targeted cytolytic fusion protein, designated GbR201K-αEpCAM(scFv), in which an EpCAM-selective single-chain antibody fragment (scFv) is genetically fused to a granzyme B (Gb) mutant with reduced sensitivity to its natural inhibitor serpin B9. In vitro studies confirmed its specific binding, internalization and cytotoxicity toward a panel of EpCAM-expressing TNBC cells. Biodistribution kinetics and tumor-targeting efficacy using MDA-MB-468 cells in a human TNBC xenograft model in mice revealed selective accumulation of GbR201K-αEpCAM(scFv) in the tumors after i.v. injection. Moreover, treatment of tumor-bearing mice demonstrated a prominent inhibition of tumor growth of up to 50 % in this proof-of-concept study. Taken together, our results indicate that GbR201K-αEpCAM(scFv) is a promising novel targeted therapeutic for the treatment of TNBC.

  4. Nifuroxazide induces apoptosis and impairs pulmonary metastasis in breast cancer model

    PubMed Central

    Yang, F; Hu, M; Lei, Q; Xia, Y; Zhu, Y; Song, X; Li, Y; Jie, H; Liu, C; Xiong, Y; Zuo, Z; Zeng, A; Li, Y; Yu, L; Shen, G; Wang, D; Xie, Y; Ye, T; Wei, Y

    2015-01-01

    Breast carcinoma is the most common female cancer with considerable metastatic potential. Signal transducers and activators of the transcription 3 (Stat3) signaling pathway is constitutively activated in many cancers including breast cancer and has been validated as a novel potential anticancer target. Here, we reported our finding with nifuroxazide, an antidiarrheal agent identified as a potent inhibitor of Stat3. The potency of nifuroxazide on breast cancer was assessed in vitro and in vivo. In this investigation, we found that nifuroxazide decreased the viability of three breast cancer cell lines and induced apoptosis of cancer cells in a dose-dependent manner. In addition, western blot analysis demonstrated that the occurrence of its apoptosis was associated with activation of cleaved caspases-3 and Bax, downregulation of Bcl-2. Moreover, nifuroxazide markedly blocked cancer cell migration and invasion, and the reduction of phosphorylated-Stat3Tyr705, matrix metalloproteinase (MMP) MMP-2 and MMP-9 expression were also observed. Furthermore, in our animal experiments, intraperitoneal administration of 50 mg/kg/day nifuroxazide suppressed 4T1 tumor growth and blocked formation of pulmonary metastases without detectable toxicity. Meanwhile, histological and immunohistochemical analyses revealed a decrease in Ki-67-positive cells, MMP-9-positive cells and an increase in cleaved caspase-3-positive cells upon nifuroxazide. Notably, nifuroxazide reduced the number of myeloid-derived suppressor cell in the lung. Our data indicated that nifuroxazide may potentially be a therapeutic agent for growth and metastasis of breast cancer. PMID:25811798

  5. Nifuroxazide induces apoptosis and impairs pulmonary metastasis in breast cancer model.

    PubMed

    Yang, F; Hu, M; Lei, Q; Xia, Y; Zhu, Y; Song, X; Li, Y; Jie, H; Liu, C; Xiong, Y; Zuo, Z; Zeng, A; Li, Y; Yu, L; Shen, G; Wang, D; Xie, Y; Ye, T; Wei, Y

    2015-03-26

    Breast carcinoma is the most common female cancer with considerable metastatic potential. Signal transducers and activators of the transcription 3 (Stat3) signaling pathway is constitutively activated in many cancers including breast cancer and has been validated as a novel potential anticancer target. Here, we reported our finding with nifuroxazide, an antidiarrheal agent identified as a potent inhibitor of Stat3. The potency of nifuroxazide on breast cancer was assessed in vitro and in vivo. In this investigation, we found that nifuroxazide decreased the viability of three breast cancer cell lines and induced apoptosis of cancer cells in a dose-dependent manner. In addition, western blot analysis demonstrated that the occurrence of its apoptosis was associated with activation of cleaved caspases-3 and Bax, downregulation of Bcl-2. Moreover, nifuroxazide markedly blocked cancer cell migration and invasion, and the reduction of phosphorylated-Stat3(Tyr705), matrix metalloproteinase (MMP) MMP-2 and MMP-9 expression were also observed. Furthermore, in our animal experiments, intraperitoneal administration of 50 mg/kg/day nifuroxazide suppressed 4T1 tumor growth and blocked formation of pulmonary metastases without detectable toxicity. Meanwhile, histological and immunohistochemical analyses revealed a decrease in Ki-67-positive cells, MMP-9-positive cells and an increase in cleaved caspase-3-positive cells upon nifuroxazide. Notably, nifuroxazide reduced the number of myeloid-derived suppressor cell in the lung. Our data indicated that nifuroxazide may potentially be a therapeutic agent for growth and metastasis of breast cancer.

  6. Yin-yang effect of tumor infiltrating B cells in breast cancer: From mechanism to immunotherapy.

    PubMed

    Zhang, Zhigang; Zhu, Ying; Wang, Zhen; Zhang, Ting; Wu, Pin; Huang, Jian

    2017-05-01

    Breast cancer cells secrete chemokines, such as CXCL13, and antigens or express high endothelial venules, attracting B cells to infiltrate into the tumor microenvironment and play a "yin-yang" effect. They not only enhance the anti-tumor immune effect via secreting antibodies and influencing the Fas/FasL, CXCR4/CXCL12 and perforin pathways but they also promote the tumor to form a suppressive milieu by producing immunomodulatory factors and cytokines or using cell-to-cell education to induce the generation of Tregs or myeloid-derived suppressor cells (MDSCs). Currently, most studies on breast cancer tissue have indicated that B cell infiltration could predict better survival and response to therapy, but two studies have reported opposite results. In a 4T1 tumor-bearing BALB/c mice model, B cell-based immunotherapies were administered, but the efficiency was unstable. Herein, we review the "yin-yang" effect of B cells in breast cancer and discuss B cell-based immunotherapy. B cells are complex aggregates, and breast cancer is a heterogeneous disease. Further studies are urgently required to define the B cell subsets and to discover ways to use B cell-based immunotherapy in breast cancer.

  7. Male Breast Cancer

    MedlinePlus

    Although breast cancer is much more common in women, men can get it too. It happens most often to men between ... 60 and 70. Breast lumps usually aren't cancer. However, most men with breast cancer have lumps. ...

  8. Breast Reduction Surgery

    MedlinePlus

    ... considering breast reduction surgery, consult a board-certified plastic surgeon. It's important to understand what breast reduction ... risk of complications from breast reduction surgery. Your plastic surgeon will likely: Evaluate your medical history and ...

  9. Breast Cancer (For Kids)

    MedlinePlus

    ... de los dientes Video: Getting an X-ray Breast Cancer KidsHealth > For Kids > Breast Cancer Print A A ... for it when they are older. What Is Breast Cancer? The human body is made of tiny building ...

  10. Male Breast Cancer

    MedlinePlus

    ... hasn't spread beyond your breast tissue. Radiation therapy Radiation therapy uses high-energy beams to kill ... option for men with advanced breast cancer. Hormone therapy Most men with male breast cancer have tumors ...

  11. Breast Cancer Trends

    MedlinePlus

    ... Breast Cancer Funding: Young Breast Cancer Survivors Funding: Breast Cancer Genomics Statistics Rates by Race and Ethnicity Rates by State Risk by Age Trends What CDC Is Doing Research African American Women and Mass Media Campaign Public Service Announcements Print ...

  12. Breast Lift (Mastopexy)

    MedlinePlus

    ... removed and breast tissue is reshaped to restore firmness and raise the breasts. You might choose to ... get older, your breasts change — losing elasticity and firmness. There are many causes for these kinds of ...

  13. Breast reconstruction - implants

    MedlinePlus

    ... cosmetic surgery after breast cancer can improve your sense of well-being and your quality of life. Alternative Names Breast implants surgery References Roehl KR, Wilhelmi BJ, Phillips LG. Breast reconstruction. ...

  14. Double difference tomography for breast ultrasound sound speed imaging

    NASA Astrophysics Data System (ADS)

    Li, Cuiping; Duric, Neb; Rama, Olsi; Burger, Angelika; Polin, Lisa; Nechiporchik, Nicole

    2011-03-01

    Breast ultrasound tomography is a rapidly developing imaging modality that has the potential to impact breast cancer screening and diagnosis. Double difference (DD) tomography utilizes more accurate differential time-of-flight (ToF) data to reconstruct the sound speed structure of the breast. It can produce more precise and better resolution sound speed images than standard tomography that uses absolute ToF data. We apply DD tomography to phantom data and excised mouse mammary glands data. DD tomograms demonstrate sharper sound speed contrast than the standard tomograms.

  15. Collagen Prolyl Hydroxylases are Essential for Breast Cancer Metastasis

    PubMed Central

    Gilkes, Daniele M.; Chaturvedi, Pallavi; Bajpai, Saumendra; Wong, Carmen Chak-Lui; Wei, Hong; Pitcairn, Stephen; Hubbi, Maimon E.; Wirtz, Denis; Semenza, Gregg L.

    2013-01-01

    Metastasis is the leading cause of death among patients with breast cancer. Understanding the role of the extracellular matrix in the metastatic process may lead to the development of improved therapies for cancer patients. Intratumoral hypoxia is found in the majority of breast cancers and is associated with an increased risk of metastasis and patient mortality. Here we demonstrate that hypoxia-inducible factor 1 activates the transcription of genes encoding collagen prolyl hydroxylases that are critical for collagen deposition by breast cancer cells. We show that expression of collagen prolyl hydroxylases promotes cancer cell alignment along collagen fibers, resulting in enhanced invasion and metastasis to lymph nodes and lungs. Lastly, we establish the prognostic significance of collagen prolyl hydroxylase mRNA expression in human breast cancer biopsies, and demonstrate that ethyl 3,4-dihydroxybenzoate, a prolyl hydroxylase inhibitor, decreases tumor fibrosis and metastasis in a mouse model of breast cancer. PMID:23539444

  16. Ron in Breast Development and Cancer

    DTIC Science & Technology

    2005-10-01

    Bakhiet N. Functional analysis of mouse keratin 8 in 34. Maglione JE, Moghanaki D, Young LJ, et al. 38. Lifsted T, Le Voyer T, Williams M , et al...Waltz, S.E.; Beauman, S.; Collins, M .; Leonis, M .; Toney, K. and Peace, B.E. Ron receptor singaling augments mammary tumorigenesis in murine models of...Collins, M .; Leonis, M .; Toney, K. and Peace, B.E. Ron receptor singaling augments mammary tumorigenesis in murine models of breast cancer. Gordon

  17. Hormone Replacement Therapy, Iron, and Breast Cancer

    DTIC Science & Technology

    2005-10-01

    culture models with different status of estrogen and progesterone receptors as well as an iron loaded transgenic mouse model. Our results have shown that...Hormone replacement therapy, iron, estrogen, cell proliferation, progesterone , breast cancer 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...release an egg every month. Estrogen and progesterone together help regulate this event. As a woman matures, the ovaries have fewer eggs to stimulate

  18. Novel Function of NIBP in Breast Cancer

    DTIC Science & Technology

    2012-05-01

    detected the coated antigen NIBP(1139) in a dose-dependent manner. We then tested various combinations of these antibodies for sandwich ELISA. Since...we further characterized the Sandwich ELISA using NIBP(ND161) chicken antibody as capture antibody and NIBP(417) rabbit antibody as detection ...Fig. 6. Sandwich ELISA validated NIBP expression in mouse brain and NIBP knockdown by lentiviral NIBP-shRNA in breast cancer cell line. 4h 19h 27h

  19. The Role of Akt and its Substrates in Resistance of Breast Cancer to Trastuzumab

    DTIC Science & Technology

    2009-03-01

    progression in mouse models of human breast cancer. EMBO Journal 2008, 27:910-920. 36. Roberts PJ, Der CJ: Targeting the Raf-MEK-ERK mitogen-acti...with reduced GLUT1 have reduced glucose metabolism and reduced proliferation in vitro as well as reduced tumor growth in an athymic nude mouse ...approved by GOR on 15 January 2008. Task 3 – Determine the effect of activated Akt1 overexpression in ErbB2-overexpressing mouse mammary tumors

  20. Breast ultrasound.

    PubMed

    Ueno, E

    1996-03-01

    In ultrasound, ultrasonic images are formed by means of echoes among tissues with different acoustic impedance. Acoustic impedance is the product of sound speed and bulk modulus. The bulk modulus expresses the elasticity of an object, and in the human body, the value is increased by conditions such as fibrosis and calcification. The sound speed is usually high in elastic tissues and low in water. In the body, it is lowest in the fatty tissue. Ultrasound echoes are strong on the surface of bones which are hard and have a high sound speed. In organs filled with air such as the lungs, the bulk modulus is low and the sound speed is extremely low at 340 m/s, which produce strong echoes (the sound speed in solid tissues is 1,530 m/s). Human tissue is constructed of units smaller than the ultrasonic beam, and it is necessary to understand back-scattering in order to understand the ultrasonic images of these tissues. When ultrasound passes through tissue, it is absorbed as thermal energy and attenuated. Fiber is a tissue with a high absorption and attenuation rate. When the rate increases, the posterior echoes are attenuated. However, in masses with a high water content such as cysts, the posterior echoes are accentuated. This phenomenon is an important, basic finding for determining the properties of tumors. Breast cancer can be classified into two types: stellate carcinoma and circumscribed carcinoma. Since stellate carcinoma is rich in fiber, the posterior echoes are attenuated or lacking. However, circumscribed carcinoma has a high cellularity and the posterior echoes are accentuated. The same tendency is also seen in benign tumors. In immature fibroadenomas, posterior echoes are accentuated, while in fibroadenomas with hyalinosis, the posterior echoes are attenuated. Therefore, if the fundamentals of this tissue characterization and the histological features are understood, reading of ultrasound becomes easy. Color Doppler has also been developed and has contributed

  1. Breast cancer in men

    MedlinePlus

    ... in situ - male; Intraductal carcinoma - male; Inflammatory breast cancer - male; Paget disease of the nipple - male; Breast cancer - male ... The cause of breast cancer in men is not clear. But there are risk factors that make breast cancer more likely in men: Exposure to ...

  2. Breast Cancer -- Male

    MedlinePlus

    ... Home > Types of Cancer > Breast Cancer in Men Breast Cancer in Men This is Cancer.Net’s Guide to Breast Cancer in Men. Use the menu below to choose ... social workers, and patient advocates. Cancer.Net Guide Breast Cancer in Men Introduction Statistics Risk Factors and Prevention ...

  3. Benign Breast Conditions

    MedlinePlus

    ... tissue.Female breasts are very complex. The female breast is filled with parts called glands (organs that produce milk in women who have ... birth), fat, and fibrous (connecting) tissue. Within each breast, there are ... of glands and fibrous tissue. Most people associate breast abnormalities ...

  4. Functions of miR-146a and miR-222 in Tumor-associated Macrophages in Breast Cancer

    PubMed Central

    Li, Yanshuang; Zhao, Lianmei; Shi, Bianhua; Ma, Sisi; Xu, Zhenbiao; Ge, Yehua; Liu, Yanxin; Zheng, Dexian; Shi, Juan

    2015-01-01

    Tumor-associated macrophages (TAMs) play critical roles in promoting tumor progression and invasion. However, the molecular mechanisms underlying TAM regulation remain to be further investigated and may make significant contributions to cancer treatment. Mammalian microRNAs (miRNAs) have recently been identified as important regulators of gene expression that function by repressing specific target genes mainly at the post-transcriptional level. However, systematic studies of the functions and mechanisms of miRNAs in TAMs in tumor tissues are rare. In this study, miR-146a and miR-222 were shown to be significantly decreased in TAMs associated with the up-regulated NF-κB p50 subunit. miR-146a promoted the expression of some M2 macrophage phenotype molecules, and miR-146a antagomir transfected RAW264.7 monocyte-macrophage cells inhibited 4T1 tumor growth in vivo. Meanwhile, overexpression of miR-222 inhibited TAM chemotaxis, and miR-222 in TAMs inhibited 4T1 tumor growth by targeting CXCL12 and inhibiting CXCR4. These data revealed that miRNAs influence breast tumor growth by promoting the M2 type polarization or regulating the recruitment of TAMs. These observations suggest that endogenous miRNAs may exert an important role in controlling the polarization and function of TAMs in breast cancer. PMID:26689540

  5. Mouse Curve Biometrics

    SciTech Connect

    Schulz, Douglas A.

    2007-10-08

    A biometric system suitable for validating user identity using only mouse movements and no specialized equipment is presented. Mouse curves (mouse movements with little or no pause between them) are individually classied and used to develop classication histograms, which are representative of an individual's typical mouse use. These classication histograms can then be compared to validate identity. This classication approach is suitable for providing continuous identity validation during an entire user session.

  6. Building a Brainier Mouse.

    ERIC Educational Resources Information Center

    Tsien, Joe Z.

    2000-01-01

    Describes a genetic engineering project to build an intelligent mouse. Cites understanding the molecular basis of learning and memory as a very important step. Concludes that while science will never create a genius mouse that plays the stock market, it can turn a mouse into a quick learner with a better memory. (YDS)

  7. Cloning, characterization, and localization of mouse and human SPO11.

    PubMed

    Romanienko, P J; Camerini-Otero, R D

    1999-10-15

    Spo11 is a meiosis-specific protein in yeast that has been found covalently bound to DNA double-strand breaks (DSBs) during the early stages of meiosis. These DSBs initiate homologous recombination, which is required for proper segregation of chromosomes and the generation of genetic diversity during meiosis. Here we report the cloning, characterization, tissue expression, and chromosomal localization of both mouse and human homologues of Spo11. The putative mouse and human proteins are 82% identical and share approximately 25% identity with other family members. Northern blot analysis revealed testis-specific expression for both genes, but RT-PCR results showed ubiquitous expression of at least a portion of Spo11 in mouse. Human SPO11 was also detected in several somatic tissues. Mouse Spo11 was localized to chromosome 2H4, and human SPO11 was localized to chromosome 20q13.2-q13.3, a region amplified in some breast and ovarian tumors.

  8. Notch in mammary gland development and breast cancer.

    PubMed

    Politi, Katerina; Feirt, Nikki; Kitajewski, Jan

    2004-10-01

    Notch signaling has been implicated in many processes including cell fate determination and oncogenesis. In mice, the Notch1 and Notch4 genes are both targets for insertion and rearrangement by the mouse mammary tumor virus and these mutations promote epithelial mammary tumorigenesis. Moreover, expression of a constitutively active form of Notch4 in mammary epithelial cells inhibits epithelial differentiation and leads to tumor formation in this organ. These data implicate the Notch pathway in breast tumorigenesis and provide the foundation for future experiments that will aid in our understanding of the role of Notch in human breast cancer development. Here, we review studies of mammary tumorigenesis induced by Notch in mouse and in vitro culture models providing evidence that Notch activation is a causal factor in human breast cancer.

  9. Comparison of prophylactic and therapeutic immunisation with an ErbB-2 (HER2) fusion protein and immunoglobulin V-gene repertoire analysis in a transgenic mouse model of spontaneous breast cancer.

    PubMed

    Mukhopadhyay, Arunima; Dyring, Charlotte; Stott, David I

    2014-02-12

    ErbB-2 is associated with several solid tumours of which breast cancer is the commonest cancer in women worldwide. Though anti-ErbB-2 antibody appears to play a significant role in prevention and therapy, naturally occurring anti-ErbB-2 antibody associated with the cleaved ectodomain of overexpressed ErbB-2 self antigen is detectable in patients. It is therefore essential to understand the course of antibody mediated protection during disease progression. 100% of FVB/N(neu) mice expressing mutated, constitutively active ErbB-2 develop mammary carcinoma. It has been shown that vaccination with ErbB-2 associated with a T helper cell epitope P30 can offer protection against transplantable tumour but it is unclear whether the same vaccine protects against naturally developing tumour. We have analysed the course of the disease following prophylactic, and therapeutic vaccination in this spontaneous, eutopic mammary carcinoma model that more closely resembles the human disease. 100% protection against tumour development was observed subsequent to prophylactic immunisation but disease progression was unaffected by therapeutic vaccination. The antibody response exhibited restricted expansion of the Immunoglobulin (Ig) variable (V)-gene repertoire by ErbB-2 specific B cells compared with the non-antigen specific B cell pool and control mice. The serum antibody profile was similar in therapeutically injected mice without any effect on tumour burden.

  10. Dihydroartemisinin prevents breast cancer-induced osteolysis via inhibiting both breast caner cells and osteoclasts.

    PubMed

    Feng, Ming-Xuan; Hong, Jian-Xin; Wang, Qiang; Fan, Yong-Yong; Yuan, Chi-Ting; Lei, Xin-Huan; Zhu, Min; Qin, An; Chen, Hai-Xiao; Hong, Dun

    2016-01-08

    Bone is the most common site of distant relapse in breast cancer, leading to severe complications which dramatically affect the patients' quality of life. It is believed that the crosstalk between metastatic breast cancer cells and osteoclasts is critical for breast cancer-induced osteolysis. In this study, the effects of dihydroartemisinin (DHA) on osteoclast formation, bone resorption, osteoblast differentiation and mineralization were initially assessed in vitro, followed by further investigation in a titanium-particle-induced osteolysis model in vivo. Based on the proved inhibitory effect of DHA on osteolysis, DHA was further applied to MDA-MB-231 breast cancer-induced mouse osteolysis model, with the underlying molecular mechanisms further investigated. Here, we verified for the first time that DHA suppressed osteoclast differentiation, F-actin ring formation and bone resorption through suppressing AKT/SRC pathways, leading to the preventive effect of DHA on titanium-particle-induced osteolysis without affecting osteoblast function. More importantly, we demonstrated that DHA inhibited breast tumor-induced osteolysis through inhibiting the proliferation, migration and invasion of MDA-MB-231 cells via modulating AKT signaling pathway. In conclusion, DHA effectively inhibited osteoclastogenesis and prevented breast cancer-induced osteolysis.

  11. Integrin activation controls metastasis in human breast cancer

    PubMed Central

    Felding-Habermann, Brunhilde; O'Toole, Timothy E.; Smith, Jeffrey W.; Fransvea, Emilia; Ruggeri, Zaverio M.; Ginsberg, Mark H.; Hughes, Paul E.; Pampori, Nisar; Shattil, Sanford J.; Saven, Alan; Mueller, Barbara M.

    2001-01-01

    Metastasis is the primary cause of death in human breast cancer. Metastasis to bone, lungs, liver, and brain involves dissemination of breast cancer cells via the bloodstream and requires adhesion within the vasculature. Blood cell adhesion within the vasculature depends on integrins, a family of transmembrane adhesion receptors, and is regulated by integrin activation. Here we show that integrin αvβ3 supports breast cancer cell attachment under blood flow conditions in an activation-dependent manner. Integrin αvβ3 was found in two distinct functional states in human breast cancer cells. The activated, but not the nonactivated, state supported tumor cell arrest during blood flow through interaction with platelets. Importantly, activated αvβ3 was expressed by freshly isolated metastatic human breast cancer cells and variants of the MDA-MB 435 human breast cancer cell line, derived from mammary fat pad tumors or distant metastases in severe combined immunodeficient mice. Expression of constitutively activated mutant αvβ3D723R, but not αvβ3WT, in MDA-MB 435 cells strongly promoted metastasis in the mouse model. Thus breast cancer cells can exhibit a platelet-interactive and metastatic phenotype that is controlled by the activation of integrin αvβ3. Consequently, alterations within tumors that lead to the aberrant control of integrin activation are expected to adversely affect the course of human breast cancer. PMID:11172040

  12. Integrin activation controls metastasis in human breast cancer

    NASA Astrophysics Data System (ADS)

    Felding-Habermann, Brunhilde; O'Toole, Timothy E.; Smith, Jeffrey W.; Fransvea, Emilia; Ruggeri, Zaverio M.; Ginsberg, Mark H.; Hughes, Paul E.; Pampori, Nisar; Shattil, Sanford J.; Saven, Alan; Mueller, Barbara M.

    2001-02-01

    Metastasis is the primary cause of death in human breast cancer. Metastasis to bone, lungs, liver, and brain involves dissemination of breast cancer cells via the bloodstream and requires adhesion within the vasculature. Blood cell adhesion within the vasculature depends on integrins, a family of transmembrane adhesion receptors, and is regulated by integrin activation. Here we show that integrin v3 supports breast cancer cell attachment under blood flow conditions in an activation-dependent manner. Integrin v3 was found in two distinct functional states in human breast cancer cells. The activated, but not the nonactivated, state supported tumor cell arrest during blood flow through interaction with platelets. Importantly, activated αvβ3 was expressed by freshly isolated metastatic human breast cancer cells and variants of the MDA-MB 435 human breast cancer cell line, derived from mammary fat pad tumors or distant metastases in severe combined immunodeficient mice. Expression of constitutively activated mutant αvβ3D723R, but not αvβ3WT, in MDA-MB 435 cells strongly promoted metastasis in the mouse model. Thus breast cancer cells can exhibit a platelet-interactive and metastatic phenotype that is controlled by the activation of integrin αvβ3. Consequently, alterations within tumors that lead to the aberrant control of integrin activation are expected to adversely affect the course of human breast cancer.

  13. Cadherin-11 expression is upregulated in invasive human breast cancer

    PubMed Central

    Pohlodek, Kamil; Tan, Yen Y.; Singer, Christian F.; Gschwantler-Kaulich, Daphne

    2016-01-01

    Loss of expression of cadherin-11 protein is correlated with a loss of epithelial phenotype and a gain in tumor cell proliferation and invasion. It has been hypothesized that cadherin-11 may be a molecular marker for a more aggressive subtype of breast cancer. The present study examined the expression of the mesenchymal gene/protein cadherin-11 in malignant, benign and healthy breast cancer samples. A paraffin-embedded tissue microarray of both malignant and benign/healthy breast tumor was used. Clinicopathological parameters, including age, grading, tumor size, hormone receptors and HER2 receptors status were obtained from patient medical records. Expression of cadherin-11 was analyzed using the monoclonal mouse anti cadherin-11 IgG2B clone. Total RNA was extracted from each breast cancer sample and subjected to semi-quantitative RT-PCR analysis for cadherin-11. Cadherin-11 was detected in 80/82 malignant breast cancer samples and in 33/70 non-malignant tissue samples. Cadherin-11 expression was observed to be predominantly localized to the membrane of tumor cells. When compared to healthy breast tissue biopsies, both cadherin-11 mRNA and protein were demonstrated to be significantly overexpressed in breast carcinoma (P=0.040 and P<0.0001, respectively). Within malignant tumors, however, protein expression was not identified to be associated with other clinicopathological parameters. Our results indicate that cadherin-11 expression is upregulated in malignant human breast cancer. PMID:28101202

  14. Reduced ING1 levels in breast cancer promotes metastasis

    PubMed Central

    Chen, Jie; Tran, Uyen; Yang, Yang; Salazar, Carolina; Magliocco, Anthony; Klimowicz, Alexander; Jirik, Frank R.; Riabowol, Karl

    2014-01-01

    INhibitor of Growth 1 (ING1) expression is repressed in breast carcinomas, but its role in breast cancer development and metastasis is unknown. ING1 levels were quantified in >500 patient samples using automated quantitative fluorescence immunohistochemistry, and data were analysed for correlations to patient outcome. Effects of altering ING levels were examined in microarrays and metastasis assays in vitro, and in a mouse metastasis model in vivo. ING1 levels were lower in tumors compared to adjacent normal breast tissue and correlated with tumor size (p=0.019) and distant recurrence (p=0.001) in ER- or Her2+ patients. In these patients ING1 predicted disease-specific and distant metastasis-free survival. Transcriptome analysis showed that the pathway most affected by ING1 was breast cancer (p = 0.0008). Decreasing levels of ING1 increased, and increasing levels decreased, migration and invasion of MDA-MB231 cells in vitro. ING1 overexpression also blocked cancer cell metastasis in vivo and eliminated tumor-induced mortality in mouse models. Our data show that ING1 protein levels are downregulated in breast cancer and for the first time, we show that altering their levels regulates metastasis in vitro and in vivo, which indicates that ING1 may have a therapeutic role for inhibiting metastasis of breast cancer. PMID:24962136

  15. pH-Responsive Wormlike Micelles with Sequential Metastasis Targeting Inhibit Lung Metastasis of Breast Cancer.

    PubMed

    He, Xinyu; Yu, Haijun; Bao, Xiaoyue; Cao, Haiqiang; Yin, Qi; Zhang, Zhiwen; Li, Yaping

    2016-02-18

    Cancer metastasis is the main cause for the high mortality in breast cancer patients. Herein, we first report succinobucol-loaded pH-responsive wormlike micelles (PWMs) with sequential targeting capability to inhibit lung metastasis of breast cancer. PWMs can in a first step be delivered specifically to the sites of metastases in the lungs and then enable the intracellular pH-stimulus responsive drug release in cancer cells to improve the anti-metastatic effect. PWMs are identified as nanofibrillar assemblies with a diameter of 19.9 ± 1.9 nm and a length within the 50-200 nm range, and exhibited pH-sensitive drug release behavior in response to acidic intracellular environments. Moreover, PWMs can obviously inhibit the migration and invasion abilities of metastatic 4T1 breast cancer cells, and reduce the expression of the metastasis-associated vascular cell adhesion molecule-1 (VCAM-1) at 400 ng mL(-1) of succinobucol. In particular, PWMs can induce a higher specific accumulation in lung and be specifically delivered to the sites of metastases in lung, thereby leading to an 86.6% inhibition on lung metastasis of breast cancer. Therefore, the use of sequentially targeting PWMs can become an encouraging strategy for specific targeting and effective treatment of cancer metastasis.

  16. Co-loaded paclitaxel/rapamycin liposomes: Development, characterization and in vitro and in vivo evaluation for breast cancer therapy.

    PubMed

    Eloy, Josimar O; Petrilli, Raquel; Topan, José Fernando; Antonio, Heriton Marcelo Ribeiro; Barcellos, Juliana Palma Abriata; Chesca, Deise L; Serafini, Luciano Neder; Tiezzi, Daniel G; Lee, Robert J; Marchetti, Juliana Maldonado

    2016-05-01

    Paclitaxel and rapamycin have been reported to act synergistically to treat breast cancer. Albeit paclitaxel is available for breast cancer treatment, the most commonly used formulation in the clinic presents side effects, limiting its use. Furthermore, both drugs present pharmacokinetics drawbacks limiting their in vivo efficacy and clinic combination. As an alternative, drug delivery systems, particularly liposomes, emerge as an option for drug combination, able to simultaneously deliver co-loaded drugs with improved therapeutic index. Therefore, the purpose of this study is to develop and characterize a co-loaded paclitaxel and rapamycin liposome and evaluate it for breast cancer efficacy both in vitro and in vivo. Results showed that a SPC/Chol/DSPE-PEG (2000) liposome was able to co-encapsulate paclitaxel and rapamycin with suitable encapsulation efficiency values, nanometric particle size, low polydispersity and neutral zeta potential. Taken together, FTIR and thermal analysis evidenced drug conversion to the more bioavailable molecular and amorphous forms, respectively, for paclitaxel and rapamycin. The pegylated liposome exhibited excellent colloidal stability and was able to retain drugs encapsulated, which were released in a slow and sustained fashion. Liposomes were more cytotoxic to 4T1 breast cancer cell line than the free drugs and drugs acted synergistically, particularly when co-loaded. Finally, in vivo therapeutic evaluation carried out in 4T1-tumor-bearing mice confirmed the in vitro results. The co-loaded paclitaxel/rapamycin pegylated liposome better controlled tumor growth compared to the solution. Therefore, we expect that the formulation developed herein might be a contribution for future studies focusing on the clinical combination of paclitaxel and rapamycin.

  17. Co-loaded paclitaxel/rapamycin liposomes: Development, characterization and in vitro and in vivo evaluation for breast cancer therapy

    PubMed Central

    Eloy, Josimar O.; Petrilli, Raquel; Topan, José Fernando; Antonio, Heriton Marcelo Ribeiro; Barcellos, Juliana Palma Abriata; Chesca, Deise L.; Serafini, Luciano Neder; Tiezzi, Daniel G.; Lee, Robert J.; Marchetti, Juliana Maldonado

    2016-01-01

    Paclitaxel and rapamycin have been reported to act synergistically to treat breast cancer. Albeit paclitaxel is available for breast cancer treatment, the most commonly used formulation in the clinic presents side effects, limiting its use. Furthermore, both drugs present pharmacokinetics drawbacks limiting their in vivo efficacy and clinic combination. As an alternative, drug delivery systems, particularly liposomes, emerge as an option for drug combination, able to simultaneously deliver co-loaded drugs with improved therapeutic index. Therefore, the purpose of this study is to develop and characterize a co-loaded paclitaxel and rapamycin liposome and evaluate it for breast cancer efficacy both in vitro and in vivo. Results showed that a SPC/Chol/DSPE-PEG (2000) liposome was able to co-encapsulate paclitaxel and rapamycin with suitable encapsulation efficiency values, nanometric particle size, low polydispersity and neutral zeta potential. Taken together, FTIR and thermal analysis evidenced drug conversion to the more bioavailable molecular and amorphous forms, respectively, for paclitaxel and rapamycin. The pegylated liposome exhibited excellent colloidal stability and was able to retain drugs encapsulated, which were released in a slow and sustained fashion. Liposomes were more cytotoxic to 4T1 breast cancer cell line than the free drugs and drugs acted synergistically, particularly when co-loaded. Finally, in vivo therapeutic evaluation carried out in 4T1-tumor-bearing mice confirmed the in vitro results. The co-loaded paclitaxel/rapamycin pegylated liposome better controlled tumor growth compared to the solution. Therefore, we expect that the formulation developed herein might be a contribution for future studies focusing on the clinical combination of paclitaxel and rapamycin. PMID:26836480

  18. Diagnosis of breast tumors after breast reduction.

    PubMed

    Beer, G M; Kompatscher, P; Hergan, K

    1996-01-01

    We conducted a retrospective study to evaluate the diagnosability of breast tumors after breast reductions as this is a frequent surgical procedure. The data should shed light on the hypothesis that routine screening methods concerning the diagnosis of breast tumors prove more difficult after breast operations. All women who had undergone breast reduction at our department between January 1989 and December 1994 were examined. During this period we counted 166 patients; the majority of them (n = 144) had undergone a bilateral breast reduction and the rest of them (n = 22) a unilateral breast reduction for various reasons. After the operation, all patients were checked in standardized intervals. Those who developed any kind of breast mass (n = 6) were recorded and examined by ultrasound and mammography, and occasionally by an additional fine-needle biopsy. In case any doubt about the dignity had remained, an excisional biopsy was carried out. In none of our patients was it possible to get a precise diagnosis of an ill-defined mass with ultrasound. With mammography, some of the existing masses, which were really scars, mimicked different kinds of tumors, and once a carcinoma was initially interpreted as scar tissue with oil cysts. The diagnosis of breast masses after breast reductions with routinely used screening methods has proved to be more difficult as breast reductions lead to architectural alterations of the remaining breast parenchyma. Such alterations can and should be documented shortly after the operation so that later occurring tumors are distinguished more easily. Therefore, a basic mammography 3 months after each breast reduction has to be claimed in order to facilitate further breast tumor diagnosis.

  19. Isolation of the mouse homologue of BRCA1 and genetic mapping to mouse chromosome 11

    SciTech Connect

    Bennett, L.M.; Haugen-Strano, A.; Cochran, C.

    1995-10-10

    The BRCA1 gene is in large part responsible for hereditary human breast and ovarian cancer. Here we report the isolation of the murine Brca1 homologue cDNA clones. In addition, we identified genomic P1 clones that contain most, if not all, of the mouse Brca1 locus. DNA sequence analysis revealed that the mouse and human coding regions are 75% identical at the nucleotide level while the predicted amino acid identity is only 58%. A DNA sequence variant in the Brcal locus was identified and used to map this gene on a (Mus m. musculus Czech II x C57BL/KsJ)F1 x C57BL/KsJ intersubspecific backcross to distal mouse chromosome 11. The mapping of this gene to a region highly syntenic with human chromosome 17, coupled with Southern and Northern analyses, confirms that we isolated the murine Brcal homologue rather than a related RING finger gene. The isolation of the mouse Brca1 homologue will facilitate the creation of mouse models for germline BRCA1 defects. 12 refs., 3 figs.

  20. Stages of Male Breast Cancer

    MedlinePlus

    ... Breast & Gynecologic Cancers Breast Cancer Screening Research Male Breast Cancer Treatment (PDQ®)–Patient Version General Information about Male Breast Cancer Go to Health Professional Version Key Points Male ...

  1. Aging changes in the breast

    MedlinePlus

    ... age, a woman's breasts lose fat, tissue, and mammary glands. Many of these changes are due to the ... to their providers about mammograms. Images Female breast Mammary gland References Davidson NE. Breast cancer and benign breast ...

  2. Synthesis, Characterization, and Study of In Vitro Cytotoxicity of ZnO-Fe3O4 Magnetic Composite Nanoparticles in Human Breast Cancer Cell Line (MDA-MB-231) and Mouse Fibroblast (NIH 3T3).

    PubMed

    Bisht, Gunjan; Rayamajhi, Sagar; Kc, Biplab; Paudel, Siddhi Nath; Karna, Deepak; Shrestha, Bhupal G

    2016-12-01

    Novel magnetic composite nanoparticles (MCPs) were successfully synthesized by ex situ conjugation of synthesized ZnO nanoparticles (ZnO NPs) and Fe3O4 NPs using trisodium citrate as linker with an aim to retain key properties of both NPs viz. inherent selectivity towards cancerous cell and superparamagnetic nature, respectively, on a single system. Successful characterization of synthesized nanoparticles was done by XRD, TEM, FTIR, and VSM analyses. VSM analysis showed similar magnetic profile of thus obtained MCPs as that of naked Fe3O4 NPs with reduction in saturation magnetization to 16.63 emu/g. Also, cell viability inferred from MTT assay showed that MCPs have no significant toxicity towards noncancerous NIH 3T3 cells but impart significant toxicity at similar concentration to breast cancer cell MDA-MB-231. The EC50 value of MCPs on MDA-MB-231 is less than that of naked ZnO NPs on MDA-MB-231, but its toxicity on NIH 3T3 was significantly reduced compared to ZnO NPs. Our hypothesis for this prominent difference in cytotoxicity imparted by MCPs is the synergy of selective cytotoxicity of ZnO nanoparticles via reactive oxygen species (ROS) and exhausting scavenging activity of cancerous cells, which further enhance the cytotoxicity of Fe3O4 NPs on cancer cells. This dramatic difference in cytotoxicity shown by the conjugation of magnetic Fe3O4 NPs with ZnO NPs should be further studied that might hold great promise for the development of selective and site-specific nanoparticles. Schematic representation of the conjugation, characterization and cytotoxicity analysis of Fe3O4-ZnO magnetic composite particles (MCPs).

  3. Synthesis, Characterization, and Study of In Vitro Cytotoxicity of ZnO-Fe3O4 Magnetic Composite Nanoparticles in Human Breast Cancer Cell Line (MDA-MB-231) and Mouse Fibroblast (NIH 3T3)

    NASA Astrophysics Data System (ADS)

    Bisht, Gunjan; Rayamajhi, Sagar; KC, Biplab; Paudel, Siddhi Nath; Karna, Deepak; Shrestha, Bhupal G.

    2016-12-01

    Novel magnetic composite nanoparticles (MCPs) were successfully synthesized by ex situ conjugation of synthesized ZnO nanoparticles (ZnO NPs) and Fe3O4 NPs using trisodium citrate as linker with an aim to retain key properties of both NPs viz. inherent selectivity towards cancerous cell and superparamagnetic nature, respectively, on a single system. Successful characterization of synthesized nanoparticles was done by XRD, TEM, FTIR, and VSM analyses. VSM analysis showed similar magnetic profile of thus obtained MCPs as that of naked Fe3O4 NPs with reduction in saturation magnetization to 16.63 emu/g. Also, cell viability inferred from MTT assay showed that MCPs have no significant toxicity towards noncancerous NIH 3T3 cells but impart significant toxicity at similar concentration to breast cancer cell MDA-MB-231. The EC50 value of MCPs on MDA-MB-231 is less than that of naked ZnO NPs on MDA-MB-231, but its toxicity on NIH 3T3 was significantly reduced compared to ZnO NPs. Our hypothesis for this prominent difference in cytotoxicity imparted by MCPs is the synergy of selective cytotoxicity of ZnO nanoparticles via reactive oxygen species (ROS) and exhausting scavenging activity of cancerous cells, which further enhance the cytotoxicity of Fe3O4 NPs on cancer cells. This dramatic difference in cytotoxicity shown by the conjugation of magnetic Fe3O4 NPs with ZnO NPs should be further studied that might hold great promise for the development of selective and site-specific nanoparticles.

  4. Vitamin D Pathway Status and the Identification of Target Genes in the Mouse Mammary Gland

    DTIC Science & Technology

    2014-11-01

    significant increase in cancer incidence in women who are vitamin D deficient (1;2). It was also shown that there is a correlation between breast cancer...the correlation between vitamin D deficiency and an increase in breast cancer incidence. 18 References 1 Abbas S et al. Dietary...AD_________________ Award Number: W81XWH-11-1-0152 TITLE: Vitamin D Pathway Status and the Identification of Target Genes in the Mouse Mammary

  5. Furanodiene enhances the anti-cancer effects of doxorubicin on ERα-negative breast cancer cells in vitro.

    PubMed

    Zhong, Zhang-Feng; Qiang, Wen-An; Wang, Chun-Ming; Tan, Wen; Wang, Yi-Tao

    2016-03-05

    Furanodiene is a natural product isolated from Rhizoma curcumae, and exhibits broad-spectrum anti-cancer activities in vitro and in vivo. Our previous study proved that furanodiene could increase growth inhibition of steroidal agent in ERα-positive breast cancer cells, but whether furanodiene can influence ER status is not clear. In this study, we confirmed that furanodiene down-regulated the ERα protein expression level and inhibited E2-induced estrogen response element (ERE)-driven reporter plasmid activity in ERα-positive MCF-7 cells. Actually, ERα-knockdown cells were more sensitive than ERα positive cells to furanodiene on the cytotoxicity effect. So the anti-cancer effects of furanodiene and non-steroidal agent in breast cancer cells still requires further investigation. Our results showed that furanodiene exposure could enhance growth inhibitory effects of doxorubicin in ERα-negative MDA-MB-231 cells and ERα-low expression 4T1 cells. However, furanodiene did not increase the cytotoxicity of doxorubicin in ERα-positive breast cancer cells, non-tumorigenic breast epithelial cells, macrophage cells, hepatocytes cells, pheochromocytoma cells and cardiac myoblasts cells. Furanodiene enhances the anti-cancer effects of doxorubicin in ERα-negative breast cancer cells through suppressing cell viability via inducing apoptosis in mitochondria-caspases-dependent and reactive oxygen species-independent manners. These results indicate that furanodiene may be a promising and safety natural agent for cancer adjuvant therapy in the future.

  6. Oncolytic virotherapy for treatment of breast cancer, including triple-negative breast cancer.

    PubMed

    Bramante, Simona; Koski, Anniina; Liikanen, Ilkka; Vassilev, Lotta; Oksanen, Minna; Siurala, Mikko; Heiskanen, Raita; Hakonen, Tiina; Joensuu, Timo; Kanerva, Anna; Pesonen, Sari; Hemminki, Akseli

    2016-02-01

    Breast cancer is a heterogeneous disease, characterized by several distinct biological subtypes, among which triple-negative breast cancer (TNBC) is one associated with a poor prognosis. Oncolytic virus replication is an immunogenic phenomenon, and viruses can be armed with immunostimulatory molecules to boost virus triggered antitumoral immune responses. Cyclophosphamide (CP) is a chemotherapy drug that is associated with cytotoxicity and immunosuppression at higher doses, whereas immunostimulatory and anti-angiogenic properties are observed at low continuous dosage. Therefore, the combination of oncolytic immuno-virotherapy with low-dose CP is an appealing approach. We investigated the potency of oncolytic adenovirus Ad5/3-D24-GMCSF on a TNBC cell line and in vivo in an orthotopic xenograft mouse model, in combination with low-dose CP or its main active metabolite 4-hydroperoxycyclophosphamide (4-HP-CP). Furthermore, we summarized the breast cancer-specific human data on this virus from the Advanced Therapy Access Program (ATAP). Low-dose CP increased the efficacy of Ad5/3-D24-GMCSF in vitro and in a TNBC mouse model. In ATAP, treatments appeared safe and well-tolerated. Thirteen out of 16 breast cancer patients treated were evaluable for possible benefits with modified RECIST 1.1 criteria: 1 patient had a minor response, 2 had stable disease (SD), and 10 had progressive disease (PD). One patient is alive at 1,771 d after treatment. Ad5/3-D24-GMCSF in combination with low-dose CP showed promising efficacy in preclinical studies and possible antitumor activity in breast cancer patients refractory to other forms of therapy. This preliminary data supports continuing the clinical development of oncolytic adenoviruses for treatment of breast cancer, including TNBC.

  7. 27-Hydroxycholesterol Links Hypercholesterolemia and Breast Cancer Pathophysiology

    PubMed Central

    Nelson, Erik R.; Wardell, Suzanne E.; Jasper, Jeff S.; Park, Sunghee; Suchindran, Sunil; Howe, Matthew K.; Carver, Nicole J.; Pillai, Ruchita V.; Sullivan, Patrick M.; Sondhi, Varun; Umetani, Michihisa; Geradts, Joseph; McDonnell, Donald P.

    2014-01-01

    Hypercholesterolemia is a risk factor for estrogen receptor (ER) positive breast cancers and is associated with a decreased response of tumors to endocrine therapies. Here we show that 27-Hydroxycholesterol (27HC), a primary metabolite of cholesterol and an ER and Liver X receptor (LXR) ligand, increases ER-dependent growth and LXR-dependent metastasis in mouse models of breast cancer. The effects of cholesterol on tumor pathology required its conversion to 27HC by the cytochrome P450 oxidase CYP27A1, and were attenuated by treatment with CYP27A1 inhibitors. In human breast cancer specimens, CYP27A1 expression levels correlated with tumor grade. In high-grade tumors, both tumor cells and tumor-associated macrophages exhibited high expression levels of the enzyme. Thus, lowering circulating cholesterol levels or interfering with its conversion to 27HC may be a useful strategy to prevent and/or treat breast cancer. PMID:24288332

  8. Pembrolizumab in Treating Patients With Triple-Negative Breast Cancer

    ClinicalTrials.gov

    2017-04-11

    Estrogen Receptor Negative; HER2/Neu Negative; Invasive Breast Carcinoma; Progesterone Receptor Negative; Stage 0 Breast Cancer; Stage I Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage III Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Triple-Negative Breast Carcinoma

  9. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks

    PubMed Central

    Liu, Suling; Ginestier, Christophe; Ou, Sing J.; Clouthier, Shawn G.; Patel, Shivani H.; Monville, Florence; Korkaya, Hasan; Heath, Amber; Dutcher, Julie; Kleer, Celina G.; Jung, Younghun; Dontu, Gabriela; Taichman, Russell; Wicha, Max S.

    2011-01-01

    We have utilized in vitro and mouse xenograft models to examine the interaction between breast cancer stem cells (CSCs) and bone marrow derived mesenchymal stem cells (MSCs). We demonstrate that both of these cell populations are organized in a cellular hierarchy in which primitive aldehyde dehydrogenase (ALDH) expressing mesenchymal cells regulate breast CSCs through cytokine loops involving IL6 and CXCL7. In NOD/SCID mice, labeled MSCs introduced into the tibia traffic to sites of growing breast tumor xenografts where they accelerate tumor growth by increasing the breast cancer stem cell population. Utilizing immunochemistry, we identified “MSC-CSC niches” in these tumor xenografts as well as in frozen sections from primary human breast cancers. Bone marrow derived mesenchymal stem cell may accelerate human breast tumor growth by generating cytokine networks that regulate the cancer stem cell population. PMID:21224357

  10. Role of the Stem Cell Niche in Hormone-Induced Tumorigenesis in Fetal Mouse Mammary Epithelium

    DTIC Science & Technology

    2005-08-01

    AD Award Number: W81XWH-04-1-0719 TITLE: Role of the Stem Cell Niche in Hormone-Induced Tumorigenesis in Fetal Mouse Mammary Epithelium PRINCIPAL...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Role of the Stem Cell Niche in Hormone-induced Tumorigenesis in Fetal Mouse 5b. GRANT NUMBER Mammary Epithelium...SUPPLEMENTARY NOTES 14. ABSTRACT SEE PAGE 4 15. SUBJECT TERMS Stem Cells , Stem Cell niche, Immunohistochemistry, mammary gland, breast cancer 16

  11. Stereotactic Image-Guided Navigation During Breast Reconstruction in Patients With Breast Cancer

    ClinicalTrials.gov

    2017-04-12

    Ductal Breast Carcinoma in Situ; Lobular Breast Carcinoma in Situ; Recurrent Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer

  12. Breast radiation - discharge

    MedlinePlus

    Radiation - breast - discharge ... away around 4 to 6 weeks after the radiation treatment is over. You may notice changes in ... breast looks or feels (if you are getting radiation after a lumpectomy). These changes include: Soreness or ...

  13. Breast self-exam

    MedlinePlus

    ... hand, gently yet firmly press down using small motions to examine the entire right breast. Next, sit ... Accessed April 25, 2016. US Preventive Services Task Force. Breast cancer: screening. January 2016. www.uspreventiveservicestaskforce.org/ ...

  14. Breast Cancer in Men

    MedlinePlus

    ... Older age • B RCA2 gene mutation • F amily history of breast cancer • Gynecomastia (enlargement of the breast tissue) • Klinefelter’s syndrome (a genetic condition related to high levels ...

  15. Breastfeeding and Breast Milk

    MedlinePlus

    ... NICHD Research Information Clinical Trials Resources and Publications Breastfeeding and Breast Milk: Condition Information Skip sharing on social media links Share this: Page Content Breastfeeding and Breast Milk: Condition Information​ ​​Breastfeeding, also called ...

  16. Breast cancer staging

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000911.htm Breast cancer staging To use the sharing features on this ... Once your health care team knows you have breast cancer , they will do more tests to stage it. ...

  17. Risks of Breast Implants

    MedlinePlus

    ... has traveled to other parts of the body. Connective Tissue Disease The FDA has not detected any association between silicone gel-filled breast implants and connective tissue disease, breast cancer, or reproductive problems. In order ...

  18. Stages of Breast Cancer

    MedlinePlus

    ... to treat breast cancer. Internal radiation therapy with strontium-89 (a radionuclide ) is used to relieve bone ... breast cancer that has spread to the bones. Strontium-89 is injected into a vein and travels ...

  19. Breast Cancer Treatment

    MedlinePlus

    ... to treat breast cancer. Internal radiation therapy with strontium-89 (a radionuclide ) is used to relieve bone ... breast cancer that has spread to the bones. Strontium-89 is injected into a vein and travels ...

  20. Cosmetic breast surgery - discharge

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000273.htm Cosmetic breast surgery - discharge To use the sharing features on this page, please enable JavaScript. You had cosmetic breast surgery to change the size or shape ...

  1. Breast lump removal

    MedlinePlus

    Lumpectomy; Wide local excision; Breast conservation surgery; Breast-sparing surgery; Partial mastectomy ... a wire localization will be done before the surgery. A radiologist will use a mammogram or ultrasound ...

  2. An encyclopedia of mouse DNA elements (Mouse ENCODE).

    PubMed

    Stamatoyannopoulos, John A; Snyder, Michael; Hardison, Ross; Ren, Bing; Gingeras, Thomas; Gilbert, David M; Groudine, Mark; Bender, Michael; Kaul, Rajinder; Canfield, Theresa; Giste, Erica; Johnson, Audra; Zhang, Mia; Balasundaram, Gayathri; Byron, Rachel; Roach, Vaughan; Sabo, Peter J; Sandstrom, Richard; Stehling, A Sandra; Thurman, Robert E; Weissman, Sherman M; Cayting, Philip; Hariharan, Manoj; Lian, Jin; Cheng, Yong; Landt, Stephen G; Ma, Zhihai; Wold, Barbara J; Dekker, Job; Crawford, Gregory E; Keller, Cheryl A; Wu, Weisheng; Morrissey, Christopher; Kumar, Swathi A; Mishra, Tejaswini; Jain, Deepti; Byrska-Bishop, Marta; Blankenberg, Daniel; Lajoie, Bryan R; Jain, Gaurav; Sanyal, Amartya; Chen, Kaun-Bei; Denas, Olgert; Taylor, James; Blobel, Gerd A; Weiss, Mitchell J; Pimkin, Max; Deng, Wulan; Marinov, Georgi K; Williams, Brian A; Fisher-Aylor, Katherine I; Desalvo, Gilberto; Kiralusha, Anthony; Trout, Diane; Amrhein, Henry; Mortazavi, Ali; Edsall, Lee; McCleary, David; Kuan, Samantha; Shen, Yin; Yue, Feng; Ye, Zhen; Davis, Carrie A; Zaleski, Chris; Jha, Sonali; Xue, Chenghai; Dobin, Alex; Lin, Wei; Fastuca, Meagan; Wang, Huaien; Guigo, Roderic; Djebali, Sarah; Lagarde, Julien; Ryba, Tyrone; Sasaki, Takayo; Malladi, Venkat S; Cline, Melissa S; Kirkup, Vanessa M; Learned, Katrina; Rosenbloom, Kate R; Kent, W James; Feingold, Elise A; Good, Peter J; Pazin, Michael; Lowdon, Rebecca F; Adams, Leslie B

    2012-08-13

    To complement the human Encyclopedia of DNA Elements (ENCODE) project and to enable a broad range of mouse genomics efforts, the Mouse ENCODE Consortium is applying the same experimental pipelines developed for human ENCODE to annotate the mouse genome.

  3. Broccoli Sprout Extract in Treating Patients With Breast Cancer

    ClinicalTrials.gov

    2017-02-14

    Ductal Breast Carcinoma; Ductal Breast Carcinoma In Situ; Estrogen Receptor Negative; Estrogen Receptor Positive; Invasive Breast Carcinoma; Lobular Breast Carcinoma; Postmenopausal; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer

  4. Breast Cancer (For Kids)

    MedlinePlus

    ... With Breast Cancer Breast Cancer Prevention en español Cáncer de mama You may have heard about special events, like walks or races, to raise money for breast cancer research. Or maybe you've seen people wear ...

  5. Contribution of xanthine oxidoreductase to mammary epithelial and breast cancer cell differentiation in part modulates inhibitor of differentiation-1.

    PubMed

    Fini, Mehdi A; Monks, Jenifer; Farabaugh, Susan M; Wright, Richard M

    2011-09-01

    Loss of xanthine oxidoreductase (XOR) has been linked to aggressive breast cancer in vivo and to breast cancer cell aggressiveness in vitro. In the present study, we hypothesized that the contribution of XOR to the development of the normal mammary gland may underlie its capacity to modulate breast cancer. We contrasted in vitro and in vivo developmental systems by differentiation marker and microarray analyses. Human breast cancer microarray was used for clinical outcome studies. The role of XOR in differentiation and proliferation was examined in human breast cancer cells and in a mouse xenograft model. Our data show that XOR was required for functional differentiation of mammary epithelial cells both in vitro and in vivo. Poor XOR expression was observed in a mouse ErbB2 breast cancer model, and pharmacologic inhibition of XOR increased breast cancer tumor burden in mouse xenograft. mRNA microarray analysis of human breast cancer revealed that low XOR expression was significantly associated with time to tumor relapse. The opposing expression of XOR and inhibitor of differentiation-1 (Id1) during HC11 differentiation and mammary gland development suggested a potential functional relationship. While overexpression of Id1 inhibited HC11 differentiation and XOR expression, XOR itself modulated expression of Id1 in differentiating HC11 cells. Overexpression of XOR both inhibited Id1-induced proliferation and -stimulated differentiation of Heregulin-β1-treated human breast cancer cells. These results show that XOR is an important functional component of differentiation whose diminished expression contributes to breast cancer aggressiveness, and they support XOR as both a breast cancer biomarker and a target for pharmacologic activation in therapeutic management of aggressive breast cancer.

  6. Is tail vein injection a relevant breast cancer lung metastasis model?

    PubMed Central

    Rashid, Omar M.; Nagahashi, Masayuki; Ramachandran, Suburamaniam; Dumur, Catherine I.; Schaum, Julia C.; Yamada, Akimitsu; Aoyagi, Tomoyoshi; Milstien, Sheldon; Spiegel, Sarah

    2013-01-01

    Background Two most commonly used animal models for studying breast cancer lung metastasis are: lung metastasis after orthotopic implantation of cells into the mammary gland, and lung implantations produced after tail vein (TV) injection of cells. Tail vein injection can produce lung lesions faster, but little has been studied regarding the differences between these tumors, thus, we examined their morphology and gene expression profiles. Methods Syngeneic murine mammary adenocarcinoma, 4T1-luc2 cells, were implanted either subcutaneously (Sq), orthotopically (OS), or injected via TV in Balb/c mice. Genome-wide microarray analyses of cultured 4T1 cells, Sq tumor, OS tumor, lung metastases after OS (LMet), and lung tumors after TV (TVt) were performed 10 days after implantation. Results Bioluminescence analysis demonstrated different morphology of metastases between LMet and TVt, confirmed by histology. Gene expression profile of cells were significantly different from tumors, OS, Sq, TVt or LMet (10,350 probe sets; FDR≤1%; P<0.0001). Sq tumors were significantly different than OS tumors (700 probe sets; FDR≤15%; P<0.01), and both tumor types (Sq and OS) were significantly different than LMet (1,247 probe sets; >1.5-fold-change; P<0.01), with no significant difference between TVt and LMet. Conclusions There were significant differences between the gene profiles of cells in culture and OS versus LMet, but there were no differences between LMet versus TVt. Therefore, the lung tumor generated by TVt can be considered genetically similar to those produced after OS, and thus TVt is a relevant model for breast cancer lung metastasis. PMID:23991292

  7. Gene expression in local stroma reflects breast tumor states and predicts patient outcome

    PubMed Central

    Bainer, Russell; Frankenberger, Casey; Rabe, Daniel; An, Gary; Gilad, Yoav; Rosner, Marsha Rich

    2016-01-01

    The surrounding microenvironment has been implicated in the progression of breast tumors to metastasis. However, the degree to which metastatic breast tumors locally reprogram stromal cells as they disrupt tissue boundaries is not well understood. We used species-specific RNA sequencing in a mouse xenograft model to determine how the metastasis suppressor RKIP influences transcription in a panel of paired tumor and stroma tissues. We find that gene expression in metastatic breast tumors is pervasively correlated with gene expression in local stroma of both mouse xenografts and human patients. Changes in stromal gene expression elicited by tumors better predicts subtype and patient survival than tumor gene expression, and genes with coordinated expression in both tissues predict metastasis-free survival. These observations support the use of stroma-based strategies for the diagnosis and prognosis of breast cancer. PMID:27982086

  8. Breast-Conserving Surgery Followed by Radiation Therapy With MRI-Detected Stage I or Stage II Breast Cancer

    ClinicalTrials.gov

    2011-12-07

    Ductal Breast Carcinoma in Situ; Estrogen Receptor-negative Breast Cancer; Estrogen Receptor-positive Breast Cancer; HER2-negative Breast Cancer; HER2-positive Breast Cancer; Invasive Ductal Breast Carcinoma; Invasive Lobular Breast Carcinoma; Male Breast Cancer; Medullary Ductal Breast Carcinoma With Lymphocytic Infiltrate; Mucinous Ductal Breast Carcinoma; Papillary Ductal Breast Carcinoma; Progesterone Receptor-negative Breast Cancer; Progesterone Receptor-positive Breast Cancer; Stage I Breast Cancer; Stage II Breast Cancer; Tubular Ductal Breast Carcinoma

  9. Macroscopic Stiffness of Breast Tumors Predicts Metastasis

    PubMed Central

    Fenner, Joseph; Stacer, Amanda C.; Winterroth, Frank; Johnson, Timothy D.; Luker, Kathryn E.; Luker, Gary D.

    2014-01-01

    Mechanical properties of tumors differ substantially from normal cells and tissues. Changes in stiffness or elasticity regulate pro-metastatic behaviors of cancer cells, but effects have been documented predominantly in isolated cells or in vitro cell culture systems. To directly link relative stiffness of tumors to cancer progression, we combined a mouse model of metastatic breast cancer with ex vivo measurements of bulk moduli of freshly excised, intact tumors. We found a high, inverse correlation between bulk modulus of resected tumors and subsequent local recurrence and metastasis. More compliant tumors were associated with more frequent, larger local recurrences and more extensive metastases than mice with relatively stiff tumors. We found that collagen content of resected tumors correlated with bulk modulus values. These data establish that relative differences in tumor stiffness correspond with tumor progression and metastasis, supporting further testing and development of tumor compliance as a prognostic biomarker in breast cancer. PMID:24981707

  10. TGFβ1 Inhibition Increases the Radiosensitivity of Breast Cancer Cells In Vitro and Promotes Tumor Control by Radiation In Vivo

    PubMed Central

    Bouquet, Fanny; Pal, Anupama; Pilones, Karsten A.; Demaria, Sandra; Hann, Byron; Akhurst, Rosemary J.; Babb, Jim S.; Lonning, Scott M.; DeWyngaert, J. Keith; Formenti, Silvia C.; Barcellos-Hoff, Mary Helen

    2013-01-01

    Purpose To determine whether inhibition of TGFβ signaling prior to irradiation sensitizes human and murine cancer cells in vitro and in vivo. Experimental Design TGFβ-mediated growth and Smad phosphorylation of MCF7, Hs578T, MDA-MB-231, and T47D human breast cancer cell lines were examined and correlated with clonogenic survival following graded radiation doses with and without pretreatment with LY364947, a small molecule inhibitor of the TGFβ type I receptor kinase. The DNA damage response was assessed in irradiated MDA-MB-231 cells pretreated with LY364947 in vitro and LY2109761, a pharmacokinetically stable inhibitor of TGFβ signaling, in vivo. The in vitro response of a syngeneic murine tumor, 4T1, was tested using a TGFβ neutralizing antibody, 1D11, with single or fractionated radiation doses in vivo. Results Human breast cancer cell lines pretreated with TGFβ small molecule inhibitor were radio-sensitized, irrespective of sensitivity to TGFβ growth inhibition. Consistent with increased clonogenic cell death, radiation-induced phosphorylation of H2AX and p53 was significantly reduced in MDA-MB-231 triple-negative breast cancer cells when pretreated in vitro or in vivo with a TGFfS type I receptor kinase inhibitor. Moreover, TGFβ neutralizing antibodies increased radiation sensitivity, blocked γH2AX foci formation, and significantly increased tumor growth delay in 4T1 murine mammary tumors in response to single and fractionated radiation exposures. Conclusion These results show that TGFβ inhibition prior to radiation attenuated DNA damage responses, increased clonogenic cell death, and promoted tumor growth delay, and thus may be an effective adjunct in cancer radiotherapy. PMID:22028490

  11. Docosahexaenoic Acid in Preventing Recurrence in Breast Cancer Survivors

    ClinicalTrials.gov

    2016-06-20

    Benign Breast Neoplasm; Ductal Breast Carcinoma In Situ; Invasive Breast Carcinoma; Lobular Breast Carcinoma In Situ; Paget Disease of the Breast; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  12. Molecular cloning, expression, and characterization of mouse amine N-sulfotransferases

    SciTech Connect

    Takahashi, Saki |; Sakakibara, Yoichi | Mishiro, Emi |; Kouriki, Haruna; Nobe, Rika |; Kurogi, Katsuhisa; Yasuda, Shin |; Liu, M.-C.; Suiko, Masahito |

    2008-10-31

    By searching the GenBank database, we recently identified a novel mouse cytosolic sulfotransferase (SULT) cDNA (IMAGE Clone ID 679629) and a novel mouse SULT gene (LOC 215895). Sequence analysis revealed that both mouse SULTs belong to the cytosolic SULT3 gene family. The recombinant form of these two newly identified SULTs, designated SULT3A1 and SULT3A2, were expressed using the pGEX-4T-1 glutathione S-transferase fusion system and purified from transformed BL21 Escherichia coli cells. Both purified SULT3A1 and SULT3A2 exhibited strong amine N-sulfonating activities toward 1-naphthylamine among a variety of endogenous and xenobiotic compounds tested as substrates. Kinetic constants of the sulfation of 1-naphthylamine and 1-naphthol by these two enzymes were determined. Collectively, these results imply that these two amine-sulfonating SULT3s may play essential roles in the metabolism and detoxification of aromatic amine compounds in the body.

  13. Repositioning of antibiotic levofloxacin as a mitochondrial biogenesis inhibitor to target breast cancer.

    PubMed

    Yu, Min; Li, Ruishu; Zhang, Juan

    2016-03-18

    Targeting mitochondrial biogenesis has become a potential therapeutic strategy in cancer due to their unique metabolic dependencies. In this study, we show that levofloxacin, a FDA-approved antibiotic, is an attractive candidate for breast cancer treatment. This is achieved by the inhibition of proliferation and induction of apoptosis in a panel of breast cancer cell lines while sparing normal breast cells. It also acts synergistically with conventional chemo drug in two independent in vivo breast xenograft mouse models. Importantly, levofloxacin inhibits mitochondrial biogenesis as shown by the decreased level of mitochondrial respiration, membrane potential and ATP. In addition, the anti-proliferative and pro-apoptotic effects of levofloxacin are reversed by acetyl-L-Carnitine (ALCAR, a mitochondrial fuel), confirming that levofloxacin's action in breast cancer cells is through inhibition of mitochondrial biogenesis. A consequence of mitochondrial biogenesis inhibition by levofloxacin in breast cancer cells is the deactivation of PI3K/Akt/mTOR and MAPK/ERK pathways. We further demonstrate that breast cancer cells have increased mitochondrial biogenesis than normal breast cells, and this explains their different sensitivity to levofloxacin. Our work suggest that levofloxacin is a useful addition to breast cancer treatment. Our work also establish the essential role of mitochondrial biogenesis on the activation of PI3K/Akt/mTOR and MAPK/ERK pathways in breast cancer cells.

  14. Mouse genome database 2016

    PubMed Central

    Bult, Carol J.; Eppig, Janan T.; Blake, Judith A.; Kadin, James A.; Richardson, Joel E.

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  15. Mouse genome database 2016.

    PubMed

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2016-01-04

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data.

  16. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis.

    PubMed

    Visvader, Jane E

    2009-11-15

    The epithelium of the mammary gland exists in a highly dynamic state, undergoing dramatic morphogenetic changes during puberty, pregnancy, lactation, and regression. The recent identification of stem and progenitor populations in mouse and human mammary tissue has provided evidence that the mammary epithelium is organized in a hierarchical manner. Characterization of these normal epithelial subtypes is an important step toward understanding which cells are predisposed to oncogenesis. This review summarizes progress in the field toward defining constituent cells and key molecular regulators of the mammary epithelial hierarchy. Potential relationships between normal epithelial populations and breast tumor subtypes are discussed, with implications for understanding the cellular etiology underpinning breast tumor heterogeneity.

  17. Male Breast Cancer

    PubMed Central

    Yalaza, Metin; İnan, Aydın; Bozer, Mikdat

    2016-01-01

    Male breast cancer (MBC) is a rare disease, accounting for less than 1% of all breast cancer diagnoses worldwide. Although breast carcinomas share certain characteristics in both genders, there are notable differences. Most studies on men with breast cancer are very small. Thus, most data on male breast cancer are derived from studies on females. However, when a number of these small studies are grouped together, we can learn more from them. This review emphasizes the incidence, etiology, clinical features, diagnosis, treatment, pathology, survival, and prognostic factors related to MBC.

  18. Role of Activin A in Immune Response to Breast Cancer

    DTIC Science & Technology

    2015-12-01

    obstacle to the success of immunotherapy in both human and animal studies is the development of immunologic tolerance in tumor- bearing hosts. Therefore...overtime in 4T1shSCR or 4T1shInhba-tumor bearing mice treated w/o local RT (n=10 per group). Data are representative of two independent experiments...pɘ.05. (C) Survival of 4T1shSCR or 4T1shInhba-tumor bearing mice treated w/o local RT (n=7/group). Data are representative of two independent

  19. Vitamin D delays breast cancer progression in the PyVMT transgenic mouse model: local conversion of the precursor 25(OH)D3 into 1,25(OH)2D3 is safer and more effective than systemic administration of 1,25(OH)2D3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolic activation of 1,25(OH)2D3 occurs at extra renal sites in several organs, including the breast. The purpose of this study was to determine if this local tumoral 25OHD3-1alphahydroxylase expression modulates any or all of the stages of breast tumor progression. For this purpose we used the...

  20. Inositol 1, 4, 5-trisphosphate-dependent nuclear calcium signals regulate angiogenesis and cell motility in triple negative breast cancer.

    PubMed

    Guimarães, Erika; Machado, Rodrigo; Fonseca, Matheus de Castro; França, Andressa; Carvalho, Clarissa; Araújo E Silva, Ana Cândida; Almeida, Brígida; Cassini, Puebla; Hissa, Bárbara; Drumond, Luciana; Gonçalves, Carlos; Fernandes, Gabriel; De Brot, Marina; Moraes, Márcio; Barcelos, Lucíola; Ortega, José Miguel; Oliveira, André; Leite, M Fátima

    2017-01-01

    Increases in nuclear calcium concentration generate specific biological outcomes that differ from those resulting from increased cytoplasmic calcium. Nuclear calcium effects on tumor cell proliferation are widely appreciated; nevertheless, its involvement in other steps of tumor progression is not well understood. Therefore, we evaluated whether nuclear calcium is essential in other additional stages of tumor progression, including key steps associated with the formation of the primary tumor or with the metastatic cascade. We found that nuclear calcium buffering impaired 4T1 triple negative breast cancer growth not just by decreasing tumor cell proliferation, but also by enhancing tumor necrosis. Moreover, nuclear calcium regulates tumor angiogenesis through a mechanism that involves the upregulation of the anti-angiogenic C-X-C motif chemokine 10 (CXCL10-IP10). In addition, nuclear calcium buffering regulates breast tumor cell motility, culminating in less cell invasion, likely due to enhanced vinculin expression, a focal adhesion structural protein. Together, our results show that nuclear calcium is essential for triple breast cancer angiogenesis and cell migration and can be considered as a promising strategic target for triple negative breast cancer therapy.

  1. Antitumor effect and toxicity of free rhodium (II) citrate and rhodium (II) citrate-loaded maghemite nanoparticles in mice bearing breast cancer

    PubMed Central

    2013-01-01

    Background Magnetic fluids containing superparamagnetic iron oxide nanoparticles represent an attractive platform as nanocarriers in chemotherapy. Recently, we developed a formulation of maghemite nanoparticles coated with rhodium (II) citrate, which resulted in in vitro cytotoxicity enhanced up to 4.6 times when compared to free rhodium (II) citrate formulation on breast carcinoma cells. In this work, we evaluate the antitumor activity and toxicity induced by these formulations in Balb/c mice bearing orthotopic 4T1 breast carcinoma. Methods Mice were evaluated with regard to the treatments’ toxicity through analyses of hemogram, serum levels of alanine aminotransferase, iron, and creatinine; DNA fragmentation and cell cycle of bone marrow cells; and liver, kidney and lung histology. In addition, the antitumor activity of rhodium (II) citrate and maghemite nanoparticles coated with rhodium (II) citrate was verified by tumor volume reduction, histology and immunohistochemistry. Results Regarding the treatments’ toxicity, no experimental groups had alterations in levels of serum ALT or creatinine, and this suggestion was corroborated by the histopathologic examination of liver and kidney of mice. Moreover, DNA fragmentation frequency of bone marrow cells was lower than 15% in all experimental groups. On the other hand, the complexes rhodium (II) citrate-functionalized maghemite and free rhodium (II) citrate led to a marked growth inhibition of tumor and decrease in CD31 and Ki-67 staining. Conclusions In summary, we demonstrated that both rhodium (II) citrate and maghemite nanoparticles coated with rhodium (II) citrate formulations exhibited antitumor effects against 4T1 metastatic breast cancer cell line following intratumoral administration. This antitumor effect was followed by inhibition of both cell proliferation and microvascularization and by tumor tissue injury characterized as necrosis and fibrosis. Remarkably, this is the first published report

  2. Do We Know What Causes Breast Cancer?

    MedlinePlus

    ... Research? Breast Cancer About Breast Cancer How Does Breast Cancer Form? Changes or mutations in DNA can cause ... please see our Content Usage Policy . More In Breast Cancer About Breast Cancer Risk and Prevention Early Detection ...

  3. Breast Cancer Early Detection and Diagnosis

    MedlinePlus

    ... En Español Category Cancer A-Z Breast Cancer Breast Cancer Early Detection and Diagnosis Breast cancer is sometimes ... cancer screening is so important. Learn more. Can Breast Cancer Be Found Early? Breast cancer is sometimes found ...

  4. Treatment of Breast Cancer during Pregnancy

    MedlinePlus

    ... During Pregnancy Breast Cancer Breast Cancer Treatment Treating Breast Cancer During Pregnancy If you are diagnosed with breast ... treatment more complicated. Is it safe to treat breast cancer during pregnancy? Pregnant women can get treatment for ...

  5. Treating Male Breast Cancer by Stage

    MedlinePlus

    ... Men Treating Breast Cancer in Men Treatment of Breast Cancer in Men, by Stage Because there have been ... Doctor About Breast Cancer in Men? More In Breast Cancer In Men About Breast Cancer in Men Causes, ...

  6. Living as a Breast Cancer Survivor

    MedlinePlus

    ... a Breast Cancer Survivor Follow up Care After Breast Cancer Treatment Many women are relieved or excited to ... Menopausal Hormone Therapy After Breast Cancer More In Breast Cancer About Breast Cancer Risk and Prevention Early Detection ...

  7. Accelerated Radiation Therapy After Surgery in Treating Patients With Breast Cancer

    ClinicalTrials.gov

    2017-01-20

    Inflammatory Breast Cancer; Invasive Ductal Breast Carcinoma; Invasive Lobular Breast Carcinoma; Mucinous Ductal Breast Carcinoma; Papillary Ductal Breast Carcinoma; Stage II Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Tubular Ductal Breast Carcinoma

  8. Regulation of ERBB Receptor Tyrosine Kinase Activities in Breast Cancer by the KEK Proteins

    DTIC Science & Technology

    1999-11-01

    can also inhibit transformation in mouse mammary tumor cells with deregulated expression of receptors and ligands of the ErbB family. 14. SUBJECT...Reportable outcomes Conclusions References Appendices 7 4 5. INTRODUCTION: In 20-30% of breast tumors , ErbB2, a receptor tyrosine kinase (RTK) of the...inhibit transformation in mouse mammary tumor cells with deregulated expression of receptors and ligands of the ErbB family. In the second year of

  9. Sensitivity of Breast Cancer Stem Cells to TRA-8 Anti-DR5 Monoclonal Antibody

    DTIC Science & Technology

    2013-08-01

    were purchased from Cell Signaling Technology, Inc. (Danvers, MA). Monoclonal anti-β-catenin was purchased from BD Biosciences (San Jose , CA...Luo MH, Ni YB, Chan SK, Lui PC, et al. Cancer stem cell markers are associated with adverse biomarker profiles and molecular subtypes of breast cancer...APC mouse anti-human CD44, PE-Cy7 rat anti- mouse CD44, and corresponding isotype control antibodies were purchased from BD Pharmingen (San Jose , CA

  10. Should diabetic women with breast cancer have their own intervention studies?

    PubMed

    Potter, David A; Yee, Douglas; Guo, Zhijun; Rodriguez, Mariangellys

    2012-02-01

    This commentary on 'Calorie restriction and rapamycin inhibit MMTV-Wnt-1 mammary tumor growth in a mouse model of postmenopausal obesity' by Nogueira et al., published in this issue of Endocrine-Related Cancer, addresses the challenges of translating diet, exercise, and pharmacologic trials in diabetic mouse mammary tumor models to human studies. We propose that trials specifically designed to test such interventions in diabetic women with breast cancer would be valuable and informative.

  11. 6 Common Cancers - Breast Cancer

    MedlinePlus

    ... Bar Home Current Issue Past Issues 6 Common Cancers - Breast Cancer Past Issues / Spring 2007 Table of Contents For ... her down. Photo: AP Photo/Brett Flashnick Breast Cancer Breast cancer is a malignant (cancerous) growth that ...

  12. Breast Implants: Saline vs. Silicone

    MedlinePlus

    ... to women of any age for breast reconstruction. Silicone breast implants Silicone implants are pre-filled with ... likely be inserted at the same time. Ruptured silicone implant If a silicone breast implant ruptures, you ...

  13. Breast Cancer Rates by State

    MedlinePlus

    ... Associated Lung Ovarian Prostate Skin Uterine Cancer Home Breast Cancer Rates by State Language: English Español (Spanish) Recommend ... from breast cancer each year. Rates of Getting Breast Cancer by State The number of people who get ...

  14. Observation of tumor microvessels that are controlled by blood flow in breast cancer

    NASA Astrophysics Data System (ADS)

    Ishida, H.; Andoh, T.; Akiguchi, S.; Kyoden, T.; Hachiga, T.

    2015-04-01

    We attempted to perform non-invasive breast cancer imaging using a reflection-type multipoint laser Doppler velocimeter to monitor blood flow. On day six, after transplantation of cancer cells into mouse breast, we found that blood flow velocity in a blood vessel that extended into the tumor was increased compared to that in normal skin. The effect of carcinogenesis on blood flow over such a short period was shown using blood flow velocity imaging. Although such imaging has not yet been adapted for use in humans, this study is an important step in reaching the ultimate goal, which is early detection of breast cancer.

  15. [Echocardiography in mouse].

    PubMed

    Fayssoil, A

    2008-06-01

    Assessing cardiac phenotype requires invasive or noninvasive techniques in mouse. Echocardiography is a noninvasive technique for evaluating cardiac function. The purpose of this paper is to underline echocardiography modalities and new tools Doppler applications like tissue Doppler imaging.

  16. Mouse Cleaning Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L. (Inventor)

    2005-01-01

    The method of using the mouse pad cleaning apparatus is disclosed and claimed. The method comprises the steps of uncovering the mouse cleaning surface, applying the mouse and ball of the mouse to the cleaning surface, moving the mouse in a rotational pattern on the mouse cleaning surface, removing the mouse form the mouse cleaning surface, washing the cleaning surface, and covering the mouse cleaning surface. A mouse pad cleaning apparatus comprising a plurality of substrates, each said substrate having adhesive thereon, said plurality of substrates residing in and affixed to a receptacle. A single substrate having adhesive, which may be washable or non-washable, thereon may be employed. The washable adhesive may be an organopolysiloxane or gelatinous elastomer.

  17. Carboplatin and Eribulin Mesylate in Triple Negative Breast Cancer Patients

    ClinicalTrials.gov

    2016-06-30

    Estrogen Receptor-negative Breast Cancer; HER2-negative Breast Cancer; Male Breast Cancer; Progesterone Receptor-negative Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Triple-negative Breast Cancer

  18. Amplexicaule A exerts anti-tumor effects by inducing apoptosis in human breast cancer

    PubMed Central

    Shu, Guangwen; Wan, Dingrong; He, Feng; Loaec, Morgann; Ding, Yali; Li, Jun; Dovat, Sinisa; Yang, Gaungzhong; Song, Chunhua

    2016-01-01

    Chemotherapy is the main treatment for patients with breast cancer metastases, but natural alternatives have been receiving attention for their potential as novel anti-tumor reagents. Amplexicaule A (APA) is a flavonoid glucoside isolated from rhizomes of Polygonum amplexicaule D. Don var. sinense Forb (PADF). We found that APA has anti-tumor effects in a breast cancer xenograft mouse model and induces apoptosis in breast cancer cell lines. APA increased levels of cleaved caspase-3,-8,-9 and PARP, which resulted from suppression of MCL-1 and BCL-2 expression in the cells. APA also inactivated the Akt/mTOR pathway in breast cancer cells. Thus, APA exerts a strong anti-tumor effect on breast cancer cells, most likely through induction of apoptosis. Our study is the first to identify this novel anti-tumor compound and provides a new strategy for isolation and separation of single compounds from herbs. PMID:26943775

  19. Targeting the Ron-DEK Signaling Axis in Breast Cancer

    DTIC Science & Technology

    2013-09-01

    The first objective of Task 2 was to test DEK-targeting 1716 Herpes Simplex Viruses (1716HSV) on breast cancer cells. A panel of vectors was...characterized transgenic model wherein wild type Ron is overexpressed selectively in the mammary epithelium by the mouse mammary tumor virus ...degree of knockdown that could be achieved. Three DEK targeting viruses were tested for DEK knockdown in HeLa cells. These included GFP-expressing

  20. Targeting the Ron-DEK Signaling Axis in Breast Cancer

    DTIC Science & Technology

    2013-09-01

    The first objective of Task 2 was to test DEK-targeting 1716 Herpes Simplex Viruses (1716HSV) on breast cancer cells. A panel of vectors was...characterized transgenic model wherein wild type Ron is overexpressed selectively in the mammary epithelium by the mouse mammary tumor virus ...of knockdown that could be achieved. Three DEK targeting viruses were tested for DEK knockdown in HeLa cells. These included GFP-expressing viruses

  1. Discovery of Novel Metastasis Genes in Breast Cancer

    DTIC Science & Technology

    2005-07-01

    fibroblast growth factor binding protein 1 >500 mouse colon, colon adenoma and skin Yes Ray et al., 2003 amplified in breast cancer 1 (AIB1) 679 BC(T), PC(T...Lloyd R.V. (1999). Analysis of anterior pituitary hormone mRNA expression in immunophenotypically characterized single cells after laser capture... pituitary . Histochem J. 33, 201- 211. Van Deerlin V.M., Gill L.H. and Nelson P.T. (2002). Optimizing gene expression analysis in archival brain tissue

  2. Does Lactation Mitigate Triple Negative/Basal Breast Cancer Progression?

    DTIC Science & Technology

    2012-09-01

    cells. Science 1994, 263(5146):526-529. 11. Li JH, Man YG: Dual usages of single Wilms ’ tumor 1 immunohistochemistry in evaluation of breast tumors : a...mammary tumor cells (MCF10ADCIS.com and HCC70 cell lines) directly through the intact mouse teat into the correct anatomical location for ductal...may be preferentially compromised by tumors formed in postpartum involuting mammary glands but maintained by pregnancy. Our murine mammary

  3. A Novel RNA Helicase Inhibitor to Treat Breast Cancer

    DTIC Science & Technology

    2013-08-01

    encapsulate NZ51 in various copolymers to facilitate faster release in mouse plasma. Even the use of PLGA or chitosan derivatives did not resolve the...Subsequently, we attempted to encapsulate a different DDX3 inhibitor into PLGA nanoparticle . This appears to be more feasible than NZ51. The manuscript... nanoparticles containing dual-MR contrast agent, on the primary orthotopic tumor in a preclinical breast cancer model using non-invasive magnetic

  4. Epigenetic Mechanisms of Folate Nutrition in Breast Cancer

    DTIC Science & Technology

    2012-04-01

    unlimited The views, opinions and/or findings contained in this report are those of the author(s) and should not be...10-1-0235 Epigenetic Mechanisms of Folate Nutrition in Breast Cancer Rebecca Lobo University of California, Davis Davis, CA 95618 The most...and MDA-MB-231 (human) and Met1 and DB-7 (mouse). We are currently working in the two human cell lines MCF7 and MDA-MB- 231. Making cells folate

  5. Myofibroblastoma of the Breast

    PubMed Central

    Aytaç, Hüseyin Özgür; Bolat, Filiz Aka; Canpolat, Tuba; Pourbagher, Ayşin

    2015-01-01

    This study aimed presenting a case of a 64-year-old woman with a rare diagnosis of myofibroblastoma (MFB). MFB is one of the rare, benign, spindle-like stromal tumors arising from the connective tissue of the breast. MFBs are often confused with fibroadenomas and hamartomas because of their benign characteristic appearance on breast imaging and are diagnosed after excisional biopsies. Their differential diagnosis with malignant neoplasia of the breast is important because of their wide morphological spectrum. Our case also demonstrated a breast mass with benign imaging characteristics and a needle core biopsy revealing a benign, spindle-like stromal tumor. The pathological examination performed after the excision of the lump demonstrated a collagenous-/fibrous-type MFB. This case report emphasizes the rare but important place of MFB variants of the breast in the differential diagnosis of breast mass.

  6. Breast Reconstruction after Mastectomy

    PubMed Central

    Schmauss, Daniel; Machens, Hans-Günther; Harder, Yves

    2016-01-01

    Breast cancer is the leading cause of cancer death in women worldwide. Its surgical approach has become less and less mutilating in the last decades. However, the overall number of breast reconstructions has significantly increased lately. Nowadays, breast reconstruction should be individualized at its best, first of all taking into consideration not only the oncological aspects of the tumor, neo-/adjuvant treatment, and genetic predisposition, but also its timing (immediate versus delayed breast reconstruction), as well as the patient’s condition and wish. This article gives an overview over the various possibilities of breast reconstruction, including implant- and expander-based reconstruction, flap-based reconstruction (vascularized autologous tissue), the combination of implant and flap, reconstruction using non-vascularized autologous fat, as well as refinement surgery after breast reconstruction. PMID:26835456

  7. Plant cyclopeptide RA-V kills human breast cancer cells by inducing mitochondria-mediated apoptosis through blocking PDK1–AKT interaction

    SciTech Connect

    Fang, Xian-Ying; Chen, Wei; Fan, Jun-Ting; Song, Ran; Wang, Lu; Gu, Yan-Hong; Zeng, Guang-Zhi; Shen, Yan; Wu, Xue-Feng; Tan, Ning-Hua; Xu, Qiang; Sun, Yang

    2013-02-15

    In the present paper, we examined the effects of a natural cyclopeptide RA-V on human breast cancer cells and the underlying mechanisms. RA-V significantly inhibited the growth of human breast cancer MCF-7, MDA-MB-231 cells and murine breast cancer 4T1 cells. In addition, RA-V triggered mitochondrial apoptotic pathway which was indicated by the loss of mitochondrial membrane potential, the release of cytochrome c, and the activation of caspase cascade. Further study showed that RA-V dramatically inhibited phosphorylation of AKT and 3-phosphoinositide dependent protein kinase 1 (PDK1) in MCF-7 cells. Moreover, RA-V disrupted the interaction between PDK1 and AKT in MCF-7 cells. Furthermore, RA-V-induced apoptosis could be enhanced by phosphatidylinositol 3-kinase inhibitor or attenuated by over-expression of AKT in all the three kinds of breast cancer cells. Taken together, this study shows that RA-V, which can induce mitochondria-mediated apoptosis, exerts strong anti-tumor activity against human breast cancer. The underlying anti-cancer mechanism of RA-V is related to the blockage of the interaction between PDK1 and AKT. - Highlights: ► Plant cyclopeptide RA-V kills human breast cancer cells. ► RA-V triggered mitochondrial apoptotic pathway in human breast cancer cells. ► RA-V inhibited phosphorylation of AKT and PDK1 in breast cancer MCF-7 cells. ► Its mechanism is related to the blockage of the interaction between PDK1 and AKT.

  8. Notch reporter activity in breast cancer cell lines identifies a subset of cells with stem cell activity.

    PubMed

    D'Angelo, Rosemarie C; Ouzounova, Maria; Davis, April; Choi, Daejin; Tchuenkam, Stevie M; Kim, Gwangil; Luther, Tahra; Quraishi, Ahmed A; Senbabaoglu, Yasin; Conley, Sarah J; Clouthier, Shawn G; Hassan, Khaled A; Wicha, Max S; Korkaya, Hasan

    2015-03-01

    Developmental pathways such as Notch play a pivotal role in tissue-specific stem cell self-renewal as well as in tumor development. However, the role of Notch signaling in breast cancer stem cells (CSC) remains to be determined. We utilized a lentiviral Notch reporter system to identify a subset of cells with a higher Notch activity (Notch(+)) or reduced activity (Notch(-)) in multiple breast cancer cell lines. Using in vitro and mouse xenotransplantation assays, we investigated the role of the Notch pathway in breast CSC regulation. Breast cancer cells with increased Notch activity displayed increased sphere formation as well as expression of breast CSC markers. Interestingly Notch(+) cells displayed higher Notch4 expression in both basal and luminal breast cancer cell lines. Moreover, Notch(+) cells demonstrated tumor initiation capacity at serial dilutions in mouse xenografts, whereas Notch(-) cells failed to generate tumors. γ-Secretase inhibitor (GSI), a Notch blocker but not a chemotherapeutic agent, effectively targets these Notch(+) cells in vitro and in mouse xenografts. Furthermore, elevated Notch4 and Hey1 expression in primary patient samples correlated with poor patient survival. Our study revealed a molecular mechanism for the role of Notch-mediated regulation of breast CSCs and provided a compelling rationale for CSC-targeted therapeutics.

  9. Notch reporter activity in breast cancer cell lines identifies a subset of cells with stem cell activity

    PubMed Central

    Davis, April; Choi, Daejin; Tchuenkam, Stevie M.; Kim, Gwangil; Luther, Tahra; Quraishi, Ahmed A.; Senbabaoglu, Yasin; Conley, Sarah J.; Clouthier, Shawn G.; Hassan, Khaled A.; Wicha, Max S.; Korkaya, Hasan

    2015-01-01

    Developmental pathways such as Notch play a pivotal role in tissue specific stem cell self-renewal as well as in tumor development. However, the role of Notch signaling in breast cancer stem cells (CSC) remains to be determined. We utilized a lentiviral Notch reporter system to identify a subset of cells with a higher Notch activity (Notch+) or reduced activity (Notch-) in multiple breast cancer cell lines. Using in vitro and mouse xenotransplantation assays we investigated the role of Notch pathway in breast CSC regulation. Breast cancer cells with increased Notch activity displayed increased sphere formation as well as expression of breast CSC markers. Interestingly Notch+ cells displayed higher Notch4 expression in both basal and luminal breast cancer cell lines. Moreover, Notch+ cells demonstrated tumor initiation capacity at serial dilutions in mouse xenografts while Notch- cells failed to generate tumors. Gamma-secretase inhibitor (GSI), a Notch blocker but not a chemotherapeutic agent effectively targets these Notch+ cells in vitro and in mouse xenografts. Furthermore, elevated Notch4 and Hey1 expression in primary patient samples correlated with poor patient survival. Our studies reveal molecular mechanism for the role of Notch mediated regulation of breast CSCs and provide a compelling rationale for CSC targeted therapeutics. PMID:25673823

  10. Overexpression of LMO4 induces mammary hyperplasia, promotes cell invasion, and is a predictor of poor outcome in breast cancer

    PubMed Central

    Sum, Eleanor Y. M.; Segara, Davendra; Duscio, Belinda; Bath, Mary L.; Field, Andrew S.; Sutherland, Robert L.; Lindeman, Geoffrey J.; Visvader, Jane E.

    2005-01-01

    The zinc finger protein LMO4 is overexpressed in a high proportion of breast carcinomas. Here, we report that overexpression of a mouse mammary tumor virus (MMTV)-Lmo4 transgene in the mouse mammary gland elicits hyperplasia and mammary intraepithelial neoplasia or adenosquamous carcinoma in two transgenic strains with a tumor latency of 13–18 months. To investigate cellular processes controlled by LMO4 and those that may be deregulated during oncogenesis, we used RNA interference. Down-regulation of LMO4 expression reduced proliferation of human breast cancer cells and increased differentiation of mouse mammary epithelial cells. Furthermore, small-interfering-RNA-transfected breast cancer cells (MDA-MB-231) had a reduced capacity to migrate and invade an extracellular matrix. Conversely, overexpression of LMO4 in noninvasive, immortalized human MCF10A cells promoted cell motility and invasion. Significantly, in a cohort of 159 primary breast cancers, high nuclear levels of LMO4 were an independent predictor of death from breast cancer. Together, these findings suggest that deregulation of LMO4 in breast epithelium contributes directly to breast neoplasia by altering the rate of cellular proliferation and promoting cell invasion. PMID:15897450

  11. ANGPTL2 increases bone metastasis of breast cancer cells through enhancing CXCR4 signaling.

    PubMed

    Masuda, Tetsuro; Endo, Motoyoshi; Yamamoto, Yutaka; Odagiri, Haruki; Kadomatsu, Tsuyoshi; Nakamura, Takayuki; Tanoue, Hironori; Ito, Hitoshi; Yugami, Masaki; Miyata, Keishi; Morinaga, Jun; Horiguchi, Haruki; Motokawa, Ikuyo; Terada, Kazutoyo; Morioka, Masaki Suimye; Manabe, Ichiro; Iwase, Hirotaka; Mizuta, Hiroshi; Oike, Yuichi

    2015-03-16

    Bone metastasis of breast cancer cells is a major concern, as it causes increased morbidity and mortality in patients. Bone tissue-derived CXCL12 preferentially recruits breast cancer cells expressing CXCR4 to bone metastatic sites. Thus, understanding how CXCR4 expression is regulated in breast cancer cells could suggest approaches to decrease bone metastasis of breast tumor cells. Here, we show that tumor cell-derived angiopoietin-like protein 2 (ANGPTL2) increases responsiveness of breast cancer cells to CXCL12 by promoting up-regulation of CXCR4 in those cells. In addition, we used a xenograft mouse model established by intracardiac injection of tumor cells to show that ANGPTL2 knockdown in breast cancer cells attenuates tumor cell responsiveness to CXCL12 by decreasing CXCR4 expression in those cells, thereby decreasing bone metastasis. Finally, we found that ANGPTL2 and CXCR4 expression levels within primary tumor tissues from breast cancer patients are positively correlated. We conclude that tumor cell-derived ANGPTL2 may increase bone metastasis by enhancing breast tumor cell responsiveness to CXCL12 signaling through up-regulation of tumor cell CXCR4 expression. These findings may suggest novel therapeutic approaches to treat metastatic breast cancer.

  12. TNRC9 downregulates BRCA1 expression and promotes breast cancer aggressiveness.

    PubMed

    Shan, Jingxuan; Dsouza, Shoba P; Bakhru, Sasha; Al-Azwani, Eman K; Ascierto, Maria L; Sastry, Konduru S; Bedri, Shahinaz; Kizhakayil, Dhanya; Aigha, Idil I; Malek, Joel; Al-Bozom, Issam; Gehani, Salah; Furtado, Stacia; Mathiowitz, Edith; Wang, Ena; Marincola, Francesco M; Chouchane, Lotfi

    2013-05-01

    Although the linkage between germline mutations of BRCA1 and hereditary breast/ovarian cancers is well established, recent evidence suggests that altered expression of wild-type BRCA1 might contribute to the sporadic forms of breast cancer. The breast cancer gene trinucleotide-repeat-containing 9 (TNRC9; TOX3) has been associated with disease susceptibility but its function is undetermined. Here, we report that TNRC9 is often amplified and overexpressed in breast cancer, particularly in advanced breast cancer. Gene amplification was associated with reduced disease-free and metastasis-free survival rates. Ectopic expression of TNRC9 increased breast cancer cell proliferation, migration, and survival after exposure to apoptotic stimuli. These phenotypes were associated with tumor progression in a mouse model of breast cancer. Gene expression profiling, protein analysis, and in silico assays of large datasets of breast and ovarian cancer samples suggested that TNRC9 and BRCA1 expression were inversely correlated. Notably, we found that TNRC9 bound to both the BRCA1 promoter and the cAMP-responsive element-binding protein (CREB) complex, a regulator of BRCA1 transcription. In support of this connection, expression of TNRC9 downregulated expression of BRCA1 by altering the methylation status of its promoter. Our studies unveil a function for TNRC9 in breast cancer that highlights a new paradigm in BRCA1 regulation.

  13. Impact of progesterone on stem/progenitor cells in the human breast.

    PubMed

    Hilton, Heidi N; Clarke, Christine L

    2015-06-01

    The epithelium of the human breast is made up of a branching ductal-lobular system, which is lined by a single layer of luminal cells surrounded by a contractile basal cell layer. The co-ordinated development of stem/progenitor cells into these luminal and basal cells is fundamentally important for breast morphogenesis. The ovarian steroid hormone, progesterone, is critical in driving proliferation and normal breast development, yet progesterone analogues have also been shown to be a major driver of breast cancer risk. Studies in recent years have revealed an important role for progesterone in stimulating the mammary stem cell compartment in the mouse mammary gland, and growing evidence supports the notion that progesterone also stimulates progenitor cells in both the normal human breast and in breast cancer cells. As changes in cell type composition are one of the hallmark features of breast cancer progression, these observations have critical implications in discerning the mechanisms of how progesterone increases breast cancer risk. This review summarises recent work regarding the impact of progesterone action on the stem/progenitor cell compartment of the human breast.

  14. Galectin-7 Expression Potentiates HER-2-Positive Phenotype in Breast Cancer

    PubMed Central

    Grosset, Andrée-Anne; Poirier, Françoise; Gaboury, Louis; St-Pierre, Yves

    2016-01-01

    HER-2 positive tumors are among the most aggressive subtypes of breast cancer and are frequently associated with metastasis and poor outcome. As with other aggressive subtypes of breast cancer, these tumors are associated with abnormally high expression of galectin-7 (gal-7), which confers metastatic breast tumor cells with increased invasive behavior. Although previous studies in the rat model of breast tumorigenesis have shown that gal-7 is also increased in primary breast tumor, its contribution to the development of the primary breast tumors remains unclear. In the present work, we have used genetically-engineered gal-7-deficient mice to examine the role of gal-7 in the development of the mammary gland and of breast cancer. Using histological and immunohistological analysis of whole mammary glands at different stages of development, we detected no significant changes between normal and gal-7-deficient mice. To test the involvement of gal-7 in breast cancer, we next examined the effects of loss of gal-7 on mammary tumor development by crossing gal-7-deficient mice with the mammary tumor transgenic mouse strain FVB-Tg(MMTV-Erbb2)NK1Mul/J. Finally, assessment of mice survival and tumor volume showed a delay of mammary tumor growth in the absence of systemic gal-7. These data suggest that gal-7 could potentiate the phenotype of HER-2 positive primary breast cancer. PMID:27902734

  15. ERRα mediates metabolic adaptations driving lapatinib resistance in breast cancer

    PubMed Central

    Deblois, Geneviève; Smith, Harvey W.; Tam, Ingrid S.; Gravel, Simon-Pierre; Caron, Maxime; Savage, Paul; Labbé, David P.; Bégin, Louis R.; Tremblay, Michel L.; Park, Morag; Bourque, Guillaume; St-Pierre, Julie; Muller, William J.; Giguère, Vincent

    2016-01-01

    Despite the initial benefits of treating HER2-amplified breast cancer patients with the tyrosine kinase inhibitor lapatinib, resistance inevitably develops. Here we report that lapatinib induces the degradation of the nuclear receptor ERRα, a master regulator of cellular metabolism, and that the expression of ERRα is restored in lapatinib-resistant breast cancer cells through reactivation of mTOR signalling. Re-expression of ERRα in resistant cells triggers metabolic adaptations favouring mitochondrial energy metabolism through increased glutamine metabolism, as well as ROS detoxification required for cell survival under therapeutic stress conditions. An ERRα inverse agonist counteracts these metabolic adaptations and overcomes lapatinib resistance in a HER2-induced mammary tumour mouse model. This work reveals a molecular mechanism by which ERRα-induced metabolic reprogramming promotes survival of lapatinib-resistant cancer cells and demonstrates the potential of ERRα inhibition as an effective adjuvant therapy in poor outcome HER2-positive breast cancer. PMID:27402251

  16. High expression of REGγ is associated with metastasis and poor prognosis of patients with breast cancer.

    PubMed

    Chai, Fan; Liang, Yan; Bi, Jiong; Chen, Li; Zhang, Fan; Cui, Youhong; Bian, Xiuwu; Jiang, Jun

    2014-01-01

    REGgamma (REGγ) has been recently found in several types of human cancer, however, its clinical significance in metastasis and prognosis of breast cancer remains unknown. In this study, immunohistochemical staining and western blot analysis were performed to evaluate REGγ expression in both mouse and human breast cancer specimens. We found that in MMTV-PyMT mice, 14 out of 20 (70%) mouse mammary carcinomas were REGγ positive, which was significantly higher than control (0/20, 0%, P < 0.001) and lower than metastatic lung tumour (20/20, 100%, P = 0.027). Further investigation for REGγ expression in 136 human breast cancer tissues with the paired peritumoural normal breast tissues and 140 breast benign disease tissue samples showed that REGγ was undetectable in normal breast tissues and nonmetastatic axillary lymph nodes (ALNs), whereas 111 out of 136 (81.6%) breast cancer tissue samples were REGγ positive, which was significantly higher than breast benign disease tissues (9/140, 6.4%, P < 0.001) and lower than metastatic ALNs (116/116, 100%, P < 0.001). The 5-year disease-free and overall survivals of patients with negative/low level of REGγ were significantly higher than those of patients with high level of REGγ (P < 0.05). Cox regression analyses further indicated that REGγ could serve as a novel independent prognostic factor for breast cancer (OR = 4.369, P = 0.008). Our results suggest that the high expression of REGγ might predict metastasis and poor prognosis in breast cancer.

  17. Accessory Breast Carcinoma

    PubMed Central

    Youn, Hyun Jo; Jung, Sung Hoo

    2009-01-01

    Summary Background Ectopic breast tissue usually develops along the mammary ridges, and the incidence has been reported to be 2–6% of the general population. Occurrence of primary carcinoma in ectopic breast tissue is rare. Case Report We report the case of 59-year-old woman with accessory breast carcinoma in her left axilla. Conclusion Because an accessory areola or nipple is often missing and awareness of physicians and patients about these unsuspicious masses is lacking, clinical diagnosis of accessory breast carcinoma is frequently delayed. Therefore, a mass along the ‘milk line’ should be examined carefully, and any suspicious lesions should be evaluated. PMID:20847887

  18. [Breast reconstruction after mastectomy].

    PubMed

    Ho Quoc, C; Delay, E

    2013-02-01

    The mutilating surgery for breast cancer causes deep somatic and psychological sequelae. Breast reconstruction can mitigate these effects and permit the patient to help rebuild their lives. The purpose of this paper is to focus on breast reconstruction techniques and on factors involved in breast reconstruction. The methods of breast reconstruction are presented: objectives, indications, different techniques, operative risks, and long-term monitoring. Many different techniques can now allow breast reconstruction in most patients. Clinical cases are also presented in order to understand the results we expect from a breast reconstruction. Breast reconstruction provides many benefits for patients in terms of rehabilitation, wellness, and quality of life. In our mind, breast reconstruction should be considered more as an opportunity and a positive choice (the patient can decide to do it), than as an obligation (that the patient would suffer). The consultation with the surgeon who will perform the reconstruction is an important step to give all necessary informations. It is really important that the patient could speak again with him before undergoing reconstruction, if she has any doubt. The quality of information given by medical doctors is essential to the success of psychological intervention. This article was written in a simple, and understandable way to help gynecologists giving the best information to their patients. It is maybe also possible to let them a copy of this article, which would enable them to have a written support and would facilitate future consultation with the surgeon who will perform the reconstruction.

  19. Breast milk jaundice

    MedlinePlus

    Hyperbilirubinemia - breastfeeding; Breast-non-feeding jaundice; Breastfeeding failure jaundice ... of jaundice that is caused by too little breastfeeding by making sure your baby is getting enough ...

  20. Mmu-miR-1894-3p Inhibits Cell Proliferation and Migration of Breast Cancer Cells by Targeting Trim46.

    PubMed

    Zhang, Li; Li, Xiaoying; Dong, Wei; Sun, Caixian; Guo, Deyu; Zhang, Lianfeng

    2016-04-22

    Breast cancer is the second leading cause of cancer death in women and the presence of metastasis significantly decreases survival. MicroRNAs are involved in tumor progression and the metastatic spreading of breast cancer. Here, we reported that a microRNA, mmu-miR-1894, significantly decreased the lung metastasis of 4TO7 mouse breast cancer cells by 86.7% in mouse models. Mmu-miR-1894-3p was the functional mature form of miR-1894 and significantly decreased the lung metastasis of 4TO7 cells by 90.8% in mouse models. A dual-luciferase reporter assay indicated that mmu-miR-1894-3p directly targeted the tripartite motif containing 46 (Trim46) 3'-untranslated region (UTR) and downregulated the expression of Trim46 in 4TO7 cells. Consistent with the effect of mmu-miR-1894-3p, knockdown of Trim46 inhibited the experimental lung metastasis of 4TO7 cells. Moreover, knockdown of human Trim46 also prohibited the cell proliferation, migration and wound healing of MBA-MD-231 human breast cancer cells. These results suggested that the effect of knockdown of Trim46 alone was sufficient to recapitulate the effect of mmu-miR-1894 on the metastasis of the breast cancer cells in mouse and that Trim46 was involved in the proliferation and migration of mouse and human breast cancer cells.

  1. Synchronous bilateral breast cancer in a male

    PubMed Central

    Rubio Hernández, María Caridad; Díaz Prado, Yenia Ivet; Pérez, Suanly Rodríguez; Díaz, Ronald Rodríguez; Aleaga, Zaili Gutiérrez

    2013-01-01

    Male breast cancer, which represents only 1% of all breast cancers, is occasionally associated with a family history of breast cancer. Sporadic male breast cancers presenting with another primary breast cancer are extremely rare. In this article, we report on a 70-year-old male patient with bilateral multifocal and synchronous breast cancer and without a family history of breast cancer. PMID:24319497

  2. The p53-Deficient Mouse as a Breast Cancer Model

    DTIC Science & Technology

    1995-10-01

    mammary tumor progression in a relatively controlled fashion within a reasonable length of time. Elucidation of the biological processes affected by p53...role of p53 loss in the mammary tumorigenesis process . The primary goals of the remaining years will be to extend these studies by looking at other...regulation and cell proliferation; (2) angiogenesis; and (3) invasiveness and metastases. The particular genes which regulate these biological processes will

  3. Cyclooxygenase-2 inhibitor induces apoptosis in breast cancer cells in an in vivo model of spontaneous metastatic breast cancer.

    PubMed

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Lagioia, Michelle; Gendler, Sandra J; Mukherjee, Pinku

    2004-11-01

    Cyclooxygenase-2 (COX-2) inhibitors are rapidly emerging as a new generation of therapeutic drug in combination with chemotherapy or radiation therapy for the treatment of cancer. The mechanisms underlying its antitumor effects are not fully understood and more thorough preclinical trials are needed to determine if COX-2 inhibition represents a useful approach for prevention and/or treatment of breast cancer. The purpose of this study was to evaluate the growth inhibitory mechanism of a highly selective COX-2 inhibitor, celecoxib, in an in vivo oncogenic mouse model of spontaneous breast cancer that resembles human disease. The oncogenic mice carry the polyoma middle T antigen driven by the mouse mammary tumor virus promoter and develop primary adenocarcinomas of the breast. Results show that oral administration of celecoxib caused significant reduction in mammary tumor burden associated with increased tumor cell apoptosis and decreased proliferation in vivo. In vivo apoptosis correlated with significant decrease in activation of protein kinase B/Akt, a cell survival signaling kinase, with increased expression of the proapoptotic protein Bax and decreased expression of the antiapoptotic protein Bcl-2. In addition, celecoxib treatment reduced levels of proangiogenic factor (vascular endothelial growth factor), suggesting a role of celecoxib in suppression of angiogenesis in this model. Results from these preclinical studies will form the basis for assessing the feasibility of celecoxib therapy alone or in combination with conventional therapies for treatment and/or prevention of breast cancer.

  4. Breast cancer statistics, 2011.

    PubMed

    DeSantis, Carol; Siegel, Rebecca; Bandi, Priti; Jemal, Ahmedin

    2011-01-01

    In this article, the American Cancer Society provides an overview of female breast cancer statistics in the United States, including trends in incidence, mortality, survival, and screening. Approximately 230,480 new cases of invasive breast cancer and 39,520 breast cancer deaths are expected to occur among US women in 2011. Breast cancer incidence rates were stable among all racial/ethnic groups from 2004 to 2008. Breast cancer death rates have been declining since the early 1990s for all women except American Indians/Alaska Natives, among whom rates have remained stable. Disparities in breast cancer death rates are evident by state, socioeconomic status, and race/ethnicity. While significant declines in mortality rates were observed for 36 states and the District of Columbia over the past 10 years, rates for 14 states remained level. Analyses by county-level poverty rates showed that the decrease in mortality rates began later and was slower among women residing in poor areas. As a result, the highest breast cancer death rates shifted from the affluent areas to the poor areas in the early 1990s. Screening rates continue to be lower in poor women compared with non-poor women, despite much progress in increasing mammography utilization. In 2008, 51.4% of poor women had undergone a screening mammogram in the past 2 years compared with 72.8% of non-poor women. Encouraging patients aged 40 years and older to have annual mammography and a clinical breast examination is the single most important step that clinicians can take to reduce suffering and death from breast cancer. Clinicians should also ensure that patients at high risk of breast cancer are identified and offered appropriate screening and follow-up. Continued progress in the control of breast cancer will require sustained and increased efforts to provide high-quality screening, diagnosis, and treatment to all segments of the population.

  5. Girls' Attitudes toward Breast Care and Breast Self-Examination.

    ERIC Educational Resources Information Center

    Hadranyi, B. T.

    A study explored girls' emerging attitudes toward breast care and breast self-exam (BSE) and the extent to which girls had given thought to these issues. Analyses focused specifically on individual differences related to age, stage of breast development, perceived normalcy of breast development, and body image. The sample consisted of 43 white,…

  6. Role of Notch/VEGF-Receptor 3 in Breast Tumor Angiogenesis and Lymphangiogenesis

    DTIC Science & Technology

    2007-05-01

    order to further test the EF1-Notch1IC mice , we crossed to a mouse line that expresses cre recombinase in vascular smooth muscle cells, SM22cre. This...The second mouse line, EF1-Notch1ECD/Fc, has been generated and is being further tested . We have carried out experiments to demonstrate that breast...embryonic lethality, as expected. The mice have also been crossed to the endothelial specific Flk1-cre mouse and this also leads to embryonic lethality

  7. Loss of PTPN12 Stimulates Progression of ErbB2-Dependent Breast Cancer by Enhancing Cell Survival, Migration, and Epithelial-to-Mesenchymal Transition.

    PubMed

    Li, Juan; Davidson, Dominique; Martins Souza, Cleiton; Zhong, Ming-Chao; Wu, Ning; Park, Morag; Muller, William J; Veillette, André

    2015-12-01

    PTPN12 is a cytoplasmic protein tyrosine phosphatase (PTP) reported to be a tumor suppressor in breast cancer, through its capacity to dephosphorylate oncogenic receptor protein tyrosine kinases (PTKs), such as ErbB2. However, the precise molecular and cellular impact of PTPN12 deficiency in breast cancer progression remains to be fully clarified. Here, we addressed this issue by examining the effect of PTPN12 deficiency on breast cancer progression in vivo, in a mouse model of ErbB2-dependent breast cancer using a conditional PTPN12-deficient mouse. Our studies showed that lack of PTPN12 in breast epithelial cells accelerated breast cancer development and lung metastases in vivo. PTPN12-deficient breast cancer cells displayed enhanced tyrosine phosphorylation of the adaptor Cas, the adaptor paxillin, and the kinase Pyk2. They exhibited no detectable increase in ErbB2 tyrosine phosphorylation. PTPN12-deficient cells were more resistant to anoikis and had augmented migratory and invasive properties. Enhanced migration was corrected by inhibiting Pyk2. PTPN12-deficient breast cancer cells also acquired partial features of epithelial-to-mesenchymal transition (EMT), a feature of more aggressive forms of breast cancer. Hence, loss of PTPN12 promoted tumor progression in a mouse model of breast cancer, supporting the notion that PTPN12 is a tumor suppressor in human breast cancer. This function was related to the ability of PTPN12 to suppress cell survival, migration, invasiveness, and EMT and to inhibit tyrosine phosphorylation of Cas, Pyk2, and paxillin. These findings enhance our understanding of the role and mechanism of action of PTPN12 in the control of breast cancer progression.

  8. Women with Disabilities and Breast Cancer Screening

    MedlinePlus

    ... and Reasonable Accommodations (RA) Women with Disabilities and Breast Cancer Screening Recommend on Facebook Tweet Share Compartir Finding Breast Cancer Early Can Save Lives Disabilities & Breast Cancer Screening ...

  9. Global breast cancer seasonality.

    PubMed

    Oh, Eun-Young; Ansell, Christine; Nawaz, Hamayun; Yang, Chul-Ho; Wood, Patricia A; Hrushesky, William J M

    2010-08-01

    Human breast cancer incidence has seasonal patterns that seem to vary among global populations. The aggregate monthly frequency of breast cancer diagnosis was collected and examined for 2,921,714 breast cancer cases diagnosed across 64 global regions over spans from 2 to 53 years. Breast cancer is consistently diagnosed more often in spring and fall, both in the Northern and Southern Hemispheres, regardless of presumable menopausal status (50). This seasonality is increasingly more prominent as population distance from the equator increases and this latitude dependence is most pronounced among women living in rural areas. Moreover, the overall annual incidence (2005-2006), per 100,000 population, of breast cancer increased as the latitude of population residence increased. These data make it clear that human breast cancer discovery occurs non-randomly throughout each year with peaks near both equinoxes and valleys near both solstices. This stable global breast cancer seasonality has implications for better prevention, more accurate screening, earlier diagnosis, and more effective treatment. This complex latitude-dependent breast cancer seasonality is clearly related to predictable local day/night length changes which occur seasonally. Its mechanism may depend upon seasonal sunlight mediation of vitamin D and seasonal mediation of nocturnal melatonin peak level and duration.

  10. BREAST CANCER AND EXERCISE

    ClinicalTrials.gov

    2008-03-19

    Prevent Osteoporosis and Osteoporotic Fractures; Improve Quality of Life; Improve Weight Control, and Muscular and Cardiovascular Fitness; Help the Patients to Return to Working Life; Reduce the Risk of Breast Cancer Recurrence; Prevent Other Diseases and Reduce All-Cause Mortality in Patients With Primary Breast Cancer.

  11. Breast-milk jaundice.

    PubMed

    Brooten, D; Brown, L; Hollingsworth, A; Tanis, J; Bakewell-Sachs, S

    1985-01-01

    The syndrome of breast-milk jaundice, which often results in cessation of breastfeeding, maternal anxiety, and guilt, may be increasing. Research to date on pregnanediol, increased lipase, and free fatty acids as the causes of breast milk jaundice is reviewed. Variations in current treatment are presented and nursing measures supportive of parents and continued breastfeeding are provided.

  12. Types of Breast Pumps

    MedlinePlus

    ... Powered and Electric Pumps A powered breast pump uses batteries or a cord plugged into an electrical outlet ... pumps rely on a power source, women who use powered breast pumps should be prepared for emergency situations when electricity or extra batteries may not be available. If breastfeeding is not ...

  13. Src Kinase: A Novel Target of Early-Stage ER-Negative Breast Cancer

    DTIC Science & Technology

    2012-03-01

    and examine the sensitivity of these ER- breast cancer to Tamoxifen/ Herceptin using in vitro and MMTV-Neu mouse model. Task 1. To determine the...months: Test the sensitivity of AZD0530 and/Lapatinib treated ER- tumors with Tamoxifen/ Herceptin using immunodeficient and MMTV-Neu mouce model

  14. Tumor Twitter: Cellular Communication in the Breast Cancer Stem Cell Niche

    PubMed Central

    Brooks, Michael D.; Wicha, Max S.

    2015-01-01

    Summary Communication between the diverse assortment of cells that constitute the tumor microenvironment plays an important role in tumor development. Using a p53 null mouse model, Zhang and colleagues describe a novel feedback loop involving breast cancer stem cells and their progeny mediated by Wnt2, CXCL12, and IL6. PMID:25941337

  15. The Impact of Diabetes Treatment on Survival in a Breast Cancer/Diabetes Model

    DTIC Science & Technology

    2008-10-09

    Epidemiological studies have identified that type 2 diabetes mellitus (DM2) is a significant risk factor for carcinogenesis and cancer death. A few...poster session. We have successfully bred the mouse model of HER2-positive breast cancer and diabetes mellitus , i.e., MMTV-ErbB2(neu): db/db. Based on

  16. Breast Cancer and Bone Loss

    MedlinePlus

    ... Balance › Breast Cancer and Bone Loss Fact Sheet Breast Cancer and Bone Loss July, 2010 Download PDFs English ... JoAnn Pinkerton, MD What is the link between breast cancer and bone loss? Certain treatments for breast cancer ...

  17. Increasing Breast Cancer Surveillance Among African American Breast Cancer Survivors

    DTIC Science & Technology

    2006-07-01

    the Witness model will be tailored for breast cancer survivors and the peer interventionists (breast cancer survivors and lay health advisors) will be...by a lay health advisor; 4) discussion of concerns and myths about breast cancer and screening /surveillance that are prevalent among AAW; 5) review...Breast cancer screening surveillance Breast cancer screening Treatment/Time of Treatment intention /adherence & physician recommendation

  18. Sinomenine inhibits breast cancer cell invasion and migration by suppressing NF-κB activation mediated by IL-4/miR-324-5p/CUEDC2 axis

    SciTech Connect

    Song, Lingqin; Liu, Di; Zhao, Yang; He, Jianjun; Kang, Huafeng; Dai, Zhijun; Wang, Xijing; Zhang, Shuqun; Zan, Ying

    2015-08-28

    Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a vital transcription factor that regulates multiple important biological processes, including the epithelial–mesenchymal transition (EMT) and metastasis of breast cancer. Sinomenine is an isoquinoline well known for its remarkable curative effect on rheumatic and arthritic diseases and can induce apoptosis of several cancer cell types. Recently, sinomenine was reported as a tumor suppressor via inhibiting cell proliferation and inducing apoptosis. However, the role and mechanism of sinomenine in invasion and metastasis of breast cancer are largely unknown. Here, we report that sinomenine suppressed the invasion and migration of MDA-MB-231 and 4T1 breast cancer cells in a dose-dependent manner. We detected binding of NF-κB to the inhibitor of NF-κB (IκB) after the MDA-MB-231 cells were treated with 0.25, 0.5, and 1 mM sinomenine. Co-IP analysis revealed that sinomenine enhanced the binding of NF-κB and IκB in a dose-dependent manner, suggesting that sinomenine had an effect on inactivation of NF-κB. Western blotting and ELISA approaches indicated that the suppression effect was closely associated with the phosphorylation of IκB kinase (IKK) and its negative regulator CUEDC2. Sinomenine treatment decreased miR-324-5p expression, thus increased the level of its target gene CUEDC2, and then blocked the phosphorylation of IKK through altering the upstream axis. Finally, transfection of a miR-324-5p mimic inhibited the suppression of invasion and metastasis of MDA-MB-231 and 4T1 cell by sinomenine, providing evidence that sinomenine treatment suppressed breast cancer cell invasion and metastasis via regulation of the IL4/miR-324-5p/CUEDC2 axis. Our findings reveal a novel mechanism by which sinomenine suppresses cancer cell invasion and metastasis, i.e., blocking NF-κB activation. - Highlights: • Sinomenine reduced invasion and migration of MDA-MB-231 and 4T1 breast cancer cells.

  19. Mouse bladder wall injection.

    PubMed

    Fu, Chi-Ling; Apelo, Charity A; Torres, Baldemar; Thai, Kim H; Hsieh, Michael H

    2011-07-12

    Mouse bladder wall injection is a useful technique to orthotopically study bladder phenomena, including stem cell, smooth muscle, and cancer biology. Before starting injections, the surgical area must be cleaned with soap and water and antiseptic solution. Surgical equipment must be sterilized before use and between each animal. Each mouse is placed under inhaled isoflurane anesthesia (2-5% for induction, 1-3% for maintenance) and its bladder exposed by making a midline abdominal incision with scissors. If the bladder is full, it is partially decompressed by gentle squeezing between two fingers. The cell suspension of interest is intramurally injected into the wall of the bladder dome using a 29 or 30 gauge needle and 1 cc or smaller syringe. The wound is then closed using wound clips and the mouse allowed to recover on a warming pad. Bladder wall injection is a delicate microsurgical technique that can be mastered with practice.

  20. Folate receptor-targeted multimodal polymersomes for delivery of quantum dots and doxorubicin to breast adenocarcinoma: In vitro and in vivo evaluation.

    PubMed

    Alibolandi, Mona; Abnous, Khalil; Sadeghi, Fatemeh; Hosseinkhani, Hossein; Ramezani, Mohammad; Hadizadeh, Farzin

    2016-03-16

    In this study, we report the design and delivery of tumor-targeted, quantum dot (QD) and doxorubicin (DOX)-encapsulated PEG-PLGA nanopolymersomes (NPs) for the imaging and chemotherapy of breast cancer. To achieve active cancer targeting, QD and DOX-encapsulated NPs were conjugated with folate for folate-binding protein receptor-guided delivery, which overexpressed in many cancer cells. Hydrophobic DOX and hydrophilic MSA-capped QD were encapsulated in the bilayer and core of the PEG-PLGA nanopolymersomes, respectively. The data show that the formulated NPs sustained DOX release for a period of 12 days. Fluorescence microscopy and MTT assay demonstrated that the developed folate-targeted DOX-QD NPs had higher cytotoxicity than non-targeted NPs and the free form of the drug; moreover, they preferentially accumulated in 4T1 and MCF-7 cells in vitro. In vivo experiments including whole organ tissue-homogenate analysis and organ fluorescence microscopy imaging of BALB/c mice bearing 4T1 breast adenocarcinoma showed that the folate receptor-targeted QD encapsulated NPs accumulate at tumor sites 6h following intravenous injection. Acute toxicity studies of the prepared targeted QD-loaded NPs showed no evidence of long-term harmful histopathological and physiological effects on the treated animals. The in vivo tumor inhibitory effect of folic acid (FA)-QD-DOX NPs demonstrated an augmented therapeutic efficacy of targeted formulation over the non-targeted and free drug. The data obtained illustrate a high potential of the prepared targeted theranostic nanoplatform in the treatment and imaging of breast cancer. This study may open new directions for preparation of QD-based theranostic polymersomes for clinical application.

  1. Cutaneous manifestations of breast cancer.

    PubMed

    Tan, Antoinette R

    2016-06-01

    Breast cancer may present with cutaneous symptoms. The skin manifestations of breast cancer are varied. Some of the more common clinical presentations of metastatic cutaneous lesions from breast cancer will be described. Paraneoplastic cutaneous dermatoses have been reported as markers of breast malignancy and include erythema gyratum repens, acquired ichthyosis, dermatomyositis, multicentric reticulohistiocytosis, and hypertrichosis lanuginosa acquisita. Mammary Paget's disease, often associated with an underlying breast cancer, and Cowden syndrome, which has an increased risk of breast malignancy, each have specific dermatologic findings. Recognition of these distinct cutaneous signs is important in the investigation of either newly diagnosed or recurrent breast cancer.

  2. Downregulation of CXCL12 in mesenchymal stromal cells by TGFβ promotes breast cancer metastasis

    PubMed Central

    Yu, P F; Huang, Y; Xu, C L; Lin, L Y; Han, Y Y; Sun, W H; Hu, G H; Rabson, A B; Wang, Y; Shi, Y F

    2017-01-01

    Mesenchymal stromal cells (MSCs) are one of major components of the tumour microenvironment. Recent studies have shown that MSC tumour residence and their close interactions with inflammatory factors are important factors that affect tumour progression. Among tumour-associated inflammatory factors, transforming growth factor β (TGFβ) is regarded as a key determinant of malignancy. By employing a lung metastasis model of a murine breast cancer, we show here that the prometastatic effect of MSCs was dependent on their response to TGFβ. Interestingly, we found that MSC-produced CXCL12, an important chemokine in tumour metastasis, was markedly inhibited by TGFβ. Furthermore, silencing of CXCL12 in TGFβ-unresponsive MSCs restored their ability to promote tumour metastasis. We found that 4T1 breast cancer cells expressed high levels of CXCR7, but not of CXCR4, both of which are CXCL12 receptors. In presence of CXCL12, CXCR7 expression on tumour cells was decreased. Indeed, when CXCR7 was silenced in breast cancer cells, their metastatic ability was inhibited. Therefore, our data demonstrated that sustained expression of CXCL12 by MSCs in the primary tumour site inhibits metastasis through reduction of CXCR7, while, in the presence of TGFβ, this CXCL12 effect of MSCs on tumour cells is relieved. Importantly, elevated CXCR7 and depressed CXCL12 expression levels were prominent features of clinical breast cancer lesions and were related significantly with poor survival. Our findings reveal a novel mechanism of MSC effects on malignant cells through which crosstalk between MSCs and TGFβ regulates tumour metastasis. PMID:27669436

  3. Ranitidine modifies myeloid cell populations and inhibits breast tumor development and spread in mice

    PubMed Central

    Vila-Leahey, Ava; Oldford, Sharon A.; Marignani, Paola A.; Wang, Jun; Haidl, Ian D.; Marshall, Jean S.

    2016-01-01

    ABSTRACT Histamine receptor 2 (H2) antagonists are widely used clinically for the control of gastrointestinal symptoms, but also impact immune function. They have been reported to reduce tumor growth in established colon and lung cancer models. Histamine has also been reported to modify populations of myeloid-derived suppressor cells (MDSCs). We have examined the impact of the widely used H2 antagonist ranitidine, on both myeloid cell populations and tumor development and spread, in three distinct models of breast cancer that highlight different stages of cancer progression. Oral ranitidine treatment significantly decreased the monocytic MDSC population in the spleen and bone marrow both alone and in the context of an orthotopic breast tumor model. H2 antagonists ranitidine and famotidine, but not H1 or H4 antagonists, significantly inhibited lung metastasis in the 4T1 model. In the E0771 model, ranitidine decreased primary tumor growth while omeprazole treatment had no impact on tumor development. Gemcitabine treatment prevented the tumor growth inhibition associated with ranitidine treatment. In keeping with ranitidine-induced changes in myeloid cell populations in non-tumor-bearing mice, ranitidine also delayed the onset of spontaneous tumor development, and decreased the number of tumors that developed in LKB1−/−/NIC mice. These results indicate that ranitidine alters monocyte populations associated with MDSC activity, and subsequently impacts breast tumor development and outcome. Ranitidine has potential as an adjuvant therapy or preventative agent in breast cancer and provides a novel and safe approach to the long-term reduction of tumor-associated immune suppression. PMID:27622015

  4. Omega-3 Fatty Acid in Treating Patients With Stage I-III Breast Cancer

    ClinicalTrials.gov

    2017-03-13

    Ductal Breast Carcinoma in Situ; Lobular Breast Carcinoma in Situ; Male Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  5. Lessons Learned from Mouse Mammary Tumor Virus in Animal Models

    PubMed Central

    Dudley, Jaquelin P.; Golovkina, Tatyana V.; Ross, Susan R.

    2016-01-01

    Mouse mammary tumor virus (MMTV), which was discovered as a milk-transmitted, infectious, cancer-inducing agent in the 1930s, has been used as an animal model for the study of retroviral infection and transmission, antiviral immune responses, and breast cancer and lymphoma biology. The main target cells for MMTV infection in vivo are cells of the immune system and mammary epithelial cells. Although the host mounts an immune response to the virus, MMTV has evolved multiple means of evading this response. MMTV causes mammary tumors when the provirus integrates into the mammary epithelial and lymphoid cell genome during viral replication and thereby activates cellular oncogene expression. Thus, tumor induction is a by-product of the infection cycle. A number of important oncogenes have been discovered by carrying out MMTV integration site analysis, some of which may play a role in human breast cancer. PMID:27034391

  6. Interaction of the MUC1 Tumor Antigen and the Adenomatous Polyposis Coli Tumor Suppressor in Human Breast Cancer

    DTIC Science & Technology

    2005-03-01

    Cancer PRINCIPAL INVESTIGATOR: Christine L. Hattrup CONTRACTING ORGANIZATION: Mayo Clinic Scottsdale, AZ 85259 REPORT DATE: March 2005 TYPE OF REPORT...FRET, and siRNA as complementary assays in examining the role of the MUCl -APC interaction in human breast cancer. 14. SUBJECT TERMS 15. NUMBER OF PAGES...significance for breast cancer and metastasis, as Mucl (note that the mouse protein is designated Mucl and the human MUC1), P-catenin, and the erbB

  7. Researchers Create Artificial Mouse 'Embryo'

    MedlinePlus

    ... news/fullstory_163881.html Researchers Create Artificial Mouse 'Embryo' Experiment used two types of gene-modified stem ... they've created a kind of artificial mouse embryo using stem cells, which can be coaxed to ...

  8. Intensity Modulated Accelerated Partial Breast Irradiation Before Surgery in Treating Older Patients With Hormone Responsive Stage 0-I Breast Cancer

    ClinicalTrials.gov

    2016-05-04

    Ductal Breast Carcinoma in Situ; Estrogen Receptor-negative Breast Cancer; Estrogen Receptor-positive Breast Cancer; Invasive Ductal Breast Carcinoma; Invasive Ductal Breast Carcinoma With Predominant Intraductal Component; Lobular Breast Carcinoma in Situ; Medullary Ductal Breast Carcinoma With Lymphocytic Infiltrate; Mucinous Ductal Breast Carcinoma; Papillary Ductal Breast Carcinoma; Progesterone Receptor-positive Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Tubular Ductal Breast Carcinoma

  9. CD44-Tropic Polymeric Nanocarrier for Breast Cancer Targeted Rapamycin Chemotherapy

    PubMed Central

    Zhao, Yunqi; Zhang, Ti; Duan, Shaofeng; Davies, Neal M.; Forrest, M. Laird

    2014-01-01

    In contrast with the conventional targeting of nanoparticles to cancer cells with antibody or peptide conjugates, a hyaluronic acid (HA) matrix nanoparticle with intrinsic-CD44-tropism was developed to deliver rapamycin for localized CD44-positive breast cancer treatment. Rapamycin was chemically conjugated to the particle surface via a novel sustained-release linker, 3-amino-4-methoxy-benzoic acid. The release of the drug from the HA nanoparticle was improved by 42-fold compared to HA-temsirolimus in buffered saline. In CD44 positive MDA-MB-468 cells, using HA as drug delivery carrier, the cell-viability was significantly decreased compared to free rapamycin and CD44-blocked controls. Rat pharmacokinetics showed that the area-under-the-curve of HA nanoparticle formulation was 2.96-fold greater than that of the free drug, and the concomitant total body clearance was 8.82-fold slower. Moreover, in immunocompetent BALB/c mice bearing CD44-positive 4T1.2neu breast cancer, the rapamycin1loaded HA particles significantly improved animal survival, suppressed tumor growth and reduced the prevalence of lung metastasis. PMID:24637218

  10. A novel agent exerts antitumor activity in breast cancer cells by targeting mitochondrial complex II

    PubMed Central

    Cui, Guozhen; Chan, Judy Yuet-Wa; Wang, Li; Li, Chuwen; Shan, Luchen; Xu, Changjiang; Zhang, Qingwen; Wang, Yuqiang; Di, Lijun; Lee, Simon Ming-Yuen

    2016-01-01

    The mitochondrial respiratory chain, including mitochondrial complex II, has emerged as a potential target for cancer therapy. In the present study, a novel conjugate of danshensu (DSS) and tetramethylpyrazine (TMP), DT-010, was synthesized. Our results showed that DT-010 is more potent than its parental compounds separately or in combination, in inhibiting the proliferation of MCF-7 and MDA-MB-231 cells by inducing cytotoxicity and promoting cell cycle arrest. It also inhibited the growth of 4T1 breast cancer cells in vivo. DT-010 suppressed the fundamental parameters of mitochondrial function in MCF-7 cells, including basal respiration, ATP turnover, maximal respiration. Treatment with DT-010 in MCF-7 and MDA-MB-231 cells resulted in the loss of mitochondrial membrane potential and decreased ATP production. DT-010 also promoted ROS generation, while treatment with ROS scavenger, NAC (N-acetyl-L-cysteine), reversed DT-010-induced cytotoxicity. Further study showed that DT-010 suppressed succinate-induced mitochondrial respiration and impaired mitochondrial complex II enzyme activity indicating that DT-010 may inhibit mitochondrial complex II. Overall, our results suggested that the antitumor activity of DT-010 is associated with inhibition of mitochondrial complex II, which triggers ROS generation and mitochondrial dysfunction in breast cancer cells. PMID:27081033

  11. Interactome analysis of myeloid-derived suppressor cells in murine models of colon and breast cancer.

    PubMed

    Aliper, Alexander M; Frieden-Korovkina, Victoria P; Buzdin, Anton; Roumiantsev, Sergey A; Zhavoronkov, Alex

    2014-11-30

    In solid cancers, myeloid derived suppressor cells (MDSC) infiltrate (peri)tumoral tissues to induce immune tolerance and hence to establish a microenvironment permissive to tumor growth. Importantly, the mechanisms that facilitate such infiltration or a subsequent immune suppression are not fully understood. Hence, in this study, we aimed to delineate disparate molecular pathways which MDSC utilize in murine models of colon or breast cancer. Using pathways enrichment analysis, we completed interactome maps of multiple signaling pathways in CD11b+/Gr1(high/low) MDSC from spleens and tumor infiltrates of mice with c26GM colon cancer and tumor infiltrates of MDSC in 4T1 breast cancer. In both cancer models, infiltrating MDSC, but not CD11b+ splenic cells, have been found to be enriched in multiple signaling molecules suggestive of their enhanced proliferative and invasive phenotypes. The interactome data has been subsequently used to reconstruct a previously unexplored regulation of MDSC cell cycle by the c-myc transcription factor which was predicted by the analysis. Thus, this study represents a first interactome mapping of distinct multiple molecular pathways whereby MDSC sustain cancer progression.

  12. NSG Mice Provide a Better Spontaneous Model of Breast Cancer Metastasis than Athymic (Nude) Mice

    PubMed Central

    Puchalapalli, Madhavi; Zeng, Xianke; Mu, Liang; Anderson, Aubree; Hix Glickman, Laura; Zhang, Ming; Sayyad, Megan R.; Mosticone Wangensteen, Sierra; Clevenger, Charles V.; Koblinski, Jennifer E.

    2016-01-01

    Metastasis is the most common cause of mortality in breast cancer patients worldwide. To identify improved mouse models for breast cancer growth and spontaneous metastasis, we examined growth and metastasis of both estrogen receptor positive (T47D) and negative (MDA-MB-231, SUM1315, and CN34BrM) human breast cancer cells in nude and NSG mice. Both primary tumor growth and spontaneous metastases were increased in NSG mice compared to nude mice. In addition, a pattern of metastasis similar to that observed in human breast cancer patients (metastases to the lungs, liver, bones, brain, and lymph nodes) was found in NSG mice. Furthermore, there was an increase in the metastatic burden in NSG compared to nude mice that were injected with MDA-MB-231 breast cancer cells in an intracardiac experimental metastasis model. This data demonstrates that NSG mice provide a better model for studying human breast cancer metastasis compared to the current nude mouse model. PMID:27662655

  13. Breast cancer-associated metastasis is significantly increased in a model of autoimmune arthritis

    PubMed Central

    Das Roy, Lopamudra; Pathangey, Latha B; Tinder, Teresa L; Schettini, Jorge L; Gruber, Helen E; Mukherjee, Pinku

    2009-01-01

    Introduction Sites of chronic inflammation are often associated with the establishment and growth of various malignancies including breast cancer. A common inflammatory condition in humans is autoimmune arthritis (AA) that causes inflammation and deformity of the joints. Other systemic effects associated with arthritis include increased cellular infiltration and inflammation of the lungs. Several studies have reported statistically significant risk ratios between AA and breast cancer. Despite this knowledge, available for a decade, it has never been questioned if the site of chronic inflammation linked to AA creates a milieu that attracts tumor cells to home and grow in the inflamed bones and lungs which are frequent sites of breast cancer metastasis. Methods To determine if chronic inflammation induced by autoimmune arthritis contributes to increased breast cancer-associated metastasis, we generated mammary gland tumors in SKG mice that were genetically prone to develop AA. Two breast cancer cell lines, one highly metastatic (4T1) and the other non-metastatic (TUBO) were used to generate the tumors in the mammary fat pad. Lung and bone metastasis and the associated inflammatory milieu were evaluated in the arthritic versus the non-arthritic mice. Results We report a three-fold increase in lung metastasis and a significant increase in the incidence of bone metastasis in the pro-arthritic and arthritic mice compared to non-arthritic control mice. We also report that the metastatic breast cancer cells augment the severity of arthritis resulting in a vicious cycle that increases both bone destruction and metastasis. Enhanced neutrophilic and granulocytic infiltration in lungs and bone of the pro-arthritic and arthritic mice and subsequent increase in circulating levels of proinflammatory cytokines, such as macrophage colony stimulating factor (M-CSF), interleukin-17 (IL-17), interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and tumor necrosis factor

  14. A Radiolabeled Fully Human Antibody to Human Aspartyl (Asparaginyl) β-Hydroxylase Is a Promising Agent for Imaging and Therapy of Metastatic Breast Cancer.

    PubMed

    Revskaya, Ekaterina; Jiang, Zewei; Morgenstern, Alfred; Bruchertseifer, Frank; Sesay, Muctarr; Walker, Susan; Fuller, Steven; Lebowitz, Michael S; Gravekamp, Claudia; Ghanbari, Hossein A; Dadachova, Ekaterina

    2017-03-01

    There is a need for novel effective and safe therapies for metastatic breast cancer based on targeting tumor-specific molecular markers of cancer. Human aspartyl (asparaginyl) β-hydroxylase (HAAH) is a highly conserved enzyme that hydroxylates epidermal growth factor-like domains in transformation-associated proteins and is overexpressed in a variety of cancers, including breast cancer. A fully human monoclonal antibody (mAb) PAN-622 has been developed to HAAH. In this study, they describe the development of PAN-622 mAb as an agent for imaging and radioimmunotherapy of metastatic breast cancer. PAN-622 was conjugated to several ligands such as DOTA, CHXA″, and DTPA to enable subsequent radiolabeling and its immunoreactivity was evaluated by an HAAH-specific enzyme-linked immunosorbent assay and binding to the HAAH-positive cells. As a result, DTPA-PAN-622 was chosen to investigate biodistribution in healthy CD-1 female mice and 4T1 mammary tumor-bearing BALB/c mice. The (111)In-DTPA-pan622 mAb concentrated in the primary tumors and to some degree in lung metastases as shown by SPECT/CT and Cherenkov imaging. A pilot therapy study with (213)Bi-DTPA-PAN-622 demonstrated a significant effect on the primary tumor. The authors concluded that human mAb PAN-622 to HAAH is a promising reagent for development of imaging and possible therapeutic agents for the treatment of metastatic breast cancer.

  15. Expansion of CD11b(+)Ly6G (+)Ly6C (int) cells driven by medroxyprogesterone acetate in mice bearing breast tumors restrains NK cell effector functions.

    PubMed

    Spallanzani, Raúl Germán; Dalotto-Moreno, Tomás; Raffo Iraolagoitia, Ximena Lucía; Ziblat, Andrea; Domaica, Carolina Inés; Avila, Damián Ezequiel; Rossi, Lucas Ezequiel; Fuertes, Mercedes Beatriz; Battistone, María Agustina; Rabinovich, Gabriel Adrián; Salatino, Mariana; Zwirner, Norberto Walter

    2013-12-01

    The progesterone analog medroxyprogesterone acetate (MPA) is widely used as a hormone replacement therapy in postmenopausal women and as contraceptive. However, prolonged administration of MPA is associated with increased incidence of breast cancer through ill-defined mechanisms. Here, we explored whether exposure to MPA during mammary tumor growth affects myeloid-derived suppressor cells (MDSCs; CD11b(+)Gr-1(+), mostly CD11b(+)Ly6G(+)Ly6C(int) and CD11b(+)Ly6G(-)Ly6C(high) cells) and natural killer (NK) cells, potentially restraining tumor immunosurveillance. We used the highly metastatic 4T1 breast tumor (which does not express the classical progesterone receptor and expands MDSCs) to challenge BALB/c mice in the absence or in the presence of MPA. We observed that MPA promoted the accumulation of NK cells in spleens of tumor-bearing mice, but with reduced degranulation ability and in vivo cytotoxic activity. Simultaneously, MPA induced a preferential expansion of CD11b(+)Ly6G(+)Ly6C(int) cells in spleen and bone marrow of 4T1 tumor-bearing mice. In vitro, MPA promoted nuclear mobilization of the glucocorticoid receptor (GR) in 4T1 cells and endowed these cells with the ability to promote a preferential differentiation of bone marrow cells into CD11b(+)Ly6G(+)Ly6C(int) cells that displayed suppressive activity on NK cell degranulation. Sorted CD11b(+)Gr-1(+) cells from MPA-treated tumor-bearing mice exhibited higher suppressive activity on NK cell degranulation than CD11b(+)Gr-1(+) cells from vehicle-treated tumor-bearing mice. Thus, MPA, acting through the GR, endows tumor cells with an enhanced capacity to expand CD11b(+)Ly6G(+)Ly6C(int) cells that subsequently display a stronger suppression of NK cell-mediated anti-tumor immunity. Our results describe an alternative mechanism by which MPA may affect immunosurveillance and have potential implication in breast cancer incidence.

  16. Contrast-enhanced microwave detection and treatment of breast cancer

    NASA Astrophysics Data System (ADS)

    Gao, Fuqiang

    Contrast agents and heating agents have been proposed for microwave breast tumor imaging and treatment, respectively. The dielectric properties of the tumor are altered with contrast agents or heating agents that locally accumulate in the tumor. The resulting change in dielectric properties of the tumor has the potential to enhance the sensitivity of microwave imaging of breast tumors and increase the efficiency and selectivity of microwave thermal therapy of breast tumors. This dissertation addresses several key challenges in contrast-enhanced microwave imaging and treatment of breast tumors. Carbon nanotubes (CNTs) have been shown to enhance both the relative permittivity and effective conductivity of the host medium, and are promising as theranostic (integrated therapeutic and diagnostic) agents. Thus, our properties characterization work focuses on CNT dispersions. We performed in vitro microwave dielectric properties and heating response characterization of dispersions of CNTs treated by different functionalization methods and identified a CNT formulation that is very promising as a microwave theranostic agent. Stable dispersions of CNTs with concentrations up to 20 mg/ml are obtained with this formulation, and the enhanced microwave properties of these dispersions are extraordinary compared to the control. We also conducted in vivo dielectric properties characterization of mouse tumors with intra-tumoral injections of CNT dispersions and confirmed that the presence of CNTs increases the dielectric properties of the tumor. In parallel, we developed a contrast-enhanced microwave breast tumor imaging algorithm using sparse reconstruction methods. We demonstrated that this algorithm accurately localizes small tumors in 3D numerical breast phantoms. We also demonstrated the experimental feasibility of this method using physical breast phantoms. Lastly, we studied the sensitivity of the distorted Born iterative method (DBIM) to initial guesses and developed a

  17. Biology of breast cancer during pregnancy using genomic profiling.

    PubMed

    Azim, Hatem A; Brohée, Sylvain; Peccatori, Fedro A; Desmedt, Christine; Loi, Sherene; Lambrechts, Diether; Dell'Orto, Patrizia; Majjaj, Samira; Jose, Vinu; Rotmensz, Nicole; Ignatiadis, Michail; Pruneri, Giancarlo; Piccart, Martine; Viale, Giuseppe; Sotiriou, Christos

    2014-08-01

    Breast cancer during pregnancy is rare and is associated with relatively poor prognosis. No information is available on its biological features at the genomic level. Using a dataset of 54 pregnant and 113 non-pregnant breast cancer patients, we evaluated the pattern of hot spot somatic mutations and did transcriptomic profiling using Sequenom and Affymetrix respectively. We performed gene set enrichment analysis to evaluate the pathways associated with diagnosis during pregnancy. We also evaluated the expression of selected cancer-related genes in pregnant and non-pregnant patients and correlated the results with changes occurring in the normal breast using a pregnant murine model. We finally investigated aberrations associated with disease-free survival (DFS). No significant differences in mutations were observed. Of the total number of patients, 18.6% of pregnant and 23% of non-pregnant patients had a PIK3CA mutation. Around 30% of tumors were basal, with no differences in the distribution of breast cancer molecular subtypes between pregnant and non-pregnant patients. Two pathways were enriched in tumors diagnosed during pregnancy: the G protein-coupled receptor pathway and the serotonin receptor pathway (FDR <0.0001). Tumors diagnosed during pregnancy had higher expression of PD1 (PDCD1; P=0.015), PDL1 (CD274; P=0.014), and gene sets related to SRC (P=0.004), IGF1 (P=0.032), and β-catenin (P=0.019). Their expression increased almost linearly throughout gestation when evaluated on the normal breast using a pregnant mouse model underscoring the potential effect of the breast microenvironment on tumor phenotype. No genes were associated with DFS in a multivariate model, which could be due to low statistical power. Diagnosis during pregnancy impacts the breast cancer transcriptome including potential cancer targets.

  18. Treatment Options for Male Breast Cancer

    MedlinePlus

    ... Breast & Gynecologic Cancers Breast Cancer Screening Research Male Breast Cancer Treatment (PDQ®)–Patient Version General Information about Male Breast Cancer Go to Health Professional Version Key Points Male ...

  19. Treatment Option Overview (Male Breast Cancer)

    MedlinePlus

    ... Breast & Gynecologic Cancers Breast Cancer Screening Research Male Breast Cancer Treatment (PDQ®)–Patient Version General Information about Male Breast Cancer Go to Health Professional Version Key Points Male ...

  20. General Information about Male Breast Cancer

    MedlinePlus

    ... Breast & Gynecologic Cancers Breast Cancer Screening Research Male Breast Cancer Treatment (PDQ®)–Patient Version General Information about Male Breast Cancer Go to Health Professional Version Key Points Male ...

  1. An obesity-dependent lactation defect in the viable yellow agouti mouse is associated with mammary inflammation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maternal obesity is known to delay lactogenesis in breast-feeding women, as well as negatively impact lactation in other species. Obesity is also understood to be associated with inflammation. Work with the viable yellow agouti (Avy) mouse in our laboratory has documented a lactation defect in obese...

  2. G-CSF regulates macrophage phenotype and associates with poor overall survival in human triple-negative breast cancer

    PubMed Central

    Hollmén, Maija; Karaman, Sinem; Schwager, Simon; Lisibach, Angela; Christiansen, Ailsa J.; Maksimow, Mikael; Varga, Zsuzsanna; Jalkanen, Sirpa; Detmar, Michael

    2016-01-01

    ABSTRACT Tumor-associated macrophages (TAMs) have been implicated in the promotion of breast cancer growth and metastasis, and a strong infiltration by TAMs has been associated with estrogen receptor (ER)-negative tumors and poor prognosis. However, the molecular mechanisms behind these observations are unclear. We investigated macrophage activation in response to co-culture with several breast cancer cell lines (T47D, MCF-7, BT-474, SKBR-3, Cal-51 and MDA-MB-231) and found that high granulocyte colony-stimulating factor (G-CSF) secretion by the triple-negative breast cancer (TNBC) cell line MDA-MB-231 gave rise to immunosuppressive HLA-DRlo macrophages that promoted migration of breast cancer cells via secretion of TGF-α. In human breast cancer samples (n = 548), G-CSF was highly expressed in TNBC (p < 0.001) and associated with CD163+ macrophages (p < 0.0001), poorer overall survival (OS) (p = 0.021) and significantly increased numbers of TGF-α+ cells. While G-CSF blockade in the 4T1 mammary tumor model promoted maturation of MHCIIhi blood monocytes and TAMs and significantly reduced lung metastasis, anti-CSF-1R treatment promoted MHCIIloF4/80hiMRhi anti-inflammatory TAMs and enhanced lung metastasis in the presence of high G-CSF levels. Combined anti-G-CSF and anti-CSF-1R therapy significantly increased lymph node metastases, possibly via depletion of the so-called “gate-keeper” subcapsular sinus macrophages. These results indicate that G-CSF promotes the anti-inflammatory phenotype of tumor-induced macrophages when CSF-1R is inhibited and therefore caution against the use of M-CSF/CSF-1R targeting agents in tumors with high G-CSF expression. PMID:27141367

  3. Gene expression profiling of mouse p53-deficient epidermal carcinoma defines molecular determinants of human cancer malignancy

    PubMed Central

    2010-01-01

    Background The epidermal specific ablation of Trp53 gene leads to the spontaneous development of aggressive tumors in mice through a process that is accelerated by the simultaneous ablation of Rb gene. Since alterations of p53-dependent pathway are common hallmarks of aggressive, poor prognostic human cancers, these mouse models can recapitulate the molecular features of some of these human malignancies. Results To evaluate this possibility, gene expression microarray analysis was performed in mouse samples. The mouse tumors display increased expression of cell cycle and chromosomal instability associated genes. Remarkably, they are also enriched in human embryonic stem cell gene signatures, a characteristic feature of human aggressive tumors. Using cross-species comparison and meta-analytical approaches, we also observed that spontaneous mouse tumors display robust similarities with gene expression profiles of human tumors bearing mutated TP53, or displaying poor prognostic outcome, from multiple body tissues. We have obtained a 20-gene signature whose genes are overexpressed in mouse tumors and can identify human tumors with poor outcome from breast cancer, astrocytoma and multiple myeloma. This signature was consistently overexpressed in additional mouse tumors using microarray analysis. Two of the genes of this signature, AURKA and UBE2C, were validated in human breast and cervical cancer as potential biomarkers of malignancy. Conclusions Our analyses demonstrate that these mouse models are promising preclinical tools aimed to search for malignancy biomarkers and to test targeted therapies of prospective use in human aggressive tumors and/or with p53 mutation or inactivation. PMID:20630075

  4. Targeting Breast Cancer Metastasis

    PubMed Central

    Jin, Xin; Mu, Ping

    2015-01-01

    Metastasis is the leading cause of breast cancer-associated deaths. Despite the significant improvement in current therapies in extending patient life, 30–40% of patients may eventually suffer from distant relapse and succumb to the disease. Consequently, a deeper understanding of the metastasis biology is key to developing better treatment strategies and achieving long-lasting therapeutic efficacies against breast cancer. This review covers recent breakthroughs in the discovery of various metastatic traits that contribute to the metastasis cascade of breast cancer, which may provide novel avenues for therapeutic targeting. PMID:26380552

  5. Breast cancer and depression.

    PubMed

    Somerset, Wendy; Stout, Steven C; Miller, Andrew H; Musselman, Dominique

    2004-07-01

    Major depression and depressive symptoms, although commonly encountered in patients with medical illnesses, are frequently underdiagnosed and undertreated in women with breast cancer. Depression and its associated symptoms diminish quality of life, adversely affect compliance with medical therapies, and reduce survival. Treatment of depression in women with breast cancer improves their dysphoria and other depressive symptoms, enhances quality of life, and may increase longevity. In this review, studies that investigate pathophysiologic alterations in patients with cancer and comorbid depression are discussed, and the few studies on treatment of depression and related symptoms in women with breast cancer are examined.

  6. Pertuzumab, Trastuzumab, and Paclitaxel Albumin-Stabilized Nanoparticle Formulation in Treating Patients With HER2-Positive Advanced Breast Cancer

    ClinicalTrials.gov

    2016-12-23

    HER2-positive Breast Cancer; Recurrent Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Breast Adenocarcinoma; Inflammatory Breast Carcinoma

  7. CXCR3 as a molecular target in breast cancer metastasis: inhibition of tumor cell migration and promotion of host anti-tumor immunity.

    PubMed

    Zhu, Guiquan; Yan, H Hannah; Pang, Yanli; Jian, Jiang; Achyut, Bhagelu R; Liang, Xinhua; Weiss, Jonathan M; Wiltrout, Robert H; Hollander, M Christine; Yang, Li

    2015-12-22

    Chemokines and chemokine receptors have critical roles in cancer metastasis and have emerged as one of the targeting options in cancer therapy. However, the treatment efficacy on both tumor and host compartments needs to be carefully evaluated. Here we report that targeting CXCR3 decreased tumor cell migration and at the same time improved host anti-tumor immunity. We observed an increased expression of CXCR3 in metastatic tumor cells compared to those from non-metastatic tumor cells. Knockdown (KD) of CXCR3 in metastatic tumor cells suppressed tumor cell migration and metastasis. Importantly, CXCR3 expression in clinical breast cancer samples correlated with progression and metastasis. For the host compartment, deletion of CXCR3 in all host cells in 4T1 mammary tumor model significantly decreased metastasis. The underlying mechanisms involve a decreased expression of IL-4, IL-10, iNOs, and Arg-1 in myeloid cells and an increased T cell response. IFN-γ neutralization diminished the metastasis inhibition in the CXCR3 knockout (KO) mice bearing 4T1 tumors, suggesting a critical role of host CXCR3 in immune suppression. Consistently, targeting CXCR3 using a small molecular inhibitor (AMG487) significantly suppressed metastasis and improved host anti-tumor immunity. Our findings demonstrate that targeting CXCR3 is effective in both tumor and host compartments, and suggest that CXCR3 inhibition is likely to avoid adverse effects on host cells.

  8. Human saliva as route of inter-human infection for mouse mammary tumor virus.

    PubMed

    Mazzanti, Chiara Maria; Lessi, Francesca; Armogida, Ivana; Zavaglia, Katia; Franceschi, Sara; Al Hamad, Mohammad; Roncella, Manuela; Ghilli, Matteo; Boldrini, Antonio; Aretini, Paolo; Fanelli, Giovanni; Marchetti, Ivo; Scatena, Cristian; Hochman, Jacob; Naccarato, Antonio Giuseppe; Bevilacqua, Generoso

    2015-07-30

    Etiology of human breast cancer is unknown, whereas the Mouse Mammary Tumor Virus (MMTV) is recognized as the etiologic agent of mouse mammary carcinoma. Moreover, this experimental model contributed substantially to our understanding of many biological aspects of the human disease. Several data strongly suggest a causative role of MMTV in humans, such as the presence of viral sequences in a high percentage of infiltrating breast carcinoma and in its preinvasive lesions, the production of viral particles in primary cultures of breast cancer, the ability of the virus to infect cells in culture. This paper demonstrates that MMTV is present in human saliva and salivary glands. MMTV presence was investigated by fluorescent PCR, RT-PCR, FISH, immunohistochemistry, and whole transcriptome analysis. Saliva was obtained from newborns, children, adults, and breast cancer patients. The saliva of newborns is MMTV-free, whereas MMTV is present in saliva of children (26.66%), healthy adults (10.60%), and breast cancer patients (57.14% as DNA and 33.9% as RNA). MMTV is also present in 8.10% of salivary glands. RNA-seq analysis performed on saliva of a breast cancer patient demonstrates a high expression of MMTV RNA in comparison to negative controls. The possibility of a contamination by murine DNA was excluded by murine mtDNA and IAP LTR PCR. These findings confirm the presence of MMTV in humans, strongly suggest saliva as route in inter-human infection, and support the hypothesis of a viral origin for human breast carcinoma.

  9. Human saliva as route of inter-human infection for mouse mammary tumor virus

    PubMed Central

    Armogida, Ivana; Zavaglia, Katia; Franceschi, Sara; Al Hamad, Mohammad; Roncella, Manuela; Ghilli, Matteo; Boldrini, Antonio; Aretini, Paolo; Fanelli, Giovanni; Marchetti, Ivo; Scatena, Cristian; Hochman, Jacob; Naccarato, Antonio Giuseppe; Bevilacqua, Generoso

    2015-01-01

    Etiology of human breast cancer is unknown, whereas the Mouse Mammary Tumor Virus (MMTV) is recognized as the etiologic agent of mouse mammary carcinoma. Moreover, this experimental model contributed substantially to our understanding of many biological aspects of the human disease. Several data strongly suggest a causative role of MMTV in humans, such as the presence of viral sequences in a high percentage of infiltrating breast carcinoma and in its preinvasive lesions, the production of viral particles in primary cultures of breast cancer, the ability of the virus to infect cells in culture. This paper demonstrates that MMTV is present in human saliva and salivary glands. MMTV presence was investigated by fluorescent PCR, RT-PCR, FISH, immunohistochemistry, and whole transcriptome analysis. Saliva was obtained from newborns, children, adults, and breast cancer patients. The saliva of newborns is MMTV-free, whereas MMTV is present in saliva of children (26.66%), healthy adults (10.60%), and breast cancer patients (57.14% as DNA and 33.9% as RNA). MMTV is also present in 8.10% of salivary glands. RNA-seq analysis performed on saliva of a breast cancer patient demonstrates a high expression of MMTV RNA in comparison to negative controls. The possibility of a contamination by murine DNA was excluded by murine mtDNA and IAP LTR PCR. These findings confirm the presence of MMTV in humans, strongly suggest saliva as route in inter-human infection, and support the hypothesis of a viral origin for human breast carcinoma. PMID:26214095

  10. Breast Cancer: Treatment Options

    MedlinePlus

    ... when lymph nodes are not involved, called node-negative breast cancer. These shorter schedules are becoming more ... patients with a smaller, less-aggressive, and node-negative tumor. Intensity-modulated radiation therapy. Intensity-modulated radiation ...

  11. Recurrent Breast Cancer

    MedlinePlus

    ... when examined under a microscope, that's considered a negative margin. If any part of the border has ... or treatments directed at the HER2 gene (triple negative breast cancer), you may have an increased risk ...

  12. The breast cancer conundrum.

    PubMed

    Adams, Patrick

    2013-09-01

    For decades, rates of breast cancer have been going up faster in rich countries than in poor ones. Scientists are beginning to understand more about its causes but unanswered questions remain. Patrick Adams reports.

  13. Breast Reconstruction Options

    MedlinePlus

    ... surgery to allow for better healing. You need radiation therapy. Many doctors recommend that women not have immediate ... al. Ischemic complications in pedicle, free, and muscle sparing transverse rectus abdominis myocutaneous flaps for breast reconstruction. ...

  14. MRI of the Breast

    MedlinePlus

    ... of the breast uses a powerful magnetic field, radio waves and a computer to produce detailed pictures of ... scans, MRI does not utilize ionizing radiation. Instead, radio waves redirect alignment of hydrogen atoms that naturally exist ...

  15. Fibrocystic breast disease

    MedlinePlus

    ... Gynecol Clin North Am. 2008;35:285-300. Katz VL, Dotters D. Breast diseases: diagnosis and treatment ... disease. In: Lentz GM, Lobo RA, Gershenson DM, Katz VL, eds. Comprehensive Gynecology . 6th ed. Philadelphia, PA: ...

  16. Breast biopsy - ultrasound

    MedlinePlus

    ... Interventional . 1st ed. Philadelphia, PA: Elsevier Saunders; 2010. Katz VL, Dotters D. Breast diseases: diagnosis and treatment ... disease. In: Lentz GM, Lobo RA, Gershenson DM, Katz VL, eds. Comprehensive Gynecology . 6th ed. Philadelphia, PA: ...

  17. Breast biopsy -- stereotactic

    MedlinePlus

    ... Therapy . 11th ed. Philadelphia, PA: Elsevier Saunders; 2014. Katz VL, Dotters D. Breast diseases: diagnosis and treatment ... disease. In: Lentz GM, Lobo RA, Gershenson DM, Katz VL, eds. Comprehensive Gynecology . 6th ed. Philadelphia, PA: ...

  18. Breast MRI scan

    MedlinePlus

    ... an imaging test that uses powerful magnets and radio waves to create pictures of the breast and ... No side effects from the magnetic fields and radio waves have been reported. The most common type ...

  19. Breast carcinoma metastases.

    PubMed

    Bodzin, G A; Staren, E D; Faber, L P

    1998-02-01

    With careful selection of patients, complete resection of pulmonary metastases from breast carcinoma may be a useful therapeutic option. Such a treatment appears to offer a significant survival benefit when compared with medical treatment alone, or with incomplete resection.

  20. Using a Breast Pump

    MedlinePlus

    ... 15 seconds, then rinse with plenty of warm water. After washing, dry your hands thoroughly with a clean paper towel. You do not need to wash your breasts before you pump unless you have been using a cream, ointment, ...