Science.gov

Sample records for 4t1 tumor cells

  1. Rapamycin Promotes Mouse 4T1 Tumor Metastasis that Can Be Reversed by a Dendritic Cell-Based Vaccine

    PubMed Central

    Lin, Tien-Jen; Liang, Wen-Miin; Hsiao, Pei-Wen; M. S, Pradeep; Wei, Wen-Chi; Lin, Hsin-Ting; Yin, Shu-Yi; Yang, Ning-Sun

    2015-01-01

    Suppression of tumor metastasis is a key strategy for successful cancer interventions. Previous studies indicated that rapamycin (sirolimus) may promote tumor regression activity or enhance immune response against tumor targets. However, rapamycin also exhibits immunosuppressant effects and is hence used clinically as an organ transplantation drug. We hypothesized that the immunosuppressive activities of rapamycin might also negatively mediate host immunity, resulting in promotion of tumor metastasis. In this study, the effects of rapamycin and phytochemical shikonin were investigated in vitro and in vivo in a 4T1 mouse mammary tumor model through quantitative assessment of immunogenic cell death (ICD), autophagy, tumor growth and metastasis. Tumor-bearing mice were immunized with test vaccines to monitor their effect on tumor metastasis. We found that intraperitoneal (ip) administration of rapamycin after a tumor-resection surgery drastically increased the metastatic activity of 4T1 tumors. Possible correlation of this finding to human cancers was suggested by epidemiological analysis of data from Taiwan’s National Health Insurance Research Database (NHIRD). Since our previous studies showed that modified tumor cell lysate (TCL)-pulsed, dendritic cell (DC)-based cancer vaccines can effectively suppress metastasis in mouse tumor models, we assessed whether such vaccines may help offset this rapamycin-promoted metastasis. We observed that shikonin efficiently induced ICD of 4T1 cells in culture, and DC vaccines pulsed with shikonin-treated TCL (SK-TCL-DC) significantly suppressed rapamycin-enhanced metastasis and Treg cell expansion in test mice. In conclusion, rapamycin treatment in mice (and perhaps in humans) promotes metastasis and the effect may be offset by treatment with a DC-based cancer vaccine. PMID:26426423

  2. Rapamycin Promotes Mouse 4T1 Tumor Metastasis that Can Be Reversed by a Dendritic Cell-Based Vaccine.

    PubMed

    Lin, Tien-Jen; Liang, Wen-Miin; Hsiao, Pei-Wen; M S, Pradeep; Wei, Wen-Chi; Lin, Hsin-Ting; Yin, Shu-Yi; Yang, Ning-Sun

    2015-01-01

    Suppression of tumor metastasis is a key strategy for successful cancer interventions. Previous studies indicated that rapamycin (sirolimus) may promote tumor regression activity or enhance immune response against tumor targets. However, rapamycin also exhibits immunosuppressant effects and is hence used clinically as an organ transplantation drug. We hypothesized that the immunosuppressive activities of rapamycin might also negatively mediate host immunity, resulting in promotion of tumor metastasis. In this study, the effects of rapamycin and phytochemical shikonin were investigated in vitro and in vivo in a 4T1 mouse mammary tumor model through quantitative assessment of immunogenic cell death (ICD), autophagy, tumor growth and metastasis. Tumor-bearing mice were immunized with test vaccines to monitor their effect on tumor metastasis. We found that intraperitoneal (ip) administration of rapamycin after a tumor-resection surgery drastically increased the metastatic activity of 4T1 tumors. Possible correlation of this finding to human cancers was suggested by epidemiological analysis of data from Taiwan's National Health Insurance Research Database (NHIRD). Since our previous studies showed that modified tumor cell lysate (TCL)-pulsed, dendritic cell (DC)-based cancer vaccines can effectively suppress metastasis in mouse tumor models, we assessed whether such vaccines may help offset this rapamycin-promoted metastasis. We observed that shikonin efficiently induced ICD of 4T1 cells in culture, and DC vaccines pulsed with shikonin-treated TCL (SK-TCL-DC) significantly suppressed rapamycin-enhanced metastasis and Treg cell expansion in test mice. In conclusion, rapamycin treatment in mice (and perhaps in humans) promotes metastasis and the effect may be offset by treatment with a DC-based cancer vaccine. PMID:26426423

  3. Radio-photothermal therapy mediated by a single compartment nanoplatform depletes tumor initiating cells and reduces lung metastasis in the orthotopic 4T1 breast tumor model.

    PubMed

    Zhou, Min; Zhao, Jun; Tian, Mei; Song, Shaoli; Zhang, Rui; Gupta, Sanjay; Tan, Dongfeng; Shen, Haifa; Ferrari, Mauro; Li, Chun

    2015-12-14

    Tumor Initiating Cells (TICs) are resistant to radiotherapy and chemotherapy, and are believed to be responsible for tumor recurrence and metastasis. Combination therapies can overcome the limitation of conventional cancer treatments, and have demonstrated promising application in the clinic. Here, we show that dual modality radiotherapy (RT) and photothermal therapy (PTT) mediated by a single compartment nanosystem copper-64-labeled copper sulfide nanoparticles ([(64)Cu]CuS NPs) could suppress breast tumor metastasis through eradication of TICs. Positron electron tomography (PET) imaging and biodistribution studies showed that more than 90% of [(64)Cu]CuS NPs was retained in subcutaneously grown BT474 breast tumor 24 h after intratumoral (i.t.) injection, indicating the NPs are suitable for the combination therapy. Combined RT/PTT therapy resulted in significant tumor growth delay in the subcutaneous BT474 breast cancer model. Moreover, RT/PTT treatment significantly prolonged the survival of mice bearing orthotopic 4T1 breast tumors compared to no treatment, RT alone, or PTT alone. The RT/PTT combination therapy significantly reduced the number of tumor nodules in the lung and the formation of tumor mammospheres from treated 4T1 tumors. No obvious side effects of the CuS NPs were noted in the treated mice in a pilot toxicity study. Taken together, our data support the feasibility of a therapeutic approach for the suppression of tumor metastasis through localized RT/PTT therapy. PMID:26376843

  4. Radio-photothermal therapy mediated by a single compartment nanoplatform depletes tumor initiating cells and reduces lung metastasis in the orthotopic 4T1 breast tumor model

    NASA Astrophysics Data System (ADS)

    Zhou, Min; Zhao, Jun; Tian, Mei; Song, Shaoli; Zhang, Rui; Gupta, Sanjay; Tan, Dongfeng; Shen, Haifa; Ferrari, Mauro; Li, Chun

    2015-11-01

    Tumor Initiating Cells (TICs) are resistant to radiotherapy and chemotherapy, and are believed to be responsible for tumor recurrence and metastasis. Combination therapies can overcome the limitation of conventional cancer treatments, and have demonstrated promising application in the clinic. Here, we show that dual modality radiotherapy (RT) and photothermal therapy (PTT) mediated by a single compartment nanosystem copper-64-labeled copper sulfide nanoparticles ([64Cu]CuS NPs) could suppress breast tumor metastasis through eradication of TICs. Positron electron tomography (PET) imaging and biodistribution studies showed that more than 90% of [64Cu]CuS NPs was retained in subcutaneously grown BT474 breast tumor 24 h after intratumoral (i.t.) injection, indicating the NPs are suitable for the combination therapy. Combined RT/PTT therapy resulted in significant tumor growth delay in the subcutaneous BT474 breast cancer model. Moreover, RT/PTT treatment significantly prolonged the survival of mice bearing orthotopic 4T1 breast tumors compared to no treatment, RT alone, or PTT alone. The RT/PTT combination therapy significantly reduced the number of tumor nodules in the lung and the formation of tumor mammospheres from treated 4T1 tumors. No obvious side effects of the CuS NPs were noted in the treated mice in a pilot toxicity study. Taken together, our data support the feasibility of a therapeutic approach for the suppression of tumor metastasis through localized RT/PTT therapy.Tumor Initiating Cells (TICs) are resistant to radiotherapy and chemotherapy, and are believed to be responsible for tumor recurrence and metastasis. Combination therapies can overcome the limitation of conventional cancer treatments, and have demonstrated promising application in the clinic. Here, we show that dual modality radiotherapy (RT) and photothermal therapy (PTT) mediated by a single compartment nanosystem copper-64-labeled copper sulfide nanoparticles ([64Cu]CuS NPs) could suppress

  5. Silibinin and Paclitaxel Cotreatment Significantly Suppress the Activity and Lung Metastasis of Triple Negative 4T1 Mammary Tumor Cell in Mice

    PubMed Central

    Ho, Bing-Ying; Lin, Chun-Hung; Apaya, Maria Karmella; Chao, Wen-Wan; Shyur, Lie-Fen

    2012-01-01

    The in vitro and in vivo bioactivities of silibinin (SB), paclitaxel (PTX) and SB and PTX in combination (SB+PTX) against murine metastatic mammary 4T1 cancer cell line were investigated. Isobologram and combination index (CI) analyses showed that SB and PTX can function synergistically in the inhibition of 4T1 cell proliferation with a CI value < 1. Both SB and PTX alone or SB+PTX treatment inhibited 4T1 cell migration and motility possibly through downregulation of the serpin protease nexin-1 (PN-1) and N-cadherin expression, inhibition of matrix metalloprotease (MMP)-9 activity, and upregulation of E-cadherin. Flow cytometry and Western blot analyses demonstrated that both drugs deregulated cell-cycle mediators and induced apoptosis in 4T1 cells. A real-time in vivo bioluminescence imaging system to monitor the breast cancer cell metastasis in syngeneic BALB/c mice was established using a stable 4T1pGL-COX-2/Luc cell clone carrying a COX-2 promoter driven-luciferase reporter gene. In vivo study using the allograft 4T1pGL-COX-2/Luc metastatic mouse model indicated that SB co-treated with PTX can significantly suppress lung metastasis of 4T1 cells likely through inhibiting cell proliferation and angiogenesis. Together, this study demonstrates that SB could act synergistically with PTX in 4T1 cells, providing a therapeutic option for highly metastatic triple negative breast cancer. PMID:24716145

  6. Effects of letrozole on breast cancer micro-metastatic tumor growth in bone and lung in mice inoculated with murine 4T1 cells.

    PubMed

    Wang, Wendan; Belosay, Aashvini; Yang, Xujuan; Hartman, James A; Song, Huaxin; Iwaniec, Urszula T; Turner, Russell T; Churchwell, Mona I; Doerge, Daniel R; Helferich, William G

    2016-06-01

    Breast cancer (BC) is the leading cancer in women worldwide. Metastasis occurs in stage IV BC with bone and lung being common metastatic sites. Here we evaluate the effects of the aromatase inhibitor letrozole on BC micro-metastatic tumor growth in bone and lung metastasis in intact and ovariectomized (OVX) mice with murine estrogen receptor negative (ER-) BC cells inoculated in tibia. Forty-eight BALB/c mice were randomly assigned to one of four groups: OVX, OVX + Letrozole, Intact, and Intact + Letrozole, and injected with 4T1 cells intra-tibially. Letrozole was subcutaneously injected daily for 23 days at a dose of 1.75 µg/g body weight. Tumor progression was monitored by bioluminescence imaging (BLI). Following necropsy, inoculated tibiae were scanned via µCT and bone response to tumor was scored from 0 (no ectopic mineralization/osteolysis) to 5 (extensive ectopic mineralization/osteolysis). OVX mice had higher tibial pathology scores indicative of more extensive bone destruction than intact mice, irrespective of letrozole treatment. Letrozole decreased serum estradiol levels and reduced lung surface tumor numbers in intact animals. Furthermore, mice receiving letrozole had significantly fewer tumor colonies and fewer proliferative cells in the lung than OVX and intact controls based on H&E and Ki-67 staining, respectively. In conclusion, BC-inoculated OVX animals had higher tibia pathology scores than BC-inoculated intact animals and letrozole reduced BC metastases to lungs. These findings suggest that, by lowering systemic estrogen level and/or by interacting with the host organ, the aromatase inhibitor letrozole has the potential to reduce ER- BC metastasis to lung. PMID:27209469

  7. Primary 4T1 tumor resection provides critical "window of opportunity" for immunotherapy.

    PubMed

    Ghochikyan, Anahit; Davtyan, Arpine; Hovakimyan, Armine; Davtyan, Hayk; Poghosyan, Anna; Bagaev, Alexander; Ataullakhanov, Ravshan I; Nelson, Edward L; Agadjanyan, Michael G

    2014-02-01

    It is believed that primary tumor resection modulates host-tumor immune interaction, but this has not been characterized in a stringent breast cancer tumor model. This report, using the 4T1 murine mammary tumor model, characterizes for the first time the dynamic longitudinal changes in immunosuppressive and effector components of the immune system after resection of an established orthotopic primary tumor with a defined natural history of developing lung metastases. More specifically, we analyzed changes of absolute numbers and frequencies of MDSC, regulatory T cells (Treg), as well as activated CD4 and CD8 positive T cells in spleens and, in some studies, lungs of 4T1 tumor-bearing mice and mice after primary tumor resection. Importantly, using mathematical analyses we established that primary resection of an orthotopic tumor had created a "window of opportunity" with decreased tumor-associated immune suppression that existed for approximately 10 days. Although tumor resection did slightly prolong survival, it did not affect the ultimate development of metastatic disease since animals with resected tumors or intact primary tumors eventually died by day 47 and 43, respectively. This window of opportunity likely occurs in humans providing a rationale and parameters for integration and testing of immunotherapeutic strategies in this critical "window of opportunity" to combat the development of metastatic disease. PMID:24096737

  8. Low local blood perfusion, high white blood cell and high platelet count are associated with primary tumor growth and lung metastasis in a 4T1 mouse breast cancer metastasis model

    PubMed Central

    WANG, CHUAN; CHEN, YING-GE; GAO, JIAN-LI; LYU, GUI-YUAN; SU, JIE; ZHANG, QI; JI, XIN; YAN, JI-ZHONG; QIU, QIAO-LI; ZHANG, YUE-LI; LI, LIN-ZI; XU, HAN-TING; CHEN, SU-HONG

    2015-01-01

    It was originally thought that no single routine blood test result would be able to indicate whether or not a patient had cancer; however, several novel studies have indicated that the median survival and prognosis of cancer patients were markedly associated with the systemic circulation features of cancer patients. In addition, certain parameters, such as white blood cell (WBC) count, were largely altered in malignant tumors. In the present study, routine blood tests were performed in order to observe the change of blood cells in tumor-bearing mice following the implantation of 4T1 breast cancer cells into the mammary fat pad; in addition, blood flow in breast tumor sites was measured indirectly using laser Doppler perfusion imaging (LDPI), in an attempt to explain the relevance between the blood circulation features and the growth or metastasis of breast cancer in mice model. The LDPI and blood test results indicated that the implantation of 4T1 breast cancer cells into BALB/c mice led to thrombosis as well as high WBC count, high platelet count, high plateletcrit and low blood perfusion. Following implantation of the 4T1 cells for four weeks, the lung metastatic number was determined and the Pearson correlation coefficient revealed that the number of visceral lung metastatic sites had a marked negative association with the ratio of basophils (BASO%; r=-0.512; P<0.01) and the mean corpuscular hemoglobin was significantly correlated with primary tumor weight (r=0.425; P<0.05). In conclusion, the results of the present study demonstrated that tumor growth led to thrombosis and acute anemia in mice; in addition, when blood BASO% was low, an increased number of lung metastases were observed in tumor-bearing mice. PMID:26622565

  9. Relationships between LDH-A, Lactate and Metastases in 4T1 Breast Tumors

    PubMed Central

    Rizwan, Asif; Serganova, Inna; Khanin, Raya; Karabeber, Hazem; Ni, Xiaohui; Thakur, Sunitha; Zakian, Kristen L.; Blasberg, Ronald; Koutcher, Jason A.

    2013-01-01

    Purpose To investigate the relationship between LDH-A expression, lactate concentration, cell metabolism and metastases in murine 4T1 breast tumors. Experimental Design Inhibition of LDH-A expression and protein levels were achieved in a metastatic breast cancer cell line (4T1) using shRNA technology. The relationship between tumor LDH-A protein levels and lactate concentration (measured by magnetic resonance spectroscopic imaging-MRSI) and metastases was assessed. Results LDH-A knockdown cells (KD9) showed a significant reduction in LDH-A protein and LDH activity, less acid production, decreased transwell migration and invasion, lower proliferation, reduced glucose utilization and glycolysis and increase in oxygen consumption, ROS and cellular ATP levels, compared to control (NC) cells cultured in 25 mM glucose. In vivo studies showed lower lactate levels in KD9, KD5, KD317 tumors than in NC or 4T1 wild-type tumors (p<0.01), and a linear relationship between tumor LDH-A protein expression and lactate concentration. Metastases were delayed and primary tumor growth rate decreased. Conclusions We show for the first time that LDH-A knockdown inhibited the formation of metastases, and was accompanied by in vivo changes in tumor cell metabolism. Lactate MRSI can be used as a surrogate to monitor targeted inhibition of LDH-A in a pre-clinical setting and provides a non-invasive imaging strategy to monitor LDH-A targeted therapy. This imaging strategy can be translated to the clinic to identify and monitor patients who are at high risk of developing metastatic disease. PMID:23833310

  10. Tetrandrine Suppresses Cancer Angiogenesis and Metastasis in 4T1 Tumor Bearing Mice

    PubMed Central

    Gao, Jian-Li; He, Tong-Chuan; He, Kai; Chen, Su-Hong; Lv, Gui-Yuan

    2013-01-01

    Metastasis remains the most deadly aspect of cancer and still evades direct treatment. Thus, there is a great need to develop new treatment regimens to suppress tumor cells that have escaped surgical removal or that may have already disseminated. We have found that tetrandrine (TET) exhibits anticolon cancer activity. Here, we investigate the inhibition effect of TET to breast cancer metastasis, angiogenesis and its molecular basis underlying TET's anticancer activity. We compare TET with chemotherapy drug doxorubicin in 4T1 tumor bearing BALB/c mice model and find that TET exhibits an anticancer metastatic and antiangiogenic activities better than those of doxorubicin. The lung metastatic sites were decreased by TET, which is confirmed by bioluminescence imaging in vivo. On the other hand, laser doppler perfusion imaging (LDI) was used for measuring the blood flow of tumor in 4T1-tumor bearing mice. As a result, the local blood perfusion of tumor was markedly decreased by TET after 3 weeks. Mechanistically, TET treatment leads to a decrease in p-ERK level and an increase in NF-κB levels in HUVECs. TET also regulated metastatic and angiogenic related proteins, including vascular endothelial growth factor, hypoxia-inducible factor-1α, integrin β5, endothelial cell specific molecule-1, and intercellular adhesion molecule-1 in vivo. PMID:23762115

  11. High Resolution X-Ray Microangiography of 4T1 Tumor in Mouse Using Synchrotron Radiation

    SciTech Connect

    Sun Jianqi; Liu Ping; Gu Xiang; Liu Xiaoxia; Zhao Jun; Xiao Tiqiao; Xu, Lisa X.

    2010-07-23

    Angiogenesis is very important in tumor growth and metastasis. But in clinic, only vessels lager than 200 {mu}m in diameter, can be observed using conventional medical imaging. Synchrotron radiation (SR) phase contrast imaging, whose spatial resolution can reach as high as 1 {mu}m, has great advantages in imaging soft tissue structures, such as blood vessels and tumor tissues. In this paper, the morphology of newly formed micro-vessels in the mouse 4T1 tumor samples was firstly studied with contrast agent. Then, the angiogenesis in nude mice tumor window model was observed without contrast agent using the SR phase contrast imaging at the beamline for X-ray imaging and biomedical applications, Shanghai Synchrotron Radiation Facility (SSRF). The images of tumors showed dense, irregular and tortuous tumor micro-vessels with the smallest size of 20-30 {mu}m in diameter.

  12. 4T1 Murine Mammary Carcinoma Cells Enhance Macrophage-Mediated Innate Inflammatory Responses

    PubMed Central

    Madera, Laurence; Greenshields, Anna; Coombs, Melanie R. Power; Hoskin, David W.

    2015-01-01

    Tumor progression and the immune response are intricately linked. While it is known that cancers alter macrophage inflammatory responses to promote tumor progression, little is known regarding how cancers affect macrophage-dependent innate host defense. In this study, murine bone-marrow-derived macrophages (BMDM) were exposed to murine carcinoma-conditioned media prior to assessment of the macrophage inflammatory response. BMDMs exposed to 4T1 mammary carcinoma-conditioned medium demonstrated enhanced production of pro-inflammatory cytokines tumor necrosis factor α, interleukin-6, and CCL2 in response to lipopolysaccharide (LPS) while production of interleukin-10 remained unchanged. The increased LPS-induced production of pro-inflammatory cytokines was transient and correlated with enhanced cytokine production in response to other Toll-like receptor agonists, including peptidoglycan and flagellin. In addition, 4T1-conditioned BMDMs exhibited strengthened LPS-induced nitric oxide production and enhanced phagocytosis of Escherichia coli. 4T1-mediated augmentation of macrophage responses to LPS was partially dependent on the NFκB pathway, macrophage-colony stimulating factor, and actin polymerization, as well as the presence of 4T1-secreted extracellular vesicles. Furthermore, peritoneal macrophages obtained from 4T1 tumor-bearing mice displayed enhanced pro-inflammatory cytokine production in response to LPS. These results suggest that uptake of 4T1-secreted factors and actin-mediated ingestion of 4T1-secreted exosomes by macrophages cause a transient enhancement of innate inflammatory responses. Mammary carcinoma-mediated regulation of innate immunity may have significant implications for our understanding of host defense and cancer progression. PMID:26177198

  13. 4T1 Murine Mammary Carcinoma Cells Enhance Macrophage-Mediated Innate Inflammatory Responses.

    PubMed

    Madera, Laurence; Greenshields, Anna; Coombs, Melanie R Power; Hoskin, David W

    2015-01-01

    Tumor progression and the immune response are intricately linked. While it is known that cancers alter macrophage inflammatory responses to promote tumor progression, little is known regarding how cancers affect macrophage-dependent innate host defense. In this study, murine bone-marrow-derived macrophages (BMDM) were exposed to murine carcinoma-conditioned media prior to assessment of the macrophage inflammatory response. BMDMs exposed to 4T1 mammary carcinoma-conditioned medium demonstrated enhanced production of pro-inflammatory cytokines tumor necrosis factor α, interleukin-6, and CCL2 in response to lipopolysaccharide (LPS) while production of interleukin-10 remained unchanged. The increased LPS-induced production of pro-inflammatory cytokines was transient and correlated with enhanced cytokine production in response to other Toll-like receptor agonists, including peptidoglycan and flagellin. In addition, 4T1-conditioned BMDMs exhibited strengthened LPS-induced nitric oxide production and enhanced phagocytosis of Escherichia coli. 4T1-mediated augmentation of macrophage responses to LPS was partially dependent on the NFκB pathway, macrophage-colony stimulating factor, and actin polymerization, as well as the presence of 4T1-secreted extracellular vesicles. Furthermore, peritoneal macrophages obtained from 4T1 tumor-bearing mice displayed enhanced pro-inflammatory cytokine production in response to LPS. These results suggest that uptake of 4T1-secreted factors and actin-mediated ingestion of 4T1-secreted exosomes by macrophages cause a transient enhancement of innate inflammatory responses. Mammary carcinoma-mediated regulation of innate immunity may have significant implications for our understanding of host defense and cancer progression. PMID:26177198

  14. Anticancer Activity of Saponins from Allium chinense against the B16 Melanoma and 4T1 Breast Carcinoma Cell

    PubMed Central

    Yu, Zhihui; Zhang, Tong; Zhou, Fengjuan; Xiao, Xiuqing; Ding, Xuezhi; He, Hao; Rang, Jie; Quan, Meifang; Wang, Ting; Zuo, Mingxing; Xia, Liqiu

    2015-01-01

    The cytotoxic substance of A. chinense saponins (ACSs) was isolated using ethanol extraction and purified with the D101 macroporous adsorption resin approach. We investigated the anticancer activity of ACSs in the B16 melanoma and 4T1 breast carcinoma cell lines. Methylthioninium chloride and hematoxylin-eosin staining with Giemsa dyestuff were used when the cells were treated with ACSs. The results showed that the cells morphologies changed significantly; ACSs induced cell death in B16 and 4T1 cells based on acridine orange/ethidium bromide double fluorescence staining, with the number and degree of apoptotic tumor cells increasing as ACS concentration increased. ACSs inhibited the proliferation of B16 and 4T1 cells in a dose-dependent manner. They also inhibited cell migration and colony formation and exhibited a concentration-dependent effect. In addition, ACSs apparently inhibited the growth of melanoma in vivo. The preliminary antitumor in vivo assay revealed that early medication positively affected tumor inhibition action and effectively protected the liver and spleen of C57 BL/6 mice from injury. This study provides evidence for the cytotoxicity of ACSs and a strong foundation for further research to establish the theoretical basis for cell death and help in the design and development of new anticancer drugs. PMID:26146506

  15. Rejection of metastatic 4T1 breast cancer by attenuation of Treg cells in combination with immune stimulation.

    PubMed

    Chen, Li; Huang, Tian-Gui; Meseck, Marcia; Mandeli, John; Fallon, John; Woo, Savio L C

    2007-12-01

    4T1 breast carcinoma is a highly malignant and poorly immunogenic murine tumor model that resembles advanced breast cancer in humans, and is refractory to most immune stimulation-based treatments. We hypothesize that the ineffectiveness of immune stimulatory treatment is mediated by the suppressive effects of CD4(+)CD25(+) regulatory T (Treg) cells, which can be attenuated by engaging the glucocorticoid-induced tumor necrosis factor receptor family-related protein with its natural ligand (GITRL); further, combination treatment with existing immune stimulation regimens will augment anti-tumor immunity and eradicate metastatic 4T1 tumors in mice.A soluble homodimeric form of mouse GITRL (mIg-mGITRLs) was molecularly constructed and used to treat orthotopic 4T1 tumors established in immune-competent, syngeneic Balb/c mice. When applied in combination with adenovirus-mediated intratumoral murine granulocyte macrophage colony stimulating factor (GM-CSF) and interleukin-12 (IL-12) gene delivery plus systemic 4-1BB activation, mIg-mGITRLs attenuated the immune-suppressive function of splenic Treg cells, which led to elevated interferon-gamma (IFN-gamma) production, tumor-specific cytolytic T-cell activities, tumor rejection and long-term survival in 65% of the animals without apparent toxicities. The results demonstrate that addition of mIg-mGITRLs to an immune-stimulatory treatment regimen significantly improved long-term survival without apparent toxicity, and could potentially be clinically translated into an effective and safe treatment modality for metastatic breast cancer in patients. PMID:17968355

  16. Secretion of N- and O-linked Glycoproteins from 4T1 Murine Mammary Carcinoma Cells

    PubMed Central

    Phang, Wai-Mei; Tan, Aik-Aun; Gopinath, Subash C.B.; Hashim, Onn H.; Kiew, Lik Voon; Chen, Yeng

    2016-01-01

    Breast cancer is one of the most common cancers that affect women globally and accounts for ~23% of all cancers diagnosed in women. Breast cancer is also one of the leading causes of death primarily due to late stage diagnoses and a lack of effective treatments. Therefore, discovering protein expression biomarkers is mandatory for early detection and thus, critical for successful therapy. Two-dimensional electrophoresis (2D-E) coupled with lectin-based analysis followed by mass spectrometry were applied to identify potential biomarkers in the secretions of a murine mammary carcinoma cell line. Comparisons of the protein profiles of the murine 4T1 mammary carcinoma cell line and a normal murine MM3MG mammary cell line indicated that cadherin-1 (CDH), collagenase 3 (MMP-13), Viral envelope protein G7e (VEP), Gag protein (GAG) and Hypothetical protein LOC433182 (LOC) were uniquely expressed by the 4T1 cells, and pigment epithelium-derived factor (PEDF) was exclusively secreted by the MM3MG cells. Further analysis by a lectin-based study revealed that aberrant O-glycosylated CDH, N-glycosylated MMP-13 and LOC were present in the 4T1 medium. These differentially expressed N- and O-linked glycoprotein candidates, which were identified by combining lectin-based analysis with 2D-E, could serve as potential diagnostic and prognostic markers for breast cancer. PMID:27226773

  17. Secretion of N- and O-linked Glycoproteins from 4T1 Murine Mammary Carcinoma Cells.

    PubMed

    Phang, Wai-Mei; Tan, Aik-Aun; Gopinath, Subash C B; Hashim, Onn H; Kiew, Lik Voon; Chen, Yeng

    2016-01-01

    Breast cancer is one of the most common cancers that affect women globally and accounts for ~23% of all cancers diagnosed in women. Breast cancer is also one of the leading causes of death primarily due to late stage diagnoses and a lack of effective treatments. Therefore, discovering protein expression biomarkers is mandatory for early detection and thus, critical for successful therapy. Two-dimensional electrophoresis (2D-E) coupled with lectin-based analysis followed by mass spectrometry were applied to identify potential biomarkers in the secretions of a murine mammary carcinoma cell line. Comparisons of the protein profiles of the murine 4T1 mammary carcinoma cell line and a normal murine MM3MG mammary cell line indicated that cadherin-1 (CDH), collagenase 3 (MMP-13), Viral envelope protein G7e (VEP), Gag protein (GAG) and Hypothetical protein LOC433182 (LOC) were uniquely expressed by the 4T1 cells, and pigment epithelium-derived factor (PEDF) was exclusively secreted by the MM3MG cells. Further analysis by a lectin-based study revealed that aberrant O-glycosylated CDH, N-glycosylated MMP-13 and LOC were present in the 4T1 medium. These differentially expressed N- and O-linked glycoprotein candidates, which were identified by combining lectin-based analysis with 2D-E, could serve as potential diagnostic and prognostic markers for breast cancer. PMID:27226773

  18. Quantitative Ultrasound Comparison of MAT and 4T1 Mammary Tumors in Mice and Rats Across Multiple Imaging Systems

    PubMed Central

    Wirtzfeld, Lauren A.; Ghoshal, Goutam; Rosado-Mendez, Ivan M.; Nam, Kibo; Park, Yeonjoo; Pawlicki, Alexander D.; Miller, Rita J.; Simpson, Douglas G.; Zagzebski, James A.; Oelze, Michael L.; Hall, Timothy J.; O’Brien, William D.

    2015-01-01

    Objectives Quantitative ultrasound estimates such as the frequency-dependent backscatter coefficient (BSC) have the potential to enhance noninvasive tissue characterization and to identify tumors better than traditional B-mode imaging. Thus, investigating system independence of BSC estimates from multiple imaging platforms is important for assessing their capabilities to detect tissue differences. Methods Mouse and rat mammary tumor models, 4T1 and MAT, respectively, were used in a comparative experiment using 3 imaging systems (Siemens, Ultrasonix, and VisualSonics) with 5 different transducers covering a range of ultrasonic frequencies. Results Functional analysis of variance of the MAT and 4T1 BSC-versus-frequency curves revealed statistically significant differences between the two tumor types. Variations also were found among results from different transducers, attributable to frequency range effects. At 3 to 8 MHz, tumor BSC functions using different systems showed no differences between tumor type, but at 10 to 20 MHz, there were differences between 4T1 and MAT tumors. Fitting an average spline model to the combined BSC estimates (3–22 MHz) demonstrated that the BSC differences between tumors increased with increasing frequency, with the greatest separation above 15 MHz. Confining the analysis to larger tumors resulted in better discrimination over a wider bandwidth. Conclusions Confining the comparison to higher ultrasonic frequencies or larger tumor sizes allowed for separation of BSC-versus-frequency curves from 4T1 and MAT tumors. These constraints ensure that a greater fraction of the backscattered signals originated from within the tumor, thus demonstrating that statistically significant tumor differences were detected. PMID:26206823

  19. Stromal Integrin α11β1 Affects RM11 Prostate and 4T1 Breast Xenograft Tumors Differently

    PubMed Central

    Skogstrand, Trude; Sortland, Kristina; Schmid, Marei Caroline; Reed, Rolf K.; Stuhr, Linda

    2016-01-01

    Purpose It has been implied that the collagen binding integrin α11β1 plays a role in carcinogenesis. As still relatively little is known about how the stromal integrin α11β1 affects different aspects of tumor development, we wanted to examine the direct effects on primary tumor growth, fibrosis, tumor interstitial fluid pressure (PIF) and metastasis in murine 4T1 mammary and RM11 prostate tumors, using an in vivo SCID integrin α11-deficient mouse model. Methods Tumor growth was measured using a caliper, PIF by the wick-in-needle technique, activated fibroblasts by α-SMA immunofluorescence staining and fibrosis by transmission electron microscopy and picrosirius-red staining. Metastases were evaluated using hematoxylin and eosin stained sections. Results RM11 tumor growth was significantly reduced in the SCID integrin α11-deficient (α11-KO) compared to in SCID integrin α11 wild type (WT) mice, whereas there was no similar effect in the 4T1 tumor model. The 4T1 model demonstrated an alteration in collagen fibril diameter in the integrin α11-KO mice compared to WT, which was not found in the RM11 model. There were no significant differences in the amount of activated fibroblasts, total collagen content, collagen organization or PIF in the tumors in integrin α11-deficient mice compared to WT mice. There was also no difference in lung metastases between the two groups. Conclusion Deficiency of stromal integrin α11β1 showed different effects on tumor growth and collagen fibril diameter depending on tumor type, but no effect on tumor PIF or development of lung metastasis. PMID:26990302

  20. Downregulation of CD73 in 4T1 breast cancer cells through siRNA-loaded chitosan-lactate nanoparticles.

    PubMed

    Jadidi-Niaragh, Farhad; Atyabi, Fatemeh; Rastegari, Ali; Mollarazi, Esmail; Kiani, Melika; Razavi, Alireza; Yousefi, Mehdi; Kheshtchin, Nasim; Hassannia, Hadi; Hadjati, Jamshid; Shokri, Fazel

    2016-06-01

    The immunosuppressive factors in tumor microenvironment enhance tumor growth and suppress anti-tumor immune responses. Adenosine is an important immunosuppressive factor which can be secreted by both tumor and immune cells trough action of two cell surface ecto-nucleotidase molecules CD39 and CD73. Blocking the adenosine generating molecules has emerged as an effective immunotherapeutic approach for treatment of cancer. In this study, CD73-siRNA encapsulated into chitosan-lactate (ChLa) nanoparticles (NPs) was employed to suppress the expression of CD73 molecule on 4T1 breast tumor cells, in vitro. ChLa NPs were generated through ionic gelation of ChLa by tripolyphosphate (TPP). Small interfering RNA (SiRNA)-loaded NPs had about 100 nm size with a polydispersive index below 0.3 and a zeta potential about 13. Our results showed that ChLa NPs with Ch 50 kDa exhibit the best physicochemical features with the high siRNA encapsulation capacity. Synthesized NPs were able to fully bind with siRNA, protect them against serum and heparin degradation, and promote the transfection process. While the NPs exhibited low toxicity during 72 h cell culture, the transfection of Ch-plasmid expressing green fluorescent protein (pEGFP) NPs was efficient in 4T1 cells with a transfection rate of 53.6 % as detected by flow cytometry. In addition, CD73-siRNA-loaded ChLa NPs could efficiently suppress the expression of CD73 as assayed by real-time polymerase chain reaction and flow cytometry. As a conclusion, CD73-siRNA-loaded ChLa NPs may be considered as a promising therapeutic tool for cancer therapy; however, further in vivo investigations are necessary. PMID:26733167

  1. Aspirin Breaks the Crosstalk between 3T3-L1 Adipocytes and 4T1 Breast Cancer Cells by Regulating Cytokine Production.

    PubMed

    Hsieh, Chia-Chien; Huang, Yu-Shan

    2016-01-01

    Breast cancer is one of the most common cancers in women worldwide. The obesity process is normally accompanied by chronic, low-grade inflammation. Infiltration by inflammatory cytokines and immune cells provides a favorable microenvironment for tumor growth, migration, and metastasis. Epidemiological evidence has shown that aspirin is an effective agent against several types of cancer. The aim of this study is to investigate the anti-inflammatory and anti-cancer effects of aspirin on 3T3-L1 adipocytes, 4T1 murine breast cancer cells, and their crosstalk. The results showed that aspirin treatment inhibited differentiation and lipid accumulation by 3T3-L1 preadipocytes, and decreased the secretion of the inflammatory adipokine MCP-1 after stimulation with tumor necrosis factor (TNF)-α or conditioned medium from RAW264.7 cells. In 4T1 cells, treatment with aspirin decreased cell viability and migration, possibly by suppressing MCP-1 and VEGF secretion. Subsequently, culture of 4T1 cells in 3T3-L1 adipocyte-conditioned medium (Ad-CM) and co-culture of 3T3-L1 and 4T1 cells using a transwell plate were performed to clarify the relationship between these two cell lines. Aspirin exerted its inhibitory effects in the transwell co-culture system, as well as the conditioned-medium model. Aspirin treatment significantly inhibited the proliferation of 4T1 cells, and decreased the production of MCP-1 and PAI-1 in both the Ad-CM model and co-culture system. Aspirin inhibited inflammatory MCP-1 adipokine production by 3T3-L1 adipocytes and the cell growth and migration of 4T1 cells. It also broke the crosstalk between these two cell lines, possibly contributing to its chemopreventive properties in breast cancer. This is the first report that aspirin's chemopreventive activity supports the potential application in auxiliary therapy against obesity-related breast cancer development. PMID:26794215

  2. Suppressive effects of a proton beam on tumor growth and lung metastasis through the inhibition of metastatic gene expression in 4T1 orthotopic breast cancer model.

    PubMed

    Kwon, Yun-Suk; Lee, Kyu-Shik; Chun, So-Young; Jang, Tae Jung; Nam, Kyung-Soo

    2016-07-01

    A proton beam is a next generation tool to treat intractable cancer. Although the therapeutic effects of a proton beam are well known, the effect on tumor metastasis is not fully described. Here, we investigated the effects of a proton beam on metastasis in highly invasive 4T1 murine breast cancer cells and their orthotopic breast cancer model. Cells were irradiated with 2, 4, 8 or 16 Gy proton beam, and changes in cell proliferation, survival, and migration were observed by MTT, colony forming and wound healing assays. 4T1 breast cancer cell-implanted BALB/c mice were established and the animals were randomly divided into 4 groups when tumor size reached 200 mm3. Breast tumors were selectively irradiated with 10, 20 or 30 Gy proton beam. Breast tumor sizes were measured twice a week, and breast tumor and lung tissues were pathologically observed. Metastasis-regulating gene expression was assessed with quantitative RT-PCR. A proton beam dose-dependently decreased cell proliferation, survival and migration in 4T1 murine breast cancer cells. Also, growth of breast tumors in the 4T1 orthotopic breast cancer model was significantly suppressed by proton beam irradiation without significant change of body weight. Furthermore, fewer tumor nodules metastasized from breast tumor into lung in mice irradiated with 30 Gy proton beam, but not with 10 and 20 Gy, than in control. We observed correspondingly lower expression levels of urokinase plasminogen activator (uPA), uPA receptor, cyclooxygenase (COX)-2, and vascular endothelial growth factor (VEGF), which are important factors in cancer metastasis, in breast tumor irradiated with 30 Gy proton beam. Proton beam irradiation did not affect expressions of matrix metalloproteinase (MMP)-9 and MMP-2. Taken together, the data suggest that, although proton beam therapy is an effective tool for breast cancer treatment, a suitable dose is necessary to prevent metastasis-linked relapse and poor prognosis. PMID:27176787

  3. In vivo antitumor and antimetastatic effects of flavokawain B in 4T1 breast cancer cell-challenged mice

    PubMed Central

    Abu, Nadiah; Mohamed, Nurul Elyani; Yeap, Swee Keong; Lim, Kian Lam; Akhtar, M Nadeem; Zulfadli, Aimi Jamil; Kee, Beh Boon; Abdullah, Mohd Puad; Omar, Abdul Rahman; Alitheen, Noorjahan Banu

    2015-01-01

    Flavokawain B (FKB) is a naturally occurring chalcone that can be isolated through the root extracts of the kava-kava plant (Piper methysticum). It can also be synthesized chemically to increase the yield. This compound is a promising candidate as a biological agent, as it is reported to be involved in a wide range of biological activities. Furthermore, FKB was reported to have antitumorigenic effects in several cancer cell lines in vitro. However, the in vivo antitumor effects of FKB have not been reported on yet. Breast cancer is one of the major causes of cancer-related deaths in the world today. Any potential treatment should not only impede the growth of the tumor, but also modulate the immune system efficiently and inhibit the formation of secondary tumors. As presented in our study, FKB induced apoptosis in 4T1 tumors in vivo, as evidenced by the terminal deoxynucleotidyl transferase dUTP nick end labeling and hematoxylin and eosin staining of the tumor. FKB also regulated the immune system by increasing both helper and cytolytic T-cell and natural killer cell populations. In addition, FKB also enhanced the levels of interleukin 2 and interferon gamma but suppressed interleukin 1B. Apart from that, FKB was also found to inhibit metastasis, as evaluated by clonogenic assay, bone marrow smearing assay, real-time polymerase chain reaction, Western blot, and proteome profiler analysis. All in all, FKB may serve as a promising anticancer agent, especially in treating breast cancer. PMID:25834398

  4. Elimination of the chemotherapy resistant subpopulation of 4T1 mouse breast cancer by haploidentical NK cells cures the vast majority of mice.

    PubMed

    Frings, Peter W H; Van Elssen, Catharina H M J; Wieten, Lotte; Matos, Catarina; Hupperets, Pierre S J G; Schouten, Harry C; Bos, Gerard M J; van Gelder, Michel

    2011-12-01

    Metastatic breast cancer is currently incurable despite initial responsiveness, assumingly due to the presence of chemoresistant subpopulations that can be characterized as label retaining cells (LRC). In the 4T1 mouse breast cancer model, we previously achieved cure after Cyclophosphamide and Total Body Irradiation (CY + TBI) followed by haploidentical bone marrow and spleen transplantation (BMSPLT). CY + TBI without transplantation induced only transient impaired tumor growth indicating a critical role of donor immune cells. As it remained unknown if the 4T1 model resembles human disease with respect to the presence of subpopulations of chemoresistant LRC, we now demonstrate this is indeed the case. Chemoresistance of 4T1 LRC was demonstrated by in vitro co-incubation of fluorescently labeled 4T1 cells in limiting dilution with cyclophosphamide, doxorubicin or cisplatinum, after which only LRC containing colonies remained. LRC also remain in vivo after treatment with CY + TBI. Succeeding experiments set up to identify the haploidentical effector cell responsible for cure and, therefore, for the elimination of chemoresistant LRC designate donor NK cells crucial for the anti-tumor effect. NK cell depletion of the haploidentical graft fully abrogated the anti-tumor effect. Increased disease-free survival retained after transplantation of haploidentical bone marrow and NK cell-enriched spleen cell grafts, even in the absence of donor T-cells or of donor bone marrow. Tumor growth analysis indicates the anti-tumor effect being immediate (days). Based on these data, it is worthwhile to explore alloreactive adoptive NK cell therapy as consolidation for patients with metastasized breast cancer. PMID:21274621

  5. Oral administration of 3,3'-diindolylmethane inhibits lung metastasis of 4T1 murine mammary carcinoma cells in BALB/c mice.

    PubMed

    Kim, Eun Ji; Shin, Minjeong; Park, Heesook; Hong, Ji Eun; Shin, Hyun-Kyung; Kim, Jongdai; Kwon, Dae Young; Park, Jung Han Yoon

    2009-12-01

    3,3'-diindolylmethane (DIM) is the major in vivo product of the acid-catalyzed oligomerization of indole-3-carbinol present in cruciferous vegetables, and it has been shown to exhibit anticancer properties. In this study, we assessed the effects of DIM on the metastasis of 4T1 mouse mammary carcinoma cells. In vitro culture studies showed that DIM dose-dependently inhibited the migration, invasion, and adhesion of 4T1 cells at concentrations of 0-10 micromol/L without attendant changes in cell viability. In an in vivo lung metastasis model, 4T1 cells (2 x 10(5) cells/mouse) were injected into the tail veins of syngeneic female BALB/c mice. Beginning on the second day, the mice were subjected to gavage with 0-10 mg DIM/(kg body weight x d) for 13 d. Oral DIM administration resulted in a marked reduction in the number of pulmonary tumor nodules. DIM treatment significantly reduced the levels of matrix metalloproteinase (MMP)-2, MMP-9, tissue inhibitor of metalloproteinase (TIMP)-1, and vascular cell adhesion molecule (VCAM)-1 and increased TIMP-2 levels in the sera and lungs of mice injected with 4T1 cells. Additionally, DIM treatment reduced the serum concentrations of interleukin (IL)-1beta, IL-6 and tumor necrosis factor (TNF)alpha. We have demonstrated that DIM profoundly inhibits the lung metastasis of 4T1 cells, which was accompanied by reduced levels of MMP, adhesion molecules, and proinflammatory cytokines. These results indicate that DIM has potential as an antimetastatic agent for the treatment of breast cancer. PMID:19864400

  6. Selection of Novel Peptides Homing the 4T1 CELL Line: Exploring Alternative Targets for Triple Negative Breast Cancer.

    PubMed

    Silva, Vera L; Ferreira, Debora; Nobrega, Franklin L; Martins, Ivone M; Kluskens, Leon D; Rodrigues, Ligia R

    2016-01-01

    The use of bacteriophages to select novel ligands has been widely explored for cancer therapy. Their application is most warranted in cancer subtypes lacking knowledge on how to target the cancer cells in question, such as the triple negative breast cancer, eventually leading to the development of alternative nanomedicines for cancer therapeutics. Therefore, the following study aimed to select and characterize novel peptides for a triple negative breast cancer murine mammary carcinoma cell line- 4T1. Using phage display, 7 and 12 amino acid random peptide libraries were screened against the 4T1 cell line. A total of four rounds, plus a counter-selection round using the 3T3 murine fibroblast cell line, was performed. The enriched selective peptides were characterized and their binding capacity towards 4T1 tissue samples was confirmed by immunofluorescence and flow cytometry analysis. The selected peptides (4T1pep1 -CPTASNTSC and 4T1pep2-EVQSSKFPAHVS) were enriched over few rounds of selection and exhibited specific binding to the 4T1 cell line. Interestingly, affinity to the human MDA-MB-231 cell line was also observed for both peptides, promoting the translational application of these novel ligands between species. Additionally, bioinformatics analysis suggested that both peptides target human Mucin-16. This protein has been implicated in different types of cancer, as it is involved in many important cellular functions. This study strongly supports the need of finding alternative targeting systems for TNBC and the peptides herein selected exhibit promising future application as novel homing peptides for breast cancer therapy. PMID:27548261

  7. Selection of Novel Peptides Homing the 4T1 CELL Line: Exploring Alternative Targets for Triple Negative Breast Cancer

    PubMed Central

    Nobrega, Franklin L.; Martins, Ivone M.

    2016-01-01

    The use of bacteriophages to select novel ligands has been widely explored for cancer therapy. Their application is most warranted in cancer subtypes lacking knowledge on how to target the cancer cells in question, such as the triple negative breast cancer, eventually leading to the development of alternative nanomedicines for cancer therapeutics. Therefore, the following study aimed to select and characterize novel peptides for a triple negative breast cancer murine mammary carcinoma cell line– 4T1. Using phage display, 7 and 12 amino acid random peptide libraries were screened against the 4T1 cell line. A total of four rounds, plus a counter-selection round using the 3T3 murine fibroblast cell line, was performed. The enriched selective peptides were characterized and their binding capacity towards 4T1 tissue samples was confirmed by immunofluorescence and flow cytometry analysis. The selected peptides (4T1pep1 –CPTASNTSC and 4T1pep2—EVQSSKFPAHVS) were enriched over few rounds of selection and exhibited specific binding to the 4T1 cell line. Interestingly, affinity to the human MDA-MB-231 cell line was also observed for both peptides, promoting the translational application of these novel ligands between species. Additionally, bioinformatics analysis suggested that both peptides target human Mucin-16. This protein has been implicated in different types of cancer, as it is involved in many important cellular functions. This study strongly supports the need of finding alternative targeting systems for TNBC and the peptides herein selected exhibit promising future application as novel homing peptides for breast cancer therapy. PMID:27548261

  8. Licoricidin, an Active Compound in the Hexane/Ethanol Extract of Glycyrrhiza uralensis, Inhibits Lung Metastasis of 4T1 Murine Mammary Carcinoma Cells

    PubMed Central

    Park, So Young; Kwon, Soo Jin; Lim, Soon Sung; Kim, Jin-Kyu; Lee, Ki Won; Park, Jung Han Yoon

    2016-01-01

    Licorice extracts containing glycyrrhizin exhibit anti-carcinogenic properties. Because glycyrrhizin induces severe hypokalemia and hypertension, we prepared a hexane/ethanol extract of Glycyrrhiza uralensis (HEGU) that lacks glycyrrhizin, and showed that HEGU induces apoptosis and G1 cell cycle arrest and inhibits migration of DU145 human prostate cancer cells. Our previous in vitro studies identified two active components in HEGU: isoangustone A, which induces apoptosis and G1 cycle arrest, and licoricidin, which inhibits metastasis. This study examined whether HEGU and licoricidin inhibit metastasis using the 4T1 mammary cancer model. Both HEGU and licoricidin treatment reduced pulmonary metastasis and the expression of CD45, CD31, HIF-1α, iNOS, COX-2, and VEGF-A in tumor tissues. Additionally, a decrease in protein expression of VEGF-R2, VEGF-C, VEGF-R3, and LYVE-1 was noted in tumor tissues of licoricidin-treated mice. Furthermore, the blood concentrations of MMP-9, ICAM-1, VCAM-1, and VEGF-A were decreased in HEGU-treated mice. In vitro 4T1 cell culture results showed that both HEGU and licoricidin inhibited cell migration, MMP-9 secretion, and VCAM expression. The present study demonstrates that the licoricidin in HEGU inhibits lung metastasis of 4T1 mammary carcinoma cells, which may be mediated via inhibition of cancer cell migration, tumor angiogenesis, and lymphangiogenesis. PMID:27314329

  9. Licoricidin, an Active Compound in the Hexane/Ethanol Extract of Glycyrrhiza uralensis, Inhibits Lung Metastasis of 4T1 Murine Mammary Carcinoma Cells.

    PubMed

    Park, So Young; Kwon, Soo Jin; Lim, Soon Sung; Kim, Jin-Kyu; Lee, Ki Won; Park, Jung Han Yoon

    2016-01-01

    Licorice extracts containing glycyrrhizin exhibit anti-carcinogenic properties. Because glycyrrhizin induces severe hypokalemia and hypertension, we prepared a hexane/ethanol extract of Glycyrrhiza uralensis (HEGU) that lacks glycyrrhizin, and showed that HEGU induces apoptosis and G1 cell cycle arrest and inhibits migration of DU145 human prostate cancer cells. Our previous in vitro studies identified two active components in HEGU: isoangustone A, which induces apoptosis and G1 cycle arrest, and licoricidin, which inhibits metastasis. This study examined whether HEGU and licoricidin inhibit metastasis using the 4T1 mammary cancer model. Both HEGU and licoricidin treatment reduced pulmonary metastasis and the expression of CD45, CD31, HIF-1α, iNOS, COX-2, and VEGF-A in tumor tissues. Additionally, a decrease in protein expression of VEGF-R2, VEGF-C, VEGF-R3, and LYVE-1 was noted in tumor tissues of licoricidin-treated mice. Furthermore, the blood concentrations of MMP-9, ICAM-1, VCAM-1, and VEGF-A were decreased in HEGU-treated mice. In vitro 4T1 cell culture results showed that both HEGU and licoricidin inhibited cell migration, MMP-9 secretion, and VCAM expression. The present study demonstrates that the licoricidin in HEGU inhibits lung metastasis of 4T1 mammary carcinoma cells, which may be mediated via inhibition of cancer cell migration, tumor angiogenesis, and lymphangiogenesis. PMID:27314329

  10. Murine breast carcinoma 4T1 cells are more sensitive to atranorin than normal epithelial NMuMG cells in vitro: Anticancer and hepatoprotective effects of atranorin in vivo.

    PubMed

    Solár, Peter; Hrčková, Gabriela; Koptašíková, Lenka; Velebný, Samuel; Solárová, Zuzana; Bačkor, Martin

    2016-04-25

    The aim of this study was to evaluate the anticancer effect of atranorin (ATR) on murine 4T1 breast carcinoma cells and compare its sensitivity with normal mammary epithelial NMuMG cells in vitro. Anti-tumor and hepatoprotective activity of ATR-therapy was examined on mouse model of 4T1-induced cancer disease. ATR significantly reduced clonogenic ability of carcinoma 4T1 cells at the concentration of 75 μM, but clonogenicity of normal NMuMG cells was not affected by any of ATR concentrations tested. Moreover, flow cytometric and BrdU incorporation analysis did not confirm the inhibited entry into S-phase of the cell cyle after ATR incubation, and on the contrary, it induced apoptosis associated with the activation of caspase-3 and PARP cleavage in 4T1 cells. Although ATR did not cause any significant changes in Bcl-xL protein expression in NMuMG cells, an apparent depletion of Bcl-xL protein in 4T1 cells after 48 h ATR therapy was confirmed. Based on this result as well as the result of the total cell number decline, we can conclude that 4T1 cells are more sensitive to ATR therapy than NMuMG cells. ATR administration resulted in significantly longer survival time of BALB/c mice inoculated with 4T1 cells, what was associated with reduced tumor size and the higher numbers of apoptotic 4T1 cells. No differences were recorded in the number of BrdU-positive tumor cells between ATR-treated group and controls. Results indicate that ATR has rather proapoptotic than antiproliferative effect on 4T1 cells in vitro and in vivo and normal NMuMG cells are less sensitive to ATR. Furthermore, our studies revealed protective effect of ATR against oxidative stress in the livers of the tumor-bearing mice. PMID:26969521

  11. Enhancement of fibroblast activation protein α-based vaccines and adenovirus boost immunity by cyclophosphamide through inhibiting IL-10 expression in 4T1 tumor bearing mice.

    PubMed

    Xia, Qiu; Geng, Fei; Zhang, Fang-Fang; Liu, Chen-Lu; Xu, Ping; Lu, Zhen-Zhen; Zhang, Hai-Hong; Kong, Wei; Yu, Xiang-Hui

    2016-08-31

    Fibroblast activation protein α (FAPα) is expressed in cancer-associated fibroblasts (CAFs) of more than 90% of malignant epithelia carcinomas. CAFs are the main type of cells in the tumor microenvironment which offer nutrition and protection to the tumor and regulate immunosuppression. To eliminate CAFs, a vaccine targeting FAPα may be used with a heterologous prime-boost strategy to enhance the FAPα-specific cellular immunity. Here, a FAP vaccine using a recombinant adenovirus (rAd) vector was constructed as well as a DNA vaccine reported in our previous work. Although the DNA prime-rAd boost strategy enhanced FAPα-specific immune responses, improvement of anti-tumor immunity effects was not observed. Examination of immunosuppressive factors revealed that high expression of the IL-10 cytokine was considered the main cause of the failure of the prime-boost strategy. However, heterologous vaccination in combination with a low-dose of cyclophosphamide (CY), which was reported to reduce IL-10 production and promote a shift from immunosuppression to immunopotentiation, resulted in enhanced effects in terms of numbers of effector T cells and tumor growth inhibition rates, compared to the CY alone or DNA alone group. Tumor growth was inhibited markedly when the prime-boost strategy was combined with CY in both the prophylactic and therapeutic settings and the survival time of 4T1 tumor bearing mice was also prolonged significantly. With the reduction of IL-10, enhancement of the anti-tumor effect by the prime-boost strategy was observed. These results suggest that FAPα-targeted rAd boosting in combination with CY is an attractive approach to overcoming immunosuppression in cancer vaccines. PMID:27498213

  12. Molecular changes in bone marrow, tumor and serum after conductive ablation of murine 4T1 breast carcinoma.

    PubMed

    Przybyla, Beata D; Shafirstein, Gal; Vishal, Sagar J; Dennis, Richard A; Griffin, Robert J

    2014-02-01

    Thermal ablation of solid tumors using conductive interstitial thermal therapy (CITT) produces coagulative necrosis in the center of ablation. Local changes in homeostasis for surviving tumor and systemic changes in circulation and distant organs must be understood and monitored in order to prevent tumor re-growth and metastasis. The purpose of this study was to use a mouse carcinoma model to evaluate molecular changes in the bone marrow and surviving tumor after CITT treatment by quantification of transcripts associated with cancer progression and hyperthermia, serum cytokines, stress proteins and the marrow/tumor cross-talk regulator stromal-derived factor 1. Analysis of 27 genes and 22 proteins with quantitative PCR, ELISA, immunoblotting and multiplex antibody assays revealed that the gene and protein expression in tissue and serum was significantly different between ablated and control mice. The transcripts of four genes (Cxcl12, Sele, Fgf2, Lifr) were significantly higher in the bone marrow of treated mice. Tumors surviving ablation showed significantly lower levels of the Lifr and Sele transcripts. Similarly, the majority of transcripts measured in tumors decreased with treatment. Surviving tumors also contained lower levels of SDF-1α and HIF-1α proteins whereas HSP27 and HSP70 were higher. Of 16 serum chemokines, IFNγ and GM-CSF levels were lower with treatment. These results indicate that CITT ablation causes molecular changes which may slow cancer cell proliferation. However, inhibition of HSP27 may be necessary to control aggressiveness of surviving cancer stem cells. The changes in bone marrow are suggestive of possible increased recruitment of circulatory cancer cells. Therefore, the possibility of heightened bone metastasis after thermal ablation needs to be further investigated and inhibition strategies developed, if warranted. PMID:24270800

  13. An iTEP-salinomycin nanoparticle that specifically and effectively inhibits metastases of 4T1 orthotopic breast tumors.

    PubMed

    Zhao, Peng; Xia, Guiquan; Dong, Shuyun; Jiang, Zhaong-Xing; Chen, Mingnan

    2016-07-01

    Cancer stem cell (CSC) inhibitors are a new category of investigational drugs to treat metastasis. Salinomycin (Sali) is one of most studied CSC inhibitors and has reached clinical tests. Several drug carriers have been developed to improve efficacy of Sali. However, Sali has not been shown to inhibit metastasis from orthotopic tumors, the gold standard for metastasis. To fill this gap, we developed an immune-tolerant, elastin-like polypeptide (iTEP)-based nanoparticle (iTEP-Sali-ABA NP) that released 4-(aminomethyl)benzaldehyde-modified Sali (Sali-ABA) under acidic conditions. We found that the NP increased the area under the curve (AUC) of Sali-ABA by 30-fold and the tumor accumulation by 3.4-fold. Furthermore, no metastasis was detected in any of the mice given the NP. However, all the mice died of primary tumor burdens. To overcome primary tumor growth and improve the overall survival, we applied a combination therapy consisting of the iTEP-Sali-ABA NP and iTEP NP-delivered paclitaxel. This therapy effectively retarded primary tumor growth, and most importantly, improved the overall survival. In conclusion, delivery of Sali-ABA by the NP, alone or in combination with paclitaxel, was more effective than free Sali-ABA in decreasing metastasis and increasing survival. This iTEP-Sali-ABA NP represents a novel and clinically promising therapy to combat metastasis. PMID:27060212

  14. Anti-tumor effects of DNA vaccine targeting human fibroblast activation protein α by producing specific immune responses and altering tumor microenvironment in the 4T1 murine breast cancer model.

    PubMed

    Xia, Qiu; Zhang, Fang-Fang; Geng, Fei; Liu, Chen-Lu; Xu, Ping; Lu, Zhen-Zhen; Yu, Bin; Wu, Hui; Wu, Jia-Xin; Zhang, Hai-Hong; Kong, Wei; Yu, Xiang-Hui

    2016-05-01

    Fibroblast activation protein α (FAPα) is a tumor stromal antigen overexpressed by cancer-associated fibroblasts (CAFs). CAFs are genetically more stable compared with the tumor cells and immunosuppressive components of the tumor microenvironment, rendering them excellent targets for cancer immunotherapy. DNA vaccines are widely applied due to their safety. To specifically destroy CAFs, we constructed and examined the immunogenicity and anti-tumor immune mechanism of a DNA vaccine expressing human FAPα. This vaccine successfully reduced 4T1 tumor growth through producing FAPα-specific cytotoxic T lymphocyte responses which could kill CAFs, and the decrease in FAPα-expressing CAFs resulted in markedly attenuated expression of collagen I and other stromal factors that benefit the tumor progression. Based on these results, a DNA vaccine targeting human FAPα may be an attractive and effective cancer immunotherapy strategy. PMID:27020681

  15. Escherichia coli Nissle 1917 targets and restrains mouse B16 melanoma and 4T1 breast tumors through expression of azurin protein.

    PubMed

    Zhang, Yunlei; Zhang, Youming; Xia, Liqiu; Zhang, Xiangli; Ding, Xuezhi; Yan, Fu; Wu, Feng

    2012-11-01

    Many studies have demonstrated that intravenously administered bacteria can target and proliferate in solid tumors and then quickly be released from other organs. Here, we employed the tumor-targeting property of Escherichia coli Nissle 1917 to inhibit mouse B16 melanoma and 4T1 breast tumors through the expression of azurin protein. For this purpose, recombinant azurin-expressing E. coli Nissle 1917 was developed. The levels of in vitro and in vivo azurin secretion in the engineered bacterium were determined by immunochemistry. Our results demonstrated that B16 melanoma and orthotopic 4T1 breast tumor growth were remarkably restrained and pulmonary metastasis was prevented in immunocompetent mice. It is worth noting that this therapeutic effect partially resulted from the antitumor activity of neutrophils and lymphocytes due to inflammatory responses caused by bacterial infections. No toxicity was observed in the animal during the experiments. This study indicates that E. coli Nissle 1917 could be a potential carrier to deliver antitumor drugs effectively for cancer therapy. PMID:22923405

  16. Escherichia coli Nissle 1917 Targets and Restrains Mouse B16 Melanoma and 4T1 Breast Tumors through Expression of Azurin Protein

    PubMed Central

    Zhang, Yunlei; Zhang, Youming; Zhang, Xiangli; Ding, Xuezhi; Yan, Fu; Wu, Feng

    2012-01-01

    Many studies have demonstrated that intravenously administered bacteria can target and proliferate in solid tumors and then quickly be released from other organs. Here, we employed the tumor-targeting property of Escherichia coli Nissle 1917 to inhibit mouse B16 melanoma and 4T1 breast tumors through the expression of azurin protein. For this purpose, recombinant azurin-expressing E. coli Nissle 1917 was developed. The levels of in vitro and in vivo azurin secretion in the engineered bacterium were determined by immunochemistry. Our results demonstrated that B16 melanoma and orthotopic 4T1 breast tumor growth were remarkably restrained and pulmonary metastasis was prevented in immunocompetent mice. It is worth noting that this therapeutic effect partially resulted from the antitumor activity of neutrophils and lymphocytes due to inflammatory responses caused by bacterial infections. No toxicity was observed in the animal during the experiments. This study indicates that E. coli Nissle 1917 could be a potential carrier to deliver antitumor drugs effectively for cancer therapy. PMID:22923405

  17. Curcumin improves the therapeutic efficacy of Listeriaat-Mage-b vaccine in correlation with improved T-cell responses in blood of a triple-negative breast cancer model 4T1

    PubMed Central

    Singh, Manisha; Ramos, Ilyssa; Asafu-Adjei, Denise; Quispe-Tintaya, Wilber; Chandra, Dinesh; Jahangir, Arthee; Zang, Xingxing; Aggarwal, Bharat B; Gravekamp, Claudia

    2013-01-01

    Abstract Success of cancer vaccination is strongly hampered by immune suppression in the tumor microenvironment (TME). Interleukin (IL)-6 is particularly and highly produced by triple-negative breast cancer (TNBC) cells, and has been considered as an important contributor to immune suppression in the TME. Therefore, we hypothesized that IL-6 reduction may improve efficacy of vaccination against TNBC cancer through improved T-cell responses. To prove this hypothesis, we investigated the effect of curcumin, an inhibitor of IL-6 production, on vaccination of a highly attenuated Listeria monocytogenes (Listeriaat), encoding tumor-associated antigens (TAA) Mage-b in a TNBC model 4T1. Two therapeutic vaccination strategies with Listeriaat-Mage-b and curcumin were tested. The first immunization strategy involved all Listeriaat-Mage-b vaccinations and curcumin after tumor development. As curcumin has been consumed all over the world, the second immunization strategy involved curcumin before and all therapeutic vaccinations with Listeriaat-Mage-b after tumor development. Here, we demonstrate that curcumin significantly improves therapeutic efficacy of Listeriaat-Mage-b with both immunization strategies particularly against metastases in a TNBC model (4T1). The combination therapy was slightly but significantly more effective against the metastases when curcumin was administered before compared to after tumor development. With curcumin before tumor development in the combination therapy, the production of IL-6 was significantly decreased and IL-12 increased by myeloid-derived suppressor cells (MDSC), in correlation with improved CD4 and CD8 T-cell responses in blood. Our study suggests that curcumin improves the efficacy of Listeriaat-Mage-b vaccine against metastases in TNBC model 4T1 through reversal of tumor-induced immune suppression. This study is focused on improving cancer vaccination by reducing immune suppression. Here we demonstrate that curcumin improves vaccine

  18. Hybrid paclitaxel and gold nanorod-loaded human serum albumin nanoparticles for simultaneous chemotherapeutic and photothermal therapy on 4T1 breast cancer cells.

    PubMed

    Peralta, Donna V; Heidari, Zahra; Dash, Srikanta; Tarr, Matthew A

    2015-04-01

    The use of human serum albumin nanoparticles (HSAPs) as a drug carrier system for cancer treatment has proven successful through current marketable clinical formulations. Despite this success, there is a current lack of multifunctional HSAPs, which offer combinational therapies of more than one proven technique. Gold nanorods (AuNRs) have also shown medicinal promise due to their photothermal therapy capabilities. In this study, a desolvation and cross-linking approach was employed to successfully encapsulate gold nanorods into HSAPs simultaneously with the chemotherapeutic drug paclitaxel (PAC); forming PAC-AuNR-HSAPs with desirable overall particle sizes of 299 ± 6 nm. The loading efficiency of paclitaxel into PAC-AuNR-HSAPs reached up to 3 μg PAC/mg HSA. The PAC-AuNR-HSAPs experienced photothermal heating; with the bulk particle solution reaching up to 46 °C after 15 min of near-IR laser exposure. This heat increase marked the successful attainment of the temperature necessary to cause severe cellular hyperthermia and necrosis. The encasement strategy facilitated a colloidal hybrid treatment system capable of enhanced permeability and retention effects, photothermal ablation of cancer cells, and release of the active paclitaxel of up to 188 ng (from PAC-AuNR-HSAPs created with 30 mg HSA) in a single 15 min irradiation session. When treated with PAC-AuNR-HSAPs containing 20 μg PAC/mL particle solution, 4T1 mouse breast cancer cells experienced ∼82% cell death without irradiation and ∼94% cell death after just one irradiation session. The results for PAC-AuNR-HSAPs were better than that of free PAC, which only killed ∼77% of the cells without irradiation and ∼80% with irradiation. The hybrid particle system also lends itself to future customizable external functionalities via conjugated targeting ligands, such as antibodies. Internal entrapment of patient tailored medication combinations are also possible with this combination treatment platform, which

  19. Endostatin inhibits the growth and migration of 4T1 mouse breast cancer cells by skewing macrophage polarity toward the M1 phenotype.

    PubMed

    Guo, Hua; Liu, Yanan; Gu, Junlian; Wang, Yue; Liu, Lianqin; Zhang, Ping; Li, Yang

    2016-06-01

    The phenotypic diversity of tumor-associated macrophages (TAMs) increases with tumor development. One of the hallmarks of malignancy is the polarization of TAMs from a pro-immune (M1) phenotype to an immunosuppressive (M2) phenotype. However, the molecular basis of this process is still unclear. Endostatin is a powerful inhibitor of angiogenesis capable of suppressing tumor growth and metastasis. Here, we demonstrate that endostatin induces RAW264.7 cell polarization toward the M1 phenotype in vitro. Endostatin has no effect on TAM numbers in vivo, but results in an increased proportion of F4/80(+)Nos2(+) cells and a decreased proportion of F4/80(+)CD206(+) cells. Overexpression of endostatin in RAW264.7 cells resulted in a decrease in the phosphorylation of STAT3, an increase in expression of vascular endothelial growth factor A and placental growth factor, and an increase in the phosphorylation of STAT1, IκBα and p65 proteins compared with controls. These results indicate that endostatin regulates macrophage polarization, promoting the M1 phenotype by targeting NF-κB and STAT signaling. PMID:27034233

  20. The protective effects of paeonol against epirubicin-induced hepatotoxicity in 4T1-tumor bearing mice via inhibition of the PI3K/Akt/NF-kB pathway.

    PubMed

    Wu, Jing; Xue, Xia; Zhang, Bin; Jiang, Wen; Cao, Hongmei; Wang, Rongmei; Sun, Deqing; Guo, Ruichen

    2016-01-25

    Epirubicin is widely used for the treatment of various breast cancers; however, it has serious adverse side effects, such as hepatotoxicity, which require dose-adjustment or therapy substitution. Paeonol, an active component from Moutan Cortex, has a variety of biological activities, including preventing or reducing various toxicities induced by antineoplastics. Protection by paeonol against hepatotoxicity induced by epirubicin and the underlying mechanism of action were investigated in this study. Cytosolic enzymes in the serum and oxidative stress indices in the liver were determined. The protective effects were determined using the MTT assay in vitro or by evaluating the expression of apoptotic factors and crucial proteins in the PI3K/Akt/NF-kB pathway using western blot analysis. It is concluded that paeonol alleviates epirubicin-induced hepatotoxicity in 4T1-tumor bearing mice by inhibiting the PI3K/Akt/NF-kB pathway. PMID:26646421

  1. Imagable 4T1 model for the study of late stage breast cancer

    PubMed Central

    Tao, Kai; Fang, Min; Alroy, Joseph; Sahagian, G Gary

    2008-01-01

    Background The 4T1 mouse mammary tumor cell line is one of only a few breast cancer models with the capacity to metastasize efficiently to sites affected in human breast cancer. Here we describe two 4T1 cell lines modified to facilitate analysis of tumor growth and metastasis and evaluation of gene function in vivo. New information regarding the involvement of innate and acquired immunity in metastasis and other characteristics of the model relevant to its use in the study of late stage breast cancer are reported. Methods The lines were engineered for stable expression of firefly luciferase to allow tracking and quantitation of the cells in vivo. Biophotonic imaging was used to characterize growth and metastasis of the lines in vivo and an improved gene expression approach was used to characterize the basis for the metastatic phenotype that was observed. Results Growth of cells at the primary site was biphasic with metastasis detected during the second growth phase 5–6 weeks after introduction of the cells. Regression of growth, which occurred in weeks 3–4, was associated with extensive necrosis and infiltration of leukocytes. Biphasic tumor growth did not occur in BALB/c SCID mice indicating involvement of an acquired immune response in the effect. Hematopoiesis in spleen and liver and elevated levels of circulating leukocytes were observed at week 2 and increased progressively until death at week 6–8. Gene expression analysis revealed an association of several secreted factors including colony stimulatory factors, cytokines and chemokines, acute phase proteins, angiogenesis factors and ECM modifying proteins with the 4T1 metastatic phenotype. Signaling pathways likely to be responsible for production of these factors were also identified. Conclusion The production of factors that stimulate angiogenesis and ECM modification and induce hematopoiesis, recruitment and activation of leukocytes suggest that 4T1 tumor cells play a more direct role than previously

  2. Tumor cell secretion of soluble factor(s) for specific immunosuppression

    PubMed Central

    Kano, Arihiro

    2015-01-01

    Studies of tumor models using syngeneic transplantation have advanced our understanding of tumor immunity, including both immune surveillance and evasion. Murine mammary carcinoma 4T1 cells secrete immunosuppressive soluble factors as demonstrated in splenocyte culture. Cultured primary splenocytes secrete IFN-γ, which was strikingly elevated when the cells were isolated from 4T1 tumor-bearing mice. The secretion of IFN-γ peaked a week after 4T1 inoculation and then declined. This reduction may be due to the relatively decreased lymphocytes and increased granulocytes in a spleen accompanied by splenomegaly with time after the 4T1 inoculation. IFN-γ production was further suppressed with the addition of the conditioned media from 4T1 cells to the splenocyte culture. This suppressive effect was more evident in the splenocytes isolated from mice that had 4T1 tumors for a longer period of time and was not observed in the conditioned medium either from CT26 cells or with splenocytes isolated from CT26 tumor-bearing mice. These results suggest that the IFN-γ suppression is 4T1 tumor-specific. The soluble factor(s) in the 4T1-conditioned media was a protein between 10 to 100 kDa. The cytokine tip assay demonstrated several known cytokines that negatively regulate immune responses and may be candidates for this immunosuppression activity. PMID:25746680

  3. A novel protein with anti-metastasis activity on 4T1 carcinoma from medicinal fungus Cordyceps militaris.

    PubMed

    Yang, Qing; Yin, Yalin; Yu, Guojun; Jin, Yanxia; Ye, Xiangdong; Shrestha, Alok; Liu, Wei; Yu, Wenhui; Sun, Hui

    2015-09-01

    Cordyceps militaris is a famous fungus used in traditional Chinese medicine for nearly one thousand years. And its fruiting body is known to possess anticancer and immunomodulatory activities. This study describes the isolation, characterization, and test of antitumor activity of a C. militaris protein, called here as "C. militaris immunoregulatory protein" (CMIP). CMIP was purified through a three-step chromatographic procedure. The MS analyses showed that CMIP corresponded to an uncharacterized protein (CCM_01955) in the C. militaris transcriptional database. Circular dichroism of CMIP revealed the composition of 35.5% β-sheet, 18.5% α-helix, 17.0% turn and 29.0% random coil. No significant cytotoxicity of CMIP was observed on HeLa, HepG2 and 4T1 tumor cells. However, CMIP demonstrated anti-metastasis activity on a mouse model of 4T1 breast cancer lung metastasis. It reduced the number of tumor nodules in the lung of tumor-bearing mice and prolonged their survival time. Furthermore, proliferation of the 4T1 cells was inhibited by macrophage-CMIP conditioned media. And the mRNA levels of cytokines TNF-α, IL-1β and IL-6 were increased significantly in peritoneal macrophages treated by CMIP. These results reveal the antitumor potential of CMIP, thus reinforcing the importance of biochemical prospecting of C. militaris. PMID:26136144

  4. Mono- and Combined Therapy of Metastasizing Breast Carcinoma 4T1 with Zoledronic Acid and Doxorubicin.

    PubMed

    Baklaushev, V P; Grinenko, N F; Yusubalieva, G M; Gubskii, I L; Burenkov, M S; Rabinovich, E Z; Ivanova, N V; Chekhonin, V P

    2016-08-01

    The efficiency of monotherapy with zoledronic acid (Resorba), doxorubicin, and their combination was studied on the model of metastasizing breast carcinoma in BALB/c mice. Doxorubicin monotherapy was accompanied by a significant increase in median survival up to 57 days (vs. 34 and 35 days in control groups); 27% animals survived for 90 days (duration of the study). Bioluminescence area of the primary tumor significantly decreased on days 21 and 28; the total number of visceral metastases also decreased according to magnetic-resonance imaging data. Resorba monotherapy produced no general toxic effect, the median survival increased to 64 days, and 90-day survival was 33%. Imaging techniques (magnetic-resonance imaging, microtomography, bioluminescent analysis) showed that Resorba delayed the development of the primary tumor (regression of luminescence area on days 21 and 28, regression of standardized bioluminescence intensity on day 28) and significantly reduced the number of visceral metastases in comparison with the control. Combination therapy was less effective than monotherapy with the same medications. Median survival was 55 days, 90-day survival was 13%, but magnetic-resonance imaging and bioluminescence analysis after combination therapy also showed delayed growth of the primary tumor and reduced number of visceral metastases. Microtomography revealed bone metastases in ~30% animals of the control group; in experimental groups, no bone metastases were found. The experiment with periosteal (distal epiphysis of the femur) injection of 4T1-Luc2 tumor cells demonstrated pronounced selective effectiveness of Resorba in relation to bone metastases. Monotherapy with Resorba can prevent the development of not only bone, but also visceral metastases of breast cancer. PMID:27590765

  5. Pancreatic islet cell tumor

    MedlinePlus

    Islet cell tumors; Islet of Langerhans tumor; Neuroendocrine tumors ... In the healthy pancreas, cells called islet cells produce hormones that regulate a several bodily functions. These include blood sugar level and the production of ...

  6. Theranostic probe for simultaneous in vivo photoacoustic imaging and confined photothermolysis by pulsed laser at 1064 nm in 4T1 breast cancer model.

    PubMed

    Zhou, Min; Ku, Geng; Pageon, Laura; Li, Chun

    2014-12-21

    Here, we report that polyethylene glycol (PEG)-coated copper(II) sulfide nanoparticles (PEG-CuS NPs) with their peak absorption tuned to 1064 nm could be used both as a contrast agent for photoacoustic tomographic imaging of mouse tumor vasculature and as a mediator for confined photothermolysis of tumor cells in an orthotopic syngeneic 4T1 breast tumor model. PEG-CuS NPs showed stronger photoacoustic signal than hollow gold nanospheres and single-wall carbon nanotubes at 1064 nm. MicroPET imaging of 4T1 tumor-bearing mice showed a gradual accumulation of the NPs in the tumor over time. About 6.5% of injected dose were taken up in each gram of tumor tissue at 24 h after intravenous injection of (64)Cu-labeled PEG-CuS NPs. For both photoacoustic imaging and therapeutic studies, nanosecond (ns)-pulsed laser was delivered with Q-switched Nd:YAG at a wavelength of 1064 nm. Unlike conventional photothermal ablation therapy mediated by continuous wave laser with which heat could spread to the surrounding normal tissue, interaction of CuS NPs with short pulsed laser deliver heat rapidly to the treatment volume keeping the thermal damage confined to the target tissues. Our data demonstrated that it is possible to use a single-compartment nanoplatform to achieve both photoacoustic tomography and highly selective tumor destruction at 1064 nm in small animals. PMID:25379880

  7. Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors

    PubMed Central

    2013-01-01

    Introduction Mesenchymal stem cells (MSCs) are known to migrate to tumor tissues. This behavior of MSCs has been exploited as a tumor-targeting strategy for cell-based cancer therapy. However, the effects of MSCs on tumor growth are controversial. This study was designed to determine the effect of MSCs on the growth of breast and prostate tumors. Methods Bone marrow-derived MSCs (BM-MSCs) were isolated and characterized. Effects of BM-MSCs on tumor cell proliferation were analyzed in a co-culture system with mouse breast cancer cell 4T1 or human prostate cancer cell DU145. Tumor cells were injected into nude mice subcutaneously either alone or coupled with BM-MSCs. The expression of cell proliferation and angiogenesis-related proteins in tumor tissues were immunofluorescence analyzed. The angiogenic effect of BM-MSCs was detected using a tube formation assay. The effects of the crosstalk between tumor cells and BM-MSCs on expression of angiogenesis related markers were examined by immunofluorescence and real-time PCR. Results Both co-culturing with mice BM-MSCs (mBM-MSCs) and treatment with mBM-MSC-conditioned medium enhanced the growth of 4T1 cells. Co-injection of 4T1 cells and mBM-MSCs into nude mice led to increased tumor size compared with injection of 4T1 cells alone. Similar experiments using DU145 cells and human BM-MSCs (hBM-MSCs) instead of 4T1 cells and mBM-MSCs obtained consistent results. Compared with tumors induced by injection of tumor cells alone, the blood vessel area was greater in tumors from co-injection of tumor cells with BM-MSCs, which correlated with decreased central tumor necrosis and increased tumor cell proliferation. Furthermore, both conditioned medium from hBM-MSCs alone and co-cultures of hBM-MSCs with DU145 cells were able to promote tube formation ability of human umbilical vein endothelial cells. When hBM-MSCs are exposed to the DU145 cell environment, the expression of markers associated with neovascularization (macrophage

  8. Prevention of Metastasis in a 4T1 Murine Breast Cancer Model by Doxorubicin Carried by Folate Conjugated pH Sensitive Polymeric Micelles

    PubMed Central

    Gao, Zhong-Gao; Tian, Li; Hu, Jun; Park, In-Suh; Bae, You Han

    2011-01-01

    This study primarily focused on the anti-metastatic activity of doxorubicin (DOX) loaded in a pH-sensitive mixed polymeric micelle formed from two block polymers: poly(L-lactide) (PLLA) (Mn 3000)-b-poly(ethylene glycol) (PEG) (Mn 2000)-folate and poly(L-histidine) (PHis) (Mn 4700)-b-PEG (Mn 2000). Tumor formation and metastasis in mice were examined using a murine mammary carcinoma cell of 4T1 which is one of the most aggressive metastatic cancer cell lines. The efficacy was evaluated by tumor size, body weight change, survival rate, dorsal skin fold window chamber model, and histological observation of the lung, heart, liver and spleen after treatment with various DOX formulations. When the tumor reached 50–100 mm3 in size, the mice were treated by 4 times at a 3-day interval at a dose of 10 mg DOX/kg. The mixed micelle formulation resulted in retarded tumor growth, no weight loss, and no death for 4–5 weeks. In another set of the in vivo test for histological evaluation of the organs, the mice were similarly treated but the formulations were injected one day after 4T1 cell inoculation. The treatment by DOX loaded mixed micelle showed no apparent metastasis till 28 days. However, significant metastasis to the lung and heart was observed on Day 28 when the mice were treated with DOX carried by PBS, PLLA-b-PEG micelle and PHis-b-PEG micelle. PMID:21295088

  9. Theranostic probe for simultaneous in vivo photoacoustic imaging and confined photothermolysis by pulsed laser at 1064 nm in 4T1 breast cancer model

    NASA Astrophysics Data System (ADS)

    Zhou, Min; Ku, Geng; Pageon, Laura; Li, Chun

    2014-11-01

    Here, we report that polyethylene glycol (PEG)-coated copper(ii) sulfide nanoparticles (PEG-CuS NPs) with their peak absorption tuned to 1064 nm could be used both as a contrast agent for photoacoustic tomographic imaging of mouse tumor vasculature and as a mediator for confined photothermolysis of tumor cells in an orthotopic syngeneic 4T1 breast tumor model. PEG-CuS NPs showed stronger photoacoustic signal than hollow gold nanospheres and single-wall carbon nanotubes at 1064 nm. MicroPET imaging of 4T1 tumor-bearing mice showed a gradual accumulation of the NPs in the tumor over time. About 6.5% of injected dose were taken up in each gram of tumor tissue at 24 h after intravenous injection of 64Cu-labeled PEG-CuS NPs. For both photoacoustic imaging and therapeutic studies, nanosecond (ns)-pulsed laser was delivered with Q-switched Nd:YAG at a wavelength of 1064 nm. Unlike conventional photothermal ablation therapy mediated by continuous wave laser with which heat could spread to the surrounding normal tissue, interaction of CuS NPs with short pulsed laser deliver heat rapidly to the treatment volume keeping the thermal damage confined to the target tissues. Our data demonstrated that it is possible to use a single-compartment nanoplatform to achieve both photoacoustic tomography and highly selective tumor destruction at 1064 nm in small animals.Here, we report that polyethylene glycol (PEG)-coated copper(ii) sulfide nanoparticles (PEG-CuS NPs) with their peak absorption tuned to 1064 nm could be used both as a contrast agent for photoacoustic tomographic imaging of mouse tumor vasculature and as a mediator for confined photothermolysis of tumor cells in an orthotopic syngeneic 4T1 breast tumor model. PEG-CuS NPs showed stronger photoacoustic signal than hollow gold nanospheres and single-wall carbon nanotubes at 1064 nm. MicroPET imaging of 4T1 tumor-bearing mice showed a gradual accumulation of the NPs in the tumor over time. About 6.5% of injected dose were

  10. Inhibition of vacuolar ATPase subunit in tumor cells delays tumor growth by decreasing the essential macrophage population in the tumor microenvironment.

    PubMed

    Katara, G K; Kulshrestha, A; Jaiswal, M K; Pamarthy, S; Gilman-Sachs, A; Beaman, K D

    2016-02-25

    In cancer cells, vacuolar ATPase (V-ATPase), a multi-subunit enzyme, is expressed on the plasma as well as vesicular membranes and critically influences metastatic behavior. The soluble, cleaved N-terminal domain of V-ATPase a2 isoform is associated with in vitro induction of tumorigenic characteristics in macrophages. This activity led us to further investigate its in vivo role in cancer progression by inhibition of a2 isoform (a2V) in tumor cells and the concomitant effect on tumor microenvironment in the mouse 4T-1 breast cancer model. Results showed that macrophages cocultivated with a2V knockdown (sh-a2) 4T-1 cells produce lower amounts of tumorigenic factors in vitro and have reduced ability to suppress T-cell activation and proliferation compared with control 4T-1 cells. Data analysis showed a delayed mammary tumor growth in Balb/c mice inoculated with sh-a2 4T-1 cells compared with control. The purified CD11b(+) macrophages from sh-a2 tumors showed a reduced expression of mannose receptor-1 (CD206), interleukin-10, transforming growth factor-β, arginase-1, matrix metalloproteinase and vascular endothelial growth factor. Flow cytometric analysis of tumor-infiltrated macrophages showed a significantly low number of F4/80(+)CD11c(+)CD206(+) macrophages in sh-a2 tumors compared with control. In sh-a2 tumors, most of the macrophages were F4/80(+)CD11c(+) (antitumor M1 macrophages) suggesting it to be the reason behind delayed tumor growth. Additionally, tumor-infiltrating macrophages from sh-a2 tumors showed a reduced expression of CD206 compared with control whereas CD11c expression was unaffected. These findings demonstrate that in the absence of a2V in tumor cells, the resident macrophage population in the tumor microenvironment is altered which affects in vivo tumor growth. We suggest that by involving the host immune system, tumor growth can be controlled through targeting of a2V on tumor cells. PMID:25961933

  11. Silibinin inhibits accumulation of myeloid-derived suppressor cells and tumor growth of murine breast cancer.

    PubMed

    Forghani, Parvin; Khorramizadeh, Mohammad R; Waller, Edmund K

    2014-04-01

    Myeloid-derived suppressor cells (MDSC)s increase in blood and accumulate in the tumor microenvironment of tumor-bearing animals, contributing to immune suppression in cancer. Silibinin, a natural flavonoid from the seeds of milk thistle, has been developed as an anti-inflammatory agent and supportive care agent to reduce the toxicity of cancer chemotherapy. The goals of this study were to evaluate the effect of silibinin on MDSCs in tumor-bearing mice and antitumor activity of silibinin in a mouse model of breast cancer. 4T1 luciferase-transfected mammary carcinoma cells were injected into in the mammary fat pad female BALB/c mice, and female CB17-Prkdc Scid/J mice. Silibinin treatment started on day 4 or day 14 after tumor inoculation continued every other day. Tumor growth was monitored by bioluminescent imaging (BLI) measuring total photon flux. Flow cytometry measured total leukocytes, CD11b(+) Gr-1(+) MDSC, and T cells in the blood and tumors of tumor-bearing mice. The effects of silibinin on 4T1 cell viability in vitro were measured by BLI. Treatment with silibinin increased overall survival in mice harboring tumors derived from the 4T1-luciferase breast cancer cell line, and reduced tumor volumes and numbers of CD11b(+) Gr-1(+) MDSCs in the blood and tumor, and increased the content of T cells in the tumor microenvironment. Silibinin failed to inhibit tumor growth in immunocompromised severe combined immunodeficiency mice, supporting the hypothesis that anticancer effect of silibinin is immune-mediated. The antitumor activity of silibinin requires an intact host immune system and is associated with decreased accumulation of blood and tumor-associated MDSCs. PMID:24574320

  12. CXCR4 receptor positive spheroid forming cells are responsible for tumor invasion in vitro.

    PubMed

    Krohn, Alexander; Song, Yao-Hua; Muehlberg, Fabian; Droll, Lilly; Beckmann, Christoph; Alt, Eckhard

    2009-07-18

    Stem cells have been found to be involved in breast cancer growth, but the specific contribution of cancer stem cells in tumor biology, including metastasis, is still uncertain. We found that murine breast cancer cell lines 4T1, 4TO7, 167Farn and 67NR contains cancer stem cells defined by CXCR4 expression and their capability of forming spheroids in suspension culture. Importantly, we showed that CXCR4 expression is essential for tumor invasiveness because both CXCR4 neutralizing antibody and shRNA knockdown of the CXCR4 receptor significantly reduced tumor cell invasion. PMID:19286309

  13. CXCR3 as a molecular target in breast cancer metastasis: inhibition of tumor cell migration and promotion of host anti-tumor immunity

    PubMed Central

    Zhu, Guiquan; Jian, Jiang; Achyut, Bhagelu R.; Liang, Xinhua; Weiss, Jonathan M.; Wiltrout, Robert H.; Hollander, M. Christine; Yang, Li

    2015-01-01

    Chemokines and chemokine receptors have critical roles in cancer metastasis and have emerged as one of the targeting options in cancer therapy. However, the treatment efficacy on both tumor and host compartments needs to be carefully evaluated. Here we report that targeting CXCR3 decreased tumor cell migration and at the same time improved host anti-tumor immunity. We observed an increased expression of CXCR3 in metastatic tumor cells compared to those from non-metastatic tumor cells. Knockdown (KD) of CXCR3 in metastatic tumor cells suppressed tumor cell migration and metastasis. Importantly, CXCR3 expression in clinical breast cancer samples correlated with progression and metastasis. For the host compartment, deletion of CXCR3 in all host cells in 4T1 mammary tumor model significantly decreased metastasis. The underlying mechanisms involve a decreased expression of IL-4, IL-10, iNOs, and Arg-1 in myeloid cells and an increased T cell response. IFN-γ neutralization diminished the metastasis inhibition in the CXCR3 knockout (KO) mice bearing 4T1 tumors, suggesting a critical role of host CXCR3 in immune suppression. Consistently, targeting CXCR3 using a small molecular inhibitor (AMG487) significantly suppressed metastasis and improved host anti-tumor immunity. Our findings demonstrate that targeting CXCR3 is effective in both tumor and host compartments, and suggest that CXCR3 inhibition is likely to avoid adverse effects on host cells. PMID:26485767

  14. Canine mast cell tumors.

    PubMed

    Macy, D W

    1985-07-01

    Despite the fact that the mast cell tumor is a common neoplasm of the dog, we still have only a meager understanding of its etiology and biologic behavior. Many of the published recommendations for treatment are based on opinion rather than facts derived from careful studies and should be viewed with some skepticism. Because of the infrequent occurrence of this tumor in man, only a limited amount of help can be expected from human oncologists; therefore, burden of responsibility for progress in predicting behavior and developing treatment effective for canine mast cell tumors must fall on the shoulders of the veterinary profession. PMID:3929444

  15. Brain tumor stem cells.

    PubMed

    Palm, Thomas; Schwamborn, Jens C

    2010-06-01

    Since the end of the 'no-new-neuron' theory, emerging evidence from multiple studies has supported the existence of stem cells in neurogenic areas of the adult brain. Along with this discovery, neural stem cells became candidate cells being at the origin of brain tumors. In fact, it has been demonstrated that molecular mechanisms controlling self-renewal and differentiation are shared between brain tumor stem cells and neural stem cells and that corruption of genes implicated in these pathways can direct tumor growth. In this regard, future anticancer approaches could be inspired by uncovering such redundancies and setting up treatments leading to exhaustion of the cancer stem cell pool. However, deleterious effects on (normal) neural stem cells should be minimized. Such therapeutic models underline the importance to study the cellular mechanisms implicated in fate decisions of neural stem cells and the oncogenic derivation of adult brain cells. In this review, we discuss the putative origins of brain tumor stem cells and their possible implications on future therapies. PMID:20370314

  16. NDRG2 Expression Decreases Tumor-Induced Osteoclast Differentiation by Down-regulating ICAM1 in Breast Cancer Cells.

    PubMed

    Kim, Bomi; Nam, Sorim; Lim, Ji Hyun; Lim, Jong-Seok

    2016-01-01

    Bone matrix is properly maintained by osteoclasts and osteoblasts. In the tumor microenvironment, osteoclasts are increasingly differentiated by the various ligands and cytokines secreted from the metastasized cancer cells at the bone metastasis niche. The activated osteoclasts generate osteolytic lesions. For this reason, studies focusing on the differentiation of osteoclasts are important to reduce bone destruction by tumor metastasis. The N-myc downstream-regulated gene 2 (NDRG2) has been known to contribute to the suppression of tumor growth and metastasis, but the precise role of NDRG2 in osteoclast differentiation induced by cancer cells has not been elucidated. In this study, we demonstrate that NDRG2 expression in breast cancer cells has an inhibitory effect on osteoclast differentiation. RAW 264.7 cells, which are monocytic preosteoclast cells, treated with the conditioned media (CM) of murine breast cancer cells (4T1) expressing NDRG2 are less differentiated into the multinucleated osteoclast-like cells than those treated with the CM of 4T1-WT or 4T1-mock cells. Interestingly, 4T1 cells stably expressing NDRG2 showed a decreased mRNA and protein level of intercellular adhesion molecule 1 (ICAM1), which is known to enhance osteoclast maturation. Osteoclast differentiation was also reduced by ICAM1 knockdown in 4T1 cells. In addition, blocking the interaction between soluble ICAM1 and ICAM1 receptors significantly decreased osteoclastogenesis of RAW 264.7 cells in the tumor environment. Collectively, these results suggest that the reduction of ICAM1 expression by NDRG2 in breast cancer cells decreases osteoclast differentiation, and demonstrate that excessive bone resorption could be inhibited via ICAM1 down-regulation by NDRG2 expression. PMID:26759696

  17. NDRG2 Expression Decreases Tumor-Induced Osteoclast Differentiation by Down-regulating ICAM1 in Breast Cancer Cells

    PubMed Central

    Kim, Bomi; Nam, Sorim; Lim, Ji Hyun; Lim, Jong-Seok

    2016-01-01

    Bone matrix is properly maintained by osteoclasts and osteoblasts. In the tumor microenvironment, osteoclasts are increasingly differentiated by the various ligands and cytokines secreted from the metastasized cancer cells at the bone metastasis niche. The activated osteoclasts generate osteolytic lesions. For this reason, studies focusing on the differentiation of osteoclasts are important to reduce bone destruction by tumor metastasis. The N-myc downstream-regulated gene 2 (NDRG2) has been known to contribute to the suppression of tumor growth and metastasis, but the precise role of NDRG2 in osteoclast differentiation induced by cancer cells has not been elucidated. In this study, we demonstrate that NDRG2 expression in breast cancer cells has an inhibitory effect on osteoclast differentiation. RAW 264.7 cells, which are monocytic preosteoclast cells, treated with the conditioned media (CM) of murine breast cancer cells (4T1) expressing NDRG2 are less differentiated into the multinucleated osteoclast-like cells than those treated with the CM of 4T1-WT or 4T1-mock cells. Interestingly, 4T1 cells stably expressing NDRG2 showed a decreased mRNA and protein level of intercellular adhesion molecule 1 (ICAM1), which is known to enhance osteoclast maturation. Osteoclast differentiation was also reduced by ICAM1 knockdown in 4T1 cells. In addition, blocking the interaction between soluble ICAM1 and ICAM1 receptors significantly decreased osteoclastogenesis of RAW 264.7 cells in the tumor environment. Collectively, these results suggest that the reduction of ICAM1 expression by NDRG2 in breast cancer cells decreases osteoclast differentiation, and demonstrate that excessive bone resorption could be inhibited via ICAM1 down-regulation by NDRG2 expression. PMID:26759696

  18. Regulatory T cells prevent CD8 T cell maturation by inhibiting CD4 Th cells at tumor sites.

    PubMed

    Chaput, Nathalie; Darrasse-Jèze, Guillaume; Bergot, Anne-Sophie; Cordier, Corinne; Ngo-Abdalla, Stacie; Klatzmann, David; Azogui, Orly

    2007-10-15

    Natural regulatory T cells (Tregs) are present in high frequencies among tumor-infiltrating lymphocytes and in draining lymph nodes, supposedly facilitating tumor development. To investigate their role in controlling local immune responses, we analyzed intratumoral T cell accumulation and function in the presence or absence of Tregs. Tumors that grew in normal BALB/c mice injected with the 4T1 tumor cell line were highly infiltrated by Tregs, CD4 and CD8 cells, all having unique characteristics. Most infiltrating Tregs expressed low levels of CD25Rs and Foxp3. They did not proliferate even in the presence of IL-2 but maintained a strong suppressor activity. CD4 T cells were profoundly anergic and CD8 T cell proliferation and cytotoxicity were severely impaired. Depletion of Tregs modified the characteristics of tumor infiltrates. Tumors were initially invaded by activated CD4(+)CD25(-) T cells, which produced IL-2 and IFN-gamma. This was followed by the recruitment of highly cytotoxic CD8(+) T cells at tumor sites leading to tumor rejection. The beneficial effect of Treg depletion in tumor regression was abrogated when CD4 helper cells were also depleted. These findings indicate that the massive infiltration of tumors by Tregs prevents the development of a successful helper response. The Tregs in our model prevent Th cell activation and subsequent development of efficient CD8 T cell activity required for the control of tumor growth. PMID:17911581

  19. Testicular germ cell tumors.

    PubMed

    Looijenga, Leendert H J

    2014-02-01

    Human germ cell tumors are of interest because of their epidemiology, clinical behavior and pathobiology. Histologically, they are subdivided into various elements, with similarities to embryogenesis. Recent insights resulted in a division of five types of human germ cell tumors. In the context of male germ cells, three are relevant; Type I: teratomas and yolk sac tumors of neonates and infants; Type II: seminomas and nonseminomas of (predominantly) adolescents and adults; and Type III: spermatocytic seminomas of the elderly. Recent studies led to significant increases in understanding of the parameters involved in the earliest pathogenetic steps of human germ cells tumors, in particularly the seminomas and nonseminomas (Type II). In case of a disturbed gonadal physiology, either due to the germ cell itself, or the micro-environment, embryonic germ cells during a specific window of sensitization can be blocked in their maturation, resulting in carcinoma in situ or gonadoblastoma, the precursors of seminomas and nonseminomas. The level of testicularization of the gonad determines the histological composition of the precursor. These insights will allow better definition of individuals at risk to develop a germ cell malignancy, with putative preventive measurements, and allow better selection of scientific approaches to elucidate the pathogenesis. PMID:24683949

  20. Altered glycosylation in tumor cells

    SciTech Connect

    Reading, C.L. ); Hakomori, S. ); Marcus, D.M. )

    1988-01-01

    This book contains the proceeding on the following: Glycoconjugates of normal and tumor cells; Glycosyltransferases in normal and neoplastic cells; Mammalian lectins of normal tissues and tumor cells; and Immune recognition of carbohydrates and clinical applications.

  1. Tumor heterogeneity and circulating tumor cells.

    PubMed

    Zhang, Chufeng; Guan, Yan; Sun, Yulan; Ai, Dan; Guo, Qisen

    2016-05-01

    In patients with cancer, individualized treatment strategies are generally guided by an analysis of molecular biomarkers. However, genetic instability allows tumor cells to lose monoclonality and acquire genetic heterogeneity, an important characteristic of tumors, during disease progression. Researchers have found that there is tumor heterogeneity between the primary tumor and metastatic lesions, between different metastatic lesions, and even within a single tumor (either primary or metastatic). Tumor heterogeneity is associated with heterogeneous protein functions, which lowers diagnostic precision and consequently becomes an obstacle to determining the appropriate therapeutic strategies for individual cancer patients. With the development of novel testing technologies, an increasing number of studies have attempted to explore tumor heterogeneity by examining circulating tumor cells (CTCs), with the expectation that CTCs may comprehensively represent the full spectrum of mutations and/or protein expression alterations present in the cancer. In addition, this strategy represents a minimally invasive approach compared to traditional tissue biopsies that can be used to dynamically monitor tumor evolution. The present article reviews the potential efficacy of using CTCs to identify both spatial and temporal tumor heterogeneity. This review also highlights current issues in this field and provides an outlook toward future applications of CTCs. PMID:26902424

  2. Tumor cell intravasation.

    PubMed

    Chiang, Serena P H; Cabrera, Ramon M; Segall, Jeffrey E

    2016-07-01

    The process of entering the bloodstream, intravasation, is a necessary step in the development of distant metastases. The focus of this review is on the pathways and molecules that have been identified as being important based on current in vitro and in vivo assays for intravasation. Properties of the vasculature which are important for intravasation include microvessel density and also diameter of the vasculature, with increased intravasation correlating with increased vessel diameter in some tumors. TGFB signaling can enhance intravasation at least in part through induction of EMT, and we discuss other TGFB target genes that are important for intravasation. In addition to TGFB signaling, a number of studies have demonstrated that activation of EGF receptor family members stimulates intravasation, with downstream signaling through PI3K, N-WASP, RhoA, and WASP to induce invadopodia. With respect to proteases, there is strong evidence for contributions by uPA/uPAR, while the roles of MMPs in intravasation may be more tumor specific. Other cells including macrophages, fibroblasts, neutrophils, and platelets can also play a role in enhancing tumor cell intravasation. The technology is now available to interrogate the expression patterns of circulating tumor cells, which will provide an important reality check for the model systems being used. With a better understanding of the mechanisms underlying intravasation, the goal is to provide new opportunities for improving prognosis as well as potentially developing new treatments. PMID:27076614

  3. [Mediastinal germ cell tumors].

    PubMed

    Bremmer, F; Ströbel, P

    2016-09-01

    The mediastinum is among the most frequent anatomic region in which germ cell tumors (GCT) arise, second only to the gonads. Mediastinal GCT (mGCT) account for 16 % of all mediastinal neoplasms. Although the morphology and (according to all available data) the molecular genetics of mediastinal and gonadal GCT are identical, a number of unique aspects exist. There is a highly relevant bi-modal age distribution. In pre-pubertal children of both sexes, mGCT consist exclusively of teratomas and yolk sac tumors. The prognosis is generally favorable with modern treatment. In post-pubertal adults, virtually all patients with malignant mGCT are males; the prognosis is more guarded and depends (among other factors) on the histological GCT components and is similar to GCT in other organs. So-called somatic type malignancies (i. e. clonally related, non-germ cell neoplasias arising in a GCT) are much more frequent in mGCT than in other organs, and the association between mediastinal yolk sac tumors and hematological malignancies, such as myelodysplasias and leukemias, is unique to mediastinal tumors. The prognosis of GCT with somatic type malignancies is generally dismal. PMID:27491549

  4. Tumor tropism of intravenously injected human-induced pluripotent stem cell-derived neural stem cells and their gene therapy application in a metastatic breast cancer model.

    PubMed

    Yang, Jing; Lam, Dang Hoang; Goh, Sally Sallee; Lee, Esther Xingwei; Zhao, Ying; Tay, Felix Chang; Chen, Can; Du, Shouhui; Balasundaram, Ghayathri; Shahbazi, Mohammad; Tham, Chee Kian; Ng, Wai Hoe; Toh, Han Chong; Wang, Shu

    2012-05-01

    Human pluripotent stem cells can serve as an accessible and reliable source for the generation of functional human cells for medical therapies. In this study, we used a conventional lentiviral transduction method to derive human-induced pluripotent stem (iPS) cells from primary human fibroblasts and then generated neural stem cells (NSCs) from the iPS cells. Using a dual-color whole-body imaging technology, we demonstrated that after tail vein injection, these human NSCs displayed a robust migratory capacity outside the central nervous system in both immunodeficient and immunocompetent mice and homed in on established orthotopic 4T1 mouse mammary tumors. To investigate whether the iPS cell-derived NSCs can be used as a cellular delivery vehicle for cancer gene therapy, the cells were transduced with a baculoviral vector containing the herpes simplex virus thymidine kinase suicide gene and injected through tail vein into 4T1 tumor-bearing mice. The transduced NSCs were effective in inhibiting the growth of the orthotopic 4T1 breast tumor and the metastatic spread of the cancer cells in the presence of ganciclovir, leading to prolonged survival of the tumor-bearing mice. The use of iPS cell-derived NSCs for cancer gene therapy bypasses the sensitive ethical issue surrounding the use of cells derived from human fetal tissues or human embryonic stem cells. This approach may also help to overcome problems associated with allogeneic transplantation of other types of human NSCs. PMID:22311724

  5. Dentinogenic ghost cell tumor

    PubMed Central

    Bafna, Sweety Sagarmal; Joy, Tabita; Tupkari, Jagdish Vishnu; Landge, Jayant Shivaji

    2016-01-01

    Dentinogenic ghost cell tumor (DGCT) is a rare, odontogenic neoplasm which is considered to be a solid variant of calcifying odontogenic cyst (COC) with locally aggressive behavior. It accounts for only 2–14% of all COCs. To the best of our knowledge, only 88 cases of DGCT have been reported in the literature from 1968 to 2014. Herewith, we report a case of DGCT in a 68-year-old male patient with clinical presentation as a soft tissue growth over alveolar ridge and histopathologically characterized by ameloblastomatous epithelium, abundance of eosinophilic material and ghost cells. PMID:27194885

  6. PG545, a heparan sulfate mimetic, reduces heparanase expression in vivo, blocks spontaneous metastases and enhances overall survival in the 4T1 breast carcinoma model.

    PubMed

    Hammond, Edward; Brandt, Ralf; Dredge, Keith

    2012-01-01

    PG545 is a clinically relevant heparan sulfate (HS) mimetic which, in addition to possessing anti-angiogenic properties, also acts as a heparanase inhibitor which may differentiate its mechanism(s) of action from approved angiogenesis inhibitors. The degradation of HS by heparanase has been strongly implicated in cell dissemination and the metastatic process. Thus, the anti-metastatic activity of PG545 has been linked to the enzymatic function of heparanase - the only endoglycosidase known to cleave HS, an important component of the extracellular matrix (ECM) which represents a potential avenue for therapeutic intervention for certain metastatic cancer indications. Recent concerns raised about the paucity of overall survival as an endpoint in mouse models of clinically relevant metastasis led us to examine the effect of PG545 on the progression of both primary tumor growth and the spontaneously metastasizing disease in the 4T1 syngeneic breast carcinoma model in a non-surgical and surgical (mastectomy) setting. PG545 significantly inhibited primary tumor growth but importantly also inhibited lung metastasis in treated mice, an effect not observed with the tyrosine kinase inhibitor sorafenib. Importantly, PG545 significantly enhanced overall survival compared to vehicle control and the sorafenib group, suggesting PG545's inhibitory effect on heparanase is indeed a critical attribute to induce anti-metastatic activity. In addition to blocking a common angiogenic signalling pathway in tumor cells, the expression of heparanase in the primary tumor and lung was also significantly reduced by PG545 treatment. These results support the ongoing development of PG545 and highlight the potential utility in metastatic disease settings. PMID:23300607

  7. General Information about Pancreatic Neuroendocrine Tumors (Islet Cell Tumors)

    MedlinePlus

    ... Islet Cell Tumors) Treatment (PDQ®)–Patient Version General Information About Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) Go ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  8. Crosstalk between Tumor Cells and Macrophages in Stroma Renders Tumor Cells as the Primary Source of MCP-1/CCL2 in Lewis Lung Carcinoma

    PubMed Central

    Yoshimura, Teizo; Liu, Mingyong; Chen, Xin; Li, Liangzhu; Wang, Ji Ming

    2015-01-01

    The chemokine MCP-1/CCL2 is produced by a variety of tumors and plays an important role in cancer progression. We and others previously demonstrated that the primary source of MCP-1 in several mouse tumors, including 4T1 breast cancer, M5076 sarcoma, and B16 melanoma, was stromal cells. In the present study, we identified that tumor cells were the primary source of MCP-1 in Lewis lung carcinoma (LLC), because MCP-1 mRNA was highly expressed in tumors grown in both wild type (WT) and MCP-1−/− mice with elevated serum MCP-1 levels. Since LLC cells isolated from tumors expressed low levels of MCP-1 in vitro, it appeared that the tumor–stromal cell interaction in a tumor microenvironment increased MCP-1 expression in LLC cells. In fact, co-culture of LLC cells with normal mouse peritoneal macrophages or normal lung cells containing macrophages increased MCP-1 expression by LLC cells. Macrophages from TNFα−/− mice failed to activate LLC cells and anti-TNFα neutralizing antibody abolished the effect of WT macrophages on LLC cells. When LLC cells were transplanted into TNFα−/− mice, the levels of MCP-1 mRNA in tumors and serum MCP-1 levels were markedly lower as compared to WT mice, and importantly, tumors grew more slowly. Taken together, our results indicate that TNFα released by tumor cell-activated macrophages is critical for increased MCP-1 production by tumors cells. Thus, disruption of tumor–stromal cell interaction may inhibit tumor progression by reducing the production of tumor-promoting proinflammatory mediators, such as MCP-1. PMID:26167165

  9. Comparison patterns of 4 T1 antigens recognized by humoral immune response mediated by IgG and IgM antibodies in female and male mice with breast cancer using 2D-immnunoblots.

    PubMed

    Díaz-Zaragoza, Mariana; Hernández-Ávila, Ricardo; Govezensky, Tzipe; Mendoza, Luis; Meneses-Ruíz, Dulce María; Ostoa-Saloma, Pedro

    2015-09-01

    The early detection of cancer is one of the most promising approaches to reduce its growing burden and develop a curative treatment before the tumor is established. The early diagnosis of breast cancer is the most demanding of all tumors, because it is the most common cancer in women worldwide. We have described a new approach to analyze humoral immune reactions against 4 T1 cell antigens in female mice, reporting that the IgG and IgM responses differed and varied over time and between individuals. In this study, we compared and analyzed the detection of tumor antigens with IgG and IgM from the sera of male mice that were injected with 4 T1 cells into the mammary gland nipple in 2D immunoblot images. The variability in IgM and IgG responses in female and male mice with breast cancer at various stages of disease was characterized, and the properties with regard to antigen recognition were correlated statistically with variables that were associated with the individuals and tumors. The ensuing IgG and IgM responses differed. Only the IgG response decreased over time in female mice--not in male mice. The IgM response was maintained during tumor development in both sexes. Each mouse had a specific pattern of antigen recognition--ie, an immunological signature--represented by a unique set of antigen spots that were recognized by IgM or IgG. These data would support that rationale IgM is a better tool for early diagnosis, because it is not subject to immunosuppression like IgG in female mice with breast cancer. PMID:26026196

  10. Tumor-Endothelial Cell Three-dimensional Spheroids: New Aspects to Enhance Radiation and Drug Therapeutics12

    PubMed Central

    Upreti, Meenakshi; Jamshidi-Parsian, Azemat; Koonce, Nathan A; Webber, Jessica S; Sharma, Sunil K; Asea, Alexzander AA; Mader, Mathew J; Griffin, Robert J

    2011-01-01

    Classic cancer research for several decades has focused on understanding the biology of tumor cells in vitro. However, extending these findings to in vivo settings has been impeded owing to limited insights on the impact of microenvironment on tumor cells. We hypothesized that tumor cell biology and treatment response would be more informative when done in the presence of stromal components, like endothelial cells, which exist in the tumor microenvironment. To that end, we have developed a system to grow three-dimensional cultures of GFP-4T1 mouse mammary tumor and 2H11 murine endothelial cells in hanging drops of medium in vitro. The presence of 2H11 endothelial cells in these three-dimensional cocultures was found to sensitize 4T1-GFP tumor cells to chemotherapy (Taxol) and, at the same time, protect cells from ionizing radiation. These spheroidal cultures can also be implanted into the dorsal skinfold window chamber of mice for fluorescence imaging of vascularization and disease progression/treatment response. We observed rapid neovascularization of the tumor-endothelial spheroids in comparison to tumor spheroids grown in nude mice. Molecular analysis revealed pronounced up-regulation of several proangiogenic factors in the tumor tissue derived from the tumor-endothelial spheroids compared with tumor-only spheroids. Furthermore, the rate of tumor growth from tumor-endothelial spheroids in mice was faster than the tumor cell-only spheroids, resulting in greater metastasis to the lung. This three-dimensional coculture model presents an improved way to investigate more pertinent aspects of the therapeutic potential for radiation and/or chemotherapy alone and in combination with antiangiogenic agents. PMID:22191001

  11. Detection of Circulating Tumor Cells

    PubMed Central

    Terstappen, Leon W. M. M.

    2014-01-01

    The increasing number of treatment options for patients with metastatic carcinomas has created an accompanying need for methods to determine if the tumor will be responsive to the intended therapy and to monitor its effectiveness. Ideally, these methods would be noninvasive and provide quantitative real-time analysis of tumor activity in a variety of carcinomas. Assessment of circulating tumor cells shed into the blood during metastasis may satisfy this need. Here we review the CellSearch technology used for the detection of circulating tumor cells and discuss potential future directions for improvements. PMID:25133014

  12. Deformability of Tumor Cells versus Blood Cells.

    PubMed

    Shaw Bagnall, Josephine; Byun, Sangwon; Begum, Shahinoor; Miyamoto, David T; Hecht, Vivian C; Maheswaran, Shyamala; Stott, Shannon L; Toner, Mehmet; Hynes, Richard O; Manalis, Scott R

    2015-01-01

    The potential for circulating tumor cells (CTCs) to elucidate the process of cancer metastasis and inform clinical decision-making has made their isolation of great importance. However, CTCs are rare in the blood, and universal properties with which to identify them remain elusive. As technological advancements have made single-cell deformability measurements increasingly routine, the assessment of physical distinctions between tumor cells and blood cells may provide insight into the feasibility of deformability-based methods for identifying CTCs in patient blood. To this end, we present an initial study assessing deformability differences between tumor cells and blood cells, indicated by the length of time required for them to pass through a microfluidic constriction. Here, we demonstrate that deformability changes in tumor cells that have undergone phenotypic shifts are small compared to differences between tumor cell lines and blood cells. Additionally, in a syngeneic mouse tumor model, cells that are able to exit a tumor and enter circulation are not required to be more deformable than the cells that were first injected into the mouse. However, a limited study of metastatic prostate cancer patients provides evidence that some CTCs may be more mechanically similar to blood cells than to typical tumor cell lines. PMID:26679988

  13. Deformability of Tumor Cells versus Blood Cells

    PubMed Central

    Shaw Bagnall, Josephine; Byun, Sangwon; Begum, Shahinoor; Miyamoto, David T.; Hecht, Vivian C.; Maheswaran, Shyamala; Stott, Shannon L.; Toner, Mehmet; Hynes, Richard O.; Manalis, Scott R.

    2015-01-01

    The potential for circulating tumor cells (CTCs) to elucidate the process of cancer metastasis and inform clinical decision-making has made their isolation of great importance. However, CTCs are rare in the blood, and universal properties with which to identify them remain elusive. As technological advancements have made single-cell deformability measurements increasingly routine, the assessment of physical distinctions between tumor cells and blood cells may provide insight into the feasibility of deformability-based methods for identifying CTCs in patient blood. To this end, we present an initial study assessing deformability differences between tumor cells and blood cells, indicated by the length of time required for them to pass through a microfluidic constriction. Here, we demonstrate that deformability changes in tumor cells that have undergone phenotypic shifts are small compared to differences between tumor cell lines and blood cells. Additionally, in a syngeneic mouse tumor model, cells that are able to exit a tumor and enter circulation are not required to be more deformable than the cells that were first injected into the mouse. However, a limited study of metastatic prostate cancer patients provides evidence that some CTCs may be more mechanically similar to blood cells than to typical tumor cell lines. PMID:26679988

  14. The tumor microenvironment shapes lineage, transcriptional, and functional diversity of infiltrating myeloid cells.

    PubMed

    Elpek, Kutlu G; Cremasco, Viviana; Shen, Hua; Harvey, Christopher J; Wucherpfennig, Kai W; Goldstein, Daniel R; Monach, Paul A; Turley, Shannon J

    2014-07-01

    Myeloid cells play important regulatory roles within the tumor environment by directly promoting tumor progression and modulating the function of tumor-infiltrating lymphocytes, and as such, they represent a potential therapeutic target for the treatment of cancer. Although distinct subsets of tumor-associated myeloid cells have been identified, a broader analysis of the complete myeloid cell landscape within individual tumors and also across different tumor types has been lacking. By establishing the developmental and transcriptomic signatures of infiltrating myeloid cells from multiple primary tumors, we found that tumor-associated macrophages (TAM) and tumor-associated neutrophils (TAN), while present within all tumors analyzed, exhibited strikingly different frequencies, gene expression profiles, and functions across cancer types. We also evaluated the impact of anatomic location and circulating factors on the myeloid cell composition of tumors. The makeup of the myeloid compartment was determined by the tumor microenvironment rather than the anatomic location of tumor development or tumor-derived circulating factors. Protumorigenic and hypoxia-associated genes were enriched in TAMs and TANs compared with splenic myeloid-derived suppressor cells. Although all TANs had an altered expression pattern of secretory effector molecules, in each tumor type they exhibited a unique cytokine, chemokine, and associated receptor expression profile. One such molecule, haptoglobin, was uniquely expressed by 4T1 TANs and identified as a possible diagnostic biomarker for tumors characterized by the accumulation of myeloid cells. Thus, we have identified considerable cancer-specific diversity in the lineage, gene expression, and function of tumor-infiltrating myeloid cells. PMID:24801837

  15. Induction of Monocyte Chemoattractant Proteins in Macrophages via the Production of Granulocyte/Macrophage Colony-Stimulating Factor by Breast Cancer Cells

    PubMed Central

    Yoshimura, Teizo; Imamichi, Tomozumi; Weiss, Jonathan M.; Sato, Miwa; Li, Liangzhu; Matsukawa, Akihiro; Wang, Ji Ming

    2016-01-01

    Monocyte chemoattractant protein-1 (MCP-1)/CCL2 plays an important role in the initiation and progression of cancer. We previously reported that in 4T1 murine breast cancer, non-tumor stromal cells, including macrophages, were the major source of MCP-1. In the present study, we analyzed the potential mechanisms by which MCP-1 is upregulated in macrophages infiltrating 4T1 tumors. We found that cell-free culture supernatants of 4T1 cells (4T1-sup) markedly upregulated MCP-1 production by peritoneal inflammatory macrophages. 4T1-sup also upregulated other MCPs, such as MCP-3/CCL7 and MCP-5/CCL12, but modestly upregulated neutrophil chemotactic chemokines, such as KC/CXCL1 or MIP-2/CXCL2. Physicochemical analysis indicated that an approximately 2–3 kDa 4T1 cell product was responsible for the capacity of 4T1-sup to upregulate MCP-1 expression by macrophages. A neutralizing antibody against granulocyte/macrophage colony-stimulating factor (GM-CSF), but not macrophage CSF, almost completely abrogated MCP-1-inducing activity of 4T1-sup, and recombinant GM-CSF potently upregulated MCP-1 production by macrophages. The expression levels of GM-CSF in 4T1 tumors in vivo were higher than other tumors, such as Lewis lung carcinoma. Treatment of mice with anti-GM-CSF antibody significantly reduced the growth of 4T1 tumors at the injection sites but did not reduce MCP-1 production or lung metastasis in tumor-bearing mice. These results indicate that 4T1 cells have the capacity to directly upregulate MCP-1 production by macrophages by releasing GM-CSF; however, other mechanisms are also involved in increased MCP-1 levels in the 4T1 tumor microenvironment. PMID:26834744

  16. Tumor angiogenesis--characteristics of tumor endothelial cells.

    PubMed

    Hida, Kyoko; Maishi, Nako; Torii, Chisaho; Hida, Yasuhiro

    2016-04-01

    Tumor blood vessels provide nutrition and oxygen to the tumor, resulting in tumor progression. They also act as gatekeepers, inducing tumor metastasis. Thus, targeting tumor blood vessels is an important strategy in cancer therapy. Tumor endothelial cells (TECs), which line the inner layer of blood vessels of the tumor stromal tissue, are the main targets of anti-angiogenic therapy. Because new tumor blood vessels generally sprout from pre-existing vasculature, they have been considered to be the same as normal blood vessels. However, tumor blood vessels demonstrate a markedly abnormal phenotype that includes several important morphological changes. The degree of angiogenesis is determined by the balance between the angiogenic stimulators and inhibitors released by the tumor and host cells. Recent studies have revealed that TECs also exhibit altered characteristics which depend on the tumor microenvironment. Here, we review recent studies on TEC abnormalities and heterogeneity with respect to tumor progression and consider their therapeutic implications. PMID:26879652

  17. [Ovarian germ cell tumors in girls].

    PubMed

    Nechushkina, I V; Karseladze, A I

    2015-01-01

    Morphological structure of tumor influences on the clinical course of the disease in children with germ cell tumors. Patients with ovarian dysgerminoma at the time of diagnosis are significantly older than patients with immature teratoma and yolk sac tumor. Immature teratoma and mixed germ cell tumors are significantly larger compared to other germ cell tumors. Yolk sac tumor and embryonal carcinoma are the most common cause of emergency surgical interventions and are accompanied by rupture of tumor capsule. PMID:26087605

  18. Up-regulation of the pro-inflammatory chemokine CXCL16 is a common response of tumor cells to ionizing radiation.

    PubMed

    Matsumura, Satoko; Demaria, Sandra

    2010-04-01

    We recently showed that mouse and human breast carcinoma cells respond to ionizing radiation therapy by up-regulating the expression and release of the pro-inflammatory chemokine CXCL16, which binds to the CXCR6 receptor expressed by activated T cells. Enhanced recruitment of activated T cells to irradiated mouse 4T1 breast tumors was mediated largely by CXCL16 and was correlated with tumor inhibition in mice treated with the combination of local radiation and immunotherapy. In this study, the expression of CXCL16 and its modulation by radiation were analyzed in mouse melanoma B16/F10, fibrosarcoma MC57, colon carcinoma MCA38, and prostate carcinoma TRAMP-C1 cells. Only TRAMP-C1 cells showed detectable expression of CXCL16, although the level was lower than in 4T1 and 67NR breast carcinoma cells. Ionizing radiation up-regulated CXCL16 expression in all cells except B16/F10, but only TRAMP-C1, 67NR and 4T1 cells released the soluble chemokine in significant quantities. The metalloproteinases ADAM10 and ADAM17, which are responsible for cleaving the chemokine domain from the CXCL16 transmembrane form, were expressed in all cells. Overall, our data indicate that up-regulation of CXCL16 is a common response of tumor cells to radiation, and they have important implications for the use of local radiotherapy in combination with immunotherapy. PMID:20334513

  19. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4⁺ T cells to T-regulatory cells.

    PubMed

    Olkhanud, Purevdorj B; Damdinsuren, Bazarragchaa; Bodogai, Monica; Gress, Ronald E; Sen, Ranjan; Wejksza, Katarzyna; Malchinkhuu, Enkhzol; Wersto, Robert P; Biragyn, Arya

    2011-05-15

    Pulmonary metastasis of breast cancer requires recruitment and expansion of T-regulatory cells (Treg) that promote escape from host protective immune cells. However, it remains unclear precisely how tumors recruit Tregs to support metastatic growth. Here we report the mechanistic involvement of a unique and previously undescribed subset of regulatory B cells. These cells, designated tumor-evoked Bregs (tBreg), phenotypically resemble activated but poorly proliferative mature B2 cells (CD19(+) CD25(High) CD69(High)) that express constitutively active Stat3 and B7-H1(High) CD81(High) CD86(High) CD62L(Low) IgM(Int). Our studies with the mouse 4T1 model of breast cancer indicate that the primary role of tBregs in lung metastases is to induce TGF-β-dependent conversion of FoxP3(+) Tregs from resting CD4(+) T cells. In the absence of tBregs, 4T1 tumors cannot metastasize into the lungs efficiently due to poor Treg conversion. Our findings have important clinical implications, as they suggest that tBregs must be controlled to interrupt the initiation of a key cancer-induced immunosuppressive event that is critical to support cancer metastasis. PMID:21444674

  20. Mammary tissue microenvironment determines T cell-dependent breast cancer-associated inflammation.

    PubMed

    Takahashi, Kei; Nagai, Nao; Ogura, Keisuke; Tsuneyama, Koichi; Saiki, Ikuo; Irimura, Tatsuro; Hayakawa, Yoshihiro

    2015-07-01

    Although the importance of the host tissue microenvironment in cancer progression and metastasis has been established, the spatiotemporal process establishing a cancer metastasis-prone tissue microenvironment remains unknown. In this study, we aim to understand the immunological character of a metastasis-prone microenvironment in a murine 4T1 breast tumor model, by using the activation of nuclear factor-κb (NF-κB) in cancer cells as a sensor of inflammatory status and by monitoring its activity by bioluminescence imaging. By using a 4T1 breast cancer cell line stably expressing an NF-κB/Luc2 reporter gene (4T1 NF-κB cells), we observed significantly increased bioluminescence approximately 7 days after metastasis-prone orthotopic mammary fat-pad inoculation but not ectopic s.c. inoculation of 4T1 NF-κB cells. Such in vivo NF-κB activation within the fat-pad 4T1 tumor was diminished in immune-deficient SCID or nude mice, or T cell-depleted mice, suggesting the requirement of host T cell-mediated immune responses. Given the fat-pad 4T1 tumor expressed higher inflammatory mediators in a T cell-dependent mechanism compared to the s.c. tumor, our results imply the importance of the surrounding tissue microenvironment for inflaming tumors by collaborating with T cells to instigate metastatic spread of 4T1 breast cancer cells. PMID:25940224

  1. Interaction of MSC with tumor cells.

    PubMed

    Melzer, Catharina; Yang, Yuanyuan; Hass, Ralf

    2016-01-01

    Tumor development and tumor progression is not only determined by the corresponding tumor cells but also by the tumor microenvironment. This includes an orchestrated network of interacting cell types (e.g. immune cells, endothelial cells, fibroblasts, and mesenchymal stroma/stem cells (MSC)) via the extracellular matrix and soluble factors such as cytokines, chemokines, growth factors and various metabolites. Cell populations of the tumor microenvironment can interact directly and indirectly with cancer cells by mutually altering properties and functions of the involved partners. Particularly, mesenchymal stroma/stem cells (MSC) play an important role during carcinogenesis exhibiting different types of intercellular communication. Accordingly, this work focusses on diverse mechanisms of interaction between MSC and cancer cells. Moreover, some functional changes and consequences for both cell types are summarized which can eventually result in the establishment of a carcinoma stem cell niche (CSCN) or the generation of new tumor cell populations by MSC-tumor cell fusion. PMID:27608835

  2. Near-Infrared Imaging of Adoptive Immune Cell Therapy in Breast Cancer Model Using Cell Membrane Labeling

    PubMed Central

    Youniss, Fatma M.; Sundaresan, Gobalakrishnan; Graham, Laura J.; Wang, Li; Berry, Collin R.; Dewkar, Gajanan K.; Jose, Purnima; Bear, Harry D.; Zweit, Jamal

    2014-01-01

    The overall objective of this study is to non-invasively image and assess tumor targeting and retention of directly labeled T-lymphocytes following their adoptive transfer in mice. T-lymphocytes obtained from draining lymph nodes of 4T1 (murine breast cancer cell) sensitized BALB/C mice were activated in-vitro with Bryostatin/Ionomycin for 18 hours, and were grown in the presence of Interleukin-2 for 6 days. T-lymphocytes were then directly labeled with 1,1-dioctadecyltetramethyl indotricarbocyanine Iodide (DiR), a lipophilic near infrared fluorescent dye that labels the cell membrane. Assays for viability, proliferation, and function of labeled T-lymphocytes showed that they were unaffected by DiR labeling. The DiR labeled cells were injected via tail vein in mice bearing 4T1 tumors in the flank. In some cases labeled 4T1 specific T-lymphocytes were injected a week before 4T1 tumor cell implantation. Multi-spectral in vivo fluorescence imaging was done to subtract the autofluorescence and isolate the near infrared signal carried by the T-lymphocytes. In recipient mice with established 4T1 tumors, labeled 4T1 specific T-lymphocytes showed marked tumor retention, which peaked 6 days post infusion and persisted at the tumor site for up to 3 weeks. When 4T1 tumor cells were implanted 1-week post-infusion of labeled T-lymphocytes, T-lymphocytes responded to the immunologic challenge and accumulated at the site of 4T1 cell implantation within two hours and the signal persisted for 2 more weeks. Tumor accumulation of labeled 4T1 specific T-lymphocytes was absent in mice bearing Meth A sarcoma tumors. When lysate of 4T1 specific labeled T-lymphocytes was injected into 4T1 tumor bearing mice the near infrared signal was not detected at the tumor site. In conclusion, our validated results confirm that the near infrared signal detected at the tumor site represents the DiR labeled 4T1 specific viable T-lymphocytes and their response to immunologic challenge can be imaged in

  3. Palifosfamide in Treating Patients With Recurrent Germ Cell Tumors

    ClinicalTrials.gov

    2015-06-11

    Adult Central Nervous System Germ Cell Tumor; Adult Teratoma; Malignant Extragonadal Germ Cell Tumor; Malignant Extragonadal Non-Seminomatous Germ Cell Tumor; Extragonadal Seminoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Ovarian Germ Cell Tumor; Stage IV Extragonadal Non-Seminomatous Germ Cell Tumor; Stage IV Extragonadal Seminoma; Stage IV Ovarian Germ Cell Tumor

  4. General Information about Extragonadal Germ Cell Tumors

    MedlinePlus

    ... Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Extragonadal Germ Cell Tumors Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  5. General Information about Ovarian Germ Cell Tumors

    MedlinePlus

    ... Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Ovarian Germ Cell Tumors Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  6. Patient-Derived Antibody Targets Tumor Cells

    Cancer.gov

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  7. Bone-derived soluble factors and laminin-511 cooperate to promote migration, invasion and survival of bone-metastatic breast tumor cells.

    PubMed

    Denoyer, Delphine; Kusuma, Nicole; Burrows, Allan; Ling, Xiawei; Jupp, Lara; Anderson, Robin L; Pouliot, Normand

    2014-04-01

    Tumor intrinsic and extrinsic factors are thought to contribute to bone metastasis but little is known about how they cooperate to promote breast cancer spread to bone. We used the bone-metastatic 4T1BM2 mammary carcinoma model to investigate the cooperative interactions between tumor LM-511 and bone-derived soluble factors in vitro. We show that bone conditioned medium cooperates with LM-511 to enhance 4T1BM2 cell migration and invasion and is sufficient alone to promote survival in the absence of serum. These responses were associated with increased secretion of MMP-9 and activation of ERK and AKT signaling pathways and were partially blocked by pharmacological inhibitors of MMP-9, AKT-1/2 or MEK. Importantly, pre-treatment of 4T1BM2 cells with an AKT-1/2 inhibitor significantly reduced experimental metastasis to bone in vivo. Promotion of survival and invasive responses by bone-derived soluble factors and tumor-derived LM-511 are likely to contribute to the metastatic spread of breast tumors to bone. PMID:24601751

  8. Glucose-conjugated chitosan nanoparticles for targeted drug delivery and their specific interaction with tumor cells

    NASA Astrophysics Data System (ADS)

    Li, Jing; Ma, Fang-Kui; Dang, Qi-Feng; Liang, Xing-Guo; Chen, Xi-Guang

    2014-12-01

    A novel targeted drug delivery system, glucose-conjugated chitosan nanoparticles (GCNPs), was developed for specific recognition and interaction with glucose transporters (Gluts) over-expressed by tumor cells. GC was synthesized by using succinic acid as a linker between glucosamine and chitosan (CS), and successful synthesis was confirmed by NMR and elemental analysis. GCNPs were prepared by ionic crosslinking method, and characterized in terms of morphology, size, and zeta potential. The optimally prepared nanoparticles showed spherical shapes with an average particle size of (187.9 ± 3.8) nm and a zeta potential of (- 15.43 ± 0.31) mV. The GCNPs showed negligible cytotoxicity to mouse embryo fibroblast and 4T1 cells. Doxorubicin (DOX) could be efficiently entrapped into GCNPs, with a loading capacity and encapsulation efficiency of 20.11% and 64.81%, respectively. DOX-loaded nanoparticles exhibited sustained-release behavior in phosphate buffered saline (pH 7.4). In vitro cellular uptake studies showed that the GCNPs had better endocytosis ability than CSNPs, and the antitumor activity of DOX/GCNPs was 4-5 times effectiveness in 4T1 cell killing than that of DOX/CSNPs. All the results demonstrate that nanoparticles decorated with glucose have specific interactions with cancer cells via the recognition between glucose and Gluts. Therefore, Gluts-targeted GCNPs may be promising delivery agents in cancer therapies.

  9. Adjuvant Cationic Liposomes Presenting MPL and IL-12 Induce Cell Death, Suppress Tumor Growth, and Alter the Cellular Phenotype of Tumors in a Murine Model of Breast Cancer

    PubMed Central

    2015-01-01

    Dendritic cells (DC) process and present antigens to T lymphocytes, inducing potent immune responses when encountered in association with activating signals, such as pathogen-associated molecular patterns. Using the 4T1 murine model of breast cancer, cationic liposomes containing monophosphoryl lipid A (MPL) and interleukin (IL)-12 were administered by intratumoral injection. Combination multivalent presentation of the Toll-like receptor-4 ligand MPL and cytotoxic 1,2-dioleoyl-3-trmethylammonium-propane lipids induced cell death, decreased cellular proliferation, and increased serum levels of IL-1β and tumor necrosis factor (TNF)-α. The addition of recombinant IL-12 further suppressed tumor growth and increased expression of IL-1β, TNF-α, and interferon-γ. IL-12 also increased the percentage of cytolytic T cells, DC, and F4/80+ macrophages in the tumor. While single agent therapy elevated levels of nitric oxide synthase 3-fold above basal levels in the tumor, combination therapy with MPL cationic liposomes and IL-12 stimulated a 7-fold increase, supporting the observed cell cycle arrest (loss of Ki-67 expression) and apoptosis (TUNEL positive). In mice bearing dual tumors, the growth of distal, untreated tumors mirrored that of liposome-treated tumors, supporting the presence of a systemic immune response. PMID:25179345

  10. Metabolic Imaging: A link between Lactate Dehydrogenase A, Lactate and Tumor Phenotype

    PubMed Central

    Thakur, Sunitha B.; Vider, Jelena; Russell, James; Blasberg, Ronald; Koutcher, Jason A.

    2014-01-01

    Purpose We compared the metabolic profiles and the association between LDH-A expression and lactate production in two isogenic murine breast cancer cell lines and tumors (67NR and 4T1). These cell lines were derived from a single mammary tumor and have different growth and metabolic phenotypes. Experimental Design LDH-A expression, lactate concentration, glucose utilization and oxygen consumption were measured in cells, and the potential relationship between tumor lactate levels (measured by magnetic resonance spectroscopic imaging (MRSI)) and tumor glucose utilization (measured by [18F] 2-deoxy-2-fluoro-D-glucose positron emission tomography ([18F]FDG-PET)) was assessed in orthotopic breast tumors derived from these cell lines. Results We show a substantial difference in LDH-A expression between 67NR and 4T1 cells under normoxia and hypoxia. We also show that small orthotopic 4T1 tumors generate tenfold more lactate than corresponding 67NR tumors. The high lactate levels in small primary 4T1 tumors are associated with intense pimonidazole staining (a hypoxia indicator). Less intense hypoxia staining was observed in the larger 67NR tumors, and is consistent with the gradual increase and plateau of lactate concentration in enlarging 67NR tumors. Conclusions Lactate-MRSI has a greater dynamic range than [18F]FDG-PET and may be a more sensitive measure with which to evaluate the aggressive and metastatic potential of primary breast tumors. PMID:21844011

  11. Essential roles of the interaction between cancer cell-derived chemokine, CCL4, and intra-bone CCR5-expressing fibroblasts in breast cancer bone metastasis.

    PubMed

    Sasaki, Soichiro; Baba, Tomohisa; Nishimura, Tatsunori; Hayakawa, Yoshihiro; Hashimoto, Shin-Ichi; Gotoh, Noriko; Mukaida, Naofumi

    2016-08-01

    From a murine breast cancer cell line, 4T1, we established a subclone, 4T1.3, which consistently metastasizes to bone upon its injection into the mammary fat pad. 4T1.3 clone exhibited similar proliferation rate and migration capacity as the parental clone. However, the intra-bone injection of 4T1.3 clone caused larger tumors than that of the parental cells, accompanied with increases in fibroblast, but not osteoclast or osteoblast numbers. 4T1.3 clone displayed an enhanced expression of a chemokine, CCL4, but not its specific receptor, CCR5. CCL4 shRNA-transfection of 4T1.3 clone had few effects on its in vitro properties, but reduced the tumorigenicity arising from the intra-bone injection. Moreover, intra-bone injection of 4T1.3 clone caused smaller tumors in mice deficient in CCR5 or those receiving CCR5 antagonist than in wild-type mice. The reduced tumor formation was associated with attenuated accumulation of CCR5-positive fibroblasts expressing connective tissue growth factor (CTGF)/CCN2. Tumor cell-derived CCL4 could induce fibroblasts to express CTGF/CCN2, which could support 4T1.3 clone proliferation under hypoxic culture conditions. Thus, the CCL4-CCR5 axis can contribute to breast cancer metastasis to bone by mediating the interaction between cancer cells and fibroblasts in bone cavity. PMID:27177471

  12. Ranitidine modifies myeloid cell populations and inhibits breast tumor development and spread in mice.

    PubMed

    Vila-Leahey, Ava; Oldford, Sharon A; Marignani, Paola A; Wang, Jun; Haidl, Ian D; Marshall, Jean S

    2016-07-01

    Histamine receptor 2 (H2) antagonists are widely used clinically for the control of gastrointestinal symptoms, but also impact immune function. They have been reported to reduce tumor growth in established colon and lung cancer models. Histamine has also been reported to modify populations of myeloid-derived suppressor cells (MDSCs). We have examined the impact of the widely used H2 antagonist ranitidine, on both myeloid cell populations and tumor development and spread, in three distinct models of breast cancer that highlight different stages of cancer progression. Oral ranitidine treatment significantly decreased the monocytic MDSC population in the spleen and bone marrow both alone and in the context of an orthotopic breast tumor model. H2 antagonists ranitidine and famotidine, but not H1 or H4 antagonists, significantly inhibited lung metastasis in the 4T1 model. In the E0771 model, ranitidine decreased primary tumor growth while omeprazole treatment had no impact on tumor development. Gemcitabine treatment prevented the tumor growth inhibition associated with ranitidine treatment. In keeping with ranitidine-induced changes in myeloid cell populations in non-tumor-bearing mice, ranitidine also delayed the onset of spontaneous tumor development, and decreased the number of tumors that developed in LKB1(-/-)/NIC mice. These results indicate that ranitidine alters monocyte populations associated with MDSC activity, and subsequently impacts breast tumor development and outcome. Ranitidine has potential as an adjuvant therapy or preventative agent in breast cancer and provides a novel and safe approach to the long-term reduction of tumor-associated immune suppression. PMID:27622015

  13. Ranitidine modifies myeloid cell populations and inhibits breast tumor development and spread in mice

    PubMed Central

    Vila-Leahey, Ava; Oldford, Sharon A.; Marignani, Paola A.; Wang, Jun; Haidl, Ian D.; Marshall, Jean S.

    2016-01-01

    ABSTRACT Histamine receptor 2 (H2) antagonists are widely used clinically for the control of gastrointestinal symptoms, but also impact immune function. They have been reported to reduce tumor growth in established colon and lung cancer models. Histamine has also been reported to modify populations of myeloid-derived suppressor cells (MDSCs). We have examined the impact of the widely used H2 antagonist ranitidine, on both myeloid cell populations and tumor development and spread, in three distinct models of breast cancer that highlight different stages of cancer progression. Oral ranitidine treatment significantly decreased the monocytic MDSC population in the spleen and bone marrow both alone and in the context of an orthotopic breast tumor model. H2 antagonists ranitidine and famotidine, but not H1 or H4 antagonists, significantly inhibited lung metastasis in the 4T1 model. In the E0771 model, ranitidine decreased primary tumor growth while omeprazole treatment had no impact on tumor development. Gemcitabine treatment prevented the tumor growth inhibition associated with ranitidine treatment. In keeping with ranitidine-induced changes in myeloid cell populations in non-tumor-bearing mice, ranitidine also delayed the onset of spontaneous tumor development, and decreased the number of tumors that developed in LKB1−/−/NIC mice. These results indicate that ranitidine alters monocyte populations associated with MDSC activity, and subsequently impacts breast tumor development and outcome. Ranitidine has potential as an adjuvant therapy or preventative agent in breast cancer and provides a novel and safe approach to the long-term reduction of tumor-associated immune suppression. PMID:27622015

  14. Emodin Inhibits Breast Cancer Growth by Blocking the Tumor-Promoting Feedforward Loop between Cancer Cells and Macrophages.

    PubMed

    Iwanowycz, Stephen; Wang, Junfeng; Hodge, Johnie; Wang, Yuzhen; Yu, Fang; Fan, Daping

    2016-08-01

    Macrophage infiltration correlates with severity in many types of cancer. Tumor cells recruit macrophages and educate them to adopt an M2-like phenotype through the secretion of chemokines and growth factors, such as MCP1 and CSF1. Macrophages in turn promote tumor growth through supporting angiogenesis, suppressing antitumor immunity, modulating extracellular matrix remodeling, and promoting tumor cell migration. Thus, tumor cells and macrophages interact to create a feedforward loop supporting tumor growth and metastasis. In this study, we tested the ability of emodin, a Chinese herb-derived compound, to inhibit breast cancer growth in mice and examined the underlying mechanisms. Emodin was used to treat mice bearing EO771 or 4T1 breast tumors. It was shown that emodin attenuated tumor growth by inhibiting macrophage infiltration and M2-like polarization, accompanied by increased T-cell activation and reduced angiogenesis in tumors. The tumor inhibitory effects of emodin were lost in tumor-bearing mice with macrophage depletion. Emodin inhibited IRF4, STAT6, and C/EBPβ signaling and increased inhibitory histone H3 lysine 27 tri-methylation (H3K27m3) on the promoters of M2-related genes in tumor-associated macrophages. In addition, emodin inhibited tumor cell secretion of MCP1 and CSF1, as well as expression of surface anchoring molecule Thy-1, thus suppressing macrophage migration toward and adhesion to tumor cells. These results suggest that emodin acts on both breast cancer cells and macrophages and effectively blocks the tumor-promoting feedforward loop between the two cell types, thereby inhibiting breast cancer growth and metastasis. Mol Cancer Ther; 15(8); 1931-42. ©2016 AACR. PMID:27196773

  15. Treatment Option Overview (Extragonadal Germ Cell Tumors)

    MedlinePlus

    ... hCG and LDH may be at any level. Poor prognosis A nonseminoma extragonadal germ cell tumor is in the poor prognosis group if: the tumor is in the ... extragonadal germ cell tumor does not have a poor prognosis group. Treatment Option Overview Key Points There ...

  16. Gr-1+CD11b+ cells are responsible for tumor promoting effect of TGF-β in breast cancer progression

    PubMed Central

    Li, Zhaoyang; Pang, Yanli; Gara, Sudheer Kumar; Achyut, B.R.; Heger, Christopher; Goldsmith, Paul K.; Lonning, Scott; Yang, Li

    2012-01-01

    One great challenge in our understanding of TGF-β cancer biology and the successful application of TGF-β targeted therapy is that TGF-β works as both a tumor suppressor and a tumor promoter. The underlying mechanisms for its functional change remain to be elucidated. Using 4T1 mammary tumor model that shares many characteristics with human breast cancer, particularly its ability to spontaneously metastasize to the lungs, we demonstrate that Gr-1+CD11b+ cells or myeloid derived suppressor cells (MDSCs) are important mediators in TGF-β regulation of mammary tumor progression. Depletion of Gr-1+CD11b+ cells diminished the anti-tumor effect of TGF-β neutralization. Two mechanisms were involved: first, treatment with TGF-β neutralization antibody (1D11) significantly decreased the number of Gr-1+CD11b+ cells in tumor tissues and premetastatic lung. This is mediated through increased Gr-1+CD11b+ cell apoptosis. In addition, 1D11 treatment significantly decreased the expression of Th2 cytokines & Arginase 1. Interestingly, the number and property of Gr-1+CD11b+ cells in peripheral blood/draining lymph nodes correlated with tumor size and metastases in response to 1D11 treatment. Our data suggest that the efficacy of TGF-β neutralization depends on the presence of Gr-1+CD11b+ cells, and these cells could be good biomarkers for TGF-β targeted therapy. PMID:22487809

  17. PND-1186 FAK inhibitor selectively promotes tumor cell apoptosis in three-dimensional environments

    PubMed Central

    Tanjoni, Isabelle; Walsh, Colin; Uryu, Sean; Tomar, Alok; Nam, Ju-Ock; Mielgo, Ainhoa; Lim, Ssang-Taek; Liang, Congxin; Koenig, Marcel; Patel, Neela; Kwok, Cheni; McMahon, Gerald; Stupack, Dwayne G.; Schlaepfer, David D.

    2010-01-01

    Tumor cells can grow in an anchorage-independent manner. This is mediated in part through survival signals that bypass normal growth restraints controlled by integrin cell surface receptors. Focal adhesion kinase (FAK) is a cytoplasmic protein-tyrosine kinase that associates with integrins and modulates various cellular processes including growth, survival, and migration. As increased FAK expression and tyrosine phosphorylation are associated with tumor progression, inhibitors of FAK are being tested for anti-tumor effects. Here, we analyze PND-1186, a substituted pyridine reversible inhibitor of FAK activity with a 50% inhibitory concentration (IC50) of 1.5 nM in vitro. PND-1186 has an IC50 of ~100 nM in breast carcinoma cells as determined by anti-phospho-specific immunoblotting to FAK Tyr-397. PND-1186 did not alter c-Src or p130Cas tyrosine phosphorylation in adherent cells, yet functioned to restrain cell movement. Whereas 1.0 µM PND-1186 (>5-fold above IC50) had limited effects on cell proliferation, under non-adherent conditions or when grown as spheroids or colonies in soft agar, 0.1 µM PND-1186 blocked FAK and p130Cas tyrosine phosphorylation, promoted caspase-3 activation, and triggered cell apoptosis. PND-1186 inhibited 4T1 breast carcinoma subcutaneous tumor growth correlated with elevated tumor cell apoptosis and caspase 3 activation. Addition of PND-1186 to the drinking water of mice was well tolerated and inhibited ascites-associated ovarian carcinoma tumor growth associated with the inhibition of FAK tyrosine phosphorylation. Our results with low-level PND-1186 treatment support the conclusion that FAK activity selectively promotes tumor cell survival in three-dimensional environments. PMID:20234191

  18. Interaction of tumor cells with the microenvironment

    PubMed Central

    2011-01-01

    Recent advances in tumor biology have revealed that a detailed analysis of the complex interactions of tumor cells with their adjacent microenvironment (tumor stroma) is mandatory in order to understand the various mechanisms involved in tumor growth and the development of metastasis. The mutual interactions between tumor cells and cellular and non-cellular components (extracellular matrix = ECM) of the tumor microenvironment will eventually lead to a loss of tissue homeostasis and promote tumor development and progression. Thus, interactions of genetically altered tumor cells and the ECM on the one hand and reactive non-neoplastic cells on the other hand essentially control most aspects of tumorigenesis such as epithelial-mesenchymal-transition (EMT), migration, invasion (i.e. migration through connective tissue), metastasis formation, neovascularisation, apoptosis and chemotherapeutic drug resistance. In this mini-review we will focus on these issues that were recently raised by two review articles in CCS. PMID:21914164

  19. Granular Cell Tumor: An Uncommon Benign Neoplasm

    PubMed Central

    Gayen, Tirthankar; Das, Anupam; Shome, Kaushik; Bandyopadhyay, Debabrata; Das, Dipti; Saha, Abanti

    2015-01-01

    Granular cell tumor is a distinctly rare neoplasm of neural sheath origin. It mainly presents as a solitary asymptomatic swelling in the oral cavity, skin, and rarely internal organs in the middle age. Histopathology is characteristic, showing polyhedral cells containing numerous fine eosinophilic granules with indistinct cell margins. We present a case of granular cell tumor on the back of a 48-year-old woman which was painful, mimicking an adnexal tumor. PMID:26120181

  20. Enhanced Anti-Tumor Efficacy through a Combination of Integrin αvβ6-Targeted Photodynamic Therapy and Immune Checkpoint Inhibition.

    PubMed

    Gao, Liquan; Zhang, Chenran; Gao, Duo; Liu, Hao; Yu, Xinhe; Lai, Jianhao; Wang, Fan; Lin, Jian; Liu, Zhaofei

    2016-01-01

    "Training" the host immune system to recognize and systemically eliminate residual tumor lesions and micrometastases is a promising strategy for cancer therapy. In this study, we investigated whether integrin αvβ6-targeted photodynamic therapy (PDT) of tumors using a phthalocyanine dye-labeled probe (termed DSAB-HK) could trigger the host immune response, and whether PDT in combination with anti-PD-1 immune checkpoint inhibition could be used for the effective therapy of primary tumors and metastases. By near-infrared fluorescence imaging, DSAB-HK was demonstrated to specifically target either subcutaneous tumors in a 4T1 mouse breast cancer model or firefly luciferase stably transfected 4T1 (4T1-fLuc) lung metastatic tumors. Upon light irradiation, PDT by DSAB-HK significantly inhibited the growth of subcutaneous 4T1 tumors, and in addition promoted the maturation of dendritic cells and their production of cytokines, which subsequently stimulated the tumor recruitment of CD8(+) cytotoxic T lymphocytes. Furthermore, DSAB-HK PDT of the first tumor followed by PD-1 blockade markedly suppressed the growth of a second subcutaneous tumor, and also slowed the growth of 4T1-fLuc lung metastasis as demonstrated by serial bioluminescence imaging. Together, our results demonstrated the synergistic effect of tumor-targeted PDT and immune checkpoint inhibition for improving anti-tumor immunity and suppressing tumor growth/metastasis. PMID:27022411

  1. Enhanced Anti-Tumor Efficacy through a Combination of Integrin αvβ6-Targeted Photodynamic Therapy and Immune Checkpoint Inhibition

    PubMed Central

    Gao, Liquan; Zhang, Chenran; Gao, Duo; Liu, Hao; Yu, Xinhe; Lai, Jianhao; Wang, Fan; Lin, Jian; Liu, Zhaofei

    2016-01-01

    “Training” the host immune system to recognize and systemically eliminate residual tumor lesions and micrometastases is a promising strategy for cancer therapy. In this study, we investigated whether integrin αvβ6-targeted photodynamic therapy (PDT) of tumors using a phthalocyanine dye-labeled probe (termed DSAB-HK) could trigger the host immune response, and whether PDT in combination with anti-PD-1 immune checkpoint inhibition could be used for the effective therapy of primary tumors and metastases. By near-infrared fluorescence imaging, DSAB-HK was demonstrated to specifically target either subcutaneous tumors in a 4T1 mouse breast cancer model or firefly luciferase stably transfected 4T1 (4T1-fLuc) lung metastatic tumors. Upon light irradiation, PDT by DSAB-HK significantly inhibited the growth of subcutaneous 4T1 tumors, and in addition promoted the maturation of dendritic cells and their production of cytokines, which subsequently stimulated the tumor recruitment of CD8+ cytotoxic T lymphocytes. Furthermore, DSAB-HK PDT of the first tumor followed by PD-1 blockade markedly suppressed the growth of a second subcutaneous tumor, and also slowed the growth of 4T1-fLuc lung metastasis as demonstrated by serial bioluminescence imaging. Together, our results demonstrated the synergistic effect of tumor-targeted PDT and immune checkpoint inhibition for improving anti-tumor immunity and suppressing tumor growth/metastasis. PMID:27022411

  2. Drug Release Kinetics, Cell Uptake, and Tumor Toxicity of Hybrid VVVVVVKK Peptide-Assembled Polylactide Nanoparticles

    PubMed Central

    Jabbari, Esmaiel; Yang, Xiaoming; Moeinzadeh, Seyedsina; He, Xuezhong

    2013-01-01

    An exciting approach to tumor delivery is encapsulation of the drug in self-assembled polymer-peptide nanoparticles. The objective of this work was to synthesize a conjugate of low molecular weight polylactide (LMW PLA) and V6K2 peptide, and investigate self-assembly, drug release kinetics, cell uptake and toxicity, drug pharmacokinetics, and tumor cell invasion with Doxorubicin (DOX) or paclitaxel (PTX). The results for PLA-V6K2 self-assembled NPs were compared with those of polyethylene glycol stabilized PLA (PLA-EG) NPs. The size of PLA-V6K2 and PLA-EG NPs were 100±20 and 130±50 nm, respectively, with polydispersity index of 1.04 and 1.14. The encapsulation efficiency of DOX in PLA-V6K2 and PLA-EG NPs was 44±9% and 55±5%, respectively, and that of PTX was >90 for both NP types. The release of DOX and PTX from PLA-V6K2 was slower than that of PLA-EG and the release rate was relatively constant with time. Based on molecular dynamic simulation, the less hydrophobic DOX was distributed in the lactide core as well as the peptide shell while the hydrophobic PTX was localized mainly to the lactide core. PLA-V6K2 NPs had significantly higher cell uptake by 4T1 mouse breast carcinoma cells compared to PLA-EG NPs, which was attributed to the electrostatic interactions between the peptide and negatively charged moieties on the cell membrane. PLA-V6K2 NPs showed no toxicity to marrow stromal cells. DOX loaded PLA-V6K2 NPs showed higher toxicity to 4T1 cells and the DNA damage response and apoptosis was delayed compared to the free DOX. DOX or PTX encapsulated in PLA-V6K2 NPs significantly reduced invasion of 4T1 cells compared to those cells treated with the drug in PLA-EG NPs. Invasion of 4T1 cells treated with DOX in PLA-V6K2 and PLA-EG NPs was 5±1% and 30±5%, respectively, and that of PTX was 11±2% and 40±7%. The AUC of DOX in PLA-V6K2 NPs was 67% and 21% higher than those of free DOX and PLA-EG NPs, respectively. DOX loaded PLA-V6K2 NPs injected in C3He

  3. Tumor regulation of myeloid-derived suppressor cell proliferation and trafficking.

    PubMed

    Younos, Ibrahim H; Dafferner, Alicia J; Gulen, Dumrul; Britton, Holly C; Talmadge, James E

    2012-07-01

    A stress response can induce myeloid progenitor cell (MPC) proliferation, mobilization, and extramedullary hematopoiesis (EMH) within lymphoid and parenchymal organs. Our studies using in vivo BrdU labeling, Ki-67 IHC staining, and carboxyfluorescein succinimidyl ester (CFSE) adoptive cell transfer revealed that spleens, rather than bone marrow (BM) and peripheral blood (PB), from 4T1 mammary tumor-bearing (TB) mice were the primary site of MPC proliferation. The resultant increase in MPCs was associated with tumor hematopoietic growth factor (GF) transcription, decreased apoptosis, as well as, prolonged survival of splenic MPCs. In naïve mice, i.v. injected CFSE-labeled MDSCs (myeloid-derived suppressor cells) initially accumulated in the lungs, while in TB mice, they rapidly sequestered in the spleen. In contrast, a few of the injected MDSCs and leukocytes arrested, proliferated, or accumulated in the marrow, tumor, or PB of TB mice. However, BrdU labeling revealed a significant demargination of proliferating splenic MPCs into the PB. In tumors, despite high GF transcript levels, we found that a high frequency of MDSCs was apoptotic. In summary, tumor growth and cytokines regulate MPC proliferation, trafficking, accumulation, apoptosis, and survival. PMID:22609473

  4. Tumor initiating cells in malignant gliomas

    PubMed Central

    Hadjipanayis, Costas G.; Van Meir, Erwin G.

    2009-01-01

    A rare subpopulation of cells within malignant gliomas, which shares canonical properties with neural stem cells (NSCs), may be integral to glial tumor development and perpetuation. These cells, also known as tumor initiating cells (TICs), have the ability to self-renew, develop into any cell in the overall tumor population (multipotency), and proliferate. A defining property of TICs is their ability to initiate new tumors in immunocompromised mice with high efficiency. Mounting evidence suggests that TICs originate from the transformation of NSCs and their progenitors. New findings show that TICs may be more resistant to chemotherapy and radiation than the bulk of tumor cells, thereby permitting recurrent tumor formation and accounting for the failure of conventional therapies. The development of new therapeutic strategies selectively targeting TICs while sparing NSCs may provide for more effective treatment of malignant gliomas. PMID:19189072

  5. Binding and isolation of tumor cells in biological media with perfluorocarbon microbubbles

    PubMed Central

    Shi, Guixin; Cui, Wenjin; Mukthavaram, Rajesh; Simberg, Dmitri

    2013-01-01

    With the emerging interest in personalized medicine, there is strong demand for new technologies for clinical sample interrogation. Exfoliated tumor cells in variety of pathological samples (e.g., blood, bone marrow, urine) could provide invaluable information for diagnosis and prognosis of cancers. Here we describe a detailed method for capture and isolation of tumor cells in medium, blood, or large-volume buffy coat using EpCAM-targeted buoyant microbubbles (MBs). Perflorohexane gas lipid shell MBs were prepared with emulsification method and conjugated with antibody as described by us before (Shi et al,. PLoS One, 2013). The binding of EpCAM-targeted MBs to A549 (human lung carcinoma) and 4T1 (mouse breast carcinoma) cells spiked into BSA/PBS or blood was more than 90%, which was comparable with commercial anti-EpCAM immunomagnetic beads (DynaBeads). Anti-EpCAM MBs efficiently (75–82%) isolated BxPC3 pancreatic tumor cells spiked into medium, blood or a buffy coat, within 15–30 min of incubation. We discuss MB parameters and experimental conditions critical to achieve efficient cells binding and isolation. In conclusion, MB-assisted cell isolation is a promising method for rapid enrichment of cells and biomarkers from biological samples. PMID:23974072

  6. Cell Fusion Connects Oncogenesis with Tumor Evolution

    PubMed Central

    Zhou, Xiaofeng; Merchak, Kevin; Lee, Woojin; Grande, Joseph P.; Cascalho, Marilia; Platt, Jeffrey L.

    2016-01-01

    Cell fusion likely drives tumor evolution by undermining chromosomal and DNA stability and/or by generating phenotypic diversity; however, whether a cell fusion event can initiate malignancy and direct tumor evolution is unknown. We report that a fusion event involving normal, nontransformed, cytogenetically stable epithelial cells can initiate chromosomal instability, DNA damage, cell transformation, and malignancy. Clonal analysis of fused cells reveals that the karyotypic and phenotypic potential of tumors formed by cell fusion is established immediately or within a few cell divisions after the fusion event, without further ongoing genetic and phenotypic plasticity, and that subsequent evolution of such tumors reflects selection from the initial diverse population rather than ongoing plasticity of the progeny. Thus, one cell fusion event can both initiate malignancy and fuel evolution of the tumor that ensues. PMID:26066710

  7. Therapeutic Trial for Patients With Ewing Sarcoma Family of Tumor and Desmoplastic Small Round Cell Tumors

    ClinicalTrials.gov

    2015-12-01

    Desmoplastic Small Round Cell Tumor; Ewing Sarcoma of Bone or Soft Tissue; Localized Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor

  8. Electric Field Analysis of Breast Tumor Cells

    PubMed Central

    Sree, V. Gowri; Udayakumar, K.; Sundararajan, R.

    2011-01-01

    An attractive alternative treatment for malignant tumors that are refractive to conventional therapies, such as surgery, radiation, and chemotherapy, is electrical-pulse-mediated drug delivery. Electric field distribution of tissue/tumor is important for effective treatment of tissues. This paper deals with the electric field distribution study of a tissue model using MAXWELL 3D Simulator. Our results indicate that tumor tissue had lower electric field strength compared to normal cells, which makes them susceptible to electrical-pulse-mediated drug delivery. This difference could be due to the altered properties of tumor cells compared to normal cells, and our results corroborate this. PMID:22295214

  9. SYNOVIAL GIANT CELL TUMOR OF THE KNEE

    PubMed Central

    Abdalla, Rene Jorge; Cohen, Moisés; Nóbrega, Jezimar; Forgas, Andrea

    2015-01-01

    Synovial giant cell tumor is a benign neoplasm, rarely reported in the form of malignant metastasis. Synovial giant cell tumor most frequently occurs on the hand, and, most uncommon, on the ankle and knee. In the present study, the authors describe a rare case of synovial giant cell tumor on the knee as well as the treatment approach. Arthroscopy has been shown, in this case, to be the optimal method for treating this kind of lesion, once it allowed a less aggressive approach, while providing good visualization of all compartments of knee joint and full tumor resection. PMID:27004193

  10. Imaging Circulating Tumor Cells in Freely Moving Awake Small Animals Using a Miniaturized Intravital Microscope

    PubMed Central

    Sasportas, Laura Sarah; Gambhir, Sanjiv Sam

    2014-01-01

    Metastasis, the cause for 90% of cancer mortality, is a complex and poorly understood process involving the invasion of circulating tumor cells (CTCs) into blood vessels. These cells have potential prognostic value as biomarkers for early metastatic risk. But their rarity and the lack of specificity and sensitivity in measuring them render their interrogation by current techniques very challenging. How and when these cells are circulating in the blood, on their way to potentially give rise to metastasis, is a question that remains largely unanswered. In order to provide an insight into this "black box" using non-invasive imaging, we developed a novel miniature intravital microscopy (mIVM) strategy capable of real-time long-term monitoring of CTCs in awake small animals. We established an experimental 4T1-GL mouse model of metastatic breast cancer, in which tumor cells express both fluorescent and bioluminescent reporter genes to enable both single cell and whole body tumor imaging. Using mIVM, we monitored blood vessels of different diameters in awake mice in an experimental model of metastasis. Using an in-house software algorithm we developed, we demonstrated in vivo CTC enumeration and computation of CTC trajectory and speed. These data represent the first reported use we know of for a miniature mountable intravital microscopy setup for in vivo imaging of CTCs in awake animals. PMID:24497977

  11. Immune Cells in Blood Recognize Tumors

    Cancer.gov

    NCI scientists have developed a novel strategy for identifying immune cells circulating in the blood that recognize specific proteins on tumor cells, a finding they believe may have potential implications for immune-based therapies.

  12. CD44 enhances tumor aggressiveness by promoting tumor cell plasticity.

    PubMed

    Paulis, Yvette W J; Huijbers, Elisabeth J M; van der Schaft, Daisy W J; Soetekouw, Patricia M M B; Pauwels, Patrick; Tjan-Heijnen, Vivianne C G; Griffioen, Arjan W

    2015-08-14

    Aggressive tumor cells can obtain the ability to transdifferentiate into cells with endothelial features and thus form vasculogenic networks. This phenomenon, called vasculogenic mimicry (VM), is associated with increased tumor malignancy and poor clinical outcome. To identify novel key molecules implicated in the process of vasculogenic mimicry, microarray analysis was performed to compare gene expression profiles of aggressive (VM+) and non-aggressive (VM-) cells derived from Ewing sarcoma and breast carcinoma. We identified the CD44/c-Met signaling cascade as heavily relevant for vasculogenic mimicry. CD44 was at the center of this cascade, and highly overexpressed in aggressive tumors. Both CD44 standard isoform and its splice variant CD44v6 were linked to increased aggressiveness in VM. Since VM is most abundant in Ewing sarcoma tumors functional analyses were performed in EW7 cells. Overexpression of CD44 allowed enhanced adhesion to its extracellular matrix ligand hyaluronic acid. CD44 expression also facilitated the formation of vasculogenic structures in vitro, as CD44 knockdown experiments repressed migration and vascular network formation. From these results and the observation that CD44 expression is associated with vasculogenic structures and blood lakes in human Ewing sarcoma tissues, we conclude that CD44 increases aggressiveness in tumors through the process of vasculogenic mimicry. PMID:26189059

  13. Circulating tumor cells in germ cell tumors: are those biomarkers of real prognostic value? A review

    PubMed Central

    CEBOTARU, CRISTINA LIGIA; OLTEANU, ELENA DIANA; ANTONE, NICOLETA ZENOVIA; BUIGA, RARES; NAGY, VIORICA

    2016-01-01

    Analysis of circulating tumor cells from patients with different types of cancer is nowadays a fascinating new tool of research and their number is proven to be useful as a prognostic factor in metastatic breast, colon and prostate cancer patients. Studies are going beyond enumeration, exploring the circulating tumor cells to better understand the mechanisms of tumorigenesis, invasion and metastasis and their value for characterization, prognosis and tailoring of treatment. Few studies investigated the prognostic significance of circulating tumor cells in germ cell tumors. In this review, we examine the possible significance of the detection of circulating tumor cells in this setting. PMID:27152069

  14. Imaging Tumor Cell Movement In Vivo

    PubMed Central

    Entenberg, David; Kedrin, Dmitriy; Wyckoff, Jeffrey; Sahai, Erik; Condeelis, John; Segall, Jeffrey E.

    2013-01-01

    This unit describes the methods that we have been developing for analyzing tumor cell motility in mouse and rat models of breast cancer metastasis. Rodents are commonly used both to provide a mammalian system for studying human tumor cells (as xenografts in immunocompromised mice) as well as for following the development of tumors from a specific tissue type in transgenic lines. The Basic Protocol in this unit describes the standard methods used for generation of mammary tumors and imaging them. Additional protocols for labeling macrophages, blood vessel imaging, and image analysis are also included. PMID:23456602

  15. Targeting tumor cell motility to prevent metastasis

    PubMed Central

    Palmer, Trenis D.; Ashby, William J.; Lewis, John D.; Zijlstra, Andries

    2011-01-01

    Mortality and morbidity in patients with solid tumors invariably results from the disruption of normal biological function caused by disseminating tumor cells. Tumor cell migration is under intense investigation as the underlying cause of cancer metastasis. The need for tumor cell motility in the progression of metastasis has been established experimentally and is supported empirically by basic and clinical research implicating a large collection of migration-related genes. However, there are few clinical interventions designed to specifically target the motility of tumor cells and adjuvant therapy to specifically prevent cancer cell dissemination is severely limited. In an attempt to define motility targets suitable for treating metastasis, we have parsed the molecular determinants of tumor cell motility into five underlying principles including cell autonomous ability, soluble communication, cell-cell adhesion, cell-matrix adhesion, and integrating these determinants of migration on molecular scaffolds. The current challenge is to implement meaningful and sustainable inhibition of metastasis by developing clinically viable disruption of molecular targets that control these fundamental capabilities. PMID:21664937

  16. Abalone visceral extract inhibit tumor growth and metastasis by modulating Cox-2 levels and CD8+ T cell activity

    PubMed Central

    2010-01-01

    Background Abalone has long been used as a valuable food source in East Asian countries. Although the nutritional importance of abalone has been reported through in vitro and in vivo studies, there is little evidence about the potential anti-tumor effects of abalone visceral extract. The aim of the present study is to examine anti-tumor efficacy of abalone visceral extract and to elucidate its working mechanism. Methods In the present study, we used breast cancer model using BALB/c mouse-derived 4T1 mammary carcinoma and investigated the effect of abalone visceral extract on tumor development. Inhibitory effect against tumor metastasis was assessed by histopathology of lungs. Cox-2 productions by primary and secondary tumor were measured by real-time RT-PCR and immunoblotting (IB). Proliferation assay based on [3H]-thymidine incorporation and measurement of cytokines and effector molecules by RT-PCR were used to confirm tumor suppression efficacy of abalone visceral extract by modulating cytolytic CD8+ T cells. The cytotoxicity of CD8+ T cell was compared by JAM test. Results Oral administration of abalone visceral extract reduced tumor growth (tumor volume and weight) and showed reduced metastasis as confirmed by decreased level of splenomegaly (spleen size and weight) and histological analysis of the lung metastasis (gross analysis and histological staining). Reduced expression of Cox-2 (mRNA and protein) from primary tumor and metastasized lung was also detected. In addition, treatment of abalone visceral extract increased anti-tumor activities of CD8+ T cells by increasing the proliferation capacity and their cytolytic activity. Conclusions Our results suggest that abalone visceral extract has anti-tumor effects by suppressing tumor growth and lung metastasis through decreasing Cox-2 expression level as well as promoting proliferation and cytolytic function of CD8+ T cells. PMID:20961430

  17. Safety of targeting tumor endothelial cell antigens.

    PubMed

    Wagner, Samuel C; Riordan, Neil H; Ichim, Thomas E; Szymanski, Julia; Ma, Hong; Perez, Jesus A; Lopez, Javier; Plata-Munoz, Juan J; Silva, Francisco; Patel, Amit N; Kesari, Santosh

    2016-01-01

    The mechanisms underlying discrimination between "self" and "non-self", a central immunological principle, require careful consideration in immune oncology therapeutics where eliciting anti-cancer immunity must be weighed against the risk of autoimmunity due to the self origin of tumors. Whole cell vaccines are one promising immunotherapeutic avenue whereby a myriad of tumor antigens are introduced in an immunogenic context with the aim of eliciting tumor rejection. Despite the possibility collateral damage to healthy tissues, cancer immunotherapy can be designed such that off target autoimmunity remains limited in scope and severity or completely non-existent. Here we provide an immunological basis for reconciling the safety of cancer vaccines, focusing on tumor endothelial cell vaccines, by discussing the following topics: (a) Antigenic differences between neoplastic and healthy tissues that can be leveraged in cancer vaccine design; (b) The layers of tolerance that control T cell responses directed against antigens expressed in healthy tissues and tumors; and, (c) The hierarchy of antigenic epitope selection and display in response to whole cell vaccines, and how antigen processing and presentation can afford a degree of selectivity against tumors. We conclude with an example of early clinical data utilizing ValloVax™, an immunogenic placental endothelial cell vaccine that is being advanced to target the tumor endothelium of diverse cancers, and we report on the safety and efficacy of ValloVax™ for inducing immunity against tumor endothelial antigens. PMID:27071457

  18. DNA Tumor Viruses and Cell Metabolism

    PubMed Central

    Mushtaq, Muhammad; Darekar, Suhas

    2016-01-01

    Viruses play an important role in cancerogenesis. It is estimated that approximately 20% of all cancers are linked to infectious agents. The viral genes modulate the physiological machinery of infected cells that lead to cell transformation and development of cancer. One of the important adoptive responses by the cancer cells is their metabolic change to cope up with continuous requirement of cell survival and proliferation. In this review we will focus on how DNA viruses alter the glucose metabolism of transformed cells. Tumor DNA viruses enhance “aerobic” glycolysis upon virus-induced cell transformation, supporting rapid cell proliferation and showing the Warburg effect. Moreover, viral proteins enhance glucose uptake and controls tumor microenvironment, promoting metastasizing of the tumor cells. PMID:27034740

  19. Tumor-associated macrophages (not tumor cells) are the determinants of photosensitizer tumor localization

    NASA Astrophysics Data System (ADS)

    Korbelik, Mladen; Krosl, Gorazd

    1995-03-01

    The distribution of Photofrin and several other photosensitizers among major cellular populations contained in solid mouse tumors was examined using flow cytometry. Seven tumor models were included in the analysis: sarcomas EMT6, KHT, RIF, FsaR and FsaN, Lewis lung carcinoma and squamous cell carcinoma SCCVII. In all these tumors, the highest photosensitizer levels were found in a subpopulation of tumor associated macrophages consisting of activated cells (as suggested by their increased size, granularity, and the number of interleukin 2 receptors). There was no evidence of selective photosensitizer accumulation in malignant tumor cells. Results consistent with these observations were also obtained with the carcinogen induced squamous cell carcinoma growing in hamster cheek pouch.

  20. Anti-CD20 antibody promotes cancer escape via enrichment of tumor-evoked regulatory B cells expressing low levels of CD20 and CD137L.

    PubMed

    Bodogai, Monica; Lee Chang, Catalina; Wejksza, Katarzyna; Lai, Jinping; Merino, Maria; Wersto, Robert P; Gress, Ronald E; Chan, Andrew C; Hesdorffer, Charles; Biragyn, Arya

    2013-04-01

    The possible therapeutic benefits of B-cell depletion in combating tumoral immune escape have been debated. In support of this concept, metastasis of highly aggressive 4T1 breast cancer cells in mice can be abrogated by inactivation of tumor-evoked regulatory B cells (tBreg). Here, we report the unexpected finding that B-cell depletion by CD20 antibody will greatly enhance cancer progression and metastasis. Both murine and human tBregs express low levels of CD20 and, as such, anti-CD20 mostly enriches for these cells. In the 4T1 model of murine breast cancer, this effect of enriching for tBregs suggests that B-cell depletion by anti-CD20 may not be beneficial at all in some cancers. In contrast, we show that in vivo-targeted stimulation of B cells with CXCL13-coupled CpG oligonucleotides (CpG-ODN) can block cancer metastasis by inhibiting CD20(Low) tBregs. Mechanistic investigations suggested that CpG-ODN upregulates low surface levels of 4-1BBL on tBregs to elicit granzyme B-expressing cytolytic CD8(+) T cells, offering some explanative power for the effect. These findings underscore the immunotherapeutic importance of tBreg inactivation as a strategy to enhance cancer therapy by targeting both the regulatory and activating arms of the immune system in vivo. PMID:23365136

  1. Targeting regulatory T cells in tumors.

    PubMed

    Liu, Chang; Workman, Creg J; Vignali, Dario A A

    2016-07-01

    Regulatory T (Treg ) cells play a crucial role in maintaining peripheral tolerance and preventing autoimmunity. However, they also represent a major barrier to effective antitumor immunity and immunotherapy. Consequently, there has been considerable interest in developing approaches that can selectively or preferentially target Treg cells in tumors, while not impacting their capacity to maintain peripheral immune homeostasis. In this review, we describe our current understanding of the mechanisms underlying the recruitment, expansion, and suppressive activity of tumor-associated Treg cells, and discuss the approaches used and the challenges encountered in the immunotherapeutic targeting of Treg cells. In addition, we summarize the primary clinical targets and some emerging data on exciting new potential Treg cell-restricted targets. We propose that discovering and understanding mechanisms that are preferentially used by Treg cells within the tumor microenvironment will lead to strategies that selectively target Treg cell-mediated suppression of antitumor immunity while maintaining peripheral immune tolerance. PMID:26787424

  2. Ceramide Kinase Promotes Tumor Cell Survival and Mammary Tumor Recurrence

    PubMed Central

    Payne, Ania W.; Pant, Dhruv K.; Pan, Tien-chi; Chodosh, Lewis A.

    2014-01-01

    Recurrent breast cancer is typically an incurable disease and, as such, is disproportionately responsible for deaths from this disease. Recurrent breast cancers arise from the pool of disseminated tumor cells (DTCs) that survive adjuvant or neoadjuvant therapy, and patients with detectable DTCs following therapy are at substantially increased risk for recurrence. Consequently, the identification of pathways that contribute to the survival of breast cancer cells following therapy could aid in the development of more effective therapies that decrease the burden of residual disease and thereby reduce the risk of breast cancer recurrence. We now report that Ceramide Kinase (Cerk) is required for mammary tumor recurrence following HER2/neu pathway inhibition and is spontaneously up-regulated during tumor recurrence in multiple genetically engineered mouse models for breast cancer. We find that Cerk is rapidly up-regulated in tumor cells following HER2/neu down-regulation or treatment with Adriamycin and that Cerk is required for tumor cell survival following HER2/neu down-regulation. Consistent with our observations in mouse models, analysis of gene expression profiles from over 2,200 patients revealed that elevated CERK expression is associated with an increased risk of recurrence in women with breast cancer. Additionally, although CERK expression is associated with aggressive subtypes of breast cancer, including those that are ER–, HER2+, basal-like, or high grade, its association with poor clinical outcome is independent of these clinicopathological variables. Together, our findings identify a functional role for Cerk in breast cancer recurrence and suggest the clinical utility of agents targeted against this pro-survival pathway. PMID:25164007

  3. Characterization of cell suspensions from solid tumors

    SciTech Connect

    Pallavicini, M.

    1985-07-10

    The desirable features of cells in suspension will necessarily be dependent upon the use for which the cells were prepared. Adequate cell yield or recovery is defined by the measurement to be performed. Retention of cellular morphology is important for microscopic identification of cell types in a heterogenous cell suspension, and may be used to determine whether the cells in suspension are representative of those in the tumor in situ. Different dispersal protocols may yield cells with different degrees of clonogenicity, as well as altered biochemical features, such as loss of cellular proteins, surface antigens, nucleotide pools, etc. The quality of the cell suspension can be judged by the degree of cell clumping and level of cellular debris, both of which impact on flow cytometric measurements and studies in which the number of cells be known accurately. Finally, if the data measured on the cells in suspension are to be extrapolated to phenomena occurring in the tumor in situ, it is desirable that the cells in suspension are representative of those in the solid tumor in vivo. This report compares characteristics of tumor cell suspensions obtained by different types of selected disaggregation methods. 33 refs., 2 figs., 4 tabs.

  4. Tumor sialylation impedes T cell mediated anti-tumor responses while promoting tumor associated-regulatory T cells

    PubMed Central

    Perdicchio, Maurizio; Cornelissen, Lenneke A. M.; Streng-Ouwehand, Ingeborg; Engels, Steef; Verstege, Marleen I.; Boon, Louis; Geerts, Dirk

    2016-01-01

    The increased presence of sialylated glycans on the tumor surface has been linked to poor prognosis, yet the effects on tumor-specific T cell immunity are hardly studied. We here show that hypersialylation of B16 melanoma substantially influences tumor growth by preventing the formation of effector T cells and facilitating the presence of high regulatory T cell (Treg) frequencies. Knock-down of the sialic acid transporter created “sialic acid low” tumors, that grew slower in-vivo than hypersialylated tumors, altered the Treg/Teffector balance, favoring immunological tumor control. The enhanced effector T cell response in developing “sialic acid low” tumors was preceded by and dependent on an increased influx and activity of Natural Killer (NK) cells. Thus, tumor hypersialylation orchestrates immune escape at the level of NK and Teff/Treg balance within the tumor microenvironment, herewith dampening tumor-specific T cell control. Reducing sialylation provides a therapeutic option to render tumors permissive to immune attack. PMID:26741508

  5. Tumor sialylation impedes T cell mediated anti-tumor responses while promoting tumor associated-regulatory T cells.

    PubMed

    Perdicchio, Maurizio; Cornelissen, Lenneke A M; Streng-Ouwehand, Ingeborg; Engels, Steef; Verstege, Marleen I; Boon, Louis; Geerts, Dirk; van Kooyk, Yvette; Unger, Wendy W J

    2016-02-23

    The increased presence of sialylated glycans on the tumor surface has been linked to poor prognosis, yet the effects on tumor-specific T cell immunity are hardly studied. We here show that hypersialylation of B16 melanoma substantially influences tumor growth by preventing the formation of effector T cells and facilitating the presence of high regulatory T cell (Treg) frequencies. Knock-down of the sialic acid transporter created "sialic acid low" tumors, that grew slower in-vivo than hypersialylated tumors, altered the Treg/Teffector balance, favoring immunological tumor control. The enhanced effector T cell response in developing "sialic acid low" tumors was preceded by and dependent on an increased influx and activity of Natural Killer (NK) cells. Thus, tumor hypersialylation orchestrates immune escape at the level of NK and Teff/Treg balance within the tumor microenvironment, herewith dampening tumor-specific T cell control. Reducing sialylation provides a therapeutic option to render tumors permissive to immune attack. PMID:26741508

  6. Canine parvovirus NS1 protein exhibits anti-tumor activity in a mouse mammary tumor model.

    PubMed

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Gandham, Ravi Kumar; Sahoo, A P; Harish, D R; Singh, Arvind Kumar; Tiwari, A K

    2016-02-01

    Many viral proteins have the ability to kill tumor cells specifically without harming the normal cells. These proteins, on ectopic expression, cause lysis or induction of apoptosis in the target tumor cells. Parvovirus NS1 is one of such proteins, which is known to kill high proliferating tumor cells. In the present study, we assessed the apoptosis inducing ability of canine parvovirus type 2 NS1 protein (CPV2.NS1) in vitro in 4T1 cells, and found it to cause significant cell death due to induction of apoptosis through intrinsic or mitochondrial pathway. Further, we also evaluated the oncolytic activity of CPV2.NS1 protein in a mouse mammary tumor model. The results suggested that CPV2.NS1 was able to inhibit the growth of 4T1 induced mouse mammary tumor as indicated by significantly reduced tumor volume, mitotic, AgNOR and PCNA indices. Further, inhibition of tumor growth was found to be because of induction of apoptosis in the tumor cells, which was evident by a significant increase in the number of TUNEL positive cells. Further, CPV2.NS1 was also able to stimulate the immune cells against the tumor antigens as indicated by the increased CD4+ and CD8+ counts in the blood of CVP2.NS1 treated mice. Further optimization of the delivery of NS1 protein and use of an adjuvant may further enhance its anti-tumor activity. PMID:26739427

  7. Fc block treatment, dead cells exclusion, and cell aggregates discrimination concur to prevent phenotypical artifacts in the analysis of subpopulations of tumor-infiltrating CD11b(+) myelomonocytic cells.

    PubMed

    Kuonen, Francois; Touvrey, Cedric; Laurent, Julien; Ruegg, Curzio

    2010-11-01

    It is well established that cancer cells can recruit CD11b(+) myeloid cells to promote tumor angiogenesis and tumor growth. Increasing interest has emerged on the identification of subpopulations of tumor-infiltrating CD11b(+) myeloid cells using flow cytometry techniques. In the literature, however, discrepancies exist on the phenotype of these cells (Coffelt et al., Am J Pathol 2010;176:1564-1576). Since flow cytometry analysis requires particular precautions for accurate sample preparation and trustable data acquisition, analysis, and interpretation, some discrepancies might be due to technical reasons rather than biological grounds. We used the syngenic orthotopic 4T1 mammary tumor model in immunocompetent BALB/c mice to analyze and compare the phenotype of CD11b(+) myeloid cells isolated from peripheral blood and from tumors, using six-color flow cytometry. We report here that the nonspecific antibody binding through Fc receptors, the presence of dead cells and cell doublets in tumor-derived samples concur to generate artifacts in the phenotype of tumor-infiltrating CD11b(+) subpopulations. We show that the heterogeneity of tumor-infiltrating CD11b(+) subpopulations analyzed without particular precautions was greatly reduced upon Fc block treatment, dead cells, and cell doublets exclusion. Phenotyping of tumor-infiltrating CD11b(+) cells was particularly sensitive to these parameters compared to circulating CD11b(+) cells. Taken together, our results identify Fc block treatment, dead cells, and cell doublets exclusion as simple but crucial steps for the proper analysis of tumor-infiltrating CD11b(+) cell populations. PMID:20824631

  8. [Benign and malignant granular cell tumors. An immunohistochemical classification of tumor cells].

    PubMed

    Kuhn, A; Mahrle, G; Steigleder, G K

    1987-06-15

    Eight benign and three malignant granular cell tumors were characterized by means of antibodies and antisera against keratin, desmin, epithelial membrane antigen, factor VIII-related protein, lysozyme, myelin basic protein, myoglobin, neurone-specific enolase, S 100 protein, myelin-associated protein (Leu 7), glial fibrillary acidic protein, vimentin, and neurofilament. All benign granular cell tumours showed positive staining of the tumor cells to antibodies against vimentin, S 100 protein, and neurone-specific enolase; myelin-associated protein (Leu 7), in contrast, was only detectable in a few tumor sections. Histogenetically the granular cells may be classified as Schwann's cells which lost their expression of laminin. The three malignant granular cell tumors showed a staining pattern significantly different from that of the benign tumours. Thus, only neurone-specific enolase was detectable in all the tumors, whereas S 100 protein and vimentin could not be demonstrated but in one and two, resp., out of three tumors. PMID:3303714

  9. Tumor-Associated Endothelial Cells Promote Tumor Metastasis by Chaperoning Circulating Tumor Cells and Protecting Them from Anoikis.

    PubMed

    Yadav, Arti; Kumar, Bhavna; Yu, Jun-Ge; Old, Matthew; Teknos, Theodoros N; Kumar, Pawan

    2015-01-01

    Tumor metastasis is a highly inefficient biological process as millions of tumor cells are released in circulation each day and only a few of them are able to successfully form distal metastatic nodules. This could be due to the fact that most of the epithelial origin cancer cells are anchorage-dependent and undergo rapid anoikis in harsh circulating conditions. A number of studies have shown that in addition to tumor cells, activated endothelial cells are also released into the blood circulation from the primary tumors. However, the precise role of these activated circulating endothelial cells (CECs) in tumor metastasis process is not known. Therefore, we performed a series of experiments to examine if CECs promoted tumor metastasis by chaperoning the tumor cells to distal sites. Our results demonstrate that blood samples from head and neck cancer patients contain significantly higher Bcl-2-positive CECs as compared to healthy volunteers. Technically, it is challenging to know the origin of CECs in patient blood samples, therefore we used an orthotopic SCID mouse model and co-implanted GFP-labeled endothelial cells along with tumor cells. Our results suggest that activated CECs (Bcl-2-positive) were released from primary tumors and they co-migrated with tumor cells to distal sites. Bcl-2 overexpression in endothelial cells (EC-Bcl-2) significantly enhanced adhesion molecule expression and tumor cell binding that was predominantly mediated by E-selectin. In addition, tumor cells bound to EC-Bcl-2 showed a significantly higher anoikis resistance via the activation of Src-FAK pathway. In our in vivo experiments, we observed significantly higher lung metastasis when tumor cells were co-injected with EC-Bcl-2 as compared to EC-VC. E-selectin knockdown in EC-Bcl-2 cells or FAK/FUT3 knockdown in tumor cells significantly reversed EC-Bcl-2-mediated tumor metastasis. Taken together, our results suggest a novel role for CECs in protecting the tumor cells in circulation and

  10. Novel mouse mammary cell lines for in vivo bioluminescence imaging (BLI) of bone metastasis

    PubMed Central

    2012-01-01

    Background Tumor cell lines that can be tracked in vivo during tumorigenesis and metastasis provide vital tools for studying the specific cellular mechanisms that mediate these processes as well as investigating therapeutic targets to inhibit them. The goal of this study was to engineer imageable mouse mammary tumor cell lines with discrete propensities to metastasize to bone in vivo. Two novel luciferase expressing cell lines were developed and characterized for use in the study of breast cancer metastasis to bone in a syngeneic mouse model. Results The 4 T1.2 luc3 and 66c14 luc2 cell lines were shown to have high levels of bioluminescence intensity in vitro and in vivo after orthotopic injection into mouse mammary fat pads. The 4 T1.2 luc3 cell line was found to closely model the sites of metastases seen in human patients including lung, liver, and bone. Specifically, 4 T1.2 luc3 cells demonstrated a high incidence of metastasis to spine, with an ex-vivo BLI intensity three orders of magnitude above the commercially available 4 T1 luc2 cells. 66c14 luc2 cells also demonstrated metastasis to spine, which was lower than that of 4 T1.2 luc3 cells but higher than 4 T1 luc2 cells, in addition to previously unreported metastases in the liver. High osteolytic activity of the 4 T1.2 luc3 cells in vivo in the bone microenvironment was also detected. Conclusions The engineered 4 T1.2 luc3 and 66c14 luc2 cell lines described in this study are valuable tools for studying the cellular events moderating the metastasis of breast tumor cells to bone. PMID:22510147

  11. Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses

    PubMed Central

    Chiba, Shiho; Ikushima, Hiroaki; Ueki, Hiroshi; Yanai, Hideyuki; Kimura, Yoshitaka; Hangai, Sho; Nishio, Junko; Negishi, Hideo; Tamura, Tomohiko; Saijo, Shinobu; Iwakura, Yoichiro; Taniguchi, Tadatsugu

    2014-01-01

    The eradication of tumor cells requires communication to and signaling by cells of the immune system. Natural killer (NK) cells are essential tumor-killing effector cells of the innate immune system; however, little is known about whether or how other immune cells recognize tumor cells to assist NK cells. Here, we show that the innate immune receptor Dectin-1 expressed on dendritic cells and macrophages is critical to NK-mediated killing of tumor cells that express N-glycan structures at high levels. Receptor recognition of these tumor cells causes the activation of the IRF5 transcription factor and downstream gene induction for the full-blown tumoricidal activity of NK cells. Consistent with this, we show exacerbated in vivo tumor growth in mice genetically deficient in either Dectin-1 or IRF5. The critical contribution of Dectin-1 in the recognition of and signaling by tumor cells may offer new insight into the anti-tumor immune system with therapeutic implications. DOI: http://dx.doi.org/10.7554/eLife.04177.001 PMID:25149452

  12. Energy and Redox Homeostasis in Tumor Cells

    PubMed Central

    de Oliveira, Marcus Fernandes; Amoêdo, Nívea Dias; Rumjanek, Franklin David

    2012-01-01

    Cancer cells display abnormal morphology, chromosomes, and metabolism. This review will focus on the metabolism of tumor cells integrating the available data by way of a functional approach. The first part contains a comprehensive introduction to bioenergetics, mitochondria, and the mechanisms of production and degradation of reactive oxygen species. This will be followed by a discussion on the oxidative metabolism of tumor cells including the morphology, biogenesis, and networking of mitochondria. Tumor cells overexpress proteins that favor fission, such as GTPase dynamin-related protein 1 (Drp1). The interplay between proapoptotic members of the Bcl-2 family that promotes Drp 1-dependent mitochondrial fragmentation and fusogenic antiapoptotic proteins such as Opa-1 will be presented. It will be argued that contrary to the widespread belief that in cancer cells, aerobic glycolysis completely replaces oxidative metabolism, a misrepresentation of Warburg's original results, mitochondria of tumor cells are fully viable and functional. Cancer cells also carry out oxidative metabolism and generally conform to the orthodox model of ATP production maintaining as well an intact electron transport system. Finally, data will be presented indicating that the key to tumor cell survival in an ROS rich environment depends on the overexpression of antioxidant enzymes and high levels of the nonenzymatic antioxidant scavengers. PMID:22693511

  13. Osteoclastic giant cell tumor of the pancreas☆

    PubMed Central

    Temesgen, Wudneh M.; Wachtel, Mitchell; Dissanaike, Sharmila

    2014-01-01

    INTRODUCTION Pancreatic giant cell tumors are rare, with an incidence of less than 1% of all pancreatic tumors. Osteoclastic giant cell tumor (OGCT) of the pancreas is one of the three types of PGCT, which are now classified as undifferentiated carcinoma with osteoclast-like giant cells. PRESENTATION OF CASE The patient is a 57 year old woman who presented with a 3 week history of epigastric pain and a palpable abdominal mass. Imaging studies revealed an 18 cm × 15 cm soft tissue mass with cystic components which involved the pancreas, stomach and spleen. Exploratory laparotomy with distal pancreatectomy, partial gastrectomy and splenectomy was performed. Histology revealed undifferentiated pancreatic carcinoma with osteoclast-like giant cells with production of osteoid and glandular elements. DISCUSSION OGCT of the pancreas resembles benign-appearing giant cell tumors of bone, and contain osteoclastic-like multinucleated cells and mononuclear cells. OGCTs display a less aggressive course with slow metastasis and lymph node spread compared to pancreatic adenocarcinoma. Due to the rarity of the cancer, there is a lack of prospective studies on treatment options. Surgical en-bloc resection is currently considered first line treatment. The role of adjuvant therapy with radiotherapy or chemotherapy has not been established. CONCLUSION Pancreatic giant cell tumors are rare pancreatic neoplasms with unique clinical and pathological characteristics. Osteoclastic giant cell tumors are the most favorable sub-type. Surgical en bloc resection is the first line treatment. Long-term follow-up of patients with these tumors is essential to compile a body of literature to help guide treatment. PMID:24631915

  14. In Vivo therapeutic potential of mesenchymal stem cell-derived extracellular vesicles with optical imaging reporter in tumor mice model.

    PubMed

    Kalimuthu, Senthilkumar; Gangadaran, Prakash; Li, Xiu Juan; Oh, Ji Min; Lee, Ho Won; Jeong, Shin Young; Lee, Sang-Woo; Lee, Jaetae; Ahn, Byeong-Cheol

    2016-01-01

    Mesenchymal stem cells (MSCs) can be used as a therapeutic armor for cancer. Extracellular vesicles (EVs) from MSCs have been evaluated for anticancer effects. In vivo targeting of EVs to the tumor is an essential requirement for successful therapy. Therefore, non-invasive methods of monitoring EVs in animal models are crucial for developing EV-based cancer therapies. The present study to develop bioluminescent EVs using Renilla luciferase (Rluc)-expressing MSCs. The EVs from MSC/Rluc cells (EV-MSC/Rluc) were visualized in a murine lung cancer model. The anticancer effects of EVs on Lewis lung carcinoma (LLC) and other cancer cells were assessed. EV-MSC/Rluc were visualized in vivo in the LLC-efffuc tumor model using optical imaging. The induction of apoptosis was confirmed with Annexin-V and propidium iodide staining. EV-MSC/Rluc and EV-MSCs showed a significant cytotoxic effect against LLC-effluc cells and 4T1; however, no significant effect on CT26, B16F10, TC1 cells. Moreover, EV-MSC/Rluc inhibited LLC tumor growth in vivo. EV-MSC/Rluc-mediated LLC tumor inhibitory mechanism revealed the decreased pERK and increased cleaved caspase 3 and cleaved PARP. We successfully developed luminescent EV-MSC/Rluc that have a therapeutic effect on LLC cells in both in vitro and in vivo. This bioluminescent EV system can be used to optimize EV-based therapy. PMID:27452924

  15. In Vivo therapeutic potential of mesenchymal stem cell-derived extracellular vesicles with optical imaging reporter in tumor mice model

    PubMed Central

    Kalimuthu, Senthilkumar; Gangadaran, Prakash; Li, Xiu Juan; Oh, Ji Min; Lee, Ho Won; Jeong, Shin Young; Lee, Sang-Woo; Lee, Jaetae; Ahn, Byeong-Cheol

    2016-01-01

    Mesenchymal stem cells (MSCs) can be used as a therapeutic armor for cancer. Extracellular vesicles (EVs) from MSCs have been evaluated for anticancer effects. In vivo targeting of EVs to the tumor is an essential requirement for successful therapy. Therefore, non-invasive methods of monitoring EVs in animal models are crucial for developing EV-based cancer therapies. The present study to develop bioluminescent EVs using Renilla luciferase (Rluc)-expressing MSCs. The EVs from MSC/Rluc cells (EV-MSC/Rluc) were visualized in a murine lung cancer model. The anticancer effects of EVs on Lewis lung carcinoma (LLC) and other cancer cells were assessed. EV-MSC/Rluc were visualized in vivo in the LLC-efffuc tumor model using optical imaging. The induction of apoptosis was confirmed with Annexin-V and propidium iodide staining. EV-MSC/Rluc and EV-MSCs showed a significant cytotoxic effect against LLC-effluc cells and 4T1; however, no significant effect on CT26, B16F10, TC1 cells. Moreover, EV-MSC/Rluc inhibited LLC tumor growth in vivo. EV-MSC/Rluc-mediated LLC tumor inhibitory mechanism revealed the decreased pERK and increased cleaved caspase 3 and cleaved PARP. We successfully developed luminescent EV-MSC/Rluc that have a therapeutic effect on LLC cells in both in vitro and in vivo. This bioluminescent EV system can be used to optimize EV-based therapy. PMID:27452924

  16. Reversing drug resistance of soft tumor-repopulating cells by tumor cell-derived chemotherapeutic microparticles.

    PubMed

    Ma, Jingwei; Zhang, Yi; Tang, Ke; Zhang, Huafeng; Yin, Xiaonan; Li, Yong; Xu, Pingwei; Sun, Yanling; Ma, Ruihua; Ji, Tiantian; Chen, Junwei; Zhang, Shuang; Zhang, Tianzhen; Luo, Shunqun; Jin, Yang; Luo, Xiuli; Li, Chengyin; Gong, Hongwei; Long, Zhixiong; Lu, Jinzhi; Hu, Zhuowei; Cao, Xuetao; Wang, Ning; Yang, Xiangliang; Huang, Bo

    2016-06-01

    Developing novel approaches to reverse the drug resistance of tumor-repopulating cells (TRCs) or stem cell-like cancer cells is an urgent clinical need to improve outcomes of cancer patients. Here we show an innovative approach that reverses drug resistance of TRCs using tumor cell-derived microparticles (T-MPs) containing anti-tumor drugs. TRCs, by virtue of being more deformable than differentiated cancer cells, preferentially take up T-MPs that release anti-tumor drugs after entering cells, which in turn lead to death of TRCs. The underlying mechanisms include interfering with drug efflux and promoting nuclear entry of the drugs. Our findings demonstrate the importance of tumor cell softness in uptake of T-MPs and effectiveness of a novel approach in reversing drug resistance of TRCs with promising clinical applications. PMID:27167569

  17. An overview of therapeutic approaches to brain tumor stem cells

    PubMed Central

    2012-01-01

    Primary and secondary malignant central nervous system (CNS) tumors are devastating invasive tumors able to give rise to many kinds of differentiated tumor cells. Glioblastoma multiform (GBM), is the most malignant brain tumor, in which its growth and persistence depend on cancer stem cells with enhanced DNA damage repair program that also induces recurrence and resists current chemo- and radiotherapies. Unlike non-tumor stem cells, tumor stem cells lack the normal mechanisms that regulate proliferation and differentiation, resulting in uncontrolled production and incomplete differentiation of tumor cells. In current paper recent developments and new researches in the field of brain tumor stem cells have been reviewed. PMID:23483074

  18. One cell, multiple roles: contribution of mesenchymal stem cells to tumor development in tumor microenvironment

    PubMed Central

    2013-01-01

    The discovery of tissue reparative and immunosuppressive abilities of mesenchymal stem cells (MSCs) has drawn more attention to tumor microenvironment and its role in providing the soil for the tumor cell growth. MSCs are recruited to tumor which is referred as the never healing wound and altered by the inflammation environment, thereby helping to construct the tumor microenvironment. The environment orchestrated by MSCs and other factors can be associated with angiogenesis, immunosuppression, inhibition of apoptosis, epithelial-mesenchymal transition (EMT), survival of cancer stem cells, which all contribute to tumor growth and progression. In this review, we will discuss how MSCs are recruited to the tumor microenvironment and what effects they have on tumor progression. PMID:23336752

  19. Whole tumor antigen vaccination using dendritic cells: comparison of RNA electroporation and pulsing with UV-irradiated tumor cells.

    PubMed

    Benencia, Fabian; Courrèges, Maria C; Coukos, George

    2008-01-01

    Because of the lack of full characterization of tumor associated antigens for solid tumors, whole antigen use is a convenient approach to tumor vaccination. Tumor RNA and apoptotic tumor cells have been used as a source of whole tumor antigen to prepare dendritic cell (DC) based tumor vaccines, but their efficacy has not been directly compared. Here we compare directly RNA electroporation and pulsing of DCs with whole tumor cells killed by ultraviolet (UV) B radiation using a convenient tumor model expressing human papilloma virus (HPV) E6 and E7 oncogenes. Although both approaches led to DCs presenting tumor antigen, electroporation with tumor cell total RNA induced a significantly higher frequency of tumor-reactive IFN-gamma secreting T cells, and E7-specific CD8+ lymphocytes compared to pulsing with UV-irradiated tumor cells. DCs electroporated with tumor cell RNA induced a larger tumor infiltration by T cells and produced a significantly stronger delay in tumor growth compared to DCs pulsed with UV-irradiated tumor cells. We conclude that electroporation with whole tumor cell RNA and pulsing with UV-irradiated tumor cells are both effective in eliciting antitumor immune response, but RNA electroporation results in more potent tumor vaccination under the examined experimental conditions. PMID:18445282

  20. Apoptin: specific killer of tumor cells?

    PubMed

    Tavassoli, M; Guelen, L; Luxon, B A; Gäken, J

    2005-08-01

    In the early 1990s it was discovered that the VP3/Apoptin protein encoded by the Chicken Anemia virus (CAV) possesses an inherent ability to specifically kill cancer cells. Apoptin was found to be located in the cytoplasm of normal cells while in tumor cells it was localized mainly in the nucleus.(1) These differences in the localization pattern were suggested to be the main mechanism by which normal cells show resistance to Apoptin-mediated cell killing. Although the mechanism of action of Apoptin is presently unknown, it seems to function by the induction of programmed cell death (PCD) after translocation from the cytoplasm to the nucleus and arresting the cell cycle at G2/M, possibly by interfering with the cyclosome.(2) In addition, cancer specific phosphorylation of Threonine residue 108 has been suggested to be important for Apoptin's function to kill tumor cells.(3) In contrast to the large number of publications reporting that nuclear localization, induction of PCD and phosphorylation of Apoptin is restricted to cancer cells, several recent studies have shown that Apoptin has the ability to migrate to the nucleus and induce PCD in some of the normal cell lines tested. There is evidence that high protein expression levels as well as the cellular growth rate may influence Apoptin's ability to specifically kill tumor cells. Thus far both in vitro and in vivo studies indicate that Apoptin is a powerful apoptosis inducing protein with a promising prospective utility in cancer therapy. However, here we show that several recent findings contradict some of the earlier results on the tumor specificity of Apoptin, thus creating some controversy in the field. The aim of this article is to review the available data, some published and some unpublished, which either agree or contradict the reported "black and white" tumor cell specificity of Apoptin. Understanding what factors appear to influence its function should help to develop Apoptin into a potent anti

  1. Apoptin: Specific killer of tumor cells?

    PubMed Central

    Tavassoli, M.; Guelen, L.; Luxon, B. A.; Gäken, J.

    2010-01-01

    In the early 1990s it was discovered that the VP3/Apoptin protein encoded by the Chicken Anemia virus (CAV) possesses an inherent ability to specifically kill cancer cells. Apoptin was found to be located in the cytoplasm of normal cells while in tumor cells it was localized mainly in the nucleus.1 These differences in the localization pattern were suggested to be the main mechanism by which normal cells show resistance to Apoptin-mediated cell killing. Although the mechanism of action of Apoptin is presently unknown, it seems to function by the induction of programmed cell death (PCD) after translocation from the cytoplasm to the nucleus and arresting the cell cycle at g2/M, possibly by interfering with the cyclosome.2 In addition, cancer specific phosphorylation of Threonine residue 108 has been suggested to be important for Apoptin’s function to kill tumor cells.3 In contrast to the large number of publications reporting that nuclear localization, induction of PCD and phosphorylation of Apoptin is restricted to cancer cells, several recent studies have shown that Apoptin has the ability to migrate to the nucleus and induce PCD in some of the normal cell lines tested. There is evidence that high protein expression levels as well as the cellular growth rate may influence Apoptin’s ability to specifically kill tumor cells. Thus far both in vitro and in vivo studies indicate that Apoptin is a powerful apoptosis inducing protein with a promising prospective utility in cancer therapy. However, here we show that several recent findings contradict some of the earlier results on the tumor specificity of Apoptin, thus creating some controversy in the field. The aim of this article is to review the available data, some published and some unpublished, which either agree or contradict the reported “black and white” tumor cell specificity of Apoptin. Understanding what factors appear to influence its function should help to develop Apoptin into a potent anti

  2. Tumor-Infiltrating Immune Cells Promoting Tumor Invasion and Metastasis: Existing Theories

    PubMed Central

    Man, Yan-gao; Stojadinovic, Alexander; Mason, Jeffrey; Avital, Itzhak; Bilchik, Anton; Bruecher, Bjoern; Protic, Mladjan; Nissan, Aviram; Izadjoo, Mina; Zhang, Xichen; Jewett, Anahid

    2013-01-01

    It is a commonly held belief that infiltration of immune cells into tumor tissues and direct physical contact between tumor cells and infiltrated immune cells is associated with physical destructions of the tumor cells, reduction of the tumor burden, and improved clinical prognosis. An increasing number of studies, however, have suggested that aberrant infiltration of immune cells into tumor or normal tissues may promote tumor progression, invasion, and metastasis. Neither the primary reason for these contradictory observations, nor the mechanism for the reported diverse impact of tumor-infiltrating immune cells has been elucidated, making it difficult to judge the clinical implications of infiltration of immune cells within tumor tissues. This mini-review presents several existing hypotheses and models that favor the promoting impact of tumor-infiltrating immune cells on tumor invasion and metastasis, and also analyzes their strength and weakness. PMID:23386907

  3. Molecular biology of testicular germ cell tumors.

    PubMed

    Gonzalez-Exposito, R; Merino, M; Aguayo, C

    2016-06-01

    Testicular germ cell tumors (TGCTs) are the most common solid tumors in young adult men. They constitute a unique pathology because of their embryonic and germ origin and their special behavior. Genetic predisposition, environmental factors involved in their development and genetic aberrations have been under study in many works throughout the last years trying to explain the susceptibility and the transformation mechanism of TGCTs. Despite the high rate of cure in this type of tumors because its particular sensitivity to cisplatin, there are tumors resistant to chemotherapy for which it is needed to find new therapies. In the present work, it has been carried out a literature review on the most important molecular aspects involved in the onset and development of such tumors, as well as a review of the major developments regarding prognostic factors, new prognostic biomarkers and the possibility of new targeted therapies. PMID:26482724

  4. Multi-targeted inhibition of tumor growth and lung metastasis by redox-sensitive shell crosslinked micelles loading disulfiram

    NASA Astrophysics Data System (ADS)

    Duan, Xiaopin; Xiao, Jisheng; Yin, Qi; Zhang, Zhiwen; Yu, Haijun; Mao, Shirui; Li, Yaping

    2014-03-01

    Metastasis, the main cause of cancer related deaths, remains the greatest challenge in cancer treatment. Disulfiram (DSF), which has multi-targeted anti-tumor activity, was encapsulated into redox-sensitive shell crosslinked micelles to achieve intracellular targeted delivery and finally inhibit tumor growth and metastasis. The crosslinked micelles demonstrated good stability in circulation and specifically released DSF under a reductive environment that mimicked the intracellular conditions of tumor cells. As a result, the DSF-loaded redox-sensitive shell crosslinked micelles (DCMs) dramatically inhibited cell proliferation, induced cell apoptosis and suppressed cell invasion, as well as impairing tube formation of HMEC-1 cells. In addition, the DCMs could accumulate in tumor tissue and stay there for a long time, thereby causing significant inhibition of 4T1 tumor growth and marked prevention in lung metastasis of 4T1 tumors. These results suggested that DCMs could be a promising delivery system in inhibiting the growth and metastasis of breast cancer.

  5. Enhanced delivery of liposomes to lung tumor through targeting interleukin-4 receptor on both tumor cells and tumor endothelial cells.

    PubMed

    Chi, Lianhua; Na, Moon-Hee; Jung, Hyun-Kyung; Vadevoo, Sri Murugan Poongkavithai; Kim, Cheong-Wun; Padmanaban, Guruprasath; Park, Tae-In; Park, Jae-Yong; Hwang, Ilseon; Park, Keon Uk; Liang, Frank; Lu, Maggie; Park, Jiho; Kim, In-San; Lee, Byung-Heon

    2015-07-10

    A growing body of evidence suggests that pathological lesions express tissue-specific molecular targets or biomarkers within the tissue. Interleukin-4 receptor (IL-4R) is overexpressed in many types of cancer cells, including lung cancer. Here we investigated the properties of IL-4R-binding peptide-1 (IL4RPep-1), a CRKRLDRNC peptide, and its ability to target the delivery of liposomes to lung tumor. IL4RPep-1 preferentially bound to H226 lung tumor cells which express higher levers of IL-4R compared to H460 lung tumor cells which express less IL-4R. Mutational analysis revealed that C1, R2, and R4 residues of IL4RPep-1 were the key binding determinants. IL4RPep-1-labeled liposomes containing doxorubicin were more efficiently internalized in H226 cells and effectively delivered doxorubicin into the cells compared to unlabeled liposomes. In vivo fluorescence imaging of nude mice subcutaneously xenotransplanted with H226 tumor cells indicated that IL4RPep-1-labeled liposomes accumulate more efficiently in the tumor and inhibit tumor growth more effectively compared to unlabeled liposomes. Interestingly, expression of IL-4R was high in vascular endothelial cells of tumor, while little was detected in vascular endothelial cells of control organs including the liver. IL-4R expression in cultured human vascular endothelial cells was also up-regulated when activated by a pro-inflammatory cytokine tumor necrosis factor-α. Moreover, the up-regulation of IL-4R expression was observed in primary human lung cancer tissues. These results indicate that IL-4R-targeting nanocarriers may be a useful strategy to enhance drug delivery through the recognition of IL-4R in both tumor cells and tumor endothelial cells. PMID:25979323

  6. Cathepsin S from both tumor and tumor-associated cells promote cancer growth and neovascularization.

    PubMed

    Small, Donna M; Burden, Roberta E; Jaworski, Jakub; Hegarty, Shauna M; Spence, Shaun; Burrows, James F; McFarlane, Cheryl; Kissenpfennig, Adrien; McCarthy, Helen O; Johnston, James A; Walker, Brian; Scott, Christopher J

    2013-11-01

    Recent murine studies have demonstrated that tumor-associated macrophages in the tumor microenvironment are a key source of the pro-tumorigenic cysteine protease, cathepsin S. We now show in a syngeneic colorectal carcinoma murine model that both tumor and tumor-associated cells contribute cathepsin S to promote neovascularization and tumor growth. Cathepsin S depleted and control colorectal MC38 tumor cell lines were propagated in both wild type C57Bl/6 and cathepsin S null mice to provide stratified depletion of the protease from either the tumor, tumor-associated host cells, or both. Parallel analysis of these conditions showed that deletion of cathepsin S inhibited tumor growth and development, and revealed a clear contribution of both tumor and tumor-associated cell derived cathepsin S. The most significant impact on tumor development was obtained when the protease was depleted from both sources. Further characterization revealed that the loss of cathepsin S led to impaired tumor vascularization, which was complemented by a reduction in proliferation and increased apoptosis, consistent with reduced tumor growth. Analysis of cell types showed that in addition to the tumor cells, tumor-associated macrophages and endothelial cells can produce cathepsin S within the microenvironment. Taken together, these findings clearly highlight a manner by which tumor-associated cells can positively contribute to developing tumors and highlight cathepsin S as a therapeutic target in cancer. PMID:23629809

  7. SHIP represses lung inflammation and inhibits mammary tumor metastasis in BALB/c mice

    PubMed Central

    Hamilton, Melisa J.; Halvorsen, Elizabeth C.; LePard, Nancy E.; Bosiljcic, Momir; Ho, Victor W.; Lam, Vivian; Banáth, Judit

    2016-01-01

    SH2-containing-inositol-5′-phosphatase (SHIP) is a negative regulator of the phosphatidylinositol-3-kinase pathway in hematopoietic cells and limits the development of leukemias and lymphomas. The potential role of SHIP in solid tumor development and metastasis remains unknown. While SHIP restricts the aberrant development of myeloid cells in C57BL/6 mice, there are conflicting reports regarding the effect of SHIP deletion in BALB/c mice with important consequences for determining the influence of SHIP in different model tumor systems. We generated SHIP−/− BALB/c mice and challenged them with syngeneic non-metastatic 67NR or metastatic 4T1 mammary tumors. We demonstrate that SHIP restricts the development, alternative-activation, and immunosuppressive function of myeloid cells in tumor-free and tumor-bearing BALB/c mice. Tumor-free SHIP−/− BALB/c mice exhibited pulmonary inflammation, myeloid hyperplasia, and M2-polarized macrophages and this phenotype was greatly exacerbated by 4T1, but not 67NR, tumors. 4T1-bearing SHIP−/− mice rapidly lost weight and died from necrohemorrhagic inflammatory pulmonary disease, characterized by massive infiltration of pulmonary macrophages and myeloid-derived suppressor cells that were more M2-polarized and immunosuppressive than wild-type cells. Importantly, while SHIP loss did not affect primary tumor growth, 4T1-bearing SHIP−/− mice had 7.5-fold more metastatic tumor cells in their lungs than wild-type mice, consistent with the influence of immunosuppressive myeloid cells on metastatic growth. Our findings identify the hematopoietic cell-restricted protein SHIP as an intriguing target to influence the development of solid tumor metastases, and support development of SHIP agonists to prevent the accumulation of immunosuppressive myeloid cells and tumor metastases in the lungs to improve treatment of metastatic breast cancer. PMID:26683227

  8. Surgery and Combination Chemotherapy in Treating Children With Extracranial Germ Cell Tumors

    ClinicalTrials.gov

    2016-05-06

    Childhood Embryonal Tumor; Childhood Extracranial Germ Cell Tumor; Childhood Extragonadal Germ Cell Tumor; Childhood Malignant Ovarian Germ Cell Tumor; Childhood Malignant Testicular Germ Cell Tumor; Childhood Teratoma; Ovarian Embryonal Carcinoma; Ovarian Yolk Sac Tumor; Stage II Malignant Testicular Germ Cell Tumor; Stage IIA Ovarian Germ Cell Tumor; Stage IIB Ovarian Germ Cell Tumor; Stage IIC Ovarian Germ Cell Tumor; Stage III Malignant Testicular Germ Cell Tumor; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIC Ovarian Germ Cell Tumor; Testicular Choriocarcinoma and Yolk Sac Tumor; Testicular Embryonal Carcinoma

  9. Computing tumor trees from single cells.

    PubMed

    Davis, Alexander; Navin, Nicholas E

    2016-01-01

    Computational methods have been developed to reconstruct evolutionary lineages from tumors using single-cell genomic data. The resulting tumor trees have important applications in cancer research and clinical oncology.Please see related Research articles: http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0929-9 and http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0936-x . PMID:27230879

  10. Immunosuppressive cells in tumor immune escape and metastasis.

    PubMed

    Liu, Yang; Cao, Xuetao

    2016-05-01

    Tumor immune escape and the initiation of metastasis are critical steps in malignant progression of tumors and have been implicated in the failure of some clinical cancer immunotherapy. Tumors develop numerous strategies to escape immune surveillance or metastasize: Tumors not only modulate the recruitment and expansion of immunosuppressive cell populations to develop the tumor microenvironment or pre-metastatic niche but also switch the phenotype and function of normal immune cells from a potentially tumor-reactive state to a tumor-promoting state. Immunosuppressive cells facilitate tumor immune escape by inhibiting antitumor immune responses and furthermore promote tumor metastasis by inducing immunosuppression, promoting tumor cell invasion and intravasation, establishing a pre-metastatic niche, facilitating epithelial-mesenchymal transition, and inducing angiogenesis at primary tumor or metastatic sites. Numerous translational studies indicate that it is possible to inhibit tumor immune escape and prevent tumor metastasis by blocking immunosuppressive cells and eliminating immunosuppressive mechanisms that are induced by either immunosuppressive cells or tumor cells. Furthermore, many clinical trials targeting immunosuppressive cells have also achieved good outcome. In this review, we focus on the underlying mechanisms of immunosuppressive cells in promoting tumor immune escape and metastasis, discuss our current understanding of the interactions between immunosuppressive cells and tumor cells in the tumor microenvironment, and suggest future research directions as well as potential clinical strategies in cancer immunotherapy. PMID:26689709

  11. High-Dose Thiotepa Plus Peripheral Stem Cell Transplantation in Treating Patients With Refractory Solid Tumors

    ClinicalTrials.gov

    2013-03-06

    Brain and Central Nervous System Tumors; Childhood Germ Cell Tumor; Extragonadal Germ Cell Tumor; Ovarian Cancer; Retinoblastoma; Testicular Germ Cell Tumor; Unspecified Adult Solid Tumor, Protocol Specific; Unspecified Childhood Solid Tumor, Protocol Specific

  12. Giant Cell Tumor of Bone - An Overview

    PubMed Central

    Sobti, Anshul; Agrawal, Pranshu; Agarwala, Sanjay; Agarwal, Manish

    2016-01-01

    Giant Cell tumors (GCT) are benign tumors with potential for aggressive behavior and capacity to metastasize. Although rarely lethal, benign bone tumors may be associated with a substantial disturbance of the local bony architecture that can be particularly troublesome in peri-articular locations. Its histogenesis remains unclear. It is characterized by a proliferation of mononuclear stromal cells and the presence of many multi- nucleated giant cells with homogenous distribution. There is no widely held consensus regarding the ideal treatment method selection. There are advocates of varying surgical techniques ranging from intra-lesional curettage to wide resection. As most giant cell tumors are benign and are located near a joint in young adults, several authors favor an intralesional approach that preserves anatomy of bone in lieu of resection. Although GCT is classified as a benign lesion, few patients develop progressive lung metastases with poor outcomes. Treatment is mainly surgical. Options of chemotherapy and radiotherapy are reserved for selected cases. Recent advances in the understanding of pathogenesis are essential to develop new treatments for this locally destructive primary bone tumor. PMID:26894211

  13. Detection and Quantitation of Circulating Tumor Cell Dynamics by Bioluminescence Imaging in an Orthotopic Mammary Carcinoma Model

    PubMed Central

    Sasportas, Laura Sarah; Hori, Sharon Seiko; Pratx, Guillem; Gambhir, Sanjiv Sam

    2014-01-01

    Circulating tumor cells (CTCs) have been detected in the bloodstream of both early-stage and advanced cancer patients. However, very little is know about the dynamics of CTCs during cancer progression and the clinical relevance of longitudinal CTC enumeration. To address this, we developed a simple bioluminescence imaging assay to detect CTCs in mouse models of metastasis. In a 4T1 orthotopic metastatic mammary carcinoma mouse model, we demonstrated that this quantitative method offers sensitivity down to 2 CTCs in 0.1–1mL blood samples and high specificity for CTCs originating from the primary tumor, independently of their epithelial status. In this model, we simultaneously monitored blood CTC dynamics, primary tumor growth, and lung metastasis progression over the course of 24 days. Early in tumor development, we observed low numbers of CTCs in blood samples (10–15 cells/100 µL) and demonstrated that CTC dynamics correlate with viable primary tumor growth. To our knowledge, these data represent the first reported use of bioluminescence imaging to detect CTCs and quantify their dynamics in any cancer mouse model. This new assay is opening the door to the study of CTC dynamics in a variety of animal models. These studies may inform clinical decision on the appropriate timing of blood sampling and value of longitudinal CTC enumeration in cancer patients. PMID:25188396

  14. Granular cell tumor of the esophagus.

    PubMed

    Patel, R M; DeSota-LaPaix, F; Sika, J V; Mallaiah, L R; Purow, E

    1981-12-01

    Two cases of granular cell tumor of the esophagus are reported and the main features of the previously reported cases are summarized. Dysphagia and substernal discomfort or pain are the most common symptoms seen and are likely to occur with lesions greater than 1 cm. in diameter. The diagnosis should be considered in adult females with an intramural mass of the esophagus. The cell of origin is still disputed. The treatment of choice, when the patient is symptomatic or the lesion greater than 1 cm. in size, is local resection. The tumor, when incidentally discovered in an asymptomatic patient, may safely be followed endoscopically. PMID:6277183

  15. Tumor cohesion and glioblastoma cell dispersal

    PubMed Central

    Foty, Ramsey A

    2013-01-01

    Patients with glioblastoma typically present when tumors are at an advanced stage. Surgical resection, radiotherapy and adjuvant chemotherapy are currently the standard of care for glioblastoma. However, due to the infiltrative and dispersive nature of the tumor, recurrence rate remains high and typically results in very poor prognosis. Efforts to treat the primary tumor are, therefore, palliative rather than curative. From a practical perspective, controlling growth and dispersal of the recurrence may have a greater impact on disease-free survival, In order for cells to disperse, they must first detach from the mass. Preventing detachment may keep tumors that recur more localized and perhaps more amenable to therapy. Here we introduce a new perspective in which a quantifiable mechanical property, namely tissue surface tension, can provide novel information on tumor behavior. The overall theme of the discussion will attempt to integrate how adhesion molecules can alter a tumor’s mechanical properties and how, in turn, these properties can be modified to prevent tumor cell detachment and dispersal. PMID:23902244

  16. Sertoli-Leydig cell tumor

    MedlinePlus

    ... the testes, release a male sex hormone called testosterone . These cells are also found in a woman's ... the levels of female and male hormones, including testosterone . An ultrasound or another imaging test will likely ...

  17. Chemotherapy of WAP-T mouse mammary carcinomas aggravates tumor phenotype and enhances tumor cell dissemination.

    PubMed

    Jannasch, Katharina; Wegwitz, Florian; Lenfert, Eva; Maenz, Claudia; Deppert, Wolfgang; Alves, Frauke

    2015-07-01

    In this study, the effects of the standard chemotherapy, cyclophosphamide/adriamycin/5-fluorouracil (CAF) on tumor growth, dissemination and recurrence after orthotopic implantation of murine G-2 cells were analyzed in the syngeneic immunocompetent whey acidic protein-T mouse model (Wegwitz et al., PLoS One 2010; 5:e12103; Schulze-Garg et al., Oncogene 2000; 19:1028-37). Single-dose CAF treatment reduced tumor size significantly, but was not able to eradicate all tumor cells, as recurrent tumor growth was observed 4 weeks after CAF treatment. Nine days after CAF treatment, residual tumors showed features of regressive alterations and were composed of mesenchymal-like tumor cells, infiltrating immune cells and some tumor-associated fibroblasts with an intense deposition of collagen. Recurrent tumors were characterized by coagulative necrosis and less tumor cell differentiation compared with untreated tumors, suggesting a more aggressive tumor phenotype. In support, tumor cell dissemination was strongly enhanced in mice that had developed recurrent tumors in comparison with untreated controls, although only few disseminated tumor cells could be detected in various organs 9 days after CAF application. In vitro experiments revealed that CAF treatment of G-2 cells eliminates the vast majority of epithelial tumor cells, whereas tumor cells with a mesenchymal phenotype survive. These results together with the in vivo findings suggest that tumor cells that underwent epithelial-mesenchymal transition and/or exhibit stem-cell-like properties are difficult to eliminate using one round of CAF chemotherapy. The model system described here provides a valuable tool for the characterization of the effects of chemotherapeutic regimens on recurrent tumor growth and on tumor cell dissemination, thereby enabling the development and preclinical evaluation of novel therapeutic strategies to target mammary carcinomas. PMID:25449528

  18. CDC20 maintains tumor initiating cells

    PubMed Central

    Xie, Qi; Wu, Qiulian; Mack, Stephen C.; Yang, Kailin; Kim, Leo; Hubert, Christopher G.; Flavahan, William A.; Chu, Chengwei; Bao, Shideng; Rich, Jeremy N.

    2015-01-01

    Glioblastoma is the most prevalent and lethal primary intrinsic brain tumor. Glioblastoma displays hierarchical arrangement with a population of self-renewing and tumorigenic glioma tumor initiating cells (TICs), or cancer stem cells. While non-neoplastic neural stem cells are generally quiescent, glioblastoma TICs are often proliferative with mitotic control offering a potential point of fragility. Here, we interrogate the role of cell-division cycle protein 20 (CDC20), an essential activator of anaphase-promoting complex (APC) E3 ubiquitination ligase, in the maintenance of TICs. By chromatin analysis and immunoblotting, CDC20 was preferentially expressed in TICs relative to matched non-TICs. Targeting CDC20 expression by RNA interference attenuated TIC proliferation, self-renewal and in vivo tumor growth. CDC20 disruption mediated its effects through induction of apoptosis and inhibition of cell cycle progression. CDC20 maintains TICs through degradation of p21CIP1/WAF1, a critical negative regulator of TICs. Inhibiting CDC20 stabilized p21CIP1/WAF1, resulting in repression of several genes critical to tumor growth and survival, including CDC25C, c-Myc and Survivin. Transcriptional control of CDC20 is mediated by FOXM1, a central transcription factor in TICs. These results suggest CDC20 is a critical regulator of TIC proliferation and survival, linking two key TIC nodes – FOXM1 and p21CIP1/WAF1 — elucidating a potential point for therapeutic intervention. PMID:25938542

  19. Combination Chemotherapy in Treating Young Patients With Recurrent or Resistant Malignant Germ Cell Tumors

    ClinicalTrials.gov

    2016-04-12

    Childhood Extracranial Germ Cell Tumor; Childhood Extragonadal Germ Cell Tumor; Childhood Malignant Ovarian Germ Cell Tumor; Childhood Malignant Testicular Germ Cell Tumor; Ovarian Choriocarcinoma; Ovarian Embryonal Carcinoma; Ovarian Yolk Sac Tumor; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Ovarian Germ Cell Tumor; Testicular Choriocarcinoma; Testicular Choriocarcinoma and Embryonal Carcinoma; Testicular Choriocarcinoma and Yolk Sac Tumor; Testicular Embryonal Carcinoma; Testicular Embryonal Carcinoma and Yolk Sac Tumor; Testicular Yolk Sac Tumor

  20. Circulating tumor cells: utopia or reality?

    PubMed

    Conteduca, Vincenza; Zamarchi, Rita; Rossi, Elisabetta; Condelli, Valentina; Troiani, Laura; Aieta, Michele

    2013-09-01

    Circulating tumor cells (CTCs) could be considered a sign of tumor aggressiveness, but highly sensitive and specific methods of CTC detection are necessary owing to the rarity and heterogeneity of CTCs in peripheral blood. This review summarizes recent studies on tumor biology, with particular attention to the metastatic cascade, and the molecular characterization and clinical significance of CTCs. Recent technological approaches to enrich and detect these cells and challenges of CTCs for individualized cancer treatment are also discussed. This review also provides an insight into the positive and negative features of the future potential applications of CTC detection, which sometimes remains still a 'utopia', but its actual utility remains among the fastest growing research fields in oncology. PMID:23980681

  1. Transcapillary Trafficking of Clustered Circulating Tumor Cells

    NASA Astrophysics Data System (ADS)

    Storey, Brian; Au, Sam; Chen, Yeng-Long; Sarioglu, Fatih; Javaid, Sarah; Haber, Daniel; Maheswaran, Shyamala; Stott, Shannon; Toner, Mehmet

    2015-11-01

    Aggregates of circulating tumor cells (CTC-clusters) are known to be more metastatic than equal numbers of singlet circulating tumor cells. Yet the mechanisms responsible for CTC-cluster dissemination and tumor seeding are still largely unknown. Without direct experimental evidence, it was assumed that because of their size, CTC-clusters would occlude and rupture capillaries. In this work, we have challenged this assumption by investigating the transit of CTC-clusters through microfluidic capillary constrictions under physiological pressures. Remarkably, cancer cell aggregates containing 2-20 cells were observed to successfully traverse constrictions 5-10 microns with over 90% efficiency. Clusters rapidly and reversibly reorganized into chain-like geometries to pass through constrictions in single file. This observation was verified by computational simulation of clusters modeled with physiological cell-cell interaction energies. Hydrodynamic analysis suggested that CTC-clusters were able to pass narrow constrictions by acting as individual cells in series, not as cohesive units. Upon exiting constrictions, clusters remained viable, proliferative and rapidly returned to `typical' cluster morphologies.

  2. Recurrent Giant Cell Tumor of Skull Combined with Multiple Aneurysms

    PubMed Central

    Kim, Dae Hwan

    2016-01-01

    Giant cell tumors are benign but locally invasive and frequently recur. Giant cell tumors of the skull are extremely rare. A patient underwent a surgery to remove a tumor, but the tumor recurred. Additionally, the patient developed multiple aneurysms. The patient underwent total tumor resection and trapping for the aneurysms, followed by radiotherapy. We report this rare case and suggest some possibilities for treating tumor growth combined with aneurysm development. PMID:27195256

  3. iTEP Nanoparticle-Delivered Salinomycin Displays an Enhanced Toxicity to Cancer Stem Cells in Orthotopic Breast Tumors

    PubMed Central

    2015-01-01

    Salinomycin (Sali) has selective toxicity to cancer stem cells (CSCs), a subpopulation of cancer cells that have been recently linked with tumor multidrug resistance (MDR). To utilize its selective toxicity for cancer therapy, we sought to devise a nanoparticle (NP) carrier to deliver Sali to solid tumors through the enhanced permeability and retention effect and, hence, to increase its exposure to CSCs. First, hydrophobic Sali was conjugated to a hydrophilic, immune-tolerant, elastin-like polypeptide (iTEP); the amphiphilic iTEP–Sali conjugates self-assemble into NPs. Next, free Sali was encapsulated into the NPs alone or with two additives, N,N-dimethylhexylamine (DMHA) and α-tocopherol. The coencapsulation significantly improved the loading efficiency and release profile of Sali. The resulting NPs of the coencapsulation, termed as iTEP–Sali NP3s, have an in vitro release half-life of 4.1 h, four times longer than iTEP–Sali NP2s, the NPs that have encapsulated Sali only. Further, the NP3 formulation increases the plasma area under curve and the tumor accumulation of Sali by 10 and 2.4 times, respectively. Lastly, these improved pharmacokinetic and tumor accumulation profiles are consistent with a boost of CSC-elimination effect of Sali in vivo. In NP3-treated 4T1 orthotopic tumors, the mean CSC frequency is 55.62%, a significant reduction from the mean frequencies of untreated tumors, 75.00%, or free Sali-treated tumors, 64.32%. The CSC-elimination effect of the NP3 can further translate to a delay of tumor growth. Given the role of CSCs in driving tumor MDR and recurrence, it could be a promising strategy to add the NP3 to conventional cancer chemotherapies to prevent or reverse the MDR. PMID:24960465

  4. Molecular Culprits Generating Brain Tumor Stem Cells

    PubMed Central

    Oh, Se-Yeong

    2013-01-01

    Despite current advances in multimodality therapies, such as surgery, radiotherapy, and chemotherapy, the outcome for patients with high-grade glioma remains fatal. Understanding how glioma cells resist various therapies may provide opportunities for developing new therapies. Accumulating evidence suggests that the main obstacle for successfully treating high-grade glioma is the existence of brain tumor stem cells (BTSCs), which share a number of cellular properties with adult stem cells, such as self-renewal and multipotent differentiation capabilities. Owing to their resistance to standard therapy coupled with their infiltrative nature, BTSCs are a primary cause of tumor recurrence post-therapy. Therefore, BTSCs are thought to be the main glioma cells representing a novel therapeutic target and should be eliminated to obtain successful treatment outcomes. PMID:24904883

  5. The biology of circulating tumor cells.

    PubMed

    Pantel, K; Speicher, M R

    2016-03-10

    Metastasis is a biologically complex process consisting of numerous stochastic events which may tremendously differ across various cancer types. Circulating tumor cells (CTCs) are cells that are shed from primary tumors and metastatic deposits into the blood stream. CTCs bear a tremendous potential to improve our understanding of steps involved in the metastatic cascade, starting from intravasation of tumor cells into the circulation until the formation of clinically detectable metastasis. These efforts were propelled by novel high-resolution approaches to dissect the genomes and transcriptomes of CTCs. Furthermore, capturing of viable CTCs has paved the way for innovative culturing technologies to study fundamental characteristics of CTCs such as invasiveness, their kinetics and responses to selection barriers, such as given therapies. Hence the study of CTCs is not only instrumental as a basic research tool, but also allows the serial monitoring of tumor genotypes and may therefore provide predictive and prognostic biomarkers for clinicians. Here, we review how CTCs have contributed to significant insights into the metastatic process and how they may be utilized in clinical practice. PMID:26050619

  6. Non-MHC-dependent redirected T cells against tumor cells.

    PubMed

    Almåsbak, Hilde; Lundby, Marianne; Rasmussen, Anne-Marie

    2010-01-01

    Adoptive transfer of T cells with restricted tumor specificity provides a promising approach to immunotherapy of cancers. However, the isolation of autologous cytotoxic T cells that recognize tumor-associated antigens is time consuming and fails in many instances. Alternatively, gene modification with tumor antigen-specific T-cell receptors (TCR) or chimeric antigen receptors (CARs) can be used to redirect the specificity of large numbers of immune cells toward the malignant cells. Chimeric antigen receptors are composed of the single-chain variable fragment (scFv) of a tumor-recognizing antibody cloned in frame with human T-cell signaling domains (e.g., CD3zeta, CD28, OX40, 4-1BB), thus combining the specificity of antibodies with the effector functions of cytotoxic T cells. Upon antigen binding, the intracellular signaling domains of the CAR initiate cellular activation mechanisms including cytokine secretion and cytolysis of the antigen-positive target cell.In this chapter, we provide detailed protocols for large-scale ex vivo expansion of T cells and manufacturing of medium-scale batches of CAR-expressing T cells for translational research by mRNA electroporation. An anti-CD19 chimeric receptor for the targeting of leukemias and lymphomas was used as a model system. We are currently scaling up the protocols to adapt them to cGMP production of a large number of redirected T cells for clinical applications. PMID:20387166

  7. Aminoacyl-tRNA synthetase-interacting multifunctional protein 1 suppresses tumor growth in breast cancer-bearing mice by negatively regulating myeloid-derived suppressor cell functions.

    PubMed

    Hong, Hye-Jin; Lim, Hui Xuan; Song, Ju Han; Lee, Arim; Kim, Eugene; Cho, Daeho; Cohen, Edward P; Kim, Tae Sung

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) are one of the most important cell types that contribute to negative regulation of immune responses in the tumor microenvironment. Recently, aminoacyl-tRNA synthetase-interacting multifunctional protein 1 (AIMP1), a novel pleiotropic cytokine, was identified as an antitumor protein that inhibits angiogenesis and induces antitumor responses. However, the effect of AIMP1 on MDSCs in the tumor environment remains unclear. In the present study, we demonstrated that AIMP1 significantly inhibited tumor growth in 4T1 breast cancer-bearing mice and reduced MDSCs population of tumor sites and spleens of tumor-bearing mice. AIMP1 reduced expansion of MDSCs from bone marrow-derived cells in the tumor-conditioned media. AIMP1 also negatively regulated suppressive activities of MDSCs by inhibiting IL-6 and NO production, and Arg-1 expression. Furthermore, treatment of breast cancer-bearing mice with AIMP1 decreased the capacity of MDSCs to suppress T cell proliferation and Treg cell induction. Western blot and inhibition experiments showed that downregulation of MDSCs functions by AIMP1 may result from attenuated activation of STATs, Akt, and ERK. These findings indicate that AIMP1 plays an essential role in negative regulation of suppressive functions of MDSCs. Therefore, it has a significant potential as a therapeutic agent for cancer treatment. PMID:26613952

  8. NMR exposure sensitizes tumor cells to apoptosis.

    PubMed

    Ghibelli, L; Cerella, C; Cordisco, S; Clavarino, G; Marazzi, S; De Nicola, M; Nuccitelli, S; D'Alessio, M; Magrini, A; Bergamaschi, A; Guerrisi, V; Porfiri, L M

    2006-03-01

    NMR technology has dramatically contributed to the revolution of image diagnostic. NMR apparatuses use combinations of microwaves over a homogeneous strong (1 Tesla) static magnetic field. We had previously shown that low intensity (0.3-66 mT) static magnetic fields deeply affect apoptosis in a Ca2+ dependent fashion (Fanelli et al., 1999 FASEBJ., 13;95-102). The rationale of the present study is to examine whether exposure to the static magnetic fields of NMR can affect apoptosis induced on reporter tumor cells of haematopoietic origin. The impressive result was the strong increase (1.8-2.5 fold) of damage-induced apoptosis by NMR. This potentiation is due to cytosolic Ca2+ overload consequent to NMR-promoted Ca2+ influx, since it is prevented by intracellular (BAPTA-AM) and extracellular (EGTA) Ca2+ chelation or by inhibition of plasma membrane L-type Ca2+ channels. Three-days follow up of treated cultures shows that NMR decrease long term cell survival, thus increasing the efficiency of cytocidal treatments. Importantly, mononuclear white blood cells are not sensitised to apoptosis by NMR, showing that NMR may increase the differential cytotoxicity of antitumor drugs on tumor vs normal cells. This strong, differential potentiating effect of NMR on tumor cell apoptosis may have important implications, being in fact a possible adjuvant for antitumor therapies. PMID:16528477

  9. Select forms of tumor cell apoptosis induce dendritic cell maturation.

    PubMed

    Demaria, Sandra; Santori, Fabio R; Ng, Bruce; Liebes, Leonard; Formenti, Silvia C; Vukmanovic, Stanislav

    2005-03-01

    Dendritic cells (DC) play a crucial role in initiating immune responses to tumors. DC can efficiently present antigens from apoptotic tumor cells, but apoptotic cells are thought to lack the inflammatory signals required to induce DC maturation. Here, we show that apoptosis of 67NR mouse carcinoma cells via the Fas (CD95) pathway or induced by the anticancer drug bortezomib (PS-341) but not by ultraviolet irradiation is associated with the production of maturation signals for DC. These data have important implications for the effects of chemotherapy on antitumor immunity in solid and hematologic malignancies. PMID:15569694

  10. Primary brain tumors, neural stem cell, and brain tumor cancer cells: where is the link?

    PubMed Central

    Germano, Isabelle; Swiss, Victoria; Casaccia, Patrizia

    2010-01-01

    The discovery of brain tumor-derived cells (BTSC) with the properties of stem cells has led to the formulation of the hypothesis that neural stem cells could be the cell of origin of primary brain tumors (PBT). In this review we present the most common molecular changes in PBT, define the criteria of identification of BTSC and discuss the similarities between the characteristics of these cells and those of the endogenous population of neural stem cells (NPCs) residing in germinal areas of the adult brain. Finally, we propose possible mechanisms of cancer initiation and progression and suggest a model of tumor initiation that includes intrinsic changes of resident NSC and potential changes in the microenvironment defining the niche where the NSC reside. PMID:20045420

  11. [Cancer stemness and circulating tumor cells].

    PubMed

    Saito, Tomoko; Mimori, Koshi

    2015-05-01

    The principle concept of cancer stem cells (CSCs) giving rise to the carcinogenesis, relapse or metastasis of malignancy is broadly recognized. On the other hand, circulating tumor cells (CTCs) also plays important roles in relapse or metastasis of malignancy, and there has been much focused on the association between CSCs and CTCs in cancer cases. The technical innovations for detection of CTCs enabled us to unveil the nature of CTCs. We now realize that CTCs isolated by cell surface antibodies, such as DCLK1, LGR5 indicated CSC properties, and CTCs with epitherial-mesenchymal transition(EMT) phenotype showed characteristics of CSCs. PMID:25985635

  12. Multifunctional Nucleic Acids for Tumor Cell Treatment

    PubMed Central

    Pofahl, Monika; Wengel, Jesper

    2014-01-01

    We report on a multifunctional nucleic acid, termed AptamiR, composed of an aptamer domain and an antimiR domain. This composition mediates cell specific delivery of antimiR molecules for silencing of endogenous micro RNA. The introduced multifunctional molecule preserves cell targeting, anti-proliferative and antimiR function in one 37-nucleotide nucleic acid molecule. It inhibits cancer cell growth and induces gene expression that is pathologically damped by an oncomir. These findings will have a strong impact on future developments regarding aptamer- and antimiR-related applications for tumor targeting and treatment. PMID:24494617

  13. General Information about Childhood Extracranial Germ Cell Tumors

    MedlinePlus

    ... Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Childhood Extracranial Germ Cell Tumors Go to ... the PDQ Pediatric Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  14. Cross-talk among myeloid-derived suppressor cells, macrophages, and tumor cells impacts the inflammatory milieu of solid tumors

    PubMed Central

    Beury, Daniel W.; Parker, Katherine H.; Nyandjo, Maeva; Sinha, Pratima; Carter, Kayla A.; Ostrand-Rosenberg, Suzanne

    2014-01-01

    MDSC and macrophages are present in most solid tumors and are important drivers of immune suppression and inflammation. It is established that cross-talk between MDSC and macrophages impacts anti-tumor immunity; however, interactions between tumor cells and MDSC or macrophages are less well studied. To examine potential interactions between these cells, we studied the impact of MDSC, macrophages, and four murine tumor cell lines on each other, both in vitro and in vivo. We focused on IL-6, IL-10, IL-12, TNF-α, and NO, as these molecules are produced by macrophages, MDSC, and many tumor cells; are present in most solid tumors; and regulate inflammation. In vitro studies demonstrated that MDSC-produced IL-10 decreased macrophage IL-6 and TNF-α and increased NO. IL-6 indirectly regulated MDSC IL-10. Tumor cells increased MDSC IL-6 and vice versa. Tumor cells also increased macrophage IL-6 and NO and decreased macrophage TNF-α. Tumor cell-driven macrophage IL-6 was reduced by MDSC, and tumor cells and MDSC enhanced macrophage NO. In vivo analysis of solid tumors identified IL-6 and IL-10 as the dominant cytokines and demonstrated that these molecules were produced predominantly by stromal cells. These results suggest that inflammation within solid tumors is regulated by the ratio of tumor cells to MDSC and macrophages and that interactions of these cells have the potential to alter significantly the inflammatory milieu within the tumor microenvironment. PMID:25170116

  15. Circulating Tumor Cells Measurements in Hepatocellular Carcinoma

    PubMed Central

    Chiappini, Franck

    2012-01-01

    Liver cancer is the fifth most common cancer in men and the seventh in women. During the past 20 years, the incidence of HCC has tripled while the 5-year survival rate has remained below 12%. The presence of circulating tumor cells (CTC) reflects the aggressiveness nature of a tumor. Many attempts have been made to develop assays that reliably detect and enumerate the CTC during the development of the HCC. In this case, the challenges are (1) there are few markers specific to the HCC (tumor cells versus nontumor cells) and (2) they can be used to quantify the number of CTC in the bloodstream. Another technical challenge consists of finding few CTC mixed with million leukocytes and billion erythrocytes. CTC detection and identification can be used to estimate prognosis and may serve as an early marker to assess antitumor activity of treatment. CTC can also be used to predict progression-free survival and overall survival. CTC are an interesting source of biological information in order to understand dissemination, drug resistance, and treatment-induced cell death. Our aim is to review and analyze the different new methods existing to detect, enumerate, and characterize the CTC in the peripheral circulation of patients with HCC. PMID:22690340

  16. Pediatric germ cell tumors presenting beyond childhood?

    PubMed

    Oosterhuis, J W; Stoop, J A; Rijlaarsdam, M A; Biermann, K; Smit, V T H B M; Hersmus, R; Looijenga, L H J

    2015-01-01

    Four cases are reported meeting the criteria of a pediatric (i.e., Type I) testicular germ cell tumor (TGCT), apart from the age of presentation, which is beyond childhood. The tumors encompass the full spectrum of histologies of pediatric TGCT: teratoma, yolk sac tumor, and various combinations of the two, and lack intratubular germ cell neoplasia/carcinoma in situ in the adjacent parenchyma. The neoplasms are (near)diploid, and lack gain of 12p, typical for seminomas and non-seminomas of the testis of adolescents and adults (i.e., Type II). It is proposed that these neoplasms are therefore late appearing pediatric (Type I) TGCT. The present report broadens the concept of earlier reported benign teratomas of the post-pubertal testis to the full spectrum of pediatric TGCT. The possible wide age range of pediatric TGCT, demonstrated in this study, lends credence to the concept that TGCT should according to their pathogenesis be classified into the previously proposed types. This classification is clinically relevant, because Type I mature teratomas are benign tumors, which are candidates for testis conserving surgery, as opposed to Type II mature teratomas, which have to be treated as Type II (malignant) non-seminomas. PMID:25427839

  17. Diagnostic immunohistochemistry of canine round cell tumors.

    PubMed

    Sandusky, G E; Carlton, W W; Wightman, K A

    1987-11-01

    Sixty-five canine skin neoplasms studied using immunocytochemistry, included 22 histiocytomas, 18 amelanotic melanomas, 14 cutaneous lymphosarcomas, six mast cell tumors, and five transmissible venereal tumors. Formalin-fixed, paraffin-embedded sections were stained using the avidin-biotin-peroxidase complex (ABC) immunoperoxidase technique for reactivity with S-100 protein, kappa and lambda immunoglobulin light chains, alpha-1-antitrypsin, alpha-1-antichymotrypsin, leukocyte common antigen (LCA), neuron-specific enolase, keratin, cytokeratin, muramidase, and vimentin. Detection of S-100, kappa and lambda light chains, neuron-specific enolase, and vimentin were most useful for screening these neoplasms. None of the markers examined was consistent in staining histiocytomas. While reactivity of S-100 (ten cases) and neuron-specific enolase (ten cases) was detected in some amelanotic melanomas, lambda light chain immunoglobulin (eight cases) was relatively consistent in cutaneous lymphomas. Mast cell neoplasms reacted with avidin and, therefore, were positive, even on negative control sections. Vimentin reacted strongly on all amelanotic melanomas and transmissible venereal tumors examined. These antibodies are helpful adjuncts in the differential diagnosis of canine skin tumors. PMID:3137715

  18. Tumor cell response to bevacizumab single agent therapy in vitro

    PubMed Central

    2013-01-01

    Background Angiogenesis represents a highly multi-factorial and multi-cellular complex (patho-) physiologic event involving endothelial cells, tumor cells in malignant conditions, as well as bone marrow derived cells and stromal cells. One main driver is vascular endothelial growth factor (VEGFA), which is known to interact with endothelial cells as a survival and mitogenic signal. The role of VEGFA on tumor cells and /or tumor stromal cell interaction is less clear. Condition specific (e.g. hypoxia) or tumor specific expression of VEGFA, VEGF receptors and co-receptors on tumor cells has been reported, in addition to the expression on the endothelium. This suggests a potential paracrine/autocrine loop that could affect changes specific to tumor cells. Methods We used the monoclonal antibody against VEGFA, bevacizumab, in various in vitro experiments using cell lines derived from different tumor entities (non small cell lung cancer (NSCLC), colorectal cancer (CRC), breast cancer (BC) and renal cell carcinoma (RCC)) in order to determine if potential VEGFA signaling could be blocked in tumor cells. The experiments were done under hypoxia, a major inducer of VEGFA and angiogenesis, in an attempt to mimic the physiological tumor condition. Known VEGFA induced endothelial biological responses such as proliferation, migration, survival and gene expression changes were evaluated. Results Our study was able to demonstrate expression of VEGF receptors on tumor cells as well as hypoxia regulated angiogenic gene expression. In addition, there was a cell line specific effect in tumor cells by VEGFA blockade with bevacizumab in terms of proliferation; however overall, there was a limited measurable consequence of bevacizumab therapy detected by migration and survival. Conclusion The present study showed in a variety of in vitro experiments with several tumor cell lines from different tumor origins, that by blocking VEGFA with bevacizumab, there was a limited autocrine or cell

  19. NK Cells, Tumor Cell Transition, and Tumor Progression in Solid Malignancies: New Hints for NK-Based Immunotherapy?

    PubMed Central

    Huergo-Zapico, Leticia; Parodi, Monica; Pedrazzi, Marco; Mingari, Maria Cristina; Sparatore, Bianca; Gonzalez, Segundo; Olive, Daniel; Bottino, Cristina

    2016-01-01

    Several evidences suggest that NK cells can patrol the body and eliminate tumors in their initial phases but may hardly control established solid tumors. Multiple factors, including the transition of tumor cells towards a proinvasive/prometastatic phenotype, the immunosuppressive effect of the tumor microenvironment, and the tumor structure complexity, may account for limited NK cell efficacy. Several putative mechanisms of NK cell suppression have been defined in these last years; conversely, the cross talk between NK cells and tumor cells undergoing different transitional phases remains poorly explored. Nevertheless, recent in vitro studies and immunohistochemical analyses on tumor biopsies suggest that NK cells could not only kill tumor cells but also influence their evolution. Indeed, NK cells may induce tumor cells to change the expression of HLA-I, PD-L1, or NKG2D-L and modulate their susceptibility to the immune response. Moreover, NK cells may be preferentially located in the borders of tumor masses, where, indeed, tumor cells can undergo Epithelial-to-Mesenchymal Transition (EMT) acquiring prometastatic phenotype. Finally, the recently highlighted role of HMGB1 both in EMT and in amplifying the recruitment of NK cells provides further hints on a possible effect of NK cells on tumor progression and fosters new studies on this issue. PMID:27294158

  20. Characterization of the MDSC proteome associated with metastatic murine mammary tumors using label-free mass spectrometry and shotgun proteomics.

    PubMed

    Boutté, Angela M; McDonald, W Hayes; Shyr, Yu; Yang, Li; Lin, P Charles

    2011-01-01

    Expansion of Gr-1+/CD11b+ myeloid derived suppressor cells (MDSCs) is governed by the presence of increasingly metastatic, malignant primary tumors. Metastasis, not the primary tumor, is often the cause of mortality. This study sought to fully characterize the MDSC proteome in response to metastatic and non-metastatic mammary tumors using label-free mass spectrometry shotgun proteomics in a mouse model with tumor cell lines, 67NR and 4T1, derived from the same tumor. 67NR cells form only primary mammary tumors, whereas 4T1 cells readily metastasize to the lungs, lymph nodes, and blood. Overall analysis identified a total of 2825 protein groups with a 0.78% false discovery rate. Of the 2814 true identifications, 43 proteins were exclusive to the 67NR group, 153 were exclusive to the 4T1 group, and 2618 were shared. Among the shared cohort, 26 proteins were increased and 31 were decreased in the metastatic 4T1 cohort compared to non-metastatic 67NR controls after filtering. MDSCs selectively express proteins involved in the γ-glutamyl transferase, glutathione synthase pathways, CREB transcription factor signaling, and other pathways involved in platelet aggregation, as well as lipid and amino acid metabolism, in response to highly metastatic 4T1 tumors. Cell cycle regulation dominated protein pathways and ontological groups of the 67NR non-metastatic group. Not only does this study provide a starting point to identify potential biomarkers of metastasis expressed by MDSCs; it identifies critical pathways that are unique to non-metastatic and metastatic conditions. Therapeutic interventions aimed at these pathways in MDSC may offer a new route to control malignancy and metastasis. PMID:21853032

  1. Juxtaglomerular cell tumor: A case report

    PubMed Central

    YANG, HONGYUAN; WANG, ZUFEI; JI, JIANSONG

    2016-01-01

    The current study reports the case of a 29-year-old female with a long-standing history of hypertension and headaches who presented to the Outpatient Clinic of The Central Hospital of Lishui (Lishui, Zhejiang, China). Abdominal ultrasound and contrast-enhanced computed tomography were performed, which showed a left renal neoplasm, prompting a diagnosis of renal angiomyolipoma or renal cell carcinoma. After a laparoscopic partial nephrectomy was performed, a number of different diagnoses were suggested by several pathologists from eight hospitals. Considering the patient's gender, age, medical history, histopathological features and immunohistochemistry, a final diagnosis of a juxtaglomerular cell tumor (JGCT) was established. The present study therefore indicates that the possibility of a JGCT should be considered when young adults present with renal parenchymatous tumors and high blood pressure. In addition, pathologists must take clinical information into account to form a precise diagnosis. PMID:26893753

  2. Single-cell analyses of circulating tumor cells

    PubMed Central

    Chen, Xi-Xi; Bai, Fan

    2015-01-01

    Circulating tumor cells (CTCs) are a population of tumor cells mediating metastasis, which results in most of the cancer related deaths. The number of CTCs in the peripheral blood of patients is rare, and many platforms have been launched for detection and enrichment of CTCs. Enumeration of CTCs has already been used as a prognosis marker predicting the survival rate of cancer patients. Yet CTCs should be more potential. Studies on CTCs at single cell level may help revealing the underlying mechanism of tumorigenesis and metastasis. Though far from developed, this area of study holds much promise in providing new clinical application and deep understanding towards metastasis and cancer development. PMID:26487963

  3. Regulatory T cells in tumor-associated tertiary lymphoid structures suppress anti-tumor T cell responses

    PubMed Central

    Joshi, Nikhil S.; Akama-Garren, Elliot H.; Lu, Yisi; Lee, Da-Yae; Chang, Gregory P.; Li, Amy; DuPage, Michel; Tammela, Tuomas; Kerper, Natanya R.; Farago, Anna F.; Robbins, Rebecca; Crowley, Denise M.; Bronson, Roderick T.; Jacks, Tyler

    2016-01-01

    SUMMARY Infiltration of regulatory T (Treg) cells into many tumor types correlates with poor patient prognoses. However, mechanisms of intratumoral Treg cell function remain to be elucidated. We investigated Treg cell function in a genetically-engineered mouse lung adenocarcinoma model and found Treg cells suppress anti-tumor responses in tumor-associated tertiary lymphoid structures (TA-TLS). TA-TLS have been described in human lung cancers, but their function remains to be determined. TLS in this model were spatially associated with >90% of tumors and facilitated interactions between T cells and tumor-antigen presenting dendritic cells (DCs). Costimulatory ligand expression by DCs and T cell proliferation rates increased in TA-TLS upon Treg cell depletion, leading to tumor destruction. Thus, we propose Treg cells in TA-TLS can inhibit endogenous immune responses against tumors, and targeting these cells may provide therapeutic benefit for cancer patients. PMID:26341400

  4. Vaccine-induced tumor regression requires a dynamic cooperation between T cells and myeloid cells at the tumor site.

    PubMed

    Thoreau, Maxime; Penny, HweiXian Leong; Tan, KarWai; Regnier, Fabienne; Weiss, Julia Miriam; Lee, Bernett; Johannes, Ludger; Dransart, Estelle; Le Bon, Agnès; Abastado, Jean-Pierre; Tartour, Eric; Trautmann, Alain; Bercovici, Nadège

    2015-09-29

    Most cancer immunotherapies under present investigation are based on the belief that cytotoxic T cells are the most important anti-tumoral immune cells, whereas intra-tumoral macrophages would rather play a pro-tumoral role. We have challenged this antagonistic point of view and searched for collaborative contributions by tumor-infiltrating T cells and macrophages, reminiscent of those observed in anti-infectious responses. We demonstrate that, in a model of therapeutic vaccination, cooperation between myeloid cells and T cells is indeed required for tumor rejection. Vaccination elicited an early rise of CD11b+ myeloid cells that preceded and conditioned the intra-tumoral accumulation of CD8+ T cells. Conversely, CD8+ T cells and IFNγ production activated myeloid cells were required for tumor regression. A 4-fold reduction of CD8+ T cell infiltrate in CXCR3KO mice did not prevent tumor regression, whereas a reduction of tumor-infiltrating myeloid cells significantly interfered with vaccine efficiency. We show that macrophages from regressing tumors can kill tumor cells in two ways: phagocytosis and TNFα release. Altogether, our data suggest new strategies to improve the efficiency of cancer immunotherapies, by promoting intra-tumoral cooperation between macrophages and T cells. PMID:26337837

  5. Vaccine-induced tumor regression requires a dynamic cooperation between T cells and myeloid cells at the tumor site

    PubMed Central

    Thoreau, Maxime; Penny, HweiXian Leong; Tan, KarWai; Regnier, Fabienne; Weiss, Julia Miriam; Lee, Bernett; Johannes, Ludger; Dransart, Estelle; Le Bon, Agnès; Abastado, Jean-Pierre; Tartour, Eric

    2015-01-01

    Most cancer immunotherapies under present investigation are based on the belief that cytotoxic T cells are the most important anti-tumoral immune cells, whereas intra-tumoral macrophages would rather play a pro-tumoral role. We have challenged this antagonistic point of view and searched for collaborative contributions by tumor-infiltrating T cells and macrophages, reminiscent of those observed in anti-infectious responses. We demonstrate that, in a model of therapeutic vaccination, cooperation between myeloid cells and T cells is indeed required for tumor rejection. Vaccination elicited an early rise of CD11b+ myeloid cells that preceded and conditioned the intra-tumoral accumulation of CD8+ T cells. Conversely, CD8+ T cells and IFNγ production activated myeloid cells were required for tumor regression. A 4-fold reduction of CD8+ T cell infiltrate in CXCR3KO mice did not prevent tumor regression, whereas a reduction of tumor-infiltrating myeloid cells significantly interfered with vaccine efficiency. We show that macrophages from regressing tumors can kill tumor cells in two ways: phagocytosis and TNFα release. Altogether, our data suggest new strategies to improve the efficiency of cancer immunotherapies, by promoting intra-tumoral cooperation between macrophages and T cells. PMID:26337837

  6. Circulating Tumor Cells in Breast Cancer Patients.

    PubMed

    Hall, Carolyn; Valad, Lily; Lucci, Anthony

    2016-01-01

    Breast cancer is the most commonly diagnosed cancer among women, resulting in an estimated 40,000 deaths in 2014.1 Metastasis, a complex, multi-step process, remains the primary cause of death for these patients. Although the mechanisms involved in metastasis have not been fully elucidated, considerable evidence suggests that metastatic spread is mediated by rare cells within the heterogeneous primary tumor that acquire the ability to invade into the bloodstream. In the bloodstream, they can travel to distant sites, sometimes remaining undetected and in a quiescent state for an extended period of time before they establish distant metastases in the bone, lung, liver, or brain. These occult micrometastatic cells (circulating tumor cells, CTCs) are rare, yet their prognostic significance has been demonstrated in both metastatic and non-metastatic breast cancer patients. Because repeated tumor tissue collection is typically not feasible and peripheral blood draws are minimally invasive, serial CTC enumeration might provide "real-time liquid biopsy" snapshots that could be used to identify early-stage breast cancer patients with micrometastatic disease who are at risk for disease progression and monitor treatment response in patients with advanced disease. In addition, characterizing CTCs might aid in the development of novel, personalized therapies aimed at eliminating micrometastases. This review describes current CTC isolation, detection, and characterization strategies in operable breast cancer. PMID:27481009

  7. Lymphatic endothelial cells support tumor growth in breast cancer

    PubMed Central

    Lee, Esak; Pandey, Niranjan B.; Popel, Aleksander S.

    2014-01-01

    Tumor lymphatic vessels (LV) serve as a conduit of tumor cell dissemination, due to their leaky nature and secretion of tumor-recruiting factors. Though lymphatic endothelial cells (LEC) lining the LV express distinct factors (also called lymphangiocrine factors), these factors and their roles in the tumor microenvironment are not well understood. Here we employ LEC, microvascular endothelial cells (MEC), and human umbilical vein endothelial cells (HUVEC) cultured in triple-negative MDA-MB-231 tumor-conditioned media (TCM) to determine the factors that may be secreted by various EC in the MDA-MB-231 breast tumor. These factors will serve as endothelium derived signaling molecules in the tumor microenvironment. We co-injected these EC with MDA-MB-231 breast cancer cells into animals and showed that LEC support tumor growth, HUVEC have no significant effect on tumor growth, whereas MEC suppress it. Focusing on LEC-mediated tumor growth, we discovered that TCM-treated LEC (‘tumor-educated LEC') secrete high amounts of EGF and PDGF-BB, compared to normal LEC. LEC-secreted EGF promotes tumor cell proliferation. LEC-secreted PDGF-BB induces pericyte infiltration and angiogenesis. These lymphangiocrine factors may support tumor growth in the tumor microenvironment. This study shows that LV serve a novel role in the tumor microenvironment apart from their classical role as conduits of metastasis. PMID:25068296

  8. Tumor-associated macrophages promote tumor cell proliferation in nasopharyngeal NK/T-cell lymphoma

    PubMed Central

    Liu, Yixiong; Fan, Linni; Wang, Yingmei; Li, Peifeng; Zhu, Jin; Wang, Lu; Zhang, Weichen; Zhang, Yuehua; Huang, Gaosheng

    2014-01-01

    Objective: To explore the relationship between the number of tumor-associated macrophages (TAMs) and proliferative activity of tumor cells and the relationship between two macrophage biomarkers CD68 and CD163 in nasopharyngeal NK/T-cell lymphoma. Methods: Immunohistochemistry was used to reconfirm the diagnosis of nasal NK/T-cell lymphoma and detect the numbers of TAMs and the ki-67 label index of the tumor cells in all 31 cases. In addition, 12 cases of inflammatory cases were collected as controls, for which the immunostaining of CD68 and CD163 were done as well. Then staining results were analyzed with Pearson correlation and t test. Results: The number of TAMs was positively correlated with tumor proliferative activity (P = 0.024) in nasopharyngeal NK/T-cell lymphoma. The expression of CD68 and CD163 was closely related (P = 0.009), and the positive rate of CD68 was generally higher than CD163, however there is no statistical significance. Conclusion: The increase in numbers of TAMs in nasopharyngeal NK/T-cell lymphoma is related to higher proliferative index, indicating the TAMs play an important role in tumor proliferation. Meanwhile both CD68 and CD163 might be the markers for TAMs but CD163 would be the better one. PMID:25337185

  9. Mast cells: potential positive and negative roles in tumor biology.

    PubMed

    Marichal, Thomas; Tsai, Mindy; Galli, Stephen J

    2013-11-01

    Mast cells are immune cells that reside in virtually all vascularized tissues. Upon activation by diverse mechanisms, mast cells can secrete a broad array of biologically active products that either are stored in the cytoplasmic granules of the cells (e.g., histamine, heparin, various proteases) or are produced de novo upon cell stimulation (e.g., prostaglandins, leukotrienes, cytokines, chemokines, and growth factors). Mast cells are best known for their effector functions during anaphylaxis and acute IgE-associated allergic reactions, but they also have been implicated in a wide variety of processes that maintain health or contribute to disease. There has been particular interest in the possible roles of mast cells in tumor biology. In vitro studies have shown that mast cells have the potential to influence many aspects of tumor biology, including tumor development, tumor-induced angiogenesis, and tissue remodeling, and the shaping of adaptive immune responses to tumors. Yet, the actual contributions of mast cells to tumor biology in vivo remain controversial. Here, we review some basic features of mast cell biology with a special emphasis on those relevant to their potential roles in tumors. We discuss how using in vivo tumor models in combination with models in which mast cell function can be modulated has implicated mast cells in the regulation of host responses to tumors. Finally, we summarize data from studies of human tumors that suggest either beneficial or detrimental roles for mast cells in tumors. PMID:24777963

  10. Tumor-associated stromal cells as key contributors to the tumor microenvironment.

    PubMed

    Bussard, Karen M; Mutkus, Lysette; Stumpf, Kristina; Gomez-Manzano, Candelaria; Marini, Frank C

    2016-01-01

    The tumor microenvironment is a heterogeneous population of cells consisting of the tumor bulk plus supporting cells. It is becoming increasingly evident that these supporting cells are recruited by cancer cells from nearby endogenous host stroma and promote events such as tumor angiogenesis, proliferation, invasion, and metastasis, as well as mediate mechanisms of therapeutic resistance. In addition, recruited stromal cells range in type and include vascular endothelial cells, pericytes, adipocytes, fibroblasts, and bone-marrow mesenchymal stromal cells. During normal wound healing and inflammatory processes, local stromal cells change their phenotype to become that of reactive stroma. Under certain conditions, however, tumor cells can co-opt these reactive stromal cells and further transition them into tumor-associated stromal cells (TASCs). These TASCs express higher levels of proteins, including alpha-smooth muscle actin, fibroblast activating protein, and matrix metalloproteinases, compared with their normal, non-reactive counterparts. TASCs are also known to secrete many pro-tumorigenic factors, including IL-6, IL-8, stromal-derived factor-1 alpha, vascular endothelial growth factor, tenascin-C, and matrix metalloproteinases, among others, which recruit additional tumor and pro-tumorigenic cells to the developing microenvironment. Here, we review the current literature pertaining to the origins of recruited host stroma, contributions toward tumor progression, tumor-associated stromal cells, and mechanisms of crosstalk between endogenous host stroma and tumor cells. PMID:27515302

  11. Effusion cytomorphology of small round cell tumors

    PubMed Central

    Ikeda, Katsuhide; Tsuta, Koji

    2016-01-01

    Background: Small round cell tumors (SRCTs) are a group of tumors composed of small, round, and uniform cells with high nuclear/cytoplasmic (N/C) ratios. The appearance of SRCT neoplastic cells in the effusion fluid is very rare. We reported the cytomorphological findings of SRCTs in effusion cytology, and performed statistical and mathematical analyses for a purpose to distinguish SRCTs. Materials and Methods: We analyzed the cytologic findings of effusion samples from 40 SRCT cases and measured the lengths of the nuclei, cytoplasms, and the cell cluster areas. The SRCT cases included 14 Ewing sarcoma (EWS)/primitive neuroectodermal tumor cases, 5 synovial sarcoma cases, 6 rhabdomyosarcoma cases, 9 small cell lung carcinoma (SCLC) cases, and 6 diffuse large B-cell lymphoma (DLBL) cases. Results: Morphologically, there were no significant differences in the nuclear and cytoplasmic lengths in cases of EWS, synovial sarcoma, and rhabdomyosarcoma. The cytoplasmic lengths in cases of SCLC and DLBL were smaller than those of EWS, synovial sarcoma, and rhabdomyosarcoma. The nuclear density of the cluster in SCLC was higher than that in other SRCTs, and cases of DLBL showed a lack of anisokaryosis and anisocytosis. Conclusion: We believe that it might be possible to diagnose DLBL and SCLC from cytologic analysis of effusion samples but it is very difficult to use this method to distinguish EWS, synovial sarcoma, and rhabdomyosarcoma. Statistical and mathematical analyses indicated that nuclear density and dispersion of nuclear and cytoplasmic sizes are useful adjuncts to conventional cytologic diagnostic criteria, which are acquired from experience. PMID:27279684

  12. Immune response to UV-induced tumors: mediation of progressor tumor rejection by natural killer cells

    SciTech Connect

    Streeter, P.R.; Fortner, G.W.

    1986-03-01

    Skin tumors induced in mice by chronic ultraviolet (UV) irradiation are highly antigenic and can induce a state of transplantation immunity in syngeneic animals. In the present study, the authors compared the in vitro cytolytic activity of splenic lymphocytes from mice immunized with either regressor or progressor UV-tumors. The results of this comparison implicated tumor-specific cytolytic T (Tc) lymphocytes in rejection of regressor UV-tumors, and revealed that immunization with the progressor UV-tumor 2237 failed to elicit detectable levels of progressor tumor-specific Tc cells even as the tumors rejected. Following in vitro resensitization of spleen cells from either regressor or progressor tumor immune animals, the authors found NK-like lymphocytes with anti-tumor activity. As the authors had not detected cells with this activity in splenic lymphocyte preparations prior to in vitro resensitization, the authors examined lymphocytes from the local tumor environment during the course of progressor tumor rejection for this activity. This analysis revealed NK lymphocytes exhibiting significant levels of cytolytic activity against UV-tumors. These results implicate NK cells as potential effector cells in the rejection of progressor UV-tumors by immune animals, and suggests that these cells may be regulated by T lymphocytes.

  13. Colon tumor cells grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These photos compare the results of colon carcinoma cells grown in a NASA Bioreactor flown on the STS-70 Space Shuttle in 1995 flight and ground control experiments. The cells grown in microgravity (left) have aggregated to form masses that are larger and more similar to tissue found in the body than the cells cultured on the ground (right). The principal investigator is Milburn Jessup of the University of Texas M. D. Anderson Cancer Center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: NASA and University of Texas M. D. Anderson Cancer Center.

  14. Mast cell tumor destruction by deionized water.

    PubMed

    Grier, R L; Di Guardo, G; Schaffer, C B; Pedrosa, B; Myers, R; Merkley, D F; Thouvenelle, M

    1990-07-01

    In a controlled study, malignant murine P815 mastocytoma cells exposed in vitro to distilled and deionized water died as a result of progressive swelling, degranulation, and membrane rupture. A 90% mean cell death occurred when cells obtained directly from culture were exposed to deionized water for 2 minutes. Of 6 cryopreserved malignant murine cell lines, which included Cloudman S91 melanoma, CMT-93 rectum carcinoma, MMT-06052 mammary carcinoma, and S-180 Sarcoma, only P815 mastocytoma and YAC-1 lymphoma were significantly (P less than 0.05) affected by hypotonic shock; Cloudman S91 melanoma cells were the most resistant. Mastocytoma cells were selectively killed by hypotonic solution, and lymphoma cells were also killed by isotonic saline solution. Local mast cell tumor (MCT) recurrence and percentage survival were evaluated in 12 cats (21 MCT) and 54 dogs (85 MCT) subjected to surgery alone or local infiltration of deionized water as an adjunct to surgery. Of all 16 incompletely excised MCT in cats, there was no local recurrence following injection. Four mast cell tumors (2 cats) regressed after being injected in situ. In dogs with clinical stage-I MCT, local recurrence was detected in 50% (5/10), but with injection after incomplete excision, local MCT recurrence was significantly (P less than 0.05) less (6.6%, 1/15). Percentage recurrence was significantly (P less than 0.05) less and survival significantly greater when incompletely excised grade-II MCT were injected. Mean follow-up period after surgery in cats and dogs was 35 and 23.4 months, respectively. PMID:2117868

  15. Giant Cell Tumors of the Axial Skeleton

    PubMed Central

    Balke, Maurice; Henrichs, Marcel P.; Gosheger, Georg; Ahrens, Helmut; Streitbuerger, Arne; Koehler, Michael; Bullmann, Viola; Hardes, Jendrik

    2012-01-01

    Background. We report on 19 cases of giant cell tumor of bone (GCT) affecting the spine or sacrum and evaluate the outcome of different treatment modalities. Methods. Nineteen patients with GCT of the spine (n = 6) or sacrum (n = 13) have been included in this study. The mean followup was 51.6 months. Ten sacral GCT were treated by intralesional procedures of which 4 also received embolization, and 3 with irradiation only. All spinal GCT were surgically treated. Results. Two (15.4%) patients with sacral and 4 (66.7%) with spinal tumors had a local recurrence, two of the letter developed pulmonary metastases. One local recurrence of the spine was successfully treated by serial arterial embolization, a procedure previously described only for sacral tumors. At last followup, 9 patients had no evidence of disease, 8 had stable disease, 1 had progressive disease, 1 died due to disease. Six patients had neurological deficits. Conclusions. GCT of the axial skeleton have a high local recurrence rate. Neurological deficits are common. En-bloc spondylectomy combined with embolization is the treatment of choice. In case of inoperability, serial arterial embolization seems to be an alternative not only for sacral but also for spinal tumors. PMID:22448122

  16. Giant cell tumor of the spine.

    PubMed

    Ozaki, Toshifumi; Liljenqvist, Ulf; Halm, Henry; Hillmann, Axel; Gosheger, Georg; Winkelmann, Winfried

    2002-08-01

    Six patients with giant cell tumor of the spine had surgery between 1981 and 1995. Three lesions were located in the scrum, two lesions were in the thoracic spine, and one lesion was in the lumbar spine. Preoperatively, all patients had local pain and neurologic symptoms. Two patients had cement implanted after curettage or intralesional excision of the sacral tumor; one patient had a local relapse. After the second curettage and cement implantation, the tumor was controlled. One patient with a sacral lesion had marginal excision and spondylodesis; no relapse developed. Two patients with thoracic lesions had planned marginal excision and spondylodesis; the margins finally became intralesional, but no relapse developed. One patient with a lumbar lesion had incomplete removal of the tumor and received postoperative irradiation. At the final followup (median, 69 months), five of six patients were disease-free and one patient died of disease progression. Two of the five surviving patients had pain after standing or neurologic problems. Although some contamination occurred, planning a marginal excision of the lesion seems beneficial for vertebral lesions above the sacrum. Total sacrectomy of a sacral lesion seems to be too invasive when cement implantation can control the lesion. PMID:12151896

  17. Interleukin 2 expression by tumor cells alters both the immune response and the tumor microenvironment.

    PubMed

    Lee, J; Fenton, B M; Koch, C J; Frelinger, J G; Lord, E M

    1998-04-01

    Microenvironmental conditions within solid tumors can have marked effects on the growth of the tumors and their response to therapies. The disorganized growth of tumors and their attendant vascular systems tends to result in areas of the tumors that are deficient in oxygen (hypoxic). Cells within these hypoxic areas are more resistant to conventional therapies such as radiation and chemotherapy. Here, we examine the hypoxic state of EMT6 mouse mammary tumors and the location of host cells within the different areas of the tumors to determine whether such microenvironmental conditions might also affect their ability to be recognized by the immune system. Hypoxia within tumors was quantified by flow cytometry and visualized by immunohistochemistry using a monoclonal antibody (ELK3-51) against cellular adducts of 2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)acetam ide (EF5), a nitroimidazole compound that binds selectively to hypoxic cells. Thy-1+ cells, quantified using a monoclonal antibody, were found only in the well-oxygenated areas. The location of these Thy-1+ cells was also examined in EMT6 tumors that had been transfected with the gene for interleukin-2 (IL-2) because these tumors contain greatly increased numbers of host cells. Surprisingly, we found that IL-2-transfected tumors had significantly decreased hypoxia compared to parental tumors. Furthermore, using the fluorescent dye Hoechst 33342, an in vivo marker of perfused vessels, combined with immunochemical staining of PECAM-1 (CD31) as a marker of tumor vasculature, we found increased vascularization in the IL-2-transfected tumors. Thus, expression of IL-2 at the site of tumor growth may enhance tumor immunity not only by inducing the generation of tumor-reactive CTLs but also by allowing increased infiltration of activated T cells into the tumors. PMID:9537251

  18. Standard-Dose Combination Chemotherapy or High-Dose Combination Chemotherapy and Stem Cell Transplant in Treating Patients With Relapsed or Refractory Germ Cell Tumors

    ClinicalTrials.gov

    2016-07-26

    Germ Cell Tumor; Teratoma; Choriocarcinoma; Germinoma; Mixed Germ Cell Tumor; Yolk Sac Tumor; Childhood Teratoma; Malignant Germ Cell Neoplasm; Extragonadal Seminoma; Non-seminomatous Germ Cell Tumor; Seminoma

  19. Endothelial cell Ca2+ increases upon tumor cell contact and modulates cell-cell adhesion.

    PubMed Central

    Pili, R; Corda, S; Passaniti, A; Ziegelstein, R C; Heldman, A W; Capogrossi, M C

    1993-01-01

    The signal transduction mechanisms involved in tumor cell adhesion to endothelial cells are still largely undefined. The effect of metastatic murine melanoma cell and human prostate carcinoma cell contact on cytosolic [Ca2+] of bovine artery endothelial cells was examined in indo-1-loaded endothelial cell monolayers. A rapid increase in endothelial cell [Ca2+] occurred on contact with tumor cells, but not on contact with 8-microns inert beads. A similar increase in endothelial cell [Ca2+] was observed with human neutrophils or monocyte-like lymphoma cells, but not with endothelial cells, red blood cells, and melanoma cell-conditioned medium. The increase in endothelial cell [Ca2+] was not inhibited by extracellular Ca2+ removal. In contrast, endothelial cell pretreatment with thapsigargin, which releases endoplasmic reticulum Ca2+ into the cytosol and depletes this Ca2+ store site, abolished the cytosolic [Ca2+] rise upon melanoma cell contact. Endothelial cell pretreatment with the membrane-permeant form of the Ca2+ chelator bis-(O-aminophenoxyl)ethane-N,N,N',N'-tetraacetic acid blocked the increase in cytosolic [Ca2+]. Under static and dynamic flow conditions (0.46 dyn/cm2) bis-(O-aminophenoxyl)ethane-N,N,N',N'-tetraacetic acid pretreatment of bovine pulmonary artery endothelial cell monolayers inhibited melanoma cell adhesion to the endothelial cells. Thus, tumor cell contact with endothelial cells induces a rapid Ca2+ release from endothelial intracellular stores, which has a functional role in enhancing cell-cell adhesion. Images PMID:8254056

  20. Medulloblastoma/Primitive neuroectodermal tumor and germ cell tumors: the uncommon but potentially curable primary brain tumors.

    PubMed

    Samkari, Ayman; Hwang, Eugene; Packer, Roger J

    2012-08-01

    This article presents an overview of medulloblastomas, central nervous system primitive neuroectodermal tumors, and germ cell tumors for the practicing oncologist. Discussion includes the definition of these tumors, histopathologic findings, molecular and genetic characteristics, prognoses, and evolution of treatment. PMID:22794288

  1. Granular cell tumor presenting as a large leg mass.

    PubMed

    Andalib, Ali; Heidary, Mohsen; Sajadieh-Khajouei, Sahar

    2014-10-01

    Granular cell tumor is a rare benign neoplasm most commonly appears in the head and neck region, especially in the tongue, cheek mucosa, and palate. Occurrence in limbs is even rarer. These tumors account for approximately 0.5% of all soft tissue tumors. Granular cell tumor can also affect other organs including skin, breast, and lungs. Local recurrence and metastasis is potentially higher in malignant forms with poor prognosis in respect to the benign counterparts. The average diameter of the tumor is usually about 2-3 cm. We report a granular cell tumor in the leg with an unusual size. PMID:25692157

  2. Isolation of Cancer Epithelial Cells from Mouse Mammary Tumors

    PubMed Central

    Johnson, Sara; Chen, Hexin; Lo, Pang-Kuo

    2016-01-01

    The isolation of cancer epithelial cells from mouse mammary tumor is accomplished by digestion of the solid tumor. Red blood cells and other contaminates are removed using several washing techniques such that primary epithelial cells can further enriched. This procedure yields primary tumor cells that can be used for in vitro tissue culture, fluorescence-activated cell sorting (FACS) and a wide variety of other experiments (Lo et al., 2012).

  3. Activity of nintedanib in germ cell tumors.

    PubMed

    Steinemann, Gustav; Jacobsen, Christine; Gerwing, Mirjam; Hauschild, Jessica; von Amsberg, Gunhild; Höpfner, Michael; Nitzsche, Bianca; Honecker, Friedemann

    2016-02-01

    Germ cell tumors (GCTs) are the most frequent malignancy in male patients between 15 and 45 years of age. Cisplatin-based chemotherapy shows excellent cure rates, but patients with cisplatin-resistant GCTs have a poor prognosis. Nintedanib (BIBF 1120, Vargatef) inhibits the receptor classes vascular endothelial growth factor receptor, platelet derived growth factor receptor, and fibroblast growth factor receptor, and has shown activity against many tumors, as well as in idiopathic lung fibrosis and bleomycin-induced lung injury. Here, we investigated the antineoplastic and antiangiogenic properties of nintedanib in cisplatin-resistant and cisplatin-sensitive GCT cells, both alone and in combination with classical cytotoxic agents such as cisplatin, etoposide, and bleomycin. The half-maximal inhibitory concentration (IC50) of nintedanib was 4.5 ± 0.43 μmol/l, 3.1 ± 0.45 μmol/l, and 3.6 ± 0.33 μmol/l in cisplatin-sensitive NTERA2, 2102Ep, and NCCIT cells, whereas the IC50 doses of the cisplatin-resistant counterparts were 6.6 ± 0.37 μmol/l (NTERA2-R), 4.5 ± 0.83 μmol/l (2102Ep-R), and 6.1 ± 0.41 μmol/l (NCCIT-R), respectively. Single treatment with nintedanib induced apoptosis and resulted in a sustained reduction in the capacity of colony formation in both cisplatin-sensitive and cisplatin-resistant GCT cells. Cell cycle analysis showed that nintedanib induced a strong G0/G1-phase arrest in all investigated cell lines. Combination treatment with cisplatin did not result in additive, synergistic, or antagonistic effects. The in-vivo activity was studied using the chorioallantoic membrane assay and indicated the antiangiogenic potency of nintedanib with markedly reduced microvessel density. Topical treatment of inoculated tumor plaques resulted in a significant reduction of the tumor size. This indicates that nintedanib might be a promising substance in the treatment of GCT. PMID:26479145

  4. B cell regulation of anti-tumor immune response.

    PubMed

    Zhang, Yu; Morgan, Richard; Podack, Eckhard R; Rosenblatt, Joseph

    2013-12-01

    Our laboratory has been investigating the role of B cells on tumor immunity. We have studied the immune response in mice that are genetically lacking in B cells (BCDM) using a variety of syngeneic mouse tumors and compared immune responses in BCDM with those seen in wild type (WT) immunocompetent mice (ICM). A variety of murine tumors are rejected or inhibited in their growth in BCDM, compared with ICM, including the EL4 thymoma, and the MC38 colon carcinoma in C57BL/6 mice, as well as the EMT-6 breast carcinoma in BALB/c mice. In all three murine models, tumors show reduced growth in BCDM which is accompanied by increased T cell and NK cell infiltration, and a more vigorous Th1 cytokine response, and increased cytolytic T cell response in the absence of B cells. Reconstitution of the mice with B cells results in augmented tumor growth due to a diminished anti-tumor immune response and in reduction in CD8+ T cell and NK cell infiltration. Studies involving BCR transgenic mice indicated that B cells inhibit anti-tumor T cell responses through antigen non-specific mechanisms. More recent studies using the EMT-6 model demonstrated that both the number and function of Treg cells in ICM was increased relative to that seen in BCDM. Increased expansion of Treg cells was evident following EMT-6 implantation in ICM relative to that seen in non-tumor-bearing mice or BCDM. The percentage and number of Tregs in spleen, tumor draining lymph nodes, and the tumor bed are increased in ICM compared with BCDM. Treg functional capacity as measured by suppression assays appears to be reduced in BCDM compared with ICM. In contrast to other described types of B regulatory activity, adoptive transfer of B cells can rescue tumor growth independently of the ability of B cells to secrete IL-10, and also independently of MHC-II expression. In experiments using the MC38 adenocarcinoma model, BCDM reconstituted with WT B cells support tumor growth while tumor growth continues to be inhibited

  5. Isolation of Circulating Tumor Cells by Dielectrophoresis

    PubMed Central

    Gascoyne, Peter R. C.; Shim, Sangjo

    2014-01-01

    Dielectrophoresis (DEP) is an electrokinetic method that allows intrinsic dielectric properties of suspended cells to be exploited for discrimination and separation. It has emerged as a promising method for isolating circulation tumor cells (CTCs) from blood. DEP-isolation of CTCs is independent of cell surface markers. Furthermore, isolated CTCs are viable and can be maintained in culture, suggesting that DEP methods should be more generally applicable than antibody-based approaches. The aim of this article is to review and synthesize for both oncologists and biomedical engineers interested in CTC isolation the pertinent characteristics of DEP and CTCs. The aim is to promote an understanding of the factors involved in realizing DEP-based instruments having both sufficient discrimination and throughput to allow routine analysis of CTCs in clinical practice. The article brings together: (a) the principles of DEP; (b) the biological basis for the dielectric differences between CTCs and blood cells; (c) why such differences are expected to be present for all types of tumors; and (d) instrumentation requirements to process 10 mL blood specimens in less than 1 h to enable routine clinical analysis. The force equilibrium method of dielectrophoretic field-flow fractionation (DEP-FFF) is shown to offer higher discrimination and throughput than earlier DEP trapping methods and to be applicable to clinical studies. PMID:24662940

  6. Risk of tumor cell seeding through biopsy and aspiration cytology

    PubMed Central

    Shyamala, K.; Girish, H. C.; Murgod, Sanjay

    2014-01-01

    Cancer cells, besides reproducing uncontrollably, lose cohesiveness and orderliness of normal tissue, invade and get detached from the primary tumor to travel and set up colonies elsewhere. Dislodging neoplastically altered cells from a tumor during biopsy or surgical intervention or during simple procedure like needle aspiration is a possibility because they lack cohesiveness, and they attain the capacity to migrate and colonize. Considering the fact that, every tumor cell, is bathed in interstitial fluid, which drains into the lymphatic system and has an individualized arterial blood supply and venous drainage like any other normal cell in our body, inserting a needle or a knife into a tumor, there is a jeopardy of dislodging a loose tumor cell into either the circulation or into the tissue fluid. Tumor cells are easier to dislodge due to lower cell-to-cell adhesion. This theory with the possibility of seeding of tumor cells is supported by several case studies that have shown that after diagnostic biopsy of a tumor, many patients developed cancer at multiple sites and showed the presence of circulating cancer cells in the blood stream on examination. In this review, we evaluate the risk of exposure to seeding of tumor cells by biopsy and aspiration cytology and provide some suggested practices to prevent tumor cell seeding. PMID:24818087

  7. Inhibition of metastatic tumor growth and metastasis via targeting metastatic breast cancer by chlorotoxin-modified liposomes.

    PubMed

    Qin, Chao; He, Bing; Dai, Wenbing; Zhang, Hua; Wang, Xueqing; Wang, Jiancheng; Zhang, Xuan; Wang, Guangji; Yin, Lifang; Zhang, Qiang

    2014-10-01

    A liposome system modified with chlorotoxin (ClTx), a scorpion venom peptide previously utilized for targeting brain tumors, was established. Its targeting efficiency and antimetastasis behavior against metastatic breast cancer highly expressed MMP-2, the receptor of ClTx, were investigated. 4T1, a metastatic breast cancer cell line derived from a murine breast tumor, was selected as the cell model. As results, the ClTx-modified liposomes displayed specific binding to 4T1 as determined by flow cytometry and confocal imaging. The cytotoxicity assay revealed that the ClTx modification increased the toxicity compared with nonmodified liposomes. In addition, the modified liposomes also exhibited high in vivo targeting efficiency in the BALB/c mice bearing 4T1 tumors. Importantly, this system inhibited the growth of metastatic tumor and prevented the incidence of lung metastasis in mice bearing 4T1 tumors with only low systemic toxicity. The data obtained from the in vitro and in vivo studies confirmed that the ClTx-modified liposomes increased the drug delivery to metastatic breast cancers. This study proved that the ClTx-modified liposomes had targeting ability to metastatic breast cancer in addition to brain cancer, and displayed an obvious antimetastasis effect. Generally, it may provide a promising strategy for metastatic breast cancer therapy. PMID:24559485

  8. Antigen loading of dendritic cells with whole tumor cell preparations.

    PubMed

    Thumann, Peter; Moc, Isabelle; Humrich, Jens; Berger, Thomas G; Schultz, Erwin S; Schuler, Gerold; Jenne, Lars

    2003-06-01

    Dendritic cells (DC) based vaccinations have been widely used for the induction of anti-tumoral immunity in clinical studies. Antigen loading of DC with whole tumor cell preparations is an attractive method whenever tumor cell material is available. In order to determine parameters for the loading procedure, we performed dose finding and timing experiments. We found that apoptotic and necrotic melanoma cells up to a ratio of one-to-one, equivalent to 1mg/ml protein per 1 x 10(6) DC, can be added to monocyte derived DC without effecting DC recovery extensively. Using the isolated protein content of tumor cells (lysate) as a parameter, up to 5 mg/ml protein per 1 x 10(6) DC can be added. To achieve significant protein uptake at least 1 mg/ml of protein have to be added for more than 24 h as tested with FITC-labelled ovalbumin. Maturation inducing cytokines can be added simultaneously with the tumor cell preparations to immature DC without affecting the uptake. Furthermore, we tested the feasibility of cryopreservation of loaded and matured DC to facilitate the generation of ready to use aliquots. DC were cryopreserved in a mix of human serum albumin, DMSO and 5% glucose. After thawing, surface expression of molecules indicating the mature status (CD83, costimulatory and MHC molecules), was found to be unaltered. Furthermore, cryopreserved DC kept the capability to stimulate allogenic T-cell proliferation in mixed leukocyte reactions at full level. Loaded and matured DC pulsed with influenza matrix peptide (IMP) retained the capacity to induce the generation of IMP-specific cytotoxic T-lymphocytes after cryopreservation as measured by ELISPOT and tetramer staining. The expression of the chemokine receptor CXCR-4 and CCR-7 remained unaltered during cryopreservation and the migratory responsiveness towards MIP-3beta was unaltered as measured in a migration assay. Thus we conclude that the large scale loading and maturation of DC with whole tumor cell preparations can be

  9. Tumor-induced inflammation in mammary adipose tissue stimulates a vicious cycle of autotaxin expression and breast cancer progression.

    PubMed

    Benesch, Matthew G K; Tang, Xiaoyun; Dewald, Jay; Dong, Wei-Feng; Mackey, John R; Hemmings, Denise G; McMullen, Todd P W; Brindley, David N

    2015-09-01

    Compared to normal tissues, many cancer cells overexpress autotaxin (ATX). This secreted enzyme produces extracellular lysophosphatidate, which signals through 6 GPCRs to drive cancer progression. Our previous work showed that ATX inhibition decreases 4T1 breast tumor growth in BALB/c mice by 60% for about 11 d. However, 4T1 cells do not produce significant ATX. Instead, the ATX is produced by adjacent mammary adipose tissue. We investigated the molecular basis of this interaction in human and mouse breast tumors. Inflammatory mediators secreted by breast cancer cells increased ATX production in adipose tissue. The increased lysophosphatidate signaling further increased inflammatory mediator production in adipose tissue and tumors. Blocking ATX activity in mice bearing 4T1 tumors with 10 mg/kg/d ONO-8430506 (a competitive ATX inhibitor, IC90 = 100 nM; Ono Pharma Co., Ltd., Osaka, Japan) broke this vicious inflammatory cycle by decreasing 20 inflammatory mediators by 1.5-8-fold in cancer-inflamed adipose tissue. There was no significant decrease in inflammatory mediator levels in fat pads that did not bear tumors. ONO-8430506 also decreased plasma TNF-α and G-CSF cytokine levels by >70% and leukocyte infiltration in breast tumors and adjacent adipose tissue by >50%. Hence, blocking tumor-driven inflammation by ATX inhibition is effective in decreasing tumor growth in breast cancers where the cancer cells express negligible ATX. PMID:26071407

  10. Tumor cells as cellular vehicles to deliver gene therapies to metastatic tumors.

    PubMed

    García-Castro, Javier; Martínez-Palacio, Jesús; Lillo, Rosa; García-Sánchez, Félix; Alemany, Ramón; Madero, Luis; Bueren, Juan A; Ramírez, Manuel

    2005-04-01

    A long-pursued goal in cancer treatment is to deliver a therapy specifically to metastases. As a result of the disseminated nature of the metastatic disease, carrying the therapeutic agent to the sites of tumor growth represents a major step for success. We hypothesized that tumor cells injected intravenously (i.v.) into an animal with metastases would respond to many of the factors driving the metastatic process, and would target metastases. Using a model of spontaneous metastases, we report here that i.v. injected tumor cells localized on metastatic lesions. Based on this fact, we used genetically transduced tumor cells for tumor targeting of anticancer agents such as a suicide gene or an oncolytic virus, with evident antitumoral effect and negligible systemic toxicity. Therefore, autologous tumor cells may be used as cellular vehicles for systemic delivery of anticancer therapies to metastatic tumors. PMID:15650763

  11. Risk assessment of thyroid follicular cell tumors.

    PubMed Central

    Hill, R N; Crisp, T M; Hurley, P M; Rosenthal, S L; Singh, D V

    1998-01-01

    Thyroid follicular cell tumors arise in rodents from mutations, perturbations of thyroid and pituitary hormone status with increased stimulation of thyroid cell growth by thyroid-stimulating hormone (TSH), or a combination of the two. The only known human thyroid carcinogen is ionizing radiation. It is not known for certain whether chemicals that affect thyroid cell growth lead to human thyroid cancer. The U.S. Environmental Protection Agency applies the following science policy positions: 1) chemically induced rodent thyroid tumors are presumed to be relevant to humans; 2) when interspecies information is lacking, the default is to assume comparable carcinogenic sensitivity in rodents and humans; 3) adverse rodent noncancer thyroid effects due to chemically induced thyroid-pituitary disruption are presumed to be relevant to humans; 4) linear dose-response considerations are applied to thyroid cancer induced by chemical substances that either do not disrupt thyroid functioning or lack mode of action information; 5) nonlinear thyroid cancer dose-response considerations are applied to chemicals that reduce thyroid hormone levels, increase TSH and thyroid cell division, and are judged to lack mutagenic activity; and 6) nonlinear considerations may be applied in thyroid cancer dose-response assessments on a case-by-case basis for chemicals that disrupt thyroid-pituitary functioning and demonstrate some mutagenic activity. Required data for risk assessment purposes is mode of action information on mutagenicity, increases in follicular cell growth (cell size and number) and thyroid gland weight, thyroid-pituitary hormones, site of action, correlations between doses producing thyroid effects and cancer, and reversibility of effects when dosing ceases. Images Figure 1 Figure 2 Figure 3 PMID:9681971

  12. T cells from the tumor microenvironment of patients with progressive myeloma can generate strong, tumor-specific cytolytic responses to autologous, tumor-loaded dendritic cells

    NASA Astrophysics Data System (ADS)

    Dhodapkar, Madhav V.; Krasovsky, Joseph; Olson, Kara

    2002-10-01

    Most untreated cancer patients develop progressive tumors. We tested the capacity of T lymphocytes from patients with clinically progressive, multiple myeloma to develop killer function against fresh autologous tumor. In this malignancy, it is feasible to reproducibly evaluate freshly isolated tumor cells and T cells from the marrow tumor environment. When we did this with seven consecutive patients, with all clinical stages of disease, we did not detect reactivity to autologous cancer cells. However, both cytolytic and IFN--producing responses to autologous myeloma were generated in six of seven patients after stimulation ex vivo with dendritic cells that had processed autologous tumor cells. The antitumor effectors recognized fresh autologous tumor but not nontumor cells in the bone marrow, myeloma cell lines, dendritic cells loaded with tumor-derived Ig, or allogeneic tumor. Importantly, these CD8+ effectors developed with similar efficiency by using T cells from both the blood and the bone marrow tumor environment. Therefore, even in the setting of clinical tumor progression, the tumor bed of myeloma patients contains T cells that can be activated readily by dendritic cells to kill primary autologous tumor.

  13. Glucosamine and N-acetyl glucosamine as new CEST MRI agents for molecular imaging of tumors.

    PubMed

    Rivlin, Michal; Navon, Gil

    2016-01-01

    The efficacy of glucosamine (GlcN) and N-acetyl glucosamine (GlcNAc) as agents for chemical exchange saturation transfer (CEST) magnetic resonance molecular imaging of tumors is demonstrated. Both agents reflect the metabolic activity and malignancy of the tumors. The method was tested in two types of tumors implanted orthotopically in mice: 4T1 (mouse mammary cancer cells) and MCF7 (human mammary cancer cells). 4T1 is a more aggressive type of tumor than MCF7 and exhibited a larger CEST effect. Two methods of administration of the agents, intravenous (IV) and oral (PO), gave similar results. The CEST MRI observation of lung metastasis was confirmed by histology. The potential of the clinical application of CEST MRI with these agents for cancer diagnosis is strengthened by their lack of toxicity as can be indicated from their wide use as food supplements. PMID:27600054

  14. Glucosamine and N-acetyl glucosamine as new CEST MRI agents for molecular imaging of tumors

    PubMed Central

    Rivlin, Michal; Navon, Gil

    2016-01-01

    The efficacy of glucosamine (GlcN) and N-acetyl glucosamine (GlcNAc) as agents for chemical exchange saturation transfer (CEST) magnetic resonance molecular imaging of tumors is demonstrated. Both agents reflect the metabolic activity and malignancy of the tumors. The method was tested in two types of tumors implanted orthotopically in mice: 4T1 (mouse mammary cancer cells) and MCF7 (human mammary cancer cells). 4T1 is a more aggressive type of tumor than MCF7 and exhibited a larger CEST effect. Two methods of administration of the agents, intravenous (IV) and oral (PO), gave similar results. The CEST MRI observation of lung metastasis was confirmed by histology. The potential of the clinical application of CEST MRI with these agents for cancer diagnosis is strengthened by their lack of toxicity as can be indicated from their wide use as food supplements. PMID:27600054

  15. Late Relapse of Testicular Germ Cell Tumors.

    PubMed

    O'Shaughnessy, Matthew J; Feldman, Darren R; Carver, Brett S; Sheinfeld, Joel

    2015-08-01

    Germ cell tumors of the testis have an overall survival rate greater than 90% as a result of a successful multidisciplinary approach to management. Late relapse affects a subset of patients however, and tends to be chemorefractory and the overall prognosis is poor. Surgery is the mainstay in management of late relapse but salvage chemotherapy can be successful. In this review, the clinical presentation and detection of late relapse, clinical outcomes, and predictors of survival in late relapse and the importance of a multidisciplinary treatment approach for successful management of late relapse are discussed. PMID:26216823

  16. Myeloid cell-driven angiogenesis and immune regulation in tumors

    PubMed Central

    Rivera, Lee B.; Bergers, Gabriele

    2015-01-01

    Angiogenesis is a hallmark of cancer as its induction is indispensable to fuel an expanding tumor. The tumor microenvironment contributes to tumor vessel growth, and distinct myeloid cells recruited by the tumor have been shown to not only support angiogenesis but to foster an immune suppressive environment that supports tumor expansion and progression. Recent findings suggest that the intertwined regulation of angiogenesis and immune modulation can offer therapeutic opportunities for the treatment of cancer. Here we review the mechanisms by which distinct myeloid cell populations contribute to tumor angiogenesis, discuss current approaches in the clinic that are targeting both angiogenic and immune suppressive pathways, and highlight important areas of future research. PMID:25770923

  17. Single Unpurified Breast Tumor-Initiating Cells from Multiple Mouse Models Efficiently Elicit Tumors in Immune-Competent Hosts

    PubMed Central

    Kurpios, Natasza A.; Girgis-Gabardo, Adele; Hallett, Robin M.; Rogers, Stephen; Gludish, David W.; Kockeritz, Lisa; Woodgett, James; Cardiff, Robert; Hassell, John A.

    2013-01-01

    The tumor-initiating cell (TIC) frequency of bulk tumor cell populations is one of the criteria used to distinguish malignancies that follow the cancer stem cell model from those that do not. However, tumor-initiating cell frequencies may be influenced by experimental conditions and the extent to which tumors have progressed, parameters that are not always addressed in studies of these cells. We employed limiting dilution cell transplantation of minimally manipulated tumor cells from mammary tumors of several transgenic mouse models to determine their tumor-initiating cell frequency. We determined whether the tumors that formed following tumor cell transplantation phenocopied the primary tumors from which they were isolated and whether they could be serially transplanted. Finally we investigated whether propagating primary tumor cells in different tissue culture conditions affected their resident tumor-initiating cell frequency. We found that tumor-initiating cells comprised between 15% and 50% of the bulk tumor cell population in multiple independent mammary tumors from three different transgenic mouse models of breast cancer. Culture of primary mammary tumor cells in chemically-defined, serum-free medium as non-adherent tumorspheres preserved TIC frequency to levels similar to that of the primary tumors from which they were established. By contrast, propagating the primary tumor cells in serum-containing medium as adherent populations resulted in a several thousand-fold reduction in their tumor-initiating cell fraction. Our findings suggest that experimental conditions, including the sensitivity of the transplantation assay, can dramatically affect estimates of tumor initiating cell frequency. Moreover, conditional on cell culture conditions, the tumor-initiating cell fraction of bulk mouse mammary tumor cell preparations can either be maintained at high or low frequency in vitro thus permitting comparative studies of tumorigenic and non-tumorigenic cancer cells

  18. Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells.

    PubMed

    Gao, Xin; Wang, Xuefeng; Yang, Qianting; Zhao, Xin; Wen, Wen; Li, Gang; Lu, Junfeng; Qin, Wenxin; Qi, Yuan; Xie, Fang; Jiang, Jingting; Wu, Changping; Zhang, Xueguang; Chen, Xinchun; Turnquist, Heth; Zhu, Yibei; Lu, Binfeng

    2015-01-01

    Cancer immunotherapy has shown great promise as a new standard cancer therapeutic modality. However, the response rates are limited for current approach that depends on enhancing spontaneous antitumor immune responses. Therefore, increasing tumor immunogenicity by expressing appropriate cytokines should further improve the current immunotherapy. IL-33 is a member of the IL-1 family of cytokines and is released by necrotic epithelial cells or activated innate immune cells and is thus considered a "danger" signal. The role of IL-33 in promoting type 2 immune responses and tissue inflammation has been well established. However, whether IL-33 drives antitumor immune responses is controversial. Our previous work established that IL-33 promoted the function of CD8(+) T cells. In this study, we showed that the expression of IL-33 in two types of cancer cells potently inhibited tumor growth and metastasis. Mechanistically, IL-33 increased numbers and IFN-γ production by CD8(+) T and NK cells in tumor tissues, thereby inducing a tumor microenvironment favoring tumor eradication. Importantly, IL-33 greatly increased tumor Ag-specific CD8(+) T cells. Furthermore, both NK and CD8(+) T cells were required for the antitumor effect of IL-33. Moreover, depletion of regulatory T cells worked synergistically with IL-33 expression for tumor elimination. Our studies established "alarmin" IL-33 as a promising new cytokine for tumor immunotherapy through promoting cancer-eradicating type 1 immune responses. PMID:25429071

  19. Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells

    PubMed Central

    Gao, Xin; Wang, Xuefeng; Yang, Qianting; Zhao, Xin; Wen, Wen; Li, Gang; Lu, Junfeng; Qin, Wenxin; Qi, Yuan; Xie, Fang; Jiang, Jingting; Wu, Changping; Zhang, Xueguang; Chen, Xinchun; Turnquist, Heth; Zhu, Yibei; Lu, Binfeng

    2014-01-01

    Cancer immunotherapy has shown great promise as a new standard cancer therapeutic modality. However, the response rates are limited for current approach that depends on enhancing spontaneous antitumor immune responses. Therefore, increasing tumor immunogenicity by expressing appropriate cytokines should further improve the current immunotherapy. Interleukin-33 is a member of the IL-1 family of cytokines and is released by necrotic epithelial cells or activated innate immune cells and is thus considered a “danger” signal. The role of IL-33 in promoting type 2 immune responses and tissue inflammation has been well established. However, whether IL-33 drives antitumor immune responses is controversial. Our previous work established that IL-33 promoted the function of CD8+ T cells. Here, we showed that the expression of IL-33 in two types of cancer cells potently inhibited tumor growth and metastasis. Mechanistically, IL-33 increased numbers and IFNγ production by CD8+ T and NK cells in tumor tissues, thereby inducing a tumor microenvironment favoring tumor eradication. Importantly, IL-33 greatly increased tumor-antigen-specific CD8+ T cells. Furthermore, both NK and CD8+ T cells were required for the antitumor effect of IL-33. Moreover, depletion of regulatory T cells (Treg) worked synergistically with IL-33 expression for tumor elimination. Our studies established “alarmin” IL-33 as a promising new cytokine for tumor immunotherapy through promoting cancer-eradicating type 1 immune responses. PMID:25429071

  20. Gastrointestinal tract spindle cell tumors with interstitial cells of Cajal: Prevalence excluding gastrointestinal stromal tumors

    PubMed Central

    Lee, So Jung; Hwang, Chung Su; Kim, Ahrong; Kim, Kyungbin; Choi, Kyung Un

    2016-01-01

    Leiomyomas and schwannomas of the gastrointestinal tract (GIT) are mainly comprised of spindle-shaped tumor cells and should always be differentiated from gastrointestinal stromal tumors (GISTs). Mast/stem cell growth factor receptor Kit (KIT) and discovered on GIST-1 (DOG1) are well-known diagnostic markers for the detection of a GIST by immunohistochemical staining. The aim of the present study was to assess the prevalence and significance of spindle cell tumors of the GIT with KIT- or DOG1-positive spindle-shaped cells, presumed to be interstitial cells of Cajal (ICCs), other than GISTs. A total of 71 leiomyomas and 35 schwannomas were examined and clinicopathological information was obtained. KIT and DOG1 immunostaining was performed to determine the proportions of positive cells. Mutation screening of KIT exons 9, 11, 13 and 17, and platelet-derived growth factor receptor α (PDGFRA) exons 12 and 18 was performed in cases with a relatively high proportion of either KIT- or DOG1-positive cells. The frequency of leiomyomas and schwannomas with KIT- and DOG1-positive ICCs was 35.2% (25/71 cases) and 5.7% (2/35 cases), respectively. Among the esophageal leiomyomas with KIT- and DOG-positive ICCs (14/25; 56.0%), 5 leiomyomas involved the muscularis mucosa and 9 leiomyomas involved the muscularis propria. All gastric leiomyomas with KIT- and DOG1-positive ICCs (11/25; 44%) involved the muscularis propria. All schwannomas with an increased proportion of KIT- or DOG1-positive ICCs were of gastric origin. No KIT or PDGFRA mutations were detected in 7 leiomyomas and 2 schwannomas. In conclusion, the majority of leiomyomas and the minority of schwannomas in the GIT had a significant portion of KIT- and DOG1-positive cells. All of the tumors were located in the upper GIT, and could be present in the muscularis propria or muscularis mucosa. The tumors represented a non-neoplastic proliferation of KIT- and DOG1-positive cells in the GIT. Careful evaluation of KIT- or DOG1

  1. Endoscopic resection of colorectal granular cell tumors

    PubMed Central

    Take, Iri; Shi, Qiang; Qi, Zhi-Peng; Cai, Shi-Lun; Yao, Li-Qing; Zhou, Ping-Hong; Zhong, Yun-Shi

    2015-01-01

    AIM: To determine the feasibility and effectiveness of endoscopic resection for the treatment of colorectal granular cell tumors (GCTs). METHODS: This was a retrospective study performed at a single institution. From January 2008 to April 2015, we examined a total of 11 lesions in 11 patients who were treated by an endoscopic procedure for colorectal GCTs in the Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China. Either endoscopic mucosal resection or endoscopic submucosal dissection (ESD) was performed by three surgeons with expertise in endoscopic treatment. The pre- and post-operative condition and follow-up of these patients were evaluated by colonoscopy and endoscopic ultrasonography (EUS). RESULTS: Of these 11 lesions, 2 were located in the cecum, 3 were in the ileocecal junction, 5 were in the ascending colon, and 1 was in the rectum. The median maximum diameter of the tumors was 0.81 cm (range 0.4-1.2 cm). The en bloc rate was 100%, and the complete resection rate was 90.9% (10/11). Post-operative pathology in one patient showed a tumor at the cauterization margin. However, during ESD, this lesion was removed en bloc, and no tumor tissue was seen in the wound. No perforations or delayed perforations were observed and emergency surgery was not required for complications. All patients were followed up to May 2015, and none had recurrence, metastasis, or complaints of discomfort. CONCLUSION: Endoscopic treatment performed by endoscopists with sufficient experience appears to be feasible and effective for colorectal GCTs. PMID:26730166

  2. A think tank of TINK/TANKs: tumor-infiltrating/tumor-associated natural killer cells in tumor progression and angiogenesis.

    PubMed

    Bruno, Antonino; Ferlazzo, Guido; Albini, Adriana; Noonan, Douglas M

    2014-08-01

    Tumor-infiltrating leukocytes are often induced by the cancer microenvironment to display a protumor, proangiogenic phenotype. This "polarization" has been described for several myeloid cells, in particular macrophages. Natural killer (NK) cells represent another population of innate immune cells able to infiltrate tumors. The role of NK in tumor progression and angiogenesis has not yet been fully investigated. Several studies have shown that tumor-infiltrating NK (here referred to as "TINKs") and tumor-associated NK (altered peripheral NK cells, which here we call "TANKs") are compromised in their ability to lysew tumor cells. Recent data have suggested that they are potentially protumorigenic and can also acquire a proangiogenic phenotype. Here we review the properties of TINKs and TANKs and compare their activities to that of NK cells endowed with a physiological proangiogenic phenotype, in particular decidual NK cells. We speculate on the potential origins of TINKs and TANKs and on the immune signals involved in their differentiation and polarization. The TINK and TANK phenotype has broad implications in the immune response to tumors, ranging from a deficient control of cancer and cancer stem cells to an altered crosstalk with other relevant players of the immune response, such as dendritic cells, to induction of cancer angiogenesis. With this recently acquired knowledge that has not yet been put into perspective, we point out new potential avenues for therapeutic intervention involving NK cells as a target or an ally in oncology. PMID:25178695

  3. A Think Tank of TINK/TANKs: Tumor-Infiltrating/Tumor-Associated Natural Killer Cells in Tumor Progression and Angiogenesis

    PubMed Central

    Bruno, Antonino; Ferlazzo, Guido; Albini, Adriana; Noonan, Douglas M.

    2014-01-01

    Tumor-infiltrating leukocytes are often induced by the cancer microenvironment to display a protumor, proangiogenic phenotype. This “polarization” has been described for several myeloid cells, in particular macrophages. Natural killer (NK) cells represent another population of innate immune cells able to infiltrate tumors. The role of NK in tumor progression and angiogenesis has not yet been fully investigated. Several studies have shown that tumor-infiltrating NK (here referred to as “TINKs”) and tumor-associated NK (altered peripheral NK cells, which here we call “TANKs”) are compromised in their ability to lysew tumor cells. Recent data have suggested that they are potentially protumorigenic and can also acquire a proangiogenic phenotype. Here we review the properties of TINKs and TANKs and compare their activities to that of NK cells endowed with a physiological proangiogenic phenotype, in particular decidual NK cells. We speculate on the potential origins of TINKs and TANKs and on the immune signals involved in their differentiation and polarization. The TINK and TANK phenotype has broad implications in the immune response to tumors, ranging from a deficient control of cancer and cancer stem cells to an altered crosstalk with other relevant players of the immune response, such as dendritic cells, to induction of cancer angiogenesis. With this recently acquired knowledge that has not yet been put into perspective, we point out new potential avenues for therapeutic intervention involving NK cells as a target or an ally in oncology. PMID:25178695

  4. Solid Tumor Therapy Using a Cannon and Pawn Combination Strategy.

    PubMed

    Song, Wantong; Tang, Zhaohui; Zhang, Dawei; Wen, Xue; Lv, Shixian; Liu, Zhilin; Deng, Mingxiao; Chen, Xuesi

    2016-01-01

    Nanocarrier-based anti-tumor drugs hold great promise for reducing side effects and improving tumor-site drug retention in the treatment of solid tumors. However, therapeutic outcomes are still limited, primarily due to a lack of drug penetration within most tumor tissues. Herein, we propose a strategy using a nanocarrier-based combination of vascular disrupting agents (VDAs) and cytotoxic drugs for solid tumor therapy. Specifically, combretastatin A-4 (CA4) serves as a "cannon" by eradicating tumor cells at a distance from blood vessels; concomitantly, doxorubicin (DOX) serves as a "pawn" by killing tumor cells in close proximity to blood vessels. This "cannon and pawn" combination strategy acts without a need to penetrate every tumor cell and is expected to eliminate all tumor cells in a solid tumor. In a murine C26 colon tumor model, this strategy proved effective in eradicating greater than 94% of tumor cells and efficiently inhibited tumor growth with a weekly injection. In large solid tumor models (C26 and 4T1 tumors with volumes of approximately 250 mm(3)), this strategy also proved effective for inhibiting tumor growth. These results showing remarkable inhibition of tumor growth provide a valuable therapeutic choice for solid tumor therapy. PMID:27217835

  5. Solid Tumor Therapy Using a Cannon and Pawn Combination Strategy

    PubMed Central

    Song, Wantong; Tang, Zhaohui; Zhang, Dawei; Wen, Xue; Lv, Shixian; Liu, Zhilin; Deng, Mingxiao; Chen, Xuesi

    2016-01-01

    Nanocarrier-based anti-tumor drugs hold great promise for reducing side effects and improving tumor-site drug retention in the treatment of solid tumors. However, therapeutic outcomes are still limited, primarily due to a lack of drug penetration within most tumor tissues. Herein, we propose a strategy using a nanocarrier-based combination of vascular disrupting agents (VDAs) and cytotoxic drugs for solid tumor therapy. Specifically, combretastatin A-4 (CA4) serves as a “cannon” by eradicating tumor cells at a distance from blood vessels; concomitantly, doxorubicin (DOX) serves as a “pawn” by killing tumor cells in close proximity to blood vessels. This “cannon and pawn” combination strategy acts without a need to penetrate every tumor cell and is expected to eliminate all tumor cells in a solid tumor. In a murine C26 colon tumor model, this strategy proved effective in eradicating greater than 94% of tumor cells and efficiently inhibited tumor growth with a weekly injection. In large solid tumor models (C26 and 4T1 tumors with volumes of approximately 250 mm3), this strategy also proved effective for inhibiting tumor growth. These results showing remarkable inhibition of tumor growth provide a valuable therapeutic choice for solid tumor therapy. PMID:27217835

  6. Expression of Hyaluronidase by Tumor Cells Induces Angiogenesis in vivo

    NASA Astrophysics Data System (ADS)

    Liu, Dacai; Pearlman, Eric; Diaconu, Eugenia; Guo, Kun; Mori, Hiroshi; Haqqi, Tariq; Markowitz, Sanford; Willson, James; Sy, Man-Sun

    1996-07-01

    Hyaluronic acid is a proteoglycan present in the extracellular matrix and is important for the maintenance of tissue architecture. Depolymerization of hyaluronic acid may facilitate tumor invasion. In addition, oligosaccharides of hyaluronic acid have been reported to induce angiogenesis. We report here that a hyaluronidase similar to the one on human sperm is expressed by metastatic human melanoma, colon carcinoma, and glioblastoma cell lines and by tumor biopsies from patients with colorectal carcinomas, but not by tissues from normal colon. Moreover, angiogenesis is induced by hyaluronidase+ tumor cells but not hyaluronidase- tumor cells and can be blocked by an inhibitor of hyaluronidase. Tumor cells thus use hyaluronidase as one of the ``molecular saboteurs'' to depolymerize hyaluronic acid to facilitate invasion. As a consequence, breakdown products of hyaluronic acid can further promote tumor establishment by inducing angiogenesis. Hyaluronidase on tumor cells may provide a target for anti-neoplastic drugs.

  7. ULTRASONOGRAPHIC FEATURES OF CANINE GASTROINTESTINAL STROMAL TUMORS COMPARED TO OTHER GASTROINTESTINAL SPINDLE CELL TUMORS.

    PubMed

    Hobbs, Joshua; Sutherland-Smith, James; Penninck, Dominique; Jennings, Samuel; Barber, Lisa; Barton, Bruce

    2015-01-01

    Canine gastrointestinal stromal tumors (GISTs) are a recent subtype of gastrointestinal spindle cell tumor recognized with the increasing use of immunohistochemistry. To our knowledge, no imaging features have been described in immunostochemically confirmed canine GISTs. The objective of this retrospective, cross-sectional study was to describe ultrasonographic features of canine GISTs compared with other spindle cell tumors. Thirty-seven dogs with an ultrasonographically visible gastrointestinal mass and a histopathologic diagnosis of spindle cell neoplasia were examined. Immunohistochemistry staining was performed for retrieved tissue samples to further differentiate the tumor type and each sample was interpreted by a single veterinary pathologist. Ultrasonographic features recorded examined included mass echogenicity, homogeneity, presence of cavitation, layer of origin, bowel wall symmetry, and loss of wall layering, location, size, vascularity, and evidence of perforation or ulceration. Tumor types included 19 GISTs, eight leiomyosarcomas, six leiomyomas, and four nonspecified sarcomas. Gastrointestinal stromal tumors were significantly more likely to be associated (P < 0.03) with abdominal effusion than other tumor types. There was overlap between the anatomical locations of all tumors types with the exception of the cecum where all eight tumors identified were GISTs. Besides location, there were no unique ultrasound features of GISTs that would allow distinction from other gastrointestinal spindle cell tumors. Similar to previous studies, GISTs appeared to be the most common spindle cell tumor associated with the cecum in our sample of dogs. The high frequency of abdominal effusion with GIST's was of unknown etiology could possibly have been due to septic peritonitis. PMID:25846814

  8. Giant Cell Tumor of the Peroneus Brevis Tendon Sheath

    PubMed Central

    Ch, Li; TH, Lui

    2015-01-01

    Introduction: Giant cell tumor of the tendon sheath is most commonly found in the flexor aspect of hand and wrist and is rare in the foot and ankle. Case report: A 49-year-old lady noticed a right lateral foot mass for 10 years. Magnetic resonance imaging suggested that the mass is originated from the peroneal tendons. The mass was excised and intra-operative findings showed that the tumor came from the peroneus brevis tendon sheath. Histological study confirmed the diagnosis of giant cell tumor. Conclusion: Giant cell tumor, although rare, should be one of the differential diagnoses of tendon sheath tumor of the foot and ankle. PMID:27299104

  9. Molecular genetics of testicular germ cell tumors

    PubMed Central

    Sheikine, Yuri; Genega, Elizabeth; Melamed, Jonathan; Lee, Peng; Reuter, Victor E.; Ye, Huihui

    2012-01-01

    Testicular germ cell tumors (TGCT) are the most common malignancy in young men. While most TGCT are potentially curable, approximately 5% of patients with TGCT may develop chemoresistance and die from the disease. This review article summarizes current knowledge in genetics underlying the development, progression and chemoresistance of TGCT. Most post-pubertal TGCT originate from intratubular germ cell neoplasia unclassified (IGCNU), which are transformed fetal gonocytes. Development of IGCNU may involve aberrantly activated KITLG/KIT pathway and overexpression of embryonic transcription factors such as NANOG and POU5F1, which leads to suppression of apoptosis, increased proliferation, and accumulation of mutations in gonocytes. Invasive TGCT consistently show gain of chromosome 12p, typically isochromosome 12p. Single gene mutations are uncommon in TGCT. KIT, TP53, KRAS/NRAS, and BRAF are genes most commonly mutated in TGCT and implicated in their pathogenesis. Different histologic subtypes of TGCT possess different gene expression profiles that reflect different directions of differentiation. Their distinct gene expression profiles are likely caused by epigenetic regulation, in particular DNA methylation, but not by gene copy number alterations. Resistance of TGCT to chemotherapy has been linked to karyotypic aberrations, single-gene mutations, and epigenetic regulation of gene expression in small-scale studies. The study of TGCT genetics could ultimately translate into development of new molecular diagnostic and therapeutic modalities for these tumors and improve the care of patients with these malignancies. PMID:22432056

  10. Pharmacogenomics of Scopoletin in Tumor Cells.

    PubMed

    Seo, Ean-Jeong; Saeed, Mohamed; Law, Betty Yuen Kwan; Wu, An Guo; Kadioglu, Onat; Greten, Henry Johannes; Efferth, Thomas

    2016-01-01

    Drug resistance and the severe side effects of chemotherapy necessitate the development of novel anticancer drugs. Natural products are a valuable source for drug development. Scopoletin is a coumarin compound, which can be found in several Artemisia species and other plant genera. Microarray-based RNA expression profiling of the NCI cell line panel showed that cellular response of scopoletin did not correlate to the expression of ATP-binding cassette (ABC) transporters as classical drug resistance mechanisms (ABCB1, ABCB5, ABCC1, ABCG2). This was also true for the expression of the oncogene EGFR and the mutational status of the tumor suppressor gene, TP53. However, mutations in the RAS oncogenes and the slow proliferative activity in terms of cell doubling times significantly correlated with scopoletin resistance. COMPARE and hierarchical cluster analyses of transcriptome-wide mRNA expression resulted in a set of 40 genes, which all harbored binding motifs in their promoter sequences for the transcription factor, NF-κB, which is known to be associated with drug resistance. RAS mutations, slow proliferative activity, and NF-κB may hamper its effectiveness. By in silico molecular docking studies, we found that scopoletin bound to NF-κB and its regulator IκB. Scopoletin activated NF-κB in a SEAP-driven NF-κB reporter cell line, indicating that NF-κB might be a resistance factor for scopoletin. In conclusion, scopoletin might serve as lead compound for drug development because of its favorable activity against tumor cells with ABC-transporter expression, although NF-κB activation may be considered as resistance factor for this compound. Further investigations are warranted to explore the full therapeutic potential of this natural product. PMID:27092478

  11. Targeted delivery of doxorubicin to breast cancer cells by aptamer functionalized DOTAP/DOPE liposomes.

    PubMed

    Song, Xingli; Ren, Yi; Zhang, Jing; Wang, Gang; Han, Xuedong; Zheng, Wei; Zhen, Linlin

    2015-10-01

    Doxorubicin is used to treat numerous types of tumors including breast cancer, yet dose-associated toxicities limit its clinical application. Here, we demonstrated a novel strategy by which to deliver doxorubicin to breast cancer cells by conjugating cancer cell-specific single-strand DNA aptamers with doxorubicin-encapsulated DOTAP:DOPE nanoparticles (NPs). We utilizing a whole-cell-SELEX strategy, and 4T1 cells with high invasive and metastatic potential were used as target cells, while non-invasive and non-metastatic 67NR cells were used as subtractive cells. Ten potential aptamers were generated after multi-pool selection. Studies on the selected aptamers revealed that SRZ1 had the highest and specific binding affinity to 4T1 cells. Then we developed SRZ1 aptamer-carried DOTAP:DOPE-DOX NPs. In vitro uptake results which were conducted by FACS indicated that the aptamer significantly promoted the uptake efficiency of DOTAP:DOPE-DOX NPs by 4T1 cells. ATPlite assay was performed to test 4T1, 67NR and NMuMG cell viability after treatment with free doxorubicin, DOTAP:DOPE-DOX particles and aptamer‑loaded DOTAP:DOPE-DOX particles. As expected, the aptamers effectively enhanced accumulation of doxorubicin in the 4T1 tumor tissues as determined by in vivo mouse body images and biodistribution analysis. Consistent with the in vitro findings, aptamer-conjugated doxorubicin-loaded DOTAP:DOPE particles markedly suppressed tumor growth and significantly increased the survival rate of 4T1 tumor-bearing mice. These studies demonstrated that aptamer SRZ1 could be a promising molecule for chemotherapeutic drug targeting deliver. PMID:26238192

  12. On the 6A 1 ← 4T 1 luminescence of Fe 3+ in disordered nanocrystalline LiGa 5O 8 prepared by a combustion reaction

    NASA Astrophysics Data System (ADS)

    Riesen, Hans

    2008-08-01

    A combustion reaction yields nanocrystalline LiGa 5O 8 in the inverse-spinel phase ( Fd3 m) in contrast to previous attempts by quenching microcrystalline powders from 1350 °C. This follows from XRD, IR and luminescence spectra of Fe 3+ at 298, 78 and 2.5 K. The ordered phase is obtained by calcination at 900 °C of the combustion product. The Fe 3+ luminescence is assigned to the 6A 1(S) ← 4T 1(G) transition of ions in tetrahedral sites in both polymorphs; this is confirmed by the similar behaviour of the 4A 2(F) ← 4T 1(P) luminescence of Co 2+ upon the order-disorder transition. The variation of the luminescence spectra is explained in terms of inhomogeneity and the Td → C3 symmetry reduction.

  13. Tumor infiltrating immune cells in gliomas and meningiomas.

    PubMed

    Domingues, Patrícia; González-Tablas, María; Otero, Álvaro; Pascual, Daniel; Miranda, David; Ruiz, Laura; Sousa, Pablo; Ciudad, Juana; Gonçalves, Jesús María; Lopes, María Celeste; Orfao, Alberto; Tabernero, María Dolores

    2016-03-01

    Tumor-infiltrating immune cells are part of a complex microenvironment that promotes and/or regulates tumor development and growth. Depending on the type of cells and their functional interactions, immune cells may play a key role in suppressing the tumor or in providing support for tumor growth, with relevant effects on patient behavior. In recent years, important advances have been achieved in the characterization of immune cell infiltrates in central nervous system (CNS) tumors, but their role in tumorigenesis and patient behavior still remain poorly understood. Overall, these studies have shown significant but variable levels of infiltration of CNS tumors by macrophage/microglial cells (TAM) and to a less extent also lymphocytes (particularly T-cells and NK cells, and less frequently also B-cells). Of note, TAM infiltrate gliomas at moderate numbers where they frequently show an immune suppressive phenotype and functional behavior; in contrast, infiltration by TAM may be very pronounced in meningiomas, particularly in cases that carry isolated monosomy 22, where the immune infiltrates also contain greater numbers of cytotoxic T and NK-cells associated with an enhanced anti-tumoral immune response. In line with this, the presence of regulatory T cells, is usually limited to a small fraction of all meningiomas, while frequently found in gliomas. Despite these differences between gliomas and meningiomas, both tumors show heterogeneous levels of infiltration by immune cells with variable functionality. In this review we summarize current knowledge about tumor-infiltrating immune cells in the two most common types of CNS tumors-gliomas and meningiomas-, as well as the role that such immune cells may play in the tumor microenvironment in controlling and/or promoting tumor development, growth and control. PMID:26216710

  14. Tumor Heterogeneity, Single-Cell Sequencing, and Drug Resistance.

    PubMed

    Schmidt, Felix; Efferth, Thomas

    2016-01-01

    Tumor heterogeneity has been compared with Darwinian evolution and survival of the fittest. The evolutionary ecosystem of tumors consisting of heterogeneous tumor cell populations represents a considerable challenge to tumor therapy, since all genetically and phenotypically different subpopulations have to be efficiently killed by therapy. Otherwise, even small surviving subpopulations may cause repopulation and refractory tumors. Single-cell sequencing allows for a better understanding of the genomic principles of tumor heterogeneity and represents the basis for more successful tumor treatments. The isolation and sequencing of single tumor cells still represents a considerable technical challenge and consists of three major steps: (1) single cell isolation (e.g., by laser-capture microdissection), fluorescence-activated cell sorting, micromanipulation, whole genome amplification (e.g., with the help of Phi29 DNA polymerase), and transcriptome-wide next generation sequencing technologies (e.g., 454 pyrosequencing, Illumina sequencing, and other systems). Data demonstrating the feasibility of single-cell sequencing for monitoring the emergence of drug-resistant cell clones in patient samples are discussed herein. It is envisioned that single-cell sequencing will be a valuable asset to assist the design of regimens for personalized tumor therapies based on tumor subpopulation-specific genetic alterations in individual patients. PMID:27322289

  15. Tumor Heterogeneity, Single-Cell Sequencing, and Drug Resistance

    PubMed Central

    Schmidt, Felix; Efferth, Thomas

    2016-01-01

    Tumor heterogeneity has been compared with Darwinian evolution and survival of the fittest. The evolutionary ecosystem of tumors consisting of heterogeneous tumor cell populations represents a considerable challenge to tumor therapy, since all genetically and phenotypically different subpopulations have to be efficiently killed by therapy. Otherwise, even small surviving subpopulations may cause repopulation and refractory tumors. Single-cell sequencing allows for a better understanding of the genomic principles of tumor heterogeneity and represents the basis for more successful tumor treatments. The isolation and sequencing of single tumor cells still represents a considerable technical challenge and consists of three major steps: (1) single cell isolation (e.g., by laser-capture microdissection), fluorescence-activated cell sorting, micromanipulation, whole genome amplification (e.g., with the help of Phi29 DNA polymerase), and transcriptome-wide next generation sequencing technologies (e.g., 454 pyrosequencing, Illumina sequencing, and other systems). Data demonstrating the feasibility of single-cell sequencing for monitoring the emergence of drug-resistant cell clones in patient samples are discussed herein. It is envisioned that single-cell sequencing will be a valuable asset to assist the design of regimens for personalized tumor therapies based on tumor subpopulation-specific genetic alterations in individual patients. PMID:27322289

  16. Dendritic-Tumor Fusion Cell-Based Cancer Vaccines

    PubMed Central

    Koido, Shigeo

    2016-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells (APCs) that play a critical role in the induction of antitumor immunity. Therefore, various strategies have been developed to deliver tumor-associated antigens (TAAs) to DCs as cancer vaccines. The fusion of DCs and whole tumor cells to generate DC-tumor fusion cells (DC-tumor FCs) is an alternative strategy to treat cancer patients. The cell fusion method allows DCs to be exposed to the broad array of TAAs originally expressed by whole tumor cells. DCs then process TAAs endogenously and present them through major histocompatibility complex (MHC) class I and II pathways in the context of costimulatory molecules, resulting in simultaneous activation of both CD4+ and CD8+ T cells. DC-tumor FCs require optimized enhanced immunogenicity of both DCs and whole tumor cells. In this context, an effective fusion strategy also needs to produce immunogenic DC-tumor FCs. We discuss the potential ability of DC-tumor FCs and the recent progress in improving clinical outcomes by DC-tumor FC-based cancer vaccines. PMID:27240347

  17. Transcription of a novel mouse semaphorin gene, M-semaH, correlates with the metastatic ability of mouse tumor cell lines.

    PubMed

    Christensen, C R; Klingelhöfer, J; Tarabykina, S; Hulgaard, E F; Kramerov, D; Lukanidin, E

    1998-03-15

    In the attempt to identify genes associated with metastasis, we have compared gene expressions of two metastatic cell lines, 4T1 and 66cl4, and one noninvasive, nonmetastatic cell line, 67NR, which originate from the same mouse mammary adenocarcinoma. Using the technique of differential display, we identified a novel member of the semaphorin/collapsin family in the two metastatic cell lines. We have named it M-semaH. Northern hybridization to a panel of tumor cell lines revealed transcripts in 12 of 12 metastatic cell lines but in only 2 of 6 nonmetastatic cells and none in immortalized mouse fibroblasts. To our knowledge, this is the first time that the expression of a semaphorin gene has been shown to correlate positively with tumor progression. We have characterized two transcripts present in the tumor cells. One transcript, M-semaH-v, is a putative splice variant, which is less abundant in normal tissue and lacks 478 bp in the 3' untranslated region. Both transcripts encode the same 775 amino acids with the features of a secreted glycoprotein. Northern analysis suggests that the M-semaH gene is involved in embryonic development and in situ hybridization locates the M-semaH expression to the developing lungs, to developing skeletal elements, and to the ventral horns of the developing neural tube. PMID:9515811

  18. Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages

    PubMed Central

    Ugel, Stefano; De Sanctis, Francesco; Mandruzzato, Susanna; Bronte, Vincenzo

    2015-01-01

    The generation of an inflammatory environment is favorable and often decisive for the growth of both primary tumors and metastases. Tumor cells either express membrane molecules or release tumor-derived soluble factors able to alter myelopoiesis. Tumor-reprogrammed myeloid cells not only create a tolerogenic environment by blocking T cell functions and proliferation, but also directly drive tumor growth by promoting cancer stemness, angiogenesis, stroma deposition, epithelial-to-mesenchymal transition, and metastasis formation. In this Review, we discuss the interplay between immunosuppressive and protumoral myeloid cells and detail their immune-regulatory mechanisms, the molecular pathways involved in their differentiation, as well as their potential role as prognostic and diagnostic biomarkers and prospective targets for innovative approaches to treat tumor-bearing hosts. PMID:26325033

  19. Experimental Adaptation of Rotaviruses to Tumor Cell Lines

    PubMed Central

    Guerrero, Carlos A.; Guerrero, Rafael A.; Silva, Elver; Acosta, Orlando; Barreto, Emiliano

    2016-01-01

    A number of viruses show a naturally extended tropism for tumor cells whereas other viruses have been genetically modified or adapted to infect tumor cells. Oncolytic viruses have become a promising tool for treating some cancers by inducing cell lysis or immune response to tumor cells. In the present work, rotavirus strains TRF-41 (G5) (porcine), RRV (G3) (simian), UK (G6-P5) (bovine), Ym (G11-P9) (porcine), ECwt (murine), Wa (G1-P8), Wi61 (G9) and M69 (G8) (human), and five wild-type human rotavirus isolates were passaged multiple times in different human tumor cell lines and then combined in five different ways before additional multiple passages in tumor cell lines. Cell death caused by the tumor cell-adapted isolates was characterized using Hoechst, propidium iodide, 7-AAD, Annexin V, TUNEL, and anti-poly-(ADP ribose) polymerase (PARP) and -phospho-histone H2A.X antibodies. Multiple passages of the combined rotaviruses in tumor cell lines led to a successful infection of these cells, suggesting a gain-of-function by the acquisition of greater infectious capacity as compared with that of the parental rotaviruses. The electropherotype profiles suggest that unique tumor cell-adapted isolates were derived from reassortment of parental rotaviruses. Infection produced by such rotavirus isolates induced chromatin modifications compatible with apoptotic cell death. PMID:26828934

  20. Pseudopapillary Granulosa Cell Tumor: A Case of This Rare Subtype.

    PubMed

    Heller, Debra; Haddad, Andrew; Cracchiolo, Bernadette

    2016-08-01

    Background The pseudopapillary pattern of granulosa cell tumor is rare. Case We describe the case of a 35-year-old woman who presented with an initial diagnosis of papillary serous cystadenocarcinoma. Results Evaluation, including immunohistochemistry, led to the diagnosis of pseudopapillary granulosa cell tumor. Conclusion The pseudopapillary pattern of granulosa cell tumor is rare and must be suspected in order to utilize appropriate immunohistochemistry and reach the correct diagnosis. Inhibin positivity is particularly helpful. PMID:27020373

  1. Tumor-Related Methylated Cell-Free DNA and Circulating Tumor Cells in Melanoma

    PubMed Central

    Salvianti, Francesca; Orlando, Claudio; Massi, Daniela; De Giorgi, Vincenzo; Grazzini, Marta; Pazzagli, Mario; Pinzani, Pamela

    2016-01-01

    Solid tumor release into the circulation cell-free DNA (cfDNA) and circulating tumor cells (CTCs) which represent promising biomarkers for cancer diagnosis. Circulating tumor DNA may be studied in plasma from cancer patients by detecting tumor specific alterations, such as genetic or epigenetic modifications. Ras association domain family 1 isoform A (RASSF1A) is a tumor suppressor gene silenced by promoter hypermethylation in a variety of human cancers including melanoma. The aim of the present study was to assess the diagnostic performance of a tumor-related methylated cfDNA marker in melanoma patients and to compare this parameter with the presence of CTCs. RASSF1A promoter methylation was quantified in cfDNA by qPCR in a consecutive series of 84 melanoma patients and 68 healthy controls. In a subset of 68 cases, the presence of CTCs was assessed by a filtration method (Isolation by Size of Epithelial Tumor Cells, ISET) as well as by an indirect method based on the detection of tyrosinase mRNA by RT-qPCR. The distribution of RASSF1A methylated cfDNA was investigated in cases and controls and the predictive capability of this parameter was assessed by means of the area under the ROC curve (AUC). The percentage of cases with methylated RASSF1A promoter in cfDNA was significantly higher in each class of melanoma patients (in situ, invasive and metastatic) than in healthy subjects (Pearson chi-squared test, p < 0.001). The concentration of RASSF1A methylated cfDNA in the subjects with a detectable quantity of methylated alleles was significantly higher in melanoma patients than in controls. The biomarker showed a good predictive capability (in terms of AUC) in discriminating between melanoma patients and healthy controls. This epigenetic marker associated to cfDNA did not show a significant correlation with the presence of CTCs, but, when the two parameters are jointly considered, we obtain a higher sensitivity of the detection of positive cases in invasive and

  2. Detection and Characterization of Circulating Tumor Cells

    NASA Astrophysics Data System (ADS)

    Bruce, Richard

    2009-03-01

    Circulating tumor cells (CTCs) occur in blood below the concentration of 1 cell in a hundred thousand white blood cells and can provide prognostic and diagnostic information about the underlying disease. While numeration of CTCs has provided useful information on progression-free and overall survival, it does not provide guidance of treatment choice. Since CTCs are presumed contain features of the metastatic tissue, characterization of cancer markers on these cells could help selection of treatment. At such low concentrations, reliable location and identification of these cells represents a significant technical challenge. Automated digital microscopy (ADM) provides high levels of sensitivity, but the analysis time is prohibitively long for a clinical assay. Enrichment methods have been developed to reduce sample size but can result in cell loss. A major barrier in reliable enrichment stems from the biological heterogeneity of CTCs, exhibited in a wide range of genetic, biochemical, immunological and biological characteristics. We have developed an approach that uses fiber-optic array scanning technology (FAST) to detect CTCs. Here, laser-printing optics are used to excite 300,000 cells/sec, and fluorescence from immuno-labels is collected in an array of optical fibers that forms a wide collection aperture. The FAST cytometer can locate CTCs at a rate that is 500 times faster than an ADM with comparable sensitivity and improved specificity. With this high scan rate, no enrichment of CTCs is required. The target can be a cytoplasm protein with a very high expression level, which reduces sensitivity to CTC heterogeneity. We use this method to measure expression levels of multiple markers on CTCs to help predict effective cancer treatment.

  3. The metabolic advantage of tumor cells

    PubMed Central

    2011-01-01

    1- Oncogenes express proteins of "Tyrosine kinase receptor pathways", a receptor family including insulin or IGF-Growth Hormone receptors. Other oncogenes alter the PP2A phosphatase brake over these kinases. 2- Experiments on pancreatectomized animals; treated with pure insulin or total pancreatic extracts, showed that choline in the extract, preserved them from hepatomas. Since choline is a methyle donor, and since methylation regulates PP2A, the choline protection may result from PP2A methylation, which then attenuates kinases. 3- Moreover, kinases activated by the boosted signaling pathway inactivate pyruvate kinase and pyruvate dehydrogenase. In addition, demethylated PP2A would no longer dephosphorylate these enzymes. A "bottleneck" between glycolysis and the oxidative-citrate cycle interrupts the glycolytic pyruvate supply now provided via proteolysis and alanine transamination. This pyruvate forms lactate (Warburg effect) and NAD+ for glycolysis. Lipolysis and fatty acids provide acetyl CoA; the citrate condensation increases, unusual oxaloacetate sources are available. ATP citrate lyase follows, supporting aberrant transaminations with glutaminolysis and tumor lipogenesis. Truncated urea cycles, increased polyamine synthesis, consume the methyl donor SAM favoring carcinogenesis. 4- The decrease of butyrate, a histone deacetylase inhibitor, elicits epigenic changes (PETEN, P53, IGFBP decrease; hexokinase, fetal-genes-M2, increase) 5- IGFBP stops binding the IGF - IGFR complex, it is perhaps no longer inherited by a single mitotic daughter cell; leading to two daughter cells with a mitotic capability. 6- An excess of IGF induces a decrease of the major histocompatibility complex MHC1, Natural killer lymphocytes should eliminate such cells that start the tumor, unless the fever prostaglandin PGE2 or inflammation, inhibit them... PMID:21649891

  4. Reprogramming the tumor microenvironment: tumor-induced immunosuppressive factors paralyze T cells

    PubMed Central

    Wu, Annie A; Drake, Virginia; Huang, Huai-Shiuan; Chiu, ShihChi; Zheng, Lei

    2015-01-01

    It has become evident that tumor-induced immuno-suppressive factors in the tumor microenvironment play a major role in suppressing normal functions of effector T cells. These factors serve as hurdles that limit the therapeutic potential of cancer immunotherapies. This review focuses on illustrating the molecular mechanisms of immunosuppression in the tumor microenvironment, including evasion of T-cell recognition, interference with T-cell trafficking, metabolism, and functions, induction of resistance to T-cell killing, and apoptosis of T cells. A better understanding of these mechanisms may help in the development of strategies to enhance the effectiveness of cancer immunotherapies. PMID:26140242

  5. Antiangiogenic Variant of TSP-1 Targets Tumor Cells in Glioblastomas

    PubMed Central

    Choi, Sung Hugh; Tamura, Kaoru; Khajuria, Rajiv Kumar; Bhere, Deepak; Nesterenko, Irina; Lawler, Jack; Shah, Khalid

    2015-01-01

    Three type-1 repeat (3TSR) domain of thrombospondin-1 is known to have anti-angiogenic effects by targeting tumor-associated endothelial cells, but its effect on tumor cells is unknown. This study explored the potential of 3TSR to target glioblastoma (GBM) cells in vitro and in vivo. We show that 3TSR upregulates death receptor (DR) 4/5 expression in a CD36-dependent manner and primes resistant GBMs to tumor necrosis factor–related apoptosis-inducing ligand (TRAIL)-induced caspase-8/3/7 mediated apoptosis. We engineered human mesenchymal stem cells (MSC) for on-site delivery of 3TSR and a potent and secretable variant of TRAIL (S-TRAIL) in an effort to simultaneously target tumor cells and associated endothelial cells and circumvent issues of systemic delivery of drugs across the blood–brain barrier. We show that MSC-3TSR/S-TRAIL inhibits tumor growth in an expanded spectrum of GBMs. In vivo, a single administration of MSC-3TSR/S-TRAIL significantly targets both tumor cells and vascular component of GBMs, inhibits tumor progression, and extends survival of mice bearing highly vascularized GBM. The ability of 3TSR/S-TRAIL to simultaneously act on tumor cells and tumor-associated endothelial cells offers a great potential to target a broad spectrum of cancers and translate 3TSR/TRAIL therapies into clinics. PMID:25358253

  6. Host cell infiltration into PDT-treated tumor

    NASA Astrophysics Data System (ADS)

    Korbelik, Mladen; Krosl, Gorazd; Dougherty, Graeme J.; Chaplin, David J.

    1992-06-01

    C3H mice bearing SCCVII squamous cell carcinoma were treated with photodynamic therapy (PDT) 24 hours after receiving Photofrin (25 mg/kg, i.v.). Single cell suspensions obtained by the enzymatic digestion of tumors excised either 30 minutes or 4 hours after PDT were analyzed for the content of host immune cells and colony forming ability of malignant cells. The results were compared to the data obtained with non-treated tumors. It is shown that there is a marked increase in the content of cells expressing Mac-1 (monocytes/macrophages or granulocytes) in the tumor 30 minutes post PDT, while a high level of other leucocytes are found within the tumors by 4 hours after PDT. As elaborated in Discussion, the infiltration rate of host immune cells, dying of malignant tumor cells, and yet unknown death rate of host cells originally present in PDT treated tumor occurring concomitantly during this time period complicates this analysis. The results of this study suggest a massive infiltration of macrophages and other leucocytes in PDT treated SCCVII tumor, supporting the suggestion that a potent immune reaction is one of the main characteristics of PDT action in solid tumors. It remains to be determined to what extent is the activity of tumor infiltrating immune cells responsible for its eradication by PDT.

  7. Tumor-derived circulating endothelial cell clusters in colorectal cancer.

    PubMed

    Cima, Igor; Kong, Say Li; Sengupta, Debarka; Tan, Iain B; Phyo, Wai Min; Lee, Daniel; Hu, Min; Iliescu, Ciprian; Alexander, Irina; Goh, Wei Lin; Rahmani, Mehran; Suhaimi, Nur-Afidah Mohamed; Vo, Jess H; Tai, Joyce A; Tan, Joanna H; Chua, Clarinda; Ten, Rachel; Lim, Wan Jun; Chew, Min Hoe; Hauser, Charlotte A E; van Dam, Rob M; Lim, Wei-Yen; Prabhakar, Shyam; Lim, Bing; Koh, Poh Koon; Robson, Paul; Ying, Jackie Y; Hillmer, Axel M; Tan, Min-Han

    2016-06-29

    Clusters of tumor cells are often observed in the blood of cancer patients. These structures have been described as malignant entities for more than 50 years, although their comprehensive characterization is lacking. Contrary to current consensus, we demonstrate that a discrete population of circulating cell clusters isolated from the blood of colorectal cancer patients are not cancerous but consist of tumor-derived endothelial cells. These clusters express both epithelial and mesenchymal markers, consistent with previous reports on circulating tumor cell (CTC) phenotyping. However, unlike CTCs, they do not mirror the genetic variations of matched tumors. Transcriptomic analysis of single clusters revealed that these structures exhibit an endothelial phenotype and can be traced back to the tumor endothelium. Further results show that tumor-derived endothelial clusters do not form by coagulation or by outgrowth of single circulating endothelial cells, supporting a direct release of clusters from the tumor vasculature. The isolation and enumeration of these benign clusters distinguished healthy volunteers from treatment-naïve as well as pathological early-stage (≤IIA) colorectal cancer patients with high accuracy, suggesting that tumor-derived circulating endothelial cell clusters could be used as a means of noninvasive screening for colorectal cancer. In contrast to CTCs, tumor-derived endothelial cell clusters may also provide important information about the underlying tumor vasculature at the time of diagnosis, during treatment, and throughout the course of the disease. PMID:27358499

  8. The chemosensitivity of testicular germ cell tumors.

    PubMed

    Voutsadakis, Ioannis A

    2014-04-01

    Although rare cancers overall, testicular germ cell tumors (TGCTs) are the most common type of cancer in young males below 40 years of age. Both subtypes of TGCTs, i.e., seminomas and non-seminomas, are highly curable and the majority of even metastatic patients may expect to be cured. These high cure rates are not due to the indolent nature of these cancers, but rather to their sensitivity to chemotherapy (and for seminomas to radiotherapy). The delineation of the cause of chemosensitivity at the molecular level is of paramount importance, because it may provide insights into the minority of TGCTs that are chemo-resistant and, thereby, provide opportunities for specific therapeutic interventions aimed at reverting them to chemosensitivity. In addition, delineation of the molecular basis of TGCT chemo-sensitivity may be informative for the cause of chemo-resistance of other more common types of cancer and, thus, may create new therapeutic leads. p53, a frequently mutated tumor suppressor in cancers in general, is not mutated in TGCTs, a fact that has implications for their chemo-sensitivity. Oct4, an embryonic transcription factor, is uniformly expressed in the seminoma and embryonic carcinoma components of non-seminomas, and its interplay with p53 may be important in the chemotherapy response of these tumors. This interplay, together with other features of TGCTs such as the gain of genetic material from the short arm of chromosome 12 and the association with disorders of testicular development, will be discussed in this paper and integrated in a unifying hypothesis that may explain their chemo-sensitivity. PMID:24692098

  9. Thymic stromal lymphopoietin (TSLP) inhibits human colon tumor growth by promoting apoptosis of tumor cells

    PubMed Central

    Yang, Xuguang; Li, Bingji; Liu, Jie; He, Rui

    2016-01-01

    Thymic stromal lymphopoietin (TSLP) has recently been suggested in several epithelial cancers, either pro-tumor or anti-tumor. However, the role of TSLP in colon cancer remains unknown. We here found significantly decreased TSLP levels in tumor tissues compared with tumor-surrounding tissues of patients with colon cancer and TSLP levels negatively correlated with the clinical staging score of colon cancer. TSLPR, the receptor of TSLP, was expressed in all three colon cancer cell lines investigated and colon tumor tissues. The addition of TSLP significantly enhanced apoptosis of colon cancer cells in a TSLPR-dependent manner. Interestingly, TSLP selectively induced the apoptosis of colon cancer cells, but not normal colonic epithelial cells. Furthermore, we demonstrated that TSLP induced JNK and p38 activation and initiated apoptosis mainly through the extrinsic pathway, as caspase-8 inhibitor significantly reversed the apoptosis-promoting effect of TSLP. Finally, using a xenograft mouse model, we demonstrated that peritumoral administration of TSLP greatly reduced tumor growth accompanied with extensive tumor apoptotic response, which was abolished by tumor cell-specific knockdown of TSLPR. Collectively, our study reveals a novel anti-tumor effect of TSLP via direct promotion of the apoptosis of colon cancer cells, and suggests that TSLP could be of value in treating colon cancer. PMID:26919238

  10. DAPK loss in colon cancer tumor buds: implications for migration capacity of disseminating tumor cells

    PubMed Central

    Karamitopoulou, Eva; Dawson, Heather; Koelzer, Viktor Hendrik; Agaimy, Abbas; Garreis, Fabian; Söder, Stephan; Laqua, William; Lugli, Alessandro; Hartmann, Arndt; Rau, Tilman T.; Schneider-Stock, Regine

    2015-01-01

    Defining new therapeutic strategies to overcome therapy resistance due to tumor heterogeneity in colon cancer is challenging. One option is to explore the molecular profile of aggressive disseminating tumor cells. The cytoskeleton-associated Death-associated protein kinase (DAPK) is involved in the cross talk between tumor and immune cells at the invasion front of colorectal cancer. Here dedifferentiated tumor cells histologically defined as tumor budding are associated with a high risk of metastasis and poor prognosis. Analyzing samples from 144 colorectal cancer patients we investigated immunhistochemical DAPK expression in different tumor regions such as center, invasion front, and buds. Functional consequences for tumor aggressiveness were studied in a panel of colon tumor cell lines using different migration, wound healing, and invasion assays. DAPK levels were experimentally modified by siRNA transfection and overexpression as well as inhibitor treatments. We found that DAPK expression was reduced towards the invasion front and was nearly absent in tumor buds. Applying the ECIS system with HCT116 and HCT116 stable lentiviral DAPK knock down cells (HCTshDAPK) we identified an important role for DAPK in decreasing the migratory capacity whereas proliferation was not affected. Furthermore, the migration pattern differed with HCTshDAPK cells showing a cluster-like migration of tumor cell groups. DAPK inhibitor treatment revealed that the migration rate was independent of DAPK's catalytic activity. Modulation of DAPK expression level in SW480 and DLD1 colorectal cancer cells significantly influenced wound closure rate. DAPK seems to be a major player that influences the migratory capability of disseminating tumor cells and possibly affects the dynamic interface between pro- and anti-survival factors at the invasion front of colorectal cancer. This interesting and new finding requires further evaluation. PMID:26405175

  11. Transcriptional targeting of tumor endothelial cells for gene therapy

    PubMed Central

    Dong, Zhihong; Nör, Jacques E.

    2009-01-01

    It is well known that angiogenesis plays a critical role in the pathobiology of tumors. Recent clinical trials have shown that inhibition of angiogenesis can be an effective therapeutic strategy for patients with cancer. However, one of the outstanding issues in anti-angiogenic treatment for cancer is the development of toxicities related to off-target effects of drugs. Transcriptional targeting of tumor endothelial cells involves the use of specific promoters for selective expression of therapeutic genes in the endothelial cells lining the blood vessels of tumors. Recently, several genes that are expressed specifically in tumor-associated endothelial cells have been identified and characterized. These discoveries have enhanced the prospectus of transcriptionaly targeting tumor endothelial cells for cancer gene therapy. In this manuscript, we review the promoters, vectors, and therapeutic genes that have been used for transcriptional targeting of tumor endothelial cells, and discuss the prospects of such approaches for cancer gene therapy. PMID:19393703

  12. Mathematical Modeling of Tumor Cell Growth and Immune System Interactions

    NASA Astrophysics Data System (ADS)

    Rihan, Fathalla A.; Safan, Muntaser; Abdeen, Mohamed A.; Abdel-Rahman, Duaa H.

    In this paper, we provide a family of ordinary and delay differential equations to describe the dynamics of tumor-growth and immunotherapy interactions. We explore the effects of adoptive cellular immunotherapy on the model and describe under what circumstances the tumor can be eliminated. The possibility of clearing the tumor, with a strategy, is based on two parameters in the model: the rate of influx of the effector cells, and the rate of influx of IL2. The critical tumor-growth rate, below which endemic tumor does not exist, has been found. One can use the model to make predictions about tumor-dormancy.

  13. Radiofrequency thermal ablation of breast tumors combined with intralesional administration of IL-7 and IL-15 augments anti-tumor immune responses and inhibits tumor development and metastasis

    PubMed Central

    Habibi, Mehran; Kmieciak, Maciej; Graham, Laura; Morales, Johanna K; Bear, Harry D; Manjili, Masoud H

    2008-01-01

    Tumor development or recurrence is always a matter of concern following radiofrequency thermal ablation (RFA) of tumors. To determine whether combining RFA with immunologically active cytokines might induce tumor-specific immune responses against mammary carcinoma and inhibit tumor development or metastasis, we evaluated intralesional injection of IL-7 and IL-15 in RFA-treated murine tumors. We used two different breast carcinoma models: neu-overexpressing mouse mammary carcinoma (MMC) in FVBN202 transgenic mouse and 4T1 tumors in Balb/c mouse. MMC tend to relapse even in the presence of neu-specific immune responses, and 4T1 is a weakly immunogenic, aggressive and highly metastatic transplantable tumor. In vivo growth of both of these tumors is also associated with increased numbers of CD11b+Gr1+ myeloid-derived suppressor cells (MDSC). We showed for the first time that unlike RFA alone, RFA combined with the administration of intralesional IL-7 and IL-15 (after RFA), induced immune responses to tumors, inhibited tumor development and lung metastasis, and reduced MDSC. PMID:18425677

  14. Giant Cell Tumor of Tendon Sheath

    PubMed Central

    Briët, Jan Paul; Becker, Stéphanie JE; Oosterhoff, Thijs CH; Ring, David

    2015-01-01

    Background: Giant cell tumor of tendon sheath (GCTTS) is often thought of as a volar finger mass. We hypothesized that GCTTS are equally common on the dorsal and volar aspects of the hand. In addition, we hypothesized that there are no factors associated with the location (volar versus dorsal) and largest measured dimension of a GCTTS. Methods: A total of 126 patients with a pathological diagnosis of a GCTTS of the hand or finger were reviewed. Basic demographic and GCTTS specific information was obtained. Bivariable analyses were used to assess predicting factors for location (volar or dorsal side) and largest measured diameter of a GCTTS. Results: Seventy-two tumors (57%) were on the volar side of the hand, 47 (37%) were dorsal, 6 (4.8%) were both dorsal and volar, and one was midaxial (0.79%). The most common site of a GCTTS was the index finger (30%). There were no factors significantly associated with the location (volar or dorsal, n=119) of the GCTTS. There were also no factors significantly associated with a larger diameter of a GCTTS. Conclusions: A GCTTS was more frequently seen on the volar aspect of the hand. No significant factors associated with the location or an increased size of a GCTTS were found in this study. PMID:25692164

  15. Myeloid Cells as Targets for Therapy in Solid Tumors.

    PubMed

    Cotechini, Tiziana; Medler, Terry R; Coussens, Lisa M

    2015-01-01

    It is well established that cancer development ensues based on reciprocal interactions between genomically altered neoplastic cells and diverse populations of recruited "host" cells co-opted to support malignant progression. Among the host cells recruited into tumor microenvironments, several subtypes of myeloid cells, including macrophages, monocytes, dendritic cells, and granulocytes contribute to tumor development by providing tumor-promoting factors as well as a spectrum of molecules that suppress cytotoxic activities of T lymphocytes. Based on compelling preclinical data revealing that inhibition of critical myeloid-based programs leads to tumor suppression, novel immune-based therapies and approaches are now entering the clinic for evaluation. This review discusses mechanisms underlying protumorigenic programming of myeloid cells and discusses how targeting of these has potential to attenuate solid tumor progression via the induction and of mobilization CD8 cytotoxic T cell immunity. PMID:26222088

  16. Myeloid Cells as Targets for Therapy in Solid Tumors

    PubMed Central

    Cotechini, Tiziana; Medler, Terry R.; Coussens, Lisa M.

    2016-01-01

    It is well established that cancer development ensues based on reciprocal interactions between genomically altered neoplastic cells and diverse populations of recruited “host” cells co-opted to support malignant progression. Among the host cells recruited into tumor microenvironments, several subtypes of myeloid cells, including macrophages, monocytes, dendritic cells, and granulocytes contribute to tumor development by providing tumor-promoting factors as well as a spectrum of molecules that suppress cytotoxic activities of T lymphocytes. Based on compelling preclinical data revealing that inhibition of critical myeloid-based programs leads to tumor suppression, novel immune-based therapies and approaches are now entering the clinic for evaluation. This review discusses mechanisms underlying protumorigenic programming of myeloid cells and discusses how targeting of these has potential to attenuate solid tumor progression via the induction and of mobilization CD8+ cytotoxic T cell immunity. PMID:26222088

  17. Platelets surrounding primary tumor cells are related to chemoresistance.

    PubMed

    Ishikawa, Satoko; Miyashita, Tomoharu; Inokuchi, Masafumi; Hayashi, Hironori; Oyama, Katsunobu; Tajima, Hidehiro; Takamura, Hironori; Ninomiya, Itasu; Ahmed, A Karim; Harman, John W; Fushida, Sachio; Ohta, Tetsuo

    2016-08-01

    Platelets are crucial components of the tumor microenvironment that function to promote tumor progression and metastasis. In the circulation, the interaction between tumor cells and platelets increases invasiveness, protects tumor cells from shear stress and immune surveillance, and facilitates tumor cell extravasation to distant sites. However, the role and presence of platelets in the primary tumor have not been fully determined. Here, we investigated the presence of platelets around breast cancer primary tumor cells and the associations between these cells. We further investigated the associations among platelets, tumor cells, chemoresistance, and epithelial-mesenchymal transition (EMT). We retrospectively analyzed data from 74 patients with human epidermal growth factor receptor 2 (HER2)‑negative breast cancer who underwent biopsies before treatment and subsequent neo-adjuvant chemotherapy. In biopsy specimens, we evaluated the expression of platelet-specific markers and EMT markers using immunohistochemistry. The associations among the expression of platelet‑specific markers in biopsy specimens, EMT, response to neo‑adjuvant chemotherapy, and survival were analyzed. The presence of platelets was observed in 44 out of 74 (59%) primary breast cancer biopsy specimens. Platelet‑positive tumor cells showed EMT‑like morphological changes and EMT marker expression. Primary tumor cells associated with platelets were less responsive to neo‑adjuvant chemotherapy (pCR rate: 10 vs. 50%, respectively; p=0.0001). Platelets were an independent predictor of the response to chemotherapy upon multivariable analysis (p<0.0001). In conclusion, there was a significant association between platelets surrounding primary tumor cells in the biopsy specimens and the chemotherapeutic response in breast cancer. Platelets surrounding primary tumor cells may represent novel predictors of chemotherapeutic responses. PMID:27349611

  18. [Updated genomics of testicular germ cell tumor].

    PubMed

    Zhang, Meng; He, An-bang; Cai, Zhi-ming; Wu, Song

    2015-04-01

    Testicular germ cell tumor (TGCT) is a most common testicular malignancy with an increasing incidence, and its pathogenesis and mechanisms are not yet clear. The next generation sequencing has become the main tool to uncover the underlying mechanisms of TGCT. The differential gene expressions, gene mutation, predisposing gene-dominated signaling pathways, and changes of the relevant genes in the sex chromosome are largely involved in the occurrence and development of TGCT. Studies on the genomics of TGCT contribute a lot to identifying the pivotal pathogenic genes and paving a theoretical ground for the early screening and targeted therapy of TGCT. This paper summarizes the advances in the studies of the genomics of TGCT so as to reveal thetmechanisms of the disease at the genetic level. PMID:26027106

  19. Tumor-Initiating Cells and Methods of Use

    NASA Technical Reports Server (NTRS)

    Hlatky, Lynn (Inventor)

    2014-01-01

    Provided herein are an isolated or enriched population of tumor initiating cells derived from normal cells, cells susceptible to neoplasia, or neoplastic cells. Methods of use of the cells for screening for anti-hyperproliferative agents, and use of the cells for animal models of hyperproliferative disorders including metastatic cancer, diagnostic methods, and therapeutic methods are provided.

  20. Dielectrophoretic Capture and Genetic Analysis of Single Neuroblastoma Tumor Cells

    PubMed Central

    Carpenter, Erica L.; Rader, JulieAnn; Ruden, Jacob; Rappaport, Eric F.; Hunter, Kristen N.; Hallberg, Paul L.; Krytska, Kate; O’Dwyer, Peter J.; Mosse, Yael P.

    2014-01-01

    Our understanding of the diversity of cells that escape the primary tumor and seed micrometastases remains rudimentary, and approaches for studying circulating and disseminated tumor cells have been limited by low throughput and sensitivity, reliance on single parameter sorting, and a focus on enumeration rather than phenotypic and genetic characterization. Here, we utilize a highly sensitive microfluidic and dielectrophoretic approach for the isolation and genetic analysis of individual tumor cells. We employed fluorescence labeling to isolate 208 single cells from spiking experiments conducted with 11 cell lines, including 8 neuroblastoma cell lines, and achieved a capture sensitivity of 1 tumor cell per 106 white blood cells (WBCs). Sample fixation or freezing had no detectable effect on cell capture. Point mutations were accurately detected in the whole genome amplification product of captured single tumor cells but not in negative control WBCs. We applied this approach to capture 144 single tumor cells from 10 bone marrow samples of patients suffering from neuroblastoma. In this pediatric malignancy, high-risk patients often exhibit wide-spread hematogenous metastasis, but access to primary tumor can be difficult or impossible. Here, we used flow-based sorting to pre-enrich samples with tumor involvement below 0.02%. For all patients for whom a mutation in the Anaplastic Lymphoma Kinase gene had already been detected in their primary tumor, the same mutation was detected in single cells from their marrow. These findings demonstrate a novel, non-invasive, and adaptable method for the capture and genetic analysis of single tumor cells from cancer patients. PMID:25133137

  1. Antitumor efficacy of vaccinia virus-modified tumor cell vaccine

    SciTech Connect

    Ito, T.; Wang, D.Q.; Maru, M.; Nakajima, K.; Kato, S.; Kurimura, T.; Wakamiya, N. )

    1990-11-01

    The antitumor efficacies of vaccinia virus-modified tumor cell vaccines were examined in murine syngeneic MH134 and X5563 tumor cells. UV-inactivated vaccinia virus was inoculated i.p. into C3H/HeN mice that had received whole body X-irradiation at 150 rads. After 3 weeks, the vaccines were administered i.p. 3 times at weekly intervals. One week after the last injection, mice were challenged i.p. with various doses of syngeneic MH134 or X5563 viable tumor cells. Four methods were used for preparing tumor cell vaccines: X-ray irradiation; fixation with paraformaldehyde for 1 h or 3 months; and purification of the membrane fraction. All four vaccines were effective, but the former two vaccines were the most effective. A mixture of the membrane fraction of untreated tumor cells and UV-inactivated vaccinia virus also had an antitumor effect. These results indicate that vaccine with the complete cell structure is the most effective. The membrane fraction of UV-inactivated vaccinia virus-absorbed tumor cells was also effective. UV-inactivated vaccinia virus can react with not only intact tumor cells but also the purified membrane fraction of tumor cells and augment antitumor activity.

  2. Anti-endoglin monoclonal antibodies are effective for suppressing metastasis and the primary tumors by targeting tumor vasculature.

    PubMed

    Uneda, Shima; Toi, Hirofumi; Tsujie, Tomoko; Tsujie, Masanori; Harada, Naoko; Tsai, Hilda; Seon, Ben K

    2009-09-15

    Anti-metastatic activity of an antitumor agent is exceedingly important because metastasis is the primary cause of death for most solid cancer patients. In this report, we show that 3 anti-endoglin (ENG) monoclonal antibodies (mAbs) SN6a, SN6j and SN6k which define individually distinct epitopes of ENG of tumor vasculature are capable of suppressing tumor metastases in the multiple metastasis models. The metastasis models were generated by i.v., s.c. (into flank) or mammary gland fat pad injection of 4T1 murine mammary carcinoma cells and splenic injection of two types of colon26 murine colorectal carcinoma cells. Individual mAbs were injected i.v. via the tail vein of mice. SN6a and SN6j effectively suppressed the formation of metastatic colonies of 4T1 in the lung in all of the three 4T1 metastatic models. In addition, these mAbs were effective for suppressing the primary tumors of 4T1 in the skin and mammary fat pad. These mAbs effectively suppressed microvessel density and angiogenesis in tumors as measured by the Matrigel plug assay in mice. No significant side effects of the administered mAbs were detected. Furthermore, SN6a and SN6j extended survival of the tumor-bearing mice. SN6j, SN6k and their immunoconjugates with deglycosylated ricin A-chain were all effective for suppressing hepatic metastasis of colon26. The findings in the present study are clinically relevant in view of the ongoing clinical trial of a humanized (chimerized) form of SN6j. PMID:19533687

  3. A Rare Cause of Prepubertal Gynecomastia: Sertoli Cell Tumor

    PubMed Central

    Dursun, Fatma; Su Dur, Şeyma Meliha; Şahin, Ceyhan; Kırmızıbekmez, Heves; Karabulut, Murat Hakan; Yörük, Asım

    2015-01-01

    Prepubertal gynecomastia due to testis tumors is a very rare condition. Nearly 5% of the patients with testicular mass present with gynecomastia. Sertoli cell tumors are sporadic in 60% of the reported cases, while the remaining is a component of multiple neoplasia syndromes such as Peutz-Jeghers syndrome and Carney complex. We present a 4-year-old boy with gynecomastia due to Sertoli cell tumor with no evidence of Peutz-Jeghers syndrome or Carney complex. PMID:26366315

  4. A Study of CD45RA+ Depleted Haploidentical Stem Cell Transplantation in Children With Relapsed or Refractory Solid Tumors and Lymphomas

    ClinicalTrials.gov

    2016-04-15

    Ewing Sarcoma; Gastrointestinal Tumor; Germ Cell Tumor; Hepatic Tumor; Lymphoma; Wilms Tumor; Rhabdoid Tumor; Clear Cell Carcinoma; Renal Cell Carcinoma; Melanoma; Neuroblastoma; Rhabdomyosarcoma; Non-rhabdomyosarcoma

  5. Multiple Subsets of Brain Tumor Initiating Cells Coexist in Glioblastoma.

    PubMed

    Rennert, Robert C; Achrol, Achal S; Januszyk, Michael; Kahn, Suzana A; Liu, Tiffany T; Liu, Yi; Sahoo, Debashis; Rodrigues, Melanie; Maan, Zeshaan N; Wong, Victor W; Cheshier, Samuel H; Chang, Steven D; Steinberg, Gary K; Harsh, Griffith R; Gurtner, Geoffrey C

    2016-06-01

    Brain tumor-initiating cells (BTICs) are self-renewing multipotent cells critical for tumor maintenance and growth. Using single-cell microfluidic profiling, we identified multiple subpopulations of BTICs coexisting in human glioblastoma, characterized by distinct surface marker expression and single-cell molecular profiles relating to divergent bulk tissue molecular subtypes. These data suggest BTIC subpopulation heterogeneity as an underlying source of intra-tumoral bulk tissue molecular heterogeneity, and will support future studies into BTIC subpopulation-specific therapies. Stem Cells 2016;34:1702-1707. PMID:26991945

  6. Identifying cancer origin using circulating tumor cells

    PubMed Central

    Lu, Si-Hong; Tsai, Wen-Sy; Chang, Ying-Hsu; Chou, Teh-Ying; Pang, See-Tong; Lin, Po-Hung; Tsai, Chun-Ming; Chang, Ying-Chih

    2016-01-01

    ABSTRACT Circulating tumor cells (CTCs) have become an established clinical evaluation biomarker. CTC count provides a good correlation with the prognosis of cancer patients, but has only been used with known cancer patients, and has been unable to predict the origin of the CTCs. This study demonstrates the analysis of CTCs for the identification of their primary cancer source. Twelve mL blood samples were equally dispensed on 6 CMx chips, microfluidic chips coated with an anti-EpCAM-conjugated supported lipid bilayer, for CTC capture and isolation. Captured CTCs were eluted to an immunofluorescence (IF) staining panel consisting of 6 groups of antibodies: anti-panCK, anti-CK18, anti-CK7, anti-TTF-1, anti-CK20/anti-CDX2, and anti-PSA/anti-PSMA. Cancer cell lines of lung (H1975), colorectal (DLD-1, HCT-116), and prostate (PC3, DU145, LNCaP) were selected to establish the sensitivity and specificity for distinguishing CTCs from lung, colorectal, and prostate cancer. Spiking experiments performed in 2mL of culture medium or whole blood proved the CMx platform can enumerate cancer cells of lung, colorectal, and prostate. The IF panel was tested on blood samples from lung cancer patients (n = 3), colorectal cancer patients (n = 5), prostate cancer patients (n = 5), and healthy individuals (n = 12). Peripheral blood samples found panCK+ and CK18+ CTCs in lung, colorectal, and prostate cancers. CTCs expressing CK7+ or TTF-1+, (CK20/ CDX2)+, or (PSA/ PSMA)+ corresponded to lung, colorectal, or prostate cancer, respectively. In conclusion, we have designed an immunofluorescence staining panel to identify CTCs in peripheral blood to correctly identify cancer cell origin. PMID:26828696

  7. Identifying cancer origin using circulating tumor cells.

    PubMed

    Lu, Si-Hong; Tsai, Wen-Sy; Chang, Ying-Hsu; Chou, Teh-Ying; Pang, See-Tong; Lin, Po-Hung; Tsai, Chun-Ming; Chang, Ying-Chih

    2016-04-01

    Circulating tumor cells (CTCs) have become an established clinical evaluation biomarker. CTC count provides a good correlation with the prognosis of cancer patients, but has only been used with known cancer patients, and has been unable to predict the origin of the CTCs. This study demonstrates the analysis of CTCs for the identification of their primary cancer source. Twelve mL blood samples were equally dispensed on 6 CMx chips, microfluidic chips coated with an anti-EpCAM-conjugated supported lipid bilayer, for CTC capture and isolation. Captured CTCs were eluted to an immunofluorescence (IF) staining panel consisting of 6 groups of antibodies: anti-panCK, anti-CK18, anti-CK7, anti-TTF-1, anti-CK20/anti-CDX2, and anti-PSA/anti-PSMA. Cancer cell lines of lung (H1975), colorectal (DLD-1, HCT-116), and prostate (PC3, DU145, LNCaP) were selected to establish the sensitivity and specificity for distinguishing CTCs from lung, colorectal, and prostate cancer. Spiking experiments performed in 2mL of culture medium or whole blood proved the CMx platform can enumerate cancer cells of lung, colorectal, and prostate. The IF panel was tested on blood samples from lung cancer patients (n = 3), colorectal cancer patients (n = 5), prostate cancer patients (n = 5), and healthy individuals (n = 12). Peripheral blood samples found panCK(+) and CK18(+) CTCs in lung, colorectal, and prostate cancers. CTCs expressing CK7(+) or TTF-1(+), (CK20/ CDX2)(+), or (PSA/ PSMA)(+) corresponded to lung, colorectal, or prostate cancer, respectively. In conclusion, we have designed an immunofluorescence staining panel to identify CTCs in peripheral blood to correctly identify cancer cell origin. PMID:26828696

  8. MOLECULAR AND CYTOGENETIC ANALYSIS OF LUNG TUMOR CELL LINES

    EPA Science Inventory

    We have measured the levels of amplification of oncogenes and tumor marker genes or other genes of interest in nine human lung tumor cell lines in comparison to normal human bronchial epithelial cells or normal blood lymphocytes to test the hypothesis that aberrant amplification ...

  9. Intraorbital Granular Cell Tumor Ophthalmologic and Radiologic Findings

    PubMed Central

    de la Vega, Gabriela; Villegas, Victor M; Velazquez, Jose; Barrios, Mirelys; Murray, Timothy G; Elhammady, Mohamed Samy

    2015-01-01

    Granular cell tumor is a rare soft tissue neoplasm that commonly affects the head and neck regions. We describe a case of a granular cell tumor of the orbit including its clinical presentation, histopathology, and magnetic resonance imaging findings. PMID:25963156

  10. Malignant mast cell tumor in an African hedgehog (Atelerix albiventris).

    PubMed

    Raymond, J T; White, M R; Janovitz, E B

    1997-01-01

    In November 1995, a malignant mast cell tumor (mastocytoma) was diagnosed in an adult African hedgehog (Atelerix albiventris) from a zoological park (West Lafayette, Indiana, USA). The primary mast cell tumor presented as a firm subcutaneous mass along the ventrum of the neck. Metastasis to the right submandibular lymph node occurred. PMID:9027702

  11. Therapeutic attack of hypoxic cells of solid tumors: presidential address.

    PubMed

    Sartorelli, A C

    1988-02-15

    Hypoxic cells of solid tumors are relatively resistant to therapeutic assault. Studies have demonstrated that oxygen-deficient tumor cells exist in an environment conducive to reductive reactions making hypoxic cells particularly sensitive to bioreductive alkylating agents. Mitomycin C, the prototype bioreductive alkylating agent available for clinical use, is capable of preferentially killing oxygen-deficient cells both in vitro and in vivo. This phenomenon is at least in part the result of differences in the uptake and metabolism of mitomycin C by hypoxic and oxygenated tumor cells, with the ultimate critical lesion being the cross-linking of DNA by the mitomycin antibiotic. The combination of mitomycin C with X-irradiation, to attack hypoxic and oxygenated tumor cell populations, respectively, has led to enhanced antitumor effects in mice bearing solid tumor implants and in patients with cancer of the head and neck. More efficacious kill of hypoxic tumor cells may be possible by the use of dicoumarol in combination with mitomycin or by the use of the related antibiotic porfiromycin. The findings support the use of an agent with specificity for hypoxic tumor cells in potentially curative regimens for solid tumors. PMID:3123053

  12. Malignant giant cell tumor of soft parts in a mare

    PubMed Central

    Marryatt, Paige A.

    2003-01-01

    Two subcutaneous masses were removed from the elbow of a mare. Histologically they were composed of islands of polygonal to plump spindlelioid cells with large nuclei, coarsely stippled chromatin, and eosinophilic cytoplasm. Findings were diagnostic for a malignant giant cell tumor of soft parts, a rare tumor with a fair prognosis. PMID:14524631

  13. Targeted delivery of let-7b to reprogramme tumor-associated macrophages and tumor infiltrating dendritic cells for tumor rejection.

    PubMed

    Huang, Zhen; Gan, Jingjing; Long, Ziyan; Guo, Guangxing; Shi, Xiafei; Wang, Chunming; Zang, Yuhui; Ding, Zhi; Chen, Jiangning; Zhang, Junfeng; Dong, Lei

    2016-06-01

    Both tumor associated macrophages (TAMs) and tumor infiltrating dendritic cells (TIDCs) are important components in the tumor microenvironment that mediate tumor immunosuppression and promote cancer progression. Targeting these cells and altering their phenotypes may become a new strategy to recover their anti-tumor activities and thereby restore the local immune surveillance against tumor. In this study, we constructed a nucleic acid delivery system for the delivery of let-7b, a synthetic microRNA mimic. Our carrier has an affinity for the mannose receptors on TAMs/TIDCs and is responsive to the low-pH tumor microenvironment. The delivery of let-7b could reactivate TAMs/TIDCs by acting as a TLR-7 agonist and suppressing IL-10 production in vitro. In a breast cancer mouse model, let-7b delivered by this system efficiently reprogrammed the functions of TAMs/TIDCs, reversed the suppressive tumor microenvironment, and inhibited tumor growth. Taken together, this strategy, designed based upon TAMs/TIDCs-targeting delivery and the dual biological functions of let-7b (TLR-7 ligand and IL-10 inhibitor), may provide a new approach for cancer immunotherapy. PMID:26994345

  14. Oncogenic KRAS Regulates Tumor Cell Signaling via Stromal Reciprocation

    PubMed Central

    Tape, Christopher J.; Ling, Stephanie; Dimitriadi, Maria; McMahon, Kelly M.; Worboys, Jonathan D.; Leong, Hui Sun; Norrie, Ida C.; Miller, Crispin J.; Poulogiannis, George; Lauffenburger, Douglas A.; Jørgensen, Claus

    2016-01-01

    Summary Oncogenic mutations regulate signaling within both tumor cells and adjacent stromal cells. Here, we show that oncogenic KRAS (KRASG12D) also regulates tumor cell signaling via stromal cells. By combining cell-specific proteome labeling with multivariate phosphoproteomics, we analyzed heterocellular KRASG12D signaling in pancreatic ductal adenocarcinoma (PDA) cells. Tumor cell KRASG12D engages heterotypic fibroblasts, which subsequently instigate reciprocal signaling in the tumor cells. Reciprocal signaling employs additional kinases and doubles the number of regulated signaling nodes from cell-autonomous KRASG12D. Consequently, reciprocal KRASG12D produces a tumor cell phosphoproteome and total proteome that is distinct from cell-autonomous KRASG12D alone. Reciprocal signaling regulates tumor cell proliferation and apoptosis and increases mitochondrial capacity via an IGF1R/AXL-AKT axis. These results demonstrate that oncogene signaling should be viewed as a heterocellular process and that our existing cell-autonomous perspective underrepresents the extent of oncogene signaling in cancer. Video Abstract PMID:27087446

  15. Oncogenic KRAS Regulates Tumor Cell Signaling via Stromal Reciprocation.

    PubMed

    Tape, Christopher J; Ling, Stephanie; Dimitriadi, Maria; McMahon, Kelly M; Worboys, Jonathan D; Leong, Hui Sun; Norrie, Ida C; Miller, Crispin J; Poulogiannis, George; Lauffenburger, Douglas A; Jørgensen, Claus

    2016-05-01

    Oncogenic mutations regulate signaling within both tumor cells and adjacent stromal cells. Here, we show that oncogenic KRAS (KRAS(G12D)) also regulates tumor cell signaling via stromal cells. By combining cell-specific proteome labeling with multivariate phosphoproteomics, we analyzed heterocellular KRAS(G12D) signaling in pancreatic ductal adenocarcinoma (PDA) cells. Tumor cell KRAS(G12D) engages heterotypic fibroblasts, which subsequently instigate reciprocal signaling in the tumor cells. Reciprocal signaling employs additional kinases and doubles the number of regulated signaling nodes from cell-autonomous KRAS(G12D). Consequently, reciprocal KRAS(G12D) produces a tumor cell phosphoproteome and total proteome that is distinct from cell-autonomous KRAS(G12D) alone. Reciprocal signaling regulates tumor cell proliferation and apoptosis and increases mitochondrial capacity via an IGF1R/AXL-AKT axis. These results demonstrate that oncogene signaling should be viewed as a heterocellular process and that our existing cell-autonomous perspective underrepresents the extent of oncogene signaling in cancer. VIDEO ABSTRACT. PMID:27087446

  16. Targeting Mitochondrial Function to Treat Quiescent Tumor Cells in Solid Tumors

    PubMed Central

    Zhang, Xiaonan; de Milito, Angelo; Olofsson, Maria Hägg; Gullbo, Joachim; D’Arcy, Padraig; Linder, Stig

    2015-01-01

    The disorganized nature of tumor vasculature results in the generation of microenvironments characterized by nutrient starvation, hypoxia and accumulation of acidic metabolites. Tumor cell populations in such areas are often slowly proliferating and thus refractory to chemotherapeutical drugs that are dependent on an active cell cycle. There is an urgent need for alternative therapeutic interventions that circumvent growth dependency. The screening of drug libraries using multicellular tumor spheroids (MCTS) or glucose-starved tumor cells has led to the identification of several compounds with promising therapeutic potential and that display activity on quiescent tumor cells. Interestingly, a common theme of these drug screens is the recurrent identification of agents that affect mitochondrial function. Such data suggest that, contrary to the classical Warburg view, tumor cells in nutritionally-compromised microenvironments are dependent on mitochondrial function for energy metabolism and survival. These findings suggest that mitochondria may represent an “Achilles heel” for the survival of slowly-proliferating tumor cells and suggest strategies for the development of therapy to target these cell populations. PMID:26580606

  17. Actively targeted delivery of anticancer drug to tumor cells by redox-responsive star-shaped micelles.

    PubMed

    Shi, Chunli; Guo, Xing; Qu, Qianqian; Tang, Zhaomin; Wang, Yi; Zhou, Shaobing

    2014-10-01

    In cancer therapy nanocargos based on star-shaped polymer exhibit unique features such as better stability, smaller size distribution and higher drug capacity in comparison to linear polymeric micelles. In this study, we developed a multifunctional star-shaped micellar system by combination of active targeting ability and redox-responsive behavior. The star-shaped micelles with good stability were self-assembled from four-arm poly(ε-caprolactone)-poly(ethylene glycol) copolymer. The redox-responsive behaviors of these micelles triggered by glutathione were evaluated from the changes of micellar size, morphology and molecular weight. In vitro drug release profiles exhibited that in a stimulated normal physiological environment, the redox-responsive star-shaped micelles could maintain good stability, whereas in a reducing and acid environment similar with that of tumor cells, the encapsulated agent was promptly released. In vitro cellular uptake and subcellular localization of these micelles were further studied with confocal laser scanning microscopy and flow cytometry against the human cervical cancer cell line HeLa. In vivo and ex vivo DOX fluorescence imaging displayed that these FA-functionalized star-shaped micelles possessed much better specificity to target solid tumor. Both the qualitative and quantitative results of the antitumor effect in 4T1 tumor-bearing BALB/c mice demonstrated that these redox-responsive star-shaped micelles have a high therapeutic efficiency to artificial solid tumor. Therefore, the multifunctional star-shaped micelles are a potential platform for targeted anticancer drug delivery. PMID:25002267

  18. Cancer stem cells and the tumor microenvironment: interplay in tumor heterogeneity

    PubMed Central

    Albini, Adriana; Bruno, Antonino; Gallo, Cristina; Pajardi, Giorgio; Noonan, Douglas M.; Dallaglio, Katiuscia

    2015-01-01

    Abstract Tumor cells able to recapitulate tumor heterogeneity have been tracked, isolated and characterized in different tumor types, and are commonly named Cancer Stem Cells or Cancer Initiating Cells (CSC/CIC). CSC/CIC are disseminated in the tumor mass and are resistant to anti-cancer therapies and adverse conditions. They are able to divide into another stem cell and a “proliferating” cancer cell. They appear to be responsible for disease recurrence and metastatic dissemination even after apparent eradication of the primary tumor. The modulation of CSC/CIC activities by the tumor microenvironment (TUMIC) is still poorly known. CSC/CIC may mutually interact with the TUMIC in a special and unique manner depending on the TUMIC cells or proteins encountered. The TUMIC consists of extracellular matrix components as well as cellular players among which endothelial, stromal and immune cells, providing and responding to signals to/from the CSC/CIC. This interplay can contribute to the mechanisms through which CSC/CIC may reside in a dormant state in a tissue for years, later giving rise to tumor recurrence or metastasis in patients. Different TUMIC components, including the connective tissue, can differentially activate CIC/CSC in different areas of a tumor and contribute to the generation of cancer heterogeneity. Here, we review possible networking activities between the different components of the tumor microenvironment and CSC/CIC, with a focus on its role in tumor heterogeneity and progression. We also summarize novel therapeutic options that could target both CSC/CIC and the microenvironment to elude resistance mechanisms activated by CSC/CIC, responsible for disease recurrence and metastases. PMID:26291921

  19. Cancer stem cells and the tumor microenvironment: interplay in tumor heterogeneity.

    PubMed

    Albini, Adriana; Bruno, Antonino; Gallo, Cristina; Pajardi, Giorgio; Noonan, Douglas M; Dallaglio, Katiuscia

    2015-01-01

    Tumor cells able to recapitulate tumor heterogeneity have been tracked, isolated and characterized in different tumor types, and are commonly named Cancer Stem Cells or Cancer Initiating Cells (CSC/CIC). CSC/CIC are disseminated in the tumor mass and are resistant to anti-cancer therapies and adverse conditions. They are able to divide into another stem cell and a "proliferating" cancer cell. They appear to be responsible for disease recurrence and metastatic dissemination even after apparent eradication of the primary tumor. The modulation of CSC/CIC activities by the tumor microenvironment (TUMIC) is still poorly known. CSC/CIC may mutually interact with the TUMIC in a special and unique manner depending on the TUMIC cells or proteins encountered. The TUMIC consists of extracellular matrix components as well as cellular players among which endothelial, stromal and immune cells, providing and responding to signals to/from the CSC/CIC. This interplay can contribute to the mechanisms through which CSC/CIC may reside in a dormant state in a tissue for years, later giving rise to tumor recurrence or metastasis in patients. Different TUMIC components, including the connective tissue, can differentially activate CIC/CSC in different areas of a tumor and contribute to the generation of cancer heterogeneity. Here, we review possible networking activities between the different components of the tumor microenvironment and CSC/CIC, with a focus on its role in tumor heterogeneity and progression. We also summarize novel therapeutic options that could target both CSC/CIC and the microenvironment to elude resistance mechanisms activated by CSC/CIC, responsible for disease recurrence and metastases. PMID:26291921

  20. Solid tumor therapy by selectively targeting stromal endothelial cells.

    PubMed

    Liu, Shihui; Liu, Jie; Ma, Qian; Cao, Liu; Fattah, Rasem J; Yu, Zuxi; Bugge, Thomas H; Finkel, Toren; Leppla, Stephen H

    2016-07-12

    Engineered tumor-targeted anthrax lethal toxin proteins have been shown to strongly suppress growth of solid tumors in mice. These toxins work through the native toxin receptors tumor endothelium marker-8 and capillary morphogenesis protein-2 (CMG2), which, in other contexts, have been described as markers of tumor endothelium. We found that neither receptor is required for tumor growth. We further demonstrate that tumor cells, which are resistant to the toxin when grown in vitro, become highly sensitive when implanted in mice. Using a range of tissue-specific loss-of-function and gain-of-function genetic models, we determined that this in vivo toxin sensitivity requires CMG2 expression on host-derived tumor endothelial cells. Notably, engineered toxins were shown to suppress the proliferation of isolated tumor endothelial cells. Finally, we demonstrate that administering an immunosuppressive regimen allows animals to receive multiple toxin dosages and thereby produces a strong and durable antitumor effect. The ability to give repeated doses of toxins, coupled with the specific targeting of tumor endothelial cells, suggests that our strategy should be efficacious for a wide range of solid tumors. PMID:27357689

  1. Rare Presentation of Supratentorial Primitive Neuroectodermal Tumors Mimicking Bifocal Germ Cell Tumors: 2 Case Reports.

    PubMed

    Phuakpet, Kamon; Larouche, Valerie; Hawkins, Cynthia; Huang, Annie; Tabori, Uri; Bartels, Ute K; Bouffet, Eric

    2016-03-01

    Bifocal pineal and suprasellar tumors have only been described in the context of germ cell tumors in the pediatric age group. We report 2 patients with radiologic findings of bifocal pineal and suprasellar lesions, with a histologic diagnosis of supratentorial primitive neuroectodermal tumor. The absence of diabetes insipidus and other endocrine abnormalities was noteworthy in both cases. This observation challenges previous reports on the pathognomonic value of this clinico-radiologic entity. PMID:26241725

  2. Identification of a myeloid-derived suppressor cell cystatin-like protein that inhibits metastasis.

    PubMed

    Boutté, Angela M; Friedman, David B; Bogyo, Matthew; Min, Yongfen; Yang, Li; Lin, P Charles

    2011-08-01

    Myeloid-derived suppressor cells (MDSCs) are significantly increased in cancer patients and tumor bearing-animals. MDSCs infiltrate into tumors and promote tumor invasion and metastasis. To identify the mediator responsible for the prometastatic property of MDSCs, we used proteomics. We found neutrophilic granule protein (NGP) was decreased >2-fold in MDSCs from metastatic 4T1 tumor-bearing mice compared to nonmetastatic 67NR controls. NGP mRNA levels were decreased in bone marrow and in tumor-infiltrating MDSCs by 45 and 66%, respectively, in 4T1 tumor-bearing mice compared to 67NR controls. Interestingly, 4T1-conditioned medium reduced myeloid cell NGP expression by ∼ 40%, suggesting that a secreted factor mediates gene reduction. Sequence analysis shows a putative cystatin domain in NGP, and biochemical analysis confirms NGP a novel cathepsin inhibitor. It inhibited cathepsin B activity by nearly 40% in vitro. NGP expression in 4T1 tumor cells suppressed cell invasion, delayed primary tumor growth, and greatly reduced lung metastasis in vivo. A 2.8-fold reduction of cathepsin activity was found in tumors expressing NGP compared to controls. NGP significantly reduced tumor angiogenesis to 12.6 from 19.6 and lymphangiogenesis to 4.6 from 9.1 vessels/field. Necrosis was detectable only in NGP-expressing tumors, and the number of apoptotic cells increased to 22.4 from 8.3 in controls. Taken together, this study identifies a negative regulator of tumor metastasis in MDSCs, NGP, which is down-regulated in metastatic conditions. The finding suggests that malignant tumors promote invasion/metastasis not only through up-regulation of proteases but also down-regulation of protease inhibitors. PMID:21518852

  3. Recruitment of Mesenchymal Stem Cells Into Prostate Tumors Promotes Metastasis

    PubMed Central

    Jung, Younghun; Kim, Jin Koo; Shiozawa, Yusuke; Wang, Jingcheng; Mishra, Anjali; Joseph, Jeena; Berry, Janice E.; McGee, Samantha; Lee, Eunsohl; Sun, Hongli; Wang, Jianhua; Jin, Taocong; Zhang, Honglai; Dai, Jinlu; Krebsbach, Paul H.; Keller, Evan T.; Pienta, Kenneth J.; Taichman, Russell S.

    2013-01-01

    Tumors recruit mesenchymal stem cells (MSCs) to facilitate healing, which induces their conversion into cancer-associated fibroblasts that facilitate metastasis. However, this process is poorly understood on the molecular level. Here we show that the CXCR6 ligand CXCL16 facilitates MSC or Very Small Embryonic-Like (VSEL) cells recruitment into prostate tumors. CXCR6 signaling stimulates the conversion of MSCs into cancer-associated fibroblasts, which secrete stromal-derived factor-1, also known as CXCL12. CXCL12 expressed by cancer-associated fibroblasts then binds to CXCR4 on tumor cells and induces an epithelial to mesenchymal transition, which ultimately promotes metastasis to secondary tumor sites. Our results provide the molecular basis for MSC recruitment into tumors and how this process leads to tumor metastasis. PMID:23653207

  4. Necrosis avid near infrared fluorescent cyanines for imaging cell death and their use to monitor therapeutic efficacy in mouse tumor models

    PubMed Central

    Xie, Bangwen; Stammes, Marieke A.; van Driel, Pieter B.A.A.; Cruz, Luis J.; Knol-Blankevoort, Vicky T.; Löwik, Martijn A.M.; Mezzanotte, Laura; Que, Ivo; Chan, Alan; van den Wijngaard, Jeroen P.H.M.; Siebes, Maria; Gottschalk, Sven; Razansky, Daniel; Ntziachristos, Vasilis; Keereweer, Stijn; Horobin, Richard W.; Hoehn, Mathias; Kaijzel, Eric L.; van Beek, Ermond R.; Snoeks, Thomas J.A.; Löwik, Clemens W.G.M.

    2015-01-01

    Quantification of tumor necrosis in cancer patients is of diagnostic value as the amount of necrosis is correlated with disease prognosis and it could also be used to predict early efficacy of anti-cancer treatments. In the present study, we identified two near infrared fluorescent (NIRF) carboxylated cyanines, HQ5 and IRDye 800CW (800CW), which possess strong necrosis avidity. In vitro studies showed that both dyes selectively bind to cytoplasmic proteins of dead cells that have lost membrane integrity. Affinity for cytoplasmic proteins was confirmed using quantitative structure activity relations modeling. In vivo results, using NIRF and optoacoustic imaging, confirmed the necrosis avid properties of HQ5 and 800CW in a mouse 4T1 breast cancer tumor model of spontaneous necrosis. Finally, in a mouse EL4 lymphoma tumor model, already 24 h post chemotherapy, a significant increase in 800CW fluorescence intensity was observed in treated compared to untreated tumors. In conclusion, we show, for the first time, that the NIRF carboxylated cyanines HQ5 and 800CW possess strong necrosis avid properties in vitro and in vivo. When translated to the clinic, these dyes may be used for diagnostic or prognostic purposes and for monitoring in vivo tumor response early after the start of treatment. PMID:26472022

  5. Tumor-stem cells interactions by fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Meleshina, Aleksandra V.; Cherkasova, Elena I.; Sergeeva, Ekaterina; Turchin, Ilya V.; Kiseleva, Ekaterina V.; Dashinimaev, Erdem B.; Shirmanova, Marina V.; Zagaynova, Elena V.

    2013-02-01

    Recently, great deal of interest is investigation the function of the stem cells (SC) in tumors. In this study, we studied «recipient-tumor- fluorescent stem cells » system using the methods of in vivo imaging and laser scanning microscopy (LSM). We used adipose-derived adult stem (ADAS) cells of human lentiviral transfected with the gene of fluorescent protein Turbo FP635. ADAS cells were administrated into nude mice with transplanted tumor HeLa Kyoto (human cervical carcinoma) at different stages of tumor growth (0-8 days) intravenously or into tumor. In vivo imaging was performed on the experimental setup for epi - luminescence bioimaging (IAP RAS, Nizhny Novgorod). The results of the imaging showed localization of fluorophore tagged stem cells in the spleen on day 5-9 after injection. The sensitivity of the technique may be improved by spectral separation autofluorescence and fluorescence of stem cells. We compared the results of in vivo imaging and confocal laser scanning microscopy (LSM 510 META, Carl Zeiss, Germany). Internal organs of the animals and tumor tissue were investigated. It was shown that with i.v. injection of ADAS, bright fluorescent structures with spectral characteristics corresponding to TurboFP635 protein are locally accumulated in the marrow, lungs and tumors of animals. These findings indicate that ADAS cells integrate in the animal body with transplanted tumor and can be identified by fluorescence bioimaging techniques in vivo and ex vivo.

  6. Genetic traits for hematogeneous tumor cell dissemination in cancer patients.

    PubMed

    Joosse, Simon A; Pantel, Klaus

    2016-03-01

    Metastatic relapse in patients with solid tumors is the consequence of cancer cells that disseminated to distant sites, adapted to the new microenvironment, and escaped systemic adjuvant therapy. There is increasing evidence that hematogeneous dissemination starts at an early stage of cancer progression with single tumor cells or cell clusters leaving the primary site and entering the blood circulation. These circulating tumor cells (CTCs) can extravasate into secondary tissues where they become disseminated tumor cells (DTCs). Patients might relapse years after initial resection of the primary tumor when DTCs become overt metastases. Current diagnostic strategies for stratification of therapies against metastatic cells focus on the primary tumor tissue. This approach is based on the availability of stored primary tumors obtained at primary surgery, but it ignores that the DTCs might have evolved over years, which can affect the antimetastatic drug response. However, taking biopsies from metastatic tissues is an invasive procedure, and multiple metastases located at different sites in an individual patient show marked genomic heterogeneity. Thus, capturing CTCs from the peripheral blood as a "liquid biopsy" has obvious advantages in particular when repeated sampling is required for monitoring therapies in cancer patients. However, the biology behind tumor cell dissemination and its contribution to metastatic progression in cancer patients is still subject to controversial discussions. This manuscript reviews current theories on the genetic traits behind the spread of CTCs and progression of DTCs into overt metastases. PMID:26931653

  7. Targeted Proapoptotic Peptides Depleting Adipose Stromal Cells Inhibit Tumor Growth.

    PubMed

    Daquinag, Alexes C; Tseng, Chieh; Zhang, Yan; Amaya-Manzanares, Felipe; Florez, Fernando; Dadbin, Ali; Zhang, Tao; Kolonin, Mikhail G

    2016-02-01

    Progression of many cancers is associated with tumor infiltration by mesenchymal stromal cells (MSC). Adipose stromal cells (ASC) are MSC that serve as adipocyte progenitors and endothelium-supporting cells in white adipose tissue (WAT). Clinical and animal model studies indicate that ASC mobilized from WAT are recruited by tumors. Direct evidence for ASC function in tumor microenvironment has been lacking due to unavailability of approaches to specifically inactivate these cells. Here, we investigate the effects of a proteolysis-resistant targeted hunter-killer peptide D-WAT composed of a cyclic domain CSWKYWFGEC homing to ASC and of a proapoptotic domain KLAKLAK2. Using mouse bone marrow transplantation models, we show that D-WAT treatment specifically depletes tumor stromal and perivascular cells without directly killing malignant cells or tumor-infiltrating leukocytes. In several mouse carcinoma models, targeted ASC cytoablation reduced tumor vascularity and cell proliferation resulting in hemorrhaging, necrosis, and suppressed tumor growth. We also validated a D-WAT derivative with a proapoptotic domain KFAKFAK2 that was found to have an improved cytoablative activity. Our results for the first time demonstrate that ASC, recruited as a component of tumor microenvironment, support cancer progression. We propose that drugs targeting ASC can be developed as a combination therapy complementing conventional cancer treatments. PMID:26316391

  8. Biodegradable polymeric micelle-encapsulated doxorubicin suppresses tumor metastasis by killing circulating tumor cells

    NASA Astrophysics Data System (ADS)

    Deng, Senyi; Wu, Qinjie; Zhao, Yuwei; Zheng, Xin; Wu, Ni; Pang, Jing; Li, Xuejing; Bi, Cheng; Liu, Xinyu; Yang, Li; Liu, Lei; Su, Weijun; Wei, Yuquan; Gong, Changyang

    2015-03-01

    Circulating tumor cells (CTCs) play a crucial role in tumor metastasis, but it is rare for any chemotherapy regimen to focus on killing CTCs. Herein, we describe doxorubicin (Dox) micelles that showed anti-metastatic activity by killing CTCs. Dox micelles with a small particle size and high encapsulation efficiency were obtained using a pH-induced self-assembly method. Compared with free Dox, Dox micelles exhibited improved cytotoxicity, apoptosis induction, and cellular uptake. In addition, Dox micelles showed a sustained release behavior in vitro, and in a transgenic zebrafish model, Dox micelles exhibited a longer circulation time and lower extravasation from blood vessels into surrounding tissues. Anti-tumor and anti-metastatic activities of Dox micelles were investigated in transgenic zebrafish and mouse models. In transgenic zebrafish, Dox micelles inhibited tumor growth and prolonged the survival of tumor-bearing zebrafish. Furthermore, Dox micelles suppressed tumor metastasis by killing CTCs. In addition, improved anti-tumor and anti-metastatic activities were also confirmed in mouse tumor models, where immunofluorescent staining of tumors indicated that Dox micelles induced more apoptosis and showed fewer proliferation-positive cells. There were decreased side effects in transgenic zebrafish and mice after administration of Dox micelles. In conclusion, Dox micelles showed stronger anti-tumor and anti-metastatic activities and decreased side effects both in vitro and in vivo, which may have potential applications in cancer therapy.

  9. Thymus-derived rather than tumor-induced regulatory T cells predominate in brain tumors

    PubMed Central

    Wainwright, Derek A.; Sengupta, Sadhak; Han, Yu; Lesniak, Maciej S.

    2011-01-01

    Glioblastoma multiforme (GBM) is a highly malignant brain tumor with an average survival time of 15 months. Previously, we and others demonstrated that CD4+FoxP3+ regulatory T cells (Tregs) infiltrate human GBM as well as mouse models that recapitulate malignant brain tumors. However, whether brain tumor-resident Tregs are thymus-derived natural Tregs (nTregs) or induced Tregs (iTregs), by the conversion of conventional CD4+ T cells, has not been established. To investigate this question, we utilized the i.c. implanted GL261 cell-based orthotopic mouse model, the RasB8 transgenic astrocytoma mouse model, and a human GBM tissue microarray. We demonstrate that Tregs in brain tumors are predominantly thymus derived, since thymectomy, prior to i.c. GL261 cell implantation, significantly decreased the level of Tregs in mice with brain tumors. Accordingly, most Tregs in human GBM and mouse brain tumors expressed the nTreg transcription factor, Helios. Interestingly, a significant effect of the brain tumor microenvironment on Treg lineage programming was observed, based on higher levels of brain tumor-resident Tregs expressing glucocorticoid-induced tumor necrosis factor receptor and CD103 and lower levels of Tregs expressing CD62L and CD45RB compared with peripheral Tregs. Furthermore, there was a higher level of nTregs in brain tumors that expressed the proliferative marker Ki67 compared with iTregs and conventional CD4+ T cells. Our study demonstrates that future Treg-depleting therapies should aim to selectively target systemic rather than intratumoral nTregs in brain tumor-specific immunotherapeutic strategies. PMID:21908444

  10. Thymus-derived rather than tumor-induced regulatory T cells predominate in brain tumors.

    PubMed

    Wainwright, Derek A; Sengupta, Sadhak; Han, Yu; Lesniak, Maciej S

    2011-12-01

    Glioblastoma multiforme (GBM) is a highly malignant brain tumor with an average survival time of 15 months. Previously, we and others demonstrated that CD4(+)FoxP3(+) regulatory T cells (Tregs) infiltrate human GBM as well as mouse models that recapitulate malignant brain tumors. However, whether brain tumor-resident Tregs are thymus-derived natural Tregs (nTregs) or induced Tregs (iTregs), by the conversion of conventional CD4(+) T cells, has not been established. To investigate this question, we utilized the i.c. implanted GL261 cell-based orthotopic mouse model, the RasB8 transgenic astrocytoma mouse model, and a human GBM tissue microarray. We demonstrate that Tregs in brain tumors are predominantly thymus derived, since thymectomy, prior to i.c. GL261 cell implantation, significantly decreased the level of Tregs in mice with brain tumors. Accordingly, most Tregs in human GBM and mouse brain tumors expressed the nTreg transcription factor, Helios. Interestingly, a significant effect of the brain tumor microenvironment on Treg lineage programming was observed, based on higher levels of brain tumor-resident Tregs expressing glucocorticoid-induced tumor necrosis factor receptor and CD103 and lower levels of Tregs expressing CD62L and CD45RB compared with peripheral Tregs. Furthermore, there was a higher level of nTregs in brain tumors that expressed the proliferative marker Ki67 compared with iTregs and conventional CD4(+) T cells. Our study demonstrates that future Treg-depleting therapies should aim to selectively target systemic rather than intratumoral nTregs in brain tumor-specific immunotherapeutic strategies. PMID:21908444

  11. Immune signature of tumor infiltrating immune cells in renal cancer

    PubMed Central

    Geissler, Katharina; Fornara, Paolo; Lautenschläger, Christine; Holzhausen, Hans-Jürgen; Seliger, Barbara; Riemann, Dagmar

    2015-01-01

    Tumor-associated immune cells have been discussed as an essential factor for the prediction of the outcome of tumor patients. Lymphocyte-specific genes are associated with a favorable prognosis in colorectal cancer but with poor survival in renal cell carcinoma (RCC). Flow cytometric analyses combined with immunohistochemistry were performed to study the phenotypic profiles of tumor infiltrating lymphocytes (TIL) and the frequency of T cells and macrophages in RCC lesions. Data were correlated with clinicopathological parameters and survival of patients. Comparing oncocytoma and clear cell (cc)RCC, T cell numbers as well as activation-associated T cell markers were higher in ccRCC, whereas the frequency of NK cells was higher in oncocytoma. An intratumoral increase of T cell numbers was found with higher tumor grades (G1:G2:G3/4 = 1:3:4). Tumor-associated macrophages slightly increased with dedifferentiation, although the macrophage-to-T cell ratio was highest in G1 tumor lesions. A high expression of CD57 was found in T cells of early tumor grades, whereas T cells in dedifferentiated RCC lesions expressed higher levels of CD69 and CTLA4. TIL composition did not differ between older (>70 y) and younger (<58 y) patients. Enhanced patients’ survival was associated with a higher percentage of tumor infiltrating NK cells and Th1 markers, e.g. HLA-DR+ and CXCR3+ T cells, whereas a high number of T cells, especially with high CD69 expression correlated with a worse prognosis of patients. Our results suggest that immunomonitoring of RCC patients might represent a useful tool for the prediction of the outcome of RCC patients. PMID:25949868

  12. NKT cells as an ideal anti-tumor immunotherapeutic.

    PubMed

    Fujii, Shin-Ichiro; Shimizu, Kanako; Okamoto, Yoshitaka; Kunii, Naoki; Nakayama, Toshinori; Motohashi, Shinichiro; Taniguchi, Masaru

    2013-01-01

    Human natural killer T (NKT) cells are characterized by their expression of an invariant T cell antigen receptor α chain variable region encoded by a Vα24Jα18 rearrangement. These NKT cells recognize α-galactosylceramide (α-GalCer) in conjunction with the MHC class I-like CD1d molecule and bridge the innate and acquired immune systems to mediate efficient and augmented immune responses. A prime example of one such function is adjuvant activity: NKT cells augment anti-tumor responses because they can rapidly produce large amounts of IFN-γ, which acts on NK cells to eliminate MHC negative tumors and also on CD8 cytotoxic T cells to kill MHC positive tumors. Thus, upon administration of α-GalCer-pulsed DCs, both MHC negative and positive tumor cells can be effectively eliminated, resulting in complete tumor eradication without tumor recurrence. Clinical trials have been completed in a cohort of 17 patients with advanced non-small cell lung cancers and 10 cases of head and neck tumors. Sixty percent of advanced lung cancer patients with high IFN-γ production had significantly prolonged median survival times of 29.3 months with only the primary treatment. In the case of head and neck tumors, 10 patients who completed the trial all had stable disease or partial responses 5 weeks after the combination therapy of α-GalCer-DCs and activated NKT cells. We now focus on two potential powerful treatment options for the future. One is to establish artificial adjuvant vector cells containing tumor mRNA and α-GalCer/CD1d. This stimulates host NKT cells followed by DC maturation and NK cell activation but also induces tumor-specific long-term memory CD8 killer T cell responses, suppressing tumor metastasis even 1 year after the initial single injection. The other approach is to establish induced pluripotent stem (iPS) cells that can generate unlimited numbers of NKT cells with adjuvant activity. Such iPS-derived NKT cells produce IFN-γ in vitro and in vivo upon

  13. X-ray sensitivity of human tumor cells in vitro

    SciTech Connect

    Weichselbaum, R.R.; Nove, J.; Little, J.B.

    1980-04-01

    Clonally-derived cells from ten human malignant tumors considered radiocurable (breast, neuroblastoma, medulloblastoma) or non-radiocurable (osteosarcoma, hypernephroma, glioblastoma, melanoma) were studied in cell culture and their in vitro x-ray survival curve parameters determined (anti n, D/sub 0/). There were no significant differences among the tumor cell lines suggesting that survival parameters in vitro do not explain differences in clinical radiocurability. Preliminary investigation with density inhibited human tumor cells indicate that such an approach may yield information regarding inherent cellular differences in radiocurability.

  14. Regulatory T cells actively infiltrate metastatic brain tumors.

    PubMed

    Sugihara, Adam Quasar; Rolle, Cleo E; Lesniak, Maciej S

    2009-06-01

    Regulatory T cells (CD4+CD25+FoxP3+, Treg) have been shown to play a major role in suppression of the immune response to malignant gliomas. In this study, we investigated the kinetics of Treg infiltration in metastatic brain tumor models, including melanoma, breast and colon cancers. Our data indicate that both CD4+ and Treg infiltration are significantly increased throughout the time of metastatic tumor progression. These findings were recapitulated in human CNS tumor samples of metastatic melanoma and non-small cell lung carcinoma. Collectively, these data support investigating immunotherapeutic strategies targeting Treg in metastatic CNS tumors. PMID:19424570

  15. Ovarian Tumor Cells Studied Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In August 2001, principal investigator Jeanne Becker sent human ovarian tumor cells to the International Space Station (ISS) aboard the STS-105 mission. The tumor cells were cultured in microgravity for a 14 day growth period and were analyzed for changes in the rate of cell growth and synthesis of associated proteins. In addition, they were evaluated for the expression of several proteins that are the products of oncogenes, which cause the transformation of normal cells into cancer cells. This photo, which was taken by astronaut Frank Culbertson who conducted the experiment for Dr. Becker, shows two cell culture bags containing LN1 ovarian carcinoma cell cultures.

  16. Malignant phyllodes tumors display mesenchymal stem cell features and aldehyde dehydrogenase/disialoganglioside identify their tumor stem cells

    PubMed Central

    2014-01-01

    Introduction Although breast phyllodes tumors are rare, there is no effective therapy other than surgery. Little is known about their tumor biology. A malignant phyllodes tumor contains heterologous stromal elements, and can transform into rhabdomyosarcoma, liposarcoma and osteosarcoma. These versatile properties prompted us to explore their possible relationship to mesenchymal stem cells (MSCs) and to search for the presence of cancer stem cells (CSCs) in phyllodes tumors. Methods Paraffin sections of malignant phyllodes tumors were examined for various markers by immunohistochemical staining. Xenografts of human primary phyllodes tumors were established by injecting freshly isolated tumor cells into the mammary fat pad of non-obese diabetic-severe combined immunodeficient (NOD-SCID) mice. To search for CSCs, xenografted tumor cells were sorted into various subpopulations by flow cytometry and examined for their in vitro mammosphere forming capacity, in vivo tumorigenicity in NOD-SCID mice and their ability to undergo differentiation. Results Immunohistochemical analysis revealed the expression of the following 10 markers: CD44, CD29, CD106, CD166, CD105, CD90, disialoganglioside (GD2), CD117, Aldehyde dehydrogenase 1 (ALDH), and Oct-4, and 7 clinically relevant markers (CD10, CD34, p53, p63, Ki-67, Bcl-2, vimentin, and Globo H) in all 51 malignant phyllodes tumors examined, albeit to different extents. Four xenografts were successfully established from human primary phyllodes tumors. In vitro, ALDH+ cells sorted from xenografts displayed approximately 10-fold greater mammosphere-forming capacity than ALDH- cells. GD2+ cells showed a 3.9-fold greater capacity than GD2- cells. ALDH+/GD2+cells displayed 12.8-fold greater mammosphere forming ability than ALDH-/GD2- cells. In vivo, the tumor-initiating frequency of ALDH+/GD2+ cells were up to 33-fold higher than that of ALDH+ cells, with as few as 50 ALDH+/GD2+ cells being sufficient for engraftment. Moreover, we

  17. Hypoxic cell turnover in different solid tumor lines

    SciTech Connect

    Ljungkvist, Anna S.E. . E-mail: a.ljungkvist@rther.umcn.nl; Bussink, Johan; Kaanders, Johannes H.A.M.; Rijken, Paulus F.J.W.; Begg, Adrian C.; Raleigh, James A.; Kogel, Albert J. van der

    2005-07-15

    Purpose: Most solid tumors contain hypoxic cells, and the amount of tumor hypoxia has been shown to have a negative impact on the outcome of radiotherapy. The efficacy of combined modality treatments depends both on the sequence and timing of the treatments. Hypoxic cell turnover in tumors may be important for optimal scheduling of combined modality treatments, especially when hypoxic cell targeting is involved. Methods and Materials: Previously we have shown that a double bioreductive hypoxic marker assay could be used to detect changes of tumor hypoxia in relation to the tumor vasculature after carbogen and hydralazine treatments. This assay was used in the current study to establish the turnover rate of hypoxic cells in three different tumor models. The first hypoxic marker, pimonidazole, was administered at variable times before tumor harvest, and the second hypoxic marker, CCI-103F, was injected at a fixed time before harvest. Hypoxic cell turnover was defined as loss of pimonidazole (first marker) relative to CCI-103F (second marker). Results: The half-life of hypoxic cell turnover was 17 h in the murine C38 colon carcinoma line, 23 h and 49 h in the human xenograft lines MEC82 and SCCNij3, respectively. Within 24 h, loss of pimonidazole-stained areas in C38 and MEC82 occurred concurrent with the appearance of pimonidazole positive cell debris in necrotic regions. In C38 and MEC82, most of the hypoxic cells had disappeared after 48 h, whereas in SCCNij3, viable cells that had been labeled with pimonidazole were still observed after 5 days. Conclusions: The present study demonstrates that the double hypoxia marker assay can be used to study changes in both the proportion of hypoxic tumor cells and their lifespan at the same time. The present study shows that large differences in hypoxic cell turnover rates may exist among tumor lines, with half-lives ranging from 17-49 h.

  18. IR-780 Dye as a Sonosensitizer for Sonodynamic Therapy of Breast Tumor

    PubMed Central

    Li, Yekuo; Zhou, Qunfang; Deng, Zhiting; Pan, Min; Liu, Xin; Wu, Junru; Yan, Fei; Zheng, Hairong

    2016-01-01

    Sonodynamic therapy (SDT) has become a new modality for cancer therapy through activating certain chemical sensitizers by ultrasound (US). Discovery and development of novel sonosensitizers are attracting extensive attentions. Here, we introduce IR-780 iodide, a lipophilic heptamethine dye with a peak optical absorption of 780 nm wavelength, which can function as SDT agents for breast cancer treatment. The in vitro cellular uptake, cell viability, and the generation levels of reactive oxygen species (ROS) were examined by using 4T1 breast cancer cells incubated with various concentrations of IR-780 followed by US irradiation. Our results showed a dose- and time-dependent cellular uptake of IR-780 iodide in 4T1 cancer cells. Significant lower viabilities and more necrotic/apoptotic cells were found when these cancer cells were treated with IR-780 iodide with US irradiation. Further analyzing the generation of ROS demonstrated significant increase of 1O2 level and H2O2, but not ⋅OH in the SDT-treated cells. The in vivo anti-tumor efficacy of SDT with IR-780 revealed significant tumor growth inhibition of xenografts of 4T1 cancer cells; it was further confirmed by histological analysis and TUNEL staining. Our results strongly suggest that SDT combined with IR-780 may provide a promising strategy for tumor treatment with minimal side effects. PMID:27174006

  19. Dendritic cells loaded with apoptotic antibody-coated tumor cells provide protective immunity against B-cell lymphoma in vivo.

    PubMed

    Franki, Suzanne N; Steward, Kristopher K; Betting, David J; Kafi, Kamran; Yamada, Reiko E; Timmerman, John M

    2008-02-01

    The in vitro priming of tumor-specific T cells by dendritic cells (DCs) phagocytosing killed tumor cells can be augmented in the presence of antitumor monoclonal antibody (mAb). We investigated whether DCs phagocytosing killed lymphoma cells coated with tumor-specific antibody could elicit antitumor immunity in vivo. Irradiated murine 38C13 lymphoma cells were cocultured with bone marrow-derived DCs in the presence or absence of tumor-specific mAb. Mice vaccinated with DCs cocultured with mAb-coated tumor cells were protected from tumor challenge (60% long-term survival), whereas DCs loaded with tumor cells alone were much less effective. The opsonized whole tumor cell-DC vaccine elicited significantly better tumor protection than a traditional lymphoma idiotype (Id) protein vaccine, and in combination with chemotherapy could eradicate preexisting tumor. Moreover, the DC vaccine protected animals from both wild-type and Id-negative variant tumor cells, indicating that Id is not a major target of the induced tumor immunity. Protection was critically dependent upon CD8(+) T cells, with lesser contribution by CD4(+) T cells. Importantly, opsonized whole tumor cell-DC vaccination did not result in tissue-specific autoimmunity. Since opsonized whole tumor cell-DC and Id vaccines appear to target distinct tumor antigens, optimal antilymphoma immunity might be achieved by combining these approaches. PMID:17993615

  20. Tumor cell lysates as immunogenic sources for cancer vaccine design

    PubMed Central

    González, Fermín E; Gleisner, Alejandra; Falcón-Beas, Felipe; Osorio, Fabiola; López, Mercedes N; Salazar-Onfray, Flavio

    2015-01-01

    Autologous dendritic cells (DCs) loaded with tumor-associated antigens (TAAs) are a promising immunological tool for cancer therapy. These stimulate the antitumor response and immunological memory generation. Nevertheless, many patients remain refractory to DC approaches. Antigen (Ag) delivery to DCs is relevant to vaccine success, and antigen peptides, tumor-associated proteins, tumor cells, autologous tumor lysates, and tumor-derived mRNA have been tested as Ag sources. Recently, DCs loaded with allogeneic tumor cell lysates were used to induce a potent immunological response. This strategy provides a reproducible pool of almost all potential Ags suitable for patient use, independent of MHC haplotypes or autologous tumor tissue availability. However, optimizing autologous tumor cell lysate preparation is crucial to enhancing efficacy. This review considers the role of cancer cell-derived lysates as a relevant source of antigens and as an activating factor for ex vivo therapeutic DCs capable of responding to neoplastic cells. These promising therapies are associated with the prolonged survival of advanced cancer patients. PMID:25625929

  1. Tumor cell lysates as immunogenic sources for cancer vaccine design.

    PubMed

    González, Fermín E; Gleisner, Alejandra; Falcón-Beas, Felipe; Osorio, Fabiola; López, Mercedes N; Salazar-Onfray, Flavio

    2014-01-01

    Autologous dendritic cells (DCs) loaded with tumor-associated antigens (TAAs) are a promising immunological tool for cancer therapy. These stimulate the antitumor response and immunological memory generation. Nevertheless, many patients remain refractory to DC approaches. Antigen (Ag) delivery to DCs is relevant to vaccine success, and antigen peptides, tumor-associated proteins, tumor cells, autologous tumor lysates, and tumor-derived mRNA have been tested as Ag sources. Recently, DCs loaded with allogeneic tumor cell lysates were used to induce a potent immunological response. This strategy provides a reproducible pool of almost all potential Ags suitable for patient use, independent of MHC haplotypes or autologous tumor tissue availability. However, optimizing autologous tumor cell lysate preparation is crucial to enhancing efficacy. This review considers the role of cancer cell-derived lysates as a relevant source of antigens and as an activating factor for ex vivo therapeutic DCs capable of responding to neoplastic cells. These promising therapies are associated with the prolonged survival of advanced cancer patients. PMID:25625929

  2. Thoracic Presentations of Small Round Blue Cell Tumors

    PubMed Central

    Chang, Annalice; Pfeifer, Kyle; Chen, Peter; Kalra, Vivek; Shin, Myung Soo

    2016-01-01

    The term “small round blue cell” is frequently used as a cursory radiologic pathological correlation of aggressive tumors throughout the body. We present a pictorial essay of common and uncommon subtypes of small round blue cell tumors in the chest illustrating the characteristic radiologic findings of each lesion. In addition, we review the pathologic findings of each tumor subtype with characteristic hematoxylin- and eosin-stained photomicrographs and immunohistochemical and molecular studies. Represented tumors include small cell carcinoma, Ewing sarcoma, extranodal marginal zone B-cell lymphoma, embryonal rhabdomyosarcoma, desmoplastic small round cell tumor, and posttransplant lymphoproliferative disorder. Understanding and ability to recognize these lesions are essential to broaden the radiologist's differential diagnosis and help guide patient care. PMID:27403403

  3. Adjuvants for enhancing the immunogenicity of whole tumor cell vaccines.

    PubMed

    Chiang, Cheryl Lai-Lai; Kandalaft, Lana E; Coukos, George

    2011-01-01

    Whole tumor cell lysates can serve as excellent multivalent vaccines for priming tumor-specific CD8(+) and CD4(+) T cells. Whole cell vaccines can be prepared with hypochlorous acid oxidation, UVB-irradiation and repeat cycles of freeze and thaw. One major obstacle to successful immunotherapy is breaking self-tolerance to tumor antigens. Clinically approved adjuvants, including Montanide™ ISA-51 and 720, and keyhole-limpet proteins can be used to enhance tumor cell immunogenicity by stimulating both humoral and cellular anti-tumor responses. Other potential adjuvants, such as Toll-like receptor agonists (e.g., CpG, MPLA and PolyI:C), and cytokines (e.g., granulocyte-macrophage colony stimulating factor), have also been investigated. PMID:21557641

  4. Multifunctional T Lymphocytes Generated After Therapy With an Antitumor Gallotanin-Rich Normalized Fraction Are Related to Primary Tumor Size Reduction in a Breast Cancer Model.

    PubMed

    Urueña, Claudia; Gomez, Alejandra; Sandoval, Tito; Hernandez, John; Li, Shaoping; Barreto, Alfonso; Fiorentino, Susana

    2015-09-01

    Natural compounds are promising sources for anticancer therapies because of their multifunctional activity and low toxicity. Although the host immune response (IR) is clearly implicated in tumor control, the relationship between natural therapies and IR has not yet been elucidated. The present work evaluates IR induction after treatment with a gallotannin-rich fraction from Caesalpinia spinosa (P2Et). Breast tumor 4T1 cells were used to evaluate antitumor properties and IR activation. Apoptosis and expression of immunogenic cell death (ICD) markers were assessed in vitro, whereas IR and postvaccination tumor evolution were assessed in vivo. P2Et fraction induced apoptotic cell death, displaying phosphatidylserine externalization and DNA fragmentation. ICD markers such as calreticulin, high-mobility group box 1 translocation from nuclei to cytoplasm, and ATP secretion were observed. Primary tumor control was improved by vaccination with P2Et-pretreated 4T1 cells (t-P2Et), yielding long-lasting ex vivo multifunctional CD4(+) and CD8(+) T lymphocytes (interleukin [IL]-2(+), tumor necrosis factor [TNF]-α(+), interferon [IFN]-γ(+)) that secrete IL-2, TNF-α, IL-4, IL-5, and IFN-γ after specific 4T1 cell stimulation. The present study constitutes the first demonstration of a long-lasting antitumor IR induction and primary tumor reduction induced by a complex natural fraction. These data reveal the potential use of this fraction as an adjuvant in breast cancer treatment. PMID:26220604

  5. Mixed ovarian germ cell tumor composed of immature teratoma, yolk sac tumor and embryonal carcinoma.

    PubMed

    Wang, Ying; Zhou, Feng; Qian, Zhida; Qing, Jiale; Zhao, Mengdam; Huang, Lili

    2014-11-01

    We report the case of a 19-year-old woman experiencing lower abdominal distension and pain. Laboratory tests indicated elevated serum levels of Alpha-Fetoprotein (AFP) and human Chorionic Gonadotropin (hCG). A large mass was detected in the abdomen by physical examination and by transvaginal ultrasonography. Exploratory laparotomy was performed, and a smooth-surfaced, spherical, solid tumor was found on the left ovary, measuring 11.5 x 9.9 x 6.9 cm. Histological evaluation revealed that the tumor consisted of a combination of immature teratoma, Yolk Sac Tumor, and embryonal carcinoma; this is a very rare combination in mixed germ cell tumors. PMID:25518772

  6. Circulating tumor cells in lung cancer.

    PubMed

    Young, Rachel; Pailler, Emma; Billiot, Fanny; Drusch, Françoise; Barthelemy, Amélie; Oulhen, Marianne; Besse, Benjamin; Soria, Jean-Charles; Farace, Françoise; Vielh, Philippe

    2012-01-01

    Circulating tumor cells (CTCs) have emerged as potential biomarkers in several cancers such as colon, prostate, and breast carcinomas, with a correlation between CTC number and patient prognosis being established by independent research groups. The detection and enumeration of CTCs, however, is still a developing field, with no universal method of detection suitable for all types of cancer. CTC detection in lung cancer in particular has proven difficult to perform, as CTCs in this type of cancer often present with nonepithelial characteristics. Moreover, as many detection methods rely on the use of epithelial markers to identify CTCs, the loss of these markers during epithelial-to-mesenchymal transition in certain metastatic cancers can render these methods ineffective. The development of personalized medicine has led to an increase in the advancement of molecular characterization of CTCs. The application of techniques such as FISH and RT-PCR to detect EGFR, HER2, and KRAS abnormalities in lung, breast, and colon cancer, for example, could be used to characterize CTCs in real time. The use of CTCs as a 'liquid biopsy' is therefore an exciting possibility providing information on patient prognosis and treatment efficacy. This review summarizes the state of CTC detection today, with particular emphasis on lung cancer, and discusses the future applications of CTCs in helping the clinician to develop new strategies in patient treatment. PMID:23207444

  7. Genetic background affects susceptibility to tumoral stem cell reprogramming

    PubMed Central

    García-Ramírez, Idoia; Ruiz-Roca, Lucía; Martín-Lorenzo, Alberto; Blanco, Óscar; García-Cenador, María Begoña; García-Criado, Francisco Javier; Vicente-Dueñas, Carolina; Sánchez-García, Isidro

    2013-01-01

    The latest studies of the interactions between oncogenes and its target cell have shown that certain oncogenes may act as passengers to reprogram tissue-specific stem/progenitor cell into a malignant cancer stem cell state. In this study, we show that the genetic background influences this tumoral stem cell reprogramming capacity of the oncogenes using as a model the Sca1-BCRABLp210 mice, where the type of tumor they develop, chronic myeloid leukemia (CML), is a function of tumoral stem cell reprogramming. Sca1-BCRABLp210 mice containing FVB genetic components were significantly more resistant to CML. However, pure Sca1-BCRABLp210 FVB mice developed thymomas that were not seen in the Sca1-BCRABLp210 mice into the B6 background. Collectively, our results demonstrate for the first time that tumoral stem cell reprogramming fate is subject to polymorphic genetic control. PMID:23839033

  8. Plasma-activated medium induced apoptosis on tumor cells

    NASA Astrophysics Data System (ADS)

    Hori, Masaru; Tanaka, Hiromasa; Mizuno, Masaaki; Nakamura, Kae; Kajiyama, Hiroaki; Takeda, Keigo; Ishikawa, Kenji; Kano, Hiroyuki; Kikkawa, Fumitaka

    2013-09-01

    The non-equilibrium atmospheric pressure plasma (NEAPP) has attracted attention in cancer therapy. In this study, the fresh medium was treated with our developed NEAPP, ultra-high electron density (approximately 2 × 1016 cm-3). The medium called the plasma-activated medium (PAM) killed not normal cells but tumor cells through induction of apoptosis. Cell proliferation assays showed that the tumor cells were selectively killed by the PAM. Those cells induced apoptosis using an apoptotic molecular marker, cleaved Caspase3/7. The molecular mechanisms of PAM-mediated apoptosis in the tumor cells were also found that the PAM downregulated the expression of AKT kinase, a marker molecule in a survival signal transduction pathway. These results suggest that PAM may be a promising tool for tumor therapy by downregulating the survival signals in cancers.

  9. Tumor and Endothelial Cell Hybrids Participate in Glioblastoma Vasculature

    PubMed Central

    El Hallani, Soufiane; Colin, Carole; El Houfi, Younas; Boisselier, Blandine; Marie, Yannick; Ravassard, Philippe; Labussière, Marianne; Mokhtari, Karima; Thomas, Jean-Léon; Delattre, Jean-Yves; Eichmann, Anne; Sanson, Marc

    2014-01-01

    Background. Recently antiangiogenic therapy with bevacizumab has shown a high but transient efficacy in glioblastoma (GBM). Indeed, GBM is one of the most angiogenic human tumors and endothelial proliferation is a hallmark of the disease. We therefore hypothesized that tumor cells may participate in endothelial proliferation of GBM. Materials and Methods. We used EGFR FISH Probe to detect EGFR amplification and anti-CD31, CD105, VE-cadherin, and vWF to identify endothelial cells. Endothelial and GBM cells were grown separately, labeled with GFP and DsRed lentiviruses, and then cocultured with or without contact. Results. In a subset of GBM tissues, we found that several tumor endothelial cells carry EGFR amplification, characteristic of GBM tumor cells. This observation was reproduced in vitro: when tumor stem cells derived from GBM were grown in the presence of human endothelial cells, a fraction of them acquired endothelial markers (CD31, CD105, VE-cadherin, and vWF). By transduction with GFP and DsRed expressing lentiviral vectors, we demonstrate that this phenomenon is due to cell fusion and not transdifferentiation. Conclusion. A fraction of GBM stem cells thus has the capacity to fuse with endothelial cells and the resulting hybrids may participate in tumor microvascular proliferation and in treatment resistance. PMID:24868550

  10. Tumor-derived factors modulating dendritic cell function.

    PubMed

    Zong, Jinbao; Keskinov, Anton A; Shurin, Galina V; Shurin, Michael R

    2016-07-01

    Dendritic cells (DC) play unique and diverse roles in the tumor occurrence, development, progression and response to therapy. First of all, DC can actively uptake tumor-associated antigens, process them and present antigenic peptides to T cells inducing and maintaining tumor-specific T cell responses. DC interaction with different immune effector cells may also support innate antitumor immunity, as well as humoral responses also known to inhibit tumor development in certain cases. On the other hand, DC are recruited to the tumor site by specific tumor-derived and stroma-derived factors, which may also impair DC maturation, differentiation and function, thus resulting in the deficient formation of antitumor immune response or development of DC-mediated tolerance and immune suppression. Identification of DC-stimulating and DC-suppressing/polarizing factors in the tumor environment and the mechanism of DC modulation are important for designing effective DC-based vaccines and for recovery of immunodeficient resident DC responsible for maintenance of clinically relevant antitumor immunity in patients with cancer. DC-targeting tumor-derived factors and their effects on resident and administered DC in the tumor milieu are described and discussed in this review. PMID:26984847

  11. Galectin-3 Determines Tumor Cell Adaptive Strategies in Stressed Tumor Microenvironments.

    PubMed

    Cardoso, Ana Carolina Ferreira; Andrade, Luciana Nogueira de Sousa; Bustos, Silvina Odete; Chammas, Roger

    2016-01-01

    Galectin-3 is a member of the β-galactoside-binding lectin family, whose expression is often dysregulated in cancers. While galectin-3 is usually an intracellular protein found in the nucleus and in the cytoplasm, under certain conditions, galectin-3 can be secreted by an yet unknown mechanism. Under stressing conditions (e.g., hypoxia and nutrient deprivation) galectin-3 is upregulated, through the activity of transcription factors, such as HIF-1α and NF-κB. Here, we review evidence that indicates a positive role for galectin-3 in MAPK family signal transduction, leading to cell proliferation and cell survival. Galectin-3 serves as a scaffold protein, which favors the spatial organization of signaling proteins as K-RAS. Upon secretion, extracellular galectin-3 interacts with a variety of cell surface glycoproteins, such as growth factor receptors, integrins, cadherins, and members of the Notch family, among other glycoproteins, besides different extracellular matrix molecules. Through its ability to oligomerize, galectin-3 forms lectin lattices that act as scaffolds that sustain the spatial organization of signaling receptors on the cell surface, dictating its maintenance on the plasma membrane or their endocytosis. Galectin-3 induces tumor cell, endothelial cell, and leukocyte migration, favoring either the exit of tumor cells from a stressed microenvironment or the entry of endothelial cells and leukocytes, such as monocytes/macrophages into the tumor organoid. Therefore, galectin-3 plays homeostatic roles in tumors, as (i) it favors tumor cell adaptation for survival in stressed conditions; (ii) upon secretion, galectin-3 induces tumor cell detachment and migration; and (iii) it attracts monocyte/macrophage and endothelial cells to the tumor mass, inducing both directly and indirectly the process of angiogenesis. The two latter activities are potentially targetable, and specific interventions may be designed to counteract the protumoral role of extracellular

  12. Galectin-3 Determines Tumor Cell Adaptive Strategies in Stressed Tumor Microenvironments

    PubMed Central

    Cardoso, Ana Carolina Ferreira; Andrade, Luciana Nogueira de Sousa; Bustos, Silvina Odete; Chammas, Roger

    2016-01-01

    Galectin-3 is a member of the β-galactoside-binding lectin family, whose expression is often dysregulated in cancers. While galectin-3 is usually an intracellular protein found in the nucleus and in the cytoplasm, under certain conditions, galectin-3 can be secreted by an yet unknown mechanism. Under stressing conditions (e.g., hypoxia and nutrient deprivation) galectin-3 is upregulated, through the activity of transcription factors, such as HIF-1α and NF-κB. Here, we review evidence that indicates a positive role for galectin-3 in MAPK family signal transduction, leading to cell proliferation and cell survival. Galectin-3 serves as a scaffold protein, which favors the spatial organization of signaling proteins as K-RAS. Upon secretion, extracellular galectin-3 interacts with a variety of cell surface glycoproteins, such as growth factor receptors, integrins, cadherins, and members of the Notch family, among other glycoproteins, besides different extracellular matrix molecules. Through its ability to oligomerize, galectin-3 forms lectin lattices that act as scaffolds that sustain the spatial organization of signaling receptors on the cell surface, dictating its maintenance on the plasma membrane or their endocytosis. Galectin-3 induces tumor cell, endothelial cell, and leukocyte migration, favoring either the exit of tumor cells from a stressed microenvironment or the entry of endothelial cells and leukocytes, such as monocytes/macrophages into the tumor organoid. Therefore, galectin-3 plays homeostatic roles in tumors, as (i) it favors tumor cell adaptation for survival in stressed conditions; (ii) upon secretion, galectin-3 induces tumor cell detachment and migration; and (iii) it attracts monocyte/macrophage and endothelial cells to the tumor mass, inducing both directly and indirectly the process of angiogenesis. The two latter activities are potentially targetable, and specific interventions may be designed to counteract the protumoral role of extracellular

  13. Cimetidine induces apoptosis of human salivary gland tumor cells.

    PubMed

    Fukuda, Masakatsu; Tanaka, Shin; Suzuki, Seiji; Kusama, Kaoru; Kaneko, Tadayoshi; Sakashita, Hideaki

    2007-03-01

    It has been reported that cimetidine, a histamine type-2 receptor (H2R) antagonist, inhibits the growth of glandular tumors such as colorectal cancer. However, its effects against salivary gland tumors are still unknown. We demonstrated previously that human salivary gland tumor (HSG) cells spontaneously express the neural cell adhesion molecule (NCAM) and also that HSG cell proliferation could be controlled via a homophilic (NCAM-NCAM) binding mechanism and that NCAM may be associated with perineural invasion by malignant salivary gland tumors. In the present study, we investigated the effects of cimetidine via the expression of NCAM on tumor growth and perineural/neural invasion in salivary gland tumor cells. Expression of both NCAM mRNA and protein was found to decrease in a dose-dependent manner upon treatment with cimetidine for 24 h. The MTT assay and confocal laser microscopy clearly showed that HSG cells underwent apoptosis after treatment with cimetidine. Activation of caspases 3, 7, 8 and 9 was observed in HSG cells after cimetidine treatment, thus confirming that the apoptosis was induced by the activated caspases. Apaf-1 activity was also detected in HSG cells in a dose-dependent manner after treatment with cimetidine. We also found that the cimetidine-mediated down-regulation of NCAM expression in HSG cells did not occur via blocking of the histamine receptor, even though H2R expression was observed on HSG cells, as two other H2R antagonists, famotidine and ranitidine, did not show similar effects. We demonstrated for the first time that cimetidine can induce significant apoptosis of salivary gland tumor cells, which express NCAM, at least in part by down-regulation of NCAM expression on the cells. These findings suggest that the growth, development and perineural/neural invasion of salivary gland tumor cells can be blocked by cimetidine administration through down-regulation of NCAM expression, as well as induction of apoptosis. PMID:17273750

  14. Culture and Isolation of Brain Tumor Initiating Cells.

    PubMed

    Vora, Parvez; Venugopal, Chitra; McFarlane, Nicole; Singh, Sheila K

    2015-01-01

    Brain tumors are typically composed of heterogeneous cells that exhibit distinct phenotypic characteristics and proliferative potentials. Only a relatively small fraction of cells in the tumor with stem cell properties, termed brain tumor initiating cells (BTICs), possess an ability to differentiate along multiple lineages, self-renew, and initiate tumors in vivo. This unit describes protocols for the culture and isolation BTICs. We applied culture conditions and assays originally used for normal neural stem cells (NSCs) in vitro to a variety of brain tumors. Using fluorescence-activated cell sorting for the neural precursor cell surface marker CD133/CD15, BTICs can be isolated and studied prospectively. Isolation of BTICs from GBM bulk tumor will enable examination of dissimilar morphologies, self-renewal capacities, tumorigenicity, and therapeutic sensitivities. As cancer is also considered a disease of unregulated self-renewal and differentiation, an understanding of BTICs is fundamental to understanding tumor growth. Ultimately, it will lead to novel drug discovery approaches that strategically target the functionally relevant BTIC population. PMID:26237571

  15. Adenovirus-mediated gene transfer to tumor cells.

    PubMed

    Cascalló, Manel; Alemany, Ramon

    2004-01-01

    Cell transduction in vitro is only the first step toward proving that a genetherapy vector can be useful to treat tumors. However, tumor targeting in vivo is now the milestone for gene therapy to succeed against disseminated cancer. Therefore, most valuable information is obtained from studies of vector biodistribution. Owing to the hepatotropism of adenoviral vectors, a particularly important parameter is the tumor/liver ratio. This ratio can be given at the level of gene expression if the amount of transgene expression is measured. To optimize the targeting, however, the levels of viral particles that reach the tumor compared to other organs must be studied. Most of this chapter deals with methods to quantify the virus fate in tumor-bearing animals. We present a radioactive labeling method that can be used to study biodistribution. After a small section dealing with tumor models, we describe methods to quantify different parameters related to adenovirus-mediated tumor targeting. PMID:14970588

  16. Circulating Tumor Cell Composition in Renal Cell Carcinoma

    PubMed Central

    Bublitz, Kira; Lazaridis, Lazaros; Goergens, André; Giebel, Bernd; Schuler, Martin; Hoffmann, Andreas-Claudius

    2016-01-01

    Purpose Due to their minimal-invasive yet potentially current character circulating tumor cells (CTC) might be useful as a “liquid biopsy” in solid tumors. However, successful application in metastatic renal cell carcinoma (mRCC) has been very limited so far. High plasticity and heterogeneity of CTC morphology challenges currently available enrichment and detection techniques with EpCAM as the usual surface marker being underrepresented in mRCC. We recently described a method that enables us to identify and characterize non-hematopoietic cells in the peripheral blood stream with varying characteristics and define CTC subgroups that distinctly associate to clinical parameters. With this pilot study we wanted to scrutinize feasibility of this approach and its potential usage in clinical studies. Experimental Design Peripheral blood was drawn from 14 consecutive mRCC patients at the West German Cancer Center and CTC profiles were analyzed by Multi-Parameter Immunofluorescence Microscopy (MPIM). Additionally angiogenesis-related genes were measured by quantitative RT-PCR analysis. Results We detected CTC with epithelial, mesenchymal, stem cell-like or mixed-cell characteristics at different time-points during anti-angiogenic therapy. The presence and quantity of N-cadherin-positive or CD133-positive CTC was associated with inferior PFS. There was an inverse correlation between high expression of HIF1A, VEGFA, VEGFR and FGFR and the presence of N-cadherin-positive and CD133-positive CTC. Conclusions Patients with mRCC exhibit distinct CTC profiles that may implicate differences in therapeutic outcome. Prospective evaluation of phenotypic and genetic CTC profiling as prognostic and predictive biomarker in mRCC is warranted. PMID:27101285

  17. Revisiting autophagy addiction of tumor cells

    PubMed Central

    Nyfeler, Beat; Eng, Christina H.

    2016-01-01

    ABSTRACT Inhibition of autophagy has been widely explored as a potential therapeutic intervention for cancer. Different factors such as tumor origin, tumor stage and genetic background can define a tumor's response to autophagy modulation. Notably, tumors with oncogenic mutations in KRAS were reported to depend on macroautophagy in order to cope with oncogene-induced metabolic stress. Our recent report details the unexpected finding that autophagy is dispensable for KRAS-driven tumor growth in vitro and in vivo. Additionally, we clarify that the antitumorigenic effects of chloroquine, a frequently used nonspecific inhibitor of autophagy, are not connected to the inhibition of macroautophagy. Our data suggest that caution should be exercised when using chloroquine and its analogs to decipher the roles of autophagy in cancer. PMID:27097231

  18. NK Cells and γδ T Cells Mediate Resistance to Polyomavirus–Induced Tumors

    PubMed Central

    Mishra, Rabinarayan; Chen, Alex T.; Welsh, Raymond M.; Szomolanyi-Tsuda, Eva

    2010-01-01

    NK and γδ T cells can eliminate tumor cells in many experimental models, but their effect on the development of tumors caused by virus infections in vivo is not known. Polyomavirus (PyV) induces tumors in neonatally infected mice of susceptible strains and in adult mice with certain immune deficiencies, and CD8+ αβ T cells are regarded as the main effectors in anti-tumor immunity. Here we report that adult TCRβ knockout (KO) mice that lack αβ but have γδ T cells remain tumor-free after PyV infection, whereas TCRβ×δ KO mice that lack all T cells develop tumors. In addition, E26 mice, which lack NK and T cells, develop the tumors earlier than TCRβ×δ KO mice. These observations implicate γδ T and NK cells in the resistance to PyV-induced tumors. Cell lines established from PyV-induced tumors activate NK and γδ T cells both in culture and in vivo and express Rae-1, an NKG2D ligand. Moreover, these PyV tumor cells are killed by NK cells in vitro, and this cytotoxicity is prevented by treatment with NKG2D-blocking antibodies. Our findings demonstrate a protective role for NK and γδ T cells against naturally occurring virus-induced tumors and suggest the involvement of NKG2D-mediated mechanisms. PMID:20523894

  19. Tumor Necrosis Factor-α/CD40 Ligand-Engineered Mesenchymal Stem Cells Greatly Enhanced the Antitumor Immune Response and Lifespan in Mice

    PubMed Central

    Daneshmandi, Saeed; Menaa, Farid

    2014-01-01

    Abstract The interaction between mesenchymal stem cells (MSCs) and dendritic cells (DCs) affects T cell development and function. Further, the chemotactic capacity of MSCs, their interaction with the tumor microenvironment, and the intervention of immune-stimulatory molecules suggest possible exploitation of tumor necrosis factor-α (TNF-α) and CD40 ligand (CD40L) to genetically modify MSCs for enhanced cancer therapy. Both DCs and MSCs were isolated from BALB/c mice. DCs were then cocultured with MSCs transduced with TNF-α and/or CD40L [(TNF-α/CD40L)-MSCs]. Major DCs' maturation markers, DC and T cell cytokines such as interleukin-4, -6, -10, -12, TNF-α, tumor growth factor-β, as well as T cell proliferation, were assessed. Meantime, a BALB/c mouse breast tumor model was inducted by injecting 4T1 cells subcutaneously. Mice (n=10) in each well-defined test groups (n=13) were cotreated with DCs and/or (TNF-α/CD40L)-MSCs. The controls included untreated, empty vector-MSC, DC-lipopolysaccharide, and immature DC mouse groups. Eventually, cytokine levels from murine splenocytes, as well as tumor volume and survival of mice, were assessed. Compared with the corresponding controls, both in vitro and in vivo analyses showed induction of T helper 1 (Th1) as well as suppression of Th2 and Treg responses in test groups, which led to a valuable antitumor immune response. Further, the longest mouse survival was observed in mouse groups that were administered with DCs plus (TNF-α/CD40L)-MSCs. In our experimental setting, the present pioneered study demonstrates that concomitant genetic modification of MSCs with TNF-α and CD40L optimized the antitumor immunity response in the presence of DCs, meantime increasing the mouse lifespan. PMID:24372569

  20. Significance of DNA quantification in testicular germ cell tumors.

    PubMed

    Codesal, J; Paniagua, R; Regadera, J; Fachal, C; Nistal, M

    1991-01-01

    A cytophotometric quantification of DNA in tumor cells was performed in histological sections of orchidectomy specimens from 36 men with testicular germ cell tumors (TGCT), 7 of them showing more than one tumor type. Among the variants of seminoma (classic and spermatocytic) the lowest DNA content were in spermatocytic seminoma. With respect to non-seminomatous tumors (yolk sac tumor, embryonal carcinoma, teratoma, and choriocarcinoma), choriocarcinomas showed the highest DNA content, and the lowest value was found in teratomas. No significant differences were found between the average DNA content of seminomas (all types) and non-seminomatous tumors (all types). Both embryonal carcinoma and yolk sac tumor showed similar DNA content when they were the sole tumor and when they were found associated with other tumors. In this study, except for the 4 cases of teratoma and the case of spermatocytic seminoma, all TGCT examined did not show modal values of DNA content in the diploid range. Such an elevated frequency of aneuploidism in these tumors may be helpful for their diagnosis. PMID:1666273

  1. Molecular Connections between Cancer Cell Metabolism and the Tumor Microenvironment

    PubMed Central

    Justus, Calvin R.; Sanderlin, Edward J.; Yang, Li V.

    2015-01-01

    Cancer cells preferentially utilize glycolysis, instead of oxidative phosphorylation, for metabolism even in the presence of oxygen. This phenomenon of aerobic glycolysis, referred to as the “Warburg effect”, commonly exists in a variety of tumors. Recent studies further demonstrate that both genetic factors such as oncogenes and tumor suppressors and microenvironmental factors such as spatial hypoxia and acidosis can regulate the glycolytic metabolism of cancer cells. Reciprocally, altered cancer cell metabolism can modulate the tumor microenvironment which plays important roles in cancer cell somatic evolution, metastasis, and therapeutic response. In this article, we review the progression of current understandings on the molecular interaction between cancer cell metabolism and the tumor microenvironment. In addition, we discuss the implications of these interactions in cancer therapy and chemoprevention. PMID:25988385

  2. Eosinophilic and granular cell tumors of the breast.

    PubMed

    Damiani, S; Dina, R; Eusebi, V

    1999-05-01

    Eosinophilic and granular cell tumors of the breast are a heterogeneous group encompassing both epithelial and mesenchymal lesions. A granular appearance of the cytoplasm may be caused by the accumulation of secretory granules, mitochondria, or lysosomes. In the breast, mucoid carcinomas, carcinomas showing apocrine differentiation, and neuroendocrine carcinomas are well known entities, while tumors with oncocytic and acinic cell differentiation have been only recently recognized. An abundance of lysosomes is characteristic of Schwannian granular cell neoplasms, but smooth muscle cell tumors also may have this cytoplasmic feature. Awareness of all these possibilities when granular cells are found in breast lesions improves diagnostic accuracy and helps to avoid misdiagnosis of both benign lesions and malignant tumors. PMID:10452577

  3. Multipotent Mesenchymal Stromal Cells: Possible Culprits in Solid Tumors?

    PubMed Central

    Johann, Pascal David; Müller, Ingo

    2015-01-01

    The clinical use of bone marrow derived multipotent mesenchymal stromal cells (BM-MSCs) in different settings ranging from tissue engineering to immunotherapies has prompted investigations on the properties of these cells in a variety of other tissues. Particularly the role of MSCs in solid tumors has been the subject of many experimental approaches. While a clear phenotypical distinction of tumor associated fibroblasts (TAFs) and MSCs within the tumor microenvironment is still missing, the homing of bone marrow MSCs in tumor sites has been extensively studied. Both, tumor-promoting and tumor-inhibiting effects of BM-MSCs have been described in this context. This ambiguity requires a reappraisal of the different studies and experimental methods employed. Here, we review the current literature on tumor-promoting and tumor-inhibiting effects of BM-MSCs with a particular emphasis on their interplay with components of the immune system and also highlight a potential role of MSCs as cell of origin for certain mesenchymal tumors. PMID:26273308

  4. Engineered three-dimensional microfluidic device for interrogating cell-cell interactions in the tumor microenvironment

    PubMed Central

    Hockemeyer, K.; Janetopoulos, C.; Terekhov, A.; Hofmeister, W.; Vilgelm, A.; Costa, Lino; Wikswo, J. P.; Richmond, A.

    2014-01-01

    Stromal cells in the tumor microenvironment play a key role in the metastatic properties of a tumor. It is recognized that cancer-associated fibroblasts (CAFs) and endothelial cells secrete factors capable of influencing tumor cell migration into the blood or lymphatic vessels. We developed a microfluidic device that can be used to image the interactions between stromal cells and tumor cell spheroids in a three dimensional (3D) microenvironment while enabling external control of interstitial flow at an interface, which supports endothelial cells. The apparatus couples a 200-μm channel with a semicircular well to mimic the interface of a blood vessel with the stroma, and the design allows for visualization of the interactions of interstitial flow, endothelial cells, leukocytes, and fibroblasts with the tumor cells. We observed that normal tissue-associated fibroblasts (NAFs) contribute to the “single file” pattern of migration of tumor cells from the spheroid in the 3D microenvironment. In contrast, CAFs induce a rapid dispersion of tumor cells out of the spheroid with migration into the 3D matrix. Moreover, treatment of tumor spheroid cultures with the chemokine CXCL12 mimics the effect of the CAFs, resulting in similar patterns of dispersal of the tumor cells from the spheroid. Conversely, addition of CXCL12 to co-cultures of NAFs with tumor spheroids did not mimic the effects observed with CAF co-cultures, suggesting that NAFs produce factors that stabilize the tumor spheroids to reduce their migration in response to CXCL12. PMID:25379090

  5. Engineered three-dimensional microfluidic device for interrogating cell-cell interactions in the tumor microenvironment.

    PubMed

    Hockemeyer, K; Janetopoulos, C; Terekhov, A; Hofmeister, W; Vilgelm, A; Costa, Lino; Wikswo, J P; Richmond, A

    2014-07-01

    Stromal cells in the tumor microenvironment play a key role in the metastatic properties of a tumor. It is recognized that cancer-associated fibroblasts (CAFs) and endothelial cells secrete factors capable of influencing tumor cell migration into the blood or lymphatic vessels. We developed a microfluidic device that can be used to image the interactions between stromal cells and tumor cell spheroids in a three dimensional (3D) microenvironment while enabling external control of interstitial flow at an interface, which supports endothelial cells. The apparatus couples a 200-μm channel with a semicircular well to mimic the interface of a blood vessel with the stroma, and the design allows for visualization of the interactions of interstitial flow, endothelial cells, leukocytes, and fibroblasts with the tumor cells. We observed that normal tissue-associated fibroblasts (NAFs) contribute to the "single file" pattern of migration of tumor cells from the spheroid in the 3D microenvironment. In contrast, CAFs induce a rapid dispersion of tumor cells out of the spheroid with migration into the 3D matrix. Moreover, treatment of tumor spheroid cultures with the chemokine CXCL12 mimics the effect of the CAFs, resulting in similar patterns of dispersal of the tumor cells from the spheroid. Conversely, addition of CXCL12 to co-cultures of NAFs with tumor spheroids did not mimic the effects observed with CAF co-cultures, suggesting that NAFs produce factors that stabilize the tumor spheroids to reduce their migration in response to CXCL12. PMID:25379090

  6. Dendritic cells loaded with apoptotic antibody-coated tumor cells provide protective immunity against B-cell lymphoma in vivo

    PubMed Central

    Franki, Suzanne N.; Steward, Kristopher K.; Betting, David J.; Kafi, Kamran; Yamada, Reiko E.

    2008-01-01

    The in vitro priming of tumor-specific T cells by dendritic cells (DCs) phagocytosing killed tumor cells can be augmented in the presence of antitumor monoclonal antibody (mAb). We investigated whether DCs phagocytosing killed lymphoma cells coated with tumor-specific antibody could elicit antitumor immunity in vivo. Irradiated murine 38C13 lymphoma cells were cocultured with bone marrow–derived DCs in the presence or absence of tumor-specific mAb. Mice vaccinated with DCs cocultured with mAb-coated tumor cells were protected from tumor challenge (60% long-term survival), whereas DCs loaded with tumor cells alone were much less effective. The opsonized whole tumor cell–DC vaccine elicited significantly better tumor protection than a traditional lymphoma idiotype (Id) protein vaccine, and in combination with chemotherapy could eradicate preexisting tumor. Moreover, the DC vaccine protected animals from both wild-type and Id-negative variant tumor cells, indicating that Id is not a major target of the induced tumor immunity. Protection was critically dependent upon CD8+ T cells, with lesser contribution by CD4+ T cells. Importantly, opsonized whole tumor cell–DC vaccination did not result in tissue-specific autoimmunity. Since opsonized whole tumor cell–DC and Id vaccines appear to target distinct tumor antigens, optimal antilymphoma immunity might be achieved by combining these approaches. PMID:17993615

  7. Marijuana use and testicular germ cell tumors

    PubMed Central

    Trabert, Britton; Sigurdson, Alice J.; Sweeney, Anne M.; Strom, Sara S.; McGlynn, Katherine A.

    2010-01-01

    Background Since the early 1970's the incidence of testicular germ cell tumors (TGCT) in the U.S. has been increasing, however, potential environmental exposures accounting for this rise have not been identified. A prior study reported a significant association among frequent and long-term current users of marijuana and TGCT risk. We aimed to evaluate the relationship of marijuana use and TGCT in a hospital-based case-control study conducted at The University of Texas M. D. Anderson Cancer Center. Methods TGCT cases diagnosed between January 1990 and October 1996 (n=187) and male friend controls (n=148) were enrolled in the study. All participants were between the ages of 18 and 50 at the time of cases' diagnosis and resided in Texas, Louisiana, Arkansas, or Oklahoma. Associations of marijuana use and TGCT were estimated using unconditional logistic regression, adjusting for age, race, prior cryptorchidism, cigarette smoking and alcohol intake. Results Overall, TGCT cases were more likely to be frequent marijuana users (daily or greater) than were controls [OR: 2.2, 95% CI: 1.0, 5.1]. In the histologic-specific analyses nonseminoma cases were significantly more likely than controls to be frequent users [OR: 3.1, 95% CI: 1.2, 8.2] and long-term users (10+ years) [OR: 2.4, 95% CI: 1.0, 6.1]. Discussion Our finding of an association between frequent marijuana use and TGCT, particularly among men with nonseminoma, is consistent with the findings of a previous report. Additional studies of marijuana use and TGCT are warranted, especially studies evaluating the role of endocannabinoid signaling and cannabinoid receptors in TGCT. PMID:20925043

  8. Tumor-induced myeloid-derived suppressor cell function is independent of IFN-γ and IL-4Rα.

    PubMed

    Sinha, Pratima; Parker, Katherine H; Horn, Lucas; Ostrand-Rosenberg, Suzanne

    2012-08-01

    Myeloid-derived suppressor cells (MDSCs) are present in most cancer patients and experimental animals where they exert a profound immune suppression and are a significant obstacle to immunotherapy. IFN-γ and IL-4 receptor alpha (IL-4Rα) have been implicated as essential molecules for MDSC development and immunosuppressive function. If IFN-γ and IL-4Rα are critical regulators of MDSCs, then they are potential targets for preventing MDSC accumulation or inhibiting MDSC function. Because data supporting a role for IFN-γ and IL-4Rα are not definitive, we have examined MDSCs induced in IFN-γ-deficient, IFN-γR-deficient, and IL-4Rα-deficient mice carrying three C57BL/6-derived (B16 melanoma, MC38 colon carcinoma, and 3LL lung adenocarcinoma), and three BALB/c-derived (4T1 and TS/A mammary carcinomas, and CT26 colon carcinoma) tumors. We report that although MDSCs express functional IFN-γR and IL-4Rα, and have the potential to signal through the STAT1 and STAT6 pathways, respectively, neither IFN-γ nor IL-4Rα impacts the phenotype, accumulation, or T-cell suppressive potency of MDSCs, although IFN-γ and IL-4Rα modestly alter MDSC-macrophage IL-10 crosstalk. Therefore, neither IFN-γ nor IL-4Rα is a key regulator of MDSCs and targeting these molecules is unlikely to significantly alter MDSC accumulation or function. PMID:22673957

  9. In vivo imaging of tumor vascular endothelial cells

    NASA Astrophysics Data System (ADS)

    Zhao, Dawen; Stafford, Jason H.; Zhou, Heling; Thorpe, Philip E.

    2013-02-01

    Phosphatidylserine (PS), normally restricted to the inner leaflet of the plasma membrane, becomes exposed on the outer surface of viable (non-apoptotic) endothelial cells in tumor blood vessels, probably in response to oxidative stresses present in the tumor microenvironment. In the present study, we optically imaged exposed PS on tumor vasculature in vivo using PGN635, a novel human monoclonal antibody that targets PS. PGN635 F(ab')2 was labeled with the near infrared (NIR) dye, IRDye 800CW. Human glioma U87 cells or breast cancer MDA-MB-231 cells were implanted subcutaneously or orthotopically into nude mice. When the tumors reached ~5 mm in diameter, 800CW- PGN635 was injected via a tail vein and in vivo dynamic NIR imaging was performed. For U87 gliomas, NIR imaging allowed clear detection of tumors as early as 4 h later, which improved over time to give a maximal tumor/normal ratio (TNR = 2.9 +/- 0.5) 24 h later. Similar results were observed for orthotopic MDA-MB-231 breast tumors. Localization of 800CW-PGN635 to tumors was antigen specific since 800CW-Aurexis, a control probe of irrelevant specificity, did not localize to the tumors, and pre-administration of unlabeled PGN635 blocked the uptake of 800CW-PGN635. Fluorescence microscopy confirmed that 800CW-PGN635 was binding to PS-positive tumor vascular endothelium. Our studies suggest that tumor vasculature can be successfully imaged in vivo to provide sensitive tumor detection.

  10. Targeting Tumor Vasculature Endothelial Cells and Tumor Cells for Immunotherapy of Human Melanoma in a Mouse Xenograft Model

    NASA Astrophysics Data System (ADS)

    Hu, Zhiwei; Sun, Ying; Garen, Alan

    1999-07-01

    An immunotherapy treatment for cancer that targets both the tumor vasculature and tumor cells has shown promising results in a severe combined immunodeficient mouse xenograft model of human melanoma. The treatment involves systemic delivery of an immunoconjugate molecule composed of a tumor-targeting domain conjugated to the Fc effector domain of human IgG1. The effector domain induces a cytolytic immune response against the targeted cells by natural killer cells and complement. Two types of targeting domains were used. One targeting domain is a human single-chain Fv molecule that binds to a chondroitin sulfate proteoglycan expressed on the surface of most human melanoma cells. Another targeting domain is factor VII (fVII), a zymogen that binds with high specificity and affinity to the transmembrane receptor tissue factor (TF) to initiate the blood coagulation cascade. TF is expressed by endothelial cells lining the tumor vasculature but not the normal vasculature, and also by many types of tumor cells including melanoma. Because the binding of a fVII immunoconjugate to TF might cause disseminated intravascular coagulation, the active site of fVII was mutated to inhibit coagulation without affecting the affinity for TF. The immunoconjugates were encoded as secreted molecules in a replication-defective adenovirus vector, which was injected into the tail vein of severe combined immunodeficient mice. The results demonstrate that a mutated fVII immunoconjugate, administered separately or together with a single-chain Fv immunoconjugate that binds to the tumor cells, can inhibit the growth or cause regression of an established human tumor xenograft. This procedure could be effective in treating a broad spectrum of human solid tumors that express TF on vascular endothelial cells and tumor cells.

  11. Increased IMP dehydrogenase gene expression in solid tumor tissues and tumor cell lines

    SciTech Connect

    Collart, F.R.; Chubb, C.B.; Mirkin, B.L.; Huberman, E.

    1992-07-10

    IMP dehydrogenase, a regulatory enzyme of guanine nucleotide biosynthesis, may play a role in cell proliferation and malignancy. To assess this possibility, we examined IMP dehydrogenase expression in a series of human solid tumor tissues and tumor cell lines in comparison with their normal counterparts. Increased IMP dehydrogenase gene expression was observed in brain tumors relative to normal brain tissue and in sarcoma cells relative to normal fibroblasts. Similarly, in several B- and T-lymphoid leukemia cell lines, elevated levels of IMP dehydrogenase mRNA and cellular enzyme were observed in comparison with the levels in peripheral blood lymphocytes. These results are consistent with an association between increased IMP dehydrogenase expression and either enhanced cell proliferation or malignant transformation.

  12. Identification of peptides that bind to irradiated pancreatic tumor cells

    SciTech Connect

    Huang Canhui; Liu, Xiang Y.; Rehemtulla, Alnawaz; Lawrence, Theodore S. . E-mail: tsl@med.umich.edu

    2005-08-01

    Purpose: Peptides targeting tumor vascular cells or tumor cells themselves have the potential to be used as vectors for delivering either DNA in gene therapy or antitumor agents in chemotherapy. We wished to determine if peptides identified by phage display could be used to target irradiated pancreatic cancer cells. Methods and Materials: Irradiated Capan-2 cells were incubated with 5 x 10{sup 12} plaque-forming units of a phage display library. Internalized phage were recovered and absorbed against unirradiated cells. After five such cycles of enrichment, the recovered phage were subjected to DNA sequencing analysis and synthetic peptides made. The binding of both phage and synthetic peptides was evaluated by fluorescence staining and flow cytometry in vitro and in vivo. Results: We identified one 12-mer peptide (PA1) that binds to irradiated Capan-2 pancreatic adenocarcinoma cells but not to unirradiated cells. The binding of peptide was significant after 48 h incubation with cells. In vivo experiments with Capan-2 xenografts in nude mice demonstrated that these small peptides are able to penetrate tumor tissue after intravenous injections and bind specifically to irradiated tumor cells. Conclusion: These data suggest that peptides can be identified that target tumors with radiation-induced cell markers and may be clinically useful.

  13. Inhibitory effects of a dendritic cell vaccine loaded with radiation-induced apoptotic tumor cells on tumor cell antigens in mouse bladder cancer.

    PubMed

    Xie, X F; Ding, Q; Hou, J G; Chen, G

    2015-01-01

    Herein, the preparation of a dendritic cell (DC) vaccine with radiation-induced apoptotic tumor cells and its immunological effects on bladder cancer in C57BL/6 mice was investigated. We used radiation to obtain a MB49 cell antigen that was sensitive to bone marrow-derived DCs to prepare a DC vaccine. An animal model of tumor-bearing mice was established with the MB49 mouse bladder cancer cell line. Animals were randomly allocated to an experimental group or control group. DC vaccine or phosphate-buffered saline was given 7 days before inoculation with tumor cells. Each group consisted of 2 subgroups in which tumor volume and the survival of tumor-bearing mice were recorded. Tumor volumes and average tumor masses of mice administered DC vaccine loaded with radiation-induced apoptotic cells were significantly lower than those in the control group (P < 0.01). Survival in the experimental group was also longer than that in the control group, and 2 mice survived without tumor formation. In the DC vaccine group, 2 mice were alive without tumor growth after 30 days, and no tumor was observed at 30 days after subcutaneous inoculation of MB49 cells. The DC vaccine loaded with radiation-induced apoptotic tumor cells had an anti-tumor effect and was associated with increased survival in a bladder cancer model in mice. PMID:26214433

  14. Chimeric antigen receptor T-cell therapy for solid tumors

    PubMed Central

    Newick, Kheng; Moon, Edmund; Albelda, Steven M

    2016-01-01

    Chimeric antigen receptor (CAR) T cells are engineered constructs composed of synthetic receptors that direct T cells to surface antigens for subsequent elimination. Many CAR constructs are also manufactured with elements that augment T-cell persistence and activity. To date, CAR T cells have demonstrated tremendous success in eradicating hematological malignancies (e.g., CD19 CARs in leukemias). This success is not yet extrapolated to solid tumors, and the reasons for this are being actively investigated. Here in this mini-review, we discuss some of the key hurdles encountered by CAR T cells in the solid tumor microenvironment. PMID:27162934

  15. Allogeneic IgG combined with dendritic cell stimuli induces anti-tumor T cell immunity

    PubMed Central

    Carmi, Yaron; Spitzer, Matthew H.; Linde, Ian L.; Burt, Bryan M; Prestwood, Tyler R.; Perlman, Nikola; Davidson, Matthew G.; Kenkel, Justin A.; Segal, Ehud; Pusapati, Ganesh V.; Bhattacharya, Nupur; Engleman, Edgar G.

    2015-01-01

    While cancers grow in their hosts and evade host immunity through immunoediting and immunosuppression1–5, tumors are rarely transmissible between individuals. Much like transplanted allogeneic organs, allogeneic tumors are reliably rejected by host T cells, even when the tumor and host share the same major histocompatibility complex (MHC) alleles, the most potent determinants of transplant rejection6–10. How such tumor-eradicating immunity is initiated remains unknown, though elucidating this process could provide a roadmap for inducing similar responses against naturally arising tumors. We found that allogeneic tumor rejection is initiated by naturally occurring tumor-binding IgG antibodies, which enable dendritic cells (DC) to internalize tumor antigens and subsequently activate tumor-reactive T cells. We exploited this mechanism to successfully treat autologous and autochthonous tumors. Either systemic administration of DC loaded with allogeneic IgG (alloIgG)-coated tumor cells or intratumoral injection of alloIgG in combination with DC stimuli induced potent T cell mediated anti-tumor immune responses, resulting in tumor eradication in mouse models of melanoma, pancreas, lung and breast cancer. Moreover, this strategy led to eradication of distant tumors and metastases, as well as the injected primary tumors. To assess the clinical relevance of these findings, we studied antibodies and cells from patients with lung cancer. T cells from these patients responded vigorously to autologous tumor antigens after culture with alloIgG-loaded DC, recapitulating our findings in mice. These results reveal that tumor-binding alloIgG can induce powerful anti-tumor immunity that can be exploited for cancer immunotherapy. PMID:25924063

  16. (Study of plant cells and tumors): Progress report

    SciTech Connect

    Not Available

    1989-01-01

    Studies of the cell and molecular biology of animal cell tumors has long been recognized as a fertile and productive area for obtaining new and fundamental insights into mechanisms regulating the growth and differentiation of animal cells. As a novel approach to studying similar phenomena in plant cells, we have isolated a number of tumors in the small cruciferous plant Arabidopsis thaliana and have begun to characterize these at the cellular and molecular levels. Studies at the cellular level should lead to new insights into the relationships between hormones, cell growth and cell differentiation, while studies at the molecular level may reveal and allow us to isolate genes involved either in the hormone response, or in other important aspects of the cells' growth regulatory network. Tumors were induced on the plant by irradiation of seed or seedlings with Co-60 gamma rays. When placed in culture, these tumors were able to grow on hormone-free medium, in contrast to normal plant tissues which requires both an auxin and a cytokinin for growth. In the first phase of this project, we have concentrated on characterizing the growth, general phenotype, and hormonal sensitivity of the tumors. These studies will lead into a molecular analysis of the changes expressed in each tumor which may be responsible for the altered phenotype. 7 refs., 1 tab.

  17. Significance of Circulating Tumor Cells in Soft Tissue Sarcoma

    PubMed Central

    Nicolazzo, Chiara; Gradilone, Angela

    2015-01-01

    Circulating tumor cells can be detected from the peripheral blood of cancer patients. Their prognostic value has been established in the last 10 years for metastatic colorectal, breast, and prostate cancer. On the contrary their presence in patients affected by sarcomas has been poorly investigated. The discovery of EpCAM mRNA expression in different sarcoma cell lines and in a small cohort of metastatic sarcoma patients supports further investigations on these rare tumors to deepen the importance of CTC isolation. Although it is not clear whether EpCAM expression might be originally present on tumor sarcoma cells or acquired during the mesenchymal-epithelial transition, the discovery of EpCAM on circulating sarcoma cells opens a new scenario in CTC detection in patients affected by a rare mesenchymal tumor. PMID:26167450

  18. General Information About Childhood Central Nervous System Germ Cell Tumors

    MedlinePlus

    ... before the cancer is diagnosed and continue for months or years. Childhood CNS germ cell tumors may ... after treatment. Some cancer treatments cause side effects months or years after treatment has ended. Some cancer ...

  19. Integrin receptors on tumor cells facilitate NK cell-mediated antibody-dependent cytotoxicity.

    PubMed

    Anikeeva, Nadia; Steblyanko, Maria; Fayngerts, Svetlana; Kopylova, Natalya; Marshall, Deborah J; Powers, Gordon D; Sato, Takami; Campbell, Kerry S; Sykulev, Yuri

    2014-08-01

    NK cells that mediate ADCC play an important role in tumor-specific immunity. We have examined factors limiting specific lysis of tumor cells by CD16.NK-92 cells induced by CNTO 95LF antibodies recognizing αV integrins that are overexpressed on many tumor cells. Although all tested tumor cells were killed by CD16.NK-92 effectors in the presence of the antibodies, the killing of target cells with a low level of ICAM-1 expression revealed a dramatic decrease in their specific lysis at high antibody concentration, revealing a dose limiting effect. A similar effect was also observed with primary human NK cells. The effect was erased after IFN-γ treatment of tumor cells resulting in upregulation of ICAM-1. Furthermore, killing of the same tumor cells induced by Herceptin antibody was significantly impaired in the presence of CNTO 95Ala-Ala antibody variant that blocks αV integrins but is incapable of binding to CD16. These data suggest that αV integrins on tumor cells could compensate for the loss of ICAM-1 molecules, thereby facilitating ADCC by NK cells. Thus, NK cells could exercise cytolytic activity against ICAM-1 deficient tumor cells in the absence of proinflammatory cytokines, emphasizing the importance of NK cells in tumor-specific immunity at early stages of cancer. PMID:24810893

  20. Training stem cells for treatment of malignant brain tumors

    PubMed Central

    Li, Shengwen Calvin; Kabeer, Mustafa H; Vu, Long T; Keschrumrus, Vic; Yin, Hong Zhen; Dethlefs, Brent A; Zhong, Jiang F; Weiss, John H; Loudon, William G

    2014-01-01

    The treatment of malignant brain tumors remains a challenge. Stem cell technology has been applied in the treatment of brain tumors largely because of the ability of some stem cells to infiltrate into regions within the brain where tumor cells migrate as shown in preclinical studies. However, not all of these efforts can translate in the effective treatment that improves the quality of life for patients. Here, we perform a literature review to identify the problems in the field. Given the lack of efficacy of most stem cell-based agents used in the treatment of malignant brain tumors, we found that stem cell distribution (i.e., only a fraction of stem cells applied capable of targeting tumors) are among the limiting factors. We provide guidelines for potential improvements in stem cell distribution. Specifically, we use an engineered tissue graft platform that replicates the in vivo microenvironment, and provide our data to validate that this culture platform is viable for producing stem cells that have better stem cell distribution than with the Petri dish culture system. PMID:25258664

  1. T cells induce terminal differentiation of transformed B cells to mature plasma cell tumors.

    PubMed

    Hilbert, D M; Shen, M Y; Rapp, U R; Rudikoff, S

    1995-01-31

    Major interest in the analysis of mature plasma cell neoplasias of mice and humans has focused on identification of precursor cells that give rise to mature malignant plasma cells. Although several laboratories have recently suggested that such cells are present in the granulomas of pristane-treated mice and the bone marrow of some multiple myeloma patients, the in vivo cellular interactions required for their differentiation into mature plasma cell tumors remains unclear. Given the extensive interactions of peripheral T cells and normal B cells, we assessed the potential role of T cells in plasma-cell tumor development, by using a myc, raf-containing retrovirus, J3V1, to induce plasmacytomas in normal BALB/c mice, T-cell-deficient nude mice, and T-cell-reconstituted nude mice. The B-lineage tumors arising in normal BALB/c mice were uniformly mature plasmacytomas, most of which secreted immunoglobulin. In contrast, nude mice yielded predominantly non-immunoglobulin-secreting B-cell lymphomas with a phenotype characteristic of peripheral B cells. T-cell reconstitution of nude mice prior to tumor induction resulted in a shift from B-cell lymphomas to plasmacytomas. These results imply that transformation can occur prior to terminal differentiation of B cells and that such transformed cells can be driven to terminal differentiation by peripheral T cells. These findings further suggest that, in human multiple myeloma, the ability of T cells to influence the differentiation state of transformed B cells may provide a mechanism by which malignant plasma cells found in the bone marrow could arise from clonotypically related less-mature B cells found in both the bone marrow and periphery. PMID:7846031

  2. Clear cell carcinoid tumor of the distal common bile duct

    PubMed Central

    Todoroki, Takeshi; Sano, Takaaki; Yamada, Shuji; Hirahara, Nobutsune; Toda, Naotaka; Tsukada, Katsuhiko; Motojima, Ryuji; Motojima, Teiji

    2007-01-01

    Background Carcinoid tumors rarely arise in the extrahepatic bile duct and can be difficult to distinguish from carcinoma. There are no reports of clear cell carcinoid (CCC) tumors in the distal bile duct (DBD) to the best of our knowledge. Herein, we report a CCC tumor in the DBD and review the literature concerning extrahepatic bile duct carcinoid tumors. Case presentation A 73-old man presented with fever and occult obstructive jaundice. Ultrasonography, computed tomography (CT) and magnetic resonance cholangiopancreaticography (MRCP) demonstrated a nodular tumor projection in the DBD without regional lymph node swelling. Under suspicion of carcinoma, we resected the head of the pancreas along with 2nd portion duodenectomy and a lymph node dissection. The surgical specimen showed a golden yellow polypoid tumor in the DBD (0.8 × 0.6 × 0.5 cm in size). The lesion was composed of clear polygonal cells arranged in nests and a trabecular pattern. The tumor invaded through the wall into the fibromuscular layer. Immunohistochemical stains showed that neoplastic cells were positive for neuron-specific enolase (NSE), chromogranin A, synaptophysin, and pancreatic polypeptide and negative for inhibin, keratin, CD56, serotonin, gastrin and somatostatin. The postoperative course was uneventful and he is living well without relapse 12 months after surgery. Conclusion Given the preoperative difficulty in differentiating carcinoid from carcinoma, the pancreaticoduodenectomy is an appropriate treatment choice for carcinoid tumors located within the intra-pancreatic bile duct. PMID:17227590

  3. Hybrid models of cell and tissue dynamics in tumor growth.

    PubMed

    Kim, Yangjin; Othmer, Hans G

    2015-12-01

    Hybrid models of tumor growth, in which some regions are described at the cell level and others at the continuum level, provide a flexible description that allows alterations of cell-level properties and detailed descriptions of the interaction with the tumor environment, yet retain the computational advantages of continuum models where appropriate. We review aspects of the general approach and discuss applications to breast cancer and glioblastoma. PMID:26775860

  4. Apoptosis by Direct Current Treatment in Tumor Cells and Tissues

    NASA Astrophysics Data System (ADS)

    Kim, Hongbae; Sim, Sungbo; Ahn, Saeyoung

    2003-10-01

    Electric field induces cell fusion, electroporation on biological cells, including apoptosis. Apoptosis is expressed in a series of natural enzymatic reactions for the natural elimination of unhealthy, genetically damaged, or otherwise aberrant cells that are not needed or not advantageous to the well-being of the organism. Its markers involve cell shrinkage, activation of intracellular caspase proteases, externalization of phosphatidylserine at the plasma membrane, and fragmentation of DNA. Direct electric fields using direct current have been exploited recently to investigate its effects on tumor cells and tissues, but the mechanism of direct electric fields has not been exhibited clearly other than by electroosmosis or pH changes. Direct electric field induces apoptosis in tumor cells cultured and tumor tissues as indicated by cell shrinkage, DNA fragmentation and tumor suppression. In our experiment that direct electric field was applied to tumor tissues via two needle electrodes inserted into tumor tissue 5mm at distance in parallel, pH changes resulted from electrochemical reaction, exhibiting about pH 9.0, 1.83, 2.0 in the vicinity of cathodic and anodic electrode, and at their mid-point, respectively. DNA fragmentation of tumor tissues destructed by direct electric field was analyzed by Tunel assay by ApopTag technology. As a result of this analysis, it showed that apoptosis in tumor tissue destructed was increased up to 59.1normal(control) tissues, showing 41.1, 31.1cathodic tissues. In vitro cell survival was exhibited that it was decreased with enhancing electric current intensity in the same condition of electrical charge 5C having different time applied. We will show results of apoptosis analyzed by flow cytometry in vitro.

  5. Collective Behavior of Brain Tumor Cells: the Role of Hypoxia

    NASA Astrophysics Data System (ADS)

    Khain, Evgeniy; Katakowski, Mark; Hopkins, Scott; Szalad, Alexandra; Zheng, Xuguang; Jiang, Feng; Chopp, Michael

    2013-03-01

    We consider emergent collective behavior of a multicellular biological system. Specifically we investigate the role of hypoxia (lack of oxygen) in migration of brain tumor cells. We performed two series of cell migration experiments. The first set of experiments was performed in a typical wound healing geometry: cells were placed on a substrate, and a scratch was done. In the second set of experiments, cell migration away from a tumor spheroid was investigated. Experiments show a controversy: cells under normal and hypoxic conditions have migrated the same distance in the ``spheroid'' experiment, while in the ``scratch'' experiment cells under normal conditions migrated much faster than under hypoxic conditions. To explain this paradox, we formulate a discrete stochastic model for cell dynamics. The theoretical model explains our experimental observations and suggests that hypoxia decreases both the motility of cells and the strength of cell-cell adhesion. The theoretical predictions were further verified in independent experiments.

  6. [Application of dendritic cells in clinical tumor therapy].

    PubMed

    Li, Yan; Xian, Li-jian

    2002-04-01

    The active immunotherapy of dendritic cells is hot in tumor therapy research area. This article is a review of the source of dendritic cells, loading antigen, immunotherapy pathway, clinical application, choice of patients, and so on. It makes preparation for further research of dendritic cells. PMID:12452029

  7. Secondary specific immune response in vitro to MSV tumor cells.

    PubMed

    Senik, A; Hebrero, F P; Levy, J P

    1975-12-15

    The interactions which occur between antigenic tumor cells and normal or immune lymphoid cells in a 3-day in vitro culture, have been studied with a murine sarcoma virus (MSV)-induced tumor. The 3H-thymidine incorporation of lymphoma cells growing in suspension, and the radioactive-chromium release of freshly sampled lymphoma cells regularly added to the culture, have been compared to determine the part played by immune lymphoid cells in cytolysis and cytostasis of the tumor-cell population. The cytolytic activity increases in the culture from day 0 to day 3. It is due, predominantly, to T-cells, and remains specific to antigens shared by MSV tumors and related lymphomas. This activity would be difficult to detect unless freshly sampled ascitic cells were used as targets, since the lymphoma cells spontaneously lose a part of their sensitivity to immune cytolysis during in vitro culture. The method used in the present experiments is a secondary chromium release test (SCRT), which measures the invitro secondary stimulation of cytotoxic T-lymphocytes (CTL) by tumor cells. In the absence of stimulatory cells, the CTL activity would have rapidly fallen in vitro. The cytostatic activity also increases during the 3 days in vitro, in parallel to the cytolytic activity: it is due to non-T-cells and remains mainly non-specific. The significance of these data for the interpretation of invitro demonstrated cell-mediated anti-tumor immune reactions is briefly discussed, as well as their relevance in the in vivo role of immune CTL. PMID:53210

  8. LOXL2 in epithelial cell plasticity and tumor progression.

    PubMed

    Cano, Amparo; Santamaría, Patricia G; Moreno-Bueno, Gema

    2012-09-01

    Several members of the lysyl oxidase family have recently emerged as important regulators of tumor progression. Among them, LOXL2 has been shown to be involved in tumor progression and metastasis of several tumor types, including breast carcinomas. Secreted LOXL2 participates in the remodeling of the extracellular matrix of the tumor microenvironment, in a similar fashion to prototypical lysyl oxidase. In addition, new intracellular functions of LOXL2 have been described, such as its involvement in the regulation of the epithelial-to-mesenchymal transition, epithelial cell polarity and differentiation mediated by transcriptional repression mechanisms. Importantly, intracellular (perinuclear) expression of LOXL2 is associated with poor prognosis and distant metastasis of specific tumor types, such as larynx squamous cell carcinoma and basal breast carcinomas. These recent findings open new avenues for the therapeutic utility of LOXL2. PMID:23030485

  9. DNA Analysis in Samples From Younger Patients With Germ Cell Tumors and Their Parents or Siblings

    ClinicalTrials.gov

    2016-04-07

    Childhood Malignant Ovarian Germ Cell Tumor; Childhood Malignant Testicular Germ Cell Tumor; Ovarian Choriocarcinoma; Ovarian Embryonal Carcinoma; Ovarian Mixed Germ Cell Tumor; Ovarian Teratoma; Ovarian Yolk Sac Tumor; Testicular Choriocarcinoma; Testicular Embryonal Carcinoma; Testicular Seminoma; Testicular Teratoma; Testicular Yolk Sac Tumor

  10. Improved Methods to Generate Spheroid Cultures from Tumor Cells, Tumor Cells & Fibroblasts or Tumor-Fragments: Microenvironment, Microvesicles and MiRNA

    PubMed Central

    Lao, Zheng; Kelly, Catherine J.; Yang, Xiang-Yang; Jenkins, W. Timothy; Toorens, Erik; Ganguly, Tapan; Evans, Sydney M.; Koch, Cameron J.

    2015-01-01

    Diagnostic and prognostic indicators are key components to achieve the goal of personalized cancer therapy. Two distinct approaches to this goal include predicting response by genetic analysis and direct testing of possible therapies using cultures derived from biopsy specimens. Optimally, the latter method requires a rapid assessment, but growing xenograft tumors or developing patient-derived cell lines can involve a great deal of time and expense. Furthermore, tumor cells have much different responses when grown in 2D versus 3D tissue environments. Using a modification of existing methods, we show that it is possible to make tumor-fragment (TF) spheroids in only 2–3 days. TF spheroids appear to closely model characteristics of the original tumor and may be used to assess critical therapy-modulating features of the microenvironment such as hypoxia. A similar method allows the reproducible development of spheroids from mixed tumor cells and fibroblasts (mixed-cell spheroids). Prior literature reports have shown highly variable development and properties of mixed-cell spheroids and this has hampered the detailed study of how individual tumor-cell components interact. In this study, we illustrate this approach and describe similarities and differences using two tumor models (U87 glioma and SQ20B squamous-cell carcinoma) with supporting data from additional cell lines. We show that U87 and SQ20B spheroids predict a key microenvironmental factor in tumors (hypoxia) and that SQ20B cells and spheroids generate similar numbers of microvesicles. We also present pilot data for miRNA expression under conditions of cells, tumors, and TF spheroids. PMID:26208323

  11. Stroma Cells in Tumor Microenvironment and Breast Cancer

    PubMed Central

    Mao, Yan; Keller, Evan T.; Garfield, David H.; Shen, Kunwei; Wang, Jianhua

    2015-01-01

    Cancer is a systemic disease, encompassing multiple components of both tumor cells themselves and host stromal cells. It is now clear that stromal cells in the tumor microenvironment play an important role in cancer development. Molecular events through which reactive stromal cells affect cancer cells can be defined so that biomarkers and therapeutic targets can be identified. Cancer-associated fibroblasts (CAFs) make up the bulk of cancer stroma and affect the tumor microenvironment such that they promote cancer initiation, angiogenesis, invasion and metastasis. In breast cancer, CAFs not only promote tumor progression, but also induce therapeutic resistances. Accordingly, targeting CAFs provides a novel way to control tumors with therapeutic resistances. This review summarizes the current understanding of tumor stroma in breast cancer with a particular emphasis on the role of CAFs and the therapeutic implications of CAFs. The effects of other stromal components such as endothelial cells, macrophages and adipocytes in breast cancer are also discussed. Finally, we describe the biologic markers to sort patients into a specific and confirmed subtype for personalized treatment. PMID:23114846

  12. Vasculogenesis and angiogenesis in nonseminomatous testicular germ cell tumors.

    PubMed

    Silván, Unai; Díez-Torre, Alejandro; Bonilla, Zuriñe; Moreno, Pablo; Díaz-Núñez, María; Aréchaga, Juan

    2015-06-01

    Testicular germ cell tumors (TGCTs) comprise the vast majority of all testicular malignancies and are the most common type of cancer among young male adults. The nonseminomatous variant of TGCTs is characterized by the presence of embryonic and extraembryonic tissues together with a population of pluripotent cancer stem cells, the so-called embryonal carcinoma. One of the main causes of the resistance of these tumors to therapy is their ability to invade adjacent tissues and metastasize into distant sites of the body. Both of these tumor processes are highly favored by the neovascularization of the malignant tissue. New vessels can be generated by means of angiogenesis or vasculogenesis, and both have been observed to occur during tumor vascularization. Nevertheless, the precise contribution of each process to the neoplastic vascular bed of TGCTs remains unknown. In addition, another process known as tumor-derived vasculogenesis, in which malignant cells give rise to endothelial cells, has also been reported to occur in a number of tumor types, including experimental TGCTs. The participation and cross talk of these 3 processes in tumor vascularization is of particular interest, given the embryonic origin of teratocarcinomas. Thus, in the present review, we discuss the importance of all 3 vascularization processes in the growth, invasion, and metastasis of testicular teratocarcinomas and summarize the current state of knowledge of the TGCT microenvironment and its relationship with vascularization. Finally, we discuss the importance of vascularization as a therapeutic target for this type of malignancy. PMID:25772688

  13. IMP1 promotes tumor growth, dissemination and a tumor-initiating cell phenotype in colorectal cancer cell xenografts

    PubMed Central

    Hamilton, Kathryn E.; Noubissi, Felicite K.; Rustgi, Anil K.

    2013-01-01

    Igf2 mRNA binding protein 1 (IMP1, CRD-BP, ZBP-1) is a messenger RNA binding protein that we have shown previously to regulate colorectal cancer (CRC) cell growth in vitro. Furthermore, increased IMP1 expression correlates with enhanced metastasis and poor prognosis in CRC patients. In the current study, we sought to elucidate IMP1-mediated functions in CRC pathogenesis in vivo. Using CRC cell xenografts, we demonstrate that IMP1 overexpression promotes xenograft tumor growth and dissemination into the blood. Furthermore, intestine-specific knockdown of Imp1 dramatically reduces tumor number in the Apc Min/+ mouse model of intestinal tumorigenesis. In addition, IMP1 knockdown xenografts exhibit a reduced number of tumor cells entering the circulation, suggesting that IMP1 may directly modulate this early metastatic event. We further demonstrate that IMP1 overexpression decreases E-cadherin expression, promotes survival of single tumor cell-derived colonospheres and promotes enrichment and maintenance of a population of CD24+CD44+ cells, signifying that IMP1 overexpressing cells display evidence of loss of epithelial identity and enhancement of a tumor-initiating cell phenotype. Taken together, these findings implicate IMP1 as a modulator of tumor growth and provide evidence for a novel role of IMP1 in early events in CRC metastasis. PMID:23764754

  14. Targeting Survivin Enhances Chemosensitivity in Retinoblastoma Cells and Orthotopic Tumors.

    PubMed

    Ferrario, Angela; Luna, Marian; Rucker, Natalie; Wong, Sam; Lederman, Ariel; Kim, Jonathan; Gomer, Charles

    2016-01-01

    Treatments for retinoblastoma (Rb) vary depending on the size and location of the intraocular lesions and include chemotherapy and radiation therapy. We examined whether agents used to treat Rb induce a pro-survival phenotype associated with increased expression of survivin, a member of the inhibitor of apoptosis family of proteins. We document that exposure to carboplatin, topotecan or radiation resulted in elevated expression of survivin in two human Rb cell lines but not in normal retinal pigmented epithelial (RPE) cells. Cellular levels of survivin were attenuated in Rb cells exposed to an imidazolium-based survivin suppressant, Sepantronium bromide (YM155). Protein expression patterns of survivin in RPE cells were not altered following treatment protocols involving exposure to YM155. Including YM155 with chemotherapy or radiation increased levels of apoptosis in Rb cells but not in RPE cells. Intraocular luciferase expressing Rb tumors were generated from the Rb cell lines and used to evaluate the effects of carboplatin and YM155 on in-vivo survivin expression and tumor growth. Carboplatin induced expression of survivin while carboplatin combined with YM155 reduced survivin expression in tumor bearing eyes. The combination protocol was also most effective in reducing the rate of tumor regrowth. These results indicate that targeted inhibition of the anti-apoptotic protein survivin provides a therapeutic advantage for Rb cells and tumors treated with chemotherapy. PMID:27050416

  15. Targeting Survivin Enhances Chemosensitivity in Retinoblastoma Cells and Orthotopic Tumors

    PubMed Central

    Rucker, Natalie; Wong, Sam; Lederman, Ariel; Kim, Jonathan; Gomer, Charles

    2016-01-01

    Treatments for retinoblastoma (Rb) vary depending on the size and location of the intraocular lesions and include chemotherapy and radiation therapy. We examined whether agents used to treat Rb induce a pro-survival phenotype associated with increased expression of survivin, a member of the inhibitor of apoptosis family of proteins. We document that exposure to carboplatin, topotecan or radiation resulted in elevated expression of survivin in two human Rb cell lines but not in normal retinal pigmented epithelial (RPE) cells. Cellular levels of survivin were attenuated in Rb cells exposed to an imidazolium-based survivin suppressant, Sepantronium bromide (YM155). Protein expression patterns of survivin in RPE cells were not altered following treatment protocols involving exposure to YM155. Including YM155 with chemotherapy or radiation increased levels of apoptosis in Rb cells but not in RPE cells. Intraocular luciferase expressing Rb tumors were generated from the Rb cell lines and used to evaluate the effects of carboplatin and YM155 on in-vivo survivin expression and tumor growth. Carboplatin induced expression of survivin while carboplatin combined with YM155 reduced survivin expression in tumor bearing eyes. The combination protocol was also most effective in reducing the rate of tumor regrowth. These results indicate that targeted inhibition of the anti-apoptotic protein survivin provides a therapeutic advantage for Rb cells and tumors treated with chemotherapy. PMID:27050416

  16. Glomus tumor of the ovary masquerading as granulosa cell tumor: case report.

    PubMed

    Slone, Stephen P; Moore, Grace D; Parker, Lynn P; Rickard, Kyle A; Nixdorf-Miller, Allison S

    2010-01-01

    A solid right adnexal mass in a 73-year-old woman bled profusely with mobilization mimicking a granulosa cell tumor. There was almost complete replacement of the ovary by a circumscribed, 4.0 cm tumor with a hemorrhagic, solid cut surface. Morphologic and phenotypic correlation supported a diagnosis of glomus tumor. Large gaping vessels and small sinusoidal-type vessels formed an anastomotic vascular network with an inner endothelial lining (CD31+/CD34+) and an outer layer of glomocytes (actin+/desmin-/inhibin-). The hemangiopericytoma-like vasculature accounted for bleeding during surgery. PMID:19952942

  17. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth.

    PubMed

    El Ghazal, Roland; Yin, Xin; Johns, Scott C; Swanson, Lee; Macal, Monica; Ghosh, Pradipta; Zuniga, Elina I; Fuster, Mark M

    2016-05-01

    In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs) in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1) in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21)-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt) were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4-deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer. PMID:27237321

  18. Starved and Asphyxiated: How Can CD8+ T Cells within a Tumor Microenvironment Prevent Tumor Progression

    PubMed Central

    Zhang, Ying; Ertl, Hildegund C. J.

    2016-01-01

    Although cancer immunotherapy has achieved significant breakthroughs in recent years, its overall efficacy remains limited in the majority of patients. One major barrier is exhaustion of tumor antigen-specific CD8+ tumor-infiltrating lymphocytes (TILs), which conventionally has been attributed to persistent stimulation with antigen within the tumor microenvironment (TME). A series of recent studies have highlighted that the TME poses significant metabolic challenges to TILs, which may contribute to their functional exhaustion. Hypoxia increases the expression of coinhibitors on activated CD8+ T cells, which in general reduces the T cells’ effector functions. It also impairs the cells’ ability to gain energy through oxidative phosphorylation. Glucose limitation increases the expression of programed cell death protein-1 and reduces functions of activated CD8+ T cells. A combination of hypoxia and hypoglycemia, as is common in solid tumors, places CD8+ TILs at dual metabolic jeopardy by affecting both major pathways of energy production. Recently, a number of studies addressed the effects of metabolic stress on modulating CD8+ T cell metabolism, differentiation, and functions. Here, we discuss recent findings on how different types of metabolic stress within the TME shape the tumor-killing capacity of CD8+ T cells. We propose that manipulating the metabolism of TILs to more efficiently utilize nutrients, especially during intermittent periods of hypoxia could maximize their performance, prolong their survival and improve the efficacy of active cancer immunotherapy. PMID:26904023

  19. Adult granulosa cell tumor of the testis masquerading as hydrocele

    PubMed Central

    Vallonthaiel, Archana George; Kakkar, Aanchal; Singh, Animesh; Dogra, Prem N; Ray, Ruma

    2015-01-01

    ABSTRACT Adult testicular granulosa cell tumor is a rare, potentially malignant sex cord-stromal tumor, of which 30 cases have been described to date. We report the case of a 43-year-old male who complained of a left testicular swelling. Scrotal ultrasound showed a cystic lesion, suggestive of hydrocele. However, due to a clinical suspicion of a solid-cystic neoplasm, a high inguinal orchidectomy was performed, which, on pathological examination, was diagnosed as adult granulosa cell tumor. Adult testicular granulosa cell tumors have aggressive behaviour as compared to their ovarian counterparts. They may rarely be predominantly cystic and present as hydrocele. Lymph node and distant metastases have been reported in few cases. Role of MIB-1 labelling index in prognostication is not well defined. Therefore, their recognition and documentation of their behaviour is important from a diagnostic, prognostic and therapeutic point of view. PMID:26742984

  20. Suppressive effects of tumor cell-derived 5'-deoxy-5'-methylthioadenosine on human T cells.

    PubMed

    Henrich, Frederik C; Singer, Katrin; Poller, Kerstin; Bernhardt, Luise; Strobl, Carolin D; Limm, Katharina; Ritter, Axel P; Gottfried, Eva; Völkl, Simon; Jacobs, Benedikt; Peter, Katrin; Mougiakakos, Dimitrios; Dettmer, Katja; Oefner, Peter J; Bosserhoff, Anja-Katrin; Kreutz, Marina P; Aigner, Michael; Mackensen, Andreas

    2016-08-01

    The immunosuppressive tumor microenvironment represents one of the main obstacles for immunotherapy of cancer. The tumor milieu is among others shaped by tumor metabolites such as 5'-deoxy-5'-methylthioadenosine (MTA). Increased intratumoral MTA levels result from a lack of the MTA-catabolizing enzyme methylthioadenosine phosphorylase (MTAP) in tumor cells and are found in various tumor entities. Here, we demonstrate that MTA suppresses proliferation, activation, differentiation, and effector function of antigen-specific T cells without eliciting cell death. Conversely, if MTA is added to highly activated T cells, MTA exerts cytotoxic effects on T cells. We identified the Akt pathway, a critical signal pathway for T cell activation, as a target of MTA, while, for example, p38 remained unaffected. Next, we provide evidence that MTA exerts its immunosuppressive effects by interfering with protein methylation in T cells. To confirm the relevance of the suppressive effects of exogenously added MTA on human T cells, we used an MTAP-deficient tumor cell-line that was stably transfected with the MTAP-coding sequence. We observed that T cells stimulated with MTAP-transfected tumor cells revealed a higher proliferative capacity compared to T cells stimulated with Mock-transfected cells. In conclusion, our findings reveal a novel immune evasion strategy of human tumor cells that could be of interest for therapeutic targeting. PMID:27622058

  1. Malignant perivascular epithelioid cell tumor of the gallbladder: a case report and review of literature.

    PubMed

    Zhao, Liena; Anders, Karl H

    2014-09-01

    Perivascular epithelioid cell tumors are rare mesenchymal neoplasms composed of histologically and immunohistochemically distinctive perivascular epithelioid cells. The perivascular epithelioid cell tumor family includes angiomyolipoma, clear cell sugar tumor of the lung, lymphangioleiomyomatosis, clear cell myomelanocytic tumor of the falciform ligament/ligamentum teres, and rare clear cell tumors of other anatomic sites. Perivascular epithelioid cell tumors have been reported previously in various sites, but to our knowledge not in the gallbladder. We report here, for the first time, a malignant perivascular epithelioid cell tumor arising in the gallbladder. PMID:25171708

  2. Alvocidib and Oxaliplatin With or Without Fluorouracil and Leucovorin Calcium in Treating Patients With Relapsed or Refractory Germ Cell Tumors

    ClinicalTrials.gov

    2015-05-11

    Recurrent Extragonadal Seminoma; Recurrent Malignant Extragonadal Germ Cell Tumor; Recurrent Malignant Extragonadal Non-Seminomatous Germ Cell Tumor; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Ovarian Germ Cell Tumor; Stage III Testicular Cancer; Stage IV Extragonadal Non-Seminomatous Germ Cell Tumor; Stage IV Extragonadal Seminoma; Stage IV Ovarian Germ Cell Tumor

  3. Biodegradable polymeric micelle-encapsulated quercetin suppresses tumor growth and metastasis in both transgenic zebrafish and mouse models

    NASA Astrophysics Data System (ADS)

    Wu, Qinjie; Deng, Senyi; Li, Ling; Sun, Lu; Yang, Xi; Liu, Xinyu; Liu, Lei; Qian, Zhiyong; Wei, Yuquan; Gong, Changyang

    2013-11-01

    Quercetin (Que) loaded polymeric micelles were prepared to obtain an aqueous formulation of Que with enhanced anti-tumor and anti-metastasis activities. A simple solid dispersion method was used, and the obtained Que micelles had a small particle size (about 31 nm), high drug loading, and high encapsulation efficiency. Que micelles showed improved cellular uptake, an enhanced apoptosis induction effect, and stronger inhibitory effects on proliferation, migration, and invasion of 4T1 cells than free Que. The enhanced in vitro antiangiogenesis effects of Que micelles were proved by the results that Que micelles significantly suppressed proliferation, migration, invasion, and tube formation of human umbilical vein endothelial cells (HUVECs). Subsequently, transgenic zebrafish models were employed to investigate anti-tumor and anti-metastasis effects of Que micelles, in which stronger inhibitory effects of Que micelles were observed on embryonic angiogenesis, tumor-induced angiogenesis, tumor growth, and tumor metastasis. Furthermore, in a subcutaneous 4T1 tumor model, Que micelles were more effective in suppressing tumor growth and spontaneous pulmonary metastasis, and prolonging the survival of tumor-bearing mice. Besides, immunohistochemical and immunofluorescent assays suggested that tumors in the Que micelle-treated group showed more apoptosis, fewer microvessels, and fewer proliferation-positive cells. In conclusion, Que micelles, which are synthesized as an aqueous formulation of Que, possess enhanced anti-tumor and anti-metastasis activity, which can serve as potential candidates for cancer therapy.

  4. IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo

    PubMed Central

    Koneru, Mythili; Purdon, Terence J.; Spriggs, David; Koneru, Susmith; Brentjens, Renier J.

    2015-01-01

    A novel approach for the treatment of ovarian cancer includes immunotherapy with genetically engineered T cells targeted to ovarian cancer cell antigens. Using retroviral transduction, T cells can be created that express an artificial T cell receptor (TCR) termed a chimeric antigen receptor (CAR). We have generated a CAR, 4H11-28z, specific to MUC-16ecto antigen, which is the over-expressed on a majority of ovarian tumor cells and is the retained portion of MUC-16 after cleavage of CA-125. We previously demonstrated that T cells modified to express the 4H11-28z CAR eradicate orthotopic human ovarian cancer xenografts in SCID-Beige mice. However, despite the ability of CAR T cells to localize to tumors, their activation in the clinical setting can be inhibited by the tumor microenvironment, as is commonly seen for endogenous antitumor immune response. To potentially overcome this limitation, we have recently developed a construct that co-expresses both MUC16ecto CAR and IL-12 (4H11-28z/IL-12). In vitro, 4H11-28z/IL-12 CAR T cells show enhanced proliferation and robust IFNγ secretion compared to 4H11-28z CAR T cells. In SCID-Beige mice with human ovarian cancer xenografts, IL-12 secreting CAR T cells exhibit enhanced antitumor efficacy as determined by increased survival, prolonged persistence of T cells, and higher systemic IFNγ. Furthermore, in anticipation of translating these results into a phase I clinical trial which will be the first to study IL-12 secreting CAR T cells in ovarian cancer, an elimination gene has been included to allow for deletion of CAR T cells in the context of unforeseen or off-tumor on-target toxicity. PMID:25949921

  5. Utility of transmission electron microscopy in small round cell tumors.

    PubMed

    Kim, Na Rae; Ha, Seung Yeon; Cho, Hyun Yee

    2015-03-01

    Small round cell tumors (SRCTs) are a heterogeneous group of neoplasms composed of small, primitive, and undifferentiated cells sharing similar histology under light microscopy. SRCTs include Ewing sarcoma/peripheral neuroectodermal tumor family tumors, neuroblastoma, desmoplastic SRCT, rhabdomyosarcoma, poorly differentiated round cell synovial sarcoma, mesenchymal chondrosarcoma, small cell osteosarcoma, small cell malignant peripheral nerve sheath tumor, and small cell schwannoma. Non-Hodgkin's malignant lymphoma, myeloid sarcoma, malignant melanoma, and gastrointestinal stromal tumor may also present as SRCT. The current shift towards immunohistochemistry and cytogenetic molecular techniques for SRCT may be inappropriate because of antigenic overlapping or inconclusive molecular results due to the lack of differentiation of primitive cells and unavailable genetic service or limited moleculocytogenetic experience. Although usage has declined, electron microscopy (EM) remains very useful and shows salient features for the diagnosis of SRCTs. Although EM is not always required, it provides reliability and validity in the diagnosis of SRCT. Here, the ultrastructural characteristics of SRCTs are reviewed and we suggest that EM would be utilized as one of the reliable modalities for the diagnosis of undifferentiated and poorly differentiated SRCTs. PMID:25812730

  6. Extravasation of leukocytes in comparison to tumor cells

    PubMed Central

    Strell, Carina; Entschladen, Frank

    2008-01-01

    The multi-step process of the emigration of cells from the blood stream through the vascular endothelium into the tissue has been termed extravasation. The extravasation of leukocytes is fairly well characterized down to the molecular level, and has been reviewed in several aspects. Comparatively little is known about the extravasation of tumor cells, which is part of the hematogenic metastasis formation. Although the steps of the process are basically the same in leukocytes and tumor cells, i.e. rolling, adhesion, transmigration (diapedesis), the molecules that are involved are different. A further important difference is that leukocyte interaction with the endothelium changes the endothelial integrity only temporarily, whereas tumor cell interaction leads to an irreversible damage of the endothelial architecture. Moreover, tumor cells utilize leukocytes for their extravasation as linkers to the endothelium. Thus, metastasis formation is indirectly susceptible to localization signals that are literally specific for the immune system. We herein compare the extravasation of leukocytes and tumor cells with regard to the involved receptors and the localization signals that direct the cells to certain organs and sites of the body. PMID:19055814

  7. Utility of Transmission Electron Microscopy in Small Round Cell Tumors

    PubMed Central

    Kim, Na Rae; Ha, Seung Yeon; Cho, Hyun Yee

    2015-01-01

    Small round cell tumors (SRCTs) are a heterogeneous group of neoplasms composed of small, primitive, and undifferentiated cells sharing similar histology under light microscopy. SRCTs include Ewing sarcoma/peripheral neuroectodermal tumor family tumors, neuroblastoma, desmoplastic SRCT, rhabdomyosarcoma, poorly differentiated round cell synovial sarcoma, mesenchymal chondrosarcoma, small cell osteosarcoma, small cell malignant peripheral nerve sheath tumor, and small cell schwannoma. Non-Hodgkin’s malignant lymphoma, myeloid sarcoma, malignant melanoma, and gastrointestinal stromal tumor may also present as SRCT. The current shift towards immunohistochemistry and cytogenetic molecular techniques for SRCT may be inappropriate because of antigenic overlapping or inconclusive molecular results due to the lack of differentiation of primitive cells and unavailable genetic service or limited moleculocytogenetic experience. Although usage has declined, electron microscopy (EM) remains very useful and shows salient features for the diagnosis of SRCTs. Although EM is not always required, it provides reliability and validity in the diagnosis of SRCT. Here, the ultrastructural characteristics of SRCTs are reviewed and we suggest that EM would be utilized as one of the reliable modalities for the diagnosis of undifferentiated and poorly differentiated SRCTs. PMID:25812730

  8. Three-dimensional chemotaxis-driven aggregation of tumor cells

    PubMed Central

    Puliafito, Alberto; De Simone, Alessandro; Seano, Giorgio; Gagliardi, Paolo Armando; Di Blasio, Laura; Chianale, Federica; Gamba, Andrea; Primo, Luca; Celani, Antonio

    2015-01-01

    One of the most important steps in tumor progression involves the transformation from a differentiated epithelial phenotype to an aggressive, highly motile phenotype, where tumor cells invade neighboring tissues. Invasion can occur either by isolated mesenchymal cells or by aggregates that migrate collectively and do not lose completely the epithelial phenotype. Here, we show that, in a three-dimensional cancer cell culture, collective migration of cells eventually leads to aggregation in large clusters. We present quantitative measurements of cluster velocity, coalescence rates, and proliferation rates. These results cannot be explained in terms of random aggregation. Instead, a model of chemotaxis-driven aggregation – mediated by a diffusible attractant – is able to capture several quantitative aspects of our results. Experimental assays of chemotaxis towards culture conditioned media confirm this hypothesis. Theoretical and numerical results further suggest an important role for chemotactic-driven aggregation in spreading and survival of tumor cells. PMID:26471876

  9. Three-dimensional chemotaxis-driven aggregation of tumor cells.

    PubMed

    Puliafito, Alberto; De Simone, Alessandro; Seano, Giorgio; Gagliardi, Paolo Armando; Di Blasio, Laura; Chianale, Federica; Gamba, Andrea; Primo, Luca; Celani, Antonio

    2015-01-01

    One of the most important steps in tumor progression involves the transformation from a differentiated epithelial phenotype to an aggressive, highly motile phenotype, where tumor cells invade neighboring tissues. Invasion can occur either by isolated mesenchymal cells or by aggregates that migrate collectively and do not lose completely the epithelial phenotype. Here, we show that, in a three-dimensional cancer cell culture, collective migration of cells eventually leads to aggregation in large clusters. We present quantitative measurements of cluster velocity, coalescence rates, and proliferation rates. These results cannot be explained in terms of random aggregation. Instead, a model of chemotaxis-driven aggregation - mediated by a diffusible attractant - is able to capture several quantitative aspects of our results. Experimental assays of chemotaxis towards culture conditioned media confirm this hypothesis. Theoretical and numerical results further suggest an important role for chemotactic-driven aggregation in spreading and survival of tumor cells. PMID:26471876

  10. [A mixed germ cell tumor that underwent dramatic size changes].

    PubMed

    Kuwayama, Kazuyuki; Takai, Hiroki; Nishiyama, Akira; Hirai, Satoshi; Yokosuka, Kimihiko; Toi, Hiroyuki; Hirano, Kazuhiro; Matsubara, Shunji; Uno, Masaaki; Nishimura, Hirotake

    2014-09-01

    This report describes a mixed germ cell tumor that underwent dramatic size changes. A 12-year-old boy presented to our hospital with a headache that had persisted for two months. Initial magnetic resonance imaging (MRI) revealed a pineal tumor and hydrocephalus. The patient required external ventricular drainage and underwent two endoscopic biopsies. His evaluation involved a total of nine computed tomography (CT) scans prior to the second biopsy;the tumor size had decreased before the second endoscopic biopsy. The tumor consisted of both a germinoma and a teratoma component. The patient was treated with three courses of carboplatin-etoposide (CBDCA-VP) chemotherapy and whole-ventricle radiotherapy (32.1 Gy). However, during the adjuvant therapy, the tumor size increased, necessitating total tumor resection. We speculate that the tumor's initial size reduction was caused by leakage of the cyst component and exposure to the brain CT irradiation. The tumor's subsequent increase in size was due to the recollection of the cystic components and intracranial growing teratoma syndrome (iGTS). Therefore, frequent brain CTs and angiography should be avoided before definitive pathological diagnosis is achieved. Further, the tumor size should be considered, with surgical resection being performed at the optimal time. PMID:25179200

  11. MUC-1 Tumor Antigen Agonist Epitopes for Enhancing T-cell Responses to Human Tumors | NCI Technology Transfer Center | TTC

    Cancer.gov

    Scientists at NIH have identified 7 new agonist epitopes of the MUC-1 tumor associated antigen. Compared to their native epitope counterparts, peptides reflecting these agonist epitopes have been shown to enhance the generation of human tumor cells, which in turn have a greater ability to kill human tumor cells endogenously expressing the native MUC-1 epitope.

  12. Extraosseous Benign Notochordal Cell Tumor Originating in the Lung

    PubMed Central

    Takahashi, Yusuke; Motoi, Toru; Harada, Masahiko; Fukuda, Yumiko; Hishima, Tsunekazu; Horio, Hirotoshi

    2015-01-01

    Abstract Benign notochordal cell tumors (BNCTs) are tumors originating in the axial skeleton, where chordomas occur. Although very rare, some cases of extraosseous chordoma, such as in the soft tissue and lungs, have been reported. We report a case of a primary tumor showing the notochordal characteristics of BNCTs within the axial skeleton. An asymptomatic 57-year-old woman presented with an abnormal shadow on her chest radiograph; chest computed tomography revealed a well-defined round nodule. The resected sample tissue contained a jelly-like small nodule. Histologically, it was identified as a BNCT, based on minimal nuclear atypia, extremely low mitotic activity within the tumor cells lying in a sheet-like arrangement, and focal immunopositivity for brachyury. This is the third case report of BNCT originating in the lungs; BNCTs are considered asymptomatic tumors that are identified by using highly developed chest imaging technology; however, our findings also suggest that these notochordal tumors may potentially originate from extraosseous sites that lack ideal precursor cells. Our case suggests that notochordal tumors can arise from organs that are unrelated to known notochordal development. PMID:25569657

  13. Gossypol effects on endothelial cells and tumor blood flow

    SciTech Connect

    Benz, C.C.; Iyer, S.B.; Asgari, H.S.; Matlin, S.A.; Aronson, F.R. ); Barchowsky, A. )

    1991-01-01

    Isomers (-,+) of the antitumor agent gossypol (G) were studied for their ability to reduce tumor ATP and blood flow in rats bearing subcutaneously implanted pancreatic tumors. A 50% reduction in tumor ATP/Pi within 1h of a single injection of -G was associated with a 60% decline in tumor blood flow. To determine if these changes in tumor physiology could be due to a direct drug effect on tumor endothelium, G isomers were compared for their ability to alter protein ({sup 125}1-BSA) permeability and metabolic ({sup 32}P) labelling of cultured endothelial cells. Treatments for 1h produced no endothelial cell leakage, but 24h exposures to either -G or +G produced complete permeability of the monolayers to {sup 125}1-BSA. In contrast, 0.5-1.0h exposures to -G or +G produced 2 to 3-fold increases in phosphorylated 27kDa heat-shock protein, hsp-27. Hsp-27 phosphoprotein isoforms were differentially labelled following -G and +G exposures with the phosphorylation profile of -G appearing most similar to that of oxyradical producing agents known to induce hsp-27 and injure endothelial cells. The authors postulate that the tumor ischemic effects of -G are mediated by endothelial response to oxyradical production in a mechanism similar to that of tissue ischemia-reperfusion injury.

  14. In vitro Enrichment of Ovarian Cancer Tumor-initiating Cells

    PubMed Central

    House, Carrie D.; Hernandez, Lidia; Annunziata, Christina M.

    2015-01-01

    Evidence suggests that small subpopulations of tumor cells maintain a unique self-renewing and differentiation capacity and may be responsible for tumor initiation and/or relapse. Clarifying the mechanisms by which these tumor-initiating cells (TICs) support tumor formation and progression could lead to the development of clinically favorable therapies. Ovarian cancer is a heterogeneous and highly recurrent disease. Recent studies suggest TICs may play an important role in disease biology. We have identified culture conditions that enrich for TICs from ovarian cancer cell lines. Growing either adherent cells or non-adherent ‘floater’ cells in a low attachment plate with serum free media in the presence of growth factors supports the propagation of ovarian cancer TICs with stem cell markers (CD133 and ALDH activity) and increased tumorigenicity without the need to physically separate the TICs from other cell types within the culture. Although the presence of floater cells is not common for all cell lines, this population of cells with innate low adherence may have high tumorigenic potential.Compared to adherent cells grown in the presence of serum, TICs readily form spheres, are significantly more tumorigenic in mice, and express putative stem cell markers. The conditions are easy to establish in a timely manner and can be used to study signaling pathways important for maintaining stem characteristics, and to identify drugs or combinations of drugs targeting TICs. The culture conditions described herein are applicable for a variety of ovarian cancer cells of epithelial origin and will be critical in providing new information about the role of TICs in tumor initiation, progression, and relapse. PMID:25742116

  15. A Pathway Toward Tumor Cell-Selective CPPs?

    PubMed

    Alves, Isabel D; Carré, Manon; Lavielle, Solange

    2015-01-01

    Despite the great potential of CPPs in therapeutics and diagnosis, their application still suffers from a non-negligible drawback: a complete lack of cell-type specificity. In the innumerous routes proposed for CPP cell entry there is common agreement that electrostatic interactions between cationic CPPs and anionic components in membranes, including lipids and glycosaminoglycans, play a crucial role. Tumor cells have been shown to overexpress certain glycosaminoglycans at the cell membrane surface and to possess a higher amount of anionic lipids in their outer leaflet when compared with healthy cells. Such molecules confer tumor cell membranes an enhanced anionic character, a property that could be exploited by CPPs to preferentially target these cells. Herein, these aspects are discussed in an attempt to confer CPPs certain selectivity toward cancer cells. PMID:26202276

  16. Local hyperthermia treatment of tumors induces CD8+ T cell-mediated resistance against distal and secondary tumors

    PubMed Central

    Zhang, Peisheng; Chen, Lei; Baird, Jason R.; Demidenko, Eugene; Turk, Mary Jo; Hoopes, P. Jack; Conejo-Garcia, Jose R.; Fiering, Steven

    2014-01-01

    Combinatorial use of iron oxide nanoparticles (IONPs) and an alternating magnetic filed (AMF) can induce local hyperthermia in tumors in a controlled and uniform manner. Heating B16 primary tumors at 43°C for 30 minutes activated dendritic cells (DCs) and subsequently CD8+ T cells in the draining lymph node (dLN) and conferred resistance against rechallenge with B16 (but not unrelated Lewis Lung carcinoma) given 7 days post hyperthermia on both the primary tumor side and the contralateral side in a CD8+ T cell-dependent manner. Mice with heated primary tumors also resisted rechallenge given 30 days post hyperthermia. Mice with larger heated primary tumors had greater resistance to secondary tumors. No rechallenge resistance occurred when tumors were heated at 45°C. Our results demonstrate the promising potential of local hyperthermia treatment applied to identified tumors in inducing anti-tumor immune responses that reduce the risk of recurrence and metastasis. PMID:24566274

  17. Endothelial Cells Enhance Tumor Cell Invasion through a Crosstalk Mediated by CXC Chemokine Signaling1

    PubMed Central

    Warner, Kristy A; Miyazawa, Marta; Cordeiro, Mabel M R; Love, William J; Pinsky, Matthew S; Neiva, Kathleen G; Spalding, Aaron C; Nör, Jacques E

    2008-01-01

    Field cancerization involves the lateral spread of premalignant or malignant disease and contributes to the recurrence of head and neck tumors. The overall hypothesis underlying this work is that endothelial cells actively participate in tumor cell invasion by secreting chemokines and creating a chemotactic gradient for tumor cells. Here we demonstrate that conditioned medium from head and neck tumor cells enhance Bcl-2 expression in neovascular endothelial cells. Oral squamous cell carcinoma-3 (OSCC3) and Kaposi's sarcoma (SLK) show enhanced invasiveness when cocultured with pools of human dermal microvascular endothelial cells stably expressing Bcl-2 (HDMEC-Bcl-2), compared to cocultures with empty vector controls (HDMEC-LXSN). Xenografted OSCC3 tumors vascularized with HDMEC-Bcl-2 presented higher local invasion than OSCC3 tumors vascularized with control HDMEC-LXSN. CXCL1 and CXCL8 were upregulated in primary endothelial cells exposed to vascular endothelial growth factor (VEGF), as well as in HDMEC-Bcl-2. Notably, blockade of CXCR2 signaling, but not CXCR1, inhibited OSCC3 and SLK invasion toward endothelial cells. These data demonstrate that CXC chemokines secreted by endothelial cells induce tumor cell invasion and suggest that the process of lateral spread of tumor cells observed in field cancerization is guided by chemotactic signals that originated from endothelial cells. PMID:18283335

  18. Antitumor Cell-Complex Vaccines Employing Genetically Modified Tumor Cells and Fibroblasts

    PubMed Central

    Miguel, Antonio; Herrero, María José; Sendra, Luis; Botella, Rafael; Diaz, Ana; Algás, Rosa; Aliño, Salvador F.

    2014-01-01

    The present study evaluates the immune response mediated by vaccination with cell complexes composed of irradiated B16 tumor cells and mouse fibroblasts genetically modified to produce GM-CSF. The animals were vaccinated with free B16 cells or cell complexes. We employed two gene plasmid constructions: one high producer (pMok) and a low producer (p2F). Tumor transplant was performed by injection of B16 tumor cells. Plasma levels of total IgG and its subtypes were measured by ELISA. Tumor volumes were measured and survival curves were obtained. The study resulted in a cell complex vaccine able to stimulate the immune system to produce specific anti-tumor membrane proteins (TMP) IgG. In the groups vaccinated with cells transfected with the low producer plasmid, IgG production was higher when we used free B16 cell rather than cell complexes. Nonspecific autoimmune response caused by cell complex was not greater than that induced by the tumor cells alone. Groups vaccinated with B16 transfected with low producer plasmid reached a tumor growth delay of 92% (p ≤ 0.01). When vaccinated with cell complex, the best group was that transfected with high producer plasmid, reaching a tumor growth inhibition of 56% (p ≤ 0.05). Significant survival (40%) was only observed in the groups vaccinated with free transfected B16 cells. PMID:24556729

  19. Antitumor cell-complex vaccines employing genetically modified tumor cells and fibroblasts.

    PubMed

    Miguel, Antonio; Herrero, María José; Sendra, Luis; Botella, Rafael; Diaz, Ana; Algás, Rosa; Aliño, Salvador F

    2014-02-01

    The present study evaluates the immune response mediated by vaccination with cell complexes composed of irradiated B16 tumor cells and mouse fibroblasts genetically modified to produce GM-CSF. The animals were vaccinated with free B16 cells or cell complexes. We employed two gene plasmid constructions: one high producer (pMok) and a low producer (p2F). Tumor transplant was performed by injection of B16 tumor cells. Plasma levels of total IgG and its subtypes were measured by ELISA. Tumor volumes were measured and survival curves were obtained. The study resulted in a cell complex vaccine able to stimulate the immune system to produce specific anti-tumor membrane proteins (TMP) IgG. In the groups vaccinated with cells transfected with the low producer plasmid, IgG production was higher when we used free B16 cell rather than cell complexes. Nonspecific autoimmune response caused by cell complex was not greater than that induced by the tumor cells alone. Groups vaccinated with B16 transfected with low producer plasmid reached a tumor growth delay of 92% (p ≤ 0.01). When vaccinated with cell complex, the best group was that transfected with high producer plasmid, reaching a tumor growth inhibition of 56% (p ≤ 0.05). Significant survival (40%) was only observed in the groups vaccinated with free transfected B16 cells. PMID:24556729

  20. Association between cell cycle gene transcription and tumor size in oral squamous cell carcinoma.

    PubMed

    Diniz, Marina Gonçalves; Silva, Jeane de Fatima Correia; de Souza, Fabricio Tinôco Alvim; Pereira, Núbia Braga; Gomes, Carolina Cavaliéri; Gomez, Ricardo Santiago

    2015-12-01

    Higher tumor size correlates with poor prognosis and is an independent predictive survival factor in oral squamous cell carcinoma (OSCC) patients. However, the molecular events underlining OSCC tumor evolution are poorly understood. We aimed to investigate if large OSCC tumors show different cell cycle gene transcriptional signature compared to small tumors. Seventeen fresh OSCC tumor samples with different tumor sizes (T) were included in the study. Tumors were from the tongue or from the floor of the mouth, and only three patients were nonsmokers. Samples were categorized according to clinical tumor size in tumors ≤2 cm (T1, n = 5) or tumors >2 cm (T2, n = 9; T3, n = 2; T4, n = 1). The group of tumors ≤2 cm was considered the reference group, while the larger tumors were considered the test group. We assessed the expression of 84 cell cycle genes by qRT-PCR array and normalized it to the expression of two housekeeping genes. Results were analyzed according to the formula 2(^-DeltaCt). A five-fold change cutoff was used, and p values <0.05 were considered statistically significant. Ki-67 immunohistochemistry was performed to estimate cell proliferation index. Twenty-nine genes were downregulated in the test group (larger tumors) compared to the reference group (smaller tumors). Among these genes, 13 reached statistical significance: ANAPC4, CUL1, SUMO1, KPNA2, MAD2L2, CCNG2, E2F4, NBN, CUL2, PCNA, TFDP1, KNTC1, and ATR. Ki-67 labeling index was similar in both tumor groups. Our findings suggest that the transcriptional activity of specific cell cycle genes varies according to the size of OSCC tumor, which probably reflects tumor molecular evolution and adaptation to the microenvironment. PMID:26152289

  1. Glioma Cells in the Tumor Periphery Have a Stem Cell Phenotype

    PubMed Central

    Munthe, Sune; Petterson, Stine Asferg; Dahlrot, Rikke Hedegaard; Poulsen, Frantz Rom; Hansen, Steinbjørn; Kristensen, Bjarne Winther

    2016-01-01

    Gliomas are highly infiltrative tumors incurable with surgery. Although surgery removes the bulk tumor, tumor cells in the periphery are left behind resulting in tumor relapses. The aim of the present study was to characterize the phenotype of tumor cells in the periphery focusing on tumor stemness, proliferation and chemo-resistance. This was investigated in situ in patient glioma tissue as well as in orthotopic glioblastoma xenografts. We identified 26 gliomas having the R132 mutation in Isocitrate DeHydrogenase 1 (mIDH1). A double immunofluorescence approach identifying mIDH1 positive tumor cells and a panel of markers was used. The panel comprised of six stem cell-related markers (CD133, Musashi-1, Bmi-1, Sox-2, Nestin and Glut-3), a proliferation marker (Ki-67) as well as a chemo-resistance marker (MGMT). Computer-based automated classifiers were designed to measure the mIDH1 positive nucleus area-fraction of the chosen markers. Moreover, orthotopic glioblastoma xenografts from five different patient-derived spheroid cultures were obtained and the tumor cells identified by human specific immunohistochemical markers. The results showed that tumor cells in the periphery of patient gliomas expressed stem cell markers, however for most markers at a significantly lower level than in the tumor core. The Ki-67 level was slightly reduced in the periphery, whereas the MGMT level was similar. In orthotopic glioblastoma xenografts all markers showed similar levels in the core and periphery. In conclusion tumor cells in the periphery of patient gliomas have a stem cell phenotype, although it is less pronounced than in the tumor core. Novel therapies aiming at preventing recurrence should therefore take tumor stemness into account. Migrating cells in orthotopic glioblastoma xenografts preserve expression and stem cell markers. The orthotopic model therefore has a promising translational potential. PMID:27171431

  2. Glioma Cells in the Tumor Periphery Have a Stem Cell Phenotype.

    PubMed

    Munthe, Sune; Petterson, Stine Asferg; Dahlrot, Rikke Hedegaard; Poulsen, Frantz Rom; Hansen, Steinbjørn; Kristensen, Bjarne Winther

    2016-01-01

    Gliomas are highly infiltrative tumors incurable with surgery. Although surgery removes the bulk tumor, tumor cells in the periphery are left behind resulting in tumor relapses. The aim of the present study was to characterize the phenotype of tumor cells in the periphery focusing on tumor stemness, proliferation and chemo-resistance. This was investigated in situ in patient glioma tissue as well as in orthotopic glioblastoma xenografts. We identified 26 gliomas having the R132 mutation in Isocitrate DeHydrogenase 1 (mIDH1). A double immunofluorescence approach identifying mIDH1 positive tumor cells and a panel of markers was used. The panel comprised of six stem cell-related markers (CD133, Musashi-1, Bmi-1, Sox-2, Nestin and Glut-3), a proliferation marker (Ki-67) as well as a chemo-resistance marker (MGMT). Computer-based automated classifiers were designed to measure the mIDH1 positive nucleus area-fraction of the chosen markers. Moreover, orthotopic glioblastoma xenografts from five different patient-derived spheroid cultures were obtained and the tumor cells identified by human specific immunohistochemical markers. The results showed that tumor cells in the periphery of patient gliomas expressed stem cell markers, however for most markers at a significantly lower level than in the tumor core. The Ki-67 level was slightly reduced in the periphery, whereas the MGMT level was similar. In orthotopic glioblastoma xenografts all markers showed similar levels in the core and periphery. In conclusion tumor cells in the periphery of patient gliomas have a stem cell phenotype, although it is less pronounced than in the tumor core. Novel therapies aiming at preventing recurrence should therefore take tumor stemness into account. Migrating cells in orthotopic glioblastoma xenografts preserve expression and stem cell markers. The orthotopic model therefore has a promising translational potential. PMID:27171431

  3. Standardized orthotopic xenografts in zebrafish reveal glioma cell-line-specific characteristics and tumor cell heterogeneity

    PubMed Central

    Welker, Alessandra M.; Jaros, Brian D.; Puduvalli, Vinay K.; Imitola, Jaime; Kaur, Balveen; Beattie, Christine E.

    2016-01-01

    ABSTRACT Glioblastoma (GBM) is a deadly brain cancer, for which few effective drug treatments are available. Several studies have used zebrafish models to study GBM, but a standardized approach to modeling GBM in zebrafish was lacking to date, preventing comparison of data across studies. Here, we describe a new, standardized orthotopic xenotransplant model of GBM in zebrafish. Dose-response survival assays were used to define the optimal number of cells for tumor formation. Techniques to measure tumor burden and cell spread within the brain over real time were optimized using mouse neural stem cells as control transplants. Applying this standardized approach, we transplanted two patient-derived GBM cell lines, serum-grown adherent cells and neurospheres, into the midbrain region of embryonic zebrafish and analyzed transplanted larvae over time. Progressive brain tumor growth and premature larval death were observed using both cell lines; however, fewer transplanted neurosphere cells were needed for tumor growth and lethality. Tumors were heterogeneous, containing both cells expressing stem cell markers and cells expressing markers of differentiation. A small proportion of transplanted neurosphere cells expressed glial fibrillary acidic protein (GFAP) or vimentin, markers of more differentiated cells, but this number increased significantly during tumor growth, indicating that these cells undergo differentiation in vivo. By contrast, most serum-grown adherent cells expressed GFAP and vimentin at the earliest times examined post-transplant. Both cell types produced brain tumors that contained Sox2+ cells, indicative of tumor stem cells. Transplanted larvae were treated with currently used GBM therapeutics, temozolomide or bortezomib, and this resulted in a reduction in tumor volume in vivo and an increase in survival. The standardized model reported here facilitates robust and reproducible analysis of glioblastoma tumor cells in real time and provides a platform for

  4. Sialomucin and lytic susceptibility of rat mammary tumor ascites cells.

    PubMed

    Moriarty, J; Skelly, C M; Bharathan, S; Moody, C E; Sherblom, A P

    1990-11-01

    The potential role of cell surface sialomucin in preventing natural killer (NK)-mediated lysis of tumor cell targets has been addressed by comparing the properties of 2 NK-resistant [ascites (ASC) and short-term cultured (STC)] and 2 NK-susceptible [tunicamycin-treated (TUN) and long-term cultured (LTC)] preparations of 13762 MAT-B1 rat mammary tumor cells. Both the ASC and STC cell preparations contain elevated levels of the sialomucin ASGP-1 relative to TUN and LTC preparations as determined by [3H]glucosamine labeling and by binding of peanut agglutinin. The major difference in the susceptibility to NK-mediated lysis appeared to be due to the differences in the susceptibility to lysis by lytic granules, rather than to differences in the ability to bind or trigger effector cells, since TUN and LTC cells were approximately 10-fold more sensitive to lysis by lytic granules than were ASC and STC cells. All preparations inhibited the lysis of the susceptible target YAC-1 by normal rat splenocytes, indicating an ability to bind these effector cells. Triggering of effectors, as monitored either by incorporation of 32P into phosphatidylinositol or by transmethylation of phosphatidylcholine, was similar for the positive control YAC-1, STC, TUN, and LTC, whereas ASC appeared to be defective in triggering effectors. These results suggest that tumor sialomucin blocks the final phase of lysis, but not the initial recognition of tumor cells by NK effectors. PMID:2208144

  5. Nexavar/Stivarga and viagra interact to kill tumor cells.

    PubMed

    Tavallai, Mehrad; Hamed, Hossein A; Roberts, Jane L; Cruickshanks, Nichola; Chuckalovcak, John; Poklepovic, Andrew; Booth, Laurence; Dent, Paul

    2015-09-01

    We determined whether the multi-kinase inhibitor sorafenib or its derivative regorafenib interacted with phosphodiesterase 5 (PDE5) inhibitors such as Viagra (sildenafil) to kill tumor cells. PDE5 and PDGFRα/β were over-expressed in liver tumors compared to normal liver tissue. In multiple cell types in vitro sorafenib/regorafenib and PDE5 inhibitors interacted in a greater than additive fashion to cause tumor cell death, regardless of whether cells were grown in 10 or 100% human serum. Knock down of PDE5 or of PDGFRα/β recapitulated the effects of the individual drugs. The drug combination increased ROS/RNS levels that were causal in cell killing. Inhibition of CD95/FADD/caspase 8 signaling suppressed drug combination toxicity. Knock down of ULK-1, Beclin1, or ATG5 suppressed drug combination lethality. The drug combination inactivated ERK, AKT, p70 S6K, and mTOR and activated JNK. The drug combination also reduced mTOR protein expression. Activation of ERK or AKT was modestly protective whereas re-expression of an activated mTOR protein or inhibition of JNK signaling almost abolished drug combination toxicity. Sildenafil and sorafenib/regorafenib interacted in vivo to suppress xenograft tumor growth using liver and colon cancer cells. From multiplex assays on tumor tissue and plasma, we discovered that increased FGF levels and ERBB1 and AKT phosphorylation were biomarkers that were directly associated with lower levels of cell killing by 'rafenib + sildenafil. Our data are now being translated into the clinic for further determination as to whether this drug combination is a useful anti-tumor therapy for solid tumor patients. PMID:25704960

  6. Nexavar/Stivarga and Viagra Interact to Kill Tumor Cells

    PubMed Central

    TAVALLAI, MEHRAD; HAMED, HOSSEIN A.; ROBERTS, JANE L.; CRUICKSHANKS, NICHOLA; CHUCKALOVCAK, JOHN; POKLEPOVIC, ANDREW; BOOTH, LAURENCE; DENT, PAUL

    2016-01-01

    We determined whether the multi-kinase inhibitor sorafenib or its derivative regorafenib interacted with phosphodiesterase 5 (PDE5) inhibitors such as Viagra (sildenafil) to kill tumor cells. PDE5 and PDGFRα/β were over-expressed in liver tumors compared to normal liver tissue. In multiple cell types in vitro sorafenib/regorafenib and PDE5 inhibitors interacted in a greater than additive fashion to cause tumor cell death, regardless of whether cells were grown in 10 or 100% human serum. Knock down of PDE5 or of PDGFRα/β recapitulated the effects of the individual drugs. The drug combination increased ROS/RNS levels that were causal in cell killing. Inhibition of CD95/FADD/caspase 8 signaling suppressed drug combination toxicity. Knock down of ULK-1, Beclin1, or ATG5 suppressed drug combination lethality. The drug combination inactivated ERK, AKT, p70 S6K, and mTOR and activated JNK. The drug combination also reduced mTOR protein expression. Activation of ERK or AKT was modestly protective whereas re-expression of an activated mTOR protein or inhibition of JNK signaling almost abolished drug combination toxicity. Sildenafil and sorafenib/regorafenib interacted in vivo to suppress xenograft tumor growth using liver and colon cancer cells. From multiplex assays on tumor tissue and plasma, we discovered that increased FGF levels and ERBB1 and AKT phosphorylation were biomarkers that were directly associated with lower levels of cell killing by ‘rafenib + sildenafil. Our data are now being translated into the clinic for further determination as to whether this drug combination is a useful anti-tumor therapy for solid tumor patients. PMID:25704960

  7. Clinicopathologic features of ovarian Sertoli-Leydig cell tumors

    PubMed Central

    Zhang, Hai-Yan; Zhu, Jia-Er; Huang, Wen; Zhu, Jin

    2014-01-01

    Background: Ovarian Stertoli-Ledig cell tumor (SLCT) is a rare type of sex cord-stromal tumor of the ovary. The present study was to evaluate clinicalopahologic features and prognosis of patients with Sertoli-Leydig cell tumor treated by surgery and adjuvant chemotherapy during short term follow-up. Methods: A total of sixteen patients with ovarian Sertoli-Leydig cell tumor treated at the Obstetrics and Gynecology Hospital, Shanghai, China, between Jan 2001 and Dec 2011 were reviewed. The clinical data, treatment and prognosis were obtained from medical records. Results: The median age of the patients with ovarian Sertoli-Leydig cell tumor was about 27.5 years old in non-menopausal women, while the median age of menopausal women was about 63 years old. The most common complaint was with hormonal-related symptoms in the form of secondary amenorrhea and infinity, features of virilization, abdominal mass or irregular vaginal bleeding. All of sixteen patients underwent surgical staging and all were found to have stage I disease at the time of diagnosis. Eleven patients with intermediate and two patients with poorly differentiated tumors received adjuvant chemotherapy. There were differences found in operative time, blood loss and postoperative recovery time between laparotomy and laparoscopy. There were no disease-related deaths and all patients were under complete remission at the last follow-up. Conclusions: Ovarian Sertoli-Leydig cell tumors could happen in any period age of women. However, the tumors typically occur in the single side while still at the early stage, a favorable outcome could be achieved by surgery and adjuvant chemotherapy. Laparoscopy has similar surgical effects as laparotomy, but has a number of advantages. PMID:25400781

  8. Waves of ratcheting cancer cells in growing tumor tissue layer

    NASA Astrophysics Data System (ADS)

    Yang, Taeseok; Kwon, Tae; Kim, Hyun; Lee, Kyoung; CenterCell Dynamics Team

    2015-03-01

    Over many years researchers have shown that the mechanical forces generated by, and acting on, tissues influence the way they grow, develop and migrate. As for cancer research goes, understanding the role of these forces may even be as influential as deciphering the relevant genetic and molecular basis. Often the key issues in the field of cancer mechanics are to understand the interplay of mechanics and chemistry. In this study, we discuss very intriguing population density waves observed in slowly proliferating of tumor cell layers. The temporal periods are around 4 hr and their wavelength is in the order of 1 mm. Tumor cell layer, which is initially plated in a small disk area, expands as a band of tumor cells is ``ratcheting'' in concert in radially outward direction. By adding Cytochalasin D and Latrunculin B, an inhibitor of actin polymerization, or Mytomycin, a chemotherapeutic agent, we could halt and modulate the wave activities reversibly. The observed waves are visually quite similar to those of chemotaxing dictyostelium discodium amoeba population, which are driven by nonlinear chemical reaction-diffusion waves of cAMP. So far, we have not been able to show any relevant chemo-attractants inducing the collective behavior of these tumor cells. Researchers have been investigating how forces from both within and outside developing cancer cells interact in intricate feedback loops. This work reports the example of periodic density waves of tumor cells with an explanation purely based on nonlinear mechanics.

  9. Immunomagnetic separation can enrich fixed solid tumors for epithelial cells.

    PubMed Central

    Yaremko, M. L.; Kelemen, P. R.; Kutza, C.; Barker, D.; Westbrook, C. A.

    1996-01-01

    Immunomagnetic separation is a highly specific technique for the enrichment or isolation of cells from a variety of fresh tissues and microorganisms or molecules from suspensions. Because new techniques for molecular analysis of solid tumors are now applicable to fixed tissue but sometimes require or benefit from enrichment for tumor cells, we tested the efficacy of immunomagnetic separation for enriching fixed solid tumors for malignant epithelial cells. We applied it to two different tumors and fixation methods to separate neoplastic from non-neoplastic cells in primary colorectal cancers and metastatic breast cancers, and were able to enrich to a high degree of purity. Immunomagnetic separation was effective in unembedded fixed tissue as well as fixed paraffin-embedded tissue. The magnetically separated cells were amenable to fluorescence in situ hybridization and polymerase chain reaction amplification of their DNA with minimal additional manipulation. The high degree of enrichment achieved before amplification contributed to interpretation of loss of heterozygosity in metastatic breast cancers, and simplified fluorescence in situ hybridization analysis because only neoplastic cells were hybridized and counted. Immunomagnetic separation is effective for the enrichment of fixed solid tumors, can be performed with widely available commercial antibodies, and requires little specialized instrumentation. It can contribute to interpretation of results in situations where enrichment by other methods is difficult or not possible. Images Figure 1 Figure 2 Figure 3 PMID:8546231

  10. Effects of Charged Particles on Human Tumor Cells

    PubMed Central

    Held, Kathryn D.; Kawamura, Hidemasa; Kaminuma, Takuya; Paz, Athena Evalour S.; Yoshida, Yukari; Liu, Qi; Willers, Henning; Takahashi, Akihisa

    2016-01-01

    The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects, including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors, and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors, such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of relative biological effectiveness (RBE) for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions, and importance of fractionation, including use of hypofractionation, with charged particles. PMID:26904502

  11. Primary cerebellar extramedullary myeloid cell tumor mimicking oligodendroglioma.

    PubMed

    Ho, D M; Wong, T T; Guo, W Y; Chang, K P; Yen, S H

    1997-10-01

    Extramedullary myeloid cell tumors (EMCTs) are tumors consisting of immature cells of the myeloid series that occur outside the bone marrow. Most of them are associated with acute myelogenous leukemia or other myeloproliferative disorders, and a small number occur as primary lesions, i.e., are not associated with hematological disorders. Occurrence inside the cranium is rare, and there has been only one case of primary EMCT involving the cerebellum reported in the literature. The case we report here is a blastic EMCT occurring in the cerebellum of a 3-year-old boy who had no signs of leukemia or any hematological disorder throughout the entire course. The cerebellar tumor was at first misdiagnosed as an "oligodendroglioma" because of the uniformity and "fried egg" artifact of the tumor cells. The tumor disappeared during chemotherapy consisting of 12 treatments. However, it recurred and metastasized to the cerebrospinal fluid (CSF) shortly after the therapy was completed. A diagnosis of EMCT was suspected because of the presence of immature myeloid cells in the CSF, and was confirmed by anti-myeloperoxidase and anti-lysozyme immunoreactivity of the cerebellar tumor. The patient succumbed 1 year and 3 months after the first presentation of the disease. PMID:9341943

  12. Distinct types of tumors exhibit differential grade of inflammation and angiogenesis in mice.

    PubMed

    Viana, C T R; Campos, P P; Carvalho, L A; Cenedezi, J M; Lavall, L; Lopes, M T P; Ferreira, M A N D; Andrade, S P

    2013-03-01

    Inflammation, angiogenesis and cytokine production are common features of almost, if not all tumors. However, the extent of these processes induced by different types of tumors has not been evaluated. We investigated the growth pattern of the experimental metastatic tumors, B16F10 melanoma, CT26.WT colon and 4T1 mammary cells inoculated in the flank of syngeneic mice and determined the degree of inflammation, angiogenesis, and production level of pro-inflammatory and pro-angiogenic cytokines within the tumors. In addition, we have analyzed vascular changes in the interface between the tumors and the adjacent cutaneous tissue and levels of relevant pro-inflammatory and pro-angiogenic cytokines systemically. The weight of tumors 15 days post-inoculation of 10(6) cells was markedly different. Melanomas were 2 and 10-fold heavier than colon and mammary tumors, respectively. Locally, CT26.WT tumor cells induced more vessels in cutaneous tissue adjacent to the tumors but systemically, the plasma levels of VEGF were higher (approximately 2-fold) in 4T1 tumor-bearing mice compared with the other two tumors. Mammary tumors presented the most prominent inflammatory content as assessed by a range of markers (inflammatory enzymes and cytokines). The vascular index, as determined by the intra-tumor amount of hemoglobin and number of vessels in hot spot areas, was also higher (approximately 2-fold) in melanomas compared with the other two tumors. These findings showing that distinct tumor types determine differential grade of inflammation, angiogenesis and host interaction in mice may provide new insights to tailor differential therapeutic approach based on the status of tumor biomarkers. PMID:23253264

  13. Intracellular particle tracking as a tool for tumor cell characterization

    NASA Astrophysics Data System (ADS)

    Li, Yixuan; Schnekenburger, Juergen; Duits, Michael H. G.

    2009-11-01

    We studied the dynamics of two types of intracellular probe particles, ballistically injected latex spheres and endogenous granules, in tumor cell lines of differerent metastatic potential: breast tumor cells (MCF-7 malignant, MCF-10A benign) and pancreas adenocarcinoma (PaTu8988T malignant, PaTu8988S benign). For both tissue types and for both probes, the mean squared displacement (MSD) function measured in the malignant cells was substantially larger than in the benign cells. Only a few cells were needed to characterize the tissue as malignant or benign based on their MSD, since variations in MSD within the same cell line were relatively small. These findings suggest that intracellular particle tracking (IPT) can serve as a simple and reliable method for characterization of cell states obtained from a small amount of cell sample. Mechanical analysis of the same cell lines with atomic force microscopy (AFM) in force-distance mode revealed that AFM could distinguish between the benign and malignant breast cancer cells but not the pancreatic tumor cell lines. This underlines the potential value of IPT as a complementary nanomechanical tool for studying cell-state-dependent mechanical properties.

  14. Direct tumor recognition by a human CD4+ T-cell subset potently mediates tumor growth inhibition and orchestrates anti-tumor immune responses

    PubMed Central

    Matsuzaki, Junko; Tsuji, Takemasa; Luescher, Immanuel F.; Shiku, Hiroshi; Mineno, Junichi; Okamoto, Sachiko; Old, Lloyd J.; Shrikant, Protul; Gnjatic, Sacha; Odunsi, Kunle

    2015-01-01

    Tumor antigen-specific CD4+ T cells generally orchestrate and regulate immune cells to provide immune surveillance against malignancy. However, activation of antigen-specific CD4+ T cells is restricted at local tumor sites where antigen-presenting cells (APCs) are frequently dysfunctional, which can cause rapid exhaustion of anti-tumor immune responses. Herein, we characterize anti-tumor effects of a unique human CD4+ helper T-cell subset that directly recognizes the cytoplasmic tumor antigen, NY-ESO-1, presented by MHC class II on cancer cells. Upon direct recognition of cancer cells, tumor-recognizing CD4+ T cells (TR-CD4) potently induced IFN-γ-dependent growth arrest in cancer cells. In addition, direct recognition of cancer cells triggers TR-CD4 to provide help to NY-ESO-1-specific CD8+ T cells by enhancing cytotoxic activity, and improving viability and proliferation in the absence of APCs. Notably, the TR-CD4 either alone or in collaboration with CD8+ T cells significantly inhibited tumor growth in vivo in a xenograft model. Finally, retroviral gene-engineering with T cell receptor (TCR) derived from TR-CD4 produced large numbers of functional TR-CD4. These observations provide mechanistic insights into the role of TR-CD4 in tumor immunity, and suggest that approaches to utilize TR-CD4 will augment anti-tumor immune responses for durable therapeutic efficacy in cancer patients. PMID:26447332

  15. Curcumin targets fibroblast–tumor cell interactions in oral squamous cell carcinoma

    SciTech Connect

    Dudás, József; Fullár, Alexandra; Romani, Angela; Pritz, Christian; Kovalszky, Ilona; Hans Schartinger, Volker; Mathias Sprinzl, Georg; Riechelmann, Herbert

    2013-04-01

    Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of OSCC tumor cells. We hypothesized that Curcumin targets this dynamic mutual interaction between CAFs and tumor cells. Normal and 2 μM Curcumin-treated co-culture were performed for 4 days, followed by analysis of tumor cell invasivity, mRNA/protein expression of EMT-markers and mediators, activity measure of matrix metalloproteinase 9 (MMP-9), and western blot analysis of signal transduction in tumor cells and fibroblasts. In Curcumin-treated co-culture, in tumor cells, the levels of nuclear factor κB (NFκBα) and early response kinase (ERK)—decreased, in fibroblasts, integrin αv protein synthesis decreased compared to corresponding cells in normal co-culture. The signal modulatory changes induced by Curcumin caused decreased release of EMT-mediators in CAFs and reversal of EMT in tumor cells, which was associated with decreased invasion. These data confirm the palliative potential of Curcumin in clinical application. - Graphical abstract: Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of tumor cells. Curcumin targets this dynamic mutual interaction between CAFs and tumor cells by inhibiting the production of EMT mediators in CAFs and by modification of intracellular signaling in tumor cells. This causes less invasivity and reversal of EMT in tumor cells. Highlights: ► Curcumin targets tumor–fibroblast interaction in head and neck cancer. ► Curcumin suppresses mediators of epithelial–mesenchymal transition. ► Curcumin decreases the invasivity of tumor cells.

  16. [Principles of adoptive cell therapy based on "Tumor Infiltrating Lymphocytes"].

    PubMed

    Martins, Filipe; Orcurto, Angela; Michielin, Olivier; Coukos, George

    2016-05-18

    Adoptive cell therapy consists in the use of T lymphocytes for therapeutic purposes. Up to now, of limited use in clinical practice for logistical reasons, technical progress and substantial level of evidence obtained in the last decade allow its arrival in universitary hospitals. We will principally discuss the administration of expanded tumor infiltrating T cells in the treatment of metastatic melanoma. This treatment modality exploits the natural specificity of these cells and aims to potentiate their effectiveness. This personalized immunotherapy detains a potential for expansion to many other advanced tumor types. PMID:27424426

  17. High incidence of TERT mutation in brain tumor cell lines.

    PubMed

    Johanns, Tanner M; Fu, Yujie; Kobayashi, Dale K; Mei, Yu; Dunn, Ian F; Mao, Diane D; Kim, Albert H; Dunn, Gavin P

    2016-07-01

    TERT promoter gene mutations are highly recurrent in malignant glioma. However, little information exists regarding their presence in experimental brain tumor models. To better characterize systems in which TERT mutation studies could be appropriately modeled experimentally, the TERT promoter was examined by conventional sequencing in primary brain tumor initiating cells (BTIC), two matched recurrent BTIC lines, a panel of established malignant glioma cell lines, and two meningioma cell lines. Telomerase gene expression was examined by quantitative PCR. We found that all glioblastoma BTIC lines harbored a TERT mutation, which was retained in two patient-matched recurrent BTIC. The TERT C228T or C250T mutation was found in 33/35 (94 %) of established malignant glioma cell lines and both meningioma cell lines examined. Brain tumor cell lines expressed variably high telomerase levels. Thus, a high percentage of glioma cell lines, as well as two meningioma cell lines, harbors TERT mutations. These data characterize tractable, accessible models with which to further explore telomerase biology in these tumor types. PMID:26960334

  18. Malignant perivascular epithelioid cell tumor of the uterus

    PubMed Central

    Bleeker, Jonathan S.; Quevedo, J. Fernando; Folpe, Andrew L.

    2012-01-01

    Perivascular epithelioid cell tumors (PEComas) are a rare collection of tumors arising in a wide array of anatomic locations and characterized by a myomelanocytic phenotype. PEComas which occur in non-classic anatomic distributions are known as perivascular epithelioid cell tumor-not otherwise specified (PEComa-NOS), and one of the most common primary sites for PEComa-NOS is the uterus. The risk of aggressive behavior of these tumors has been linked to a number of factors evaluable on pathologic review following initial surgical resection. We report a case of PEComa-NOS of the uterus with multiple high-risk features, including frank vascular invasion, with no evidence of recurrent disease 18 months following initial surgical resection. PMID:22532912

  19. Reactive Oxygen Species in Normal and Tumor Stem Cells

    PubMed Central

    Zhou, Daohong; Shao, Lijian; Spitz, Douglas R.

    2014-01-01

    Reactive oxygen species (ROS) play an important role in determining the fate of normal stem cells. Low levels of ROS are required for stem cells to maintain quiescence and self-renewal. Increases in ROS production cause stem cell proliferation/differentiation, senescence, and apoptosis in a dose-dependent manner, leading to their exhaustion. Therefore, the production of ROS in stem cells is tightly regulated to ensure that they have the ability to maintain tissue homeostasis and repair damaged tissues for the life span of an organism. In this chapter, we discuss how the production of ROS in normal stem cells is regulated by various intrinsic and extrinsic factors and how the fate of these cells is altered by the dysregulation of ROS production under various pathological conditions. In addition, the implications of the aberrant production of ROS by tumor stem cells for tumor progression and treatment are also discussed. PMID:24974178

  20. Mesenchymal stromal cells inhibit murine syngeneic anti-tumor immune responses by attenuating inflammation and reorganizing the tumor microenvironment.

    PubMed

    Modiano, Jaime F; Lindborg, Beth A; McElmurry, Ron T; Lewellen, Mitzi; Forster, Colleen L; Zamora, Edward A; Schaack, Jerome; Bellgrau, Donald; O'Brien, Timothy D; Tolar, Jakub

    2015-11-01

    The potential of mesenchymal stromal cells (MSCs) to inhibit anti-tumor immunity is becoming increasingly well recognized, but the precise steps affected by these cells during the development of an anti-tumor immune response remain incompletely understood. Here, we examined how MSCs affect the steps required to mount an effective anti-tumor immune response following administration of adenovirus Fas ligand (Ad-FasL) in the Lewis lung carcinoma (LL3) model. Administration of bone marrow-derived MSCs with LL3 cells accelerated tumor growth significantly. MSCs inhibited the inflammation induced by Ad-FasL in the primary tumors, precluding their rejection; MSCs also reduced the consequent expansion of tumor-specific T cells in the treated hosts. When immune T cells were transferred to adoptive recipients, MSCs impaired, but did not completely abrogate the ability of these T cells to promote elimination of secondary tumors. This impairment was associated with a modest reduction in tumor-infiltrating T cells, with a significant reduction in tumor-infiltrating macrophages, and with a reorganization of the stromal environment. Our data indicate that MSCs in the tumor environment reduce the efficacy of immunotherapy by creating a functional and anatomic barrier that impairs inflammation, T cell priming and expansion, and T cell function-including recruitment of effector cells. PMID:26250807

  1. Clustering of brain tumor cells: a first step for understanding tumor recurrence

    NASA Astrophysics Data System (ADS)

    Khain, Evgeniy; Nowicki, M. O.; Chiocca, E. A.; Lawler, S. E.; Schneider-Mizell, C. M.; Sander, L. M.

    2012-02-01

    Glioblastoma tumors are highly invasive; therefore the overall prognosis of patients remains poor, despite major improvements in treatment techniques. Cancer cells detach from the inner tumor core and actively migrate away [1]; eventually these invasive cells might form clusters, which can develop to recurrent tumors. In vitro experiments in collagen gel [1] followed the clustering dynamics of different glioma cell lines. Based on the experimental data, we formulated a stochastic model for cell dynamics, which identified two mechanisms of clustering. First, there is a critical value of the strength of adhesion; above the threshold, large clusters grow from a homogeneous suspension of cells; below it, the system remains homogeneous, similarly to the ordinary phase separation. Second, when cells form a cluster, there is evidence that their proliferation rate increases. We confirmed the theoretical predictions in a separate cell migration experiment on a substrate and found that both mechanisms are crucial for cluster formation and growth [2]. In addition to their medical importance, these phenomena present exciting examples of pattern formation and collective cell behavior in intrinsically non-equilibrium systems [3]. [4pt] [1] A. M. Stein et al, Biophys. J., 92, 356 (2007). [0pt] [2] E. Khain et al, EPL 88, 28006 (2009). [0pt] [3] E. Khain et al, Phys. Rev. E. 83, 031920 (2011).

  2. Cell-free tumor microparticle vaccines stimulate dendritic cells via cGAS/STING signaling.

    PubMed

    Zhang, Huafeng; Tang, Ke; Zhang, Yi; Ma, Ruihua; Ma, Jingwei; Li, Yong; Luo, Shunqun; Liang, Xiaoyu; Ji, Tiantian; Gu, Zhichao; Lu, Jinzhi; He, Wei; Cao, Xuetao; Wan, Yonghong; Huang, Bo

    2015-02-01

    Tumor antigens and innate signals are vital considerations in developing new therapeutic or prophylactic antitumor vaccines. The role or requirement of intact tumor cells in the development of an effective tumor vaccine remains incompletely understood. This study reveals the mechanism by which tumor cell-derived microparticles (T-MP) can act as a cell-free tumor vaccine. Vaccinations with T-MPs give rise to prophylactic effects against the challenge of various tumor cell types, while T-MP-loaded dendritic cells (DC) also exhibit therapeutic effects in various tumor models. Such antitumor effects of T-MPs are perhaps attributable to their ability to generate immune signaling and to represent tumor antigens. Mechanically, T-MPs effectively transfer DNA fragments to DCs, leading to type I IFN production through the cGAS/STING-mediated DNA-sensing pathway. In turn, type I IFN promotes DC maturation and presentation of tumor antigens to T cells for antitumor immunity. These findings highlight a novel tumor cell-free vaccine strategy with potential clinical applications. PMID:25477253

  3. Kinetic studies of porphyrin distribution in suspensions of tumor cells

    NASA Astrophysics Data System (ADS)

    Zorin, Vladimir P.; Mel'nov, Sergey B.; Savitsky, Valery P.; Zorina, Tatyana E.

    1996-12-01

    Using a fluorescence activated cell sorting, we investigated the dynamics of porphyrins in suspensions of tumor cells. In addition to direct studies of the incorporation and output of several porphyrins (hematoporphyrin, hematoporphyrin dimethyl ester, chlorin e6 and its mono-, di-, trimethyl esters) from cells, their transfer between cells was investigated. It was shown that the rate of pigment accumulation by cells correlated with the rate of porphyrin penetration across the plasma membrane. As a result, apolar chlorins and HpDME displayed enhanced staining capacity which was independent on the integrity of plasma membrane of cells. To estimate the rate of pigment redistribution between cells, the suspension of tumor cells loaded with porphyrin had been mixed with unloaded cells and the distribution of all cells according to porphyrin fluorescence was determined in different intervals of time. It was obtained that the highest rate of the pigment transfer between cells was exhibited in the case of moderately apolar pigment. Porphyrins with dominantly hydrophobic and hydrophilic properties had a decreased capacity to intercellular migration. The results of this study indicate that, depending on the photosensitizer used, the processes of its distribution in the bulk of tumor tissue mediated by intercellular exchange may occur with a different rate.

  4. Correlation of proliferative and clonogenic tumor cells in multiple myeloma

    SciTech Connect

    Karp, J.E.; Burke, P.J.; Saylor, P.L.; Humphrey, R.L.

    1984-09-01

    To expand on the findings from previous clinical trials that the growth of residual tumor is increased at a predictable time following initial drug administration, malignant plasma cells from bone marrows of patients with multiple myeloma (MM) were examined for changes in proliferation and clonogenicity induced in vivo by cyclophosphamide and in vitro by drug-induced humoral stimulatory activity. Peak plasma cell (/sup 3/H)thymidine labeling index (LI) occurred predictably following drug and paralleled changes in agar colony formation by marrow cells obtained during therapy. Colony-forming capacity of pretreatment MM marrow populations was enhanced when those cells were cultured with humoral stimulatory activity, similar to the increased colony formation detected in Day 9 postcyclophosphamide marrows at the time of peak plasma cell LI. To further define a relationship between proliferative plasma cells and colony-forming tumor cells, MM marrows were fractionated by sedimentation on an isokinetic gradient. Enrichment of a proliferative tumor cell cohort was achieved, evidenced by (/sup 3/H)thymidine LI. Colony-forming cells were also enriched by isokinetic gradient sedimentation, and agar colony formation by MM marrow cell fractions correlated with the kinetic characteristics of the isolated subpopulations. These studies of whole and fractionated human MM marrow cell populations suggest that the kinetically active cells which are induced to proliferate in vivo and in vitro are closely related to the clonogenic tumor cells which produce colonies in agar and which, like those cells measured by (/sup 3/H)thymidine LI, respond to growth stimulation by drug-induced humoral stimulatory activity.

  5. Microvascular Transport and Tumor Cell Adhesion in the Microcirculation

    PubMed Central

    Fu, Bingmei M.; Liu, Yang

    2016-01-01

    One critical step in tumor metastasis is tumor cell adhesion to the endothelium forming the microvessel wall. Understanding this step may lead to new therapeutic concepts for tumor metastasis. Vascular endothelium forming the microvessel wall and the glycocalyx layer at its surface are the principal barriers to, and regulators of the material exchange between circulating blood and body tissues. The cleft between adjacent ECs (interendothelial cleft) is the principal pathway for water and solutes transport through the microvessel wall in health. It is also suggested to be the pathway for high molecular weight plasma proteins, leukocytes and tumor cells across microvessel walls in disease. Thus the first part of the review introduced the mathematical models for water and solutes transport through the interendothelial cleft. These models, combined with the experimental results from in vivo animal studies and electron microscopic observations, are used to evaluate the role of the endothelial surface glycocalyx, the junction strand geometry in the interendothelial cleft, and the surrounding extracellular matrix and tissue cells, as the determinants of microvascular transport. The second part of the review demonstrated how the microvascular permeability, hydrodynamic factors, microvascular geometry and cell adhesion molecules affect tumor cell adhesion in the microcirculation. PMID:22476895

  6. [Hormonal therapy of advanced or relapsed ovarian granulosa cell tumor].

    PubMed

    Sun, H; Bai, P

    2016-07-01

    Ovarian granulosa cell tumor is a rare gynecologic malignancy with hormonal activity. Surgical excision is the standard treatment for this disease. Most patients present excellent short term prognosis, however, late relapse often occurs, even after many years. Viable treatments of advanced or relapsed granulosa cell tumor are still limited, and the optimal therapy method has not been established. Compared with chemotherapy and radiotherapy, hormonal therapy is a well-tolerated treatment which can be administrated over a long period of time without serious side effects, and the combined application of hormones may achieve a better outcome. Therefore, hormonal therapy has been suggested as a potential treatment option for patients with advanced or relapsed granulosa cell tumor, and to extend the tumor-free interval and attenuate the disease progression. Future researches should be focused on the identification of the hormonal therapy which may provide the greatest clinical benefit, comparing and analyzing the effects of different combined therapeutic regimens of hormone drugs, and on the synthesis of drugs highly activating estrogen receptor β expressed in the granulosa cell tumor cells. PMID:27531259

  7. Mechanical Disruption of Tumors by Iron Particles and Magnetic Field Application Results in Increased Anti-Tumor Immune Responses

    PubMed Central

    Bouchlaka, Myriam N.; Sckisel, Gail D.; Wilkins, Danice; Maverakis, Emanual; Monjazeb, Arta M.; Fung, Maxwell; Welniak, Lisbeth; Redelman, Doug; Fuchs, Alan; Evrensel, Cahit A.; Murphy, William J.

    2012-01-01

    The primary tumor represents a potential source of antigens for priming immune responses for disseminated disease. Current means of debulking tumors involves the use of cytoreductive conditioning that impairs immune cells or removal by surgery. We hypothesized that activation of the immune system could occur through the localized release of tumor antigens and induction of tumor death due to physical disruption of tumor architecture and destruction of the primary tumor in situ. This was accomplished by intratumor injection of magneto-rheological fluid (MRF) consisting of iron microparticles, in Balb/c mice bearing orthotopic 4T1 breast cancer, followed by local application of a magnetic field resulting in immediate coalescence of the particles, tumor cell death, slower growth of primary tumors as well as decreased tumor progression in distant sites and metastatic spread. This treatment was associated with increased activation of DCs in the draining lymph nodes and recruitment of both DCs and CD8(+)T cells to the tumor. The particles remained within the tumor and no toxicities were observed. The immune induction observed was significantly greater compared to cryoablation. Further anti-tumor effects were observed when MRF/magnet therapy was combined with systemic low dose immunotherapy. Thus, mechanical disruption of the primary tumor with MRF/magnetic field application represents a novel means to induce systemic immune activation in cancer. PMID:23133545

  8. Tumor suppressor control of the cancer stem cell niche.

    PubMed

    Kramer, K; Wu, J; Crowe, D L

    2016-08-11

    Mammary stem cells (MSCs) expansion is associated with aggressive human breast cancer. The nuclear receptor peroxisome proliferator activated receptor γ (PPARγ) is a breast cancer tumor suppressor, but the mechanisms of this suppression are not completely characterized. To determine whether PPARγ regulates MSC expansion in mammary cancer, we deleted PPARγ expression in the mammary epithelium of an in vivo model of basal breast cancer. Loss of PPARγ expression reduced tumor latency, and expanded the CD24+/CD49f(hi) MSC population. PPARγ-null mammary tumors exhibited increased angiogenesis, which was detected in human breast cancer. In vivo inhibition of a PPARγ-regulated miR-15a/angiopoietin-1 pathway blocked increased angiogenesis and MSC expansion. PPARγ bound and activated a canonical response element in the miR-15a gene. PPARγ-null tumors were sensitive to the targeted anti-angiogenic drug sunitinib but resistant to cytotoxic chemotherapy. Normalization of tumor vasculature with sunitinib resulted in objective response to cytotoxic chemotherapy. Chemotherapy-treated PPARγ-null mammary tumors exhibited luminal phenotype and expansion of unipotent CD61+ luminal progenitor cells. Transplantation of chemotherapy-treated luminal progenitor cells recapitulated the luminal phenotype. These results have important implications for anti-angiogenic therapy in breast cancer patients. PMID:26686086

  9. Biophysical regulation of tumor cell invasion: moving beyond matrix stiffness.

    PubMed

    Pathak, Amit; Kumar, Sanjay

    2011-04-01

    Invasion of cancer cells into the extracellular matrix (ECM) is a key step in tumor infiltration and metastasis. While the strong influence of ECM stiffness in governing tumor cell migration has been well established in two-dimensional culture paradigms, investigation of this parameter in three-dimensional (3D) ECMs has proven considerably more challenging, in part because perturbations that change 3D ECM stiffness often concurrently change microscale matrix parameters that critically regulate cell migration, such as pore size, fiber architecture, and local material deformability. Here we review the potential importance of these parameters in the context of tumor cell migration in 3D ECMs. We begin by discussing biophysical mechanisms of cell motility in 3D ECMs, with an emphasis on the cell-matrix mechanical interactions that underlie this process and key signatures of mesenchymal and amoeboid modes of motility. We then consider microscale matrix physical properties that are particularly relevant to 3D culture and would be expected to regulate motility, including matrix microstructure and nonlinear elasticity. We also discuss how changes in 3D matrix properties might be expected to trigger transitions in subcellular mechanisms, which in turn contribute to mesenchymal-amoeboid transition (MAT) by imposing restrictions on 3D motility. We expect that the field will gain valuable insight into invasion and metastasis by deepening its understanding of microscale, biophysical interactions between tumor cells and matrix elements and by creating new 3D scaffolds that permit orthogonal manipulation of specific matrix parameters. PMID:21210057

  10. Zeeman spectroscopy of the internal transition 4T1 to 6A1 of Fe3+ ions in wurtzite GaN

    NASA Astrophysics Data System (ADS)

    Neuschl, B.; Gödecke, M. L.; Thonke, K.; Lipski, F.; Klein, M.; Scholz, F.; Feneberg, M.

    2015-12-01

    Internal transitions of Fe3+ ions in wurtzite gallium nitride were analyzed by means of photoluminescence, Zeeman, and transmission spectroscopy in order to investigate the fine structure. Magnetic fields up to 14 T were applied perpendicular or parallel to the crystal c-axis, causing a characteristic splitting pattern of the luminescence related to the transition from the 4T1 excited state to the 6A1 ground state of Fe3+. The complete Hamiltonian matrix is constructed taking into account the crystal field in cubic and trigonal symmetry, spin-orbit interaction, and the influence of external magnetic fields. Numerical solution yields the exact energy level scheme of the excited state 4G of Fe3+ ions in GaN, which partly revises assumptions based on a qualitative treatment considering group theory only and invoking the influence of a Jahn-Teller effect. The coincidence of the calculated energy levels with the experimental data verifies the derived fine structure of the 3d metal ion.

  11. Identification of Novel Tumor-Associated Cell Surface Sialoglycoproteins in Human Glioblastoma Tumors Using Quantitative Proteomics

    PubMed Central

    Autelitano, François; Loyaux, Denis; Roudières, Sébastien; Déon, Catherine; Guette, Frédérique; Fabre, Philippe; Ping, Qinggong; Wang, Su; Auvergne, Romane; Badarinarayana, Vasudeo; Smith, Michael; Guillemot, Jean-Claude; Goldman, Steven A.; Natesan, Sridaran; Ferrara, Pascual; August, Paul

    2014-01-01

    Glioblastoma multiform (GBM) remains clinical indication with significant “unmet medical need”. Innovative new therapy to eliminate residual tumor cells and prevent tumor recurrences is critically needed for this deadly disease. A major challenge of GBM research has been the identification of novel molecular therapeutic targets and accurate diagnostic/prognostic biomarkers. Many of the current clinical therapeutic targets of immunotoxins and ligand-directed toxins for high-grade glioma (HGG) cells are surface sialylated glycoproteins. Therefore, methods that systematically and quantitatively analyze cell surface sialoglycoproteins in human clinical tumor samples would be useful for the identification of potential diagnostic markers and therapeutic targets for malignant gliomas. In this study, we used the bioorthogonal chemical reporter strategy (BOCR) in combination with label-free quantitative mass spectrometry (LFQ-MS) to characterize and accurately quantify the individual cell surface sialoproteome in human GBM tissues, in fetal, adult human astrocytes, and in human neural progenitor cells (NPCs). We identified and quantified a total of 843 proteins, including 801 glycoproteins. Among the 843 proteins, 606 (72%) are known cell surface or secreted glycoproteins, including 156 CD-antigens, all major classes of cell surface receptor proteins, transporters, and adhesion proteins. Our findings identified several known as well as new cell surface antigens whose expression is predominantly restricted to human GBM tumors as confirmed by microarray transcription profiling, quantitative RT-PCR and immunohistochemical staining. This report presents the comprehensive identification of new biomarkers and therapeutic targets for the treatment of malignant gliomas using quantitative sialoglycoproteomics with clinically relevant, patient derived primary glioma cells. PMID:25360666

  12. Application of autologous tumor cell vaccine and NDV vaccine in treatment of tumors of digestive traet

    PubMed Central

    Liang, Wei; Wang, Hui; Sun, Tie-Mie; Yao, Wen-Qing; Chen, Li-Li; Jin, Yu; Li, Chun-Ling; Meng, Fan-Juan

    2003-01-01

    AIM: To treat patients with stage I-IV malignant tumors of digestive tract using autologous tumor cell vaccine and NDV (Newcastle disease virus) vaccine, and observe the survival period and curative effect. METHODS: 335 patients with malignant tumors of digestive tract were treated with autologous tumor cell vaccine and NDV vaccine. The autologous tumor cell vaccine received were assigned for long-term survival observation. While these failed to obtain the autologous tumor tissue were given with NDV vaccine for a received short-term observation on curative effect. RESULTS: The colorectal cancer patients treated with autologous tumor cell vaccine were divided into two groups: the controlled group (subjected to resection alone) (n = 257), the vaccine group (subjected to both resection and immunotherapy) (n = 310). 25 patients treated with NDV immunotherapy were all at stage IV without having resection. In postoperation adjuvant therapy patients, the 5, 6 and 7-year survival rates were 66.51%, 60.52%, 56.50% respectively; whereas in patients with resection alone, only 45.57%, 44.76% and 43.42% respectively. The average survival period was 5.13 years (resection alone group 4.15 years), the median survival period was over 7 years (resection alone group 4.46 years). There were significant differences between the two groups. The patients treated with resection plus vaccine were measured delayed-type hypersensitivity (DTH) reactions after vaccination, (indurative scope > 5 mm). The magnitude of DTH was related to the prognosis. The 5-year survival rate was 80% for those with indurations greater than 5 mm, compared with 30% for those with indurations less than 5 mm. The 1-year survival rate was 96% for 25 patients treated with NDV immunotherapy. The total effective rate (CR+PR) was 24.00% in NDV immunotherapy; complete remission (CR) in 1 case (4.00%), partial remission (PR) in 5 cases (20.00%), stabilizedin in 16 cases (64.00%), progression (PD) in 1 case (4.00%). After

  13. Pediatric Germ Cell Tumors; A 10-year Experience

    PubMed Central

    Khaleghnejad-Tabari, Ahmad; Mirshemirani, Alireza; Rouzrokh, Mohsen; Mohajerzadeh, Leily; Khaleghnejad-Tabari, Nasibeh; Hasas-Yeganeh, Shaghayegh

    2014-01-01

    Objective: The aim of this study was to evaluate the outcome of germ cell tumors in patients admitted to our center during a ten year period. Methods: In a retrospective descriptive study, patients with the pathological diagnosis of germ cell tumor (GCT) were included. All records were evaluated and patients followed by personal visit in clinic or phone call. Data regarding age, sex, tumor site, bio-chemical assay, pathology, treatment and outcomes were gathered. For qualitative variables we computed frequency and percentage and for quantitative variables, mean and standard deviation. Survival analysis was performed using Kaplan-Meier. All statistical analyses were performed by SPSS version16.0. Findings : Forty four patients consisted of 32 girls (72.7%) and 12 boys (27.3%). Their median age was 23 months. The most common pathological tumor types were 18 (40.9%) mature teratomas and 14 (31.8%) yolk sac tumors. Extra gonadal tumors were more prevalent (32 cases) and consisted of 21 (47.7%) sacrcoccygeal, 7 (15.9%) retroperitoneal, 2 (4.4%) mediastinal and 2 (4.4%) cervical tumors. In gonadal tumors 9 patients had ovarian and 3 patients testicular involvement. Staging at the time of diagnosis revealed stage one in 23 (52.3%) cases. All patients were treated surgically and the most common procedure was total resection in 41 (93.2%) patients. Fifteen (34.1%) patients received chemotherapy. In follow-up 31 (77.5%) patients were in complete remission, 9 (22.5%) had died, and 4 cases did not appear to follow-up visits. The median survival was 16 months (IQR 4-49 months). The highest mortality rate was found in patients with yolk sac tumors (8 of 13 cases). Conclusion: The patients with extra-gonadal GCT and a high AFP level have the worst prognosis and lower survival rate. Combination of surgery and chemotherapy can lead to a better prognosis. PMID:25755868

  14. Cutaneous mast cell tumor (Mastocytoma): Cyto- histopathological and haematological investigations

    PubMed Central

    2014-01-01

    Cutaneous mast cell tumours (MCTs) are the most common skin tumours in dogs. Due to the prevalence of canine MCTs and the variable biologic behavior of this disease, accurate prognostication and a thorough understanding of MCT biology are critical for the treatment of this disease. A cytologic diagnosis of mast cell tumor with evidence of prior hemorrhage was made, and the masses were surgically removed. Cytological evaluation of fine-needle aspirates from the cutaneous mass from the axillary comprised many well-differentiated, highly granulated mast cells with moderate numbers of eosinophils. Nuclei were varied in size and shape with high nuclear’to’cytoplasmic ratio, prominent nucleoli, marked atypical and mitotic figures. Microscopically, mass consisted of sheets of neoplastic round cells that formed nonencapsulated nodules in the dermis and infiltrated into the adjacent dermal collagen, and also there was diffuse subcutis invasion of round to pleomorphic tumor cells. Tumor cells had moderate to abundant cytoplasm, round to ovoid nuclei with scattered chromatin, and mitotic figures. In this tumor, cytoplasmic granules showed atypical metachromasia. In addition, eosinophils were scattered among the mast cells at the periphery of the nodules. The presence of eosinophils and the observation, at high magnification, of cells with cytoplasmic metachromatic granules. Invasion of the deep subcutaneous fat or cutaneous muscles were a common feature of grade III tumour. Finally, a diagnosis of grade III cutaneous mast cell tumor was made. Virtual slides The virtual slide(s) of this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/4755249151157024. PMID:24444100

  15. Characterization of DNA Methylation in Circulating Tumor Cells

    PubMed Central

    Pixberg, Constantin F.; Schulz, Wolfgang A.; Stoecklein, Nikolas H.; Neves, Rui P. L.

    2015-01-01

    Epigenetics contributes to molecular mechanisms leading to tumor cell transformation and systemic progression of cancer. However, the dynamics of epigenetic remodeling during metastasis remains unexplored. In this context, circulating tumor cells (CTCs) might enable a direct insight into epigenetic mechanisms relevant for metastasis by providing direct access to systemic cancer. CTCs can be used as prognostic markers in cancer patients and are regarded as potential metastatic precursor cells. However, despite substantial technical progress, the detection and molecular characterization of CTCs remain challenging, in particular the analysis of DNA methylation. As recent studies have started to address the epigenetic state of CTCs, we discuss here the potential of such investigations to elucidate mechanisms of metastasis and to develop tumor biomarkers. PMID:26506390

  16. Cell biological mechanisms of multidrug resistance in tumors.

    PubMed Central

    Simon, S M; Schindler, M

    1994-01-01

    Multidrug resistance (MDR) is a generic term for the variety of strategies tumor cells use to evade the cytotoxic effects of anticancer drugs. MDR is characterized by a decreased sensitivity of tumor cells not only to the drug employed for chemotherapy but also to a broad spectrum of drugs with neither obvious structural homology nor common targets. This pleiotropic resistance is one of the major obstacles to the successful treatment of tumors. MDR may result from structural or functional changes at the plasma membrane or within the cytoplasm, cellular compartments, or nucleus. Molecular mechanisms of MDR are discussed in terms of modifications in detoxification and DNA repair pathways, changes in cellular sites of drug sequestration, decreases in drug-target affinity, synthesis of specific drug inhibitors within cells, altered or inappropriate targeting of proteins, and accelerated removal or secretion of drugs. PMID:7909602

  17. Cell Biological Mechanisms of Multidrug Resistance in Tumors

    NASA Astrophysics Data System (ADS)

    Simon, Sanford M.; Schindler, Melvin

    1994-04-01

    Multidrug resistance (MDR) is a generic term for the variety of strategies tumor cells use to evade the cytotoxic effects of anticancer drugs. MDR is characterized by a decreased sensitivity of tumor cells not only to the drug employed for chemotherapy but also to a broad spectrum of drugs with neither obvious structural homology nor common targets. This pleotropic resistance is one of the major obstacles to the successful treatment of tumors. MDR may result from structural or functional changes at the plasma membrane or within the cytoplasm, cellular compartments, or nucleus. Molecular mechanisms of MDR are discussed in terms of modifications in detoxification and DNA repair pathways, changes in cellular sites of drug sequestration, decreases in drug-target affinity, synthesis of specific drug inhibitors within cells, altered or inappropriate targeting of proteins, and accelerated removal or secretion of drugs.

  18. Biology, detection, and clinical implications of circulating tumor cells

    PubMed Central

    Joosse, Simon A; Gorges, Tobias M; Pantel, Klaus

    2015-01-01

    Cancer metastasis is the main cause of cancer-related death, and dissemination of tumor cells through the blood circulation is an important intermediate step that also exemplifies the switch from localized to systemic disease. Early detection and characterization of circulating tumor cells (CTCs) is therefore important as a general strategy to monitor and prevent the development of overt metastatic disease. Furthermore, sequential analysis of CTCs can provide clinically relevant information on the effectiveness and progression of systemic therapies (e.g., chemo-, hormonal, or targeted therapies with antibodies or small inhibitors). Although many advances have been made regarding the detection and molecular characterization of CTCs, several challenges still exist that limit the current use of this important diagnostic approach. In this review, we discuss the biology of tumor cell dissemination, technical advances, as well as the challenges and potential clinical implications of CTC detection and characterization. PMID:25398926

  19. Differential Adhesion of Tumor Cells to Capillary Endothelial Cells in vitro

    NASA Astrophysics Data System (ADS)

    Alby, Laverna; Auerbach, Robert

    1984-09-01

    Adhesion studies were carried out to determine the relative ability of glioma cells and ovary-derived teratoma cells to adhere to endothelial cells obtained from mouse brain capillaries (designated MBE cell line) or mouse ovaries (designated MOE cell line). The teratoma cells showed preferential adhesion to MOE cells, whereas the glioma cells showed preferential adhesion to the MBE cell line. In contrast, the glioma and teratoma cells adhered equally to L929 and 3T3 fibroblasts. A testicular teratoma with ovary-seeking properties in vivo also adhered preferentially to MOE cells, while the preference for MBE cells was shared by glioma cells with an endothelioma and a bladder tumor line. The endothelioma, interestingly, showed a marked preferential adhesion to 3T3 cells, thus distinguishing it from the glioma. The experiments demonstrate that capillary endothelial cells derived from different sources are not alike and that differences expressed at the cell surface of these cells can be distinguished by tumor cells.

  20. Spectrum of germ cell tumors: from head to toe.

    PubMed

    Ueno, Teruko; Tanaka, Yumiko Oishi; Nagata, Michio; Tsunoda, Hajime; Anno, Izumi; Ishikawa, Shigemi; Kawai, Koji; Itai, Yuji

    2004-01-01

    Germ cell tumors (GCTs) occur most frequently in the gonads and are relatively rare in other sites, such as the pineal gland, neurohypophysis, mediastinum, and retroperitoneum. GCTs are thought to originate from primordial germ cells, which migrate to the primitive gonadal glands in the urogenital ridge. Extragonadal GCTs might also originate from these cells when the cells are sequestered during their migration. Pathologic subtypes of GCTs vary, and the prevalence of mixed tumors is high. These factors produce a diversity of radiologic findings and make prospective radiologic diagnosis difficult in many cases. However, similar radiologic findings have been observed in pathologically equivalent tumors in varying sites. Seminomas appear as uniformly solid, lobulated masses with fibrovascular septa that enhance intensely. Nonseminomatous GCTs appear as heterogeneous masses with areas of necrosis, hemorrhage, or cystic degeneration. Fat and calcifications are hallmarks of teratomas, most of which are benign. In immature teratomas, scattered fat and calcification within larger solid components are occasionally seen. These imaging characteristics reflect the pathologic features of each tumor, and histologically similar GCTs at varying sites have similar radiologic features. Knowledge of the pathologic appearances of GCTs and their corresponding radiologic appearances will allow radiologists to diagnose these tumors correctly. PMID:15026588

  1. Niche Appropriation by Drosophila Intestinal Stem Cell Tumors

    PubMed Central

    Patel, Parthive H.; Dutta, Devanjali; Edgar, Bruce A.

    2015-01-01

    Mutations that inhibit differentiation in stem cell lineages are a common early step in cancer development, but precisely how a loss of differentiation initiates tumorigenesis is unclear. We investigated Drosophila intestinal stem cell (ISC) tumors generated by suppressing Notch (N) signaling, which blocks differentiation. Notch-defective ISCs require stress-induced divisions for tumor initiation and an autocrine EGFR ligand, Spitz, during early tumor growth. Upon achieving a critical mass these tumors displace surrounding enterocytes, competing with them for basement membrane space and causing their detachment, extrusion and apoptosis. This loss of epithelial integrity induces JNK and Yki/YAP activity in enterocytes and, consequently, their expression of stress-dependent cytokines (Upd2, Upd3). These paracrine signals, normally used within the stem cell niche to trigger regeneration, propel tumor growth without the need for secondary mutations in growth signaling pathways. The appropriation of niche signaling by differentiation-defective stem cells may be a common mechanism of early tumorigenesis. PMID:26237646

  2. Microfluidic Device for Studying Tumor Cell Extravasation in Cancer Metastasis

    SciTech Connect

    Lin, Henry K; Thundat, Thomas George; Evans III, Boyd Mccutchen; Datar, Ram H; Reese, Benjamin E; Zheng, Siyang

    2010-01-01

    Metastasis is the process by which cancer spreads to form secondary tumors at downstream locations throughout the body. This uncontrolled spreading is the leading cause of death in patients with epithelial cancers and is the main reason that suppressing and targeting cancer has proven to be so challenging. Tumor cell extravasation is one of the key steps in cancer s progression towards a metastatic state. This occurs when circulating tumor cells found within the blood stream are able to transmigrate through the endothelium lining and basement membrane of the vasculature to form metastatic tumors at secondary sites within the body. Predicting the likelihood of this occurrence in patients, or being able to determine specific markers involved in this process could lead to preventative measures targeting these types of cancer; moreover, this may lead to the discovery of novel anti-metastatic drugs. We have developed a microfluidic device that has shown the extravasation of fluorescently labeled tumor cells across an endothelial cell lined membrane coated with matrigel followed by the formation of colonies. This device provides the advantages of combining a controlled environment, mimicking that found within the body, with real-time monitoring capabilities allowing for the study of these biomarkers and cellular interactions along with other potential mechanisms involved in the process of extravasation.

  3. Do Circulating Tumor Cells, Exosomes, and Circulating Tumor Nucleic Acids Have Clinical Utility?

    PubMed Central

    Gold, Bert; Cankovic, Milena; Furtado, Larissa V.; Meier, Frederick; Gocke, Christopher D.

    2016-01-01

    Diagnosing and screening for tumors through noninvasive means represent an important paradigm shift in precision medicine. In contrast to tissue biopsy, detection of circulating tumor cells (CTCs) and circulating tumor nucleic acids provides a minimally invasive method for predictive and prognostic marker detection. This allows early and serial assessment of metastatic disease, including follow-up during remission, characterization of treatment effects, and clonal evolution. Isolation and characterization of CTCs and circulating tumor DNA (ctDNA) are likely to improve cancer diagnosis, treatment, and minimal residual disease monitoring. However, more trials are required to validate the clinical utility of precise molecular markers for a variety of tumor types. This review focuses on the clinical utility of CTCs and ctDNA testing in patients with solid tumors, including somatic and epigenetic alterations that can be detected. A comparison of methods used to isolate and detect CTCs and some of the intricacies of the characterization of the ctDNA are also provided. PMID:25908243

  4. The microenvironment reprograms circuits in tumor cells

    PubMed Central

    Cai, Qingchun; Xu, Yan

    2015-01-01

    In the course of multistep oncogenesis, initially normal cells acquire several new functions that render them malignant. We have recently demonstrated that the peritoneal microenvironment promotes resistance to anoikis in ovarian cancer cells by reprogramming SRC/AKT/ERK signaling and metabolism. These findings have prognostic and therapeutic implications. PMID:27308400

  5. Dual targeted polymeric nanoparticles based on tumor endothelium and tumor cells for enhanced antitumor drug delivery.

    PubMed

    Gupta, Madhu; Chashoo, Gousia; Sharma, Parduman Raj; Saxena, Ajit Kumar; Gupta, Prem Narayan; Agrawal, Govind Prasad; Vyas, Suresh Prasad

    2014-03-01

    Some specific types of tumor cells and tumor endothelial cells represented CD13 proteins and act as receptors for Asn-Gly-Arg (NGR) motifs containing peptide. These CD13 receptors can be specifically recognized and bind through the specific sequence of cyclic NGR (cNGR) peptide and presented more affinity and specificity toward them. The cNGR peptide was conjugated to the poly(ethylene glycol) (PEG) terminal end in the poly(lactic-co-glycolic) acid PLGA-PEG block copolymer. Then, the ligand conjugated nanoparticles (cNGR-DNB-NPs) encapsulating docetaxel (DTX) were synthesized from preformed block copolymer by the emulsion/solvent evaporation method and characterized for different parameters. The various studies such as in vitro cytotoxicity, cell apoptosis, and cell cycle analysis presented the enhanced therapeutic potential of cNGR-DNB-NPs. The higher cellular uptake was also found in cNGR peptide anchored NPs into HUVEC and HT-1080 cells. However, free cNGR could inhibit receptor mediated intracellular uptake of NPs into both types of cells at 37 and 4 °C temperatures, revealing the involvement of receptor-mediated endocytosis. The in vivo biodistribution and antitumor efficacy studies indicated that targeted NPs have a higher therapeutic efficacy through targeting the tumor-specific site. Therefore, the study exhibited that cNGR-functionalized PEG-PLGA-NPs could be a promising approach for therapeutic applications to efficient antitumor drug delivery. PMID:24512060

  6. Disrupting Hypoxia-Induced Bicarbonate Transport Acidifies Tumor Cells and Suppresses Tumor Growth.

    PubMed

    McIntyre, Alan; Hulikova, Alzbeta; Ledaki, Ioanna; Snell, Cameron; Singleton, Dean; Steers, Graham; Seden, Peter; Jones, Dylan; Bridges, Esther; Wigfield, Simon; Li, Ji-Liang; Russell, Angela; Swietach, Pawel; Harris, Adrian L

    2016-07-01

    Tumor hypoxia is associated clinically with therapeutic resistance and poor patient outcomes. One feature of tumor hypoxia is activated expression of carbonic anhydrase IX (CA9), a regulator of pH and tumor growth. In this study, we investigated the hypothesis that impeding the reuptake of bicarbonate produced extracellularly by CA9 could exacerbate the intracellular acidity produced by hypoxic conditions, perhaps compromising cell growth and viability as a result. In 8 of 10 cancer cell lines, we found that hypoxia induced the expression of at least one bicarbonate transporter. The most robust and frequent inductions were of the sodium-driven bicarbonate transporters SLC4A4 and SLC4A9, which rely upon both HIF1α and HIF2α activity for their expression. In cancer cell spheroids, SLC4A4 or SLC4A9 disruption by either genetic or pharmaceutical approaches acidified intracellular pH and reduced cell growth. Furthermore, treatment of spheroids with S0859, a small-molecule inhibitor of sodium-driven bicarbonate transporters, increased apoptosis in the cell lines tested. Finally, RNAi-mediated attenuation of SLC4A9 increased apoptosis in MDA-MB-231 breast cancer spheroids and dramatically reduced growth of MDA-MB-231 breast tumors or U87 gliomas in murine xenografts. Our findings suggest that disrupting pH homeostasis by blocking bicarbonate import might broadly relieve the common resistance of hypoxic tumors to anticancer therapy. Cancer Res; 76(13); 3744-55. ©2016 AACR. PMID:27197160

  7. Transcriptional profiling of macrophage and tumor cell interactions in vitro.

    PubMed

    Roudnicky, Filip; Hollmén, Maija

    2016-06-01

    Macrophages are important mediators of tumor progression and their function is broadly influenced by different microenvironmental stimuli. To understand the molecular basis of the tumor-supporting role of macrophages in aggressive breast cancer we co-cultured human peripheral monocytes with two breast cancer cell lines representing distinct aggressive cellular phenotype and transcriptionally profiled the changes occurring in both cells during in vitro activated crosstalk. Here we provide a detailed description of the experimental design, sample identity and analysis of the Illumina RNA-Seq data, which have been deposited into Gene Expression Omnibus (GEO): GSE75130. PMID:27081631

  8. Giant Cell Tumor within the Proximal Tibia after ACL Reconstruction

    PubMed Central

    Takahashi, Takashi; MacCormick, Lauren; Ellermann, Jutta; Clohisy, Denis; Marette, Shelly

    2016-01-01

    26-year-old female with prior anterior cruciate ligament reconstruction developed an enlarging lytic bone lesion around the tibial screw with sequential imaging over the course of one year demonstrating progression of this finding, which was confirmed histologically to be a giant cell tumor of bone. The lesion originated around the postoperative bed, making the diagnosis challenging during the early course of the presentation. The case demonstrates giant cell tumor which originated in the metaphysis and subsequently grew to involve the epiphysis; therefore, early course of the disease not involving the epiphysis should not exclude this diagnosis. PMID:26981302

  9. Paternity in patients with bilateral testicular germ cell tumors.

    PubMed

    Heidenreich, A; Vorreuther, R; Neubauer, S; Zumbe, J; Engelmann, U H

    1997-01-01

    We report on the finding of paternity in 1 patient with metachronous bilateral testis germ cell tumor (BTGCT) and in another patient with a unilateral testicular germ cell tumor and contralateral carcinoma in situ (CIS). These cases demonstrate that patients with BTGCT or CIS in their solitary testicle are not necessarily infertile. Surveillance might be a therapeutic modality in patients with contralateral CIS and active spermatogenesis and the desire for paternity assumed that they are included in close follow-up protocols. PMID:9076475

  10. Characterization and differentiation of three solid tumors using quantitative ultrasound

    NASA Astrophysics Data System (ADS)

    Oelze, Michael L.; O'Brien, William D.; Zachary, James F.

    2001-05-01

    Three kinds of solid tumors were acquired and scanned in vivo ultrasonically. The first tumor series (fibroadenoma) was acquired from tumors that had spontaneously developed in rats. The second tumor series was acquired by culturing a carcinoma cell line (4T1-MMT) in culture media and injecting the cells into Balb/c mice. The third tumor was acquired by transplanting a soft-tissue sarcoma cell line (EHS) into C57BL mice. The tumors were allowed to grow to 1 cm in size and then scanned ultrasonically. The scatterer properties of average scatterer diameter and acoustic concentration were estimated using a Gaussian form factor from the backscattered ultrasound measured from the tumors. Parametric images of the tumors were constructed utilizing estimated scatterer properties for regions of interest inside the tumors. The parametric images showed distinct differences between the various tumor types. Quantitatively, the tumors could be distinguished through feature analysis plots of average scatterer size versus acoustic concentration. Comparison with photomicrographs of the tumors showed structures similar in size to the ultrasound estimates. [Work supported by NIH Grant F32 CA96419 to MLO and by the University of Illinois Research Board.

  11. Cell-free circulating tumor DNA in cancer.

    PubMed

    Qin, Zhen; Ljubimov, Vladimir A; Zhou, Cuiqi; Tong, Yunguang; Liang, Jimin

    2016-01-01

    Cancer is a common cause of death worldwide. Despite significant advances in cancer treatments, the morbidity and mortality are still enormous. Tumor heterogeneity, especially intratumoral heterogeneity, is a significant reason underlying difficulties in tumor treatment and failure of a number of current therapeutic modalities, even of molecularly targeted therapies. The development of a virtually noninvasive "liquid biopsy" from the blood has been attempted to characterize tumor heterogeneity. This review focuses on cell-free circulating tumor DNA (ctDNA) in the bloodstream as a versatile biomarker. ctDNA analysis is an evolving field with many new methods being developed and optimized to be able to successfully extract and analyze ctDNA, which has vast clinical applications. ctDNA has the potential to accurately genotype the tumor and identify personalize