Using 4th order Runge-Kutta method for solving a twisted Skyrme string equation
NASA Astrophysics Data System (ADS)
Hadi, Miftachul; Anderson, Malcolm; Husein, Andri
2016-03-01
We study numerical solution, especially using 4th order Runge-Kutta method, for solving a twisted Skyrme string equation. We find numerically that the value of minimum energy per unit length of vortex solution for a twisted Skyrmion string is 20.37 × 1060 eV/m.
A third order Runge-Kutta algorithm on a manifold
NASA Technical Reports Server (NTRS)
Crouch, P. E.; Grossman, R. G.; Yan, Y.
1992-01-01
A third order Runge-Kutta type algorithm is described with the property that it preserves certain geometric structures. In particular, if the algorithm is initialized on a Lie group, then the resulting iterates remain on the Lie group.
Generation and application of the equations of condition for high order Runge-Kutta methods
NASA Technical Reports Server (NTRS)
Haley, D. C.
1972-01-01
This thesis develops the equations of condition necessary for determining the coefficients for Runge-Kutta methods used in the solution of ordinary differential equations. The equations of condition are developed for Runge-Kutta methods of order four through order nine. Once developed, these equations are used in a comparison of the local truncation errors for several sets of Runge-Kutta coefficients for methods of order three up through methods of order eight.
Optimized fourth-order Runge-Kutta method for solving oscillatory problems
NASA Astrophysics Data System (ADS)
Hussain, Kasim; Ismail, Fudziah; Senu, Norazak; Rabiei, Faranak
2016-06-01
In this article, we develop a Runge-Kutta method with invalidation of phase lag, phase lag's derivatives and amplification error to solve second-order initial value problem (IVP) with oscillating solutions. The new method depends on the explicit Runge-Kutta method of algebraic order four. Numerical tests from its implementation to well-known oscillatory problems illustrate the robustness and competence of the new method as compared to the well-known Runge-Kutta methods in the scientific literature.
Diagonally Implicit Symplectic Runge-Kutta Methods with High Algebraic and Dispersion Order
Cong, Y. H.; Jiang, C. X.
2014-01-01
The numerical integration of Hamiltonian systems with oscillating solutions is considered in this paper. A diagonally implicit symplectic nine-stages Runge-Kutta method with algebraic order 6 and dispersion order 8 is presented. Numerical experiments with some Hamiltonian oscillatory problems are presented to show the proposed method is as competitive as the existing same type Runge-Kutta methods. PMID:24977178
Diagonally implicit symplectic Runge-Kutta methods with high algebraic and dispersion order.
Cong, Y H; Jiang, C X
2014-01-01
The numerical integration of Hamiltonian systems with oscillating solutions is considered in this paper. A diagonally implicit symplectic nine-stages Runge-Kutta method with algebraic order 6 and dispersion order 8 is presented. Numerical experiments with some Hamiltonian oscillatory problems are presented to show the proposed method is as competitive as the existing same type Runge-Kutta methods. PMID:24977178
Fourth-order 2N-storage Runge-Kutta schemes
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Kennedy, Christopher A.
1994-01-01
A family of five-stage fourth-order Runge-Kutta schemes is derived; these schemes required only two storage locations. A particular scheme is identified that has desirable efficiency characteristics for hyperbolic and parabolic initial (boundary) value problems. This scheme is competitive with the classical fourth-order method (high-storage) and is considerably more efficient and accurate than existing third-order low-storage schemes.
Third-order 2N-storage Runge-Kutta schemes with error control
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Kennedy, Christopher A.
1994-01-01
A family of four-stage third-order explicit Runge-Kutta schemes is derived that requires only two storage locations and has desirable stability characteristics. Error control is achieved by embedding a second-order scheme within the four-stage procedure. Certain schemes are identified that are as efficient and accurate as conventional embedded schemes of comparable order and require fewer storage locations.
Equations of condition for high order Runge-Kutta-Nystrom formulae
NASA Technical Reports Server (NTRS)
Bettis, D. G.
1974-01-01
Derivation of the equations of condition of order eight for a general system of second-order differential equations approximated by the basic Runge-Kutta-Nystrom algorithm. For this general case, the number of equations of condition is considerably larger than for the special case where the first derivative is not present. Specifically, it is shown that, for orders two through eight, the number of equations for each order is 1, 1, 1, 2, 3, 5, and 9 for the special case and is 1, 1, 2, 5, 13, 34, and 95 for the general case.
NASA Technical Reports Server (NTRS)
Fehlberg, E.
1973-01-01
New Runge-Kutta-Nystrom formulas of the eighth, seventh, sixth, and fifth order are derived for the special second-order (vector) differential equation x = f (t,x). In contrast to Runge-Kutta-Nystrom formulas of an earlier NASA report, these formulas provide a stepsize control procedure based on the leading term of the local truncation error in x. This new procedure is more accurate than the earlier Runge-Kutta-Nystrom procedure (with stepsize control based on the leading term of the local truncation error in x) when integrating close to singularities. Two central orbits are presented as examples. For these orbits, the accuracy and speed of the formulas of this report are compared with those of Runge-Kutta-Nystrom and Runge-Kutta formulas of earlier NASA reports.
Qualitatively stability of nonstandard 2-stage explicit Runge-Kutta methods of order two
NASA Astrophysics Data System (ADS)
Khalsaraei, M. M.; Khodadosti, F.
2016-02-01
When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Nonstandard finite differences (NSFDs) schemes can improve the accuracy and reduce computational costs of traditional finite difference schemes. In addition NSFDs produce numerical solutions which also exhibit essential properties of solution. In this paper, a class of nonstandard 2-stage Runge-Kutta methods of order two (we call it nonstandard RK2) is considered. The preservation of some qualitative properties by this class of methods are discussed. In order to illustrate our results, we provide some numerical examples.
NASA Technical Reports Server (NTRS)
Fehlberg, E.
1974-01-01
Runge-Kutta-Nystrom formulas of the seventh, sixth, and fifth order were derived for the general second order (vector) differential equation written as the second derivative of x = f(t, x, the first derivative of x). The formulas include a stepsize control procedure, based on a complete coverage of the leading term of the local truncation error in x, and they require no more evaluations per step than the earlier Runge-Kutta formulas for the first derivative of x = f(t, x). The developed formulas are expected to be time saving in comparison to the Runge-Kutta formulas for first-order differential equations, since it is not necessary to convert the second-order differential equations into twice as many first-order differential equations. The examples shown saved from 25 percent to 60 percent more computer time than the earlier formulas for first-order differential equations, and are comparable in accuracy.
Evolutionary generation of 7th order Runge - Kutta - Nyström type methods for solving y(4) = f(x,y)
NASA Astrophysics Data System (ADS)
Papakostas, S. N.; Tsitmidelis, S.; Tsitouras, Ch.
2015-12-01
We present a 7th algebraic order Runge - Kutta - Nyström method for the solution of a special fourth order initial value problem. To achieve this, a set of non - linear equations is solved using differential evolution technique. Various numerical tests justify our efforts.
Evolutionary generation of high order Runge - Kutta - Nyström type pairs for solving y(4) = f (x,y)
NASA Astrophysics Data System (ADS)
Famelis, I. Th.; Tsitmidelis, S.; Tsitouras, Ch.
2016-06-01
We present a new Runge - Kutta - Nyström type pair of orders 8(6) for the solution of a special fourth order initial value problem. To achieve this, a set of non - linear equations is solved using differential evolution technique.
Starting methods for two-step Runge-Kutta methods of stage-order 3 and order 6
NASA Astrophysics Data System (ADS)
Verner, J. H.
2006-01-01
Jackiewicz and Tracogna [SIAM J. Numer. Anal. 32 (1995) 1390-1427] proposed a general formulation of two step Runge-Kutta (TSRK) methods. Using formulas for two-step pairs of TSRK methods constructed in [Japan JIAM 19 (2002) 227-248], Jackiewicz and Verner obtain results for order 8 pairs that fail to show this designated order. Hairer and Wanner [SIAM J. Numer. Anal. 34 (1997) 2087-2089] identify the problem by using B-series to formulate a complete set of order conditions for TSRK methods, and emphasize that special starting methods are necessary for the first step of implementation. They observe that for methods with stage order at least p-1, and design order p, starting methods of order at least p are sufficient. In this paper, the more general challenge to provide correct starting values for methods of low stage-order is met by showing how perturbed starting values should be selected for methods of order 6 and stage-order 3. The approach is sufficiently general that it may (and later will) be provided for such methods of higher orders. Evidence of the accompanying improvement in the implementation of TSRK methods illustrates that carefully designed starting methods are essential for efficient production codes based on methods of low stage-order.
Scaled Runge-Kutta algorithms for handling dense output
NASA Technical Reports Server (NTRS)
Horn, M. K.
1981-01-01
Low order Runge-Kutta algorithms are developed which determine the solution of a system of ordinary differential equations at any point within a given integration step, as well as at the end of each step. The scaled Runge-Kutta methods are designed to be used with existing Runge-Kutta formulas, using the derivative evaluations of these defining algorithms as the core of the system. For a slight increase in computing time, the solution may be generated within the integration step, improving the efficiency of the Runge-Kutta algorithms, since the step length need no longer be severely reduced to coincide with the desired output point. Scaled Runge-Kutta algorithms are presented for orders 3 through 5, along with accuracy comparisons between the defining algorithms and their scaled versions for a test problem.
A Runge-Kutta Nystrom algorithm.
NASA Technical Reports Server (NTRS)
Bettis, D. G.
1973-01-01
A Runge-Kutta algorithm of order five is presented for the solution of the initial value problem where the system of ordinary differential equations is of second order and does not contain the first derivative. The algorithm includes the Fehlberg step control procedure.
NASA Technical Reports Server (NTRS)
Fehlberg, E.
1972-01-01
The formulas include a stepsize control procedure, based on a complete coverage of the leading term of the truncation error in x. The formulas require fewer evaluations per stop than other Runge-Kutta-Nystrom formulas if the latter are operated by using the standard procedure for stepsize control. An example is presented. With results being of the same accuracy, Runge-Kutta-Nystrom formulas discussed save 50 percent or more computer time compared with other Runge-Kutta-Nystrom formulas.
Explicit Runge-Kutta method with trigonometrically-fitted for solving first order ODEs
NASA Astrophysics Data System (ADS)
Fawzi, Firas Adel; Senu, N.; Ismail, F.; Majid, Z. A.
2016-06-01
In this note, an explicit trigonometrically-fitted (RK) method is developed to determine the approximate solution of the first-order IVPs with oscillatory solution. The proposed method solves first order ODEs by first converting the second order ODEs to an equivalent first order; which is based on the RK method of order four. The numerical experiment performed shows the efficacy of our newly developed method.
NASA Astrophysics Data System (ADS)
Romeo, A.; Finocchio, G.; Carpentieri, M.; Torres, L.; Consolo, G.; Azzerboni, B.
2008-02-01
The Landau-Lifshitz-Gilbert (LLG) equation is the fundamental equation to describe magnetization dynamics in microscale and nanoscale magnetic systems. In this paper we present a brief overview of a time-domain numerical method related to the fifth order Runge-Kutta formula, which has been applied to the solution of the LLG equation successfully. We discuss advantages of the method, describing the results of a numerical experiment based on the standard problem #4. The results are in good agreement with the ones present in literature. By including thermal effects in our framework, our simulations show magnetization dynamics slightly dependent on the spatial discretization.
Composite group of explicit Runge-Kutta methods
NASA Astrophysics Data System (ADS)
Hamid, Fatin Nadiah Abd; Rabiei, Faranak; Ismail, Fudziah
2016-06-01
In this paper,the composite groups of Runge-Kutta (RK) method are proposed. The composite group of RK method of third and second order, RK3(2) and fourth and third order RK4(3) base on classical Runge-Kutta method are derived. The proposed methods are two-step in nature and have less number of function evaluations compared to the existing Runge-Kutta method. The order conditions up to order four are obtained using rooted trees and composite rule introduced by J. C Butcher. The stability regions of RK3(2) and RK4(3) methods are presented and initial value problems of first order ordinary differential equations are carried out. Numerical results are compared with existing Runge-Kutta method.
Galerkin/Runge-Kutta discretizations for semilinear parabolic equations
NASA Technical Reports Server (NTRS)
Keeling, Stephen L.
1987-01-01
A new class of fully discrete Galerkin/Runge-Kutta methods is constructed and analyzed for semilinear parabolic initial boundary value problems. Unlike any classical counterpart, this class offers arbitrarily high, optimal order convergence. In support of this claim, error estimates are proved, and computational results are presented. Furthermore, it is noted that special Runge-Kutta methods allow computations to be performed in parallel so that the final execution time can be reduced to that of a low order method.
Functional continuous Runge-Kutta methods for special systems
NASA Astrophysics Data System (ADS)
Eremin, A. S.; Olemskoy, I. V.
2016-06-01
We consider here numerical methods for systems of retarded functional differential equations of two equations in which the right-hand sides are cross-dependent of the unknown functions, i.e. the derivatives of unknowns don't depend on the same unknowns. It is shown that using the special structure of the system one can construct functional continuous methods of Runge-Kutta type with fewer stages than it is necessary in case of general Runge-Kutta functional continuous methods. Order conditions and example methods of orders three and four are presented. Test problems are solved, demonstrating the declared convergence order of the new methods.
Runge-Kutta Methods for Linear Ordinary Differential Equations
NASA Technical Reports Server (NTRS)
Zingg, David W.; Chisholm, Todd T.
1997-01-01
Three new Runge-Kutta methods are presented for numerical integration of systems of linear inhomogeneous ordinary differential equations (ODES) with constant coefficients. Such ODEs arise in the numerical solution of the partial differential equations governing linear wave phenomena. The restriction to linear ODEs with constant coefficients reduces the number of conditions which the coefficients of the Runge-Kutta method must satisfy. This freedom is used to develop methods which are more efficient than conventional Runge-Kutta methods. A fourth-order method is presented which uses only two memory locations per dependent variable, while the classical fourth-order Runge-Kutta method uses three. This method is an excellent choice for simulations of linear wave phenomena if memory is a primary concern. In addition, fifth- and sixth-order methods are presented which require five and six stages, respectively, one fewer than their conventional counterparts, and are therefore more efficient. These methods are an excellent option for use with high-order spatial discretizations.
Generalized disks of contractivity for explicit and implicit Runge-Kutta methods
NASA Technical Reports Server (NTRS)
Dahlquist, G.; Jeltsch, R.
1979-01-01
The A-contractivity of Runge-Kutta methods with respect to an inner product norm was investigated thoroughly by Butcher and Burrage (who used the term B-stability). Their theory is extended to contractivity in a region bounded by a circle through the origin. The largest possible circle is calculated for many known explicit Runge-Kutta methods. As a rule it is considerably smaller than the stability region, and in several cases it degenerates to a point. It is shown that an explicit Runge-Kutta method cannot be contractive in any circle of this class if it is more than fourth order accurate.
Two-derivative Runge-Kutta methods for differential equations
NASA Astrophysics Data System (ADS)
Chan, Robert P. K.; Wang, Shixiao; Tsai, Angela Y. J.
2012-09-01
Two-derivative Runge-Kutta (TDRK) methods are a special case of multi-derivative Runge-Kutta methods first studied by Kastlunger and Wanner [1, 2]. These methods incorporate derivatives of order higher than the first in their formulation but we consider only the first and second derivatives. In this paper we first present our study of both explicit [3] and implicit TDRK methods on stiff ODE problems. We then extend the applications of these TDRK methods to various partial differential equations [4]. In particular, we show how a 2-stage implicit TDRK method of order 4 and stage order 4 can be adapted to solve diffusion equations more efficiently than the popular Crank-Nicolson method.
A Low-Dispersion and Low-Dissipation Implicit Runge-Kutta Scheme
Najafi-Yazdi, A.; Mongeau, L.
2012-01-01
A fourth-order, implicit, low-dispersion, and low-dissipation Runge-Kutta scheme is introduced. The scheme is optimized for minimal dissipation and dispersion errors. High order accuracy is achieved with fewer stages than standard explicit Runge-Kutta schemes. The scheme is designed to be As table for highly stiff problems. Possible applications include wall-bounded flows with solid boundaries in the computational domain, and sound generation by reacting flows. PMID:23243319
A Low-Dispersion and Low-Dissipation Implicit Runge-Kutta Scheme.
Najafi-Yazdi, A; Mongeau, L
2013-01-15
A fourth-order, implicit, low-dispersion, and low-dissipation Runge-Kutta scheme is introduced. The scheme is optimized for minimal dissipation and dispersion errors. High order accuracy is achieved with fewer stages than standard explicit Runge-Kutta schemes. The scheme is designed to be As table for highly stiff problems. Possible applications include wall-bounded flows with solid boundaries in the computational domain, and sound generation by reacting flows. PMID:23243319
On the improvement of deconvolution with digitized data using a Runge-Kutta integration scheme
NASA Technical Reports Server (NTRS)
Houghton, J. R.; Townsend, M. A.; Packman, P. F.
1977-01-01
A relatively simple change in the treatment of the input function in numerical integration of high-order differential equations by Runge-Kutta methods provides substantial improvements in accuracy, particularly when the forcing function is in digitized form. The Runge-Kutta-Gill coefficients are modified to incorporate the changes; with pulse-type excitations, improvements on the order of 2 to 50 times greater accuracy are demonstrated.
Runge-Kutta methods combined with compact difference schemes for the unsteady Euler equations
NASA Technical Reports Server (NTRS)
Yu, S. T.; Tsai, Y.-L. P.; Hsieh, K. C.
1992-01-01
An investigation of the Runge-Kutta time-stepping, combined with compact difference schemes to solve the unsteady Euler equations, is presented. Initially, a generalized form of a N-step Runge-Kutta technique is derived. By comparing this generalized form with its Taylor's series counterpart, the criteria for the three-step and four-step schemes to be of third- and fourth-order accurate are obtained.
Low-dissipation and -dispersion Runge-Kutta schemes for computational acoustics
NASA Technical Reports Server (NTRS)
Hu, F. Q.; Hussaini, M. Y.; Manthey, J.
1994-01-01
In this paper, we investigate accurate and efficient time advancing methods for computational acoustics, where non-dissipative and non-dispersive properties are of critical importance. Our analysis pertains to the application of Runge-Kutta methods to high-order finite difference discretization. In many CFD applications multi-stage Runge-Kutta schemes have often been favored for their low storage requirements and relatively large stability limits. For computing acoustic waves, however, the stability consideration alone is not sufficient, since the Runge-Kutta schemes entail both dissipation and dispersion errors. The time step is now limited by the tolerable dissipation and dispersion errors in the computation. In the present paper, it is shown that if the traditional Runge-Kutta schemes are used for time advancing in acoustic problems, time steps greatly smaller than that allowed by the stability limit are necessary. Low-Dissipation and -Dispersion Runge-Kutta (LDDRE) schemes are proposed, based on an optimization that minimizes the dissipation and dispersion errors for wave propagation. Order optimizations of both single-step and two-step alternating schemes are considered. The proposed LDDRK schemes are remarkably more efficient than the classical Runge-Kutta schemes for acoustic computations. Moreover, low storage implementations of the optimized schemes are discussed. Special issues of implementing numerical boundary conditions in the LDDRK schemes are also addressed.
NASA Technical Reports Server (NTRS)
Hu, F. Q.; Hussaini, M. Y.; Manthey, J.
1995-01-01
We investigate accurate and efficient time advancing methods for computational aeroacoustics, where non-dissipative and non-dispersive properties are of critical importance. Our analysis pertains to the application of Runge-Kutta methods to high-order finite difference discretization. In many CFD applications, multi-stage Runge-Kutta schemes have often been favored for their low storage requirements and relatively large stability limits. For computing acoustic waves, however, the stability consideration alone is not sufficient, since the Runge-Kutta schemes entail both dissipation and dispersion errors. The time step is now limited by the tolerable dissipation and dispersion errors in the computation. In the present paper, it is shown that if the traditional Runge-Kutta schemes are used for time advancing in acoustic problems, time steps greatly smaller than that allowed by the stability limit are necessary. Low Dissipation and Dispersion Runge-Kutta (LDDRK) schemes are proposed, based on an optimization that minimizes the dissipation and dispersion errors for wave propagation. Optimizations of both single-step and two-step alternating schemes are considered. The proposed LDDRK schemes are remarkably more efficient than the classical Runge-Kutta schemes for acoustic computations. Numerical results of each Category of the Benchmark Problems are presented. Moreover, low storage implementations of the optimized schemes are discussed. Special issues of implementing numerical boundary conditions in the LDDRK schemes are also addressed.
Runge-Kutta based generalized convolution quadrature
NASA Astrophysics Data System (ADS)
Lopez-Fernandez, Maria; Sauter, Stefan
2016-06-01
We present the Runge-Kutta generalized convolution quadrature (gCQ) with variable time steps for the numerical solution of convolution equations for time and space-time problems. We present the main properties of the method and a convergence result.
Construction of IMEX methods with inherent Runge-Kutta stability
NASA Astrophysics Data System (ADS)
Braś, Michał; Izzo, Giuseppe; Jackiewicz, Zdzislaw
2016-06-01
We describe construction of implicit-explicit (IMEX) general linear methods (GLMs) with inherent Runge-Kutta stability (IRKS) for differential systems with non-stiff and stiff processes. We will use the extrapolation approach to remove implicitness in the non-stiff terms to compute unknown stage values in terms of stage derivatives at the previous step and those already computed in the current step. Highly stable IMEX GLMs of stage order equal to the order were derived up to the order four. These methods do not suffer from order reduction phenomenon which is confirmed by numerical experiments.
Accurate Monotonicity - Preserving Schemes With Runge-Kutta Time Stepping
NASA Technical Reports Server (NTRS)
Suresh, A.; Huynh, H. T.
1997-01-01
A new class of high-order monotonicity-preserving schemes for the numerical solution of conservation laws is presented. The interface value in these schemes is obtained by limiting a higher-order polynominal reconstruction. The limiting is designed to preserve accuracy near extrema and to work well with Runge-Kutta time stepping. Computational efficiency is enhanced by a simple test that determines whether the limiting procedure is needed. For linear advection in one dimension, these schemes are shown as well as the Euler equations also confirm their high accuracy, good shock resolution, and computational efficiency.
Scaled Runge-Kutta algorithms for treating the problem of dense output
NASA Technical Reports Server (NTRS)
Horn, M. K.
1982-01-01
A set of scaled Runge-Kutta algorithms for the third- through fifth-orders are developed to determine the solution at any point within the integration step at a relatively small increase in computing time. Each scaled algorithm is designed to be used with an existing Runge-Kutta formula, using the derivative evaluations of the defining algorithm along with an additional derivative evaluation (or two). Third-order, scaled algorithms are embedded within the existing formulas at no additional derivative expense. Such algorithms can easily be adopted to generate interpolating polynomials (or dependent variable stops) efficiently.
Minimally implicit Runge-Kutta methods for Resistive Relativistic MHD
NASA Astrophysics Data System (ADS)
Aloy, Miguel-Á.; Cordero-Carrión, Isabel
2016-05-01
The Relativistic Resistive Magnetohydrodynamic (RRMHD) equations are a hyperbolic system of partial differential equations used to describe the dynamics of relativistic magnetized fluids with a finite conductivity. Close to the ideal magnetohydrodynamic regime, the source term proportional to the conductivity becomes potentially stiff and cannot be handled with standard explicit time integration methods. We propose a new class of methods to deal with the stiffness fo the system, which we name Minimally Implicit Runge-Kutta methods. These methods avoid the development of numerical instabilities without increasing the computational costs in comparison with explicit methods, need no iterative extra loop in order to recover the primitive (physical) variables, the analytical inversion of the implicit operator is trivial and the several stages can actually be viewed as stages of explicit Runge-Kutta methods with an effective time-step. We test these methods with two different one-dimensional test beds in varied conductivity regimes, and show that our second-order schemes satisfy the theoretical expectations.
Obtaining Runge-Kutta Solutions Between Time Steps
NASA Technical Reports Server (NTRS)
Horn, M. K.
1984-01-01
New interpolation method used with existing Runge-Kutta algorithms. Algorithm evaluates solution at intermediate point within integration step. Only few additional computations required to produce intermediate solution data. Runge-Kutta method provides accurate solution with larger time steps than allowable in other methods.
A Family of Trigonometrically-fitted Partitioned Runge-Kutta Symplectic Methods
Monovasilis, Th.; Kalogiratou, Z.; Simos, T. E.
2007-12-26
We are presenting a family of trigonometrically fitted partitioned Runge-Kutta symplectic methods of fourth order with six stages. The solution of the one dimensional time independent Schroedinger equation is considered by trigonometrically fitted symplectic integrators. The Schroedinger equation is first transformed into a Hamiltonian canonical equation. Numerical results are obtained for the one-dimensional harmonic oscillator and the exponential potential.
Amplification and Suppression of Round-Off Error in Runge-Kutta Methods
ERIC Educational Resources Information Center
Prentice, J. S. C.
2011-01-01
A simple nonstiff linear initial-value problem is used to demonstrate the amplification of round-off error in the course of using a second-order Runge-Kutta method. This amplification is understood in terms of an appropriate expression for the global error. An implicit method is then used to show how the roundoff error may actually be suppressed.…
On implicit Runge-Kutta methods for parallel computations
NASA Technical Reports Server (NTRS)
Keeling, Stephen L.
1987-01-01
Implicit Runge-Kutta methods which are well-suited for parallel computations are characterized. It is claimed that such methods are first of all, those for which the associated rational approximation to the exponential has distinct poles, and these are called multiply explicit (MIRK) methods. Also, because of the so-called order reduction phenomenon, there is reason to require that these poles be real. Then, it is proved that a necessary condition for a q-stage, real MIRK to be A sub 0-stable with maximal order q + 1 is that q = 1, 2, 3, or 5. Nevertheless, it is shown that for every positive integer q, there exists a q-stage, real MIRK which is I-stable with order q. Finally, some useful examples of algebraically stable MIRKs are given.
Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations
NASA Technical Reports Server (NTRS)
Kennedy, Christopher A.; Carpenter, Mark H.
2002-01-01
Additive Runge-Kutta (ARK) methods are investigated for application to the spatially discretized one- dimensional convection-diffusion-reaction (CDR) equations. Accuracy, stability, conservation, and dense-output are first considered for the general case when N different Runge-Kutta methods are grouped into a single composite method. Then, implicit-explicit, (N = 2), additive Runge-Kutta (ARK(sub 2)) methods from third- to fifth-order are presented that allow for integration of stiff terms by an L-stable, stiffly-accurate explicit, singly diagonally implicit Runge-Kutta (ESDIRK) method while the nonstiff terms are integrated with a traditional explicit Runge-Kutta method (ERK). Coupling error terms of the partitioned method are of equal order to those of the elemental methods. Derived ARK(sub 2) methods have vanishing stability functions for very large values of the stiff scaled eigenvalue, z['] yields -infinity, and retain high stability efficiency in the absence of stiffness, z['] yield 0. Extrapolation-type stage- value predictors are provided based on dense-output formulae. Optimized methods minimize both leading order ARK(sub 2) error terms and Butcher coefficient magnitudes as well as maximize conservation properties. Numerical tests of the new schemes on a CDR problem show negligible stiffness leakage and near classical order convergence rates. However, tests on three simple singular-perturbation problems reveal generally predictable order reduction. Error control is best managed with a PID-controller. While results for the fifth-order method are disappointing, both the new third- and fourth-order methods are at least as efficient as existing ARK(sub 2) methods.
Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations
NASA Technical Reports Server (NTRS)
Kennedy, Christopher A.; Carpenter, Mark H.
2001-01-01
Additive Runge-Kutta (ARK) methods are investigated for application to the spatially discretized one-dimensional convection-diffusion-reaction (CDR) equations. First, accuracy, stability, conservation, and dense output are considered for the general case when N different Runge-Kutta methods are grouped into a single composite method. Then, implicit-explicit, N = 2, additive Runge-Kutta ARK2 methods from third- to fifth-order are presented that allow for integration of stiff terms by an L-stable, stiffly-accurate explicit, singly diagonally implicit Runge-Kutta (ESDIRK) method while the nonstiff terms are integrated with a traditional explicit Runge-Kutta method (ERK). Coupling error terms are of equal order to those of the elemental methods. Derived ARK2 methods have vanishing stability functions for very large values of the stiff scaled eigenvalue, z(exp [I]) goes to infinity, and retain high stability efficiency in the absence of stiffness, z(exp [I]) goes to zero. Extrapolation-type stage-value predictors are provided based on dense-output formulae. Optimized methods minimize both leading order ARK2 error terms and Butcher coefficient magnitudes as well as maximize conservation properties. Numerical tests of the new schemes on a CDR problem show negligible stiffness leakage and near classical order convergence rates. However, tests on three simple singular-perturbation problems reveal generally predictable order reduction. Error control is best managed with a PID-controller. While results for the fifth-order method are disappointing, both the new third- and fourth-order methods are at least as efficient as existing ARK2 methods while offering error control and stage-value predictors.
NASA Astrophysics Data System (ADS)
Kalogiratou, Z.; Monovasilis, Th.; Psihoyios, G.; Simos, T. E.
2014-03-01
In this work we review single step methods of the Runge-Kutta type with special properties. Among them are methods specially tuned to integrate problems that exhibit a pronounced oscillatory character and such problems arise often in celestial mechanics and quantum mechanics. Symplectic methods, exponentially and trigonometrically fitted methods, minimum phase-lag and phase-fitted methods are presented. These are Runge-Kutta, Runge-Kutta-Nyström and Partitioned Runge-Kutta methods. The theory of constructing such methods is given as well as several specific methods. In order to present the performance of the methods we have tested 58 methods from all categories. We consider the two dimensional harmonic oscillator, the two body problem, the pendulum problem and the orbital problem studied by Stiefel and Bettis. Also we have tested the methods on the computation of the eigenvalues of the one dimensional time independent Schrödinger equation with the harmonic oscillator, the doubly anharmonic oscillator and the exponential potentials.
Multirate Runge-Kutta schemes for advection equations
NASA Astrophysics Data System (ADS)
Schlegel, Martin; Knoth, Oswald; Arnold, Martin; Wolke, Ralf
2009-04-01
Explicit time integration methods can be employed to simulate a broad spectrum of physical phenomena. The wide range of scales encountered lead to the problem that the fastest cell of the simulation dictates the global time step. Multirate time integration methods can be employed to alter the time step locally so that slower components take longer and fewer time steps, resulting in a moderate to substantial reduction of the computational cost, depending on the scenario to simulate [S. Osher, R. Sanders, Numerical approximations to nonlinear conservation laws with locally varying time and space grids, Math. Comput. 41 (1983) 321-336; H. Tang, G. Warnecke, A class of high resolution schemes for hyperbolic conservation laws and convection-diffusion equations with varying time and pace grids, SIAM J. Sci. Comput. 26 (4) (2005) 1415-1431; E. Constantinescu, A. Sandu, Multirate timestepping methods for hyperbolic conservation laws, SIAM J. Sci. Comput. 33 (3) (2007) 239-278]. In air pollution modeling the advection part is usually integrated explicitly in time, where the time step is constrained by a locally varying Courant-Friedrichs-Lewy (CFL) number. Multirate schemes are a useful tool to decouple different physical regions so that this constraint becomes a local instead of a global restriction. Therefore it is of major interest to apply multirate schemes to the advection equation. We introduce a generic recursive multirate Runge-Kutta scheme that can be easily adapted to an arbitrary number of refinement levels. It preserves the linear invariants of the system and is of third order accuracy when applied to certain explicit Runge-Kutta methods as base method.
NASA Technical Reports Server (NTRS)
Lear, W. M.
1974-01-01
The integration is discussed of the vector differential equation X = F(x, t) from time t sub i to t sub (i = 1) where only the values of x sub i are available for the the integration. No previous values of x or x prime are used. Using an orbit integration problem, comparisons are made between Taylor series integrators and various types and orders of Runge-Kutta integrators. A fourth order Runge-Kutta type integrator for orbital work is presented, and approximate (there may be no exact) fifth order Runge-Kutta integrators are discussed. Also discussed and compared is a self starting integrator ising delta f/delta x. A numerical method for controlling the accuracy of integration is given, and the special equations for accurately integrating accelerometer data are shown.
Galerkin/Runge-Kutta discretizations for parabolic equations with time-dependent coefficients
NASA Technical Reports Server (NTRS)
Keeling, Stephen L.
1989-01-01
A new class of fully discrete Galerkin/Runge-Kutta methods is constructed and analyzed for linear parabolic initial boundary value problems with time dependent coefficients. Unlike any classical counterpart, this class offers arbitrarily high order convergence while significantly avoiding what has been called order reduction. In support of this claim, error estimates are proved, and computational results are presented. Additionally, since the time stepping equations involve coefficient matrices changing at each time step, a preconditioned iterative technique is used to solve the linear systems only approximately. Nevertheless, the resulting algorithm is shown to preserve the original convergence rate while using only the order of work required by the base scheme applied to a linear parabolic problem with time independent coefficients. Furthermore, it is noted that special Runge-Kutta methods allow computations to be performed in parallel so that the final execution time can be reduced to that of a low order method.
Galerkin/Runge-Kutta discretizations for parabolic equations with time dependent coefficients
NASA Technical Reports Server (NTRS)
Keeling, Stephen L.
1987-01-01
A new class of fully discrete Galerkin/Runge-Kutta methods is constructed and analyzed for linear parabolic initial boundary value problems with time dependent coefficients. Unlike any classical counterpart, this class offers arbitrarily high order convergence while significantly avoiding what has been called order reduction. In support of this claim, error estimates are proved, and computational results are presented. Additionally, since the time stepping equations involve coefficient matrices changing at each time step, a preconditioned iterative technique is used to solve the linear systems only approximately. Nevertheless, the resulting algorithm is shown to preserve the original convergence rate while using only the order of work required by the base scheme applied to a linear parabolic problem with time independent coefficients. Furthermore, it is noted that special Runge-Kutta methods allow computations to be performed in parallel so that the final execution time can be reduced to that of a low order method.
A Runge-Kutta discontinuous finite element method for high speed flows
NASA Technical Reports Server (NTRS)
Bey, Kim S.; Oden, J. T.
1991-01-01
A Runge-Kutta discontinuous finite element method is developed for hyperbolic systems of conservation laws in two space variables. The discontinuous Galerkin spatial approximation to the conservation laws results in a system of ordinary differential equations which are marched in time using Runge-Kutta methods. Numerical results for the two-dimensional Burger's equation show that the method is (p+1)-order accurate in time and space, where p is the degree of the polynomial approximation of the solution within an element and is capable of capturing shocks over a single element without oscillations. Results for this problem also show that the accuracy of the solution in smooth regions is unaffected by the local projection and that the accuracy in smooth regions increases as p increases. Numerical results for the Euler equations show that the method captures shocks without oscillations and with higher resolution than a first-order scheme.
Tremblay, Jean Christophe; Carrington, Tucker Jr.
2004-12-15
If the Hamiltonian is time dependent it is common to solve the time-dependent Schroedinger equation by dividing the propagation interval into slices and using an (e.g., split operator, Chebyshev, Lanczos) approximate matrix exponential within each slice. We show that a preconditioned adaptive step size Runge-Kutta method can be much more efficient. For a chirped laser pulse designed to favor the dissociation of HF the preconditioned adaptive step size Runge-Kutta method is about an order of magnitude more efficient than the time sliced method.
A stiffly-stable implicit Runge-Kutta algorithm for CFD applications
NASA Technical Reports Server (NTRS)
Baker, A. J.; Iannelli, G. S.
1988-01-01
A stiffly-stable implicit Runge-Kutta integration algorithm is derived for CFD applications spanning the range of semidiscrete theories. The algorithm family contains the one-step 'theta' algorithms, including backwards Euler and the trapezoidal rule, and provides a versatile framework to identify expressions governing algorithm stability characteristics. Parameters of a Runge-Kutta optimal implicit algorithm, second-order accurate in time and stiffly-stable, are established. This algorithm is implemented within a weak statement finite element semidiscrete formulation for one- and two-dimensional conservation law systems. Numerical results are compared to theta-algorithm solutions, for unsteady quasi-one-dimensional Euler predictions with shocks, and for a specially derived two-dimensional conservation law system modeling the Euler equations.
NASA Technical Reports Server (NTRS)
Jameson, A.; Schmidt, Wolfgang; Turkel, Eli
1981-01-01
A new combination of a finite volume discretization in conjunction with carefully designed dissipative terms of third order, and a Runge Kutta time stepping scheme, is shown to yield an effective method for solving the Euler equations in arbitrary geometric domains. The method has been used to determine the steady transonic flow past an airfoil using an O mesh. Convergence to a steady state is accelerated by the use of a variable time step determined by the local Courant member, and the introduction of a forcing term proportional to the difference between the local total enthalpy and its free stream value.
An unconditionally stable Runge-Kutta method for unsteady flows
NASA Technical Reports Server (NTRS)
Jorgenson, Philip C. E.; Chima, Rodrick V.
1989-01-01
A quasi-three-dimensional analysis was developed for unsteady rotor-stator interaction in turbomachinery. The analysis solves the unsteady Euler or thin-layer Navier-Stokes equations in a body-fitted coordinate system. It accounts for the effects of rotation, radius change, and stream surface thickness. The Baldwin-Lomax eddy viscosity model is used for turbulent flows. The equations are integrated in time using a four-stage Runge-Kutta scheme with a constant time step. Implicit residual smoothing was employed to accelerate the solution of the time accurate computations. The scheme is described and accuracy analyses are given. Results are shown for a supersonic through-flow fan designed for NASA Lewis. The rotor:stator blade ratio was taken as 1:1. Results are also shown for the first stage of the Space Shuttle Main Engine high pressure fuel turbopump. Here the blade ratio is 2:3. Implicit residual smoothing was used to increase the time step limit of the unsmoothed scheme by a factor of six with negligible differences in the unsteady results. It is felt that the implicitly smoothed Runge-Kutta scheme is easily competitive with implicit schemes for unsteady flows while retaining the simplicity of an explicit scheme.
An unconditionally stable Runge-Kutta method for unsteady flows
NASA Technical Reports Server (NTRS)
Jorgenson, Philip C. E.; Chima, Rodrick V.
1988-01-01
A quasi-three dimensional analysis was developed for unsteady rotor-stator interaction in turbomachinery. The analysis solves the unsteady Euler or thin-layer Navier-Stokes equations in a body fitted coordinate system. It accounts for the effects of rotation, radius change, and stream surface thickness. The Baldwin-Lomax eddy viscosity model is used for turbulent flows. The equations are integrated in time using a four stage Runge-Kutta scheme with a constant time step. Implicit residual smoothing was employed to accelerate the solution of the time accurate computations. The scheme is described and accuracy analyses are given. Results are shown for a supersonic through-flow fan designed for NASA Lewis. The rotor:stator blade ratio was taken as 1:1. Results are also shown for the first stage of the Space Shuttle Main Engine high pressure fuel turbopump. Here the blade ratio is 2:3. Implicit residual smoothing was used to increase the time step limit of the unsmoothed scheme by a factor of six with negligible differences in the unsteady results. It is felt that the implicitly smoothed Runge-Kutta scheme is easily competitive with implicit schemes for unsteady flows while retaining the simplicity of an explicit scheme.
A computer program for determining truncation error coefficients for Runge-Kutta methods
NASA Technical Reports Server (NTRS)
Horn, M. K.
1980-01-01
The basic structure of a program to generate the truncation error coefficients for Runge-Kutta (RK) methods is reformulated to reduce storage requirements significantly and to accommodate variable dimensioning. This FORTRAN program, SUBROUTINE RKEQ, determines truncation error coefficients for RK algorithms for orders 1 through 10 and extends the order of coefficients through 12 with the 11th- and 12th-order terms determined following the patterns used to establish the lower order coefficients. Both subroutines (the original and RKEQ) are also written to treat RK m-fold methods which utilize m known derivatives of f to increase the order of the algorithm. Setting m = 0 gives the classical RK algorithm.
NASA Technical Reports Server (NTRS)
Subramanian, S. V.; Bozzola, R.
1987-01-01
Numerical solutions of the unsteady Euler equations are obtained using the classical fourth order Runge Kutta time marching scheme. This method is fully explicit and is applied to the governing equations in the finite volume, conservation law form. In order to determine the efficiency of this scheme for solving turbomachinery flows, steady blade-to-blade solutions are obtained for compressor and turbine cascades under subsonic and transonic flow conditions. Computed results are compared with other numerical methods and wind tunnel measurements. The study also focuses on other important numerical aspects influencing the performance of the algorithm and the solution accuracy such as grid types, boundary conditions and artificial viscosity. For this purpose, H, O, and C type computational grids as well as characteristic and extrapolation type boundary conditions are included in solution procedures.
NASA Technical Reports Server (NTRS)
Subramanian, S. V.; Bozzola, R.
1985-01-01
Numerical solutions of the unsteady Euler equations are obtained using the classical fourth order Runge Kutta time marching scheme. This method is fully explicit and is applied to the governing equations in the finite volume, conservation law form. In order to determine the efficiency of this scheme for solving turbomachinery flows, steady blade-to-blade solutions are obtained for compressor and turbine cascades under subsonic and transonic flow conditions. Computed results are compared with other numerical methods and wind tunnel measurements. The present study also focuses on other important numerical aspects influencing the performance of the algorithm and the solution accuracy such as grid types, boundary conditions, and artificial viscosity. For this purpose, H, O, and C type computational grids as well as characteristic and extrapolation type boundary conditions are included in the solution procedure.
An explicit Runge-Kutta method for turbulent reacting flow calculations
NASA Technical Reports Server (NTRS)
Boretti, A. A.
1989-01-01
The paper presents a numerical method for the solution of the conservation equations governing steady, reacting, turbulent viscous flow in two-dimensional geometries, in both Cartesian and axisymmetric coordinates. These equations are written in Favre-averaged form and closed with a first order model. A two-equation K-epsilon model, where low Reynolds number and compressibility effects are included, and a modified eddy-break up model are used to simulate fluid mechanics turbulence, chemistry and turbulence-combustion interaction. The solution is obtained by using a pseudo-unsteady method with improved perturbation propagation properties. The equations are discretized in space by using a finite volume formulation. An explicit multi-stage dissipative Runge-Kutta algorithm is then used to advance the flow equations in the pseudo-time. The method is applied to the computation of both diffusion and premixed turbulent reacting flows. The computed temperature distributions compare favorably with experimental data.
GPU acceleration of Runge Kutta-Fehlberg and its comparison with Dormand-Prince method
NASA Astrophysics Data System (ADS)
Seen, Wo Mei; Gobithaasan, R. U.; Miura, Kenjiro T.
2014-07-01
There is a significant reduction of processing time and speedup of performance in computer graphics with the emergence of Graphic Processing Units (GPUs). GPUs have been developed to surpass Central Processing Unit (CPU) in terms of performance and processing speed. This evolution has opened up a new area in computing and researches where highly parallel GPU has been used for non-graphical algorithms. Physical or phenomenal simulations and modelling can be accelerated through General Purpose Graphic Processing Units (GPGPU) and Compute Unified Device Architecture (CUDA) implementations. These phenomena can be represented with mathematical models in the form of Ordinary Differential Equations (ODEs) which encompasses the gist of change rate between independent and dependent variables. ODEs are numerically integrated over time in order to simulate these behaviours. The classical Runge-Kutta (RK) scheme is the common method used to numerically solve ODEs. The Runge Kutta Fehlberg (RKF) scheme has been specially developed to provide an estimate of the principal local truncation error at each step, known as embedding estimate technique. This paper delves into the implementation of RKF scheme for GPU devices and compares its result with Dorman Prince method. A pseudo code is developed to show the implementation in detail. Hence, practitioners will be able to understand the data allocation in GPU, formation of RKF kernels and the flow of data to/from GPU-CPU upon RKF kernel evaluation. The pseudo code is then written in C Language and two ODE models are executed to show the achievable speedup as compared to CPU implementation. The accuracy and efficiency of the proposed implementation method is discussed in the final section of this paper.
Flux-vector splitting and Runge-Kutta methods for the Euler equations
NASA Technical Reports Server (NTRS)
Turkel, E.; Vanleer, B.
1984-01-01
Runge-Kutta schemes have been used as a method of solving the Euler equations exterior to an airfoil. In the past this has been coupled with central differences and an artificial vesocity in space. In this study the Runge-Kutta time-stepping scheme is coupled with an upwinded space approximation based on flux-vector splitting. Several acceleration techniques are also considered including a local time step, residual smoothing and multigrid.
Rendering log aesthetic curves via Runge-Kutta method
NASA Astrophysics Data System (ADS)
Gobithaasan, R. U.; Meng, T. Y.; Piah, A. R. M.; Miura, K. T.
2014-07-01
Log Aesthetic Curves (LAC) are visually pleasing curves which has been developed using monotonic curvature profile. Hence, it can be easily implemented in product design environment, e.g, Rhino 3D CAD systems. LAC is generally represented in an integral form of its turning angle. Traditionally, Gaussian-Kronrod method has been used to render this curve which consumes less than one second for a given interval. Recently, Incomplete Gamma Function was proposed to represent LAC analytically which decreases the computation time up to 13 times. However, only certain value of shape parameters (denoted as α) which dictates the types of curves generated for LAC, can be used to compute LAC. In this paper, the classical Runge-Kutta (RK4) method is proposed to evaluate LAC numerically to reduce the LAC computation time for arbitrary, α. The preliminary result looks promising where the evaluation time is decreased tremendously. This paper also demonstrates the accuracy control of LAC by reducing the stepsize of RK4. The computation time and the accuracy for various α, are also illustrated in the last section of this paper.
NASA Astrophysics Data System (ADS)
Cavaglieri, Daniele; Bewley, Thomas
2015-04-01
Implicit/explicit (IMEX) Runge-Kutta (RK) schemes are effective for time-marching ODE systems with both stiff and nonstiff terms on the RHS; such schemes implement an (often A-stable or better) implicit RK scheme for the stiff part of the ODE, which is often linear, and, simultaneously, a (more convenient) explicit RK scheme for the nonstiff part of the ODE, which is often nonlinear. Low-storage RK schemes are especially effective for time-marching high-dimensional ODE discretizations of PDE systems on modern (cache-based) computational hardware, in which memory management is often the most significant computational bottleneck. In this paper, we develop and characterize eight new low-storage implicit/explicit RK schemes which have higher accuracy and better stability properties than the only low-storage implicit/explicit RK scheme available previously, the venerable second-order Crank-Nicolson/Runge-Kutta-Wray (CN/RKW3) algorithm that has dominated the DNS/LES literature for the last 25 years, while requiring similar storage (two, three, or four registers of length N) and comparable floating-point operations per timestep.
NASA Astrophysics Data System (ADS)
Kulikov, G. Yu.
2015-06-01
A technique for constructing nested implicit Runge-Kutta methods in the class of mono-implicit formulas of this type is studied. These formulas are highly efficient in practice, since the dimension of the original system of differential equations is preserved, which is not possible in the case of implicit multistage Runge-Kutta formulas of the general from. On the other hand, nested implicit Runge-Kutta methods inherit all major properties of general formulas of this form, such as A-stability, symmetry, and symplecticity in a certain sense. Moreover, they can have sufficiently high stage and classical orders and, without requiring high extra costs, can ensure dense output of integration results of the same accuracy as the order of the underlying method. Thus, nested methods are efficient when applied to the numerical integration of differential equations of various sorts, including stiff and nonstiff problems, Hamiltonian systems, and invertible equations. In this paper, previously proposed nested methods based on the Gauss quadrature formulas are generalized to Lobatto-type methods. Additionally, a unified technique for constructing all such methods is proposed. Its performance is demonstrated as applied to embedded examples of nested implicit formulas of various orders. All the methods constructed are supplied with tools for local error estimation and automatic variable-stepsize mesh generation based on an optimal stepsize selection. These numerical methods are verified by solving test problems with known solutions. Additionally, a comparative analysis of these methods with Matlab built-in solvers is presented.
NASA Astrophysics Data System (ADS)
Diele, F.; Marangi, C.; Ragni, S.
2009-08-01
Direct numerical approximation of a continuous-time infinite horizon control problem, requires to recast the model as a discrete-time, finite-horizon control model. The quality of the optimization results can be heavily degraded if the discretization process does not take into account features of the original model to be preserved. Restricting their attention to optimal growh problems with a steady state, Mercenier and Michel in [1] and [2], studied the conditions to be imposed for ensuring that discrete first-order approximation models have the same steady states as the infinite-horizon continuous-times counterpart. Here we show that Mercenier and Michel scheme is a first order partitioned Runge-Kutta method applied to the state-costate differential system which arises from the Pontryagin maximum principle. The main consequence is that it is possible to consider high order schemes which generalize that algorithm by preserving the steady-growth invariance of the solutions with respect to the discretization process. Numerical examples show the efficiency and accuracy of the proposed methods when applied to the classical Ramsey growth model.
Exponential Runge-Kutta integrators for modelling Predator-Prey interactions
NASA Astrophysics Data System (ADS)
Diele, F.; Marangi, C.; Ragni, S.
2012-09-01
Spatially explicit models consisting of reaction-diffusion partial differential equations are considered in order to model prey-predator interactions, since it is known that the role of spatial processes reveals of great interest in the study of the effects of habitat fragmentation on biodiversity. As almost all of the realistic models in biology, these models are nonlinear and their solution is not known in closed form. Our aim is approximating the solution itself by means of exponential Runge-Kutta integrators. Moreover, we apply the shift-and-invert Krylov approach in order to evaluate the entire functions needed for implementing the exponential method. This numerical procedure reveals to be very eff cient in avoiding numerical instability during the simulation, since it allows us to adopt high order in the accuracy. This work has received funding from the European Union's Seventh Framework Programme FP7/2007-2013, SPA.2010.1.1-04: "Stimulating the development of GMES services in specif c are", under grant agreement 263435, project title: Biodiversity Multi-Source Monitoring System:from Space To Species (BIOSOS) coordinated by CNR-ISSIA, Bari-Italy (http://www.biosos.eu).
Diagonally Implicit Runge-Kutta Methods for Ordinary Differential Equations. A Review
NASA Technical Reports Server (NTRS)
Kennedy, Christopher A.; Carpenter, Mark H.
2016-01-01
A review of diagonally implicit Runge-Kutta (DIRK) methods applied to rst-order ordinary di erential equations (ODEs) is undertaken. The goal of this review is to summarize the characteristics, assess the potential, and then design several nearly optimal, general purpose, DIRK-type methods. Over 20 important aspects of DIRKtype methods are reviewed. A design study is then conducted on DIRK-type methods having from two to seven implicit stages. From this, 15 schemes are selected for general purpose application. Testing of the 15 chosen methods is done on three singular perturbation problems. Based on the review of method characteristics, these methods focus on having a stage order of two, sti accuracy, L-stability, high quality embedded and dense-output methods, small magnitudes of the algebraic stability matrix eigenvalues, small values of aii, and small or vanishing values of the internal stability function for large eigenvalues of the Jacobian. Among the 15 new methods, ESDIRK4(3)6L[2]SA is recommended as a good default method for solving sti problems at moderate error tolerances.
Low-Storage, Explicit Runge-Kutta Schemes for the Compressible Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Kennedy, Chistopher A.; Carpenter, Mark H.; Lewis, R. Michael
1999-01-01
The derivation of storage explicit Runge-Kutta (ERK) schemes has been performed in the context of integrating the compressible Navier-Stokes equations via direct numerical simulation. Optimization of ERK methods is done across the broad range of properties, such as stability and accuracy efficiency, linear and nonlinear stability, error control reliability, step change stability, and dissipation/dispersion accuracy, subject to varying degrees of memory economization. Following van der Houwen and Wray, 16 ERK pairs are presented using from two to five registers of memory per equation, per grid point and having accuracies from third- to fifth-order. Methods have been assessed using the differential equation testing code DETEST, and with the 1D wave equation. Two of the methods have been applied to the DNS of a compressible jet as well as methane-air and hydrogen-air flames. Derived 3(2) and 4(3) pairs are competitive with existing full-storage methods. Although a substantial efficiency penalty accompanies use of two- and three-register, fifth-order methods, the best contemporary full-storage methods can be pearl), matched while still saving two to three registers of memory.
Modified Runge-Kutta methods for solving ODES. M.S. Thesis
NASA Technical Reports Server (NTRS)
Vanvu, T.
1981-01-01
A class of Runge-Kutta formulas is examined which permit the calculation of an accurate solution anywhere in the interval of integration. This is used in a code which seldom has to reject a step; rather it takes a reduced step if the estimated error is too large. The absolute stability implications of this are examined.
NASA Astrophysics Data System (ADS)
Langer, Stefan
2014-11-01
For unstructured finite volume methods an agglomeration multigrid with an implicit multistage Runge-Kutta method as a smoother is developed for solving the compressible Reynolds averaged Navier-Stokes (RANS) equations. The implicit Runge-Kutta method is interpreted as a preconditioned explicit Runge-Kutta method. The construction of the preconditioner is based on an approximate derivative. The linear systems are solved approximately with a symmetric Gauss-Seidel method. To significantly improve this solution method grid anisotropy is treated within the Gauss-Seidel iteration in such a way that the strong couplings in the linear system are resolved by tridiagonal systems constructed along these directions of strong coupling. The agglomeration strategy is adapted to this procedure by taking into account exactly these anisotropies in such a way that a directional coarsening is applied along these directions of strong coupling. Turbulence effects are included by a Spalart-Allmaras model, and the additional transport-type equation is approximately solved in a loosely coupled manner with the same method. For two-dimensional and three-dimensional numerical examples and a variety of differently generated meshes we show the wide range of applicability of the solution method. Finally, we exploit the GMRES method to determine approximate spectral information of the linearized RANS equations. This approximate spectral information is used to discuss and compare characteristics of multistage Runge-Kutta methods.
A Runge-Kutta discontinuous Galerkin approach to solve reactive flows: The hyperbolic operator
Billet, G.; Ryan, J.
2011-02-20
A Runge-Kutta discontinuous Galerkin method to solve the hyperbolic part of reactive Navier-Stokes equations written in conservation form is presented. Complex thermodynamics laws are taken into account. Particular care has been taken to solve the stiff gaseous interfaces correctly with no restrictive hypothesis. 1D and 2D test cases are presented.
NASA Technical Reports Server (NTRS)
Cockrell, C. R.
1989-01-01
Numerical solutions of the differential equation which describe the electric field within an inhomogeneous layer of permittivity, upon which a perpendicularly-polarized plane wave is incident, are considered. Richmond's method and the Runge-Kutta method are compared for linear and exponential profiles of permittivities. These two approximate solutions are also compared with the exact solutions.
NASA Astrophysics Data System (ADS)
Wang, Xiaoqiang; Ju, Lili; Du, Qiang
2016-07-01
The Willmore flow formulated by phase field dynamics based on the elastic bending energy model has been widely used to describe the shape transformation of biological lipid vesicles. In this paper, we develop and investigate some efficient and stable numerical methods for simulating the unconstrained phase field Willmore dynamics and the phase field Willmore dynamics with fixed volume and surface area constraints. The proposed methods can be high-order accurate and are completely explicit in nature, by combining exponential time differencing Runge-Kutta approximations for time integration with spectral discretizations for spatial operators on regular meshes. We also incorporate novel linear operator splitting techniques into the numerical schemes to improve the discrete energy stability. In order to avoid extra numerical instability brought by use of large penalty parameters in solving the constrained phase field Willmore dynamics problem, a modified augmented Lagrange multiplier approach is proposed and adopted. Various numerical experiments are performed to demonstrate accuracy and stability of the proposed methods.
NASA Technical Reports Server (NTRS)
Shih, C. C.
1973-01-01
A theoretical investigation of gas flow inside a multilayer insulation system has been made for the case of the broadside pumping process. A set of simultaneous first-order differential equations for the temperature and pressure of the gas mixture was obtained by considering the diffusion mechanism of the gas molecules through the perforations on the insulation layers. A modified Runge-Kutta method was used for numerical experiment. The numerical stability problem was investigated. It has been shown that when the relaxation time is small compared with the time period over which the gas properties change appreciably, the set of differential equations can be replaced by a set of algebraic equations for solution. Numerical examples were given, and comparisons with experimental data were made.
Runge-Kutta methods combined with compact difference schemes for the unsteady Euler equations
NASA Technical Reports Server (NTRS)
Yu, Sheng-Tao
1992-01-01
Recent development using compact difference schemes to solve the Navier-Stokes equations show spectral-like accuracy. A study was made of the numerical characteristics of various combinations of the Runge-Kutta (RK) methods and compact difference schemes to calculate the unsteady Euler equations. The accuracy of finite difference schemes is assessed based on the evaluations of dissipative error. The objectives are reducing the numerical damping and, at the same time, preserving numerical stability. While this approach has tremendous success solving steady flows, numerical characteristics of unsteady calculations remain largely unclear. For unsteady flows, in addition to the dissipative errors, phase velocity and harmonic content of the numerical results are of concern. As a result of the discretization procedure, the simulated unsteady flow motions actually propagate in a dispersive numerical medium. Consequently, the dispersion characteristics of the numerical schemes which relate the phase velocity and wave number may greatly impact the numerical accuracy. The aim is to assess the numerical accuracy of the simulated results. To this end, the Fourier analysis is to provide the dispersive correlations of various numerical schemes. First, a detailed investigation of the existing RK methods is carried out. A generalized form of an N-step RK method is derived. With this generalized form, the criteria are derived for the three and four-step RK methods to be third and fourth-order time accurate for the non-linear equations, e.g., flow equations. These criteria are then applied to commonly used RK methods such as Jameson's 3-step and 4-step schemes and Wray's algorithm to identify the accuracy of the methods. For the spatial discretization, compact difference schemes are presented. The schemes are formulated in the operator-type to render themselves suitable for the Fourier analyses. The performance of the numerical methods is shown by numerical examples. These examples
NASA Astrophysics Data System (ADS)
Huang, Yong; Shi, Guo-Dong; Zhu, Ke-Yong
2016-06-01
This paper adopts the Runge-Kutta ray tracing method to obtain the ray-trajectory numerical solution in a two-dimensional gradient index medium. The emitting, absorbing and scattering processes are simulated by the Monte Carlo method. The temperature field and ray trajectory in the medium are obtained by the three methods, the Runge-Kutta ray tracing method, the ray tracing method with the cell model and the discrete curved ray tracing method with the linear refractive index cell model. Comparing the results of the three methods, it is found that the results by the Monte Carlo Runge-Kutta ray tracing method are of the highest accuracy. To improve the computational speed, the variable step-size Runge-Kutta ray tracing method is proposed, and the maximum relative error between the temperature field in the nonscattering medium by this method and the benchmark solution is less than 0.5%. The results also suggest that the Runge-Kutta ray tracing method would make the radiative transfer solution in the three-dimensional graded index media much easier.
An unconditionally stable Runge-Kutta method for unsteady rotor-stator interaction
NASA Technical Reports Server (NTRS)
Chima, Rodrick V.; Jorgenson, Philip C. E.
1989-01-01
A quasi-three-dimensional analysis has been developed for unsteady rotor-stator interaction in turbomachinery. The analysis solves the unsteady Euler or thin-layer Navier-Stokes equations in a body-fitted coordinate system. It accounts for the effects of rotation, radius change, and stress-surface thickness. The Baldwin-Lomax eddy-viscosity model is used for turbulent flows. The equations are integrated in time using an explicit four-stage Runge-Kutta scheme with a constant time step. Implicit residual smoothing is used to increase the stability limit of the time-accurate computations. The scheme is described, and stability and accuracy analyses are given.
Application of Runge-Kutta scheme for high-speed inviscid internal flows
NASA Technical Reports Server (NTRS)
Moitra, A.; Turkel, E.; Kumar, A.
1986-01-01
A multi-stage Runge-Kutta method is analyzed for solving the two-dimensional Euler equations for external and internal flow problems. Subsonic, supersonic and, highly supersonic flows are studied. Various techniques for accelerating the convergence to a steady state are described and analyzed. Effects of the grid aspect ratio on the rate of convergence are evaluated. An enthalpy damping technique applicable to supersonic flows is described in detail. Numerical results for supersonic flows containing both oblique and normal shocks are presented confirming the efficiency of the method.
Application of a Runge-Kutta scheme for high-speed inviscid internal flows
NASA Technical Reports Server (NTRS)
Moitra, A.; Turkel, E.; Kumar, A.
1986-01-01
A multi-stage Runge-Kutta method is analyzed for solving the two-dimensional Euler equations for external and internal flow problems. Subsonic, supersonic and, highly supersonic flows are studied. Various techniques for accelerating the convergence to a steady state are described and analyzed. Effects of the grid aspect ratio on the rate of convergence are evaluated. An enthalpy damping technique applicable to supersonic flows is described in detail. Numerical results for supersonic flows containing both oblique and normal shocks are presented confirming the efficiency of the method.
Convergence Acceleration of Runge-Kutta Schemes for Solving the Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Swanson, Roy C., Jr.; Turkel, Eli; Rossow, C.-C.
2007-01-01
The convergence of a Runge-Kutta (RK) scheme with multigrid is accelerated by preconditioning with a fully implicit operator. With the extended stability of the Runge-Kutta scheme, CFL numbers as high as 1000 can be used. The implicit preconditioner addresses the stiffness in the discrete equations associated with stretched meshes. This RK/implicit scheme is used as a smoother for multigrid. Fourier analysis is applied to determine damping properties. Numerical dissipation operators based on the Roe scheme, a matrix dissipation, and the CUSP scheme are considered in evaluating the RK/implicit scheme. In addition, the effect of the number of RK stages is examined. Both the numerical and computational efficiency of the scheme with the different dissipation operators are discussed. The RK/implicit scheme is used to solve the two-dimensional (2-D) and three-dimensional (3-D) compressible, Reynolds-averaged Navier-Stokes equations. Turbulent flows over an airfoil and wing at subsonic and transonic conditions are computed. The effects of the cell aspect ratio on convergence are investigated for Reynolds numbers between 5:7 x 10(exp 6) and 100 x 10(exp 6). It is demonstrated that the implicit preconditioner can reduce the computational time of a well-tuned standard RK scheme by a factor between four and ten.
Elkina, N V; Fedotov, A M; Herzing, C; Ruhl, H
2014-05-01
The Landau-Lifshitz equation provides an efficient way to account for the effects of radiation reaction without acquiring the nonphysical solutions typical for the Lorentz-Abraham-Dirac equation. We solve the Landau-Lifshitz equation in its covariant four-vector form in order to control both the energy and momentum of radiating particles. Our study reveals that implicit time-symmetric collocation methods of the Runge-Kutta-Nyström type are superior in accuracy and better at maintaining the mass-shell condition than their explicit counterparts. We carry out an extensive study of numerical accuracy by comparing the analytical and numerical solutions of the Landau-Lifshitz equation. Finally, we present the results of the simulation of particle scattering by a focused laser pulse. Due to radiation reaction, particles are less capable of penetrating into the focal region compared to the case where radiation reaction is neglected. Our results are important for designing forthcoming experiments with high intensity laser fields. PMID:25353922
An explicit Runge-Kutta method for unsteady rotor/stator interaction
NASA Technical Reports Server (NTRS)
Jorgenson, Philip C. E.; Chima, Rodrick V.
1988-01-01
A quasi-three-dimensional rotor/stator analysis has been developed for blade-to-blade flows in turbomachinery. The analysis solves the unsteady Euler or thin-layer Navier-Stokes equations in a body-fitted coordinate system. It accounts for the effects of rotation, radius change, and stream-surface thickness. The Baldwin-Lomax eddy-viscosity model is used for turbulent flows. The equations are integrated in time using a four-stage Runge-Kutta scheme with a constant timestep. Results are shown for the first stage of the Space Shuttle Main Engine high pressure fuel turbopump. Euler and Navier-Stokes results are compared on the scaled single- and multi-passage machine. The method is relatively fast and the quasi-three-dimensional formulation is applicable to a wide range of turbomachinery geometries.
Steady and Unsteady Numerical Solution of Generalized Newtonian Fluids Flow by Runge-Kutta method
NASA Astrophysics Data System (ADS)
Keslerová, R.; Kozel, K.; Prokop, V.
2010-09-01
In this paper the laminar viscous incompressible flow for generalized Newtonian (Newtonian and non-Newtonian) fluids is considered. The governing system of equations is the system of Navier-Stokes equations and the continuity equation. The steady and unsteady numerical solution for this system is computed by finite volume method combined with an artificial compressibility method. For time discretization the explicit multistage Runge-Kutta numerical scheme is considered. Steady state solution is achieved for t→∞ using steady boundary conditions and followed by steady residual behavior. The dual time-stepping method is considered for unsteady computation. The high artificial compressibility coefficient is used in the artificial compressibility method applied in the dual time τ. The steady and unsteady numerical results of Newtonian and non-Newtonian (shear thickening and shear thinning) fluids flow in the branching channel are presented.
Recent advances in Runge-Kutta schemes for solving 3-D Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Wedan, Bruce W.; Abid, Ridha
1989-01-01
A thin-layer Navier-Stokes has been developed for solving high Reynolds number, turbulent flows past aircraft components under transonic flow conditions. The computer code has been validated through data comparisons for flow past isolated wings, wing-body configurations, prolate spheroids and wings mounted inside wind-tunnels. The basic code employs an explicit Runge-Kutta time-stepping scheme to obtain steady state solution to the unsteady governing equations. Significant gain in the efficiency of the code has been obtained by implementing a multigrid acceleration technique to achieve steady-state solutions. The improved efficiency of the code has made it feasible to conduct grid-refinement and turbulence model studies in a reasonable amount of computer time. The non-equilibrium turbulence model of Johnson and King has been extended to three-dimensional flows and excellent agreement with pressure data has been obtained for transonic separated flow over a transport type of wing.
On spurious steady-state solutions of explicit Runge-Kutta schemes
NASA Technical Reports Server (NTRS)
Sweby, P. K.; Yee, H. C.; Griffiths, D. F.
1990-01-01
The bifurcation diagram associated with the logistic equation v sup n+1 = av sup n (1-v sup n) is by now well known, as is its equivalence to solving the ordinary differential equation u prime = alpha u (1-u) by the explicit Euler difference scheme. It has also been noted by Iserles that other popular difference schemes may not only exhibit period doubling and chaotic phenomena but also possess spurious fixed points. Runge-Kutta schemes applied to both the equation u prime = alpha u (1-u) and the cubic equation u prime = alpha u (1-u)(b-u) were studied computationally and analytically and their behavior was contrasted with the explicit Euler scheme. Their spurious fixed points and periodic orbits were noted. In particular, it was observed that these may appear below the linearized stability limits of the scheme and, consequently, computation may lead to erroneous results.
Runge-Kutta model-based nonlinear observer for synchronization and control of chaotic systems.
Beyhan, Selami
2013-07-01
This paper proposes a novel nonlinear gradient-based observer for synchronization and observer-based control of chaotic systems. The model is based on a Runge-Kutta model of the chaotic system where the evolution of the states or parameters is derived based on the error-square minimization. The stability and convergence conditions of observer and control methods are analyzed using a Lyapunov stability approach. In numerical simulations, the proposed observer and well-known sliding-mode observer are compared for the synchronization of a Lü chaotic system and observer-based stabilization of a Chen chaotic system. The noisy case for synchronization and parameter uncertainty case for stabilization are also considered for both observer-based methods. PMID:23672740
An explicit Runge-Kutta method for 3D turbulent incompressible flows
NASA Technical Reports Server (NTRS)
Sung, Chao-Ho; Lin, Cheng-Wen; Hung, C. M.
1988-01-01
A computer code has been developed to solve for the steady-state solution of the 3D incompressible Reynolds-averaged Navier-Stokes equations. The approach is based on the cell-center, central-difference, finite-volume formulation and an explicit one-step, multistage Runge-Kutta time-stepping scheme. The Baldwin-Lomax turbulence model is used. Techniques to accelerate the rate of convergence to a steady-state solution include the preconditioned method, the local time stepping, and the implicit residual smoothing. Improvements in computational efficiency have been demonstrated in several areas. This numerical procedure has been used to simulate the turbulent horseshoe vortex flow around an airfoil/flat-plate juncture.
NASA Technical Reports Server (NTRS)
Kanevsky, Alex
2004-01-01
My goal is to develop and implement efficient, accurate, and robust Implicit-Explicit Runge-Kutta (IMEX RK) methods [9] for overcoming geometry-induced stiffness with applications to computational electromagnetics (CEM), computational fluid dynamics (CFD) and computational aeroacoustics (CAA). IMEX algorithms solve the non-stiff portions of the domain using explicit methods, and isolate and solve the more expensive stiff portions using implicit methods. Current algorithms in CEM can only simulate purely harmonic (up to lOGHz plane wave) EM scattering by fighter aircraft, which are assumed to be pure metallic shells, and cannot handle the inclusion of coatings, penetration into and radiation out of the aircraft. Efficient MEX RK methods could potentially increase current CEM capabilities by 1-2 orders of magnitude, allowing scientists and engineers to attack more challenging and realistic problems.
NASA Astrophysics Data System (ADS)
Igumnov, Leonid; Ipatov, Aleksandr; Belov, Aleksandr; Petrov, Andrey
2015-09-01
The report presents the development of the time-boundary element methodology and a description of the related software based on a stepped method of numerical inversion of the integral Laplace transform in combination with a family of Runge-Kutta methods for analyzing 3-D mixed initial boundary-value problems of the dynamics of inhomogeneous elastic and poro-elastic bodies. The results of the numerical investigation are presented. The investigation methodology is based on direct-approach boundary integral equations of 3-D isotropic linear theories of elasticity and poroelasticity in Laplace transforms. Poroelastic media are described using Biot models with four and five base functions. With the help of the boundary-element method, solutions in time are obtained, using the stepped method of numerically inverting Laplace transform on the nodes of Runge-Kutta methods. The boundary-element method is used in combination with the collocation method, local element-by-element approximation based on the matched interpolation model. The results of analyzing wave problems of the effect of a non-stationary force on elastic and poroelastic finite bodies, a poroelastic half-space (also with a fictitious boundary) and a layered half-space weakened by a cavity, and a half-space with a trench are presented. Excitation of a slow wave in a poroelastic medium is studied, using the stepped BEM-scheme on the nodes of Runge-Kutta methods.
Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes
NASA Astrophysics Data System (ADS)
Zhu, Jun; Zhong, Xinghui; Shu, Chi-Wang; Qiu, Jianxian
2013-09-01
In this paper we generalize a new type of limiters based on the weighted essentially non-oscillatory (WENO) finite volume methodology for the Runge-Kutta discontinuous Galerkin (RKDG) methods solving nonlinear hyperbolic conservation laws, which were recently developed in [32] for structured meshes, to two-dimensional unstructured triangular meshes. The key idea of such limiters is to use the entire polynomials of the DG solutions from the troubled cell and its immediate neighboring cells, and then apply the classical WENO procedure to form a convex combination of these polynomials based on smoothness indicators and nonlinear weights, with suitable adjustments to guarantee conservation. The main advantage of this new limiter is its simplicity in implementation, especially for the unstructured meshes considered in this paper, as only information from immediate neighbors is needed and the usage of complicated geometric information of the meshes is largely avoided. Numerical results for both scalar equations and Euler systems of compressible gas dynamics are provided to illustrate the good performance of this procedure.
Navier-Stokes calculations for DFVLR F5-wing in wind tunnel using Runge-Kutta time-stepping scheme
NASA Technical Reports Server (NTRS)
Vatsa, V. N.; Wedan, B. W.
1988-01-01
A three-dimensional Navier-Stokes code using an explicit multistage Runge-Kutta type of time-stepping scheme is used for solving the transonic flow past a finite wing mounted inside a wind tunnel. Flow past the same wing in free air was also computed to assess the effect of wind-tunnel walls on such flows. Numerical efficiency is enhanced through vectorization of the computer code. A Cyber 205 computer with 32 million words of internal memory was used for these computations.
Cui, Hengfei; Wang, Desheng; Wan, Min; Zhang, Jun-Mei; Zhao, Xiaodan; Tan, Ru San; Huang, Weimin; Xiong, Wei; Duan, Yuping; Zhou, Jiayin; Luo, Tong; Kassab, Ghassan S; Zhong, Liang
2016-06-01
The CT angiography (CTA) is a clinically indicated test for the assessment of coronary luminal stenosis that requires centerline extractions. There is currently no centerline extraction algorithm that is automatic, real-time and very accurate. Therefore, we sought to (i) develop a hybrid approach by incorporating fast marching and Runge-Kutta based methods for the extraction of coronary artery centerlines from CTA; (ii) evaluate the accuracy of the present method compared to Van's method by using ground truth centerline as a reference; (iii) evaluate the coronary lumen area of our centerline method in comparison with the intravascular ultrasound (IVUS) as the standard of reference. The proposed method was found to be more computationally efficient, and performed better than the Van's method in terms of overlap measures (i.e., OV: [Formula: see text] vs. [Formula: see text]; OF: [Formula: see text] vs. [Formula: see text]; and OT: [Formula: see text] vs. [Formula: see text], all [Formula: see text]). In comparison with IVUS derived coronary lumen area, the proposed approach was more accurate than the Van's method. This hybrid approach by incorporating fast marching and Runge-Kutta based methods could offer fast and accurate extraction of centerline as well as the lumen area. This method may garner wider clinical potential as a real-time coronary stenosis assessment tool. PMID:27140197
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Gottlieb, David; Abarbanel, Saul; Don, Wai-Sun
1993-01-01
The conventional method of imposing time dependent boundary conditions for Runge-Kutta (RK) time advancement reduces the formal accuracy of the space-time method to first order locally, and second order globally, independently of the spatial operator. This counter intuitive result is analyzed in this paper. Two methods of eliminating this problem are proposed for the linear constant coefficient case: (1) impose the exact boundary condition only at the end of the complete RK cycle, (2) impose consistent intermediate boundary conditions derived from the physical boundary condition and its derivatives. The first method, while retaining the RK accuracy in all cases, results in a scheme with much reduced CFL condition, rendering the RK scheme less attractive. The second method retains the same allowable time step as the periodic problem. However it is a general remedy only for the linear case. For non-linear hyperbolic equations the second method is effective only for for RK schemes of third order accuracy or less. Numerical studies are presented to verify the efficacy of each approach.
NASA Astrophysics Data System (ADS)
Korneev, B. A.; Levchenko, V. D.
2016-03-01
In this paper we present the Runge-Kutta discontinuous Galerkin method (RKDG method) for the numerical solution of the Euler equations of gas dynamics. The method is being tested on a series of Riemann problems in the one-dimensional case. For the implementation of the method in the three-dimensional case, a DiamondTorre algorithm is proposed. It belongs to the class of the locally recursive non-locally asynchronous algorithms (LRnLA). With the help of this algorithm a significant increase of speed of calculations is achieved. As an example of the three-dimensional computing, a problem of the interaction of a bubble with a shock wave is considered.
Analysis of numerical stability and amplification matrices: Fourth-order Runge-Kutta methods
NASA Technical Reports Server (NTRS)
Kennedy, E. W.
1979-01-01
Amplification matrices, numerical kernels, stable, and exponentially stable numerical solutions are examined. The various techniques involved in these concepts are applied to certain systems that have Jordan forms, which are nondiagonal, with particular interest in the case of imaginary or zero eigenvalues.
Xu, Zhiliang; Chen, Xu-Yan; Liu, Yingjie
2014-12-01
We present a new formulation of the Runge-Kutta discontinuous Galerkin (RKDG) method [9, 8, 7, 6] for solving conservation Laws with increased CFL numbers. The new formulation requires the computed RKDG solution in a cell to satisfy additional conservation constraint in adjacent cells and does not increase the complexity or change the compactness of the RKDG method. Numerical computations for solving one-dimensional and two-dimensional scalar and systems of nonlinear hyperbolic conservation laws are performed with approximate solutions represented by piecewise quadratic and cubic polynomials, respectively. The hierarchical reconstruction [17, 33] is applied as a limiter to eliminate spurious oscillations in discontinuous solutions. From both numerical experiments and the analytic estimate of the CFL number of the newly formulated method, we find that: 1) this new formulation improves the CFL number over the original RKDG formulation by at least three times or more and thus reduces the overall computational cost; and 2) the new formulation essentially does not compromise the resolution of the numerical solutions of shock wave problems compared with ones computed by the RKDG method. PMID:25414520
Xu, Zhiliang; Chen, Xu-Yan; Liu, Yingjie
2014-01-01
We present a new formulation of the Runge-Kutta discontinuous Galerkin (RKDG) method [9, 8, 7, 6] for solving conservation Laws with increased CFL numbers. The new formulation requires the computed RKDG solution in a cell to satisfy additional conservation constraint in adjacent cells and does not increase the complexity or change the compactness of the RKDG method. Numerical computations for solving one-dimensional and two-dimensional scalar and systems of nonlinear hyperbolic conservation laws are performed with approximate solutions represented by piecewise quadratic and cubic polynomials, respectively. The hierarchical reconstruction [17, 33] is applied as a limiter to eliminate spurious oscillations in discontinuous solutions. From both numerical experiments and the analytic estimate of the CFL number of the newly formulated method, we find that: 1) this new formulation improves the CFL number over the original RKDG formulation by at least three times or more and thus reduces the overall computational cost; and 2) the new formulation essentially does not compromise the resolution of the numerical solutions of shock wave problems compared with ones computed by the RKDG method. PMID:25414520
Chen, Zhaoxia; Li, Juan; Zhang, Ruqiang; You, Xiong
2015-01-01
Oscillation is one of the most important phenomena in the chemical reaction systems in living cells. The general purpose simulation algorithms fail to take into account this special character and produce unsatisfying results. In order to enhance the accuracy of the integrator, the second-order derivative is incorporated in the scheme. The oscillatory feature of the solution is captured by the integrators with an exponential fitting property. Three practical exponentially fitted TDRK (EFTDRK) methods are derived. To test the effectiveness of the new EFTDRK methods, the two-gene system with cross-regulation and the circadian oscillation of the period protein in Drosophila are simulated. Each EFTDRK method has the best fitting frequency which minimizes the global error. The numerical results show that the new EFTDRK methods are more accurate and more efficient than their prototype TDRK methods or RK methods of the same order and the traditional exponentially fitted RK method in the literature. PMID:26633991
Chen, Zhaoxia; Li, Juan; Zhang, Ruqiang; You, Xiong
2015-01-01
Oscillation is one of the most important phenomena in the chemical reaction systems in living cells. The general purpose simulation algorithms fail to take into account this special character and produce unsatisfying results. In order to enhance the accuracy of the integrator, the second-order derivative is incorporated in the scheme. The oscillatory feature of the solution is captured by the integrators with an exponential fitting property. Three practical exponentially fitted TDRK (EFTDRK) methods are derived. To test the effectiveness of the new EFTDRK methods, the two-gene system with cross-regulation and the circadian oscillation of the period protein in Drosophila are simulated. Each EFTDRK method has the best fitting frequency which minimizes the global error. The numerical results show that the new EFTDRK methods are more accurate and more efficient than their prototype TDRK methods or RK methods of the same order and the traditional exponentially fitted RK method in the literature. PMID:26633991
NASA Technical Reports Server (NTRS)
Abarbanel, Saul; Gottlieb, David; Carpenter, Mark H.
1994-01-01
It has been previously shown that the temporal integration of hyperbolic partial differential equations (PDE's) may, because of boundary conditions, lead to deterioration of accuracy of the solution. A procedure for removal of this error in the linear case has been established previously. In the present paper we consider hyperbolic (PDE's) (linear and non-linear) whose boundary treatment is done via the SAT-procedure. A methodology is present for recovery of the full order of accuracy, and has been applied to the case of a 4th order explicit finite difference scheme.
NASA Technical Reports Server (NTRS)
Cannizzaro, Frank E.; Ash, Robert L.
1992-01-01
A state-of-the-art computer code has been developed that incorporates a modified Runge-Kutta time integration scheme, upwind numerical techniques, multigrid acceleration, and multi-block capabilities (RUMM). A three-dimensional thin-layer formulation of the Navier-Stokes equations is employed. For turbulent flow cases, the Baldwin-Lomax algebraic turbulence model is used. Two different upwind techniques are available: van Leer's flux-vector splitting and Roe's flux-difference splitting. Full approximation multi-grid plus implicit residual and corrector smoothing were implemented to enhance the rate of convergence. Multi-block capabilities were developed to provide geometric flexibility. This feature allows the developed computer code to accommodate any grid topology or grid configuration with multiple topologies. The results shown in this dissertation were chosen to validate the computer code and display its geometric flexibility, which is provided by the multi-block structure.
Multi-Dimensional Asymptotically Stable 4th Order Accurate Schemes for the Diffusion Equation
NASA Technical Reports Server (NTRS)
Abarbanel, Saul; Ditkowski, Adi
1996-01-01
An algorithm is presented which solves the multi-dimensional diffusion equation on co mplex shapes to 4th-order accuracy and is asymptotically stable in time. This bounded-error result is achieved by constructing, on a rectangular grid, a differentiation matrix whose symmetric part is negative definite. The differentiation matrix accounts for the Dirichlet boundary condition by imposing penalty like terms. Numerical examples in 2-D show that the method is effective even where standard schemes, stable by traditional definitions fail.
Computational aspects of the nonlinear normal mode initialization of the GLAS 4th order GCM
NASA Technical Reports Server (NTRS)
Navon, I. M.; Bloom, S. C.; Takacs, L.
1984-01-01
Using the normal modes of the GLAS 4th Order Model, a Machenhauer nonlinear normal mode initialization (NLNMI) was carried out for the external vertical mode using the GLAS 4th Order shallow water equations model for an equivalent depth corresponding to that associated with the external vertical mode. A simple procedure was devised which was directed at identifying computational modes by following the rate of increase of BAL sub M, the partial (with respect to the zonal wavenumber m) sum of squares of the time change of the normal mode coefficients (for fixed vertical mode index) varying over the latitude index L of symmetric or antisymmetric gravity waves. A working algorithm is presented which speeds up the convergence of the iterative Machenhauer NLNMI. A 24 h integration using the NLNMI state was carried out using both Matsuno and leap-frog time-integration schemes; these runs were then compared to a 24 h integration starting from a non-initialized state. The maximal impact of the nonlinear normal mode initialization was found to occur 6-10 hours after the initial time.
FAST DISPLACEMENT PROBABILITY PROFILE APPROXIMATION FROM HARDI USING 4TH-ORDER TENSORS.
Barmpoutis, Angelos; Vemuri, Baba C; Forder, John R
2008-05-14
Cartesian tensor basis have been widely used to approximate spherical functions. In Medical Imaging, tensors of various orders have been used to model the diffusivity function in Diffusion-weighted MRI data sets. However, it is known that the peaks of the diffusivity do not correspond to orientations of the underlying fibers and hence the displacement probability profiles should be employed instead. In this paper, we present a novel representation of the probability profile by a 4(th) order tensor, which is a smooth spherical function that can approximate single-fibers as well as multiple-fiber structures. We also present a method for efficiently estimating the unknown tensor coefficients of the probability profile directly from a given high-angular resolution diffusion-weighted (HARDI) data set. The accuracy of our model is validated by experiments on synthetic and real HARDI datasets from a fixed rat spinal cord. PMID:20046536
Continuum Kinetic Plasma Modeling Using a Conservative 4th-Order Method with AMR
NASA Astrophysics Data System (ADS)
Vogman, Genia; Colella, Phillip
2012-10-01
When the number of particles in a Debye sphere is large, a plasma can be accurately represented by a distribution function, which can be treated as a continuous incompressible fluid in phase space. In the most general case the evolution of such a distribution function is described by the 6D Boltzmann-Maxwell partial differential equation system. To address the challenges associated with solving a 6D hyperbolic governing equation, a simpler 3D Vlasov-Poisson system is considered. A 4th-order accurate Vlasov-Poisson model has been developed in one spatial and two velocity dimensions. The governing equation is cast in conservation law form and is solved with a finite volume representation. Adaptive mesh refinement (AMR) is used to allow for efficient use of computational resources while maintaining desired levels of resolution. The model employs a flux limiter to remedy non-physical effects such as numerical dispersion. The model is tested on the two-stream, beam-plasma, and Dory-Guest-Harris instabilities. All results are compared with linear theory.
Numerical integration of second order differential equations
NASA Technical Reports Server (NTRS)
Shanks, E. B.
1971-01-01
Performance characteristics of higher order approximations of Runge-Kutta type are analyzed, and performance predictors for time required on machine and for error size are developed. Technique is useful in evaluating system performance, analyzing material characteristics, and designing inertial guidance and nuclear instrumentation and materials.
NASA Technical Reports Server (NTRS)
Zingg, D. W.; Lomax, H.
1993-01-01
A six-stage low-storage Runge-Kutta time-marching method is presented and shown to be an efficient method for use with high-accuracy spatial difference operators for wave propagation problems. The accuracy of the method for inhomogeneous ordinary differential equations is demonstrated through numerical solutions of the linear convection equation with forced boundary conditions. Numerical experiments are presented simulating a sine wave and a Gaussian pulse propagating into and through the domain. For practical levels of mesh refinement corresponding to roughly ten points per wavelength, the six-stage Runge-Kutta method is more accurate than the popular fourth-order Runge-Kutta method. Further numerical experiments are presented which show that the numerical boundary scheme at an inflow boundary can be a significant source of error when high-accuracy spatial discretizations are used.
High-Order Residual-Distribution Hyperbolic Advection-Diffusion Schemes: 3rd-, 4th-, and 6th-Order
NASA Technical Reports Server (NTRS)
Mazaheri, Alireza R.; Nishikawa, Hiroaki
2014-01-01
In this paper, spatially high-order Residual-Distribution (RD) schemes using the first-order hyperbolic system method are proposed for general time-dependent advection-diffusion problems. The corresponding second-order time-dependent hyperbolic advection- diffusion scheme was first introduced in [NASA/TM-2014-218175, 2014], where rapid convergences over each physical time step, with typically less than five Newton iterations, were shown. In that method, the time-dependent hyperbolic advection-diffusion system (linear and nonlinear) was discretized by the second-order upwind RD scheme in a unified manner, and the system of implicit-residual-equations was solved efficiently by Newton's method over every physical time step. In this paper, two techniques for the source term discretization are proposed; 1) reformulation of the source terms with their divergence forms, and 2) correction to the trapezoidal rule for the source term discretization. Third-, fourth, and sixth-order RD schemes are then proposed with the above techniques that, relative to the second-order RD scheme, only cost the evaluation of either the first derivative or both the first and the second derivatives of the source terms. A special fourth-order RD scheme is also proposed that is even less computationally expensive than the third-order RD schemes. The second-order Jacobian formulation was used for all the proposed high-order schemes. The numerical results are then presented for both steady and time-dependent linear and nonlinear advection-diffusion problems. It is shown that these newly developed high-order RD schemes are remarkably efficient and capable of producing the solutions and the gradients to the same order of accuracy of the proposed RD schemes with rapid convergence over each physical time step, typically less than ten Newton iterations.
A Very High Order, Adaptable MESA Implementation for Aeroacoustic Computations
NASA Technical Reports Server (NTRS)
Dydson, Roger W.; Goodrich, John W.
2000-01-01
Since computational efficiency and wave resolution scale with accuracy, the ideal would be infinitely high accuracy for problems with widely varying wavelength scales. Currently, many of the computational aeroacoustics methods are limited to 4th order accurate Runge-Kutta methods in time which limits their resolution and efficiency. However, a new procedure for implementing the Modified Expansion Solution Approximation (MESA) schemes, based upon Hermitian divided differences, is presented which extends the effective accuracy of the MESA schemes to 57th order in space and time when using 128 bit floating point precision. This new approach has the advantages of reducing round-off error, being easy to program. and is more computationally efficient when compared to previous approaches. Its accuracy is limited only by the floating point hardware. The advantages of this new approach are demonstrated by solving the linearized Euler equations in an open bi-periodic domain. A 500th order MESA scheme can now be created in seconds, making these schemes ideally suited for the next generation of high performance 256-bit (double quadruple) or higher precision computers. This ease of creation makes it possible to adapt the algorithm to the mesh in time instead of its converse: this is ideal for resolving varying wavelength scales which occur in noise generation simulations. And finally, the sources of round-off error which effect the very high order methods are examined and remedies provided that effectively increase the accuracy of the MESA schemes while using current computer technology.
Comparison of rhodomine-WT and sodium chloride tracer transport in a 4th order arctic river
NASA Astrophysics Data System (ADS)
Smull, E. M.; Wlostowski, A. N.; Gooseff, M. N.; Bowden, W. B.; Wollheim, W. M.
2012-12-01
Conservative tracers are useful for tracking a parcel of water through a river reach and understanding tracer transport phenomena (i.e. advection, dispersion, and transient storage). Rhodomine- WT (RWT) and sodium chloride (NaCl) are two popular stream tracers. NaCl is considered to be conservative and relatively inexpensive, yet it cannot be detected at very low concentrations. On the other hand, RWT can be detected at very low concentrations (<0.1 ppb), but it is known to photo-degrade and sorb to organic materials. Previous work has compared these tracers with small-scale laboratory analyses and field experiments on small headwater streams. The limitations and advantages to each of these tracers, as applied to large river slug injections, are not clearly understood. This work seeks to answer the following questions: 1) Does RWT improve the tracer window of detection (time of tracer arrival to time of tracer non-detection), compared to NaCl? 2) Are there differences in the late-time tailing behavior of each tracer? More specifically, can we compare RWT and NaCl breakthrough curve tail shapes to understand processes contributing to late time solute transport (transient storage or sorption-desorption)? During the summer of 2012, combined slug additions of RWT and NaCl were injected into a 1.5-kilometer reach on the Kuparuk River, a 4th order tundra river underlain by continuous permafrost located on Alaska's North Slope. Fluorescence and electrical conductivity were continuously logged at the upstream and downstream ends of the reach. Preliminary results show that the window of detection is expanded when using RWT under both high and low flow conditions by 0.2 times the advective transport timescale. Tail shapes are more similar under higher discharge conditions and dissimilar under lower discharge conditions. For example, using an exponential regression model (c(t) = eat) to quantify tail shapes, at Q = 500 l/s the exponential coefficient ratio, aRWT:aNaCl, is 0
Higher-Order Compact Schemes for Numerical Simulation of Incompressible Flows
NASA Technical Reports Server (NTRS)
Wilson, Robert V.; Demuren, Ayodeji O.; Carpenter, Mark
1998-01-01
A higher order accurate numerical procedure has been developed for solving incompressible Navier-Stokes equations for 2D or 3D fluid flow problems. It is based on low-storage Runge-Kutta schemes for temporal discretization and fourth and sixth order compact finite-difference schemes for spatial discretization. The particular difficulty of satisfying the divergence-free velocity field required in incompressible fluid flow is resolved by solving a Poisson equation for pressure. It is demonstrated that for consistent global accuracy, it is necessary to employ the same order of accuracy in the discretization of the Poisson equation. Special care is also required to achieve the formal temporal accuracy of the Runge-Kutta schemes. The accuracy of the present procedure is demonstrated by application to several pertinent benchmark problems.
A third-order multistep time discretization for a Chebyshev tau spectral method
NASA Astrophysics Data System (ADS)
Vreman, A. W.; Kuerten, J. G. M.
2016-01-01
A time discretization scheme based on the third-order backward difference formula has been embedded into a Chebyshev tau spectral method for the Navier-Stokes equations. The time discretization is a variant of the second-order backward scheme proposed by Krasnov et al. (2008) [3]. High-resolution direct numerical simulations of turbulent incompressible channel flow have been performed to compare the backward scheme to the Runge-Kutta scheme proposed by Spalart et al. (1991) [2]. It is shown that the Runge-Kutta scheme leads to a poor convergence of some third-order spatial derivatives in the direct vicinity of the wall, derivatives that represent the diffusion of wall-tangential vorticity. The convergence at the wall is shown to be significantly improved if the backward scheme is applied.
On the Total Variation of High-Order Semi-Discrete Central Schemes for Conservation Laws
NASA Technical Reports Server (NTRS)
Bryson, Steve; Levy, Doron
2004-01-01
We discuss a new fifth-order, semi-discrete, central-upwind scheme for solving one-dimensional systems of conservation laws. This scheme combines a fifth-order WENO reconstruction, a semi-discrete central-upwind numerical flux, and a strong stability preserving Runge-Kutta method. We test our method with various examples, and give particular attention to the evolution of the total variation of the approximations.
High-order implicit time-marching methods for unsteady fluid flow simulation
NASA Astrophysics Data System (ADS)
Boom, Pieter David
Unsteady computational fluid dynamics (CFD) is increasingly becoming a critical tool in the development of emerging technologies and modern aircraft. In spite of rapid mathematical and technological advancement, these simulations remain computationally intensive and time consuming. More efficient temporal integration will promote a wider use of unsteady analysis and extend its range of applicability. This thesis presents an investigation of efficient high-order implicit time-marching methods for application in unsteady compressible CFD. A generalisation of time-marching methods based on summation-by-parts (SBP) operators is described which reduces the number of stages required to obtain a prescribed order of accuracy, thus improving their efficiency. The classical accuracy and stability theory is formally extended for these generalised SBP (GSBP) methods, including superconvergence and nonlinear stability. Dual-consistent SBP and GSBP time-marching methods are shown to form a subclass of implicit Runge-Kutta methods, which enables extensions of nonlinear accuracy and stability results. A novel family of fully-implicit GSBP Runge-Kutta schemes based on Gauss quadrature are derived which are both algebraically stable and L-stable with order 2s - 1, where s is the number of stages. In addition, a numerical tool is developed for the construction and optimisation of general linear time-marching methods. The tool is applied to the development of several low-stage-order L-stable diagonally-implicit methods, including a diagonally-implicit GSBP Runge-Kutta scheme. The most notable and efficient method developed is a six-stage fifth-order L-stable stiffly-accurate explicit-first-stage singly-diagonally-implicit Runge-Kutta (ESDIRK5) method with stage order two. The theoretical results developed in this thesis are supported by numerical simulations, and the predicted relative efficiency of the schemes is realised.
DNS and LES of Turbulent Backward-Facing Step Flow Using 2ND-and 4TH-Order Discretization
NASA Astrophysics Data System (ADS)
Meri, Adnan; Wengle, Hans
Results are presented from a Direct Numerical Simulation (DNS) and Large-Eddy Simulations (LES) of turbulent flow over a backward-facing step (Reh=3300) with a fully developed channel flow (Rcτ=180) utilized asatime-dependent inflow condition. Numerical solutions using a fourth-order compact (Hermitian) scheme, which was formulated directly for anon-equidistant and staggered grid in [1] are compared with numerical solutions using the classical second-order central scheme. There sults from LES (using the dynamic subgrid scale model) are evaluated against a corresponding DNS reference data set (fourth-order solution).
NASA Astrophysics Data System (ADS)
Zhao, Ye; Gu, Zhuquan; Liu, Yafeng
2012-07-01
In this paper, the Neumann system for the 4th-order eigenvalue problem Ly = (∂4+ q∂2+∂2 q+ ip∂+ i∂ p+ y = Λy) has been given. By means of the Neumann constraint condition, the perfect constraint set Γ and the relations between the potentials { q, p, r} and the eigenvector y are obtained. Then, based on the Euler-Lagrange function and Legendre transformations, a reasonable Jacobi-Ostrogradsky coordinate system has been found, which can be equal to the real Hamiltonian canonical coordinate system in R 8 N . Using Cao's method and Moser's constraint manifold, the Lax pairs of the evolution equation hierarchy with the 4th-order eigenvalue problems are nonlinearized. So a new finite-dimensional integrable Hamilton system on the constraint submanifold R 8 N-4 is generated. Moreover, the solutions of the evolution equations for the infinite-dimensional soliton systems are obtained by the involutive flow of the finite-dimensional completely integrable systems.
ERIC Educational Resources Information Center
Baydo-Reed, Katie
2010-01-01
Following the bombing of Pearl Harbor on Dec. 7, 1941, U.S. officials issued a series of proclamations that violated the civil and human rights of the vast majority of Japanese Americans in the United States--ostensibly to protect the nation from further Japanese aggression. The proclamations culminated in Executive Order 9066, which gave the…
Linear 3 and 5-step methods using Taylor series expansion for solving special 3rd order ODEs
NASA Astrophysics Data System (ADS)
Rajabi, Marzieh; Ismail, Fudziah; Senu, Norazak
2016-06-01
Some new linear 3 and 5-step methods for solving special third order ordinary differential equations directly are constructed using Taylor's series expansion. A set of test problems are solved using the new method and the results are compared when the problem is reduced to a system of first order ordinary differential equations and then using the existing Runge-Kutta method. The numerical results have clearly shown the advantage and competency of the new methods.
NASA Technical Reports Server (NTRS)
Navon, I. M.; Bloom, S.; Takacs, L. L.
1985-01-01
An attempt was made to use the GLAS global 4th order shallow water equations to perform a Machenhauer nonlinear normal mode initialization (NLNMI) for the external vertical mode. A new algorithm was defined for identifying and filtering out computational modes which affect the convergence of the Machenhauer iterative procedure. The computational modes and zonal waves were linearly initialized and gravitational modes were nonlinearly initialized. The Machenhauer NLNMI was insensitive to the absence of high zonal wave numbers. The effects of the Machenhauer scheme were evaluated by performing 24 hr integrations with nondissipative and dissipative explicit time integration models. The NLNMI was found to be inferior to the Rasch (1984) pseudo-secant technique for obtaining convergence when the time scales of nonlinear forcing were much smaller than the time scales expected from the natural frequency of the mode.
NASA Astrophysics Data System (ADS)
O'Daniel, S. J.; Amerson, B. E.; Lambert, M. B.
2014-12-01
Persistent societal interest in improving water quality and recovering imperiled, native, aquatic species has expanded the scope of stream restoration to include the hyporheic zone as a focus. Despite the lack of detailed studies, hyporheic restoration is often invoked as a means to achieve multiple objectives including moderation of water temperature, delay of seasonal flows and increasing the localized volume of floodplain water. We present interim results from an ongoing case study that monitors the changes as a result of stream restoration of the hyporheic zone of a 4th order, alluvial floodplain in northeast Oregon, USA, Meacham Creek. Active and passive restoration of 2.5 km of Meacham Creek has altered the creek from a single-threaded, incised and bedrock-dominated channel to a perched, alluvial channel that seasonally exchanges overbank flows with the surrounding floodplain. Our results suggest that the stream restoration effort on Meacham Creek has increased the volume of annual hyporheic storage and created a more diverse distribution of flowpath lengths within the restoration site. Furthermore, our monitoring indicates that hyporheic process response to stream restoration, analogous to other geomorphic processes, conforms to a systematic hierarchy where nested flow paths range in length and residence time from meters and hours at the habitat scale to tens of meters and months at the floodplain scale. We assert that scale-explicit and measurement-focused restoration planning has a greater likelihood of meeting the stated objectives and result in improved water quality and encourage recovery of many native aquatic species.
NASA Astrophysics Data System (ADS)
Mongeon, Michael C.
1996-03-01
This paper investigates the development of printer device profiles used in color document printing system environments when devices with intrinsically different gamut capabilities communicate with one another in a common (CIELAB) color space. While the main thrust of this activity focuses on the output printer, namely the Xerox 5760 printer, and its rendition of some device independent image description, characterizations are provided which investigate relative areas of photographic, monitor, and printer gamuts using a visual hue leaf comparison between devices. The printer is modeled using 4th-order polynomial regression which maps the device independent CIELAB image representation into device dependent printer CMYK. This technique results in 1.89 AEEavg over the training data set. Some key properties of the proposed calibration method are as follows: (1) Linearized CMYK tone reproduction curves with respect to AEEpaper to improve the distribution of calibration data in color space. (2) Application of GCR strategy and linearization to the calibration target prior to the regression on the measured CIELAB and original CMY values. Each strategy employs a K addition/No CMY removal method which maximizes printer gamut and relies on the regression to determine the appropriate CMY removal. The following GCR strategies are explored: CMY only (0% K addition), 50% K addition, 100% K addition, and non-linear K addition. A library of image processing algorithms is included, using LabView object oriented programming, which provides a modular approach for key color processing tasks. In the user interface, an image is selected with appropriate GCR strategy, and the program operates on the image. In general, the pictorial image quality is excellent for each GCR strategy with subtle differences between GCR approaches. Quantitative analysis of Q60 color matching performance is included.
NASA Astrophysics Data System (ADS)
Scarponi, D.; Kaufman, D.; Bright, J.; Kowalewski, M.
2009-04-01
Single fossiliferous beds contain biotic remnants that commonly vary in age over a time span of hundreds to thousands of years. Multiple recent studies suggest that such temporal mixing is a widespread phenomenon in marine depositional systems. This research focuses on quantitative estimates of temporal mixing obtained by direct dating of individual corbulid bivalve shells (Lentidium mediterraneum and Corbula gibba) from Po plain marine units of the Holocene 4th-order depositional sequence, including Transgressive Systems Tract [TST] and Highstand Systems Tract [HST]. These units displays a distinctive succession of facies consisting of brackish to marginal marine retrogradational deposits, (early TST), overlain by fully marine fine to coarse gray sands (late TST), and capped with progradational deltaic clays and sands (HST). More than 300 corbulid specimens, representing 19 shell-rich horizons evenly distributed along the depositional sequence and sampled from 9 cores, have been dated by means of aspartic acid racemization calibrated using 23 AMS-radiocarbon dates (14 dates for Lentidium mediterraneum and 9 dates for Corbula gibba, respectively). The results indicate that the scale of time-averaging is comparable when similar depositional environments from the same systems tract are compared across cores. However, time averaging is notably different when similar depositional environments from TST and HST segments of the sequence are compared. Specifically, late HST horizons (n=8) display relatively low levels of time-averaging: the mean within-horizon range of shell ages is 537 years and standard deviation averages 165 years. In contrast, late TST horizons (n=7) are dramatically more time-averaged: mean range of 5104 years and mean standard deviations of 1420 years. Thus, late TST horizons experience a 1 order of magnitude higher time-averaging than environmentally comparable late HST horizons. In conclusion the HST and TST systems tracts of the Po Plain display
Contractivity-preserving explicit Hermite-Obrechkoff ODE solver of order 13
NASA Astrophysics Data System (ADS)
Nguyen-Ba, Truong; Desjardins, Steven J.; Sharp, Philip W.; Vaillancourt, Rémi
2013-12-01
A new optimal, explicit, Hermite-Obrechkoff method of order 13, denoted by HO(13), that is contractivity-preserving (CP) and has nonnegative coefficients is constructed for solving nonstiff first-order initial value problems. Based on the CP conditions, the new 9-derivative HO(13) has maximum order 13. The new method usually requires significantly fewer function evaluations and significantly less CPU time than the Taylor method of order 13 and the Runge-Kutta method DP(8,7)13M to achieve the same global error when solving standard -body problems.
Liang, Xiao; Khaliq, Abdul Q. M.; Xing, Yulong
2015-01-23
In this paper, we study a local discontinuous Galerkin method combined with fourth order exponential time differencing Runge-Kutta time discretization and a fourth order conservative method for solving the nonlinear Schrödinger equations. Based on different choices of numerical fluxes, we propose both energy-conserving and energy-dissipative local discontinuous Galerkin methods, and have proven the error estimates for the semi-discrete methods applied to linear Schrödinger equation. The numerical methods are proven to be highly efficient and stable for long-range soliton computations. Finally, extensive numerical examples are provided to illustrate the accuracy, efficiency and reliability of the proposed methods.
A second-order accurate immersed boundary-lattice Boltzmann method for particle-laden flows
NASA Astrophysics Data System (ADS)
Zhou, Qiang; Fan, Liang-Shih
2014-07-01
A new immersed boundary-lattice Boltzmann method (IB-LBM) is presented for fully resolved simulations of incompressible viscous flows laden with rigid particles. The immersed boundary method (IBM) recently developed by Breugem (2012) [19] is adopted in the present method, development including the retraction technique, the multi-direct forcing method and the direct account of the inertia of the fluid contained within the particles. The present IB-LBM is, however, formulated with further improvement with the implementation of the high-order Runge-Kutta schemes in the coupled fluid-particle interaction. The major challenge to implement high-order Runge-Kutta schemes in the LBM is that the flow information such as density and velocity cannot be directly obtained at a fractional time step from the LBM since the LBM only provides the flow information at an integer time step. This challenge can be, however, overcome as given in the present IB-LBM by extrapolating the flow field around particles from the known flow field at the previous integer time step. The newly calculated fluid-particle interactions from the previous fractional time steps of the current integer time step are also accounted for in the extrapolation. The IB-LBM with high-order Runge-Kutta schemes developed in this study is validated by several benchmark applications. It is demonstrated, for the first time, that the IB-LBM has the capacity to resolve the translational and rotational motion of particles with the second-order accuracy. The optimal retraction distances for spheres and tubes that help the method achieve the second-order accuracy are found to be around 0.30 and -0.47 times of the lattice spacing, respectively. Simulations of the Stokes flow through a simple cubic lattice of rotational spheres indicate that the lift force produced by the Magnus effect can be very significant in view of the magnitude of the drag force when the practical rotating speed of the spheres is encountered. This finding
McCorquodale, Peter; Ullrich, Paul; Johansen, Hans; Colella, Phillip
2015-09-04
We present a high-order finite-volume approach for solving the shallow-water equations on the sphere, using multiblock grids on the cubed-sphere. This approach combines a Runge--Kutta time discretization with a fourth-order accurate spatial discretization, and includes adaptive mesh refinement and refinement in time. Results of tests show fourth-order convergence for the shallow-water equations as well as for advection in a highly deformational flow. Hierarchical adaptive mesh refinement allows solution error to be achieved that is comparable to that obtained with uniform resolution of the most refined level of the hierarchy, but with many fewer operations.
Liang, Xiao; Khaliq, Abdul Q.M.; Xing, Yulong
2015-01-23
In this paper, we study a local discontinuous Galerkin method combined with fourth order exponential time differencing Runge-Kutta time discretization and a fourth order conservative method for solving the nonlinear Schrödinger equations. Based on different choices of numerical fluxes, we propose both energy-conserving and energy-dissipative local discontinuous Galerkin methods, and have proven the error estimates for the semi-discrete methods applied to linear Schrödinger equation. The numerical methods are proven to be highly efficient and stable for long-range soliton computations. Finally, extensive numerical examples are provided to illustrate the accuracy, efficiency and reliability of the proposed methods.
Guzik, S; McCorquodale, P; Colella, P
2011-12-16
A fourth-order accurate finite-volume method is presented for solving time-dependent hyperbolic systems of conservation laws on mapped grids that are adaptively refined in space and time. Novel considerations for formulating the semi-discrete system of equations in computational space combined with detailed mechanisms for accommodating the adapting grids ensure that conservation is maintained and that the divergence of a constant vector field is always zero (freestream-preservation property). Advancement in time is achieved with a fourth-order Runge-Kutta method.
NASA Astrophysics Data System (ADS)
Olemskoy, I. V.; Eremin, A. S.
2016-06-01
We construct here an embedded Dormand-Prince pair of explicit methods of orders 6 and 4 for systems of ordinary differential equations with special structure, namely with two parts, in which the right-hand sides are dependent only on the unknown functions from the other group. The number of stages is six, which is fewer than for general explicit Runge-Kutta methods. The comparison to Dormand-Prince method of the same computation cost is made showing the higher accuracy of the suggested method.
The 4th Thermodynamic Principle?
Montero Garcia, Jose de la Luz; Novoa Blanco, Jesus Francisco
2007-04-28
It should be emphasized that the 4th Principle above formulated is a thermodynamic principle and, at the same time, is mechanical-quantum and relativist, as it should inevitably be and its absence has been one of main the theoretical limitations of the physical theory until today.We show that the theoretical discovery of Dimensional Primitive Octet of Matter, the 4th Thermodynamic Principle, the Quantum Hexet of Matter, the Global Hexagonal Subsystem of Fundamental Constants of Energy and the Measurement or Connected Global Scale or Universal Existential Interval of the Matter is that it is possible to be arrived at a global formulation of the four 'forces' or fundamental interactions of nature. The Einstein's golden dream is possible.
Seismic Waves, 4th order accurate
2013-08-16
SW4 is a program for simulating seismic wave propagation on parallel computers. SW4 colves the seismic wave equations in Cartesian corrdinates. It is therefore appropriate for regional simulations, where the curvature of the earth can be neglected. SW4 implements a free surface boundary condition on a realistic topography, absorbing super-grid conditions on the far-field boundaries, and a kinematic source model consisting of point force and/or point moment tensor source terms. SW4 supports a fully 3-Dmore » heterogeneous material model that can be specified in several formats. SW4 can output synthetic seismograms in an ASCII test format, or in the SAC finary format. It can also present simulation information as GMT scripts, whixh can be used to create annotated maps. Furthermore, SW4 can output the solution as well as the material model along 2-D grid planes.« less
Seismic Waves, 4th order accurate
2013-08-16
SW4 is a program for simulating seismic wave propagation on parallel computers. SW4 colves the seismic wave equations in Cartesian corrdinates. It is therefore appropriate for regional simulations, where the curvature of the earth can be neglected. SW4 implements a free surface boundary condition on a realistic topography, absorbing super-grid conditions on the far-field boundaries, and a kinematic source model consisting of point force and/or point moment tensor source terms. SW4 supports a fully 3-D heterogeneous material model that can be specified in several formats. SW4 can output synthetic seismograms in an ASCII test format, or in the SAC finary format. It can also present simulation information as GMT scripts, whixh can be used to create annotated maps. Furthermore, SW4 can output the solution as well as the material model along 2-D grid planes.
A high-order finite-volume method for hyperbolic conservation laws on locally-refined grids
McCorquodale, Peter; Colella, Phillip
2011-01-28
We present a fourth-order accurate finite-volume method for solving time-dependent hyperbolic systems of conservation laws on Cartesian grids with multiple levels of refinement. The underlying method is a generalization of that in [5] to nonlinear systems, and is based on using fourth-order accurate quadratures for computing fluxes on faces, combined with fourth-order accurate Runge?Kutta discretization in time. To interpolate boundary conditions at refinement boundaries, we interpolate in time in a manner consistent with the individual stages of the Runge-Kutta method, and interpolate in space by solving a least-squares problem over a neighborhood of each target cell for the coefficients of a cubic polynomial. The method also uses a variation on the extremum-preserving limiter in [8], as well as slope flattening and a fourth-order accurate artificial viscosity for strong shocks. We show that the resulting method is fourth-order accurate for smooth solutions, and is robust in the presence of complex combinations of shocks and smooth flows.
Sanders, Ross H; Gonjo, Tomohiro; McCabe, Carla B
2015-06-01
The purpose of this study was to explore the reliability of estimating three-dimensional (3D) linear kinematics and kinetics of a swimmer derived from digitized video and to assess the effect of framing rate and smoothing window size. A stroke cycle of two high-level front crawl swimmers and one high level backstroke swimmer was recorded by four underwater and two above water video cameras. One of the front crawl swimmers was recorded and digitized at 50 Hz with a window for smoothing by 4(th) order Butterworth digital filter extending 10 frames beyond the start and finish of the stroke cycle, while the other front crawl and backstroke swimmer were recorded and digitized at 25 Hz with the window extending five frames beyond the start and finish of the stroke cycle. Each camera view of the stroke cycle was digitized five times yielding five independent 3D data sets from which whole body centre of mass (CM) component velocities and accelerations were derived together with wrist and ankle linear velocities. Coefficients of reliability ranging from r = 0.942 to r = 0.999 indicated that both methods are sufficiently reliable to identify real differences in net force production during the pulls of the right and left hands. Reliability of digitizing was better for front crawl when digitizing at 50Hz with 10 frames extension than at 25 Hz with 5 frames extension (p < 0.01) and better for backstroke than front crawl (p < 0.01). However, despite the extension and reflection of data, errors were larger in the first 15% of the stroke cycle than the period between 15 and 85% of the stroke cycle for CM velocity and acceleration and for foot speed (p < 0.01). Key pointsAn inverse dynamics based on 3D position data digitized from multiple camera views above and below the water surface is sufficiently reliable to yield insights regarding force production in swimming additional to those of other approaches.The ability to link the force profiles to swimming actions and technique is
NASA Astrophysics Data System (ADS)
Ying, Teh Yuan; Yaacob, Nazeeruddin
2013-04-01
In this paper, a new implicit Runge-Kutta method which based on a 4-point Gauss-Kronrod-Radau II quadrature formula is developed. The resulting implicit method is a 4-stage sixth order Gauss-Kronrod-Radau IIA method, or in brief as GKRM(4,6)-IIA. GKRM(4,6)-IIA requires four function of evaluations at each integration step and it gives accuracy of order six. In addition, GKRM(4,6)-IIA has stage order four and being L-stable. Numerical experiments compare the accuracy between GKRM(4,6)-IIA and the classical 3-stage sixth order Gauss-Legendre method in solving some test problems. Numerical results reveal that GKRM(4,6)-IIA is more accurate than the 3-stage sixth order Gauss-Legendre method because GKRM(4,6)-IIA has higher stage order.
NASA Astrophysics Data System (ADS)
Ying, Teh Yuan; Yaacob, Nazeeruddin
2013-04-01
In this paper, a new implicit Runge-Kutta method which based on a 7-point Gauss-Kronrod-Lobatto quadrature formula is developed. The resulting implicit method is a 7-stage tenth order Gauss-Kronrod-Lobatto IIIA method, or in brief as GKLM(7,10)-IIIA. GKLM(7,10)-IIIA requires seven function of evaluations at each integration step and it gives accuracy of order ten. In addition, GKLM(7,10)-IIIA has stage order seven and being A-stable. Numerical experiments compare the accuracy between GKLM(7,10)-IIIA and the classical 5-stage tenth order Gauss-Legendre method in solving some test problems. Numerical results reveal that GKLM(7,10)-IIIA is more accurate than the 5-stage tenth order Gauss-Legendre method because GKLM(7,10)-IIIA has higher stage order.
17. 4th floor roof, view south, 4th and 5th floor ...
17. 4th floor roof, view south, 4th and 5th floor setback to left and atrium structure to right - Sheffield Farms Milk Plant, 1075 Webster Avenue (southwest corner of 166th Street), Bronx, Bronx County, NY
Finite-volume application of high-order ENO schemes to two-dimensional boundary-value problems
NASA Technical Reports Server (NTRS)
Casper, Jay
1991-01-01
Finite-volume applications of high-order accurate ENO schemes to two-dimensional boundary-value problems are studied. These schemes achieve high-order spatial accuracy, in smooth regions, by a piecewise polynomial approximation of the solution from cell averages. In addition, this spatial operation involves an adaptive stencil algorithm in order to avoid the oscillatory behavior that is associated with interpolation across steep gradients. High-order TVD Runge-Kutta methods are employed for time integration, thus making these schemes best suited for unsteady problems. Fifth- and sixth-order accurate applications are validated through a grid refinement study involving the solutions of scalar hyperbolic equations. A previously proposed extension for the Euler equations of gas dynamics is tested, including its application to solutions of boundary-value problems involving solid walls and curvilinear coordinates.
High-Order Implicit-Explicit Multi-Block Time-stepping Method for Hyperbolic PDEs
NASA Technical Reports Server (NTRS)
Nielsen, Tanner B.; Carpenter, Mark H.; Fisher, Travis C.; Frankel, Steven H.
2014-01-01
This work seeks to explore and improve the current time-stepping schemes used in computational fluid dynamics (CFD) in order to reduce overall computational time. A high-order scheme has been developed using a combination of implicit and explicit (IMEX) time-stepping Runge-Kutta (RK) schemes which increases numerical stability with respect to the time step size, resulting in decreased computational time. The IMEX scheme alone does not yield the desired increase in numerical stability, but when used in conjunction with an overlapping partitioned (multi-block) domain significant increase in stability is observed. To show this, the Overlapping-Partition IMEX (OP IMEX) scheme is applied to both one-dimensional (1D) and two-dimensional (2D) problems, the nonlinear viscous Burger's equation and 2D advection equation, respectively. The method uses two different summation by parts (SBP) derivative approximations, second-order and fourth-order accurate. The Dirichlet boundary conditions are imposed using the Simultaneous Approximation Term (SAT) penalty method. The 6-stage additive Runge-Kutta IMEX time integration schemes are fourth-order accurate in time. An increase in numerical stability 65 times greater than the fully explicit scheme is demonstrated to be achievable with the OP IMEX method applied to 1D Burger's equation. Results from the 2D, purely convective, advection equation show stability increases on the order of 10 times the explicit scheme using the OP IMEX method. Also, the domain partitioning method in this work shows potential for breaking the computational domain into manageable sizes such that implicit solutions for full three-dimensional CFD simulations can be computed using direct solving methods rather than the standard iterative methods currently used.
Direct calculations of waves in fluid flows using a high-order compact difference scheme
NASA Technical Reports Server (NTRS)
Yu, Sheng-Tao; Hultgren, Lennart S.; Liu, Nan-Suey
1993-01-01
The solution of the unsteady Euler equations by a sixth-order compact difference scheme combined with a fourth-order Runge-Kutta method is investigated. Closed-form expressions for the amplification factors and their corresponding dispersion correlations are obtained by Fourier analysis of the fully discretized, two-dimensional Euler equations, and the numerical dissipation, dispersion, and anisotropic effects are assessed. It is found that the CFL limit for stable calculations is about 0.8. For a CFL number equal to 0.6, the smallest wavelength which is resolved without numerical damping is about 6 to 8 grid nodes. For phase speeds corresponding to acoustic waves, the corresponding time period is resolved by about 200 to 300 time steps. Three numerical examples of waves in compressible flow are included.
NASA Technical Reports Server (NTRS)
Fatemi, Emad; Jerome, Joseph; Osher, Stanley
1989-01-01
A micron n+ - n - n+ silicon diode is simulated via the hydrodynamic model for carrier transport. The numerical algorithms employed are for the non-steady case, and a limiting process is used to reach steady state. The simulation employs shock capturing algorithms, and indeed shocks, or very rapid transition regimes, are observed in the transient case for the coupled system, consisting of the potential equation and the conservation equations describing charge, momentum, and energy transfer for the electron carriers. These algorithms, termed essentially non-oscillatory, were successfully applied in other contexts to model the flow in gas dynamics, magnetohydrodynamics, and other physical situations involving the conservation laws in fluid mechanics. The method here is first order in time, but the use of small time steps allows for good accuracy. Runge-Kutta methods allow one to achieve higher accuracy in time if desired. The spatial accuracy is of high order in regions of smoothness.
Cobb, J.W.
1995-02-01
There is an increasing need for more accurate numerical methods for large-scale nonlinear magneto-fluid turbulence calculations. These methods should not only increase the current state of the art in terms of accuracy, but should also continue to optimize other desired properties such as simplicity, minimized computation, minimized memory requirements, and robust stability. This includes the ability to stably solve stiff problems with long time-steps. This work discusses a general methodology for deriving higher-order numerical methods. It also discusses how the selection of various choices can affect the desired properties. The explicit discussion focuses on third-order Runge-Kutta methods, including general solutions and five examples. The study investigates the linear numerical analysis of these methods, including their accuracy, general stability, and stiff stability. Additional appendices discuss linear multistep methods, discuss directions for further work, and exhibit numerical analysis results for some other commonly used lower-order methods.
NASA Astrophysics Data System (ADS)
Campoamor-Stursberg, R.; Rodríguez, M. A.; Winternitz, P.
2016-01-01
Ordinary differential equations (ODEs) and ordinary difference systems (OΔSs) invariant under the actions of the Lie groups {{SL}}x(2),{{SL}}y(2) and {{SL}}x(2)× {{SL}}y(2) of projective transformations of the independent variables x and dependent variables y are constructed. The ODEs are continuous limits of the OΔSs, or conversely, the OΔSs are invariant discretizations of the ODEs. The invariant OΔSs are used to calculate numerical solutions of the invariant ODEs of order up to five. The solutions of the invariant numerical schemes are compared to numerical solutions obtained by standard Runge-Kutta methods and to exact solutions, when available. The invariant method performs at least as well as standard ones and much better in the vicinity of singularities of solutions.
NASA Astrophysics Data System (ADS)
Balan, Aravind; May, Georg; Schöberl, Joachim
2012-03-01
Numerical schemes using piecewise polynomial approximation are very popular for high order discretization of conservation laws. While the most widely used numerical scheme under this paradigm appears to be the Discontinuous Galerkin method, the Spectral Difference scheme has often been found attractive as well, because of its simplicity of formulation and implementation. However, recently it has been shown that the scheme is not linearly stable on triangles. In this paper we present an alternate formulation of the scheme, featuring a new flux interpolation technique using Raviart-Thomas spaces, which proves stable under a similar linear analysis in which the standard scheme failed. We demonstrate viability of the concept by showing linear stability both in the semi-discrete sense and for time stepping schemes of the SSP Runge-Kutta type. Furthermore, we present convergence studies, as well as case studies in compressible flow simulation using the Euler equations.
NASA Astrophysics Data System (ADS)
JavanNezhad, R.; Meshkatee, A. H.; Ghader, S.; Ahmadi-Givi, F.
2016-09-01
This study is devoted to application of the fourth-order compact MacCormack scheme to spatial differencing of the conservative form of two-dimensional and non-hydrostatic equation of a dry atmosphere. To advance the solution in time a four-stage Runge-Kutta method is used. To perform the simulations, two test cases including evolution of a warm bubble and a cold bubble in a neutral atmosphere with open and rigid boundaries are employed. In addition, the second-order MacCormack and the standard fourth-order compact MacCormack schemes are used to perform the simulations. Qualitative and quantitative assessment of the numerical results for different test cases exhibit the superiority of the fourth-order compact MacCormack scheme on the second-order method.
NASA Astrophysics Data System (ADS)
Li, G. Q.; Zhu, Z. H.
2015-12-01
Dynamic modeling of tethered spacecraft with the consideration of elasticity of tether is prone to the numerical instability and error accumulation over long-term numerical integration. This paper addresses the challenges by proposing a globally stable numerical approach with the nodal position finite element method (NPFEM) and the implicit, symplectic, 2-stage and 4th order Gaussian-Legendre Runge-Kutta time integration. The NPFEM eliminates the numerical error accumulation by using the position instead of displacement of tether as the state variable, while the symplectic integration enforces the energy and momentum conservation of the discretized finite element model to ensure the global stability of numerical solution. The effectiveness and robustness of the proposed approach is assessed by an elastic pendulum problem, whose dynamic response resembles that of tethered spacecraft, in comparison with the commonly used time integrators such as the classical 4th order Runge-Kutta schemes and other families of non-symplectic Runge-Kutta schemes. Numerical results show that the proposed approach is accurate and the energy of the corresponding numerical model is conservative over the long-term numerical integration. Finally, the proposed approach is applied to the dynamic modeling of deorbiting process of tethered spacecraft over a long period.
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
2004-01-01
This project is about the investigation of the development of the discontinuous Galerkin finite element methods, for general geometry and triangulations, for solving convection dominated problems, with applications to aeroacoustics. Other related issues in high order WENO finite difference and finite volume methods have also been investigated. methods are two classes of high order, high resolution methods suitable for convection dominated simulations with possible discontinuous or sharp gradient solutions. In [18], we first review these two classes of methods, pointing out their similarities and differences in algorithm formulation, theoretical properties, implementation issues, applicability, and relative advantages. We then present some quantitative comparisons of the third order finite volume WENO methods and discontinuous Galerkin methods for a series of test problems to assess their relative merits in accuracy and CPU timing. In [3], we review the development of the Runge-Kutta discontinuous Galerkin (RKDG) methods for non-linear convection-dominated problems. These robust and accurate methods have made their way into the main stream of computational fluid dynamics and are quickly finding use in a wide variety of applications. They combine a special class of Runge-Kutta time discretizations, that allows the method to be non-linearly stable regardless of its accuracy, with a finite element space discretization by discontinuous approximations, that incorporates the ideas of numerical fluxes and slope limiters coined during the remarkable development of the high-resolution finite difference and finite volume schemes. The resulting RKDG methods are stable, high-order accurate, and highly parallelizable schemes that can easily handle complicated geometries and boundary conditions. We review the theoretical and algorithmic aspects of these methods and show several applications including nonlinear conservation laws, the compressible and incompressible Navier
Fourth order difference methods for hyperbolic IBVP's
NASA Technical Reports Server (NTRS)
Gustafsson, Bertil; Olsson, Pelle
1994-01-01
Fourth order difference approximations of initial-boundary value problems for hyperbolic partial differential equations are considered. We use the method of lines approach with both explicit and compact implicit difference operators in space. The explicit operator satisfies an energy estimate leading to strict stability. For the implicit operator we develop boundary conditions and give a complete proof of strong stability using the Laplace transform technique. We also present numerical experiments for the linear advection equation and Burgers' equation with discontinuities in the solution or in its derivative. The first equation is used for modeling contact discontinuities in fluid dynamics, the second one for modeling shocks and rarefaction waves. The time discretization is done with a third order Runge-Kutta TVD method. For solutions with discontinuities in the solution itself we add a filter based on second order viscosity. In case of the non-linear Burger's equation we use a flux splitting technique that results in an energy estimate for certain different approximations, in which case also an entropy condition is fulfilled. In particular we shall demonstrate that the unsplit conservative form produces a non-physical shock instead of the physically correct rarefaction wave. In the numerical experiments we compare our fourth order methods with a standard second order one and with a third order TVD-method. The results show that the fourth order methods are the only ones that give good results for all the considered test problems.
IMEX Runge-Kutta Schemes and Hyperbolic Systems of Conservation Laws with Stiff Diffusive Relaxation
NASA Astrophysics Data System (ADS)
Boscarino, S.; Pareschi, L.; Russo, G.
2009-09-01
Hyperbolic system of conservation laws often have relaxation terms that, under a suitable scaling, lead to a reduced system of parabolic or hyperbolic type. The development of numerical methods to solve systems of this form his an active area of research. These systems in addition to the stiff relaxation term have the convection term stiff too. In this paper we will mainly concentrate on the study of the stiff regime. In fact in this stiff regime most of the popular methods for the solution of these system fail to capture the correct behavior of the relaxation limit unless the small relaxation rate is numericaly resolved. We will show how to overcome this difficulties and how to construct numerical schemes with the correct asymnptotic limit, i.e., the correct zero-relaxation limit should be preserved at a discrete level.
A high-order gas-kinetic Navier-Stokes flow solver
Li Qibing; Xu Kun; Fu Song
2010-09-20
The foundation for the development of modern compressible flow solver is based on the Riemann solution of the inviscid Euler equations. The high-order schemes are basically related to high-order spatial interpolation or reconstruction. In order to overcome the low-order wave interaction mechanism due to the Riemann solution, the temporal accuracy of the scheme can be improved through the Runge-Kutta method, where the dynamic deficiencies in the first-order Riemann solution is alleviated through the sub-step spatial reconstruction in the Runge-Kutta process. The close coupling between the spatial and temporal evolution in the original nonlinear governing equations seems weakened due to its spatial and temporal decoupling. Many recently developed high-order methods require a Navier-Stokes flux function under piece-wise discontinuous high-order initial reconstruction. However, the piece-wise discontinuous initial data and the hyperbolic-parabolic nature of the Navier-Stokes equations seem inconsistent mathematically, such as the divergence of the viscous and heat conducting terms due to initial discontinuity. In this paper, based on the Boltzmann equation, we are going to present a time-dependent flux function from a high-order discontinuous reconstruction. The theoretical basis for such an approach is due to the fact that the Boltzmann equation has no specific requirement on the smoothness of the initial data and the kinetic equation has the mechanism to construct a dissipative wave structure starting from an initially discontinuous flow condition on a time scale being larger than the particle collision time. The current high-order flux evaluation method is an extension of the second-order gas-kinetic BGK scheme for the Navier-Stokes equations (BGK-NS). The novelty for the easy extension from a second-order to a higher order is due to the simple particle transport and collision mechanism on the microscopic level. This paper will present a hierarchy to construct such
NASA Astrophysics Data System (ADS)
Balac, Stéphane; Fernandez, Arnaud
2016-02-01
The computer program SPIP is aimed at solving the Generalized Non-Linear Schrödinger equation (GNLSE), involved in optics e.g. in the modelling of light-wave propagation in an optical fibre, by the Interaction Picture method, a new efficient alternative method to the Symmetric Split-Step method. In the SPIP program a dedicated costless adaptive step-size control based on the use of a 4th order embedded Runge-Kutta method is implemented in order to speed up the resolution.
A neuro approach to solve fuzzy Riccati differential equations
NASA Astrophysics Data System (ADS)
Shahrir, Mohammad Shazri; Kumaresan, N.; Kamali, M. Z. M.; Ratnavelu, Kurunathan
2015-10-01
There are many applications of optimal control theory especially in the area of control systems in engineering. In this paper, fuzzy quadratic Riccati differential equation is estimated using neural networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). The solution can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that NN approach shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over RK4.
A neuro approach to solve fuzzy Riccati differential equations
Shahrir, Mohammad Shazri; Kumaresan, N. Kamali, M. Z. M.; Ratnavelu, Kurunathan
2015-10-22
There are many applications of optimal control theory especially in the area of control systems in engineering. In this paper, fuzzy quadratic Riccati differential equation is estimated using neural networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). The solution can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that NN approach shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over RK4.
Compact high order schemes for the Euler equations
NASA Technical Reports Server (NTRS)
Abarbanel, Saul; Kumar, Ajay
1988-01-01
An implicit approximate factorization (AF) algorithm is constructed which has the following characteistics. In 2-D: The scheme is unconditionally stable, has a 3 x 3 stencil and at steady state has a fourth order spatial accuracy. The temporal evolution is time accurate either to first or second order through choice of parameter. In 3-D: The scheme has almost the same properties as in 2-D except that it is now only conditionally stable, with the stability condition (the CFL number) being dependent on the cell aspect ratios, delta y/delta x and delta z/delta x. The stencil is still compact and fourth order accuracy at steady state is maintained. Numerical experiments on a 2-D shock-reflection problem show the expected improvement over lower order schemes, not only in accuracy (measured by the L sub 2 error) but also in the dispersion. It is also shown how the same technique is immediately extendable to Runge-Kutta type schemes resulting in improved stability in addition to the enhanced accuracy.
Analysis of High Order Difference Methods for Multiscale Complex Compressible Flows
NASA Technical Reports Server (NTRS)
Sjoegreen, Bjoern; Yee, H. C.; Tang, Harry (Technical Monitor)
2002-01-01
Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes with incremental studies was initiated. Here we further refine the analysis on, and improve the understanding of the adaptive numerical dissipation control strategy. Basically, the development of these schemes focuses on high order nondissipative schemes and takes advantage of the progress that has been made for the last 30 years in numerical methods for conservation laws, such as techniques for imposing boundary conditions, techniques for stability at shock waves, and techniques for stable and accurate long-time integration. We concentrate on high order centered spatial discretizations and a fourth-order Runge-Kutta temporal discretizations as the base scheme. Near the bound-aries, the base scheme has stable boundary difference operators. To further enhance stability, the split form of the inviscid flux derivatives is frequently used for smooth flow problems. To enhance nonlinear stability, linear high order numerical dissipations are employed away from discontinuities, and nonlinear filters are employed after each time step in order to suppress spurious oscillations near discontinuities to minimize the smearing of turbulent fluctuations. Although these schemes are built from many components, each of which is well-known, it is not entirely obvious how the different components be best connected. For example, the nonlinear filter could instead have been built into the spatial discretization, so that it would have been activated at each stage in the Runge-Kutta time stepping. We could think
NASA Astrophysics Data System (ADS)
Li Chun Fong, Lena C. M.; Lach, Grzegorz; Le Roy, Robert J.; Dattani, Nikesh S.
2015-06-01
The 13.81(8)s half-life of the halo nucleonic atom 11Be is orders of magnitude longer than those for any other halo nucleonic atom known, and makes Be-based diatomics the most promising candidates for the formation of the first halo nucleonic molecules. However, the 4e^- species LiH and BeH^+ are some of the first molecules for which the highest accuracy ab initio methods are not accessible, so empirical potential energy functions will be important for making predictions and for benchmarking how ab initio calculations break down at this transition from 3e^- to 4e^-. BeH^+ is also very light, and has one of the most extensive data sets involving a tritium isotopologue, making it a very useful benchmark for studying Born-Oppenheimer breakdown. We therefore seek to determine an empirical analytic potential energy function for BeH^+ that has as much precision as possible. To this end, all available spectroscopic data for all stable isotopologues of BeH^+ are analyzed in a standard direct-potential-fit procedure that uses least-squares fits to optimize the parameters defining an analytic potential. The ``Morse/Long-range'' (MLR) model used for the potential energy function incorporates the inverse-power long-range tail required by theory, and the calculation of the leading long-range coefficients C_4, C_6, C_7, and C_8 include non-adiabatic terms, and up to 4th order QED corrections. As a by-product, we have calculated some fundamental properties of 1e^- systems with unprecedented precision, such as the dipole, quadrupole, octupole, non-adiabatic, and mixed higher order polarizabilities of hydrogen, deuterium, and tritium. We provide good first estimates for the transition energies for the halo nucleonic species 11BeH^+ and 14BeH^+.
Mathematical modeling of intrinsic Josephson junctions with capacitive and inductive couplings
NASA Astrophysics Data System (ADS)
Rahmonov, I. R.; Shukrinov, Yu M.; Zemlyanaya, E. V.; Sarhadov, I.; Andreeva, O.
2012-11-01
We investigate the current voltage characteristics (CVC) of intrinsic Josephson junctions (IJJ) with two types of couplings between junctions: capacitive and inductive. The IJJ model is described by a system of coupled sine-Gordon equations which is solved numerically by the 4th order Runge-Kutta method. The method of numerical simulation and numerical results are presented. The magnetic field distribution is calculated as the function of coordinate and time at different values of the bias current. The influence of model parameters on the CVC is studied. The behavior of the IJJ in dependence on coupling parameters is discussed.
Improving Social Interaction among 4th Grade Students through Social Skills Instruction.
ERIC Educational Resources Information Center
Dunleavy, Shannon; Karwowski, Sandra; Shudes-Eitel, Jennifer
This action research project implemented a program for improving social skills in order to establish positive interaction among 4th grade students at a northern Chicago suburban school. Social skills deficiency was documented through behavior checklists and referrals, teacher observations and student reflection. Teachers reported that low incomes,…
An almost symmetric Strang splitting scheme for the construction of high order composition methods.
Einkemmer, Lukas; Ostermann, Alexander
2014-12-01
In this paper we consider splitting methods for nonlinear ordinary differential equations in which one of the (partial) flows that results from the splitting procedure cannot be computed exactly. Instead, we insert a well-chosen state [Formula: see text] into the corresponding nonlinearity [Formula: see text], which results in a linear term [Formula: see text] whose exact flow can be determined efficiently. Therefore, in the spirit of splitting methods, it is still possible for the numerical simulation to satisfy certain properties of the exact flow. However, Strang splitting is no longer symmetric (even though it is still a second order method) and thus high order composition methods are not easily attainable. We will show that an iterated Strang splitting scheme can be constructed which yields a method that is symmetric up to a given order. This method can then be used to attain high order composition schemes. We will illustrate our theoretical results, up to order six, by conducting numerical experiments for a charged particle in an inhomogeneous electric field, a post-Newtonian computation in celestial mechanics, and a nonlinear population model and show that the methods constructed yield superior efficiency as compared to Strang splitting. For the first example we also perform a comparison with the standard fourth order Runge-Kutta methods and find significant gains in efficiency as well better conservation properties. PMID:25473146
Toward a consistent framework for high order mesh refinement schemes in numerical relativity
NASA Astrophysics Data System (ADS)
Mongwane, Bishop
2015-05-01
It has now become customary in the field of numerical relativity to couple high order finite difference schemes to mesh refinement algorithms. To this end, different modifications to the standard Berger-Oliger adaptive mesh refinement algorithm have been proposed. In this work we present a fourth order stable mesh refinement scheme with sub-cycling in time for numerical relativity. We do not use buffer zones to deal with refinement boundaries but explicitly specify boundary data for refined grids. We argue that the incompatibility of the standard mesh refinement algorithm with higher order Runge Kutta methods is a manifestation of order reduction phenomena, caused by inconsistent application of boundary data in the refined grids. Our scheme also addresses the problem of spurious reflections that are generated when propagating waves cross mesh refinement boundaries. We introduce a transition zone on refined levels within which the phase velocity of propagating modes is allowed to decelerate in order to smoothly match the phase velocity of coarser grids. We apply the method to test problems involving propagating waves and show a significant reduction in spurious reflections.
Fourth-order compact schemes for the numerical simulation of coupled Burgers' equation
NASA Astrophysics Data System (ADS)
Bhatt, H. P.; Khaliq, A. Q. M.
2016-03-01
This paper introduces two new modified fourth-order exponential time differencing Runge-Kutta (ETDRK) schemes in combination with a global fourth-order compact finite difference scheme (in space) for direct integration of nonlinear coupled viscous Burgers' equations in their original form without using any transformations or linearization techniques. One scheme is a modification of the Cox and Matthews ETDRK4 scheme based on (1 , 3) -Padé approximation and other is a modification of Krogstad's ETDRK4-B scheme based on (2 , 2) -Padé approximation. Efficient versions of the proposed schemes are obtained by using a partial fraction splitting technique of rational functions. The stability properties of the proposed schemes are studied by plotting the stability regions, which provide an explanation of their behavior for dispersive and dissipative problems. The order of convergence of the schemes is examined empirically and found that the modification of ETDRK4 converges with the expected rate even if the initial data are nonsmooth. On the other hand, modification of ETDRK4-B suffers with order reduction if the initial data are nonsmooth. Several numerical experiments are carried out in order to demonstrate the performance and adaptability of the proposed schemes. The numerical results indicate that the proposed schemes provide better accuracy than other schemes available in the literature. Moreover, the results show that the modification of ETDRK4 is reliable and yields more accurate results than modification of ETDRK4-B, while solving problems with nonsmooth data or with high Reynolds number.
A Fourth Order Difference Scheme for the Maxwell Equations on Yee Grid
Fathy, Aly E; Wilson, Joshua L
2008-09-01
The Maxwell equations are solved by a long-stencil fourth order finite difference method over a Yee grid, in which different physical variables are located at staggered mesh points. A careful treatment of the numerical values near the boundary is introduced, which in turn leads to a 'symmetric image' formula at the 'ghost' grid points. Such a symmetric formula assures the stability of the boundary extrapolation. In turn, the fourth order discrete curl operator for the electric and magnetic vectors gives a complete set of eigenvalues in the purely imaginary axis. To advance the dynamic equations, the four-stage Runge-Kutta method is utilized, which results in a full fourth order accuracy in both time and space. A stability constraint for the time step is formulated at both the theoretical and numerical levels, using an argument of stability domain. An accuracy check is presented to verify the fourth order precision, using a comparison between exact solution and numerical solutions at a fixed final time. In addition, some numerical simulations of a loss-less rectangular cavity are also carried out and the frequency is measured precisely.
Effects of spatial order of accuracy on the computation of vortical flowfields
NASA Technical Reports Server (NTRS)
Ekaterinaris, J. A.
1993-01-01
The effect of the order-of-accuracy, used for the spatial discretization, on the resolution of the leading edge vortices over sharp-edged delta wings is investigated. The flowfield is computed using a viscous/inviscid zonal approach. The viscous flow in the vicinity of the wing is computed using the conservative formulation of the compressible, thin-layer Navier-Stokes equations. The leeward-side vortical flowfield and the other flow regions away from the surface are computed as inviscid. The time integration is performed with both an explicit fourth-order Runge-Kutta scheme and an implicit, factorized, iterative scheme. High-order-accurate inviscid fluxes are computed using both a conservative and a non-conservative (primitive variable) formulation. The nonlinear, inviscid terms of the primitive variable form of the governing equations are evaluated with a finite-difference numerical scheme based on the sign of the eigenvalues. High-order, upwind-biased, finite difference formulas are used to evaluate the derivatives of the nonlinear convective terms. Computed results are compared with available experimental data, and comparisons of the flowfield in the vicinity of the vortex cores are presented.
A second order residual based predictor-corrector approach for time dependent pollutant transport
NASA Astrophysics Data System (ADS)
Pavan, S.; Hervouet, J.-M.; Ricchiuto, M.; Ata, R.
2016-08-01
We present a second order residual distribution scheme for scalar transport problems in shallow water flows. The scheme, suitable for the unsteady cases, is obtained adapting to the shallow water context the explicit Runge-Kutta schemes for scalar equations [1]. The resulting scheme is decoupled from the hydrodynamics yet the continuity equation has to be considered in order to respect some important numerical properties at discrete level. Beyond the classical characteristics of the residual formulation presented in [1,2], we introduce the possibility to iterate the corrector step in order to improve the accuracy of the scheme. Another novelty is that the scheme is based on a precise monotonicity condition which guarantees the respect of the maximum principle. We thus end up with a scheme which is mass conservative, second order accurate and monotone. These properties are checked in the numerical tests, where the proposed approach is also compared to some finite volume schemes on unstructured grids. The results obtained show the interest in adopting the predictor-corrector scheme for pollutant transport applications, where conservation of the mass, monotonicity and accuracy are the most relevant concerns.
NASA Astrophysics Data System (ADS)
Núñez-de la Rosa, Jonatan; Munz, Claus-Dieter
2016-02-01
The present work describes the building blocks of a new code for computational magnetohydrodynamics based on very high order finite volume methods on Cartesian meshes. Spatial high-order accuracy is obtained with a weighted essentially non-oscillatory (WENO) reconstruction operator up to seventh order, while the time discretization is performed with a fourth-order strong-stability preserving Runge-Kutta method. Based on a shock-detection approach, the reconstruction operator employs a very high order WENO scheme in smooth flow regions and a third-order WENO scheme in those parts of the flow with discontinuities or shocks. The generalized Lagrange multiplier method is employed to enforce the solenoidal constraint on the magnetic field. Extensive numerical computations in one and two space dimensions are reported. Convergence rates for smooth flows verify the high-order accuracy of the scheme, and tests with strong shocks, including the Orszag-Tang vortex, the cylindrical blast wave problem, the rotor problem, and the Kelvin-Helmholtz instability, confirm the robustness and stability of the approach.
NASA Technical Reports Server (NTRS)
Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The efficiency gains obtained using higher-order implicit Runge-Kutta schemes as compared with the second-order accurate backward difference schemes for the unsteady Navier-Stokes equations are investigated. Three different algorithms for solving the nonlinear system of equations arising at each timestep are presented. The first algorithm (NMG) is a pseudo-time-stepping scheme which employs a non-linear full approximation storage (FAS) agglomeration multigrid method to accelerate convergence. The other two algorithms are based on Inexact Newton's methods. The linear system arising at each Newton step is solved using iterative/Krylov techniques and left preconditioning is used to accelerate convergence of the linear solvers. One of the methods (LMG) uses Richardson's iterative scheme for solving the linear system at each Newton step while the other (PGMRES) uses the Generalized Minimal Residual method. Results demonstrating the relative superiority of these Newton's methods based schemes are presented. Efficiency gains as high as 10 are obtained by combining the higher-order time integration schemes with the more efficient nonlinear solvers.
A high-order element-based Galerkin Method for the global shallow water equations.
Nair, Ramachandran D.; Tufo, Henry M.; Levy, Michael Nathan
2010-08-01
The shallow water equations are used as a test for many atmospheric models because the solution mimics the horizontal aspects of atmospheric dynamics while the simplicity of the equations make them useful for numerical experiments. This study describes a high-order element-based Galerkin method for the global shallow water equations using absolute vorticity, divergence, and fluid depth (atmospheric thickness) as the prognostic variables, while the wind field is a diagnostic variable that can be calculated from the stream function and velocity potential (the Laplacians of which are the vorticity and divergence, respectively). The numerical method employed to solve the shallow water system is based on the discontinuous Galerkin and spectral element methods. The discontinuous Galerkin method, which is inherently conservative, is used to solve the equations governing two conservative variables - absolute vorticity and atmospheric thickness (mass). The spectral element method is used to solve the divergence equation and the Poisson equations for the velocity potential and the stream function. Time integration is done with an explicit strong stability-preserving second-order Runge-Kutta scheme and the wind field is updated directly from the vorticity and divergence at each stage, and the computational domain is the cubed sphere. A stable steady-state test is run and convergence results are provided, showing that the method is high-order accurate. Additionally, two tests without analytic solutions are run with comparable results to previous high-resolution runs found in the literature.
High-order central Hermite WENO schemes: Dimension-by-dimension moment-based reconstructions
NASA Astrophysics Data System (ADS)
Tao, Zhanjing; Li, Fengyan; Qiu, Jianxian
2016-08-01
In this paper, a class of high-order central finite volume schemes is proposed for solving one- and two-dimensional hyperbolic conservation laws. Formulated on staggered meshes, the methods involve Hermite WENO (HWENO) spatial reconstructions, and Lax-Wendroff type discretizations or the natural continuous extension of Runge-Kutta methods in time. Differently from the central Hermite WENO methods we developed previously in Tao et al. (2015) [34], the spatial reconstructions, a core ingredient of the methods, are based on the zeroth-order and the first-order moments of the solution, and are implemented through a dimension-by-dimension strategy when the spatial dimension is higher than one. This leads to much simpler implementation of the methods in higher dimension and better cost efficiency. Meanwhile, the proposed methods have the attractive features of the general central Hermite WENO methods such as being compact in reconstruction and requiring neither flux splitting nor numerical fluxes, while being accurate and essentially non-oscillatory. A collection of one- and two-dimensional numerical examples is presented to demonstrate high resolution and robustness of the methods in capturing smooth and non-smooth solutions.
Validation of a High-Order Prefactored Compact Scheme on Nonlinear Flows with Complex Geometries
NASA Technical Reports Server (NTRS)
Hixon, Ray; Mankbadi, Reda R.; Povinelli, L. A. (Technical Monitor)
2000-01-01
Three benchmark problems are solved using a sixth-order prefactored compact scheme employing an explicit 10th-order filter with optimized fourth-order Runge-Kutta time stepping. The problems solved are the following: (1) propagation of sound waves through a transonic nozzle; (2) shock-sound interaction; and (3) single airfoil gust response. In the first two problems, the spatial accuracy of the scheme is tested on a stretched grid, and the effectiveness of boundary conditions is shown. The solution stability and accuracy near a shock discontinuity is shown as well. Also, 1-D nonlinear characteristic boundary conditions will be evaluated. In the third problem, a nonlinear Euler solver will be used that solves the equations in generalized curvilinear coordinates using the chain rule transformation. This work, continuing earlier work on flat-plate cascades and Joukowski airfoils, will focus mainly on the effect of the grid and boundary conditions on the accuracy of the solution. The grids were generated using a commercially available grid generator, GridPro/az3000.
NASA Astrophysics Data System (ADS)
Jang, Juhi; Li, Fengyan; Qiu, Jing-Mei; Xiong, Tao
2015-01-01
In this paper, we develop a family of high order asymptotic preserving schemes for some discrete-velocity kinetic equations under a diffusive scaling, that in the asymptotic limit lead to macroscopic models such as the heat equation, the porous media equation, the advection-diffusion equation, and the viscous Burgers' equation. Our approach is based on the micro-macro reformulation of the kinetic equation which involves a natural decomposition of the equation to the equilibrium and non-equilibrium parts. To achieve high order accuracy and uniform stability as well as to capture the correct asymptotic limit, two new ingredients are employed in the proposed methods: discontinuous Galerkin (DG) spatial discretization of arbitrary order of accuracy with suitable numerical fluxes; high order globally stiffly accurate implicit-explicit (IMEX) Runge-Kutta scheme in time equipped with a properly chosen implicit-explicit strategy. Formal asymptotic analysis shows that the proposed scheme in the limit of ε → 0 is a consistent high order discretization for the limiting equation. Numerical results are presented to demonstrate the stability and high order accuracy of the proposed schemes together with their performance in the limit. Our methods are also tested for the continuous-velocity one-group transport equation in slab geometry and for several examples with spatially varying parameters.
NASA Astrophysics Data System (ADS)
Pan, Liang; Xu, Kun
2016-08-01
In this paper, for the first time a third-order compact gas-kinetic scheme is proposed on unstructured meshes for the compressible viscous flow computations. The possibility to design such a third-order compact scheme is due to the high-order gas evolution model, where a time-dependent gas distribution function at cell interface not only provides the fluxes across a cell interface, but also presents a time accurate solution for flow variables at cell interface. As a result, both cell averaged and cell interface flow variables can be used for the initial data reconstruction at the beginning of next time step. A weighted least-square procedure has been used for the initial reconstruction. Therefore, a compact third-order gas-kinetic scheme with the involvement of neighboring cells only can be developed on unstructured meshes. In comparison with other conventional high-order schemes, the current method avoids the Gaussian point integration for numerical fluxes along a cell interface and the multi-stage Runge-Kutta method for temporal accuracy. The third-order compact scheme is numerically stable under CFL condition CFL ≈ 0.5. Due to its multidimensional gas-kinetic formulation and the coupling of inviscid and viscous terms, even with unstructured meshes, the boundary layer solution and vortex structure can be accurately captured by the current scheme. At the same time, the compact scheme can capture strong shocks as well.
European Code against Cancer, 4th Edition: Cancer screening.
Armaroli, Paola; Villain, Patricia; Suonio, Eero; Almonte, Maribel; Anttila, Ahti; Atkin, Wendy S; Dean, Peter B; de Koning, Harry J; Dillner, Lena; Herrero, Rolando; Kuipers, Ernst J; Lansdorp-Vogelaar, Iris; Minozzi, Silvia; Paci, Eugenio; Regula, Jaroslaw; Törnberg, Sven; Segnan, Nereo
2015-12-01
In order to update the previous version of the European Code against Cancer and formulate evidence-based recommendations, a systematic search of the literature was performed according to the methodology agreed by the Code Working Groups. Based on the review, the 4th edition of the European Code against Cancer recommends: "Take part in organized cancer screening programmes for: Bowel cancer (men and women); Breast cancer (women); Cervical cancer (women)." Organized screening programs are preferable because they provide better conditions to ensure that the Guidelines for Quality Assurance in Screening are followed in order to achieve the greatest benefit with the least harm. Screening is recommended only for those cancers where a demonstrated life-saving effect substantially outweighs the potential harm of examining very large numbers of people who may otherwise never have, or suffer from, these cancers, and when an adequate quality of the screening is achieved. EU citizens are recommended to participate in cancer screening each time an invitation from the national or regional screening program is received and after having read the information materials provided and carefully considered the potential benefits and harms of screening. Screening programs in the European Union vary with respect to the age groups invited and to the interval between invitations, depending on each country's cancer burden, local resources, and the type of screening test used For colorectal cancer, most programs in the EU invite men and women starting at the age of 50-60 years, and from then on every 2 years if the screening test is the guaiac-based fecal occult blood test or fecal immunochemical test, or every 10 years or more if the screening test is flexible sigmoidoscopy or total colonoscopy. Most programs continue sending invitations to screening up to the age of 70-75 years. For breast cancer, most programs in the EU invite women starting at the age of 50 years, and not before the age
Computations of Flow Over a Hump Model Using Higher Order Method With Turbulence Modeling
NASA Technical Reports Server (NTRS)
Balakumar, Ponnampalam
2004-01-01
Turbulent separated flow over a two-dimensional hump is computed by solving the RANS equations with k-omega (SST) turbulence model for the baseline, steady suction and oscillatory blowing/suction flow control cases. The flow equations and the turbulent model equations are solved using a fifth-order accurate weighted essentially nonoscillatory (WENO) scheme for space discretization and a third order, total variation diminishing (TVD) Runge-Kutta scheme for time integration. Qualitatively the computed pressure distributions exhibit the same behavior as they are observed in the experiments. The computed separation regions are much longer than that are observed. However, the percentage reduction in the separation region in the steady suction case is closer to that was measured in the experiment. The computations did not predict the expected reduction in the separation length in the oscillatory case. The predicted turbulent quantities are two to three times smaller than that are measured and it points towards the deficiencies in the existing turbulent models when they are applied to strong steady/unsteady separated flows.
Computations of Flow over a Hump Model Using Higher Order Method with Turbulence Modeling
NASA Technical Reports Server (NTRS)
Balakumar, P.
2005-01-01
Turbulent separated flow over a two-dimensional hump is computed by solving the RANS equations with k - omega (SST) turbulence model for the baseline, steady suction and oscillatory blowing/suction flow control cases. The flow equations and the turbulent model equations are solved using a fifth-order accurate weighted essentially. nonoscillatory (WENO) scheme for space discretization and a third order, total variation diminishing (TVD) Runge-Kutta scheme for time integration. Qualitatively the computed pressure distributions exhibit the same behavior as those observed in the experiments. The computed separation regions are much longer than those observed experimentally. However, the percentage reduction in the separation region in the steady suction case is closer to what was measured in the experiment. The computations did not predict the expected reduction in the separation length in the oscillatory case. The predicted turbulent quantities are two to three times smaller than the measured values pointing towards the deficiencies in the existing turbulent models when they are applied to strong steady/unsteady separated flows.
Direct calculations of waves in fluid flows using high-order compact difference scheme
NASA Technical Reports Server (NTRS)
Yu, Sheng-Tao; Hultgren, Lennart S.; Liu, Nan-Suey
1994-01-01
The solution of the unsteady Euler equations by a sixth-order compact difference scheme combined with a fourth-order Runge-Kutta method is investigated. Closed-form expression for the amplification factors and their corresponding dispersion correlations are obtained by Fourier analysis of the fully discretized, two-dimensional Euler equations. The numerical dissipation, dispersion, and anisotropic effects are assessed. It is found that the Courant-Friedrichs-Lewy (CFL) limit for stable calculations is about 0.8. For a CFL number equal to 0.6, the smallest wavelength which is resolved without numerical damping is about six - eight grid nodes. For phase speeds corresponding to acoustic waves, the corresponding time period is resolved by about 200 - 300 time steps. Three numerical examples of waves in compressible flow are included: (1) sound propagation in a duct with linear shear, (2) linear wave growth in a compressible free shear layer, and (3) vortex pairing in a compressible free shear layer perturbed at two frequencies.
Parallel Adjective High-Order CFD Simulations Characterizing SOFIA Cavity Acoustics
NASA Technical Reports Server (NTRS)
Barad, Michael F.; Brehm, Christoph; Kiris, Cetin C.; Biswas, Rupak
2016-01-01
This paper presents large-scale MPI-parallel computational uid dynamics simulations for the Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is an airborne, 2.5-meter infrared telescope mounted in an open cavity in the aft fuselage of a Boeing 747SP. These simulations focus on how the unsteady ow eld inside and over the cavity interferes with the optical path and mounting structure of the telescope. A temporally fourth-order accurate Runge-Kutta, and spatially fth-order accurate WENO- 5Z scheme was used to perform implicit large eddy simulations. An immersed boundary method provides automated gridding for complex geometries and natural coupling to a block-structured Cartesian adaptive mesh re nement framework. Strong scaling studies using NASA's Pleiades supercomputer with up to 32k CPU cores and 4 billion compu- tational cells shows excellent scaling. Dynamic load balancing based on execution time on individual AMR blocks addresses irregular numerical cost associated with blocks con- taining boundaries. Limits to scaling beyond 32k cores are identi ed, and targeted code optimizations are discussed.
NASA Astrophysics Data System (ADS)
Teyssier, Romain; Fromang, Sébastien; Dormy, Emmanuel
2006-10-01
We propose to extend the well-known MUSCL-Hancock scheme for Euler equations to the induction equation modeling the magnetic field evolution in kinematic dynamo problems. The scheme is based on an integral form of the underlying conservation law which, in our formulation, results in a “finite-surface” scheme for the induction equation. This naturally leads to the well-known “constrained transport” method, with additional continuity requirement on the magnetic field representation. The second ingredient in the MUSCL scheme is the predictor step that ensures second order accuracy both in space and time. We explore specific constraints that the mathematical properties of the induction equations place on this predictor step, showing that three possible variants can be considered. We show that the most aggressive formulations (referred to as C-MUSCL and U-MUSCL) reach the same level of accuracy as the other one (referred to as Runge Kutta), at a lower computational cost. More interestingly, these two schemes are compatible with the adaptive mesh refinement (AMR) framework. It has been implemented in the AMR code RAMSES. It offers a novel and efficient implementation of a second order scheme for the induction equation. We have tested it by solving two kinematic dynamo problems in the low diffusion limit. The construction of this scheme for the induction equation constitutes a step towards solving the full MHD set of equations using an extension of our current methodology.
Time Integration Schemes for the Unsteady Navier-stokes Equations
NASA Technical Reports Server (NTRS)
Bijl, Hester; Carpenter, Mark H.; Vatsa, Veer N.
2001-01-01
The efficiency and accuracy of several time integration schemes are investigated for the unsteady Navier-Stokes equations. This study focuses on the efficiency of higher-order Runge-Kutta schemes in comparison with the popular Backward Differencing Formulations. For this comparison an unsteady two-dimensional laminar flow problem is chosen, i.e., flow around a circular cylinder at Re = 1200. It is concluded that for realistic error tolerances (smaller than 10(exp -1)) fourth-and fifth-order Runge-Kutta schemes are the most efficient. For reasons of robustness and computer storage, the fourth-order Runge-Kutta method is recommended. The efficiency of the fourth-order Runge-Kutta scheme exceeds that of second-order Backward Difference Formula by a factor of 2.5 at engineering error tolerance levels (10(exp -1) to 10(exp -2)). Efficiency gains are more dramatic at smaller tolerances.
4th International Plant Biomechanics Conference Proceedings (Abstracts)
Frank W. Telewski; Lothar H. Koehler; Frank W. Ewers
2003-07-20
The 4th International Plant Biomechanics Conference facilitated an interdisciplinary exchange between scientists, engineers, and educators addressing the major questions encountered in the field of Plant Biomechanics. Subjects covered by the conference include: Evolution; Ecology; Mechanoreception; Cell Walls; Genetic Modification; Applied Biomechanics of Whole Plants, Plant Products, Fibers & Composites; Fluid Dynamics; Wood & Trees; Fracture Mechanics; Xylem Pressure & Water Transport; Modeling; and Introducing Plant Biomechanics in Secondary School Education.
NASA Astrophysics Data System (ADS)
Greene, Patrick T.; Eldredge, Jeff D.; Zhong, Xiaolin; Kim, John
2016-07-01
In this paper, we present a method for performing uniformly high-order direct numerical simulations of high-speed flows over arbitrary geometries. The method was developed with the goal of simulating and studying the effects of complex isolated roughness elements on the stability of hypersonic boundary layers. The simulations are carried out on Cartesian grids with the geometries imposed by a third-order cut-stencil method. A fifth-order hybrid weighted essentially non-oscillatory scheme was implemented to capture any steep gradients in the flow created by the geometries and a third-order Runge-Kutta method is used for time advancement. A multi-zone refinement method was also utilized to provide extra resolution at locations with expected complex physics. The combination results in a globally fourth-order scheme in space and third order in time. Results confirming the method's high order of convergence are shown. Two-dimensional and three-dimensional test cases are presented and show good agreement with previous results. A simulation of Mach 3 flow over the logo of the Ubuntu Linux distribution is shown to demonstrate the method's capabilities for handling complex geometries. Results for Mach 6 wall-bounded flow over a three-dimensional cylindrical roughness element are also presented. The results demonstrate that the method is a promising tool for the study of hypersonic roughness-induced transition.
a Numerical Comparison of Langrange and Kane's Methods of AN Arm Segment
NASA Astrophysics Data System (ADS)
Rambely, Azmin Sham; Halim, Norhafiza Ab.; Ahmad, Rokiah Rozita
A 2-D model of a two-link kinematic chain is developed using two dynamics equations of motion, namely Kane's and Lagrange Methods. The dynamics equations are reduced to first order differential equation and solved using modified Euler and fourth order Runge Kutta to approximate the shoulder and elbow joint angles during a smash performance in badminton. Results showed that Runge-Kutta produced a better and exact approximation than that of modified Euler and both dynamic equations produced better absolute errors.
NASA Astrophysics Data System (ADS)
Abdul Hakeem, A. K.; Vishnu Ganesh, N.; Ganga, B.
2015-05-01
The magnetic field effect on a steady two dimensional laminar radiative flow of an incompressible viscous water based nanofluid over a stretching/shrinking sheet with second order slip boundary condition is investigated both analytically and numerically. The governing partial differential equations are reduced to nonlinear ordinary differential equations by means of Lie symmetry group transformations. The dimensionless governing equations for this investigation are solved analytically using hyper-geometric function and numerically by the fourth order Runge-Kutta method with the shooting technique. A unique exact solution exists for momentum equation in stretching sheet case and dual solutions are obtained for shrinking sheet case which has upper and lower branches. It is found that the lower branch solution vanishes in the presence of higher magnetic field. The velocity and temperature profiles, the local skin friction coefficient and the reduced Nusselt number are examined and discussed for different spherical nanoparticles such as Au, Ag, Cu, Al, Al2 O3 and TiO2. A comparative study between the previously published results and the present analytical and numerical results for a special case is found to be in good agreement.
NASA Astrophysics Data System (ADS)
Yu, Cong
2011-03-01
The force-free (or low inertia) limit of magnetohydrodynamics (MHD) can be applied to many astrophysical objects, including black holes, neutron stars and accretion discs, where the electromagnetic field is so strong that the inertia and pressure of the plasma can be ignored. This is difficult to achieve with the standard MHD numerical methods because they still have to deal with plasma inertial terms even when these terms are much smaller than the electromagnetic terms. Under the force-free approximation, the plasma dynamics is entirely determined by the magnetic field. The plasma provides the currents and charge densities required by the dynamics of electromagnetic fields, but these currents carry no inertia. We present a high-order Godunov scheme to study such force-free electrodynamics. We have implemented weighted essentially non-oscillatory (WENO) spatial interpolations in our scheme. An exact Riemann solver is implemented, which requires spectral decomposition into characteristic waves. We advance the magnetic field with the constrained transport (CT) scheme to preserve the divergence-free condition to machine round-off error. We apply the third-order total variation diminishing (TVD) Runge-Kutta scheme for the temporal integration. The mapping from face-centred variables to volume-centred variables is carefully considered. Extensive testing are performed to demonstrate the ability of our scheme to address force-free electrodynamics correctly. We finally apply the scheme to study relativistic magnetically dominated tearing instabilities and neutron star magnetospheres.
A Review of High-Order and Optimized Finite-Difference Methods for Simulating Linear Wave Phenomena
NASA Technical Reports Server (NTRS)
Zingg, David W.
1996-01-01
This paper presents a review of high-order and optimized finite-difference methods for numerically simulating the propagation and scattering of linear waves, such as electromagnetic, acoustic, or elastic waves. The spatial operators reviewed include compact schemes, non-compact schemes, schemes on staggered grids, and schemes which are optimized to produce specific characteristics. The time-marching methods discussed include Runge-Kutta methods, Adams-Bashforth methods, and the leapfrog method. In addition, the following fourth-order fully-discrete finite-difference methods are considered: a one-step implicit scheme with a three-point spatial stencil, a one-step explicit scheme with a five-point spatial stencil, and a two-step explicit scheme with a five-point spatial stencil. For each method studied, the number of grid points per wavelength required for accurate simulation of wave propagation over large distances is presented. Recommendations are made with respect to the suitability of the methods for specific problems and practical aspects of their use, such as appropriate Courant numbers and grid densities. Avenues for future research are suggested.
Bifrost: A 4th Generation Launch Architecture Concept
NASA Astrophysics Data System (ADS)
Rohrschneider, R. R.; Young, D.; St.Germain, B.; Brown, N.; Crowley, J.; Maatsch, J.; Olds, J. R.
2002-01-01
A 4th generation launch architecture is studied for the purpose of drastically reducing launch costs and hence enabling new large mass missions such as space solar power and human exploration of other planets. The architecture consists of a magnetic levitation launch tube placed on the equator with the exit end elevated to approximately 20 km. Several modules exist for sending manned and unmanned payloads into Earth orbit. Analysis of the launch tube operations, launch trajectories, module aerodynamics, propulsion modules, and system costs are presented. Using the hybrid logistics module, it is possible to place payloads into low Earth orbit for just over 100 per lb.
High Order Difference Method for Low Mach Number Aeroacoustics
NASA Technical Reports Server (NTRS)
Mueller, B.; Yee, H. C.; Mansour, Nagi (Technical Monitor)
2001-01-01
A high order finite difference method with improved accuracy and stability properties for computational aeroacoustics (CAA) at low Mach numbers is proposed. The Euler equations are split into a conservative and a symmetric non- conservative portion to allow the derivation of a generalized energy estimate. Since the symmetrization is based on entropy variables, that splitting of the flux derivatives is referred to as entropy splitting. Its discretization by high order central differences was found to need less numerical dissipation than conventional conservative schemes. Owing to the large disparity of acoustic and stagnation quantities in low Mach number aeroacoustics, the split Euler equations are formulated in perturbation form. The unknowns are the small changes of the conservative variables with respect to their large stagnation values. All nonlinearities and the conservation form of the conservative portion of the split flux derivatives can be retained, while cancellation errors are avoided with its discretization opposed to the conventional conservative form. The finite difference method is third-order accurate at the boundary and the conventional central sixth-order accurate stencil in the interior. The difference operator satisfies the summation by parts property analogous to the integration by parts in the continuous energy estimate. Thus, strict stability of the difference method follows automatically. Spurious high frequency oscillations are suppressed by a characteristic-based filter similar to but without limiter. The time derivative is approximated by a 4-stage low-storage second-order explicit Runge-Kutta method. The method has been applied to simulate vortex sound at low Mach numbers. We consider the Kirchhoff vortex, which is an elliptical patch of constant vorticity rotating with constant angular frequency in irrotational flow. The acoustic pressure generated by the Kirchhoff vortex is governed by the 2D Helmholtz equation, which can be solved
Li, Wentao; Zhang, Dong H; Sun, Zhigang
2014-10-23
An efficient fourth-order split operator (named 4A6a in the main text), which was presented in the work by Blanes and Moan and was a partitioned Runge-Kutta method ( J. Comput. Appl. Math. 2002 , 142 , 313 ), is recommended for general usage in a reactive scattering calculation by the time-dependent quantum wavepacket method. This 4A6a propagator is constructed in a TVT form, that is, splitting in kinetic-potential-kinetic form, which is an optimal one among a series of higher-order split operators in examining with several typical triatomic reactive scattering processes, H + H2, H + H2(+), H + NH, H + O2, and F + HD reactions. A detailed comparison between the performances of higher-order split operators in the VTV form, that is, splitting in a potential-kinetic-potential, which was reported by Sun et al. ( Phys. Chem. Chem. Phys. 2012 , 14 , 1827 ), and in the TVT form reported in the current work suggests that the recommended 4A6a operator in the TVT form always has good numerical efficiency. This fact may suggest that this fourth propagator in the TVT form can be safely chosen without any further examination, at least among all of the higher-order split operators tested in this work, to apply in an efficient time-dependent wavepacket numerical calculation for describing a triatomic reactive scattering process. PMID:25268464
NASA Astrophysics Data System (ADS)
Motheau, E.; Abraham, J.
2016-05-01
A novel and efficient algorithm is presented in this paper to deal with DNS of turbulent reacting flows under the low-Mach-number assumption, with detailed chemistry and a quasi-spectral accuracy. The temporal integration of the equations relies on an operating-split strategy, where chemical reactions are solved implicitly with a stiff solver and the convection-diffusion operators are solved with a Runge-Kutta-Chebyshev method. The spatial discretisation is performed with high-order compact schemes, and a FFT based constant-coefficient spectral solver is employed to solve a variable-coefficient Poisson equation. The numerical implementation takes advantage of the 2DECOMP&FFT libraries developed by [1], which are based on a pencil decomposition method of the domain and are proven to be computationally very efficient. An enhanced pressure-correction method is proposed to speed up the achievement of machine precision accuracy. It is demonstrated that a second-order accuracy is reached in time, while the spatial accuracy ranges from fourth-order to sixth-order depending on the set of imposed boundary conditions. The software developed to implement the present algorithm is called HOLOMAC, and its numerical efficiency opens the way to deal with DNS of reacting flows to understand complex turbulent and chemical phenomena in flames.
A 95 GHz, 4th harmonic gyro-oscillator
Hargreaves, T.A.; Scheitrum, G.P.; Bemis, T.; Higgins, L.
1994-12-31
There is currently an interest in medium power ({approximately}100 kW), compact 95 GHz amplifiers for future radar applications. Size, weight, and efficiency are critical for airborne applications. Litton has been investigating a 4th harmonic, 4-cavity gyro-amplifier. The key to success of the amplifier is the axis-encircling electron beam from a new type of electron gun, the advanced center post (ACP) gun. Gun simulations incorporating the actual magnetic field and thermal velocity spread in the emitted electrons show that axial velocity spreads of less than 2% are attainable, which is significantly better than other gun concepts. The amplifier utilizes coaxial-magnetron-type cavities operating in the {pi} mode. In this cavity, vanes extend nearly down to the electron beam`s outside diameter. The majority of the RF stored energy in the system is in the coaxial cavity, so that the resonant frequency and quality factor of each coaxial magnetron cavity may be adjusted by varying only the coaxial cavity. Several components are being tested individually. To test the cavity design, a 4th harmonic oscillator based on a coaxial magnetron cavity has been designed. Results of the oscillator testing will be presented.
Some numerical methods for integrating systems of first-order ordinary differential equations
NASA Technical Reports Server (NTRS)
Clark, N. W.
1969-01-01
Report on numerical methods of integration includes the extrapolation methods of Bulirsch-Stoer and Neville. A comparison is made nith the Runge-Kutta and Adams-Moulton methods, and circumstances are discussed under which the extrapolation method may be preferred.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-29
... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zones; July 4th Weekend Fireworks Displays Within... under Executive Order 13132, Federalism, if it has a substantial direct effect on State or local governments and would either preempt State law or impose a substantial direct cost of compliance on them....
ERIC Educational Resources Information Center
Nam, Younkyeong; Karahan, Engin; Roehrig, Gillian
2016-01-01
Geologic time scale is a very important concept for understanding long-term earth system events such as climate change. This study examines forty-three 4th-8th grade Native American--particularly Ojibwe tribe--students' understanding of relative ordering and absolute time of Earth's significant geological and biological events. This study also…
Kinetic and reactor models for HDT of middle distillates
Cotta, R.M.; Filho, R.M.
1996-12-31
Hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) of middle distillates over a commercial Ni-Mo/y-Al{sub 2}O{sub 3} has been studied under wide operating conditions just as 340 to 380{degrees}C and 38 to 98 atm. A Power Law model was presented to each one of those reactions. The parameters of kinetic equations were estimated solving the ordinary differential equations by the 4 order Runge-Kutta-Gill algorithm and Marquardt method for searching of set of kinetic parameters (kinetic constants as well as the orders of reactions). An adiabatic diesel hydrotreating trickle-bed reactor packed with the same catalyst was simulated numerically in order to check up the behavior of this specific reaction system. One dimensional pseudo-homogeneous model was used in this work. For each feed, the mass and energy balance equations were integrated along the length of the catalytic bed using the 4th Runge-Kutta-Gill method. The performance of two industrial reactors was checked. 5 refs., 2 tabs.
Special Issue: 4th International Workshop on Space Radiation (IWSRR)
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
2007-01-01
This special issue of the journal "Radiation and Environmental Biophysics" contains 20 peer-reviewed papers contributed by leading space radiation researcher's world-wide attending the 4th IWSRR. Manuscripts cover a broad range of topics ranging from radiation environments and transport in shielding and planetary surfaces to new results in understanding the biological effects of protons and high-charge and energy (HZE) nuclei on the risk of cancer, and degenerative diseases such as central nervous system effects, heart disease, and cataracts. The issue provides a snapshot of the state-of-the-art of the research in this field, demonstrating both the important results gathered in the past few years with experiments at accelerators, and the need for more research to quantify the risk and develop countermeasures.
[Time--the 4th dimision in medicine and psychotherapy].
Bergmann, Günther
2003-01-01
Time is presented as well in his historical meaning and as 4th dimension in its medical and psychotherapeutic context. In this medical and psychotherapeutic process it has an important function and is a variable of a process procedure. The difference between "kairos" = (the right point of time) and "chronos" = (the period of time) is historically meanful. The subjective experienced time is as well emphasized by the development of time in the relation to the development of the "self" as in the subjective experience of time in medical and psychotherapeutic situations. There are also changed conceptions and understandings of time running parallel to the development of nature sciences. The importance of time is explained for the medical practice and the meeting with the patient--especially for chronic diseases. The connection of confidence and time is particularly emphasized in the systemic approach. PMID:12764877
European Code against Cancer 4th Edition: Breastfeeding and cancer.
Scoccianti, Chiara; Key, Timothy J; Anderson, Annie S; Armaroli, Paola; Berrino, Franco; Cecchini, Michele; Boutron-Ruault, Marie-Christine; Leitzmann, Michael; Norat, Teresa; Powers, Hilary; Schüz, Joachim; Wiseman, Martin; Romieu, Isabelle
2015-12-01
Breast cancer is the most frequent cancer in women, and incidence rates have been rising in European Union (EU) countries over recent decades due in part to a sharp decline in breastfeeding practices. Evidence for a protective association between breastfeeding and the risk of breast cancer at all ages is convincing, and modest protective relationships between breastfeeding and the risk of endometrial and ovarian cancers have been suggested. The reduction in breast cancer risk is estimated at 2% for an increase of 5 months of lifetime breastfeeding. The longer women breastfeed, the more they are protected against breast cancer. In addition, breastfeeding is associated with several health benefits for both the mother and the breastfed child. Taking all this evidence into account, the 4th edition of the European Code against Cancer recommends: "Breastfeeding reduces the mother's cancer risk. If you can, breastfeed your baby". PMID:26116994
The Epilepsy Foundation's 4th Biennial Epilepsy Pipeline Update Conference.
French, Jacqueline A; Schachter, Steven C; Sirven, Joseph; Porter, Roger
2015-05-01
On June 5 and 6, 2014, the Epilepsy Foundation held its 4th Biennial Epilepsy Pipeline Update Conference, an initiative of the Epilepsy Therapy Project, which showcased the most promising epilepsy innovations from health-care companies and academic laboratories dedicated to pioneering and advancing drugs, biologics, technologies, devices, and diagnostics for epilepsy. Speakers and attendees included emerging biotech and medical technology companies, major pharmaceutical and device companies, as well as investigators and innovators at the cutting-edge of epilepsy. The program included panel discussions on collaboration between small and large companies, how to get products in need of funding to the marketplace, who is currently funding epilepsy and CNS innovation, and how the NIH facilitates early-stage drug development. Finally, the conference featured the third annual "Shark Tank" competition. The presentations are summarized in this paper, which is followed by a compilation of the meeting poster abstracts. PMID:25922152
A second-order parareal algorithm for fractional PDEs
NASA Astrophysics Data System (ADS)
Wu, Shu-Lin
2016-02-01
We are concerned with using the parareal (parallel-in-time) algorithm for large scale ODEs system U‧ (t) + AU (t) + dAα U (t) = F (t) arising frequently in semi-discretizing time-dependent PDEs with spatial fractional operators, where d > 0 is a constant, α ∈ (0 , 1) and A is a spare and symmetric positive definite (SPD) matrix. The parareal algorithm is iterative and is characterized by two propagators F and G, which are respectively associated with small temporal mesh size Δt and large temporal mesh size ΔT. The two mesh sizes satisfy ΔT = JΔt with J ≥ 2 being an integer, which is called mesh ratio. Let Tunitf and Tunitg be respectively the computational cost of the two propagators for moving forward one time step. Then, it is well understood that the speedup of the parareal algorithm, namely E, satisfies E = O (clog (1 / ρ)) , where c : = Tunitf / Tunitg and ρ is the convergence factor. A larger E corresponds a more efficient parareal solver. For G = Backward-Euler and some choices of F, previous studies show that ρ can be a satisfactory quantity. Particularly, for F = 2nd-order DIRK (diagonally implicit Runge-Kutta), it holds ρ ≈1/3 for any choice of the mesh ratio J. In this paper, we continue to consider F = 2nd-order DIRK, but with a new choice for G, the IMEX (implicit-explicit) Euler method, where the 'implicit' and 'explicit' computation is respectively associated with A and dAα. Compared to the widely used Backward-Euler method, this choice on the one hand increases c (this point is apparent), and interestingly on the other hand it can also make the convergence factor ρ smaller: ρ ≈1/5! Numerical results are provided to support our conclusions.
High-Order Space-Time Methods for Conservation Laws
NASA Technical Reports Server (NTRS)
Huynh, H. T.
2013-01-01
Current high-order methods such as discontinuous Galerkin and/or flux reconstruction can provide effective discretization for the spatial derivatives. Together with a time discretization, such methods result in either too small a time step size in the case of an explicit scheme or a very large system in the case of an implicit one. To tackle these problems, two new high-order space-time schemes for conservation laws are introduced: the first is explicit and the second, implicit. The explicit method here, also called the moment scheme, achieves a Courant-Friedrichs-Lewy (CFL) condition of 1 for the case of one-spatial dimension regardless of the degree of the polynomial approximation. (For standard explicit methods, if the spatial approximation is of degree p, then the time step sizes are typically proportional to 1/p(exp 2)). Fourier analyses for the one and two-dimensional cases are carried out. The property of super accuracy (or super convergence) is discussed. The implicit method is a simplified but optimal version of the discontinuous Galerkin scheme applied to time. It reduces to a collocation implicit Runge-Kutta (RK) method for ordinary differential equations (ODE) called Radau IIA. The explicit and implicit schemes are closely related since they employ the same intermediate time levels, and the former can serve as a key building block in an iterative procedure for the latter. A limiting technique for the piecewise linear scheme is also discussed. The technique can suppress oscillations near a discontinuity while preserving accuracy near extrema. Preliminary numerical results are shown
Comparative study of numerical schemes of TVD3, UNO3-ACM and optimized compact scheme
NASA Technical Reports Server (NTRS)
Lee, Duck-Joo; Hwang, Chang-Jeon; Ko, Duck-Kon; Kim, Jae-Wook
1995-01-01
Three different schemes are employed to solve the benchmark problem. The first one is a conventional TVD-MUSCL (Monotone Upwind Schemes for Conservation Laws) scheme. The second scheme is a UNO3-ACM (Uniformly Non-Oscillatory Artificial Compression Method) scheme. The third scheme is an optimized compact finite difference scheme modified by us: the 4th order Runge Kutta time stepping, the 4th order pentadiagonal compact spatial discretization with the maximum resolution characteristics. The problems of category 1 are solved by using the second (UNO3-ACM) and third (Optimized Compact) schemes. The problems of category 2 are solved by using the first (TVD3) and second (UNO3-ACM) schemes. The problem of category 5 is solved by using the first (TVD3) scheme. It can be concluded from the present calculations that the Optimized Compact scheme and the UN03-ACM show good resolutions for category 1 and category 2 respectively.
76 FR 37649 - Safety Zone; Northern California Annual Fireworks Events, July 4th Fireworks Display
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-28
... SECURITY Coast Guard 33 CFR Part 165 Safety Zone; Northern California Annual Fireworks Events, July 4th Fireworks Display AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce safety zone for the annual July 4th Fireworks Display (Tahoe City 4th of...
77 FR 39172 - Safety Zone: Skagway Harbor, Skagway, AK for 4th of July Fireworks
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-02
... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone: Skagway Harbor, Skagway, AK for 4th of July... 4th of July Fireworks display. Persons desiring to transit within this safety zone must contact the... Inlet for the City of Skagway, Alaska, sponsored 4th of July fireworks display. A no-action...
PREFACE: 4th International Symposium on Functional Materials (ISFM2011)
NASA Astrophysics Data System (ADS)
Yin, Shu; Sekino, Tohru; Tanaka, Shun-ichiro; Sato, Tsugio; Lu, Li; Xue, Dongfeng
2012-01-01
The 4th International Symposium on Functional Materials (ISFM2011) was held in Sendai, Japan, on 2-6 August 2011. This Special Issue of Journal of Physics: Conference Series (JPCS) consists of partial manuscripts which were presented at ISFM2011. Advanced materials have experienced a dramatic increase in demand for research, development and applications. The aim of the International Symposium on Functional Materials (ISFM) was to provide an overview of the present status with historical background and to foresee future trends in the field of functional materials. The 4th symposium, ISFM 2011, covered a wide variety of topics within state-of-the-art advanced materials science and technology, and focused especially on four major categories including: Environmental Materials, Electronic Materials, Energy Materials and Biomedical Materials. As you know, a massive earthquake and the Tsunami that followed occurred near the Tohoku region on 11 March 2011. After the earthquake, although there were many difficulties in continuing to organize the symposium, we received warm encouragement from many researchers and societies, especially from the members of the International Advisory Committee and Organizing Committee, so that ISFM2011 could be held on schedule. We are honored that ISFM2011 was the first formal international academic conference held in the Tohoku area of Japan after the 11 March earthquake. About 140 participants from 14 countries took part in the ISFM2011 symposium, which included five plenary talks by world-leading scientists, 32 invited talks, and many oral and poster presentations. We are delighted to see that many researchers are interested in the synthesis and the properties as well as the applications of functional materials. Many fruitful and exciting research achievements were presented in the symposium. We believe that this symposium provided a good chance for scientists to communicate and exchange opinions with each other. We would also like to
IMEX-a : an adaptive, fifth order implicit-explicit integration scheme.
Brake, Matthew Robert
2013-05-01
This report presents an efficient and accurate method for integrating a system of ordinary differential equations, particularly those arising from a spatial discretization of partially differential equations. The algorithm developed, termed the IMEX a algorithm, belongs to a class of algorithms known as implicit-explicit (IMEX) methods. The explicit step is based on a fifth order Runge-Kutta explicit step known as the Dormand-Prince algorithm, which adaptively modifies the time step by calculating the error relative to a fourth order estimation. The implicit step, which follows the explicit step, is based on a backward Euler method, a special case of the generalized trapezoidal method. Reasons for choosing both of these methods, along with the algorithm development are presented. In applications that have less stringent accuracy requirements, several other methods are available through the IMEX a toolbox, each of which simplify the fifth order Dormand-Prince explicit step: the third order Bogacki-Shampine method, the second order Midpoint method, and the first order Euler method. The performance of the algorithm is evaluated on to examples. First, a two pawl system with contact is modeled. Results predicted by the IMEX a algorithm are compared to those predicted by six widely used integration schemes. The IMEX a algorithm is demonstrated to be significantly faster (by up to an order of magnitude) and at least as accurate as all of the other methods considered. A second example, an acoustic standing wave, is presented in order to assess the accuracy of the IMEX a algorithm. Finally, sample code is given in order to demonstrate the implementation of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Belmonte, Juan Antonio
2015-08-01
The pyramids of Egypt, notably those of the 4th Dinasty as Giza, have always be considered an unmistikable part of human world heritage as the only surviving wonders of the Ancient World. Their majesty, technical hability and innovative character have always beeen considered as representative of ancient Egyptian ingenuity. However, past and present fringe theories about the pyramids and astronomy have always polluted the role of our discipline in the design, construction and symbolism of these impressive monuments. This is indeed unfear. Fortunately, things have started to change in the last couple of decades and now astronomy is interpreted as a neccessary tool for the correct interpretation of the astral eschatology present in the 5th and 6th Dynasty Texts of the Pyramids. Although the pyramid complexes of the 4th Dynasty are mute, there is however recent research showing that a strong astral symbolism could be hidden in many aspects of the complex architecture and in the design of these exceptional monuments. This idea comes from several hints obtained not only from planning and construction, but also from epigraphy and the analysis of celestial and local landscapes. Chronology also plays a most relevant role on this. The pyramid complexes of the 4th Dynasty at Meidum, Dahshur, Giza and Abu Rowash -- all of which enjoy UNESCO World Heritage recognition -- willl be scrutinized. As a consequence, we will show how astronomy can certainly enhance the face value of these extraordinary monuments as a definitive proof of the ancient Egyptian quest for Ma'at, i.e. their perennial obsesion for Cosmic Order.
Managing haemophilia for life: 4th Haemophilia Global Summit.
Astermark, J; Dolan, G; Hilberg, T; Jiménez-Yuste, V; Laffan, M; Lassila, R; Lobet, S; Martinoli, C; Perno, C-F
2014-07-01
The 4th Haemophilia Global Summit was held in Potsdam, Germany, in September 2013 and brought together an international faculty of haemophilia experts and delegates from multidisciplinary backgrounds. The programme was designed by an independent Scientific Steering Committee of haemophilia experts and explored global perspectives in haemophilia care, discussing practical approaches to the optimal management of haemophilia now and in the future. The topics outlined in this supplement were selected by the Scientific Steering Committee for their relevance and potential to influence haemophilia care globally. In this supplement from the meeting, Jan Astermark reviews current understanding of risk factors for the development of inhibitory antibodies and discusses whether this risk can be modulated and minimized. Factors key to the improvement of joint health in people with haemophilia are explored, with Carlo Martinoli and Víctor Jiménez-Yuste discussing the utility of ultrasound for the early detection of haemophilic arthropathy. Other aspects of care necessary for the prevention and management of joint disease in people with haemophilia are outlined by Thomas Hilberg and Sébastian Lobet, who highlight the therapeutic benefits of physiotherapy and sports therapy. Riitta Lassila and Carlo-Federico Perno describe current knowledge surrounding the risk of transmission of infectious agents via clotting factor concentrates. Finally, different types of extended half-life technology are evaluated by Mike Laffan, with a focus on the practicalities and challenges associated with these products. PMID:24924596
European Code against Cancer 4th Edition: Diet and cancer.
Norat, Teresa; Scoccianti, Chiara; Boutron-Ruault, Marie-Christine; Anderson, Annie; Berrino, Franco; Cecchini, Michele; Espina, Carolina; Key, Tim; Leitzmann, Michael; Powers, Hilary; Wiseman, Martin; Romieu, Isabelle
2015-12-01
Lifestyle factors, including diet, have long been recognised as potentially important determinants of cancer risk. In addition to the significant role diet plays in affecting body fatness, a risk factor for several cancers, experimental studies have indicated that diet may influence the cancer process in several ways. Prospective studies have shown that dietary patterns characterised by higher intakes of fruits, vegetables, and whole-grain foods, and lower intakes of red and processed meats and salt, are related to reduced risks of death and cancer, and that a healthy diet can improve overall survival after diagnosis of breast and colorectal cancers. There is evidence that high intakes of fruit and vegetables may reduce the risk of cancers of the aerodigestive tract, and the evidence that dietary fibre protects against colorectal cancer is convincing. Red and processed meats increase the risk of colorectal cancer. Diets rich in high-calorie foods, such as fatty and sugary foods, may lead to increased calorie intake, thereby promoting obesity and leading to an increased risk of cancer. There is some evidence that sugary drinks are related to an increased risk of pancreatic cancer. Taking this evidence into account, the 4th edition of the European Code against Cancer recommends that people have a healthy diet to reduce their risk of cancer: they should eat plenty of whole grains, pulses, vegetables and fruits; limit high-calorie foods (foods high in sugar or fat); avoid sugary drinks and processed meat; and limit red meat and foods high in salt. PMID:26164653
Adaptive Numerical Dissipative Control in High Order Schemes for Multi-D Non-Ideal MHD
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sjoegreen, B.
2004-01-01
derivatives and a fourth-order Runge-Kutta method are denoted.
miR-155 Inhibition Sensitizes CD4+ Th Cells for TREG Mediated Suppression
Rust, Werner; Labhart, Paul; Alexiadis, Vassili; Becker, Christian; Hafner, Mathias; Weith, Andreas; Lenter, Martin C.; Jonuleit, Helmut; Schmitt, Edgar; Mennerich, Detlev
2009-01-01
Background In humans and mice naturally occurring CD4+CD25+ regulatory T cells (nTregs) are a thymus-derived subset of T cells, crucial for the maintenance of peripheral tolerance by controlling not only potentially autoreactive T cells but virtually all cells of the adaptive and innate immune system. Recent work using Dicer-deficient mice irrevocably demonstrated the importance of miRNAs for nTreg cell-mediated tolerance. Principal Findings DNA-Microarray analyses of human as well as murine conventional CD4+ Th cells and nTregs revealed a strong up-regulation of mature miR-155 (microRNA-155) upon activation in both populations. Studying miR-155 expression in FoxP3-deficient scurfy mice and performing FoxP3 ChIP-Seq experiments using activated human T lymphocytes, we show that the expression and maturation of miR-155 seem to be not necessarily regulated by FoxP3. In order to address the functional relevance of elevated miR-155 levels, we transfected miR-155 inhibitors or mature miR-155 RNAs into freshly-isolated human and mouse primary CD4+ Th cells and nTregs and investigated the resulting phenotype in nTreg suppression assays. Whereas miR-155 inhibition in conventional CD4+ Th cells strengthened nTreg cell-mediated suppression, overexpression of mature miR-155 rendered these cells unresponsive to nTreg cell-mediated suppression. Conclusion Investigation of FoxP3 downstream targets, certainly of bound and regulated miRNAs revealed the associated function between the master regulator FoxP3 and miRNAs as regulators itself. miR-155 is shown to be crucially involved in nTreg cell mediated tolerance by regulating the susceptibility of conventional human as well as murine CD4+ Th cells to nTreg cell-mediated suppression. PMID:19777054
European Code against Cancer, 4th Edition: Tobacco and cancer.
Leon, Maria E; Peruga, Armando; McNeill, Ann; Kralikova, Eva; Guha, Neela; Minozzi, Silvia; Espina, Carolina; Schüz, Joachim
2015-12-01
Tobacco use, and in particular cigarette smoking, is the single largest preventable cause of cancer in the European Union (EU). All tobacco products contain a wide range of carcinogens. The main cancer-causing agents in tobacco smoke are polycyclic aromatic hydrocarbons, tobacco-specific N-nitrosamines, aromatic amines, aldehydes, and certain volatile organic compounds. Tobacco consumers are also exposed to nicotine, leading to tobacco addiction in many users. Cigarette smoking causes cancer in multiple organs and is the main cause of lung cancer, responsible for approximately 82% of cases. In 2012, about 313,000 new cases of lung cancer and 268,000 lung cancer deaths were reported in the EU; 28% of adults in the EU smoked tobacco, and the overall prevalence of current use of smokeless tobacco products was almost 2%. Smokeless tobacco products, a heterogeneous category, are also carcinogenic but cause a lower burden of cancer deaths than tobacco smoking. One low-nitrosamine product, snus, is associated with much lower cancer risk than other smokeless tobacco products. Smoking generates second-hand smoke (SHS), an established cause of lung cancer, and inhalation of SHS by non-smokers is still common in indoor workplaces as well as indoor public places, and more so in the homes of smokers. Several interventions have proved effective for stopping smoking; the most effective intervention is the use of a combination of pharmacotherapy and behavioural support. Scientific evidence leads to the following two recommendations for individual action on tobacco in the 4th edition of the European Code Against Cancer: (1) "Do not smoke. Do not use any form of tobacco"; (2) "Make your home smoke-free. Support smoke-free policies in your workplace". PMID:26272517
PREFACE: 4th International Hadron Physics Conference (TROIA'14)
NASA Astrophysics Data System (ADS)
Dağ, Hüseyin; Erkol, Güray; Küçükarslan, Ayşe; Özpineci, Altuğ
2014-11-01
The 4th International Conference on Hadron Physics, TROIA'14, was held at Canakkale, Turkey on 1-5 July 2014. Ozyegin University, Middle East Technical University, Canakkale Onsekiz Mart University, Turkish Atomic Energy Authority and HadronPhysics2 Consortium sponsored the conference. It aimed at bringing together the experts and the young scientists working on experimental and theoretical hadron physics. About 50 participants from 10 countries attended the conference. The topics covered included: . Chiral Perturbation Theory . QCD Sum Rules . Effective Field Theory . Exotic Hadrons . Hadron Properties from Lattice QCD . Experimental Results and Future Perspectives . Hadronic Distribution Amplitudes The conference presentations were organized such that the morning sessions contained invited talks and afternoon sessions were devoted to contributed talks. The speakers of the invited talks were: C. Alexandrou, A. Gal, L. Tolos, J.R. Pelaez and M. Schindler. We had also guest speakers D. A. Demir and T. Senger. The conference venue was a resort hotel around Canakkale. As a social program, a guided full-day excursion to the excavation site of the ancient Troia town and Assos was organized. We believe that this conference provided a medium for young scientists and experts in the field to effectively communicate and share ideas. We would like to express our sincere thanks to supporting agencies and to all participants for their contributions and stimulating discussions. We are also grateful to the Scientific Secretary, Bora Işıldak, and all other members of the Organizing Committee for their patience and efforts. 30.10.2014 The Editors
High order asymptotic preserving nodal discontinuous Galerkin IMEX schemes for the BGK equation
NASA Astrophysics Data System (ADS)
Xiong, Tao; Jang, Juhi; Li, Fengyan; Qiu, Jing-Mei
2015-03-01
In this paper, we develop high-order asymptotic preserving (AP) schemes for the BGK equation in a hyperbolic scaling, which leads to the macroscopic models such as the Euler and compressible Navier-Stokes equations in the asymptotic limit. Our approaches are based on the so-called micro-macro formulation of the kinetic equation which involves a natural decomposition of the problem to the equilibrium and the non-equilibrium parts. The proposed methods are formulated for the BGK equation with constant or spatially variant Knudsen number. The new ingredients for the proposed methods to achieve high order accuracy are the following: we introduce discontinuous Galerkin (DG) discretization of arbitrary order of accuracy with nodal Lagrangian basis functions in space; we employ a high order globally stiffly accurate implicit-explicit (IMEX) Runge-Kutta (RK) scheme as time discretization. Two versions of the schemes are proposed: Scheme I is a direct formulation based on the micro-macro decomposition of the BGK equation, while Scheme II, motivated by the asymptotic analysis for the continuous problem, utilizes certain properties of the projection operator. Compared with Scheme I, Scheme II not only has better computational efficiency (the computational cost is reduced by half roughly), but also allows the establishment of a formal asymptotic analysis. Specifically, it is demonstrated that when 0 < ε ≪ 1, Scheme II, up to O (ε2), becomes a local DG discretization with an explicit RK method for the macroscopic compressible Navier-Stokes equations, a method in a similar spirit to the ones in Bassi and Rebay (1997) [3], Cockburn and Shu (1998) [16]. Numerical results are presented for a wide range of Knudsen number to illustrate the effectiveness and high order accuracy of the methods.
NASA Astrophysics Data System (ADS)
Schaal, Kevin; Bauer, Andreas; Chandrashekar, Praveen; Pakmor, Rüdiger; Klingenberg, Christian; Springel, Volker
2015-11-01
Solving the Euler equations of ideal hydrodynamics as accurately and efficiently as possible is a key requirement in many astrophysical simulations. It is therefore important to continuously advance the numerical methods implemented in current astrophysical codes, especially also in light of evolving computer technology, which favours certain computational approaches over others. Here we introduce the new adaptive mesh refinement (AMR) code TENET, which employs a high-order discontinuous Galerkin (DG) scheme for hydrodynamics. The Euler equations in this method are solved in a weak formulation with a polynomial basis by means of explicit Runge-Kutta time integration and Gauss-Legendre quadrature. This approach offers significant advantages over commonly employed second-order finite-volume (FV) solvers. In particular, the higher order capability renders it computationally more efficient, in the sense that the same precision can be obtained at significantly less computational cost. Also, the DG scheme inherently conserves angular momentum in regions where no limiting takes place, and it typically produces much smaller numerical diffusion and advection errors than an FV approach. A further advantage lies in a more natural handling of AMR refinement boundaries, where a fall-back to first order can be avoided. Finally, DG requires no wide stencils at high order, and offers an improved data locality and a focus on local computations, which is favourable for current and upcoming highly parallel supercomputers. We describe the formulation and implementation details of our new code, and demonstrate its performance and accuracy with a set of two- and three-dimensional test problems. The results confirm that DG schemes have a high potential for astrophysical applications.
Overview of the NASA Glenn Flux Reconstruction Based High-Order Unstructured Grid Code
NASA Technical Reports Server (NTRS)
Spiegel, Seth C.; DeBonis, James R.; Huynh, H. T.
2016-01-01
A computational fluid dynamics code based on the flux reconstruction (FR) method is currently being developed at NASA Glenn Research Center to ultimately provide a large- eddy simulation capability that is both accurate and efficient for complex aeropropulsion flows. The FR approach offers a simple and efficient method that is easy to implement and accurate to an arbitrary order on common grid cell geometries. The governing compressible Navier-Stokes equations are discretized in time using various explicit Runge-Kutta schemes, with the default being the 3-stage/3rd-order strong stability preserving scheme. The code is written in modern Fortran (i.e., Fortran 2008) and parallelization is attained through MPI for execution on distributed-memory high-performance computing systems. An h- refinement study of the isentropic Euler vortex problem is able to empirically demonstrate the capability of the FR method to achieve super-accuracy for inviscid flows. Additionally, the code is applied to the Taylor-Green vortex problem, performing numerous implicit large-eddy simulations across a range of grid resolutions and solution orders. The solution found by a pseudo-spectral code is commonly used as a reference solution to this problem, and the FR code is able to reproduce this solution using approximately the same grid resolution. Finally, an examination of the code's performance demonstrates good parallel scaling, as well as an implementation of the FR method with a computational cost/degree- of-freedom/time-step that is essentially independent of the solution order of accuracy for structured geometries.
A laboratory model of post-Newtonian gravity with high power lasers and 4th generation light sources
NASA Astrophysics Data System (ADS)
Gregori, G.; Levy, M. C.; Wadud, M. A.; Crowley, B. J. B.; Bingham, R.
2016-04-01
Using the post-Newtonian formalism of gravity, we attempt to calculate the x-ray Thomson scattering cross section of electrons that are accelerated in the field of a high intensity optical laser. We show that our results are consistent with previous calculations, suggesting that the combination of high power laser and 4th generation light sources may become a powerful platform to test models exploring high order corrections to the Newtonian gravity.
General Chemistry Collection for Students (CD-ROM), Abstract of Special Issue 16, 4th Edition
NASA Astrophysics Data System (ADS)
2000-07-01
bookstore. The cost per CD can be quite low when large numbers are ordered (as little as $3 each), making this a cost-effective method of allowing students access to the software they need whenever and wherever they desire. Other JCE Software CDs can also be adopted. Network licenses to distribute the software to your students via your local campus network can also be arranged. Contact us for details on purchasing multiple user licenses. Price and Ordering An order form is inserted in this issue that provides prices and other ordering information. If this card is not available or if you need additional information, contact: JCE Software, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1396; phone; 608/262-5153 or 800/991-5534; fax: 608/265-8094; email: jcesoft@chem.wisc.edu. Table 1. Contents of the General Chemistry Collection, 4th Edition
Quark masses and mixings in the RS1 model with a condensing 4th generation
NASA Astrophysics Data System (ADS)
Hernández, A. E. Cárcamo; Dib, Claudio O.; Neill, Nicolás A.; Zerwekh, Alfonso R.
2012-02-01
We study the hierarchy of quark masses and mixings in a model based on a 5-dimensional spacetime with constant curvature of Randall-Sundrum type with two branes, where the Electroweak Symmetry Breaking is caused dynamically by the condensation of a 4th generation of quarks, due to underlying physics from the 5D bulk and the first KK gluons. We first study the hierarchy of quark masses and mixings that can be obtained from purely adjusting the profile localizations, finding that realistic masses are not reproduced unless non trivial hierarchies of underlying 4-fermion interactions from the bulk are included. Then we study global U(1) symmetries that can be imposed in order to obtain non-symmetric modified Fritzsch-like textures in the mass matrices that reproduce reasonably well quark masses and CKM mixings.
Urban Infrasound Observations - Examples from July 4th 2012
NASA Astrophysics Data System (ADS)
McComas, S.; Hayward, C.; Golden, P.; McKenna, M.; Simpson, C.
2012-12-01
, the Heroy Building Rooftop Array, is a two-element 30m line on a single rooftop. Large-scale fireworks displays in Dallas on 4 July 2012 provided an opportunity to identify and characterize known signals in an urban setting. The identified events were associated with one of these fireworks displays about 2 km from the arrays. Signals from these sources were used to tune processing parameters for an automatic coherent detection process, Progressive Multichannel Correlation Method (PMCC). PMCC was then used to scan the data for all possible firework sources in the urban environment and determine temporal, back azimuth, apparent velocity, and frequency information about the sources. The signal frequencies seen were 10-80 Hz and documented the details of the nearly 30 minute firework show. The resulting PMCC analysis showed potential to effectively identify other, lower frequency sources in the urban environment. These data were also is used to characterize the noise environment. Significant roof-to-roof noise differences may be related to the building configurations and mechanical equipment, as well as the interactions of the winds with the structures. During the evening of July 4th , additional ground deployed infrasound gauges provided a comparison of free surface and rooftop measurements. Permission to publish was granted by Director, Geotechnical and Structures Laboratory.
75 FR 35649 - Safety Zone; Northern California Annual Fireworks Events, July 4th Fireworks Display
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-23
... SECURITY Coast Guard 33 CFR Part 165 Safety Zone; Northern California Annual Fireworks Events, July 4th Fireworks Display AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the Tahoe City 4th of July Fireworks Display safety zone, from 9 a.m. through 10...
The Effects of Cooperative Learning Strategies on Vocabulary Skills of 4th Grade Students
ERIC Educational Resources Information Center
Bilen, Didem; Tavil, Zekiye Müge
2015-01-01
This study was carried out to investigate the effects of cooperative learning strategies on the vocabulary skills of 4th grade students. The study was also designed to ascertain the attitudes of the students in the experimental group towards cooperative learning. Out of 96 4th grade students enrolled in the private school where the study took…
The school nutrition program's role in weight management of 4th grade elementary students
Technology Transfer Automated Retrieval System (TEKTRAN)
We are attempting to uncover the school nutrition program's role in weight management of 4th grade elementary students. Data was collected within a time frame for the food frequency questionnaire (FFQ) set at two months at the WT Cheney Elementary School and South Wood Elementary for 4th grade stud...
75 FR 34636 - Safety Zone; Jameson Beach 4th of July Fireworks Display
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Jameson Beach 4th of July Fireworks Display... temporary safety zone in the navigable waters of Lake Tahoe, for the Jameson Beach 4th of July Fireworks... has a substantial direct effect on State or local governments and would either preempt State law...
75 FR 34639 - Safety Zone; Reedville July 4th Celebration, Cockrell's Creek, Reedville, VA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
... Celebration, Cockrell's Creek, Reedville, VA in the Federal Register (75 FR 26157). We received no comments on... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Reedville July 4th Celebration, Cockrell's... the Reedville July 4th Celebration event. This action is intended to restrict vessel traffic...
76 FR 37650 - Safety Zone; 4th of July Festival Berkeley Marina Fireworks Display Berkeley, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-28
... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; 4th of July Festival Berkeley Marina... Berkeley Pier, Berkeley, CA in support of the 4th of July Festival Berkeley Marina Fireworks Display... used in the fireworks display. Background and Purpose The City of Berkeley Marina will sponsor the...
75 FR 26157 - Safety Zone; Reedville July 4th Celebration, Cockrell's Creek, Reedville, VA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-11
... Federal Register (73 FR 3316). Public Meeting We do not now plan to hold a public meeting. But you may... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Reedville July 4th Celebration, Cockrell's..., VA in support of the Reedville July 4th Celebration event. This action is intended to restrict...
Science Content Courses: Workshop in Food Chemistry for 4th Grade School Teachers
ERIC Educational Resources Information Center
Chaiyapechara, S.; Dong, F. M.
2004-01-01
A science content course in food chemistry was offered as a 4-day summer workshop from 1999 to 2001 to 4th grade school teachers in the Seattle School District. The objectives of the workshop were to increase the teachers' knowledge of food science, to perform simple experiments that could be used in the 4th grade classroom, and to help the…
Control of the new 4th-order hyper-chaotic system with one input
NASA Astrophysics Data System (ADS)
Loría, Antonio
2010-06-01
We solve the problem of chaos suppression of Lü's hyper-chaotic system via feedback control. We use only one control input and moreover the controller is a simple proportional feedback and uses the measurement of only one variable. We show that this simple control law suffices to stabilize the hyper-chaotic system to the zero equilibrium globally and asymptotically. We present stability proofs based on Lyapunov's direct method and integration of solutions. As a corollary of our main result we draw the conclusion that the system is globally stabilizable by simply varying one parameter, when possible. Simulation experiments that show the effectiveness of our method are also presented.
NASA Astrophysics Data System (ADS)
Fang, Ming-chung; Lee, Zi-yi
2013-08-01
This paper develops a nonlinear mathematical model to simulate the dynamic motion behavior of the barge equipped with the portable outboard Dynamic Positioning (DP) system in short-crested waves. The self-tuning Proportional-Derivative (PD) controller based on the neural network algorithm is applied to control the thrusters for optimal adjustment of the barge position in waves. In addition to the wave, the current, the wind and the nonlinear drift force are also considered in the calculations. The time domain simulations for the six-degree-of-freedom motions of the barge with the DP system are solved by the 4th order Runge-Kutta method which can compromise the efficiency and the accuracy of the simulations. The technique of the portable alternative DP system developed here can serve as a practical tool to assist those ships without being equipped with the DP facility while the dynamic positioning missions are needed.
NASA Astrophysics Data System (ADS)
Tukaram Aghav, Sandip; Achyut Gangal, Shashikala
2014-06-01
In this paper, the main work is focused on designing and simplifying the orbit determination algorithm which will be used for Low Earth Orbit (LEO) navigation. The various data processing algorithms, state estimation algorithms and modeling forces were studied in detail, and simplified algorithm is selected to reduce hardware burden and computational cost. This is done by using raw navigation solution provided by GPS Navigation sensor. A fixed step-size Runge-Kutta 4th order numerical integration method is selected for orbit propagation. Both, the least square and Extended Kalman Filter (EKF) orbit estimation algorithms are developed and the results of the same are compared with each other. EKF algorithm converges faster than least square algorithm. EKF algorithm satisfies the criterions of low computation burden which is required for autonomous orbit determination. Simple static force models also feasible to reduce the hardware burden and computational cost.
Charged particle tracking at Titan, and further applications
NASA Astrophysics Data System (ADS)
Bebesi, Zsofia; Erdos, Geza; Szego, Karoly
2016-04-01
We use the CAPS ion data of Cassini to investigate the dynamics and origin of Titan's atmospheric ions. We developed a 4th order Runge-Kutta method to calculate particle trajectories in a time reversed scenario. The test particle magnetic field environment imitates the curved magnetic environment in the vicinity of Titan. The minimum variance directions along the S/C trajectory have been calculated for all available Titan flybys, and we assumed a homogeneous field that is perpendicular to the minimum variance direction. Using this method the magnetic field lines have been calculated along the flyby orbits so we could select those observational intervals when Cassini and the upper atmosphere of Titan were magnetically connected. We have also taken the Kronian magnetodisc into consideration, and used different upstream magnetic field approximations depending on whether Titan was located inside of the magnetodisc current sheet, or in the lobe regions. We also discuss the code's applicability to comets.
NASA Astrophysics Data System (ADS)
Núñez-de la Rosa, Jonatan; Munz, Claus-Dieter
2016-04-01
In this work we discuss the extension of the XTROEM-FV code to relativistic hydrodynamics and magnetohydrodynamics. XTROEM-FV is a simulation package for computational astrophysics based on very high order finite-volume methods on Cartesian coordinates. Arbitrary spatial high order of accuracy is achieved with a WENO reconstruction operator, and the time evolution is carried out with a strong-stability preserving Runge-Kutta scheme. In XTROEM-FV has been implemented a cheap, robust, and accurate shock capturing strategy for handling complex shock waves problems, typical in an astrophysical environment. The divergence constraint of the magnetic field is tackled with the generalized Lagrange multiplier divergence cleaning approach. Numerical computations of smooth flows for the relativistic hydrodynamics and magnetohydrodynamics equations are performed and confirm the high order accuracy of the main reconstruction algorithm for such kind of flows. XTROEM-FV has been subject to a comprehensive numerical benchmark, especially for complex flows configurations within an astrophysical context. Computations of problems with shocks with very high order reconstruction operators up to seventh order are reported. For instance, one-dimensional shock tubes problems for relativistic hydrodynamics and magnetohydrodynamics, as well as two-dimensional flows like the relativistic double Mach reflection problem, the interaction of a shock wave with a bubble, the relativistic Orszag-Tang vortex, the cylindrical blast wave problem, the rotor problem, the Kelvin-Helmholtz instability, and an astrophysical slab jet. XTROEM-FV represents a new attempt to simulate astrophysical flow phenomena with very high order numerical methods.
NASA Astrophysics Data System (ADS)
Núñez-de la Rosa, Jonatan; Munz, Claus-Dieter
2016-07-01
In this work, we discuss the extension of the XTROEM-FV code to relativistic hydrodynamics and magnetohydrodynamics. XTROEM-FV is a simulation package for computational astrophysics based on very high order finite-volume methods on Cartesian coordinates. Arbitrary spatial high order of accuracy is achieved with a weighted essentially non-oscillatory (WENO) reconstruction operator, and the time evolution is carried out with a strong stability preserving Runge-Kutta scheme. In XTROEM-FV has been implemented a cheap, robust, and accurate shock-capturing strategy for handling complex shock waves problems, typical in an astrophysical environment. The divergence constraint of the magnetic field is tackled with the generalized Lagrange multiplier divergence cleaning approach. Numerical computations of smooth flows for the relativistic hydrodynamics and magnetohydrodynamics equations are performed and confirm the high-order accuracy of the main reconstruction algorithm for such kind of flows. XTROEM-FV has been subject to a comprehensive numerical benchmark, especially for complex flows configurations within an astrophysical context. Computations of problems with shocks with very high order reconstruction operators up to seventh order are reported. For instance, one-dimensional shock tubes problems for relativistic hydrodynamics and magnetohydrodynamics, as well as two-dimensional flows like the relativistic double Mach reflection problem, the interaction of a shock wave with a bubble, the relativistic Orszag-Tang vortex, the cylindrical blast wave problem, the rotor problem, the Kelvin-Helmholtz instability, and an astrophysical slab jet. XTROEM-FV represents a new attempt to simulate astrophysical flow phenomena with very high order numerical methods.
29. VIEW OF 4TH FLOOR'S TELEPHONE RACKS WITH CABLE TRAYS ...
29. VIEW OF 4TH FLOOR'S TELEPHONE RACKS WITH CABLE TRAYS ABOVE. THESE ARE NEWER APPARATUS AND NOT ORIGINAL. - Pacific Telephone & Telegraph Company Building, 1519 Franklin Street, Oakland, Alameda County, CA
16. 4th floor roof, view west, north side of setback ...
16. 4th floor roof, view west, north side of setback to left and delivery stair bulkhead to right - Sheffield Farms Milk Plant, 1075 Webster Avenue (southwest corner of 166th Street), Bronx, Bronx County, NY
TID Test Results for 4th Generation iPad(TradeMark)
NASA Technical Reports Server (NTRS)
Guertin, S. M.; Allen, G. R.; McClure, S. S.; LaBel, K. A.
2013-01-01
TID testing of 4th generation iPads is reported. Of iPad subsystems, results indicate that the charging circuitry and display drivers fail at lowest TID levels. Details of construction are investigated for additional testing of components.
18. DETAILED OFFSHORE VIEW OF 4TH TEE, LOOKING NORTHWEST, SHOWING ...
18. DETAILED OFFSHORE VIEW OF 4TH TEE, LOOKING NORTHWEST, SHOWING TRANSITION FROM WOOD BENTS TO CONCRETE BENTS - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA
Physics Computing '92: Proceedings of the 4th International Conference
NASA Astrophysics Data System (ADS)
de Groot, Robert A.; Nadrchal, Jaroslav
1993-04-01
* Ordered Particle Simulations for Serial and MIMD Parallel Computers * "NOLP" -- Program Package for Laser Plasma Nonlinear Optics * Algorithms to Solve Nonlinear Least Square Problems * Distribution of Hydrogen Atoms in Pd-H Computed by Molecular Dynamics * A Ray Tracing of Optical System for Protein Crystallography Beamline at Storage Ring-SIBERIA-2 * Vibrational Properties of a Pseudobinary Linear Chain with Correlated Substitutional Disorder * Application of the Software Package Mathematica in Generalized Master Equation Method * Linelist: An Interactive Program for Analysing Beam-foil Spectra * GROMACS: A Parallel Computer for Molecular Dynamics Simulations * GROMACS Method of Virial Calculation Using a Single Sum * The Interactive Program for the Solution of the Laplace Equation with the Elimination of Singularities for Boundary Functions * Random-Number Generators: Testing Procedures and Comparison of RNG Algorithms * Micro-TOPIC: A Tokamak Plasma Impurities Code * Rotational Molecular Scattering Calculations * Orthonormal Polynomial Method for Calibrating of Cryogenic Temperature Sensors * Frame-based System Representing Basis of Physics * The Role of Massively Data-parallel Computers in Large Scale Molecular Dynamics Simulations * Short-range Molecular Dynamics on a Network of Processors and Workstations * An Algorithm for Higher-order Perturbation Theory in Radiative Transfer Computations * Hydrostochastics: The Master Equation Formulation of Fluid Dynamics * HPP Lattice Gas on Transputers and Networked Workstations * Study on the Hysteresis Cycle Simulation Using Modeling with Different Functions on Intervals * Refined Pruning Techniques for Feed-forward Neural Networks * Random Walk Simulation of the Motion of Transient Charges in Photoconductors * The Optical Hysteresis in Hydrogenated Amorphous Silicon * Diffusion Monte Carlo Analysis of Modern Interatomic Potentials for He * A Parallel Strategy for Molecular Dynamics Simulations of Polar Liquids on
European Code against Cancer 4th Edition: Infections and Cancer.
Villain, Patricia; Gonzalez, Paula; Almonte, Maribel; Franceschi, Silvia; Dillner, Joakim; Anttila, Ahti; Park, Jin Young; De Vuyst, Hugo; Herrero, Rolando
2015-12-01
Of the 2,635,000 new cancer cases (excluding non-melanoma skin cancers) occurring in the European Union (EU) in 2012, it is estimated that approximately 185,000 are related to infection with human papillomaviruses (HPVs), hepatitis B and C viruses (HBV and HCV), and Helicobacter pylori (H. pylori). Chronic infection with these agents can lead to cancers of the cervix uteri, liver, and stomach, respectively. Chronic infection with HCV can also lead to B-cell non-Hodgkin lymphoma. Human immunodeficiency virus (HIV) infection continues to be of major public health importance in several EU countries and increases cancer risk via HIV-induced immunosuppression. The fourth edition of the European Code Against Cancer presents recommendations on effective and safe preventive interventions in order to reduce the risk of infection-related cancers in EU citizens. Based on current available evidence, the fourth edition recommends that parents ensure the participation of their children in vaccination programs against HBV (for newborns) and HPV (for girls). In the 'Questions and Answers' (Q&As) section about vaccination and infections in the website for the European Code Against Cancer, individuals who are at risk of chronic HBV or HCV are advised to seek medical advice about testing and obtaining treatment when appropriate. Individuals most at risk of HIV are advised to consult their doctor or healthcare provider to access counselling and, if needed, testing and treatment without delay. Information about H. pylori testing and treatment is also provided as testing might currently be offered in some high-risk areas in Europe. The rationale and supporting evidence for the recommendations on vaccination in the European Code Against Cancer, and for the main recommendations on vaccination and infection in the Q&As, are explained in the present review. PMID:26589774
Physics Computing '92: Proceedings of the 4th International Conference
NASA Astrophysics Data System (ADS)
de Groot, Robert A.; Nadrchal, Jaroslav
1993-04-01
* Ordered Particle Simulations for Serial and MIMD Parallel Computers * "NOLP" -- Program Package for Laser Plasma Nonlinear Optics * Algorithms to Solve Nonlinear Least Square Problems * Distribution of Hydrogen Atoms in Pd-H Computed by Molecular Dynamics * A Ray Tracing of Optical System for Protein Crystallography Beamline at Storage Ring-SIBERIA-2 * Vibrational Properties of a Pseudobinary Linear Chain with Correlated Substitutional Disorder * Application of the Software Package Mathematica in Generalized Master Equation Method * Linelist: An Interactive Program for Analysing Beam-foil Spectra * GROMACS: A Parallel Computer for Molecular Dynamics Simulations * GROMACS Method of Virial Calculation Using a Single Sum * The Interactive Program for the Solution of the Laplace Equation with the Elimination of Singularities for Boundary Functions * Random-Number Generators: Testing Procedures and Comparison of RNG Algorithms * Micro-TOPIC: A Tokamak Plasma Impurities Code * Rotational Molecular Scattering Calculations * Orthonormal Polynomial Method for Calibrating of Cryogenic Temperature Sensors * Frame-based System Representing Basis of Physics * The Role of Massively Data-parallel Computers in Large Scale Molecular Dynamics Simulations * Short-range Molecular Dynamics on a Network of Processors and Workstations * An Algorithm for Higher-order Perturbation Theory in Radiative Transfer Computations * Hydrostochastics: The Master Equation Formulation of Fluid Dynamics * HPP Lattice Gas on Transputers and Networked Workstations * Study on the Hysteresis Cycle Simulation Using Modeling with Different Functions on Intervals * Refined Pruning Techniques for Feed-forward Neural Networks * Random Walk Simulation of the Motion of Transient Charges in Photoconductors * The Optical Hysteresis in Hydrogenated Amorphous Silicon * Diffusion Monte Carlo Analysis of Modern Interatomic Potentials for He * A Parallel Strategy for Molecular Dynamics Simulations of Polar Liquids on
Cutting orientations for non-complex parts in 4th axis machining
NASA Astrophysics Data System (ADS)
Osman Zahid, M. N.; Case, K.; Watts, D. M.
2016-02-01
The application of Computer Numerically Controlled (CNC) machining for Rapid Manufacturing processes (CNC-RM) exploits the innate potential of 4th axis machining. The use of an indexer allows the workpiece to be rotated to various orientations which directly increased the region accessible to the cutting tool. However, in order to avoid thin webs and preserve tool life, cutting must be executed with a minimum of three orientations even for geometrically simple parts. Recent findings have suggested the separation of cutting orientations into roughing and finishing operations. Thus, the selection of orientations in finishing processes becomes more flexible and independent. This study was conducted to identify the effects of using a minimum of two cutting orientations in finishing operations for CNC-RM applications. This method is only applicable for non-complex parts where all the features can be machined from two directions. The results of the study illustrate the positive effects of minimizing the number of orientations. Despite improvement in machining operations, the complexity in defining the cutting orientations was also reduced.
European Code against Cancer 4th Edition: Ionising and non-ionising radiation and cancer.
McColl, Neil; Auvinen, Anssi; Kesminiene, Ausrele; Espina, Carolina; Erdmann, Friederike; de Vries, Esther; Greinert, Rüdiger; Harrison, John; Schüz, Joachim
2015-12-01
Ionising radiation can transfer sufficient energy to ionise molecules, and this can lead to chemical changes, including DNA damage in cells. Key evidence for the carcinogenicity of ionising radiation comes from: follow-up studies of the survivors of the atomic bombings in Japan; other epidemiological studies of groups that have been exposed to radiation from medical, occupational or environmental sources; experimental animal studies; and studies of cellular responses to radiation. Considering exposure to environmental ionising radiation, inhalation of naturally occurring radon is the major source of radiation in the population - in doses orders of magnitude higher than those from nuclear power production or nuclear fallout. Indoor exposure to radon and its decay products is an important cause of lung cancer; radon may cause approximately one in ten lung cancers in Europe. Exposures to radon in buildings can be reduced via a three-step process of identifying those with potentially elevated radon levels, measuring radon levels, and reducing exposure by installation of remediation systems. In the 4th Edition of the European Code against Cancer it is therefore recommended to: "Find out if you are exposed to radiation from naturally high radon levels in your home. Take action to reduce high radon levels". Non-ionising types of radiation (those with insufficient energy to ionise molecules) - including extremely low-frequency electric and magnetic fields as well as radiofrequency electromagnetic fields - are not an established cause of cancer and are therefore not addressed in the recommendations to reduce cancer risk. PMID:26126928
Seligmann, Hervé
2016-01-01
In mitochondria, secondary structures punctuate post-transcriptional RNA processing. Recently described transcripts match the human mitogenome after systematic deletions of every 4th, respectively every 4th and 5th nucleotides, called delRNAs. Here I explore predicted stem-loop hairpin formation by delRNAs, and their associations with delRNA transcription and detected peptides matching their translation. Despite missing 25, respectively 40% of the nucleotides in the original sequence, del-transformed sequences form significantly more secondary structures than corresponding randomly shuffled sequences, indicating biological function, independently of, and in combination with, previously detected delRNA and thereof translated peptides. Self-hybridization decreases delRNA abundances, indicating downregulation. Systematic deletions of the human mitogenome reveal new, unsuspected coding and structural informations. PMID:27018206
75 FR 38721 - Safety Zone; Munising 4th of July Fireworks, South Bay, Lake Superior, Munising, MI
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-06
... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Munising 4th of July Fireworks, South Bay... is intended to restrict vessels from a portion of South Bay during the Munising 4th of July Fireworks... from hazards associated with the Munising 4th of July Fireworks display. Based on the explosive...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-17
... Chicago's July 4th Celebration Fireworks, Chicago, Illinois in the Federal Register (75 FR 22330). We... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zones; City of Chicago's July 4th Celebration... associated with the City of Chicago's July 4th Celebration Fireworks. The Captain of the Port, Sector...
75 FR 34379 - Safety Zone; Mackinac Island 4th of July Fireworks, Lake Huron, Mackinac Island, MI
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-17
... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Mackinac Island 4th of July Fireworks, Lake... intended to restrict vessels from a portion of Lake Huron during the Mackinac Island 4th of July Fireworks... with the Mackinac Island 4th of July fireworks display. The fireworks display will occur between 9:45...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-06
... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Sault Sainte Marie 4th of July Fireworks... the Sault Sainte Marie 4th of July Fireworks display, July ] 4, 2010. This temporary safety zone is... with the Sault Sainte Marie 4th of July Fireworks display. The fireworks display is planned to...
Hauck, Cory D; Alldredge, Graham; Tits, Andre
2012-01-01
We present a numerical algorithm to implement entropy-based (M{sub N}) moment models in the context of a simple, linear kinetic equation for particles moving through a material slab. The closure for these models - as is the case for all entropy-based models - is derived through the solution of constrained, convex optimization problem. The algorithm has two components. The first component is a discretization of the moment equations which preserves the set of realizable moments, thereby ensuring that the optimization problem has a solution (in exact arithmetic). The discretization is a second-order kinetic scheme which uses MUSCL-type limiting in space and a strong-stability-preserving, Runge-Kutta time integrator. The second component of the algorithm is a Newton-based solver for the dual optimization problem, which uses an adaptive quadrature to evaluate integrals in the dual objective and its derivatives. The accuracy of the numerical solution to the dual problem plays a key role in the time step restriction for the kinetic scheme. We study in detail the difficulties in the dual problem that arise near the boundary of realizable moments, where quadrature formulas are less reliable and the Hessian of the dual objection function is highly ill-conditioned. Extensive numerical experiments are performed to illustrate these difficulties. In cases where the dual problem becomes 'too difficult' to solve numerically, we propose a regularization technique to artificially move moments away from the realizable boundary in a way that still preserves local particle concentrations. We present results of numerical simulations for two challenging test problems in order to quantify the characteristics of the optimization solver and to investigate when and how frequently the regularization is needed.
Development of a variable time-step transient NEW code: SPANDEX
Aviles, B.N. )
1993-01-01
This paper describes a three-dimensional, variable time-step transient multigroup diffusion theory code, SPANDEX (space-time nodal expansion method). SPANDEX is based on the static nodal expansion method (NEM) code, NODEX (Ref. 1), and employs a nonlinear algorithm and a fifth-order expansion of the transverse-integrated fluxes. The time integration scheme in SPANDEX is a fourth-order implicit generalized Runge-Kutta method (GRK) with on-line error control and variable time-step selection. This Runge-Kutta method has been applied previously to point kinetics and one-dimensional finite difference transient analysis. This paper describes the application of the Runge-Kutta method to three-dimensional reactor transient analysis in a multigroup NEM code.
European Code against Cancer 4th Edition: Environment, occupation and cancer.
Espina, Carolina; Straif, Kurt; Friis, Søren; Kogevinas, Manolis; Saracci, Rodolfo; Vainio, Harri; Schüz, Joachim
2015-12-01
People are exposed throughout life to a wide range of environmental and occupational pollutants from different sources at home, in the workplace or in the general environment - exposures that normally cannot be directly controlled by the individual. Several chemicals, metals, dusts, fibres, and occupations have been established to be causally associated with an increased risk of specific cancers, such as cancers of the lung, skin and urinary bladder, and mesothelioma. Significant amounts of air pollutants - mainly from road transport and industry - continue to be emitted in the European Union (EU); an increased occurrence of lung cancer has been attributed to air pollution even in areas below the EU limits for daily air pollution. Additionally, a wide range of pesticides as well as industrial and household chemicals may lead to widespread human exposure, mainly through food and water. For most environmental pollutants, the most effective measures are regulations and community actions aimed at reducing and eliminating the exposures. Thus, it is imperative to raise awareness about environmental and occupational carcinogens in order to motivate individuals to be proactive in advocating protection and supporting initiatives aimed at reducing pollution. Regulations are not homogeneous across EU countries, and protective measures in the workplace are not used consistently by all workers all the time; compliance with regulations needs to be continuously monitored and enforced. Therefore, the recommendation on Environment and Occupation of the 4th edition of the European Code against Cancer, focusing on what individuals can do to reduce their cancer risk, reads: "In the workplace, protect yourself against cancer-causing substances by following health and safety instructions." PMID:26164655
20. TYPICAL VIEW OF FRONT WINDOWS FROM 4TH TO 9TH ...
20. TYPICAL VIEW OF FRONT WINDOWS FROM 4TH TO 9TH FLOOR WITH WHITE GLAZED TERRA COTTA SILL AND HEADERS. MULLIONS ARE ORANGE BROWN BRICKS LIKE THE WALLS. BRICKS ARE IN FLEMISH BOND PATTERN. - Pacific Telephone & Telegraph Company Building, 1519 Franklin Street, Oakland, Alameda County, CA
77 FR 39408 - Safety Zone; Buffalo July 4th Fireworks, Lake Erie, Buffalo, NY
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-03
... DHS Department of Homeland Security FR Federal Register NPRM Notice of Proposed Rulemaking A... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Buffalo July 4th Fireworks, Lake Erie, Buffalo, NY AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard...
Assessment of an Engineering Technology Outreach Program for 4th-7th Grade Girls
ERIC Educational Resources Information Center
Dell, Elizabeth M.; Christman, Jeanne; Garrick, Robert D.
2011-01-01
This paper describes a workshop led by female Engineering Technology students, with support from female faculty, to provide an introduction to Engineering Technology to 4th-7th grade girls through a series of interactive laboratory experiments. This outreach program was developed to improve attitudes towards science and engineering in middle…
75 FR 33170 - Safety Zone; City of Martinez 4th of July Fireworks, Martinez, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-11
... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; City of Martinez 4th of July Fireworks, Martinez, CA AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone for the launching of fireworks being sponsored by the City of...
ERIC Educational Resources Information Center
White, Jacquelyn M.
2011-01-01
The purpose of this quantitative correlational study was to investigate relationships between grade levels, personal factors of teachers, and instructional variety used by 4th-12th grade teachers in Kern County, California. The population under investigation included 2,844 teachers. 235 elementary, middle school/junior high, and secondary teachers…
77 FR 56208 - Filing Dates for the Kentucky Special Election in the 4th Congressional District
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-12
... From the Federal Register Online via the Government Publishing Office FEDERAL ELECTION COMMISSION Filing Dates for the Kentucky Special Election in the 4th Congressional District AGENCY: Federal Election Commission. ACTION: Notice of filing dates for special election. SUMMARY: Kentucky has scheduled a...
Reading Development and Achievement of 4th-Grade Hmong Students
ERIC Educational Resources Information Center
Mahowald, Megan; Loughnane, Megan
2016-01-01
Researchers and practitioners alike have noted that Hmong students in the United States do not achieve as well as their monolingual peers and other bilingual students. The current mixed-methods study is designed to describe reading development and achievement of 4th-grade Hmong students in one large, urban school district. This study explores the…
MAIN GATE, INTERSECTION OF 4TH AVE (200 NORTH) AND N ...
MAIN GATE, INTERSECTION OF 4TH AVE (200 NORTH) AND N STREET (895 EAST), SALT LAKE CITY, UT. VIEW LOOKING EAST THROUGH MAIN CEMETERY GATE TO CEMETERY'S MAIN STREET, REPHOTOGRAPH OF HISTORIC SHIPLER PHOTO # 18276, UTAH STATE HISTORICAL SOCIETY COLLECTION. - Salt Lake City Cemetery, 200 N Street, Salt Lake City, Salt Lake County, UT
Polarimetric Microwave Emission from Snow Surface: 4th Strokes Component Analysis
Technology Transfer Automated Retrieval System (TEKTRAN)
The effect of ice on the polarimetric 4th Stokes component observations is investigated using WindSat data over Antarctica. The difference in the magnitude of the signal observed during (July 2003) and summer (February 2004) months is investigated using a second harmonic sine function of the azimuth...
33 CFR 165.166 - Safety Zone: Macy's July 4th Fireworks, East River, NY.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety Zone: Macy's July 4th Fireworks, East River, NY. 165.166 Section 165.166 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Specific Regulated Navigation...
33 CFR 165.166 - Safety Zone: Macy's July 4th Fireworks, East River, NY.
Code of Federal Regulations, 2010 CFR
2010-07-01
... CFR 165.23 apply. (2) No vessels, except the Staten Island Ferries, will be allowed to transit the... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone: Macy's July 4th... OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND...
33 CFR 165.166 - Safety Zone: Macy's July 4th Fireworks, East River, NY.
Code of Federal Regulations, 2011 CFR
2011-07-01
... CFR 165.23 apply. (2) No vessels, except the Staten Island Ferries, will be allowed to transit the... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety Zone: Macy's July 4th... OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND...
33 CFR 165.166 - Safety Zone: Macy's July 4th Fireworks, East River, NY.
Code of Federal Regulations, 2012 CFR
2012-07-01
... CFR 165.23 apply. (2) No vessels, except the Staten Island Ferries, will be allowed to transit the... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Safety Zone: Macy's July 4th... OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND...
33 CFR 165.166 - Safety Zone: Macy's July 4th Fireworks, East River, NY.
Code of Federal Regulations, 2014 CFR
2014-07-01
... CFR 165.23 apply. (2) No vessels, except the Staten Island Ferries, will be allowed to transit the... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety Zone: Macy's July 4th... OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND...
11. 4TH FLOOR, HOTEL SOAP LINE No. 6 TO NORTHEAST, ...
11. 4TH FLOOR, HOTEL SOAP LINE No. 6 TO NORTHEAST, WITH WRAPPER (LEFT), PRESS (CENTER), AND CUTTER (RIGHT, BEHIND CHUTE); BUCKET CONVEYOR AT RIGHT MOVED WASTE FROM PRESS TO 5TH FLOOR FOR RE-MANUFACTURE - Colgate & Company Jersey City Plant, Building No. B-14, 54-58 Grand Street, Jersey City, Hudson County, NJ
4th level of 1945 warehouse indicating drag conveyor. From here ...
4th level of 1945 warehouse indicating drag conveyor. From here screenings were pumped from the elevator leg to this conveyor. The grains were ground, then conveyed back down to the first floor for bagging. - Stewart Company Grain Elevator, 16 West Carson Street, Pittsburgh, Allegheny County, PA
94. VIEW OF PILINGS ON SOUTHEAST SIDE, WITH 4TH TEE ...
94. VIEW OF PILINGS ON SOUTHEAST SIDE, WITH 4TH TEE IN THE BACKGROUND, FACING WEST-SOUTHWEST FROM SOUTHEAST CORNER OF THE TACKLE BOX. RAMP OF PIER EXTENSION IS VISIBLE ON RIGHT - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA
Numerical precision of the solution to the running-coupling Balitsky-Kovchegov equation
NASA Astrophysics Data System (ADS)
Matas, Marek; Cepila, Jan; Guillermo Contreras Nuno, Jesus
2016-03-01
We use the running coupling Balitsky-Kovchegov (rcBK) equation to study the rapidity dependence of saturation in inclusive HERA data and we discuss the behaviour of its numerical solution. The rcBK equation has been solved using Runge-Kutta methods. The influence of the parameters implicit in the numerical evolution has been studied. They include, among others, the order of the Runge-Kutta evolution, the size of the different grids and the step in the numerical evolution. Some suggestions on the minimum value of these parameters are put forward.
High Speed Solution of Spacecraft Trajectory Problems Using Taylor Series Integration
NASA Technical Reports Server (NTRS)
Scott, James R.; Martini, Michael C.
2008-01-01
Taylor series integration is implemented in a spacecraft trajectory analysis code-the Spacecraft N-body Analysis Program (SNAP) - and compared with the code s existing eighth-order Runge-Kutta Fehlberg time integration scheme. Nine trajectory problems, including near Earth, lunar, Mars and Europa missions, are analyzed. Head-to-head comparison at five different error tolerances shows that, on average, Taylor series is faster than Runge-Kutta Fehlberg by a factor of 15.8. Results further show that Taylor series has superior convergence properties. Taylor series integration proves that it can provide rapid, highly accurate solutions to spacecraft trajectory problems.
Numerical solution for weight reduction model due to health campaigns in Spain
NASA Astrophysics Data System (ADS)
Mohammed, Maha A.; Noor, Noor Fadiya Mohd; Siri, Zailan; Ibrahim, Adriana Irawati Nur
2015-10-01
Transition model between three subpopulations based on Body Mass Index of Valencia community in Spain is considered. No changes in population nutritional habits and public health strategies on weight reduction until 2030 are assumed. The system of ordinary differential equations is solved using Runge-Kutta method of higher order. The numerical results obtained are compared with the predicted values of subpopulation proportion based on statistical estimation in 2013, 2015 and 2030. Relative approximate error is calculated. The consistency of the Runge-Kutta method in solving the model is discussed.
THE FIRST LASING OF 193 NM SASE, 4TH HARMONIC HGHG AND ESASE AT THE NSLS SDL.
WANG, X.J.; SHEN Y.; WATANABE, T.; MURPHY, J.B.; ROSE, J.; TSANG, T.
2006-08-28
The first lasing of three types of single-pass high-gain FELs, SASE at 193 nm, 4th harmonic HGHG at 199 nm and ESASE at the Source Development Lab (SDL) of Brookhaven National Laboratory (BNL) is reported. The saturation of 4th harmonic HGHG and ESASE FELs was observed. We also observed the spectral broadening and instability of the 4th harmonic HGHG.
11th National Meeting of Organic Chemistry and 4th Meeting of Therapeutic Chemistry
Sousa, Maria Emília; Araújo, Maria João; do Vale, Maria Luísa; Andrade, Paula B.; Branco, Paula; Gomes, Paula; Moreira, Rui; Pinho e Melo, Teresa M.V.D.; Freitas, Victor
2016-01-01
For the first time under the auspices of Sociedade Portuguesa de Química, the competences of two important fields of Chemistry are brought together into a single event, the 11st National Organic Chemistry Meeting and the the 4th National Medicinal Chemistry Meeting, to highlight complementarities and to promote new synergies. Abstracts of plenary lectures, oral communications, and posters presented during the meeting are collected in this report. PMID:27102166
11(th) National Meeting of Organic Chemistry and 4(th) Meeting of Therapeutic Chemistry.
Sousa, Maria Emília; Araújo, Maria João; do Vale, Maria Luísa; Andrade, Paula B; Branco, Paula; Gomes, Paula; Moreira, Rui; Pinho E Melo, Teresa M V D; Freitas, Victor
2016-01-01
For the first time under the auspices of Sociedade Portuguesa de Química, the competences of two important fields of Chemistry are brought together into a single event, the 11st National Organic Chemistry Meeting and the the 4th National Medicinal Chemistry Meeting, to highlight complementarities and to promote new synergies. Abstracts of plenary lectures, oral communications, and posters presented during the meeting are collected in this report. PMID:27102166
10. 4TH FLOOR, HOTEL SOAP LINE No. 6 TO SOUTHWEST, ...
10. 4TH FLOOR, HOTEL SOAP LINE No. 6 TO SOUTHWEST, WITH AUTOMATIC CUTTER (LEFT), PRESS (CENTER), AND WRAPPER (RIGHT); LARGE CHUTE AT CENTER FROM 5TH FLOOR BINS TO 3RD FLOOR SOAP MILLS; OVERHEAD AND FLOOR (LOWER RIGHT) FINISHED GOODS CONVEYORS TO G BLOCK (HAER NO. NJ-71-NN) - Colgate & Company Jersey City Plant, Building No. B-14, 54-58 Grand Street, Jersey City, Hudson County, NJ
NASA Astrophysics Data System (ADS)
Liu, Xu-Dong; Osher, Stanley
1998-05-01
Second order accurate (first order at extrema) cell averaged based approximations extending the Lax-Friedrichs central scheme, using component-wise rather than field-by-field limiting, have been found to give surprisingly good results for a wide class of problems involving shocks (see H. Nessyahu and E. Tadmor, J. Comput. Phys.87, 408, 1990). The advantages of component-wise limiting compared to its counterpart, field-by-field limiting, are apparent: (1) No complete set of eigenvectors is needed and hence weakly hyperbolic systems can be solved. (2) Component-wise limiting is faster than field-by-field limiting. (3) The programming is much simpler, especially for complicated coupled systems of many equations. However, these methods are based on cell-averages in a staggered grid and are thus a bit complicated to extend to multiple dimensions. Moreover the staggering causes slight difficulties at the boundaries. In this work we modify and extend this component-wise central differencing based procedure in two directions: (1) Point values, rather than cell averages are used, thus removing the need for staggered grids, and also making the extension to multi-dimensions quite simple. We use TVD Runge-Kutta time discretizations to update the solution. (2) A new type of decision process, which follows the general ENO philosophy is introduced and used. This procedure enables us to extend our method to a third order component-wise central ENO scheme, which apparently works well and is quite simple to implement in multi-dimensions. Additionally, our numerical viscosity is governed by the local magnitude of the maximum eigenvalue of the Jacobian, thus reducing the smearing in the numerical results. We found a speed up of a factor of 2 in each space dimension, on a SGI O2workstation, over methods based on field-by-field decomposition limiting. The new decision process leads to new, "convex" ENO schemes which, we believe, are of interest in a more general setting. Our numerical
The use of staggered scheme and an absorbing buffer zone for computational aeroacoustics
NASA Technical Reports Server (NTRS)
Nark, Douglas M.
1995-01-01
Various problems from those proposed for the Computational Aeroacoustics (CAA) workshop were studied using second and fourth order staggered spatial discretizations in conjunction with fourth order Runge-Kutta time integration. In addition, an absorbing buffer zone was used at the outflow boundaries. Promising results were obtained and provide a basis for application of these techniques to a wider variety of problems.
Conservative model and numerical simulations of compressible two-phase pipe flows
NASA Astrophysics Data System (ADS)
Belozerov, A.; Romenski, E.; Lebedeva, N.
2016-06-01
The two-phase two-pressure model for transient one-dimensional compressible pipe flow is considered. Governing equations of the model form a hyperbolic system of conservation laws. The Runge-Kutta-WENO method providing accuracy of the 3rd order in time and 5th order in space is implemented. Numerical results for several test problems are presented.
Convergence analysis of combinations of different methods
Kang, Y.
1994-12-31
This paper provides a convergence analysis for combinations of different numerical methods for solving systems of differential equations. The author proves that combinations of two convergent linear multistep methods or Runge-Kutta methods produce a new convergent method of which the order is equal to the smaller order of the two original methods.
Proceedings of the 4th International Workshop on Tritium Effects in Plasma Facing Components
R. A. Causey
1999-02-01
The 4th International Workshop on Tritium Effects in Plasma Facing Components was held in Santa Fe, New Mexico on May 14-15, 1998. This workshop occurs every two years, and has previously been held in Livermore/California, Nagoya/Japan, and the JRC-Ispra Site in Italy. The purpose of the workshop is to gather researchers involved in the topic of tritium migration, retention, and recycling in materials used to line magnetic fusion reactor walls and provide a forum for presentation and discussions in this area. This document provides an overall summary of the workshop, the workshop agenda, a summary of the presentations, and a list of attendees.
NASA Technical Reports Server (NTRS)
Krishen, Kumar (Editor); Burnham, Calvin (Editor)
1995-01-01
The papers presented at the 4th International Conference Exhibition: World Congress on Superconductivity held at the Marriott Orlando World Center, Orlando, Florida, are contained in this document and encompass the research, technology, applications, funding, political, and social aspects of superconductivity. Specifically, the areas covered included: high-temperature materials; thin films; C-60 based superconductors; persistent magnetic fields and shielding; fabrication methodology; space applications; physical applications; performance characterization; device applications; weak link effects and flux motion; accelerator technology; superconductivity energy; storage; future research and development directions; medical applications; granular superconductors; wire fabrication technology; computer applications; technical and commercial challenges, and power and energy applications.
NASA Technical Reports Server (NTRS)
Krishen, Kumar (Editor); Burnham, Calvin (Editor)
1995-01-01
This document contains papers presented at the 4th International Conference Exhibition: World Congress on Superconductivity held June 27-July 1, 1994 in Orlando, Florida. These documents encompass research, technology, applications, funding, political, and social aspects of superconductivity. The areas covered included: high-temperature materials; thin films; C-60 based superconductors; persistent magnetic fields and shielding; fabrication methodology; space applications; physical applications; performance characterization; device applications; weak link effects and flux motion; accelerator technology; superconductivity energy; storage; future research and development directions; medical applications; granular superconductors; wire fabrication technology; computer applications; technical and commercial challenges; and power and energy applications.
The ratio of 2nd to 4th digit length: a new predictor of disease predisposition?
Manning, J T; Bundred, P E
2000-05-01
The ratio between the length of the 2nd and 4th digits is: (a) fixed in utero; (b) lower in men than in women; (c) negatively related to testosterone and sperm counts; and (d) positively related to oestrogen concentrations. Prenatal levels of testosterone and oestrogen have been implicated in infertility, autism, dyslexia, migraine, stammering, immune dysfunction, myocardial infarction and breast cancer. We suggest that 2D:4D ratio is predictive of these diseases and may be used in diagnosis, prognosis and in early life-style interventions which may delay the onset of disease or facilitate its early detection. PMID:10859702
PREFACE: The 4th Symposium on the Mechanics of Slender Structures (MoSS2013)
NASA Astrophysics Data System (ADS)
Cao, Dengqing; Kaczmarczyk, Stefan
2013-07-01
This volume of Journal of Physics: Conference Series contains papers presented at the 4th Symposium on the Mechanics of Slender Structures (MoSS2013) run under the auspices of the Institute of Physics Applied Mechanics Group and hosted by Harbin Institute of Technology (China) from 7-9 January 2013. The conference has been organized in collaboration with the Technical Committee on Vibration and Sound of the American Society of Mechanical Engineers and follows a one day seminar on Ropes, Cables, Belts and Chains: Theory and Applications and the MoSS2006 symposium held at the University of Northampton (UK) in 2004 and 2006, respectively, the MoSS2008 symposium held at the University of Maryland Baltimore County (USA) in 2008 and the MoSS2010 symposium hosted by Mondragon University and held in San Sebastian (Spain) in 2010. The remit of the Symposium on the Mechanics of Slender Structures series involves a broad range of scientific areas. Applications of slender structures include terrestrial, marine and space systems. Moving elastic elements such as ropes, cables, belts and tethers are pivotal components of many engineering systems. Their lengths often vary when the system is in operation. The applications include vertical transportation installations and, more recently, space tether propulsion systems. Traction drive elevator installations employ ropes and belts of variable length as a means of suspension, and also for the compensation of tensile forces over the traction sheave. In cranes and mine hoists, cables and ropes are subject to length variation in order to carry payloads. Tethers experiencing extension and retraction are important components of offshore and marine installations, as well as being proposed for a variety of different space vehicle propulsion systems based on different applications of momentum exchange and electrodynamic interactions with planetary magnetic fields. Furthermore, cables and slender rods are used extensively in civil engineering
Design of a Nb3Sn Magnet for a 4th Generation ECR Ion Source
Prestemon, S,; Trillaud, F.; Caspi, S.; Ferracin, P.; Sabbi, G. L.; Lyneis, C. M.; Leitner, D.; Todd, D. S.; Hafalia, R.
2008-08-17
The next generation of Electron Cyclotron Resonant (ECR) ion sources are expected to operate at a heating radio frequency greater than 40 GHz. The existing 3rd generation systems, exemplified by the state of the art system VENUS, operate in the 10-28 GHz range, and use NbTi superconductors for the confinement coils. The magnetic field needed to confine the plasma scales with the rf frequency, resulting in peak fields on the magnets of the 4th generation system in excess of 10 T. High field superconductors such as Nb{sub 3}Sn must therefore be considered. The magnetic design of a 4th. generation ECR ion source operating at an rf frequency of 56 GHz is considered. The analysis considers both internal and external sextupole configurations, assuming commercially available Nb{sub 3}Sn material properties. Preliminary structural design issues are discussed based on the forces and margins associated with the coils in the different configurations, leading to quantitative data for the determination of a final magnet design.
Spiritual Health Scale 2011: Defining and Measuring 4th Dimension of Health
Dhar, Neera; Chaturvedi, SK; Nandan, Deoki
2011-01-01
In the midst of physical comforts provided by the unprecedented developments in all spheres of life, the humanity is at cross roads and looking at something beyond these means. Spirituality has now been identified globally as an important aspect for providing answers to many questions related to health and happiness. The World Health Organization is also keen at looking beyond physical, mental and social dimensions of the health, and the member countries are actively exploring the 4th Dimension of the health i.e. the spiritual health and its impact on the overall health and happiness of an individual. National Institute of Health and Family Welfare (NIHFW), realized this need and initiated a research study in this direction. In this study, an effort was made to define this 4th Dimension of health from a common worldly person's perspective and measure it. 3 Domains, 6 Constructs and 27 Determinants of spiritual health were identified through a scientific process. A statistically reliable and valid Spiritual Health Scale (SHS 2011) containing 114 items has been developed. Construct validity and test- retest reliability has been established for urban educated adult population. The scale is first of its kind in the world to measure the spiritual health of a common worldly person, which is devoid of religious and cultural bias. Its items have universal applicability. PMID:22279257
PREFACE: 4th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare2015)
NASA Astrophysics Data System (ADS)
Vlachos, Dimitrios; Vagenas, Elias C.
2015-09-01
The 4th International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place in Mykonos, Greece, from Friday 5th June to Monday 8th June 2015. The Conference was attended by more than 150 participants and hosted about 200 oral, poster, and virtual presentations. There were more than 600 pre-registered authors. The 4th IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics etc. The scientific program was rather intense as after the Keynote and Invited Talks in the morning, three parallel oral and one poster session were running every day. However, according to all attendees, the program was excellent with a high quality of talks creating an innovative and productive scientific environment for all attendees. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee.
Crime rates and sedentary behavior among 4th grade Texas school children
Brown, H Shelton; Pérez, Adriana; Mirchandani, Gita G; Hoelscher, Deanna M; Kelder, Steven H
2008-01-01
Introduction Although per capita crime has generally fallen over the period which coincides with the obesity epidemic, it has not fallen uniformly across communities. It also has not fallen enough to allay fears on the part of parents. Over the past 30 years, technological changes have made the indoor alternatives to playing outside, where children are more vulnerable to criminal activity, more enjoyable (cable TV, video games, and the internet) and comfortable (the spread of air conditioning to low income neighborhoods). We determined whether indoor sedentary behavior patterns are associated with community crime statistics. 4th graders in the U.S. are typically 9 or 10 years old. Methods We used data from the 2004–2005 Texas School Physical Activity and Nutrition (SPAN) survey linked with U.S. Department of Justice, Office of Justice Programs, Bureau of Justice Statistics data for the years 2000 through 2005 and Texas State data on sexual offenders. The probability-based sample included a total of 7,907 children in grade four. Multistage probability sampling weights were used. The dependent variables included were hours of TV watching, video game playing, computer use and total indoor sedentary behavior after school. Incremental Relative Rates were computed for community crime rates including robberies, all violent crimes, murders, assaults, property crimes, rapes, burglaries, larcenies and motor vehicle thefts as well as for sexual offenders living in the neighborhood. The neighborhood refers to the areas where the students at each school live. In the case of sexual offenders, sexual offenders per capita are estimated using the per capita rate in the zip code of the school attended; all other crime statistics are estimated by the crimes per capita in the police department jurisdiction covering the school attended. After controlling for sex, age, and African-American and Hispanic, cross-sectional associations were determined using multivariate Poisson regression
Jacobs, Gustaaf B. Don, W.-S.
2009-03-20
A high-order particle-source-in-cell (PSIC) algorithm is presented for the computation of the interaction between shocks, small scale structures, and liquid and/or solid particles in high-speed engineering applications. The improved high-order finite difference weighted essentially non-oscillatory (WENO-Z) method for solution of the hyperbolic conservation laws that govern the shocked carrier gas flow, lies at the heart of the algorithm. Finite sized particles are modeled as points and are traced in the Lagrangian frame. The physical coupling of particles in the Lagrangian frame and the gas in the Eulerian frame through momentum and energy exchange, is numerically treated through high-order interpolation and weighing. The centered high-order interpolation of the fluid properties to the particle location is shown to lead to numerical instability in shocked flow. An essentially non-oscillatory interpolation (ENO) scheme is devised for the coupling that improves stability. The ENO based algorithm is shown to be numerically stable and to accurately capture shocks, small flow features and particle dispersion. Both the carrier gas and the particles are updated in time without splitting with a third-order Runge-Kutta TVD method. One and two-dimensional computations of a shock moving into a particle cloud demonstrates the characteristics of the WENO-Z based PSIC method (PSIC/WENO-Z). The PSIC/WENO-Z computations are not only in excellent agreement with the numerical simulations with a third-order Rusanov based PSIC and physical experiments in [V. Boiko, V.P. Kiselev, S.P. Kiselev, A. Papyrin, S. Poplavsky, V. Fomin, Shock wave interaction with a cloud of particles, Shock Waves, 7 (1997) 275-285], but also show a significant improvement in the resolution of small scale structures. In two-dimensional simulations of the Mach 3 shock moving into forty thousand bronze particles arranged in the shape of a rectangle, the long time accuracy of the high-order method is demonstrated
ERIC Educational Resources Information Center
Johnson, K. J.
1979-01-01
This workshop was for participants who were interested in developing a numerical methods course. The contents of a numerical methods text were covered, with special emphasis on nonlinear least squares analysis, and the Runge-Kutta method of integrating systems of first-order differential equations. (BB)
NASA Technical Reports Server (NTRS)
Freed, Alan D.
1996-01-01
There are many aspects to consider when designing a Rosenbrock-Wanner-Wolfbrandt (ROW) method for the numerical integration of ordinary differential equations (ODE's) solving initial value problems (IVP's). The process can be simplified by constructing ROW methods around good Runge-Kutta (RK) methods. The formulation of a new, simple, embedded, third-order, ROW method demonstrates this design approach.
Variational iteration method for solving sea-air oscillator of the ENSO model
NASA Astrophysics Data System (ADS)
Noor, N. F. M.
2015-10-01
A class of sea-air oscillator of the El Nino-Southern Oscillation (ENSO) mechanism is considered. Variational iteration method (VIM) is applied to generate approximate solution to the system. Numerical VIM solutions obtained are then compared with results from the analytical solution and the Runge-Kutta-Fehlberg method of fourth-fifth order (RKF45).
Time integration algorithms for the two-dimensional Euler equations on unstructured meshes
NASA Technical Reports Server (NTRS)
Slack, David C.; Whitaker, D. L.; Walters, Robert W.
1994-01-01
Explicit and implicit time integration algorithms for the two-dimensional Euler equations on unstructured grids are presented. Both cell-centered and cell-vertex finite volume upwind schemes utilizing Roe's approximate Riemann solver are developed. For the cell-vertex scheme, a four-stage Runge-Kutta time integration, a fourstage Runge-Kutta time integration with implicit residual averaging, a point Jacobi method, a symmetric point Gauss-Seidel method and two methods utilizing preconditioned sparse matrix solvers are presented. For the cell-centered scheme, a Runge-Kutta scheme, an implicit tridiagonal relaxation scheme modeled after line Gauss-Seidel, a fully implicit lower-upper (LU) decomposition, and a hybrid scheme utilizing both Runge-Kutta and LU methods are presented. A reverse Cuthill-McKee renumbering scheme is employed for the direct solver to decrease CPU time by reducing the fill of the Jacobian matrix. A comparison of the various time integration schemes is made for both first-order and higher order accurate solutions using several mesh sizes, higher order accuracy is achieved by using multidimensional monotone linear reconstruction procedures. The results obtained for a transonic flow over a circular arc suggest that the preconditioned sparse matrix solvers perform better than the other methods as the number of elements in the mesh increases.
European Code against Cancer 4th Edition: Alcohol drinking and cancer.
Scoccianti, Chiara; Cecchini, Michele; Anderson, Annie S; Berrino, Franco; Boutron-Ruault, Marie-Christine; Espina, Carolina; Key, Timothy J; Leitzmann, Michael; Norat, Teresa; Powers, Hilary; Wiseman, Martin; Romieu, Isabelle
2015-12-01
Alcohol consumption is the third leading risk factor for disease and mortality in Europe. The International Agency for Research on Cancer (IARC) Monographs provide strengthened evidence that the consumption of alcoholic beverages is causally associated with cancers of the oral cavity, pharynx, larynx, oesophagus, liver, colorectum and female breast, even for low and moderate alcohol intakes. The risk of cancer increases in a dose-dependent manner, and the higher the amount of alcohol consumed, the higher the risk of developing cancer. Several biological mechanisms explain the carcinogenicity of alcohol; among them, ethanol and its genotoxic metabolite acetaldehyde play a major role. Taking all this evidence into account, a recommendation of the 4th edition of the European Code against Cancer (ECAC) is: "If you drink alcohol of any type, limit your intake. Not drinking alcohol is better for cancer prevention." PMID:26115567
Breakthrough in cardiac arrest: reports from the 4th Paris International Conference.
Kudenchuk, Peter J; Sandroni, Claudio; Drinhaus, Hendrik R; Böttiger, Bernd W; Cariou, Alain; Sunde, Kjetil; Dworschak, Martin; Taccone, Fabio Silvio; Deye, Nicolas; Friberg, Hans; Laureys, Steven; Ledoux, Didier; Oddo, Mauro; Legriel, Stéphane; Hantson, Philippe; Diehl, Jean-Luc; Laterre, Pierre-Francois
2015-12-01
Jean-Luc Diehl The French Intensive Care Society organized on 5th and 6th June 2014 its 4th "Paris International Conference in Intensive Care", whose principle is to bring together the best international experts on a hot topic in critical care medicine. The 2014 theme was "Breakthrough in cardiac arrest", with many high-quality updates on epidemiology, public health data, pre-hospital and in-ICU cares. The present review includes short summaries of the major presentations, classified into six main chapters: Epidemiology of CA Pre-hospital management Post-resuscitation management: targeted temperature management Post-resuscitation management: optimizing organ perfusion and metabolic parameters Neurological assessment of brain damages Public healthcare. PMID:26380990
The 4th annual European League Against Rheumatism congress in Lisbon: a personal perspective
Wollheim, Frank A
2004-01-01
The 4th annual European League Against Rheumatism congress, held in Lisbon, 18–21 June 2003, had a record turnout of more than 8600 delegates and the abstract submissions increased to 2600. A heat wave and a somewhat substandard venue hampered some of the activities, notably the poster sessions. The scientific program was comprehensive and of a high class, and it was organized in 10–12 parallel sessions. The European League Against Rheumatism standing committees are expanding their activities and stimulating European cooperation (e.g. by creating databases and guidelines, and by starting research programs). The standing committees presented several areas where European cooperative work is in progress. Advances in drug therapy were a prominent theme and were well presented. Commercialism remains a problem for this meeting as for other similar large meetings, where satellite symposia surround the scientific program of the congress and often duplicate this. PMID:14979931
Report on the 4th International IUPAP Women in Physics Conference
NASA Astrophysics Data System (ADS)
Correa, Cynthia
2011-10-01
Stellenbosch, South Africa was the site of the 4^th International Union of Pure and Applied Physics (IUPAP) International Conference on Women in Physics, which took place on April 5^th-8^th. This conference brought together the diverse contributions of 250 female physicist attendees from nearly 60 countries worldwide to dissect the challenges faced by female physicists worldwide and to propose strategies to attract and retain more girls and women to the field. Having served as a member of the U.S. Delegation, I will discuss the resolutions reached and highlight the most important results of Global Survey of Physicists, where nearly 15,000 physicists shine light on how gender affects their lives and careers.
Food-based Science Curriculum Increases 4(th) Graders Multidisciplinary Science Knowledge.
Hovland, Jana A; Carraway-Stage, Virginia G; Cela, Artenida; Collins, Caitlin; Díaz, Sebastián R; Collins, Angelo; Duffrin, Melani W
2013-10-01
Health professionals and policymakers are asking educators to place more emphasis on food and nutrition education. Integrating these topics into science curricula using hand-on, food-based activities may strengthen students' understanding of science concepts. The Food, Math, and Science Teaching Enhancement Resource (FoodMASTER) Initiative is a compilation of programs aimed at using food as a tool to teach mathematics and science. Previous studies have shown that students experiencing the FoodMASTER curriculum were very excited about the activities, became increasingly interested in the subject matter of food, and were able to conduct scientific observations. The purpose of this study was to: 1) assess 4(th) graders food-related multidisciplinary science knowledge, and 2) compare gains in food-related science knowledge after implementation of an integrated, food-based curriculum. During the 2009-2010 school year, FoodMASTER researchers implemented a hands-on, food-based intermediate curriculum in eighteen 4(th) grade classrooms in Ohio (n=9) and North Carolina (n=9). Sixteen classrooms in Ohio (n=8) and North Carolina (n=8), following their standard science curricula, served as comparison classrooms. Students completed a researcher-developed science knowledge exam, consisting of 13 multiple-choice questions administered pre- and post-test. Only subjects with pre- and post-test scores were entered into the sample (Intervention n=343; Control n=237). No significant differences were observed between groups at pre-test. At post-test, the intervention group scored (9.95±2.00) significantly higher (p=.000) than the control group (8.84±2.37) on a 13-point scale. These findings suggest the FoodMASTER intermediate curriculum is more effective than a standard science curriculum in increasing students' multidisciplinary science knowledge related to food. PMID:25152539
Report of the 4th World Climate Research Programme International Conference on Reanalyses
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Rixen, Michel; van Oevelen, Peter; Asrar, Ghassem; Compo, Gilbert; Onogi, Kazutoshi; Simmons, Adrian; Trenberth, Kevin; Behringer, Dave; Bhuiyan, Tanvir Hossain; Capps, Shannon; Chaudhuri, Ayan; Chen, Junye; Chen, Linling; Colasacco-Thumm, Nicole; Escobar, Maria Gabriela; Ferguson, Craig R.; Ishibashi, Toshiyuki; Liberato, Margarida L. R.; Meng, Jesse; Molod, Andrea; Poli, Paul; Roundy, Joshua; Willett, Kate; Wollen, Jack
2012-01-01
The 4th WCRP International Conference on Reanalyses provided an opportunity for the international community to review and discuss the observational and modelling research, as well as process studies and uncertainties associated with reanalysis of the Earth System and its components. Characterizing the uncertainty and quality of reanalyses is a task that reaches far beyond the international community of producers, and into the interdisciplinary research community, especially those using reanalysis products in their research and applications. Reanalyses have progressed greatly even in the last 5 years, and newer ideas, projects and data are coming forward. While reanalysis has typically been carried out for the individual domains of atmosphere, ocean and land, it is now moving towards coupling using Earth system models. Observations are being reprocessed and they are providing improved quality for use in reanalysis. New applications are being investigated, and the need for climate reanalyses is as strong as ever. At the heart of it all, new investigators are exploring the possibilities for reanalysis, and developing new ideas in research and applications. Given the many centres creating reanalyses products (e.g. ocean, land and cryosphere research centres as well as NWP and atmospheric centers), and the development of new ideas (e.g. families of reanalyses), the total number of reanalyses is increasing greatly, with new and innovative diagnostics and output data. The need for reanalysis data is growing steadily, and likewise, the need for open discussion and comment on the data. The 4th Conference was convened to provide a forum for constructive discussion on the objectives, strengths and weaknesses of reanalyses, indicating potential development paths for the future.
European Code against Cancer 4th Edition: Medical exposures, including hormone therapy, and cancer.
Friis, Søren; Kesminiene, Ausrele; Espina, Carolina; Auvinen, Anssi; Straif, Kurt; Schüz, Joachim
2015-12-01
The 4th edition of the European Code against Cancer recommends limiting - or avoiding when possible - the use of hormone replacement therapy (HRT) because of the increased risk of cancer, nevertheless acknowledging that prescription of HRT may be indicated under certain medical conditions. Current evidence shows that HRT, generally prescribed as menopausal hormone therapy, is associated with an increased risk of cancers of the breast, endometrium, and ovary, with the risk pattern depending on factors such as the type of therapy (oestrogen-only or combined oestrogen-progestogen), duration of treatment, and initiation according to the time of menopause. Carcinogenicity has also been established for anti-neoplastic agents used in cancer therapy, immunosuppressants, oestrogen-progestogen contraceptives, and tamoxifen. Medical use of ionising radiation, an established carcinogen, can provide major health benefits; however, prudent practices need to be in place, with procedures and techniques providing the needed diagnostic information or therapeutic gain with the lowest possible radiation exposure. For pharmaceutical drugs and medical radiation exposure with convincing evidence on their carcinogenicity, health benefits have to be balanced against the risks; potential increases in long-term cancer risk should be considered in the context of the often substantial and immediate health benefits from diagnosis and/or treatment. Thus, apart from HRT, no general recommendations on reducing cancer risk were given for carcinogenic drugs and medical radiation in the 4th edition of European Code against Cancer. It is crucial that the application of these measures relies on medical expertise and thorough benefit-risk evaluation. This also pertains to cancer-preventive drugs, and self-medication with aspirin or other potential chemopreventive drugs is strongly discouraged because of the possibility of serious, potentially lethal, adverse events. PMID:26390952
Food-based Science Curriculum Increases 4th Graders Multidisciplinary Science Knowledge
Hovland, Jana A.; Carraway-Stage, Virginia G.; Cela, Artenida; Collins, Caitlin; Díaz, Sebastián R.; Collins, Angelo; Duffrin, Melani W.
2013-01-01
Health professionals and policymakers are asking educators to place more emphasis on food and nutrition education. Integrating these topics into science curricula using hand-on, food-based activities may strengthen students’ understanding of science concepts. The Food, Math, and Science Teaching Enhancement Resource (FoodMASTER) Initiative is a compilation of programs aimed at using food as a tool to teach mathematics and science. Previous studies have shown that students experiencing the FoodMASTER curriculum were very excited about the activities, became increasingly interested in the subject matter of food, and were able to conduct scientific observations. The purpose of this study was to: 1) assess 4th graders food-related multidisciplinary science knowledge, and 2) compare gains in food-related science knowledge after implementation of an integrated, food-based curriculum. During the 2009–2010 school year, FoodMASTER researchers implemented a hands-on, food-based intermediate curriculum in eighteen 4th grade classrooms in Ohio (n=9) and North Carolina (n=9). Sixteen classrooms in Ohio (n=8) and North Carolina (n=8), following their standard science curricula, served as comparison classrooms. Students completed a researcher-developed science knowledge exam, consisting of 13 multiple-choice questions administered pre- and post-test. Only subjects with pre- and post-test scores were entered into the sample (Intervention n=343; Control n=237). No significant differences were observed between groups at pre-test. At post-test, the intervention group scored (9.95±2.00) significantly higher (p=.000) than the control group (8.84±2.37) on a 13-point scale. These findings suggest the FoodMASTER intermediate curriculum is more effective than a standard science curriculum in increasing students’ multidisciplinary science knowledge related to food. PMID:25152539
Li, Kunyu; Baird, Margaret; Yang, Jianping; Jackson, Chris; Ronchese, Franca; Young, Sarah
2016-08-01
Adoptive cell therapies (ACTs) using tumor-reactive T cells have shown clinical benefit and potential for cancer treatment. While the majority of the current ACT are focused on using CD8(+) cytotoxic T lymphocytes (CTL), others have shown that the presence of tumor-reactive CD4(+) T helper (Th) cells can greatly enhance the anti-tumor activity of CD8(+) CTL. However, difficulties in obtaining adequate numbers of CD4(+) Th cells through in vitro expansion can limit the application of CD4 Th cells in ACT. This study aims to optimize the culture conditions for mouse CD4 T cells to provide basic information for animal studies of ACT using CD4 T cells. Taking advantage of the antigen-specificity of CD4(+) Th cells from OT-II transgenic mice, we examined different methodologies for generating antigen-specific CD4(+) Th1 cells in vitro. We found that cells grown in complete advanced-DMEM/F12 medium supplemented with low-dose IL-2 and IL-7 induced substantial cell expansion. These Th cells were Th1-like, as they expressed multiple Th1-cytokines and exhibited antigen-specific cytotoxicity. In addition co-transfer of these CD4(+) Th1-like cells with CD8(+) CTL significantly enhanced tumor regression, leading to complete cure in 80% of mice bearing established B16-OVA. These observations indicate that the CD4(+) Th1-like cells generated using the method we optimized are functionally active to eliminate their target cells, and can also assist CD8(+) CTL to enhance tumor regression. The findings of this study provide valuable data for further research into in vitro expansion of CD4(+) Th1-like cells, with potential applications to cancer treatment involving ACT. PMID:27588200
Li, Kunyu; Baird, Margaret; Yang, Jianping; Jackson, Chris; Ronchese, Franca; Young, Sarah
2016-01-01
Adoptive cell therapies (ACTs) using tumor-reactive T cells have shown clinical benefit and potential for cancer treatment. While the majority of the current ACT are focused on using CD8+ cytotoxic T lymphocytes (CTL), others have shown that the presence of tumor-reactive CD4+ T helper (Th) cells can greatly enhance the anti-tumor activity of CD8+ CTL. However, difficulties in obtaining adequate numbers of CD4+ Th cells through in vitro expansion can limit the application of CD4 Th cells in ACT. This study aims to optimize the culture conditions for mouse CD4 T cells to provide basic information for animal studies of ACT using CD4 T cells. Taking advantage of the antigen-specificity of CD4+ Th cells from OT-II transgenic mice, we examined different methodologies for generating antigen-specific CD4+ Th1 cells in vitro. We found that cells grown in complete advanced-DMEM/F12 medium supplemented with low-dose IL-2 and IL-7 induced substantial cell expansion. These Th cells were Th1-like, as they expressed multiple Th1-cytokines and exhibited antigen-specific cytotoxicity. In addition co-transfer of these CD4+ Th1-like cells with CD8+ CTL significantly enhanced tumor regression, leading to complete cure in 80% of mice bearing established B16-OVA. These observations indicate that the CD4+ Th1-like cells generated using the method we optimized are functionally active to eliminate their target cells, and can also assist CD8+ CTL to enhance tumor regression. The findings of this study provide valuable data for further research into in vitro expansion of CD4+ Th1-like cells, with potential applications to cancer treatment involving ACT. PMID:27588200
Hejranfar, Kazem; Ezzatneshan, Eslam
2015-11-01
A high-order compact finite-difference lattice Boltzmann method (CFDLBM) is extended and applied to accurately simulate two-phase liquid-vapor flows with high density ratios. Herein, the He-Shan-Doolen-type lattice Boltzmann multiphase model is used and the spatial derivatives in the resulting equations are discretized by using the fourth-order compact finite-difference scheme and the temporal term is discretized with the fourth-order Runge-Kutta scheme to provide an accurate and efficient two-phase flow solver. A high-order spectral-type low-pass compact nonlinear filter is used to regularize the numerical solution and remove spurious waves generated by flow nonlinearities in smooth regions and at the same time to remove the numerical oscillations in the interfacial region between the two phases. Three discontinuity-detecting sensors for properly switching between a second-order and a higher-order filter are applied and assessed. It is shown that the filtering technique used can be conveniently adopted to reduce the spurious numerical effects and improve the numerical stability of the CFDLBM implemented. A sensitivity study is also conducted to evaluate the effects of grid size and the filtering procedure implemented on the accuracy and performance of the solution. The accuracy and efficiency of the proposed solution procedure based on the compact finite-difference LBM are examined by solving different two-phase systems. Five test cases considered herein for validating the results of the two-phase flows are an equilibrium state of a planar interface in a liquid-vapor system, a droplet suspended in the gaseous phase, a liquid droplet located between two parallel wettable surfaces, the coalescence of two droplets, and a phase separation in a liquid-vapor system at different conditions. Numerical results are also presented for the coexistence curve and the verification of the Laplace law. Results obtained are in good agreement with the analytical solutions and also
NASA Astrophysics Data System (ADS)
Hejranfar, Kazem; Ezzatneshan, Eslam
2015-11-01
A high-order compact finite-difference lattice Boltzmann method (CFDLBM) is extended and applied to accurately simulate two-phase liquid-vapor flows with high density ratios. Herein, the He-Shan-Doolen-type lattice Boltzmann multiphase model is used and the spatial derivatives in the resulting equations are discretized by using the fourth-order compact finite-difference scheme and the temporal term is discretized with the fourth-order Runge-Kutta scheme to provide an accurate and efficient two-phase flow solver. A high-order spectral-type low-pass compact nonlinear filter is used to regularize the numerical solution and remove spurious waves generated by flow nonlinearities in smooth regions and at the same time to remove the numerical oscillations in the interfacial region between the two phases. Three discontinuity-detecting sensors for properly switching between a second-order and a higher-order filter are applied and assessed. It is shown that the filtering technique used can be conveniently adopted to reduce the spurious numerical effects and improve the numerical stability of the CFDLBM implemented. A sensitivity study is also conducted to evaluate the effects of grid size and the filtering procedure implemented on the accuracy and performance of the solution. The accuracy and efficiency of the proposed solution procedure based on the compact finite-difference LBM are examined by solving different two-phase systems. Five test cases considered herein for validating the results of the two-phase flows are an equilibrium state of a planar interface in a liquid-vapor system, a droplet suspended in the gaseous phase, a liquid droplet located between two parallel wettable surfaces, the coalescence of two droplets, and a phase separation in a liquid-vapor system at different conditions. Numerical results are also presented for the coexistence curve and the verification of the Laplace law. Results obtained are in good agreement with the analytical solutions and also
PREFACE: 4th International Conference on Safe Production and Use of Nanomaterials (Nanosafe2014)
NASA Astrophysics Data System (ADS)
Tardif, F.; Damlencourt, J.-F.; Schuster, F.; Gaultier, V.
2015-05-01
This volume contains a collection of contributions presented at the 4th International Conference on Safe Production and Use of Nanomaterials (NANOSAFE 2014) held in Grenoble, France, from 18th to 20th November 2014. The issues of fast progress in the field of Nanosafety are up to the potential benefits that nanotechnology can bring to mankind. Making more efficient - more sustainable - easier to share mineral resources, increasing the yields of new energy technologies, enabling drugs that act selectively and locally are just few examples of the wide range of nanomaterial applications that currently benefit humanity. Nevertheless, the dynamic development of nanomaterials requires the adhesion from the general public who rightly demand major progresses in Nanosafety as a prerequisite. This is our exciting responsibility and challenge! Following the successful outcome of the three past international conferences on safe production and use of nanomaterials: Nanosafe 2008, 2010 and 2012, the organizing committee has the pleasure to welcoming you again to Minatec, Grenoble with some of the most famous specialists in the field. This year, two new topics have been added dealing with the "New Application of Nanomaterials" and "Nano-responsible Development" in addition to the usual issues addressed in previous Nanosafe conferences such as Expology, Detection and Characterization, Toxicology, Environmental Interactions, Nanomaterials Release, Life Cycle Analysis, Regulation and Standardization, Risk Management. The debates in 2012 proved highly successful so this formula has been kept in 2014 with 3 round tables: Nano-Responsible Development, Risks and Benefits for the Environment, Toxicology Progress. In this 4th edition, there were more than 330 registered participants from 28 different countries including 160 oral presentation covering the whole Nanosafety issues in 12 sessions, satellite workshops and round tables. This high number of participants makes this edition one of
PREFACE: 4th National Conference on Processing and Characterization of Materials (NCPCM 2014)
NASA Astrophysics Data System (ADS)
2015-02-01
This volume contains selected full length technical papers amongst forty oral presentations made in the 4th National Conference on Processing and Characterization of Materials (NCPCM 2014), NIT Rourkela, Rourkela, Odisha, India, December 5 - 6, 2014. The first conference of the NCPCM series was held at the same place in December 2011. Seeing the enthusiasm of the participants, it was decided to organize such conference in Rourkela every year. The basic idea was to establish a periodical national forum for multi-scale approaches in processing and characterization of materials in the eastern part of India. The conference NCPCM 2014 has successfully carried the tradition of previous conferences; more than fifty participants from twenty different organizations across India have registered. The conference was consisted of six technical sessions of about fifty contributory talks along with three keynote lectures. A metallography contest was also organized during the event. Out of these, thirty four best peer-reviewed contributions are published in this volume of IOP Conference Series: Materials Science and Engineering. We would like to thank all the contributors, members of the organizing committee, session chairs as well as colleagues and students who helped with the preparation of the conference and, particularly, with the preparation of this volume. We convey our heartiest gratitude to the sponsors and advertisers for their contribution.
European Code against Cancer 4th Edition: 12 ways to reduce your cancer risk.
Schüz, Joachim; Espina, Carolina; Villain, Patricia; Herrero, Rolando; Leon, Maria E; Minozzi, Silvia; Romieu, Isabelle; Segnan, Nereo; Wardle, Jane; Wiseman, Martin; Belardelli, Filippo; Bettcher, Douglas; Cavalli, Franco; Galea, Gauden; Lenoir, Gilbert; Martin-Moreno, Jose M; Nicula, Florian Alexandru; Olsen, Jørgen H; Patnick, Julietta; Primic-Zakelj, Maja; Puska, Pekka; van Leeuwen, Flora E; Wiestler, Otmar; Zatonski, Witold
2015-12-01
This overview describes the principles of the 4th edition of the European Code against Cancer and provides an introduction to the 12 recommendations to reduce cancer risk. Among the 504.6 million inhabitants of the member states of the European Union (EU28), there are annually 2.64 million new cancer cases and 1.28 million deaths from cancer. It is estimated that this cancer burden could be reduced by up to one half if scientific knowledge on causes of cancer could be translated into successful prevention. The Code is a preventive tool aimed to reduce the cancer burden by informing people how to avoid or reduce carcinogenic exposures, adopt behaviours to reduce the cancer risk, or to participate in organised intervention programmes. The Code should also form a base to guide national health policies in cancer prevention. The 12 recommendations are: not smoking or using other tobacco products; avoiding second-hand smoke; being a healthy body weight; encouraging physical activity; having a healthy diet; limiting alcohol consumption, with not drinking alcohol being better for cancer prevention; avoiding too much exposure to ultraviolet radiation; avoiding cancer-causing agents at the workplace; reducing exposure to high levels of radon; encouraging breastfeeding; limiting the use of hormone replacement therapy; participating in organised vaccination programmes against hepatitis B for newborns and human papillomavirus for girls; and participating in organised screening programmes for bowel cancer, breast cancer, and cervical cancer. PMID:26164654
4th-International Symposium on Ultrafast Surface Science - Final Report
Hrvoje Petek
2005-01-26
The 4-th International Symposium on Ultrafast Surface Dynamics (UDS4) was held at the Telluride Summer Research Center on June 22-27, 2003. The International Organizing Committee consisting of Hrvoje Petek (USA), Xiaoyang Zhu (USA), Pedro Echenique (Spain) and Maki Kawai (Japan) brought together a total of 51 participants 16 of whom were from Europe, 10 from Japan, and 25 from the USA. The focus of the conference was on ultrafast electron or light induced processes at well-defined surfaces. Ultrafast surface dynamics concerns the transfer of charge and energy at solid surfaces on the femtosecond time scale. These processes govern rates of fundamental steps in surface reactions, interfacial electron transfer in molecular electronics, and relaxation in spin transport. Recent developments in femtosecond laser technology make it possible to measure by a variety of nonlinear optical techniques directly in the time domain the microscopic rates underlying these interfacial processes. Parallel progress in scanning probe microscopy makes it possible at a single molecular level to perform the vibrational and electronic spectroscopy measurements, to induce reactions with tunneling electrons, and to observe their outcome. There is no doubt that successful development in the field of ultrafast surface dynamics will contribute to many important disciplines.
Multiwavelength Analysis of a Moving Type-IV Radio Burst on 4th March 2012
NASA Astrophysics Data System (ADS)
Veluchamy, V.; Chen, Y.; Feng, S.; Du, G.; Song, H.; Kong, X.
2015-12-01
We performed a multiwavelength analysis of a moving Type-IV radio burst on 4th march 2012. The Type-IV radio burst is observed between 10:39 - 11:00 UT in the frequency range of 300 - 20 MHz. From the radio heliographic observation, the radio source of the type-IV burst is traced and their sky plane speed is estimated as ~ 370 km/s. A plasmoid structure is ejected during the impulsive phase of the flare, at the same time of the type-IV burst and the structure is clearly observed at SDO/AIA 131 Å channel. From this, we find that the radio source moves with the plasmoid. The high brightness temperature profile in the range of 108 - 109 K and the moderate polarization between -50 - 30 % supports the plasma emission mechanism. Further the differential emission measure (DEM) analysis will be carried out and their results will be presented to provide more evidence of the emission mechanism.
European Code against Cancer 4th Edition: Ultraviolet radiation and cancer.
Greinert, Rüdiger; de Vries, Esther; Erdmann, Friederike; Espina, Carolina; Auvinen, Anssi; Kesminiene, Ausrele; Schüz, Joachim
2015-12-01
Ultraviolet radiation (UVR) is part of the electromagnetic spectrum emitted naturally from the sun or from artificial sources such as tanning devices. Acute skin reactions induced by UVR exposure are erythema (skin reddening), or sunburn, and the acquisition of a suntan triggered by UVR-induced DNA damage. UVR exposure is the main cause of skin cancer, including cutaneous malignant melanoma, basal-cell carcinoma, and squamous-cell carcinoma. Skin cancer is the most common cancer in fair-skinned populations, and its incidence has increased steeply over recent decades. According to estimates for 2012, about 100,000 new cases of cutaneous melanoma and about 22,000 deaths from it occurred in Europe. The main mechanisms by which UVR causes cancer are well understood. Exposure during childhood appears to be particularly harmful. Exposure to UVR is a risk factor modifiable by individuals' behaviour. Excessive exposure from natural sources can be avoided by seeking shade when the sun is strongest, by wearing appropriate clothing, and by appropriately applying sunscreens if direct sunlight is unavoidable. Exposure from artificial sources can be completely avoided by not using sunbeds. Beneficial effects of sun or UVR exposure, such as for vitamin D production, can be fully achieved while still avoiding too much sun exposure and the use of sunbeds. Taking all the scientific evidence together, the recommendation of the 4th edition of the European Code Against Cancer for ultraviolet radiation is: "Avoid too much sun, especially for children. Use sun protection. Do not use sunbeds." PMID:26096748
4th annual primary care ethics conference: ethics education and lifelong learning
Spicer, John; McKenzie-Edwards, Emma; Misselbrook, David
2014-01-01
Primary care ethics is a field of study that has recently found new life, with calls to establish the relevance of ethical discussion in general practice, to gather a body of literature and to carve out an intellectual space for primary care on the academic landscape of bioethics. In this report, we reflect on the key strands of the 4th primary care ethics conference held at the Royal Society of Medicine, on a theme of ethics education and lifelong learning: first, to produce insights that have relevance for policy and practice; and second, to illustrate the idea that not only is ethics relevant in primary care, but primary care is relevant in medical ethics. Core themes included the advantages and disadvantages of prescriptive ways of doing ethics in education, ethical reflection and potential risk to professional status, the need to deal with societal change and to take on board the insights gained from empirical work, whether this is about different kinds of fatherhood, or work on the causes of moral distress in healthcare workers. PMID:25949739
Project ASTRO: Local Coalitions for Bringing Astronomers to 4th - 9th Grade Classrooms
NASA Astrophysics Data System (ADS)
Fraknoi, Andrew
1998-05-01
We report on Project ASTRO, an NSF and NASA funded program that now links professional and amateur astronomers with local 4th through 9th grade teachers in 10 sites around the country. Each site matches and trains about 20-25 astronomer-teacher partnerships per year, focusing on hands-on, age-appropriate activities, demonstrations of the scientific method, as well as family and community outreach. Over 10,000 copies of the project's 813-page UNIVERSE AT YOUR FINGERTIPS resource and activity notebook (published by the A.S.P) are now in use in educational institututions around the world. The project's HOW-TO-MANUAL is being used as a practical guide to establishing astronomer-teacher partnerships where no formal ASTRO site exists, and a 12-minute video explaining and demonstrating the project is also available. In each of the ten sites, a coalition of educational and scientific institutions is assisting the project with in-kind donations, publicity, personnel, training, materials, etc. We are conducting an experiment (at the behest of NSF) to see to what degree the sites can become self-supporting over time. (One site, in Salt Lake City, has already received full funding from a local foundation.) We will discuss the progress of the project and will have a variety of sample materials available, including our annotated catalog of national astronomy and space science education projects (see associated URL).
A Teaching Model for Scaffolding 4th Grade Students' Scientific Explanation Writing
NASA Astrophysics Data System (ADS)
Yang, Hsiu-Ting; Wang, Kuo-Hua
2014-08-01
Improving students scientific explanations is one major goal of science education. Both writing activities and concept mapping are reported as effective strategies for enhancing student learning of science. The purpose of this study was to examine the effect of a teaching model, named the DCI model, which integrates a Descriptive explanation writing activity, Concept mapping, and an Interpretive explanation writing activity, is introduced in a 4th grade science class to see if it would improve students' scientific explanations and understanding. A quasi-experimental design, including a non-randomized comparison group and a pre- and post-test design, was adopted for this study. An experimental group of 25 students were taught using the DCI teaching model, while a comparison group received a traditional lecture teaching. A rubric and content analysis was used to assess students' scientific explanations. The independent sample t test was used to measure difference in conceptual understanding between the two groups, before and after instruction. Then, the paired t test analysis was used to understand the promotion of the DCI teaching model. The results showed that students in the experimental group performed better than students in the comparison group, both in scientific concept understanding and explanation. Suggestions for using concept mapping and writing activities (the DCI teaching model) in science classes are provided in this study.
Need for Specific Sugar-Sweetened Beverage Lessons for 4th and 5th Graders
Bea, Jennifer W.; Jacobs, Laurel; Waits, Juanita; Hartz, Vern; Martinez, Stephanie H.; Standfast, Rebecca D.; Farrell, Vanessa A.; Bawden, Margine; Whitmer, Evelyn; Misner, Scottie
2015-01-01
Objective Consumption of sugar-sweetened beverages (SSB) is linked to obesity. We hypothesized that school-based nutrition education would decrease SSB consumption. Design Self-selected interventional cohort with random selection for pre and post measurements Setting Arizona SNAP-Ed eligible schools Participants Randomly selected (9%) 4th and 5th grade classroom students Intervention The University of Arizona Nutrition Network (UANN) provided general nutrition education training and materials to teachers, to be delivered to their students. The UANN administered behavioral questionnaires to students in both Fall and Spring. Main Outcome Measure(s) Change in SSB consumption Analyses Descriptive statistics were computed for student demographics and beverage consumption on the day prior to testing. Paired t-tests evaluated change in classroom averages. Linear regression assessed potential correlates of SSB consumption. Results Fall mean SSB consumption was 1.1 (±0.2) times; mean milk and water intake were 1.6 (±0.2) and 5.2 (±0.7) times, respectively. Beverage consumption increased (3.2%) in springtime, with increased SSBs (14.4%) accounting for the majority (p=0.006). Change in SSB consumption was negatively associated with baseline SSB and water consumption, but positively associated with baseline milk fat (p≤0.05). Conclusions and Implications The results suggest the need for beverage specific education to encourage children to consume more healthful beverages in warmer weather. PMID:25239840
The Ratio of 2nd to 4th Digit Length in Korean Alcohol-dependent Patients
Han, Changwoo; Bae, Hwallip; Lee, Yu-Sang; Won, Sung-Doo; Kim, Dai Jin
2016-01-01
Objective The ratio of 2nd to 4th digit length (2D:4D) is a sexually dimorphic trait. Men have a relatively shorter second digit than fourth digit. This ratio is thought to be influenced by higher prenatal testosterone level or greater sensitivity to androgen. The purpose of this study is to investigate the relationship between alcohol dependence and 2D:4D in a Korean sample and whether 2D:4D can be a biologic marker in alcohol dependence. Methods In this study, we recruited 87 male patients with alcohol dependence from the alcohol center of one psychiatric hospital and 52 healthy male volunteers who were all employees in the same hospital as controls. We captured images of the right and left hands of patients and controls using a scanner and extracted data with a graphics program. We measured the 2D:4D of each hand and compared the alcohol dependence group with the control group. We analyzed these ratios using an independent-samples t-test. Results The mean 2D:4D of patients was 0.934 (right hand) and 0.942 (left hand), while the mean 2D:4D of controls was 0.956 (right hand) and 0.958 (left hand). Values for both hands were significantly lower for patients than controls (p<0.001, right hand; p=0.004, left hand). Conclusion Patients who are alcohol dependent have a significantly lower 2D:4D than controls, similar to the results of previous studies, which suggest that a higher prenatal testosterone level in the gonadal period is related to alcoholism. Furthermore, 2D:4D is a possible predictive marker of alcohol dependence. PMID:27121425
NASA Astrophysics Data System (ADS)
Wang, Alexandre; Abe, Sumiyoshi; Li, Wei
2015-04-01
This volume contains 24 contributed papers presented at the 4th International Workshop on Statistical Physics and Mathematics for Complex Systems (SPMCS) held during October 12-16, 2014 in Yichang, China. Each paper was peer-reviewed by at least one referee chosen from a distinguished international panel. The previous three workshops of this series were organized in 2008, 2010, and 2012, in Le Mans, France, Wuhan, China, and Kazan, Russia, respectively. The SPMCS international workshop series is destined mainly to communicate and exchange research results and information on the fundamental challenges and questions in the vanguard of statistical physics, thermodynamics and mathematics for complex systems. More specifically, the topics of interest touch, but are not limited to, the following: • Fundamental aspects in the application of statistical physics and thermodynamics to complex systems and their modeling • Finite size and non-extensive system • Fluctuation theorems and equalities, quantum thermodynamics • Variational principle for random dynamics • Fractal geometry, fractional mathematics More than 50 participants from 7 countries participated in SPMCS-2014. 35 oral contributions were presented at the workshop. We would like to take this opportunity to thank the members of the Scientific Program Committee, many of whom acted as reviewers of the papers and responded promptly. We would also like to thank the organizing committee, the session chairs, the technicians and the students for the smooth running of the whole workshop. Thanks also go to China Three Gorges University who provided generous support for the conference venue, as well as exquisite refreshments for the tea breaks. The workshop was also partially supported by Central China Normal University and the Programme of Introducing Talents of Discipline to Universities under grant NO. B08033. Special thanks are due to Ms Juy Zhu who has done excellent editing work with great effort.
4th International Conference on Energy and Environment 2013 (ICEE 2013)
NASA Astrophysics Data System (ADS)
Chakrabarty, Chandan Kumar; Shamsuddin, Abd Halim Bin; Ahmad, Ibrahim Bin; Desa, Mohamed Nor Bin Mohamed; Din, Norashidah Bte Md; Bte Mohd, Lariyah; Hamid, Nasri A.; See, Ong Hang; Hafiz Nagi, Farrukh; Yong, Lee Choon; Pasupuleti, Jagadeesh; Mei, Goh Su; Abdullah, Fairuz Bin; Satgunam, Meenaloshini
2013-06-01
The 4th International Conference on Energy & Environment 2013 (ICEE2013) was organized by the Universiti Tenaga Nasional (UNITEN) to provide a platform for creating and sharing ideas among engineers, researchers, scientists, industrialists and students in sustainable green energy and technologies. The theme 'Shaping a Sustainable Future through Advancement in Green Energy Technology' is in line with the University's vision to be a leading global energy university that shapes a sustainable future. The general scopes of the conference are renewable energy, smart grid, green technology, energy policies and economics, sustainable green energy and environment, sustainable education, international cooperation and innovation and technology transfer. Five international keynote speakers delivered their speeches in specialized areas of green energy technology and sustainability. In addition, the conference highlights several special parallel sessions by notable invited presenters in their niche areas, which are: Hybrid Energy Power Quality & Distributed Energy Smart Grid Nuclear Power & Technologies Geohazard Management Greener Environment for Sustainability Advances in Computational Fluid Dynamics The research papers presented in ICEE2013 are included in this volume of IOP Conference Series: Earth and Environmental Science (EES). EES is abstracted and indexed in SCOPUS, GeoBase, GeoRef, Compendex, Inspec, Chemical Abstracts Service, NASA Astrophysics Data System, and International Nuclear Information System (INIS). With the comprehensive programme outline, the organizing committee hopes that the ICEE2013 was a notable intellectual sharing session for the research and academic community in Malaysia and regionally. The organizing committee expresses gratitude to the ICEE2013 delegates for their great support and contributions to the event.
NASA Astrophysics Data System (ADS)
Fricker, A.; Green, P.
2010-04-01
These conference proceedings contain the written papers of the contributions presented at the 4th International Conference on: Preservation and Conservation Issues in Digital Printing and Digital Photography. The conference was held at the Institute of Physics, London, UK on 27th-28th May 2010. Previous conferences in this series took place in 2000, 2003 and 2006. The aim of this conference series is to inform those responsible for the preservation of digitally printed materials about developments in digital photography and printing technologies. We aim to examine progress in research on inks and substrates and their significance for conservation and preservation issues and techniques. We also hope to develop links between related industries and the conservation/preservation world. Research areas explored in this conference include current developments and future trends in digital printing and photographic technologies; the effect of environmental, storage and salvage conditions on the durability of digital prints and photographs; image processing techniques; image permanence considerations and standards for fastness, permanence and the role of scanning and file formats. We would like to thank all participants for their contribution to the conference programme and these proceedings. Our thanks go to Ms C. Gu and Mr M. Sandy for chairing conference sessions. We are also grateful to Dawn Stewart and the Institute of Physics Conference Team for their invaluable support and assistance in arranging the conference and reception. Finally we would like to extend our thanks to the Society of Imaging Science and Technology (IS&T) for their sponsorship support. The Editors Acknowledgements Conference Organising Committee: Ms A Fricker and Dr. P Green (London College of Communication, University of the Arts London). Proceedings edited and compiled by Ms A Fricker and Dr. P Green.
Learning Natural Selection in 4th Grade with Multi-Agent-Based Computational Models
NASA Astrophysics Data System (ADS)
Dickes, Amanda Catherine; Sengupta, Pratim
2013-06-01
In this paper, we investigate how elementary school students develop multi-level explanations of population dynamics in a simple predator-prey ecosystem, through scaffolded interactions with a multi-agent-based computational model (MABM). The term "agent" in an MABM indicates individual computational objects or actors (e.g., cars), and these agents obey simple rules assigned or manipulated by the user (e.g., speeding up, slowing down, etc.). It is the interactions between these agents, based on the rules assigned by the user, that give rise to emergent, aggregate-level behavior (e.g., formation and movement of the traffic jam). Natural selection is such an emergent phenomenon, which has been shown to be challenging for novices (K16 students) to understand. Whereas prior research on learning evolutionary phenomena with MABMs has typically focused on high school students and beyond, we investigate how elementary students (4th graders) develop multi-level explanations of some introductory aspects of natural selection—species differentiation and population change—through scaffolded interactions with an MABM that simulates predator-prey dynamics in a simple birds-butterflies ecosystem. We conducted a semi-clinical interview based study with ten participants, in which we focused on the following: a) identifying the nature of learners' initial interpretations of salient events or elements of the represented phenomena, b) identifying the roles these interpretations play in the development of their multi-level explanations, and c) how attending to different levels of the relevant phenomena can make explicit different mechanisms to the learners. In addition, our analysis also shows that although there were differences between high- and low-performing students (in terms of being able to explain population-level behaviors) in the pre-test, these differences disappeared in the post-test.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-03
... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Eighth Coast Guard District Annual Safety Zones; Niceville July 4th Fireworks Show; Boggy Bayou; Niceville, FL AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce a Safety Zone for the Niceville July...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-17
... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Stockton Ports Baseball Club/City of... Ports Baseball Club and the City of Stockton will sponsor the Stockton Ports Baseball Club/City of... Ports Baseball Club/City of Stockton 4th of July Fireworks Display, Stockton, CA. (a) Location....
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-23
..., telephone 202-366-9826. SUPPLEMENTARY INFORMATION: Table of Acronyms DHS Department of Homeland Security FR... Federal Register (73 FR 3316). 4. Public Meeting We do not plan to hold public meetings on this proposed... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Redwood City 4th of July Fireworks...
78 FR 39998 - Safety Zone; Grand Haven 4th of July Fireworks; Grand River; Grand Haven, MI
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-03
...-9826. SUPPLEMENTARY INFORMATION: Table of Acronyms DHS Department of Homeland Security FR Federal... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Grand Haven 4th of July Fireworks; Grand... a State, local, or tribal government, in the aggregate, or by the private sector of...
ERIC Educational Resources Information Center
Foorman, Barbara R.; Koon, Sharon; Petscher, Yaacov; Mitchell, Alison; Truckenmiller, Adrea
2015-01-01
The objective of this study was to explore dimensions of oral language and reading and their influence on reading comprehension in a relatively understudied population--adolescent readers in 4th through 10th grades. The current study employed latent variable modeling of decoding fluency, vocabulary, syntax, and reading comprehension so as to…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-23
.... SUPPLEMENTARY INFORMATION: Table of Acronyms DHS Department of Homeland Security FR Federal Register NPRM Notice... public dockets in the January 17, 2008, issue of the Federal Register (73 FR 3316). 4. Public Meeting We... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Crescent City 4th of July...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-22
...The Coast Guard is establishing a temporary safety zone on Marquette Harbor, Lake Superior, Marquette, MI. This zone is intended to restrict vessels from a portion of Marquette Harbor during the Marquette 4th of July Fireworks display. This temporary safety zone is necessary to protect spectators and vessels from the hazards associated with a firework...
78 FR 39606 - Safety Zone; City of Menominee 4th of July Fireworks, Green Bay, Menominee, MI
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-02
... Security FR Federal Register NPRM Notice of Proposed Rulemaking TFR Temporary Final Rule A. Regulatory... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; City of Menominee 4th of July Fireworks... that may result in the expenditure by a State, local, or tribal government, in the aggregate, or by...
ERIC Educational Resources Information Center
LaRusso, Maria; Jones, Stephanie M.; Kim, Ha Yeon; Kim, James; Donovan, Suzanne; Snow, Catherine
2016-01-01
This paper presents an exploratory analysis of treatment-control differences in the quality of classroom interactions in 4th through 7th grade urban classrooms. Word Generation (WG) is a research-based academic language program for middle school students designed to teach novel vocabulary and literacy through language arts, math, science, and…
ERIC Educational Resources Information Center
Sher, Stephen Korb
2011-01-01
This study looked at 4th grade classrooms to see "how" teachers implement NCTM standards-based or reform-based mathematics instruction and then analyzed it for the capacity to improve students' "algebra readiness." The qualitative study was based on classroom observations, teacher and administrator interviews, and teacher surveys. The study took…
ERIC Educational Resources Information Center
Pechenizkiy, Mykola; Calders, Toon; Conati, Cristina; Ventura, Sebastian; Romero, Cristobal; Stamper, John
2011-01-01
The 4th International Conference on Educational Data Mining (EDM 2011) brings together researchers from computer science, education, psychology, psychometrics, and statistics to analyze large datasets to answer educational research questions. The conference, held in Eindhoven, The Netherlands, July 6-9, 2011, follows the three previous editions…
ERIC Educational Resources Information Center
Yager, Robert E.; Choi, AeRan; Yager, Stuart O.; Akcay, Hakan
2009-01-01
Fifteen 4th-, 5th-, and 6th-grade teachers from five school districts each taught two sections of science--one with a Science-Technology-Society (STS) approach and the other with a more traditional textbook approach in which basic science concepts were the major organizers. Local, current, and personally relevant issues provided the context and…
The Influence of Neighborhood Density and Word Frequency on Phoneme Awareness in 2nd and 4th Grades
ERIC Educational Resources Information Center
Hogan, Tiffany P.; Bowles, Ryan P.; Catts, Hugh W.; Storkel, Holly L.
2011-01-01
Purpose: The purpose of this study was to test the hypothesis that two lexical characteristics--neighborhood density and word frequency--interact to influence performance on phoneme awareness tasks. Methods: Phoneme awareness was examined in a large, longitudinal dataset of 2nd and 4th grade children. Using linear logistic test model, the relation…
ERIC Educational Resources Information Center
Mthembu, T.
2012-01-01
The South African Technology Network (SATN) would like to thank the Editor of the "South African Journal of Higher Education" (SAJHE) for the opportunity to publish papers read at the 4th Annual SATN Conference that was hosted by Central University of Technology and held in Bloemfontein in November 2011. The journal makes it possible for…
ERIC Educational Resources Information Center
Gelmez Burakgazi, Sevinc; Yildirim, Ali; Weeth Feinstein, Noah
2016-01-01
Rooted in science education and science communication studies, this study examines 4th and 5th grade students' perceptions of science information sources (SIS) and their use in communicating science to students. It combines situated learning theory with uses and gratifications theory in a qualitative phenomenological analysis. Data were gathered…
Impact of a Health and Media Literacy Curriculum on 4th-Grade Girls: A Qualitative Study
ERIC Educational Resources Information Center
Fuller, Heidi A.; Damico, Amy M.; Rodgers, Shannon
2004-01-01
Recent research indicates that young girls are preoccupied with their body size and that the media may be a contributing factor. This study aimed to discover the impact of an interdisciplinary media literacy intervention curriculum on 4th-grade girls in an urban elementary school. The authors developed and implemented a series of lessons that…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-28
... HUMAN SERVICES National Institutes of Health 4th Annual Trauma Spectrum Conference: Bridging the Gap Between Research and Clinical Practice of Psychological Health and Traumatic Brain Injury: Prevention... Psychological Health and Traumatic Brain Injury: Prevention, Diagnosis, Treatment and Recovery for the Iraq...
Using Inquiry-Based Instruction to Teach Research Methods to 4th-Grade Students in an Urban Setting
ERIC Educational Resources Information Center
Hamm, Ellen M.; Cullen, Rebecca; Ciaravino, Melissa
2013-01-01
When a college professor who teaches research methods to graduate education students was approached by a local public urban elementary school to help them teach research skills to 4th-graders, it was thought that the process would be simple--take what we did at the college level and differentiate it for the childhood classroom. This article will…
Basha, H. Ilias; Subramanian, Vijay; Seetharam, A.; Nath, D.S.; Ramachandran, S.; Anderson, C.D.; Shenoy, S.; Chapman, W.C.; Crippin, J.S.; Mohanakumar, T.
2011-01-01
Hepatitis C Virus (HCV) recurrence with accelerated fibrosis following orthotopic liver transplantation (OLT) is a universal phenomenon. To evaluate mechanisms contributing to HCV induced allograft fibrosis/cirrhosis, we investigated HCV specific CD4+Th17 cells and their induction in OLT recipients with recurrence utilizing 51 HCV+ OLT recipients, 15 healthy controls and 9 HCV- OLT recipients. Frequency of HCV specific CD4+ Tcells secreting IFN-γ, IL-17 and IL-10 was analyzed by ELISpot. Serum cytokines and chemokines were analyzed by LUMINEX. Recipients with recurrent HCV induced allograft inflammation and fibrosis/cirrhosis demonstrated a significant increase in frequency of HCV specific CD4+Th17 cells. Increased pro-inflammatory mediators (IL-17, IL-1β, IL-6, IL-8, MCP-1), decreased IFN-γ, and increased IL-4, IL-5 and IL-10 levels were identified. OLT recipients with allograft inflammation and fibrosis/cirrhosis demonstrated increased frequency of Foxp3+ regulatory T cells (Tregs) that inhibited HCV specific CD4+Th1 but not Th17 cells. This suggests that recurrent HCV infection in OLT recipients induces an inflammatory milieu characterized by increased IL-6, IL-1β and decreased IFN-γ which facilitates induction of HCV specific CD4+Th17 cells. These cells are resistant to suppression by Tregs and may mediate an inflammatory cascade leading to cirrhosis in OLT recipients following HCV recurrence. PMID:21446979
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-06
... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; St. Ignace 4th of July Fireworks, East Moran Bay, Lake Huron, St. Ignace, MI AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on East Moran Bay, Lake Huron, St....
PREFACE: 4th Global Conference on Materials Science and Engineering (CMSE 2015)
NASA Astrophysics Data System (ADS)
Ruda, H. E.; Khotsianovsky, A.
2015-12-01
IOP Conference Series: Materials Science and Engineering is publishing a volume of conference proceedings that contains a selection of papers presented at the 4th Global Conference on Materials Science and Engineering (CMSE 2015), which is an annual event that started in 2012. CMSE 2015, technically supported by the Institute of Applied Physics and Materials Engineering of University of Macau, organized by Wuhan Advance Materials Society, was successfully held at the University of Macau-new campus located on Hengqin Island from August 3rd-6th, 2015. It aims to bring together leading academic scientists, researchers and scholars to exchange and share their experience and research results on all aspects of Materials Science and Engineering, and to discuss the practical challenges encountered and the solutions adopted. Macau, one of the two special administrative regions of the People's Republic of China, where East meets West, turned out to be an ideal meeting place for domestic and overseas participants of this annual international conference. The conference program included keynote presentations, special sessions, oral and poster contributions. From several hundred submissions, 52 of the most promising and mainstream, IOP-relevant, contributions were included in this volume. The submissions present original ideas or results of general significance, supported by clear reasoning, compelling evidence and methods, theories and practices relevant to the research. The authors state clearly the problems and the significance of their research to theory and practice. Being a successful conference, this event gathered more than 200 qualified and high-level researchers and experts from over 40 countries, including 10 keynote speakers from 6 countries, which created a good platform for worldwide researchers and engineers to enjoy the academic communication. Taking advantage of this opportunity, we would like to thank all participants of this conference, and particularly the
FOREWORD: 4th International Workshop on New Computational Methods for Inverse Problems (NCMIP2014)
NASA Astrophysics Data System (ADS)
2014-10-01
This volume of Journal of Physics: Conference Series is dedicated to the scientific contributions presented during the 4th International Workshop on New Computational Methods for Inverse Problems, NCMIP 2014 (http://www.farman.ens-cachan.fr/NCMIP_2014.html). This workshop took place at Ecole Normale Supérieure de Cachan, on May 23, 2014. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of ValueTools Conference, in May 2011 (http://www.ncmip.org/2011/), and secondly at the initiative of Institut Farman, in May 2012 and May 2013, (http://www.farman.ens-cachan.fr/NCMIP_2012.html), (http://www.farman.ens-cachan.fr/NCMIP_2013.html). The New Computational Methods for Inverse Problems (NCMIP) Workshop focused on recent advances in the resolution of inverse problems. Indeed, inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the
Adler, Mark; Mangold, Karen; Trainor, Jennifer
2016-01-01
The transition from medical student to intern is a challenging process characterized by a steep learning curve. Focused courses targeting skills necessary for success as a resident have increased self-perceived preparedness, confidence, and medical knowledge. Our aim was to create a brief educational intervention for 4th-year medical students entering pediatric, family practice, and medicine/pediatric residencies to target skills necessary for an internship. The curriculum used a combination of didactic presentations, small group discussions, role-playing, facilitated debriefing, and simulation-based education. Participants completed an objective structured clinical exam requiring synthesis and application of multiple boot camp elements before and after the elective. Participants completed anonymous surveys assessing self-perceived preparedness for an internship, overall and in regards to specific skills, before the elective and after the course. Participants were asked to provide feedback about the course. Using checklists to assess performance, students showed an improvement in performing infant lumbar punctures (47.2% vs 77.0%; p < 0.01, 95% CI for the difference 0.2, 0.4%) and providing signout (2.5 vs. 3.9 (5-point scale) p < 0.01, 95% CI for the difference 0.6, 2.3). They did not show an improvement in communication with a parent. Participants demonstrated an increase in self-reported preparedness for all targeted skills, except for obtaining consults and interprofessional communication. There was no increase in reported overall preparedness. All participants agreed with the statements, “The facilitators presented the material in an effective manner,” “I took away ideas I plan to implement in internship,” and “I think all students should participate in a similar experience.” When asked to assess the usefulness of individual modules, all except order writing received a mean Likert score > 4. A focused boot camp addressing key knowledge and skills
Burns, Rebekah; Adler, Mark; Mangold, Karen; Trainor, Jennifer
2016-01-01
The transition from medical student to intern is a challenging process characterized by a steep learning curve. Focused courses targeting skills necessary for success as a resident have increased self-perceived preparedness, confidence, and medical knowledge. Our aim was to create a brief educational intervention for 4th-year medical students entering pediatric, family practice, and medicine/pediatric residencies to target skills necessary for an internship. The curriculum used a combination of didactic presentations, small group discussions, role-playing, facilitated debriefing, and simulation-based education. Participants completed an objective structured clinical exam requiring synthesis and application of multiple boot camp elements before and after the elective. Participants completed anonymous surveys assessing self-perceived preparedness for an internship, overall and in regards to specific skills, before the elective and after the course. Participants were asked to provide feedback about the course. Using checklists to assess performance, students showed an improvement in performing infant lumbar punctures (47.2% vs 77.0%; p < 0.01, 95% CI for the difference 0.2, 0.4%) and providing signout (2.5 vs. 3.9 (5-point scale) p < 0.01, 95% CI for the difference 0.6, 2.3). They did not show an improvement in communication with a parent. Participants demonstrated an increase in self-reported preparedness for all targeted skills, except for obtaining consults and interprofessional communication. There was no increase in reported overall preparedness. All participants agreed with the statements, "The facilitators presented the material in an effective manner," "I took away ideas I plan to implement in internship," and "I think all students should participate in a similar experience." When asked to assess the usefulness of individual modules, all except order writing received a mean Likert score > 4. A focused boot camp addressing key knowledge and skills required for
PREFACE: 4th Workshop on Theory, Modelling and Computational Methods for Semiconductors (TMCSIV)
NASA Astrophysics Data System (ADS)
Tomić, Stanko; Probert, Matt; Migliorato, Max; Pal, Joydeep
2014-06-01
These conference proceedings contain the written papers of the contributions presented at the 4th International Conference on Theory, Modelling and Computational Methods for Semiconductor materials and nanostructures. The conference was held at the MediaCityUK, University of Salford, Manchester, UK on 22-24 January 2014. The previous conferences in this series took place in 2012 at the University of Leeds, in 2010 at St William's College, York and in 2008 at the University of Manchester, UK. The development of high-performance computer architectures is finally allowing the routine use of accurate methods for calculating the structural, thermodynamic, vibrational, optical and electronic properties of semiconductors and their hetero- and nano-structures. The scope of this conference embraces modelling, theory and the use of sophisticated computational tools in semiconductor science and technology, where there is substantial potential for time-saving in R&D. Theoretical approaches represented in this meeting included: Density Functional Theory, Semi-empirical Electronic Structure Methods, Multi-scale Approaches, Modelling of PV devices, Electron Transport, and Graphene. Topics included, but were not limited to: Optical Properties of Quantum Nanostructures including Colloids and Nanotubes, Plasmonics, Magnetic Semiconductors, Photonic Structures, and Electronic Devices. This workshop ran for three days, with the objective of bringing together UK and international leading experts in the theoretical modelling of Group IV, III-V and II-VI semiconductors, as well as students, postdocs and early-career researchers. The first day focused on providing an introduction and overview of this vast field, aimed particularly at students, with several lectures given by recognized experts in various theoretical approaches. The following two days showcased some of the best theoretical research carried out in the UK in this field, with several contributions also from representatives of
Transfer of a CD4+ Th1 cell line to nude mice effects clearance of Rhodococcus equi from the lung.
Kanaly, S T; Hines, S A; Palmer, G H
1996-01-01
Rhodococcus equi, and intracellular respiratory pathogen, causes sever e granulomatous pneumonia in humans with AIDS and in young horses. Pulmonary clearance of R. equi requires functional CD4+ T cells and gamma interferon (IFN-gamma) expression from bronchial lymph node cells. The purpose of this study was to investigate whether R. equi-specific CD4+ Th1 cells could effect clearance of R. equi from the lung. Adoptive transfer of a clearance of R. equi from the lungs. In contrast, mice transfused with a R. equi-specific CD4+ Th2 cell line expressed interleukin-4 but not IFN-gamma mRNA, failed to clear pulmonary infection, and developed granulomas in the lung. Control mice, which did not receive cells, did not produce IFN-gamma or interleukin-4 and developed small pulmonary granulomas. These results clearly show that a Th1 response is sufficient to effect pulmonary clearance of R. equi. PMID:8606068
Chamberlain, Marc C
2014-03-01
The 4th Quadrennial Meeting of the World Federation of Neuro-Oncology (WFNO), San Francisco, CA, USA, 21-24 November 2013 The 4th Quadrennial Meeting of the World Federation of Neuro-Oncology (WFNO) was the largest neuro-oncology meeting that meets once every 4 years and brings together clinicians and scientists from all parts of the world whose focus is on new brain cancer clinical trials and research primarily pertaining to gliomas. The WFNO 2013 meeting included 1 education day, 2.5 days of presentation, 13 sunrise sessions, one town hall meeting, one mini-symposium, 130 oral presentations and 900 abstracts. This short meeting review highlights select adult clinical abstracts presented at WFNO 2013 that will only in part encompass the contents of a large and multifaceted meeting. PMID:25055016
Sound Emission of Rotor Induced Deformations of Generator Casings
NASA Technical Reports Server (NTRS)
Polifke, W.; Mueller, B.; Yee, H. C.; Mansour, Nagi (Technical Monitor)
2001-01-01
The casing of large electrical generators can be deformed slightly by the rotor's magnetic field. The sound emission produced by these periodic deformations, which could possibly exceed guaranteed noise emission limits, is analysed analytically and numerically. From the deformation of the casing, the normal velocity of the generator's surface is computed. Taking into account the corresponding symmetry, an analytical solution for the acoustic pressure outside the generator is round in terms of the Hankel function of second order. The normal velocity or the generator surface provides the required boundary condition for the acoustic pressure and determines the magnitude of pressure oscillations. For the numerical simulation, the nonlinear 2D Euler equations are formulated In a perturbation form for low Mach number Computational Aeroacoustics (CAA). The spatial derivatives are discretized by the classical sixth-order central interior scheme and a third-order boundary scheme. Spurious high frequency oscillations are damped by a characteristic-based artificial compression method (ACM) filter. The time derivatives are approximated by the classical 4th-order Runge-Kutta method. The numerical results are In excellent agreement with the analytical solution.
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
2000-01-01
This project is about the investigation of the development of the discontinuous Galerkin finite element methods, for general geometry and triangulations, for solving convection dominated problems, with applications to aeroacoustics. On the analysis side, we have studied the efficient and stable discontinuous Galerkin framework for small second derivative terms, for example in Navier-Stokes equations, and also for related equations such as the Hamilton-Jacobi equations. This is a truly local discontinuous formulation where derivatives are considered as new variables. On the applied side, we have implemented and tested the efficiency of different approaches numerically. Related issues in high order ENO and WENO finite difference methods and spectral methods have also been investigated. Jointly with Hu, we have presented a discontinuous Galerkin finite element method for solving the nonlinear Hamilton-Jacobi equations. This method is based on the RungeKutta discontinuous Galerkin finite element method for solving conservation laws. The method has the flexibility of treating complicated geometry by using arbitrary triangulation, can achieve high order accuracy with a local, compact stencil, and are suited for efficient parallel implementation. One and two dimensional numerical examples are given to illustrate the capability of the method. Jointly with Hu, we have constructed third and fourth order WENO schemes on two dimensional unstructured meshes (triangles) in the finite volume formulation. The third order schemes are based on a combination of linear polynomials with nonlinear weights, and the fourth order schemes are based on combination of quadratic polynomials with nonlinear weights. We have addressed several difficult issues associated with high order WENO schemes on unstructured mesh, including the choice of linear and nonlinear weights, what to do with negative weights, etc. Numerical examples are shown to demonstrate the accuracies and robustness of the
NASA Astrophysics Data System (ADS)
Shum, Ping; Tang, Ming L.; Qian, Yi; Gong, Yan D.
2005-01-01
The purpose of this paper is to use numerical simulations and experiments to investigate the SCG in HNLF and optimize the SCG according to the parameters of fiber and pump pulse. Complex temporal and spectral characteristics of supercontinuum generation are investigated in the zero-dispersion wavelength (ZDW) region of highly nonlinear fibers. The simulations are based on an extended nonlinear Schrödinger equation (NLSE), which is valid even in circumstances where the bandwidth of the SCG is of the same order as the central frequency of the input pulse, and includes higher order nonlinearity, dispersion and intrapulse stimulated Raman scattering. We developed a finite difference scheme incorporating modified 4-th order Runge-Kutta algorithm to solve the equation. We discuss the SCG by varying the parameters of input pulse, such as pulse width, peak power, and center wavelength, to explore the dynamics of SCG in normal and anomalous dispersion regions. An optimal approach for supercontinuum generation is proposed and proved by experiments and simulations. The measured and calculated spectra are compared and exhibit good qualitative agreements. Our works provide a useful approach to design a practical SC source by using the conventional HNLF and readily available low power fiber laser sources.
Nonlinear dynamics of a simplified engine-propeller system
NASA Astrophysics Data System (ADS)
Yu, S. D.; Warwick, S. A.; Zhang, X.
2009-07-01
This paper presents a procedure for studying dynamical behaviors of a simplified engine-propeller dynamical system consisting of a number of bodies of plane motions. The equation of motion of the complex system is obtained using the Lagrange equation and solved numerically using the 4th order Runge-Kutta method. Various simulations were performed to investigate the transient and steady state behaviors of the multiple body system while taking into consideration the engine pressure pulsations, nonlinear inertia of moving bodies, and nonlinear aerodynamic load. Sub-harmonics and super harmonics in the steady state responses for different power and propeller pitch settings are obtained using the fast Fourier transform. Numerical simulations indicate that the 1.5 order is the dominant order of harmonics in the steady state oscillatory motion of the crankshaft. The findings and procedure presented in the paper are useful to the aerospace industry in certifying reciprocating engines and propellers. The crankshaft oscillatory velocities obtained from the simplified rigid body model are in good agreement with the experimental data for a SAITO-450 engine and a SOLO propeller at a 6″ pitch setting.
Spectral Element Method for the Simulation of Unsteady Compressible Flows
NASA Technical Reports Server (NTRS)
Diosady, Laslo Tibor; Murman, Scott M.
2013-01-01
This work uses a discontinuous-Galerkin spectral-element method (DGSEM) to solve the compressible Navier-Stokes equations [1{3]. The inviscid ux is computed using the approximate Riemann solver of Roe [4]. The viscous fluxes are computed using the second form of Bassi and Rebay (BR2) [5] in a manner consistent with the spectral-element approximation. The method of lines with the classical 4th-order explicit Runge-Kutta scheme is used for time integration. Results for polynomial orders up to p = 15 (16th order) are presented. The code is parallelized using the Message Passing Interface (MPI). The computations presented in this work are performed using the Sandy Bridge nodes of the NASA Pleiades supercomputer at NASA Ames Research Center. Each Sandy Bridge node consists of 2 eight-core Intel Xeon E5-2670 processors with a clock speed of 2.6Ghz and 2GB per core memory. On a Sandy Bridge node the Tau Benchmark [6] runs in a time of 7.6s.
NASA Astrophysics Data System (ADS)
Neuhuber, G.; G. Neuhuber1, W. Klary1, A. Nitschke1, B. Thapa2, Chris Risden3, T. Crampton4, D. Zerga5
2011-12-01
The 4th Bore is a highway tunnel on California State Route 24 currently under construction. The 4th Bore is undertaken by the California State Department of Transportation (CALTRANS) and the Contra Costa County Transportation Commission (CCTC) to alleviate traffic congestion on SR24 connecting the cities of Oakland and Orinda in the San Francisco East Bay Area. The cost for the 4th Bore is estimated at $ 390.8 Mill. The 3,249 ft long 4th Bore tunnel will have excavated dimensions of approximately 40 ft height and 49 ft width. A total of 7 cross passages will run between the 3rd and the new 4th bore. Geology and Hydrogeology: The project is located in the Oakland Berkeley Hills of the SF Bay Area. The Caldecott Tunnels lie within the easterly assemblage of the Hayward fault zone province which consists of a sequence of sedimentary and volcanic rocks that accumulated in the interval between about 16 and 8.4 Ma (Miocene). The basal rocks of these Tertiary deposits consist of deep marine basin sediments of the Monterey Group. These rocks are overlain uncomfortably by an interbedded sequence of terrestrial sediments (Orinda Formation) and volcanic rocks (Moraga Formation). The Tertiary rocks have been folded into large amplitude, NW trending folds that are cut by N trending strike and slip faults. The SF Bay Region, which is crossed by 4 major faults (San Gregorio, San Andreas, Hayward, and Calaveras), is considered one of the more seismically active regions of the world. The active Hayward fault lies 0.9mi to the west of the Caldecott Tunnels and is the closest major fault to the project area. The tunnel is at the moment under top heading construction: West Portal (360ft) and East Portal (1,968.5ft). While major faults typically influence groundwater flow, characterization of such influences is extremely difficult because of the heterogeneity of the hydraulic systems and the different lithological parameters and influences. Four major inactive fault zones striking
Skundric, Dusanka S; Cai, Juan; Cruikshank, William W; Gveric, Djordje
2006-01-01
Background Multiple sclerosis (MS) is a central nervous system-specific autoimmune, demyelinating and neurodegenerative disease. Infiltration of lesions by autoaggressive, myelin-specific CD4+Th1 cells correlates with clinical manifestations of disease. The cytokine IL-16 is a CD4+ T cell-specific chemoattractant that is biased towards CD4+ Th1 cells. IL-16 precursor is constitutively expressed in lymphocytes and during CD4+ T cell activation; active caspase-3 cleaves and releases C-terminal bioactive IL-16. Previously, we used an animal model of MS to demonstrate an important role for IL-16 in regulation of autoimmune inflammation and subsequent axonal damage. This role of IL-16 in MS is largely unexplored. Here we examine the regulation of IL-16 in relation to CD4+ Th1 infiltration and inflammation-related changes of axonal cytoskeleton in MS lesions. Methods We measured relative levels of IL-16, active caspase-3, T-bet, Stat-1 (Tyr 701), and phosphorylated NF(M+H), in brain and spinal cord lesions from MS autopsies, using western blot analysis. We examined samples from 39 MS cases, which included acute, subacute and chronic lesions, as well as adjacent, normal-appearing white and grey matter. All samples were taken from patients with relapsing remitting clinical disease. We employed two-color immunostaining and confocal microscopy to identify phenotypes of IL-16-containing cells in frozen tissue sections from MS lesions. Results We found markedly increased levels of pro- and secreted IL-16 (80 kD and 22 kD, respectively) in MS lesions compared to controls. Levels of IL-16 peaked in acute, diminished in subacute, and were elevated again in chronic active lesions. Compared to lesions, lower but still appreciable IL-6 levels were measured in normal-appearing white matter adjacent to active lesions. Levels of IL-16 corresponded to increases in active-caspase-3, T-bet and phosphorylated Stat-1. In MS lesions, we readily observed IL-16 immunoreactivity confined to
Gregory, Louis
2014-12-02
This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. There was one shipment of two drums sent for offsite treatment and disposal. This report summarizes the 4th quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014.
Lessons Learned from Numerical Simulations of Interfacial Instabilities
NASA Astrophysics Data System (ADS)
Cook, Andrew
2015-11-01
Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM) and Kelvin-Helmholtz (KH) instabilities serve as efficient mixing mechanisms in a wide variety of flows, from supernovae to jet engines. Over the past decade, we have used the Miranda code to temporally integrate the multi-component Navier-Stokes equations at spatial resolutions up to 29 billion grid points. The code employs 10th-order compact schemes for spatial derivatives, combined with 4th-order Runge-Kutta time advancement. Some of our major findings are as follows: The rate of growth of a mixing layer is equivalent to the net mass flux through the equi-molar plane. RT growth rates can be significantly reduced by adding shear. RT instability can produce shock waves. The growth rate of RM instability can be predicted from known interfacial perturbations. RM vortex projectiles can far outrun the mixing region. Thermal fluctuations in molecular dynamics simulations can seed instabilities along the braids in KH instability. And finally, enthalpy diffusion is essential in preserving the second law of thermodynamics. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
DeJong, Andrew
Numerical models of fluid-structure interaction have grown in importance due to increasing interest in environmental energy harvesting, airfoil-gust interactions, and bio-inspired formation flying. Powered by increasingly powerful parallel computers, such models seek to explain the fundamental physics behind the complex, unsteady fluid-structure phenomena. To this end, a high-fidelity computational model based on the high-order spectral difference method on 3D unstructured, dynamic meshes has been developed. The spectral difference method constructs continuous solution fields within each element with a Riemann solver to compute the inviscid fluxes at the element interfaces and an averaging mechanism to compute the viscous fluxes. This method has shown promise in the past as a highly accurate, yet sufficiently fast method for solving unsteady viscous compressible flows. The solver is monolithically coupled to the equations of motion of an elastically mounted 3-degree of freedom rigid bluff body undergoing flow-induced lift, drag, and torque. The mesh is deformed using 4 methods: an analytic function, Laplace equation, biharmonic equation, and a bi-elliptic equation with variable diffusivity. This single system of equations -- fluid and structure -- is advanced through time using a 5-stage, 4th-order Runge-Kutta scheme. Message Passing Interface is used to run the coupled system in parallel on up to 240 processors. The solver is validated against previously published numerical and experimental data for an elastically mounted cylinder. The effect of adding an upstream body and inducing wake galloping is observed.
Noisy contact interactions of multi-layer mechanical structures coupled by boundary conditions
NASA Astrophysics Data System (ADS)
Awrejcewicz, J.; Krysko, V. A., Jr.; Yakovleva, T. V.; Krysko, V. A.
2016-05-01
In this work mathematical models of temporal part of chaos at chosen spatial locations of a plate locally reinforced by ribs taking into account an interplay of their interactions are derived and studied numerically for the most relevant dynamical parameters. In addition, an influence of the additive external noise on chaotic vibrations of multi-layer beam-plate structures coupled only by boundary conditions is investigated. We illustrate and discuss novel nonlinear phenomena of the temporal regular and chaotic contact/no-contact dynamics with the help of Morlet wavelets and Fourier analysis. We show how the additive white noise cancels deterministic chaos close to the boundary of chaotic region in the space of parameters, and we present windows of on/off switching of the frequencies during the contact dynamics between structural members. In order to solve the mentioned design type nonlinear problem we apply methods of qualitative theory of differential equations, the Bubnov-Galerkin method in higher approximations, the Runge-Kutta methods of 4th, 6th and 8th order, as well as the computation and analysis of the largest Lyapunov exponent (Benettin's and Wolf's algorithms are used). The agreement of outcomes of all applied qualitatively different numerical approaches validate our simulation results. In particular, we have illustrated that the Fourier analysis of the studied mechanical structures may yield erroneous results, and hence the wavelet-based analysis is used to investigate chaotic dynamics in the system parameter space.
Macromodel for exact computation of propagation delay time in GaAs and CMOS technologies
NASA Astrophysics Data System (ADS)
Garcia, Jose C.; Montiel-Nelson, Juan A.; Sosa, Javier; Navarro, Hector; Sarmiento, Roberto
2003-04-01
A new transient macromodel for the cells used in DCFL GaAs and CMOS digital design is introduced in this paper. The numerical solution determines accurate propagation delay times. The macromodel is based on the differential equation for the output voltage in terms of currents and capacitances. An straightforward treatment of the differential equation for an inverter in DCFL GaAs and CMOS has been obtained. It could be resolved numerically by a 4th order Runge Kutta method. Good agreement is obtained between the HSPICE simulation and the computation of the propagation delays for DCFL GaAs and CMOS basic gates: INV, NOR, OR and NAND. There is no error between HSPICE and our computation of propagation delay time for the high to low (tphl) and low to high (tplh) transitions. The propagation delay times for two types of transition were measured and compared with HSPICE. The results demonstrate that our approach matches with HSPICE with no error. The numerical method was programmed in C language. In addition, computation time analysis is provided and numerical solution is several orders of magnitude faster than HSPICE. Work is in progress to obtain the macromodel of a standard cell library for digital application both for a 0.6 microns E/D GaAs process (H-GaAsIV) from Vitesse Semiconductor and for a 0.18 microns logic/mixed-signal CMOS process (1P6M) from TSMC Corp.
One-dimensional analysis of the behaviour of wet steam at different inlet conditions
NASA Astrophysics Data System (ADS)
Malek, Norhazwani Abd; Hasini, Hasril; Yusoff, Mohd Zamri
2012-06-01
The main aim of this paper is to estimate the likely behaviour of steam during an expansion process with the variation in the total inlet temperature. It is well-acknowledged that the position of limiting supersaturation was dependent on the steam conditions at inlet. Based on this hypothesis, an improved mathematical model is developed to observe the effect of changing the inlet total temperature to the flow properties. In the present work, a one-dimensional (1-D) time-marching compressible Euler solver that uses the second order cell-vertex finite volume spatial discretization and fourth orders Runge-Kutta temporal integration has been developed. Artificial viscosity is added by using Jameson's type 2nd and 4th. A single dimension is considered here as to demonstrate the main effects of spontaneous condensation without necessary complexity. The boundary conditions across the nozzle are imposed in the calculations. Based on the calculation, it is clear that the Mach number and pressure ratio is a good representation to the onset of condensation and are highly dependent on the total inlet temperature.
NASA Astrophysics Data System (ADS)
Liu, Y. Z.; Hao, Y. X.; Zhang, W.; Chen, J.; Li, S. B.
2015-07-01
The nonlinear vibration of a simply supported FGM cylindrical shell with small initial geometric imperfection under complex loads is studied. The effects of radial harmonic excitation, compressive in-plane force combined with supersonic aerodynamic and thermal loads are considered. The small initial geometric imperfection of the cylindrical shell is characterized in the form of the sine-type trigonometric functions. The effective material properties of this FGM cylindrical shell are graded in the radial direction according to a simple power law in terms of the volume fractions. Based on Reddy's third-order shear deformation theory, von Karman-type nonlinear kinematics and Hamilton's principle, the nonlinear partial differential equation that controls the shell dynamics is derived. Both axial symmetric and driven modes of the cylindrical shell deflection pattern are included. Furthermore, the equations of motion can be reduced into a set of coupled nonlinear ordinary differential equations by applying Galerkin's method. In the study of the nonlinear dynamics responses of small initial geometric imperfect FGM cylindrical shell under complex loads, the 4th order Runge-Kutta method is used to obtain time history, phase portraits, bifurcation diagrams and Poincare maps with different parameters. The effects of external loads, geometric imperfections and volume fractions on the nonlinear dynamics of the system are discussed.
Liu, Bo; Lee, Jee-Boong; Chen, Chun-Yu; Hershey, Gurjit K Khurana; Wang, Yui-Hsi
2015-04-15
Type-2 innate lymphoid cells (ILC2s) and the acquired CD4(+) Th2 and Th17 cells contribute to the pathogenesis of experimental asthma; however, their roles in Ag-driven exacerbation of chronic murine allergic airway diseases remain elusive. In this study, we report that repeated intranasal rechallenges with only OVA Ag were sufficient to trigger airway hyperresponsiveness, prominent eosinophilic inflammation, and significantly increased serum OVA-specific IgG1 and IgE in rested mice that previously developed murine allergic airway diseases. The recall response to repeated OVA inoculation preferentially triggered a further increase of lung OVA-specific CD4(+) Th2 cells, whereas CD4(+) Th17 and ILC2 cell numbers remained constant. Furthermore, the acquired CD4(+) Th17 cells in Stat6(-/-)/IL-17-GFP mice, or innate ILC2s in CD4(+) T cell-ablated mice, failed to mount an allergic recall response to OVA Ag. After repeated OVA rechallenge or CD4(+) T cell ablation, the increase or loss of CD4(+) Th2 cells resulted in an enhanced or reduced IL-13 production by lung ILC2s in response to IL-25 and IL-33 stimulation, respectively. In return, ILC2s enhanced Ag-mediated proliferation of cocultured CD4(+) Th2 cells and their cytokine production, and promoted eosinophilic airway inflammation and goblet cell hyperplasia driven by adoptively transferred Ag-specific CD4(+) Th2 cells. Thus, these results suggest that an allergic recall response to recurring Ag exposures preferentially triggers an increase of Ag-specific CD4(+) Th2 cells, which facilitates the collaborative interactions between acquired CD4(+) Th2 cells and innate ILC2s to drive the exacerbation of a murine allergic airway diseases with an eosinophilic phenotype. PMID:25780046
Idaho National Laboratory Quarterly Event Performance Analysis FY 2013 4th Quarter
Lisbeth A. Mitchell
2013-11-01
This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS) as prescribed in DOE Order 232.2 “Occurrence Reporting and Processing of Operations Information” requires a quarterly analysis of events, both reportable and not reportable for the previous twelve months. This report is the analysis of occurrence reports and deficiency reports (including not reportable events) identified at the Idaho National Laboratory (INL) during the period of October 2012 through September 2013.
Injector Beam Dynamics for a High-Repetition Rate 4th-Generation Light Source
Papadopoulos, C. F.; Corlett, J.; Emma, P.; Filippetto, D.; Penn, G.; Qiang, J.; Reinsch, M.; Sannibale, F.; Steier, C.; Venturini, M.; Wells, R.
2013-05-20
We report on the beam dynamics studies and optimization methods for a high repetition rate (1 MHz) photoinjector based on a VHF normal conducting electron source. The simultaneous goals of beamcompression and reservation of 6-dimensional beam brightness have to be achieved in the injector, in order to accommodate a linac driven FEL light source. For this, a parallel, multiobjective optimization algorithm is used. We discuss the relative merits of different injector design points, as well as the constraints imposed on the beam dynamics by technical considerations such as the high repetition rate.
Solution of the Falkner-Skan wedge flow by a revised optimal homotopy asymptotic method.
Madaki, A G; Abdulhameed, M; Ali, M; Roslan, R
2016-01-01
In this paper, a revised optimal homotopy asymptotic method (OHAM) is applied to derive an explicit analytical solution of the Falkner-Skan wedge flow problem. The comparisons between the present study with the numerical solutions using (fourth order Runge-Kutta) scheme and with analytical solution using HPM-Padé of order [4/4] and order [13/13] show that the revised form of OHAM is an extremely effective analytical technique. PMID:27186477
Entropy generation analysis for film boiling: A simple model of quenching
NASA Astrophysics Data System (ADS)
Lotfi, Ali; Lakzian, Esmail
2016-04-01
In this paper, quenching in high-temperature materials processing is modeled as a superheated isothermal flat plate. In these phenomena, a liquid flows over the highly superheated surfaces for cooling. So the surface and the liquid are separated by the vapor layer that is formed because of the liquid which is in contact with the superheated surface. This is named forced film boiling. As an objective, the distribution of the entropy generation in the laminar forced film boiling is obtained by similarity solution for the first time in the quenching processes. The PDE governing differential equations of the laminar film boiling including continuity, momentum, and energy are reduced to ODE ones, and a dimensionless equation for entropy generation inside the liquid boundary and vapor layer is obtained. Then the ODEs are solved by applying the 4th-order Runge-Kutta method with a shooting procedure. Moreover, the Bejan number is used as a design criterion parameter for a qualitative study about the rate of cooling and the effects of plate speed are studied in the quenching processes. It is observed that for high speed of the plate the rate of cooling (heat transfer) is more.
Nonstandard finite difference scheme for SIRS epidemic model with disease-related death
NASA Astrophysics Data System (ADS)
Fitriah, Z.; Suryanto, A.
2016-04-01
It is well known that SIRS epidemic with disease-related death can be described by a system of nonlinear ordinary differential equations (NL ODEs). This model has two equilibrium points where their existence and stability properties are determined by the basic reproduction number [1]. Besides the qualitative properties, it is also often needed to solve the system of NL ODEs. Euler method and 4th order Runge-Kutta (RK4) method are often used to solve the system of NL ODEs. However, both methods may produce inconsistent qualitative properties of the NL ODEs such as converging to wrong equilibrium point, etc. In this paper we apply non-standard finite difference (NSFD) scheme (see [2,3]) to approximate the solution of SIRS epidemic model with disease-related death. It is shown that the discrete system obtained by NSFD scheme is dynamically consistent with the continuous model. By our numerical simulations, we find that the solutions of NSFD scheme are always positive, bounded and convergent to the correct equilibrium point for any step size of integration (h), while those of Euler or RK4 method have the same properties only for relatively small h.
Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Suming; Nie, Zongxiu
2014-11-01
Paul trap working in the second stability region has long been recognized as a possible approach for achieving high-resolution mass spectrometry (MS), which however is still far away from the experimental implementations because of the narrow working area and inefficient ion trapping. Full understanding of the ion motional behavior is helpful for solving the problem. In this article, the ion motion in a superimposed octopole field, which was characterized by the nonlinear Mathieu equation, was solved analytically using Poincare-Lighthill-Kuo (PLK) method. This method equivalently described the nonlinear disturbance by an effective quadrupole field with perturbed Mathieu parameters, a(u) and q(u), which would bring huge convenience in the studies of nonlinear ion dynamics and was, therefore, used for rapid evaluation of the nonlinear effects of ion motion. Fourth-order Runge-Kutta method (4th R-K) indicated the error of PLK for characterizing the frequency shift of ion motion was within 15%. PMID:25183226
NASA Astrophysics Data System (ADS)
Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Nie, Zongxiu
2016-02-01
The nonlinear harmonics within the ion motion are the fingerprint of the nonlinear fields. They are exclusively introduced by these nonlinear fields and are responsible to some specific nonlinear effects such as nonlinear resonance effect. In this article, the ion motion in the quadrupole field with a weak superimposed octopole component, described by the nonlinear Mathieu equation (NME), was studied by using the analytical harmonic balance (HB) method. Good accuracy of the HB method, which was comparable with that of the numerical fourth-order Runge-Kutta (4th RK), was achieved in the entire first stability region, except for the points at the stability boundary (i.e., β = 1) and at the nonlinear resonance condition (i.e., β = 0.5). Using the HB method, the nonlinear 3β harmonic series introduced by the octopole component and the resultant nonlinear resonance effect were characterized. At nonlinear resonance, obvious resonant peaks were observed in the nonlinear 3β series of ion motion, but were not found in the natural harmonics. In addition, both resonant excitation and absorption peaks could be observed, simultaneously. These are two unique features of the nonlinear resonance, distinguishing it from the normal resonance. Finally, an approximation equation was given to describe the corresponding working parameter, q nr , at nonlinear resonance. This equation can help avoid the sensitivity degradation due to the operation of ion traps at the nonlinear resonance condition.
NASA Astrophysics Data System (ADS)
Zagidullin, Arthur; Petrova, Natalia
2016-07-01
In the present paper we construct equations describing the physical libration of the Moon ( PhLM). Consider a model the main problems, where, at this stage of development is taken into account only the second harmonic selenopotentsial. For the mathematical description of the problem, we use the construction of the Hamilton equations and their numerical solution. Since the equations describing the libration in latitude (at the level of kinetic energy) does not depend on the libration in longitude, we can divide the solution PhLM by longitude and by latitude. The fact that the equations for the longitude require special consideration of resonance in the Earth system: the Moon, which causes difficulty in the numerical integration of the corresponding equations for the longitude. To obtain latitudinal angles ρ and σ equations are integrated in view of the known analytical solutions for the longitude μ, resulting in analytical theory FLL Petrova (1996). Solution of the Hamilton system is implemented based on the Runge Kutta method of 4th order.
MSFC Stream Model Preliminary Results: Modeling Recent Leonid and Perseid Encounters
NASA Technical Reports Server (NTRS)
Cooke, William J.; Moser, Danielle E.
2004-01-01
The cometary meteoroid ejection model of Jones and Brown (1996b) was used to simulate ejection from comets 55P/Tempel-Tuttle during the last 12 revolutions, and the last 9 apparitions of 109P/Swift-Tuttle. Using cometary ephemerides generated by the Jet Propulsion Laboratory s (JPL) HORIZONS Solar System Data and Ephemeris Computation Service, two independent ejection schemes were simulated. In the first case, ejection was simulated in 1 hour time steps along the comet s orbit while it was within 2.5 AU of the Sun. In the second case, ejection was simulated to occur at the hour the comet reached perihelion. A 4th order variable step-size Runge-Kutta integrator was then used to integrate meteoroid position and velocity forward in time, accounting for the effects of radiation pressure, Poynting-Robertson drag, and the gravitational forces of the planets, which were computed using JPL s DE406 planetary ephemerides. An impact parameter was computed for each particle approaching the Earth to create a flux profile, and the results compared to observations of the 1998 and 1999 Leonid showers, and the 1993 and 2004 Perseids.
NASA Technical Reports Server (NTRS)
DeBonis, James R.
2013-01-01
A computational fluid dynamics code that solves the compressible Navier-Stokes equations was applied to the Taylor-Green vortex problem to examine the code s ability to accurately simulate the vortex decay and subsequent turbulence. The code, WRLES (Wave Resolving Large-Eddy Simulation), uses explicit central-differencing to compute the spatial derivatives and explicit Low Dispersion Runge-Kutta methods for the temporal discretization. The flow was first studied and characterized using Bogey & Bailley s 13-point dispersion relation preserving (DRP) scheme. The kinetic energy dissipation rate, computed both directly and from the enstrophy field, vorticity contours, and the energy spectra are examined. Results are in excellent agreement with a reference solution obtained using a spectral method and provide insight into computations of turbulent flows. In addition the following studies were performed: a comparison of 4th-, 8th-, 12th- and DRP spatial differencing schemes, the effect of the solution filtering on the results, the effect of large-eddy simulation sub-grid scale models, and the effect of high-order discretization of the viscous terms.
NASA Technical Reports Server (NTRS)
Liew, K. H.; Urip, E.; Yang, S. L.; Marek, C. J.
2004-01-01
Droplet interaction with a high temperature gaseous crossflow is important because of its wide application in systems involving two phase mixing such as in combustion requiring quick mixing of fuel and air with the reduction of pollutants and for jet mixing in the dilution zone of combustors. Therefore, the focus of this work is to investigate dispersion of a two-dimensional atomized and evaporating spray jet into a two-dimensional crossflow. An interactive Microsoft Excel program for tracking a single droplet in crossflow that has previously been developed will be modified to include droplet evaporation computation. In addition to the high velocity airflow, the injected droplets are also subjected to combustor temperature and pressure that affect their motion in the flow field. Six ordinary differential equations are then solved by 4th-order Runge-Kutta method using Microsoft Excel software. Microsoft Visual Basic programming and Microsoft Excel macrocode are used to produce the data and plot graphs describing the droplet's motion in the flow field. This program computes and plots the data sequentially without forcing the user to open other types of plotting programs. A user's manual on how to use the program is included.
Mercuri, E G F; Daniel, A L; Hecke, M B; Carvalho, L
2016-09-01
This work represents a study of a mathematical model that describes the biological response to different mechanical stimuli in a cellular dynamics model for bone remodelling. The biological system discussed herein consists of three specialised cellular types, responsive osteoblasts, active osteoblasts and osteoclasts, three types of signalling molecules, transforming growth factor beta (TGF-β), receptor activator of nuclear factor kappa-b ligand (RANKL) and osteoprotegerin (OPG) and the parathyroid hormone (PTH). Three proposals for mechanical stimuli were tested: strain energy density (SED), hydrostatic and deviatoric parts of SED. The model was tested in a two-dimensional geometry of a standard human femur. The spatial discretization was performed by the finite element method while the temporal evolution of the variables was calculated by the 4th order Runge-Kutta method. The obtained results represent the temporal evolution of the apparent density distribution and the mean apparent density and thickness for the cortical bone after 600 days of remodelling simulation. The main contributions of this paper are the coupling of mechanical and biological models and the exploration of how the different mechanical stimuli affect the cellular activity in different types of physical activities. The results revealed that hydrostatic SED stimulus was able to form more cortical bone than deviatoric SED and total SED stimuli. The computational model confirms how different mechanical stimuli can impact in the balance of bone homeostasis. PMID:27215171
Time reversed test particle calculations at Titan, based on CAPS-IMS measurements
NASA Astrophysics Data System (ADS)
Bebesi, Zsofia; Erdos, Geza; Szego, Karoly; Young, David T.
2013-04-01
We used the theoretical approach of Kobel and Flückiger (1994) to construct a magnetic environment model in the vicinity of Titan - with the exception of placing the bow shock (which is not present at Titan) into infinity. The model has 4 free parameters to calibrate the shape and orientation of the field. We investigate the CAPS-IMS Singles data to calculate/estimate the location of origin of the detected cold ions at Titan, and we also use the measurements of the onboard Magnetometer to set the parameters of the model magnetic field. A 4th order Runge-Kutta method is applied to calculate the test particle trajectories in a time reversed scenario, in the curved magnetic environment. Several different ion species can be tracked by the model along their possible trajectories, as a first approach we considered three particle groups (1, 2 and 16 amu ions). In this initial study we show the results for some thoroughly discussed flybys like TA, TB and T5, but we consider more recent tailside encounters as well. Reference: Kobel, E. and E.O. Flückiger, A model of the steady state magnetic field in the magnetosheath, JGR 99, Issue A12, 23617, 1994
3D Global Two-Fluid Simulations of Turbulence in LAPD
NASA Astrophysics Data System (ADS)
Fisher, Dustin; Rogers, Barrett; Ricci, Paolo
2012-10-01
3D global two-fluid simulations are presented in an ongoing effort to identify and understand the physics of instabilities that arise in the Large Plasma Device (LAPD) at UCLA's Basic Science Facility. The LAPD, with its wide range of tunable parameters and device configurations, is ideally suited for studying space and laboratory plasmas. Moreover, the highly detailed and reproducible measurements of the LAPD lend themselves amicably to comparisons with simulations. Ongoing modeling is done using a modified version of the Global Braginskii Solver (GBS) [1] that models the plasma from source to edge region in a fully 3D two-fluid code. The reduced Braginskii equations are solved on a field-aligned grid using a finite difference method and 4th order Runge-Kutta time stepping and are parallelized on Dartmouth's Discovery cluster. Recent progress has been made to account for the thermionic cathode emission of fast electrons at the source, the axial dependence of the plasma source, and it is now possible to vary the potential on the front and side walls. Preliminary results, seen from the density and temperature profiles, show that the low frequency Kelvin Helmholtz instability still dominates the turbulence in the device.[4pt] [1] B. Rogers and P. Ricci. Phys. Rev. Lett. 104:225002, 2010
3D Global Braginskii Simulations of Plasma Dynamics and Turbulence in LAPD
NASA Astrophysics Data System (ADS)
Fisher, Dustin; Rogers, Barrett
2013-10-01
3D global two-fluid simulations are presented in an ongoing effort to identify and understand the plasma dynamics in the Large Plasma Device (LAPD) at UCLA's Basic Science Facility. Modeling is done using a modified version of the Global Braginskii Solver (GBS) that models the plasma from source to edge region on a field-aligned grid using a finite difference method and 4th order Runge-Kutta time stepping. Progress has been made to account for the thermionic cathode emission of fast electrons at the source, the axial dependence of the plasma source, and biasing the front and side walls. Along with trying to understand the effect sheath's and neutrals have in setting the plasma potential, work is being done to model the biasable limiter recently used by colleagues at UCLA to better understand flow shear and particle transport in the LAPD. Comparisons of the zero bias case are presented along with analysis of the growth and dynamics of turbulent structures (such as drift waves) seen in the simulations. Supported through CICART under the auspices of the DOE's EPSCoR Grant No. DE-FG02-10ER46372.
A Hyperbolic Solver for Black Hole Initial Data in Numerical Relativity
NASA Astrophysics Data System (ADS)
Babiuc, Maria
2016-03-01
Numerical relativity is essential to the efforts of detecting gravitational waves emitted at the inspiral and merger of binary black holes. The first requirement for the generation of reliable gravitational wave templates is an accurate method of constructing initial data (ID). The standard approach is to solve the constraint equations for general relativity by formulating them as an elliptic system. A shortcoming of the ID constructed this way is an initial burst of spurious unphysical radiation (junk radiation). Recently, Racz and Winicour formulated the constraints as a hyperbolic problem, requiring boundary conditions only on a large sphere surrounding the system, where the physical behavior of the gravitational field is well understood. We investigate the applicability of this new approach, by developing a new 4th order numerical code that implements the fully nonlinear constraints equations on a two dimensional stereographic foliation, and evolves them radially inward using a Runge-Kutta integrator. The tensorial quantities are written as spin-weighted fields and the angular derivatives are replaced with ``eth'' operators. We present here results for the simulation of nonlinear perturbations to Schwarzschild ID in Kerr-Schild coordinates. The code shows stability and convergence at both large and small radii. Our long-term goal is to develop this new approach into a numerical scheme for generating ID for binary black holes and to analyze its performance in eliminating the junk radiation.
Soot particle trajectories of a Di diesel engine at 18° ATDC crankshaft angle
NASA Astrophysics Data System (ADS)
Hafidzal, M. H. M.; Mahmood, W. M. F. W.; Manaf, M. Z. A.; Zakaria, M. S.; Saadun, M. N. A.; Nordin, M. N. A.
2013-12-01
Among the major pollutants of diesel engine is soot. Soot is formed as an unwelcome product in combustion systems. Soot emission to the atmosphere leads to global air warming and health problems. Furthermore, deposition of soot particles on cylinder walls contaminates lubricant oil hence increases its viscosity. This reduces durability of lubricant oil, causing pumpability problems and increasing wear. Therefore, it is necessary to study soot formation and its movement in diesel engines. This study focuses on soot particle trajectories in diesel engines by considering the diameter of soot particles that were formed at 18° ATDC crankshaft angle. These soot particle movements are under the influence of drag force with different radial, axial and angular settings and simulated by using MATLAB routine. The mathematical algorithm which was used in the MATLAB routine is trilinear interpolation and 4th order of Runge Kutta. Simulation was carried out for a combustion system of 4 valves DI diesel engine from inlet valve closing (IVC) to exhaust valve opening (EVO). The results show that small diameter of soot particles were transferred near the cylinder wall while bigger soot particle mostly moved in inner radius of the combustion chamber.
Additions and Improvements to the FLASH Code for Simulating High Energy Density Physics Experiments
NASA Astrophysics Data System (ADS)
Lamb, D. Q.; Daley, C.; Dubey, A.; Fatenejad, M.; Flocke, N.; Graziani, C.; Lee, D.; Tzeferacos, P.; Weide, K.
2015-11-01
FLASH is an open source, finite-volume Eulerian, spatially adaptive radiation hydrodynamics and magnetohydrodynamics code that incorporates capabilities for a broad range of physical processes, performs well on a wide range of computer architectures, and has a broad user base. Extensive capabilities have been added to FLASH to make it an open toolset for the academic high energy density physics (HEDP) community. We summarize these capabilities, with particular emphasis on recent additions and improvements. These include advancements in the optical ray tracing laser package, with methods such as bi-cubic 2D and tri-cubic 3D interpolation of electron number density, adaptive stepping and 2nd-, 3rd-, and 4th-order Runge-Kutta integration methods. Moreover, we showcase the simulated magnetic field diagnostic capabilities of the code, including induction coils, Faraday rotation, and proton radiography. We also describe several collaborations with the National Laboratories and the academic community in which FLASH has been used to simulate HEDP experiments. This work was supported in part at the University of Chicago by the DOE NNSA ASC through the Argonne Institute for Computing in Science under field work proposal 57789; and the NSF under grant PHY-0903997.
Quasi-integrable deformations of the SU(3) Affine Toda theory
NASA Astrophysics Data System (ADS)
Ferreira, L. A.; Klimas, P.; Zakrzewski, Wojtek J.
2016-05-01
We consider deformations of the SU(3) Affine Toda theory (AT) and investigate the integrability properties of the deformed theories. We find that for some special deformations all conserved quantities change to being conserved only asymptotically, i.e. in the process of the scattering of two solitons these charges do vary in time, but they return, after the scattering, to the values they had prior to the scattering. This phenomenon, which we have called quasi-integrability, is related to special properties of the two-soliton solutions under space-time parity transformations. Some properties of the AT solitons are discussed, especially those involving interesting static multi-soliton solutions. We support our analytical studies with detailed numerical ones in which the time evolution has been simulated by the 4th order Runge-Kutta method. We find that for some perturbations the solitons repel and for the others they form a quasi-bound state. When we send solitons towards each other they can repel when they come close together with or without `flipping' the fields of the model. The solitons radiate very little and appear to be stable. These results support the ideas of quasi-integrability, i.e. that many effects of integrability also approximately hold for the deformed models.
Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Nie, Zongxiu
2016-02-01
The nonlinear harmonics within the ion motion are the fingerprint of the nonlinear fields. They are exclusively introduced by these nonlinear fields and are responsible to some specific nonlinear effects such as nonlinear resonance effect. In this article, the ion motion in the quadrupole field with a weak superimposed octopole component, described by the nonlinear Mathieu equation (NME), was studied by using the analytical harmonic balance (HB) method. Good accuracy of the HB method, which was comparable with that of the numerical fourth-order Runge-Kutta (4th RK), was achieved in the entire first stability region, except for the points at the stability boundary (i.e., β = 1) and at the nonlinear resonance condition (i.e., β = 0.5). Using the HB method, the nonlinear 3β harmonic series introduced by the octopole component and the resultant nonlinear resonance effect were characterized. At nonlinear resonance, obvious resonant peaks were observed in the nonlinear 3β series of ion motion, but were not found in the natural harmonics. In addition, both resonant excitation and absorption peaks could be observed, simultaneously. These are two unique features of the nonlinear resonance, distinguishing it from the normal resonance. Finally, an approximation equation was given to describe the corresponding working parameter, q nr , at nonlinear resonance. This equation can help avoid the sensitivity degradation due to the operation of ion traps at the nonlinear resonance condition. PMID:26497312
Comparing heat exchangers of thermacoustic prime movers with a Van der Pol model
NASA Astrophysics Data System (ADS)
Cox, I.; Jorgensen, M.; Andersen, B.
2010-10-01
A thermoacoustic standing-wave prime mover is a self-sustained oscillator whose initial growth of acoustic pressure into amplitude saturation can be modeled by the Van der Pol equation. The nonlinear Van der Pol equation is calculated computationally, using 4^th order Runge-Kutta. The Van der Pol model gives quantitative loss and gain parameters, when using a best-fit with experimental data. The engines tested in this study have an average frequency of 2700 Hz, which suggests that the first second of oscillations when using the Van der Pol model can reveal information about the steady-state performance of the device. This model is applied to studying the effect of different heat exchanger sizes. All sixteen possible permutations were tested using different copper wire mesh dimensions: 24X24, 40X40, 60X60, and 80X80 for the hot and cold heat exchangers (where ##X## indicates wires per inch). Plotting the steady-state acoustic pressure as a function of the gain term divided by the loss term shows roughly, a linear relationship. The engine with the highest gain term and smallest loss term was using 80X80 for the hot heat exchanger combined with the 24X24 for the cold heat exchanger and is consistent with the highest steady-state pressure achieved. The modeling process has been very successful and fits the Van der Pol equation.
DEAN: A program for dynamic engine analysis
NASA Technical Reports Server (NTRS)
Sadler, G. G.; Melcher, K. J.
1985-01-01
The Dynamic Engine Analysis program, DEAN, is a FORTRAN code implemented on the IBM/370 mainframe at NASA Lewis Research Center for digital simulation of turbofan engine dynamics. DEAN is an interactive program which allows the user to simulate engine subsystems as well as a full engine systems with relative ease. The nonlinear first order ordinary differential equations which define the engine model may be solved by one of four integration schemes, a second order Runge-Kutta, a fourth order Runge-Kutta, an Adams Predictor-Corrector, or Gear's method for still systems. The numerical data generated by the model equations are displayed at specified intervals between which the user may choose to modify various parameters affecting the model equations and transient execution. Following the transient run, versatile graphics capabilities allow close examination of the data. DEAN's modeling procedure and capabilities are demonstrated by generating a model of simple compressor rig.
Comparison of Fixed and Variable Time Step Trajectory Integration Methods for Cislunar Trajectories
NASA Technical Reports Server (NTRS)
Weeks, ichael W.; Thrasher, Stephen W.
2007-01-01
Due to the nonlinear nature of the Earth-Moon-Sun three-body problem and non-spherical gravity, CEV cislunar targeting algorithms will require many propagations in their search for a desired trajectory. For on-board targeting especially, the algorithm must have a simple, fast, and accurate propagator to calculate a trajectory with reasonable computation time, and still be robust enough to remain stable in the various flight regimes that the CEV will experience. This paper compares Cowell s method with a fourth-order Runge- Kutta integrator (RK4), Encke s method with a fourth-order Runge-Kutta- Nystr m integrator (RKN4), and a method known as Multi-Conic. Additionally, the study includes the Bond-Gottlieb 14-element method (BG14) and extends the investigation of Encke-Nystrom methods to integrators of higher order and with variable step size.
Frndak, Seth E.
2014-01-01
Background This ecological study examines the relationship between food desert prevalence and academic achievement at the school district level. Design and methods Sample included 232 suburban and urban school districts in New York State. Multiple open-source databases were merged to obtain: 4th grade science, English and math scores, school district demographic composition (NYS Report Card), regional socioeconomic indicators (American Community Survey), school district quality (US Common Core of Data), and food desert data (USDA Food Desert Atlas). Multiple regression models assessed the percentage of variation in achievement scores explained by food desert variables, after controlling for additional predictors. Results The proportion of individuals living in food deserts significantly explained 4th grade achievement scores, after accounting for additional predictors. School districts with higher proportions of individuals living in food desert regions demonstrated lower 4th grade achievement across science, English and math. Conclusions Food deserts appear to be related to academic achievement at the school district level among urban and suburban regions. Further research is needed to better understand how food access is associated with academic achievement at the individual level. Significance for public health The prevalence of food deserts in the United States is of national concern. As poor nutrition in United States children continues to spark debate, food deserts are being evaluated as potential sources of low fruit and vegetable intake and high obesity rates. Cognitive development and IQ have been linked to nutrition patterns, suggesting that children in food desert regions may have a disadvantage academically. This research evaluates if an ecological relationship between food desert prevalence and academic achievement at the school district level can be demonstrated. Results suggest that food desert prevalence may relate to poor academic performance at
Asymptotic solution for heat convection-radiation equation
Mabood, Fazle; Ismail, Ahmad Izani Md; Khan, Waqar A.
2014-07-10
In this paper, we employ a new approximate analytical method called the optimal homotopy asymptotic method (OHAM) to solve steady state heat transfer problem in slabs. The heat transfer problem is modeled using nonlinear two-point boundary value problem. Using OHAM, we obtained the approximate analytical solution for dimensionless temperature with different values of a parameter ε. Further, the OHAM results for dimensionless temperature have been presented graphically and in tabular form. Comparison has been provided with existing results from the use of homotopy perturbation method, perturbation method and numerical method. For numerical results, we used Runge-Kutta Fehlberg fourth-fifth order method. It was found that OHAM produces better approximate analytical solutions than those which are obtained by homotopy perturbation and perturbation methods, in the sense of closer agreement with results obtained from the use of Runge-Kutta Fehlberg fourth-fifth order method.
Zakaria, Mohd Idzwan; Isa, Ridzuan Mohd; Shah Che Hamzah, Mohd Shaharudin; Ayob, Noor Azleen
2006-01-01
Medical standby is the provision of emergency medical care and first aid for participants and/or spectators in a pre-planned event. This article describes the framework and the demographics of a medical standby at the 4th National Youth Camping and Motivation Program in Pasir Puteh, Kelantan from 30th July until the 3rd August 2004. The framework of the medical team is described based on the work process of any medical stand by. A medical encounter form was created for the medical standby defining the type of case seen (medical or trauma), name, age, race and diagnosis of the patient. We concluded that interagency collaboration during the initial planning and during the event itself is needed to ensure the smooth running of the medical standby. Most of the medical encounters were minor illnesses which are similar to previous studies and there was no case transferred to the hospital during that period. PMID:22589590
Zakaria, Mohd Idzwan; Isa, Ridzuan Mohd; Shah Che Hamzah, Mohd Shaharudin; Ayob, Noor Azleen
2006-01-01
Medical standby is the provision of emergency medical care and first aid for participants and/or spectators in a pre-planned event. This article describes the framework and the demographics of a medical standby at the 4(th) National Youth Camping and Motivation Program in Pasir Puteh, Kelantan from 30(th) July until the 3(rd) August 2004. The framework of the medical team is described based on the work process of any medical stand by. A medical encounter form was created for the medical standby defining the type of case seen (medical or trauma), name, age, race and diagnosis of the patient. We concluded that interagency collaboration during the initial planning and during the event itself is needed to ensure the smooth running of the medical standby. Most of the medical encounters were minor illnesses which are similar to previous studies and there was no case transferred to the hospital during that period. PMID:22589590
Mowlavi, Gholamreza; Makki, Mahsasadat; Heidari, Zahra; Rezaeian, Mostafa; Mohebali, Mehdi; Araujo, Adauto; Boenke, Nicole; Aali, Abolfazl; Stollner, Thomas; Mobedi, Iraj
2015-01-01
Present paper is the second publication introducing the paleoparasitological findings from animal coprolites obtained from archeological site of Chehrabad salt mine in northwestern Iran. The current archeological site is located in northwest of Iran, dated to the Sassanian Era (4(th)/5(th) century CE). In the summer 2012 the carnivore coprolite was obtained within the layers in the mine and were thoroughly analyzed for parasites using TSP rehydration technique. Eggs of 0 were successfully retrieved from the examined coprolite and were confidently identified based on reliable references. Identifying of M. hirudinaceus eggs in paleofeces with clear appearance as demonstrated herein, is much due to appropriate preservation condition has been existed in the salt mine .The present finding could be regarded as the oldest acanthocephalan infection in Iran. PMID:26246822
MOWLAVI, Gholamreza; MAKKI, Mahsasadat; HEIDARI, Zahra; REZAEIAN, Mostafa; MOHEBALI, Mehdi; ARAUJO, Adauto; BOENKE, Nicole; AALI, Abolfazl; STOLLNER, Thomas; MOBEDI, Iraj
2015-01-01
Present paper is the second publication introducing the paleoparasitological findings from animal coprolites obtained from archeological site of Chehrabad salt mine in northwestern Iran. The current archeological site is located in northwest of Iran, dated to the Sassanian Era (4th/5th century CE). In the summer 2012 the carnivore coprolite was obtained within the layers in the mine and were thoroughly analyzed for parasites using TSP rehydration technique. Eggs of 0 were successfully retrieved from the examined coprolite and were confidently identified based on reliable references. Identifying of M. hirudinaceus eggs in paleofeces with clear appearance as demonstrated herein, is much due to appropriate preservation condition has been existed in the salt mine .The present finding could be regarded as the oldest acanthocephalan infection in Iran. PMID:26246822
Sommer, A; Lenzen, H; Blaser, D; Ehlers, S-E; Schopphoven, S; John, C
2009-09-01
Within the physical-technical quality assurance of the German breast cancer screening program all digital mammography systems have to perform the contrast resolution test and the determination of the average glandular dose based on the European guidelines for quality assurance in breast cancer screening and diagnosis (4th Edition). Since 1.1.2009 this applies to digital systems outside the screening program too. To accomplish uniform measurements in all federal states of Germany, the physical board of the reference centers developed together a special guideline for these test position. This Guideline describes the determination of the average glandular dose for different types of mammography systems, the CDMAM image acquisition and the CDMAM image evaluation as well. This guideline was verified by the German task group "Röntgenverordnung". PMID:19676011
Otto, D A; Skalik, I; House, D E; Hudnell, H K
1996-01-01
The Neurobehavioral Evaluation System was designed for field studies of workers, but many NES tests can be performed satisfactorily by children as young as 7 or 8 years old and a few tests, such as simple reaction time, can be performed by preschool children. However, little comparative data from children of different ages or grade levels are available. Studies of school children in the Czech Republic indicate that 2nd-grade children could perform the following NES tests satisfactorily: Finger Tapping, Visual Digit Span. Continuous Performance, Symbol-Digit Substitution, Pattern Comparison, and simpler conditions of Switching Attention. Comparative scores of boys and girls from the 2nd, 4th, and 8th grades and power analyses to estimate appropriate sample size were presented. Performance varied systematically with grade level and gender. Larger samples were needed with younger children to achieve comparable levels of statistical power. Gender comparisons indicated that boys responded faster, but made more errors than girls. PMID:8866533
The influence of neighborhood density and word frequency on phoneme awareness in 2nd and 4th grades
Hogan, Tiffany P.; Bowles, Ryan P.; Catts, Hugh W.; Storkel, Holly L.
2010-01-01
Purpose The purpose of this study was to test the hypothesis that two lexical characteristics – neighborhood density and word frequency – interact to influence performance on phoneme awareness tasks. Methods Phoneme awareness was examined in a large, longitudinal dataset of 2nd and 4th grade children. Using linear logistic test model, the relation between words' neighborhood density, word frequency, and phoneme awareness performance was examined across grades while covarying type and place of deletion. Results A predicted interaction was revealed: words from dense neighborhoods or those with high frequency were more likely to yield correct phoneme awareness responses across grades. Conclusions Findings support an expansion to the lexical restructuring model to include interactions between neighborhood density and word frequency to account for phoneme awareness. PMID:20691979
Tapia, Richard
1998-06-01
In June, The Center for Research on Parallel Computation (CRPC), an NSF-funded Science and Technology Center, hosted the 4th Annual Conference for African-American Reserachers in the Mathematical Sciences (CAARMS4) at Rice University. The main goal of this conference was to highlight current work by African-American researchers and graduate students in mathematics. This conference strengthened the mathematical sciences by encouraging the increased participation of African-American and underrepresented groups into the field, facilitating working relationships between them and helping to cultivate their careers. In addition to the talks there was a graduate student poster session and tutorials on topics in mathematics and computer science. These talks, presentations, and discussions brought a broader perspective to the critical issues involving minority participation in mathematics.
NASA Technical Reports Server (NTRS)
Poole, L. R.
1972-01-01
A computer program is presented by which the effects of nonlinear suspension-system elastic characteristics on parachute inflation loads and motions can be investigated. A mathematical elastic model of suspension-system geometry is coupled to the planar equations of motion of a general vehicle and canopy. Canopy geometry and aerodynamic drag characteristics and suspension-system elastic properties are tabular inputs. The equations of motion are numerically integrated by use of an equivalent fifth-order Runge-Kutta technique.
On the capabilities and computational costs of neuron models.
Skocik, Michael J; Long, Lyle N
2014-08-01
We review the Hodgkin-Huxley, Izhikevich, and leaky integrate-and-fire neuron models in regular spiking modes solved with the forward Euler, fourth-order Runge-Kutta, and exponential Euler methods and determine the necessary time steps and corresponding computational costs required to make the solutions accurate. We conclude that the leaky integrate-and-fire needs the least number of computations, and that the Hodgkin-Huxley and Izhikevich models are comparable in computational cost. PMID:25050945
Heat transfer in a micropolar fluid over a stretching sheet with Newtonian heating.
Qasim, Muhammad; Khan, Ilyas; Shafie, Sharidan
2013-01-01
This article looks at the steady flow of Micropolar fluid over a stretching surface with heat transfer in the presence of Newtonian heating. The relevant partial differential equations have been reduced to ordinary differential equations. The reduced ordinary differential equation system has been numerically solved by Runge-Kutta-Fehlberg fourth-fifth order method. Influence of different involved parameters on dimensionless velocity, microrotation and temperature is examined. An excellent agreement is found between the present and previous limiting results. PMID:23565151
An approximation technique for jet impingement flow
Najafi, Mahmoud; Fincher, Donald; Rahni, Taeibi; Javadi, KH.; Massah, H.
2015-03-10
The analytical approximate solution of a non-linear jet impingement flow model will be demonstrated. We will show that this is an improvement over the series approximation obtained via the Adomian decomposition method, which is itself, a powerful method for analysing non-linear differential equations. The results of these approximations will be compared to the Runge-Kutta approximation in order to demonstrate their validity.
Heat Transfer in a Micropolar Fluid over a Stretching Sheet with Newtonian Heating
Qasim, Muhammad; Khan, Ilyas; Shafie, Sharidan
2013-01-01
This article looks at the steady flow of Micropolar fluid over a stretching surface with heat transfer in the presence of Newtonian heating. The relevant partial differential equations have been reduced to ordinary differential equations. The reduced ordinary differential equation system has been numerically solved by Runge-Kutta-Fehlberg fourth-fifth order method. Influence of different involved parameters on dimensionless velocity, microrotation and temperature is examined. An excellent agreement is found between the present and previous limiting results. PMID:23565151
Analytic streamline calculations on linear tetrahedra
Diachin, D.P.; Herzog, J.A.
1997-06-01
Analytic solutions for streamlines within tetrahedra are used to define operators that accurately and efficiently compute streamlines. The method presented here is based on linear interpolation, and therefore produces exact results for linear velocity fields. In addition, the method requires less computation than the forward Euler numerical method. Results are presented that compare accuracy measurements of the method with forward Euler and fourth order Runge-Kutta applied to both a linear and a nonlinear velocity field.
A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations
NASA Technical Reports Server (NTRS)
Hu, Changqing; Shu, Chi-Wang
1998-01-01
In this paper, we present a discontinuous Galerkin finite element method for solving the nonlinear Hamilton-Jacobi equations. This method is based on the Runge-Kutta discontinuous Galerkin finite element method for solving conservation laws. The method has the flexibility of treating complicated geometry by using arbitrary triangulation, can achieve high order accuracy with a local, compact stencil, and are suited for efficient parallel implementation. One and two dimensional numerical examples are given to illustrate the capability of the method.
NASA Astrophysics Data System (ADS)
Yang, Hongli; Wu, Xinyuan; Fang, Yonglei; You, Xiong
2008-09-01
In this paper, extended Runge-Kutta-Nyström type methods for perturbed oscillators with low frequency are presented, which inherit the framework of RKN method and make full use of the special feature of the true flows. Following the line of J.Butcher, E.Hairer and G.Wanner, we develop a new kind of trees to derive the order conditions for the new methods.
Multirate Time Integration for Compressible Atmospheric Flow
NASA Astrophysics Data System (ADS)
Wensch, Jörg; Knoth, Oswald; Galant, Alexander
2008-09-01
We generalise split-explicit Runge-Kutta methods utilised in atmospheric dynamics simulation where fast sub-processes (sound waves) are integrated by small time steps. The inclusion of fixed tendencies of previous stages leads to an improvement of the stability barrier for the acoustics equation by a factor of two. Order and stability analysis is based on the assumption of exact integration of fast subprocesses.
NASA Technical Reports Server (NTRS)
Reed, K. W.; Stonesifer, R. B.; Atluri, S. N.
1983-01-01
A new hybrid-stress finite element algorith, suitable for analyses of large quasi-static deformations of inelastic solids, is presented. Principal variables in the formulation are the nominal stress-rate and spin. A such, a consistent reformulation of the constitutive equation is necessary, and is discussed. The finite element equations give rise to an initial value problem. Time integration has been accomplished by Euler and Runge-Kutta schemes and the superior accuracy of the higher order schemes is noted. In the course of integration of stress in time, it has been demonstrated that classical schemes such as Euler's and Runge-Kutta may lead to strong frame-dependence. As a remedy, modified integration schemes are proposed and the potential of the new schemes for suppressing frame dependence of numerically integrated stress is demonstrated. The topic of the development of valid creep fracture criteria is also addressed.
A brief introduction to symplectic integrators and recent results
Channell, P.J.
1994-02-01
The author begins with a brief synopsis about Hamiltonian systems and symplectic maps. A symplectic integrator is a symplectic map {phi}(q,p;t) that systematically approximates the time t flow of a Hamiltonian system. Systematic means: (1) in time step, t, i.e. the error should vanish as some power of the time step, and (2) in order of approximation, i.e. one would like a hierarchy of such {phi} that have errors that vanish as successively higher powers of the time step. At present the authors known two general types of symplectic integrators: (1) implicit integrators that are derived from a generating function or from algebraic conditions on Runge-Kutta schemes, and (2) explicit integrators that are derived from integrable Hamiltonians or from algebraic conditions on Runge-Kutta schemes.
Extended RKN-type methods for numerical integration of perturbed oscillators
NASA Astrophysics Data System (ADS)
Yang, Hongli; Wu, Xinyuan; You, Xiong; Fang, Yonglei
2009-10-01
In this paper, extended Runge-Kutta-Nyström-type methods for the numerical integration of perturbed oscillators with low frequencies are presented, which inherit the framework of RKN methods and make full use of the special feature of the true flows for both the internal stages and the updates. Following the approach of J. Butcher, E. Hairer and G. Wanner, we develop a new kind of tree set to derive order conditions for the extended Runge-Kutta-Nyström-type methods. The numerical stability and phase properties of the new methods are analyzed. Numerical experiments are accompanied to show the applicability and efficiency of our new methods in comparison with some well-known high quality methods proposed in the scientific literature.
Quasi One-Dimensional Model of Natural Draft Wet-Cooling Tower Flow, Heat and Mass Transfer
NASA Astrophysics Data System (ADS)
Hyhlík, Tomáš
2015-05-01
The article deals with the development of CFD (Computational Fluid Dynamics) model of natural draft wet-cooling tower flow, heat and mass transfer. The moist air flow is described by the system of conservation laws along with additional equations. Moist air is assumed to be homogeneous mixture of dry air and water vapour. Liquid phase in the fill zone is described by the system of ordinary differential equations. Boundary value problem for the system of conservation laws is discretized in space using Kurganov-Tadmor central scheme and in time using strong stability preserving Runge-Kutta scheme. Initial value problems in the fill zone is solved by using standard fourth order Runge-Kutta scheme. The interaction between liquid water and moist air is done by source terms in governing equations.
NASA Astrophysics Data System (ADS)
Bidadi, Shreyas; Rani, Sarma L.
2016-01-01
The authors regret that in Fig. 8(c) of the paper, the labels for the dimensionless time t* and flatness S4, as well as the plot legend are incorrect. In place of the original figure, the following figure should be used.
Burtsev, S.; Camassa, R.; Timofeyev, I.
1998-11-20
The authors implement two different algorithms for computing numerically the direct Zakharov-Shabat eigenvalue problem on the infinite line. The first algorithm replaces the potential in the eigenvalue problem by a piecewise-constant approximation, which allows one to solve analytically the corresponding ordinary differential equation. The resulting algorithm is of second order in the step size. The second algorithm uses the fourth-order Runge-Kutta method. They test and compare the performance of these two algorithms on three exactly solvable potentials. They find that even though the Runge-Kutta method is of higher order, this extra accuracy can be lost because of the additional dependence of its numerical error on the eigenvalue. this limits the usefulness of the Runge-Kutta algorithm to a region inside the unit circle around the origin in the complex plane of the eigenvalues. For the computation of the continuous spectrum density, this limitation is particularly severe, as revealed by the spectral decomposition of the L{sup 2}-norm of a solution to the nonlinear Schroedinger equation. They show that no such limitations exist for the piecewise-constant algorithm. In particular, this scheme converges uniformly for both continuous and discrete spectrum components.
Nam, Sung Hyun
2015-04-01
This study aims to examine the beginning and the development of Christian Charities during the 4(th)-6(th) centuries which would eventually result in the birth of the hospital in modern sense in the first half of the 7(th) century. For this purpose, I looked carefully into various primary sources concerning the early Christian institutions for the poor and the sick. Above all, it's proper to note that the first xenodocheion where hospitality was combined with a systematic caring, is concerned with the Trinitarian debate of the 4(th) century. In 356, Eustathios, one of the leaders of homoiousios group, established xenodocheion to care for the sick and the lepers in Sebaste of Armenia, whereas his opponent Aetios, doctor and leader of the heteroousios party, was reckoned to have combined the medical treatment with his clerical activities. Then, Basil of Caesarea, disciple of Eustathios of Sebaste, also founded in 372 a magnificent benevolent complex named 'Basileias' after its founder. I scrupulously analysed several contemporary materials mentioning the charitable institution of Caesarea which was called alternatively katagogia, ptochotropheion, xenodocheion. John Chrysostome also founded several nosokomeia in Constantinople at the end of the 4(th) century and the beginning of the 5(th) century. Apparently, the contemporary sources mention that doctors existed for these Charities, but there is no sufficient proof that these 'Christian Hospitals,' Basileias or nosokomeia of Constantinople were hospitals in modern sense. Imperial constitutions began to mention ptochotropheion, xenodocheion and orphanotropheion since the second half of the 5(th) century and then some Justinian laws evoked nosokomium, brephotrophia, gerontocomia. These laws reveal that 'Christian Hospitals' were well clarified and deeply rooted in Byzantine society already in these periods. And then, new benevolent institutions emerged in the 6(th) century: nosokomeia for a specific class and
NASA Astrophysics Data System (ADS)
Gelmez Burakgazi, Sevinc; Yildirim, Ali; Weeth Feinstein, Noah
2016-04-01
Rooted in science education and science communication studies, this study examines 4th and 5th grade students' perceptions of science information sources (SIS) and their use in communicating science to students. It combines situated learning theory with uses and gratifications theory in a qualitative phenomenological analysis. Data were gathered through classroom observations and interviews in four Turkish elementary schools. Focus group interviews with 47 students and individual interviews with 17 teachers and 10 parents were conducted. Participants identified a wide range of SIS, including TV, magazines, newspapers, internet, peers, teachers, families, science centers/museums, science exhibitions, textbooks, science books, and science camps. Students reported using various SIS in school-based and non-school contexts to satisfy their cognitive, affective, personal, and social integrative needs. SIS were used for science courses, homework/project assignments, examination/test preparations, and individual science-related research. Students assessed SIS in terms of the perceived accessibility of the sources, the quality of the content, and the content presentation. In particular, some sources such as teachers, families, TV, science magazines, textbooks, and science centers/museums ("directive sources") predictably led students to other sources such as teachers, families, internet, and science books ("directed sources"). A small number of sources crossed context boundaries, being useful in both school and out. Results shed light on the connection between science education and science communication in terms of promoting science learning.
Identification of DRG-1 As a Melanoma-Associated Antigen Recognized by CD4+ Th1 Cells
Kiniwa, Yukiko; Li, Jiang; Wang, Mingjun; Sun, Chuang; Lee, Jeffrey E.; Wang, Rong-Fu; Wang, Helen Y.
2015-01-01
Immunotherapy has emerged as a promising strategy for the treatment of metastatic melanoma. Clinical studies have demonstrated the feasibility of cancer immunotherapy using tumor antigens recognized by CD8+ T cells. However, the overall immune responses induced by these antigens are too weak and transient to induce tumor regression in the majority of patients who received immunization. A growing body of evidence suggests that CD4+ T helper (Th) cells play an important role in antitumor immunity. Therefore, the identification of MHC class II-restricted tumor antigens capable of stimulating CD4+ T cells may provide opportunities for developing effective cancer vaccines. To this end, we describe the identification of developmentally regulated GTP-binding protein 1 (DRG-1) as a melanoma-associated antigen recognized by HLA-DR11-restricted CD4+ Th1 cells. Epitope mapping analysis showed that the DRG1248-268 epitope of DRG-1 was required for T cell recognition. Reverse transcription-polymerase chain reaction revealed that DRG-1 was highly expressed in melanoma cell lines but not in normal tissues. DRG-1 knockdown by lentiviral-based shRNA suppressed melanoma cell proliferation and soft agar colony formation. Taken together, these data suggest that DRG-1 plays an important role in melanoma cell growth and transformation, indicating that DRG1 may represent a novel target for CD4+ T cell-mediated immunotherapy in melanoma. PMID:25993655
A study of personality factors and interaction in 4th-year dental students and their teachers.
Watts, T L; Millard, L
1997-02-01
No previous investigation has considered dental student and teaching staff opinions on their relationship with each other. In a day when students are increasingly asked for feedback on the quality of teaching by staff, such investigations are of particular interest. This exploratory study was designed to compare the personality characteristics of a clinical year of dental students with those of the teaching staff they most frequently encountered, and to investigate these factors for possible associations with the quality of perceived teaching-learning interaction between the 2 groups. A complete 4th year of dental students (n = 87), and those teachers whom they met regularly (n = 80), were asked to participate. Subjects completed a form of the Myers-Briggs personality questionnaire simplified for use in education, and were asked to assess their relationship with persons in the other group. All the students and 75% of the staff, after follow-up, returned usable data. There was close similarity between staff and student personality profiles, and perception of working relationships by both groups was largely independent of personality factors and temperament. There were differences in staff perception of their relationship with extrovert and introvert students. Students showed minor differences in their perception of staff relationships with respect to two other personality factors. These findings indicate a substantial similarity between staff and students, and suggest a mature and stable relationship between people in the 2 groups. PMID:9567907
McKimm-Breschkin, Jennifer L; Fry, Alicia M
2016-05-01
The International Society for Influenza and other Respiratory Virus Diseases (isirv) held its 4th Antiviral Group Conference at the University of Texas on 2-4 June, 2015. With emerging resistance to the drugs currently licensed for treatment and prophylaxis of influenza viruses, primarily the neuraminidase inhibitor oseltamivir phosphate (Tamiflu) and the M2 inhibitors amantadine and rimantadine, and the lack of effective interventions against other respiratory viruses, the 3-day programme focused on the discovery and development of inhibitors of several virus targets and key host cell factors involved in virus replication or mediating the inflammatory response. Virus targets included the influenza haemagglutinin, neuraminidase and M2 proteins, and both the respiratory syncytial virus and influenza polymerases and nucleoproteins. Therapies for rhinoviruses and MERS and SARS coronaviruses were also discussed. With the emerging development of monoclonal antibodies as therapeutics, the potential implications of antibody-dependent enhancement of disease were also addressed. Topics covered all aspects from structural and molecular biology to preclinical and clinical studies. The importance of suitable clinical trial endpoints and regulatory issues were also discussed from the perspectives of both industry and government. This meeting summary provides an overview, not only for the conference participants, but also for those interested in the current status of antivirals for respiratory viruses. PMID:26872862
Sayegh, Philip; Arentoft, Alyssa; Thaler, Nicholas S.; Dean, Andy C.; Thames, April D.
2014-01-01
The current study examined whether self-rated education quality predicts Wide Range Achievement Test-4th Edition (WRAT-4) Word Reading subtest and neurocognitive performance, and aimed to establish this subtest's construct validity as an educational quality measure. In a community-based adult sample (N = 106), we tested whether education quality both increased the prediction of Word Reading scores beyond demographic variables and predicted global neurocognitive functioning after adjusting for WRAT-4. As expected, race/ethnicity and education predicted WRAT-4 reading performance. Hierarchical regression revealed that when including education quality, the amount of WRAT-4's explained variance increased significantly, with race/ethnicity and both education quality and years as significant predictors. Finally, WRAT-4 scores, but not education quality, predicted neurocognitive performance. Results support WRAT-4 Word Reading as a valid proxy measure for education quality and a key predictor of neurocognitive performance. Future research should examine these findings in larger, more diverse samples to determine their robust nature. PMID:25404004
Sayegh, Philip; Arentoft, Alyssa; Thaler, Nicholas S; Dean, Andy C; Thames, April D
2014-12-01
The current study examined whether self-rated education quality predicts Wide Range Achievement Test-4th Edition (WRAT-4) Word Reading subtest and neurocognitive performance, and aimed to establish this subtest's construct validity as an educational quality measure. In a community-based adult sample (N = 106), we tested whether education quality both increased the prediction of Word Reading scores beyond demographic variables and predicted global neurocognitive functioning after adjusting for WRAT-4. As expected, race/ethnicity and education predicted WRAT-4 reading performance. Hierarchical regression revealed that when including education quality, the amount of WRAT-4's explained variance increased significantly, with race/ethnicity and both education quality and years as significant predictors. Finally, WRAT-4 scores, but not education quality, predicted neurocognitive performance. Results support WRAT-4 Word Reading as a valid proxy measure for education quality and a key predictor of neurocognitive performance. Future research should examine these findings in larger, more diverse samples to determine their robust nature. PMID:25404004
Pacheco-Colon, Ileana; Fricke, Stanley; VanMeter, John; Gropman, M.D.
2014-01-01
Our previous imaging research performed as part of a Urea Cycle Rare Disorders Consortium (UCRDC) grant, has identified specific biomarkers of neurologic injury in ornithine transcarbamylase deficiency, OTCD. While characterization of mutations can be achieved in most cases, this information does not necessarily predict the severity of the underlying neurological syndrome. The biochemical consequences of any mutation may be modified additionally by a large number of factors, including contributions of other enzymes and transport systems that mediate flux through the urea cycle, diet and other environmental factors. These factors likely vary from one patient to another, and they give rise to heterogeneity of clinical severity. Affected cognitive domains include non-verbal learning, fine motor processing, reaction time, visual memory, attention, and executive function. Deficits in these capacities may be seen in symptomatic patients, as well as asymptomatic carriers with normal IQ and correlate with variances in brain structure and function in these patients. Using neuroimaging we can identify biomarkers that reflect the downstream impact of UCDs on cognition. This manuscript is a summary of the presentation from the 4th International Consortium on Urea cycle disorders held in, Barcelona, Spain, September 2, 2014. PMID:25066103
NASA Astrophysics Data System (ADS)
Lüdicke, F.; Hussmann, H.; Oberst, J.
2008-09-01
Introduction We developed an orbit simulation tool for BepiColombo scheduled for arrival at Mercury in 2019. The mission will consist of two spacecraft, the MPO (Mercury Planetary Orbiter, ESA) and the MMO (Mercury Magnetospheric Orbiter, JAXA). We simulate the orbit evolutions of the two considering perturbing forces for a time of 2 years from arrival. This study was undertaken for mission planning purposes and estimates of surface coverage for the onboard mapping instruments. Orbit Perturbations Perturbing forces acting on the Keplerian MPO and MMO orbits include Mercury's non-spherical mass distribution parameters, the gravitational force of the sun, and solar radiation pressure (faintest). Because of the perturbing accelerations, semi-major axis, eccentricity, inclination, ascending node, argument of pericenter, show complex variations. The program simulates the evolution of all these elements over a period of 2 years. The software was programmed in FORTRAN, using SPICE subroutines. Numerical Integration Several of the Runge-Kutta methods are implemented in the software for a numerical integration of the equations of motion. Starting from initial values for the state vector (i.e., position and velocity) at time t0 given in [2], we obtain the spacecraft trajectory with an accuracy of the order of 1 m by choosing a stepsize of 50 s [1]. The results of the numerical calculation were checked with the results of a similar Bepi Colombo orbit simulation by ESOC [2] and showed very good agreement. Gravity Field Coefficients The MARINER 10 spacecraft executed 3 flybys of Mercury (1974/75). From spacecraft tracking, a first estimate of the gravity parameter GM and crude limits for J2 could be obtained. Higher-order gravitational coefficients, e.g., C30 and C22 are practically unknown. Results (Examples) Fig. 1 shows the evolution of the pericenter height for the MPO during the 2 mission years using the typical error bounds (6.0 ± 2.0)E-5 [4] for J2 = -C20. In addition
NASA Technical Reports Server (NTRS)
Lee-Rausch, Elizabeth M.; Hammond, Dana P.; Nielsen, Eric J.; Pirzadeh, S. Z.; Rumsey, Christopher L.
2010-01-01
FUN3D Navier-Stokes solutions were computed for the 4th AIAA Drag Prediction Workshop grid convergence study, downwash study, and Reynolds number study on a set of node-based mixed-element grids. All of the baseline tetrahedral grids were generated with the VGRID (developmental) advancing-layer and advancing-front grid generation software package following the gridding guidelines developed for the workshop. With maximum grid sizes exceeding 100 million nodes, the grid convergence study was particularly challenging for the node-based unstructured grid generators and flow solvers. At the time of the workshop, the super-fine grid with 105 million nodes and 600 million elements was the largest grid known to have been generated using VGRID. FUN3D Version 11.0 has a completely new pre- and post-processing paradigm that has been incorporated directly into the solver and functions entirely in a parallel, distributed memory environment. This feature allowed for practical pre-processing and solution times on the largest unstructured-grid size requested for the workshop. For the constant-lift grid convergence case, the convergence of total drag is approximately second-order on the finest three grids. The variation in total drag between the finest two grids is only 2 counts. At the finest grid levels, only small variations in wing and tail pressure distributions are seen with grid refinement. Similarly, a small wing side-of-body separation also shows little variation at the finest grid levels. Overall, the FUN3D results compare well with the structured-grid code CFL3D. The FUN3D downwash study and Reynolds number study results compare well with the range of results shown in the workshop presentations.
NASA Technical Reports Server (NTRS)
Lang, Stephen E.; Tao, Wei-Kuo; Chern, Jiun-Dar; Wu, Di; Li, Xiaowen
2015-01-01
Numerous cloud microphysical schemes designed for cloud and mesoscale models are currently in use, ranging from simple bulk to multi-moment, multi-class to explicit bin schemes. This study details the benefits of adding a 4th ice class (hail) to an already improved 3-class ice bulk microphysics scheme developed for the Goddard Cumulus Ensemble model based on Rutledge and Hobbs (1983,1984). Besides the addition and modification of several hail processes from Lin et al. (1983), further modifications were made to the 3-ice processes, including allowing greater ice super saturation and mitigating spurious evaporationsublimation in the saturation adjustment scheme, allowing graupelhail to become snow via vapor growth and hail to become graupel via riming, and the inclusion of a rain evaporation correction and vapor diffusivity factor. The improved 3-ice snowgraupel size-mapping schemes were adjusted to be more stable at higher mixing rations and to increase the aggregation effect for snow. A snow density mapping was also added. The new scheme was applied to an intense continental squall line and a weaker, loosely-organized continental case using three different hail intercepts. Peak simulated reflectivities agree well with radar for both the intense and weaker case and were better than earlier 3-ice versions when using a moderate and large intercept for hail, respectively. Simulated reflectivity distributions versus height were also improved versus radar in both cases compared to earlier 3-ice versions. The bin-based rain evaporation correction affected the squall line case more but did not change the overall agreement in reflectivity distributions.
Breakfast patterns among low-income, ethnically-diverse 4th-6th grade children in an urban area
2014-01-01
Background Increasing school breakfast participation has been advocated as a method to prevent childhood obesity. However, little is known about children’s breakfast patterns outside of school (e.g., home, corner store). Policies that increase school breakfast participation without an understanding of children’s breakfast habits outside of school may result in children consuming multiple breakfasts and may undermine efforts to prevent obesity. The aim of the current study was to describe morning food and drink consumption patterns among low-income, urban children and their associations with relative weight. Methods A cross-sectional analysis was conducted of data obtained from 651 4th-6th graders (51.7% female, 61.2% African American, 10.7 years) in 2012. Students completed surveys at school that included all foods eaten and their locations that morning. Height and weight were measured by trained research staff. Results On the day surveyed, 12.4% of youth reported not eating breakfast, 49.8% reported eating one breakfast, 25.5% reported eating two breakfasts, and 12.3% reported eating three or more breakfasts. The number of breakfasts consumed and BMI percentile showed a significant curvilinear relationship, with higher mean BMI percentiles observed among children who did not consume any breakfast and those who consumed ≥ 3 breakfasts. Sixth graders were significantly less likely to have consumed breakfast compared to younger children. A greater proportion of obese youth had no breakfast (18.0%) compared to healthy weight (10.1%) and overweight youth (10.7%, p = .01). Conclusions When promoting school breakfast, policies will need to be mindful of both over- and under-consumption to effectively address childhood obesity and food insecurity. Clinical trial registration NCT01924130 from http://clinicaltrials.gov/. PMID:24928474
ERIC Educational Resources Information Center
National Society for Autistic Children, Syracuse, NY.
Presented are proceedings of the 4th annual (1972) meeting of the National Society for Autistic Children including 11 papers given at the meeting. Listed are officers and board members of the society, the convention committee members, and recipients of citations and awards. The president's report notes past goals, accomplishments, and future…
ERIC Educational Resources Information Center
Milman, Natalie B.; Carlson-Bancroft, Angela; Vanden Boogart, Amy
2014-01-01
This mixed methods case study examined the implementation of a 1:1 iPad initiative in a suburban, co-educational, independent, preK-4th grade elementary school in the United States. This article focuses on how teachers used iPads to differentiate instruction and across multiple content areas. Findings show the processes by which teachers employed…
ERIC Educational Resources Information Center
Brody, Michael J.; Koch, Helmut
In an effort to contribute information for science teachers and curriculum developers in Maine, this study generated base line data on 4th, 8th, and 11th grade students' knowledge of marine science and natural resources principles in relation to the Gulf of Maine. Five concept maps representing 15 major content principles were developed. Two…
ERIC Educational Resources Information Center
Kilic, Abdurrahman
2012-01-01
In this study, the relationship of values in elementary school 4th grade Social Studies textbook with the attainments and their level of being included in student workbook are tried to be determined. Case study, which is a qualitative research method, was applied for this research. To collect data, document analysis technique, which is among the…
ERIC Educational Resources Information Center
Al-Makahleh, Ahmad Abdulhameed Aufan
2011-01-01
This study seeks to verify the effect of direct instruction strategy on Math achievment of students with learning difficulties in the fourth and fifth grade levels and measure the improvement in their attitudes to Mathematics. Sample consisted of sixty (60) students with Math learning difficulties attending 4th and 5th grade level resource rooms…
Abdel-Monem, Kareem; Elshahat, Ahmed; Abou-Gamrah, Sherif; Eldin Abol-Atta, Hossam; Abd Eltawab, Reda; Massoud, Karim
2012-01-01
Objective: Reconstruction of a breast after mastectomy using the contralateral lower pole breast flap is an appealing procedure because it uses the tissues that were going to be excised during reduction of the sound breast to achieve symmetry. Literature mentioned that these flaps are supplied by the lower internal mammary artery perforators (IMAPs) with no further details. The aim of this study was to determine the site, size, and number of the 4th and 5th IMAPs by using preoperative color Duplex ultrasound and intraoperative exploration. Method: Twenty breasts in 10 patients who presented for reduction mammoplasty were included in this study. Preoperative color duplex was used to determine IMAPs in the 4th and 5th intercostal spaces. These perforators were localized intraoperatively. Intravenous fluorescein injection was used to determine the perfusion of the lower pole breast flap on the basis of these perforators. Results: Statistically, the 4th IMAPs diameters were significantly larger than the 5th IMAPs diameters (P < .05). The lower pole breast flap was perfused through these perforators. Conclusion: Color Duplex ultrasound is an accurate tool to preoperatively determine the 4th and 5th IMAPs. PMID:22292100
ERIC Educational Resources Information Center
Celikten, Oksan; Ipekcioglu, Sevgi; Ertepinar, Hamide; Geban, Omer
2012-01-01
The purpose of this study was to compare the effectiveness of the conceptual change oriented instruction through cooperative learning (CCICL) and traditional science instruction (TI) on 4th grade students' understanding of earth and sky concepts and their attitudes toward earth and sky concepts. In this study, 56 fourth grade students from the…
On December 2-3, 2015, the National Research Council (NRC) hosted the 4th meeting of the committee formed to peer review the draft IRIS assessment of inorganic arsenic. EPA presented background and overview materials during the public session on December 2nd. This information co...
ERIC Educational Resources Information Center
Bea, Jennifer W.; Martinez, Stephanie; Armstrong-Florian, Traci; Farrell, Vanessa; Martinez, Cathy; Whitmer, Evelyn; Hartz, Vern; Blake, Samuel; Nicolini, Ariana; Misner, Scottie
2014-01-01
Knowledge of U.S. dietary and physical activity recommendations and corresponding behaviors were surveyed among 4th and 5th graders in five Arizona counties to determine the need for related education in SNAP-Ed eligible schools. A <70% target response rate was the criterion. Participants correctly identified recommendations for: fruit, 20%;…
ERIC Educational Resources Information Center
Online Submission, 2010
2010-01-01
The 4th international conference "Nation and Language: Modern Aspects of Socio-Linguistic Development" continues an eight-year old tradition. The conference is organized by Kaunas University of Technology Panevezys Institute and aims to bring scientists and researchers together for a general scientific discussion on new trends in sociolinguistic,…
NASA Astrophysics Data System (ADS)
Caplan, R. M.
2013-04-01
We present a simple to use, yet powerful code package called NLSEmagic to numerically integrate the nonlinear Schrödinger equation in one, two, and three dimensions. NLSEmagic is a high-order finite-difference code package which utilizes graphic processing unit (GPU) parallel architectures. The codes running on the GPU are many times faster than their serial counterparts, and are much cheaper to run than on standard parallel clusters. The codes are developed with usability and portability in mind, and therefore are written to interface with MATLAB utilizing custom GPU-enabled C codes with the MEX-compiler interface. The packages are freely distributed, including user manuals and set-up files. Catalogue identifier: AEOJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOJ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 124453 No. of bytes in distributed program, including test data, etc.: 4728604 Distribution format: tar.gz Programming language: C, CUDA, MATLAB. Computer: PC, MAC. Operating system: Windows, MacOS, Linux. Has the code been vectorized or parallelized?: Yes. Number of processors used: Single CPU, number of GPU processors dependent on chosen GPU card (max is currently 3072 cores on GeForce GTX 690). Supplementary material: Setup guide, Installation guide. RAM: Highly dependent on dimensionality and grid size. For typical medium-large problem size in three dimensions, 4GB is sufficient. Keywords: Nonlinear Schröodinger Equation, GPU, high-order finite difference, Bose-Einstien condensates. Classification: 4.3, 7.7. Nature of problem: Integrate solutions of the time-dependent one-, two-, and three-dimensional cubic nonlinear Schrödinger equation. Solution method: The integrators utilize a fully-explicit fourth-order Runge-Kutta scheme in time
NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.; Amano, Takanobu; Garain, Sudip; Kim, Jinho
2016-08-01
collocation also ensures that electromagnetic radiation that is propagating in a vacuum has both electric and magnetic fields that are exactly divergence-free. Coupled relativistic fluid dynamic equations are solved for the positively and negatively charged fluids. The fluids' numerical fluxes also provide a self-consistent current density for the update of the electric field. Our reconstruction strategy ensures that fluid velocities always remain sub-luminal. Our third innovation consists of an efficient design for several popular IMEX schemes so that they provide strong coupling between the finite-volume-based fluid solver and the electromagnetic fields at high order. This innovation makes it possible to efficiently utilize high order IMEX time update methods for stiff source terms in the update of high order finite-volume methods for hyperbolic conservation laws. We also show that this very general innovation should extend seamlessly to Runge-Kutta discontinuous Galerkin methods. The IMEX schemes enable us to use large CFL numbers even in the presence of stiff source terms. Several accuracy analyses are presented showing that our method meets its design accuracy in the MHD limit as well as in the limit of electromagnetic wave propagation. Several stringent test problems are also presented. We also present a relativistic version of the GEM problem, which shows that our algorithm can successfully adapt to challenging problems in high energy astrophysics.
NASA Astrophysics Data System (ADS)
Khalili, N.; Valliappan, S.; Li, Q.; Russell, A.
2010-07-01
The use for mathematical models of natural phenomena has underpinned science and engineering for centuries, but until the advent of modern computers and computational methods, the full utility of most of these models remained outside the reach of the engineering communities. Since World War II, advances in computational methods have transformed the way engineering and science is undertaken throughout the world. Today, theories of mechanics of solids and fluids, electromagnetism, heat transfer, plasma physics, and other scientific disciplines are implemented through computational methods in engineering analysis, design, manufacturing, and in studying broad classes of physical phenomena. The discipline concerned with the application of computational methods is now a key area of research, education, and application throughout the world. In the early 1980's, the International Association for Computational Mechanics (IACM) was founded to promote activities related to computational mechanics and has made impressive progress. The most important scientific event of IACM is the World Congress on Computational Mechanics. The first was held in Austin (USA) in 1986 and then in Stuttgart (Germany) in 1990, Chiba (Japan) in 1994, Buenos Aires (Argentina) in 1998, Vienna (Austria) in 2002, Beijing (China) in 2004, Los Angeles (USA) in 2006 and Venice, Italy; in 2008. The 9th World Congress on Computational Mechanics is held in conjunction with the 4th Asian Pacific Congress on Computational Mechanics under the auspices of Australian Association for Computational Mechanics (AACM), Asian Pacific Association for Computational Mechanics (APACM) and International Association for Computational Mechanics (IACM). The 1st Asian Pacific Congress was in Sydney (Australia) in 2001, then in Beijing (China) in 2004 and Kyoto (Japan) in 2007. The WCCM/APCOM 2010 publications consist of a printed book of abstracts given to delegates, along with 247 full length peer reviewed papers published with
A Theoretical Method for Characterizing Nonlinear Effects in Paul Traps with Added Octopole Field.
Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Chen, Suming; Nie, Zongxiu
2015-08-01
In comparison with numerical methods, theoretical characterizations of ion motion in the nonlinear Paul traps always suffer from low accuracy and little applicability. To overcome the difficulties, the theoretical harmonic balance (HB) method was developed, and was validated by the numerical fourth-order Runge-Kutta (4th RK) method. Using the HB method, analytical ion trajectory and ion motion frequency in the superimposed octopole field, ε, were obtained by solving the nonlinear Mathieu equation (NME). The obtained accuracy of the HB method was comparable with that of the 4th RK method at the Mathieu parameter, q = 0.6, and the applicable q values could be extended to the entire first stability region with satisfactory accuracy. Two sorts of nonlinear effects of ion motion were studied, including ion frequency shift, Δβ, and ion amplitude variation, Δ(C(2n)/C0) (n ≠ 0). New phenomena regarding Δβ were observed, although extensive studies have been performed based on the pseudo-potential well (PW) model. For instance, the |Δβ| at ε = 0.1 and ε = -0.1 were found to be different, but they were the same in the PW model. This is the first time the nonlinear effects regarding Δ(C(2n)/C0) (n ≠ 0) are studied, and the associated study has been a challenge for both theoretical and numerical methods. The nonlinear effects of Δ(C(2n)/C0) (n ≠ 0) and Δβ were found to share some similarities at q < 0.6: both of them were proportional to ε, and the square of the initial ion displacement, z(0)(2). PMID:25924875
Something going on in Milan: a review of the 4th International PhD Student Cancer Conference.
Segré, C
2010-01-01
The 4th International PhD Student Cancer Conference was held at the IFOM-IEO-Campus in Milan from 19-21 May 2010 http://www.semm.it/events_researchPast.phpThe Conference covered many topics related to cancer, from basic biology to clinical aspects of the disease. All attendees presented their research, by either giving a talk or presenting a poster. This conference is an opportunity to introduce PhD students to top cancer research institutes across Europe.THE CORE PARTICIPANTING INSTITUTES INCLUDED: European School of Molecular Medicine (SEMM)-IFOM-IEO Campus, MilanBeatson Institute for Cancer Research (BICR), GlasgowCambridge Research Institute (CRI), Cambridge, UKMRC Gray Institute of Radiation Biology (GIROB), OxfordLondon Research Institute (LRI), LondonPaterson Institute for Cancer Research (PICR), ManchesterThe Netherlands Cancer Institute (NKI), Amsterdam'You organizers have crushed all my prejudices towards Italians. Congratulations, I enjoyed the conference immensely!' Even if it might have sounded like rudeness for sure this was supposed to be a genuine compliment (at least, that's how we took it), also considering that it was told by a guy who himself was the fusion of two usually antithetical concepts: fashion style and English nationality.The year 2010 has marked an important event for Italian research in the international scientific panorama: the European School of Molecular Medicine (SEMM) had the honour to host the 4th International PhD Student Cancer Conference, which was held from 19-21 May 2010 at the IFOM-IEO-Campus (http://www.semm.it/events_researchPast.php) in Milan.The conference was attended by more than one hundred students, coming from a selection of cutting edge European institutes devoted to cancer research. The rationale behind it is the promotion of cooperation among young scientists across Europe to debate about science and to exchange ideas and experiences. But that is not all, it is also designed for PhD students to get in touch
Marsden, O; Bogey, C; Bailly, C
2014-03-01
The feasibility of using numerical simulation of fluid dynamics equations for the detailed description of long-range infrasound propagation in the atmosphere is investigated. The two dimensional (2D) Navier Stokes equations are solved via high fidelity spatial finite differences and Runge-Kutta time integration, coupled with a shock-capturing filter procedure allowing large amplitudes to be studied. The accuracy of acoustic prediction over long distances with this approach is first assessed in the linear regime thanks to two test cases featuring an acoustic source placed above a reflective ground in a homogeneous and weakly inhomogeneous medium, solved for a range of grid resolutions. An atmospheric model which can account for realistic features affecting acoustic propagation is then described. A 2D study of the effect of source amplitude on signals recorded at ground level at varying distances from the source is carried out. Modifications both in terms of waveforms and arrival times are described. PMID:24606252
NASA Astrophysics Data System (ADS)
Duru, Kenneth; Dunham, Eric M.
2016-01-01
Dynamic propagation of shear ruptures on a frictional interface in an elastic solid is a useful idealization of natural earthquakes. The conditions relating discontinuities in particle velocities across fault zones and tractions acting on the fault are often expressed as nonlinear friction laws. The corresponding initial boundary value problems are both numerically and computationally challenging. In addition, seismic waves generated by earthquake ruptures must be propagated for many wavelengths away from the fault. Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods. We present a high order accurate finite difference method for: a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration; b) dynamic propagation of earthquake ruptures along nonplanar faults; and c) accurate propagation of seismic waves in heterogeneous media with free surface topography. We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts (SBP) finite difference operators in space. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. The finite difference stencils used in this paper are sixth order accurate in the interior and third order accurate close to the boundaries. However, the method is applicable to any spatial operator with a diagonal norm satisfying the SBP property. Time stepping is performed with a 4th order accurate explicit low storage Runge-Kutta scheme, thus yielding a globally fourth order accurate method in both space and time. We show numerical simulations on band limited self-similar fractal faults revealing the complexity of rupture dynamics
Syntheses and single-crystal structures of CsTh(MoO 4) 2Cl and Na 4Th(WO 4) 4
NASA Astrophysics Data System (ADS)
Bang Jin, Geng; Soderholm, L.
2011-02-01
Colorless crystals of CsTh(MoO 4) 2Cl and Na 4Th(WO 4) 4 have been synthesized at 993 K by the solid-state reactions of ThO 2, MoO 3, CsCl, and ThCl 4 with Na 2WO 4. Both compounds have been characterized by the single-crystal X-ray diffraction. The structure of CsTh(MoO 4) 2Cl is orthorhombic, consisting of two adjacent [Th(MoO 4) 2] layers separated by an ionic CsCl sublattice. It can be considered as an insertion compound of Th(MoO 4) 2 and reformulated as Th(MoO 4) 2·CsCl. The Th atom coordinates to seven monodentate MoO 4 tetrahedra and one Cl atom in a highly distorted square antiprism. Na 4Th(WO 4) 4 adopts a scheelite superlattice structure. The three-dimensional framework of Na 4Th(WO 4) 4 is constructed from corner-sharing ThO 8 square antiprisms and WO 4 tetrahedra. The space within the channels is filled by six-coordinate Na ions. Crystal data: CsTh(MoO 4) 2Cl, monoclinic, P2 1/ c, Z=4, a=10.170(1) Å, b=10.030(1) Å, c=9.649(1) Å, β=95.671(2)°, V=979.5(2) Å 3, R( F)=2.65% for I>2 σ( I); Na 4Th(WO 4) 4, tetragonal, I4 1/ a, Z=4, a=11.437(1) Å, c=11.833(2) Å, V=1547.7(4) Å 3, R( F)=3.02% for I>2 σ( I).
NASA Astrophysics Data System (ADS)
Tontisirin, S.; Tielert, R.
2006-09-01
A Gb/s clock and data recovery (CDR) circuit using 1/4th-rate digital quadricorrelator frequency detector and skew-calibrated multi-phase voltage-controlled oscillator is presented. With 1/4th-rate clock architecture, the coil-free oscillator can have lower operation frequency providing sufficient low-jitter operation. Moreover, it is an inherent 1-to-4 DEMUX. The skew calibration scheme is applied to reduce phase offset in multi-phase clock generator. The CDR with frequency detector can have small loop bandwidth, wide pull-in range and can operate without the need for a local reference clock. This 1/4th-rate CDR is implemented in standard 0.18 μm CMOS technology. It has an active area of 0.7 mm2 and consumes 100 mW at 1.8 V supply. The CDR has low jitter operation in a wide frequency range from 1-2.25 Gb/s. Measurement of Bit-Error Rate is less than 10-12 for 2.25 Gb/s incoming data 27-1 PRBS, jitter peak-to-peak of 0.7 unit interval (UI) modulation at 10 MHz.
NASA Astrophysics Data System (ADS)
Sventek, Joe
1998-12-01
Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, USA Introduction The USENIX Conference on Object-Oriented Technologies and Systems (COOTS) is held annually in the late spring. The conference evolved from a set of C++ workshops that were held under the auspices of USENIX, the first of which met in 1989. Given the growing diverse interest in object-oriented technologies, the C++ focus of the workshop eventually became too narrow, with the result that the scope was widened in 1995 to include object-oriented technologies and systems. COOTS is intended to showcase advanced R&D efforts in object-oriented technologies and software systems. The conference emphasizes experimental research and experience gained by using object-oriented techniques and languages to build complex software systems that meet real-world needs. COOTS solicits papers in the following general areas: application of, and experiences with, object-oriented technologies in particular domains (e.g. financial, medical, telecommunication); the architecture and implementation of distributed object systems (e.g. CORBA, DCOM, RMI); object-oriented programming and specification languages; object-oriented design and analysis. The 4th meeting of COOTS was held 27 - 30 April 1998 at the El Dorado Hotel, Santa Fe, New Mexico, USA. Several tutorials were given. The technical program proper consisted of a single track of six sessions, with three paper presentations per session. A keynote address and a provocative panel session rounded out the technical program. The program committee reviewed 56 papers, selecting the best 18 for presentation in the technical sessions. While we solicit papers across the spectrum of applications of object-oriented technologies, this year there was a predominance of distributed, object-oriented papers. The accepted papers reflected this asymmetry, with 15 papers on distributed objects and 3 papers on object-oriented languages. The papers in this special issue are
NASA Astrophysics Data System (ADS)
Duru, K.; Dunham, E. M.; Bydlon, S. A.; Radhakrishnan, H.
2014-12-01
Dynamic propagation of shear ruptures on a frictional interface is a useful idealization of a natural earthquake.The conditions relating slip rate and fault shear strength are often expressed as nonlinear friction laws.The corresponding initial boundary value problems are both numerically and computationally challenging.In addition, seismic waves generated by earthquake ruptures must be propagated, far away from fault zones, to seismic stations and remote areas.Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods.We present a numerical method for:a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration;b) dynamic propagation of earthquake ruptures along rough faults; c) accurate propagation of seismic waves in heterogeneous media with free surface topography.We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts finite differences in space. The finite difference stencils are 6th order accurate in the interior and 3rd order accurate close to the boundaries. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. Time stepping is performed with a 4th order accurate explicit low storage Runge-Kutta scheme. We have performed extensive numerical experiments using a slip-weakening friction law on non-planar faults, including recent SCEC benchmark problems. We also show simulations on fractal faults revealing the complexity of rupture dynamics on rough faults. We are presently extending our method to rate-and-state friction laws and off-fault plasticity.
Blackman, Elizabeth; Campbell, Jasmine; Bowen, Carlene; Delmoor, Ernestine; Jean-Louis, Gilda; Noumbissi, Raphiatou; O'Garro, Yvonne; Richards-Waritay, Oni; Straughter, Stanley; Tolbert, Vera; Wilson, Barbara; Ragin, Camille
2014-01-01
This is a brief summary of the 4(th) International Meeting of the African-Caribbean Cancer Consortium (AC3), organized and sponsored by Fox Chase Cancer Center (FCCC), and held on July 21-22, 2012 at the Lincoln University Graduate Center, Lincoln Plaza, Philadelphia, Pennsylvania. AC3 investigators gathered in Philadelphia, PA to present the results of our ongoing collaborative research efforts throughout the African Diaspora. The general theme addressed cancer health disparities and presentations represented all cancer types. However, there was particular emphasis on women's cancers, related to human papillomavirus (HPV) and human immunodeficiency virus (HIV) infections. PMID:26422007
Puppala, Manohar; Zhao, Xinghua; Casemore, Denise; Zhou, Bo; Aridoss, Gopalakrishnan; Narayanapillai, Sreekanth; Xing, Chengguo
2016-03-15
4H-Chromene-based compounds, for example, CXL017, CXL035, and CXL055, have a unique anticancer potential that they selectively kill multi-drug resistant cancer cells. Reported herein is the extended structure-activity relationship (SAR) study, focusing on the ester functional group at the 4th position and the conformation at the 6th position. Sharp SARs were observed at both positions with respect to cellular cytotoxic potency and selectivity between the parental HL60 and the multi-drug resistant HL60/MX2 cells. These results provide critical guidance for future medicinal optimization. PMID:26867486
NASA Technical Reports Server (NTRS)
1981-01-01
Presentations of a conference on the use of ruggedized minicomputers are summarized. The following topics are discussed: (1) the role of minicomputers in the development and/or certification of commercial or military airplanes in both the United States and Europe; (2) generalized software error detection techniques; (3) real time software development tools; (4) a redundancy management research tool for aircraft navigation/flight control sensors; (5) extended memory management techniques using a high order language; and (6) some comments on establishing a system maintenance scheme. Copies of presentation slides are also included.
Vitry, Marie-Alice; Hanot Mambres, Delphine; De Trez, Carl; Akira, Shizuo; Ryffel, Bernhard; Letesson, Jean-Jacques; Muraille, Eric
2014-04-15
Brucella spp are intracellular bacteria that cause brucellosis, one of the most common zoonoses in the world. Given the serious medical consequences of this disease, a safe and effective human vaccine is urgently needed. Efforts to develop this vaccine have been hampered by our lack of understanding of what constitutes a protective memory response against Brucella. In this study, we characterize the cells and signaling pathways implicated in the generation of a protective immune memory response following priming by the injection of heat-killed or live Brucella melitensis 16M. Using a panel of gene-deficient mice, we demonstrated that during a secondary recall response, both the Brucella-specific humoral response and CD4+ Th1 cells must act together to confer protective immunity in the spleen to B. melitensis infection. Humoral protective immunity is induced by the inoculation of both heat-killed and live bacteria, and its development does not require T cells, MyD88/IL-12p35 signaling pathways, or an activation-induced deaminase-mediated isotype switch. In striking contrast, the presence of memory IFN-γ-producing CD4+ Th1 cells requires the administration of live bacteria and functional MyD88/IL-12p35 pathways. In summary, our work identifies several immune markers closely associated with protective immune memory and could help to define a rational strategy to obtain an effective human vaccine against brucellosis. PMID:24646742
Numerical simulation of jet noise
NASA Astrophysics Data System (ADS)
Paliath, Umesh
In the present work, computational aeroacoustics and parallel computers are used to conduct a study of flow-induced noise from different jet nozzle geometries. The nozzle is included as part of the computational domain. This is important to predict jet noise from nozzles associated with military aircraft engines. The Detached Eddy Simulation (DES) approach is used to simulate both the jet nozzle internal and external flows as well as the jet plume. This methodology allows the turbulence model to transition from an unsteady Reynolds Averaged Navier-Stokes (URANS) method for attached boundary layers to a Large Eddy Simulation (LES) in separated regions. Thus, it is ideally suited to jet flow simulations where the nozzle is included. Both cylindrical polar and Cartesian coordinate systems are used. A spectral method is used to avoid the centerline singularity when using the cylindrical coordinate system. The one equation Spalart-Allmaras turbulence model, in DES mode, is used to describe the evolution of the turbulent eddy viscosity. An explicit 4th order Runge-Kutta time marching scheme is used. For spatial discritization the Dispersion Relation Preserving scheme(DRP) is used. The farfield sound is evaluated using the Ffowcs Williams-Hawkings permeable surface wave extrapolation method. This permits the noise to be predicted at large distances from the jet based on fluctuations in the jets near field. The present work includes a study of the effect of different nozzle geometries such as axisymmetric/non-axisymmetric and planar/non-planar exits on the far field noise predictions. Also the effect of operating conditions such as a heated/unheated jet, the effect of forward flight, a jet flow at an angle of attack, and the effect of a supersonic exit Mach number, are included in the study.
Fast discontinuous Galerkin lattice-Boltzmann simulations on GPUs via maximal kernel fusion
NASA Astrophysics Data System (ADS)
Mazzeo, Marco D.
2013-03-01
A GPU implementation of the discontinuous Galerkin lattice-Boltzmann method with square spectral elements, and highly optimised for speed and precision of calculations is presented. An extensive analysis of the numerous variants of the fluid solver unveils that best performance is obtained by maximising CUDA kernel fusion and by arranging the resulting kernel tasks so as to trigger memory coherent and scattered loads in a specific manner, albeit at the cost of introducing cross-thread load unbalancing. Surprisingly, any attempt to vanish this, to maximise thread occupancy and to adopt conventional work tiling or distinct custom kernels highly tuned via ad hoc data and computation layouts invariably deteriorate performance. As such, this work sheds light into the possibility to hide fetch latencies of workloads involving heterogeneous loads in a way that is more effective than what is achieved with frequently suggested techniques. When simulating the lid-driven cavity on a NVIDIA GeForce GTX 480 via a 5-stage 4th-order Runge-Kutta (RK) scheme, the first four digits of the obtained centreline velocity values, or more, converge to those of the state-of-the-art literature data at a simulation speed of 7.0G primitive variable updates per second during the collision stage and 4.4G ones during each RK step of the advection by employing double-precision arithmetic (DPA) and a computational grid of 642 4×4-point elements only. The new programming engine leads to about 2× performance w.r.t. the best programming guidelines in the field. The new fluid solver on the above GPU is also 20-30 times faster than a highly optimised version running on a single core of a Intel Xeon X5650 2.66 GHz.
DUKSUP: A Computer Program for High Thrust Launch Vehicle Trajectory Design and Optimization
NASA Technical Reports Server (NTRS)
Williams, C. H.; Spurlock, O. F.
2014-01-01
From the late 1960's through 1997, the leadership of NASA's Intermediate and Large class unmanned expendable launch vehicle projects resided at the NASA Lewis (now Glenn) Research Center (LeRC). One of LeRC's primary responsibilities --- trajectory design and performance analysis --- was accomplished by an internally-developed analytic three dimensional computer program called DUKSUP. Because of its Calculus of Variations-based optimization routine, this code was generally more capable of finding optimal solutions than its contemporaries. A derivation of optimal control using the Calculus of Variations is summarized including transversality, intermediate, and final conditions. The two point boundary value problem is explained. A brief summary of the code's operation is provided, including iteration via the Newton-Raphson scheme and integration of variational and motion equations via a 4th order Runge-Kutta scheme. Main subroutines are discussed. The history of the LeRC trajectory design efforts in the early 1960's is explained within the context of supporting the Centaur upper stage program. How the code was constructed based on the operation of the Atlas/Centaur launch vehicle, the limits of the computers of that era, the limits of the computer programming languages, and the missions it supported are discussed. The vehicles DUKSUP supported (Atlas/Centaur, Titan/Centaur, and Shuttle/Centaur) are briefly described. The types of missions, including Earth orbital and interplanetary, are described. The roles of flight constraints and their impact on launch operations are detailed (such as jettisoning hardware on heating, Range Safety, ground station tracking, and elliptical parking orbits). The computer main frames on which the code was hosted are described. The applications of the code are detailed, including independent check of contractor analysis, benchmarking, leading edge analysis, and vehicle performance improvement assessments. Several of DUKSUP's many major
DUKSUP: A Computer Program for High Thrust Launch Vehicle Trajectory Design and Optimization
NASA Technical Reports Server (NTRS)
Spurlock, O. Frank; Williams, Craig H.
2015-01-01
From the late 1960s through 1997, the leadership of NASAs Intermediate and Large class unmanned expendable launch vehicle projects resided at the NASA Lewis (now Glenn) Research Center (LeRC). One of LeRCs primary responsibilities --- trajectory design and performance analysis --- was accomplished by an internally-developed analytic three dimensional computer program called DUKSUP. Because of its Calculus of Variations-based optimization routine, this code was generally more capable of finding optimal solutions than its contemporaries. A derivation of optimal control using the Calculus of Variations is summarized including transversality, intermediate, and final conditions. The two point boundary value problem is explained. A brief summary of the codes operation is provided, including iteration via the Newton-Raphson scheme and integration of variational and motion equations via a 4th order Runge-Kutta scheme. Main subroutines are discussed. The history of the LeRC trajectory design efforts in the early 1960s is explained within the context of supporting the Centaur upper stage program. How the code was constructed based on the operation of the AtlasCentaur launch vehicle, the limits of the computers of that era, the limits of the computer programming languages, and the missions it supported are discussed. The vehicles DUKSUP supported (AtlasCentaur, TitanCentaur, and ShuttleCentaur) are briefly described. The types of missions, including Earth orbital and interplanetary, are described. The roles of flight constraints and their impact on launch operations are detailed (such as jettisoning hardware on heating, Range Safety, ground station tracking, and elliptical parking orbits). The computer main frames on which the code was hosted are described. The applications of the code are detailed, including independent check of contractor analysis, benchmarking, leading edge analysis, and vehicle performance improvement assessments. Several of DUKSUPs many major impacts on
Analyzing and designing object-oriented missile simulations with concurrency
NASA Astrophysics Data System (ADS)
Randorf, Jeffrey Allen
2000-11-01
A software object model for the six degree-of-freedom missile modeling domain is presented. As a precursor, a domain analysis of the missile modeling domain was started, based on the Feature-Oriented Domain Analysis (FODA) technique described by the Software Engineering Institute (SEI). It was subsequently determined the FODA methodology is functionally equivalent to the Object Modeling Technique. The analysis used legacy software documentation and code from the ENDOSIM, KDEC, and TFrames 6-DOF modeling tools, including other technical literature. The SEI Object Connection Architecture (OCA) was the template for designing the object model. Three variants of the OCA were considered---a reference structure, a recursive structure, and a reference structure with augmentation for flight vehicle modeling. The reference OCA design option was chosen for maintaining simplicity while not compromising the expressive power of the OMT model. The missile architecture was then analyzed for potential areas of concurrent computing. It was shown how protected objects could be used for data passing between OCA object managers, allowing concurrent access without changing the OCA reference design intent or structure. The implementation language was the 1995 release of Ada. OCA software components were shown how to be expressed as Ada child packages. While acceleration of several low level and other high operations level are possible on proper hardware, there was a 33% degradation of 4th order Runge-Kutta integrator performance of two simultaneous ordinary differential equations using Ada tasking on a single processor machine. The Defense Department's High Level Architecture was introduced and explained in context with the OCA. It was shown the HLA and OCA were not mutually exclusive architectures, but complimentary. HLA was shown as an interoperability solution, with the OCA as an architectural vehicle for software reuse. Further directions for implementing a 6-DOF missile modeling
NASA Astrophysics Data System (ADS)
Clarke, Joanne; Brooks, Nick; Banning, Edward B.; Bar-Matthews, Miryam; Campbell, Stuart; Clare, Lee; Cremaschi, Mauro; di Lernia, Savino; Drake, Nick; Gallinaro, Marina; Manning, Sturt; Nicoll, Kathleen; Philip, Graham; Rosen, Steve; Schoop, Ulf-Dietrich; Tafuri, Mary Anne; Weninger, Bernhard; Zerboni, Andrea
2016-03-01
This paper explores the possible links between rapid climate change (RCC) and social change in the Near East and surrounding regions (Anatolia, central Syria, southern Israel, Mesopotamia, Cyprus and eastern and central Sahara) during the 'long' 4th millennium (∼4500-3000) BC. Twenty terrestrial and 20 marine climate proxies are used to identify long-term trends in humidity involving transitions from humid to arid conditions and vice versa. The frequency distribution of episodes of relative aridity across these records is calculated for the period 6300-2000 BC, so that the results may be interpreted in the context of the established arid episodes associated with RCC around 6200 and 2200 BC (the 8.2 and 4.2 kyr events). We identify two distinct episodes of heightened aridity in the early-mid 4th, and late 4th millennium BC. These episodes cluster strongly at 3600-3700 and 3100-3300 BC. There is also evidence of localised aridity spikes in the 5th and 6th millennia BC. These results are used as context for the interpretation of regional and local archaeological records with a particular focus on case studies from western Syria, the middle Euphrates, southern Israel and Cyprus. Interpretation of the records involves the construction of plausible narratives of human-climate interaction informed by concepts of adaptation and resilience from the literature on contemporary (i.e. 21st century) climate change and adaptation. The results are presented alongside well-documented examples of climatically-influenced societal change in the central and eastern Sahara, where detailed geomorphological studies of ancient environments have been undertaken in tandem with archaeological research. While the narratives for the Near East and Eastern Mediterranean remain somewhat speculative, the use of resilience and adaptation frameworks allows for a more nuanced treatment of human-climate interactions and recognises the diversity and context-specificity of human responses to climatic
Gas dynamics and heat transfer in a packed pebble-bed reactor for the 4th generation nuclear energy
NASA Astrophysics Data System (ADS)
Abdulmohsin, Rahman
-AlOx-Al junctions, we show that, despite excellent temperature stability, temperature fluctuations induce observable critical current fluctuations. Particularly, becuase 1/ f critical current noise has decreased with improved fabrication techniques in recent years, it is important to understand and eliminate this additional noise source. Next, we introduce a numerical method of calculating the mean square flux noise F2 from independently fluctuating spins on the surface of thin-film loops of arbitrary geometry. By reciprocity, F2 is proportional to Br2 , where B(r) is the magnetic field generated by a circulating current around the loop and r varies over the loop surface. By discretizing the loop nonuniformly, we efficiently and accurately compute the current distribution and resulting magnetic field, which may vary rapidly across the loop. We use this method to compute F2 in a number of scenarios in which we systematically vary physical parameters of the loop. We compare our simulations to an earlier analytic result predicting that F2 ∝ R/W in the limit where the loop radius R is much greater than the linewidth W. We further show that the previously neglected contribution of edge spins to F2 is significant---even dominant---in narrow-linewidth loops. To calculate theoretical dephasing rates in qubits, we consider flux noise with a spectral density Sphi( f) = A2/ (f/1 Hz) alpha, where A is of the order of 1 muphi 0 Hz--1/2 and 0.6 ≤ alpha ≤ 1.2; applied flux, our calculations of the dependence of the pure dephasing time tau φ Ramsey and echo pulse sequences on alpha for fixed A show that tauφ decreases rapidly as alpha is reduced. We find that tauφ is relatively insensitive to the noise bandwidth, f1 ≤ f ≤ f2 for all alpha provided the ultraviolet cutoff frequency f2 > 1/tauφ. We calculate the ratio tauφ,E/tau φ, R of the echo (E) and Ramsey (R) sequences, and the dependence of the decay function on alpha and f2. We investigate the case in which S phi(f0) is fixed
Abayomi, Olukayode; Amato, Davide; Bailey, Candace; Bitanihirwe, Byron; Bowen, Lynneice; Burshtein, Shimon; Cullen, Alexis; Fusté, Montserrat; Herrmann, Ana P; Khodaie, Babak; Kilian, Sanja; Lang, Qortni A; Manning, Elizabeth E; Massuda, Raffael; Nurjono, Milawaty; Sadiq, Sarosh; Sanchez-Gutierrez, Teresa; Sheinbaum, Tamara; Shivakumar, Venkataram; Simon, Nicholas; Spiteri-Staines, Anneliese; Sirijit, Suttajit; Toftdahl, Nanna Gilliam; Wadehra, Sunali; Wang, Yi; Wigton, Rebekah; Wright, Susan; Yagoda, Sergey; Zaytseva, Yuliya; O'Shea, Anne; DeLisi, Lynn E
2014-11-01
The 4th Schizophrenia International Research Society Conference was held in Florence, Italy, April 5-9, 2014 and this year had as its emphasis, "Fostering Collaboration in Schizophrenia Research". Student travel awardees served as rapporteurs for each oral session, summarized the important contributions of each session and then each report was integrated into a final summary of data discussed at the entire conference by topic. It is hoped that by combining data from different presentations, patterns of interest will emerge and thus lead to new progress for the future. In addition, the following report provides an overview of the conference for those who were present, but could not participate in all sessions, and those who did not have the opportunity to attend, but who would be interested in an update on current investigations ongoing in the field of schizophrenia research. PMID:25306204
Abayomi, Olukayode; Amato, Davide; Bailey, Candace; Bitanihirwe, Byron; Bowen, Lynneice; Burshtein, Shimon; Cullen, Alexis; Fusté, Montserrat; Herrmann, Ana P; Khodaie, Babak; Kilian, Sanja; Lang, Qortni A; Manning, Elizabeth E; Massuda, Raffael; Nurjono, Milawaty; Sadiq, Sarosh; Sanchez-Gutierrez, Teresa; Sheinbaum, Tamara; Shivakumar, Venkataram; Simon, Nicholas; Spiteri-Staines, Anneliese; Sirijit, Suttajit; Toftdahl, Nanna Gilliam; Wadehra, Sunali; Wang, Yi; Wigton, Rebekah; Wright, Susan; Yagoda, Sergey; Zaytseva, Yuliya; O’Shea, Anne; DeLisi, Lynn E.
2015-01-01
The 4th Schizophrenia International Research Society Conference was held in Florence, Italy, April 5–9, 2014.and this year had as its emphasis, “Fostering Collaboration in Schizophrenia Research”. Student travel awardees served as rapporteurs for each oral session, summarized the important contributions of each session and then each report was integrated into a final summary of data discussed at the entire conference by topic. It is hoped that by combining data from different presentations, patterns of interest will emerge and thus lead to new progress for the future. In addition, the following report provides an overview of the conference for those who were present, but could not participate in all sessions, and those who did not have the opportunity to attend, but who would be interested in an update on current investigations ongoing in the field of schizophrenia research. PMID:25306204
Deal, Alex L.; Erickson, Kristen J.; Shiers, Stephanie I.; Burman, Michael A.
2016-01-01
Classical fear conditioning creates an association between an aversive stimulus and a neutral stimulus. Although the requisite neural circuitry is well understood in mature organisms, the development of these circuits is less well studied. The current experiments examine the ontogeny of fear conditioning and relate it to neuronal activation assessed through immediate early gene (IEG) expression in the amygdala, hippocampus, perirhinal cortex, and hypothalamus of periweanling rats. Rat pups were fear conditioned, or not, during the 3rd or 4th weeks of life. Neuronal activation was assessed by quantifying expression of FBJ osteosarcoma oncogene (FOS) using immunohistochemistry (IHC) in Experiment 1. Fos and early growth response gene-1 (EGR1) expression was assessed using qRT-PCR in Experiment 2. Behavioral data confirm that both auditory and contextual fear continue to emerge between PD 17 and 24. The IEG expression data are highly consistent with these behavioral results. IHC results demonstrate significantly more FOS protein expression in the basal amygdala of fear conditioned PD 23 subjects compared to control subjects, but no significant difference at PD 17. qRT-PCR results suggest specific activation of the amygdala only in older subjects during auditory fear expression. A similar effect of age and conditioning status was also observed in the perirhinal cortex during both contextual and auditory fear expression. Overall, the development of fear conditioning occurring between the 3rd and 4th weeks of life appears to be at least partly attributable to changes in activation of the amygdala and perirhinal cortex during fear conditioning or expression. PMID:26820587
Fowler, Daniel H.; Mossoba, Miriam E.; Steinberg, Seth M.; Halverson, David C.; Stroncek, David; Khuu, Hahn M.; Hakim, Frances T.; Castiello, Luciano; Sabatino, Marianna; Leitman, Susan F.; Mariotti, Jacopo; Gea-Banacloche, Juan C.; Sportes, Claude; Hardy, Nancy M.; Hickstein, Dennis D.; Pavletic, Steven Z.; Rowley, Scott; Goy, Andre; Donato, Michele; Korngold, Robert; Pecora, Andrew; Levine, Bruce L.; June, Carl H.; Gress, Ronald E.; Bishop, Michael R.
2013-01-01
In experimental models, ex vivo induced T-cell rapamycin resistance occurred independent of T helper 1 (Th1)/T helper 2 (Th2) differentiation and yielded allogeneic CD4+ T cells of increased in vivo efficacy that facilitated engraftment and permitted graft-versus-tumor effects while minimizing graft-versus-host disease (GVHD). To translate these findings, we performed a phase 2 multicenter clinical trial of rapamycin-resistant donor CD4+ Th2/Th1 (T-Rapa) cells after allogeneic-matched sibling donor hematopoietic cell transplantation (HCT) for therapy of refractory hematologic malignancy. T-Rapa cell products, which expressed a balanced Th2/Th1 phenotype, were administered as a preemptive donor lymphocyte infusion at day 14 post-HCT. After T-Rapa cell infusion, mixed donor/host chimerism rapidly converted, and there was preferential immune reconstitution with donor CD4+ Th2 and Th1 cells relative to regulatory T cells and CD8+ T cells. The cumulative incidence probability of acute GVHD was 20% and 40% at days 100 and 180 post-HCT, respectively. There was no transplant-related mortality. Eighteen of 40 patients (45%) remain in sustained complete remission (range of follow-up: 42-84 months). These results demonstrate the safety of this low-intensity transplant approach and the feasibility of subsequent randomized studies to compare T-Rapa cell-based therapy with standard transplantation regimens. This trial was registered at www.cancer.gov/clinicaltrials as #NCT 00077480. PMID:23426943
NASA Technical Reports Server (NTRS)
Osher, Stanley; Shu, Chi-Wang
1988-01-01
ENO (essentially non-oscillatory) schemes can provide uniformly high order accuracy right up to discontinuities while keeping sharp, essentially non-oscillatory shock transitions. Recently, an efficient implementation of ENO schemes was obtained based on fluxes and TVD Runge-Kutta time discretizations. The resulting code is very simple to program for multi-dimensions. ENO schemes are especially suitable for computing problems with both discontinuities and fine structures in smooth regions, such as shock interaction with turbulence, for which results for 1-D and 2-D Euler equations are presented. Much better resolution is observed by using third order ENO schemes than by using second order TVD schemes for such problems.
Early LLNL Application Scaling Results on BlueGene/L
Cook, A W; Greenough, J A; Gygi, F; Streitz, F H; Kubota, A; Bulatov, V V; Louis, S
2004-11-01
Miranda is a high order hydrodynamics code for computing fluid instabilities and turbulent mixing. It employs FFTs and band-diagonal matrix solvers for computing spectrally-accurate derivatives, combined with high-order integration methods for time advancement; e.g., fourth-order Runge-Kutta. Fluid properties, i.e., viscosity, diffusivity and thermal conductivity, are computed from kinetic theory. The code contains solvers for both compressible and incompressible flows. It has been used primarily for studying Rayleigh-Taylor (R-T) and Richtmyer-Meshkov (R-M) instabilities, which occur in supernovae and Inertial Confinement Fusion (ICF).
Comparison of spatial numerical operators for duct-nozzle acoustics
NASA Technical Reports Server (NTRS)
Cain, A. B.; Bower, W. W.
1995-01-01
A production Navier-Stokes/Euler CFD code, NASTD, developed for aircraft flowfield analysis has been modified to analyze acoustic fields associated with propulsion exhaust systems. The modified code has been applied to the Category 5 nozzle problem using six different spatial discretization schemes combined with a third-order, compact storage Runge-Kutta time integration. NASTD was found capable of tracking pressure disturbances normalized by the freestream value of order 10(exp -6), even with lower-order schemes, for the benchmark problem.
RAM: a Relativistic Adaptive Mesh Refinement Hydrodynamics Code
Zhang, Wei-Qun; MacFadyen, Andrew I.; /Princeton, Inst. Advanced Study
2005-06-06
The authors have developed a new computer code, RAM, to solve the conservative equations of special relativistic hydrodynamics (SRHD) using adaptive mesh refinement (AMR) on parallel computers. They have implemented a characteristic-wise, finite difference, weighted essentially non-oscillatory (WENO) scheme using the full characteristic decomposition of the SRHD equations to achieve fifth-order accuracy in space. For time integration they use the method of lines with a third-order total variation diminishing (TVD) Runge-Kutta scheme. They have also implemented fourth and fifth order Runge-Kutta time integration schemes for comparison. The implementation of AMR and parallelization is based on the FLASH code. RAM is modular and includes the capability to easily swap hydrodynamics solvers, reconstruction methods and physics modules. In addition to WENO they have implemented a finite volume module with the piecewise parabolic method (PPM) for reconstruction and the modified Marquina approximate Riemann solver to work with TVD Runge-Kutta time integration. They examine the difficulty of accurately simulating shear flows in numerical relativistic hydrodynamics codes. They show that under-resolved simulations of simple test problems with transverse velocity components produce incorrect results and demonstrate the ability of RAM to correctly solve these problems. RAM has been tested in one, two and three dimensions and in Cartesian, cylindrical and spherical coordinates. they have demonstrated fifth-order accuracy for WENO in one and two dimensions and performed detailed comparison with other schemes for which they show significantly lower convergence rates. Extensive testing is presented demonstrating the ability of RAM to address challenging open questions in relativistic astrophysics.
Computation of the modes and polar moment of inertial of the blades of an HAWT
NASA Technical Reports Server (NTRS)
Beaulieu, G.; Noiseux, D.
1981-01-01
The coupled differential equations of motion of the blades of a horizontal axis wind turbine are solved numerically, permitting the optimization of the design at relatively low cost. The equation of motion is transformed into a set of first order equations and solved with fourth order Runge-Kutta integrators. This technique is applied to a twisted, tapered blade of variable cross section and stiffness including discontinuities. The first six natural frequencies and mode shapes are obtained. The polar moment of inertia of the blades is obtained as a function of frequency and rotational speed.
Computation of the modes and polar moment of inertial of the blades of an HAWT
NASA Astrophysics Data System (ADS)
Beaulieu, G.; Noiseux, D.
1981-05-01
The coupled differential equations of motion of the blades of a horizontal axis wind turbine are solved numerically, permitting the optimization of the design at relatively low cost. The equation of motion is transformed into a set of first order equations and solved with fourth order Runge-Kutta integrators. This technique is applied to a twisted, tapered blade of variable cross section and stiffness including discontinuities. The first six natural frequencies and mode shapes are obtained. The polar moment of inertia of the blades is obtained as a function of frequency and rotational speed.
A parallel splitting wavelet method for 2D conservation laws
NASA Astrophysics Data System (ADS)
Schmidt, Alex A.; Kozakevicius, Alice J.; Jakobsson, Stefan
2016-06-01
The current work presents a parallel formulation using the MPI protocol for an adaptive high order finite difference scheme to solve 2D conservation laws. Adaptivity is achieved at each time iteration by the application of an interpolating wavelet transform in each space dimension. High order approximations for the numerical fluxes are computed by ENO and WENO schemes. Since time evolution is made by a TVD Runge-Kutta space splitting scheme, the problem is naturally suitable for parallelization. Numerical simulations and speedup results are presented for Euler equations in gas dynamics problems.
Accuracy of schemes with nonuniform meshes for compressible fluid flows
NASA Technical Reports Server (NTRS)
Turkel, E.
1985-01-01
The accuracy of the space discretization for time-dependent problems when a nonuniform mesh is used is considered. Many schemes reduce to first-order accuracy while a popular finite volume scheme is even inconsistent for general grids. This accuracy is based on physical variables. However, when accuracy is measured in computational variables then second-order accuracy can be obtained. This is meaningful only if the mesh accurately reflects the properties of the solution. In addition, the stability properties of some improved accurate schemes are analyzed and it can be shown that they also allow for larger time steps when Runge-Kutta type methods are used to advance in time.
NASA Astrophysics Data System (ADS)
Martin, Roland; Komatitsch, Dimitri; Bruthiaux, Emilien; Gedney, Stephen D.
2010-05-01
by 40% in 2D comparing to the GFPML split formulation of [4]. Examples of waves propagating in heterogeneous thin slices in presence of free surface are shown. We also applied this CPML technique to more complex models like poroelastic [5] or viscoelastic [6] media based on a fourth-order staggered finite-difference method. For the two-dimensional Biot poroelastic equations we show its efficiency for both non dissipative and dissipative Biot porous models. For the three-dimensional viscoelastic seismic wave equation, the time marching equations of the standard linear solid mechanisms used do not need to be split and only the memory variables associated with velocity derivatives are stored at each time step. In the case of more than one damping mechanism, we are able to reduce memory storage by more than 70% in the PML regions in 3D simulations compared to split PMLs optimized at grazing incidence. Benchmarks of the CPML technique have been validated in poroelastic or viscoelastic thin mesh slices. These unsplit CPMLs are usually computed based on a second-order finite-difference time scheme. However, in many situations like very long time simulations, it is of interest to increase the accuracy of the method by increasing the order of the time marching and spatial discretizations. The CPML is not able to be increased at high orders because of its convolution formulation. In [7] we study then how to build a new unsplit PML (ADE-PML/Auxiliary Differential Equations PML) that remains optimized at grazing incidence based on a high-order time scheme like the fourth-order Runge-Kutta scheme. At second order in time we demonstrate that CPML and ADE-PML are equivalent. At second or high order discretization in time, explicit and semi-implicit solutions can be obtained with very good accuracy. References [1]Dimitri Komatitsch and Roland Martin. An unsplit convolutional Perfectly Matched Layer improved at grazing incidence for the differential anisotropic elastic wave equation
A unified discontinuous Galerkin framework for time integration.
Zhao, Shan; Wei, G W
2014-05-15
We introduce a new discontinuous Galerkin approach for time integration. On the basis of the method of weighted residual, numerical quadratures are employed in the finite element time discretization to account for general nonlinear ordinary differential equations. Many different conditions, including explicit, implicit, and symplectic conditions, are enforced for the test functions in the variational analysis to obtain desirable features of the resulting time-stepping scheme. The proposed discontinuous Galerkin approach provides a unified framework to derive various time-stepping schemes, such as low-order one-step methods, Runge-Kutta methods, and multistep methods. On the basis of the proposed framework, several explicit Runge-Kutta methods of different orders are constructed. The derivation of symplectic Runge-Kutta methods has also been realized. The proposed framework allows the optimization of new schemes in terms of several characteristics, such as accuracy, sparseness, and stability. The accuracy optimization is performed on the basis of an analytical form of the error estimation function for a linear test initial value problem. Schemes with higher formal order of accuracy are found to provide more accurate solutions. We have also explored the optimization potential of sparseness, which is related to the general compressive sensing in signal/imaging processing. Two critical dimensions of the stability region, that is, maximal intervals along the imaginary and negative real axes, are employed as the criteria for stability optimization. This gives the largest Courant-Friedrichs-Lewy time steps in solving hyperbolic and parabolic partial differential equations, respectively. Numerical experiments are conducted to validate the optimized time-stepping schemes. PMID:25382889
A SUNTANS-based unstructured grid local exact particle tracking model
NASA Astrophysics Data System (ADS)
Liu, Guangliang; Chua, Vivien P.
2016-07-01
A parallel particle tracking model, which employs the local exact integration method to achieve high accuracy, has been developed and embedded in an unstructured-grid coastal ocean model, Stanford Unstructured Nonhydrostatic Terrain-following Adaptive Navier-Stokes Simulator (SUNTANS). The particle tracking model is verified and compared with traditional numerical integration methods, such as Runge-Kutta fourth-order methods using several test cases. In two-dimensional linear steady rotating flow, the local exact particle tracking model is able to track particles along the circular streamline accurately, while Runge-Kutta fourth-order methods produce trajectories that deviate from the streamlines. In periodically varying double-gyre flow, the trajectories produced by local exact particle tracking model with time step of 1.0 × 10- 2 s are similar to those trajectories obtained from the numerical integration methods with reduced time steps of 1.0 × 10- 4 s. In three-dimensional steady Arnold-Beltrami-Childress (ABC) flow, the trajectories integrated with the local exact particle tracking model compares well with the approximated true path. The trajectories spiral upward and their projection on the x- y plane is a periodic ellipse. The trajectories derived with the Runge-Kutta fourth-order method deviate from the approximated true path, and their projections on the x- y plane are unclosed ellipses with growing long and short axes. The spatial temporal resolution needs to be carefully chosen before particle tracking models are applied. Our results show that the developed local exact particle tracking model is accurate and suitable for marine Lagrangian (trajectory-based)-related research.
A SUNTANS-based unstructured grid local exact particle tracking model
NASA Astrophysics Data System (ADS)
Liu, Guangliang; Chua, Vivien P.
2016-04-01
A parallel particle tracking model, which employs the local exact integration method to achieve high accuracy, has been developed and embedded in an unstructured-grid coastal ocean model, Stanford Unstructured Nonhydrostatic Terrain-following Adaptive Navier-Stokes Simulator (SUNTANS). The particle tracking model is verified and compared with traditional numerical integration methods, such as Runge-Kutta fourth-order methods using several test cases. In two-dimensional linear steady rotating flow, the local exact particle tracking model is able to track particles along the circular streamline accurately, while Runge-Kutta fourth-order methods produce trajectories that deviate from the streamlines. In periodically varying double-gyre flow, the trajectories produced by local exact particle tracking model with time step of 1.0 × 10- 2 s are similar to those trajectories obtained from the numerical integration methods with reduced time steps of 1.0 × 10- 4 s. In three-dimensional steady Arnold-Beltrami-Childress (ABC) flow, the trajectories integrated with the local exact particle tracking model compares well with the approximated true path. The trajectories spiral upward and their projection on the x-y plane is a periodic ellipse. The trajectories derived with the Runge-Kutta fourth-order method deviate from the approximated true path, and their projections on the x-y plane are unclosed ellipses with growing long and short axes. The spatial temporal resolution needs to be carefully chosen before particle tracking models are applied. Our results show that the developed local exact particle tracking model is accurate and suitable for marine Lagrangian (trajectory-based)-related research.
NASA Astrophysics Data System (ADS)
Wershow, H. N.; Green, M.; Stocker, A.; Staires, D.
2010-12-01
Current efforts towards Earth Science literacy in New Mexico are guided by the New Mexico Science Benchmarks [1]. We are geoscience professionals in Los Alamos, NM who believe there is an important role for non-traditional educators utilizing innovative teaching methods. We propose to further Earth Science literacy for local 3rd and 4th grade students using a kinesthetic learning approach, with the goal of fostering an interactive relationship between the students and their geologic environment. We will be working in partnership with the Pajarito Environmental Education Center (PEEC), which teaches the natural heritage of the Pajarito Plateau to 3rd and 4th grade students from the surrounding area, as well as the Family YMCA’s Adventure Programs Director. The Pajarito Plateau provides a remarkable geologic classroom because minimal structural features complicate the stratigraphy and dramatic volcanic and erosional processes are plainly on display and easily accessible. Our methodology consists of two approaches. First, we will build an interpretive display of the local geology at PEEC that will highlight prominent rock formations and geologic processes seen on a daily basis. It will include a simplified stratigraphic section with field specimens and a map linked to each specimen’s location to encourage further exploration. Second, we will develop and implement a kinesthetic curriculum for an exploratory field class. Active engagement with geologic phenomena will take place in many forms, such as a scavenger hunt for precipitated crystals in the vesicles of basalt flows and a search for progressively smaller rhyodacite clasts scattered along an actively eroding canyon. We believe students will be more receptive to origin explanations when they possess a piece of the story. Students will be provided with field books to make drawings of geologic features. This will encourage independent assessment of phenomena and introduce the skill of scientific observation. We
Comment on "Improved ray tracing air mass numbers model"
NASA Astrophysics Data System (ADS)
van der Werf, Siebren Y.
2008-01-01
Air mass numbers have traditionally been obtained by techniques that use height as the integration variable. This introduces an inherent singularity at the horizon, and ad hoc solutions have been invented to cope with it. A survey of the possible options including integration by height, zenith angle, and horizontal distance or path length is presented. Ray tracing by path length is shown to avoid singularities both at the horizon and in the zenith. A fourth-order Runge-Kutta numerical integration scheme is presented, which treats refraction and air mass as path integrals. The latter may optionally be split out into separate contributions of the atmosphere's constituents.
Sub-diffusive electronic transport in a DNA single-strand chain with electron-phonon coupling.
Sales, M O; Lyra, M L; de Moura, F A B F; Fulco, U L; Albuquerque, E L
2015-01-28
We investigate the electronic wavepacket dynamics in a finite segment of a DNA single-strand chain considering the electron-phonon coupling. Our theoretical approach makes use of an effective tight-binding Hamiltonian to describe the electron dynamics, together with a classical harmonic Hamiltonian to treat the intrinsic DNA vibrations. An effective time-dependent Schrödinger equation is then settled up and solved numerically for an initially localized wave-packet using the standard Dormand-Prince eighth-order Runge-Kutta method. Our numerical results indicate the presence of a sub-diffusive electronic wavepacket spread mediated by the electron-phonon interaction. PMID:25564495
Investigation on vibration of single-walled carbon nanotubes by variational iteration method
NASA Astrophysics Data System (ADS)
Ahmadi Asoor, A. A.; Valipour, P.; Ghasemi, S. E.
2016-02-01
In this paper, the variational iteration method (VIM) has been used to investigate the non-linear vibration of single-walled carbon nanotubes (SWCNTs) based on the nonlocal Timoshenko beam theory. The accuracy of results is examined by the fourth-order Runge-Kutta numerical method. Comparison between VIM solutions with numerical results leads to highly accurate solutions. Also, the behavior of deflection and frequency in vibrations of SWCNTs are studied. The results show that frequency of single walled carbon nanotube versus amplitude increases by increasing the values of B.
Radiation and chemical reaction effects on MHD flow along a moving vertical porous plate
NASA Astrophysics Data System (ADS)
Ramana Reddy, G. V.; Bhaskar Reddy, N.; Gorla, R. S. R.
2016-02-01
This paper presents an analysis of the effects of magnetohydrodynamic force and buoyancy on convective heat and mass transfer flow past a moving vertical porous plate in the presence of thermal radiation and chemical reaction. The governing partial differential equations are reduced to a system of self-similar equations using the similarity transformations. The resultant equations are then solved numerically using the fourth order Runge-Kutta method along with the shooting technique. The results are obtained for the velocity, temperature, concentration, skin-friction, Nusselt number and Sherwood number. The effects of various parameters on flow variables are illustrated graphically, and the physical aspects of the problem are discussed.
NASA Astrophysics Data System (ADS)
Hari, Niranjan; Sivasankaran, S.; Bhuvaneswari, M.; Siri, Zailan
2015-12-01
The aim of the present study is to analyze the effects of chemical reaction on MHD mixed convection with the stagnation point flow towards a vertical plate embedded in a porous medium with radiation and internal heat generation. The governing boundary layer equations are transformed into a set of ordinary differential equations using similarity transformations. Then they are solved by shooting technique with Runge-Kutta fourth order iteration. The obtained numerical results are illustrated graphically and the heat and mass transfer rates are given in tabular form. The velocity and temperature profiles overshoot near the plate on increasing the chemical reaction parameter, Richardson number and magnetic field parameter.
New two-level leapfrog scheme for modeling the stochastic Landau-Lifshitz equations
NASA Astrophysics Data System (ADS)
Glotov, V. Yu.; Goloviznin, V. M.; Karabasov, S. A.; Markesteijn, A. P.
2014-02-01
A two-level modification of the classical nondissipative leapfrog scheme with nonlinear flux correction has been developed for fluctuating hydrodynamics problems. The new algorithm has shown to satisfy the fluctuation-dissipation theorem to high accuracy. The results of various numerical tests, including equilibrium, nonequilibrium, one-, and two-dimensional systems, are compared with theoretical predictions, direct molecular simulations, and results produced by MacCormack's schemes, the piecewise parabolic method, and a third-order Runge-Kutta scheme. The new algorithm is well suited for parallel computations due to its implementation simplicity and compact stencil.
NASA Astrophysics Data System (ADS)
Das, K.
2014-03-01
This paper is devoted to investigate the influences of thermal radiation and temperature-dependent fluid properties on convective slip flow of slightly rarefied fluids over a porous wedge plate embedded in a Darcy-Forchheimer porous medium. Using the similarity transformation, the governing system of non-linear partial differential equations is transformed into similarity non-linear ordinary differential equations which are solved by employing a numerical shooting technique with a fourth-order Runge-Kutta integration scheme. Numerical results are analyzed for the effect of different pertinent parameters on the flow and heat transfer characteristics.
NASA Astrophysics Data System (ADS)
Metodiev, E. M.; Huang, K. L.; Semertzidis, Y. K.; Morse, W. M.
2014-07-01
Analytic expressions for the potentials and fields of flat and cylindrical plates, including the fringe fields, are given. The present analysis extends and simplifies the current expression for the fields of flat plates and develops expressions for the fringe fields of cylindrical plates in terms of polar coordinates. The development of a fortran program to output the field strength at a given location within the Proton Electric Dipole Moment (Proton EDM) ring is then described. Fourth-order Runge-Kutta integration is used to investigate the effect of fringe fields on particle and spin dynamics with precision tracking in the proposed Proton EDM experiment.
Explicit and implicit solution of the Navier-Stokes equations on a massively parallel computer
NASA Technical Reports Server (NTRS)
Levit, Creon; Jespersen, Dennis
1988-01-01
The design, implementation, and performance of a two-dimensional time-accurate Navier-Stokes solver for the CM2 supercomputer are described. The program uses a single processor for each grid point. Two different time-stepping methods have so far been implemented: an explicit third-order Runge-Kutta method and an implicit approximation-factorization method. The CM2 results are checked against those of a mature well-vectorized Cray 2 program, both for correctness and performance. The code is found to be correct, and the performance in some cases is up to several times that of the Cray 2.
Isa, Sharena Mohamad; Ali, Anati
2015-10-22
In this paper, the hydromagnetic flow of dusty fluid over a vertical stretching sheet with thermal radiation is investigated. The governing partial differential equations are reduced to nonlinear ordinary differential equations using similarity transformation. These nonlinear ordinary differential equations are solved numerically using Runge-Kutta Fehlberg fourth-fifth order method (RKF45 Method). The behavior of velocity and temperature profiles of hydromagnetic fluid flow of dusty fluid is analyzed and discussed for different parameters of interest such as unsteady parameter, fluid-particle interaction parameter, the magnetic parameter, radiation parameter and Prandtl number on the flow.
Simulation of worms transmission in computer network based on SIRS fuzzy epidemic model
NASA Astrophysics Data System (ADS)
Darti, I.; Suryanto, A.; Yustianingsih, M.
2015-03-01
In this paper we study numerically the behavior of worms transmission in a computer network. The model of worms transmission is derived by modifying a SIRS epidemic model. In this case, we consider that the transmission rate, recovery rate and rate of susceptible after recovery follows fuzzy membership functions, rather than constants. To study the transmission of worms in a computer network, we solve the model using the fourth order Runge-Kutta method. Our numerical results show that the fuzzy transmission rate and fuzzy recovery rate may lead to a changing of basic reproduction number which therefore also changes the stability properties of equilibrium points.
A time domain, weighted residual formulation of Maxwell's equations
NASA Technical Reports Server (NTRS)
Young, Jeffrey L.; Brueckner, Frank P.
1993-01-01
A finite element model is developed and used to simulate two-dimensional electromagnetic wave propagation and scattering. The spatial discretization of the time-domain electrodynamic equations is accomplished by a Galerkin approach. The semi-discrete equations are solved explicitly using a second-order Runge-Kutta scheme. Both the electric and magnetic fields are discretized using a single grid, with the divergence-free conditions satisfied through a correction approach. Examples depicting the scattering of plane waves in 2D geometries are given to demonstrate the validity of the methodology.
Modeling of heat transfer in a rotary kiln thermal desorder for removal of petroleum from soils
Chern, Hsien-Tsung; Krasnoperov, L.V.; Bozzelli, J.W.
1996-10-01
A continuous feed rotary kiln thermal desorber was designed and constructed to study the heat transfer in removal of petroleum hydrocarbons from contaminated soils. A mathematical model of heat transfer that correlates temperatures of gas, soil, and kiln wall will purge gas flow, soil feed rate, kiln rotation speed and soil residence time in the kiln desorber is developed. A fourth order Runge-Kutta method was used to numerically integrate the heat transfer process along the kiln length and to calculate the temperature profiles. Comparison of predicted and measured gas and soil temperature profile is presented.
Numerical solution of boundary layer MHD flow with viscous dissipation.
Mishra, S R; Jena, S
2014-01-01
The present paper deals with a steady two-dimensional laminar flow of a viscous incompressible electrically conducting fluid over a shrinking sheet in the presence of uniform transverse magnetic field with viscous dissipation. Using suitable similarity transformations the governing partial differential equations are transformed into ordinary differential equations and then solved numerically by fourth-order Runge-Kutta method with shooting technique. Results for velocity and temperature profiles for different values of the governing parameters have been discussed in detail with graphical representation. The numerical evaluation of skin friction and Nusselt number are also given in this paper. PMID:24672367
New approach to dynamical Monte Carlo methods: application to an epidemic model
NASA Astrophysics Data System (ADS)
Aiello, O. E.; da Silva, M. A. A.
2003-09-01
In this work we introduce a new approach to dynamical Monte Carlo methods to simulate Markovian processes. We apply this approach to formulate and study an epidemic generalized SIRS model. The results are in excellent agreement with the forth order Runge-Kutta Method in a region of deterministic solution. We also show that purely local interactions reproduce a poissonian-like process at mesoscopic level. The simulations for this case are checked self-consistently using a stochastic version of the Euler Method.
A note on the shaping of dual reflector antennas
NASA Astrophysics Data System (ADS)
Narasimhan, M. S.; Anantharam, V.; Prasad, K. M.
1981-05-01
An analytical technique, based on a study by Lee et al. (1979), is used to determine the reflector profiles in a symmetrical-shaped oval reflector antenna system. The approach has computational simplicity, involving a single first-order differential equation, and uses very accurate feed pattern expressions. Shaping is carried out by the Runge-Kutta method: since computation starts from the center, numerical error is minimal in the central regions which handle most of the energy. A typical problem is solved, using both this technique and an earlier one, and results are compared.
Effect of biquadratic coupling on current induced magnetization switching in Co/Cu/Ni-Fe nanopillar
NASA Astrophysics Data System (ADS)
Aravinthan, D.; Sabareesan, P.; Daniel, M.
2016-05-01
The effect of biquadratic coupling on spin current induced magnetization switching in a Co/Cu/Ni-Fe nanopillar device is investigated by solving the free layer magnetization switching dynamics governed by the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation. The LLGS equation is numerically solved by using Runge-Kutta fourth order procedure for an applied current density of 5 × 1012 Am-2. Presence of biquadratic coupling in the ferromagnetic layers reduces the magnetization switching time of the nanopillar device from 61 ps to 49 ps.
Numerical modeling of the transmission dynamics of drug-sensitive and drug-resistant HSV-2
NASA Astrophysics Data System (ADS)
Gumel, A. B.
2001-03-01
A competitive finite-difference method will be constructed and used to solve a modified deterministic model for the spread of herpes simplex virus type-2 (HSV-2) within a given population. The model monitors the transmission dynamics and control of drug-sensitive and drug-resistant HSV-2. Unlike the fourth-order Runge-Kutta method (RK4), which fails when the discretization parameters exceed certain values, the novel numerical method to be developed in this paper gives convergent results for all parameter values.
NASA Astrophysics Data System (ADS)
Kalteh, M.; Ghorbani, S.; Khademinejad, T.
2016-05-01
An axisymmetric magnetohydrodynamic (MHD) boundary layer flow and heat transfer of a fluid over a slender cylinder are investigated numerically. The effects of viscous dissipation, thermal radiation, and surface transverse curvature are taken into account in the simulations. For this purpose, the governing partial differential equations are transformed to ordinary differential equations by using appropriate similarity transformations. The resultant ordinary differential equations along with appropriate boundary conditions are solved by the fourth-order Runge-Kutta method combined with the shooting technique. The effects of various parameters on the velocity and temperature profiles, local skin friction coefficient, and Nusselt number are analyzed.
H. Qin and X. Guan
2008-02-11
A variational symplectic integrator for the guiding-center motion of charged particles in general magnetic fields is developed for long-time simulation studies of magnetized plasmas. Instead of discretizing the differential equations of the guiding-center motion, the action of the guiding-center motion is discretized and minimized to obtain the iteration rules for advancing the dynamics. The variational symplectic integrator conserves exactly a discrete Lagrangian symplectic structure, and has better numerical properties over long integration time, compared with standard integrators, such as the standard and variable time-step fourth order Runge-Kutta methods.
Taylor Series Trajectory Calculations Including Oblateness Effects and Variable Atmospheric Density
NASA Technical Reports Server (NTRS)
Scott, James R.
2011-01-01
Taylor series integration is implemented in NASA Glenn's Spacecraft N-body Analysis Program, and compared head-to-head with the code's existing 8th- order Runge-Kutta Fehlberg time integration scheme. This paper focuses on trajectory problems that include oblateness and/or variable atmospheric density. Taylor series is shown to be significantly faster and more accurate for oblateness problems up through a 4x4 field, with speedups ranging from a factor of 2 to 13. For problems with variable atmospheric density, speedups average 24 for atmospheric density alone, and average 1.6 to 8.2 when density and oblateness are combined.
Qin, Hong; Guan, Xiaoyin
2008-01-25
A variational symplectic integrator for the guiding-center motion of charged particles in general magnetic fields is developed for long-time simulation studies of magnetized plasmas. Instead of discretizing the differential equations of the guiding-center motion, the action of the guiding-center motion is discretized and minimized to obtain the iteration rules for advancing the dynamics. The variational symplectic integrator conserves exactly a discrete Lagrangian symplectic structure, and has better numerical properties over long integration time, compared with standard integrators, such as the standard and variable time-step fourth order Runge-Kutta methods. PMID:18232993
Computational methods for vortex dominated compressible flows
NASA Technical Reports Server (NTRS)
Murman, Earll M.
1987-01-01
The principal objectives were to: understand the mechanisms by which Euler equation computations model leading edge vortex flows; understand the vortical and shock wave structures that may exist for different wing shapes, angles of incidence, and Mach numbers; and compare calculations with experiments in order to ascertain the limitations and advantages of Euler equation models. The initial approach utilized the cell centered finite volume Jameson scheme. The final calculation utilized a cell vertex finite volume method on an unstructured grid. Both methods used Runge-Kutta four stage schemes for integrating the equations. The principal findings are briefly summarized.
Apollo experience report: Onboard navigational and alignment software
NASA Technical Reports Server (NTRS)
Savely, R. T.; Cockrell, B. F.; Pines, S.
1972-01-01
The onboard navigational and alignment routines used during the nonthrusting phases of an Apollo mission are discussed as to their limitations, and alternate approaches that have more desirable capabilities are presented. A more efficient procedure for solving Kepler's equation, which is used in the calculation of Kepler's problem and Lambert's problem is included, and a sixth-order predictor scheme with a Runge-Kutta starter is recommended for numerical integration. The extension of the rendezvous navigation state to include angle biases and the use of a fixed coordinate system is also evaluated.
Tables for Supersonic Flow of Helium Around Right Circular Cones at Zero Angle of Attack
NASA Technical Reports Server (NTRS)
Sims, J. L.
1973-01-01
The results of the calculation of supersonic flow of helium about right circular cones at zero angle of attack are presented in tabular form. The calculations were performed using the Taylor-Maccoll theory. Numerical integrations were performed using a Runge-Kutta method for second-order differential equations. Results were obtained for cone angles from 2.5 to 30 degrees in regular increments of 2.5 degrees. In all calculations the desired free-stream Mach number was obtained to five or more significant figures.
Swengel, Scott R; Swengel, Ann B
2016-01-01
Regal Fritillary (Speyeria idalia) primarily inhabits prairie, a native grassland of central North America, and occurs rarely in nonprairie grasslands further east. This butterfly has experienced widespread decline and marked range contraction. We analyze Regal Fritillary incidence and abundance during 1977-2014 in 4th of July Butterfly Counts, an annual census of butterflies in North America. Volunteers count within the same 24 km diameter circle each year. Only 6% of counts in range reported a Regal, while 18% of counts in core range in the Midwest and Great Plains did. 99.9% of Regal individuals occurred in core range. Only four circles east of core range reported this species, and only during the first half of the study period. All individuals reported west of its main range occurred in two circles in Colorado in the second half of the study. The number of counts per year and survey effort per count increased during the study. During 1991-2014, >31 counts occurred per year in core Regal range, compared to 0-23 during 1975-1990. During 1991-2014, all measures of Regal presence and abundance declined, most significantly. These results agree with other sources that Regal Fritillary has contracted its range and declined in abundance. PMID:27239370
NASA Astrophysics Data System (ADS)
Russo Ermolli, Elda; Romano, Paola; Liuzza, Viviana; Amato, Vincenzo; Ruello, Maria Rosaria; Di Donato, Valentino
2014-05-01
Campania has always offered suitable climatic and physiographic conditions for human settlements since prehistoric times. In particular, many Graeco-Roman towns developed along its coasts starting from the 7th-6th cent. BC. In the last decade, geoarchaelogical surveys have been carried out in the archaeological excavations of Neapolis, Paestum and Elea-Velia allowing the main steps of the landscape evolution around these towns to be defined in detail. The greek town of Neapolis rose in the late 6th cent. BC [1] on a terrace overlooking a low-relief rocky coast surrounded by volcanic hills. Port activities developed in a protected bay facing the town from the 4th-2nd cent. BC up to the 4th cent. AD, as testified by the discovery of structures and shipwrecks [2, 3, 4]. Starting from the 3rd cent. AD a spit bar formed at the bay entrance causing the progressive establishment of a lagoon which was gradually filled up by alluvial inputs and completely closed in the 5th cent. AD. During the same period, episodes of increased alluvial inputs were also recorded further west along the coast, where a narrow sandy beach formed at the cliff toe. The greek town of Poseidonia, renamed Paestum by the Romans, was founded in the 540 BC on a travertine terrace facing the sandy littoral of a prograding coastal plain [5]. In front of the main town door, a coastal lagoon developed thanks to the growth of a dune ridge and was probably used for harbor activities [5]. After this period the shoreline shifted seawards, another dune ridge formed and the back-ridge depression was filled with fluvial-marshy deposits, slowly drying up. Phases of travertine deposition, which characterized the SE sector of the plain all along the Holocene, were recorded in the northern and southern quarters of the town in historical times and were connected to the abandonment of the town in the early Medieval times. The greek colony of Elea-Velia was located on top of a siliciclastic promontory where the ruins of
2016-01-01
Regal Fritillary (Speyeria idalia) primarily inhabits prairie, a native grassland of central North America, and occurs rarely in nonprairie grasslands further east. This butterfly has experienced widespread decline and marked range contraction. We analyze Regal Fritillary incidence and abundance during 1977–2014 in 4th of July Butterfly Counts, an annual census of butterflies in North America. Volunteers count within the same 24 km diameter circle each year. Only 6% of counts in range reported a Regal, while 18% of counts in core range in the Midwest and Great Plains did. 99.9% of Regal individuals occurred in core range. Only four circles east of core range reported this species, and only during the first half of the study period. All individuals reported west of its main range occurred in two circles in Colorado in the second half of the study. The number of counts per year and survey effort per count increased during the study. During 1991–2014, >31 counts occurred per year in core Regal range, compared to 0–23 during 1975–1990. During 1991–2014, all measures of Regal presence and abundance declined, most significantly. These results agree with other sources that Regal Fritillary has contracted its range and declined in abundance. PMID:27239370
2013-01-01
Recent insights into the genetic and somatic aberrations have initiated a new era of rapidly evolving targeted and immune-based treatments for melanoma. After decades of unsuccessful attempts to finding a more effective cure in the treatment of melanoma now we have several drugs active in melanoma. The possibility to use these drugs in combination to improve responses to overcome the resistance, to potentiate the action of immune system with the new immunomodulating antibodies, and identification of biomarkers that can predict the response to a particular therapy represent new concepts and approaches in the clinical management of melanoma. The third “Melanoma Research: “A bridge from Naples to the World” meeting, shortened as “Bridge Melanoma Meeting” took place in Naples, December 2 to 4th, 2012. The four topics of discussion at this meeting were: advances in molecular profiling and novel biomarkers, combination therapies, novel concepts toward integrating biomarkers and therapies into contemporary clinical management of patients with melanoma across the entire spectrum of disease stage, and the knowledge gained from the biology of tumor microenvironment across different tumors as a bridge to impact on prognosis and response to therapy in melanoma. This international congress gathered more than 30 international faculty members who in an interactive atmosphere which stimulated discussion and exchange of their experience regarding the most recent advances in research and clinical management of melanoma patients. PMID:23731854
NASA Astrophysics Data System (ADS)
Demkin, V. A.; Zolotareva, B. N.; Demkina, T. S.; Khomutova, T. E.; Kashirskaya, N. N.; El'Tsov, M. V.; Udal'Tsov, S. N.
2012-02-01
Paleosols buried under kurgans of the Early (2nd-1st centuries BC), Middle (1st-2nd centuries AD) and Late (2nd-IV centuries AD) Sarmatian epochs were studied in dry steppes and desert steppes of the Lower Volga region (the Privolzhskaya and Ergeni Uplands and the Caspian Lowland). It was found that temporal variations in the morphological, chemical, microbiological, and magnetic properties of the paleosols in the interval of 2200-1600 BP were characterized by the cyclic pattern related to secular dynamics of climatic humidity with changes in the mean annual precipitation of ±30-50 mm. These climate changes did not transform chestnut paleosols and paleosolonetzes at the type or subtype taxonomic levels. However, they led to certain changes in the humus, carbonate, and salt profiles of the soils; in the character of solonetzic horizon B1; and in the state of microbial communities. According to these data, the Sarmatian time was characterized by alternation of micropluvial and microarid stages lasting fro about 100-200 years. In particular, the stages of humidization were observed in the 1st century BC-1st century AD and in the 4th century AD; the most arid conditions were observed in the second half of the 2nd and the first half of the 3rd century AD.
NASA Astrophysics Data System (ADS)
Bedrina, T.; Parodi, A.; Quarati, A.; Clematis, A.; Rebora, N.; Laiosa, D.
2012-04-01
One of the critical issues in Hydro-Meteorological Research (HMR) is a better exploitation of data archives according to a multidisciplinary perspective. Different Earth science databases offer a huge amount of observational data, which often need to be assembled, processed, combined accordingly HM scientists needs. The cooperation between scientists active in HMR and Information and Communication Technologies (ICT) is essential in the development of innovative tools and applications for manipulating, aggregating and re-arranging heterogeneous information in flexible way. In this paper it is described an application devoted to the collection and integration of HM datasets, originated by public or private sources, freely exposed via Web services API. This application uses the mashup, recently become very popular in many fields, (Chow S.-W., 2007) technology concepts. Such methodology means combination of data and/or programs published by external online sources into an integrated experience. Mashup seems to be a promising methodology to respond to the multiple data-related activities into which HM researchers are daily involved (e.g. finding and retrieving high volume data; learning formats and developing readers; extracting parameters; performing filtering and mask; developing analysis and visualization tools). The specific case study of the recent extreme rainfall event, occurred over Genoa in Italy on the 4th November 2011 is shown through the integration of semi-professional weather observational networks as free available data source in addition to official weather networks.
Yang, Wancai; Guan, Lingjie
2012-01-01
A global collaborative effort is pivotal to conquer cancer. Themed “Emerging role of China in global clinical development of novel anti-cancer drugs”, the US Chinese Anti-Cancer Association (USCACA) held its 4th annual meeting in Chicago on June 2, 2012, in conjunction with the American Society of Clinical Oncology (ASCO) annual meeting to further bridge the US and China together to outsmart cancer. Although a young organization, USCACA has made significant contributions to this goal in the 3 years since its inception through extensive collaboration with academic organizations, the pharmaceutical industry, and governmental agencies. USCACA has engaged various stakeholders in developing translational and personalized medical strategies to facilitate new anti-cancer drug development and clinical trials in China. USCACA has initiated and implemented the USCACA-National Foundation for Cancer Research (NFCR) scholarship to encourage overseas returnees to continue cancer research in China. USCACA announced the Hengrui-USCACA scholarship to fund clinical trial staff from China to conduct the observation of early oncologic clinical trials in the US. During the annual meeting, distinguished panelists and the audience discussed the following critical topics: (1) oncologic translational research and early development capabilities in China; (2) novel chemical entity development and partnership with Chinese companies; and (3) Chinese participation in global anti-cancer drug development. USCACA will continue to promote collaborations among cancer researchers and clinicians in the US and China by engaging in more frequent communications and joint efforts across fields, disciplines, and countries, diligently working together toward curing and eliminating cancers. PMID:22739264