Science.gov

Sample records for 5-10 cm soil

  1. Assessing soil hydrological variability at the cm- to dm-scale using air permeameter measurements

    NASA Astrophysics Data System (ADS)

    Beerten, K.; Vandersmissen, N.; Rogiers, B.; Mallants, D.

    2012-04-01

    , regardless the transfer function used, are within 10% (logKs) from perfect correlation. However, it is not clear yet which transfer function would best fit to the data: both show a slight systematic offset of ca. 5% (logKs) from the line of perfect agreement. Reasons for the observed discrepancies can be differences in measurement scale (5-10 times smaller for the air permeameter compared to constant head core samples) and possibly effects of the soil's saturation degree. Despite the small but systematic offset, we conclude that field based air permeametry is a relatively cheap, quick and reliable method to map the spatial variability of saturated hydraulic conductivity in heterogeneous soil profiles.

  2. Poliovirus retention in 75-cm soil cores after sewage and rainwater application

    SciTech Connect

    Landry, E.F.; Vaughn, J.M.; Penello, W.F.

    1980-12-01

    The adsorption rate of a guanidine-resistant strain of poliovirus LSc 2ab was measured in Long Island soils with in situ field cores (10.1 by 75 cm). The test virus was chosen because it exhibited soil adsorption and elution characteristics of a number of non-polioviruses. After the inoculation of cores with seeded sewage effluent at a 1-cm/h infiltration rate, cores were extracted, fractionated, and analyzed for total plaque-forming units per each 5-cm fraction. The results showed that 77% of the viruses were adsorbed in the first 5 cm of soil. An additional 11% were found in the 5- to 10-cm fraction, and a total of 96% of the viruses were adsorbed by 25 cm. The remaining 4% were uniformly distributed over the next 50 cm of soil, with a minimum of 0.23% in each soil section. Few viruses (< 0.22%) were observed in core filtrates. Analysis of the viral distribution pattern in seeded cores, after an application of a single rinse of either sewage effluent or rainwater, indicated that large-scale viral mobilization was absent. However, localized areas of viral movement were noted in both of the rinsed cores, with the rainwater rinsed cores exhibiting more extensive movement. All mobilized viruses were resorbed at lower core depths.

  3. Estimation of CO2 diffusion coefficient at 0-10 cm depth in undisturbed and tilled soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diffusion coefficients (D) of CO2 at 0 – 10 cm layers in undisturbed and tilled soil conditions were estimated using Penman, Millington-Quirk, Ridgwell et al. (1999), Troeh et al., and Moldrup et al. models. Soil bulk density and volumetric soil water content ('v) at 0 – 10 cm were measured on April...

  4. A case study demonstration of the soil temperature extrema recovery rates after precipitation cooling at 10-cm soil depth

    NASA Technical Reports Server (NTRS)

    Welker, Jean Edward

    1991-01-01

    Since the invention of maximum and minimum thermometers in the 18th century, diurnal temperature extrema have been taken for air worldwide. At some stations, these extrema temperatures were collected at various soil depths also, and the behavior of these temperatures at a 10-cm depth at the Tifton Experimental Station in Georgia is presented. After a precipitation cooling event, the diurnal temperature maxima drop to a minimum value and then start a recovery to higher values (similar to thermal inertia). This recovery represents a measure of response to heating as a function of soil moisture and soil property. Eight different curves were fitted to a wide variety of data sets for different stations and years, and both power and exponential curves were fitted to a wide variety of data sets for different stations and years. Both power and exponential curve fits were consistently found to be statistically accurate least-square fit representations of the raw data recovery values. The predictive procedures used here were multivariate regression analyses, which are applicable to soils at a variety of depths besides the 10-cm depth presented.

  5. Thermal emission measurements 2000-400/cm (5-25 micrometers) of Hawaiian palagonitic soils and their implications for Mars

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Bell, James F., III

    1995-01-01

    The thermal emision of two palagonitic soils, common visible and near infrared spectral analogs for bright soils on Mars, was measured over the wavelength range of 5 to 25 micrometers (2000 to 400/cm) for several partical size separates. All spectra exhibit emissivity features due to vibrations associated with H2O and SiO. The maximum variability of emissivity is approximately 20% in the short wavelength region (5 to 6.5 mirometers, 2000 to 1500/cm), and is more subdued, less than 4%, at longer wavelengths. The strengths of features present in the infrared spectra of Mars cannot be solely provided by emissivity variations of palagonite; some other material or mechanism must provide additional absorptions(s).

  6. Comparison of 2.8- and 21-cm microwave radiometer observations over soils with emission model calculations

    NASA Technical Reports Server (NTRS)

    Burke, W. J.; Schmugge, T.; Paris, J. F.

    1979-01-01

    An airborne experiment was conducted under NASA auspices to test the feasibility of detecting soil moisture by microwave remote sensing techniques over agricultural fields near Phoenix, Arizona at midday of April 5, 1974 and at dawn of the following day. Extensive ground data were obtained from 96 bare, sixteen hectare fields. Observations made using a scanning (2.8 cm) and a nonscanning (21 cm) radiometer were compared with the predictions of a radiative transfer emission model. It is shown that (1) the emitted intensity at both wavelengths correlates best with the near surface moisture, (2) surface roughness is found to more strongly affect the degree of polarization than the emitted intensity, (3) the slope of the intensity-moisture curves decreases in going from day to dawn, and (4) increased near surface moisture at dawn is characterized by increased polarization of emissions. The results of the experiment indicate that microwave techniques can be used to observe the history of the near surface moisture. The subsurface history must be inferred from soil physics models which use microwave results as boundary conditions.

  7. Diagnosing the strength of soil temperature in the land atmosphere interactions over Asia based on RegCM4 model

    NASA Astrophysics Data System (ADS)

    Liu, Di; Yu, Zhongbo; Zhang, Jianyun

    2015-07-01

    This study aims to investigate the soil temperature atmosphere (ST Atm) coupling strength and their influence on the subsequent climate anomalies over Asia based on a regional climate model RegCM4 with both statistical analysis method and numerical experiments. The major findings are as follows: (1) The soil temperature precipitation (ST P) coupling is quite weak and spatially scattered from both RegCM4 output and GLDAS data in each season with the only obvious signals existing over the north India region in summer season according to the RegCM4 output; the soil temperature 2m air temperature (ST T2m) coupling is strong and spatially continuous with the India (in spring, summer and autumn seasons), South Indochina (in spring and summer seasons) and part of North China (in summer season) standing out as hotspots. (2) The soil temperature evapotranspiration (ST ET) and soil temperature evaporative fraction (ST EF) coupling almost resembles the same spatial patterns and magnitude in each season. Both the ET and EF play an important role in linking ST P coupling in each season, but not in the ST T2m coupling. The hotspots of ST T2m coupling outweigh the areas with strong ST ET and ST EF coupling. Only the India and Indochina in each season are recognized by the RegCM4 while the Indochina and west Asia in spring, north India, Indochina and part of mid-high latitudes in summer season pinpointed by GLDAS data show consistent strong ST T2m coupling with significant ST ET and ST EF coupling. This finding demonstrates the complicated ST Atm coupling. (3) The ST anomalies prescribed at the first step of each season can only persist a short time (within 5 days) over most part of the study area while the fixed one-month anomalies can last longer (approximately 2 months with colder anomalies and 45 days with warmer anomalies in tropical regions). (4) The impact of ST anomalies on subsequent precipitation is quite weak and can be ignored over most part of the study area, while

  8. Thermal emission measurements 2000-400 cm(exp -1) (5-25 microns) of Hawaiian palagonitic soils and their implications for Mars

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Bell, James F., III

    1995-01-01

    The thermal emission of two palagonitic soils, common visible and near infrared spectral analogs for bright soils on Mars, was measured over the wavelength range of 5 to 25 microns (2000 to 400 cm(exp -1) for several particle size separates. All spectra exhibit emissivity features due to vibrations associated with H2O and SiO. The maximum variability of emissivity is approx. = 20% in the short wavelength region (5 to 6.5 microns, 2000 to 1500 cm(exp -1)), and is more subdued, < 4%, at longer wavelengths. The strengths of features present in infrared spectra of Mars cannot be solely provided by emissivity variations of palagonite; some other material or mechanism must provide additional absorption(s).

  9. 34 CFR 5.10 - Public reading room.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 1 2013-07-01 2013-07-01 false Public reading room. 5.10 Section 5.10 Education Office... Available to the Public § 5.10 Public reading room. (a) General. Pursuant to 5 U.S.C. 552(a)(2), the Department maintains a public reading room containing agency records that the FOIA requires to be...

  10. 34 CFR 5.10 - Public reading room.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 1 2011-07-01 2011-07-01 false Public reading room. 5.10 Section 5.10 Education Office... Available to the Public § 5.10 Public reading room. (a) General. Pursuant to 5 U.S.C. 552(a)(2), the Department maintains a public reading room containing agency records that the FOIA requires to be...

  11. 34 CFR 5.10 - Public reading room.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 1 2014-07-01 2014-07-01 false Public reading room. 5.10 Section 5.10 Education Office... Available to the Public § 5.10 Public reading room. (a) General. Pursuant to 5 U.S.C. 552(a)(2), the Department maintains a public reading room containing agency records that the FOIA requires to be...

  12. 1 CFR 5.10 - Forms of publication.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 1 General Provisions 1 2011-01-01 2011-01-01 false Forms of publication. 5.10 Section 5.10 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER GENERAL § 5.10 Forms of publication. Pursuant to section 1506 of title 44, United States Code, the Administrative Committee...

  13. 1 CFR 5.10 - Forms of publication.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1 General Provisions 1 2010-01-01 2010-01-01 false Forms of publication. 5.10 Section 5.10 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER GENERAL § 5.10 Forms of publication. Pursuant to section 1506 of title 44, United States Code, the Administrative Committee...

  14. 1 CFR 5.10 - Forms of publication.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 1 General Provisions 1 2012-01-01 2012-01-01 false Forms of publication. 5.10 Section 5.10 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER GENERAL § 5.10 Forms of publication. Pursuant to section 1506 of title 44, United States Code, the Administrative Committee...

  15. 1 CFR 5.10 - Forms of publication.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 1 General Provisions 1 2014-01-01 2012-01-01 true Forms of publication. 5.10 Section 5.10 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER GENERAL § 5.10 Forms of publication. Pursuant to section 1506 of title 44, United States Code, the Administrative Committee...

  16. 1 CFR 5.10 - Forms of publication.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 1 General Provisions 1 2013-01-01 2012-01-01 true Forms of publication. 5.10 Section 5.10 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER GENERAL § 5.10 Forms of publication. Pursuant to section 1506 of title 44, United States Code, the Administrative Committee...

  17. 34 CFR 5.10 - Public reading room.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 1 2012-07-01 2012-07-01 false Public reading room. 5.10 Section 5.10 Education Office of the Secretary, Department of Education AVAILABILITY OF INFORMATION TO THE PUBLIC Agency Records Available to the Public § 5.10 Public reading room. (a) General. Pursuant to 5 U.S.C. 552(a)(2),...

  18. Chernobyl fallout in the uppermost (0-3 cm) humus layer of forest soil in Finland, North East Russia and the Baltic countries in 2000--2003.

    PubMed

    Ylipieti, J; Rissanen, K; Kostiainen, E; Salminen, R; Tomilina, O; Täht, K; Gilucis, A; Gregorauskiene, V

    2008-12-15

    The situation resulting from the Chernobyl fallout in 1987 was compared to that in 2000--2001 in Finland and NW Russia and that in 2003 in the Baltic countries. 786 humus (0-3 cm layer) samples were collected during 2000--2001 in the Barents Ecogeochemistry Project, and 177 samples in the Baltic countries in 2003. Nuclides emitting gamma-radiation in the 0-3 cm humus layer were measured by the Radiation and Nuclear Safety Authority-STUK in Finland. In 1987 the project area was classified by the European Commission into four different fallout classes. 137Cs inventory Bg/m2 levels measured in 2000--2003 were compared to the EU's class ranges. Fitting over the whole project area was implemented by generalizing the results for samples from the Baltic countries, for which Bq/m2 inventories could be calculated. A rough estimation was made by comparing the mass of organic matter and humus with 137Cs concentrations in these two areas. Changes in 137Cs concentration levels are illustrated in both thematic maps and tables. Radionuclide 137Cs concentrations (Bq/kg d.w.) were detected in the humus layer at all the 988 sampling sites. 134Cs was still present in 198 sites 15 years after the nuclear accident in Chernobyl. No other anthropogenic nuclides emitting gamma-radiation were detected, but low levels of 60Co, 125Sb and 154Eu isotopes were found in 14 sites. Fifteen years after the Chernobyl accident, the radioactive nuclide 137Cs was and still is the most significant fallout radionuclide in the environment and in food chains. The results show that the fallout can still be detected in the uppermost humus layer in North East Europe.

  19. 36 CFR 5.10 - Eating, drinking, or lodging establishments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Rocky Mountain, Sequoia-Kings Canyon, Yellowstone, and Yosemite National Parks may be operated without a... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Eating, drinking, or lodging establishments. 5.10 Section 5.10 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF...

  20. 36 CFR 5.10 - Eating, drinking, or lodging establishments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Rocky Mountain, Sequoia-Kings Canyon, Yellowstone, and Yosemite National Parks may be operated without a... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Eating, drinking, or lodging establishments. 5.10 Section 5.10 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF...

  1. 36 CFR 5.10 - Eating, drinking, or lodging establishments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Rocky Mountain, Sequoia-Kings Canyon, Yellowstone, and Yosemite National Parks may be operated without a... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Eating, drinking, or lodging establishments. 5.10 Section 5.10 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF...

  2. 36 CFR 5.10 - Eating, drinking, or lodging establishments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Rocky Mountain, Sequoia-Kings Canyon, Yellowstone, and Yosemite National Parks may be operated without a... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Eating, drinking, or lodging establishments. 5.10 Section 5.10 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF...

  3. 36 CFR 5.10 - Eating, drinking, or lodging establishments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Rocky Mountain, Sequoia-Kings Canyon, Yellowstone, and Yosemite National Parks may be operated without a... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Eating, drinking, or lodging establishments. 5.10 Section 5.10 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF...

  4. 18 CFR 5.10 - Scoping Document 2.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Scoping Document 2. 5.10 Section 5.10 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT INTEGRATED LICENSE APPLICATION PROCESS §...

  5. 18 CFR 5.10 - Scoping Document 2.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Scoping Document 2. 5.10 Section 5.10 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT INTEGRATED LICENSE APPLICATION PROCESS §...

  6. 18 CFR 5.10 - Scoping Document 2.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Scoping Document 2. 5.10 Section 5.10 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT INTEGRATED LICENSE APPLICATION PROCESS §...

  7. 18 CFR 5.10 - Scoping Document 2.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Scoping Document 2. 5.10 Section 5.10 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION..., the Commission staff shall, if necessary, issue Scoping Document 2....

  8. 18 CFR 5.10 - Scoping Document 2.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Scoping Document 2. 5.10 Section 5.10 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION..., the Commission staff shall, if necessary, issue Scoping Document 2....

  9. Ubiquitous CM and DM

    NASA Technical Reports Server (NTRS)

    Crowley, Sandra L.

    2000-01-01

    Ubiquitous is a real word. I thank a former Total Quality Coach for my first exposure some years ago to its existence. My version of Webster's dictionary defines ubiquitous as "present, or seeming to be present, everywhere at the same time; omnipresent." While I believe that God is omnipresent, I have come to discover that CM and DM are present everywhere. Oh, yes; I define CM as Configuration Management and DM as either Data or Document Management. Ten years ago, I had my first introduction to the CM world. I had an opportunity to do CM for the Space Station effort at the NASA Lewis Research Center. I learned that CM was a discipline that had four areas of focus: identification, control, status accounting, and verification. I was certified as a CMIl graduate and was indoctrinated about clear, concise, and valid. Off I went into a world of entirely new experiences. I was exposed to change requests and change boards first hand. I also learned about implementation of changes, and then of technical and CM requirements.

  10. [Seasonal dynamics of soil organic carbon mineralization for two forest types in Xiaoxing'an Mountains, China].

    PubMed

    Gao, Fei; Lin, Wei; Cui, Xiao-yang

    2016-01-01

    To investigate the seasonal dynamics of soil organic carbon (SOC) mineralization in Xiaoxing'an Mountain, we incubated soil samples collected from virgin Korean pine forest and broad-leaved secondary forest in different seasons in the laboratory and measured the SOC mineralization rate and cumulative SOC mineralization (Cm). We employed simultaneous reaction model to describe C mineralization kinetics and estimated SOC mineralization parameters including soil easily mineralizable C (C1), potentially mineralizable C (C₀). We also analyzed the relations between Cm, C₁and their influencing factors. Results showed that the incubated SOC mineralization rate and Cm for 0-5 cm soil layer decreased from early spring to late autumn, while for 5-10 cm soil layer the seasonal variation was not statistically significant for both forest types. The C₁ in 0-5 and 5-10 cm soil layers varied from 42.92-92.18 and 19.23-32.95 mg kg⁻¹, respectively, while the C₀ in 0-5 and 5-10 cm soil layers varied from 863.92-3957.15 and 434.15-865.79 mg · kg⁻¹, respec- tively. Both C₁ and C₀ decreased from early spring to late autumn. The proportions of C₀ in SOC for two forest types were 0.74%-2.78% and 1.11%-1.84% in 0-5 and 5-10 cm soil layers, respectively, and decreased from early spring to late autumn, indicating that SOC tended to become more stable as a whole from spring to autumn. The Cm and C₀ were significantly positively correlated to in situ soil water content and hot water-extractable carbohydrate content, but were not correlated to in situ soil temperature and cool water-extractable carbohydrate content. We concluded that soil labile organic carbon, soil physical and chemical properties contributed to the seasonal dynamics of SOC mineralization in the forests.

  11. [Validity of the Reactive-Proactive-Aggression-Questionnaire for 5-10 Graders (RPA 5-10)].

    PubMed

    Beckers, Leif; Petermann, Franz

    2012-01-01

    A precondition of an appropriate treatment of aggressive children and youth is a specific diagnosis. The Reactive-Proactive-Aggression-Questionnaire for 5-10 Graders (RPA 5-10) assesses reactive and proactive aggression and different facets of the subtypes such as angry-aggression, defensive attribution of aggression, obtaining of resources and power/domination-aggression. This study proves the validity of the questionnaire by differential correlates based on a sample of 9 to 17 year-old students (N = 250). The scales of the RPA 5-10 were associated with anger, physical aggression, verbal aggression, conduct problems and decreased prosocial behaviour. Reactive aggression but not proactive aggression was related to hostility, emotional symptoms and peer relationship problems. The relations between reactive aggression and anger and emotional symptoms are based on angry-aggression. Contrary to predictions hyperactivity/inattention was associated with reactive but also with proactive aggression.

  12. A simple procedure for estimating soil porosity

    NASA Astrophysics Data System (ADS)

    Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Holden, Nick

    2016-04-01

    Soil degradation from mismanagement is of international concern. Simple, accessible tools for rapidly assessing impacts of soil management are required. Soil structure is a key component of soil quality and porosity is a useful indicator of structure. We outline a version of a procedure described by Piwowarczyk et al. (2011) used to estimate porosity of samples taken during a soil quality survey of 38 sites across Ireland as part of the Government funded SQUARE (Soil Quality Assessment Research) project. This required intact core (r = 2.5 cm, H = 5cm) samples taken at 5-10 cm and 10-20 cm depth, to be covered with muslin cloth at one end and secured with a jubilee clip. Samples were saturated in sealable water tanks for ≈ 64 hours, then allowed to drain by gravity for 24 hours, at which point Field Capacity (F.C.) was assumed to have been reached, followed by oven drying with weight determined at each stage. This allowed the calculation of bulk density and the estimation of water content at saturation and following gravitational drainage, thus total and functional porosity. The assumption that F.C. was reached following 24 hours of gravitational drainage was based on the Soil Moisture Deficit model used in Ireland to predict when soils are potentially vulnerable to structural damage and used nationally as a management tool. Preliminary results indicate moderately strong, negative correlations between estimated total porosity at 5-10 cm and 10-20 cm depth (rs = -0.7, P < 0.01 in both cases) and soil quality scores of the Visual Evaluation of Soil Structure (VESS) method which was conducted at each survey site. Estimated functional porosity at 5-10 cm depth was found to moderately, negatively correlate with VESS scores (rs = - 0.5, P < 0.05). This simple procedure requires inexpensive equipment and appears useful in indicating porosity of a large quantity of samples taken at numerous sites or if done periodically, temporal changes in porosity at a field scale

  13. BROWN DWARF DISKS AT AGES OF 5-10 Myr

    SciTech Connect

    Riaz, Basmah; Lodieu, Nicolas; Gizis, John E.

    2009-11-01

    We present Spitzer/IRAC and MIPS 24 mum observations for 28 brown dwarfs in the Upper Scorpius (UppSco) region. We find a disk fraction of 10.7%{sup +8.7%} {sub -3.3%}. One object shows a small excess at 24 mum but none at shorter wavelengths, and may be a candidate transition disk. Three objects show emission in the 10 mum silicate feature and we present compositional fits for these sources. Flat structures are observed for all disk sources in UppSco. Also presented are the MIPS/70 mum observations for the TW Hydrae Association brown dwarf 2MASS J1139511-315921. We discuss the structure and chemistry of brown dwarf disks at ages of approx5-10 Myr, and consider the possible effects of the brown dwarf densities in these clusters on the disk lifetimes.

  14. β-Nitro-5,10,15-tritolylcorroles

    PubMed Central

    Stefanelli, Manuela; Pomarico, Giuseppe; Tortora, Luca; Nardis, Sara; Fronczek, Frank R.; McCandless, Gregory T.; Smith, Kevin M.; Manowong, Machima; Chen, Ping; Kadish, Karl M.; Rosa, Angela; Ricciardi, Giampaolo; Paolesse, Roberto

    2012-01-01

    Functionalization of the β-pyrrolic positions of the corrole macrocycle with –NO2 groups is limited at present to metallocorrolates due to of the instability exhibited by corrole free bases under oxidizing conditions. A careful choice of the oxidant can limit the transformation of corroles into decomposition products or isocorrole species, preserving the corrole aromaticity, and thus allowing the insertion of nitro groups onto the corrole framework. Here we report results obtained by reacting 5,10,15-tritolylcorrole (TTCorrH3) with the AgNO2/NaNO2 system, to give mono- and di-nitrocorrole derivatives when stoichiometry is carefully controlled. Reactions were found to be regioselective, affording the 3-NO2TTCorrH3 and 3,17-(NO2)2TTCorrH3 isomers as the main products in the case of mono- and di-substitution, in 53 and 20% yields, respectively. In both cases, traces of other mono- and di-substituted isomers were detected, which were structurally characterized by X-ray crystallography. The influence of the β-nitro substituents on the corrole properties is studied in detail by UV-visible, electrochemical, and spectroelectrochemical characterization of these functionalized corroles. Density Functional Theory (DFT) and time-dependent DFT (TDDFT) calculations of the ground and excited state properties of these β-nitrocorrole derivatives also afforded significant information, closely matching the experimental observations. It is found that the β-NO2 substituents conjugate with the π-aromatic system of the macrocycle, which initiates significant changes in both the spectroscopic and redox properties of the so functionalized corroles. This effect is more pronounced when the nitro group is introduced at the 2-position, because in this case the conjugation is, for steric reasons, more efficient than in the 3-nitro isomer. PMID:22668242

  15. Depth-Dependent Mineral Soil CO2 Production Processes: Sensitivity to Harvesting-Induced Changes in Soil Climate

    PubMed Central

    Kellman, Lisa; Myette, Amy; Beltrami, Hugo

    2015-01-01

    Forest harvesting induces a step change in the climatic variables (temperature and moisture), that control carbon dioxide (CO2) production arising from soil organic matter decomposition within soils. Efforts to examine these vertically complex relationships in situ within soil profiles are lacking. In this study we examined how the climatic controls on CO2 production change within vertically distinct layers of the soil profile in intact and clearcut forest soils of a humid temperate forest system of Atlantic Canada. We measured mineral soil temperature (0, 5, 10, 20, 50 and 100 cm depth) and moisture (0–15 cm and 30–60 cm depth), along with CO2 surface efflux and subsurface concentrations (0, 2.5, 5, 10, 20, 35, 50, 75 and 100 cm depth) in 1 m deep soil pits at 4 sites represented by two forest-clearcut pairs over a complete annual cycle. We examined relationships between surface efflux at each site, and soil heat, moisture, and mineral soil CO2 production. Following clearcut harvesting we observed increases in temperature through depth (1–2°C annually; often in excess of 4°C in summer and spring), alongside increases in soil moisture (30%). We observed a systematic breakdown in the expected exponential relationship between CO2 production and heat with mineral soil depth, consistent with an increase in the role moisture plays in constraining CO2 production. These findings should be considered in efforts to model and characterize mineral soil organic matter decomposition in harvested forest soils. PMID:26263510

  16. Accumulation of Giant Planet Atmospheres Around 5 -- 10 M⊕ Cores

    NASA Astrophysics Data System (ADS)

    Hubickyj, O.; Bodenheimer, P.; Lissauer, J. J.

    2004-12-01

    Observations of protoplanetary disks imply that gas giant planets form very quickly (≤ 10 Myr). Recent interior models of Jupiter suggest smaller core masses (0 -- 10 M⊕ ) than had been previously predicted (10 to 30 M⊕ ). We have computed evolutionary simulations of Jupiter based on the core accretion model of gas giant planet formation where we vary the grain opacity and the planetesimal surface density of the solar density of the solar nebula. We also explore the implications of halting the solid accretion at selected core mass values during the protoplanet's growth, thus simulating the presence of a competing embryo. The core accretion model states that a solid core is formed from the accretion of planetesimals in the solar nebular followed by the capture of a massive envelope from the solar nebula gas. Our simulations based on this model (Pollack et al. 1996) have been successful in explaining many features of the giant planets. Our most recent results (Hubickyj et al. 2004) demonstrate that decreasing the grain opacity reduces the formation time by more than half of that for models computed with full interstellar grain opacity values. In fact, it is the reduction of the grain opacity in the upper portion of the envelope with T < 500 K that governs the lowering of the formation time. Decreasing the surface density of the planetesimals lowers the final core mass of the protoplanet but increases the formation timescale. Finally, a core mass cutoff results in the reduction of the time needed for a protoplanet to evolve to the stage of runaway gas accretion provided the cutoff mass is not too small. Our models show that with reasonable parameters it is possible to form Jupiter by means of the core accretion process in 3 Myr or less. \\ref Hubickyj, O., P. Bodenheimer, & J. J. Lissauer 2004. Accumulation of giant planet atmospheres around 5 -- 10 M⊕ cores. In preparation. \\ref Pollack J. B., O. Hubickyj, P. Bodenheimer, J. J. Lissauer, M. Podolak, and Y

  17. Persisting effects of armored military maneuvers on some soils of the Mojave Desert

    USGS Publications Warehouse

    Prose, D.V.

    1985-01-01

    Soil compaction and substrate modification produced during large-scale armored military maneuvers in the early 1940s were examined in 1981 at seven sites in California's eastern Mojave Desert Recording penetrometer measurements show that tracks left by a single pass of an M3 "medium" tank have average soil resistance values that are 50% greater than those of the surrounding untracked soil in the upper 20 cm At one site, measurements made along short segments of track that have been visually eliminated by erosion and deposition processes show a 73% increase in penetrometer resistance over adjacent, undisturbed soils Dirt roadways at three former base camp locations could not be penetrated below 5-10 cm because of extreme compaction Soil bulk density was not as sensitive an indicator of soil compaction as was penetrometer resistance Density values in the upper 10 cm of soil are not significantly different between tank tracks and undisturbed soils at most sites, and roadways at two base camps show an average increase in bulk density of only 12% over adjacent soils. Trench excavations across tank tracks show that physical modifications of the substrate can extend vertically beneath a track to a depth of 25 cm and outward from a track's edge to 50 cm These soil disturbances are probably major factors that encourage accelerated soil erosion throughout the manuever area and also retard or prevent the return of vegetation to pre-disturbance conditions ?? 1985 Springer-Verlag New York Inc.

  18. Global distribution of plant-extractable water capacity of soil

    USGS Publications Warehouse

    Dunne, K.A.; Willmott, C.J.

    1996-01-01

    Plant-extractable water capacity of soil is the amount of water that can be extracted from the soil to fulfill evapotranspiration demands. It is often assumed to be spatially invariant in large-scale computations of the soil-water balance. Empirical evidence, however, suggests that this assumption is incorrect. In this paper, we estimate the global distribution of the plant-extractable water capacity of soil. A representative soil profile, characterized by horizon (layer) particle size data and thickness, was created for each soil unit mapped by FAO (Food and Agriculture Organization of the United Nations)/Unesco. Soil organic matter was estimated empirically from climate data. Plant rooting depths and ground coverages were obtained from a vegetation characteristic data set. At each 0.5?? ?? 0.5?? grid cell where vegetation is present, unit available water capacity (cm water per cm soil) was estimated from the sand, clay, and organic content of each profile horizon, and integrated over horizon thickness. Summation of the integrated values over the lesser of profile depth and root depth produced an estimate of the plant-extractable water capacity of soil. The global average of the estimated plant-extractable water capacities of soil is 8??6 cm (Greenland, Antarctica and bare soil areas excluded). Estimates are less than 5, 10 and 15 cm - over approximately 30, 60, and 89 per cent of the area, respectively. Estimates reflect the combined effects of soil texture, soil organic content, and plant root depth or profile depth. The most influential and uncertain parameter is the depth over which the plant-extractable water capacity of soil is computed, which is usually limited by root depth. Soil texture exerts a lesser, but still substantial, influence. Organic content, except where concentrations are very high, has relatively little effect.

  19. Retrieving soil water contents from soil temperature measurements by using linear regression

    NASA Astrophysics Data System (ADS)

    Xu, Qin; Zhou, Binbin

    2003-11-01

    A simple linear regression method is developed to retrieve daily averaged soil water content from diurnal variations of soil temperature measured at three or more depths. The method is applied to Oklahoma Mesonet soil temperature data collected at the depths of 5, 10, and 30 cm during 11 20 June 1995. The retrieved bulk soil water contents are compared with direct measurements for one pair of nearly collocated Mesonet and ARM stations and also compared with the retrievals of a previous method at 14 enhanced Oklahoma Mesonet stations. The results show that the current method gives more persistent retrievals than the previous method. The method is also applied to Oklahoma Mesonet soil temperature data collected at the depths of 5, 25, 60, and 75 cm from the Norman site during 20 30 July 1998 and 1 31 July 2000. The retrieved soil water contents are verified by collocated soil water content measurements with rms differences smaller than the soil water observation error (0.05 m3 m-3). The retrievals are found to be moderately sensitive to random errors (±0.1 K) in the soil temperature observations and errors in the soil type specifications.

  20. THE METALLICITY OF THE CM DRACONIS SYSTEM

    SciTech Connect

    Terrien, Ryan C.; Fleming, Scott W.; Mahadevan, Suvrath; Deshpande, Rohit; Bender, Chad F.; Ramsey, Lawrence W.; Feiden, Gregory A.

    2012-11-20

    The CM Draconis system comprises two eclipsing mid-M dwarfs of nearly equal mass in a 1.27 day orbit. This well-studied eclipsing binary has often been used for benchmark tests of stellar models, since its components are among the lowest mass stars with well-measured masses and radii ({approx}< 1% relative precision). However, as with many other low-mass stars, non-magnetic models have been unable to match the observed radii and effective temperatures for CM Dra at the 5%-10% level. To date, the uncertain metallicity of the system has complicated comparison of theoretical isochrones with observations. In this Letter, we use data from the SpeX instrument on the NASA Infrared Telescope Facility to measure the metallicity of the system during primary and secondary eclipses, as well as out of eclipse, based on an empirical metallicity calibration in the H and K near-infrared (NIR) bands. We derive an [Fe/H] = -0.30 {+-} 0.12 that is consistent across all orbital phases. The determination of [Fe/H] for this system constrains a key dimension of parameter space when attempting to reconcile model isochrone predictions and observations.

  1. Soil Organic Carbon Residence Time in Japanese Temperate Forest: Insight From Radiocarbon Analysis of Density Fractionated Soil

    NASA Astrophysics Data System (ADS)

    Kondo, M.; Uchida, M.; Wagai, R.; Suzuki, M.; Shibata, Y.

    2008-12-01

    Soil organic matter is an important carbon reservoir managing CO2 concentration in the atmosphere. However, the mechanism of soil carbon stabilization is little known. To explore the rate of C cycling in a temperate forest soil in Japan, at one of AsiaFlux monitoring sites, we sequentially density fractioned at 1.0, 1.6, 1.8, 2.1 and 2.4 g cm-3 on a soil at surface and deep soil layer and estimated turnover time of these SOC fractions. According to previous study in this site (Uchida et al., in prep.), large amount of light fraction (> 2.1 g cm-3) accounted at 35 - 50 cm depth and its age was significantly old as well as heavy fraction (> 2.1 g cm-3), although light fraction seems to consist of labile carbon. In this study, we investigated more better separation for labile fraction from mineral fraction in volcanic ash soil using different densities ranging from 1.6 to 1.8 g cm-3, excluding the most mineral and organio-mineral material from the light fraction. In surface layer (5 - 10 cm), carbon in lighter fractions (less than 1.8 g cm- 3) accounted for 42% of the total SOC their turnover times were shorter (6 - 43 yrs) than that in 1.8 - 2.1 g cm-3 (150 yrs). While, in deep layer (40 - 45 cm), lighter fraction comprised only small portion of total SOC (1%) but its age was significantly old (2038 yrs BP) as well as 1.8 - 2.1 g cm-3 (2335 yrs BP). The results partially support the previous study that volcanish-based Japanese temperate forest soil might be sequestrating carbon as light fractions semi-permanently.

  2. Serpentine Nanotubes in CM Chondrites

    NASA Technical Reports Server (NTRS)

    Zega, Thomas J.; Garvie, Laurence A. J.; Dodony, Istvan; Buseck, Peter R.

    2004-01-01

    The CM chondrites are primitive meteorites that formed during the early solar system. Although they retain much of their original physical character, their matrices and fine-grained rims (FGRs) sustained aqueous alteration early in their histories [1- 3]. Serpentine-group minerals are abundant products of such alteration, and information regarding their structures, compositions, and spatial relationships is important for determining the reactions that produced them and the conditions under which they formed. Our recent work on FGRs and matrices of the CM chondrites has revealed new information on the structures and compositions of serpentine-group minerals [4,5] and has provided insights into the evolution of these primitive meteorites. Here we report on serpentine nanotubes from the Mighei and Murchison CM chondrites [6].

  3. 344 cm x 86 cm low mass vacuum window

    SciTech Connect

    Reimers, R.M.; Porter, J.; Meneghetti, J.; Wilde, S.; Miller, R.

    1983-08-01

    The LBL Heavy Ion Spectrometer System (HISS) superconducting magnet contains a 1 m x 3.45 m x 2 m vacuum tank in its gap. A full aperture thin window was needed to minimize background as the products of nuclear collisions move from upstream targets to downstream detectors. Six windows were built and tested in the development process. The final window's unsupported area is 3m/sup 2/ with a 25 cm inward deflection. The design consists of a .11 mm Nylon/aluminum/polypropylene laminate as a gas seal and .55 mm woven aramid fiber for strength. Total mass is 80 milligrams per cm/sup 2/. Development depended heavily on past experience and testing. Safety considerations are discussed.

  4. Sensing and 3D Mapping of Soil Compaction

    PubMed Central

    Tekin, Yücel; Kul, Basri; Okursoy, Rasim

    2008-01-01

    Soil compaction is an important physical limiting factor for the root growth and plant emergence and is one of the major causes for reduced crop yield worldwide. The objective of this study was to generate 2D/3D soil compaction maps for different depth layers of the soil. To do so, a soil penetrometer was designed, which was mounted on the three-point hitch of an agricultural tractor, consisting of a mechanical system, data acquisition system (DAS), and 2D/3D imaging and analysis software. The system was successfully tested in field conditions, measuring soil penetration resistances as a function of depth from 0 to 40 cm at 1 cm intervals. The software allows user to either tabulate the measured quantities or generate maps as soon as data collection has been terminated. The system may also incorporate GPS data to create geo-referenced soil maps. The software enables the user to graph penetration resistances at a specified coordinate. Alternately, soil compaction maps could be generated using data collected from multiple coordinates. The data could be automatically stratified to determine soil compaction distribution at different layers of 5, 10,.…, 40 cm depths. It was concluded that the system tested in this study could be used to assess the soil compaction at topsoil and the randomly distributed hardpan formations just below the common tillage depths, enabling visualization of spatial variability through the imaging software. PMID:27879888

  5. GNSSProbe, penetrating GNSS signals for measuring soil moisture

    NASA Astrophysics Data System (ADS)

    Martin, Francisco; Navarro, Victor; Reppucci, Antonio; Mollfulleda, Antonio; Balzter, Heiko; Nicolas-Perea, Virginia; Kissick, Lucy

    2016-04-01

    Soil moisture content (SMC) is an essential parameter from both a scientific and economical point of view. On one hand, it is key for the understanding of hydrological. Secondly, it is a most relevant parameter for agricultural activities and water management. Wide research has been done in this field using different sensors, spanning different parts of the measured electromagnetic spectrum, leading thus several methodologies to estimate soil moisture content. However complying with requirements in terms of accuracy and spatial resolution is still a major challenge. A novel approach based on the measurement of GNSS signals penetrating a soil volume is proposed here. This model relates soil moisture content to the measured soil transmissivity, and attenuation coefficient, which are a function of the soil characteristics (i.e soil moisture content, soit type, soil temperature, etc). A preliminary experiment has been performed to demonstrate the validity of this technique, where the signal received by a GNSS-R L1/E1 RHCP antenna buried at 5, 10, and 15 cm below the surface, was compared to the one received by a GNSS-R L1/E1 RHCP antenna with clear sky visibility. Preliminary results show agreement with theoretical results based on transmissivity and with previous campaigns performed where the soil moisture were collected at two different depths (5 and 15 cm). Details related to the GNSS soil moisture modeling, instrument preparation, measurement campaign, data processing and main results will be presented at the conference.

  6. The influence of different soil management practices on auxin herbicide interactions with organic carbon in soil aggregate fractions

    NASA Astrophysics Data System (ADS)

    Schnitzler, Frauke; Haupt, Nadine; Burauel, Peter; Berns, Anne E.

    2010-05-01

    The influence of changing organic carbon contents in soils on the sorption and/or sequestration mechanisms of xenobiotics and their bioavailability are still not understood precisely. The present work discusses the turnover of a crop residue interacting with processes like mobilisation, binding and metabolism of an auxin herbicide in soil. The soil type was a haplic chernozem, available in three crop production regimes (low, normal and high) due to three types of fertilisation (none, mineral and mineral & organic) [1]. Two sets of experiments were conducted with undisturbed soil columns under field-like conditions. In the first set 14C-labelled maize straw was incorporated into the top soil and after three months incubation the herbicide benazolin was applied. In the second set the unlabelled maize straw was incorporated first, then 14C-labelled benazolin was added. Soil layers of 0-5 cm and 5-10 cm were fractionated in according to a soil aggregate fractionation procedure [2]. The content of organic carbon and the distribution of benazolin and its metabolites were detected in the gained soil fractions. In general, the specific organic carbon content and the specific 14C-activity of benazolin and its metabolites increased in the order from sand-sized though silt-sized to clay fraction due to increasing specific surface areas and sorption sites of the mineral particles. The highest sorption capacity of benazolin and its metabolites was detected in the soil layers of 0-5 cm with mineral fertilisation. In the 5-10 cm soil layers the binding capacity increased with increasing crop production. It was shown that more than half of the residual 14C-activity was not extractable. LC-MS/MS analysis of the extracts showed that the major components were benazolin and the relatively non-mobile thiazolin. The amount of benazolin in the extracts increased with increasing crop production, but decreased with increasing soil depth. These results indicate that maize straw amendment

  7. 41 CFR 102-5.10 - What does this part cover?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What does this part cover? 102-5.10 Section 102-5.10 Public Contracts and Property Management Federal Property Management... transport employees between their homes and places of work....

  8. 41 CFR 102-5.10 - What does this part cover?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What does this part cover? 102-5.10 Section 102-5.10 Public Contracts and Property Management Federal Property Management... transport employees between their homes and places of work....

  9. 41 CFR 102-5.10 - What does this part cover?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What does this part cover? 102-5.10 Section 102-5.10 Public Contracts and Property Management Federal Property Management... transport employees between their homes and places of work....

  10. 43 CFR 5.10 - Can I appeal a decision not to issue a permit?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Can I appeal a decision not to issue a permit? 5.10 Section 5.10 Public Lands: Interior Office of the Secretary of the Interior COMMERCIAL FILMING AND SIMILAR PROJECTS AND STILL PHOTOGRAPHY ON CERTAIN AREAS UNDER DEPARTMENT JURISDICTION...

  11. 43 CFR 5.10 - Can I appeal a decision not to issue a permit?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Can I appeal a decision not to issue a permit? 5.10 Section 5.10 Public Lands: Interior Office of the Secretary of the Interior COMMERCIAL FILMING AND SIMILAR PROJECTS AND STILL PHOTOGRAPHY ON CERTAIN AREAS UNDER DEPARTMENT JURISDICTION...

  12. Soil microbial properties under different vegetation types on Mountain Han.

    PubMed

    Wang, Miao; Qu, Laiye; Ma, Keming; Yuan, Xiu

    2013-06-01

    This study investigated the influence of broadleaf and conifer vegetation on soil microbial communities in a distinct vertical distribution belt in Northeast China. Soil samples were taken at 0-5, 5-10 and 10-20 cm depths from four vegetation types at different altitudes, which were characterized by poplar (Populus davidiana) (1250-1300 m), poplar (P. davidiana) mixed with birch (Betula platyphylla) (1370-1550 m), birch (B. platyphylla) (1550-1720 m), and larch (Larix principis-rupprechtii) (1840-1890 m). Microbial biomass and community structure were determined using the fumigation-extraction method and phospholipid fatty acid (PLFA) analysis, and soil fungal community level physiological profiles (CLPP) were characterized using Biolog FF Microplates. It was found that soil properties, especially soil organic carbon and water content, contributed significantly to the variations in soil microbes. With increasing soil depth, the soil microbial biomass, fungal biomass, and fungal catabolic ability diminished; however, the ratio of fungi to bacteria increased. The fungal ratio was higher under larch forests compared to that under poplar, birch, and their mixed forests, although the soil microbial biomass was lower. The direct contribution of vegetation types to the soil microbial community variation was 12%. If the indirect contribution through soil organic carbon was included, variations in the vegetation type had substantial influences on soil microbial composition and diversity.

  13. Carbon Dynamics of Surface Soil after Land Use Change in a Seasonal Tropical Forest in North-eastern Thailand: Application of a Stable Carbon Isotope Mixing Model

    NASA Astrophysics Data System (ADS)

    Sakai, M.; Visaratana, T.; Sukchan, S.; Thaingam, R.; Okada, N.

    2015-12-01

    Globally, soil is vital to the mitigation of climate change. In tropical forests, the soil contains an estimated 216 Gt of carbon, equivalent to half of the total carbon in the tropical forest ecosystem. Little is known regarding changes in soil carbon following land use changes in tropical regions. We examined the differences in carbon dynamics in a chronosequence of Acacia mangium plantations established on grasslands following the deforestation of natural forest in north-eastern Thailand. The study site was located at the Sakaerat Silvicultural Research Station (14º28'06.1″N, 101º54'15.0″E; altitude 420 m asl), Nakhon Rachasima Province, north-eastern Thailand. Mean annual air temperature was 26ºC, and annual precipitation was 1,100 mm, with a dry (November-April) and wet (May-October) season. Soil carbon and the stable carbon isotope ratio (d13C) in the surface soil (0-5 and 5-10 cm deep) were determined at 12 and 24 years following establishment of A. mangium plantations, as well as for secondary forest and grassland. Using the stable carbon isotope mixing model based on differences in the natural abundance of d13C in plants with C3 (i.e., trees) and C4 (i.e., grasses) pathways for CO2 fixation, the amount of soil carbon derived from the plantations, forest, and grassland was calculated. Soil carbon at a depth of 10 cm was higher in the secondary forest (1,929 gCm-2) and grassland (2,508 gCm-2) than in the plantations (1,703 gCm-2 at 12 years, 1,673gCm-2 at 24 years). Soil carbon derived from A. mangium was 67% (0-5 cm deep) and 62% (5-10 cm deep) of total soil carbon at 12 years, and was 100% (0-5 cm deep) and 90% (5-10 cm deep) at 24 years in the plantations. We found that most of the soil carbon at a depth of 0-5 cm in the young plantation changed from grass-derived to tree-derived carbon within a relatively short period of 24 years. Because of changes in soil carbon, exotic, fast growing plantations like those of A. mangium are needed to quickly

  14. Bacterial Community Structure after a 17-year Reciprocal Soil Transplant Simulating Climate Change with Elevation

    NASA Astrophysics Data System (ADS)

    Bailey, V. L.; McCue, L.; Fansler, S.; Bond-Lamberty, B. P.; Hess, N. J.; Smith, J. L.

    2013-12-01

    In 1994, a reciprocal soil transplant experiment was initiated between two elevations (310 m, warmer and drier, and 844 m, cooler and wetter) on Rattlesnake Mountain in southeastern Washington, USA. In March 2012 we resampled the original transplanted soils, control cores transplanted in situ, and native soils from each elevation, to study longer-term changes in microbial community composition, soil C and N dynamics, and soil physical structure. Our studies of these soils suggested that climate change has significantly altered the C dynamics in these soils, and that even after 17 years of adaptation, the soil microbial communities have not recovered to a condition similar to their new environment. To more thoroughly define the response of the native bacterial communities to this long-term transplant, we sequenced the V4 region of the 16S genes for all the treatments in this study, broken into 0-5, 5-10, and 10-15-cm depth intervals. Non-metric multidimensional scaling analyses of the sequence data reveal a strong surface influence, with some separation of the 5-10 and 10-15-cm depths. We are investigating these data, and companion metagenomic data, for signatures of the bacterial community's response to simulated climate change.

  15. Effects of stubble and mulching on soil erosion by wind in semi-arid China.

    PubMed

    Cong, Peifei; Yin, Guanghua; Gu, Jian

    2016-07-18

    Soil erosion is a growing challenge for agricultural production in Northern China. To explore the effect of variation in stubble height and mulching biomass on soil erosion caused by wind, we conducted a field experiment using a quadratic rotation combination design. Results showed that the quantity of straw mulch was the dominant factor affecting soil erosion, and stubble height was of secondary importance. The soil water content in stubble and straw mulching treatments was higher than in a control treatment at 0-20 cm soil, and the tendency in the amount of soil water content was opposite to the amount of wind erosion (r = -0.882, n = 10, p < 0.01). The change in soil water content observed in the stubble and mulch treatments at the 15-20 cm depth was higher than the change from 0-5 cm to 5-10cm. Combined, the influence of a stubble height of 34 cm and mulch quantity of 4260 kg·ha(-1) lowered the amount of erosion to 0.42 t·ha(-1), and increased the corn yield to 11900 kg·ha(-1). We determined that those were the most appropriate levels of stubble height and straw mulch for crop fields in the semi-arid regions of Northern China.

  16. Changes in soil carbon, nitrogen, and phosphorus due to land-use changes in Brazil

    NASA Astrophysics Data System (ADS)

    Groppo, J. D.; Lins, S. R. M.; Camargo, P. B.; Assad, E. D.; Pinto, H. S.; Martins, S. C.; Salgado, P. R.; Evangelista, B.; Vasconcellos, E.; Sano, E. E.; Pavão, E.; Luna, R.; Martinelli, L. A.

    2015-08-01

    In this paper, soil carbon, nitrogen and phosphorus concentrations and stocks were investigated in agricultural and natural areas in 17 plot-level paired sites and in a regional survey encompassing more than 100 pasture soils In the paired sites, elemental soil concentrations and stocks were determined in native vegetation (forests and savannas), pastures and crop-livestock systems (CPSs). Nutrient stocks were calculated for the soil depth intervals 0-10, 0-30, and 0-60 cm for the paired sites and 0-10, and 0-30 cm for the pasture regional survey by sum stocks obtained in each sampling intervals (0-5, 5-10, 10-20, 20-30, 30-40, 40-60 cm). Overall, there were significant differences in soil element concentrations and ratios between different land uses, especially in the surface soil layers. Carbon and nitrogen contents were lower, while phosphorus contents were higher in the pasture and CPS soils than in native vegetation soils. Additionally, soil stoichiometry has changed with changes in land use. The soil C : N ratio was lower in the native vegetation than in the pasture and CPS soils, and the carbon and nitrogen to available phosphorus ratio (PME) decreased from the native vegetation to the pasture to the CPS soils. In the plot-level paired sites, the soil nitrogen stocks were lower in all depth intervals in pasture and in the CPS soils when compared with the native vegetation soils. On the other hand, the soil phosphorus stocks were higher in all depth intervals in agricultural soils when compared with the native vegetation soils. For the regional pasture survey, soil nitrogen and phosphorus stocks were lower in all soil intervals in pasture soils than in native vegetation soils. The nitrogen loss with cultivation observed here is in line with other studies and it seems to be a combination of decreasing organic matter inputs, in cases where crops replaced native forests, with an increase in soil organic matter decomposition that leads to a decrease in the long

  17. Effects of long-term use of different farming systems on some physical, chemical and microbiological parameters of soil quality

    NASA Astrophysics Data System (ADS)

    Gajda, Anna M.; Czyż, Ewa A.; Dexter, Anthony R.

    2016-04-01

    The aim of this study was to compare the effects of different farming systems (organic, integrated, conventional and monoculture) on some soil properties as: bulk density, contents of readily-dispersible clay, organic matter and particulate organic matter, and enzymatic activity measured in terms of the intensity of fluorescein diacetate hydrolysis. Soil under permanent grass was used as a control. The study was conducted on the 20 years lasting field experiment. Samples of Haplic Luvisol soil were collected twice a year on fields under winter wheat from the layers of 0-5, 5-10, 15-20, and 30-35 cm. Within arable soils the soil under organic farming contained the greatest amount of organic matter, which influenced strongly the readily-dispersible clay content, especially in the layer of 5-20 cm. The readily-dispersible clay content in soil under organic farming was 3 times lower, as compared to the conventional and monoculture farming. The highest contents of particulate organic matter 6.2 and 3.5 mg g-1 air dry soil, on average were measured in the 0-5 cm layer of control soil and soil under organic farming, respectively. Also, soil under organic farming and control soil from the depth of 0-5 cm showed 2-2.5 times greater activity of microorganisms in fluorescein diacetate hydrolysis than soil under conventional and monoculture farming. Increase of concentration of organic matter in soil under organic farming decreased soil bulk density. Statistical analysis showed significant correlations between studied parameters of soil quality and confirmed their effectiveness as indicators of disturbances in soil environment.

  18. [Impact of tillage practices on microbial biomass carbon in top layer of black soils].

    PubMed

    Sun, Bing-jie; Jia, Shu-xia; Zhang, Xiao-ping; Liang, Ai-zhen; Chen, Xue-wen; Zhang, Shi-xiu; Liu, Si-yi; Chen, Sheng-long

    2015-01-01

    A study was conducted on a long-term (13 years) tillage and rotation experiment on black soil in northeast China to determine the effects of tillage, time and soil depth on soil microbial biomass carbon (MBC). Tillage systems included no tillage (NT), ridge tillage (RT) and mould-board plough (MP). Soil sampling was done at 0-5, 5-10 and 10-20 cm depths in June, August and September, 2013, and April, 2014 in the corn phase of corn-soybean rotation plots. MBC content was measured by the chloroform fumigation extraction (CFE) method. The results showed that the MBC content varied with sampling time and soil depth. Soil MBC content was the lowest in April for all three tillage systems, and was highest in June for MP, and highest in August for NT and RT. At each sampling time, tillage system had a significant effect on soil MBC content only in the top 0-5 cm layer. The MBC content showed obvious stratification under NT and RT with a higher MBC content in the top 0-5 cm layer than under MP. The stratification ratios under NT and RT were greatest in September when they were respectively 67.8% and 95.5% greater than under MP. Our results showed that soil MBC contents were greatly affected by the time and soil depth, and were more apparently accumulated in the top layer under NT and RT.

  19. [Soil soluble organic nitrogen content in different forest stands in Wanmulin Nature Reserve].

    PubMed

    Zhang, Biao; Gao, Ren; Yang, Yu-sheng; Yang, Zhi-jie; Chen, Guang-shui

    2010-07-01

    An investigation was made on the soil soluble organic nitrogen (SON) in two natural forests Altingia gracilies (ALG) and Castanopsis carlesii (CAC) and an adjacent 35-year-old Cunninghamia lanceolata (CUL) plantation in Wanmulin Nature Reserve in Jianou, Fujian Province. Among the three forest stands, ALG had a significantly higher content of soil SON, being 95.3, 78.3, and 72.5 mg x kg(-1) in 0-5 cm, 5-10 cm, and 10-20 cm soil layers, respectively (P<0.05), while CAC and CUL had lesser differences in their soil SON content, which was 74.5, 70.1, and 65.6 mg x kg(-1) in the three soil layers for CAC, and 78.6, 68.9, and 69.1 mg x kg(-1) in the three soil layers for CUL, respectively. The proportion of SON to total soluble nitrogen (TSN) in 0-20 cm soil layer was 79.17-80.78% for CAC, 68.64%-74.51% for CUL, and 59.97%-69.66% for ALG. With increasing soil depth, the proportion of soil SON to soil TSN and total nitrogen (TN) for the three forest stands all increased. Soil SON content had a significant positive correlation with soil organic carbon (r=0.982, P<0.01), and also, had definite correlations with soil TSN, TN, NH4(+)-N, and NO3(-)-N. It also correlated with the factors such as forest type, topography, altitude, and tree age.

  20. Early fluid resuscitation with hyperoncotic hydroxyethyl starch 200/0.5 (10%) in severe burn injury

    PubMed Central

    2010-01-01

    Introduction Despite large experience in the management of severe burn injury, there are still controversies regarding the best type of fluid resuscitation, especially during the first 24 hours after the trauma. Therefore, our study addressed the question whether hyperoncotic hydroxyethyl starch (HES) 200/0.5 (10%) administered in combination with crystalloids within the first 24 hours after injury is as effective as 'crystalloids only' in severe burn injury patients. Methods 30 consecutive patients were enrolled to this prospective interventional open label study and assigned either to a traditional 'crystalloids only' or to a 'HES 200/0.5 (10%)' volume resuscitation protocol. Total amount of fluid administration, complications such as pulmonary failure, abdominal compartment syndrome, sepsis, renal failure and overall mortality were assessed. Cox proportional hazard regression analysis was performed for binary outcomes and adjustment for potential confounders was done in the multivariate regression models. For continuous outcome parameters multiple linear regression analysis was used. Results Group differences between patients receiving crystalloids only or HES 200/0.5 (10%) were not statistically significant. However, a large effect towards increased overall mortality (adjusted hazard ratio 7.12; P = 0.16) in the HES 200/0.5 (10%) group as compared to the crystalloids only group (43.8% versus 14.3%) was present. Similarly, the incidence of renal failure was 25.0% in the HES 200/0.5 (10%) group versus 7.1% in the crystalloid only group (adjusted hazard ratio 6.16; P = 0.42). Conclusions This small study indicates that the application of hyperoncotic HES 200/0.5 (10%) within the first 24 hours after severe burn injury may be associated with fatal outcome and should therefore be used with caution. Trial registration NCT01120730. PMID:20584291

  1. The mobility of thiobencarb and fipronil in two flooded rice-growing soils.

    PubMed

    Doran, Gregory; Eberbach, Philip; Helliwell, Stuart

    2008-08-01

    The mobility of the rice pesticides thiobencarb (S-[(4-chlorophenyl) methyl] diethylcarbamothioate) and fipronil ([5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]pyrazole) were investigated in the glasshouse under flooded conditions using two Australian rice-growing soils. When using leakage rates of 10 mm day(-1), less than 20% of applied thiobencarb and fipronil remained in the water column after 10 days due to rapid transfer to the soil phase. Up to 70% and 65% of the applied thiobencarb and fipronil, respectively, were recovered from the 0-1 cm layer of soils. Only 5-7% of each pesticide was recovered from the 1-2 cm layer, and less than 2% was recovered from each 1 cm layer in the 2-10 cm region of the soils. Analysis of the water leaking from the base of the soil cores showed between 5-10% of the applied thiobencarb and between 10-20% of the applied fipronil leaching from the soil cores. The high levels of pesticide in the effluent was attributed to preferential flow of pesticide-laden water via soil macropores resulting from the wetting and drying process, worm holes and root channels.

  2. [Effects of precipitation variation on growing seasonal dynamics of soil microbial biomass in broadleaved Korean pine mixed forest].

    PubMed

    Wang, Ning; Wang, Mei-ju; Li, Shi-lan; Wang, Nan-nan; Feng, Fu-juan; Han, Shi-jie

    2015-05-01

    Broadleaved Korean pine mixed forest is the zonal climax vegetation in Northeast China and it plays a significant role in maintaining the ecological security. Changbai Mountains is a suitable region to study the positive and negative feedback mechanisms of temperate forest for precipitation variation. This study analyzed responses of soil microbial biomass carbon (SMBC) and microbial biomass nitrogen (SMBN) to precipitation variation (± 30%) in original broadleaved Korean pine mixed forest of Changbai Mountains. The results showed that, during the growing seasons (from May to September), the averages of SMBC and SMBN were 879.09 and 100.03 mg · kg(-1), respectively. Moreover, both of these two parameters gradually decreased with the soil depth. The contents of SMBC and SMBN all increased with the increasing precipitation, and the changes of SMBC and SMBN in the 0-5 cm soil layer were stronger than in the 5-10 cm soil layer. The value of SMBC/SMBN declined with the increase of precipitation. The precipitation variation significantly influenced the means of SMBC and SMBN. Compared with precipitation reduction, precipitation enhancement affected the indices much significantly. Both SMBC and SMBN showed similar seasonal patterns, which were the lowest in May, and after that, they increased and then decreased and increased again, showing 1-2 peaks in the growing season. However, the value and occurring time of the peaks varied with the precipitation and soil layer, and the seasonal variations of SMBC and SMBN in the 0-5 cm soil layer were higher than in the 5-10 cm soil layer. SMBC and SMBN had significant positive correlation with organic matter and total nitrogen content. The variances of soil physical and chemical properties caused by precipitation variation were closely related with the difference in spatial-temporal patterns of the soil microbial biomass in the forest. In conclusion, the precipitation variations could cause the change of the soil microbial

  3. 16 CFR 5.10 - Cross-reference to executive branch-wide regulations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... RULES OF PRACTICE STANDARDS OF CONDUCT Financial Disclosure Requirements § 5.10 Cross-reference to... the Federal Trade Commission are subject to and should refer to the executive branch-wide financial disclosure regulations at 5 CFR part 2634, and to the procedures for filing and review of...

  4. 17 CFR 5.10 - Risk assessment recordkeeping requirements for retail foreign exchange dealers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 1 2012-04-01 2012-04-01 false Risk assessment recordkeeping... COMMODITY FUTURES TRADING COMMISSION OFF-EXCHANGE FOREIGN CURRENCY TRANSACTIONS § 5.10 Risk assessment... to § 240.17h-1T of this title, or such other risk assessment regulations as the Securities...

  5. 17 CFR 5.10 - Risk assessment recordkeeping requirements for retail foreign exchange dealers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 1 2014-04-01 2014-04-01 false Risk assessment recordkeeping... COMMODITY FUTURES TRADING COMMISSION OFF-EXCHANGE FOREIGN CURRENCY TRANSACTIONS § 5.10 Risk assessment... to § 240.17h-1T of this title, or such other risk assessment regulations as the Securities...

  6. 17 CFR 5.10 - Risk assessment recordkeeping requirements for retail foreign exchange dealers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 1 2011-04-01 2011-04-01 false Risk assessment recordkeeping... COMMODITY FUTURES TRADING COMMISSION OFF-EXCHANGE FOREIGN CURRENCY TRANSACTIONS § 5.10 Risk assessment... to § 240.17h-1T of this title, or such other risk assessment regulations as the Securities...

  7. 17 CFR 5.10 - Risk assessment recordkeeping requirements for retail foreign exchange dealers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 1 2013-04-01 2013-04-01 false Risk assessment recordkeeping... COMMODITY FUTURES TRADING COMMISSION OFF-EXCHANGE FOREIGN CURRENCY TRANSACTIONS § 5.10 Risk assessment... to § 240.17h-1T of this title, or such other risk assessment regulations as the Securities...

  8. Teaching for Creativity by Science Teachers in Grades 5-10

    ERIC Educational Resources Information Center

    Al-Abdali, Nasser S.; Al-Balushi, Sulaiman M.

    2016-01-01

    This classroom observation study explored how science teachers (N = 22) teach for creativity in grades 5-10 in Oman. We designed an observation form with 4 main categories that targeted the instructional practices related to teaching for creativity: questioning strategy, teacher's responses to students' ideas, classroom activities to support…

  9. Evaluation of soil moisture sensors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the measurement accuracy and repeatability of the EC-5 and 5TM soil volumetric water content (SVWC) sensors, MPS-2 and 200SS soil water potential (SWP) sensors, and 200TS soil temperature sensor. Six 183cm x 183cm x 71cm wooden compartments were built inside a greenhouse, and e...

  10. Soil temperature regime and vulnerability due to extreme soil temperatures in Croatia

    NASA Astrophysics Data System (ADS)

    Sviličić, Petra; Vučetić, Višnja; Filić, Suzana; Smolić, Ante

    2016-10-01

    Soil temperature is an important factor within the climate system. Changes of trends in soil temperature and analysis of vulnerability due to heat stress can provide useful information on climate change. In this paper, the soil temperature regime was analyzed on seasonal and annual scales at depths of 2, 5, 10, 20, 30, and 50 cm at 26 sites in Croatia. Trends of maximal, mean, and minimal soil temperatures were analyzed in the periods 1961-2010 and 1981-2010. Duration of extreme soil temperatures and vulnerability due to high or low soil temperatures in the recent standard period 1981-2010 was compared with the reference climate period 1961-1990. The results show a general warming in all seasons and depths for maximal and mean temperatures in both observed periods, while only at some locations for minimal soil temperature. Warming is more pronounced in the eastern and coastal parts of Croatia in the surface layers, especially in the spring and summer season in the second period. Significant trends of maximal, minimal, and mean soil temperature in both observed periods range from 2.3 to 6.6 °C/decade, from -1.0 to 1.3 °C/decade, and from 0.1 to 2.5 °C/decade, respectively. The highest vulnerability due to heat stress at 35 °C is noted in the upper soil layers of the coastal area in both observed periods. The mountainous and northwestern parts of Croatia at surface soil layers are the most vulnerable due to low soil temperature below 0 °C. Vulnerability due to high or low soil temperature decreases with depth.

  11. Influence of soil moisture on soil respiration

    NASA Astrophysics Data System (ADS)

    Fer, Miroslav; Kodesova, Radka; Nikodem, Antonin; Klement, Ales; Jelenova, Klara

    2015-04-01

    The aim of this work was to describe an impact of soil moisture on soil respiration. Study was performed on soil samples from morphologically diverse study site in loess region of Southern Moravia, Czech Republic. The original soil type is Haplic Chernozem, which was due to erosion changed into Regosol (steep parts) and Colluvial soil (base slope and the tributary valley). Soil samples were collected from topsoils at 5 points of the selected elevation transect and also from the parent material (loess). Grab soil samples, undisturbed soil samples (small - 100 cm3, and large - 713 cm3) and undisturbed soil blocks were taken. Basic soil properties were determined on grab soil samples. Small undisturbed soil samples were used to determine the soil water retention curves and the hydraulic conductivity functions using the multiple outflow tests in Tempe cells and a numerical inversion with HYDRUS 1-D. During experiments performed in greenhouse dry large undisturbed soil samples were wetted from below using a kaolin tank and cumulative water inflow due to capillary rise was measured. Simultaneously net CO2 exchange rate and net H2O exchange rate were measured using LCi-SD portable photosynthesis system with Soil Respiration Chamber. Numerical inversion of the measured cumulative capillary rise data using the HYDRUS-1D program was applied to modify selected soil hydraulic parameters for particular conditions and to simulate actual soil water distribution within each soil column in selected times. Undisturbed soil blocks were used to prepare thin soil sections to study soil-pore structure. Results for all soil samples showed that at the beginning of soil samples wetting the CO2 emission increased because of improving condition for microbes' activity. The maximum values were reached for soil column average soil water content between 0.10 and 0.15 cm3/cm3. Next CO2 emission decreased since the pore system starts filling by water (i.e. aggravated conditions for microbes

  12. Gas-Phase Oxidation of Cm+ and Cm2+ -- Thermodynamics of neutral and ionized CmO

    SciTech Connect

    Gibson, John K; Haire, Richard G.; Santos, Marta; Pires de Matos, Antonio; Marcalo, Joaquim

    2008-12-08

    Fourier transform ion cyclotron resonance mass spectrometry was employed to study the products and kinetics of gas-phase reactions of Cm+ and Cm2+; parallel studies were carried out with La+/2+, Gd+/2+ and Lu+/2+. Reactions with oxygen-donor molecules provided estimates for the bond dissociation energies, D[M+-O](M = Cm, Gd, Lu). The first ionization energy, IE[CmO], was obtained from the reactivity of CmO+ with dienes, and the second ionization energies, IE[MO+](M = Cm, La, Gd, Lu), from the rates of electron-transfer reactions from neutrals to the MO2+ ions. The following thermodynamic quantities for curium oxide molecules were obtained: IE[CmO]= 6.4+-0.2 eV; IE[CmO+]= 15.8+-0.4 eV; D[Cm-O]= 710+-45 kJ mol-1; D[Cm+-O]= 670+-40 kJ mol-1; and D[Cm2+-O]= 342+-55 kJ mol-1. Estimates for the M2+-O bond energies for M = Cm, La, Gd and Lu are all intermediate between D[N2-O]and D[OC-O]--i.e., 167 kJ mol-1< D[M2+-O]< 532 kJ mol-1 -- such that the four MO2+ ions fulfill the thermodynamic requirement for catalytic O-atom transport from N2O to CO. It was demonstrated that the kinetics are also favorable and that the CmO2+, LaO2+, GdO2+ and LuO2+ dipositive ions each catalyze the gas-phase oxidation of CO to CO2 by N2O. The CmO2+ ion appeared during the reaction of Cm+ with O2 when the intermediate, CmO+, was not collisionally cooled -- although its formation is kinetically and/or thermodynamically unfavorable, CmO2+ is a stable species.

  13. Depth distribution of glyphosate and AMPA under diferent tillage system and soils in long-term experiments

    NASA Astrophysics Data System (ADS)

    Aparicio, Virginia; Costa, Jose Luis; De Geronimo, Eduardo

    2016-04-01

    Glyphosate (N-(phosphonomethyl glycine) is a post-emergence, non-selective, foliar herbicide. Around 200 million liters of this herbicide are applied every year in Argentina, where the main agricultural practice is no-till (NT), accounting for 78 % of the cultivated land. In this work, we studied the depth distribution of glyphosate in long-term experiments (more than 15 years) at different locations under NT and conventional tillage (CT). Samples from 0-2, 2-5, 5-10, 10-15, and 15-20 cm depth with four replication and two treatments NT CT at three locations: Balcarce (BA) a loam soil, Bordenave (BO) a sandy loam soil y Marcos Juarez a silty loam soil (MJ). The glyphosate concentration in the first 2 cm of soil was, on the average, 70% greater than in the next 2-5 cm. The mass of glyphosate in CT was higher at 2 to 10 cm depth. The depth concentration of AMPA follows the same trend than glyphosate, although its average concentration at 0-2 cm depth is 28 times higher than the glyphosate concentration at 2-5 cm (glyphosate = 147 ppb and AMPA = 4100 ppb). Beside the AMPA concentration at 0-2 cm depth is greater in NT than in CT, the mass of AMPA is higher in CT only for the Balcarce location. To our knowledge, this study is the first dealing with the depth distribution of glyphosate concentration in soils under different soil managements. In the present study, it was demonstrated that glyphosate and AMPA are present in soils under agricultural activity with maximum concentration in the first two cm of soil and the AMPA concentration at this depth is greater in NT than in CT.

  14. Determination of the 243 Cm/244 Cm ratio alpha spectrometry and spectral deconvolution in environmental samples exposed to discharges from the nuclear fuel cycle.

    PubMed

    Mitchell, P I; Holm, E; León Vintró, L; Condren, O M; Roos, P

    1998-01-01

    The presence of curium nuclides in irradiated nuclear fuel is well known, as is their occurrence in environmental materials exposed to liquid waste discharges from reprocessing plants and to fallout following the Chernobyl accident. Knowledge of the 242 Cm/244 Cm and 243 Cm/244 Cm atom ratios can be a useful tool for characterizing a source-term and assessing the burn-up history of nuclear fuel. Here, a practical technique, based on high-resolution alpha spectrometry and spectral deconvolution, is described by which the 243, 244 Cm multiplet can be resolved at the low activities typical of most environmental samples. The resulting 243 Cm/244 Cm ratio is then used to correct for any interference by 243 Cm in the 242 Cm window. The technique has been applied to the determination of the 243 Cm/244 Cm ratio in samples of seabed sediment collected near the Sellafield outfall, riverine sediment sampled downstream of the Mayak reprocessing plant and soil and lichen from within the Chernobyl exclusion zone. Near Sellafield, the 243 Cm/244 Cm ratio was found to be < 2%, while near Mayak and Chernobyl it was considerably higher, being approximately 6-8%.

  15. Linking hydraulic properties of fire-affected soils to infiltration and water repellency

    USGS Publications Warehouse

    Moody, J.A.; Kinner, D.A.; Ubeda, X.

    2009-01-01

    Heat from wildfires can produce a two-layer system composed of extremely dry soil covered by a layer of ash, which when subjected to rainfall, may produce extreme floods. To understand the soil physics controlling runoff for these initial conditions, we used a small, portable disk infiltrometer to measure two hydraulic properties: (1) near-saturated hydraulic conductivity, Kf and (2) sorptivity, S(??i), as a function of initial soil moisture content, ??i, ranging from extremely dry conditions (??i < 0.02 cm3 cm-3) to near saturation. In the field and in the laboratory replicate measurements were made of ash, reference soils, soils unaffected by fire, and fire-affected soils. Each has a different degrees of water repellency that influences Kf and S(??i). Values of Kf ranged from 4.5 ?? 10-3 to 53 ?? 10-3 cm s-1 for ash; from 0.93 ?? 10-3 to 130 ?? 10-3 cm s-1 for reference soils; and from 0.86 ?? 10-3 to 3.0 ?? 10-3 cm s-1, for soil unaffected by fire, which had the lowest values of Kf. Measurements indicated that S(??i) could be represented by an empirical non-linear function of ??i with a sorptivity maximum of 0.18-0.20 cm s-0.5, between 0.03 and 0.08 cm3 cm-3. This functional form differs from the monotonically decreasing non-linear functions often used to represent S(??i) for rainfall-runoff modeling. The sorptivity maximum may represent the combined effects of gravity, capillarity, and adsorption in a transitional domain corresponding to extremely dry soil, and moreover, it may explain the observed non-linear behavior, and the critical soil-moisture threshold of water repellent soils. Laboratory measurements of Kf and S(??i) are the first for ash and fire-affected soil, but additional measurements are needed of these hydraulic properties for in situ fire-affected soils. They provide insight into water repellency behavior and infiltration under extremely dry conditions. Most importantly, they indicate how existing rainfall-runoff models can be modified to

  16. [Influence of different types of surface on the diversity of soil fauna in Beijing Olympic Park].

    PubMed

    Song, Ying-shi; Li, Xiao-wen; Li, Feng; Li, Hai-mei

    2015-04-01

    Soil fauna are impacted by urbanization. In order to explore the stress of different surface covers on diversity and community structure of soil fauna, we conducted this experiment in Beijing Olympic Park. In autumn of 2013, we used Baermann and Tullgren methods to study the diversity of soil fauna in the depth of 0-5 cm, 5-10 cm, 10-15 cm under four different land covers i.e. bared field (BF), totally impervious surface (TIS), partly impervious surface (PIS) and grassland (GL). The results showed that the total number of soil fauna in 100 cm3 was in order of GL (210) > PIS (193) > TIS (183) > BF (90), and the number of nematodes accounted for 72.0%-92.8% of the total number. On the vertical level, except for the TIS, the other three types of surface soil fauna had the surface gathered phenomenon. The Shannon diversity index and the Pielou evenness index of BF were lower, but the Simpson dominance index was higher than in the other land covers. The Shannon index and Margalef richness indes of GL were higher than those of the other land covers. The Shannon indexes of TIS and PIS were between the BF and GL. Except for the TIS and GL, the similarity indexes were between 0.4-0.5, indicating moderate non-similar characteristics. The diversity of soil fauna was significantly correlated with temperature, pH and available potassium.

  17. Stratification and Storage of Soil Organic Carbon and Nitrogen as Affected by Tillage Practices in the North China Plain.

    PubMed

    Zhao, Xin; Xue, Jian-Fu; Zhang, Xiang-Qian; Kong, Fan-Lei; Chen, Fu; Lal, Rattan; Zhang, Hai-Lin

    2015-01-01

    Tillage practices can redistribute the soil profiles, and thus affects soil organic carbon (SOC), and its storage. The stratification ratio (SR) can be an indicator of soil quality. This study was conducted to determine tillage effects on the profile distribution of certain soil properties in winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) systems in the North China Plain (NCP). Three tillage treatments, including no till (NT), rotary tillage (RT), and plow tillage (PT), were established in 2001 in Luancheng County, Hebei Province. The concentration, storage, and SR of SOC and soil total nitrogen (TN) were assessed in both the wheat and maize seasons. Compared with RT and PT, the mean SRs for all depth ratios of SOC under NT increased by 7.85% and 30.61% during the maize season, and by 14.67% and 30.91% during the wheat season, respectively. The SR of TN for 0-5:30-50 cm increased by 140%, 161%, and 161% in the maize season, and 266%, 154%, and 122% in the wheat season compared to the SR for 0-5:5-10 cm under NT, RT and PT, respectively. The data indicated that SOC and TN were both concentrated in the surface-soil layers (0-10 cm) under NT but were distributed relatively evenly through the soil profile under PT. Meanwhile, the storage of SOC and TN was higher under NT for the surface soil (0-10 cm) but was higher under PT for the deeper soil (30-50 cm). Furthermore, the storage of SOC and TN was significantly related to SR of SOC and TN along the whole soil profile (P<0.0001). Therefore, SR could be used to explain and indicate the changes in the storage of SOC and TN. Further, NT stratifies SOC and TN, enhances the topsoil SOC storage, and helps to improve SOC sequestration and soil quality.

  18. Soil organic carbon and nitrogen accumulation on coal mine spoils reclaimed with maritime pine (Pinus pinaster Aiton) in Agacli-Istanbul.

    PubMed

    Sever, Hakan; Makineci, Ender

    2009-08-01

    Mining operations on open coal mines in Agacli-Istanbul have resulted in the destruction of vast amounts of land. To rehabilitate these degraded lands, plantations on this area began in 1988. Twelve tree species were planted, however, the most planted tree species was maritime pine (Pinus pinaster Aiton). This study performed on 14 sample plots randomly selected in maritime pine plantations on coal mine soil/spoils in 2005. Soil samples were taken from eight different soil layers (0-1, 1-3, 3-5, 5-10, 10-20, 20-30, 30-40 and 40-50 cm) into the soil profile. On soil samples; fine soil fraction (<2 mm), soil acidity (pH), organic carbon (C(org)) and total nitrogen (N(t)) contents were investigated, and results were compared statistically among soil layers. As a result, 17 years after plantations, total forest floor accumulation determined as 17,973.20 kg ha(-1). Total nitrogen and organic matter amounts of forest floor were 113.90 and 14,640.92 kg ha(-1) respectively. Among soil layers, the highest levels of organic carbon (1.77%) and total nitrogen (0.096%) and the lowest pH value (pH 5.38) were found in 0-1 cm soil layer, and the variation differs significantly among soil layers. Both organic carbon and total nitrogen content decreased, pH values increased from 0-1 to 5-10 cm layer. In conclusion, according to results obtained maritime pine plantations on coal mine spoils; slow accumulation and decomposition of forest floor undergo simultaneously. Depending on these changes organic carbon and total nitrogen contents increased in upper layer of soil/spoil.

  19. PIXE analysis of PM2.5 and PM(2.5-10) for air quality assessment of Islamabad, Pakistan: application of chemometrics for source identification.

    PubMed

    Waheed, Shahida; Jaafar, Muhammad Z; Siddique, Naila; Markwitz, Andreas; Brereton, Richard G

    2012-01-01

    A Gent sampler was used to collect 379 pairs of filters from Nilore, a suburban area of Islamabad city. The study was designed to assess the concentration variations of trace elements in fine and coarse particulate matter due to anthropogenic activities and naturally occurring events. Source identification was performed by applying MATLAB software for principal component analysis (PCA), and cluster analysis (CA). The average fine and coarse particulate masses during the study period were 15.1 ± 11.9 and 37.3 ± 28.0 μg/m(3) respectively which complies with the 24-h air quality limits set by the government of Pakistan. The application of PCA to PM(2.5) data suggests the PM contribution from sources such as soil, automobile exhaust and coal combustion, road dust and wearing of tyres, wood combustion, biomass burning and fertilizers and fungicides whereas for the PM(2.5-10) data shows signatures of suspended soil, automobile exhaust, road dust and wearing of tyres, wood and biomass burning, refuse incineration, Ni smelter, fertilizers and fungicides are obtained. Cluster analysis of PM(2.5) and PM(2.5-10) datasets reveals that there are mainly three contributory pollution sources and these are suspended soil particles, automobile related sources and wood and coal combustion.

  20. Parallel processing: The Cm/sup */ experience

    SciTech Connect

    Siewiorek, D.; Gehringer, E.; Segall, Z.

    1986-01-01

    This book describes the parallel-processing research with CM/sup */ at Carnegie-Mellon University. Cm/sup */ is a tightly coupled 50-processor multiprocessing system that has been in operation since 1977. Two complete operating systems-StarOS and Medusa-are part of its development along with a number of applications.

  1. Soil biochemical properties of grassland ecosystems under anthropogenic emission of nitrogen compounds

    NASA Astrophysics Data System (ADS)

    Kudrevatykh, Irina; Ivashchenko, Kristina; Ananyeva, Nadezhda

    2016-04-01

    Inflow of pollutants in terrestrial ecosystems nowadays increases dramatically, that might be led to disturbance of natural biogeochemical cycles and landscapes structure. Production of nitrogen fertilizers is one of the air pollution sources, namely by nitrogen compounds (NH4+, NO3-, NO2-). Air pollution by nitrogen compounds of terrestrial ecosystems might be affected on soil biochemical properties, which results increasing mineral nitrogen content in soil, changing soil P/N and Al/Ca ratios, and, finally, the deterioration of soil microbial community functioning. The research is focused on the assessment of anthropogenic emission of nitrogen compounds on soil properties of grassland ecosystems in European Russia. Soil samples (Voronic Chernozem Pachic, upper 10 cm mineral layer, totally 10) were taken from grassland ecosystem: near (5-10 m) nitrogen fertilizer factory (NFF), and far from it (20-30 km, served as a control) in Tula region. In soil samples the NH4+ and NO3- (Kudeyarov's photocolorimetric method), P, Ca, Al (X-ray fluorescence method) contents were measured. Soil microbial biomass carbon (Cmic) was analyzed by substrate-induced respiration method. Soil microbial respiration (MR) was assessed by CO2 rate production. Soil microbial metabolic quotient (qCO2) was calculated as MR/Cmic ratio. Near NFF the soil ammonium and nitrate nitrogen contents were a strongly varied, variation coefficient (CV) was 42 and 86This study was supported by Russian Foundation of Basic Research Grant No. 14-04-00098, 15-44-03220, 15-04-00915.

  2. Arsenic contamination in agricultural soils of Bengal deltaic region of West Bengal and its higher assimilation in monsoon rice.

    PubMed

    Shrivastava, Anamika; Barla, Anil; Singh, Surjit; Mandraha, Shivanand; Bose, Sutapa

    2017-02-15

    In the Bengal deltaic region, the shallow groundwater laced with arsenic is used for irrigation frequently and has elevated the soil arsenic in agricultural soil. However, the areas with seasonal flooding reduce arsenic in top layers of the soils. Study shows arsenic accumulation in the deeper soil layers with time in the contaminated agricultural soil (19.40±0.38mg/kg in 0-5cm, 27.17±0.44mg/kg in 5-10cm and 41.24±0.48mg/kg in 10-15cm) in 2013 whereas depletion in 2014 and its buildup in different parts of monsoon rice plant in Nadia, India. Principal Component Analysis and Cluster Analysis were performed, and Enrichment Factor was calculated to identify the sources of arsenic in the soil. Potential Ecological Risk was also calculated to estimate the extent of risk posed by arsenic in soil, along with the potential risk of dietary arsenic exposure. Remarkably, the concentration of arsenic detected in the rice grain showed average value of 1.4mg/kg in 2013 which has increased to 1.6 in 2014, both being above the permissible limit (1mg/kg). These results indicate that monsoon flooding enhances the infiltration of arsenic in the deeper soil layer, which lead to further contamination of shallow groundwater.

  3. Simulation using HYDRUS-2D for Soil Water and Heat Transfer under Drip Irrigation with 95oC Hot Water

    NASA Astrophysics Data System (ADS)

    Ito, Y.; Noborio, K.

    2015-12-01

    In Japan, soil disinfection with hot water has been popular since the use of methyl bromide was restricted in 2005. Decreasing the amount of hot water applied may make farmers reduce the operation cost. To determine the appropriate amount of hot water needed for soil disinfection, HYDRUS-2D was evaluated. A field experiment was conducted and soil water content and soil temperature were measured at 5, 10, 20, 40, 60, 80 and 100 cm deep when 95oC hot water was applied. Irrigation tubing equipped with drippers every 30 cm were laid at the soil surface, z=0 cm. An irrigation rate for each dripper was 0.83 cm min-1 between t=0 and 120 min, and thereafter it was zero. Temperature of irrigation water was 95oC. Total simulation time with HYDRUS-2D was 720 min for a homogeneous soil. A simulating domain was selected as x=60 cm and z=100 cm. A potential evaporation rate was assumed to be 0 cm min-1 because the soil surface was covered with a plastic sheet. The boundary condition at the bottom was free drainage and those of both sides were no-flux conditions. Hydraulic properties and bulk densities measured at each depth were used for simulation. It was assumed that there was no organic matter contained. Soil thermal properties were adopted from previous study and HYDRUS 2D. Simulated temperatures at 5, 10, 20 and 40 cm deep agreed well with those measured although simulated temperatures at 60, 80, and 100 cm deep were overly estimated. Estimates of volumetric water content at 5 cm deep agreed well with measured values. Simulated values at 10 to 100 cm deep were overly estimated by 0.1 to 0.3 (m3 m-3). The deeper the soil became, the more the simulated wetting front lagged behind the measured one. It was speculated that water viscosity estimated smaller at high temperature might attributed to the slower advances of wetting front simulated with HYDRUS 2-D.

  4. Chilled Mirror Dew Point Hygrometer (CM) Handbook

    SciTech Connect

    Ritsche, MT

    2005-01-01

    The CM systems have been developed for the ARM Program to act as a moisture standard traceable to National Institute of Standards and Technology (NIST). There are three CM systems that are each fully portable, self-contained, and require only 110 V AC power. The systems include a CM sensor, air sampling and filtration system, a secondary reference (Rotronic HP043 temperature and relative humidity sensor) to detect system malfunctions, a data acquisition system, and data storage for more than one month of 1-minute data. The CM sensor directly measures dew point temperature at 1 m, air temperature at 2 m, and relative humidity at 2 m. These measurements are intended to represent self-standing data streams that can be used independently or in combinations.

  5. Prediction of soil frost penetration depth in northwest of Iran using air freezing indices

    NASA Astrophysics Data System (ADS)

    Mohammadi, H.; Moghbel, M.; Ranjbar, F.

    2016-11-01

    Information about soil frost penetration depth can be effective in finding appropriate solutions to reduce the agricultural crop damage, transportations, and building facilities. Amongst proper methods to achieve this information are the statistical and empirical models capable of estimating soil frost penetration depth. Therefore, the main objective of this research is to calculate soil frost penetration depth in northwest of Iran during the year 2007-2008 to validate two different models accuracy. To do so, the relationship between air and soil temperature in different depths (5-10-20-30-50-100 cm) at three times of the day (3, 9, and 15 GMT) for 14 weather stations over 7 provinces was analyzed using linear regression. Then, two different air freezing indices (AFIs) including Norwegian and Finn AFI was implemented. Finally, the frost penetration depth was calculated by McKeown method and the accuracy of models determined by actual soil frost penetration depth. The results demonstrated that there is a significant correlation between air and soil depth temperature in all studied stations up to the 30 cm under the surface. Also, according to the results, Norwegian index can be effectively used for determination of soil frost depth penetration and the correlation coefficient between actual and estimated soil frost penetration depth is r = 0.92 while the Finn index overestimates the frost depth in all stations with correlation coefficient r = 0.70.

  6. Conducting Retrospective Ontological Clinical Trials in ICD-9-CM in the Age of ICD-10-CM

    PubMed Central

    Venepalli, Neeta K; Shergill, Ardaman; Dorestani, Parvaneh; Boyd, Andrew D

    2014-01-01

    OBJECTIVE To quantify the impact of International Classification of Disease 10th Revision Clinical Modification (ICD-10-CM) transition in cancer clinical trials by comparing coding accuracy and data discontinuity in backward ICD-10-CM to ICD-9-CM mapping via two tools, and to develop a standard ICD-9-CM and ICD-10-CM bridging methodology for retrospective analyses. BACKGROUND While the transition to ICD-10-CM has been delayed until October 2015, its impact on cancer-related studies utilizing ICD-9-CM diagnoses has been inadequately explored. MATERIALS AND METHODS Three high impact journals with broad national and international readerships were reviewed for cancer-related studies utilizing ICD-9-CM diagnoses codes in study design, methods, or results. Forward ICD-9-CM to ICD-10-CM mapping was performing using a translational methodology with the Motif web portal ICD-9-CM conversion tool. Backward mapping from ICD-10-CM to ICD-9-CM was performed using both Centers for Medicare and Medicaid Services (CMS) general equivalence mappings (GEMs) files and the Motif web portal tool. Generated ICD-9-CM codes were compared with the original ICD-9-CM codes to assess data accuracy and discontinuity. RESULTS While both methods yielded additional ICD-9-CM codes, the CMS GEMs method provided incomplete coverage with 16 of the original ICD-9-CM codes missing, whereas the Motif web portal method provided complete coverage. Of these 16 codes, 12 ICD-9-CM codes were present in 2010 Illinois Medicaid data, and accounted for 0.52% of patient encounters and 0.35% of total Medicaid reimbursements. Extraneous ICD-9-CM codes from both methods (Centers for Medicare and Medicaid Services general equivalent mapping [CMS GEMs, n = 161; Motif web portal, n = 246]) in excess of original ICD-9-CM codes accounted for 2.1% and 2.3% of total patient encounters and 3.4% and 4.1% of total Medicaid reimbursements from the 2010 Illinois Medicare database. DISCUSSION Longitudinal data analyses post-ICD-10

  7. Soil respiration in a long-term tillage treatment experiment

    NASA Astrophysics Data System (ADS)

    Gelybó, Györgyi; Birkás, Márta; Dencsö, Márton; Horel, Ágota; Kása, Ilona; Tóth, Eszter

    2016-04-01

    Regular soil CO2 efflux measurements have been carried out at Józsefmajor longterm tillage experimental site in 2014 and 2015 with static chamber technique in no-till and ploughing plots in seven spatial replicates. The trial was established in 2002 on a loamy chernozem soil at the experimental site of the Szent István University nearby the city Hatvan, northern Hungary. At the site sunflower (Helianthus A.) and wheat (Triticum A.) was grown in 2014 and 2015, respectively. Ancillary measurements carried out at the site included weather parameters, soil water content, soil temperature. The aim of the investigation was to detect the effect of soil disturbance and soil tillage treatments on soil CO2 emission in agricultural ecosystems. Soil respiration measurements were carried out every week during the vegetation period and campaign measurements were performed scheduled to tillage application. In this latter case, measurements were carried out 1, 2, 3, 4, 6, 12, 18, 24, 48, 72, 96, 120 hours and 7 days after tillage operation. Results showed that during the vegetation season in the majority of measurement occasions emission was higher in the no-till plots. These differences; however were not found to be statistically significant. Due to the short term effect of tillage treatment, emissions increased following tillage treatment in the ploughed plots. Soil water content was also examined as main driver of soil CO2 fluxes. Soil water content sharply decreases in the surface layer (5-10 cm depth) after tillage treatment indicating a fast drying due to soil disturbance. This effect slowly attenuated and eventually extincted in approx. two weeks. CO2 emission measurements were associated with high uncertainties as a result of the measurement technique. Our further aim is to reduce this uncertainty using independent measurement techniques on the field.

  8. [Effects of different tillage measures on upland soil respiration in Loess Plateau].

    PubMed

    Sun, Xiao-hua; Zhang, Ren-zhi; Cai, Li-qun; Chen, Qiang-qiang

    2009-09-01

    A field experiment was conducted in Lijiabu Town of Dingxi City, Gansu Province to study the soil respiration and its relations with the canopy temperature and soil moisture content in a rotation system with spring wheat and pea under effects of different tillage measures. Six treatments were installed, i.e., tillage with no straw- or plastic mulch (conventional tillage, T), tillage with straw mulch (TS), tillage with plastic mulch (TP), no-tillage (NT), no-tillage with straw mulch (NTS), and no-tillage with plastic mulch (NTP). During the growth periods of spring wheat and pea, soil respiration had different change patterns, with the peaks appeared at the early jointing, grain-filling, and maturing stages of spring wheat, and at the 5-leaf, silking, flowering and poding, in spring wheat field between treatments NTS and T, and the soil respiration rate was significantlyand maturing stages of pea. There was an obvious difference in the diurnal change of soil respiration lower in NTS than in T; while the soil respiration in pea field had less diurnal chan ge. Soil respiration rate had a significant linear relationship with the canopy temperature of both spring wheat andpea, the correlation coefficient being the highest at booting stage of spring wheat and at flowering and poding stage of pea, followed by at grain-filling stage of spring wheat and at branching stage of pea. There was also a significant parabola relationship between soil respiration rate and soil moisture content, the correlation coefficient being higher under conservation tillage than under conventional tillage, with the highest under NTS. The moisture content in 10-30 cm soil layer of spring wheat field and that in 5-10 cm soil layer of pea field had the greatest effects on soil respiration. Comparing with conventional tillage, all the five conservation tillage measures decreased soil respiration, with the best effects of no-tillage with straw mulch.

  9. Detections of 2 cm formaldehyde emissions towards Galactic star-forming regions with 6 cm counterpart

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Shen, Zhi-Qiang; Li, Xiao-Qiong; Yang, Kai; Li, Juan; Wang, Jun-Zhi; Wu, Ya-Jun; Zhao, Rong-Bin; Wang, Jin-Qing; Dong, Jian; Jiang, Dong-Rong; Li, Bin

    2017-01-01

    We report the detections of H2CO emission at the 2 cm transition towards Galactic star-forming regions with known 6 cm counterpart using the Shanghai Tianma Radio Telescope (TMRT). One significant detection (in NGC7538) and two possible detections (in G23.01-0.41 and G29.96-0.02) were made. Comparing with previous observations, we found that there is a time lag of appearance of 2 cm and 6 cm emissions detected in NGC7538, contradicting with the prediction of radiative pumping via radio continuum radiation. Combinations of the variability of 6 cm masers in NGC7538 suggest that collisional pumping via high-velocity shocks could better explain the 6 cm H2CO maser emission. Under this scheme, excitation of the 2 cm maser may require a higher collision energy compared to the 6 cm transition.

  10. Structural distortions in 5-10 nm silver nanoparticles under high pressure

    SciTech Connect

    Koski, Kristie J.; Kamp, Noelle M.; Kunz, Martin; Knight, Jason K.; Alivisatos, A.P.; Smith, R.K.

    2008-10-13

    We present experimental evidence that silver nanoparticles in the size range of 5-10 nm undergo a reversible structural transformation under hydrostatic pressures up to 10 GPa. We have used x-ray diffraction with a synchrotron light source to investigate pressure-dependent and size-dependent trends in the crystal structure of silver nanoparticles in a hydrostatic medium compressed in a diamond-anvil cell. Results suggest a reversible linear pressure-dependent rhombohedral distortion which has not been previously observed in bulk silver. We propose a mechanism for this transition that considers the bond-length distribution in idealized multiply twinned icosahedral particles. To further support this hypothesis, we also show that similar measurements of single-crystal platinum nanoparticles reveal no such distortions.

  11. Warm-hot baryons comprise 5-10 per cent of filaments in the cosmic web.

    PubMed

    Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline

    2015-12-03

    Observations of the cosmic microwave background indicate that baryons account for 5 per cent of the Universe's total energy content. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two. Cosmological simulations indicate that the missing baryons have not condensed into virialized haloes, but reside throughout the filaments of the cosmic web (where matter density is larger than average) as a low-density plasma at temperatures of 10(5)-10(7) kelvin, known as the warm-hot intergalactic medium. There have been previous claims of the detection of warm-hot baryons along the line of sight to distant blazars and of hot gas between interacting clusters. These observations were, however, unable to trace the large-scale filamentary structure, or to estimate the total amount of warm-hot baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of gas at 10(7) kelvin associated with the galaxy cluster Abell 2744. Previous observations of this cluster were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we find hot gas structures that are coherent over scales of 8 megaparsecs. The filaments coincide with over-densities of galaxies and dark matter, with 5-10 per cent of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. Our findings strengthen evidence for a picture of the Universe in which a large fraction of the missing baryons reside in the filaments of the cosmic web.

  12. Seven novel mutations at the 5,10-methylenetetrahydrofolate reductase locus

    SciTech Connect

    Goyette, P.; Frosst, P.; Rosenblatt, D.S.; Rozen, R.

    1994-09-01

    5,10-methylenetetrahydrofolate reductase (MTHFR), a flavoprotein, catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a cofactor for methionine synthase in the methylation of homocysteine to methionine. Severe MTHFR deficiency, which causes homocysteinemia, is an autosomal recessive disorder with variable clinical features; developmental delay, perinatal death, mental retardation and asymptomatic individuals have been observed. A milder deficiency has been reported in patients with cardiovascular disease. We have recently described the isolation of a cDNA for MTHFR and the identification of 2 mutations in patients with severe MTHFR deficiency. We report here the characterization of 7 additional mutations at this locus: 5 missense mutations and 2 splicing mutations. Mutation analysis was performed by SSCP on PCR products generated either from reverse transcription-PCR of patients` total fibroblast RNA or from PCR of patients` genomic DNA. The 5 missense mutations are as follows: 1 Arg to Cys substitution in a hydrophilic segment proposed to be the hinge region that connects the catalytic and regulatory domains, 2 different Arg to Cys substitutions in 2 patients whose enzymatic thermolability is responsive to FAD, 1 Thr to Met substitution affecting an evolutionarily-conserved residue and a Pro to Leu substitution. The 2 splicing mutations affect the 5{prime} splice site and the 3{prime} splice site of 2 introns, respectively. The 5{prime} splice site mutation generates a 57 bp in-frame deletion of the RNA through the utilization of a cryptic 5{prime} splice site within the coding sequence. The identification of 9 mutations at this locus has allowed us to make preliminary correlations between genotype and phenotype and to contribute to a structure:function analysis of the enzyme.

  13. Detection of Thermal 2 cm and 1 cm Formaldehyde Emission in NGC 7538

    NASA Astrophysics Data System (ADS)

    Yuan, Liang; Araya, E. D.; Hofner, P.; Kurtz, S.; Pihlstrom, Y.

    2011-05-01

    Formaldehyde is a tracer of high density gas in massive star forming regions. The K-doublet lines from the three lowest rotational energy levels of ortho-formaldehyde correspond to wavelengths of 6, 2 and 1 cm. Thermal emission of these transitions is rare, and maser emission has only been detected in the 6 cm line. NGC 7538 is an active site of massive star formation in the Galaxy, and one of only a few regions known to harbor 6 cm formaldehyde (H2CO) masers. Using the NRAO 100 m Green Bank Telescope (GBT), we detected 2 cm H2CO emission toward NGC 7538 IRS1. The velocity of the 2 cm H2CO line is very similar to the velocity of one of the 6 cm H2CO masers but the linewidth is greater. To investigate the nature of the 2 cm emission, we conducted observations of the 1 cm H2CO transition, and obtained a cross-scan map of the 2 cm line. We detected 1 cm emission and found that the 2 cm emission is extended (greater than 30"), which implies brightness temperatures of ˜0.2 K. Assuming optically thin emission, LTE, and that the 1 cm and 2 cm lines originate from the same volume of gas, both these detections are consistent with thermal emission of gas at ˜30 K. We conclude that the 1 cm and 2 cm H2CO lines detected with the GBT are thermal, which implies molecular densities above ˜105 cm-3. LY acknowledges support from WIU. PH acknowledges partial support from NSF grant AST-0908901.

  14. Rapid transport and transformation of phosphorus species during the leaching of poultry manure amended soil

    NASA Astrophysics Data System (ADS)

    Giles, Courtney; Cade-Menun, Barbara; Liu, Corey; Hill, Jane

    2015-04-01

    The loss of phosphorus (P) from soils due to leaching is a major concern in heavily fertilized agricultural regions. The mobility and transformation of P species will depend on the source of manure fertilizer, leaching regime, and the extent of soil P saturation within the soil profile. We investigate spatial and temporal changes in the distribution of P species within a poultry manure-amended soil at two depths (0-5, 10-15 cm) as well as leachate P fractions during 10 weeks of leaching. Leachate P was primarily composed of dissolved fractions (soluble reactive P; dissolved unreactive P) and reached a maximum in the fourth week of leaching. In soils, the degree of P saturation (80%) and water extractable P (9 mg kg-1) were also greatest in week 4. 31P NMR spectra of the 0-5 cm depth indicate that surface soils were most similar to the poultry manure in week 4. During peak leaching, the proportion of orthophosphate (OrthoP) at the soil surface (0-5 cm; 80%) was greater than that from the lowest depth (10-15 cm; 72%), which contained relatively larger proportions of monoester-(17%) and diester-P classes (10%). Poultry manure likely contributed to the mobile pool of P species, including OrthoP, myo-inositol hexakisphosphate (myo-IHP), and nucleic acids. The appearance of neo- and D-chiro-IHP, as well as phospholipid signals during the leaching period indicate possible short-term (<10 week) contributions of organic P to the generation and leaching of OrthoP, under P-saturated conditions. Further work is needed to determine how fertilization and leaching will affect the mobility and transformation of P species across a wider range of soil types. Keywords: Phytate, organic phosphorus, degree of phosphorus saturation, soil, leachate, poultry manure

  15. Fractal features of soil properties distribution in an urban park - a case study: Bar-Ilan University campus, Ramat-Gan, Israel

    NASA Astrophysics Data System (ADS)

    Zhevelev, Helena; Sarah, Pariente

    2014-05-01

    Green open spaces in the city include campuses of various institutions. Their physical and sociological functions are similar to those of urban parks, and the present study was conducted in the campus of Bar-Ilan University. It aimed to detect the features of the distributions of several ecological properties, as affected by various land cover components and their associated microenvironments. For this purpose, three types of microenvironments, representative of the campus were chosen. They were: under the canopies of nine species of trees; lawns (disturbed and undisturbed); and paths. In each microenvironment, soil was sampled from two layers (0-2 and 5-10 cm), soil temperatures were measured at depths down to 10 cm (0, 1, 2, 4, 6, 8, 10 cm), and air temperatures were recorded at heights up to 160 cm (30, 60, 100, 160 cm). For each soil sample, soil moisture and organic matter contents were determined in December 2011 and March 2012. Before the samplings, penetration depth was measured. From December to March soil penetration depths and soil moisture contents decreased by 30-50%. In contrast, organic matter content increased from 0.5 to 1.5% in all microenvironments. In December there were no differences in soil temperatures among the microenvironments, but in March differences of 4-5 C° were found. Highest soil temperatures, at all depths, were found in the Lawn and Path microenvironments. For all the various microenvironments, at each depth, the distributions by percentiles (deciles, medians and quartiles) of all soil properties were calculated and analyzed. Highly significant linear correlations between percentiles and averages of soil properties were found for all the microenvironments and at both depths. Thus, the soil properties of the Bar-Ilan University campus exhibited a fractal structure.

  16. The spatiotemporal characteristics of soil physio-chemical parameters and their influence on cotton growth under mulched drip irrigation

    NASA Astrophysics Data System (ADS)

    Hu, H.; Tian, F.; Zhang, Z.; Hu, H.

    2013-12-01

    The spatiotemporal characteristics of the physio-chemical parameters of soil and their impacts on crop growth are the key issues affecting precision agriculture. However, quantitative research in cotton fields under mulched drip irrigation is rare. One hundred experimental plots (6 m× 6 m) were set up for the above purpose in an agricultural experimental field in Xinjiang Uygur Autonomous Region of China. Soil samples were collected to measure the soil texture, moisture and salinity at depths of 5, 10, 20, 30, 50 and 80 cm in the near-tape zone and the inter-film zone in each experimental plot in March, April, June and September of 2012. The number and height of the cotton plants in June and the yield of cotton in September were also surveyed in 3 sample units (75 cm × 75 cm) in each experimental plot. The results indicate that the soil composition of clay and silt was highest at a soil depth of 5 to 20 cm due to the cultivation practices, and the Cv (coefficient of variation) values of soil texture increased with depth. The spring flush led to an 8% decrease in soil salinity and reduced the Cv values of soil salinity, soil moisture and soil texture. The Cv values of soil salinity and soil moisture increased as mulched drip irrigation was applied. The Cv values of soil salinity and moisture under the near tape zone were higher than under the interfilm zone; the difference was up to twofold in September. The validity of a theoretical semivariogram model of soil moisture is greater than that of texture, soil salinity and crop trait when comparing the estimation of the theoretical semivariogram with measured values. The influence of soil physiochemical characteristics on the number of cotton plants is largest in April, and their influence on the height of cotton plants is greatest in June. However, the influence of soil physiochemical characteristics on cotton yield is smaller than that on cotton number and height in April and June. The soil salt under the near tape

  17. Probing lepton asymmetry with 21 cm fluctuations

    SciTech Connect

    Kohri, Kazunori; Oyama, Yoshihiko; Sekiguchi, Toyokazu; Takahashi, Tomo E-mail: oyamayo@post.kek.jp E-mail: tomot@cc.saga-u.ac.jp

    2014-09-01

    We investigate the issue of how accurately we can constrain the lepton number asymmetry ξ{sub ν}=μ{sub ν}/T{sub ν} in the Universe by using future observations of 21 cm line fluctuations and cosmic microwave background (CMB). We find that combinations of the 21 cm line and the CMB observations can constrain the lepton asymmetry better than big-bang nucleosynthesis (BBN). Additionally, we also discuss constraints on ξ{sub ν} in the presence of some extra radiation, and show that the 21 cm line observations can substantially improve the constraints obtained by CMB alone, and allow us to distinguish the effects of the lepton asymmetry from the ones of extra radiation.

  18. 21 CM searches for DIM galaxies

    NASA Astrophysics Data System (ADS)

    Disney, Mike; Banks, Gareth

    1997-04-01

    We review very strong selection effects which operate against the detection of dim (i.e. low surface brightness) galaxies. The Parkes multibeam instrument offers a wonderful opportunity to turn up new populations of such galaxies. However, to explore the newly accessible parameter space, it will be necessary to survey both a very deep patch (105 s/pointing, limiting N hi ˜ 1018 cm-2) and a deep patch (104 s/pointing, limiting N hi ˜ 3 × 1018 cm-2) in carefully selected areas, and we outline the case to do this.

  19. A novel lead compound CM-118

    PubMed Central

    Meng, Lanfang; Shu, Mengjun; Chen, Yaqing; Yang, Dexiao; He, Qun; Zhao, Hui; Feng, Zhiyong; Liang, Chris; Yu, Ker

    2014-01-01

    The anaplastic lymphoma kinase (ALK) and the c-Met receptor tyrosine kinase play essential roles in the pathogenesis in multiple human cancers and present emerging targets for cancer treatment. Here, we describe CM-118, a novel lead compound displaying low nanomolar biochemical potency against both ALK and c-Met with selectivity over >90 human kinases. CM-118 potently abrogated hepatocyte growth factor (HGF)-induced c-Met phosphorylation and cell migration, phosphorylation of ALK, EML4-ALK, and ALK resistance mutants in transfected cells. CM-118 inhibited proliferation and/or induced apoptosis in multiple c-Met- and ALK-addicted cancer lines with dose response profile correlating target blockade. We show that the CM-118-induced apoptosis in c-Met-amplified H1993 NSCLC cells involved a rapid suppression of c-Met activity and c-Met-to-EGFR cross-talk, and was profoundly potentiated by EGFR inhibitors as shown by the increased levels of apoptotic proteins cleaved-PARP and Bim as well as reduction of the survival protein Mcl-1. Bim-knockdown or Mcl-1 overexpression each significantly attenuated apoptosis. We also revealed a key role by mTOR in mediating CM-118 action against the EML4-ALK-dependent NSCLC cells. Abrogation of EML4-ALK in H2228 cells profoundly reduced signaling capacity of the rapamycin-sensitive mTOR pathway leading to G1 cell cycle arrest and mitochondrial hyperpolarization, a metabolic perturbation linked to mTOR inhibition. Depletion of mTOR or mTORC1 inhibited H2228 cell growth, and mTOR inhibitors potentiated CM-118’s antitumor activity in vitro and in vivo. Oral administration of CM-118 at a wide range of well tolerated dosages diminished c-Met- and ALK phosphorylation in vivo, and caused tumor regression or growth inhibition in multiple c-Met- and ALK-dependent tumor xenografts in mice. CM-118 exhibits favorable pharmacokinetic and drug metabolism properties hence presents a candidate for clinical evaluation. PMID:24618813

  20. [Cutaneous Melanoma (CM): Current Diagnosis and Treatment].

    PubMed

    Gallegos Hernández, José Francisco; Nieweg, Omgo E

    2014-12-01

    Cutaneous melanoma (CM) is the third most common cancer of the skin, but it is the neoplasia with the greatest impact on mortality. Its etiology is multifactorial and it has been reported that its prevalence has increased in the last two decades. In Mexico, CM ranks seventh in frequency among all malignancies and 80% of cases are in locally advanced stages. The prognosis depends on the stage. The prognostic factors with greatest impact in survival are nodal status, tumor thickness or Breslow depth, ulceration, and in thin melanomas (< 1 mm thickness, without ulceration and Clarck level III), the mitotic index. The diagnostic approach is of great importance to achieve adequate treatment. Adherence to global guidelines of treatment allows us to obtain the best rates of locoregional control, which is the first target to be achieved in patients with CM. The goal of this manuscript is to provide a synthesis of the most important aspects in the diagnosis and treatment of CM, based on current evidence obtained in the literature.

  1. Neutron Resonance Parameters for Cm-242 (Curium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Volume 24 `Neutron Resonance Parameters' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides the neutron resonance parameters for the isotope Cm-242 (Curium).

  2. Anomalous RR Lyrae stars(?): CM Leonis

    NASA Astrophysics Data System (ADS)

    Di Fabrizio, L.; Clementini, G.; Marconi, M.; Carretta, E.; Ivans, I. I.; Bragaglia, A.; Di Tomaso, S.; Merighi, R.; Smith, H. A.; Sneden, C.; Tosi, M.

    2002-11-01

    Time-series of B, V, I CCD photometry and radial velocity measurements from high-resolution spectroscopy (R= 30 000) covering the full pulsation cycle are presented for the field RR Lyrae star CM Leonis. The photometric data span a 6-yr interval from 1994 to 1999, and allow us to firmly establish the pulsation mode and periodicity of the variable. The derived period P= 0.361 699 d (+/-0.000001) is very close to the value published in the Fourth Edition of the General Catalogue of Variable Stars (P= 0.361 732 d). However, contrary to what was previously found, the amplitude and shape of the light curve qualify CM Leo as a very regular first overtone pulsator with a prominent hump on the rising branch of its multicolour light curves. According to an abundace analysis performed on three spectra taken near minimum light (0.42 < φ < 0.61), CM Leo is a metal-poor star with metal abundance [Fe/H]=-1.93 +/- 0.20. The photometric and radial velocity curves of CM Leo have been compared with the predictions of suitable pulsational models to infer tight constraints on the stellar mass, effective temperature, and distance modulus of the star. We derive a true distance modulus of CM Leo of μ0= 13.11 +/- 0.02 mag and a corresponding absolute magnitude of MV= 0.47 +/- 0.04. This absolute magnitude, once corrected for evolutionary and metallicity effects, leads to a true distance modulus of the Large Magellanic Cloud of μ0= 18.43 +/- 0.06 mag, in better agreement with the long astronomical distance scale.

  3. Towards the 1-cm SARAL orbit

    NASA Astrophysics Data System (ADS)

    Zelensky, Nikita P.; Lemoine, Frank G.; Chinn, Douglas S.; Beckley, Brian D.; Bordyugov, Oleg; Yang, Xu; Wimert, Jesse; Pavlis, Despina

    2016-12-01

    We have investigated the quality of precise orbits for the SARAL altimeter satellite using Satellite Laser Ranging (SLR) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) data from March 14, 2013 to August 10, 2014. We have identified a 4.31 ± 0.14 cm error in the Z (cross-track) direction that defines the center-of-mass of the SARAL satellite in the spacecraft coordinate system, and we have tuned the SLR and DORIS tracking point offsets. After these changes, we reduce the average RMS of the SLR residuals for seven-day arcs from 1.85 to 1.38 cm. We tuned the non-conservative force model for SARAL, reducing the amplitude of the daily adjusted empirical accelerations by eight percent. We find that the best dynamic orbits show altimeter crossover residuals of 5.524 cm over cycles 7-15. Our analysis offers a unique illustration that high-elevation SLR residuals will not necessarily provide an accurate estimate of radial error at the 1-cm level, and that other supporting orbit tests are necessary for a better estimate. Through the application of improved models for handling time-variable gravity, the use of reduced-dynamic orbits, and through an arc-by-arc estimation of the C22 and S22 coefficients, we find from analysis of independent SLR residuals and other tests that we achieve 1.1-1.2 cm radial orbit accuracies for SARAL. The limiting errors stem from the inadequacy of the DPOD2008 and SLRF2008 station complements, and inadequacies in radiation force modeling, especially with respect to spacecraft self-shadowing and modeling of thermal variations due to eclipses.

  4. Folate metabolism gene 5,10-methylenetetrahydrofolate reductase (MTHFR) is associated with ADHD in myelomeningocele patients.

    PubMed

    Spellicy, Catherine J; Northrup, Hope; Fletcher, Jack M; Cirino, Paul T; Dennis, Maureen; Morrison, Alanna C; Martinez, Carla A; Au, Kit Sing

    2012-01-01

    The objective of this study was to examine the relation between the 5, 10-methylenetetrahydrofolate reductase (MTHFR) gene and behaviors related to attention- deficit/hyperactivity disorder (ADHD) in individuals with myelomeningocele. The rationale for the study was twofold: folate metabolizing genes, (e.g. MTHFR), are important not only in the etiology of neural tube defects but are also critical to cognitive function; and individuals with myelomeningocele have an elevated incidence of ADHD. Here, we tested 478 individuals with myelomeningocele for attention-deficit hyperactivity disorder behavior using the Swanson Nolan Achenbach Pelham-IV ADHD rating scale. Myelomeningocele participants in this group for whom DNAs were available were genotyped for seven single nucleotide polymorphisms (SNPs) in the MTHFR gene. The SNPs were evaluated for an association with manifestation of the ADHD phenotype in children with myelomeningocele. The data show that 28.7% of myelomeningocele participants exhibit rating scale elevations consistent with ADHD; of these 70.1% had scores consistent with the predominantly inattentive subtype. In addition, we also show a positive association between the SNP rs4846049 in the 3'-untranslated region of the MTHFR gene and the attention-deficit hyperactivity disorder phenotype in myelomeningocele participants. These results lend further support to the finding that behavior related to ADHD is more prevalent in patients with myelomeningocele than in the general population. These data also indicate the potential importance of the MTHFR gene in the etiology of the ADHD phenotype.

  5. Prevention of brain disease from severe 5,10-methylenetetrahydrofolate reductase deficiency.

    PubMed

    Strauss, Kevin A; Morton, D Holmes; Puffenberger, Erik G; Hendrickson, Christine; Robinson, Donna L; Wagner, Conrad; Stabler, Sally P; Allen, Robert H; Chwatko, Grazyna; Jakubowski, Hieronim; Niculescu, Mihai D; Mudd, S Harvey

    2007-06-01

    Over a four-year period, we collected clinical and biochemical data from five Amish children who were homozygous for missense mutations in 5,10-methylenetetrahydrofolate reductase (MTHFR c.1129C>T). The four oldest patients had irreversible brain damage prior to diagnosis. The youngest child, diagnosed and started on betaine therapy as a newborn, is healthy at her present age of three years. We compared biochemical data among four groups: 16 control subjects, eight heterozygous parents, and five affected children (for the latter group, both before and during treatment with betaine anhydrous). Plasma amino acid concentrations were used to estimate changes in cerebral methionine uptake resulting from betaine therapy. In all affected children, treatment with betaine (534+/-222 mg/kg/day) increased plasma S-adenosylmethionine, improved markers of tissue methyltransferase activity, and resulted in a threefold increase of calculated brain methionine uptake. Betaine therapy did not normalize plasma total homocysteine, nor did it correct cerebral 5-methyltetrahydrofolate deficiency. We conclude that when the 5-methyltetrahydrofolate content of brain tissue is low, dietary betaine sufficient to increase brain methionine uptake may compensate for impaired cerebral methionine recycling. To effectively support the metabolic requirements of rapid brain growth, a large dose of betaine should be started early in life.

  6. 5,10 Methylenetetrahydrofolate reductase genetic polymorphism as a risk factor for neural tube defects

    SciTech Connect

    Ou, C.Y.; Brown, V.K.; Khoury, M.J.

    1996-06-28

    Persons with a thermolabile form of the enzyme 5,10 methylenetetrahydrofolate reductase (MTHFR) have reduced enzyme activity and increased plasma homocysteine which can be lowered by supplemental folic acid. Thermolability of the enzyme has recently been shown to be caused by a common mutation (677C{sup {r_arrow}}T) in the MTHFR gene. We studied 41 fibroblast cultures from NTD-affected fetuses and compared their genotypes with those of 109 blood specimens from individuals in the general population. 677C{sup {r_arrow}}T homozygosity was associated with a 7.2 fold increased risk for NTDs (95% confidence interval: 1.8-30.3; p value: 0.001). These preliminary data suggest that the 677C{sup {r_arrow}}T polymorphism of the MTHFR gene is a risk factor for spina bifida and anencephaly that may provide a partial biologic explanation for why folic acid prevents these types of NTD. 13 refs., 1 fig., 1 tab.

  7. 5,10-Methylenetetrahydrofolate reductase deficiency with progressive polyneuropathy in an infant.

    PubMed

    Tsuji, Megumi; Takagi, Atsushi; Sameshima, Kiyoko; Iai, Mizue; Yamashita, Sumimasa; Shinbo, Hiroko; Furuya, Noritaka; Kurosawa, Kenji; Osaka, Hitoshi

    2011-06-01

    5,10-Methylenetetrahydrofolate reductase (MTHFR) deficiency is the most prevalent inborn error of folate metabolism, and has variable clinical manifestations from asymptomatic to severe psychomotor retardation, microcephalus and seizure. In untreated infantile cases, it predominantly affects the central nervous system, which is sometimes fatal. On the other hand, peripheral nerve involvement is uncommon. We present a severe infantile case of MTHFR deficiency that manifested unilateral phrenic nerve palsy with communicating hydrocephalus, developmental delay and died at 11months of age. An enzymatic study confirmed MTHFR deficiency with residual activity of 0.75% of mean control values in cultured fibroblasts. Mutation analysis of the MTHFR gene revealed homozygous, tandem missense mutations c.[446G>T; 447C>T] in exon 3 of the MTHFR gene converting glycine to valine (Gly149Val). In MTHFR deficiency, betaine may improve the symptoms if started immediately after birth by reducing the level of serum homocysteine and increasing that of methionine. Our results show that we should be aware of possible inborn errors of folate metabolism such as MTHFR deficiency, in infants with unexplained developmental delay manifesting rapidly progressive polyneuropathy.

  8. Localization of soil depth for N uptake by Kobresia roots in Tibetan grassland

    NASA Astrophysics Data System (ADS)

    Marten Schleuß, Per-; Steingräber, Laura; Guggenberger, Georg; Kuzyakov, Yakov

    2013-04-01

    The Tibetan Plateau provides the world's largest alpine ecosystem and is dominated by Kobresia grasslands, which cover ca. 450,000 km2. Kobresia pastures are expected to be grazing-induced and are accompanied by sedge-turf varying in thickness between 5 - 30 cm. These pastoral root mat ecosystems are of global and regional importance due to its impact on global water, heat and carbon cycles, its high storage of carbon, nitrogen and other nutrients and its provision of important grazing areas, because they protect against mechanical degradation and provide a fast regrowth after heavy grazing events. Yet, less is known about the development and functioning of this Kobresia root mats. We investigated the nitrogen uptake from different soil depths mainly consisting on Kobresia root mats and N mobilisation into the soil-plant-system by localized 15N additions. A 15N pulse labeling experiment was set up in July 2012 during the vegetation period on sites of the KEMA research station (Kobresia Ecosystem Monitoring Area) near the city Nagqu. 15N urea was injected into six soil depths: 0-1 cm, 1-5 cm, 5-10 cm, 10-15 cm, 15-20 cm, 20-25 cm. Samples of soil, root and shoots were taken 45 days after the 15N labeling. Detailed description of soil profiles were carried out considering basic characteristics of single horizons. Due to low atmospheric N depositions and high N immobilization in the root mats, the study site is limited by plant available N. Hence, N uptake efficiency is assumed to be generally high and thus highest 15N amounts should be recovered in above- and belowground plant biomass. Moreover, by linking information of localization of N uptake and the morphological description of Kobresia-turf profiles, the functional purpose of single horizons can be obtained, which help to understand its successful establishment, functions and future trends with regard to change of climate and management.

  9. Measurements of Output Factors For Small Photon Fields Up to 10 cm x 10 cm

    NASA Astrophysics Data System (ADS)

    Bacala, Angelina

    Field output factors (OF) for photon beams from a 6 MV medical accelerator were measured using five different detectors in a scanning water phantom. The measurements were taken for square field sizes of integral widths ranging from 1 cm to 10 cm for two reference source-to-surface distances (SSD) and depths in water. For the diode detectors, square field widths as small as 2.5 mm were also studied. The photon beams were collimated by using either the jaws or the multileaf collimators. Measured OFs are found to depend upon the field size, SSD, depth and also upon the type of beam collimation, size and type of detector used. For field sizes larger than 3 cm x 3 cm, the OF measurements agree to within 1% or less. The largest variation in OF occurs for jawsshaped field of size 1 cm x 1cm, where a difference of more than 18% is observed.

  10. Interpreting Sky-Averaged 21-cm Measurements

    NASA Astrophysics Data System (ADS)

    Mirocha, Jordan

    2015-01-01

    Within the first ~billion years after the Big Bang, the intergalactic medium (IGM) underwent a remarkable transformation, from a uniform sea of cold neutral hydrogen gas to a fully ionized, metal-enriched plasma. Three milestones during this epoch of reionization -- the emergence of the first stars, black holes (BHs), and full-fledged galaxies -- are expected to manifest themselves as extrema in sky-averaged ("global") measurements of the redshifted 21-cm background. However, interpreting these measurements will be complicated by the presence of strong foregrounds and non-trivialities in the radiative transfer (RT) modeling required to make robust predictions.I have developed numerical models that efficiently solve the frequency-dependent radiative transfer equation, which has led to two advances in studies of the global 21-cm signal. First, frequency-dependent solutions facilitate studies of how the global 21-cm signal may be used to constrain the detailed spectral properties of the first stars, BHs, and galaxies, rather than just the timing of their formation. And second, the speed of these calculations allows one to search vast expanses of a currently unconstrained parameter space, while simultaneously characterizing the degeneracies between parameters of interest. I find principally that (1) physical properties of the IGM, such as its temperature and ionization state, can be constrained robustly from observations of the global 21-cm signal without invoking models for the astrophysical sources themselves, (2) translating IGM properties to galaxy properties is challenging, in large part due to frequency-dependent effects. For instance, evolution in the characteristic spectrum of accreting BHs can modify the 21-cm absorption signal at levels accessible to first generation instruments, but could easily be confused with evolution in the X-ray luminosity star-formation rate relation. Finally, (3) the independent constraints most likely to aide in the interpretation

  11. Comparison of artificial intelligence techniques for prediction of soil temperatures in Turkey

    NASA Astrophysics Data System (ADS)

    Citakoglu, Hatice

    2016-08-01

    Soil temperature is a meteorological data directly affecting the formation and development of plants of all kinds. Soil temperatures are usually estimated with various models including the artificial neural networks (ANNs), adaptive neuro-fuzzy inference system (ANFIS), and multiple linear regression (MLR) models. Soil temperatures along with other climate data are recorded by the Turkish State Meteorological Service (MGM) at specific locations all over Turkey. Soil temperatures are commonly measured at 5-, 10-, 20-, 50-, and 100-cm depths below the soil surface. In this study, the soil temperature data in monthly units measured at 261 stations in Turkey having records of at least 20 years were used to develop relevant models. Different input combinations were tested in the ANN and ANFIS models to estimate soil temperatures, and the best combination of significant explanatory variables turns out to be monthly minimum and maximum air temperatures, calendar month number, depth of soil, and monthly precipitation. Next, three standard error terms (mean absolute error (MAE, °C), root mean squared error (RMSE, °C), and determination coefficient (R 2 )) were employed to check the reliability of the test data results obtained through the ANN, ANFIS, and MLR models. ANFIS (RMSE 1.99; MAE 1.09; R 2 0.98) is found to outperform both ANN and MLR (RMSE 5.80, 8.89; MAE 1.89, 2.36; R 2 0.93, 0.91) in estimating soil temperature in Turkey.

  12. Data Simulation for 21 cm Cosmology Experiments

    NASA Astrophysics Data System (ADS)

    Pober, Jonathan

    2017-01-01

    21 cm cosmologists seek a measurement of the hyperfine line of neutral hydrogen from very high redshifts. While this signal has the potential to provide an unprecedented view into the early universe, it is also buried under exceedingly bright foreground emission. Over the last several years, 21 cm cosmology research has led to an improved understanding of how low frequency radio interferometers will affect the separation of cosmological signal from foregrounds. This talk will describe new efforts to incorporate this understanding into simulations of the most realistic data sets for the Precision Array for Probing the Epoch of Reionization (PAPER), the Murchison Widefield Array (MWA), and the Hydrogen Epoch of Reionization Array (HERA). These high fidelity simulations are essential for robust algorithm design and validation of early results from these experiments.

  13. Extended Performance 8-cm Mercury Ion Thruster

    NASA Technical Reports Server (NTRS)

    Mantenieks, M. A.

    1981-01-01

    A slightly modified 8-cm Hg ion thruster demonstrated significant increase in performance. Thrust was increased by almost a factor of five over that of the baseline thruster. Thruster operation with various three grid ion optics configurations; thruster performance as a function of accelerator grid open area, cathode baffle, and cathode orifice size; and a life test of 614 hours at a beam current of 250 mA (17.5 mN thrust) are discussed. Highest thruster efficiency was obtained with the smallest open area accelerator grid. The benefits in efficiency from the low neutral loss grids were mitigated, however, by the limitation such grids place on attainable ion beam current densities. The thruster components suffered negligible weight losses during a life test, which indicated that operation of the 8-cm thruster at extended levels of thrust and power is possible with no significant loss of lifetime.

  14. 15 cm multipole gas ion thruster

    NASA Technical Reports Server (NTRS)

    Isaacson, G. C.; Kaufman, H. R.

    1976-01-01

    A 15-cm multipole thruster was operated on argon and xenon. The multipole approach used has been shown capable of low discharge losses and flat ion beam profiles with a minimum of redesign. This approach employs low magnetic field strengths and flat or cylindrical sheet-metal parts, hence is suited to rapid optimization and scaling. Only refractory metal cathodes were used in this investigation.

  15. Warm-hot baryons comprise 5-10 per cent of filaments in the cosmic web

    NASA Astrophysics Data System (ADS)

    Eckert, Dominique; Jauzac, Mathilde; Shan, Huanyuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline

    2015-12-01

    Observations of the cosmic microwave background indicate that baryons account for 5 per cent of the Universe’s total energy content. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two. Cosmological simulations indicate that the missing baryons have not condensed into virialized haloes, but reside throughout the filaments of the cosmic web (where matter density is larger than average) as a low-density plasma at temperatures of 105-107 kelvin, known as the warm-hot intergalactic medium. There have been previous claims of the detection of warm-hot baryons along the line of sight to distant blazars and of hot gas between interacting clusters. These observations were, however, unable to trace the large-scale filamentary structure, or to estimate the total amount of warm-hot baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of gas at 107 kelvin associated with the galaxy cluster Abell 2744. Previous observations of this cluster were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we find hot gas structures that are coherent over scales of 8 megaparsecs. The filaments coincide with over-densities of galaxies and dark matter, with 5-10 per cent of their mass in baryonic gas. This gas has been heated up by the cluster’s gravitational pull and is now feeding its core. Our findings strengthen evidence for a picture of the Universe in which a large fraction of the missing baryons reside in the filaments of the cosmic web.

  16. Kokes Awards for the 22nd North American Catalysis Society Meeting, June 5-10, 2011

    SciTech Connect

    Fabio H. Ribeiro

    2011-06-05

    The biennial North American Catalysis Society (NACS) Meetings are the premiere conferences in the area of catalysis, surface science, and reaction engineering. The 22nd meeting will be held the week of June 5-10, 2011 in Detroit, Michigan. The objective of the Meetings is to bring together leading researchers for intensive scientific exchange and interactions. Financial support that offsets some of the associated costs (specifically, registration fee, airline tickets, and hotel accommodations) would encourage graduate students, and for the first time undergraduate students, to attend and participate meaningfully in this conference. The funds sought in this proposal will help support the Richard J. Kokes Travel Award program. Graduate students eligible for these merit-based Awards are those who study at a North American university and who will present at the Meeting. We have currently 209 applications and we expect to be able to fund about half of them. The NACS has traditionally sought to encourage graduate student, and this year for the first time undergraduate studies, participation at the National Meetings and providing financial support is the most effective means to do so. Their attendance would contribute significantly to their scientific training and communication and presentation skills. They would be exposed to the leading researchers from the US and abroad; they would meet their peers from other universities; they would learn about cutting-edge results that could benefit their research projects; and they may become interested in becoming active participants in the catalysis community. These young investigators represent the next generation of scientists and engineers, and their proper training will lead to future scientific breakthroughs and technological innovations that benefit the US economy. Advances in catalysis can come in the form of more energy-efficient and environmentally-friendly chemical processes, improved fuel cell performance, efficient

  17. Mapmaking for precision 21 cm cosmology

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Tegmark, Max; Liu, Adrian; Ewall-Wice, Aaron; Hewitt, Jacqueline N.; Morales, Miguel F.; Neben, Abraham R.; Parsons, Aaron R.; Zheng, Haoxuan

    2015-01-01

    In order to study the "Cosmic Dawn" and the Epoch of Reionization with 21 cm tomography, we need to statistically separate the cosmological signal from foregrounds known to be orders of magnitude brighter. Over the last few years, we have learned much about the role our telescopes play in creating a putatively foreground-free region called the "EoR window." In this work, we examine how an interferometer's effects can be taken into account in a way that allows for the rigorous estimation of 21 cm power spectra from interferometric maps while mitigating foreground contamination and thus increasing sensitivity. This requires a precise understanding of the statistical relationship between the maps we make and the underlying true sky. While some of these calculations would be computationally infeasible if performed exactly, we explore several well-controlled approximations that make mapmaking and the calculation of map statistics much faster, especially for compact and highly redundant interferometers designed specifically for 21 cm cosmology. We demonstrate the utility of these methods and the parametrized trade-offs between accuracy and speed using one such telescope, the upcoming Hydrogen Epoch of Reionization Array, as a case study.

  18. Polyhedral Serpentine Grains in CM Chondrites

    NASA Technical Reports Server (NTRS)

    Zega, Thomas J.; Garvie, Laurence A. J.; Dodony, Istvan; Stroud, Rhonda M.; Buseck, Peter R.

    2005-01-01

    CM chondrites are primitive rocks that experienced aqueous alteration in the early solar system. Their matrices and fine-grained rims (FGRs) sustained the effects of alteration, and the minerals within them hold clues to the aqueous reactions. Sheet silicates are an important product of alteration, and those of the serpentine group are abundant in the CM2 chondrites. Here we expand on our previous efforts to characterize the structure and chemistry of serpentines in CM chondrites and report results on a polyhedral form that is structurally similar to polygonal serpentine. Polygonal serpentine consists of tetrahedral (T) sheets joined to M(2+)-centered octahedral (O) sheets (where (M2+) is primarily Mg(2+) and Fe(2+)), which give rise to a 1:1 (TO) layered structure with a 0.7-nm layer periodicity. The structure is similar to chrysotile in that it consists of concentric lizardite layers wrapped around the fiber axis. However, unlike the rolled-up chrysotile, the tetrahedral sheets of the lizardite layers are periodically inverted and kinked, producing sectors. The relative angles between sectors result in 15- and 30-sided polygons in terrestrial samples.

  19. Accretion of the gaseous envelope of Jupiter around a 5 10 Earth-mass core

    NASA Astrophysics Data System (ADS)

    Hubickyj, Olenka; Bodenheimer, Peter; Lissauer, Jack J.

    2005-12-01

    'grain opacity') that is 2% of the interstellar value and σ=10g/cm. Cutoff runs are computed for core masses of 10, 5, and 3 M. The second series of Jupiter models is computed with the grain opacity at the full interstellar value and σ=10g/cm. Cutoff runs are computed for core masses of 10 and 5 M. The third series of runs is computed with the grain opacity at 2% of the interstellar value and σ=6g/cm. One cutoff run is computed with a core mass of 5 M. The final series consists of one run, without a cutoff, which is computed with a temperature dependent grain opacity (i.e., 2% of the interstellar value for T<350K ramping up to the full interstellar value for T>500K) and σ=10g/cm. Our results demonstrate that reducing grain opacities results in formation times less than half of those for models computed with full interstellar grain opacity values. The reduction of opacity due to grains in the upper portion of the envelope with T⩽500K has the largest effect on the lowering of the formation time. If the accretion of planetesimals is not cut off prior to the accretion of gas, then decreasing the surface density of planetesimals lowers the final core mass of the protoplanet, but increases the formation timescale considerably. Finally, a core mass cutoff results in a reduction of the time needed for a protoplanet to evolve to the stage of runaway gas accretion, provided the cutoff mass is sufficiently large. The overall results indicate that, with reasonable parameters, it is possible that Jupiter formed at 5 AU via the core accretion process in 1 Myr with a core of 10 M or in 5 Myr with a core of 5 M.

  20. ICD-10-CM/PCS: Transferring Knowledge from ICD-9-CM

    PubMed Central

    Sand, Jaime N.; Elison-Bowers, Patt

    2013-01-01

    The transition to ICD-10-CM/PCS has expanded educational opportunities for educators and trainers who are taking on the responsibility of training coders on the new system. Coding education currently faces multiple challenges in the areas of how to train the new workforce, what might be the most efficient method of providing that training, how much retraining of the current workforce with ICD-9-CM training will be required, and how to meet the national implementation deadline of 2014 in the most efficacious manner. This research sought to identify if there was a difference between a group of participants with no knowledge of ICD-9-CM and those with some knowledge of ICD-9-CM in scores on an ICD-10-CM/PCS quiz. Results indicate a difference, supporting the idea of knowledge transfer between the systems and providing additional insight into coding education. PMID:23861677

  1. [Application of ICP-MS in evaluating element contamination in soils].

    PubMed

    Wu, Ying-juan; Chen, Yong-heng; Yang, Chun-xia; Chang, Xiang-yang

    2008-12-01

    The Yunfu pyrite was the second biggest pyrite bed in the world. Plants using industrial ore of the Yunfu pyrite are distributed in many sections across the country. In the present paper, elements V, Cr, Co, Cu, Zn, Mo, Cd, Sb, Rb and Cs in soil profiles in slag disposing area of a sulfuric acid plant using industrial ore of theYunfu pyrite were studied. A method for simultaneously determination of metals and some reference elements in soils by ICP-MS was developed. The correlations between the metals and their reference elements were fast found. Enrichment factors were applied for evaluating the degree of soil contamination, and the problem about choosing contamination elements background values was pointed out. The results indicated that element V showed apparent and serious pollution, The Co showed middle degree pollution, and there has been a trend of apparent pollution. The Cr, Mo and Cd showed pollution between light degree and middle degree. The Zn and Sb showed light degree pollution, and there was a latent trend of middle degree pollution. The Cu showed light degree pollution. The high enrichment points of the V and the Cr were observed in the upper part (4.0-10.5 cm) and deep part of soil profiles (44.0-75.5 cm). Those of Co and Mo were found in the surface of soil profiles (0-5.0 cm), middle-upper part (9.5-10.5 cm) and middle part (29.5-46.0 cm), while those of Cd and Cu occurred just in the middle of soil profiles (29.5-46.0 cm). The formation of highly enrichment points of contamination elements in the soil profiles was the result of leaching and accumulating effect of the metals released from slag and the residual metals of highly weathered red soils. Most of pollution of V in the soil was contributed by the V in soil bed. Part of the V pollution in the soil was supplied by leaching and accumulating effect of the V which came from catalyst with lost activity in sulfuric acid production volatilizing into slag.

  2. Long-term effect of agricultural reclamation on soil chemical properties of a coastal saline marsh in Bohai Rim, northern China.

    PubMed

    Wang, Yidong; Wang, Zhong-Liang; Feng, Xiaoping; Guo, Changcheng; Chen, Qing

    2014-01-01

    Over the past six decades, coastal wetlands in China have experienced rapid and extensive agricultural reclamation. In the context of saline conditions, long-term effect of cultivation after reclamation on soil chemical properties has not been well understood. We studied this issue using a case of approximately 60-years cultivation of a coastal saline marsh in Bohai Rim, northern China. The results showed that long-term reclamation significantly decreased soil organic carbon (SOC) (-42.2%) and total nitrogen (TN) (-25.8%) at surface layer (0-30 cm) as well as their stratification ratios (SRs) (0-5 cm:50-70 cm and 5-10 cm:50-70 cm). However, there was no significant change in total phosphorus (TP) as well as its SRs under cultivation. Cultivation markedly reduced ratios of SOC to TN, SOC to TP and TN to TP at surface layer (0-30 cm) and their SRs (0-5 cm:50-70 cm). After cultivation, electrical conductivity and salinity significantly decreased by 60.1% and 55.3% at 0-100 cm layer, respectively, suggesting a great desalinization. In contrast, soil pH at 20-70 cm horizons notably increased as an effect of reclamation. Cultivation also changed compositions of cations at 0-10 cm layer and anions at 5-100 cm layer, mainly decreasing the proportion of Na+, Cl- and SO4(2-). Furthermore, cultivation significantly reduced the sodium adsorption ratio and exchangeable sodium percentage in plow-layer (0-20 cm) but not residual sodium carbonate, suggesting a reduction in sodium harm.

  3. Detailed modelling of the 21-cm forest

    NASA Astrophysics Data System (ADS)

    Semelin, B.

    2016-01-01

    The 21-cm forest is a promising probe of the Epoch of Reionization. The local state of the intergalactic medium (IGM) is encoded in the spectrum of a background source (radio-loud quasars or gamma-ray burst afterglow) by absorption at the local 21-cm wavelength, resulting in a continuous and fluctuating absorption level. Small-scale structures (filaments and minihaloes) in the IGM are responsible for the strongest absorption features. The absorption can also be modulated on large scales by inhomogeneous heating and Wouthuysen-Field coupling. We present the results from a simulation that attempts to preserve the cosmological environment while resolving some of the small-scale structures (a few kpc resolution in a 50 h-1 Mpc box). The simulation couples the dynamics and the ionizing radiative transfer and includes X-ray and Lyman lines radiative transfer for a detailed physical modelling. As a result we find that soft X-ray self-shielding, Ly α self-shielding and shock heating all have an impact on the predicted values of the 21-cm optical depth of moderately overdense structures like filaments. A correct treatment of the peculiar velocities is also critical. Modelling these processes seems necessary for accurate predictions and can be done only at high enough resolution. As a result, based on our fiducial model, we estimate that LOFAR should be able to detect a few (strong) absorptions features in a frequency range of a few tens of MHz for a 20 mJy source located at z = 10, while the SKA would extract a large fraction of the absorption information for the same source.

  4. Isotope shifts in methane near 6000/cm

    NASA Technical Reports Server (NTRS)

    Fox, K.; Halsey, G. W.; Jennings, D. E.

    1976-01-01

    Isotope shifts for cleanly resolved vibrational-rotational absorption lines of CH4-12 and CH4-13 were measured by a 5-m focal length Littrow spectrometer in the 6000/cm range. The methane isotopes were held in separate absorption cells: 20 torr of CH4-13 in a 1-m cell, and 5 torr of CH4-12 in a White cell of 4-m optical path length. Measured shifts for the cleanly resolved singlets R(0), R(1), Q(1) and P(1) are summarized in tabular form.

  5. An engineering model 30 cm ion thruster

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; King, H. J.; Schnelker, D. E.

    1973-01-01

    Thruster development at Hughes Research Laboratories and NASA Lewis Research Center has brought the 30-cm mercury bombardment ion thruster to the state of an engineering model. This thruster has been designed to have sufficient internal strength for direct mounting on gimbals, to weigh 7.3 kg, to operate with a corrected overall efficiency of 71%, and to have 10,000 hours lifetime. Subassemblies, such as the ion optical system, isolators, etc., have been upgraded to meet launch qualification standards. This paper presents a summary of the design specifications and performance characteristics which define the interface between the thruster module and the remainder of the propulsion system.

  6. A 30-cm diameter argon ion source

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1976-01-01

    A 30 cm diameter argon ion source was evaluated. Ion source beam currents up to 4a were extracted with ion energies ranging from 0.2 to 1.5 KeV. An ion optics scaling relation was developed for predicting ion beam extraction capability as a function of total extraction voltage, gas type, and screen grid open area. Ignition and emission characteristics of several hollow cathode geometries were assessed for purposes of defining discharge chamber and neutralizer cathodes. Also presented are ion beam profile characteristics which exhibit broad beam capability well suited for ion beam sputtering applications.

  7. Evaluation of bottom ash and composted manure blends as a soil amendment material.

    PubMed

    Mukhtar, S; Kenimer, A L; Sadaka, S S; Mathis, J G

    2003-09-01

    The long-term goal of this project was to find alternative uses for bottom ash (BA) and composted dairy manure (CM), by-products of coal combustion and livestock production, respectively. The study discussed in this paper focused on potential water quality impacts associated with using blended BA and CM as a soil amendment. The constituents of BA and CM include heavy metals and other chemicals that, while essential nutrients for plant growth, also pose a potential threat to water quality. Four blends (BA:CM, v/v) namely, B1 (100%:0%), B2 (70%:30%), B3 (50%:50%) and B4 (0%:100%), were subjected to flow-through water table management and two blends, B2 (70%:30%) and B3 (50%:50%), were subjected to constant head water table management using de-ionized water. Leachate and standing water from saturated and flooded blends of BA and CM were examined for total solids (TS), volatile solids (VS), COD, pH, total Kjeldahl nitrogen (TKN), NO(3)-N, total P, total K as well as selected metals over a 5 and 7 week period for flow-through and constant head watertables, respectively. The results showed that higher CM content resulted in higher TS, VS, TKN, P and K concentrations in the leachate and standing water. Concentrations of these constituents were higher in leachate than in the standing water. Even though, marked reductions of most chemicals in the leachate and standing water were realized within one to three weeks, initially high concentrations of chemicals in leachate and standing water from these particular blends made them unsuitable as soil amendment material. Based upon these results, it was concluded that additional column studies of BA and CM blends with reduced CM content (5%, 10% and 20%) should be performed to further assess the feasibility of BA and CM blends as an environmentally safe soil amendment material.

  8. Fuel elements of research reactor CM

    SciTech Connect

    Kozlov, A.V.; Morozov, A.V.; Vatulin, A.V.; Ershov, S.A.

    2013-07-01

    In 1961 the CM research reactor was commissioned at the Research Institute of Atomic Reactors (Dimitrovgrad, Russia), it was intended to carry on investigations and the production of transuranium nuclides. The reactor is of a tank type. Original fuel assembly contained plate fuels that were spaced with vanes and corrugated bands. Nickel was used as a cladding material, fuel meat was produced from UO{sub 2} + electrolytic nickel composition. Fuel plates have been replaced by self-spacing cross-shaped dispersion fuels clad in stainless steel. In 2005 the reactor was updated. The purpose of this updating was to increase the quantity of irradiation channels in the reactor core and to improve the neutron balance. The updating was implemented at the expense of 20 % reduction in the quantity of fuel elements in the core which released a space for extra channels and decreased the mass of structural materials in the core. The updated reactor is loaded with modified standard fuel elements with 20 % higher uranium masses. At the same time stainless steel in fuel assembly shrouds was substituted by zirconium alloy. Today in progress are investigations and work to promote the second stage of reactor updating that involve developments of cross-shaped fuel elements having low neutron absorption matrix materials. This article gives an historical account of the design and main technical changes that occurred for the CM reactor since its commissioning.

  9. Redundant Array Configurations for 21 cm Cosmology

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Parsons, Aaron R.

    2016-08-01

    Realizing the potential of 21 cm tomography to statistically probe the intergalactic medium before and during the Epoch of Reionization requires large telescopes and precise control of systematics. Next-generation telescopes are now being designed and built to meet these challenges, drawing lessons from first-generation experiments that showed the benefits of densely packed, highly redundant arrays—in which the same mode on the sky is sampled by many antenna pairs—for achieving high sensitivity, precise calibration, and robust foreground mitigation. In this work, we focus on the Hydrogen Epoch of Reionization Array (HERA) as an interferometer with a dense, redundant core designed following these lessons to be optimized for 21 cm cosmology. We show how modestly supplementing or modifying a compact design like HERA’s can still deliver high sensitivity while enhancing strategies for calibration and foreground mitigation. In particular, we compare the imaging capability of several array configurations, both instantaneously (to address instrumental and ionospheric effects) and with rotation synthesis (for foreground removal). We also examine the effects that configuration has on calibratability using instantaneous redundancy. We find that improved imaging with sub-aperture sampling via “off-grid” antennas and increased angular resolution via far-flung “outrigger” antennas is possible with a redundantly calibratable array configuration.

  10. [Soil microbial functional diversity of different altitude Pinus koraiensis forests].

    PubMed

    Han, Dong-xue; Wang, Ning; Wang, Nan-nan; Sun, Xue; Feng, Fu-juan

    2015-12-01

    In order to comprehensively understand the soil microbial carbon utilization characteristics of Pinus koraiensis forests, we took the topsoil (0-5 cm and 5-10 cm) along the 700-1100 m altitude in Changbai Mountains and analyzed the vertical distributed characteristics and variation of microbial functional diversity along the elevation gradient by Biolog microplate method. The results showed that there were significant differences in functional diversity of microbial communities at different elevations. AWCD increased with the extension of incubation time and AWCD at the same soil depth gradually decreased along with increasing altitude; Shannon, Simpson and McIntosh diversity index also showed the same trend with AWCD and three different diversity indices were significantly different along the elevation gradient; Species diversity and functional diversity showed the same variation. The utilization intensities of six categories carbon sources had differences while amino acids were constantly the most dominant carbon source. Principal component analysis (PCA) identified that soil microbial carbon utilization at different altitudes had obvious spatial differentiation, as reflected in the use of carbohydrates, amino acids and carboxylic acids. In addition, the cluster of the microbial diversity indexes and AWCD values of different altitudes showed that the composition of vegetation had a significant impact on soil microbial composition and functional activity.

  11. 5, 10-linked naphthodithiophenes as the building block for semiconducting polymers

    PubMed Central

    Osaka, Itaru; Komatsu, Koki; Koganezawa, Tomoyuki; Takimiya, Kazuo

    2014-01-01

    We present new semiconducting polymers incorporating naphtho[1, 2-b:5, 6-b′] dithiophene (NDT3) and naphtho[2, 1-b:6, 5-b′] dithiophene (NDT4), which are linked at the naphthalene positions, in the polymer backbone. It is interesting that the trend in the ordering structure and thus charge transport properties are quite different from what were observed in the isomeric polymers where the NDT3 and NDT4 cores are linked at the thiophene α-positions. In the thiophene-linked NDT system, the NDT3-based polymer (PNDT3BT) gave the better ordering in thin films and thus the high charge carrier mobility compared to the NDT4-based polymer (PNDT4BT). In the meantime, in the naphthalene-linked NDT system, the NDT4-based polymer (PNDT4iBT) provided the superior properties. Considering that PNDT4iBT has relatively low highest occupied molecular orbital (HOMO) energy level (−5.2 eV) and moderately high mobilities in the order of 10−2 cm2 V−1 s−1, the NDT4 core, when linked at the naphthalene positions, can be a good building unit for the development of high-performance semiconducting polymers for both organic field-effect transistors and photovoltaic devices. PMID:27877654

  12. 5,10-linked naphthodithiophenes as the building block for semiconducting polymers

    NASA Astrophysics Data System (ADS)

    Osaka, Itaru; Komatsu, Koki; Koganezawa, Tomoyuki; Takimiya, Kazuo

    2014-04-01

    We present new semiconducting polymers incorporating naphtho[1, 2-b:5, 6-b‧] dithiophene (NDT3) and naphtho[2, 1-b:6, 5-b‧] dithiophene (NDT4), which are linked at the naphthalene positions, in the polymer backbone. It is interesting that the trend in the ordering structure and thus charge transport properties are quite different from what were observed in the isomeric polymers where the NDT3 and NDT4 cores are linked at the thiophene α-positions. In the thiophene-linked NDT system, the NDT3-based polymer (PNDT3BT) gave the better ordering in thin films and thus the high charge carrier mobility compared to the NDT4-based polymer (PNDT4BT). In the meantime, in the naphthalene-linked NDT system, the NDT4-based polymer (PNDT4iBT) provided the superior properties. Considering that PNDT4iBT has relatively low highest occupied molecular orbital (HOMO) energy level (-5.2 eV) and moderately high mobilities in the order of 10-2 cm2 V-1 s-1, the NDT4 core, when linked at the naphthalene positions, can be a good building unit for the development of high-performance semiconducting polymers for both organic field-effect transistors and photovoltaic devices.

  13. Design study of large area 8 cm x 8 cm wrapthrough cells for space station

    NASA Technical Reports Server (NTRS)

    Garlick, George F. J.; Lillington, David R.

    1987-01-01

    The design of large area silicon solar cells for the projected NASA space station is discussed. It is based on the NASA specification for the cells which calls for an 8 cm by 8 cm cell of wrapthrough type with gridded back contacts. The beginning of life (BOL) power must be 1.039 watts per cell or larger and maximum end of life (EOL) after 10 years in the prescribed orbit under an equivalent 1MeV electron radiation damage fluence of 5 times 10 to the 13th power e/square cm. On orbit efficiency is to be optimized by a low thermal absorptance goal (thermal alpha) of .63.

  14. Aliphatic Amines in Antarctic CR2, CM2, and CM1/2 Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Aponte, Jose C.; McLain, Hannah L.; Dworkin, Jason P.; Elsila, Jamie E.

    2016-01-01

    Meteoritic water-soluble organic compounds provide a unique record of the processes that occurred during the formation of the solar system and the chemistry preceding the origins of life on Earth. We have investigated the molecular distribution, compound-specific delta13C isotopic ratios and enantiomeric compositions of aliphatic monoamines present in the hot acid-water extracts of the carbonaceous chondrites LAP 02342 (CR2), GRA 95229 (CR2), LON 94101 (CM2), LEW 90500 (CM2), and ALH 83100 (CM1/2). Analyses of the concentration of monoamines in these meteorites revealed: (a) the CR2 chondrites studied here contain higher concentrations of monoamines relative to the analyzed CM2 chondrites; (b) the concentration of monoamines decreases with increasing carbon number; and (c) isopropylamine is the most abundant monoamine in these CR2 chondrites, while methylamine is the most abundant amine species in these CM2 and CM1/2 chondrites. The delta13C values of monoamines in CR2 chondrite do not correlate with the number of carbon atoms; however, in CM2 and CM1/2 chondrites, the 13C enrichment decreases with increasing monoamine carbon number. The delta13C values of methylamine in CR2 chondrites ranged from -1 to +10per mille, while in CM2 and CM1/2 chondrites the delta13C values of methylamine ranged from +41 to +59per mille. We also observed racemic compositions of sec-butylamine, 3-methyl-2-butylamine, and sec-pentylamine in the studied carbonaceous chondrites. Additionally, we compared the abundance and delta13C isotopic composition of monoamines to those of their structurally related amino acids. We found that monoamines are less abundant than amino acids in CR2 chondrites, with the opposite being true in CM2 and CM1/2 chondrites. We used these collective data to evaluate different primordial synthetic pathways for monoamines in carbonaceous chondrites and to understand the potential common origins these molecules may share with meteoritic amino acids.

  15. Aliphatic amines in Antarctic CR2, CM2, and CM1/2 carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Aponte, José C.; McLain, Hannah L.; Dworkin, Jason P.; Elsila, Jamie E.

    2016-09-01

    Meteoritic water-soluble organic compounds provide a unique record of the processes that occurred during the formation of the solar system and the chemistry preceding the origins of life on Earth. We have investigated the molecular distribution, compound-specific δ13C isotopic ratios and enantiomeric compositions of aliphatic monoamines present in the hot acid-water extracts of the carbonaceous chondrites LAP 02342 (CR2), GRA 95229 (CR2), LON 94101 (CM2), LEW 90500 (CM2), and ALH 83100 (CM1/2). Analyses of the concentration of monoamines in these meteorites revealed: (a) the CR2 chondrites studied here contain higher concentrations of monoamines relative to the analyzed CM2 chondrites; (b) the concentration of monoamines decreases with increasing carbon number; and (c) isopropylamine is the most abundant monoamine in these CR2 chondrites, while methylamine is the most abundant amine species in these CM2 and CM1/2 chondrites. The δ13C values of monoamines in CR2 chondrite do not correlate with the number of carbon atoms; however, in CM2 and CM1/2 chondrites, the 13C enrichment decreases with increasing monoamine carbon number. The δ13C values of methylamine in CR2 chondrites ranged from -1 to +10‰, while in CM2 and CM1/2 chondrites the δ13C values of methylamine ranged from +41 to +59‰. We also observed racemic compositions of sec-butylamine, 3-methyl-2-butylamine, and sec-pentylamine in the studied carbonaceous chondrites. Additionally, we compared the abundance and δ13C isotopic composition of monoamines to those of their structurally related amino acids. We found that monoamines are less abundant than amino acids in CR2 chondrites, with the opposite being true in CM2 and CM1/2 chondrites. We used these collective data to evaluate different primordial synthetic pathways for monoamines in carbonaceous chondrites and to understand the potential common origins these molecules may share with meteoritic amino acids.

  16. [Effects of urease and nitrification inhibitors on alleviating the oxidation and leaching of soil urea's hydrolyzed product ammonium].

    PubMed

    Chen, Zhenhua; Chen, Lijun; Wu, Zhijie

    2005-02-01

    With simulation test of in-situ soil column, this paper studied the effects of urease inhibitor hydroquinone (HQ), nitrification inhibitors coated calcium carbide (ECC) and dicyandiamide (DCD),and their different combinations on the persistence, oxidation, and leaching of soil urea's hydrolyzed product ammonium. The results showed that compared with other treatments, the combination of HQ and DCD could effectively inhibit the oxidation of the ammonium, and make it as exchangeable form reserve in soil in a larger amount and a longer period. The inhibition of this oxidation not only decreased the accumulation of oxidized product NO3- in soil, but also decreased the potential of NO3- leaching, making the NO3- only leach to 5-10 cm in depth, and the leached amount significantly decreased.

  17. The 30-cm ion thruster power processor

    NASA Technical Reports Server (NTRS)

    Herron, B. G.; Hopper, D. J.

    1978-01-01

    A power processor unit for powering and controlling the 30 cm Mercury Electron-Bombardment Ion Thruster was designed, fabricated, and tested. The unit uses a unique and highly efficient transistor bridge inverter power stage in its implementation. The system operated from a 200 to 400 V dc input power bus, provides 12 independently controllable and closely regulated dc power outputs, and has an overall power conditioning capacity of 3.5 kW. Protective circuitry was incorporated as an integral part of the design to assure failure-free operation during transient and steady-state load faults. The implemented unit demonstrated an electrical efficiency between 91.5 and 91.9 at its nominal rated load over the 200 to 400 V dc input bus range.

  18. Structural investigation of 5,10-A2B2-type porphyrins: palladium(II) and zinc(II) complexes of 5,10-dibromo-15,20-bis(4-methylphenyl)porphyrin.

    PubMed

    Senge, Mathias O; Zawadzka, Monika

    2014-12-01

    The analysis of [5,10-dibromo-15,20-bis(4-methylphenyl)porphyrinato]palladium(II), [Pd(C34H22Br2N4)], and [5,10-dibromo-15,20-bis(4-methylphenyl)porphyrinato](methanol)zinc(II), [Zn(C34H22Br2N4)(CH4O)], reveals a small but localized influence of the bromine residues on the conformation of the macrocycle. A comparison of the 5,10-dibromo substituent pattern with literature data for 5,15-dibromoporphyrins shows similar in-plane distortions in both but a different mix of out-of-plane distortion modes for the different regiochemical arrangements.

  19. Effects of Mulching on Soil Properties and Growth of Tea Olive (Osmanthus fragrans).

    PubMed

    Ni, Xue; Song, Weiting; Zhang, Huanchao; Yang, Xiulian; Wang, Lianggui

    2016-01-01

    Different mulches have variable effects on soil physical properties and plant growth. This study aimed to compare the effects of mulching with inorganic (round gravel, RG), organic (wood chips, WC), and living (manila turf grass, MG) materials on soil properties at 0-5-cm and 5-10-cm depths, as well as on the growth and physiological features of Osmanthus fragrans L. 'Rixianggui' plants. Soil samples were collected at three different time points from field plots of O. fragrans plants treated with the different mulching treatments. Moisture at both soil depths was significantly higher after mulching with RG and WC than that in the unmulched control (CK) treatment. Mulching did not affect soil bulk density, pH, or total nitrogen content, but consistently improved soil organic matter. The available nitrogen in the soil increased after RG and WC treatments, but decreased after MG treatment during the experimental period. Mulching improved plant growth by increasing root activity, soluble sugar, and chlorophyll a content, as well as by providing suitable moisture conditions and nutrients in the root zone. Plant height and trunk diameter were remarkably increased after mulching, especially with RG and WC. However, while MG improved plant growth at the beginning of the treatment, the 'Rixianggui' plants later showed no improvement in growth. This was probably because MG competed with the plants for water and available nitrogen in the soil. Thus, our findings suggest that RG and WC, but not MG, improved the soil environment and the growth of 'Rixianggui' plants. Considering the effect of mulching on soil properties and plant growth and physiology, round gravel and wood chips appear to be a better choice than manila turf grass in 'Rixianggui' nurseries. Further studies are required to determine the effects of mulch quality and mulch-layer thickness on shoot and root growths.

  20. Evaluation of Argonne 9-cm and 10-cm Annular Centrifugal Contactors for SHINE Solution Processing

    SciTech Connect

    Wardle, Kent E.; Pereira, Candido; Vandegrift, George

    2015-02-01

    Work is in progress to evaluate the SHINE Medical Technologies process for producing Mo-99 for medical use from the fission of dissolved low-enriched uranium (LEU). This report addresses the use of Argonne annular centrifugal contactors for periodic treatment of the process solution. In a letter report from FY 2013, Pereira and Vandegrift compared the throughput and physical footprint for the two contactor options available from CINC Industries: the V-02 and V-05, which have rotor diameters of 5 cm and 12.7 cm, respectively. They suggested that an intermediately sized “Goldilocks” contactor might provide a better balance between throughput and footprint to meet the processing needs for the uranium extraction (UREX) processing of the SHINE solution to remove undesired fission products. Included with the submission of this letter report are the assembly drawings for two Argonne-design contactors that are in this intermediate range—9-cm and 10-cm rotors, respectively. The 9-cm contactor (drawing number CE-D6973A, stamped February 15, 1978) was designed as a single-stage unit and built and tested in the late 1970s along with other size units, both smaller and larger. In subsequent years, a significant effort to developed annular centrifugal contactors was undertaken to support work at Hanford implementing the transuranic extraction (TRUEX) process. These contactors had a 10-cm rotor diameter and were fully designed as multistage units with four stages per assembly (drawing number CMT-E1104, stamped March 14, 1990). From a technology readiness perspective, these 10-cm units are much farther ahead in the design progression and, therefore, would require significantly less re-working to make them ready for UREX deployment. Additionally, the overall maximum throughput of ~12 L/min is similar to that of the 9-cm unit (10 L/min), and the former could be efficiently operated over much of the same range of throughput. As a result, only the 10-cm units are considered here

  1. The significance of visitors' pressure for soil status in an urban park in Tel-Aviv

    NASA Astrophysics Data System (ADS)

    Zhevelev, Helena; Sarah, Pariente; Oz, Atar

    2010-05-01

    A park is one of the most important elements of sustainable development and optimization of the urban environment. The equilibrium within the complex of natural and anthropogenic factors defines the status of a park's ecosystem. The seasonal dynamics and spatial variations of soil properties in areas under differing levels of visitors' pressure were studied in a park in Tel-Aviv. Soil was sampled twice a year, in wet (March) and dry (July) seasons, from three types of areas, subjected to differing levels of visitors' pressure: high, low and none (control). In each type of area samples were taken from two depths (0-2 cm and 5-10 cm), at 14-39 points. In total, 268 soil samples were taken. Before the soil sampling, penetration depth was determined at each point. In addition, the numbers of barbecue fires in each of the three areas were counted. Gravimetric soil moisture, organic matter, pH, electrical conductivity, and soluble ions were measured in 1:1 water extraction. Penetration depth and electrical conductivity, and organic matter, sodium, potassium and chlorite contents differed under differing levels of visitors' pressure, whereas soil moisture, pH and calcium content exhibited only minor differences. Soil moisture, electrical conductivity, and magnesium and chlorite contents exhibited strong seasonal changes, whereas the organic matter, potassium and pH levels were unaffected by seasonal dynamics. Calcium, organic matter, magnesium and chlorite contents, and electrical conductivity were significantly affected by the depth of soil sampling, whereas pH was not so affected. The seasonal changes in soil properties in the area subjected to high visitors' pressure were higher than in the one under low visitors' pressure. In most cases, visitors' pressure led to increases in variance and coefficient of variation. Different soil properties were differently affected by visitors' pressure, seasonal dynamics and soil depth. The surface of the soil was more sensitive to

  2. Source identification and apportionment of PM2.5 and PM2.5-10 in iron and steel scrap smelting factory environment using PMF, PCFA and UNMIX receptor models.

    PubMed

    Ogundele, Lasun T; Owoade, Oyediran K; Olise, Felix S; Hopke, Philip K

    2016-10-01

    To identify the potential sources responsible for the particulate matter emission from secondary iron and steel smelting factory environment, PM2.5 and PM2.5-10 particles were collected using the low-volume air samplers twice a week for a year. The samples were analyzed for the elemental and black carbon content using x-ray fluorescence spectrometer and optical transmissometer, respectively. The average mass concentrations were 216.26, 151.68, and 138. 62 μg/m(3) for PM2.5 and 331.36, 190.01, and 184.60 μg/m(3) for PM2.5-10 for the production, outside M1 and outside M2 sites, respectively. The same size resolved data set were used as input for the positive matrix factorization (PMF), principal component factor analysis (PCFA), and Unmix (UNMIX) receptor modeling in order to identify the possible sources of particulate matter and their contribution. The PMF resolved four sources with their respective contributions were metal processing (33 %), e-waste (33 %), diesel emission (22 %) and soil (12 %) for PM2.5, and coking (50 %), soil (29 %), metal processing (16 %) and diesel combustion (5 %) for PM2.5-10. PCFA identified soil, metal processing, Pb source, and diesel combustion contributing 45, 41, 9, and 5 %, respectively to PM2.5 while metal processing, soil, coal combustion and open burning contributed 43, 38, 12, and 7 %, respectively to the PM2.5-10. Also, UNMIX identified metal processing, soil, and diesel emission with 43, 42 and 15 % contributions, respectively for the fine fraction, and metal processing (71 %), soil (21 %) and unidentified source (1 %) for the coarse fraction. The study concluded that metal processing and e-waste are the major sources contributing to the fine fraction while coking and soil contributed to the coarse fraction within the factory environment. The application of PMF, PCFA and UNMIX receptor models improved the source identification and apportionment of particulate matter drive in the study area.

  3. Unbalanced translocation in a mother and her son in one of two 5;10 translocation families

    SciTech Connect

    John, C.K.; Barber, I.; Collinson, M.N.

    1996-03-01

    We present two families with different distal long arm 5;10 translocations. In one family the propositus and his mother inherited the same derived chromosome 10 from the maternal grandfather who has a balanced t(5;10)(q35.3;q26.13). The phenotype of both the affected patients is milder and only partially overlaps with that of previous cases of distal 10q deletion. Other previously reported cases of transmitted imbalance are also remarkable for mild phenotype, occurrence of deletions rather than duplications and a strong bias toward maternal as opposed to paternal transmission. In the second family, the propositus inherited a derived chromosome 10 from his mother who carries a balanced t(5;10)(q35.1;q26.3) translocation; his clinical manifestations are consistent with an emerging phenotype for distal 5q duplications. 30 refs., 6 figs., 2 tabs.

  4. Engineering model 8-cm thruster subsystem

    NASA Technical Reports Server (NTRS)

    Herron, B. G.; Hyman, J.; Hopper, D. J.; Williamson, W. S.; Dulgeroff, C. R.; Collett, C. R.

    1978-01-01

    An Engineering Model (EM) 8 cm Ion Thruster Propulsion Subsystem was developed for operation at a thrust level 5 mN (1.1 mlb) at a specific impulse 1 sub sp = 2667 sec with a total system input power P sub in = 165 W. The system dry mass is 15 kg with a mercury-propellant-reservoir capacity of 8.75 kg permitting uninterrupted operation for about 12,500 hr. The subsystem can be started from a dormant condition in a time less than or equal to 15 min. The thruster has a design lifetime of 20,000 hr with 10,000 startup cycles. A gimbal unit is included to provide a thrust vector deflection capability of + or - 10 degrees in any direction from the zero position. The EM subsystem development program included thruster optimization, power-supply circuit optimization and flight packaging, subsystem integration, and subsystem acceptance testing including a cyclic test of the total propulsion package.

  5. The 15 cm diameter ion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1974-01-01

    The startup reliability of a 15 cm diameter mercury bombardment ion thruster which employs a pulsed high voltage tickler electrode on the main and neutralizer cathodes is examined. Startup of the thruster is achieved 100% of the time on the main cathode and 98.7% of the time on the neutralizer cathode over a 3640 cycle test. The thruster was started from a 20 C initial condition and operated for an hour at a 600 mA beam current. An energy efficiency of 75% and a propellant utilization efficiency of 77% was achieved over the complete cycle. The effect of a single cusp magnetic field thruster length on its performance is discussed. Guidelines are formulated for the shaping of magnetic field lines in thrusters. A model describing double ion production in mercury discharges is presented. The production route is shown to occur through the single ionic ground state. Photographs of the interior of an operating-hollow cathode are presented. A cathode spot is shown to be present if the cathode is free of low work-function surfaces. The spot is observed if a low work-function oxide coating is applied to the cathode insert. Results show that low work-function oxide coatings tend to migrate during thruster operation.

  6. Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke.

    PubMed

    Yang, Hui; Hu, Jinxiang; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-02-08

    The interaction between roots and bacterial communities in halophytic species is poorly understood. Here, we used Jerusalem artichoke cultivar Nanyu 1 (NY-1) to characterise root distribution patterns and determine diversity and abundance of bacteria in the rhizosphere soil under variable salinity. Root growth was not inhibited within the salinity range 1.2 to 1.9 g salt/kg, but roots were mainly confined to 0-20 cm soil layer vertically and 0-30 cm horizontally from the plant centre. Root concentrations of K(+), Na(+), Mg(2+) and particularly Ca(2+) were relatively high under salinity stress. High salinity stress decreased soil invertase and catalase activity. Using a next-generation, Illumina-based sequencing approach, we determined higher diversity of bacteria in the rhizosphere soil at high than low salinity. More than 15,500 valid reads were obtained, and Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria predominated in all samples, accounting for >80% of the reads. On a genus level, 636 genera were common to the low and high salinity treatments at 0-5 cm and 5-10cm depth. The abundance of Steroidobacter and Sphingomonas was significantly decreased by increasing salinity. Higher Shannon and Chao 1 indices with increasing severity of salt stress indicated that high salt stress increased diversity in the bacterial communities.

  7. Water movement through an experimental soil liner

    USGS Publications Warehouse

    Krapac, I.G.; Cartwright, K.; Panno, S.V.; Hensel, B.R.; Rehfeldt, K.R.; Herzog, B.L.

    1991-01-01

    break through at the base of the liner occurs. Estimated saturated hydraulic conductivities were 2.5 ?? 10-9, 4.0 ?? 10-8, and 5.0 ?? 10-8 cm s-1 based on measurements of water infiltration into the liner by large- and small-ring infiltrometers and a water balance analysis, respectively. Also investigated in this research was the variability of the liner's hydraulic properties and estimates of the transit times for water and tracers. Small variances exhibited by small-ring flux data suggested that the liner was homogeneous with respect to infiltration fluxes. The predictions of water and tracer breakthrough at the base of the liner ranged from 2.4-12.6 y, depending on the method of calculation and assumptions made. The liner appeared to be saturated to a depth between 18 and 33 cm at the end of the first year of monitoring. Transit time calculations cannot be verified yet, since breakthrough has not occurred. The work conducted so far indicates that compacted soil barriers can be constructed to meet the saturated hydraulic conductivity requirement established by the U.S. EPA.

  8. Accuracy of free energies of hydration using CM1 and CM3 atomic charges.

    PubMed

    Udier-Blagović, Marina; Morales De Tirado, Patricia; Pearlman, Shoshannah A; Jorgensen, William L

    2004-08-01

    Absolute free energies of hydration (DeltaGhyd) have been computed for 25 diverse organic molecules using partial atomic charges derived from AM1 and PM3 wave functions via the CM1 and CM3 procedures of Cramer, Truhlar, and coworkers. Comparisons are made with results using charges fit to the electrostatic potential surface (EPS) from ab initio 6-31G* wave functions and from the OPLS-AA force field. OPLS Lennard-Jones parameters for the organic molecules were used together with the TIP4P water model in Monte Carlo simulations with free energy perturbation theory. Absolute free energies of hydration were computed for OPLS united-atom and all-atom methane by annihilating the solutes in water and in the gas phase, and absolute DeltaGhyd values for all other molecules were computed via transformation to one of these references. Optimal charge scaling factors were determined by minimizing the unsigned average error between experimental and calculated hydration free energies. The PM3-based charge models do not lead to lower average errors than obtained with the EPS charges for the subset of 13 molecules in the original study. However, improvement is obtained by scaling the CM1A partial charges by 1.14 and the CM3A charges by 1.15, which leads to average errors of 1.0 and 1.1 kcal/mol for the full set of 25 molecules. The scaled CM1A charges also yield the best results for the hydration of amides including the E/Z free-energy difference for N-methylacetamide in water.

  9. New λ6 cm and λ11 cm observations of the supernova remnant CTA 1

    NASA Astrophysics Data System (ADS)

    Sun, X. H.; Reich, W.; Wang, C.; Han, J. L.; Reich, P.

    2011-11-01

    Aims: We attempt to study spatial variations in the spectrum and rotation measures (RMs) of the large-diameter, high-latitude supernova remnant (SNR) CTA 1. Methods: We conducted new λ6 cm and λ11 cm observations of CTA 1 using the Urumqi 25-m and Effelsberg 100-m telescopes. Data at other wavelengths were included to investigate the spectrum and polarisation properties. Results: We obtained new total intensity and polarisation maps at λ6 cm and λ11 cm with angular resolutions of 9'.5and 4'.4, respectively. We derived a spectral index of α = -0.63 ± 0.05 (Sν ∝ να) based on the integrated flux densities at 408 MHz, 1420 MHz, 2639 MHz, and 4800 MHz. The spectral index map calculated from data at the four frequencies shows a clear steepening of the spectrum from the strong shell emission towards the north-western breakout region with weak diffuse emission. The decrease of the spectral index is up to about Δα = 0.3. The RM map derived from polarisation data at λ6 cm and λ11 cm shows a sharp transition between positive RMs in the north-eastern and negative RMs in the south-western part of the SNR. We note a corresponding RM pattern of extragalactic sources and propose the existence of a large-diameter Faraday screen in front of CTA 1, which covers the north-eastern part of the SNR. The RM of the Faraday screen is estimated to be about +45 rad m-2. A RM structure function of CTA 1 indicates a very regular magnetic field within the Faraday screen, which is stronger than about 2.7 μG for a distance of 500 pc. Conclusions: CTA 1 is a large-diameter shell-type SNR located out of the Galactic plane, which makes it an ideal object to study its properties without suffering confusion. The previous detection of the rare breakout phenomenon in CTA 1 is confirmed. We identify a Faraday screen partly covering CTA 1 with a regular magnetic field in the opposite direction to the interstellar magnetic field. The detection of Faraday screens in the Galactic plane is

  10. Effects of short term bioturbation by common voles on biogeochemical soil variables.

    PubMed

    Wilske, Burkhard; Eccard, Jana A; Zistl-Schlingmann, Marcus; Hohmann, Maximilian; Methler, Annabel; Herde, Antje; Liesenjohann, Thilo; Dannenmann, Michael; Butterbach-Bahl, Klaus; Breuer, Lutz

    2015-01-01

    Bioturbation contributes to soil formation and ecosystem functioning. With respect to the active transport of matter by voles, bioturbation may be considered as a very dynamic process among those shaping soil formation and biogeochemistry. The present study aimed at characterizing and quantifying the effects of bioturbation by voles on soil water relations and carbon and nitrogen stocks. Bioturbation effects were examined based on a field set up in a luvic arenosol comprising of eight 50 × 50 m enclosures with greatly different numbers of common vole (Microtus arvalis L., ca. 35-150 individuals ha-1 mth-1). Eleven key soil variables were analyzed: bulk density, infiltration rate, saturated hydraulic conductivity, water holding capacity, contents of soil organic carbon (SOC) and total nitrogen (N), CO2 emission potential, C/N ratio, the stable isotopic signatures of 13C and 15N, and pH. The highest vole densities were hypothesized to cause significant changes in some variables within 21 months. Results showed that land history had still a major influence, as eight key variables displayed an additional or sole influence of topography. However, the δ15N at depths of 10-20 and 20-30 cm decreased and increased with increasing vole numbers, respectively. Also the CO2 emission potential from soil collected at a depth of 15-30 cm decreased and the C/N ratio at 5-10 cm depth narrowed with increasing vole numbers. These variables indicated the first influence of voles on the respective mineralization processes in some soil layers. Tendencies of vole activity homogenizing SOC and N contents across layers were not significant. The results of the other seven key variables did not confirm significant effects of voles. Thus overall, we found mainly a first response of variables that are indicative for changes in biogeochemical dynamics but not yet of those representing changes in pools.

  11. PROCESS OF PRODUCING Cm$sup 244$ AND Cm$sup 24$$sup 5$

    DOEpatents

    Manning, W.M.; Studier, M.H.; Diamond, H.; Fields, P.R.

    1958-11-01

    A process is presented for producing Cm and Cm/sup 245/. The first step of the process consists in subjecting Pu/sup 2339/ to a high neutron flux and subsequently dissolving the irradiated material in HCl. The plutonium is then oxidized to at least the tetravalent state and the solution is contacted with an anion exchange resin, causing the plutonium values to be absorbed while the fission products and transplutonium elements remain in the effluent solution. The effluent solution is then contacted with a cation exchange resin causing the transplutonium, values to be absorbed while the fission products remain in solution. The cation exchange resin is then contacted with an aqueous citrate solution and tbe transplutonium elements are thereby differentially eluted in order of decreasing atomic weight, allowing collection of the desired fractions.

  12. Some soil properties on coal mine spoils reclaimed with black locust (Robinia pceudoacacia L.) and umbrella pine (Pinus pinea L.) in Agacli-Istanbul.

    PubMed

    Keskin, Tahir; Makineci, Ender

    2009-12-01

    This study performed on randomly selected seven sample plots in leguminous black locust (Robinia pceudoacacia L.) plantations and five sample plots in umbrella pine (Pinus pinea L.) plantations on coal mine soil/spoils. Soil samples were taken from eight different soil depths (0-1, 1-3, 3-5, 5-10, 10-20, 20-30, 30-40, and 40-50 cm) into the soil profile. On soil samples, bulk density, fine soil fraction (Ø < 2 mm), sand, silt and clay rates, soil acidity (pH), organic carbon (C(org)), and total nitrogen (N(t)) contents were investigated. Also, some forest floor properties (unit mass, organic matter, and total nitrogen) were determined, and results were compared statistically between umbrella pine and black locust. As a result, 17 years after plantations, total forest floor accumulation determined as 6,107 kg ha(-1) under black locust compared to 13,700 kg ha(-1) under umbrella pine. The more rapid transformation of leguminous black locust forest floor creates organic carbon that migrates further into the mineral profile, and rapid accumulation of C and N in the soil profile was registered. Slower transformation processes of forest floor under umbrella pine result in lower soil N ratio and greater quantity of forest floor. Higher soil pH under leguminous black locust was determined significantly than umbrella pine. In conclusion, the composition of symbiotic nitrogen fixation of black locust appears to be a possible factor favoring carbon and nitrogen accumulation and, consequently, soil development. Clearly, both tree species have favorable impacts on initial soil formation. The umbrella pine generates the more forest floor layer; in contrast, black locust forest floor incorporates into the soil more rapidly and significantly increases soil nitrogen in upper soil layers.

  13. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material

    USGS Publications Warehouse

    Steven, Blaire; Gallegos-Graves, La Verne; Belnap, Jayne; Kuske, Cheryl R.

    2013-01-01

    Biological soil crusts (biocrusts) are common to drylands worldwide. We employed replicated, spatially nested sampling and 16S rRNA gene sequencing to describe the soil microbial communities in three soils derived from different parent material (sandstone, shale, and gypsum). For each soil type, two depths (biocrusts, 0–1 cm; below-crust soils, 2–5 cm) and two horizontal spatial scales (15 cm and 5 m) were sampled. In all three soils, Cyanobacteria and Proteobacteria demonstrated significantly higher relative abundance in the biocrusts, while Chloroflexi and Archaea were significantly enriched in the below-crust soils. Biomass and diversity of the communities in biocrusts or below-crust soils did not differ with soil type. However, biocrusts on gypsum soil harbored significantly larger populations of Actinobacteria and Proteobacteria and lower populations of Cyanobacteria. Numerically dominant operational taxonomic units (OTU; 97% sequence identity) in the biocrusts were conserved across the soil types, whereas two dominant OTUs in the below-crust sand and shale soils were not identified in the gypsum soil. The uniformity with which small-scale vertical community differences are maintained across larger horizontal spatial scales and soil types is a feature of dryland ecosystems that should be considered when designing management plans and determining the response of biocrusts to environmental disturbances.

  14. Effects of Wheat Straw Incorporation on the Availability of Soil Nutrients and Enzyme Activities in Semiarid Areas

    PubMed Central

    Wei, Ting; Zhang, Peng; Wang, Ke; Ding, Ruixia; Yang, Baoping; Nie, Junfeng; Jia, Zhikuan; Han, Qingfang

    2015-01-01

    Soil infertility is the main barrier to dryland agricultural production in China. To provide a basis for the establishment of a soil amelioration technical system for rainfed fields in the semiarid area of northwest China, we conducted a four—year (2007–2011) field experiment to determine the effects of wheat straw incorporation on the arid soil nutrient levels of cropland cultivated with winter wheat after different straw incorporation levels. Three wheat straw incorporation levels were tested (H: 9000 kg hm-2, M: 6000 kg hm-2, and L: 3000 kg hm-2) and no straw incorporation was used as the control (CK). The levels of soil nutrients, soil organic carbon (SOC), soil labile organic carbon (LOC), and enzyme activities were analyzed each year after the wheat harvest. After straw incorporation for four years, the results showed that variable straw amounts had different effects on the soil fertility indices, where treatment H had the greatest effect. Compared with CK, the average soil available N, available P, available K, SOC, and LOC levels were higher in the 0–40 cm soil layers after straw incorporation treatments, i.e., 9.1–30.5%, 9.8–69.5%, 10.3–27.3%, 0.7–23.4%, and 44.4–49.4% higher, respectively. On average, the urease, phosphatase, and invertase levels in the 0–40 cm soil layers were 24.4–31.3%, 9.9–36.4%, and 42.9–65.3% higher, respectively. Higher yields coupled with higher nutrient contents were achieved with H, M and L compared with CK, where these treatments increased the crop yields by 26.75%, 21.51%, and 7.15%, respectively. PMID:25880452

  15. The impact of agricultural management on selected soil properties in citrus orchards in Eastern Spain: A comparison between conventional and organic citrus orchards with drip and flood irrigation.

    PubMed

    Hondebrink, M A; Cammeraat, L H; Cerdà, A

    2017-03-01

    The agricultural management of citrus orchards is changing from flood irrigated managed orchards to drip irrigated organic managed orchards. Eastern Spain is the oldest and largest European producer of citrus, and is representative of the environmental changes triggered by innovations in orchard management. In order to determine the impact of land management on different soil quality parameters, twelve citrus orchards sites were selected with different land and irrigation management techniques. Soil samples were taken at two depths, 0-2cm and 5-10cm for studying soil quality parameters under the different treatments. Half of the studied orchards were organically managed and the other six were conventionally managed, and for each of these six study sites three fields were flood irrigated plots and the other three drip irrigated systems. The outcome of the studied parameters was that soil organic matter (SOM) and aggregate stability were higher for organic farms. Bulk density and pH were only significantly different for organic farms when drip irrigation was applied in comparison with flooded plots. C/N ratio did not vary significantly for the four treatments. Although there are some points of discussion, this research shows that a combination of different management decisions leads to improvement of a couple of soil quality parameters. Organic management practices were found to be beneficial for soil quality, compared to conventional management for soils with comparable textures and applied irrigation water.

  16. Biomimetic oxidation of curcumin with hydrogen peroxide catalyzed by 5,10,15,20-tetraarylporphyrinatoiron(III) chlorides in dichloromethane.

    PubMed

    Chauhan, Shive Murat Singh; Kandadai, Appan Srinivas; Jain, Nidhi; Kumar, Anil

    2003-11-01

    The biomimetic oxidation of curcumin, a main turmeric pigment with hydrogen peroxide catalyzed by different 5,10,15,20-tetraarylporphyrinatoiron(III) chlorides [TAPFe(III)Cl] in dichloromethane has been studied to give a C-C coupled curcumin dimer in 40-70% yield. The structure of the dimer has been elucidated by (1)H-, (13)C-NMR, IR and FAB-Mass spectroscopic data.

  17. Changes in Soil Temperature Regimes under Regional Climate Change

    NASA Astrophysics Data System (ADS)

    Millar, S. W.

    2013-12-01

    Soil temperatures can provide a smoothed record of regional changes in atmospheric conditions due to soil thermal properties that reduce the annual air and surface temperature amplitude. In areas with seasonal snow cover, however, its insulating effect isolates the soil thermal regime from winter air temperatures. Under changing regional climate patterns, snow cover extent, depth and duration are decreasing. The net effect is thus an expected winter cooling of soil temperature. However, the extent to which this might be mitigated by warmer summer conditions, and changing soil moisture remains to be seen. To examine the relative strength of a cold-season cooling signal versus enhanced summer warming, a network of soil temperature loggers has recorded hourly soil temperatures over the period 2005-2013 within a single watershed experiencing 'lake effect snow'. Elevations range from 168 m to 612 m, on Silurian and Ordovician shale, limestone, and sandstone that have been heavily glaciated. Most of the sites are located on NY Department of Environmental Conservation land in mixed, hardwood and spruce forests. At six sites in varied topographic and land-use setting, two ONSET HOBO Outdoor 4 channel soil temperature loggers are deployed in order to reduce concerns of data reliability and systematic logger drift. Five sites also record air temperature using HOBO Pro Series Temperature loggers at three sites and HOBO Weather Stations at two. Soil temperature data are recorded at hourly intervals at depths of 2-, 5-, 10-, and 25-cm. Several other sites have been operationalized over the 8 year period, but have been tampered with, damaged, stolen, or have failed. These partial records are included to provide greater geographic representation of changing conditions where possible. Data indicate decreasing winter soil temperatures in specific land-use and topographic settings. Only one site, located in a dense spruce plantation, experiences soil freezing within the top 5 cm

  18. Effects of soil temperature and snow cover on the mortality of overwintering pupae of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae)

    NASA Astrophysics Data System (ADS)

    Huang, Jian

    2016-07-01

    Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is one of the most damaging insect pests in the world. However, little is known about the effects of snow cover and soil temperature on the overwintering pupae of H. armigera. A field experiment was conducted from November 2, 2012 to April 24, 2013 at the agrometeorological experimental station in Wulanwusu, China. Overwintering pupae were embedded into the soil at depths of 5, 10, and 15 cm in the following four treatments: without snow cover, snow cover, and increased temperatures from 600 and 1200 W infrared lights. The results showed that snow cover and rising temperatures could all markedly increase soil temperatures, which was helpful in improving the survival of the overwintering pupae of H. armigera. The mortality of overwintering pupae (MOP) at a depth of 15 cm was the highest, and the MOP at a depth of 5 cm followed. The lower accumulated temperature (≤0 °C) (AT ≤ °C) led to the higher MOP, and the lower diurnal soil temperature range (DSTR) likely led to the lower MOP. After snowmelt, the MOPs at the depths of 5 and 10 cm increased as the soil temperature increased, especially in April. The AT of the soil (≤0 °C) was the factor with the strongest effect on MOP. The soil moisture content was not a major factor affecting the MOP in this semiarid region because precipitation was 45 mm over the entire experimental period. With climate warming, the MOP will likely decrease, and the overwintering boundary air temperatures of H. armigera should be expanded due to higher soil temperatures and increased snow cover.

  19. Short-term transport of glyphosate with erosion in Chinese loess soil--a flume experiment.

    PubMed

    Yang, Xiaomei; Wang, Fei; Bento, Célia P M; Xue, Sha; Gai, Lingtong; van Dam, Ruud; Mol, Hans; Ritsema, Coen J; Geissen, Violette

    2015-04-15

    Repeated applications of glyphosate may contaminate the soil and water and threaten their quality both within the environmental system and beyond it through water erosion related processes and leaching. In this study, we focused on the transport of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) related to soil erosion at two slope gradients (10 and 20°), two rates of pesticide with a formulation of glyphosate (Roundup®) application (360 and 720 mg m(-2)), and a rain intensity of 1.0 mm min(-1) for 1 h on bare soil in hydraulic flumes. Runoff and erosion rate were significantly different within slope gradients (p<0.05) while suspended load concentration was relatively constant after 15 min of rainfall. The glyphosate and AMPA concentration in the runoff and suspended load gradually decreased. Significant power and exponent function relationship were observed between rainfall duration and the concentration of glyphosate and AMPA (p<0.01) in runoff and suspended load, respectively. Meanwhile, glyphosate and AMPA content in the eroded material depended more on the initial rate of application than on the slope gradients. The transport rate of glyphosate by runoff and suspended load was approximately 14% of the applied amount, and the chemicals were mainly transported in the suspended load. The glyphosate and AMPA content in the flume soil at the end of the experiment decreased significantly with depth (p<0.05), and approximately 72, 2, and 3% of the applied glyphosate (including AMPA) remained in the 0-2, 2-5, and 5-10 cm soil layers, respectively. The risk of contamination in deep soil and the groundwater was thus low, but 5% of the initial application did reach the 2-10 cm soil layer. The risk of contamination of surface water through runoff and sedimentation, however, can be considerable, especially in regions where rain-induced soil erosion is common.

  20. Assessing Changes in Soil Carbon Quantity and Chemistry in Short-Rotation Hybrid Poplar Plantations

    NASA Astrophysics Data System (ADS)

    Hoover, C. M.; Magrini, K. A.; Davis, M. F.

    2003-12-01

    There is increasing interest in using short-rotation woody biomass plantations as a source of fiber and as a carbon neutral energy supply. Willow, poplar, and alder are currently used in plantations in areas ranging from the Lake States to the Northwest. As with any cropping system, maintaining soil productivity through succeeding rotations is a key management goal. Where plantations are used to provide carbon sequestration benefits (i.e. bioenergy production), building and maintaining soil carbon stocks is of particular concern. We sampled three hybrid poplar farms in the Northwestern United States; all three farms are in the rain shadow of the Cascades and are on sandy soils. The farms share a similar land use history; originally sagebrush, the land was in annual crops such as peas, onions, and alfalfa, before conversion to poplar. At each farm, soil cores were taken from a field in annual crops, a first rotation poplar stand, and a second rotation poplar stand. Although results varied by farm, soil carbon concentrations were generally higher in the first and second rotation poplar stands than in the row-cropped fields; this was more pronounced in the 0-5 cm and 5-10 cm depths. There were no apparent declines in soil carbon concentration between the first and second rotations. Soil carbon concentrations under poplar were also higher than those in soils from native sagebrush, the original land cover. Analysis of the chemical composition of the carbon using pyrolysis molecular beam mass spectrometry indicates that by the second rotation, the chemical signature of the carbon resembled that found in materials taken from the poplar trees.

  1. Weekly cycle of magnetic characteristics of PM2.5 and PM2.5-10 in Beijing, China

    NASA Astrophysics Data System (ADS)

    SHI, M.; Wu, H.; Zhang, S.; Li, H.; Yang, T.

    2013-12-01

    In urban areas,fine particle matter with aerodynamic diameter between 2.5 um and 10 um (PM2.5-10), and 2.5 um (PM2.5), as an important source of urban particulate matter (PM) pollutants, have significant negative effects on health, atmospheric visibility and climate. PM has increasingly become a significant index of indicating the atmospheric pollution of city. In recent years, Beijing, China has been listed as one of the most serious air pollution city in the world. In order to investigate the sources of air pollutants, a total of 283 pairs of PM2.5 and PM2.5-10 samples were collected daily from July, 2010 to June, 2011 in Beijing. Mineral magnetic properties and Scanning electron microscope (SEM) observations and energy dispersive X-ray spectroscopy (EDS) analyses of PM2.5 and PM2.5-10 were measured to verify the magnetic materials. Magnetic measures for PM indicated that the major magnetic phase was coarse-grained magnetite-like material. The χlf, χarm, SIRM and χarm/SIRM series of the PM2.5 and PM2.5-10 show seasonal dependences: high values in winter and low values in summer. In additional the parameters analyzed by Time-series methods show a strong cycle about 7 days above 95% confidence level. Weekly cycle of magnetic characteristics of PM2.5 and PM2.5-10 show different pattern: the concentration of magnetic particles in PM2.5-10 show high values in mid-week, and particle sizes is steady, while the concentration of magnetic particles in PM2.5 show reverse a weekly cycle pattern, and particle sizes is smaller in the mid-week.Microscopy analyses reveal basically three morphologies of magnetic grains: aggregate, spherules and angular particles. The ultrafine carbonaceous particles which tend to form complex clusters and chain-like structures, most likely come from coal burning and motor vehicle exhaust. Spherical particles in PM2.5 are dominantly composed of Fe, O and C, grain-diameters of particles range from 0.3 to 2 um. Angular particles of Fe

  2. VLA Images of Venus at 1.3 CM and 2 CM Wavelengths

    NASA Astrophysics Data System (ADS)

    Suleiman, S. H.; Kolodner, M. A.; Butler, B. J.; Steffes, P. G.

    1996-09-01

    On April 5, 1996, we performed an observation of Venus using the Very Large Array (VLA) at 15 GHz (2 cm) and 22 GHz (1.3 cm) simultaneously. High resolution continuum images for Venus were obtained at both frequencies. These images show significant polar darkening at latitudes above 60(deg) which is consistent with the results obtained by the Pioneer Venus Orbiter Infrared Radiometer (OIR) experiment (Taylor et al., J. Geophys. Res. 85, 7963-8006, 1980). These images are currently being used to detect potential spatial (longitudinal and latitudinal) variations in the abundances of gaseous sulfur dioxide (SO_2) and gaseous sulfuric acid (H_2SO_4) across the disk of Venus. Our new radiative transfer model (RTM) has shown that the emission spectrum is especially sensitive to the abundances of these constituents at these wavelengths. The detection of these constituents is being accomplished by matching the computed emission from our RTM to the measured emission of Venus by the VLA. Our RTM incorporates the newly developed Ben Reuven formalism which provides a more accurate characterization of the microwave absorption of gaseous SO_2 (Suleiman et al., J. Geophys. Res. 101, 4623-4635, 1996). A description of the observation, visibility data, and images are presented. This work was supported by the NASA Planetary Atmospheres Program under grant NAGW-533.

  3. Impact of grain storage into silo bags on soil penetration resistance

    NASA Astrophysics Data System (ADS)

    Hernández, Juan Pablo; Alé, Daniel; Sabattini, Rafael; Díaz, Eduardo; Lado, Marcos; González, Antonio Paz

    2015-04-01

    Big silo sacks or bags ("silo bolsas", in Spanish) are nowadays widely used in Argentina as an innovative technology for grain storage and conservation on the farm. Following the last harvest campaigns, 40.000.000 Toms of grains were stored in silo sacks. A standard silo sack, or silo bag, has a length of about 75 m and is 2.7 m in diameter; when laden with cereal grains, a pressure of 9.8 MPa is applied on the soil surface. Silo sacks are currently installed within agricultural fields, and, after the storage period has finished, the plot they occupied most commonly again is cultivated. The aim of this study was to assess the effect of silo sacks on soil penetration resistance (PR). Two field experiments were performed in sites located at the departments of Paraná and Nogoyá, Entre Ríos province, Argentina. The soils in both sites were classified as Vertisols and contained expansible smectite minerals, mainly montmorillonite. Soil PR was continuously recorded until 80 cm depth. The first experiment, conducted in Paraná department, involved three different treatments with five RP replicated measurements per treatment: a) a plot under a silo bag with regular machinery transit for grain uploading and downloading, and previously used as pasture for livestock, b) a plot under grassland used for mowing and without livestock transit, and c) a plot under woody native vegetation, locally called "Espinal". The second experiment, conducted at Nogoyá department consisted of two treatments, each with for PR replications: a) a plot under silo sack with machinery transit, and b) a control plot located in the neighbouring field. n the first site a significant increase in soil PR (P<0,05) under silo bag was recorded at the 0-20cm depth. In the second site soil PR was not significantly different between treatments at the 0-5 cm depth, while significant differences in PR were recorded at the 5-10 cm depth (P<0.05). We concluded that soil PR measurements under silo bag provide

  4. Copper Accumulation, Availability and Adsorption Capacity in Sandy Soils of Vineyards with Different Cultivation Duration

    NASA Astrophysics Data System (ADS)

    Mallmann, F. J. K.; Miotto, A.; Bender, M. A.; Gubiani, E.; Rheinheimer, D. D. S.; Kaminski, J.; Ceretta, C. A.; Šimůnek, J.

    2015-12-01

    Bordeaux mixture is a copper-based (Cu) fungicide and bactericide applied in vineyards to control plant diseases. Since it is applied several times per year, it accumulates in large quantities on plants and in soil. This study evaluates the Cu accumulation in, and desorption kinetics and adsorption capability of a sandy Ultisol in a natural field and in 3 vineyards for 5 (V1), 11 (V2), and 31 (V3) years in South of Brazil. Soil samples were collected in 8 depths (0-60 cm) of all four soil profiles, which all displayed similar soil properties. The following soil properties were measured: pH, organic matter (OM), soil bulk density, Cu total concentration, and Cu desorption and adsorption curves. A two first-order reactions model and the Langmuir isotherm were fitted to the desorption and adsorption curves, respectively. An increase in the total mass of Cu in the vineyards followed a linear regression curve, with an average annual increase of 7.15 kg ha-1. Cu accumulated down to a depth of 5, 20, and 30 cm in V1, V2 and V3, respectively, with the highest Cu content reaching 138.4 mg kg-1 in the 0-5 cm soil layer of V3. Cu desorption parameters showed a high correlation with its total concentration. Approximately 57 and 19% of total Cu were immediately and slowly available, respectively, indicating a high potential for plant absorption and/or downward movement. Cu concentrations extracted by EDTA from soil layers not affected by anthropogenic Cu inputs were very low. The maximum Cu adsorption capacity of the 0-5 and 5-10 cm soil layers increased with the vineyard age, reaching concentrations higher than 900 mg kg-1. This increase was highly related to OM and pH, which both increased with cultivation duration. Despite of low clay content of these soils, there is low risk of groundwater Cu contamination for actual conditions. However, high Cu concentrations in the surface layer of the long-term vineyards could cause toxicity problems for this and for companion crops.

  5. [Effects of soil thickness on spatiotemporal pattern of soil moisture in catchment level].

    PubMed

    Chen, Jia; Shi, Zhi-Hua; Li, Lu; Luo, Xuan

    2009-07-01

    Based on the fixed-spot observation, this paper analyzed the effects of soil thicknesses on the spatiotemporal pattern of soil moisture in the Wulongchi catchment of Danjiangkou, China. The soil moisture content increased soon after precipitation events, followed by a decline as the soil dried down, whilst its spatial heterogeneity exhibited an opposite pattern. The profile-averaged soil moisture content differed significantly with soil thickness. The soil with a thickness of 20 cm had lower profile-averaged moisture content whose variation trend was similar to that of precipitation and varied obviously among seasons; medium thickness (20-40 cm) soil had medium level of profile-averaged moisture content whose seasonal variation was moderately and affected by the characteristics of precipitation; while the soil with a thicknesses of > 40 cm had higher profile-averaged moisture content whose seasonal variation was relatively small. The profile distribution pattern of soil moisture was determined by the integrated effects of precipitation, evapotranspiration, and leakage, exhibiting increasing-type at semi-humid stage, waving-type at humid stage, and both of the two types at arid stage. There was a significant positive correlation between profile-averaged soil moisture content and soil thickness, and the correlation coefficient was 0.630-0.855. The moisture content in 0-15 cm soil layer had less correlation with soil thickness, but the moisture content in 20-55 cm soil layer was significantly correlated with soil thickness.

  6. [Responses of soil microbial carbon metabolism to the leaf litter composition in Liaohe River Nature Reserve of northern Hebei Province, China].

    PubMed

    Li, Tian-yu; Kang, Feng-feng; Han, Hai-rong; Gao, Jing; Song, Xiao-shuai; Yu, Shu; Zhao, Jin-long; Yu, Xiao-wen

    2015-03-01

    Using litter bag method, we studied the effects of single and mixed litters from Betula platyphlla, Populus davidiana and Quercus mongolica on soil microbial biomass carbon (MBC), microbial respiration (MR) and microbial metabolic quotient (qCO2) in 0-5, 5-10 and 10-20 cm soil layers. The results showed that the average contents of MBC in 0-20 cm soil layer were 124.84, 325.29, 349.79 and 319.02 mg . kg-1 in the leaf litter removal treatment, Betula platyphlla treatment, Populus davidiana treatment and Quercus mongolica treatment, and the corresponding average rates of MR were 0.66, 1.12, 1.16 and 1.10 µg . g-1 . h-1, respectively. Meanwhile, in 0-20 cm soil layer, the average contents of MBC in the treatments with single leaf litter, mixed litter of two plant species and mixed litter of three plant species were 331. 37, 418. 52 and 529. 34 mg . kg-1, and the corresponding average rates of MR were 1.13, 1.30 and 1.46 µg . g-1 . h-1, respectively. In contrast to the MBC and MR, qCO2 in soil showed a reverse pattern. Our study suggested that characteristics of microbial carbolic metabolism were influenced by litter quality. Namely, the treatment with high litter quality had higher MBC, MR and utilization efficiency of soil carbon, compared with the treatment with low litter quality. Moreover, mixture of different species of leaf litter improved soil microbial activities, increased utilization efficiency on soil carbon and promoted diversity of microbial metabolic pathways, which could then contribute to maintaining and enhancing soil quality of forestland.

  7. Reverse bias voltage testing of 8 cm x 8cm silicon solar cells

    NASA Technical Reports Server (NTRS)

    Woike, T.; Stotlar, S.; Lungu, C.

    1991-01-01

    A study is described of the reverse I-V characteristics of the largest space qualified silicon solar cells currently available (8 x 8 cm) and of reverse bias voltage (RBV) testing performed on these cells. This study includes production grade cells, both with and without cover glass. These cells span the typical output range seen in production. Initial characteristics of these cells are measured at both 28 and 60 C. These measurements show weak correlation between cell output and reverse characteristics. Analysis is presented to determine the proper conditions for RBV stress to simulate shadowing effects on a particular array design. After performing the RBV stress the characteristics of the stressed cells are remeasured. The degradation in cell performance is highly variable which exacerbates cell mismatching over time. The effect of this degradation on array lifetime is also discussed. Generalization of these results to other array configurations is also presented.

  8. Chrysanthemum CmNAR2 interacts with CmNRT2 in the control of nitrate uptake

    PubMed Central

    Gu, Chunsun; Zhang, Xiaoxue; Jiang, Jiafu; Guan, Zhiyong; Zhao, Shuang; Fang, Weimin; Liao, Yuan; Chen, Sumei; Chen, Fadi

    2014-01-01

    Nitrate transporters are an important component of plant growth and development. Chrysanthemum morifolium is an important ornamental species, for which a sufficient supply of nitrogenous fertilizer is required to maintain economic yields. In this study, the full-length cDNA of the nitrate transporter genes CmNRT2 and CmNAR2 were isolated. CmNRT2 transcript accumulation was inducible by both nitrate and ammonium, but the latter ion down-regulated the transcript accumulation of CmNAR2. CmNRT2 might be a plasma membrane localized protein, while CmNAR2 was distributed throughout the cell. CmNAR2 was shown to interact with CmNRT2 by in vitro and in vivo assays. Arabidopsis thaliana plants heterologously expressing CmNRT2 showed an increased rate of nitrate influx, while this trait was unaltered in plants expressing CmNAR2. Double transformants (CmNRT2 plus CmNAR2) exhibited an enhanced rate of nitrate influx into the root. Our data indicated that the interaction of CmNAR2 with CmNRT2 contributed to the uptake of nitrate. PMID:25060485

  9. Spatiotemporal variability of soil hydrological properties and its implication on small catchments hydrology

    NASA Astrophysics Data System (ADS)

    Ferreira, C. S. S.; Steenhuis, T. S.; Soares, D.; Ferreira, A. J. D.; Coelho, C. O. A.; Walsh, R. P. D.

    2012-04-01

    The increasing population pressure on the environment implies changes to land use and to landscape patterns within catchments, with impacts on hydrological processes. Some of the changes are linked to soil properties modification, directly disturbing water infiltration and runoff generation processes, which affects local and regional water resources. Although there has been considerable research on soil properties, few studies focused its spatial and temporal variability at the catchment scale and how they affect hydrology. In this paper, we aim to assess the spatial and temporal variability of water repellence, soil moisture and water infiltration, in a small catchment under Mediterranean climate. The study was carried out at Ribeira dos Covões, a small catchment (620ha) located in central Portugal. This is a partly urbanizing catchment, where the urban landuse covers 32% of the area, while the forest represent 48% and farmland 20%. The catchment has a sub-humid Mediterranean climate, with long dry summers. The soil is deep overlaying sandstone and limestone lithology. Thirty one representative sites were monitored within the catchment. Each site has two replicated experiments for water infiltration (performed during 30 minutes, through minidisk tension infiltrometer at the soil surface), soil moisture content (at 0-5cm depth, by gravimetric method) and soil water repellence (assessed at 0cm, 2cm and 5cm depth through ethanol percentage test). These experiments were carried out along one entire year, during nine monitoring campaigns performed in dry and wet periods, mainly immediately after different rainfall events and long dry spells. During one of the monitoring campaigns, undisturbed soil samples were collected (0-10cm depth) in all the location sites for bulk density and stone content analyses. Composite samples were also collected from the top soil layer (0-5cm and 5-10cm) for organic content (by measuring carbon dioxide emission after combustion at 1200

  10. Effects of Litter and Nutrient Additions on Soil Carbon Cycling in a Tropical Forest

    NASA Astrophysics Data System (ADS)

    Cusack, D. F.; Halterman, S.; Turner, B. L.; Tanner, E.; Wright, S. J.

    2014-12-01

    Soil carbon (C) dynamics present one of the largest sources of uncertainty in global C cycle models, with tropical forest soils containing some of the largest terrestrial C stocks. Drastic changes in soil C storage and loss are likely to occur if global change alters plant net primary production (NPP) and/or nutrient availability in these ecosystems. We assessed the effects of litter removal and addition, as well as fertilization with nitrogen (N), phosphorus (P), and/or potassium (K), on soil C stocks in a tropical seasonal forest in Panama after ten and sixteen years, respectively. We used a density fractionation scheme to assess manipulation effects on rapidly and slowly cycling pools of C. Soil samples were collected in the wet and dry seasons from 0-5 cm and 5-10 cm depths in 15- 45x45 m plots with litter removal, 2x litter addition, and control (n=5), and from 32- 40x40 m fertilization plots with factorial additions of N, P, and K. We hypothesized that litter addition would increase all soil C fractions, but that the magnitude of the effect on rapidly-cycling C would be dampened by a fertilization effect. Results for the dry season show that the "free light" C fraction, or rapidly cycling soil C pool, was significantly different among the three litter treatments, comprising 5.1 ± 0.9 % of total soil mass in the litter addition plots, 2.7 ± 0.3 % in control plots, and 1.0 ± 0.1 % in litter removal plots at the 0-5cm depth (means ± one standard error, p < 0.05). Bulk soil C results are similar to observed changes in the rapidly cycling C pool for the litter addition and removal. Fertilization treatments on average diminished this C pool size relative to control plots, although there was substantial variability among fertilization treatments. In particular, addition of N and P together did not significantly alter rapidly cycling C pool sizes (4.1 ± 1.2 % of total soil mass) relative to controls (3.5 ± 0.4 %), whereas addition of P alone resulted in

  11. Soil warming increased whole-tree water use of Pinus cembra at the treeline in the Central Tyrolean Alps.

    PubMed

    Wieser, Gerhard; Grams, Thorsten E E; Matyssek, Rainer; Oberhuber, Walter; Gruber, Andreas

    2015-03-01

    This study quantified the effect of soil warming on sap flow density (Qs) of Pinus cembra L. at the treeline in the Central Tyrolean Alps. To enhance soil temperature we installed a transparent roof construction above the forest floor around six trees. Six other trees served as controls in the absence of any manipulation. Roofing enhanced growing season mean soil temperature by 1.6, 1.3 and 1.0 °C at 5, 10 and 20 cm soil depth, respectively, while soil water availability was not affected. Sap flow density (using Granier-type thermal dissipation probes) and environmental parameters were monitored throughout three growing seasons. During the first year of treatment, no warming effect was detected on Qs. However, soil warming caused Qs to increase significantly by 11 and 19% above levels in control trees during the second and third year, respectively. This effect appeared to result from warming-induced root production, a reduction in viscosity and perhaps an increase also in root hydraulic conductivity. Hardly affected were leaf-level net CO2 uptake rate and conductance for water vapour, so that water-use efficiency stayed unchanged as confirmed by needle δ(13)C analysis. We conclude that tree water loss will increase with soil warming, which may alter the water balance within the treeline ecotone of the Central Austrian Alps in a future warming environment.

  12. Chelation and fluorescence properties of tetraphenylporphyrin and 5,10,15,20-tetra(4-hydroxyphenyl)porphyrin in acetonitrile

    NASA Astrophysics Data System (ADS)

    Ivanova, Yu. B.; Parfenov, A. S.; Mamardashvili, N. Zh.

    2017-01-01

    The kinetics of complex formation between zinc and 5,10,15,20-tetraphenylporphyrin and 5,10,15,20-tetra(4-hydroxyphenyl)porphyrin in acetonitrile is studied in the temperature range from 298 to 318 K. The fluorescent properties of these compounds are examined, the emission in the red region of the spectrum is measured, and the fluorescence quantum yields are determined. It is found that although the electronic absorption spectra of the studied compounds are almost identical, hydroxyl substituents are observed to have a considerable effect on the chelating ability of ligands. The rate constant of the formation of ZnT(4-OH-Ph)P is thus approximately three times higher than that of ZnTPhP, with the energy consumption being lower (about 20 kJ mol-1). The calculated fluorescence quantum yields of H2TPhP, H2T(4-OH-Ph) P, ZnTPhP, and ZnT(4-OH-Ph)P in acetonitrile are half those in toluene, while the ratio between the quantum yields of ligands and their metal complexes is a constant equal to approximately 3 and does not depend on which solvent is used.

  13. Managing compost stability and amendment to soil to enhance soil heating during soil solarization.

    PubMed

    Simmons, Christopher W; Guo, Hongyun; Claypool, Joshua T; Marshall, Megan N; Perano, Kristen M; Stapleton, James J; Vandergheynst, Jean S

    2013-05-01

    Soil solarization is a method of soil heating used to eradicate plant pathogens and weeds that involves passive solar heating of moist soil mulched (covered) with clear plastic tarp. Various types of organic matter may be incorporated into soil prior to solarization to increase biocidal activity of the treatment process. Microbial activity associated with the decomposition of soil organic matter may increase temperatures during solarization, potentially enhancing solarization efficacy. However, the level of organic matter decomposition (stability) necessary for increasing soil temperature is not well characterized, nor is it known if various amendments render the soil phytotoxic to crops following solarization. Laboratory studies and a field trial were performed to determine heat generation in soil amended with compost during solarization. Respiration was measured in amended soil samples prior to and following solarization as a function of soil depth. Additionally, phytotoxicity was estimated through measurement of germination and early growth of lettuce seedlings in greenhouse assays. Amendment of soil with 10%(g/g) compost containing 16.9 mg CO2/gdry weight organic carbon resulted in soil temperatures that were 2-4 °C higher than soil alone. Approximately 85% of total organic carbon within the amended soil was exhausted during 22 days of solarization. There was no significant difference in residual respiration with soil depth down to 17.4 cm. Although freshly amended soil proved highly inhibitory to lettuce seed germination and seedling growth, phytotoxicity was not detected in solarized amended soil after 22 days of field solarization.

  14. The influence of vegetation covers on soil moisture dynamics at high temporal resolution in scattered tree woodlands of Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Lozano-Parra, Javier; Schnabel, Susanne; Ceballos-Barbancho, Antonio

    2015-04-01

    Soil water is a key factor that controls the organization and functioning of dryland ecosystems. However, in spite of its great importance in ecohydrological processes, most of the studies focus on daily or longer timescales, while its dynamics at shorter timescales are very little known. The main objective of this work was to determine the role of vegetation covers (grassland and tree canopy) in the soil hydrological response using measurements with high temporal resolution in evergreen oak woodland with Mediterranean climate. For this, soil water content was monitored continuously with a temporal resolution of 30 minutes and by means of capacitance sensors, mainly for the hydrological years 2010-2011 and 2011-2012. They were installed at 5, 10 and 15 cm, and 5 cm above the bedrock and depending on soil profile. This distribution along the soil profile is justified because soils are generally very shallow and most of the roots are concentrated in the upper layer. The sensors were gathered in 8 soil moisture stations in two contrasting situations characterized by different vegetation covers: under tree canopy and in open spaces or grasslands. Soil moisture variations were calculated at rainfall event scale at top soil layer and deepest depth by the difference between the final and initial soil moisture registered by a sensor at the finish and the beginning of the rainfall event, respectively. Besides, as soil moisture changes are strongly influenced by antecedent conditions, different antecedent soil moisture conditions or states, from driest to wettest, were also defined. The works were carried out in 3 experimental farms of the Spanish region of Extremadura. Results obtained revealed that rainwater amount bypassing vegetation covers and reaching the soil may temporarily be modified by covers according to precipitation properties and antecedent environmental conditions (from dry to wet) before the rain episode. Rainfall amounts triggering a positive soil

  15. Soil Phosphorus Stoichiometry Drives Carbon Turnover Along a Soil C Gradient Spanning Mineral and Organic Soils Under Rice Cultivation

    NASA Astrophysics Data System (ADS)

    Hartman, W.; Ye, R.; Horwath, W. R.; Tringe, S. G.

    2014-12-01

    Soil carbon (C) cycling is linked to the availability of nutrients like nitrogen (N) and phosphorus (P). However, the role of soil P in influencing soil C turnover and accumulation is poorly understood, with most models focusing on C:N ratios based on the assumption that terrestrial ecosystems are N limited. To determine the effects of N and P availability on soil C turnover, we compared soil respiration over the course of a growing season in four adjacent rice fields with 5%, 10%, 20% and 25% soil C. In each of these fields, plots were established to test the effect of N additions on plant growth, using control and N addition treatments (80 kg N/ha urea). Although soil P was not manipulated in parallel, prior work has shown soil P concentrations decline markedly with increasing soil C content. Soil CO2 flux was monitored using static chambers at biweekly intervals during the growing season, along with porewater dissolved organic C and ammonium. Soils were collected at the end of the growing season, and tested for total C, N, and P, extractable N and P, pH, base cations and trace metals. Soil DNA was also extracted for 16S rRNA sequencing to profile microbial communities. Soil N additions significantly increased CO2 flux and soil C turnover (seasonal CO2 flux per unit soil C) in 5% and 10% C fields, but not in 20% or 25% C fields. Soil C content was closely related to soil N:P stoichiometry, with N:P ratios of ca. 12, 16, 24, and 56 respectively in the 5, 10, 20 and 25% C fields. Seasonal CO2 fluxes (per m2) were highest in 10% C soils. However, soil C turnover was inversely related to soil C concentrations, with the greatest C turnover at the lowest values of soil C. Soil C turnover showed stronger relationships with soil chemical parameters than seasonal CO2 fluxes alone, and the best predictors of soil C turnover were soil total and extractable N:P ratios, along with extractable P alone. Our results show that soil P availability and stoichiometry influence the

  16. Total synthesis and antileukemic evaluations of the phenazine 5,10-dioxide natural products iodinin, myxin and their derivatives.

    PubMed

    Viktorsson, Elvar Örn; Melling Grøthe, Bendik; Aesoy, Reidun; Sabir, Misbah; Snellingen, Simen; Prandina, Anthony; Høgmoen Åstrand, Ove Alexander; Bonge-Hansen, Tore; Døskeland, Stein Ove; Herfindal, Lars; Rongved, Pål

    2017-04-01

    A new efficient total synthesis of the phenazine 5,10-dioxide natural products iodinin and myxin and new compounds derived from them was achieved in few steps, a key-step being 1,6-dihydroxyphenazine di-N-oxidation. Analogues prepared from iodinin, including myxin and 2-ethoxy-2-oxoethoxy derivatives, had fully retained cytotoxic effect against human cancer cells (MOLM-13 leukemia) at atmospheric and low oxygen level. Moreover, iodinin was for the first time shown to be hypoxia selective. The structure-activity relationship for leukemia cell death induction revealed that the level of N-oxide functionality was essential for cytotoxicity. It also revealed that only one of the two phenolic functions is required for activity, allowing the other one to be modified without loss of potency.

  17. Method of using 5,10,15,20-tetrakis(carboxyphenyl)porphine for detecting cancers of the lung

    DOEpatents

    Cole, D.A.; Moody, D.C. III; Ellinwood, L.E.; Klein, M.G.

    1992-11-10

    A method is described for using tetra-aryl porphyrins for and, in particular, 5,10,15,20-tetrakis(4-carboxyphenyl)porphine as a fluorescent tracer for cancers of the lung, and as a radiotracer therefor as a complex with [sup 67]Cu. The latter complex also provides a source of beta radiation for selective destruction of lung malignancies as well as gamma radiation useful for image analysis of the lungs by single photon emission computed tomography, as an example, both in vivo. Copper-64 may be substituted for the [sup 67]Cu if only radiotracer characteristics are of interest. This lighter isotope of copper is a positron emitter, and positron emission tomography techniques can be used to locate the malignant tissue mass. 1 figure.

  18. Method using 5,10,15,20-tetrakis(4-carboxyphenyl)porphine for treating cancers of the lung

    DOEpatents

    Cole, Dean A.; Moody, III, David C.; Ellinwood, L. Edward; Klein, M. Gerard

    1995-01-01

    Method using tetra-aryl porphyrins for and, in particular, 5,10,15,20-tetrakis(4-carboxyphenyl)porphine as a fluorescent tracer for cancers of the lung, and as a radiotracer therefor as a complex with .sup.67 Cu. The latter complex also provides a source of beta radiation for selective destruction of lung malignancies as well as gamma radiation useful for image analysis of the situs thereof by single photon emission computed tomography, as an example, both in vivo. Copper-64 may be substituted for the .sup.67 Cu if only radiotracer characteristics are of interest. This lighter isotope of copper is a positron emitter, and positron emission tomography techniques can be used to locate the malignant tissue mass.

  19. Method of using 5,10,15,20-tetrakis(carboxyphenyl)porphine for detecting cancers of the lung

    DOEpatents

    Cole, Dean A.; Moody, III, David C.; Ellinwood, L. Edward; Klein, M. Gerard

    1992-01-01

    Method using tetra-aryl porphyrins for and, in particular, 5,10,15,20-tetrakis(4-carboxyphenyl)porphine as a fluorescent tracer for cancers of the lung, and as a radiotracer therefor as a complex with .sup.67 Cu. The latter complex also provides a source of beta radiation for selective destruction of lung malignancies as well as gamma radiation useful for image analysis of the situs thereof by single photon emission computed tomography, as an example, both in vivo. Copper-64 may be substituted for the .sup.67 Cu if only radiotracer characteristics are of interest. This lighter isotope of copper is a positron emitter, and positron emission tomography techniques cna be used to locate the malignant tissue mass.

  20. Is soil carbon storage underestimated?

    PubMed

    Díaz-Hernández, José Luis

    2010-06-01

    An accurate evaluation of the carbon stored in soils is essential to fully understand the role of soils as source or sink of atmospheric CO(2), as well as the feedback processes involved in soil-atmosphere CO(2) exchange. Depth and strategies of sampling have been, and still are, sources of uncertainties, because most current estimates of carbon storage in soils are based on conventional soil surveys and data sets compiled primarily for agricultural purposes. In a study of the Guadix-Baza basin, a semiarid area of southern Spain, sizeable amounts of carbon have been found stored in the subsoil. Total carbon estimated within 2-m was 141.3 kg Cm(-2) compared to 36.1 kg Cm(-2) if estimates were based solely on conventional soil depths (e.g. 40-cm in Regosols and 100-cm in Fluvisols). Thus, the insufficient sampling depth could lead to considerable underestimation of global soil carbon. In order to correctly evaluate the carbon content in world soils, more specific studies must be planned and carried out, especially in those soils where caliche and other carbonated cemented horizons are present.

  1. Changes in Physical and Chemical Soil Properties on Burnt Shrub Areas in Mediterranean Mountains, Northern Portugal

    NASA Astrophysics Data System (ADS)

    Fonseca, Felícia; de Figueiredo, Tomás; Leite, Micaela

    2014-05-01

    Human induced fire in scrublands to obtain better pastures for cattle is a relatively common practice in North Portugal. During burning, plant cover and litter layers are consumed, and the mineral soil is heated, resulting in changes to physical, chemical, mineralogical, and biological soil properties. Aiming at evaluating the effect of this kind of fires on a set of physical and chemical soil properties, two study areas were selected in contrasting mountain environments: Edroso, Vinhais municipality, NE Portugal, with typical Mediterranean climate, and Revelhe, Fafe, NW Portugal, with a strong ocean-influenced climate. In both, sampling was carried out in contiguous areas burnt and not burnt, covered by shrub vegetation, predominantly Cytisus multiflorus and Ulex europeus. In each study area (Edroso and Revelhe) 16 locations were selected for soil sampling (8 in the burned area and 8 in the not burnt area), six months after fire occurrence. Disturbed soil samples were collected in the layers 0-5, 5-10, 10-15, 15-20 and 20-30 cm depth, for assessing organic matter, N, P and K concentration, cation exchange capacity and related determinations, soil pH, electrical conductivity and soil texture. Undisturbed samples were collected, in 100 cm3 cylinders, to determine bulk density in the same above mentioned layers, and permeability in the 0-5 cm layer. Compared results of burnt and not burnt areas in Edroso and Revelhe study sites, show that coarse elements content and permeability decreased and bulk density slightly increased with the fire effect. Chemical properties in both sites changed with after fire, as organic matter content, exchangeable Al and cation exchange capacity increased, the opposite trend being found for phosphorus, sum of exchangeable bases and electrical conductivity. Potassium, total nitrogen and exchangeable acidity showed different soil responses to fire in the two study areas. Results stress the clear effects of fire on fertility related soil

  2. [Community traits of soil fauna in forestlands converted from cultivated lands in limestone red soil region of Ruichang, Jiangxi Province of China].

    PubMed

    Li, Tao; Liu, Yuan-Qiug; Guo, Sheng-Mao; Ke, Guo-Qing; Zhang, Zhao; Xiao, Xu-Bao; Liu, Wu

    2012-04-01

    This paper studied the variations of the community composition and individuals' number of soil fauna in limestone red soil region of Ruichang, Jiangxi Province after six years of converting cultivated lands into forestlands. Three converted forestlands, including the lands of mixed multiple-species forest, bamboo-broadleaved forest, and tree-seedling integration, were selected as test objects, with cultivated lands as the comparison. A total of 34 orders, 17 classes, and 6 phyla of soil fauna were observed in the converted forestlands. The dominant group was Nematoda, accounting for 86.7% of the total, whereas Acarina, Enchytraeidae, and Collembola were the common groups. In the cultivated lands, soil fauna had 21 orders, 10 classes, and 5 phyla. The dominant group was also Nematoda, accounting 86.7% of the total, and Acarina and Enchytraeidae were the common groups. In the converted forestlands, the group number of rare species was greater than that in the cultivated lands (30 vs. 18), and, except in winter, the group number and average density were significantly higher than those in the cultivated lands (P < 0.05). The vertical distribution of soil fauna in the soil profiles showed an obvious surface accumulation, which was more apparent in converted forestlands than in cultivated lands, and the individuals' number had significant differences between the surface (0-5 cm) layer and the 5-10 cm and 10-15 cm layers (P < 0.01) for both the converted forestlands and the cultivated lands. The group number of soil fauna in the converted forestlands had a seasonal variation ranked in the order of summer > autumn > spring > winter, and there was a significant difference between summer-autumn and spring-winter. The average density of the soil fauna also had a seasonal variation but ranked as autumn > summer > spring > winter, and the differences among the seasons were significant (P < 0.05). The biodiversity index of soil fauna was significantly higher in converted

  3. Soil property effects on wind erosion of organic soils

    NASA Astrophysics Data System (ADS)

    Zobeck, Ted M.; Baddock, Matthew; Scott Van Pelt, R.; Tatarko, John; Acosta-Martinez, Veronica

    2013-09-01

    Histosols (also known as organic soils, mucks, or peats) are soils that are dominated by organic matter (OM > 20%) in half or more of the upper 80 cm. Forty two states have a total of 21 million ha of Histosols in the United States. These soils, when intensively cropped, are subject to wind erosion resulting in loss of crop productivity and degradation of soil, air, and water quality. Estimating wind erosion on Histosols has been determined by USDA-Natural Resources Conservation Service (NRCS) as a critical need for the Wind Erosion Prediction System (WEPS) model. WEPS has been developed to simulate wind erosion on agricultural land in the US, including soils with organic soil material surfaces. However, additional field measurements are needed to understand how soil properties vary among organic soils and to calibrate and validate estimates of wind erosion of organic soils using WEPS. Soil properties and sediment flux were measured in six soils with high organic contents located in Michigan and Florida, USA. Soil properties observed included organic matter content, particle density, dry mechanical stability, dry clod stability, wind erodible material, and geometric mean diameter of the surface aggregate distribution. A field portable wind tunnel was used to generate suspended sediment and dust from agricultural surfaces for soils ranging from 17% to 67% organic matter. The soils were tilled and rolled to provide a consolidated, friable surface. Dust emissions and saltation were measured using an isokinetic vertical slot sampler aspirated by a regulated suction source. Suspended dust was sampled using a Grimm optical particle size analyzer. Particle density of the saltation-sized material (>106 μm) was inversely related to OM content and varied from 2.41 g cm-3 for the soil with the lowest OM content to 1.61 g cm-3 for the soil with highest OM content. Wind erodible material and the geometric mean diameter of the surface soil were inversely related to dry clod

  4. Effect of DTPA on concentration ratios of /sup 237/Np and /sup 244/Cm in vegetative parts of bush bean and barley

    SciTech Connect

    Romney, E.M.; Wallace, A.; Mueller, R.T.; Cha, J.W.; Wood, R.A.

    1981-07-01

    We grew bush beans, barley, and rice in two different soils in a glasshouse with /sup 237/Np or /sup 244/Cm mixed into separate containers of the soil. The chelating agent DTPA at 100 ..mu..g/g soil was added to half of the containers. The concentration ratio (CR) for /sup 237/Np without DTPA was two orders of magnitude higher than for /sup 244/Cm without DTPA for all three plant species. The DTPA increased the CR of /sup 244/Cm by two to three orders of magnitude, but had no influence on that for /sup 237/Np. In bush beans, both /sup 237/Np and /sup 244/Cm CRs were higher in primary leaves than in trifoliate leaves, which were higher than for stems. The CRs for bush beans were generally higher for both /sup 237/Np and /sup 244/Cm than for either barley or rice, especially without DTPA.

  5. Biogeosystem technique as the way to certainty of soil, hydrosphere, environment and climate

    NASA Astrophysics Data System (ADS)

    Kalinitchenko, Valery; Batukaev, Abdulmalik; Zarmaev, Ali; Startsev, Viktor; Chernenko, Vladimir; Dikaev, Zaurbek; Sushkova, Svetlana

    2016-04-01

    The modern technological platform awkwardly imitates the Nature. Teaching the Geosciences, development of technology, overcoming the problem of uncertainty of geospheres is impossible on the base of outdated knowledge. An emphasis is to be done not on the natural analogues, but on our new technologies - Biogeosystem Technique (BGT*). BGT* is a transcendental (not imitating the natural processes) approach to soil processing, regulation of fluxes of energy, gas, water, matter and biological productivity of biosphere: Intrasoil milling processing in 20-50 cm soil layer provides new soil disperse system, best conditions for stable evolution of techno-soil and plant growth in period up to 40 years after the single processing. Pulse intrasoil discrete irrigation provides an injection of small discrete dose of water which distributes in vertical soil cylinder. Lateral distance between successive injections is 10-15 cm. The water within 5-10 min after injection spreads in cylinder of diameter 2-4 cm at depth from 5 to 50 cm. The soil carcass around the cylinder is dry and mechanically stable. Mean thermodynamic soil water potential after watering is of -0.2 MPa. Stomatal apparatus is in a regulation mode, transpiration rate is reduced, soil solution concentration increased, plant nutrition rate and biological productivity are high. No excessive plant transpiration, evaporation and seepage of water from soil. Intrasoil environmentally safe waste return during intrasoil milling processing and (or) intrasoil pulse discrete plants watering with nutrition. Is provided the medically, veterinary and environmentally safe recycle of municipal, industrial, biological and agricultural wastes into the soil continuum. All applied substances transform to plant nutrients, not degrade to the greenhouse gas, or become the deposit of waste. Capabilities of intrasoil technologies of BGT* to correct and sustain the Nature: Correct soil evolution, long-term biological productivity of intrasoil

  6. The amino acid composition of the Sutter's Mill CM2 carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Burton, Aaron S.; Glavin, Daniel P.; Elsila, Jamie E.; Dworkin, Jason P.; Jenniskens, Peter; Yin, Qing-Zhu

    2014-11-01

    We determined the abundances and enantiomeric compositions of amino acids in Sutter's Mill fragment #2 (designated SM2) recovered prior to heavy rains that fell April 25-26, 2012, and two other meteorite fragments, SM12 and SM51, that were recovered postrain. We also determined the abundance, enantiomeric, and isotopic compositions of amino acids in soil from the recovery site of fragment SM51. The three meteorite stones experienced terrestrial amino acid contamination, as evidenced by the low D/L ratios of several proteinogenic amino acids. The D/L ratios were higher in SM2 than in SM12 and SM51, consistent with rain introducing additional L-amino acid contaminants to SM12 and SM51. Higher percentages of glycine, β-alanine, and γ-amino-n-butyric acid were observed in free form in SM2 and SM51 compared with the soil, suggesting that these free amino acids may be indigenous. Trace levels of D+L-β-aminoisobutyric acid (β-AIB) observed in all three meteorites are not easily explained as terrestrial contamination, as β-AIB is rare on Earth and was not detected in the soil. Bulk carbon and nitrogen and isotopic ratios of the SM samples and the soil also indicate terrestrial contamination, as does compound-specific isotopic analysis of the amino acids in the soil. The amino acid abundances in SM2, the most pristine SM meteorite analyzed here, are approximately 20-fold lower than in the Murchison CM2 carbonaceous chondrite. This may be due to thermal metamorphism in the Sutter's Mill parent body at temperatures greater than observed for other aqueously altered CM2 meteorites.

  7. Effects of electron irradiation and temperature on 1 ohm-cm and 10 ohm-cm silicon solar cells

    NASA Technical Reports Server (NTRS)

    Nicoletta, C. A.

    1973-01-01

    One OHM-cm and 10 OHM-cm silicon solar cells were exposed to 1.0 MeV electrons at a fixed flux of 10 to the 11th power e/sq cm/sec and fluences of 10 to the 13th power, 10 to the 14th power and 10 to the 15th power e/sq.cm. 1-V curves of the cells were made at room temperature, - 63 C and + or - 143 C after each irradiation. A value of 139.5 mw/sq cm was used as AMO incident energy rate per unit area. The 10 OHM-cm cells appear more efficient than 1 OHM-cm cells after exposure to a fluence greater than 10 to the 14th power e/sq cm. The 1.0 MeV electron damage coefficients for both 1 OHM-cm and 10 OHM-cm cells are somewhat less than those for previously irradiated cells at room temperature. The values of the damage coefficients increase as the cell temperatures decrease. Efficiencies pertaining to maximum power output are about the same as those of n on p silicon cells evaluated previously.

  8. Influence of Sub-Surface Irrigation on Soil Conditions and Water Irrigation Efficiency in a Cherry Orchard in a Hilly Semi-Arid Area of Northern China

    PubMed Central

    Peng, Gao; Bing, Wang; Guangcan, Zhang

    2013-01-01

    Sub-surface irrigation (SUI) is a new water-saving irrigation technology. To explore the influence of SUI on soil conditions in a cherry orchard and its water-saving efficiency, experiments were conducted from 2009 to 2010 using both SUI and flood irrigation (FLI) and different SUI quotas in hilly semi-arid area of northern China. The results demonstrated the following: 1) The bulk density of the soil under SUI was 6.8% lower than that of soil under FLI (P<0.01). The total soil porosity, capillary porosity and non-capillary porosity of soils using SUI were 11.7% (P<0.01), 8.7% (P<0.01) and 43.8% (P<0.01) higher than for soils using FLI. 2) The average soil temperatures at 0, 5, 10, 15 and 20 cm of soil depth using SUI were 1.7, 1.1, 0.7, 0.4 and 0.3°C higher than those for FLI, specifically, the differences between the surface soil layers were more significant. 3) Compared with FLI, the average water-saving efficiency of SUI was 55.6%, and SUI increased the irrigation productivity by 7.9-12.3 kg m-3 ha-1. 4) The soil moisture of different soil layers using SUI increased with increases in the irrigation quotas, and the soil moisture contents under SUI were significantly higher in the 0-20 cm layer and in the 21-50 cm layer than those under FLI (P<0.01). 5) The average yields of cherries under SUI with irrigation quotas of 80-320 m3 ha-1 were 8.7%-34.9% higher than those in soil with no irrigation (CK2). The average yields of cherries from soils using SUI were 4.5%-12.2% higher than using FLI. It is appropriate to irrigate 2-3 times with 230 m3 ha-1 per application using SUI in a year with normal rainfall. Our findings indicated that SUI could maintain the physical properties, greatly improve irrigation water use efficiency, and significantly increase fruit yields in hilly semi-arid areas of northern China. PMID:24039986

  9. INCREASED AIRWAYS INFLAMMATION AND MODIFIED BAL CELL SURFACE PHENOTYPES IN ASTHMATICS EXPOSED TO COARSE SIZE (PM2.5-10) CONCENTRATED AMBIENT PARTICLES (CAPS)

    EPA Science Inventory

    Although associations between inhalation of PM10 and disease morbidity and mortality appear stronger for fine (PM2.5) vs coarse (PM2.5-10) or ultrafine/UF (PM<0.1) PM. In vitro studies suggest that PM2.5-10 are more potent in inducing pro-inflammatory cytokine responses from alve...

  10. Design and Performance of 40 cm Ion Optics

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2001-01-01

    A 40 cm ion thruster is being developed at the NASA Glenn Research Center to obtain input power and propellant throughput capabilities of 10 kW and 550 kg. respectively. The technical approach here is a continuation of the "derating" technique used for the NSTAR ion thruster. The 40 cm ion thruster presently utilizes the NSTAR ion optics aperture geometry to take advantage of the large database of lifetime and performance data already available. Dome-shaped grids were chosen for the design of the 40 cm ion optics because this design is naturally suited for large-area ion optics. Ion extraction capabilities and electron backstreaming limits for the 40 cm ion optics were estimated by utilizing NSTAR 30 cm ion optics data. A preliminary service life assessment showed that the propellant throughput goal of 550 kg of xenon may be possible with molybdenum 40 cm ion optics. One 40 cm ion optics' set has been successfully fabricated to date. Additional ion optics' sets are presently being fabricated. Preliminary performance tests were conducted on a laboratory model 40 cm ion thruster.

  11. Photofraction of a 5 cm x 2 cm BGO scintillator. [bismuth germanate crystal for use in cosmic gamma ray detector

    NASA Technical Reports Server (NTRS)

    Dunphy, P. P.; Forrest, D. J.

    1985-01-01

    The photofraction of a 5.1 cm x 2.0 cm bismuth germanate (BGO) scintillator was measured over a gamma-ray energy range of 0.2 to 6.1 MeV. Several methods, used to minimize the effect of room scattering on the measurement, are discussed. These include a gamma-gamma coincidence technique, a beta-gamma coincidence technique, and the use of sources calibrated with a standard 7.6 cm x 7.6 cm sodium iodide scintillator.

  12. Effects of proton irradiation and temperature on 1 ohm-cm and 10 ohm-cm silicon solar cells

    NASA Technical Reports Server (NTRS)

    Nicoletta, C. A.

    1973-01-01

    The 1 ohm-cm and 10 ohm-cm silicon solar cells were exposed to 1.0 MeV protons at a fixed flux of 10 to the 9th power P/sq cm-sec and fluences of 10 to the 10th power, 10 to the 11th power, 10 to the 12th power and 3 X 10 to the 12th power P/sq cm. I-V curves of the cells were made at room temperature, 65 C and 165 C after each irradiation. A value of 139.5 mw/sq cm was taken as AMO incident energy rate per unit area. Degradation occurred for both uncovered 1 ohm-cm and 10 ohm-cm cells. Efficiencies are generally higher than those of comparable U.S. cells tested earlier. Damage (loss in maximum power efficiency) with proton fluence is somewhat higher for 10 ohm-cm cells, measured at the three temperatures, for fluences above 2 X 10 to the 11th power P/sq cm. Cell efficiency, as expected, changes drastically with temperature.

  13. Fast neutron induced fission cross sections of {sup 242m}Am, {sup 245}Cm, {sup 247}Cm

    SciTech Connect

    Fursov, B.I.; Samylin, B.F.; Smirenkin, G.N.; Polynov, V.N.

    1994-12-31

    The experimental data on {sup 242m}Am, {sup 245}Cm and {sup 247}Cm fission cross sections in the 0.13-7.2 Mev neutron energy range are presented. The measurements were made at Van-de-Graaf accelerators with monoenergetic neutron sources. The total data errors are 3.8% for {sup 242m}Am, 3.5% for {sup 245}Cm and 4.5% for {sup 247}Cm. The results given in this paper are preliminary ones.

  14. Pyrogenic carbon in Australian soils.

    PubMed

    Qi, Fangjie; Naidu, Ravi; Bolan, Nanthi S; Dong, Zhaomin; Yan, Yubo; Lamb, Dane; Bucheli, Thomas D; Choppala, Girish; Duan, Luchun; Semple, Kirk T

    2017-02-16

    Pyrogenic carbon (PyC), the combustion residues of fossil fuel and biomass, is a versatile soil fraction active in biogeochemical processes. In this study, the chemo-thermal oxidation method (CTO-375) was applied to investigate the content and distribution of PyC in 30 Australian agricultural, pastoral, bushland and parkland soil with various soil types. Soils were sampled incrementally to 50cm in 6 locations and at another 7 locations at 0-10cm. Results showed that PyC in Australian soils typically ranged from 0.27-5.62mg/g, with three Dermosol soils ranging within 2.58-5.62mg/g. Soil PyC contributed 2.0-11% (N=29) to the total organic carbon (TOC), with one Ferrosol as high as 26%. PyC was concentrated either in the top (0-10cm) or bottom (30-50cm) soil layers, with the highest PyC:TOC ratio in the bottom (30-50cm) soil horizon in all soils. Principal component analysis - multiple linear regression (PCA-MLR) suggested the silt-associated organic C factor accounted for 38.5% of the variation in PyC. Our findings suggest that PyC is an important fraction of the TOC (2.0-11%, N=18) and chemically recalcitrant organic C (ROC) obtained by chemical C fractionation method accounts for a significant proportion of soil TOC (47.3-84.9%, N=18). This is the first study comparing these two methods, and it indicates both CTO-375 and C speciation methods can determine a fraction of recalcitrant organic C. However, estimated chemically recalcitrant organic carbon pool (ROC) was approximately an order of magnitude greater than that of thermally stable organic carbon (PyC).

  15. Synthesis and properties of 5,10,15,20-tetra(4-lauroylimidophenyl)porphyrin and its metal complexes

    NASA Astrophysics Data System (ADS)

    Sun, Er-jun; Cheng, Xiu-li; Wang, Dong; Tang, Xue-xin; Yu, Shuang-jiang; Shi, Tong-shun

    2007-11-01

    Transition metal complexes of 5,10,15,20-tetra(4-lauroylimidophenyl)porphyrin TLPPM [M = Mn(Cl), Fe(Cl), Co, Ni, Cu, Zn] have been synthesized and characterized by means of elemental analyses, UV-VIS spectra, infrared spectra, 1H NMR spectra, molar conductance, differential scanning calorimetry (DSC), polarized optical microscopy (POM), cyclic voltammetry, luminescence spectra and surface photovoltage spectroscopies. The porphyrin ligand shows liquid crystalline behaviour, and it exhibits a high phase transition temperature 182 °C and a broad mesophase temperature span, 88 °C. The oxidation and reduction properties of the compounds were investigated by cyclic voltammetry. The photovoltaic properties and charge transfer process of the compounds were investigated by surface photovoltage spectroscopy (SPS) and electric field-induced surface photovoltage spectroscopic (EFISPS) techniques, which revealed that all the compounds are p-type semiconductors. Quantum yields of the S 1 → S 0 fluorescence were measured at room temperature. These studies will contribute to further choice and application of the liquid crystals.

  16. Insights into severe 5,10-methylenetetrahydrofolate reductase deficiency: molecular genetic and enzymatic characterization of 76 patients.

    PubMed

    Burda, Patricie; Schäfer, Alexandra; Suormala, Terttu; Rummel, Till; Bürer, Céline; Heuberger, Dorothea; Frapolli, Michele; Giunta, Cecilia; Sokolová, Jitka; Vlášková, Hana; Kožich, Viktor; Koch, Hans Georg; Fowler, Brian; Froese, D Sean; Baumgartner, Matthias R

    2015-06-01

    5,10-Methylenetetrahydrofolate reductase (MTHFR) deficiency is the most common inherited disorder of folate metabolism and causes severe hyperhomocysteinaemia. To better understand the relationship between mutation and function, we performed molecular genetic analysis of 76 MTHFR deficient patients, followed by extensive enzymatic characterization of fibroblasts from 72 of these. A deleterious mutation was detected on each of the 152 patient alleles, with one allele harboring two mutations. Sixty five different mutations (42 novel) were detected, including a common splicing mutation (c.1542G>A) found in 21 alleles. Using an enzyme assay in the physiological direction, we found residual activity (1.7%-42% of control) in 42 cell lines, of which 28 showed reduced affinity for nicotinamide adenine dinucleotide phosphate (NADPH), one reduced affinity for methylenetetrahydrofolate, five flavin adenine dinucleotide-responsiveness, and 24 abnormal kinetics of S-adenosylmethionine inhibition. Missense mutations causing virtually absent activity were found exclusively in the N-terminal catalytic domain, whereas missense mutations in the C-terminal regulatory domain caused decreased NADPH binding and disturbed inhibition by S-adenosylmethionine. Characterization of patients in this way provides a basis for improved diagnosis using expanded enzymatic criteria, increases understanding of the molecular basis of MTHFR dysfunction, and points to the possible role of cofactor or substrate in the treatment of patients with specific mutations.

  17. Effect of multivitamins on plasma homocysteine in patients with the 5,10 methylenetetrahydrofolate reductase C677T homozygous state.

    PubMed

    Dell'edera, Domenico; Tinelli, Andrea; Milazzo, Giusi Natalia; Malvasi, Antonio; Domenico, Carone; Pacella, Elena; Pierluigi, Compagnoni; Giuseppe, Tarantino; Marcello, Guido; Francesco, Lomurno; Epifania, Annunziata Anna

    2013-08-01

    The role of hyperhomocysteinemia (HHcy) as a cardiovascular risk factor remains a matter of debate, while it correlates with folates, it demonstrates inverse correlation with plasma homocysteine (Hcy) levels and vitamin B12 levels and reduces plasma Hcy levels following supplementation with multivitamins. The purpose of this study was to demonstrate that administering multivitamins at specific doses for 90 days restores normal plasma Hcy levels in women who are homozygous for the thermolabile variant of 5,10 methylenetetrahydrofolate reductase (MTHFR C677T). We enrolled 106 healthy females aged between 30 and 42 years, who were non-smokers, non-vegetarian, normotensive and who had no history of food abuse in the previous months. Only females were enrolled in order to rule out any bias due to the variation in Hcy plasma concentrations between males and females. Patient blood sampling was performed in order to determine plasma Hcy, serum folic acid and vitamin B12 levels. Furthermore, molecular characterization of the C677T polymorphism present in the MTHFR gene, was also performed. The results of this study demonstrated that supplementation with specific multivitamins restores normal plasma Hcy levels, regardless of the MTHFR genotype. Furthermore, it is unnecessary to adminster high doses of folate to reduce plasma Hcy levels, and administering high doses of folate may cause pro-inflammatory and pro-proliferative effects.

  18. Microwave soft x-ray microscopy for nanoscale magnetization dynamics in the 5-10 GHz frequency range

    NASA Astrophysics Data System (ADS)

    Bonetti, Stefano; Kukreja, Roopali; Chen, Zhao; Spoddig, Detlef; Ollefs, Katharina; Schöppner, Christian; Meckenstock, Ralf; Ney, Andreas; Pinto, Jude; Houanche, Richard; Frisch, Josef; Stöhr, Joachim; Dürr, Hermann A.; Ohldag, Hendrik

    2015-09-01

    We present a scanning transmission x-ray microscopy setup combined with a novel microwave synchronization scheme for studying high frequency magnetization dynamics at synchrotron light sources. The sensitivity necessary to detect small changes in the magnetization on short time scales and nanometer spatial dimensions is achieved by combining the excitation mechanism with single photon counting electronics that is locked to the synchrotron operation frequency. Our instrument is capable of creating direct images of dynamical phenomena in the 5-10 GHz range, with high spatial resolution. When used together with circularly polarized x-rays, the above capabilities can be combined to study magnetic phenomena at microwave frequencies, such as ferromagnetic resonance (FMR) and spin waves. We demonstrate the capabilities of our technique by presenting phase resolved images of a ˜6 GHz nanoscale spin wave generated by a spin torque oscillator, as well as the uniform ferromagnetic precession with ˜0.1° amplitude at ˜9 GHz in a micrometer-sized cobalt strip.

  19. A Neptune-sized transiting planet closely orbiting a 5-10-million-year-old star

    NASA Astrophysics Data System (ADS)

    David, Trevor J.

    2016-10-01

    Theories of the formation and early evolution of planetary systems postulate that planets are born in circumstellar disks, and undergo radial migration during and after dissipation of the dust and gas disk from which they formed. The precise ages of meteorites indicate that planetesimals - the building blocks of planets - are produced within the first million years of a star's life. A prominent question is: how early can one find fully formed planets like those frequently detected on short orbital periods around mature stars? Some theories suggest the in situ formation of planets close to their host stars is unlikely and the existence of such planets is evidence for large scale migration. Other theories posit that planet assembly at small orbital separations may be common. Here we report on a newly-born, transiting planet orbiting its star every 5.4 days. The planet is 50 per cent larger than Neptune, and its mass is less than 3.6 times Jupiter (at 99.7 per cent confidence), with a true mass likely to be within a factor of several of Neptune's. The 5-10 million year old star has a tenuous dust disk extending outwards from about 2 times the Earth-Sun separation, in addition to the large planet located at less than one-twentieth the Earth-Sun separation.

  20. 5,10-Methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTRR), and methionine synthase reductase (MTR) gene polymorphisms and adult meningioma risk.

    PubMed

    Zhang, Jun; Zhou, Yan-Wen; Shi, Hua-Ping; Wang, Yan-Zhong; Li, Gui-Ling; Yu, Hai-Tao; Xie, Xin-You

    2013-11-01

    The causes of meningiomas are not well understood. Folate metabolism gene polymorphisms have been shown to be associated with various human cancers. It is still controversial and ambiguous between the functional polymorphisms of folate metabolism genes 5,10-methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTRR), and methionine synthase reductase (MTR) and risk of adult meningioma. A population-based case–control study involving 600 meningioma patients (World Health Organization [WHO] Grade I, 391 cases; WHO Grade II, 167 cases; WHO Grade III, 42 cases) and 600 controls was done for the MTHFR C677T and A1298C, MTRR A66G, and MTR A2756G variants in Chinese Han population. The folate metabolism gene polymorphisms were determined by using a polymerase chain reaction–restriction fragment length polymorphism assay. Meningioma cases had a significantly lower frequency of MTHFR 677 TT genotype [odds ratio (OR) = 0.49, 95 % confidence interval (CI) 0.33–0.74; P = 0.001] and T allele (OR = 0.80, 95 % CI 0.67–0.95; P = 0.01) than controls. A significant association between risk of meningioma and MTRR 66 GG (OR = 1.41, 95 % CI 1.02–1.96; P = 0.04) was also observed. When stratifying by the WHO grade of meningioma, no association was found. Our study suggested that MTHFR C677T and MTRR A66G variants may affect the risk of adult meningioma in Chinese Han population.

  1. DNA Physical Mapping via the Controlled Translocation of Single Molecules through a 5-10nm Silicon Nitride Nanopore

    NASA Astrophysics Data System (ADS)

    Stein, Derek; Reisner, Walter; Jiang, Zhijun; Hagerty, Nick; Wood, Charles; Chan, Jason

    2009-03-01

    The ability to map the binding position of sequence-specific markers, including transcription-factors, protein-nucleic acids (PNAs) or deactivated restriction enzymes, along a single DNA molecule in a nanofluidic device would be of key importance for the life-sciences. Such markers could give an indication of the active genes at particular stage in a cell's transcriptional cycle, pinpoint the location of mutations or even provide a DNA barcode that could aid in genomics applications. We have developed a setup consisting of a 5-10 nm nanopore in a 20nm thick silicon nitride film coupled to an optical tweezer setup. The translocation of DNA across the nanopore can be detected via blockades in the electrical current through the pore. By anchoring one end of the translocating DNA to an optically trapped microsphere, we hope to stretch out the molecule in the nanopore and control the translocation speed, enabling us to slowly scan across the genome and detect changes in the baseline current due to the presence of bound markers.

  2. A Neptune-sized transiting planet closely orbiting a 5-10-million-year-old star

    NASA Astrophysics Data System (ADS)

    David, Trevor J.; Hillenbrand, Lynne A.; Petigura, Erik A.; Carpenter, John M.; Crossfield, Ian J. M.; Hinkley, Sasha; Ciardi, David R.; Howard, Andrew W.; Isaacson, Howard T.; Cody, Ann Marie; Schlieder, Joshua E.; Beichman, Charles A.; Barenfeld, Scott A.

    2016-06-01

    Theories of the formation and early evolution of planetary systems postulate that planets are born in circumstellar disks, and undergo radial migration during and after dissipation of the dust and gas disk from which they formed. The precise ages of meteorites indicate that planetesimals—the building blocks of planets—are produced within the first million years of a star’s life. Fully formed planets are frequently detected on short orbital periods around mature stars. Some theories suggest that the in situ formation of planets close to their host stars is unlikely and that the existence of such planets is therefore evidence of large-scale migration. Other theories posit that planet assembly at small orbital separations may be common. Here we report a newly born, transiting planet orbiting its star with a period of 5.4 days. The planet is 50 per cent larger than Neptune, and its mass is less than 3.6 times that of Jupiter (at 99.7 per cent confidence), with a true mass likely to be similar to that of Neptune. The star is 5-10 million years old and has a tenuous dust disk extending outward from about twice the Earth-Sun separation, in addition to the fully formed planet located at less than one-twentieth of the Earth-Sun separation.

  3. Nickel removal from nickel-5,10,15,20-tetraphenylporphine using supercritical water in absence of catalyst: a basic study.

    PubMed

    Mandal, Pradip Chandra; Wahyudiono; Sasaki, Mitsuru; Goto, Motonobu

    2011-03-15

    Reactions of nickel-5,10,15,20-tetraphenylporphine (Ni-TPP) were studied in supercritical water in the presence of toluene without the addition of any catalyst, H(2) or H(2)S that is called a green process. The objective of this study was to remove nickel from Ni-TPP, the most common metal compound present in heavy crude, in high extent at low reaction time. All experiments were carried out in an 8.8 mL batch reactor fabricated from hastelloy C-276. The ability of supercritical water (SCW) to remove nickel from Ni-TPP was studied at temperatures of 450-490 °C and water partial pressures of 25-35 MPa. Water partial pressure had no effect on overall conversion at temperatures of 450 °C and a reaction time of 60 min. The overall Ni-TPP conversion was 89.80%, a figure above that of previous catalytic studies. The percentage of nickel removal was estimated as a function of reaction time and temperature. It were temperature 490 °C and pressure 25 MPa at reaction time 90 min where 65.68% nickel were removed by the action of SCW and toluene, as a co-solvent. It was determined that Ni-TPP undergoes a series of reactions, ending in demetallation and ring fragmentation. The obtained results suggest that supercritical water has a capability to remove nickel from Ni-TPP.

  4. Biochar increases plant available water in a sandy soil under an aerobic rice cropping system

    NASA Astrophysics Data System (ADS)

    de Melo Carvalho, M. T.; de Holanda Nunes Maia, A.; Madari, B. E.; Bastiaans, L.; van Oort, P. A. J.; Heinemann, A. B.; Soler da Silva, M. A.; Petter, F. A.; Meinke, H.

    2014-03-01

    The main objective of this study was to assess the impact of biochar rate (0, 8, 16 and 32 t ha-1) on the water retention capacity (WRC) of a sandy Dystric Plinthosol. The applied biochar was a by-product of slow pyrolysis (∼450 °C) of eucalyptus wood, milled to pass through a 2000 μm sieve that resulted in a material with an intrinsic porosity ≤10 μm and a specific surface area of ∼3.2 m2 g-1. The biochar was incorporated into the top 15 cm of the soil under an aerobic rice system. Our study focused on both the effects on WRC and rice yields at 2 and 3 years after application. Undisturbed soil samples were collected from 16 plots in two soil layers (5-10 and 15-20 cm). Soil water retention curves were modelled using a nonlinear mixed model which appropriately accounts for uncertainties inherent of spatial variability and repeated measurements taken within a specific soil sample. We found an increase in plant available water in the upper soil layer proportional to the rate of biochar, with about 0.8% for each t ha-1 of biochar amendment at 2 and 3 years after application. The impact of biochar on soil WRC was most likely related to an increase in overall porosity of the sandy soil, which was evident from an increase in saturated soil moisture and macro porosity with 0.5% and 1.6% for each t ha-1 of biochar applied, respectively. The increment in soil WRC did not translate into an increase in rice yield, essentially because in both seasons the amount of rainfall during critical period for rice production exceeded 650 mm. The use of biochar as a soil amendment can be a worthy strategy to guarantee yield stability under water limited conditions. Our findings raise the importance of assessing the feasibility of very high application rates of biochar and the inclusion of a detailed analysis of its physical and chemical properties as part of future investigations.

  5. Profiling soil water content sensor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A waveguide-on-access-tube (WOAT) sensor system based on time domain reflectometry (TDR) principles was developed to sense soil water content and bulk electrical conductivity in 20-cm (8 inch) deep layers from the soil surface to depths of 3 m (10 ft) (patent No. 13/404,491 pending). A Cooperative R...

  6. Changes in soil parameters under continuous plastic mulching in strawberry cultivation

    NASA Astrophysics Data System (ADS)

    Muñoz, Katherine; Diehl, Dörte; Scopchanova, Sirma; Schaumann, Gabriele E.

    2016-04-01

    Plastic mulching (PM) is a widely used practice in modern agriculture because they generate conditions for optimal yield rates and quality. However, information about long-term effects of PC on soil quality parameters is scarce. The aim of this study is to compare the effect of three different mulching managements on soil quality parameters. Sampling and methodology: Three different managements were studied: Organic mulching (OM), 2-years PM and 4-years PM. Soil samples were collected from irrigated fields in 0-5, 5-10 and 10-30 cm depths and analyzed for water content (WC), pH, dissolved organic carbon (DOC), total soil carbon (Ctot) and cation exchange capacity (CECeff). Results and discussion: Mulching management has an influence on soil parameters. The magnitude of the effects is influenced by the type (organic agriculture practice vs. plastic mulching practice) and duration of the mulching. PM modified the water distribution through the soil column. WC values at the root zone were in average 10% higher compared to those measured at the topsoil. Under OM, the WC was lower than under PM. The pH was mainly influenced by the duration of the managements with slightly higher values after 4 than after 2-years PM. Under PM, aqueous extracts of the topsoil (0-5 cm depth) contained in average with 8.5±1.8 mg/L higher DOC than in 10-30 cm depth with 5.6±0.5 mg/L, which may indicate a mobilization of organic components in the upper layers. After 4-years PM, Ctot values were slightly higher than after 2-years PM and after OM. Surprisingly, after 4-years PM, CECeff values were with 138 - 157 mmolc/kg almost 2-fold higher than after 2-years PM and OM which had with 74 - 102 mmolc/kg comparable CECeff values. Long-term PM resulted in changes of soil pH and slightly increased Ctot which probably enhanced the CECeff of the soil. However, further investigations of the effect of PM on stability of soil organic matter and microbial community structure are needed.

  7. Microwave remote sensing of soil water content

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Ulaby, F. T.

    1975-01-01

    Microwave remote sensing of soils to determine water content was considered. A layered water balance model was developed for determining soil water content in the upper zone (top 30 cm), while soil moisture at greater depths and near the surface during the diurnal cycle was studied using experimental measurements. Soil temperature was investigated by means of a simulation model. Based on both models, moisture and temperature profiles of a hypothetical soil were generated and used to compute microwave soil parameters for a clear summer day. The results suggest that, (1) soil moisture in the upper zone can be predicted on a daily basis for 1 cm depth increments, (2) soil temperature presents no problem if surface temperature can be measured with infrared radiometers, and (3) the microwave response of a bare soil is determined primarily by the moisture at and near the surface. An algorithm is proposed for monitoring large areas which combines the water balance and microwave methods.

  8. Prediction of soil organic carbon concentration and soil bulk density of mineral soils for soil organic carbon stock estimation

    NASA Astrophysics Data System (ADS)

    Putku, Elsa; Astover, Alar; Ritz, Christian

    2016-04-01

    Soil monitoring networks provide a powerful base for estimating and predicting nation's soil status in many aspects. The datasets of soil monitoring are often hierarchically structured demanding sophisticated data analyzing methods. The National Soil Monitoring of Estonia was based on a hierarchical data sampling scheme as each of the monitoring site was divided into four transects with 10 sampling points on each transect. We hypothesized that the hierarchical structure in Estonian Soil Monitoring network data requires a multi-level mixed model approach to achieve good prediction accuracy of soil properties. We used this database to predict soil bulk density and soil organic carbon concentration of mineral soils in arable land using different statistical methods: median approach, linear regression and mixed model; additionally, random forests for SOC concentration. We compared the prediction results and selected the model with the best prediction accuracy to estimate soil organic carbon stock. The mixed model approach achieved the best prediction accuracy in both soil organic carbon (RMSE 0.22%) and bulk density (RMSE 0.09 g cm-3) prediction. Other considered methods under- or overestimated higher and lower values of soil parameters. Thus, using these predictions we calculated the soil organic carbon stock of mineral arable soils and applied the model to a specific case of Tartu County in Estonia. Average estimated SOC stock of Tartu County is 54.8 t C ha-1 and total topsoil SOC stock 1.8 Tg in humus horizon.

  9. Characterization of field compaction using shrinkage analysis and visual soil examination

    NASA Astrophysics Data System (ADS)

    Johannes, Alice; Keller, Thomas; Weisskopf, Peter; Schulin, Rainer; Boivin, Pascal

    2016-04-01

    Visual field examination of soil structure can be very useful in extension work, because it is easy to perform, does not require equipment or lab analyses and the result is immediately available. The main limitations of visual methods are subjectivity and variation with field conditions. To provide reliable reference information, methods for objective and quantitative assessment of soil structure quality are still necessary. Soil shrinkage analysis (ShA) (Braudeau et al., 2004) provides relevant parameters for soil functions that allow precise and accurate assessment of soil compaction. To test it, we applied ShA to samples taken from a soil structure observatory (SSO) set up in 2014 on a loamy soil in Zurich, Switzerland to quantify the structural recovery of compacted agricultural soil. The objective in this presentation is to compare the ability of a visual examination method and ShA to assess soil compaction and structural recovery on the SSO field plots. Eighteen undisturbed soil samples were taken in the topsoil (5-10 cm) and 9 samples in the subsoil (30-35 cm) of compacted plots and control. Each sample went through ShA, followed by a visual examination of the sample and analysis of soil organic carbon and texture. ShA combines simultaneous shrinkage with water retention measurements and, in addition to soil properties such as bulk density, coarse and fine porosity, also provides information on hydrostructural stability and plasma and structural porosity. For visual examination the VESS method of Ball et al. (2007) was adapted to core samples previously equilibrated at -100 hPa matric potential. The samples were randomly and anonymously scored to avoid subjectivity and were equilibrated to insure comparable conditions. Compaction decreased the total specific volume, as well as air and water content at all matric potentials. Structural porosity was reduced, while plasma porosity remained unchanged. Compaction also changed the shape of the shrinkage curve: (i

  10. The influence of plant communities on postagrogenic soils in the middle taiga zone.

    NASA Astrophysics Data System (ADS)

    Churilin, Nikita; Churilina, Alexandra; Chizhikova, Natalia; Varlamov, Evgeny

    2016-04-01

    At the present time there are many abandoned postagrogenic croplands in Russia. These lands are gradually involved in natural plant succession, which has affect on the properties of the soil. Therefore, the study of these soils is one of the important trends in the Russian soil science. The aim of the study was to identify possible trends in soil changes after a long anthropogenic impact on a base of morphological, chemical and some physical properties of postagrogenic soils under different plant communities. Soils were sampled in the south of Arkhangelsk region, Ustyansky district, near Akichkin Pochinok village. Soils are formed on clay moraine of Moscow glaciation with klastolits. All soil profiles were dug on interfluve. We determined chemical composition (pH, CaCO3%, organic carbon, CEC, F2O3 (Mer-Jackson), NPK), physical characteristics (particle size distribution, bulk density of the soil) and XRD of <1μm, 1-5μm, 5-10μm fractions from soils. We selected 4 plant communities on different stages of succession: upland meadow with domination of sod grasses (Phleum pratense, Agrostis tenuis), 16 years old birch forest where dominatants are herbaceous plants such as Poa sp., Chamerion angustiflium, Agrostis tenuis, 16 years old spruce forest with no herbaceous vegetation and 70 years old bilberry spruce forest with domination of Vaccinium myrtillus and Vaccinium vitis-idaea. To study postagrogenic soils we made 4 soil profiles under these plant communities. All profiles have evidence of anthraquic horizon and they have plough pan on a depth of 20-24 cm (confirmed by bulk density). The plowed horizon is better expressed in soils under the meadow. All 4 soils are characterized by presence of Fe-Mn segregations throughout the profiles, particle size distribution heaving to the lower horizon and residual albic horizon. We identified following soils: Albic Dystric Retisol (Cutanic Abrubptic Loamic) under the old spruce, Dystric Retisol (Cutanic Loamic Anthraquic) in

  11. Eight-cm mercury ion thruster system technology

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The technology status of 8 cm diameter electron bombardment ion thrusters is presented. Much of the technology resulting from the 5 cm diameter thruster has been adapted and improved upon to increase the reliability, durability, and efficiency of the 8 cm thruster. Technology discussed includes: dependence of neutralizer tip erosion upon neutralizer flow rate; impregnated and rolled-foil insert cathode performance and life testing; neutralizer position studies; thruster ion beam profile measurements; high voltage pulse ignition; high utilization ion machined accelerator grids; deposition internal and external to the thruster; thruster vectoring systems; thruster cycling life testing and thruster system weights for typical mission applications.

  12. Ion accelerator systems for high power 30 cm thruster operation

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1982-01-01

    Two and three-grid accelerator systems for high power ion thruster operation were investigated. Two-grid translation tests show that over compensation of the 30 cm thruster SHAG grid set spacing the 30 cm thruster radial plasma density variation and by incorporating grid compensation only sufficient to maintain grid hole axial alignment, it is shown that beam current gains as large as 50% can be realized. Three-grid translation tests performed with a simulated 30 cm thruster discharge chamber show that substantial beamlet steering can be reliably affected by decelerator grid translation only, at net-to-total voltage ratios as low as 0.05.

  13. Alteration and formation of rims on the CM parent body

    NASA Astrophysics Data System (ADS)

    Browning, Lauren B.; McSween, Harry Y., Jr.; Zolensky, Michael

    1994-03-01

    All types of coarse-grained components in CM chondrites are surrounded by fine-grained dust coatings, but the origin of these rims is not yet clear. Although a strictly nebular origin seems likely for rims in the relatively unaltered type 3 chondrites, the rims in CM chondrites are dominated by secondary alteration phases. It has been argued that either the coarse-grained cores accreted altered rim materials while still in the nebula or that alteration of primary rim phases occurred on the CM parent body. To constrain the origin of alteration phases in rim material, we have analyzed the textures and mineral associations from 10 CM chondritic falls by optical and scanning electron microscopy. Our results indicate that the secondary phases in CM chondritic rims were produced by parent body fluid-rock interactions which redefined some primary rim textures and may have produced, in some cases, both coarse-grained components and the rims that surround them. Textural features demonstrate the interactive exchange of alteration fluids between rims, matrix, and chondrules on the CM parent body. For example, most matrix-rim contacts are gradational, suggesting the synchronous alteration of both components. Several observations suggest the possibility of in situ rim production. For example, tochilinite and phyllosilicates commonly form rims around matrix carbonates, which are generally believed to have precipitated from alteration fluids on the CM parent body. This suggests that the rims surrounding matrix carbonates may also have been produced by alteration processes. Partially replaced chondrule olivines bear a striking resemblance to many rimmed olivines in the matrix which suggests, by analogy, that site-specific precipitation of S-bearing phases may also be responsible for the occurrence of many tochilinite-rich rims around isolated matrix olivines. Non-silicate rims precipitate around olivines of any composition, but the process is most effective for fayalitic olivines

  14. Polymorphisms of 5,10-methylenetetrahydrofolate reductase and thymidylate synthase, dietary folate intake, and the risk of leukemia in adults.

    PubMed

    Liu, Ping; Zhang, Min; Xie, Xing; Jin, Jie; Holman, C D'Arcy J

    2016-03-01

    The 5,10-methylenetetrahydrofolate reductase (MTHFR) and thymidylate synthase (TS) are critical enzymes in folate metabolism. Previous studies have reported conflicting results on the associations between MTHFR/TS polymorphisms and adult leukemia risk, which may due to the lack of information on folate intake. We investigated the risks of adult leukemia with genetic polymorphisms of folate metabolic enzymes (MTHFR C677T, A1298C, and TS) and evaluated if the associations varied by dietary folate intake from a multicenter case-control study conducted in Chinese. This study comprised 442 incident adult leukemia cases and 442 outpatient controls, individually matched to cases by gender, birth quinquennium, and study site. Genotypes were determined by a polymerase chain reaction (PCR) or PCR-based restriction fragment length polymorphism assay. Dietary folate intake was assessed by face-to-face interviews using a validated food-frequency questionnaire. The MTHFR 677TT genotype conferred a significant higher risk of leukemia in males than in females and exhibited an increased risk of acute myeloid leukemia (AML) but a decreased risk of acute lymphoblastic leukemia (ALL). The MTHFR 1298AC genotype appeared to decrease the risks of leukemia in both genders, in AML and ALL. Stratified analysis by dietary folate intake showed the increased risks of leukemia with the MTHFR 677TT and TS 2R3R/2R2R genotypes were only significant in individuals with low folate intake. A significant interaction between TS polymorphism and dietary folate intake was observed (P = 0.03). This study suggests that dietary folate intake and gender may modify the associations between MTHFR/TS polymorphisms and adult leukemia risk.

  15. Oxidation of tertiary benzamides by 5,10,15,20-tetraphenylporphyrinatoironIII chloride-tert-butylhydroperoxide.

    PubMed

    Constantino, Luis; Iley, Jim

    2004-07-07

    Tertiary benzamides are oxidized by the 5,10,15,20-tetraphenylporphyrinatoiron(III) chloride-Bu'(t)OOH system at the alpha-position of the N-alkyl groups. The major products are N-acylamides, although small amounts of secondary amides, the products of dealkylation, are also formed. Plots of initial rate versus initial substrate concentration for these reactions are curved, suggesting formation of an oxidant-substrate complex. The reaction rates are almost insensitive to the substituent in the benzamide moiety, but there is a kinetic deuterium isotope effect of 5.6 for the reaction of the N,N-(CH(3))(2) and N,N-(CD(3))(2) compounds. Comparison of the reaction products from N-alkyl-N-methylbenzamides reveals that, for all compounds studied except N-cyclopropyl-N-methylbenzamide, oxidation of the alkyl group is preferred, strongly so (by a factor of ca. 8) for N-allyl-N-methylbenzamide. In contrast to microsomal oxidation, there is no steric hindrance to oxidation of an isopropyl group. Thus, we propose that these reactions proceed via hydrogen atom abstraction to form an alpha-carbon-centred radical and we attribute the observed diminished reactivity of the N-cyclopropyl group to its known reluctance to form a cyclopropyl radical. Oxidation of N-methyl-N-(2,2,3,3-tetramethylcyclopropyl)methylbenzamide provides preliminary evidence for rearrangement of an intermediate radical. While it remains unclear how these reactions proceed directly to the N-acyl products, we have established that N-hydroxymethyl, N-alkoxymethyl and N-alkylperoxymethyl intermediates are not involved.

  16. Soil Quality in Mining Areas Undergoing Ecological Restoration

    NASA Astrophysics Data System (ADS)

    Dinarowski, Marcela; Casagrande, José Carlos; Bizuti, Denise T. G.; Silva, Luiz Gabriel; Soares, Marcio Roberto; Brancalion, Pedro H. S.

    2014-05-01

    Mining is one of the anthropogenic activities most impactful to natural resources, and can profoundly affect the resilience of ecosystems depending on the level of soil degradation. Ecological restoration has generated promising results even in situations of degradation as intense as those of mining. The aim of this study was to evaluate the quality of the soil in areas explored by the bauxite extraction undergoing restoration: recently mined, seven years, 20 years and native forest. The studied areas are located in the municipality of Poços de Caldas-MG, belonging to ALCOA Alumínio. The mined-out areas for seven and twenty years were uncompressed and received topsoil, liming and fertilization with nitrogen, phosphorus and potassium. Samples for chemical analyses of soil fertility were carried out at depths of 0-5, 5-10, 10-20, 20-40 and 40-60 cm. Soil quality was evaluated by pondered additive model. The parameters were considered organic matter (0.6) and bases saturation (0.4) for soil fertility function (0.6) and calcium (0.5) and aluminum saturation (0.5) for the function root development (0.4) - (the numbers in parentheses represent the weights attributed). Despite the high content, only the organic matter was not a parameter enough to classify the soil quality, once the native forest has very low base saturation (7%). The soil quality index(SQI) obtained allowed to classify the areas, being the first restored 20 years ago with SQI equal to 0.7 followed of the restored 7 years ago, native forest and newly mined with SQIs equal to 0.6, 04 and 0.3, respectively. The native tropical forests have low soil fertility, keeping by the cycling of nutrients. This demonstrates the need for the degraded areas, especially the mined, are uncompressed to allow storage of water and root development, in addition to the replacement of nutrients and soil acidity correction, especially high levels of aluminum saturation (66%) and low calcium (3 mmolcdm-3).

  17. The impact of soil compaction and freezing-thawing cycles on soil structure and yield in Mollisol region of China

    NASA Astrophysics Data System (ADS)

    Wang, Enheng; Zhao, Yusen; Chen, Xiangwei

    2015-04-01

    Agricultural machinery tillage and alternating freezing and thawing are two critical factors associated with soil structure change and accelerates soil erosion in the black soil region of Northeast China. Combining practical machinery operation and natural freeze-thaw cycles with artificial machinery compaction in the field and artificial freeze-thaw cycles in the lab, the plus and minus benefits of machinery tillage, characterization of seasonal freeze-thaw cycles, and their effects on soil structure and yield were studied. Firstly,the effects of machinery type and antecedent water content on soil structure and soil available nutrient were investigated by measuring soil bulk density, soil strength, soil porosity, soil aggregate distribution and stability, and three soil phases. The results showed that: Machinery tillage had positive and negative influence on soil structure, soil in top cultivated layer can be loosened and ameliorated however the subsoil accumulation of compaction was resulted. For heavy and medium machinery, subsoil compaction formed in the soil depth of 41~60cm and 31~40cm, respectively; however during the soil depth of 17.5~30cm under medium machinery operation there was a new plow pan produced because of the depth difference between harvesting and subsoiling. Antecedent water content had a significant effect on soil structure under machinery operations. Higher water antecedent resulted in deeper subsoil compaction at 40cm,which was deeper by 10cm than lower water content and soil compaction accumulation occurred at the first pass under higher water content condition. Besides water content and bulk density, soil organic matter is another key factor for affecting compressive-resilient performance of tillage soil. Secondly, based on the soils sampled from fields of the black soil region, the effects of freeze-thaw cycles on soil structure at different soil depths (0 -- 40 cm, 40 -- 80 cm, 120 -- 160 cm) and size scales (field core sampling

  18. Laboratory Experiment on Electrokinetic Remediation of Soil

    ERIC Educational Resources Information Center

    Elsayed-Ali, Alya H.; Abdel-Fattah, Tarek; Elsayed-Ali, Hani E.

    2011-01-01

    Electrokinetic remediation is a method of decontaminating soil containing heavy metals and polar organic contaminants by passing a direct current through the soil. An undergraduate chemistry laboratory is described to demonstrate electrokinetic remediation of soil contaminated with copper. A 30 cm electrokinetic cell with an applied voltage of 30…

  19. An Infiltration Exercise for Introductory Soil Science

    ERIC Educational Resources Information Center

    Barbarick, K. A.; Ippolito, J. A.; Butters, G.; Sorge, G. M.

    2005-01-01

    One of the largest challenges in teaching introductory soil science is explaining the dynamics of soil infiltration. To aid students in understanding the concept and to further engage them in active learning in the soils laboratory course, we developed an exercise using Decagon Mini-Disk Infiltrometers with a tension head (h[subscript o]) of 2 cm.…

  20. Benchmarking and performance analysis of the CM-2. [SIMD computer

    NASA Technical Reports Server (NTRS)

    Myers, David W.; Adams, George B., II

    1988-01-01

    A suite of benchmarking routines testing communication, basic arithmetic operations, and selected kernel algorithms written in LISP and PARIS was developed for the CM-2. Experiment runs are automated via a software framework that sequences individual tests, allowing for unattended overnight operation. Multiple measurements are made and treated statistically to generate well-characterized results from the noisy values given by cm:time. The results obtained provide a comparison with similar, but less extensive, testing done on a CM-1. Tests were chosen to aid the algorithmist in constructing fast, efficient, and correct code on the CM-2, as well as gain insight into what performance criteria are needed when evaluating parallel processing machines.

  1. The 21-cm Signal from the cosmological epoch of recombination

    SciTech Connect

    Fialkov, A.; Loeb, A. E-mail: aloeb@cfa.harvard.edu

    2013-11-01

    The redshifted 21-cm emission by neutral hydrogen offers a unique tool for mapping structure formation in the early universe in three dimensions. Here we provide the first detailed calculation of the 21-cm emission signal during and after the epoch of hydrogen recombination in the redshift range of z ∼ 500–1,100, corresponding to observed wavelengths of 100–230 meters. The 21-cm line deviates from thermal equilibrium with the cosmic microwave background (CMB) due to the excess Lyα radiation from hydrogen and helium recombinations. The resulting 21-cm signal reaches a brightness temperature of a milli-Kelvin, orders of magnitude larger than previously estimated. Its detection by a future lunar or space-based observatory could improve dramatically the statistical constraints on the cosmological initial conditions compared to existing two-dimensional maps of the CMB anisotropies.

  2. CM Process Improvement and the International Space Station Program (ISSP)

    NASA Technical Reports Server (NTRS)

    Stephenson, Ginny

    2007-01-01

    This viewgraph presentation reviews the Configuration Management (CM) process improvements planned and undertaken for the International Space Station Program (ISSP). It reviews the 2004 findings and recommendations and the progress towards their implementation.

  3. Orion Landing Simulation Eight Soil Model Comparison

    NASA Technical Reports Server (NTRS)

    Mark, Stephen D.

    2009-01-01

    LS-DYNA finite element simulations of a rigid Orion Crew Module (CM) were used to investigate the CM impact behavior on eight different soil models. Ten different landing conditions, characterized by the combination of CM vertical and horizontal velocity, hang angle, and roll angle were simulated on the eight different soils. The CM center of gravity accelerations, pitch angle, kinetic energy, and soil contact forces were the outputs of interest. The simulation results are presented, with comparisons of the CM behavior on the different soils. The soils analyzed in this study can be roughly categorized as soft, medium, or hard, according to the CM accelerations that occur when landing on them. The soft group is comprised of the Carson Sink Wet soil and the Kennedy Space Center (KSC) Low Density Dry Sand. The medium group includes Carson Sink Dry, the KSC High Density In-Situ Moisture Sand and High Density Flooded Sand, and Cuddeback B. The hard soils are Cuddeback A and the Gantry Unwashed Sand. The softer soils were found to produce lower peak accelerations, have more stable pitch behavior, and to be less sensitive to the landing conditions. This investigation found that the Cuddeback A soil produced the highest peak accelerations and worst stability conditions, and that the best landing performance was achieved on the KSC Low Density Dry Sand.

  4. Soils and the soil cover of the Valley of Geysers

    NASA Astrophysics Data System (ADS)

    Kostyuk, D. N.; Gennadiev, A. N.

    2014-06-01

    The results of field studies of the soil cover within the tourist part of the Valley of Geysers in Kamchatka performed in 2010 and 2011 are discussed. The morphology of soils, their genesis, and their dependence on the degree of hydrothermal impact are characterized; the soil cover patterns developing in the valley are analyzed. On the basis of the materials provided by the Kronotskii Biospheric Reserve and original field data, the soil map of the valley has been developed. The maps of vegetation conditions, soil temperature at the depth of 15 cm, and slopes of the surface have been used for this purpose together with satellite imagery and field descriptions of reference soil profiles. The legend to the soil map includes nine soil units and seven units of parent materials and their textures. Soil names are given according to the classification developed by I.L. Goldfarb (2005) for the soils of hydrothermal fields. The designation of soil horizons follows the new Classification and Diagnostic System of Russian Soils (2004). It is suggested that a new horizon—a thermometamorphic horizon TRM—can be introduced into this system by analogy with other metamorphic (transformed in situ) horizons distinguished in this system. This horizon is typical of the soils partly or completely transformed by hydrothermal impacts.

  5. Risk of Malignancy in Thyroid Nodules 4 cm or Larger

    PubMed Central

    2017-01-01

    Background Several authors have questioned the accuracy of fine-needle aspiration cytology (FNAC) in large nodules. Some surgeons recommend thyroidectomy for nodules ≥4 cm even in the setting of benign FNAC, due to increased risk of malignancy and increased false negative rates in large thyroid nodules. The goal of our study was to evaluate if thyroid nodule size is associated with risk of malignancy, and to evaluate the false negative rate of FNAC for thyroid nodules ≥4 cm in our patient population. Methods This is a retrospective study of 85 patients with 101 thyroid nodules, who underwent thyroidectomy for thyroid nodules measuring ≥4 cm. Results The overall risk of malignancy in nodules ≥4 cm was 9.9%. Nodule size was not associated with risk of malignancy (odds ratio, 1.02) after adjusting for nodule consistency, age, and sex (P=0.6). The false negative rate for FNAC was 0%. Conclusion Nodule size was not associated with risk of malignancy in nodules ≥4 cm in our patient population. FNAC had a false negative rate of 0. Patients with thyroid nodules ≥4 cm and benign cytology should not automatically undergo thyroidectomy. PMID:28181427

  6. Seasonal changes of apparent thermal diffusivity of different kinds of soils

    NASA Astrophysics Data System (ADS)

    Dedecek, Petr; Safanda, Jan; Correia, Antonio; Rajver, Dusan; Cermak, Vladimir; Kresl, Milan

    2013-04-01

    The paper addresses the problem of seasonal changes of apparent thermal diffusivity (ATD) in different types of soils in different climatic conditions. The long-term (several years) temperature series recorded at observatories in Czechia, Slovenia and Portugal were processed using a program based on the error function solution of the heat conduction equation for a semi-infinite solid. The program simulates penetration of temperature changes represented by the observed time-temperature series in differently wide time floating intervals, and in different depth levels of the soil profile. Synthetic temperature series for different values of thermal diffusivity (with a step of 1E-8 m2/s) are automatically compared with measured temperature time series in a given depth. The ATD value minimizing the standard deviation of difference between the measured and computed temperature series is considered as the best approximation of reality. The method has been applied to the temperature series from (i) observatory in Prague, where the temperature monitoring in different kinds of soil (sand, bare clayey soil, grassy soil) and asphalt is running from 2002, (ii) Evora - Portugal (gravelly sand, running from 2005), and finally (iii) Malence - Slovenia (grassy clayey soil, running from 2003). The soil temperature is measured at the depths of 2, 5, 10, 20 and 50 cm at each of the observatories. Results have shown a gradual increase of the ATD with depth caused by the soil density gradient in case of Malence and Prague (excluding asphalt). The ATD of the upper part of sand (2 - 5 cm), contrary to grassy surface, is quite sensitive to weather pattern (e.g. periods of rain or drought), when the strong convective heat transport in soil can occur. The ATD values in Evora show an annual run connected with a long dry summer season. The seasonal pattern is characterized, especially in the upper part of soil, by a rapid decrease from 7*E-7 to 4*E-7 m2/s in June and a return to higher values

  7. Solid-state UV-MALDI mass spectrometric quantitation of fluroxypyr and triclopyr in soil.

    PubMed

    Ivanova, Bojidarka; Spiteller, Michael

    2015-06-01

    The work presented here refers firstly to solid-state UV-MALDI-Orbitrap-mass spectrometric analysis of fluroxypyr (A) and triclopyr (B) in soils under laboratory conditions. The experimental design has involved the following: (a) determination of analytes A and B in polycrystalline composites of organic materials 1-7, based on 2-piperidine (pyrrolidine or piperazine)-1-yl-ethyl ammonium salts in order to determine the effect of sample preparation techniques on method performance using commercial herbicide formulations and (b) analysis of non-(X j,k,l (i) ) and sterilized (Y j,k,l (i) ) soil samples (i-fold rate 1, 10, 100, or 1,000; j-pesticide type A or B; k-time (0, 5, 10, 20, and 50 days) and l = 1-3 replicated samples) having clay content ∈ 5.0-12.0 %, silt ∈ 23.0-51.1 %, sand ∈ 7.2-72.0 %, and pH ∈ 4.0-8.1. In order to obtain a high representativeness of the data toward real-field experiments, the pollution scheme has involved 1-, 10-, 100-, and 1,000-fold rates. The firstfold rate has concentration of pollutant A of 2.639 × 10(-4) g in 625 cm(2) soil horizon of 0-25 cm(2) (5 cm depth) according to registration report (PSM-Zulassungbericht) of German Federal Office of Consumer Protection and Food Safety (Bundesamt für Verbraucherschutz und Lebensmittelsicherheit) 6337/26.10.2009. The experimental design has involved quincunx systematic statistical approach for collection of soil samples. The performance has been compared with the corresponding statistical variable obtained, using an independent HPLC-ESI-(APCI-)-MS/MS analysis.

  8. The impact of agriculture management on soil quality in citrus orchards in Eastern Spain

    NASA Astrophysics Data System (ADS)

    Hondebrink, Merel; Cerdà, Artemi; Cammeraat, Erik

    2015-04-01

    Currently, the agricultural management of citrus orchard in the Valencia region in E Spain, is changing from traditionally irrigated and managed orchards to drip irrigated organic managed orchards. It is not known what is the effect of such changes on soil quality and hope to shed some light with this study on this transition. It is known that the drip-irrigated orchards built in sloping terrain increase soil erosion (Cerdà et al., 2009; Li et al., 2014) and that agricultural management such as catch crops and mulches reduce sediment yield and surface runoff (Xu et al., 2012; ), as in other orchards around the world (Wang et al., 2010; Wanshnong et al., 2013; Li et al., 2014; Hazarika et al., 2014): We hypothesize that these changes have an important impact on the soil chemical and physical properties. Therefor we studied the soil quality of 12 citrus orchards, which had different land and irrigation management techniques. We compared organic (OR) and conventional (CO) land management with either drip irrigation (DRP) or flood irrigation (FLD). Soil samples at two depths, 0-1 cm and 5-10 cm, were taken for studying soil quality parameters under the different treatments. These parameters included soil chemical parameters, bulk density, texture, soil surface shear strength and soil aggregation. Half of the studied orchards were organically managed and the other 6 were conventionally managed, and for each of these 6 study sites three fields were flood irrigated plots (FLD) and the other three drip irrigated systems (DRP) In total 108 soil samples were taken as well additional irrigation water samples. We will present the results of this study with regard to the impact of the studied irrigation systems and land management systems with regard to soil quality. This knowledge might help in improving citrus orchard management with respect to maintaining or improving soil quality to ensure sustainable agricultural practices. References Cerdà, A., Giménez-Morera, A. and

  9. No tillage effect on water retention characteristics of soil aggregates in rainfed semiarid conditions.

    NASA Astrophysics Data System (ADS)

    Blanco-Moure, Nuria; López, M. Victoria; Moret, David

    2010-05-01

    The evaluation of changes in soil moisture retention characteristics associated to alterations in soil structure is of great interest in tillage studies. Most of these studies have evaluated soil properties in samples of total soil but not in individual aggregates. However, soil behavior at a macroscale level depends on the aggregate properties. A better knowledge of aggregate characteristics, as the water retention properties, will help to explain, for example, the response of soil to tillage, compaction and crop growth, and hence, to plan adequate soil management practices. In this study we determine the water retention curve of soil aggregates of different sizes from a soil under two tillage systems (conventional and no tillage). The study was carried out in a silty clay loam soil of semiarid Aragon (NE Spain). Two tillage systems were compared: no tillage (NT) and conventional tillage with mouldboard plough (CT). Water retention curves (WRC) were determined for soil surface aggregates (0-5 cm) of three different sizes (8-4, 4-2 and 2-1 mm in diameter) by using the TDR-pressure cell (Moret et al. 2008. Soil Till. Res, 100, 114-119). The TDR-pressure cell is a non-destructive method which permits determining WRC with the only one and same soil sample. Thus, the pressure cell was filled with aggregates up to 4 cm height, weighted and wetted to saturation from the bottom. Pressure steps were sequentially applied at -0.5, -1.5, -3, -5, -10, -33, -100, -300 kPa, and water content of each aggregate sample was measured gravimetrically and by TDR 24 h after starting each pressure head step. The volume of the sample within the cell was also determined at this moment in order to obtain the bulk density and thus calculate the volumetric water content. A good relationship was obtained between the volumetric water content calculated from the gravimetric water content and the corresponding values measured by TDR (r2=0.907; p≤0.05). Within the same tillage treatment, no

  10. Influence of contrast morphogenetic features of urban constructed soils on the functioning of Moscow green lawn urban ecosystems: analysis based on the field model experiment

    NASA Astrophysics Data System (ADS)

    Epikhina, Anna; Vizirskaya, Mariya; Mazirov, Ilya; Vasenev, Vyacheslav; Vasenev, Ivan; Valentini, Riccardo

    2014-05-01

    sand-soil (SS)) with three version of the depths (5, 10 and 20 cm). Soil construction with 10 cm organic horizon from TS top soil was taken as a reference. Grass mixture used for the green lawn including: Lolium perenne, Poa pratensis and Festuca rubra. For all the containers we measured soil CO2 emission by Li-820, soil temperature and moisture and the grass ornamental quality based on the 30-score scale (Laptev; 1988). All the measurements have been done in June-October 2013 with two-week time steps. We also observed the dynamic in soil chemical features (Corg, Ntot and pHKCl) monthly. We found high seasonal dynamics for all the observed functioning parameters. The highest CO2 emission was obtained in the beginning of July, whereas the lowest one - at the end of August. Maximal averaged CO2 emission was shown for the TSa and TSo substrates with the 20 cm depth. The lowest flux has been fixed for the more mineralized substrat. Soil moisture was shown as the main driving factor influencing CO2 emission both for the seasonal dynamics and for the averaged values for different substrates and depths (r=0.5, p<0.05). As for the aesthetic function the highest grass ornamental quality was shown for 20 cm TS and 5 cm T substrate (30 scores), whereas the lowest one was obtained for SS substrate with 5 and 20 cm depths (5 scores). We also obtained high positive correlation between the grass ornamental quality and the CO2 emissions (r=0.84, p>0.05). This outcome highlights that the standards of urban constructed soils' optimal features should be the compromise between the beauty of the green lawn and climate mitigation demands. Supported by the RF governmental grant 11.G34.31.0079

  11. Impact of long-term organic residue recycling in agriculture on soil solution composition and trace metal leaching in soils.

    PubMed

    Cambier, Philippe; Pot, Valérie; Mercier, Vincent; Michaud, Aurélia; Benoit, Pierre; Revallier, Agathe; Houot, Sabine

    2014-11-15

    Recycling composted organic residues in agriculture can reduce the need of mineral fertilizers and improve the physicochemical and biological properties of cultivated soils. However, some trace elements may accumulate in soils following repeated applications and impact other compartments of the agrosystems. This study aims at evaluating the long-term impact of such practices on the composition of soil leaching water, especially on trace metal concentrations. The field experiment QualiAgro started in 1998 on typical loess Luvisol of the Paris Basin, with a maize-wheat crop succession and five modalities: spreading of three different urban waste composts, farmyard manure (FYM), and no organic amendment (CTR). Inputs of trace metals have been close to regulatory limits, but supplies of organic matter and nitrogen overpassed common practices. Soil solutions were collected from wick lysimeters at 45 and 100 cm in one plot for each modality, during two drainage periods after the last spreading. Despite wide temporal variations, a significant effect of treatments on major solutes appears at 45 cm: DOC, Ca, K, Mg, Na, nitrate, sulphate and chloride concentrations were higher in most amended plots compared to CTR. Cu concentrations were also significantly higher in leachates of amended plots compared to CTR, whereas no clear effect emerged for Zn. The influence of amendments on solute concentrations appeared weaker at 1 m than at 45 cm, but still significant and positive for major anions and DOC. Average concentrations of Cu and Zn at 1m depth lied in the ranges [2.5; 3.8] and [2.5; 10.5 μg/L], respectively, with values slightly higher for plots amended with sewage sludge compost or FYM than for CTR. However, leaching of both metals was less than 1% of their respective inputs through organic amendments. For Cd, most values were <0.05 μg/L. So, metals added through spreading of compost or manure during 14 years may have increased metal concentrations in leachates of

  12. Variations in Soil Microbial Biomass Carbon and Soil Dissolved Organic Carbon in the Re-Vegetation of Hilly Slopes with Purple Soil.

    PubMed

    Yang, Ning; Zou, Dongsheng; Yang, Manyuan; Lin, Zhonggui

    2016-01-01

    Crust restoration is increasingly being done but we lack quantitative information on soil improvements. The study aimed to elucidate the dynamics involving soil microbial biomass carbon and soil dissolved organic carbon in the re-vegetation chronosequences of a hillslope land with purple soil in Hengyang, Hunan Province. The soil can cause serious disasters with both soil erosion and seasonal drought, and also becomes a typical representative of ecological disaster area in South China. Using the space-for-time method, we selected six typical sampling plots, designated as follows: grassplot community, meadow thicket community, frutex community, frutex and arbor community, arbor community, and top-level vegetation community. These plots were established to analyze the changes in soil microbial biomass carbon, soil microbial quotien, dissolved organic carbon, dissolved organic carbon/soil organic carbon, and soil basal respiration in 0-10, 10-20, and 20-40 cm soil layers. The relationships of these parameters with soils physic-chemical properties were also determined. The ecological environment of the 6 plant communities is similar and typical; they denoted six different successive stages of restoration on hillslopes with purple soils in Hengyang, Hunan Province. The soil microbial biomass carbon and soil basal respiration contents decreased with increasing soil depth but increased with re-vegetation. By contrast, soil microbial quotient increased with increasing soil depth and re-vegetation. From 0-10 cm soil layer to 20-40 cm soil layer, the dissolved organic carbon content decreased in different re-vegetation stages. In the process of re-vegetation, the dissolved organic carbon content increased in the 0-10 and 10-20 cm soil layers, whereas the dissolved organic carbon content decreased after an initial increase in the 20-40 cm soil layers. Meanwhile, dissolved organic carbon/soil organic carbon increased with increasing soil depth but decreased with re

  13. Variations in Soil Microbial Biomass Carbon and Soil Dissolved Organic Carbon in the Re-Vegetation of Hilly Slopes with Purple Soil

    PubMed Central

    Yang, Ning; Zou, Dongsheng; Yang, Manyuan; Lin, Zhonggui

    2016-01-01

    Crust restoration is increasingly being done but we lack quantitative information on soil improvements. The study aimed to elucidate the dynamics involving soil microbial biomass carbon and soil dissolved organic carbon in the re-vegetation chronosequences of a hillslope land with purple soil in Hengyang, Hunan Province. The soil can cause serious disasters with both soil erosion and seasonal drought, and also becomes a typical representative of ecological disaster area in South China. Using the space-for-time method, we selected six typical sampling plots, designated as follows: grassplot community, meadow thicket community, frutex community, frutex and arbor community, arbor community, and top-level vegetation community. These plots were established to analyze the changes in soil microbial biomass carbon, soil microbial quotien, dissolved organic carbon, dissolved organic carbon/soil organic carbon, and soil basal respiration in 0–10, 10–20, and 20–40 cm soil layers. The relationships of these parameters with soils physic-chemical properties were also determined. The ecological environment of the 6 plant communities is similar and typical; they denoted six different successive stages of restoration on hillslopes with purple soils in Hengyang, Hunan Province. The soil microbial biomass carbon and soil basal respiration contents decreased with increasing soil depth but increased with re-vegetation. By contrast, soil microbial quotient increased with increasing soil depth and re-vegetation. From 0–10 cm soil layer to 20–40 cm soil layer, the dissolved organic carbon content decreased in different re-vegetation stages. In the process of re-vegetation, the dissolved organic carbon content increased in the 0–10 and 10–20 cm soil layers, whereas the dissolved organic carbon content decreased after an initial increase in the 20–40 cm soil layers. Meanwhile, dissolved organic carbon/soil organic carbon increased with increasing soil depth but decreased

  14. [Spatial Heterogeneity of Soil Respiration in a Planted Larch Forest in Shanxi Plateau].

    PubMed

    Yan, Jun-xia; Li, Hong-jian; Li, Jun-jian; Wu, Jiang-xing

    2015-05-01

    Based on the data from a planted larch forest in Panquangou Natural Reserve of Shanxi Province, at three sampling scales (4, 2, and 1 m, respectively), soil respiration (Rs) and its affecting factors including soil temperature at 5 cm (T5), 10 cm (T10), and 15 cm (T15) depths, soil water content (Ws), litter mass (Lw), litter moisture (Lm), soil total carbon (C), and soil total nitrogen ( N) were determined. The spatial heterogeneities of Rs and the environmental factors were further analyzed and their intrinsic correlations were established. The results of traditional statistics showed that the spatial variations of Rs and the all measured factors were in the middle range; Rs were highly significantly positively correlated with T10, T15, and N (P < 0.01); significantly positively correlated with Lm (P < 0.05); highly significantly negatively correlated with C/N ratio (P < 0.01); and not significantly correlated with T5, Ws, Lw and C (P > 0.05). Multiple stepwise regression analysis indicated that the four factors of Lm, T10, N, and Ws together accounted for 36% of Rs heterogeneity. The results of geo-statistical analysis demonstrated that Rs was in a medium spatial autocorrelation; random and structural factors accounted for 39.5% and 60.5% of Rs heterogeneity, respectively. And the factors such as climate, landform, and soil played a leading role. The results also illustrated that the ranges for soil factors were different and the range for both Rs and T10 was 25 meters. The fractal dimension of the soil index was in the following order: Lw and C/N ratio (1.95) > N (1.91) > C (1.89) > Rs (1.78) > Lm (1.77 ) > Ws (1.69) > T10 (1.42). The spatial distribution of Rs was in consistent agreement with those of T10, Lm, C, and N; but different with those of Ws and C/N ratio. With a fixed cofidence level and certain estimated accuracy, the required sampling number of each item differed, corresponding to its spatial variation degree.

  15. Differential distribution patterns of ammonia-oxidizing archaea and bacteria in acidic soils of Nanling National Nature Reserve forests in subtropical China.

    PubMed

    Gan, Xian-Hua; Zhang, Fang-Qiu; Gu, Ji-Dong; Guo, Yue-Dong; Li, Zhao-Qing; Zhang, Wei-Qiang; Xu, Xiu-Yu; Zhou, Yi; Wen, Xiao-Ying; Xie, Guo-Guang; Wang, Yong-Feng

    2016-02-01

    In addition to ammonia-oxidizing bacteria (AOB) the more recently discovered ammonia-oxidizing archaea (AOA) can also oxidize ammonia, but little is known about AOA community structure and abundance in subtropical forest soils. In this study, both AOA and AOB were investigated with molecular techniques in eight types of forests at surface soils (0-2 cm) and deep layers (18-20 cm) in Nanling National Nature Reserve in subtropical China. The results showed that the forest soils, all acidic (pH 4.24-5.10), harbored a wide range of AOA phylotypes, including the genera Nitrosotalea, Nitrososphaera, and another 6 clusters, one of which was reported for the first time. For AOB, only members of Nitrosospira were retrieved. Moreover, the abundance of the ammonia monooxygenase gene (amoA) from AOA dominated over AOB in most soil samples (13/16). Soil depth, rather than forest type, was an important factor shaping the community structure of AOA and AOB. The distribution patterns of AOA and AOB in soil layers were reversed: AOA diversity and abundances in the deep layers were higher than those in the surface layers; on the contrary, AOB diversity and abundances in the deep layers were lower than those in the surface layers. Interestingly, the diversity of AOA was positively correlated with pH, but negatively correlated with organic carbon, total nitrogen and total phosphorus, and the abundance of AOA was negatively correlated with available phosphorus. Our results demonstrated that AOA and AOB were differentially distributed in acidic soils in subtropical forests and affected differently by soil characteristics.

  16. Soil CO2 Dynamics in a Tree Island Soil of the Pantanal: The Role of Soil Water Potential

    PubMed Central

    Johnson, Mark S.; Couto, Eduardo Guimarães; Pinto Jr, Osvaldo B.; Milesi, Juliana; Santos Amorim, Ricardo S.; Messias, Indira A. M.; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO2 research has been conducted in this region. We evaluated soil CO2 dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO2 concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO2 efflux and related environmental parameters. Soil CO2 efflux during the study averaged 3.53 µmol CO2 m−2 s−1, and was equivalent to an annual soil respiration of 1220 g C m−2 y−1. This efflux value, integrated over a year, is comparable to soil C stocks for 0–20 cm. Soil water potential was the measured parameter most strongly associated with soil CO2 concentrations, with high CO2 values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO2 efflux from the tree island soil, with soil CO2 dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO2 efflux from soil. The annual flood arrives later, and saturates soil from below. While CO2 concentrations in soil grew very high under both wetting mechanisms, the change in soil CO2 efflux was only significant when soils were wet from above. PMID:23762259

  17. Soil CO₂ dynamics in a tree island soil of the Pantanal: the role of soil water potential.

    PubMed

    Johnson, Mark S; Couto, Eduardo Guimarães; Pinto, Osvaldo B; Milesi, Juliana; Santos Amorim, Ricardo S; Messias, Indira A M; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO₂ research has been conducted in this region. We evaluated soil CO₂ dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO₂ concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO₂ efflux and related environmental parameters. Soil CO₂ efflux during the study averaged 3.53 µmol CO₂ m⁻² s⁻¹, and was equivalent to an annual soil respiration of 1220 g C m⁻² y⁻¹. This efflux value, integrated over a year, is comparable to soil C stocks for 0-20 cm. Soil water potential was the measured parameter most strongly associated with soil CO₂ concentrations, with high CO₂ values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO₂ efflux from the tree island soil, with soil CO₂ dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO₂ efflux from soil. The annual flood arrives later, and saturates soil from below. While CO₂ concentrations in soil grew very high under both wetting mechanisms, the change in soil CO₂ efflux was only significant when soils were wet from above.

  18. Influence of urban land development and subsequent soil rehabilitation on soil aggregates, carbon, and hydraulic conductivity.

    PubMed

    Chen, Yujuan; Day, Susan D; Wick, Abbey F; McGuire, Kevin J

    2014-10-01

    Urban land use change is associated with decreased soil-mediated ecosystem services, including stormwater runoff mitigation and carbon (C) sequestration. To better understand soil structure formation over time and the effects of land use change on surface and subsurface hydrology, we quantified the effects of urban land development and subsequent soil rehabilitation on soil aggregate size distribution and aggregate-associated C and their links to soil hydraulic conductivity. Four treatments [typical practice (A horizon removed, subsoil compacted, A horizon partially replaced), enhanced topsoil (same as typical practice plus tillage), post-development rehabilitated soils (compost incorporation to 60-cm depth in subsoil; A horizon partially replaced plus tillage), and pre-development (undisturbed) soils] were applied to 24 plots in Virginia, USA. All plots were planted with five tree species. After five years, undisturbed surface soils had 26 to 48% higher levels of macroaggregation and 12 to 62% greater macroaggregate-associated C pools than those disturbed by urban land development regardless of whether they were stockpiled and replaced, or tilled. Little difference in aggregate size distribution was observed among treatments in subsurface soils, although rehabilitated soils had the greatest macroaggregate-associated C concentrations and pool sizes. Rehabilitated soils had 48 to 171% greater macroaggregate-associated C pool than the other three treatments. Surface hydraulic conductivity was not affected by soil treatment (ranging from 0.4 to 2.3 cm h(-1)). In deeper regions, post-development rehabilitated soils had about twice the saturated hydraulic conductivity (14.8 and 6.3 cm h(-1) at 10-25 cm and 25-40 cm, respectively) of undisturbed soils and approximately 6-11 times that of soils subjected to typical land development practices. Despite limited effects on soil aggregation, rehabilitation that includes deep compost incorporation and breaking of compacted

  19. [Effect of fertilization levels on soil microorganism amount and soil enzyme activities].

    PubMed

    Wang, Wei-Ling; Du, Jun-Bo; Xu, Fu-Li; Zhang, Xiao-Hu

    2013-11-01

    Field experiments were conducted in Shangluo pharmaceutical base in Shaanxi province to study the effect of nitrogen, phosphorus and potassium in different fertilization levels on Platycodon grandiflorum soil microorganism and activities of soil enzyme, using three-factor D-saturation optimal design with random block design. The results showed that N0P2K2, N2P2K0, N3P1K3 and N3P3K1 increased the amount of bacteria in 0-20 cm of soil compared with N0P0K0 by 144.34%, 39.25%, 37.17%, 53.58%, respectively. The amount of bacteria in 2040 cm of soil of N3P1K3 increased by 163.77%, N0P0K3 increased the amount of soil actinomycetes significantly by 192.11%, while other treatments had no significant effect. N2P0K2 and N3P1K3 increased the amounts of fungus significantly in 0-20 cm of soil compared with N0P0K0, increased by 35.27% and 92.21%, respectively. N3P0K0 increased the amounts of fungus significantly in 20-40 cm of soil by 165.35%, while other treatments had no significant effect. All treatments decrease soil catalase activity significantly in 0-20 cm of soil except for N2P0K2, and while N2P2K0 and NPK increased catalase activity significantly in 2040 cm of soil. Fertilization regime increased invertase activity significantly in 2040 cm of soil, and decreased phosphatase activity inordinately in 0-20 cm of soil, while increased phosphatase activity in 2040 cm of soil other than N1P3K3. N3P0K0, N0P0K3, N2P0K2, N2P2K0 and NPK increased soil urease activity significantly in 0-20 cm of soil compared with N0P0K0 by 18.22%, 14.87%,17.84%, 27.88%, 24.54%, respectively. Fertilization regime increased soil urease activity significantly in 2040 cm of soil other than N0P2K2.

  20. CM Carbonaceous Chondrite Lithologies and Their Space Exposure Ages

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Gregory, Timothy; Takenouchi, Atsushi; Nishiizumi, Kunihiko; Trieman, Alan; Berger, Eve; Le, Loan; Fagan, Amy; Velbel, Michael; Imae, Naoya; Yamaguchi, Akira

    2015-01-01

    The CMs are the most commonly falling C chondrites, and therefore may be a major component of C-class asteroids, the targets of several current and future space missions. Previous work [1] has concluded that CM chondrites fall into at least four distinct cosmic ray space exposure (CRE) age groups (0.1 million years, 0.2 million years, 0.6 million years and greater than 2.0 million years), an unusually large number, but the meaning of these groupings is unclear. It is possible that these meteorites came from different parent bodies which broke up at different times, or instead came from the same parent body which underwent multiple break-up events, or a combination of these scenarios, or something else entirely. The objective of this study is to investigate the diversity of lithologies which make up CM chondrites, in order to determine whether the different exposure ages correspond to specific, different CM lithologies, which permit us to constrain the history of the CM parent body(ies). We have already reported significant petrographic differences among CM chondrites [2-4]. We report here our new results.

  1. Soil organic carbon covariance with soil water content; a geostatistical analysis in cropland fields

    NASA Astrophysics Data System (ADS)

    Manns, H. R.; Berg, A. A.; von Bertoldi, P.

    2013-12-01

    Soil texture has traditionally represented the rate of soil water drainage influencing soil water content (WC) in the soil characteristic curves, hydrological models and remote sensing field studies. Although soil organic carbon (OC) has been shown to significantly increase the water holding capacity of soil in individual field studies, evidence is required to consider soil OC as a significant factor in soil WC variability at the scale of a remote sensing footprint (25 km2). The relationship of soil OC to soil WC was evaluated over 50 fields during the Soil Moisture Active Passive (SMAP) soil WC field sampling campaign over southern Manitoba, Canada. On each field, soil WC was measured at 16 sample points, at 100 m spacing to 5 cm depth with Stevens hydra probe sensors on 16 sampling dates from June 7 to July 19, 2012. Soil cores were also taken at sampling sites on each field, each sampling day, to determine gravimetric moisture, bulk density and particle size distribution. On 4 of the sampling dates, soil OC was also determined by loss on ignition on the dried soil samples from all fields. Semivariograms were created from the field mean soil OC and field mean surface soil WC sampled at midrow, over all cropland fields and averaged over all sampling dates. The semivariogram models explained a distinct relationship of both soil OC and WC within the soil over a range of 5 km with a Gaussian curve. The variance in soil that soil OC and WC have in common was a similar Gaussian curve in the cross variogram. Following spatial interpolation with Kriging, the spatial maps of soil OC and WC were also very similar with high covariance over the majority of the sampling area. The close correlation between soil OC and WC suggests they are structurally related in the soil. Soil carbon could thus assist in improving downscaling methods for remotely sensed soil WC and act as a surrogate for interpolation of soil WC.

  2. Soil organic carbon distribution in roadside soils of Singapore.

    PubMed

    Ghosh, Subhadip; Scharenbroch, Bryant C; Ow, Lai Fern

    2016-12-01

    Soil is the largest pool of organic carbon in terrestrial systems and plays a key role in carbon cycle. Global population living in urban areas are increasing substantially; however, the effects of urbanization on soil carbon storage and distribution are largely unknown. Here, we characterized the soil organic carbon (SOC) in roadside soils across the city-state of Singapore. We tested three hypotheses that SOC contents (concentration and density) in Singapore would be positively related to aboveground tree biomass, soil microbial biomass and land-use patterns. Overall mean SOC concentrations and densities (0-100 cm) of Singapore's roadside soils were 29 g kg(-1) (4-106 g kg(-1)) and 11 kg m(-2) (1.1-42.5 kg m(-2)) with median values of 26 g kg(-1) and 10 kg m(-2), respectively. There was significantly higher concentration of organic carbon (10.3 g kg(-1)) in the top 0-30 cm soil depth compared to the deeper (30-50 cm, and 50-100 cm) soil depths. Singapore's roadside soils represent 4% of Singapore's land, but store 2.9 million Mg C (estimated range of 0.3-11 million Mg C). This amount of SOC is equivalent to 25% of annual anthropogenic C emissions in Singapore. Soil organic C contents in Singapore's soils were not related to aboveground vegetation or soil microbial biomass, whereas land-use patterns to best explain variance in SOC in Singapore's roadside soils. We found SOC in Singapore's roadside soils to be inversely related to urbanization. We conclude that high SOC in Singapore roadside soils are probably due to management, such as specifications of high quality top-soil, high use of irrigation and fertilization and also due to an optimal climate promoting rapid growth and biological activity.

  3. Soil properties linked to Phytophthora cinnamomi presence and oak decline in Iberian dehesas

    NASA Astrophysics Data System (ADS)

    Moreno, G.; Vivas, M.; Pérez, A.; Cubera, E.; Madeira, M.; Solla, A.

    2009-04-01

    symptomatic (declined) trees, at surface, 50, 100 and 150 cm depths. Soil texture, redox potential, mineral N, and the presence of Phytophthora cinnamomi were determined. Soil bulk density was measured at the surface, and soil compactness was measured through a digital penetrometer at 0-40 cm depth. In the stream banks, fine-textured soils were significantly more common under declined trees than under healthy ones, while in slopes the contrary trend occurred. Differences were clearly observed at layers located at 100 and 150 cm depth. Soil bulk density was moderate, with mean values of 1.05 and 1.07 g cm-3 (0-5 cm depth), and 1.28 and 1.30 g cm-3 (5-10 cm) for healthy and declined oaks, respectively. Regarding soil resistance to penetration, values under declined oaks were significantly (p=0.012) higher below 20 cm depth, probably due to compaction caused by old cultivation practices. Most of the soil samples analyzed showed a high level of oxidation (superoxic and manoxic), 28% were suboxic and only 0.7% were anoxic, with a possible limitation of root growth. Although not significant, soils trended to be more reduced under declined oaks at stream banks, with a contrary tendency at slopes (Table 1). The presence of P. cinammomi in soil was positively related to oak decline in stream banks (p=0.011), but not in slopes, and associated to more compacted soils (p=0.05). The presence of P. cinammomi in roots was positively correlated with oak decay (p=0.01), being more abundant among 50-100 cm depth in slopes, and among 100-150 cm depth in the stream banks, but in both cases was mostly associated to fine-textured soils. In conclusion, Q. ilex decline was not related with anoxic conditions limiting root growth, but with soil properties leading to restricted water availability for trees in slopes, and with soil conditions favorable for P. cinnamomi root-infections in the stream banks.

  4. In vivo and in vitro estrogenic profile of 17β-amino-1,3,5(10)estratrien-3-ol.

    PubMed

    Lemini, Cristina; Jaimez, Ruth; Pozas, Rocio; Franco, Yanira; Avila, María Estela; Figueroa, Alejandra; Medina, Martha; Lemus, Ana Elena; García-Becerra, Rocío; Ordaz-Rosado, David; Larrea, Fernando

    2015-03-01

    17β-amino-1,3,5(10)estratrien-3-ol (17βAE2), is the 17β-aminoestrogens prototype possessing anticoagulant activity, contrasting with the procoagulant effects of 17β-estradiol (17βE2). Its estrogenicity profile has not been reported, and it was evaluated by uterotrophic assay, estrogen receptor binding affinity and its ability to induce gene transcription of the human estrogen receptor (hER)α mediated in a Saccharomyces cerevisiae yeast expression system. Additionally, 17βAE2 and 17αAE2 were compared with 17βE2 in HeLa cells co-transfected with expression vectors for hERα or hERβ subtypes and for an estrogen-responsive reporter gene. Immature female CD1 mice and Wistar rats (21 days old) were treated for three days with 17βAE2 (10-5000 μg/kg), 17βE2 (0.001-1000 μg/kg) or vehicle (propylenglycol 10 ml/kg) and uterine weights were estimated. 17βAE2 increased uterine weight in a dose-dependent manner. The effective dose (ED)50 uterine weight values: 17βAE2=552 and 764 μg/kg (17βE2=4.8 and 16 μg/kg) and their relative uterotrophic potency were 0.86 and 2.1 (17βE2=100) in mice and rats, respectively. 17βAE2 competed with [(3)H]E2 for the estrogen receptor. The 17βAE2 relative binding affinities (RBAs) were: 0.074; Ki=2.2×10(-6)M (17βE2=100; Ki=1.6×10(-9)M); 0.029 and Ki=3.8×10(-6)M (17βE2=100; Ki=1.1×10(-9)M) for mice and rats uteri respectively. 17βAE2 activated hERα-mediated β-galactosidase transcription activity in the yeast system co-transfected with hERα gene. 17βAE2 effective concentration (EC)50=1.82 μM (17βE2=2.14 nM) with a relative potency of 0.12 (17βE2=100). These transactivation effects were abolished by the antagonist fulvestrant (ICI 182,780), similarly to 17βE2. 17βAE2 and 17αAE2 bind with low relative affinity to hERα and hERβ. Both induced hER-mediated reporter gene transactivation in a dose-response manner. The overall results provide evidence that 17βAE2 has a weak agonist estrogenic action greatly mediated

  5. Prediction of soil temperature using regression and artificial neural network models

    NASA Astrophysics Data System (ADS)

    Bilgili, Mehmet

    2010-12-01

    In this study, monthly soil temperature was modeled by linear regression (LR), nonlinear regression (NLR) and artificial neural network (ANN) methods. The soil temperature and other meteorological parameters, which have been taken from Adana meteorological station, were observed between the years of 2000 and 2007 by the Turkish State Meteorological Service (TSMS). The soil temperatures were measured at depths of 5, 10, 20, 50 and 100 cm below the ground level. A three-layer feed-forward ANN structure was constructed and a back-propagation algorithm was used for the training of ANNs. In order to get a successful simulation, the correlation coefficients between all of the meteorological variables (soil temperature, atmospheric temperature, atmospheric pressure, relative humidity, wind speed, rainfall, global solar radiation and sunshine duration) were calculated taking them two by two. First, all independent variables were split into two time periods such as cold and warm seasons. They were added to the enter regression model. Then, the method of stepwise multiple regression was applied for the selection of the "best" regression equation (model). Thus, the best independent variables were selected for the LR and NLR models and they were also used in the input layer of the ANN method. Results of these methods were compared to each other. Finally, the ANN method was found to provide better performance than the LR and NLR methods.

  6. Modeling nitrous oxide production and reduction in soil through explicit representation of denitrification enzyme kinetics.

    PubMed

    Zheng, Jianqiu; Doskey, Paul V

    2015-02-17

    An enzyme-explicit denitrification model with representations for pre- and de novo synthesized enzymes was developed to improve predictions of nitrous oxide (N2O) accumulations in soil and emissions from the surface. The metabolic model of denitrification is based on dual-substrate utilization and Monod growth kinetics. Enzyme synthesis/activation was incorporated into each sequential reduction step of denitrification to regulate dynamics of the denitrifier population and the active enzyme pool, which controlled the rate function. Parameterizations were developed from observations of the dynamics of N2O production and reduction in soil incubation experiments. The model successfully reproduced the dynamics of N2O and N2 accumulation in the incubations and revealed an important regulatory effect of denitrification enzyme kinetics on the accumulation of denitrification products. Pre-synthesized denitrification enzymes contributed 20, 13, 43, and 62% of N2O that accumulated in 48 h incubations of soil collected from depths of 0-5, 5-10, 10-15, and 15-25 cm, respectively. An enzyme activity function (E) was defined to estimate the relative concentration of active enzymes and variation in response to environmental conditions. The value of E allows for activities of pre-synthesized denitrification enzymes to be differentiated from de novo synthesized enzymes. Incorporating explicit representations of denitrification enzyme kinetics into biogeochemical models is a promising approach for accurately simulating dynamics of the production and reduction of N2O in soils.

  7. Exploring effective sampling design for monitoring soil organic carbon in degraded Tibetan grasslands.

    PubMed

    Chang, Xiaofeng; Bao, Xiaoying; Wang, Shiping; Zhu, Xiaoxue; Luo, Caiyun; Zhang, Zhenhua; Wilkes, Andreas

    2016-05-15

    The effects of climate change and human activities on grassland degradation and soil carbon stocks have become a focus of both research and policy. However, lack of research on appropriate sampling design prevents accurate assessment of soil carbon stocks and stock changes at community and regional scales. Here, we conducted an intensive survey with 1196 sampling sites over an area of 190 km(2) of degraded alpine meadow. Compared to lightly degraded meadow, soil organic carbon (SOC) stocks in moderately, heavily and extremely degraded meadow were reduced by 11.0%, 13.5% and 17.9%, respectively. Our field survey sampling design was overly intensive to estimate SOC status with a tolerable uncertainty of 10%. Power analysis showed that the optimal sampling density to achieve the desired accuracy would be 2, 3, 5 and 7 sites per 10 km(2) for lightly, moderately, heavily and extremely degraded meadows, respectively. If a subsequent paired sampling design with the optimum sample size were performed, assuming stock change rates predicted by experimental and modeling results, we estimate that about 5-10 years would be necessary to detect expected trends in SOC in the top 20 cm soil layer. Our results highlight the utility of conducting preliminary surveys to estimate the appropriate sampling density and avoid wasting resources due to over-sampling, and to estimate the sampling interval required to detect an expected sequestration rate. Future studies will be needed to evaluate spatial and temporal patterns of SOC variability.

  8. The GLOBE Soil Moisture Campaign's Light Bulb Oven

    NASA Astrophysics Data System (ADS)

    Whitaker, M. P.; Tietema, D.; Ferre, T. P.; Nijssen, B.; Washburne, J.

    2003-12-01

    The GLOBE Soil Moisture Campaign (SMC) (www.hwr.arizona.edu/globe/sci/SM/SMC) has developed a light bulb oven to provide a low budget, low-technology method for drying soil samples. Three different soils were used to compare the ability of the light bulb oven to dry soils against a standard laboratory convection oven. The soils were: 1) a very fine sandy loam (the "Gila" soil); 2) a silty clay (the "Pima" soil); and 3) a sandy soil (the "Sonoran" soil). A large batch of each soil was wetted uniformly in the laboratory. Twelve samples of each soil were placed in the light bulb oven and twelve samples were placed in the standard oven. The average gravimetric soil moisture of the Gila soil was 0.214 g/cm3 for both ovens; the average Pima soil moisture was 0.332 g/cm3 and 0.331 g/cm3 for the traditional and light bulb ovens, respectively; and the Sonoran soil moisture was 0.077 g/cm3 for both ovens. These results demonstrate that the low technology light-bulb oven was able to dry the soil samples as well as a standard laboratory oven, offering the ability to make gravimetric water content measurements when a relatively expensive drying oven is not available.

  9. Spatiotemporal characteristics of soil temperature memory in China from observation

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Zhang, Jingyong

    2016-11-01

    Similar to soil moisture, soil temperature has a memory of atmospheric anomalies. However, soil temperature memory over China is still largely unclear, especially in observation. In this study, we investigate the spatiotemporal characteristics of soil temperature memory over China using subsurface (10-80 cm) and deep (160-320 cm) soil temperature data for 626 stations during the period of 1981 to 2005. The red noise method is adopted to estimate soil temperature memory. Results show that the soil temperature memory differs spatially and varies with soil depth and season. Influenced by climate regimes, soil temperature memory at all six layers (with depths of 10, 20, 40, 80, 160, and 320 cm) shows a similar spatial pattern dominated by a northwest to southeast gradient, with relatively high values over arid and semiarid areas of northwestern part of China and relatively low values over humid and semihumid areas of southeastern part of China. During all four seasons, memory lengths increase with soil depth. The average memory of subsurface soil over China can last several months, and for soil at 320 cm, it can be 1 year or more. We also find that seasonal and regional differences of soil temperature memory are stronger in deep soil layers than those in subsurface soil layers. Our findings suggest that soil temperature memory can offer potential for improving seasonal climate prediction over northwestern China. In the meanwhile, the limitations of the methods used in this study should be recognized.

  10. A model for sunspot associated emission at 6 cm wavelength

    NASA Technical Reports Server (NTRS)

    Alissandrakis, C. E.; Kundu, M. R.; Lantos, P.

    1980-01-01

    Two-dimensional maps of total intensity and circular polarization of a sunspot region at 6 cm have been calculated using a simple model for the chromosphere-corona transition region and observations of the longitudinal component of the photospheric magnetic field. The calculations are in good agreement with the high resolution observations of the same sunspot region at 6 cm, obtained with the Westerbork Synthesis Radio Telescope. It is shown that the 6 cm radiation is predominantly due to gyroresonance absorption process at the second and third harmonics of the gyrofrequency (H = 900-600 G). Estimates of the conductive flux and the electron density in the transition region above the sunspot are also given.

  11. VLA observations of Uranus at 1. 3-20 cm

    SciTech Connect

    De Pater, I.; Gulkis, S.

    1988-08-01

    Observations of Uranus, obtained with resolution 0.5-1.2 arcsec at wavelengths 1.3, 2, 6, and 20 cm using the A and B configurations of the VLA in June-July 1982, October 1983, and February 1984, are reported. The disk-averaged brightness temperatures (DABTs) are determined by model fitting, and the results are presented in extensive graphs and contour maps and characterized in detail. Findings discussed include: (1) an overall spectrum which is relatively flat above 6 cm, (2) 1.3-6-cm brightness which is concentrated nearer to the pole than to the subsolar point, and (3) small changes in DABT from 1982 to 1983/1984 (consistent with an explanation based on a pole-equator temperature gradient). 16 references.

  12. Differentiating CDM and baryon isocurvature models with 21 cm fluctuations

    SciTech Connect

    Kawasaki, Masahiro; Sekiguchi, Toyokazu; Takahashi, Tomo E-mail: sekiguti@icrr.u-tokyo.ac.jp

    2011-10-01

    We discuss how one can discriminate models with cold dark matter (CDM) and baryon isocurvature fluctuations. Although current observations such as cosmic microwave background (CMB) can severely constrain the fraction of such isocurvature modes in the total density fluctuations, CMB cannot differentiate CDM and baryon ones by the shapes of their power spectra. However, the evolution of CDM and baryon density fluctuations are different for each model, thus it would be possible to discriminate those isocurvature modes by extracting information on the fluctuations of CDM/baryon itself. We discuss that observations of 21 cm fluctuations can in principle differentiate these modes and demonstrate to what extent we can distinguish them with future 21 cm surveys. We show that, when the isocurvature mode has a large blue-tilted initial spectrum, 21 cm surveys can clearly probe the difference.

  13. High-resolution comparative modeling with RosettaCM.

    PubMed

    Song, Yifan; DiMaio, Frank; Wang, Ray Yu-Ruei; Kim, David; Miles, Chris; Brunette, Tj; Thompson, James; Baker, David

    2013-10-08

    We describe an improved method for comparative modeling, RosettaCM, which optimizes a physically realistic all-atom energy function over the conformational space defined by homologous structures. Given a set of sequence alignments, RosettaCM assembles topologies by recombining aligned segments in Cartesian space and building unaligned regions de novo in torsion space. The junctions between segments are regularized using a loop closure method combining fragment superposition with gradient-based minimization. The energies of the resulting models are optimized by all-atom refinement, and the most representative low-energy model is selected. The CASP10 experiment suggests that RosettaCM yields models with more accurate side-chain and backbone conformations than other methods when the sequence identity to the templates is greater than ∼15%.

  14. Cycle life testing of 8-cm mercury ion thruster cathodes

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.

    1976-01-01

    Two main cathodes have successfully completed 2800 and 1980 cycles and three neutralizers, 3928, 3050, and 2850 cycles in ongoing cycle life tests of flight-type cathode-isolator-vaporizer and neutralizer-isolator-vaporizer assemblies for the 4.45 mN 8-cm Hg ion thruster system. Each cycle included one hour of cathode operation. Starting and operating conditions simulated those expected in a typical auxiliary propulsion mission duty cycle. This paper presents the cycle life test results and also results of an insert comparison test which led to the selection of a rolled foil insert type for the 8-cm Engineering Model Thruster cathodes.

  15. Cycle life testing of 8-cm mercury ion thruster cathodes

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.

    1976-01-01

    Two main cathodes have successfully completed 2800 and 1980 cycles and three neutralizers, 3928, 3050, and 2850 cycles in ongoing cycle life tests of flight-type cathode-isolator-vaporizer and neutralizer-isolator-vaporizer assemblies for the 4.45 mN 8-cm Hg ion thruster system. Each cycle included one hour of cathode operation. Starting and operating conditions simulated those expected in a typical auxiliary propulsion mission duty cycle. The cycle life test results are presented along with results of an insert comparison test which led to the selection of a rolled foil insert type for the 8-cm Engineering Model Thruster cathodes.

  16. 21 cm radiation: A new probe of fundamental physics

    NASA Astrophysics Data System (ADS)

    Khatri, Rishi; Wandelt, Benjamin D.

    2010-11-01

    New low frequency radio telescopes currently being built open up the possibility of observing the 21 cm radiation from redshifts 200 > z > 30, also known as the dark ages, see Furlanetto, Oh, & Briggs(2006) for a review. At these high redshifts, Cosmic Microwave Background (CMB) radiation is absorbed by neutral hydrogen at its 21 cm hyperfine transition. This redshifted 21 cm signal thus carries information about the state of the early Universe and can be used to test fundamental physics. The 21 cm radiation probes a volume of the early Universe on kpc scales in contrast with CMB which probes a surface (of some finite thickness) on Mpc scales. Thus there is many orders of more information available, in principle, from the 21 cm observations of dark ages. We have studied the constraints these observations can put on the variation of fundamental constants (Khatri & Wandelt(2007)). Since the 21 cm signal depends on atomic physics it is very sensitive to the variations in the fine structure constant and can place constraints comparable to or better than the other astrophysical experiments (Δα/α= < 10-5) as shown in Figure 1. Making such observations will require radio telescopes of collecting area 10 - 106 km2 compared to ~ 1 km2 of current telescopes, for example LOFAR. We should also expect similar sensitivity to the electron to proton mass ratio. One of the challenges in observing this 21 cm cosmological signal is the presence of the synchrotron foregrounds which is many orders of magnitude larger than the cosmological signal but the two can be separated because of their different statistical nature (Zaldarriaga, Furlanetto, & Hernquist(2004)). Terrestrial EM interference from radio/TV etc. and Earth's ionosphere poses problems for telescopes on ground which may be solved by going to the Moon and there are proposals for doing so, one of which is the Dark Ages Lunar Interferometer (DALI). In conclusion 21 cm cosmology promises a large wealth of data and provides

  17. WSRC Am/Cm Stabilization Program - Cylindrical Induction Melter Studies

    SciTech Connect

    Henderson, W.A.

    1999-02-17

    1.1.1 Kilogram quantities of Americium and Curium isotopes (Am/Cm) have been produced at the U.S. Department of Energy (DOE), Savannah River Site (SRS), Aiken, South Carolina. These highly radioactive isotopes have both government and commercial value and are currently stored as a nitric acid solution at the Savannah River Site. The material represents the largest source term in the F canyon at SRS. It is proposed that the Am/Cm material be vitrified to stabilize the material for long term, recoverable storage. This paper reviews the progress made during the process development phase of this program using the Cylindrical Induction Melter.

  18. Evidence for live 247Cm in the early solar system

    USGS Publications Warehouse

    Tatsumoto, M.; Shimamura, T.

    1980-01-01

    Variations of the 238U/235U ratio in the Allende meteorite, ranging from -35% to + 19%, are interpreted as evidence of live 247Cm in the early Solar System. The amounts of these and other r-products in the Solar System indicate values of (9,000??3,000) Myr for the age of the Galaxy and ??? 8 Myr for the time between the end of nucleosynthesis and the formation of meteoritic grains. Three possible explanations are presented for the different values of the latter time period which are indicated by the decay products of 247Cm, 26Al, 244Pu and 129I. ?? 1980 Nature Publishing Group.

  19. Increased capabilities of the 30-cm diameter Hg ion thruster

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.; Hawkins, C. E.

    1979-01-01

    Some space flight missions require advanced ion thrusters which operate at conditions much different than those for which the baseline 30-cm Hg thruster was developed. Results of initial tests of a 30-cm Hg thruster with two and three grid ion accelerating systems, operated at higher values of both thrust and power and over a greater range of specific impulse than the baseline conditions are presented. Thruster lifetime at increased input power was evaluated both by extended tests and real time spectroscopic measurements.

  20. Inert gas test of two 12-cm magnetostatic thrusters

    NASA Technical Reports Server (NTRS)

    Ramsey, W. D.

    1982-01-01

    Comparative performance tests were conducted with 12 cm line and ring magnetic cusp thrusters. Shell anode and magnetoelectrostatic containment boundary anode configurations were evaluated with each magnet array. The best performance was achieved with the 12-cm ring cusp-shell anode configuration. Argon operation of this configuration produced 65-81 percent mass utilization efficiency at 170-208 watts/single-charged-equivalent (SCE) ampere beam. Xenon test results showed 75-95 percent utilization at 162-188 watts/SCE ampere beam.

  1. Passive microwave soil moisture research

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Oneill, P. E.; Wang, J. R.

    1985-01-01

    The AgRISTARS Soil Moisture Project has made significant progress in the quantification of microwave sensor capabilities for soil moisture remote sensing. The 21-cm wavelength has been verified to be the best single channel for radiometric observations of soil moisture. It has also been found that other remote sensing approaches used in conjunction with L-band passive data are more successful than multiple wavelength microwave radiometry in this application. AgRISTARS studies have also improved current understanding of noise factors affecting the interpretability of microwave emission data. The absorption of soil emission by vegetation has been quantified, although this effect is less important than absorption effects for microwave radiometry.

  2. Influence of macroporosity on preferential solute and colloid transport in unsaturated field soils.

    PubMed

    Cey, Edwin E; Rudolph, David L; Passmore, Joanna

    2009-06-26

    Transport of solutes and colloids in soils, particularly those subject to preferential flow along macropores, is important for assessing the vulnerability of shallow groundwater to contamination. The objective of this study was to investigate flow and transport phenomena for dissolved and colloid tracers during large infiltration events in partially saturated, macroporous soils. Controlled tracer infiltration tests were completed at two field sites in southern Ontario. A tension infiltrometer (TI) was used to infiltrate water with dissolved Brilliant Blue FCF dye simultaneously with 3.7 microm and 0.53 microm diameter fluorescent microspheres. Infiltration was conducted under maximum infiltration pressure heads ranging from -5.2 to -0.4 cm. All infiltration test sites were excavated to examine and photograph dye-stained flow patterns, map soil features, and collect samples for microsphere enumeration. Results indicated that preferential transport of dye and microspheres via macropores occurred when maximum pressure heads were greater than -3.0 cm, and the corresponding infiltration rates exceeded 2.0 cm h(-1). Dye and microspheres were detected at depths greater than 70 cm under the highest infiltration rates from both sites. Microsphere concentrations in the top 5-10 cm of soil decreased by more than two orders of magnitude relative to input concentrations, yet remained relatively constant with depth thereafter. There was some evidence for increased retention of the 3.7 microm microspheres relative to the 0.53 microm microspheres, particularly at lower infiltration pressures where straining and attachment mechanisms are most prevalent. Microspheres were observed within dye stained soil matrix surrounding individual macropores, illustrating the significance of capillary pressures in controlling the vertical migration of both tracers in the vicinity of the macropores. Overall, microsphere distributions closely followed the dye patterns, with microsphere

  3. The Complexity and Challenges of the ICD-9-CM to ICD-10-CM Transition in Emergency Departments

    PubMed Central

    Krive, Jacob; Patel, Mahatkumar; Gehm, Lisa; Mackey, Mark; Kulstad, Erik; Li, Jianrong ‘John’; Lussier, Yves A.; Boyd, Andrew D.

    2015-01-01

    Beginning October 2015, the Center for Medicare and Medicaid Services (CMS) will require medical providers to utilize the vastly expanded ICD-10-CM system. Despite wide availability of information and mapping tools for the next generation of the ICD classification system, some of the challenges associated with transition from ICD-9-CM to ICD-10-CM are not well understood. To quantify the challenges faced by emergency physicians, we analyzed a subset of a 2010 Illinois Medicaid database of emergency department ICD-9-CM codes, seeking to determine the accuracy of existing mapping tools in order to better prepare emergency physicians for the change to the expanded ICD-10-CM system. We found that 27% of 1,830 codes represented convoluted multidirectional mappings. We then analyzed the convoluted transitions and found 8% of total visit encounters (23% of the convoluted transitions) were clinically incorrect. The ambiguity and inaccuracy of these mappings may impact the work flow associated with the translation process and affect the potential mapping between ICD codes and CPT (Current Procedural Codes) codes, which determine physician reimbursement. PMID:25863652

  4. Vertical distribution of soil removed by four species of burrowing rodents in disturbed and undisturbed soils

    SciTech Connect

    Reynolds, T.D.; Laundre, J.W.

    1988-04-01

    Burrow volumes were determined in disturbed and undisturbed soils for four species of rodents in southeastern Idaho. Comparisons were made between soil types for the average volume and the proportion of the total volume of soil excavated from 10-cm increments for each species, and the relative number of burrows and proportion of total soil removed from beneath the minimum thickness of soil covers over buried low-level radioactive wastes. Burrows of montane voles (Microtus montanus) and deer mice (Peromyscus maniculatus) rarely extended below 50 cm and neither volumes nor depths were influenced by soil disturbance. Townsend's ground squirrels (Spermophilus townsendii) had the deepest and most voluminous burrows that, along with Ord's kangaroo rat (Dipodomys ordii) burrows, were more prevalent beneath 50 cm in disturbed soils.

  5. Soil and Surface Runoff Phosphorus Relationships for Five Typical USA Midwest Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excessively high soil P can increase P loss with surface runoff. This study used indoor rainfall simulations to characterize soil and runoff P relationships for five Midwest soils (Argiudoll, Calciaquaoll, Hapludalf, and two Hapludolls). Topsoil (15-cm depth, 241–289 g clay kg–1 and pH 6.0–8.0) was ...

  6. Conversion from cropland to short rotation coppice willow and poplar: Accumulation of soil organic carbon

    NASA Astrophysics Data System (ADS)

    Georgiadis, Petros; Stupak, Inge; Vesterdal, Lars; Raulund-Rasmussen, Karsten

    2015-04-01

    Increased demand for bioenergy has intensified the production of Short Rotation Coppice (SRC) willow and poplar in temperate zones. We used a combined chronosequence and paired plot approach to study the potential of SRC willow and poplar stands to increase the soil carbon stock compared to stocks of the previous arable land-use. The study focused on well-drained soils. We sampled soil from 30 SRC stands in Denmark and southern Sweden including soils from their adjacent arable fields. The 18 willow and 12 poplar stands formed a chronosequence ranging between 4 and 29 years after conversion. The soil was sampled both with soil cores taken by fixed depths of 0-5, 5-10, 10-15, 15-25, and 25-40 cm and by genetic horizons from soil pits to 1m depth. The aim of the study was to estimate the difference and the ratio between soil carbon contents of the SRC and annual crop land and analyze the results as a chronosequence to examine the effect of age after conversion on the difference. Covariates such as soil type, fertilization type and harvest frequency were also taken into account. Preliminary results suggest an overall increase in carbon stocks over time with average accumulation rates ranging from 0.25 to 0.4 Mg ha-1 yr-1 in willow and poplar stands. Poplar stands had higher rates of C gain, probably due to less frequent harvesting. The differences in carbon between the SRC and the paired cropland were initially negative but changed to positive over time, implying loss of carbon after conversion and a later gain in soil carbon with stand age. Pairwise differences ranged from -25 Mg C ha-1 to 37 Mg C ha-1 for the top 40 cm. The carbon stock ratio of the SRC stand to the arable land was estimated to minimize the effect of site-related factors. The results of this analysis suggested that the ratio increased significantly with age after conversion for the top 10 cm of the soil, both for poplar and willow. A slight increase with age was also noticed at the deeper depths, but

  7. Soil temperature prediction from air temperature for alluvial soils in lower Indo-Gangetic plain

    NASA Astrophysics Data System (ADS)

    Barman, D.; Kundu, D. K.; Pal, Soumen; Pal, Susanto; Chakraborty, A. K.; Jha, A. K.; Mazumdar, S. P.; Saha, R.; Bhattacharyya, P.

    2017-01-01

    Soil temperature is an important factor in biogeochemical processes. On-site monitoring of soil temperature is limited in spatiotemporal scale as compared to air temperature data inventories due to various management difficulties. Therefore, empirical models were developed by taking 30-year long-term (1985-2014) air and soil temperature data for prediction of soil temperatures at three depths (5, 15, 30 cm) in morning (0636 Indian standard time) and afternoon (1336 Indian standard time) for alluvial soils in lower Indo-Gangetic plain. At 5 cm depth, power and exponential regression models were best fitted for daily data in morning and afternoon, respectively, but it was reverse at 15 cm. However, at 30 cm, exponential models were best fitted for both the times. Regression analysis revealed that in morning for all three depths and in afternoon for 30 cm depth, soil temperatures (daily, weekly, and monthly) could be predicted more efficiently with the help of corresponding mean air temperature than that of maximum and minimum. However, in afternoon, prediction of soil temperature at 5 and 15 cm depths were more precised for all the time intervals when maximum air temperature was used, except for weekly soil temperature at 15 cm, where the use of mean air temperature gave better prediction.

  8. Carbon Stocks and Accretion in Shallow Marsh Soils of the Mississippi Delta Plain, Louisiana

    NASA Astrophysics Data System (ADS)

    Swarzenski, C.; Tweel, A.

    2012-12-01

    Within limits, soil elevations track long-term water level trends in coastal marshes, primarily through organic contributions. Soil organic matter (carbon) provides vertical elasticity. By virtue of their extent and because of generally rapid subsidence rates, Delta Plain marshes in coastal Louisiana accrete and store large amounts of organic carbon in short time periods. Local subsidence rates are highly variable but average around 1 cm per year or even more in some places. To avoid submergence, marshes must fill the void space, through direct deposition of mineral and organic matter, and/or through changes in pore size. We have profiled shallow soils (< 1 m) in different Delta Plain marsh types and in a variety of settings to understand how soil organic matter contributes to soil volume and accretion and ultimately, how these marshes respond to water level trends. Salt and freshwater marshes accreted similar amounts of carbon (170-260 g C m2 y-1). Carbon stocks in the upper 50 cm of soil were greater by about 15-20% in salt marshes with low rates of vertical accretion as measured by Cs-137 compared with salt marshes with faster rates of accretion and with the almost exclusively organic freshwater marshes. Density of organic carbon increased as dry bulk density increased both in salt and fresh marshes. In fresh marshes with high nutrient inputs, carbon stocks in the shallow soils were 5-10% greater than in comparable marshes with rain as their source of water. Loss of soil organic matter over time also was greater in high nutrient areas, indicating greater carbon turnover in nutrient- enriched waters. The organic matter was more sapric in nutrient-enriched waters. The long-term storage and burial rates of carbon in these coastal wetlands differ from the short-term dynamics of carbon cycling in shallow soils. The short-term carbon dynamics however are crucial to understanding how coastal wetlands may respond to predicted accelerated rates of sea-level rise. In this

  9. Sayama CM2 Chondrite: Fresh but Heavily Altered

    NASA Technical Reports Server (NTRS)

    Takaoka, N.; Nakamura, T.; Noguchi, T.; Tonui, E.; Gounelle, M.; Zolensky, M. E.; Ebisawa, N.; Osawa, T.; Okazaki, R.; Nagao, K.; Yoneda, S.

    2001-01-01

    Noble gas composition and mineralogy of Sayama meteorite, that fell in Japan and recently identified as a CM2 chondrite, revealed many unique features, indicating that it experienced extensive aqueous alteration under highly oxidized condition compared with typical CMs. Additional information is contained in the original extended abstract.

  10. Electronic and magnetic properties of Am and Cm

    SciTech Connect

    Edelstein, N.

    1985-02-01

    A review of the present status of the analyses of the optical spectra of Am and Cm in various oxidation states is given. From these analyses, the magnetic properties of the ground states of these ions can be determined. These predicted values are compared with the various magnetic measurements available.

  11. Organic Matter Inclusions in CM2 Chondrite Murchison

    NASA Astrophysics Data System (ADS)

    Peeters, Z.; Liebig, B.; Lee, T.

    2015-07-01

    Large (~10 μm) inclusions of pure organic carbon exist in carbonaceous chondrites. We extracted organic inclusions from Murchison, a CM2, and analyzed the sections using XANES, TEM, and nanoSIMS. The results are compared to previous results of CRs.

  12. Retrofit and acceptance test of 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.

    1981-01-01

    Six 30 cm mercury thrusters were modified to the J-series design and evaluated using standardized test procedures. The thruster performance meets the design objectives (lifetime objective requires verification), and documentation (drawings, etc.) for the design is completed and upgraded. The retrofit modifications are described and the test data for the modifications are presented and discussed.

  13. Search for Cm-248 in the early solar system

    NASA Technical Reports Server (NTRS)

    Lavielle, B.; Marti, K.; Pellas, P.; Perron, C.

    1992-01-01

    Possible evidence for the presence of Cm-248 in the early solar system was reported from fission gas studies (Rao and Gopalan, 1973) and recently from studies of very high nuclear track densities (not less than 5 x 10 exp 8/sq cm) in the merrillite of the H4 chondrite Forest Vale (F.V.) (Pellas et al., 1987). We report here an analysis of the isotopic abundances of xenon in F.V. phosphates and results of track studies in phosphate/pyroxene contacts. The fission xenon isotopic signature clearly identifies Pu-244 as the extinct progenitor. We calculate an upper limit Cm-248/Pu-244 to be less than 0.0015 at the beginning of Xe retention in F.V. phosphates. This corresponds to an upper limit of the ratio Cm-248/U-235 of not greater than 5 x 10 exp -5 further constraining the evidence for any late addition of freshly synthesized actinide elements just prior to solar system formation. The fission track density observed after annealing the phosphates at 290C (1 hr, which essentially erases spallation recoil tracks) is also in agreement with the Pu-244 abundance inferred from fission Xe. The spallation recoil tracks produced during the 76 Ma cosmic-ray exposure account for the very high track density in merrillites.

  14. Adaptation of California Measure of Mental Motivation-CM3

    ERIC Educational Resources Information Center

    Özdemir, Hasan Fehmi; Demirtasli, Nükhet Çikrikçi

    2015-01-01

    Education without doubt, plays a vital role for individuals to gain the essential personal traits of the 21st century, also known as "knowledge age". One of the most important skills among these fundamental qualities which the individuals should be equipped with is critical thinking. California Measure of Mental Motivation-CM3 was…

  15. Case study: developing product lines using ICD-9-CM codes.

    PubMed

    Benz, P D; Burnham, J

    1985-12-01

    In this marketing case study, Thomas Jefferson University Hospital used a product line approach to maximize the use of its resources. The method used, based on ICD-9-CM codes, fulfilled the demands of increased efficiency by encouraging customer-oriented thinking, enhancing communication with physicians and patients, and helping the institution to compete more effectively.

  16. Biochar increases plant-available water in a sandy loam soil under an aerobic rice crop system

    NASA Astrophysics Data System (ADS)

    de Melo Carvalho, M. T.; de Holanda Nunes Maia, A.; Madari, B. E.; Bastiaans, L.; van Oort, P. A. J.; Heinemann, A. B.; Soler da Silva, M. A.; Petter, F. A.; Marimon, B. H., Jr.; Meinke, H.

    2014-09-01

    The main objective of this study was to assess the impact of biochar rate (0, 8, 16 and 32 Mg ha-1) on the water retention capacity (WRC) of a sandy loam Dystric Plinthosol. The applied biochar was a by-product of slow pyrolysis (∼450 °C) of eucalyptus wood, milled to pass through a 2000 μm sieve that resulted in a material with an intrinsic porosity ≤10 μm and a specific surface area of ∼3.2 m2 g-1. The biochar was incorporated into the top 15 cm of the soil under an aerobic rice system. Our study focused on both the effects on WRC and rice yields 2 and 3 years after its application. Undisturbed soil samples were collected from 16 plots in two soil layers (5-10 and 15-20 cm). Soil water retention curves were modelled using a nonlinear mixed model which appropriately accounts for uncertainties inherent of spatial variability and repeated measurements taken within a specific soil sample. We found an increase in plant-available water in the upper soil layer proportional to the rate of biochar, with about 0.8% for each Mg ha-1 biochar amendment 2 and 3 years after its application. The impact of biochar on soil WRC was most likely related to an effect in overall porosity of the sandy loam soil, which was evident from an increase in saturated soil moisture and macro porosity with 0.5 and 1.6% for each Mg ha-1 of biochar applied, respectively. The increment in soil WRC did not translate into an increase in rice yield, essentially because in both seasons the amount of rainfall during the critical period for rice production exceeded 650 mm. The use of biochar as a soil amendment can be a worthy strategy to guarantee yield stability under short-term water-limited conditions. Our findings raise the importance of assessing the feasibility of very high application rates of biochar and the inclusion of a detailed analysis of its physical and chemical properties as part of future investigations.

  17. Oxygen isotope constraints on the alteration temperatures of CM chondrites

    NASA Astrophysics Data System (ADS)

    Verdier-Paoletti, Maximilien J.; Marrocchi, Yves; Avice, Guillaume; Roskosz, Mathieu; Gurenko, Andrey; Gounelle, Matthieu

    2017-01-01

    We report a systematic oxygen isotopic survey of Ca-carbonates in nine different CM chondrites characterized by different degrees of alteration, from the least altered known to date (Paris, 2.7-2.8) to the most altered (ALH 88045, CM1). Our data define a continuous trend that crosses the Terrestrial Fractionation Line (TFL), with a general relationship that is indistinguishable within errors from the trend defined by both matrix phyllosilicates and bulk O-isotopic compositions of CM chondrites. This bulk-matrix-carbonate (BMC) trend does not correspond to a mass-dependent fractionation (i.e., slope 0.52) as it would be expected during fluid circulation along a temperature gradient. It is instead a direct proxy of the degree of O-isotopic equilibration between 17,18O-rich fluids and 16O-rich anhydrous minerals. Our O-isotopic survey revealed that, for a given CM, no carbonate is in O-isotopic equilibrium with its respective surrounding matrix. This precludes direct calculation of the temperature of carbonate precipitation. However, the O-isotopic compositions of alteration water in different CMs (inferred from isotopic mass-balance calculation and direct measurements) define another trend (CMW for CM Water), parallel to BMC but with a different intercept. The distance between the BMC and CMW trends is directly related to the temperature of CM alteration and corresponds to average carbonates and serpentine formation temperatures of 110 °C and 75 °C, respectively. However, carbonate O-isotopic variations around the BMC trend indicate that they formed at various temperatures ranging between 50 and 300 °C, with 50% of the carbonates studied here showing precipitation temperature higher than 100 °C. The average Δ17O and the average carbonate precipitation temperature per chondrite are correlated, revealing that all CMs underwent similar maximum temperature peaks, but that altered CMs experienced protracted carbonate precipitation event(s) at lower temperatures than

  18. [Characteristics of soil seed banks in different water level areas after returning farmland into lake in Qingshanyuan of Dongting Lake].

    PubMed

    Hou, Zhi-Yong; Xie, Yong-Hong; Yu, Xiao-Ying; Li, Feng

    2009-06-01

    To study the composition and distribution of soil seed bank in the areas after returning farmland into lake is of significance in evaluating the ecological restoration effect of damaged wetlands. In this paper, the composition and diversity of seed bank in soil profile (0-2, 2-5, and 5-10 cm) and their relationships with above-ground vegetation in different water level areas in Qingshanyuan, a typical region after returning farmland into lake in Dongting Lake, were investigated. A V-type variation pattern was observed in the seed density and species richness of soil seed bank and in the similarity coefficient of soil seed bank and above-ground vegetation along a gradient of low-medium-high water level. As for the seed density, it was the highest (36943 +/- 5207 seeds x m(-2)) in frequently flooded area, followed by in heavily flooded area (30572 +/- 5329 seeds x m(-2)), and in incidentally flooded area (18618 +/- 6977 seeds x m(-2)); for the similarity coefficient, it was also in the order of frequently flooded area (0.76) > heavily flooded area (0.53) > incidentally flooded area (0.41). The seed density, species diversity, and species richness of soil seed bank decreased along soil profile, but the decrements differed in different water level areas. The regular variation patterns of the seed density and species richness of soil seed bank and of the similarity coefficient of soil seed bank and above-ground vegetation along the water level gradient were closely related to the water-level fluctuation and the life-form composition of the vegetations in study area.

  19. Maribo—A new CM fall from Denmark

    NASA Astrophysics Data System (ADS)

    Haack, Henning; Grau, Thomas; Bischoff, Addi; Horstmann, Marian; Wasson, John; Sørensen, Anton; Laubenstein, Matthias; Ott, Ulrich; Palme, Herbert; Gellissen, Marko; Greenwood, Richard C.; Pearson, Victoria K.; Franchi, Ian A.; Gabelica, Zelimir; Schmitt-Kopplin, Philippe

    2012-01-01

    Maribo is a new Danish CM chondrite, which fell on January 17, 2009, at 19:08:28 CET. The fall was observed by many eye witnesses and recorded by a surveillance camera, an all sky camera, a few seismic stations, and by meteor radar observatories in Germany. A single fragment of Maribo with a dry weight of 25.8 g was found on March 4, 2009. The coarse-grained components in Maribo include chondrules, fine-grained olivine aggregates, large isolated lithic clasts, metals, and mineral fragments (often olivine), and rare Ca,Al-rich inclusions. The components are typically rimmed by fine-grained dust mantles. The matrix includes abundant dust rimmed fragments of tochilinite with a layered, fishbone-like texture, tochilinite-cronstedtite intergrowths, sulfides, metals, and carbonates often intergrown with tochilinite. The oxygen isotopic composition: (δ17O = -1.27‰; δ18O = 4.96‰; Δ17O = -3.85‰) plots at the edge of the CM field, close to the CCAM line. The very low Δ17O and the presence of unaltered components suggest that Maribo is among the least altered CM chondrites. The bulk chemistry of Maribo is typical of CM chondrites. Trapped noble gases are similar in abundance and isotopic composition to other CM chondrites, stepwise heating data indicating the presence of gas components hosted by presolar diamond and silicon carbide. The organics in Maribo include components also seen in Murchison as well as nitrogen-rich components unique to Maribo.

  20. Fallow Effects on Improving Soil Properties and Decreasing Erosion: Atlantic Forest, Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Miranda, J. P.; Silva, L. M.; Lima, R. L.; Donagemma, G. K.; Bertolino, A. V. A.; Fernandes, N. F.; Correa, F. M.; Polidoro, J. C.; Tato, G.

    2009-04-01

    fallow) and forest. For each case, 12 soil samples were collected at 4 depths: 0-5, 5-10, 10-20 and 20-30cm, with 3 repetitions, leading to a total of 60 soil samples, where the following properties were characterized: porosity (micro, macro and total), bulk density and aggregate stability. Besides, in situ measurements of saturated hydraulic conductivity were conducted with a Guelph permeameter. The results obtained in this study attested that all the soil properties analyzed were affected by soil usage, especially at shallow depths, in particular macroporosity and total porosity, which have major influences on infiltration rates, runoff and soil erosion. Besides, the results suggested that the 5-year fallow (F5) was able to recover from 72% to 100% of total porosity for the 0-10cm depth layer (considering forest values as reference), while in the 2-year fallow (F2) this recovery was lower, ranging from 66 to 80%. A similar trend was observed for macroporosity, showing recovering values from 60% to 90% and from 50% to 76%, for F5 and F2, respectively. However, aggregate stability values did not show significant variations between the two fallows. Saturated hydraulic conductivity, on the other hand, presented the lowest recovering values for all the studied properties: between 13% and 58% for F5 and between 6% and 33% for F2. Comparing to the natural forest (reference value), the coffee plantations presented the worst soil conditions in terms of soil hydrology and erosion. The results presented here attested important improvements in soil physical and hydrological properties after a 5-year fallow, leading to decrease in surface runoff and soil erosion in the area.

  1. Spatial and Seasonal Variability of Extreme Soil Temperature in Croatia

    NASA Astrophysics Data System (ADS)

    Sviličić, Petra; Vučetić, Višnja

    2015-04-01

    In terms of taking the temperature of the Earth in Croatia, first measurements began in 1898 in Križevci, but systematic measurements of soil temperature started in 1951. Today, the measurements are performed at 55 meteorological stations. The process of setting up, calibration, measurement, input, control and data processing is done entirely within the Meteorological and Hydrological Service. Due to the lack of funds, but also as a consequence of the Homeland War, network density in some areas is very rare, leading to aggravating circumstances during analysis. Also, certain temperature series are incomplete or are interrupted and therefore the number of long-term temperature series is very small. This particularly presents problems in coastal area, which is geographically diversified and is very difficult to do a thorough analysis of the area. Using mercury angle geothermometer daily at 7, 14 and 21 h CET, thermal state of soil is measured at 2, 5, 10, 20, 30, 50 and 100 cm depth. Thermometers are placed on the bare ground within the meteorological circle and facing north to reduce the direct impact of solar radiation. Lack of term measurements is noticed in the analysis of extreme soil temperatures, which are not real extreme values, but derived from three observational times. On the basis of fifty year series (1961-2010) at 23 stations, the analysis of trends of the surface maximal and minimal soil temperature, as well as the appearance of freezing is presented. Trends were determined by Sen's slope estimator, and statistical significance on 5% level was determined using the Mann-Kendall test. It was observed that the variability of the surface maximal soil temperature on an annual and seasonal level is much higher than those for surface minimal soil temperature. Trends in the recent period show a statistically significant increase in the maximal soil temperature in the eastern and the coastal regions, especially in the spring and summer season. Also, the

  2. Park size and disturbance: impact on soil heterogeneity - a case study Tel-Aviv- Jaffa.

    NASA Astrophysics Data System (ADS)

    Zhevelev, Helena; Sarah, Pariente; Oz, Atar

    2015-04-01

    Parks and gardens are poly-functional elements of great importance in urban areas, and can be used for optimization of physical and social components in these areas. This study aimed to investigate alteration of soil properties with land usages within urban park and with area size of park. Ten parks differed by size (2 - 50 acres) were chosen, in random, in Tel-Aviv- Jaffa city. Soil was sampled in four microenvironments ((lawn, path, picnic and peripheral area (unorganized area) of each the park)), in three points and three depth (0-2, 5-10 and 10-20 cm). Penetration depth was measured in all point of sampling. For each soil sample electrical conductivity and organic matter content were determined. Averages of penetration depth drastically increased from the most disturbed microenvironments (path and picnic) to the less disturbed ones (lawn and peripheral). The maximal heterogeneity (by variances and percentiles) of penetration depth was found in the peripheral area. In this area, penetration depth increased with increasing park size, i.e., from 2.6 cm to 3.7 cm in the small and large parks, respectively. Averages of organic matter content and electrical conductivity decreased with soil depth in all microenvironments and increased with decreasing disturbance of microenvironments. Maximal heterogeneity for both of these properties was found in the picnic area. Increase of park size was accompanied by increasing of organic matter content in the upper depth in the peripheral area, i.e., from 2.4% in the small parks to 4.5% in the large ones. In all microenvironments the increasing of averages of all studied soil properties was accompanied by increasing heterogeneity, i.e., variances and upper percentiles. The increase in the heterogeneity of the studied soil properties is attributed to improved ecological soil status in the peripheral area, on the one hand, and to the high anthropogenic pressure in the picnic area, on the other. This means that the urban park offers

  3. Bells and Essebi: To Be or Not To Be (CM)

    NASA Astrophysics Data System (ADS)

    Kallemeyn, G. W.

    1995-09-01

    The Bells and Essebi carbonaceous chondrites have long been associated with the CM group, although petrographic and isotopic observations have questioned that relationship. Samples of Bells and Essebi were obtained for bulk compositional study by neutron activation analysis (INAA) in an attempt to further fuel the debate on this issue. The current INAA work for Bells is complete, but analysis of Essebi is ongoing, and therefore the data is preliminary. Although CM chondrites typically contain <3 wt% magnetite, Bells and Essebi contain approximately 16 wt% and 11 wt% magnetite, respectively [1]. Both Bells and Essebi seem to have suffered more intense aqueous alteration than typical CM chondrites [2]. Bells has a phyllosilicate matrix composition closer to CI chondrites than CM chondrites [3]. The delta 15N value for Bells is much higher than any of the established carbonaceous chondrite groups[4]. Carbonate material in Essebi has delta 13C compositions (+62 per mil to +80 per mil) higher than the CM mode of +40 per mil to +50 per mil [5]. Both Bells and Essebi have whole rock O-isotope compositions in the CM chondrite range, but Essebi has separated matrix and magnetite values similar to whole rock and magnetite values in CI chondrites [6]. Samples of Bells were from two different stones collected after the fall. One stone was collected the day after the fall, the other was collected several days later after a hurricane went through the area. The samples will be referred to as 'normal' Bells and 'weathered' Bells, respectively. The 'normal' and 'weathered' Bells samples are very similar in composition with a few notable exceptions. The Mg-normalized abundances of Na, K and Br in 'weathered' Bells are markedly depleted relative to 'normal' Bells. The abundance of Ca is also lower to a smaller extent. One must be cautious of compositional studies of late-collected Bells specimens as they may have been altered by the affects of rainwater. Refractory lithophile

  4. The effect of harvest intensity on long-term calcium dynamics in soil and soil solution at three coniferous sites in Sweden

    NASA Astrophysics Data System (ADS)

    Zetterberg, Therese; Olsson, Bengt; Löfgren, Stefan; von Brömssen, Claudia; Brandtberg, Per-Olov

    2013-04-01

    + pools had diminished in the forest floor but remained in deeper soil layers (-0.29, -0.37 and -0.24 kmolc ha-1 in the 5-10, 10-15 and 15-20 cm soil layer, respectively). The effects on soil Ca2+ pools appeared to be most pronounced at the well-buffered northern site. These results indicate that the effect of WTH on soil and soil solution concentrations is temporary but site specific. Contrary to common beliefs, the greatest effects were observed at the well-buffered site where the loss of Ca2+ during WTH is less likely to lead to acidification effects. The treatment effects on soil solution at the more acidic sites in southern Sweden were much smaller and probably not large enough to fully counterbalance the general recovery from acidification during the study period. References Swedish Environmental Protection Agency, 2007. Bara naturlig försurning. Bilagor till underlagsrapport till fördjupad utvärdering av miljömålen. Rapport 5780. 208 pp. In Swedish.

  5. Soil warming alters microbial substrate use in alpine soils.

    PubMed

    Streit, Kathrin; Hagedorn, Frank; Hiltbrunner, David; Portmann, Magdalena; Saurer, Matthias; Buchmann, Nina; Wild, Birgit; Richter, Andreas; Wipf, Sonja; Siegwolf, Rolf T W

    2014-04-01

    Will warming lead to an increased use of older soil organic carbon (SOC) by microbial communities, thereby inducing C losses from C-rich alpine soils? We studied soil microbial community composition, activity, and substrate use after 3 and 4 years of soil warming (+4 °C, 2007-2010) at the alpine treeline in Switzerland. The warming experiment was nested in a free air CO2 enrichment experiment using depleted (13)CO2 (δ(13)C = -30‰, 2001-2009). We traced this depleted (13)C label in phospholipid fatty acids (PLFA) of the organic layer (0-5 cm soil depth) and in C mineralized from root-free soils to distinguish substrate ages used by soil microorganisms: fixed before 2001 ('old'), from 2001 to 2009 ('new') or in 2010 ('recent'). Warming induced a sustained stimulation of soil respiration (+38%) without decline in mineralizable SOC. PLFA concentrations did not reveal changes in microbial community composition due to soil warming, but soil microbial metabolic activity was stimulated (+66%). Warming decreased the amount of new and recent C in the fungal biomarker 18:2ω6,9 and the amount of new C mineralized from root-free soils, implying a shift in microbial substrate use toward a greater use of old SOC. This shift in substrate use could indicate an imbalance between C inputs and outputs, which could eventually decrease SOC storage in this alpine ecosystem.

  6. Estimating toxic damage to soil ecosystems from soil organic matter profiles

    USGS Publications Warehouse

    Beyer, W.N.

    2001-01-01

    Concentrations of particulate and total organic matter were measured in upper soil profiles at 26 sites as a potential means to identify toxic damage to soil ecosystems. Because soil organic matter plays a role in cycling nutrients, aerating soil, retaining water, and maintaining tilth, a significant reduction in organic matter content in a soil profile is not just evidence of a change in ecosystem function, but of damage to that soil ecosystem. Reference sites were selected for comparison to contaminated sites, and additional sites were selected to illustrate how variables other than environmental contaminants might affect the Soil organic matter profile. The survey was undertaken on the supposition that environmental contaminants and other stressors reduce the activity of earthworms and other macrofauna, inhibiting the incorporation of organic matter into the soil profile. The profiles of the unstressed soils showed a continuous decrease in organic matter content from the uppermost mineral soil layer (0-2.5 cm) down to 15 cm. Stressed soils showed an abrupt decrease in soil organic matter content below a depth of 2.5 cm. The 2.5-5.0 cm layer of stressed soils--such as found in a pine barren, an orchard, sites contaminated with zinc, and a site with compacted soil--had less than 4% total organic matter and less than 1% particulate organic matter. However, damaged soil ecosystems were best identified by comparison of their profiles to the profiles of closely matched reference soils, rather than by comparison to these absolute values. The presence or absence of earthworms offered a partial explanation of observed differences in soil organic matter profiles.

  7. Soil carbon stock and soil characteristics at Tasik Chini Forest Reserve, Pahang, Malaysia

    NASA Astrophysics Data System (ADS)

    Nur Aqlili Riana, R.; Sahibin A., R.

    2015-09-01

    This study was carried out to determine soil carbon stock and soil characteristic at Tasik Chini Forest Reserve (TCFR), Pahang. A total of 10 (20 m x 25 m) permanent sampling plot was selected randomly within the area of TCFR. Soil samples were taken from all subplots using dutch auger based on soil depth of 0-20cm, 20-40cm, 40-60cm. Soil parameters determined were size distribution, soil water content, bulk density, organic matter, organic carbon content, pH and electrical conductivity. All parameters were determined following their respective standard methods. Results obtained showed that the soil in TCFR was dominated by clay texture (40%), followed by sandy clay loam (30%), loam (20%). Silty clay, clay loam and sandy loam constitutes about 10% of the soil texture. Range of mean percentage of organic matter and bulk density are from 2.42±0.06% to 11.64±0.39% and 1.01 to 1.04 (gcm-ł), respectively. Soil pH are relatively very acidic and mean of electrical conductivity is low. Soil carbon content ranged from 0.83±0.03 to 1.87±0.41%. All soil parameter showed a decreasing trend with depth except electrical conductivity. ANOVA test of mean percentage of organic matter, soil water content, soil pH and electrical conductivity showed a significant difference between plot (p<0.05). However there are no significant difference of mean bulk density between plots (p>0.05). There are no significant difference in mean percentage of soil water content, organic matter and bulk density between three different depth (p>0.05). There were a significant difference on percentage of soil carbon organic between plots and depth. The mean of soil organic carbon stock in soil to a depth of 60 cm calculated was 35.50 t/ha.

  8. Precision measurement of cosmic magnification from 21 cm emitting galaxies

    SciTech Connect

    Zhang, Pengjie; Pen, Ue-Li; /Canadian Inst. Theor. Astrophys.

    2005-04-01

    We show how precision lensing measurements can be obtained through the lensing magnification effect in high redshift 21cm emission from galaxies. Normally, cosmic magnification measurements have been seriously complicated by galaxy clustering. With precise redshifts obtained from 21cm emission line wavelength, one can correlate galaxies at different source planes, or exclude close pairs to eliminate such contaminations. We provide forecasts for future surveys, specifically the SKA and CLAR. SKA can achieve percent precision on the dark matter power spectrum and the galaxy dark matter cross correlation power spectrum, while CLAR can measure an accurate cross correlation power spectrum. The neutral hydrogen fraction was most likely significantly higher at high redshifts, which improves the number of observed galaxies significantly, such that also CLAR can measure the dark matter lensing power spectrum. SKA can also allow precise measurement of lensing bispectrum.

  9. Viscoelastic hydrodynamic interactions and anomalous CM diffusion in polymer melts

    NASA Astrophysics Data System (ADS)

    Meyer, Hendrik; Farago, Jean; Semenov, A. N.

    2014-03-01

    We have recently discovered that anomalous center-of-mass (CM) diffusion occurring on intermediate time scales in polymer melts can be explained by the interplay of viscoelastic and hydrodynamic interactions (VHI). The theory has been solved for unentangled melts in 3D and 2D and excellent agreement between theory and simulation is found. The physical mechanism considers that hydrodynamic interactions are time dependent because of increasing viscosity before the terminal relaxation time; it is generally active in melts of any topology. Surprisingly, the effects are relevant for both, momentum-conserving and Langevin dynamics and this presentation will focus on the differences: The commonly employed Langevin thermostat significantly changes the CM motion on short and intermediate time scales, but approaching the Rouse time, the melt behavior is close to momentum-conserving simulations. On the other hand, if momentum-conserving simulations are run in too small a simulation box, the result looks as if a Langevin thermostat was used.

  10. Intensity Mapping During Reionization: 21 cm and Cross-correlations

    NASA Astrophysics Data System (ADS)

    Aguirre, James E.; HERA Collaboration

    2016-01-01

    The first generation of 21 cm epoch of reionization (EoR) experiments are now reaching the sensitivities necessary for a detection of the power spectrum of plausible reionization models, and with the advent of next-generation capabilities (e.g. the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometer Array Phase I Low) will move beyond the power spectrum to imaging of the EoR intergalactic medium. Such datasets provide context to galaxy evolution studies for the earliest galaxies on scales of tens of Mpc, but at present wide, deep galaxy surveys are lacking, and attaining the depth to survey the bulk of galaxies responsible for reionization will be challenging even for JWST. Thus we seek useful cross-correlations with other more direct tracers of the galaxy population. I review near-term prospects for cross-correlation studies with 21 cm and CO and CII emission, as well as future far-infrared misions suchas CALISTO.

  11. 21 cm cosmology in the 21st century.

    PubMed

    Pritchard, Jonathan R; Loeb, Abraham

    2012-08-01

    Imaging the Universe during the first hundreds of millions of years remains one of the exciting challenges facing modern cosmology. Observations of the redshifted 21 cm line of atomic hydrogen offer the potential of opening a new window into this epoch. This will transform our understanding of the formation of the first stars and galaxies and of the thermal history of the Universe. A new generation of radio telescopes is being constructed for this purpose with the first results starting to trickle in. In this review, we detail the physics that governs the 21 cm signal and describe what might be learnt from upcoming observations. We also generalize our discussion to intensity mapping of other atomic and molecular lines.

  12. Lensing of 21-cm fluctuations by primordial gravitational waves.

    PubMed

    Book, Laura; Kamionkowski, Marc; Schmidt, Fabian

    2012-05-25

    Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r~10(-9)-far smaller than those currently accessible-to be probed.

  13. POLYSHIFT Communications Software for the Connection Machine System CM-200

    DOE PAGES

    George, William; Brickner, Ralph G.; Johnsson, S. Lennart

    1994-01-01

    We describe the use and implementation of a polyshift function PSHIFT for circular shifts and end-offs shifts. Polyshift is useful in many scientific codes using regular grids, such as finite difference codes in several dimensions, and multigrid codes, molecular dynamics computations, and in lattice gauge physics computations, such as quantum chromodynamics (QCD) calculations. Our implementation of the PSHIFT function on the Connection Machine systems CM-2 and CM-200 offers a speedup of up to a factor of 3–4 compared with CSHIFT when the local data motion within a node is small. The PSHIFT routine is included in the Connection Machine Scientificmore » Software Library (CMSSL).« less

  14. Soil adherence to human skin

    SciTech Connect

    Driver, J.H.; Konz, J.J.; Whitmyre, G.K. )

    1989-12-01

    Dermal exposure to soils contaminated with toxic chemicals represents a potential public health hazard. These soils, contaminated with chemicals such as PCBs and dioxins, may be found at various locations throughout the US. Furthermore, dermal contact with pesticide-containing particles and contaminated soil particles is of importance for exposures to agricultural workers who reenter fields after pesticide application. With respect to dermal exposure to pesticide-contaminated particulate matter, several occurrences of human toxicity to ethyl parathion in citrus groves have been reported. These exposures resulted from dermal contact with high concentrations of the toxic transformation product paraoxon in soil dust contaminated as a result of application of pesticide to the overhead foliage of trees. To assess dermal exposure to chemically-contaminated soil at sites of concern, dermal adherence of soil must be determined prior to the assessment of dermal absorption. The purpose of the experiment reported herein was to determine the amount of soil (mg/cm{sup 2}) that adheres to adult hands under various soil conditions. These conditions include the type of soil, the organic content of the soil, and the particle size of the soil.

  15. Soil Temperature Reemergence in Permafrost

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Schaefer, K.

    2007-12-01

    Soil temperature reemergence is the disappearance and subsequent reappearance of near surface soil temperature anomalies, driven by soil freeze-thaw processes. Reemergence of past soil temperature anomalies is a new class of time-delayed, land-atmosphere feedbacks influencing surface fluxes of latent and sensible heat. Anomalous energy is stored, isolated from diffusion processes, as variations in latent heat of fusion. Schaefer et al. [2007] found that past soil temperature anomalies in seasonally frozen soils are stored as variations in the amount of ground ice and can reemerge at the surface after soil thaw in spring. Schaefer et al. [2007] also hypothesized that temperature anomalies in permafrost would be stored as variations in the active layer depth, reappearing after the soil column completely freezes in winter. Essentially, a warm summer produces a deeper active layer, which requires more energy to freeze in autumn, resulting in warmer soils in winter. Here, we explore this hypothesis using statistical analysis of long-term, in situ soil temperature measurements at 37 permafrost hydro-meteorological stations across Siberia. The observations span 30-40 years at depths of 2-320 cm. We also use a simple soil thermodynamic model with phase changes to explore the detailed thermodynamic processes driving temperature reemergence in permafrost.

  16. How accurately can 21cm tomography constrain cosmology?

    NASA Astrophysics Data System (ADS)

    Mao, Yi; Tegmark, Max; McQuinn, Matthew; Zaldarriaga, Matias; Zahn, Oliver

    2008-07-01

    There is growing interest in using 3-dimensional neutral hydrogen mapping with the redshifted 21 cm line as a cosmological probe. However, its utility depends on many assumptions. To aid experimental planning and design, we quantify how the precision with which cosmological parameters can be measured depends on a broad range of assumptions, focusing on the 21 cm signal from 6cm tomography measured the matter power spectrum directly. A future square kilometer array optimized for 21 cm tomography could improve the sensitivity to spatial curvature and neutrino masses by up to 2 orders of magnitude, to ΔΩk≈0.0002 and Δmν≈0.007eV, and give a 4σ detection of the spectral index running predicted by the simplest inflation models.

  17. The future of primordial features with 21 cm tomography

    NASA Astrophysics Data System (ADS)

    Chen, Xingang; Meerburg, P. Daniel; Münchmeyer, Moritz

    2016-09-01

    Detecting a deviation from a featureless primordial power spectrum of fluctuations would give profound insight into the physics of the primordial Universe. Depending on their nature, primordial features can either provide direct evidence for the inflation scenario or pin down details of the inflation model. Thus far, using the cosmic microwave background (CMB) we have only been able to put stringent constraints on the amplitude of features, but no significant evidence has been found for such signals. Here we explore the limit of the experimental reach in constraining such features using 21 cm tomography at high redshift. A measurement of the 21 cm power spectrum from the Dark Ages is generally considered as the ideal experiment for early Universe physics, with potentially access to a large number of modes. We consider three different categories of theoretically motivated models: the sharp feature models, resonance models, and standard clock models. We study the improvements on bounds on features as a function of the total number of observed modes and identify parameter degeneracies. The detectability depends critically on the amplitude, frequency and scale-location of the features, as well as the angular and redshift resolution of the experiment. We quantify these effects by considering different fiducial models. Our forecast shows that a cosmic variance limited 21 cm experiment measuring fluctuations in the redshift range 30 <= z <= 100 with a 0.01-MHz bandwidth and sub-arcminute angular resolution could potentially improve bounds by several orders of magnitude for most features compared to current Planck bounds. At the same time, 21 cm tomography also opens up a unique window into features that are located on very small scales.

  18. Identifying Ionized Regions in Noisy Redshifted 21 cm Data Sets

    NASA Astrophysics Data System (ADS)

    Malloy, Matthew; Lidz, Adam

    2013-04-01

    One of the most promising approaches for studying reionization is to use the redshifted 21 cm line. Early generations of redshifted 21 cm surveys will not, however, have the sensitivity to make detailed maps of the reionization process, and will instead focus on statistical measurements. Here, we show that it may nonetheless be possible to directly identify ionized regions in upcoming data sets by applying suitable filters to the noisy data. The locations of prominent minima in the filtered data correspond well with the positions of ionized regions. In particular, we corrupt semi-numeric simulations of the redshifted 21 cm signal during reionization with thermal noise at the level expected for a 500 antenna tile version of the Murchison Widefield Array (MWA), and mimic the degrading effects of foreground cleaning. Using a matched filter technique, we find that the MWA should be able to directly identify ionized regions despite the large thermal noise. In a plausible fiducial model in which ~20% of the volume of the universe is neutral at z ~ 7, we find that a 500-tile MWA may directly identify as many as ~150 ionized regions in a 6 MHz portion of its survey volume and roughly determine the size of each of these regions. This may, in turn, allow interesting multi-wavelength follow-up observations, comparing galaxy properties inside and outside of ionized regions. We discuss how the optimal configuration of radio antenna tiles for detecting ionized regions with a matched filter technique differs from the optimal design for measuring power spectra. These considerations have potentially important implications for the design of future redshifted 21 cm surveys.

  19. OH 18 cm TRANSITION AS A THERMOMETER FOR MOLECULAR CLOUDS

    SciTech Connect

    Ebisawa, Yuji; Inokuma, Hiroshi; Yamamoto, Satoshi; Sakai, Nami; Menten, Karl M.; Maezawa, Hiroyuki

    2015-12-10

    We have observed the four hyperfine components of the 18 cm OH transition toward the translucent cloud eastward of Heiles Cloud 2 (HCL2E), the cold dark cloud L134N, and the photodissociation region of the ρ-Ophiuchi molecular cloud with the Effelsberg 100 m telescope. We have found intensity anomalies among the hyperfine components in all three regions. In particular, an absorption feature of the 1612 MHz satellite line against the cosmic microwave background has been detected toward HCL2E and two positions of the ρ-Ophiuchi molecular cloud. On the basis of statistical equilibrium calculations, we find that the hyperfine anomalies originate from the non-LTE population of the hyperfine levels, and can be used to determine the kinetic temperature of the gas over a wide range of H{sub 2} densities (10{sup 2}–10{sup 7} cm{sup −3}). Toward the center of HCL2E, the gas kinetic temperature is determined to be 53 ± 1 K, and it increases toward the cloud peripheries (∼60 K). The ortho-to-para ratio of H{sub 2} is determined to be 3.5 ± 0.9 from the averaged spectrum for the eight positions. In L134N, a similar increase of the temperature is also seen toward the periphery. In the ρ-Ophiuchi molecular cloud, the gas kinetic temperature decreases as a function of the distance from the exciting star HD 147889. These results demonstrate a new aspect of the OH 18 cm line that can be used as a good thermometer of molecular cloud envelopes. The OH 18 cm line can be used to trace a new class of warm molecular gas surrounding a molecular cloud, which is not well traced by the emission of CO and its isotopologues.

  20. Power distribution for an Am/Cm bushing melter

    SciTech Connect

    Gong, C.; Hardy, B.J.

    1996-12-31

    Decades of nuclear material production at the Savannah River Site (SRS) has resulted in the generation of large quantities of the isotopes Am{sup 243} and Cm{sup 244}. Currently, the Am and Cm isotopes are stored as a nitric acid solution in a tank. The Am and Cm isotopes have great commercial value but must be transferred to ORNL for processing. The nitric acid solution contains other isotopes and is intensely radioactive, which makes storage a problem and precludes shipment in the liquid form. In order to stabilize the material for onsite storage and to permit transport the material from SRS to ORNL, it has been proposed that the Am and Cm be separated from other isotopes in the solution and vitrified. Vitrification will be effected by depositing a liquid feed stream containing the isotopes in solution, together with a stream of glass frit, onto the top of a molten glass pool in a melter. The glass is non-conducting and the melter is a Platinum/Rhodium alloy vessel which is heated by passing an electric current through it. Because most of the power is required to evaporate the liquid feed at the top of the glass pool, power demands differ for the upper and lower parts of the melter. In addition, the melter is batch fed so that the local power requirements vary with time. In order to design a unique split power supply, which ensures adequate local power delivery, an analysis of the melter power distribution was performed with the ABAQUS finite element code. ABAQUS was used to calculate the electric potential and current density distributions in the melter for a variety of current and potential boundary conditions. The results of the calculation were compared with test data and will be used to compute power densities for input to a computational fluid dynamics model for the melter.

  1. OH 18 cm Transition as a Thermometer for Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Ebisawa, Yuji; Inokuma, Hiroshi; Sakai, Nami; Menten, Karl M.; Maezawa, Hiroyuki; Yamamoto, Satoshi

    2015-12-01

    We have observed the four hyperfine components of the 18 cm OH transition toward the translucent cloud eastward of Heiles Cloud 2 (HCL2E), the cold dark cloud L134N, and the photodissociation region of the ρ-Ophiuchi molecular cloud with the Effelsberg 100 m telescope. We have found intensity anomalies among the hyperfine components in all three regions. In particular, an absorption feature of the 1612 MHz satellite line against the cosmic microwave background has been detected toward HCL2E and two positions of the ρ-Ophiuchi molecular cloud. On the basis of statistical equilibrium calculations, we find that the hyperfine anomalies originate from the non-LTE population of the hyperfine levels, and can be used to determine the kinetic temperature of the gas over a wide range of H2 densities (102-107 cm-3). Toward the center of HCL2E, the gas kinetic temperature is determined to be 53 ± 1 K, and it increases toward the cloud peripheries (˜60 K). The ortho-to-para ratio of H2 is determined to be 3.5 ± 0.9 from the averaged spectrum for the eight positions. In L134N, a similar increase of the temperature is also seen toward the periphery. In the ρ-Ophiuchi molecular cloud, the gas kinetic temperature decreases as a function of the distance from the exciting star HD 147889. These results demonstrate a new aspect of the OH 18 cm line that can be used as a good thermometer of molecular cloud envelopes. The OH 18 cm line can be used to trace a new class of warm molecular gas surrounding a molecular cloud, which is not well traced by the emission of CO and its isotopologues.

  2. Variability in Soil Properties at Different Spatial Scales (1 m to 1 km) in a Deciduous Forest Ecosystem

    SciTech Connect

    Garten Jr, Charles T; Kang, S.; Brice, Deanne Jane; Schadt, Christopher Warren; Zhou, Jizhong

    2007-01-01

    The purpose of this research was to test the hypothesis that variability in 11 soil properties, related to soil texture and soil C and N, would increase from small (1 m) to large (1 km) spatial scales in a temperate, mixed-hardwood forest ecosystem in east Tennessee, USA. The results were somewhat surprising and indicated that a fundamental assumption in geospatial analysis, namely that variability increases with increasing spatial scale, did not apply for at least five of the 11 soil properties measured over a 0.5-km2 area. Composite mineral soil samples (15 cm deep) were collected at 1, 5, 10, 50, 250, and 500 m distances from a center point along transects in a north, south, east, and westerly direction. A null hypothesis of equal variance at different spatial scales was rejected (P{le}0.05) for mineral soil C concentration, silt content, and the C-to-N ratios in particulate organic matter (POM), mineral-associated organic matter (MOM), and whole surface soil. Results from different tests of spatial variation, based on coefficients of variation or a Mantel test, led to similar conclusions about measurement variability and geographic distance for eight of the 11 variables examined. Measurements of mineral soil C and N concentrations, C concentrations in MOM, extractable soil NH{sub 4}-N, and clay contents were just as variable at smaller scales (1-10 m) as they were at larger scales (50-500 m). On the other hand, measurement variation in mineral soil C-to-N ratios, MOM C-to-N ratios, and the fraction of soil C in POM clearly increased from smaller to larger spatial scales. With the exception of extractable soil NH4-N, measured soil properties in the forest ecosystem could be estimated (with 95% confidence) to within 15% of their true mean with a relatively modest number of sampling points (n{le}25). For some variables, scaling up variation from smaller to larger spatial domains within the ecosystem could be relatively easy because small-scale variation may be

  3. Distinct Distribution of Purines in CM and CR Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Callahan, Michael P.; Stern, Jennifer C.; Glavin, Daniel P.; Smith, Karen E.; Martin, Mildred G.; Dworkin, Jason P.

    2010-01-01

    Carbonaceous meteorites contain a diverse suite of organic molecules and delivered pre biotic organic compounds, including purines and pyrimidines, to the early Earth (and other planetary bodies), seeding it with the ingredients likely required for the first genetic material. We have investigated the distribution of nucleobases in six different CM and CR type carbonaceous chondrites, including fivc Antarctic meteorites never before analyzed for nucleobases. We employed a traditional formic acid extraction protocol and a recently developed solid phase extraction method to isolate nucleobases. We analyzed these extracts by high performance liquid chromatography with UV absorbance detection and tandem mass spectrometry (HPLC-UV -MS/MS) targeting the five canonical RNAIDNA bases and hypoxanthine and xanthine. We detected parts-per-billion levels of nucleobases in both CM and CR meteorites. The relative abundances of the purines found in Antarctic CM and CR meteorites were clearly distinct from each other suggesting that these compounds are not terrestrial contaminants. One likely source of these purines is formation by HCN oligomerization (with other small molecules) during aqueous alteration inside the meteorite parent body. The detection of the purines adenine (A), guanine (0), hypoxanthine (HX), and xanthine (X) in carbonaceous meteorites indicates that these compounds should have been available on the early Earth prior to the origin of the first genetic material.

  4. Am/Cm Vitrification Process: Vitrification Material Balance Calculations

    SciTech Connect

    Smith, F.G.

    2000-08-15

    This report documents material balance calculations for the Americium/Curium vitrification process and describes the basis used to make the calculations. The material balance calculations reported here start with the solution produced by the Am/Cm pretreatment process as described in ``Material Balance Calculations for Am/Cm Pretreatment Process (U)'', SRT-AMC-99-0178 [1]. Following pretreatment, small batches of the product will be further treated with an additional oxalic acid precipitation and washing. The precipitate from each batch will then be charged to the Am/Cm melter with glass cullet and vitrified to produce the final product. The material balance calculations in this report are designed to provide projected compositions of the melter glass and off-gas streams. Except for decanted supernate collected from precipitation and precipitate washing, the flowsheet neglects side streams such as acid washes of empty tanks that would go directly to waste. Complete listings of the results of the material balance calculations are provided in the Appendices to this report.

  5. The characteristic study of TSP, PM2.5-10 and PM2.5 in the rural site of central Taiwan.

    PubMed

    Fang, G C; Chang, C N; Wu, Y S; Fu, P C; Chang, K F; Yang, D G

    1999-08-01

    The total suspended particle (TSP), PM2.5-10 (aerodynamic diameter less than 10 microns) and PM2.5 concentration (aerodynamic diameter less than 2.5 microns) concentrations were sampled by PS-1 and Universal sampler on the roof (25 m) of the Medical and Engineering Building in the campus of Hungkuang Institute of Technology (HKIT) which is located at a height of 500 m on Da Du Mountain. The results indicated that average TSP, PM2.5-10 and PM2.5 concentrations are 0.42, 0.34 and 0.019 mg/m3 in the day time, respectively and are 0.32, 0.26 and 0.017 mg/m3 in the night time, respectively. The ratios of PM2.5-10/TSP were from 76% to 85% and from 50% to 91% for day and night period, respectively. It indicated that the major composition in the total suspended particles was PM2.5-10 in the rural site. The relationship between TSP and PM2.5-10 is TSP = 1.16PM2.5-10 + 0.027 and TSP = 1.01 PM2.5-10 + 0.058 in the day and night time, respectively. The correlation coefficient (R2) is 0.98 and 0.97 for day and night period, respectively. The relationship between PM2.5-10 and PM2.5 is PM2.5 = 0.0005PM2.5-10 + 0.019 and PM2.5 = 0.037PM2.5-10 + 0.0076 in the day and night period, respectively. The correlation coefficient (R2) is 3E-5 and 0.67 for day and night period, respectively. The relationships between TSP, PM2.5-10, PM2.5 particle concentrations and wind speed (R2) in the day time are 0.71, 0.64, 0.43, respectively and are 0.83, 0.79, 0.57, respectively in the night time. The proposed reasons are that there are more activities caused by people (students) and natural living animals which absorbed some of the particles during the day time. Thus, the correlation coefficients for the night time are better than those of day time. The particle size distributions are both bimodel in the day and night time. The major peaks in the day time appear in the particle diameter between 0.031-0.056 micron and 3.16-5.62 microns in the day period and appear between 0.017-0.031 micron and 1

  6. Ultrafast relaxation dynamics of 5,10,15,20-meso-tetrakis pentafluorophenyl porphyrin studied by fluorescence up-conversion and transient absorption spectroscopy.

    PubMed

    Kumar, P Hemant; Venkatesh, Yeduru; Siva, Doddi; Ramakrishna, B; Bangal, Prakriti Ranjan

    2015-02-26

    The ultrafast photophysical characterization of 5,10,15,20-meso-tetrakis pentafluorophenyl porphyrin (H2F20TPP) in 4:1 dichloromethane (DCM) and tetrahydrofuran (THF) solution has been done in the femtosecond-picosecond time domain, by combining fluorescence up-conversion and femtosecond transient absorption spectroscopy. Fluorescence up-conversion studies on H2F20TPP were done demonstrating fluorescence dynamics over the whole spectral range from 440 to 650 nm when excited at 405 nm, 360.5 cm(-1) excess vibrational energy of Soret band (411 nm). Single-exponential decay with ∼160 ± 50 fs lifetime of Soret fluorescence (also called S2 fluorescence or B band fluorescence) at around 440 nm was observed. On going from 440 nm, S2 fluorescence to S1 fluorescence, (Q-band) around 640 nm (wavelength of 0-0 transition in the stationary spectrum), single-exponential fluorescence time profile turns into a multiexponential time profile and it could be resolved critically into five-exponential components. An ultrafast rise component with ∼160 ± 50 fs followed by two decay components: a very fast decay component with 200 ± 50 fs time constant and another relatively slower 1.8 ± 0.5 ps decay component. Next, a very prominent rise component with 105 ± 30 ps lifetime followed by long-lived 10 ns decay component. The initial rise of S1 (Q-band) fluorescence around 640 nm agreed with the decay time of S2 (Soret or B band) fluorescence indicates that internal conversion (IC) from relaxed S2 to vibrationally excited S1 occurs in the ∼160 fs time scale and subsequent very fast decay with 200 fs time constant, which is assigned to be intramolecular vibrational dephasing or redistribution. The 1.8 ps decay component of S1 fluorescence is attributed to be "hot" fluorescence from vibrationally excited S1 state, and it reveals the vibrational relaxation time induced by elastic or quasi-elastic collision with solvent molecules. The 105 ps rise component is the creation time of the

  7. Long-term effects of deep soil loosening on root distribution and soil physical parameters in compacted lignite mine soils

    NASA Astrophysics Data System (ADS)

    Badorreck, Annika; Krümmelbein, Julia; Raab, Thomas

    2015-04-01

    Soil compaction is a major problem of soils on dumped mining substrates in Lusatia, Germany. Deep ripping and cultivation of deep rooting plant species are considered to be effective ways of agricultural recultivation. Six years after experiment start, we studied the effect of initial deep soil loosening (i.e. down to 65 cm) on root systems of rye (Secale cereale) and alfalfa (Medicago sativa) and on soil physical parameters. We conducted a soil monolith sampling for each treatment (deep loosened and unloosened) and for each plant species (in three replicates, respectively) to determine root diameter, length density and dry mass as well as soil bulk density. Further soil physical analysis comprised water retention, hydraulic conductivity and texture in three depths. The results showed different reactions of the root systems of rye and alfalfa six years after deep ripping. In the loosened soil the root biomass of the rye was lower in depths of 20-40 cm and the root biomass of alfalfa was also decreased in depths of 20-50 cm together with a lower root diameter for both plant species. Moreover, total and fine root length density was higher for alfalfa and vice versa for rye. The soil physical parameters such as bulk density showed fewer differences, despite a higher bulk density in 30-40cm for the deep loosened rye plot which indicates a more pronounced plough pan.

  8. Soil Decomposition of Added Organic C in an Organic Farming System

    NASA Astrophysics Data System (ADS)

    Kpomblekou-A, Kokoasse; Sissoko, Alassane; McElhenney, Wendell

    2015-04-01

    In the United States, large quantities of poultry waste are added every year to soil under organic management. Decomposition of the added organic C releases plant nutrients, promotes soil structure, and plays a vital role in the soil food web. In organic agriculture the added C serves as the only source of nutrients for plant growth. Thus understanding the decomposition rates of such C in organic farming systems are critical in making recommendations of organic inputs to organic producers. We investigated and compared relative accumulation and decomposition of organic C in an organic farming system trial at the George Washington Carver Agricultural Experiment Station at Tuskegee, Alabama on a Marvyn sandy loam (fine-loamy, kaolinitic, thermic, Typic Kanhapludults) soil. The experimental design was a randomized complete block with four replicates and four treatments. The main plot (54' × 20') was split into three equal subplots to plant three sweet potato cultivars. The treatments included a weed (control with no cover crop, no fertilizer), crimson clover alone (CC), crimson clover plus broiler litter (BL), and crimson clover plus NPK mineral fertilizers (NPK). For five years, late in fall, the field was planted with crimson clover (Trifolium incarnatum L) that was cut with a mower and incorporated into soil the following spring. Moreover, broiler litter (4.65 Mg ha-1) or ammonium nitrate (150 kg N ha-1), triple super phosphate (120 kg P2O5 ha-1), and potassium chloride (160 kg K2O ha-1) were applied to the BL or the NPK plot and planted with sweet potato. Just before harvest, six soil samples were collected within the two middle rows of each sweet potato plot with an auger at incremental depths of 0-1, 1-2, 2-3, 3-5, 5-10, and 10-15 cm. Samples from each subplot and depth were composited and mixed in a plastic bag. The samples were sieved moist through a

  9. Copper and zinc speciation in a biosolids-amended, semiarid grassland soil.

    PubMed

    Ippolito, J A; Barbarick, K A; Brobst, R B

    2014-09-01

    Predicting trace-metal solid-phase speciation changes associated with long-term biosolids land application is important for understanding and improving environmental quality. Biosolids were surface-applied (no incorporation; 0, 2.5, 5, 10, 21, and 30 Mg ha) to a semiarid grassland in 1991 (single application) and 2002 (repeated application). In July 2003, soils were obtained from the 0- to 8-, 8- to15-, and 15- to 30-cm depths in all plots. Using soil pH, soluble anion and cation concentrations from 0.01 mol L CaCl extractions, dissolved organic C (DOC) content, and an estimate of solid phase humic and fulvic acids present, Cu and Zn associated with minerals, hydrous ferric oxides (HFO), organically complexed, electrostatically bound to organic matter (OM), or DOC phases was modeled using Visual Minteq. Scanning electron microscopy and energy-dispersive X-ray analysis (SEM-EDXRA) was also used to identify solid-phase metal associations present in single and repeated biosolids-amended soils. Based on soil solution chemistry in all depths, as modeled using Visual Minteq, >90% of the Cu and >95% of the Zn from the single or repeated biosolids-applied soils were sorbed electrostatically or as mono- or bidentate solid-phase OM complexes. Up to 10 and 5% of the Cu and Zn, respectively, was associated with HFO, with negligible amounts associated with DOC. The SEM-EDXRA of clay-sized separates from all soil depths led to direct observation of Fe-Cu and Fe-Zn associations. Results implied that after surface-applying biosolids either once or twice with up to 30 Mg ha, some shifts occurred in phases controlling Cu and Zn solubility, but solution concentrations remained below drinking water standards.

  10. Herbicide sorption coefficients in relation to soil properties and terrain attributes on a cultivated prairie

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sorption of the herbicides 2,4-D and glyphosate in soil was quantified for 286 surface soil samples (0-15 cm) collected in a 10 m X 10 m grid across a heavily-eroded undulating calcareous prairie landscape. At each sampling point soil organic carbon content, soil carbonate content, soil pH, till...

  11. Soil 13C Dynamics in Aggregates Across a Soil Profile Under an Established Miscanthus System

    NASA Astrophysics Data System (ADS)

    Dondini, M.; Groenigen, K. J.; Jones, M.

    2008-12-01

    Soils are the largest pool of terrestrial organic carbon (C), containing nearly three times the amount of C as the atmosphere. Environmental changes that affect soil C dynamics could slow down the rise in atmospheric CO2 and associated warming by promoting soil C storage. Our capacity to predict the consequences for global change therefore depends on a better understanding of the distribution and controls of soil organic C and how vegetation change may affect SOC distributions. One land cover change of particular interest involves the establishment of bio energy crop stands. The full mitigation potential of bio energy crops cannot be considered without taking into account their effect on soil C dynamics. Miscanthus, a perennial C4 grass from Eastern Asia, has recently received considerable interest as a bio-energy crop. For that reason, we analyzed the C content and the 13C signatures across the soil profile in a 14 year old Miscanthus system, established on former arable land. We combined SOM fractionation techniques by size and density, allowing us to investigate small shifts in soil C stores that would be significant in the long term, but that might not be detected by conventional methodologies. The 13C signal of the various SOM fractions allowed us to distinguish between Miscanthus-derived vs. native soil organic C. Soils under Miscanthus contained 796 g C/m2 in the 0-15 cm layer, and 1233g C/m2 in the 15- 30 cm layer. These values are significantly higher than soil C contents in the arable land. Macroaggregates under Miscanthus contain more than twice as much C compared to arable land, showing a decrease in soil C content with decreasing aggregate size. These differences are largely caused by soil C storage in the microaggregate within macroaggregates fraction. Under Miscanthus, this fraction contains 440 g C/m2 and 488 g C/m2 at 0-15 cm and 15-30 cm respectively, while under the arable land it has mean values of 174 g C/m2 and 353 g C/m2. Our data suggest a

  12. Organic carbon, water repellency and soil stability to slaking at aggregate and intra-aggregate scales

    NASA Astrophysics Data System (ADS)

    Jordán López, Antonio; García-Moreno, Jorge; Gordillo-Rivero, Ángel J.; Zavala, Lorena M.; Cerdà, Artemi; Alanís, Nancy; Jiménez-Compán, Elizabeth

    2015-04-01

    intensity of WR in aggregates of different sizes. [ii] the intra-aggregate distribution of OC and the intensity of WR and [iii] the structural stability of soil aggregates relative to the OC content and the intensity of WR in soils under different crops (apricot, citrus and wheat) and different treatments (conventional tilling and mulching). Soil samples were collected from an experimental area (Luvic Calcisols and Calcic Luvisols) in the province of Sevilla (Southern Spain) under different crops (apricot, citrus and wheat) and different management types (conventional tillage with moldboard plow) and mulching (no-tilling and addition of wheat residues at rates varying between 5 and 8 Mg/ha/year). At each sampling site, soil blocks (50 cm long × 50 cm wide × 10 cm deep) were carefully collected to avoid disturbance of aggregates as much as possible and transported to the laboratory. At field moist condition, undisturbed soil aggregates were separated by hand. In order to avoid possible interferences due to disturbance by handling, aggregates broken during this process were discarded. Individual aggregates were arranged in paper trays and air-dried during 7 days under laboratory standard conditions. After air-drying, part of each sample was carefully divided for different analyses: [i] part of the original samples was sieved (2 mm) to eliminate coarse soil particles and homogenized for characterization of OC and N contents, C/N ratio and texture; [ii] part of the aggregates were dry-sieved (0.25-0.5, 0.5-1 and 1-2 mm) or measured with a caliper (2-5, 5-10 and 10-15 mm) and separated in different sieve-size classes for determination of WR and OC content; [iii] aggregates 10-15 mm in size were selected for obtaining aggregate layers using a soil aggregate erosion (SAE) apparatus and WR and OC content were determined at each layer; finally, [iv] in order to study the relation between stability to slaking, WR and OC, these properties were determined in 90 air-dried aggregates

  13. Meloidogyne hapla in Organic Soil: Effects of Environment on Hatch, Movement and Root Invasion

    PubMed Central

    Wong, T. K.; Mai, W. F.

    1973-01-01

    Using new techniques, hatch and movement of Meloidogyne hapla and nematode invasion o f lettuce roots growing in organic soil were studied under controlled soil conditions of temperature, moisture, O₂ and CO₂. When O₂ levels of 2.7, 5, 10, 21 and 40% with CO₂ maintained at 0.03% were used, O₂ below 21% or at 40% reduced nematode activities compared with those at 21%. When CO₂ levels of 0.03, 0.33, 2.8, 10 and 30% with O₂ maintained at 21% were used, all levels above 0.03% CO₂ resulted in less activity than at 0.03% except for more invasion at 0.33% than at 0.03%. Results suggested M. hapla was tolerant of CO₂ below 10% but adversely affected by 30% CO₂. Effect of O₂ was influenced by the level of CO₂ present. No larvae invaded roots at 3.2% O₂ and 18.6% CO₂ but hatch and movement occurred. Night and day temperatures of 21.1 and 26.7 C were more favorable for movement and invasion than 15.5 and 21.1 C, 26.7 and 32.2 C or 26.7 and 32.2 C. Optimum moisture for movement was 80 cm suction and for invasion was 100 cm. PMID:19319318

  14. Effects of dietary glycerin inclusion at 0, 5, 10, and 15% of dry matter on energy metabolism and nutrient balance in finishing beef steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Expansion of the biodiesel industry has increased the glycerin (GLY) supply. Glycerin is an energy-dense feed that can be used in ruminant species; however, the energy value of GLY is not known. Therefore, the effects of GLY inclusion at 0%, 5%, 10%, and 15% in dry-rolled corn (DRC)-based diets we...

  15. Effects of dietary glycerin inclusion at 0, 5, 10, and 15 percent of dry matter on energy metabolism and nutrient balance in finishing beef steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Expansion of the biodiesel industry has increased the glycerin (GLY) supply. Glycerin is an energy-dense feed that can be used in ruminant species; however, the energy value of GLY is not known. Therefore, the effects of GLY inclusion at 0%, 5%, 10%, and 15% on energy balance in finishing cattle d...

  16. 21 CFR 73.3120 - 16,17-Dimethoxydinaphtho [1,2,3-cd:3′,2′,1′-lm] perylene-5,10-dione.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false 16,17-Dimethoxydinaphtho perylene-5,10-dione. 73.3120 Section 73.3120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... to exceed the minimum reasonably required to accomplish the intended coloring effect....

  17. 21 CFR 73.3120 - 16,17-Dimethoxydinaphtho [1,2,3-cd:3′,2′,1′-lm] perylene-5,10-dione.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false 16,17-Dimethoxydinaphtho perylene-5,10-dione. 73.3120 Section 73.3120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... to exceed the minimum reasonably required to accomplish the intended coloring effect....

  18. 10 cm x 10 cm Single Gas Electron Multiplier (GEM) X-ray Fluorescence Detector for Dilute Elements

    NASA Astrophysics Data System (ADS)

    Shaban, E. H.; Siddons, D. P.; Seifu, D.

    2014-03-01

    We have built and tested a 10 cm × 10 cm single Gas Electron Multiplier (GEM) X-ray detector to probe dilute amounts of Fe in a prepared sample. The detector uses Argon/Carbon Dioxide (75/25) gas mixture flowing at a slow rate through a leak proof Plexi-glass enclosure held together by O-rings and screws. The Fluorescence X-ray emitted by the element under test is directed through a Mylar window into the drift region of the detector where abundant gas is flowing. The ionized electrons are separated, drifted into the high electric field of the GEM, and multiplied by impact ionization. The amplified negatively charged electrons are collected and further amplified by a Keithley amplifier to probe the absorption edge of the element under test using X-ray absorption spectroscopy technique. The results show that the GEM detector provided good results with less noise as compared with a Silicon drift detector (SDD).

  19. Tillage and liming effects on aggregate distribution and associated carbon and nitrogen in acid soils of SW Spain

    NASA Astrophysics Data System (ADS)

    Gómez-Paccard, Clara; Zabaleta, Javier; Benito, Marta; León, Paloma; Mariscal-Sancho, Ignacio; Espejo, Rafael; Hontoria, Chiquinquirá

    2013-04-01

    Beneficial effects of conservation tillage are well known on a wide variety of environmental aspects. The lack of ploughing in no till systems conserves soil structure, enhances the accumulation of organic carbon in the surface layer and promotes the development of soil microorganisms. On the other hand, liming is a common practice in acid soils. Lime raises the pH, reduces Al toxicity enhancing root development, but controversial results have been found about the effects of liming on soil structure. Ultisols from SW of Spain present severe chemical constraints as poor nutrient availability and high Al contents in the exchange complex. On the other hand, traditional practices as conventional tillage led to a dramatic decrease on soil organic carbon and a degraded soil structure. No till plus liming might be recommendable to achieve a sustainable and productive agriculture in these particular soils, but little is known about the effect of these practices on soil structure when applied together. The aim of this study was to evaluate the effect of traditional tillage (TT) versus no tillage (NT), and liming versus no liming on aggregate size distribution and associated carbon and nitrogen. The study was conducted on a Plinthic Palexerult (Soil Survey Staff, 1999) in the Cañamero's Raña (SW Spain) under Mediterranean climate (mean annual temperature: 15.0° C; mean annual precipitation: 869 mm). The experimental design was a split-plot with four replications. The main factor was tillage (no till versus traditional till) while the second was the inclusion or not of Ca-amendment (sugar foam plus red gypsum). Samples were collected in 2011 after six years of treatment at a 0-5, 5-10 and 10-25 cm depths. The aggregate distribution was determined by wet sieving method to separate four aggregate size classes: (i) >2000 µm (large macroaggregates), (ii) 250-2000 µm (small macroaggregates), (iii) 53-250 µm (microaggregates), (iv) <53 µm (silt and clay fraction). Soil

  20. Changes in the properties of soils in a solonetz soil complex thirty years after reclamation

    NASA Astrophysics Data System (ADS)

    Kalinichenko, V. P.; Sharshak, V. K.; Mironchenko, S. F.; Chernenko, V. V.; Ladan, E. P.; Genev, E. D.; Illarionov, V. V.; Udalov, A. V.; Udalov, V. V.; Kippel, E. V.

    2014-04-01

    The long-term (30 year) dynamics of a solonetz soil complex composed of solonetzic light chestnut soils and chestnut solonetzes under standard conditions and with the application of agromeliorative measures are considered. When the standard zonal agricultural practice is used, the soils of the solonetzic complex have unfavorable agrophysical, chemical, and physicochemical properties and low productivity. After 30 years of the standard three-level tillage of the soils to a depth of 40-45 cm, the productivity of the biogeocenosis decreased. Thirty years after a single rotary-milling subsoil treatment of the 20- to 45-cm soil layer using a milling tool FS-1.3, there were no morphological features pointing to the restoration of the solonetzic process. The humus content in the 0-to 20-cm and 20-to 40-cm soil layers was 2.3 and 1.7%, respectively; the content of adsorbed Na+ in the 20-to 30-cm layer was 11.6% of the total exchange capacity, or 38% lower than its content in the reference soil. The additional yield reached 30-70% and more of that obtained with the standard agricultural technology used during the whole period under investigation. The method of systems biogeotechnology (systems bio-geo engineering) is proposed as a method for the preventive control of soil evolution and the maintenance of the stability and high productivity of the soil cover.

  1. Soil warming affects soil organic matter chemistry of all density fractions of a mountain forest soil

    NASA Astrophysics Data System (ADS)

    Schnecker, Jörg; Wanek, Wolfgang; Borken, Werner; Schindlbacher, Andreas

    2016-04-01

    Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and increase thereby the soil CO2 efflux. Elevated microbial activity might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition. We here investigated the chemical and isotopic composition of bulk soil and three different density fractions of forest soils from a long term warming experiment in the Austrian Alps. At the time of sampling the soils in this experiment had been warmed during the snow-free period for 8 consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO2 release from the soil continued to be elevated by the warming treatment. Our results which included organic C content, total N content, δ13C, δ 14C, δ 15N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. The differences in the three individual fractions (free particulate organic matter, occluded particulate organic matter and mineral associated organic matter) were mostly small and the direction of warming induced change was variable with fraction and sampling depth. We did however find statistically significant effects of warming in all density fractions from 0-10 cm depth, 10-20 cm depth or both. Our results also including significant changes in the supposedly more stable mineral associated organic matter fraction where δ 13C values decreased at both sampling depths and the relative proportion of N-bearing compounds decreased at a sampling depth of 10-20 cm. All the observed changes can be attributed to an interplay of enhanced microbial decomposition of SOM and increased root litter input. This study suggests that soil warming destabilizes all density fractions of

  2. [Should all patients with thyroid nodules > or = 1 cm undergo fine-needle aspiration biopsy?].

    PubMed

    Schicha, Harald; Hellmich, M; Lehmacher, W; Eschner, Wolfgang; Schmidt, Matthias; Kobe, Carsten; Schober, Otmar; Dietlein, Markus

    2009-01-01

    The prevalence of thyroid nodules > or = 1 cm is high in a previously iodine-deficient area. Under the hypothesis, that all patients with such nodules undergo fine-needle aspiration biopsy (FNAB) and that sensitivity and specificity of cytology are calculated with 85%, the positive predictive value of pathologic cytologic finding will reach 1.5% only according to Bayes-theorem. This is clinically unacceptable, as resection will be the consequence in all cases with suspect cytology. Even implementation of a second, independent test (e. g. moleculargenetic testing of thyreocytes, sensitivity to detect mutation 50%, specificity 95%) and application of sequential Bayes-theorem the positive predictive value of combined pathologic findings will increase to 13% only. Nevertheless, 58% out of all thyroid cancer remain undetected by such a sequential algorithm. As a consequence , pre-selection of thyroid nodules for FNAB is required to increase the pretest-probability to at least 5-10%. A combination of sonographic criteria and scintigraphy, even in patients with normal TSH-levels, is suited to selected thyroid nodules for FNAB.

  3. Conserving Soil.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    Designed as enrichment materials for grades six through nine, this program is an interdisciplinary study of soils. As part of the program students: (1) examine soil organisms; (2) research history of local Native Americans to see how they and others have used the land and its soils; (3) investigate how soils are degraded and how they are conserved…

  4. Exploring 21cm-Lyman Alpha Emitter Synergies for SKA

    NASA Astrophysics Data System (ADS)

    Hutter, Anne; Dayal, Pratika; Müller, Volker; Trott, Cathryn M.

    2017-02-01

    We study the signatures of reionization and ionizing properties of early galaxies in the cross-correlations between the 21 cm emission from the spin-flip transition of neutral hydrogen (H i) and the underlying galaxy population. In particular, we focus on a sub-population of galaxies visible as Lyα Emitters (LAEs). With both observables simultaneously derived from a z≃ 6.6 hydrodynamical simulation (GADGET-2) snapshot post-processed with a radiative transfer code (pCRASH) and a dust model, we perform a parameter study and aim to constrain both the average intergalactic medium (IGM) ionization state (1-< {χ }{{H}{{I}}}> ) and the reionization topology (outside-in versus inside-out). We find that, in our model, LAEs occupy the densest and most-ionized regions resulting in a very strong anti-correlation between the LAEs and the 21 cm emission. A 1000 hr Square Kilometer Array (SKA)-LOW1—Subaru Hyper Suprime-Cam experiment can provide constraints on < {χ }{{H}{{I}}}> , allowing us to distinguish between IGM ionization levels of 50%, 25%, 10%, and fully ionized at scales r≲ 10 comoving Mpc (assuming foreground avoidance for SKA). Our results support the inside-out reionization scenario where the densest knots (under-dense voids) are ionized first (last) for < {χ }{{H}{{I}}}> ≳ 0.1. Further, 1000 hr SKA-LOW1 observations should be able to confirm the inside-out scenario by detecting a lower 21 cm brightness temperature (by about 2–10 mK) in the densest regions (≳2 arcmin scales) hosting LAEs, compared to lower-density regions devoid of them.

  5. LIQUIDARMOR CM Flashing and Sealant, High Impact Technology Demonstration

    SciTech Connect

    Hun, Diana E.; Bhandari, Mahabir S.

    2016-12-01

    Air leakage is responsible for about 1.1 quads of energy or 6% of the total energy used by commercial buildings in the US. Consequently, infiltration and exfiltration are among the largest envelope-related contributors to the heating, ventilation, and air conditioning loads in commercial buildings. New air sealing technologies have recently emerged that aim to improve the performance of air barrier systems by simplifying their installation procedure. LIQUIDARMORTM CM Flashing and Sealant is an example of these new advanced material technologies. This technology is a spray-applied sealant and liquid flashing and can span gaps that are up to ¼ in. wide without a supporting material. ORNL verified the performance of LIQUIDARMORTM CM with field tests and energy simulations from a building in which LIQUIDARMORTM CM was one of components of the air barrier system. The Homeland Security Training Center (HTC) at the College of DuPage in Glen Ellyn, IL, served as the demonstration site. Blower door test results show the average air leakage rate in the demonstration site to be 0.15 cfm/ft2 at 1.57 psf, or 63% lower than the 0.4 cfm at 1.57 psf specified in the 2015 International Energy Conservation Code (IECC). According to simulation results, HTC lowered its annual heating and cooling cost by about $3,000 or 9% compared to a similar building that lacked an air barrier system. This demonstration project serves as an example of the level of building envelope airtightness that can be achieved by using air barrier materials that are properly installed, and illustrates the energy and financial savings that such an airtight envelope could attain.

  6. Effects of composite soil with feldspathic sandstone and sand on soil aggregates and organic carbon

    NASA Astrophysics Data System (ADS)

    Li, J.; Han, J. C.; Zhang, Y.; Lei, G. Y.; Wang, H. Y.; Zhu, D. W.

    2016-08-01

    The case was to study the effects of soils with different proportions of feldspathic sandstone and sand on soil stability and organic carbon at 0-30 cm soil depth with four different ratios(C1, C2, C3 and C4), They were used to prepare the composite soil in Fu Ping, Shaanxi Province of China, then the soil aggregates distribution, WASR, MWD, GMD, D valueand and organic carbon content were measured and analysed.The results showed : the soil stability of C1, C2 and C3 was better than C4, i.e., the composition could improve the soil stability. With the increasing of the planting years, the contents of soil aggregates with the size >0.25 mm and MWD, GMD and SOC increased for each treatment at 0- 30 cm soil depth, which was contrary to D values. WASR of C2 was significantly higher than others (p<0.05) after 3-year planting. The significant logarithmic relationships were found between the D values and the ratios in C1, C2 and C3. Besides C1 and C2 could increase the stability and content of large soil aggregates to improve soil structure; C2 could significantly increase the SOC than others at 0- 30 cm soil depth.

  7. The 100 cm solar telescope primary mirror study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The manufacturing impact of primary mirror configuration on the performance of a 100 cm aperture solar telescope was studied. Three primary mirror configurations were considered: solid, standard lightweight, and mushroom. All of these are of low expansion material. Specifically, the study consisted of evaluating the mirrors with regard to: manufacturing metrology, manufacturing risk factors and ultimate quality assessment. As a result of this evaluation, a performance comparison of the configurations was made, and a recommendation of mirror configuration is the final output. These evaluations, comparisons and recommendations are discussed in detail. Other investigations were completed and are documented in the appendices.

  8. Control of a 30 cm diameter mercury bombardment thruster

    NASA Technical Reports Server (NTRS)

    Terdan, F. F.; Bechtel, R. T.

    1973-01-01

    Increased thruster performance has made closed-loop automatic control more difficult than previously. Specifically, high perveance optics tend to make reliable recycling more difficult. Control logic functions were established for three automatic modes of operation of a 30-cm thruster using a power conditioner console with flight-like characteristics. The three modes provide (1) automatic startup to reach thermal stability, (2) steady-state closed-loop control, and (3) the reliable recycling of the high voltages following an arc breakdown to reestablish normal operation. Power supply impedance characteristics necessary for stable operation and the effect of the magnetic baffle on the reliable recycling was studied.

  9. Performance documentation of the engineering model 30-cm diameter thruster

    NASA Technical Reports Server (NTRS)

    Bechtel, R. T.; Rawlin, V. K.

    1976-01-01

    The results of extensive testing of two 30-cm ion thrusters which are virtually identical to the 900 series Engineering Model Thruster in an ongoing 15,000-hour life test are presented. Performance data for the nominal fullpower (2650 W) operating point; performance sensitivities to discharge voltage, discharge losses, accelerator voltage, and magnetic baffle current; and several power throttling techniques (maximum Isp, maximum thrust/power ratio, and two cases in between are included). Criteria for throttling are specified in terms of the screen power supply envelope, thruster operating limits, and control stability. In addition, reduced requirements for successful high voltage recycles are presented.

  10. Status of 30 cm mercury ion thruster development

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.; King, H. J.

    1974-01-01

    Two engineering model 30-cm ion thrusters were assembled, calibrated, and qualification tested. This paper discusses the thruster design, performance, and power system. Test results include documentation of thrust losses due to doubly charged mercury ions and beam divergence by both direct thrust measurements and beam probes. Diagnostic vibration tests have led to improved designs of the thruster backplate structure, feed system, and harness. Thruster durability is being demonstrated over a thrust range of 97 to 113 mN at a specific impulse of about 2900 seconds. As of August 15, 1974, the thruster has successfully operated for over 4000 hours.

  11. Development of an 8-cm engineering model thruster system

    NASA Technical Reports Server (NTRS)

    Herron, B. G.; Hyman, J., Jr.; Hopper, D. J.

    1976-01-01

    Electric propulsion has been shown to offer major advantages over the techniques currently employed for the control of earth satellites. For a user to realize these advantages, however, requires the availability of a proven, operationally flight-ready propulsion system. Currently an Engineering Model of an 8-cm ion thruster propulsion system is under development. The system includes the thruster unit with its associated reservoir, thruster gimbaling subsystem, and power processing unit. This paper describes the EM System with special emphasis on hardware design and system performance.

  12. Performance mapping of a 30 cm engineering model thruster

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Vahrenkamp, R. P.

    1975-01-01

    A 30 cm thruster representative of the engineering model design has been tested over a wide range of operating parameters to document performance characteristics such as electrical and propellant efficiencies, double ion and beam divergence thrust loss, component equilibrium temperatures, operational stability, etc. Data obtained show that optimum power throttling, in terms of maximum thruster efficiency, is not highly sensitive to parameter selection. Consequently, considerations of stability, discharge chamber erosion, thrust losses, etc. can be made the determining factors for parameter selection in power throttling operations. Options in parameter selection based on these considerations are discussed.

  13. Atlas of Absorption Lines from 0 to 17900 cm-1

    DTIC Science & Technology

    1987-09-01

    u—, J i i , j : 1 .’ lllll:! 1 ;, U h’,1 i L’lllll 111 ’ lilll lillh i 50 51 52 53 WAV t NUMBER 55 : ( 57...jiilli III 111 III, llll II III N,0 ’ NH, l-ICN C2H2 cm 700 55 14.2857 14.1844 140845 13.9860 13.8889 � 13.6986 13.6054 13.5135...1 1 1 1 2 3 - 4 - 5 - 6 /UITI CO CH4 OH HF H CO SUN 4250 4255 4260 4265 WAVENUMBER 4270 4275 4280 4285 4290 4295 4300 129 2 3256

  14. Long lifetime hollow cathodes for 30-cm mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Kerslake, W. R.

    1976-01-01

    An experimental investigation of hollow cathodes for 30-cm Hg bombardment thrusters was carried out. Both main and neutralizer cathode configurations were tested with both rolled foil inserts coated with low work function material and impregnated porous tungsten inserts. Temperature measurements of an impregnated insert at various positions in the cathode were made. These, along with the cathode thermal profile are presented. A theory for rolled foil and impregnated insert operation and lifetime in hollow cathodes is developed. Several endurance tests, as long as 18000 hours at emission currents of up to 12 amps were attained with no degradation in performance.

  15. Human Being Imaging with cm-Wave UWB Radar

    NASA Astrophysics Data System (ADS)

    Yarovoy, A.; Zhuge, X.; Savelyev, T.; Matuzas, J.; Levitas, B.

    Possibilities of high-resolution human body imaging and concealed weapon detection using centimeter-wave microwave frequencies are investigated. Dependencies of the cross-range resolution of different imaging techniques on operational bandwidth, center frequency, imaging aperture size, and imaging topology have been studied. It has been demonstrated that the cross-range resolution of 2 cm can be achieved using frequencies below 10 GHz. These findings have been verified experimentally by producing high-resolution images of a foil-covered doll and some weapons.

  16. Performance capabilities of the 8-cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Mantenieks, M. A.

    1981-01-01

    A preliminary characterization of the performance capabilities of the 8-cm thruster in order to initiate an evaluation of its application to LSS propulsion requirements is presented. With minor thruster modifications, the thrust was increased by about a factor of four while the discharge voltage was reduced from 39 to 22 volts. The thruster was operated over a range of specific impulse of 1950 to 3040 seconds and a maximum total efficiency of about 54 percent was attained. Preliminary analysis of component lifetimes, as determined by temperature and spectroscopic line intensity measurements, indicated acceptable thruster lifetimes are anticipated at the high power level operation.

  17. The 8-CM ion thruster characterization. [mercury ion engine

    NASA Technical Reports Server (NTRS)

    Wessel, F. J.; Williamson, W. S.

    1983-01-01

    The performance capabilities of the 8 cm diameter mercury ion thruster were increased by modifying the thruster operating parameters and component hardware. The initial performance levels, representative of the Hughes/NASA Lewis Research Center Ion Auxiliary Propulsion Subsystem (IAPS) thruster, were raised from the baseline values of thrust, T = 5 mN, and specific impulse, I sub sp = 2,900s, to thrust, T = 25 mN and specific impulse, I sub sp = 4,300 s. Performance characteristics including estmates of the erosion rates of various component surfaces are presented.

  18. Studies of dished accelerator grids for 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Eighteen geometrically different sets of dished accelerator grids were tested on five 30-cm thrusters. The geometric variation of the grids included the grid-to-grid spacing, the screen and accelerator hole diameters and thicknesses, the screen and accelerator open area fractions, ratio of dish depth to dish diameter, compensation, and aperture shape. In general, the data taken over a range of beam currents for each grid set included the minimum total accelerating voltage required to extract a given beam current and the minimum accelerator grid voltage required to prevent electron backstreaming.

  19. Atomic Mass and Nuclear Binding Energy for Cm-242 (Curium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Cm-242 (Curium, atomic number Z = 96, mass number A = 242).

  20. Recycle Requirements for NASA's 30 cm Xenon Ion Thruster

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Rawlin, Vincent K.

    1994-01-01

    Electrical breakdowns have been observed during ion thruster operation. These breakdowns, or arcs, can be caused by several conditions. In flight systems, the power processing unit must be designed to handle these faults autonomously. This has a strong impact on power processor requirements and must be understood fully for the power processing unit being designed for the NASA Solar Electric Propulsion Technology Application Readiness program. In this study, fault conditions were investigated using a NASA 30 cm ion thruster and a power console. Power processing unit output specifications were defined based on the breakdown phenomena identified and characterized.

  1. Thermoacoustic imaging of fresh prostates up to 6-cm diameter

    NASA Astrophysics Data System (ADS)

    Patch, S. K.; Hanson, E.; Thomas, M.; Kelly, H.; Jacobsohn, K.; See, W. A.

    2013-03-01

    Thermoacoustic (TA) imaging provides a novel contrast mechanism that may enable visualization of cancerous lesions which are not robustly detected by current imaging modalities. Prostate cancer (PCa) is the most notorious example. Imaging entire prostate glands requires 6 cm depth penetration. We therefore excite TA signal using submicrosecond VHF pulses (100 MHz). We will present reconstructions of fresh prostates imaged in a well-controlled benchtop TA imaging system. Chilled glycine solution is used as acoustic couplant. The urethra is routinely visualized as signal dropout; surgical staples formed from 100-micron wide wire bent to 3 mm length generate strong positive signal.

  2. Endurance testing of a 30-cm Kaufman thruster

    NASA Technical Reports Server (NTRS)

    Collett, C. R.

    1973-01-01

    Results of a program to demonstrate lifetime capability of a 30-cm Kaufman ion thruster with a 6000 hour endurance test are described. Included in the program are (1) thruster fabrication, (2) design and construction of a test console containing a transistorized high frequency power processor, and control circuits which provide unattended automatic operation of the thruster, and (3) modification of a vacuum facility to incorporate a frozen mercury collector and permit unattended operation. Four tests ranging in duration from 100 to 1100 hours have been completed. These tests and the resulting thruster modifications are described. The status of the endurance test is also presented.

  3. Preconditioning with a decoupled rowwise ordering on the CM-5

    SciTech Connect

    Toledo, S.

    1995-12-01

    Decoupled rowwise ordering is an ordering scheme for 2-dimensional grids, which is tailored for preconditioning 5-point difference equations arising from discretizations of partial differential equations. This paper describes the ordering scheme and implementations of a conjugate gradient solver and SSOR preconditioners which use the decoupled rowwise and the red black ordering schemes on the CM-5 parallel supercomputer. The rowwise decoupled preconditioner leads to faster convergence than the red black preconditioner, and it reduces the solution time by a factor of 1.5 to 2.5 over a nonpreconditioned solver on a variety of test problems.

  4. Performance of 30-cm ion thrusters with dished accelerator grids

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Thirteen sets of dished accelerator grids were treated on five different 30 cm diameter bombardment thrusters to evaluate the effects of grid geometry variations on thruster discharge chamber performance. The dished grid parameters varied were: grid-to-grid spacing, screen and accelerator grid hole diameter, screen and accelerator open area fraction, compensation for beam divergence losses, and accelerator grid thickness. The effects on discharge chamber performance of main magnetic field changes, magnetic baffle current, cathode pole piece length and cathode position were also investigated.

  5. Studies of dished accelerator grids for 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Geometrically different sets of dished accelerator grids were tested on five 30-cm thrusters. The geometric variation of the grids included the grid-to-grid spacing, the screen and accelerator hole diameters and thicknesses, the screen and accelerator open area fractions, ratio of dish depth to the dish diameter, compensation, and aperture shape. In general, the data taken over a range of beam currents for each grid set included the minimum total accelerating voltage required to extract a given beam current and the minimum accelerator grid voltage required to prevent electron backstreaming.

  6. A multiple thruster array for 30-cm thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.; Mantenieks, M. A.

    1975-01-01

    The 3.0-m diameter chamber of the 7.6-m diameter by 21.4-m long vacuum tank at NASA LeRC was modified to permit testing of an array of up to six 30-cm thrusters with a variety of laboratory and thermal vacuum bread-board power systems. A primary objective of the Multiple Thruster Array (MTA) program is to assess the impact of multiple thruster operation on individual thruster and power processor requirements. The areas of thruster startup, steady-state operation, throttling, high voltage recycle, thrust vectoring, and shutdown are of special concern. The results of initial tests are reported.

  7. Novel treatment of an 11-cm saphenous vein graft aneurysm.

    PubMed

    Harrison, Joshua W; Swartz, Michael F; Fink, Gregory W

    2009-04-01

    Saphenous vein graft pseudoaneurysms are rare and potentially fatal complications after coronary artery bypass graft surgery. Here we present an 11-cm saphenous vein graft pseudoaneurysm from a 20-year-old vein graft to the obtuse marginal artery. The pseudoaneurysm was directly located beneath the sternum and adjacent to two patent grafts. Therefore, we used a novel approach to access the aorta through a right thoracotomy, and using a pericardial patch, we closed the ostia to the pseudoaneurysm. Postoperatively there was no longer flow into the aneurysm, and at 1-year follow-up the patient is doing well.

  8. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska.

    PubMed

    Kim, Hye Min; Jung, Ji Young; Yergeau, Etienne; Hwang, Chung Yeon; Hinzman, Larry; Nam, Sungjin; Hong, Soon Gyu; Kim, Ok-Sun; Chun, Jongsik; Lee, Yoo Kyung

    2014-08-01

    The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0-10 cm to 10-20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen (NH4+ and NO3-). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska.

  9. Characteristics of water-soluble inorganic ions in PM2.5 and PM 2.5-10 in the coastal urban agglomeration along the Western Taiwan Strait Region, China.

    PubMed

    Yin, Liqian; Niu, Zhenchuan; Chen, Xiaoqiu; Chen, Jinsheng; Zhang, Fuwang; Xu, Lingling

    2014-04-01

    PM2.5 and PM2.5-10 aerosol samples were collected in four seasons during November 2010, January, April, and August 2011 at 13 urban/suburban sites and one background site in Western Taiwan Straits Region (WTSR), which is the coastal area with rapid urbanization, high population density, and deteriorating air quality. The 10 days average PM2.5 concentrations were 92.92, 51.96, 74.48, and 89.69 μg/m(3) in spring, summer, autumn, and winter, respectively, exceeding the Chinese ambient air quality standard for annual average value of PM2.5 (grade II, 35 μg/m(3)). Temporal distribution of water-soluble inorganic ions (WSIIs) in PM2.5 was coincident with PM2.5 mass concentrations, showing highest in spring, lowest in summer, and middle in autumn and winter. WSIIs took considerable proportion (42.2 ∼ 50.1 %) in PM2.5 and PM2.5-10. Generally, urban/suburban sites had obviously suffered severer pollution of fine particles compared with the background site. The WSIIs concentrations and characteristics were closely related to the local anthropogenic activities and natural environment, urban sites in cities with higher urbanization level, or sites with weaker diffuse condition suffered severer WSIIs pollution. Fossil fuel combustion, traffic emissions, crustal/soil dust, municipal constructions, and sea salt and biomass burnings were the major potential sources of WSIIs in PM2.5 in WTSR according to the result of principal component analysis.

  10. Vertical distributions of organochlorine pesticides and polychlorinated biphenyls in an agricultural soil core from the Guanzhong Basin, China.

    PubMed

    Lu, Hongxuan; Liu, Weiguo

    2015-01-01

    The concentrations and distributions of hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs), and polychlorinated biphenyls (PCBs) in an agricultural soil core in the Guanzhong Basin, China were determined. Overall, p,p'-DDT and p,p'-DDE were dominant contaminants and accounted for approximately 48.4 and 23.3% of the total detected DDTs. Low chlorinated PCBs (PCB 28 and PCB 52) were generally detected at higher concentrations and more frequently than high chlorinated PCBs. The peak values of ∑DDT (12.92 ng/g), ∑HCH (2.25 ng/g), and ∑PCB (3.44 ng/g) occurred in the 10-15, 15-20, and 5-10 cm sections, respectively. The negative correlation between the organochlorine pesticide (OCP) concentrations and the soil depths and the relatively high p,p'-DDT/p,p'-DDE ratios in the surface soils indicated that these chemicals were recently used illegally, despite their official ban in 1983. The increase in the ratio of α-/γ-HCH with increasing soil depth indicated that the use of lindane decreased relative to the use of technical HCHs in recent years.

  11. Early Soil Moisture Field Experiments

    NASA Astrophysics Data System (ADS)

    Schmugge, T.

    2008-12-01

    Before the large scale field experiments described in the call for papers, there were a number of experiments devoted to a single parameter, e.g. soil moisture. In the early 1970's, before the launch of the first microwave radiometer by NASA, there were a number of aircraft experiments to determine utility of these sensors for land observations. For soil moisture, these experiments were conducted in southwestern United States over irrigated agricultural areas which could provide a wide range of moisture conditions on a given day. The radiometers covered the wavelength range from 0.8 to 21 cm. These experiments demonstrated that it is possible to observe soil moisture variations remotely using a microwave radiometer with a sensitivity of about 3 K / unit of soil moisture. The results also showed that the longer wavelengths were better, with a radiometer at the 21 cm wavelength giving the best results. These positive results led to the development of Push Broom Microwave Radiometer (PBMR) and the Electrically Scanned Thinned Array Radiometer (ESTAR) instruments at the 21-cm wavelength. They have been used extensively in the large-scale experiments such as HAPEX-MOBILHY, FIFE, Monsoon90, SMEX, etc. The multi-beam nature of these instruments makes it possible to obtain more extensive coverage and thus to map spatial variations of surface soil moisture. Examples of the early results along with the more recent soil moisture maps will be presented.

  12. The radiation shielding potential of CI and CM chondrites

    NASA Astrophysics Data System (ADS)

    Pohl, Leos; Britt, Daniel T.

    2017-03-01

    Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) pose a serious limit on the duration of deep space human missions. A shield composed of a bulk mass of material in which the incident particles deposit their energy is the simplest way to attenuate the radiation. The cost of bringing the sufficient mass from the Earth's surface is prohibitive. The shielding properties of asteroidal material, which is readily available in space, are investigated. Solution of Bethe's equation is implemented for incident protons and the application in composite materials and the significance of various correction terms are discussed; the density correction is implemented. The solution is benchmarked and shows good agreement with the results in literature which implement more correction terms within the energy ranges considered. The shielding properties of CI and CM asteroidal taxonomy groups and major asteroidal minerals are presented in terms of stopping force. The results show that CI and CM chondrites have better stopping properties than Aluminium. Beneficiation is discussed and is shown to have a significant effect on the stopping power.

  13. Tank testing of a 2500-cm2 solar panel

    NASA Technical Reports Server (NTRS)

    Bever, R. S.; Staskus, J.

    1981-01-01

    A 50 cm by 50 cm solar array panel test patch was investigated for spacecraft charging and arcing effects. Bombardment with monochromatic electron was carried out. Some objectives of the test were: (1) to estimate at what voltage of electron bombardment arcing would be probable; (2) to find whether the arc's energy would be tolerable or damagingly large; (3) to try and separate thermal and photoeffects; and, (4) to see whether materials used were such as to minimize arcing. Some conclusions were: In sunlight the tracking data relay satellite's solar panel which has ceria glass on the front and conductive paint on the backside is probably a good design for reducing charge-up. In a geomagnetic substorm simulated in testing there will be arcing at the interconnects during eclipse and transitions into and out of eclipse in testing especially in view of the very cold temperatures that will be reached by this lightweight array. Ceria-doped glass is preferred to fused silica glass for reducing charge build up. The Kapton bare patch should still be conductively painted. The differential voltages on the panel determine when arcing first begins, and the electron beam voltages vary depending upon whether the metallic structure is directly grounded or semifloating.

  14. Measuring the Cosmological 21 cm Monopole with an Interferometer

    NASA Astrophysics Data System (ADS)

    Presley, Morgan E.; Liu, Adrian; Parsons, Aaron R.

    2015-08-01

    A measurement of the cosmological 21 {cm} signal remains a promising but as-of-yet unattained ambition of radio astronomy. A positive detection would provide direct observations of key unexplored epochs of our cosmic history, including the cosmic dark ages and reionization. In this paper, we concentrate on measurements of the spatial monopole of the 21 {cm} brightness temperature as a function of redshift (the “global signal”). Most global experiments to date have been single-element experiments. In this paper, we show how an interferometer can be designed to be sensitive to the monopole mode of the sky, thus providing an alternate approach to accessing the global signature. We provide simple rules of thumb for designing a global signal interferometer and use numerical simulations to show that a modest array of tightly packed antenna elements with moderately sized primary beams (FWHM of ∼ 40^\\circ ) can compete with typical single-element experiments in their ability to constrain phenomenological parameters pertaining to reionization and the pre-reionization era. We also provide a general data analysis framework for extracting the global signal from interferometric measurements (with analysis of single-element experiments arising as a special case) and discuss trade-offs with various data analysis choices. Given that interferometric measurements are able to avoid a number of systematics inherent in single-element experiments, our results suggest that interferometry ought to be explored as a complementary way to probe the global signal.

  15. Characterization of an 8-cm Diameter Ion Source System

    NASA Technical Reports Server (NTRS)

    Li, Zhongmin; Hawk, C. W.; Hawk, Clark W.; Buttweiler, Mark S.; Williams, John D.; Buchholtz, Brett

    2005-01-01

    Results of tests characterizing an 8-cm diameter ion source are presented. The tests were conducted in three separate vacuum test facilities at the University of Alabama-Huntsville, Colorado State University, and L3 Communications' ETI division. Standard ion optics tests describing electron backstreaming and total-voltage-limited impingement current behavior as a function of beam current were used as guidelines for selecting operating conditions where more detailed ion beam measurements were performed. The ion beam was profiled using an in-vacuum actuating probe system to determine the total ion current density and the ion charge state distribution variation across the face of the ion source. Both current density and ExB probes were utilized. The ion current density data were used to obtain integrated beam current, beam flatness parameters, and general beam profile shapes. The ExB probe data were used to determine the ratio of doubly to singly charged ion current. The ion beam profile tests were performed at over six different operating points that spanned the expected operating range of the DAWN thrusters being developed at L3. The characterization tests described herein reveal that the 8-cm ion source is suitable for use in (a) validating plasma diagnostic equipment, (b) xenon ion sputtering and etching studies of spacecraft materials, (c) plasma physics research, and (d) the study of ion thruster optics at varying conditions.

  16. Tank testing of a 2500-cm2 solar panel

    SciTech Connect

    Bever, R.S.; Staskus, J.

    1981-10-01

    A 50 cm by 50 cm solar array panel test patch was investigated for spacecraft charging and arcing effects. Bombardment with monochromatic electron was carried out. Some objectives of the test were: (1) to estimate at what voltage of electron bombardment arcing would be probable (2) to find whether the arc's energy would be tolerable or damagingly large (3) to try and separate thermal and photoeffects and, (4) to see whether materials used were such as to minimize arcing. Some conclusions were: In sunlight the tracking data relay satellite's solar panel which has ceria glass on the front and conductive paint on the backside is probably a good design for reducing charge-up. In a geomagnetic substorm simulated in testing there will be arcing at the interconnects during eclipse and transitions into and out of eclipse in testing especially in view of the very cold temperatures that will be reached by this lightweight array. Ceria-doped glass is preferred to fused silica glass for reducing charge build up. The Kapton bare patch should still be conductively painted. The differential voltages on the panel determine when arcing first begins, and the electron beam voltages vary depending upon whether the metallic structure is directly grounded or semifloating.

  17. Discovery and First Observations of the 21-cm Hydrogen Line

    NASA Astrophysics Data System (ADS)

    Sullivan, W. T.

    2005-08-01

    Unlike most of the great discoveries in the first decade of radio astronomy after World War II, the 21 cm hydrogen line was first predicted theoretically and then purposely sought. The story is familiar of graduate student Henk van de Hulst's prediction in occupied Holland in 1944 and the nearly simultaneous detection of the line by teams at Harvard, Leiden, and Sydney in 1951. But in this paper I will describe various aspects that are little known: (1) In van de Hulst's original paper he not only worked out possible intensities for the 21 cm line, but also for radio hydrogen recombination lines (not detected until the early 1960s), (2) in that same paper he also used Jansky's and Reber's observations of a radio background to make cosmological conclusions, (3) there was no "race" between the Dutch, Americans, and Australians to detect the line, (4) a fire that destroyed the Dutch team's equipment in March 1950 ironically did not hinder their progress, but actually speeded it up (because it led to a change of their chief engineer, bringing in the talented Lex Muller). The scientific and technical styles of the three groups will also be discussed as results of the vastly differing environments in which they operated.

  18. Power processor for a 20CM ion thruster

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Schoenfeld, A. D.; Cohen, E.

    1973-01-01

    A power processor breadboard for the JPL 20CM Ion Engine was designed, fabricated, and tested to determine compliance with the electrical specification. The power processor breadboard used the silicon-controlled rectifier (SCR) series resonant inverter as the basic power stage to process all the power to the ion engine. The breadboard power processor was integrated with the JPL 20CM ion engine and complete testing was performed. The integration tests were performed without any silicon-controlled rectifier failure. This demonstrated the ruggedness of the series resonant inverter in protecting the switching elements during arcing in the ion engine. A method of fault clearing the ion engine and returning back to normal operation without elaborate sequencing and timing control logic was evolved. In this method, the main vaporizer was turned off and the discharge current limit was reduced when an overload existed on the screen/accelerator supply. After the high voltage returned to normal, both the main vaporizer and the discharge were returned to normal.

  19. Probing patchy reionization through τ-21 cm correlation statistics

    SciTech Connect

    Meerburg, P. Daniel; Spergel, David N.; Dvorkin, Cora E-mail: dns@astro.princeton.edu

    2013-12-20

    We consider the cross-correlation between free electrons and neutral hydrogen during the epoch of reionization (EoR). The free electrons are traced by the optical depth to reionization τ, while the neutral hydrogen can be observed through 21 cm photon emission. As expected, this correlation is sensitive to the detailed physics of reionization. Foremost, if reionization occurs through the merger of relatively large halos hosting an ionizing source, the free electrons and neutral hydrogen are anticorrelated for most of the reionization history. A positive contribution to the correlation can occur when the halos that can form an ionizing source are small. A measurement of this sign change in the cross-correlation could help disentangle the bias and the ionization history. We estimate the signal-to-noise ratio of the cross-correlation using the estimator for inhomogeneous reionization τ-hat {sub ℓm} proposed by Dvorkin and Smith. We find that with upcoming radio interferometers and cosmic microwave background (CMB) experiments, the cross-correlation is measurable going up to multipoles ℓ ∼ 1000. We also derive parameter constraints and conclude that, despite the foregrounds, the cross-correlation provides a complementary measurement of the EoR parameters to the 21 cm and CMB polarization autocorrelations expected to be observed in the coming decade.

  20. Altimeter error sources at the 10-cm performance level

    NASA Technical Reports Server (NTRS)

    Martin, C. F.

    1977-01-01

    Error sources affecting the calibration and operational use of a 10 cm altimeter are examined to determine the magnitudes of current errors and the investigations necessary to reduce them to acceptable bounds. Errors considered include those affecting operational data pre-processing, and those affecting altitude bias determination, with error budgets developed for both. The most significant error sources affecting pre-processing are bias calibration, propagation corrections for the ionosphere, and measurement noise. No ionospheric models are currently validated at the required 10-25% accuracy level. The optimum smoothing to reduce the effects of measurement noise is investigated and found to be on the order of one second, based on the TASC model of geoid undulations. The 10 cm calibrations are found to be feasible only through the use of altimeter passes that are very high elevation for a tracking station which tracks very close to the time of altimeter track, such as a high elevation pass across the island of Bermuda. By far the largest error source, based on the current state-of-the-art, is the location of the island tracking station relative to mean sea level in the surrounding ocean areas.

  1. Presolar grains in the CM2 chondrite Sutter's Mill

    NASA Astrophysics Data System (ADS)

    Zhao, Xuchao; Lin, Yangting; Yin, Qing-Zhu; Zhang, Jianchao; Hao, Jialong; Zolensky, Michael; Jenniskens, Peter

    2014-11-01

    The Sutter's Mill (SM) carbonaceous chondrite is a regolith breccia, composed predominantly of CM2 clasts with varying degrees of aqueous alteration and thermal metamorphism. An investigation of presolar grains in four Sutter's Mill sections, SM43, SM51, SM2-4, and SM18, was carried out using NanoSIMS ion mapping technique. A total of 37 C-anomalous grains and one O-anomalous grain have been identified, indicating an abundance of 63 ppm for presolar C-anomalous grains and 2 ppm for presolar oxides. Thirty-one silicon carbide (SiC), five carbonaceous grains, and one Al-oxide (Al2O3) were confirmed based on their elemental compositions determined by C-N-Si and O-Si-Mg-Al isotopic measurements. The overall abundance of SiC grains in Sutter's Mill (55 ppm) is consistent with those in other CM chondrites. The absence of presolar silicates in Sutter's Mill suggests that they were destroyed by aqueous alteration on the parent asteroid. Furthermore, SM2-4 shows heterogeneous distributions of presolar SiC grains (12-54 ppm) in different matrix areas, indicating that the fine-grained matrix clasts come from different sources, with various thermal histories, in the solar nebula.

  2. Electric prototype power processor for a 30cm ion thruster

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Inouye, L. Y.; Schoenfeld, A. D.

    1977-01-01

    An electrical prototype power processor unit was designed, fabricated and tested with a 30 cm mercury ion engine for primary space propulsion. The power processor unit used the thyristor series resonant inverter as the basic power stage for the high power beam and discharge supplies. A transistorized series resonant inverter processed the remaining power for the low power outputs. The power processor included a digital interface unit to process all input commands and internal telemetry signals so that electric propulsion systems could be operated with a central computer system. The electrical prototype unit included design improvement in the power components such as thyristors, transistors, filters and resonant capacitors, and power transformers and inductors in order to reduce component weight, to minimize losses, and to control the component temperature rise. A design analysis for the electrical prototype is also presented on the component weight, losses, part count and reliability estimate. The electrical prototype was tested in a thermal vacuum environment. Integration tests were performed with a 30 cm ion engine and demonstrated operational compatibility. Electromagnetic interference data was also recorded on the design to provide information for spacecraft integration.

  3. Effects of tillage on the Fe oxides activation in soil

    NASA Astrophysics Data System (ADS)

    Chi, Guangyu; Chen, Xin; Shi, Yi; Wang, Jun; Zheng, Taihui

    2009-07-01

    Since mid-1950s, the wetland ecosystems in Sanjiang Plain of Northeast China have been experiencing greater changes in land use, which had negative effects on the soil environments. This study assessed the effects of soil tillage on the activation of soil Fe in the region. The test ecosystems included natural wetland, paddy field and upland field converted from wetland. Soil samples at the depths of 0-10 cm, 10-20 cm, 20-30 cm, 30-40 cm, 40-60 cm, 60-90 cm and 90-120 cm were collected from each of the ecosystems for the analysis of vertical distribution of soil pH, organic carbon, chelate Fe oxides and Fe(II). The results showed that the conversion of wetland into paddy field and upland field induced a decrease of organic carbon content in 0-10 cm soil layer by 61.8% (P <0.05) and 70.0% (P < 0.05), respectively. The correlations among iron forms and soil organic carbon showed that chelate Fe oxides and Fe(II) was correlated positively with soil organic carbon and chelate ratio had a more positive relationship with organic carbon than chelate Fe oxides and Fe(II). The results of chelate Fe oxides, Fe(II) and chelate ratio of Fe suggested that reclamation could prevent the Fe activation and organic matter is credited for having an important influence on the process of Fe activation.

  4. [Effects of soil surface mulching on solar greenhouse grafted and own-rooted cucumber growth and soil environment].

    PubMed

    Zhai, Sheng; Liang, Yinli; Wang, Juyuan

    2005-12-01

    The study on the effects of different soil surface mulching models, including wheat straw mulching (WS), plastic film mulching (PF), and wheat straw plus plastic film mulching (WP), on the growth of solar greenhouse grafted and own-rooted cucumber and on soil environment showed that soil surface mulching not only increased the individuals of pistillate flower, improved its differentiation and development, shortened fruit-developing period, increased fruit weight, reduced fruit malformation percentage, but also raised total yield. Among the test mulching models, WP was better than WS and PF, and the effects were superior on grafted than on own-rooted cucumber. Soil surface mulching also had considerable effects on soil environment, but the effects varied with different modules. For example, under field condition, the diurnal change of soil temperature was a single-peak curve, with its peak higher and appeared at 14:30 in 5 cm and 10 cm soil depth, but lower and appeared later in deeper soil layers. In this study, WS lowered the maximum soil temperature and raised the minimum soil temperature, making soil temperature quite stable, while PF raised the maximum soil temperature much higher and enhanced the minimum soil temperature less than WS and WP, making the largest variation range of soil temperature. WP played a role of raising soil temperature and kept it stable. Similar to the diurnal change of soil temperature at 5 cm and 10 cm depth, that of soil respiration rate was also a single-peak curve. The soil respiration rate in all treatmentg was significantly higher than that of CK, and WP had a higher soil respiration rate than PF and WS. There was a significant positive correlation between soil respiration rate and soil temperature at 5 cm and 10 cm depth. By the end of the experiment, soil bulk density at the depth of 0-20 cm was measured, which was significantly lower in WS and WP than in CK and PF. The difference in soil bulk density was gradually inconspicuous

  5. Electrical methods of determining soil moisture content

    NASA Technical Reports Server (NTRS)

    Silva, L. F.; Schultz, F. V.; Zalusky, J. T.

    1975-01-01

    The electrical permittivity of soils is a useful indicator of soil moisture content. Two methods of determining the permittivity profile in soils are examined. A method due to Becher is found to be inapplicable to this situation. A method of Slichter, however, appears to be feasible. The results of Slichter's method are extended to the proposal of an instrument design that could measure available soil moisture profile (percent available soil moisture as a function of depth) from a surface measurement to an expected resolution of 10 to 20 cm.

  6. P-O-rich sulfide phase in CM chondrites: Constraints on its origin on the CM parent body

    NASA Astrophysics Data System (ADS)

    Zhang, Ai-Cheng; Itoh, Shoichi; Yurimoto, Hisayoshi; Hsu, Wei-Biao; Wang, Ru-Cheng; Taylor, Lawrence A.

    2016-01-01

    CM chondrites are a group of primitive meteorites that have recorded the alteration history of the early solar system. We report the occurrence, chemistry, and oxygen isotopic compositions of P-O-rich sulfide phase in two CM chondrites (Grove Mountains [GRV] 021536 and Murchison). This P-O-rich sulfide is a polycrystalline aggregate of nanometer-size grains. It occurs as isolated particles or aggregates in both CM chondrites. These grains, in the matrix and in type-I chondrules from Murchison, were partially altered into tochilinite; however, grains enclosed by Ca-carbonate are much less altered. This P-O-rich sulfide in Murchison is closely associated with magnetite, FeNi phosphide, brezinaite (Cr3S4), and eskolaite (Cr2O3). In addition to sulfur as the major component, this sulfide contains ~6.3 wt% O, ~5.4 wt% P, and minor amounts of hydrogen. Analyses of oxygen isotopes by SIMS resulted in an average δ18O value of -22.5 ‰ and an average Δ17O value of 0.2 ± 9.2 ‰ (2σ). Limited variations in both chemical compositions and electron-diffraction patterns imply that the P-O-rich sulfide may be a single phase rather than a polyphase mixture. Several features indicate that this P-O-rich sulfide phase formed at low temperature on the parent body, most likely through the alteration of FeNi metal (a) close association with other low-temperature alteration products, (b) the presence of hydrogen, (c) high Δ17O values and the presence in altered mesostasis of type-I chondrules and absence in type-II chondrules. The textural relations of the P-O-rich sulfide and other low-temperature minerals reveal at least three episodic-alteration events on the parent body of CM chondrites (1) formation of P-O-rich sulfide during sulfur-rich aqueous alteration of P-rich FeNi metal, (2) formation of Ca-carbonate during local carbonation, and (3) alteration of P-O-rich sulfide and formation of tochilinite during a period of late-stage intensive aqueous alteration.

  7. 9 kV, 1 cm x 1 cm SiC Super GTO Technology Development For Pulse Power

    DTIC Science & Technology

    2009-06-01

    capacitor C1, and inductor, L1. C1 consists of 60 Electronics Power Ring polypropylene capacitors . L1 is a single turn inductor providing a total circuit...Characteristics The schematic circuit diagram for turn measurements is shown in Figure 9 with a load resistor of 10 Ω and a capacitor of 3 µF...PiN diode, D1, with snubber capacitor and resistor, a CREE 6 kV, 0.25 cm 2 SiC PiN antiparallel diode, a series resonant circuit composed of

  8. Soil experiment

    NASA Technical Reports Server (NTRS)

    Hutcheson, Linton; Butler, Todd; Smith, Mike; Cline, Charles; Scruggs, Steve; Zakhia, Nadim

    1987-01-01

    An experimental procedure was devised to investigate the effects of the lunar environment on the physical properties of simulated lunar soil. The test equipment and materials used consisted of a vacuum chamber, direct shear tester, static penetrometer, and fine grained basalt as the simulant. The vacuum chamber provides a medium for applying the environmental conditions to the soil experiment with the exception of gravity. The shear strength parameters are determined by the direct shear test. Strength parameters and the resistance of soil penetration by static loading will be investigated by the use of a static cone penetrometer. In order to conduct a soil experiment without going to the moon, a suitable lunar simulant must be selected. This simulant must resemble lunar soil in both composition and particle size. The soil that most resembles actual lunar soil is basalt. The soil parameters, as determined by the testing apparatus, will be used as design criteria for lunar soil engagement equipment.

  9. Passive microwave soil moisture research

    NASA Technical Reports Server (NTRS)

    Schmugge, T.; Oneill, P. E.; Wang, J. R.

    1986-01-01

    During the four years of the AgRISTARS Program, significant progress was made in quantifying the capabilities of microwave sensors for the remote sensing of soil moisture. In this paper, a discussion is provided of the results of numerous field and aircraft experiments, analysis of spacecraft data, and modeling activities which examined the various noise factors such as roughness and vegetation that affect the interpretability of microwave emission measurements. While determining that a 21-cm wavelength radiometer was the best single sensor for soil moisture research, these studies demonstrated that a multisensor approach will provide more accurate soil moisture information for a wider range of naturally occurring conditions.

  10. Autumn at Titan's South Pole: The 220 cm-1 Cloud

    NASA Astrophysics Data System (ADS)

    Jennings, D. E.; Cottini, V.; Achterberg, R. K.; Anderson, C. M.; Flasar, F. M.; de Kok, R. J.; Teanby, N. A.; Coustenis, A.; Vinatier, S.

    2015-10-01

    Beginning in 2012 an atmospheric cloud known by its far-infrared emission has formed rapidly at Tit an's South Pole [1, 2]. The build-up of this condensate is a result of deepening temperatures and a gathering of gases as Winter approaches. Emission from the cloud in the south has been doubling each year since 2012, in contrast to the north where it has halved every 3.8 years since 2004. The morphology of the cloud in the south is quite different from that in the north. In the north, the cloud has extended over the whole polar region beyond 55 N, whereas in the south the cloud has been confined to within about 10 degrees of the pole. The cloud in the north has had the form of a uniform hood, whereas the southern cloud has been much more complex. A map from December 2014,recorded by the Composite Infrared Spectrometer (CIRS) on Cassini, showed the 220 cm-1 emission coming from a distinct ring with a maximum at about 80 S. In contrast, emissions from the gases HC3N, C4H2 and C6H6 peaked near the pole and had a ring at 70 S. The 220 cm-1 ring at 80 S coincided with the minimum in the gas emission pattern. The80 S condensate ring encompassed the vortex cloud seen by the Cassini Imaging Science Subsystem (ISS) and Visible and Infrared Mapping Spectrometer (VIMS)[3, 4]. Both the 220 cm-1 ring and the gas "bull's-eye" pattern were centered on a point that was shifted from the geographic South Pole by 4 degrees in the direction of the Sun. This corresponds to the overall tilt of Titan's atmosphere discovered from temperature maps early in the Cassini mission by Achterberg et al. [5]. The tilt may be reinforced by the presumably twice-yearly (north and south) spin-up of the atmosphere at the autumnal pole. The bull's-eye pattern of the gas emissions can be explained by the retrieved abundance distributions, which are maximum near the pole and decrease sharply toward lower latitudes, together with temperatures that are minimum at the pole and increase toward lower latitudes

  11. Direct thrust measurement of a 30-cm ion thruster

    NASA Technical Reports Server (NTRS)

    Banks, B.; Rawlin, V.; Weigand, A. J.; Walker, J.

    1975-01-01

    A direct thrust measurement of a 30-cm diameter ion thruster was accomplished by means of a laser interferometer thrust stand. The thruster was supported in a pendulum manner by three 3.65-m long wires. Electrical power was provided by means of 18 mercury filled pots. A movable 23-button planar probe rake was used to determine thrust loss due to ion beam divergence. Values of thrust, thrust loss due to ion beam divergence, and thrust loss due to multiple ionization were measured for ion beam currents ranging from 0.5 A to 2.5 A. Measured thrust values indicate an accuracy of approximately 1% and are in good agreement with thrust values calculated by indirect measurements.

  12. Smith's Cloud (HVC) in 21 cm HI emission

    NASA Astrophysics Data System (ADS)

    Heroux, A. J.

    2006-12-01

    In studying the continuing formation of the Milky Way, we have used the Green Bank Telescope (GBT) of the NRAO to measure the 21 cm HI emission from a specific high velocity cloud known as “Smith’s Cloud”. This cloud is likely within the bounds of the galaxy and appears to be actively plunging into the disk. Our map covers an area about 10x14 degrees, with data taken every 3’ over this range. Most of the emission is concentrated into a single large structure with an unusual cometary morphology, which displays signs of interaction between the cloud and the Galactic halo. We will present an analysis of the cloud, along with information on possible FIR emission with information gained from the IRAS data, kinematics and likely orbits and paths for the origin and future of the cloud. This research was funded through an NSF REU Grant.

  13. Very Large Array observations of Uranus at 2. 0 cm

    SciTech Connect

    Berge, G.L.; Muhleman, D.O.; Linfield, R.P.

    1988-07-01

    Radio observations of Uranus obtained at 2.0 cm with the B configuration of the VLA during April 1985 are reported. The calibration and data-reduction procedures are described in detail, and the results are presented in tables, maps, and graphs and compared with IRIS 44-micron observations (Hanel et al., 1986). Features discussed include highest brightness centered on the pole rather than on the subearth point, a decrease in brightness temperature (by up to 9 K) at latitudes between -20 and -50 deg (well correlated with the IRIS data), and disk-center position (corrected for the observed radio asymmetry) in good agreement with that found on the basis of the outer contours of the image. 15 references.

  14. Direct particle simulation on the Connection Machine CM-2

    NASA Technical Reports Server (NTRS)

    Dagum, L.

    1992-01-01

    Particle simulation is a useful technique for analyzing low density flows. The Connection Machine CM-2 is a useful test bed for studying the fine-grain data objects decomposition and the coarse-grain domain decomposition single instruction multiple datastream (SIMD) approaches to particle simulation. Both approaches are investigated for the model problem of uniform flow through a channel and the algorithms required for the SIMD domain decomposition approach are presented. An unresolved issue with the domain decomposition approach is the effect of a poor partitioning on flows with real geometries. Initial results with the channel flow problem indicate that a poor partitioning has only a small detrimental effect on the overall performance.

  15. Viscoelastic hydrodynamic interactions and anomalous CM diffusion in polymer melts

    NASA Astrophysics Data System (ADS)

    Meyer, Hendrik

    We have recently discovered that anomalous center-of-mass (CM) diffusion occurring on intermediate time scales in polymer melts can be explained by the interplay of viscoelastic and hydrodynamic interactions (VHI). The theory has been solved for unentangled melts in 3D and 2D and excellent agreement between theory and simulation is found, also for alkanes with a force field optimized from neutron scattering. The physical mechanism considers that hydrodynamic interactions are not screened: they are time dependent because of increasing viscosity before the terminal relaxation time. The VHI are generally active in melts of any topology. They are most important at early times well before the terminal relaxation time and thus affect the nanosecond time range typically observable in dynamic neutron scattering experiments. We illustrate the effects with recent molecular dynamics simulations of linear, ring and star polymers. Work performed with A.N. Semenov and J. Farago.

  16. The Murchison Widefield Array 21 cm Power Spectrum Analysis Methodology

    NASA Astrophysics Data System (ADS)

    Jacobs, Daniel C.; Hazelton, B. J.; Trott, C. M.; Dillon, Joshua S.; Pindor, B.; Sullivan, I. S.; Pober, J. C.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Ewall-Wice, A.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hewitt, J. N.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Loeb, A.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Neben, A. R.; Thyagarajan, N.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Paul, S.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Udaya Shankar, N.; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Tegmark, M.; Tingay, S. J.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2016-07-01

    We present the 21 cm power spectrum analysis approach of the Murchison Widefield Array Epoch of Reionization project. In this paper, we compare the outputs of multiple pipelines for the purpose of validating statistical limits cosmological hydrogen at redshifts between 6 and 12. Multiple independent data calibration and reduction pipelines are used to make power spectrum limits on a fiducial night of data. Comparing the outputs of imaging and power spectrum stages highlights differences in calibration, foreground subtraction, and power spectrum calculation. The power spectra found using these different methods span a space defined by the various tradeoffs between speed, accuracy, and systematic control. Lessons learned from comparing the pipelines range from the algorithmic to the prosaically mundane; all demonstrate the many pitfalls of neglecting reproducibility. We briefly discuss the way these different methods attempt to handle the question of evaluating a significant detection in the presence of foregrounds.

  17. Compensated control loops for a 30-cm ion thruster

    NASA Technical Reports Server (NTRS)

    Robson, R. R.

    1976-01-01

    The vaporizer dynamic control characteristics of a 30-cm diameter mercury ion thruster were determined by operating the thruster in an open loop steady state mode and then introducing a small sinusoidal signal on the main, cathode, or neutralizer vaporizer current and observing the response of the beam current, discharge voltage, and neutralizer keeper voltage, respectively. This was done over a range of frequencies and operating conditions. From these data, Bode plots for gain and phase were made and mathematical models were obtained. The Bode plots and mathematical models were analyzed for stability and appropriate compensation networks determined. The compensated control loops were incorporated into a power processor and operated with a thruster. The time responses of the compensated loops to changes in set points and recovery from arc conditions are presented.

  18. Carma 1 CM Line Survey of Orion-Kl

    NASA Astrophysics Data System (ADS)

    Friedel, Douglas; Looney, Leslie; Corby, Joanna F.; Remijan, Anthony

    2015-06-01

    We have conducted the first 1 cm (27-35 GHz) line survey of the Orion-KL region by an array. With a primary beam of ˜4.5 arcminutes, the survey looks at a region ˜166,000 AU (0.56 pc) across. The data have a resolution of ˜6 arcseconds on the sky and 97.6 kHz(1.07-0.84 km/s) in frequency. This region of frequency space is much less crowded than at 3mm or 1mm frequencies and contains the fundamental transitions of several complex molecular species, allowing us to probe the largest extent of the molecular emission. We present the initial results, and comparison to 3mm results, from several species including, dimethyl ether [(CH_3)_2O], ethyl cyanide [C_2H_5CN], acetone [(CH_3)_2CO], SO, and SO_2.

  19. Cosmic (Super)String Constraints from 21 cm Radiation

    SciTech Connect

    Khatri, Rishi; Wandelt, Benjamin D.

    2008-03-07

    We calculate the contribution of cosmic strings arising from a phase transition in the early Universe, or cosmic superstrings arising from brane inflation, to the cosmic 21 cm power spectrum at redshifts z{>=}30. Future experiments can exploit this effect to constrain the cosmic string tension G{mu} and probe virtually the entire brane inflation model space allowed by current observations. Although current experiments with a collecting area of {approx}1 km{sup 2} will not provide any useful constraints, future experiments with a collecting area of 10{sup 4}-10{sup 6} km{sup 2} covering the cleanest 10% of the sky can, in principle, constrain cosmic strings with tension G{mu} > or approx. 10{sup -10}-10{sup -12} (superstring/phase transition mass scale >10{sup 13} GeV)

  20. Translation Optics for 30 cm Ion Engine Thrust Vector Control

    NASA Technical Reports Server (NTRS)

    Haag, Thomas

    2002-01-01

    Data were obtained from a 30 cm xenon ion thruster in which the accelerator grid was translated in the radial plane. The thruster was operated at three different throttle power levels, and the accelerator grid was incrementally translated in the X, Y, and azimuthal directions. Plume data was obtained downstream from the thruster using a Faraday probe mounted to a positioning system. Successive probe sweeps revealed variations in the plume direction. Thruster perveance, electron backstreaming limit, accelerator current, and plume deflection angle were taken at each power level, and for each accelerator grid position. Results showed that the thruster plume could easily be deflected up to six degrees without a prohibitive increase in accelerator impingement current. Results were similar in both X and Y direction.

  1. Astronaut Risk Levels During Crew Module (CM) Land Landing

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Carney, Kelly S.; Littell, Justin

    2007-01-01

    The NASA Engineering Safety Center (NESC) is investigating the merits of water and land landings for the crew exploration vehicle (CEV). The merits of these two options are being studied in terms of cost and risk to the astronauts, vehicle, support personnel, and general public. The objective of the present work is to determine the astronaut dynamic response index (DRI), which measures injury risks. Risks are determined for a range of vertical and horizontal landing velocities. A structural model of the crew module (CM) is developed and computational simulations are performed using a transient dynamic simulation analysis code (LS-DYNA) to determine acceleration profiles. Landing acceleration profiles are input in a human factors model that determines astronaut risk levels. Details of the modeling approach, the resulting accelerations, and astronaut risk levels are provided.

  2. Sampling depth confounds soil acidification outcomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the northern Great Plains (NGP) of North America, surface sampling depths of 0-15 or 0-20 cm are suggested for testing soil characteristics such as pH. However, acidification is often most pronounced near the soil surface. Thus, sampling deeper can potentially dilute (increase) pH measurements an...

  3. Performance tests for the NASA Ames Research Center 20 cm x 40 cm oscillating flow wind tunnel

    NASA Technical Reports Server (NTRS)

    Cook, W. J.; Giddings, T. A.

    1984-01-01

    An evaluation is presented of initial tests conducted to assess the performance of the NASA Ames 20 cm x 40 cm oscillating flow wind tunnel. The features of the tunnel are described and two aspects of tunnel operation are discussed. The first is an assessment of the steady mainstream and boundary layer flows and the second deals with oscillating mainstream and boundary layer flows. Experimental results indicate that in steady flow the test section mainstream velocity is uniform in the flow direction and in cross section. The freestream turbulence intensity is about 0.2 percent. With minor exceptions the steady turbulent boundary layer generated on the top wall of the test section exhibits the characteristics of a zero pressure gradient turbulent boundary layer generated on a flat plate. The tunnel was designed to generate sinusoidal oscillating mainstream flows. Experiments confirm that the tunnel produces sinusoidal mainstream velocity variations for the range of frequencies (up to 15 Hz). The results of this study demonstrate that the tunnel essentially produces the flows that it was designed to produce.

  4. Climatic controls on soil hydraulic properties along soil chronosequences on volcanic parent material

    NASA Astrophysics Data System (ADS)

    Beal, L. K.; Lohse, K. A.; Godsey, S.; Huber, D. P.

    2013-12-01

    . We observe that θ decreases with age, and α occurs at higher tensions. Soil horizons are developed dominantly on the cinder cones. These model estimates appear to match well with preliminary field measurements. Tropical climates enhance the weathering of basaltic parent material. The mean annual precipitation in the Hawaiian site is 2500 mm, and 310 mm at COTM. Accumulation of rainfall increases the weathering rate of the parent material. Using previous work characterizing the physical characteristics of soil across the Hawaii chronosequence to model the contrasting soils, we found that the 0.3 and 20 ka Hawaii soils had similar hydraulic properties; θ values were approximately 0.45 cm3/cm3 and Ks values were 6 cm/hr. However, these Hawaiian soils contrasted and were quantitatively lower than the entire COTM chronosequence. At the 2.1 ka COTM soil, Ks was 17 cm/hr and θ was 0.52-0.65 cm3/cm3 whereas at the 13.9 ka soil, Ks was 12 cm/hr and θ was 0.52 cm3/cm3. The 0.3 ka Hawaiian soil had a 20-30% higher silt content than the 2.1 ka COTM soil. Our models help quantify rates of soil development and hydraulic properties developed through time on volcanic parent materials.

  5. Synthesis and unusual properties of the first 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetraalkylporphyrin

    SciTech Connect

    NELSON,NORA Y.; MEDFORTH,CRAIG J.; NURCO,DANIEL J.; JIA,SONG-LING; SHELNUTT,JOHN A.; SMITH,KEVIN M.

    2000-03-06

    The new perhalogenated porphyrin 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetrakis(trifluoromethyl)porphinato-nickel(II) exhibits several striking features, including an extremely ruffled macrocycle with a very short Ni-N distance, an unusually red-shifted optical spectrum, and, surprisingly, hindered rotation of the meso-trifluoromethyl substituents ({Delta}G{sub 278}{sup +} = 47 kJ/mol).

  6. Ultrasound-assisted one-pot, three-component synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones.

    PubMed

    Nabid, Mohammad Reza; Rezaei, Seyed Jamal Tabatabaei; Ghahremanzadeh, Ramin; Bazgir, Ayoob

    2010-01-01

    Triethylamine was found to be an efficient catalyst for the synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones by one-pot reaction of phthalhydrazide, aromatic aldehydes, and malononitrile or ethyl cyanoacetate in ethanol under ultrasonic irradiation. The advantages of this method are the use of an inexpensive and readily available catalyst, easy workup, improved yields, and the use of ethanol as a solvent that is considered to be relatively environmentally benign.

  7. The effect of soil on cork quality

    PubMed Central

    Pestana, Miguel N.; Gomes, Alberto A.

    2014-01-01

    The present work aimed to contribute for a better knowledge regarding soil features as cork quality indicators for stoppers. Cork sampling was made in eight Cork oak stands (montados de sobreiro) located in the Plio-Plistocene sedimentary formations of Península de Setúbal in southern Tagus River region. The samples used to classify the cork as stopper for wine bottles were obtained in eight cork oak stands, covering soils of different types of sandstones of the Plio-plistocene. In each stand, we randomly chose five circular plots with 30 m radius and five trees per plot with same stripping conditions determined by: dendrometric features (HD- height stipping, PBH- perimeter at breaster height), trees vegetative condition (defoliation degree); stand features (density, percentage canopy cover); site conditions (soil type and orientation). In the center of each plot a pit was open to characterize the soil profile and to classify the soil. Cork quality for stoppers was evaluated according to porosity, pores/per cm2 and cork boards thickness. The soil was characterized according to morphological soil profile features (lithology, soil profound, and soil horizons) and chemical soil surface horizon features (organic matter, pH, macro, and micronutrients availability). Based on the variables studied and using the numerical taxonomy, we settled relationships between the cork quality and some soil features. The results indicate: (1) high correlation between the cork caliber and boron, cation exchange capacity, total nitrogen, exchange acidity, and exchangeable magnesium, potassium, calcium, and sodium in soils of theirs cork oaks; (2) the cork porosity is correlated with the number of pores/cm2 and magnesium soil content; (3) the other soil features have a lower correlation with the caliber, porosity, and the number of pores per cm2. PMID:25353015

  8. The effect of soil on cork quality.

    PubMed

    Pestana, Miguel N; Gomes, Alberto A

    2014-01-01

    The present work aimed to contribute for a better knowledge regarding soil features as cork quality indicators for stoppers. Cork sampling was made in eight Cork oak stands (montados de sobreiro) located in the Plio-Plistocene sedimentary formations of Península de Setúbal in southern Tagus River region. The samples used to classify the cork as stopper for wine bottles were obtained in eight cork oak stands, covering soils of different types of sandstones of the Plio-plistocene. In each stand, we randomly chose five circular plots with 30 m radius and five trees per plot with same stripping conditions determined by: dendrometric features (HD- height stipping, PBH- perimeter at breaster height), trees vegetative condition (defoliation degree); stand features (density, percentage canopy cover); site conditions (soil type and orientation). In the center of each plot a pit was open to characterize the soil profile and to classify the soil. Cork quality for stoppers was evaluated according to porosity, pores/per cm(2) and cork boards thickness. The soil was characterized according to morphological soil profile features (lithology, soil profound, and soil horizons) and chemical soil surface horizon features (organic matter, pH, macro, and micronutrients availability). Based on the variables studied and using the numerical taxonomy, we settled relationships between the cork quality and some soil features. The results indicate: (1) high correlation between the cork caliber and boron, cation exchange capacity, total nitrogen, exchange acidity, and exchangeable magnesium, potassium, calcium, and sodium in soils of theirs cork oaks; (2) the cork porosity is correlated with the number of pores/cm(2) and magnesium soil content; (3) the other soil features have a lower correlation with the caliber, porosity, and the number of pores per cm(2).

  9. Novel Phenazine 5,10-Dioxides Release •OH in Simulated Hypoxia and Induce Reduction of Tumour Volume In Vivo

    PubMed Central

    Lavaggi, María L.; Cabrera, Mauricio; Pintos, Cristina; Arredondo, Carolina; Pachón, Gisela; Rodríguez, Jorge; Raymondo, Stella; Pacheco, José Pedro; Cascante, Marta; Olea-Azar, Claudio; López de Ceráin, Adela; Monge, Antonio; Cerecetto, Hugo; González, Mercedes

    2011-01-01

    Phenazine 5,10-dioxides (PDOs) are a new class of bioreductive cytotoxins, which could act towards tumours containing hypoxic regions. The PDOs selective-hypoxic bioreduction was probed in vitro; however, the mechanism of action has not been completely explained. Besides, PDOs in vivo antitumour activities have not been demonstrated hitherto. We study the mechanism of hypoxic/normoxic cytotoxicity of PDO representative members. Electron spin resonance is used to confirm •OH production, alkaline comet assay to determine genotoxicity, and gel electrophoresis and flow cytometry to analyze DNA fragmentation and cell cycle distribution. Chemically induced rat breast tumours are employed to evaluate in vivo activities. For the most selective cytotoxin, 7(8)-bromo-2-hydroxyphenazine 5,10-dioxide (PDO1), exclusive hypoxic •OH production is evidenced, while for the unselective ones, •OH is produced in both conditions (normoxia and simulated hypoxia). In normoxia (Caco-2 cells), PDO1 induces cell-cycle arrest and DNA fragmentation but does not significantly induce apoptosis neither at IC50 nor IC80. No difference in the comet-assay scores are observed in normoxia and simulated hypoxia being the unselective 2-amino-7(8)-bromophenazine 5,10-dioxide (PDO2) the most genotoxic. The in vivo efficacy with the absence of systemic toxicity of PDO1 and PDO2 is checked out. Results from this study highlight the potential of PDOs as new therapeutics for cancer. PMID:22084710

  10. Weekly cycle of magnetic characteristics of the daily PM2.5 and PM2.5-10 in Beijing, China

    NASA Astrophysics Data System (ADS)

    Shi, Meinan; Wu, Huaichun; Zhang, Shihong; Li, Haiyan; Yang, Tianshui; Liu, Wei; Liu, He

    2014-12-01

    In recent years, Beijing has been shown to suffer one of the most serious air pollution problems of any major world city. The concentrations of particulate matter (PM) pollutants, PM2.5-10 and PM2.5, are commonly used as air pollution indexes. We conducted a detailed environmental magnetism study to investigate possible sources of air pollution in Beijing, China, using 283 pairs of the PM2.5 and PM2.5-10 samples collected daily from July 2010 to June 2011. Rock magnetic measurements, including magnetic susceptibility, anhysteretic remanent magnetization, isothermal remanent magnetization, saturation isothermal remanent magnetization, hysteresis loops, first-order reversal curves (FORCs), and thermomagnetism, indicate that the main magnetic mineral is low-coercivity pseudo-single domain (PSD) magnetite. Scanning electron microscope (SEM) observations and energy dispersive X-ray spectroscopy (EDS) analyses on the PM indicate that the major magnetic phase is coarse-grained magnetite, which is most likely from automobile exhausts and braking system debris. Magnetic parameters of PM2.5 and PM2.5-10 show significant seasonal patterns that may be attributed to domestic heating enhancing magnetization of the PM during late autumn to early spring. Power spectral analyses and box-whisker plots indicate that the magnetic parameters have strong weekly variations that may be due to traffic emissions. These results indicate that magnetic parameters can be used as efficient proxies for monitoring Beijing's air pollution, and that the atmospheric environment may be improved by controlling vehicle emissions.

  11. Detection of gamma-ray emission in the region of the supernova remnants G296.5+10.0 and G166.0+4.3

    NASA Astrophysics Data System (ADS)

    Araya, Miguel

    2013-09-01

    52 months of accumulated observations by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnants G296.5+10.0 (PKS 1209-51/52) and G166.0+4.3 (VRO 42.05.01) are analysed. GeV emission is detected coincident with the position of the sources at the ≃5σ and 11σ levels above the background, respectively, for the best-fitting spectral and spatial scenarios. The gamma-ray spectrum of the sources can be described with a power law in energy. G166.0+4.3 shows a soft GeV spectrum while that of G296.5+10.0 is flat (in the νFν representation). The origin of the gamma-ray emission from the sources is explored. Both leptonic and hadronic mechanisms can account for the high-energy emission from G296.5+10.0, while a leptonic scenario is preferred for G166.0+4.3.

  12. Healthy Homes/Healthy Kids: A Randomized Trial of a Pediatric Primary Care Based Obesity Prevention Intervention for At-Risk 5-10 Year Olds

    PubMed Central

    Sherwood, Nancy E.; Levy, Rona L.; Langer, Shelby L.; Senso, Meghan M.; Crain, A. Lauren; Hayes, Marcia G.; Anderson, Julie D.; Seburg, Elisabeth M.; Jeffery, Robert W.

    2014-01-01

    Pediatric primary care is an important setting in which to address obesity prevention, yet relatively few interventions have been evaluated and even fewer have been shown to be effective. The development and evaluation of cost-effective approaches to obesity prevention that leverage opportunities of direct access to families in the pediatric primary care setting, overcome barriers to implementation in busy practice settings, and facilitate sustained involvement of parents is an important public health priority. The goal of the Healthy Homes/Healthy Kids (HHHK 5-10) randomized controlled trial is to evaluate the efficacy of a relatively low-cost primary care-based obesity prevention intervention aimed at 5 to 10 year old children who are at risk for obesity. Four hundred twenty one parent/child dyads were recruited and randomized to either the obesity prevention arm or a contact control condition that focuses on safety and injury prevention. The HHHK 5-10 obesity prevention intervention combines brief counseling with a pediatric primary care provider during routine well-child visits and follow-up telephone coaching that supports parents in making home environmental changes to support healthful eating, activity patterns, and body weight. The contact control condition combines the same provider counseling with telephone coaching focused on safety and injury prevention messages. This manuscript describes the study design and baseline characteristics of participants enrolled in the HHHK 5-10 trial. PMID:23816490

  13. A simple model of carbon in the soil profile for agricultural soils in Northwestern Europe

    NASA Astrophysics Data System (ADS)

    Taghizadeh-Toosi, Arezoo; Hutchings, Nicholas J.; Vejlin, Jonas; Christensen, Bent T.; Olesen, Jørgen E.

    2014-05-01

    World soil carbon (C) stocks are second to those in the ocean, and represent three times as much C as currently present in the atmosphere. The amount of C in soil may play a significant role in carbon exchanges between the atmosphere and the terrestrial environment. The C-TOOL model is a three-pool linked soil organic carbon (SOC) model in well-drained mineral soils under agricultural land management to allow generalized parameterization for estimating effects of management measures at medium to long time scales for the entire soil profile (0-100 cm). C-TOOL has been developed to enable simulations of SOC turnover in soil using temperature dependent first order kinetics for describing decomposition. Compared with many other SOC models, C-TOOL applies a less complicated structure, which facilitates easier calibration, and it requires only few inputs (i.e., average monthly air temperature, soil clay content,soil carbon-to-nitrogen ratio, and C inputs to the soil from plants and other sources). C-TOOL was parameterized using SOC and radiocarbon data from selected long-term field treatments in United Kingdom, Sweden and Denmark. However, less data were available for evaluation of subsoil C (25-100 cm) from the long-term experiments applied. In Denmark a national 7×7 km grid net was established in 1986 for soil C monitoring down to 100 cm depth. The results of SOC showed a significant decline from 1997 to 2009 in the 0-50 cm soil layer. This was mainly attributed to changes in the 25-50 cm layer, where a decline in SOC was found for all soil texture types. Across the period 1986 to 2009 there was clear tendency for increasing SOC on the sandy soils and reductions on the loamy soils. This effect is linked to land use, since grasslands and dairy farms are more abundant in the western parts of Denmark, where most of the sandy soils are located. The results and the data from soil monitoring have been used to validate the C-TOOL modelling approach used for accounting of

  14. Imidacloprid movement in soils and impacts on soil microarthropods in southern Appalachian eastern hemlock stands.

    PubMed

    Knoepp, Jennifer D; Vose, James M; Michael, Jerry L; Reynolds, Barbara C

    2012-01-01

    Imidacloprid is a systemic insecticide effective in controlling the exotic pest (hemlock woolly adelgid) in eastern hemlock () trees. Concerns over imidacloprid impacts on nontarget species have limited its application in southern Appalachian ecosystems. We quantified the movement and adsorption of imidacloprid in forest soils after soil injection in two sites at Coweeta Hydrologic Laboratory in western North Carolina. Soils differed in profile depth, total carbon and nitrogen content, and effective cation exchange capacity. We injected imidacloprid 5 cm into mineral soil, 1.5 m from infested trees, using a Kioritz soil injector. We tracked the horizontal and vertical movement of imidacloprid by collecting soil solution and soil samples at 1 m, 2 m, and at the drip line from each tree periodically for 1 yr. Soil solution was collected 20 cm below the surface and just above the saprolite, and acetonitrile-extractable imidacloprid was determined through the profile. Soil solution and extractable imidacloprid concentrations were determined by high-performance liquid chromatography. Soil solution and extractable imidacloprid concentrations were greater in the site with greater soil organic matter. Imidacloprid moved vertically and horizontally in both sites; concentrations generally declined downward in the soil profile, but preferential flow paths allowed rapid vertical movement. Horizontal movement was limited, and imidacloprid did not move to the tree drip line. We found a negative relationship between adsorbed imidacloprid concentrations and soil microarthropod populations largely in the low-organic-matter site; however, population counts were similar to other studies at Coweeta.

  15. Antimony release from contaminated mine soils and its migration in four typical soils using lysimeter experiments.

    PubMed

    Shangguan, Yu-Xian; Zhao, Long; Qin, Yusheng; Hou, Hong; Zhang, Naiming

    2016-11-01

    Antimony (Sb) can pose great risks to the environment in mining and smelting areas. The migration of Sb in contaminated mine soil was studied using lysimeter experiments. The exchangeable concentration of soil Sb decreased with artificial leaching. The concentrations of Sb retained in the subsoil layers (5-25cm deep) were the highest for Isohumosol and Ferrosol and the lowest for Sandy soil. The Sb concentrations in soil solutions decreased with soil depth, and were adequately simulated using a logarithmic function. The Sb migration pattern in Sandy soil was markedly different from the patterns in the other soils which suggested that Sb may be transported in soil colloids. Environmental factors such as water content, soil temperature, and oxidation-reduction potential of the soil had different effects on Sb migration in Sandy soil and Primosol. The high Fe and Mn contents in Ferrosol and Isohumosol significantly decreased the mobility of Sb in these soils. The Na and Sb concentrations in soils used in the experiments positively correlated with each other (P<0.01). The Sb concentrations in soil solutions, the Sb chemical fraction patterns, and the Sb/Na ratios decreased in the order Sandy soil>Primosol>Isohumosol>Ferrosol, and we concluded that the Sb mobility in the soils also decreased in that order.

  16. Effect of Thickness of a Water Repellent Soil Layer on Soil Evaporation Rate

    NASA Astrophysics Data System (ADS)

    Ahn, S.; Im, S.; Doerr, S.

    2012-04-01

    A water repellent soil layer overlying wettable soil is known to affect soil evaporation. This effect can be beneficial for water conservation in areas where water is scarce. Little is known, however, about the effect of the thickness of the water repellent layer. The thickness of this layer can vary widely, and particularly after wildfire, with the soil temperature reached and the duration of the fire. This study was conducted to investigate the effect of thickness of a top layer of water repellent soil on soil evaporation rate. In order to isolate the thickness from other possible factors, fully wettable standard sand (300~600 microns) was used. Extreme water repellency (WDPT > 24 hours) was generated by 'baking' the sand mixed with oven-dried pine needles (fresh needles of Pinus densiflora) at the mass ratio of 1:13 (needle:soil) at 185°C for 18 hours. The thicknesses of water repellent layers were 1, 2, 3 and 7 cm on top of wettable soil. Fully wettable soil columns were prepared as a control. Soil columns (8 cm diameter, 10 cm height) were covered with nylon mesh. Tap water (50 ml, saturating 3 cm of a soil column) was injected with hypoderm syringes from three different directions at the bottom level. The injection holes were sealed with hot-melt adhesive immediately after injection. The rate of soil evaporation through the soil surface was measured by weight change under isothermal condition of 40°C. Five replications were made for each. A trend of negative correlation between the thickness of water repellent top layer and soil evaporation rate is discussed in this contribution.

  17. Dissolved organic carbon in soil solution of peat-moorsh soils on Kuwasy Mire

    NASA Astrophysics Data System (ADS)

    Jaszczyński, J.; Sapek, A.

    2009-04-01

    Key words: peat-moorsh soils, soil solution, dissolved organic carbon (DOC), temperature of soil, redox potential. The objective this study was the dissolved organic carbon concentration (DOC) in soil solution on the background of soil temperature, moisture and redox potential. The investigations were localized on the area of drained and agricultural used Kuwasy Mire, which are situated in the middle basin of Biebrza River, in North-East Poland. Research point was placed on a low peat soil of 110 cm depth managed as extensive grassland. The soil was recognized as peat-moorsh with the second degree of the moorshing process (with 20 cm of moorsh layer). The ceramic suction cups were installed in three replications at 30 cm depth of soil profile. The soil solution was continuously sampled by pomp of the automatic field station. The successive samples comprised of solution collected at the intervals of 21 days. Simultaneously, at the 20, 30 and 40 cm soil depths the measurements of temperature and determination of soil moisture and redox potential were made automatically. The mean twenty-four hours data were collected. The concentrations of DOC were determined by means of the flow colorimeter using the Skalar standard methods. Presented observations were made in 2001-2006. Mean DOC concentration in soil solution was 66 mg.dm-3 within all research period. A significant positive correlation between studied compound concentration and temperature of soil at 30 cm depth was observed; (correlation coefficient - r=0.55, number of samples - n=87). The highest DOC concentrations were observed during the season from July to October, when also a lower ground water level occurred. The DOC concentration in soil solution showed as well a significant correlation with the soil redox potential at 20 cm level. On this depth of describing soil profile a frontier layer between moorshing layer and peat has been existed. This layer is the potentially most active in the respect to

  18. Tetrad effects in REE abundance patterns of chondrules from CM meteorites: Implications for aqueous alteration on the CM parent asteroid

    NASA Astrophysics Data System (ADS)

    Inoue, Mutsuo; Nakamura, Noboru; Kimura, Makoto

    2009-09-01

    Lanthanide tetrad effect in bulk chondrules from two moderately altered CM chondrites, Murchison and Yamato-793321 (Y-793321), are reported for the first time. Twenty-three chondrules were petrographically characterized and analyzed for 10 rare earth elements (REE) and other trace and major elements (Ba, Sr, Rb, K, Ca, Mg and Fe) using the precise isotope dilution technique. The results indicate systematic depletion (several times) of alkali and alkaline earths compared to CV and CO chondrules. Most of the porphyritic olivine (8 PO) and olivine-pyroxene (4 POP), porphyritic and radial pyroxene (2 PP, 1 RP), and granular olivine (1 GO) chondrules show a light-REE (L-REE) depleted, heavy-REE (H-REE) smoothly fractionated pattern composed of four (upward convex) segments possessing a relatively large negative Eu anomaly (CI-normalized La/Sm, Lu/Er and Eu/Eu* ratios = 0.3-1: Eu*, normal value). On the other hand, all barred-olivine (5 BO) chondrules, a few PO and POP indicate almost a flat L-REE pattern. In addition, regardless of their textural types, nearly half of the chondrules have a variable degree of Ce and Yb anomalies, and/or L/H-REE discontinuity, which is similar to CV and CO chondrules. The observed L- and H-convex REE patterns accompanied with the negative Eu anomaly is the first known case for chondrules as well as meteoritic materials, but have been previously reported for geological samples such as sedimentary rocks, late stage igneous and metamorphic rocks, and are explained as the lanthanide tetrad effect, which plausibly results from fluid-rock interaction. We suggest that the marked REE fractionations occurred by the selective incorporation of L-, H-REEs and Eu into alteration products in the matrix during alteration processes on the CM parent body, but that the gas/solid REE fractionation characteristics established in the nebula have basically remained unchanged. We suggest that the tetrad effects observed here represent a new index of physico

  19. Soil Ecology

    NASA Astrophysics Data System (ADS)

    Killham, Ken

    1994-04-01

    Soil Ecology is designed to meet the increasing challenge faced by today's environmental scientists, ecologists, agriculturalists, and biotechnologists for an integrated approach to soil ecology. It emphasizes the interrelations among plants, animals, and microbes, by first establishing the fundamental physical and chemical properties of the soil habitat and then functionally characterizing the major components of the soil biota and some of their most important interactions. The fundamental principles underpinning soil ecology are established and this then enables an integrated approach to explore and understand the processes of soil nutrient (carbon, nitrogen, and phosphorus) cycling and the ecology of extreme soil conditions such as soil-water stress. Two of the most topical aspects of applied soil ecology are then selected. First, the ecology of soil pollution is examined, focusing on acid deposition and radionuclide pollution. Second, manipulation of soil ecology through biotechnology is discussed, illustrating the use of pesticides and microbial inocula in soils and pointing toward the future by considering the impact of genetically modified inocula on soil ecology.

  20. Effect of different mulch materials on the soil dehydrogenase activity (DHA) in an organic pepper crop

    NASA Astrophysics Data System (ADS)

    Moreno, Marta M.; Peco, Jesús; Campos, Juan; Villena, Jaime; González, Sara; Moreno, Carmen

    2016-04-01

    The use biodegradable materials (biopolymers of different composition and papers) as an alternative to conventional mulches has increased considerably during the last years mainly for environmental reason. In order to assess the effect of these materials on the soil microbial activity during the season of a pepper crop organically grown in Central Spain, the soil dehydrogenase activity (DHA) was measured in laboratory. The mulch materials tested were: 1) black polyethylene (PE, 15 μm); black biopolymers (15 μm): 2) Mater-Bi® (corn starch based), 3) Sphere 4® (potato starch based), 4) Sphere 6® (potato starch based), 5) Bioflex® (polylactic acid based), 6) Ecovio® (polylactic acid based), 7) Mimgreen® (black paper, 85 g/m2). A randomized complete block design with four replications was adopted. The crop was drip irrigated following the water demand of each treatment. Soil samples (5-10 cm depth) under the different mulches were taken at different dates (at the beginning of the crop cycle and at different dates throughout the crop season). Additionally, samples of bare soil in a manual weeding and in an untreated control were taken. The results obtained show the negative effect of black PE on the DHA activity, mainly as result of the higher temperature reached under the mulch and the reduction in the gas interchange between the soil and the atmosphere. The values corresponding to the biodegradable materials were variable, although highlighting the low DHA activity observed under Bioflex®. In general, the uncovered treatments showed higher values than those reached under mulches, especially in the untreated control. Keywords: mulch, biodegradable, biopolymer, paper, dehydrogenase activity (DHA). Acknowledgements: the research was funded by Project RTA2011-00104-C04-03 from the INIA (Spanish Ministry of Economy and Competitiveness).

  1. Infrequent composted biosolids applications affect semi-arid grassland soils and vegetation.

    PubMed

    Ippolito, J A; Barbarick, K A; Paschke, M W; Brobst, R B

    2010-05-01

    Monitoring of repeated composted biosolids applications is necessary for improving beneficial reuse program management strategies, because materials will likely be reapplied to the same site at a future point in time. A field trial evaluated a single and a repeated composted biosolids application in terms of long-term (13-14 years) and short-term (2-3 years) effects, respectively, on soil chemistry and plant community in a Colorado semi-arid grassland. Six composted biosolids rates (0, 2.5, 5, 10, 21, 30 Mg ha(-1)) were surface applied in a split-plot design study with treatment (increasing compost rates) as the main factor and co-application time (1991, or 1991 and 2002) as the split factor applications. Short- and long-term treatment effects were evident in 2004 and 2005 for soil 0-8 cm depth pH, EC, NO(3)-N, NH(4)-N, total N, and AB-DTPA soil Cd, Cu, Mo, Zn, P, and Ba. Soil organic matter increases were still evident 13 and 14 years following composted biosolids application. The repeated composted biosolids application increased soil NO(3)-N and NH(4)-N and decreased AB-DTPA extractable Ba as compared to the single composted biosolids application in 2004; differences between short- and long-term applications were less evident in 2005. Increasing biosolids rates resulted in increased native perennial grass cover in 2005. Plant tissue Cu, Mo, Zn, and P concentrations increased, while Ba content decreased depending on specific plant species and year. Overall, the lack of many significant negative effects suggests that short- or long-term composted biosolids application at the rates studied did not adversely affect this semi-arid grassland ecosystem.

  2. Whole genomic analysis of bovine group A rotavirus strains A5-10 and A5-13 provides evidence for close evolutionary relationship with human rotaviruses.

    PubMed

    Komoto, Satoshi; Pongsuwanna, Yaowapa; Tacharoenmuang, Ratana; Guntapong, Ratigorn; Ide, Tomihiko; Higo-Moriguchi, Kyoko; Tsuji, Takao; Yoshikawa, Tetsushi; Taniguchi, Koki

    2016-11-15

    Bovine group A rotavirus (RVA) is an important cause of acute diarrhea in calves worldwide. In order to obtain precise information on the origin and evolutionary dynamics of bovine RVA strains, we determined and analyzed the complete nucleotide sequences of the whole genomes of six archival bovine RVA strains; four Thai strains (RVA/Cow-tc/THA/A5-10/1988/G8P[1], RVA/Cow-tc/THA/A5-13/1988/G8P[1], RVA/Cow-tc/THA/61A/1989/G10P[5], and RVA/Cow-tc/THA/A44/1989/G10P[11]), one American strain (RVA/Cow-tc/USA/B223/1983/G10P[11]), and one Japanese strain (RVA/Cow-tc/JPN/KK3/1983/G10P[11]). On whole genomic analysis, the 11 gene segments of strains A5-10, A5-13, 61A, A44, B223, and KK3 were found to be considerably genetically diverse, but to share a conserved non-G/P genotype constellation except for the NSP1 gene (I2-R2-C2-M2-(A3/11/13/14)-N2-T6-E2-H3), which is commonly found in RVA strains from artiodactyls such as cattle. Furthermore, phylogenetic analysis revealed that most genes of the six strains were genetically related to bovine and bovine-like strains. Of note is that the VP1, VP3, and NSP2 genes of strains A5-10 and A5-13 exhibited a closer relationship with the cognate genes of human DS-1-like strains than those of other RVA strains. Furthermore, the VP6 genes of strains A5-10 and A5-13 appeared to be equally related to both human DS-1-like and bovine strains. Thus, strains A5-10 and A5-13 were suggested to be derived from the same evolutionary origin as human DS-1-like strains, and were assumed to be examples of bovine RVA strains that provide direct evidence for a close evolutionary relationship between bovine and human DS-1-like strains. Our findings will provide important insights into the origin of bovine RVA strains, and into evolutionary links between bovine and human RVA strains.

  3. Soil moisture estimation with limited soil characterization for decision making

    NASA Astrophysics Data System (ADS)

    Chanzy, A.; Richard, G.; Boizard, H.; Défossez, P.

    2009-04-01

    Many decisions in agriculture are conditional to soil moisture. For instance in wet conditions, farming operations as soil tillage, organic waste spreading or harvesting may lead to degraded results and/or induce soil compaction. The development of a tool that allows the estimation of soil moisture is useful to help farmers to organize their field work in a context where farm size tends to increase as well as the need to optimize the use of expensive equipments. Soil water transfer models simulate soil moisture vertical profile evolution. These models are highly sensitive to site dependant parameters. A method to implement the mechanistic soil water and heat flow model (the TEC model) in a context of limited information (soil texture, climatic data, soil organic carbon) is proposed [Chanzy et al., 2008]. In this method the most sensitive model inputs were considered i.e. soil hydraulic properties, soil moisture profile initialization and the lower boundary conditions. The accuracy was estimated by implementing the method on several experimental cases covering a range of soils. Simulated soil moisture results were compared to soil moisture measurements. The obtained accuracy in surface soil moisture (0-30 cm) was 0.04 m3/m3. When a few soil moisture measurements are available (collected for instance by the farmer using a portable moisture sensor), significant improvement in soil moisture accuracy is obtained by assimilating the results into the model. Two assimilation strategies were compared and led to comparable results: a sequential approach, where the measurement were used to correct the simulated moisture profile when measurements are available and a variational approach which take moisture measurements to invert the TEC model and so retrieve soil hydraulic properties of the surface layer. The assimilation scheme remains however heavy in terms of computing time and so, for operational purposed fast code should be taken to simulate the soil moisture as with the

  4. Sensitivity of soil organic matter in anthropogenically disturbed organic soils

    NASA Astrophysics Data System (ADS)

    Säurich, Annelie; Tiemeyer, Bärbel; Bechtold, Michel; Don, Axel; Freibauer, Annette

    2016-04-01

    Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agriculture. However, the variability of CO2 emissions increases with disturbance, and little is known on the soil properties causing differences between seemingly similar sites. Furthermore the driving factors for carbon cycling are well studied for both genuine peat and mineral soil, but there is a lack of information concerning soils at the boundary between organic and mineral soils. Examples for such soils are both soils naturally relatively high in soil organic matter (SOM) such as Humic Gleysols and former peat soils with a relative low SOM content due to intensive mineralization or mixing with underlying or applied mineral soil. The study aims to identify drivers for the sensitivity of soil organic matter and therefore for respiration rates of anthropogenically disturbed organic soils, especially those near the boundary to mineral soils. Furthermore, we would like to answer the question whether there are any critical thresholds of soil organic carbon (SOC) concentrations beyond which the carbon-specific respiration rates change. The German agricultural soil inventory samples all agricultural soils in Germany in an 8x8 km² grid following standardized protocols. From this data and sample base, we selected 120 different soil samples from more than 80 sites. As reference sites, three anthropogenically undisturbed peatlands were sampled as well. We chose samples from the soil inventory a) 72 g kg-1 SOC and b) representing the whole range of basic soil properties: SOC (72 to 568 g kg-1), total nitrogen (2 to 29 g kg-1), C-N-ratio (10 to 80) bulk density (0.06 to 1.41 g/cm³), pH (2.5 to 7.4), sand (0 to 95 %) and clay (2 to 70 %) content (only determined for samples with less than 190 g kg-1 SOC) as well as the botanical origin of the peat (if determinable). Additionally, iron oxides were determined for all samples. All samples were sieved (2 mm) and incubated at standardized water content and

  5. Experimentally Determined Plasma Parameters in a 30 cm Ion Engine

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita; Goebel, Dan; Fitzgerald, Dennis; Owens, Al; Tynan, George; Dorner, Russ

    2004-01-01

    Single planar Langmuir probes and fiber optic probes are used to concurrently measure the plasma properties and neutral density variation in a 30cm diameter ion engine discharge chamber, from the immediate vicinity of the keeper to the near grid plasma region. The fiber optic probe consists of a collimated optical fiber recessed into a double bore ceramic tube fitted with a stainless steel light-limiting window. The optical fiber probe is used to measure the emission intensity of excited neutral xenon for a small volume of plasma, at various radial and axial locations. The single Langmuir probes, are used to generate current-voltage characteristics at a total of 140 spatial locations inside the discharge chamber. Assuming a maxwellian distribution for the electron population, the Langmuir probe traces provide spatially resolved measurements of plasma potential, electron temperature, and plasma density. Data reduction for the NSTAR TH8 and TH15 throttle points indicates an electron temperature range of 1 to 7.9 eV and an electron density range of 4e10 to le13 cm(sup -3), throughout the discharge chamber, consistent with the results in the literature. Plasma potential estimates, computed from the first derivative of the probe characteristic, indicate potential from 0.5V to 11V above the discharge voltage along the thruster centerline. These values are believed to be excessively high due to the sampling of the primary electron population along the thruster centerline. Relative neutral density profiles are also obtained with a fiber optic probe sampling photon flux from the 823.1 nm excited to ground state transition. Plasma parameter measurements and neutral density profiles will be presented as a function of probe location and engine discharge conditions. A discussion of the measured electron energy distribution function will also be presented, with regards to variation from pure maxwellian. It has been found that there is a distinct primary population found along

  6. Effect of tillage on phosphorus leaching through coastal plain soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaching of phosphorus (P) is a primary water quality concern in soils of the Atlantic Coastal plain where lateral subsurface flow is the dominant P transport pathway. We hypothesize that very high soil P in the upper 2 cm of no-till soils contributes to P leaching via macropore flow and that cultiv...

  7. CONSTRUCTION, MONITORING, AND PERFORMANCE OF TWO SOIL LINERS

    EPA Science Inventory

    A prototype soil liner and a field-scale soil liner were constructed to test whether compacted soil barrier systems could be built to meet the standard set by the U.S. Environmental Protection Agency (EPA) for saturated hydraulic conductivity (< 1 x 10'7 cm/s). In situ ponded inf...

  8. Modeling soil moisture memory in savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Gou, S.; Miller, G. R.

    2011-12-01

    Antecedent soil conditions create an ecosystem's "memory" of past rainfall events. Such soil moisture memory effects may be observed over a range of timescales, from daily to yearly, and lead to feedbacks between hydrological and ecosystem processes. In this study, we modeled the soil moisture memory effect on savanna ecosystems in California, Arizona, and Africa, using a system dynamics model created to simulate the ecohydrological processes at the plot-scale. The model was carefully calibrated using soil moisture and evapotranspiration data collected at three study sites. The model was then used to simulate scenarios with various initial soil moisture conditions and antecedent precipitation regimes, in order to study the soil moisture memory effects on the evapotranspiration of understory and overstory species. Based on the model results, soil texture and antecedent precipitation regime impact the redistribution of water within soil layers, potentially causing deeper soil layers to influence the ecosystem for a longer time. Of all the study areas modeled, soil moisture memory of California savanna ecosystem site is replenished and dries out most rapidly. Thus soil moisture memory could not maintain the high rate evapotranspiration for more than a few days without incoming rainfall event. On the contrary, soil moisture memory of Arizona savanna ecosystem site lasts the longest time. The plants with different root depths respond to different memory effects; shallow-rooted species mainly respond to the soil moisture memory in the shallow soil. The growing season of grass is largely depended on the soil moisture memory of the top 25cm soil layer. Grass transpiration is sensitive to the antecedent precipitation events within daily to weekly timescale. Deep-rooted plants have different responses since these species can access to the deeper soil moisture memory with longer time duration Soil moisture memory does not have obvious impacts on the phenology of woody plants

  9. The 15 cm mercury ion thruster research 1975

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1975-01-01

    Doubly charged ion current measurements in the beam of a SERT II thruster are shown to introduce corrections which bring its calculated thrust into close agreement with that measured during flight testing. A theoretical model of doubly charged ion production and loss in mercury electron bombardment thrusters is discussed and is shown to yield doubly-to-singly charged ion density ratios that agree with experimental measurements obtained on a 15 cm diameter thruster over a range of operating conditions. Single cusp magnetic field thruster operation is discussed and measured ion beam profiles, performance data, doubly charged ion densities, and discharge plasma characteristics are presented for a range of operating conditions and thruster geometries. Variations in the characteristics of this thruster are compared to those observed in the divergent field thruster and the cusped field thruster is shown to yield flatter ion beam profiles at about the same discharge power and propellant utilization operating point. An ion optics test program is described and the measured effects of grid system dimensions on ion beamlet half angle and diameter are examined. The effectiveness of hollow cathode startup using a thermionically emitting filament within the cathode is examined over a range of mercury flow rates and compared to results obtained with a high voltage tickler startup technique. Results of cathode plasma property measurement tests conducted within the cathode are presented.

  10. Performance and Vibration of 30 cm Pyrolytic Ion Thruster Optics

    NASA Technical Reports Server (NTRS)

    Haag, Thomas; Soulas, George C.

    2004-01-01

    Carbon has a sputter erosion rate about an order of magnitude less than that of molybdenum, over the voltages typically used in ion thruster applications. To explore its design potential, 30 cm pyrolytic carbon ion thruster optics have been fabricated geometrically similar to the molybdenum ion optics used on NSTAR. They were then installed on an NSTAR Engineering Model thruster, and experimentally evaluated over much of the original operating envelope. Ion beam currents ranged from 0.51 to 1.76 Angstroms, at total voltages up to 1280 V. The perveance, electron back-streaming limit, and screen-grid transparency were plotted for these operating points, and compared with previous data obtained with molybdenum. While thruster performance with pyrolytic carbon was quite similar to that with molybdenum, behavior variations can reasonably be explained by slight geometric differences. Following all performance measurements, the pyrolytic carbon ion optics assembly was subjected to an abbreviated vibration test. The thruster endured 9.2 g(sub rms) of random vibration along the thrust axis, similar to DS 1 acceptance levels. Despite significant grid clashing, there was no observable damage to the ion optics assembly.

  11. Ion thruster system (8-cm) cyclic endurance test

    NASA Technical Reports Server (NTRS)

    Dulgeroff, C. R.; Beattie, J. R.; Poeschel, R. L.; Hyman, J., Jr.

    1984-01-01

    This report describes the qualification test of an Engineering-Model 5-mN-thrust 8-cm-diameter mercury ion thruster which is representative of the Ion Auxiliary Propulsion System (IAPS) thrusters. Two of these thrusters are scheduled for future flight test. The cyclic endurance test described herein was a ground-based test performed in a vacuum facility with a liquid-nitrogen-cooled cryo-surface and a frozen mercury target. The Power Electronics Unit, Beam Shield, Gimal, and Propellant Tank that were used with the thruster in the endurance test are also similar to those of the IAPS. The IAPS thruster that will undergo the longest beam-on-time during the actual space test will be subjected to 7,055 hours of beam-on-time and 2,557 cycles during the flight test. The endurance test was successfully concluded when the mercury in the IAPS Propellant Tank was consumed. At that time, 8,471 hours of beam-on-time and 599 cycles had been accumulated. Subsequent post-test-evaluation operations were performed (without breaking vacuum) which extended the test values to 652 cycles and 9,489 hours of beam-on-time. The Power Electronic Unit (PEU) and thruster were in the same vacuum chamber throughout the test. The PEU accumulated 10,268 hr of test time with high voltage applied to the operating thruster or dummy load.

  12. CM and DM in an ISO R and D Environment

    NASA Technical Reports Server (NTRS)

    Crowley, Sandra L.

    2000-01-01

    ISO 9000 - a common buzz word in industry is making inroads to government agencies. The National Aeronautics and Space Agency (NASA) achieved ISO 9001 certification at each of its nine (9) Centers and Headquarters in 1998-1999. NASA Glenn Research Center (GRC) was recommended for certification in September 1999. Since then, each of the Centers has been going through the semi-annual surveillance audits. Growing out of the manufacturing industry, successful application of the international quality standard to a research and development (R&D) environment has had its challenges. This paper will address how GRC applied Configuration Management (CM) and Data (or Document) Management (DM) to meet challenges to achieve ISO certification. One of the first challenges was to fit the ISO 9001-1994 elements to the GRC environment. Some of the elements fit well-Management Responsibility (4.1), Internal Audits (4.17), Document and Data Control (4.5). Other elements were not suited or applied easily to the R&D environment-Servicing (4.19), Statistical Techniques (4.20). Since GRC "builds" only one or two items at a time, these elements were considered not applicable to the environment.

  13. Piezo-Operated Shutter Mechanism Moves 1.5 cm

    NASA Technical Reports Server (NTRS)

    Glaser, Robert; Bamford, Robert

    2005-01-01

    The figure shows parts of a shutter mechanism designed to satisfy a number of requirements specific to its original intended application as a component of an atomic clock to be flown in outer space. The mechanism may also be suitable for use in laboratory and industrial vacuum systems on Earth for which there are similar requirements. The requirements include the following: a) To alternately close, then open, a 1.5-cm-diameter optical aperture twice per second, with a stroke time of no more than 15 ms, during a total operational lifetime of at least a year; b) To attenuate light by a factor of at least 1012 when in the closed position; c) To generate little or no magnetic field; d) To be capable of withstanding bakeout at a temperature of 200 C to minimize outgassing during subsequent operation in an ultrahigh vacuum; and e) To fit within a diameter of 12 in. (=305 mm) a size limit dictated by the size of an associated magnetic shield. The light-attenuation requirement is satisfied by use of overlapping shutter blades. The closure of the aperture involves, among other things, insertion of a single shutter blade between a pair of shutter blades. The requirement to minimize the magnetic field is satisfied by use of piezoelectric actuators. Because piezoelectric actuators cannot withstand bakeout, they must be mounted outside the vacuum chamber, and, hence, motion must be transmitted from the actuators to the shutter levers via a vacuum-chamber-wall diaphragm.

  14. Foregrounds in Wide-field Redshifted 21 cm Power Spectra

    NASA Astrophysics Data System (ADS)

    Thyagarajan, Nithyanandan; Jacobs, Daniel C.; Bowman, Judd D.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Dillon, Joshua S.; Emrich, D.; Ewall-Wice, A.; Feng, L.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hewitt, J. N.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kim, Han-Seek; Kittiwisit, P.; Kratzenberg, E.; Lenc, E.; Line, J.; Loeb, A.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Neben, A. R.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Paul, Sourabh; Pindor, B.; Pober, J. C.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Udaya Shankar, N.; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Sullivan, I. S.; Tegmark, M.; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2015-05-01

    Detection of 21 cm emission of H i from the epoch of reionization, at redshifts z\\gt 6, is limited primarily by foreground emission. We investigate the signatures of wide-field measurements and an all-sky foreground model using the delay spectrum technique that maps the measurements to foreground object locations through signal delays between antenna pairs. We demonstrate interferometric measurements are inherently sensitive to all scales, including the largest angular scales, owing to the nature of wide-field measurements. These wide-field effects are generic to all observations but antenna shapes impact their amplitudes substantially. A dish-shaped antenna yields the most desirable features from a foreground contamination viewpoint, relative to a dipole or a phased array. Comparing data from recent Murchison Widefield Array observations, we demonstrate that the foreground signatures that have the largest impact on the H i signal arise from power received far away from the primary field of view. We identify diffuse emission near the horizon as a significant contributing factor, even on wide antenna spacings that usually represent structures on small scales. For signals entering through the primary field of view, compact emission dominates the foreground contamination. These two mechanisms imprint a characteristic pitchfork signature on the “foreground wedge” in Fourier delay space. Based on these results, we propose that selective down-weighting of data based on antenna spacing and time can mitigate foreground contamination substantially by a factor of ∼100 with negligible loss of sensitivity.

  15. Sensing and characterization of explosive vapors near 700 cm -1

    NASA Astrophysics Data System (ADS)

    Ford, Alan R.; Reeve, Scott W.

    2007-04-01

    One of the technological challenges associated with trace vapor detection of explosive materials are the relatively low vapor pressures exhibited by most energetic materials under ambient conditions. For example, the vapor pressure for TNT is ~10 ppbv at room temperature, a concentration near the Limit of Detection for many of the technologies currently being deployed. In the case of improvised explosive devices, the clandestine nature of the device further serves to exacerbate the vapor pressure issue. Interestingly, the gold standard in explosives detection remains the trained canine nose. While there is still some debate as to what the dog actually smells, recent studies have indicated the alert response is triggered, not by the vapor presence of a specific explosive compound but, by a characteristic bouquet of odors from chemical impurities used to manufacture and process the explosives. Here we present high resolution infrared data for several of these volatile organic compounds in the 700 cm -1 region required for real time optical sensing of energetic materials.

  16. Microbiological study of the Murchison CM2 meteorite

    NASA Astrophysics Data System (ADS)

    Pikuta, Elena V.; Hoover, Richard B.

    2012-10-01

    In 1864, Louis Pasteur attempted to cultivate living microorganisms from pristine samples of the Orgueil CI1 carbonaceous meteorite. His results were negative and never published, but recorded it in his laboratory notebooks. At that time, only aerobic liquid or agar-based organic reach media were used, as his research on anaerobes had just started. In our laboratory the Murchison CM2 carbonaceous meteorite was selected to expand on these studies for microbiological study by cultivation on anaerobic mineral media. Since the surface could have been more easily contaminated, interior fragments of a sample of the Murchison meteorite were extracted and crushed under sterile conditions. The resulting powder was then mixed in anoxic medium and injected into Hungate tubes containing anaerobic media with various growth substrates at different pH and salinity and incubated at different temperatures. The goal of the experiments was to determine if living cells would grow from the material of freshly fractured interior fragments of the stone. If any growth occurred, work could then be carried out to assess the nature of the environmental contamination by observations of the culture growth (rates of speed and biodiversity); live/dead fluorescent staining to determine contamination level and DNA analysis to establish the microbial species present. In this paper we report the results of that study.

  17. Parallel Preconditioning for CFD Problems on the CM-5

    NASA Technical Reports Server (NTRS)

    Simon, Horst D.; Kremenetsky, Mark D.; Richardson, John; Lasinski, T. A. (Technical Monitor)

    1994-01-01

    Up to today, preconditioning methods on massively parallel systems have faced a major difficulty. The most successful preconditioning methods in terms of accelerating the convergence of the iterative solver such as incomplete LU factorizations are notoriously difficult to implement on parallel machines for two reasons: (1) the actual computation of the preconditioner is not very floating-point intensive, but requires a large amount of unstructured communication, and (2) the application of the preconditioning matrix in the iteration phase (i.e. triangular solves) are difficult to parallelize because of the recursive nature of the computation. Here we present a new approach to preconditioning for very large, sparse, unsymmetric, linear systems, which avoids both difficulties. We explicitly compute an approximate inverse to our original matrix. This new preconditioning matrix can be applied most efficiently for iterative methods on massively parallel machines, since the preconditioning phase involves only a matrix-vector multiplication, with possibly a dense matrix. Furthermore the actual computation of the preconditioning matrix has natural parallelism. For a problem of size n, the preconditioning matrix can be computed by solving n independent small least squares problems. The algorithm and its implementation on the Connection Machine CM-5 are discussed in detail and supported by extensive timings obtained from real problem data.

  18. Zinc movement in sewage-sludge-treated soils as influenced by soil properties, irrigation water quality, and soil moisture level

    USGS Publications Warehouse

    Welch, J.E.; Lund, L.J.

    1989-01-01

    A soil column study was conducted to assess the movement of Zn in sewage-sludge-amended soils. Varables investigated were soil properties, irrigation water quality, and soil moisture level. Bulk samples of the surface layer of six soil series were packed into columns, 10.2 cm in diameter and 110 cm in length. An anaerobically digested municipal sewage sludge was incorporated into the top 20 cm of each column at a rate of 300 mg ha-1. The columns were maintained at moisture levels of saturation and unsaturation and were leached with two waters of different quality. At the termination of leaching, the columns were cut open and the soil was sectioned and analyzed. Zinc movement was evaluated by mass balance accounting and correlation and regression analysis. Zinc movement in the unsaturated columns ranged from 3 to 30 cm, with a mean of 10 cm. The difference in irrigation water quality did not have an effect on Zn movement. Most of the Zn applied to the unsaturated columns remained in the sludge-amended soil layer (96.1 to 99.6%, with a mean of 98.1%). The major portion of Zn leached from the sludge-amended soil layer accumulated in the 0- to 3-cm depth (35.7 to 100%, with a mean of 73.6%). The mean final soil pH values decreased in the order: saturated columns = sludge-amended soil layer > untreated soils > unsaturated columns. Total Zn leached from the sludge-amended soil layer was correlated negatively at P = 0.001 with final pH (r = -0.85). Depth of Zn movement was correlated negatively at P = 0.001 with final pH (r = -0.91). Multiple linear regression analysis showed that the final pH accounted for 72% of the variation in the total amounts of Zn leached from the sludge-amended soil layer of the unsaturated columns and accounted for 82% of the variation in the depth of Zn movement among the unsaturated columns. A significant correlation was not found between Zn and organic carbon in soil solutions, but a negative correlation significant at P = 0.001 was found

  19. The effect of soil on cork quality

    NASA Astrophysics Data System (ADS)

    Pestana, Miguel; Gomes, Alberto

    2014-10-01

    The present work aimed to contribute for a better knowledge regarding soil features as cork quality indicators for stoppers. Cork sampling was made in eight Cork oak stands (montados de sobreiro) located in different Plio-Plistocene sedimentary formations of Península de Setúbal and Carbonic shistes from paleozoic periods in Saw Grândola, both in southern Tagus River region The samples used to classify the cork as stopper for wine bottles were obtained in eight cork oak stands located in “Península de Setúbal”, south of the River Tagus, covering soils of different types of sandstones of the Plio-plistocene In each stand, we randomly chose five circular plots with 30 m radius. Five trees with same stripping conditions determined by the dendrometric features: HD (height stipping, PBH (perimeter at breaster height), and percentage canopy cover, trees vegetative condition (defoliation degree) stand features (density), and site conditions (soil type and orientation). In the center of each plot a pit was open to characterize the soil profile and to classify the soil of each plot sampling. Cork quality for stoppers was evaluated according to porosity, pores/per cm 2 and thickness. The soil was characterized according to morphological soil profile features (lithology, soil profound and soil horizons) and chemical soil surface horizon features (organic matter, pH, macro and micronutrients availability). Based on the variables studied and using the numerical taxonomy, we settled relationships between the cork quality and some soil features. The results indicate: (1) high correlation between the cork caliber and boron, caption exchange capacity, total nitrogen, exchange acidity and exchangeable magnesium, potassium, calcium and sodium in soils of theirs cork oaks; (2) the cork porosity is correlated with the number of pores/cm2 and magnesium; (3) the other soil features have a lower correlation with the caliber, porosity and the number of pores per cm2.

  20. Changes in microbial activity of soils during the natural restoration of abandoned lands in central Russia

    NASA Astrophysics Data System (ADS)

    Ovsepyan, Lilit; Mostovaya, Anna; Lopes de Gerenyu, Valentin; Kurganova, Irina

    2015-04-01

    Most changes in land use affect significantly the amount of soil organic carbon (SOC) and alter the nutrition status of soil microbial community. The arable lands withdrawal induced usually the carbon sequestration in soil, the significant shifts in quality of soil organic matter and structure of microbial community. This study was aimed to determine the microbial activity of the abandoned lands in Central Russia due to the process of natural self-restoration. For the study, two representative chronosequences were selected in Central Russia: (1) deciduous forest area, DFA (Moscow region, 54o49N'; 37o34'E; Haplic Luvisols) and (2) forest steppe area, FSA (Belgorod region 50o36'N, 36o01'E Luvic Phaeozems). Each chronosequence included current arable, abandoned lands of different age, and forest plots. The total soil organic carbon (Corg, automatic CHNS analyzer), carbon immobilized in microbial biomass (Cmic, SIR method), and respiratory activity (RA) were determined in the topsoil (0-5, 5-10, 10-20 and 20-30 cm layers) for each plots. Relationships between Corg, Cmic, and RA were determined by liner regression method. Our results showed that the conversion of croplands to the permanent forest induced the progressive accumulation Corg, Cmic and acceleration of RA in the top 10-cm layer for both chronosequences. Carbon stock increased from 24.1 Mg C ha-1 in arable to 45.3 Mg C ha-1 in forest soil (Luvic Phaeozems, Belgorod region). In Haplic Luvisols (Moscow region), SOC build up was 2 time less: from 13.5 Mg C ha-1 in arable to 27.9 Mg C ha-1 in secondary forest. During post-agrogenic evolution, Cmic also increased significantly: from 0.34 to 1.43 g C kg-1 soil in Belgorod region and from 0.34 to 0.64 g C kg-1 soil in Moscow region. RA values varied widely in soils studied: from 0.54-0.63 mg C kg-1h-1 in arable plots to 2.02-3.4 mg C kg-1h-1 in forest ones. The close correlations between Cmic, RA and Corg in the top 0-5cm layer (R2 = 0.81-0.90; P<0.01-0.05) were

  1. [Microelement contents of litter, soil fauna and soil in Pinus koraiensis and broad-leaved mixed forest].

    PubMed

    Yin, Xiu-qin; Li, Jin-xia; Dong, Wei-hua

    2007-02-01

    The analysis on the Mn, Zn and Cu contents of litter, soil fauna and soil in Pinus korazenszis and broad-leaved mixed forest in Liangshui Natural Reserve of Xiaoxing' an Mountains showed that the test microelement contents in the litter, soil fauna and soil all followed the sequence of Mn > Zn > Cu, but varied with these environmental components, being in the sequence of soil > litter > soil fauna for Mn, soil fauna > litter and soil for Zn, and soil fauna > soil > litter for Cu. The change range of test microelement contents in litter was larger in broad-leaved forest than in coniferous forest. Different soil fauna differed in their microelement-enrichment capability, e. g. , earthworm, centipede, diplopod had the highest content of Mn, Zn and Cu, respectively. The contents of test microelements in soil fauna had significant correlations with their environmental background values, litter decomposition rate, food habit of soil fauna, and its absorbing selectivity and enrichment to microelements. The microelements contained in 5-20 cm soil layer were more than those in 0-5 cm soil layer, and their dynamics differed in various soil layers.

  2. Impact of drainage on wettability of fen peat-moorsh soils

    NASA Astrophysics Data System (ADS)

    Szajdak, L.; Szatyłowicz, J.; Brandyk, T.

    2009-04-01

    High water retention in peat is attributed to structural voids (macro-pores) due to the partial degradation of the structure of peat-forming plants, and molecular absorption sites (micro-pores) associated with the formation of humic substances. Water retention by the heterogeneously-structured system in peat organic matter depends on the chemical structure of solid surfaces. These naturally wet solids, if dried sufficiently, lose the ability to rewet quickly when immersed in water. The ability of peat surfaces to attract and hold water is attributed to hydrophilic functional groups which characterize the organic substances of peat. The investigations of chemical and physical properties were performed for three different peat-moorsh soils located in the Biebrza River Valley in Poland. All examined soils were used as meadow. Soil samples were taken from two depths: 5-10 cm (moorsh) and 50-80 cm (peat). Total organic carbon (TOC), dissolved organic carbon (DOC) and humic acids (HA) extracted from these samples were analysed. Also basic physical properties such as ash content and bulk density were measured. Wetting behavior of soils was quantified using water drop penetration time test (WDPT) and measured values of the soil-water contact angle using sessile drop method. The measurements were conducted on air-dry soil samples which volumetric moisture content was not exceeding 7%. The significant differences in the concentrations of TOC, DOC and properties of HA between two investigated depth of among peat and moorsh samples were observed. The measured concentrations of total organic carbon in the considered soils ranged from 37.2 to 45.6%. Generally, the decrease of total organic carbon concentration with depth of profiles was observed. The contents of dissolved organic carbon in the soils ranged from 5.3 to 19.4%. The quantities of dissolved organic carbon decreased simultaneously with E4/E6 values and with the depth of the soil profiles. For the investigated peat

  3. The Temperature Dependence of Soil Moisture Characteristics of Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Salehzadeh, Amir

    1990-01-01

    The temperature dependence of static and dynamic characteristics of four soils: glass beads, Plainfield sand, Plano silt loam, and Elkmound sandy loam were explored. Gain -factor model was employed for quantifying the temperature dependences. The study required novel methods and technologies which were developed and employed for the rapid, and transient measurement of soil-moisture characteristics of these soils. A pressurized 2 cm-high column of soil is sandwiched between two air blocking membranes interfacing outside pressurized water system. Water content (Theta ) is measured with a 2 Curie gamma-ray source combined with a fast detection system giving a statistical accuracy of +/-0.2%. Moisture potential ( Psi) down to -2000 cm was measured with a newly developed "stripper" tensionmeter. While a slowly varying soil-water pressure was imposed on the thin sample through the membranes, firmly held in contact with the soil, water content and moisture -potentials were being monitored in the sample. A plot of water content versus water pressure gave the static characteristics (Theta,Psi ) of soils. An array of tensiometers (between the membranes) allowed measurement of the potential profile; in conjunction with the time-varying water content this permitted measurement of dynamic characteristics, conductivity versus water content (K,Theta). For the (Theta, Psi) characteristics, the measurements indicated that, wholly for glass beads, and largely for sand, the surface tension of pure water governs the temperature response. The temperature dependence of Plano silt loam was largely independent of water content and was roughly five times the temperature dependence of the surface tension of pure water. For Elkmound sandy loam the dependence was complex and not easily explained. Two factors appear to limit further system improvement. (1) A sample thinner than 2 cm faces difficulties of fitting three tensionmeters into the thickness. This limit on the thickness, in turn

  4. A 1.3 cm line survey toward Orion KL

    NASA Astrophysics Data System (ADS)

    Gong, Y.; Henkel, C.; Thorwirth, S.; Spezzano, S.; Menten, K. M.; Walmsley, C. M.; Wyrowski, F.; Mao, R. Q.; Klein, B.

    2015-09-01

    Context. The nearby Orion Kleinmann-Low nebula is one of the most prolific sources of molecular line emission. It has served as a benchmark for spectral line searches throughout the (sub)millimeter regime. Aims: The main goal is to systematically study the spectral characteristics of Orion KL in the λ ~ 1.3 cm band. Methods: We carried out a spectral line survey with the Effelsberg-100 m telescope toward Orion KL. It covers the frequency range between 17.9 GHz and 26.2 GHz, i.e., the radio "K band". We also examined ALMA maps to address the spatial origin of molecules detected by our 1.3 cm line survey. Results: In Orion KL, we find 261 spectral lines, yielding an average line density of about 32 spectral features per GHz above 3σ (a typical value of 3σ is 15 mJy). The identified lines include 164 radio recombination lines (RRLs) and 97 molecular lines. The RRLs, from hydrogen, helium, and carbon, stem from the ionized material of the Orion Nebula, part of which is covered by our beam. The molecular lines are assigned to 13 different molecular species including rare isotopologues. A total of 23 molecular transitions from species known to exist in Orion KL are detected for the first time in the interstellar medium. Non-metastable (J>K) 15NH3 transitions are detected in Orion KL for the first time. Based on the velocity information of detected lines and the ALMA images, the spatial origins of molecular emission are constrained and discussed. A narrow feature is found in SO2 (81,7 - 72,6), but not in other SO2 transitions, possibly suggesting the presence of a maser line. Column densities and fractional abundances relative to H2 are estimated for 12 molecules with local thermodynamic equilibrium (LTE) methods. Rotational diagrams of non-metastable 14NH3 transitions with J = K + 1 to J = K + 4 yield different results; metastable (J = K) 15NH3 is found to have a higher excitation temperature than non-metastable 15NH3, also indicating that they may trace different

  5. Formation of asteroids from mm-cm sized grains

    NASA Astrophysics Data System (ADS)

    Carrera, D.; Johansen, A.; Davies, M. B.

    2014-03-01

    Context. Asteroids and comets are intricately connected to life in the universe. Asteroids are the building blocks of terrestrial planets; water-rich asteroids and comets are likely to be the primary source of water for Earth's oceans and other volatiles (Morbidelli et al. 2000; Hartogh et al. 2011); and they may play role in mass extinctions. Yet, the formation of these objects is poorly understood. There is mounting evidence that the traditional picture of the formation of asteroids must be revised. The size distribution of asteroids is hard to reconcile with a traditional bottomup formation scenario. Instead, asteroids may form top-down, with large 100 - 1000 km sized objects forming first by the gravitational collapse of dense clumps of small particles. Experiments and simulations suggest that dust grains cannot grow to sizes larger than mm-cm in protoplanetary disks (Zsom et al. 2010). Also, primitive meteorites from the asteroid belt contain a large mass fraction in chondrules of sizes from 0.1 mm to a few mm. Hence, it is desirable to find a model for asteroid formation from mm-sized particles. Aims. In this work, we model the dynamics of mm-cm sized grains in dust-enriched inner regions of protoplanetary disks. We model the dust-gas interaction to determine whether dust grains of this size can form dense, self-gravitating clouds that can collapse to form asteroids. Methods. We perform shearing box simulations of the inner disk using the Pencil Code (Brandenburg & Dobler 2002). The simulations start with a Solar-type solids-to-gas ratio of 0.01 and we gradually increase the particle concentration. In a real protoplanetary disk, solid particles are expected to migrate from the outer regions and concentrate in the inner disk. Results. Our simulations show that mm-sized particles can form very dense clumps, driven by a run-away convergence in the radial-drift flow of these particles - this dynamic is known as the streaming instability (Youdin & Goodman 2005

  6. Seasonal Evolution of Titan's South Pole 220 cm-1 Cloud

    NASA Astrophysics Data System (ADS)

    Jennings, Donald

    2016-06-01

    A cloud of ices that had been seen only in Titan's north during winter began to emerge at the south pole in 2012. Discovered by Voyager IRIS as an emission feature at 220 cm-1, the cloud has been studied extensively in both the north and south by Cassini CIRS. The spectral feature acts as a tracer of the seasonal changes at Titan's poles, relating to evolving composition, temperature structure and dynamics. Although candidates have been proposed, the chemical makeup of the cloud has never been identified. The cloud is composed of condensates derived from gases created at high altitude and transported to the cold, shadowed pole. In the north the cloud has diminished gradually over the Cassini mission as Titan has transitioned from winter to spring. The southern cloud, on the other hand, grew rapidly after 2012. By late 2014 it had developed a complex ring structure that was confined to latitudes poleward of 70°S within the deep temperature well that had formed at the south pole [1]. The location of the cloud coincides in latitude with the HCN cloud reported by ISS and VIMS [2,3]. CIRS also saw enhanced gas emissions at those latitudes [4]. When it first formed, the cloud was abundant at altitudes as high as 250 km, while later it was found mostly at 100-150 km, suggesting that the material that had been deposited from above had gathered at the lower altitudes. Radiance from the southern cloud increased until mid-2015 and since then has decreased. The cloud may be transitioning to the more uniform hood morphology familiar in the north. Taking the north and south together, by the end of the Cassini mission in 2017 we will have observed almost an entire seasonal cycle of the ice cloud.

  7. Water in type I chondrules of Paris CM chondrite

    NASA Astrophysics Data System (ADS)

    Stephant, A.; Remusat, L.; Robert, F.

    2017-02-01

    Hydrogen isotopic ratio and water concentration have been measured with the NanoSIMS in olivine, pyroxene and mesostasis in individual chondrules from the carbonaceous chondrites Paris (CM2), Renazzo (CR2) and ordinary chondrite Bishunpur (LL3). On average, chondrule pyroxenes in Renazzo, Bishunpur and Paris contain 893 ± 637 ppm (1SD), 879 ± 536 ppm and 791 ± 227 ppm H2O, respectively. Concentration of H2O in Chondrule olivines from Renazzo and Bishunpur is 156 ± 44 ppm and 222 ± 123 ppm, respectively. Olivines in the Paris chondrules have high water concentration (603 ± 145-1051 ± 253 ppm H2O) with a minimum mean value of 645 ± 99 ppm. δD ranges from -212 ± 125‰ to 15 ± 156‰ and from -166 ± 133‰ to 137 ± 176‰ in Renazzo and Bishunpur chondrule olivines, pyroxenes and mesostases, respectively. In Paris chondrules, δD ranges from -398 ± 23‰ to 366 ± 35‰; this represents an extreme variation over 764‰. Paris olivines and pyroxenes are either enriched or depleted in deuterium relative to the mesostasis and no systematic isotopic pattern is observed. Simple model of chondrules hydration during parent body hydrothermal alteration is difficult to reconcile with such isotopic heterogeneity. It is proposed that a hydrous component, having a δD of c.a. -400‰, in the chondrule precursors, has been outgassed at 800-900 °C in the gas phase. Nevertheless, a residual water fraction remains trapped in Paris chondrules. Quantitative modeling supports this scenario.

  8. Evaluation of inpatient clinical documentation readiness for ICD-10-CM.

    PubMed

    DeAlmeida, Dilhari R; Watzlaf, Valerie J; Anania-Firouzan, Patti; Salguero, Otto; Rubinstein, Elaine; Abdelhak, Mervat; Parmanto, Bambang

    2014-01-01

    This research study examined the gaps in documentation that occur when coding in ICD-10-CM. More than 4,000 diagnoses from all chapters were coded from 656 electronic documents obtained from a large integrated healthcare facility at the time the study was conducted (2012). After the documents were coded, areas for documentation improvement were identified for chapters that resulted in deficiencies in documentation, and a quick reference guide was developed. The overall absent documentation percentage was 15.4 percent. The 10 chapters with the highest percentage of absent documentation were chapter 7 (Diseases of Eye and Adnexa), with 67.65 percent (p < .001); chapter 8 (Diseases of Ear and Mastoid Process), with 63.64 percent (p < .001); chapter 13 (Diseases of the Musculoskeletal System and Connective Tissue), with 46.05 percent (p < .001); chapter 14 (Diseases of the Genitourinary System), with 40.29 percent (p < .001); chapter 10 (Diseases of Respiratory System), with 35.52 percent (p < .001); chapter 1 (Infectious and Parasitic Diseases), with 32.88 percent (p < .001); chapter 12 (Diseases of the Skin and Subcutaneous Tissue), with 32.35 percent (p < .001); chapter 2 (Neoplasms), with 25.45 percent (p < .001); chapter 4 (Endocrine, Nutritional and Metabolic Diseases), with 14.58 percent (p < .001); and chapter 17 (Congenital Malformations, Deformations, and Chromosomal Abnormalities), with 12.50 percent. We addressed the deficient areas in the quick reference guide developed for clinicians and technology vendors. Having complete and accurate documentation would benefit both the clinician and the patient in providing the highest quality of care.

  9. Effect of integrating straw into agricultural soils on soil infiltration and evaporation.

    PubMed

    Cao, Jiansheng; Liu, Changming; Zhang, Wanjun; Guo, Yunlong

    2012-01-01

    Soil water movement is a critical consideration for crop yield in straw-integrated fields. This study used an indoor soil column experiment to determine soil infiltration and evaporation characteristics in three forms of direct straw-integrated soils (straw mulching, straw mixing and straw inter-layering). Straw mulching is covering the land surface with straw. Straw mixing is mixing straw with the top 10 cm surface soil. Then straw inter-layering is placing straw at the 20 cm soil depth. There are generally good correlations among the mulch integration methods at p < 0.05, and with average errors/biases <10%. Straw mixing exhibited the best effect in terms of soil infiltration, followed by straw mulching. Due to over-burden weight-compaction effect, straw inter-layering somehow retarded soil infiltration. In terms of soil water evaporation, straw mulching exhibited the best effect. This was followed by straw mixing and then straw inter-layering. Straw inter-layering could have a long-lasting positive effect on soil evaporation as it limited the evaporative consumption of deep soil water. The responses of the direct straw integration modes to soil infiltration and evaporation could lay the basis for developing efficient water-conservation strategies. This is especially useful for water-scarce agricultural regions such as the arid/semi-arid regions of China.

  10. Chromophore-modified antitumor anthracenediones: synthesis, DNA binding, and cytotoxic activity of 1,4-bis[(aminoalkyl)amino]benzo[g]-phthalazine-5,10-diones.

    PubMed

    Gandolfi, C A; Beggiolin, G; Menta, E; Palumbo, M; Sissi, C; Spinelli, S; Johnson, F

    1995-02-03

    As part of a program aimed at exploring the effect of the introduction of heteroatoms into the anthracene-9,10-dione chromophore, we have synthesized novel 1,4-bis[(aminoalkyl)amino]-benzo[g]phthalazine-5,10-diones (BPDs) 1 which are related to the antitumor agents ametantrone and mitoxantrone. Derivatives 1 were prepared by chromic acid oxidation of acylated benzo[g]phthalazines 5 followed by acid hydrolysis or by silylation-amination of 5,10-dihydroxybenzo[g]phthalazine-1,4-dione (8). The 1-[(aminoalkyl)amino]-4-amino congeners 2 were isolated in low yields as byproducts from the oxidation of 5. Against a panel of human tumor cell lines, the benzo[g]phthalazine-5,10-diones 1 and 2 exhibited cytotoxic activity comparable or even superior to that of mitoxantrone. In compounds 1, structure-activity relationships different than those operative in the carbocyclic series appeared to emerge. DNA-binding studies with the ametantrone-like compound 1c and its single-armed congener 2c indicated that the introduction of a 2,3-diaza subunit into the anthracene-9,10-dione chromophore reduces the affinity of the drug for DNA in comparison with ametantrone. On the other hand, the number of side-chain groups does not affect binding to a great extent. These findings seem to suggest mechanisms of cell death other than those induced by simple interaction of the 1,4-BPDs 1 and 2 with DNA.

  11. Correlations between soil characteristics and radioactivity content of Vojvodina soil.

    PubMed

    Forkapic, S; Vasin, J; Bikit, I; Mrdja, D; Bikit, K; Milić, S

    2017-01-01

    During the years 2001 and 2010, the content of (238)U, (226)Ra, (232)Th, (40)K and (137)Cs in agricultural soil and soil geochemical characteristics were measured on 50 locations in Northern Province of Serbia - Vojvodina. The locations for sampling were selected so that they proportionately represent all geomorphologic units in the region. The content of clay and humus varied within wide limits depending on soil type and influence the activity concentrations of radionuclides. In this paper we analyzed correlations between radionuclides content and geochemical characteristics of the soil. Possible influence of fertilizers on (238)U content in soil was discussed. The main conclusion is that measured maximal activity concentrations for (238)U (87 Bq/kg), (226)Ra (44.7 Bq/kg), (232)Th (55.5 Bq/kg) and (137)Cs (29 Bq/kg) at 30 cm depth could not endanger the safety of food production. The process of genesis of soil and cultivation mode plays a dominant role on the characteristics of the soil. The most significant correlation was found between the activity concentrations of (40)K and clay content in agricultural soil.

  12. Sensitivity of simulated South America climate to the land surface schemes in RegCM4

    NASA Astrophysics Data System (ADS)

    Llopart, Marta; da Rocha, Rosmeri P.; Reboita, Michelle; Cuadra, Santiago

    2017-02-01

    This work evaluates the impact of two land surface parameterizations on the simulated climate and its variability over South America (SA). Two numerical experiments using RegCM4 coupled with the Biosphere-Atmosphere Transfer Scheme (RegBATS) and the Community Land Model version 3.5 (RegCLM) land surface schemes are compared. For the period 1979-2008, RegCM4 simulations used 50 km horizontal grid spacing and the ERA-Interim reanalysis as initial and boundary conditions. For the period studied, both simulations represent the main observed spatial patterns of rainfall, air temperature and low level circulation over SA. However, with regard to the precipitation intensity, RegCLM values are closer to the observations than RegBATS (it is wetter in general) over most of SA. RegCLM also produces smaller biases for air temperature. Over the Amazon basin, the amplitudes of the annual cycles of the soil moisture, evapotranspiration and sensible heat flux are higher in RegBATS than in RegCLM. This indicates that RegBATS provides large amounts of water vapor to the atmosphere and has more available energy to increase the boundary layer thickness and cause it to reach the level of free convection (higher sensible heat flux values) resulting in higher precipitation rates and a large wet bias. RegCLM is closer to the observations than RegBATS, presenting smaller wet and warm biases over the Amazon basin. On an interannual scale, the magnitudes of the anomalies of the precipitation and air temperature simulated by RegCLM are closer to the observations. In general, RegBATS simulates higher magnitude for the interannual variability signal.

  13. Sorption and degradation of fipronil in flooded anaerobic rice soils.

    PubMed

    Doran, Gregory; Eberbach, Philip; Helliwell, Stuart

    2009-11-11

    The fate of fipronil in flooded, reductive rice soils was modeled using a conceptual model. Rate constants for the various sorption and degradation processes were calculated from experimental studies involving intact soil cores, and the reductive degradation constant was used to calculate half-lives for fipronil on each soil. The data predicted that fipronil was subject to rapid, reductive degradation or immediate sorption to the soil and any sorbed fipronil desorbed was reductively degraded. The reductive metabolite, fipronil sulfide, accumulated over the 184 day duration of the experiment and sorbed rapidly to the soil, where it accumulated and did not appear to degrade. Neither fipronil nor fipronil sulfide was found beyond the top 1 cm of soil in Yanco soil, while a small amount of each chemical was found up to 4 cm deep in the Coleambally soil profile.

  14. Key soil functional properties affected by soil organic matter - evidence from published literature

    NASA Astrophysics Data System (ADS)

    Murphy, Brian

    2015-07-01

    The effect of varying the amount of soil organic matter on a range of individual soil properties was investigated using a literature search of published information largely from Australia, but also included relevant information from overseas. Based on published pedotransfer functions, soil organic matter was shown to increase plant available water by 2 to 3 mm per 10 cm for each 1% increase in soil organic carbon, with the largest increases being associated with sandy soils. Aggregate stability increased with increasing soil organic carbon, with aggregate stability decreasing rapidly when soil organic carbon fell below 1.2 to 1.5 5%. Soil compactibility, friability and soil erodibility were favourably improved by increasing the levels of soil organic carbon. Nutrient cycling was a major function of soil organic matter. Substantial amounts of N, P and S become available to plants when the soil organic matter is mineralised. Soil organic matter also provides a food source for the microorganisms involved in the nutrient cycling of N, P, S and K. In soils with lower clay contents, and less active clays such as kaolinites, soil organic matter can supply a significant amount of the cation exchange capacity and buffering capacity against acidification. Soil organic matter can have a cation exchange capacity of 172 to 297 cmol(+)/kg. As the cation exchange capacity of soil organic matter varies with pH, the effectiveness of soil organic matter to contribute to cation exchange capacity below pH 5.5 is often minimal. Overall soil organic matter has the potential to affect a range of functional soil properties.

  15. [Characteristics of soil pH and exchangeable acidity in red soil profile under different vegetation types].

    PubMed

    Ji, Gang; Xu, Ming-gang; Wen, Shi-lin; Wang, Bo-ren; Zhang, Lu; Liu, Li-sheng

    2015-09-01

    The characteristics of soil pH and exchangeable acidity in soil profile under different vegetation types were studied in hilly red soil regions of southern Hunan Province, China. The soil samples from red soil profiles within 0-100 cm depth at fertilized plots and unfertilized plots were collected and analyzed to understand the profile distribution of soil pH and exchangeable acidity. The results showed that, pH in 0-60 cm soil from the fertilized plots decreased as the following sequence: citrus orchard > Arachis hypogaea field > tea garden. As for exchangeable acidity content, the sequence was A. hypogaea field ≤ citrus orchard < tea garden. After tea tree and A. hypogaea were planted for long time, acidification occurred in surface soil (0-40 cm), compared with the deep soil (60-100 cm), and soil pH decreased by 0.55 and 0.17 respectively, but such changes did not occur in citrus orchard. Soil pH in 0-40 cm soil from the natural recovery vegetation unfertilized plots decreased as the following sequence: Imperata cylindrica land > Castanea mollissima garden > Pinus elliottii forest ≥ Loropetalum chinensis forest. As for exchangeable acidity content, the sequence was L cylindrica land < C. mollissima garden < L. chinensis forest ≤ P. elliottii forest. Soil pH in surface soil (0-20 cm) from natural forest plots, secondary forest and Camellia oleifera forest were significantly lower than that from P. massoniana forest, decreased by 0.34 and 0.20 respectively. For exchangeable acidity content in 0-20 cm soil from natural forest plot, P. massoniana forest and secondary forest were significantly lower than C. oleifera forest. Compared with bare land, surface soil acidification in unfertilized plots except I. cylindrica land had been accelerated, and the natural secondary forest was the most serious among them, with surface soil pH decreasing by 0.52. However, the pH increased in deep soils from unfertilized plots except natural secondary forest, and I. cylindrica

  16. ICD-9-CM and ICD-10-CM mapping of the AAST Emergency General Surgery disease severity grading systems: Conceptual approach, limitations, and recommendations for the future.

    PubMed

    Utter, Garth H; Miller, Preston R; Mowery, Nathan T; Tominaga, Gail T; Gunter, Oliver; Osler, Turner M; Ciesla, David J; Agarwal, Suresh K; Inaba, Kenji; Aboutanos, Michel B; Brown, Carlos V R; Ross, Steven E; Crandall, Marie L; Shafi, Shahid

    2015-05-01

    The American Association for the Surgery of Trauma (AAST) recently established a grading system for uniform reporting of anatomic severity of several emergency general surgery (EGS) diseases. There are five grades of severity for each disease, ranging from I (lowest severity) to V (highest severity). However, the grading process requires manual chart review. We sought to evaluate whether International Classification of Diseases, 9th and 10th Revisions, Clinical Modification (ICD-9-CM, ICD-10-CM) codes might allow estimation of AAST grades for EGS diseases. The Patient Assessment and Outcomes Committee of the AAST reviewed all available ICD-9-CM and ICD-10-CM diagnosis codes relevant to 16 EGS diseases with available AAST grades. We then matched grades for each EGS disease with one or more ICD codes. We used the Official Coding Guidelines for ICD-9-CM and ICD-10-CM and the American Hospital Association's "Coding Clinic for ICD-9-CM" for coding guidance. The ICD codes did not allow for matching all five AAST grades of severity for each of the 16 diseases. With ICD-9-CM, six diseases mapped into four categories of severity (instead of five), another six diseases into three categories of severity, and four diseases into only two categories of severity. With ICD-10-CM, five diseases mapped into four categories of severity, seven diseases into three categories, and four diseases into two categories. Two diseases mapped into discontinuous categories of grades (two in ICD-9-CM and one in ICD-10-CM). Although resolution is limited, ICD-9-CM and ICD-10-CM diagnosis codes might have some utility in roughly approximating the severity of the AAST grades in the absence of more precise information. These ICD mappings should be validated and refined before widespread use to characterize EGS disease severity. In the long-term, it may be desirable to develop alternatives to ICD-9-CM and ICD-10-CM codes for routine collection of disease severity characteristics.

  17. Ecotoxicological assessment of doxycycline in soil.

    PubMed

    Szatmári, István; Barcza, Tibor; Körmöczy, Péter Sz; Laczay, Péter

    2012-01-01

    Doxycycline has been used in continually increasing quantities for mass treatment of food animals because of its greater bioavailability relative to older tetracyclines. The study presented in this paper was undertaken to investigate the degradation rate of the tetracycline derivative in manure-amended soil. In the present experiment, following composting, the doxycycline-contaminated manure was applied to agricultural land, and a field study was performed to investigate the degradation rate of doxycycline in soil. By the end of the 20-week sampling period, about 20 %, 33 % and 18 % of the initial doxycycline concentrations could be measured in soil samples taken at three different soil depths. The calculated half-life of doxycycline in the soil was 66.5, 76.3 and 59.4 days at depths of 0 cm, 25 cm and 50 cm, respectively. The potential effect of doxycycline on soil microbial activity was demonstrated by the nitrogen transformation test performed in compliance with the Organisation for Economic Co-operation and Development (OECD) Guideline No. 216. On day 28, the following nitrate concentrations of the control soil sample were found in the soil samples treated with different amounts of doxycycline: 76.9 %, 53.0 %, 65.6 %, 59.7 % and 77.1 %.

  18. Photophysical Characterization and in Vitro Phototoxicity Evaluation of 5,10,15,20-Tetra(quinolin-2-yl)porphyrin as a Potential Sensitizer for Photodynamic Therapy.

    PubMed

    Costa, Letícia D; e Silva, Joana de A; Fonseca, Sofia M; Arranja, Cláudia T; Urbano, Ana M; Sobral, Abilio J F N

    2016-03-31

    Photodynamic therapy (PDT) is a selective and minimally invasive therapeutic approach, involving the combination of a light-sensitive compound, called a photosensitizer (PS), visible light and molecular oxygen. The interaction of these per se harmless agents results in the production of reactive species. This triggers a series of cellular events that culminate in the selective destruction of cancer cells, inside which the photosensitizer preferentially accumulates. The search for ideal PDT photosensitizers has been a very active field of research, with a special focus on porphyrins and porphyrin-related macrocycle molecules. The present study describes the photophysical characterization and in vitro phototoxicity evaluation of 5,10,15,20-tetra(quinolin-2-yl)porphyrin (2-TQP) as a potential PDT photosensitizer. Molar absorption coefficients were determined from the corresponding absorption spectrum, the fluorescence quantum yield was calculated using 5,10,15,20-tetraphenylporphyrin (TPP) as a standard and the quantum yield of singlet oxygen generation was determined by direct phosphorescence measurements. Toxicity evaluations (in the presence and absence of irradiation) were performed against HT29 colorectal adenocarcinoma cancer cells. The results from this preliminary study show that the hydrophobic 2-TQP fulfills several critical requirements for a good PDT photosensitizer, namely a high quantum yield of singlet oxygen generation (Φ∆ 0.62), absence of dark toxicity and significant in vitro phototoxicity for concentrations in the micromolar range.

  19. Early lung cancer detection project: Evaluation of 5, 10, 15, 20 tetrakis (4-carboxyphenyl) porphine (H{sub 2}TCPP). Final report

    SciTech Connect

    Tockman, M.S.

    1998-10-01

    The author evaluated a synthetic porphyrin, 5, 10, 15, 20 tetrakis (4-carboxyphenyl) porphene (H{sub 2}TCPP) as a marker of carcinogenesis. H{sub 2}TCPP was compared with two other carcinogenesis markers evaluated in the laboratory for their ability to detect exfoliated sputum cells undergoing transformation to lung cancer. In the present project the authors first established optimal conditions for cultured neoplastic and non-neoplastic (sputum) cells to take up H{sub 2}TCPP. This was accomplished using spectrofluorimetry and video-enhanced fluorescent microscopy to maximize H{sub 2}TCPP auto-fluorescence across a matrix of substrate conditions, including; reagent concentration, incubation time, temperature, and pH. The second aim was to validate H{sub 2}TCPP on clinical material obtained from subjects monitored in advance of clinical cancer and link those marker results with subsequent histologic confirmation of disease. This was accomplished by applying H{sub 2}TCPP to sputum specimens archived by the Frost Center at Johns Hopkins which maintains a record of the clinical course and long-term follow-up for the patients from whom the specimens were obtained. The authors have used fluorescent immunostaining and flow cytometry to compare uptake of these cytoplasmic Mabs to that of a potential new marker of carcinogenesis, 5, 10, 15, 20 tetrakis (4 carboxyphenyl) porphene (H{sub 2}TCPP). The nuclear uptake of H{sub 2}TCPP was compared to a standard quantitative fluorescent DNA marker (7-AAD).

  20. Antibody persistence and the effect of a booster dose given 5, 10 or 15 years after vaccinating preadolescents with a recombinant hepatitis B vaccine.

    PubMed

    Gilca, Vladimir; De Serres, Gaston; Boulianne, Nicole; Murphy, Donald; De Wals, Philippe; Ouakki, Manale; Trudeau, Gisele; Massé, Richard; Dionne, Marc

    2013-01-07

    The persistence of antibody obtained post-vaccination of preadolescents with three doses of Engerix-B and the effect of a booster administered 5, 10 or 15 years later were monitored in 663 vaccinees. Five, 10 and 15 years post-vaccination >94% of subjects had detectable antibodies and 88.2%, 86.4% and 76.7% had a titre ≥10 IU/L; GMTs were 269 IU/L, 169 IU/L and 51 IU/L, respectively; 99.1-100% vaccinees reached a titre ≥10 IU/l post-booster. GMTs were 118012 IU/L, 32477 IU/L, and 13946 IU/L when the booster was administered 5, 10 or 15 years post-vaccination, respectively. We conclude that vaccination induces immunity in the great majority of vaccinees for at least 15 years. The response to a booster dose suggests persistence of immune memory in almost all vaccinees. Although a booster dose increases substantially anti-HBs titres, the clinical relevance of such an increase remains unknown. These results do not support the need of a booster for at least 15 years when vaccinating preadolescents with Engerix-B.

  1. Optimizing rainwater partitioning and millet production on degraded land in Niger using Water and Soil Conservation practices

    NASA Astrophysics Data System (ADS)

    Wildemeersch, Jasmien C. J.; Garba, Maman; Al-Barri, Bashar; Sabiou, Mahamane; Cornelis, Wim M.

    2015-04-01

    As a result of growing population pressure and severe soil erosion, farmers in the Sahel increasingly rely on degraded lands for millet production. The adverse Sahelian rainfall distribution and imbalanced rainfall partitioning over the rootzone of these degraded lands therefore calls for sustainable land management strategies that are water resource efficient. This study evaluates the soil-water balance of promising Nigerien Water and Soil Conservation (WSC) techniques (i.e., zaï pits, demi-lune microcatchments and scarification with standing crop residue) and their impact on millet yield by means of an in-situ field experiment (2011-2013) on degraded laterite soil classified as Plinthosol with a 1% slope. All WSC practices received the same amount of fertilizer and were compared to two control practices, one with and one without fertilizer. Soil-water content was recorded with a neutron probe till 105 cm depth and runoff by means of a cemented gutter directing runoff water with a multi-pipe divisor into a collector drum. WSC techniques proved to significantly reduce runoff (blue water) with overall runoff coefficients beings reduced from 25% (control practice) to 5-10%. Consequently, significantly more water was stored inside the catchments of the zaï pits and demi-lunes (green water). With the scarification treatment, no considerable differences in soil-water storage were found with the control. On the other hand, WSC practices had little impact on soil evaporation, which was only 12% of rainfall by the self-mulching soil. Crop transpiration increased with WSC and highest millet yields were found with zaï pits (4 to 5 times higher than under the fertilized control). Although rainwater was better partitioned in case of demi-lune microcatchments resulting in highest amounts of water stored in the soil, yield was only 40-60% of that with zaï pits. This was due to a higher plant density within each demi-lune microcatchment in an attempt to attain similar plant

  2. Oxygenated polycyclic aromatic hydrocarbons and azaarenes in urban soils: a comparison of a tropical city (Bangkok) with two temperate cities (Bratislava and Gothenburg).

    PubMed

    Bandowe, Benjamin A Musa; Lueso, María Gómez; Wilcke, Wolfgang

    2014-07-01

    Environmental conditions in the tropics favor the formation of polar polycyclic aromatic compound (polar PACs, such as oxygenated PAHs [OPAHs] and azaarenes [AZAs]), but little is known about these hazardous compounds in tropical soils. The objectives of this work were to determine (i) the level of contamination of soils (0-5 and 5-10 cm layers) from the tropical metropolis of Bangkok (Thailand) with OPAHs and AZAs and (ii) the influence of urban emission sources and soil properties on the distribution of PACs. We hypothesized that the higher solar insolation and microbial activity in the tropics than in the temperate zone will lead to enhanced secondary formation of OPAHs. Hence, OPAH to related parent-PAH ratios will be higher in the tropical soils of Bangkok than in temperate soils of Bratislava and Gothenburg. The concentrations of ∑15OPAHs (range: 12-269 ng g(-1)) and ∑4AZAs (0.1-31 ng g(-1)) measured in soils of Bangkok were lower than those in several cities of the industrialized temperate zone. The ∑15OPAHs (r=0.86, p<0.01) and ∑4AZAs (r=0.67, p<0.01) correlated significantly with those of ∑20PAHs highlighting similar sources and related fate. The octanol-water partition coefficient did not explain the transport to the subsoil, indicating soil mixing as the reason for the polar PAC load of the lower soil layer. Data on PAC concentrations in soils of Bratislava and Gothenburg were taken from published literature. The individual OPAH to parent-PAH ratios in soils of Bangkok were mostly higher than those of Bratislava and Gothenburg (e.g. 9-fluorenone/fluorene concentration ratio was 12.2 ± 6.7, 5.6 ± 2.4, and 0.7 ± 02 in Bangkok, Bratislava and Gothenburg soils, respectively) supporting the view that tropical environmental conditions and higher microbial activity likely lead to higher OPAH to parent-PAH ratios in tropical than in temperate soils.

  3. Impact of land management on soil structure and soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Kodesova, Radka; Jirku, Veronika; Nikodem, Antonin; Muhlhanselova, Marcela; Zigova, Anna

    2010-05-01

    Study is focused on a comparison of a soil structure and soil hydraulic properties within soil profiles of a same soil type under different land management. Study was performed in Haplic Luvisol in Hnevceves the Czech Republic. Two soil profiles, which were in close distance from each other, were chosen: 1. under the conventional tillage, 2. under the permanent (30 years) grass cover. Soil sampling and field experiments were carried out immediately after the harvest of winter barley in 2008. The micromorphological images were used to evaluate the soil structure of all Ap, Bt1, Bt2 and C diagnostic horizons. The hydraulic properties of the diagnostic horizons were studied in the laboratory using multistep outflow experiments performed on the undisturbed 100-cm3 soil samples. A tension disc infiltrometer (with a disc radius of 10 cm) and minidisc tension infiltrometers (with a disc radius of 2.2 cm) were used to measure cumulative water infiltration under unsaturated conditions created using a pressure head of -2 cm. Measurements were performed at a depths of 5, 45, 75 and 110 cm, which corresponded to the Ap, Bt1, Bt2 and C horizons of studied Haplic Luvisol at both locations. The Guelph permeameter was used to measure cumulative water flux under surface ponding conditions. The depth of the drilled well was 10, 50, 80 and 115 cm, the well radius was 3 cm, and the well ponding depth was 5 cm. Both tests were used to evaluate hydraulic conductivity (K for h=-2cm, and Ks) values. Results showed, that while properties in the Bt2 and C horizons of both soil profiles were relatively similar, properties in the Ap and Bt1 horizons were different. The fraction of gravitational pores (which may cause preferential flow) in the Ap and Bt1 horizons of the soil profile under the convectional tillage was large than those in the Ap and Bt1 horizons of the soil profile under the permanent grass. This influenced for instance the Ks values measured using the Guelph permeametr. The Ks

  4. Effect of soil coarseness on soil base cations and available micronutrients in a semi-arid sandy grassland

    NASA Astrophysics Data System (ADS)

    Lü, Linyou; Wang, Ruzhen; Liu, Heyong; Yin, Jinfei; Xiao, Jiangtao; Wang, Zhengwen; Zhao, Yan; Yu, Guoqing; Han, Xingguo; Jiang, Yong

    2016-04-01

    Soil coarseness is the main process decreasing soil organic matter and threatening the productivity of sandy grasslands. Previous studies demonstrated negative effect of soil coarseness on soil carbon storage, but less is known about how soil base cations (exchangeable Ca, Mg, K, and Na) and available micronutrients (available Fe, Mn, Cu, and Zn) response to soil coarseness. In a semi-arid grassland of Northern China, a field experiment was initiated in 2011 to mimic the effect of soil coarseness on soil base cations and available micronutrients by mixing soil with different mass proportions of sand: 0 % coarse elements (C0), 10 % (C10), 30 % (C30), 50 % (C50), and 70 % (C70). Soil coarseness significantly increased soil pH in three soil depths of 0-10, 10-20 and 20-40 cm with the highest pH values detected in C50 and C70 treatments. Soil fine particles (smaller than 0.25 mm) significantly decreased with the degree of soil coarseness. Exchangeable Ca and Mg concentrations significantly decreased with soil coarseness degree by up to 29.8 % (in C70) and 47.5 % (in C70), respectively, across three soil depths. Soil available Fe, Mn, and Cu significantly decreased with soil coarseness degree by 62.5, 45.4, and 44.4 %, respectively. As affected by soil coarseness, the increase of soil pH, decrease of soil fine particles (including clay), and decline in soil organic matter were the main driving factors for the decrease of exchangeable base cations (except K) and available micronutrients (except Zn) through soil profile. Developed under soil coarseness, the loss and redistribution of base cations and available micronutrients along soil depths might pose a threat to ecosystem productivity of this sandy grassland.

  5. The Sodankylä in-situ soil moisture observation network: an example application to Earth Observation data product evaluation

    NASA Astrophysics Data System (ADS)

    Ikonen, J.; Vehviläinen, J.; Rautiainen, K.; Smolander, T.; Lemmetyinen, J.; Bircher, S.; Pulliainen, J.

    2015-12-01

    Soil moisture is one of the main drivers in water, energy, and carbon cycles. Both latent and sensible heat fluxes, governing the air temperature and humidity boundary layer over land, are affected by variations in soil moisture. During the last decade there has been considerable development in remote sensing techniques relating to soil moisture retrievals over large areas. Within the framework of the European Space Agency's (ESA) Climate Change Initiative (CCI) a new soil moisture product has been generated, merging different satellite-based surface soil moisture based products. Such remotely sensed data needs to be validated by means of in-situ observations in different climatic regions. In that context, a comprehensive, distributed network of in-situ measurement stations gathering information on soil moisture, as well as soil temperature, has been set up in recent years at the Finnish Meteorological Institute's (FMI) Sodankylä Arctic research station. The network forms a (CAL-VAL) reference site and is used as a tool to evaluate the validity of satellite retrievals of soil properties. In this paper we present the Sodankylä CAL-VAL reference site soil moisture observation network. The procedures for choosing the representative sites for individual soil moisture network stations are discussed, as well as the development of a weighted average of top layer (5-10 cm) soil moisture over the study area. Comparisons of top layer soil moisture around the Sodankylä CAL-VAL site between the years 2012 and 2014 using ESA CCI soil moisture data against in-situ network observations were conducted. The comparisons were made against a single CCI data product pixel encapsulating the Sodankylä observation sites. Comparisons have been made against both daily CCI soil moisture estimates and against weekly running average values. Soil moisture comparisons are only conducted during snow free and thawed periods, as the presence of snow and soil frost interfere with Earth

  6. Effect of moisture on efficiency of microwaves to control plant--parasitic nematodes in soil.

    PubMed

    Rahi, Gurcharan S; Rich, Jimmy R

    2011-01-01

    Laboratory studies were conducted to evaluate effect of microwave irradiation of sandy loam soil on thermal energy absorption and control of plant-parasitic nematodes when air dry soil layers were placed on top of less moist, moist, and wet soil layers. The soil was packed in 12 cm high and 10 cm dia columns to a bulk density of 1.4 g/cm3. Moisture contents of air dry, less moist, moist, and wet soils were 0.75, 4.50, 6.00, and 10.30%, respectively, on dry mass basis. The top air dry soil was 4.0 cm thick and the bottom layer was 8.0 cm thick. Temperature measurements and thermal radiation absorption data were monitored in both soil layers and showed that the use of a top dry soil both increased depth of penetration of microwave radiation and it provided insulation for better absorption of thermal energy in the lower layer of soil. An exposure of 65 seconds resulted in soil temperatures high enough to cause significant decrease in nematode population in soil infested with Rotylenchulus reniformis nematodes. No such effect was observed in combination where dry soil layer was placed over dry soil at the bottom. These results are helpful in sterilizing soil used for greenhouses and nurseries.

  7. Using 137 Cs measurements to investigate the influence of erosion and soil redistribution on soil properties.

    PubMed

    Du, P; Walling, D E

    2011-05-01

    Information on the interaction between soil erosion and soil properties is an important requirement for sustainable management of the soil resource. The relationship between soil properties and the soil redistribution rate, reflecting both erosion and deposition, is an important indicator of this interaction. This relationship is difficult to investigate using traditional approaches to documenting soil redistribution rates involving erosion plots and predictive models. However, the use of the fallout radionuclide (137)Cs to document medium-term soil redistribution rates offers a means of overcoming many of the limitations associated with traditional approaches. The study reported sought to demonstrate the potential for using (137)Cs measurements to assess the influence of soil erosion and redistribution on soil properties (particle size composition, total C, macronutrients N, P, K and Mg, micronutrients Mn, Mo, Fe, Cu and Zn and other elements, including Ti and As). (137)Cs measurements undertaken on 52 soil cores collected within a 7 ha cultivated field located near Colebrooke in Devon, UK were used to establish the magnitude and spatial pattern of medium-term soil redistribution rates within the field. The soil redistribution rates documented for the individual sampling points within the field ranged from an erosion rate of -12.9 t ha(-1) yr(-1) to a deposition rate of 19.2 t ha(-1) yr(-1). Composite samples of surface soil (0-5 cm) were collected immediately adjacent to each coring point and these samples were analysed for a range of soil properties. Individual soil properties associated with these samples showed significant variability, with CV values generally lying in the range 10-30%. The relationships between the surface soil properties and the soil redistribution rate were analysed. This analysis demonstrated statistically significant relationships between some soil properties (total phosphorus, % clay, Ti and As) and the soil redistribution rate, but for

  8. PVA/CM-chitosan/honey hydrogels prepared by using the combined technique of irradiation followed by freeze-thawing

    NASA Astrophysics Data System (ADS)

    Afshari, M. J.; Sheikh, N.; Afarideh, H.

    2015-08-01

    Hydrogels with three components, poly(vinyl alcohol) (PVA), carboxymethylate chitosan (CM-chitosan) and honey have been prepared by using radiation method and radiation followed by freeze-thawing cycles technique (combinational method). The solid concentration of the polymer solution is 15 wt% and the ratios of PVA/CM-chitosan/honey are 10/1.5/3.5, 10/2/3, 10/3/2, and 10/3.5/1.5. The applied irradiation doses are 25, 30 and 40 kGy. Various tests have been done to evaluate the hydrogel properties to produce materials to be used as wound dressing. The results show that combinational method improves the mechanical strength of hydrogels while it has no significant effect on the water evaporation rate of gels. The combinational method decreases the swelling of hydrogels significantly, albeit this parameter is still acceptable for wound dressing. Microbiological analyses show that the hydrogel prepared by both methods can protect the wound from Escherichia coli bacterial infection. The wound healing test shows the good performance of the gels in mice.

  9. Impact of moisture dynamic and sun light on anthracene removal from soil.

    PubMed

    Vázquez Núñez, Edgar; García Gaytán, Alejandro; Luna-Guido, M; Marsch, R; Dendooven, L

    2009-04-01

    In a previous study, remediation of anthracene from soil was faster in the top 0-2 cm layer than in the lower soil layers. It was not clear whether this faster decrease was due to biotic or abiotic processes. Anthracene-contaminated soil columns were covered with black or transparent perforated polyethylene so that aeration occurred but that fluctuations in water content were minimal and light could reach (LIGHT treatment) or not reach the soil surface (DARK treatment), or left uncovered so that soil water content fluctuate and light reached the soil surface (OPEN treatment). The amount of anthracene, microbial biomass C, and microbial activity as reflected by the amount of CO(2) produced within 3 days were determined in the 0-2 cm, 2-8 cm, and 8-15 cm layer after 0, 3, 7, 14, and 28 days. In the 0-2 cm layer of the OPEN treatment, 17% anthracene remained, 48% in the LIGHT treatment and 61% in the DARK treatment after 28 days. In the 2-8 cm and 8-15 cm layer, treatment had no significant effect on the dissipation of anthracene from soil after 14 and 28 days. It was found that light and fluctuations in water content stimulated the removal of anthracene from the top 0-2 cm soil layer, but not from the lower soil layers. It can be speculated that covering contaminated soil or piling it up will inhibit the dissipation of the contaminant.

  10. Mesofauna in soils of the ivolga depression (Western Transbaikal region)

    NASA Astrophysics Data System (ADS)

    Ubugunova, V. I.; Lavrent'eva, I. N.; Ubugunov, L. L.; Nikheleeva, T. P.

    2007-08-01

    Mesofauna of chestnut, meadow-chestnut, meadow alluvial, clayey mucky-gley swampy alluvial soils, and hydromorphic solonchaks has been studied within the Ivolga depression. Variations in the population density of soil invertebrates (from 29.9 to 284.3 specimens per m2) are controlled by the particular soil ecological conditions. Dominant mesofauna species are morphologically and physiologically adapted for living near the soil surface. About 85 90% of them are allocated to the uppermost 10-cm-thick soil layer. The hydrothermic regime (r = 0.94) and the low bioproductivity of phytocenoses (r = 0.74) are the major factors limiting the mesofauna functioning in soils of the Ivolga depression. The biocenotic similarity of the invertebrate complexes in the chestnut, meadow-chestnut, and solonchak soils and in the alluvial swampy and meadow soils is revealed. The highest diversity of the ecological groups of soil mesofauna is seen in the clayey mucky-gley swampy alluvial soils.

  11. Analysis of PM10, PM2.5, and PM2 5-10 concentrations in Santiago, Chile, from 1989 to 2001.

    PubMed

    Koutrakis, Petros; Sax, Sonja N; Sarnat, Jeremy A; Coull, Brent; Demokritou, Phil; Oyola, Pedro; Garcia, Javier; Gramsch, Ernesto

    2005-03-01

    Daily particle samples were collected in Santiago, Chile, at four urban locations from January 1, 1989, through December 31, 2001. Both fine PM with da < 2.5 microm (PM2.5) and coarse PM with 2.5 < da < 10 microm (PM2.5-10) were collected using dichotomous samplers. The inhalable particle fraction, PM10, was determined as the sum of fine and coarse concentrations. Wind speed, temperature and relative humidity (RH) were also measured continuously. Average concentrations of PM2.5 for the 1989-2001 period ranged from 38.5 microg/m3 to 53 microg/m3. For PM2.5-10 levels ranged from 35.8-48.2 microg/m3 and for PM10 results were 74.4-101.2 microg/m3 across the four sites. Both annual and daily PM2.5 and PM10 concentration levels exceeded the U.S. National Ambient Air Quality Standards and the European Union concentration limits. Mean PM2.5 levels during the cold season (April through September) were more than twice as high as those observed in the warm season (October through March); whereas coarse particle levels were similar in both seasons. PM concentration trends were investigated using regression models, controlling for site, weekday, month, wind speed, temperature, and RH. Results showed that PM2.5 concentrations decreased substantially, 52% over the 12-year period (1989-2000), whereas PM2.5-10 concentrations increased by approximately 50% in the first 5 years and then decreased by a similar percentage over the following 7 years. These decreases were evident even after controlling for significant climatic effects. These results suggest that the pollution reduction programs developed and implemented by the Comisión Nacional del Medio Ambiente (CONAMA) have been effective in reducing particle levels in the Santiago Metropolitan region. However, particle levels remain high and it is thus imperative that efforts to improve air quality continue.

  12. [Effects of nitrogen addition on soil physico-chemical properties and enzyme activities in desertified steppe].

    PubMed

    Su, Jie-Qiong; Li, Xin-Rong; Bao, Jing-Ting

    2014-03-01

    To investigate the impacts of nitrogen (N) enrichment on soil physico-chemical property and soil enzyme activities in desert ecosystems, a field experiment by adding N at 0, 1.75, 3.5, 7, or 14 g N x m(-2) a(-1) was conducted in a temperate desert steppe in the southeastern fringe of the Tengger Desert. The results showed that N addition led to accumulations of total N, NO(3-)-N, NH(4+)-N, and available N in the upper soil (0-10 cm) and subsoil (10-20 cm), however, reductions in soil pH were observed, causing soil acidification to some extent. N addition pronouncedly inhibited soil enzyme activities, which were different among N addition levels, soil depths, and years, respectively. Soil enzyme activities were significantly correlated with the soil N level, soil pH, and soil moisture content, respectively.

  13. Application of Data Assimilation with the Root Zone Water Quality Model for Soil Moisture Profile Estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Ensemble Kalman Filter (EnKF), a popular data assimilation technique for non-linear systems was applied to the Root Zone Water Quality Model. Measured soil moisture data at four different depths (5cm, 20cm, 40cm and 60cm) from two agricultural fields (AS1 and AS2) in northeastern Indiana were us...

  14. Tillage Effects on Soil Properties & Respiration

    NASA Astrophysics Data System (ADS)

    Rusu, Teodor; Bogdan, Ileana; Moraru, Paula; Pop, Adrian; Duda, Bogdan; Cacovean, Horea; Coste, Camelia

    2015-04-01

    Soil tillage systems can be able to influence soil compaction, water dynamics, soil temperature and soil structural condition. These processes can be expressed as changes of soil microbiological activity, soil respiration and sustainability of agriculture. Objectives of this study were: 1) to assess the effects of tillage systems (Conventional System-CS, Minimum Tillage-MT, No-Tillage-NT) on soil compaction, soil temperature, soil moisture and soil respiration and 2) to establish the relationship that exists in changing soil properties. Three treatments were installed: CS-plough + disc; MT-paraplow + rotary grape; NT-direct sowing. The study was conducted on an Argic-Stagnic Faeoziom. The MT and NT applications reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first year of application. The degree of compaction is directly related to soil type and its state of degradation. The state of soil compaction diminished over time, tending toward a specific type of soil density. Soil moisture was higher in NT and MT at the time of sowing and in the early stages of vegetation and differences diminished over time. Moisture determinations showed statistically significant differences. The MT and NT applications reduced the thermal amplitude in the first 15 cm of soil depth and increased the soil temperature by 0.5-2.20C. The determinations confirm the effect of soil tillage system on soil respiration; the daily average was lower at NT (315-1914 mmoli m-2s-1) and followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Comparing with CS, all the two conservation tillage measures decreased soil respiration, with the best effects of no-tillage. An exceeding amount of CO2 produced in the soil and released into the atmosphere, resulting from aerobic processes of mineralization of organic matter (excessive loosening) is considered to be not only a way of increasing the CO2 in the atmosphere, but also a loss of

  15. (Contaminated soil)

    SciTech Connect

    Siegrist, R.L.

    1991-01-08

    The traveler attended the Third International Conference on Contaminated Soil, held in Karlsruhe, Germany. The Conference was a status conference for worldwide research and practice in contaminated soil assessment and environmental restoration, with more than 1500 attendees representing over 26 countries. The traveler made an oral presentation and presented a poster. At the Federal Institute for Water, Soil and Air Hygiene, the traveler met with Dr. Z. Filip, Director and Professor, and Dr. R. Smed-Hildmann, Research Scientist. Detailed discussions were held regarding the results and conclusions of a collaborative experiment concerning humic substance formation in waste-amended soils.

  16. [Construction effect of fertile cultivated layer in black soil].

    PubMed

    Han, Xiao-zeng; Zou, Wen-xiu; Wang, Feng-xian; Wang, Feng-ju

    2009-12-01

    The clayey farmland soil in black soil region of Northeast China, due to the existence of thicker plough pan created by unreasonable tillage, is a main limiting factor for local agricultural production. In this paper, a field experiment was conducted to study the construction effect of fertile cultivated layer on crop yield, soil physical properties, soil moisture content, and soil microbial number. After the construction of fertile cultivated layer, the soil had a thicker cultivated layer, and the crop yield was increased. Comparing with traditional tillage, applying straw and organic manure into 20-35 cm soil layer decreased soil bulk density by 9.88% and 6.20%, increased soil porosity by 9.58% and 6.02%, and enhanced soil saturated hydraulic conductivity by 167.99 and 73.78%, respectively, indicating that the construction of fertile cultivated layer could improve soil aeration and water permeability, and enhance the infiltration of rainfall. The soil moisture content and water use efficiency under the application of straw and organic manure into plough pan were higher than those under traditional tillage, and a positive correlation was observed between the moisture content in 0-35 cm soil layer and the emergence of maize seedlings. Due to the increased organic carbon source and aeration in the constructed fertile cultivated layer, soil microbial number was also increased.

  17. "Lou soil", a fertile anthropogenic soil with thousands of years of cultivating history

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Liang, B.; Yan, J.; Zhao, W.

    2012-12-01

    Chinese farmers have a very long history of using manures in their fields. Owing to the long-term addition of manures, an anthropogenic layer was formed on the top of original soil profile (drab soil) in Guanzhong Plains on the south edge of the Loess Plateau, North China. This soil is named the Manural Loessial soil (or Lou soil, "Lou" means the different stories of a building in Chinese). The depth of anthropogenic layer is in range of about 30 to 100 cm depth, which has a close relationship with the soil productivity. This fertile agricultural soil has sustained the agriculture in the region for millenniums. We had determined the organic carbon (SOC) in 7 soil profiles, and found that the depths of anthropogenic layer of were in range of 40 to 71 cm (averaging 59 cm). And the anthropogenic layer became shallower as the profile was far from the village due to less manure application. The organic C stocks in this layer accounted for 69% of organic C stocks in 0-100 cm soil profiles. Organic C stocks in Lou soil was higher than that in the newly cultivated soil developed from loess parent materials. Our 30-day incubation experiment found that addition of synthetic N fertilizer significantly increased the decomposition of SOC in the soils. However, The decomposition rate of SOC in the soil added with manure and inorganic fertilizers for 18-yr (MNPK soil) was significantly lower than in the soils added without fertilizer or inorganic fertilizers (NF soil, and NPK soils). The half-life of the organic C in MNPK soils was also slower than the NF soil, and NPK soil. It indicates that long-term combined application of manure and inorganic fertilizers improves the stabilization of soil organic C. Long-term cultivation has not only increased organic C stocks, but also stabilization of organic C in soil profile. It provides us a unique sample to study the mechanism of accumulation and stabilization of organic C in soil to balance agricultural production and C sequestration

  18. Effects of Tillage Practices on Soil Organic Carbon and Soil Respiration

    NASA Astrophysics Data System (ADS)

    Rusu, Teodor; Ioana Moraru, Paula; Bogdan, Ileana; Ioan Pop, Adrian

    2016-04-01

    Soil tillage system and its intensity modify by direct and indirect action soil temperature, moisture, bulk density, porosity, penetration resistance and soil structural condition. Minimum tillage and no-tillage application reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first years of application. The degree of compaction is directly related to soil type and its state of degradation. All this physicochemical changes affect soil biology and soil respiration. Soil respiration leads to CO2 emissions from soil to the atmosphere, in significant amounts for the global carbon cycle. Soil respiration is one measure of biological activity and decomposition. Soil capacity to produce CO2 varies depending on soil, season, intensity and quality of agrotechnical tillage, soil water, cultivated plant and fertilizer. Our research follows the effects of the three tillage systems: conventional system, minimum tillage and no-tillage on soil respiration and finally on soil organic carbon on rotation soybean - wheat - maize, obtained on an Argic Faeoziom from the Somes Plateau, Romania. To quantify the change in soil respiration under different tillage practices, determinations were made for each crop in four vegetative stages (spring, 5-6 leaves, bean forming, harvest). Soil monitoring system of CO2 and O2 included gradient method, made by using a new generation of sensors capable of measuring CO2 concentration in-situ and quasi-instantaneous in gaseous phase. At surface soil respiration is made by using ACE Automated Soil CO2 Exchange System. These areas were was our research presents a medium multi annual temperature of 8.20C medium of multi annual rain drowns: 613 mm. The experimental variants chosen were: i). Conventional system: reversible plough (22-25 cm) + rotary grape (8-10 cm); ii). Minimum tillage system: paraplow (18-22 cm) + rotary grape (8-10 cm); iii). No-tillage. The experimental design was a split-plot design with three

  19. Recovery of depleted uranium fragments from soil.

    PubMed

    Farr, C P; Alecksen, T J; Heronimus, R S; Simonds, M H; Farrar, D R; Miller, M L; Baker, K R

    2010-02-01

    A "proof of concept" was conducted to determine the effectiveness of a survey method for cost-effective recovery of depleted uranium (DU) fragments from contaminated soil piles at Sandia National Laboratories. First, DU fragments ranging from less than a gram up to 48 g were covered by various thicknesses of soil and used for detector efficiency measurements. The efficiencies were measured for three different sodium iodide detectors: a 5.1-cm by 5.1-cm (2-inch by 2-inch) detector, a 7.6-cm by 7.6-cm (3-inch by 3-inch) detector, and a Field Instrument for the Detection of Low Energy Radiation (FIDLER) detector. The FIDLER detector was found to be superior to the other detectors in each measurement. Next, multiple 7.6-cm (3-inch) layers of soil, taken from the contaminated piles, were applied to a clean pad of soil. Each layer was scanned by an array of eight FIDLER detectors pulled by a tractor. The array, moving 10.2 to 12.7 cm s(-1) (4 to 5 inches per second), automatically recorded radiation count data along with associated detector coordinates at 3-s intervals. The DU fragments were located and identified with a handheld system consisting of a FIDLER detector and a positioning system and then removed. After DU removal, the affected areas were re-scanned and a new lift of contaminated soil was applied. The detection capability of the system as a function of DU fragment mass and burial depth was modeled and determined to be sufficient to ensure that the dose-based site concentration goals would be met. Finally, confirmation soil samples were taken from random locations and from decontaminated soil areas. All samples had concentrations of U that met the goal of 400-500 pCi g(-1).

  20. Station for spatially distributed measurements of soil moisture and ambient temperature

    NASA Astrophysics Data System (ADS)

    Jankovec, Jakub; Šanda, Martin; Haase, Tomáš; Sněhota, Michal; Wild, Jan

    2013-04-01

    control (e.g. optimized irrigation) by the end of 2013. User selected regimes of scanning in the field standalone model is 1,5 or 15 minutes for soil moisture and 1, 5, 10 or 15 minutes for the temperature (in their practical combinations) with a battery and datastorage lifetime ranging 1 - 10 years. Basic station diagnostics is recorded daily, comprehensive check is performed monthly. The TMS2 undergoes calibration on sets of soils. Disturbed and packed cylindrical soil samples (approx. 20 liter) were subject to forced bottom air ventilation to distribute the moisture evenly along vertical axis during drying the sample with increased intensity. Database of soil-specific calibration curves is being built for various soil samples. TMS2 station has been calibrated for soil materials: sandy loam, quartz sand and peat. Calibration on selected undisturbed 7 liter samples, previously CT scanned for correct sensor placement, is in the progress. Temperature and salinity influence on the soil moisture results in drift of 0.05%/°C and 7%/(in full range of 0 to 10 miliSiemens/cm) and additional 2%/(in the range of 10 to 20 miliSiemens/cm) as found in 100% moisture solution. Extended testing of TMS1 generation, predecessor of current design, is successfully performed in variety of field locations (central Europe, central Africa, Himalaya region). Results of long-term measurement at hundreds of localities are successfully used for i) evaluation of species-specific environmental requirements (for different species of plants, bryophytes and fungi) and ii) extrapolation of microclimatic conditions over large areas of rugged sandstone relief with assistance of accurate, LiDAR based, digital terrain model. TMS1 units are e.g. also applied for continuous measurement of temperature and moisture of coarse woody debris, which serves as an important substrate for establishment and growth of seedlings and is thus crucial for natural regeneration of many forest ecosystems. The research is

  1. Comparison between 5,10,15,20-tetraaryl- and 5,15-diarylporphyrins as photosensitizers: synthesis, photodynamic activity, and quantitative structure-activity relationship modeling.

    PubMed

    Banfi, Stefano; Caruso, Enrico; Buccafurni, Loredana; Murano, Roberto; Monti, Elena; Gariboldi, Marzia; Papa, Ester; Gramatica, Paola

    2006-06-01

    The synthesis of a panel of seven nonsymmetric 5,10,15,20-tetraarylporphyrins, 13 symmetric and nonsymmetric 5,15-diarylporphyrins, and one 5,15-diarylchlorin is described. In vitro photodynamic activities on HCT116 human colon adenocarcinoma cells were evaluated by standard cytotoxicity assays. A predictive quantitative structure-activity relationship (QSAR) regression model, based on theoretical holistic molecular descriptors, of a series of 34 tetrapyrrolic photosensitizers (PSs), including the 24 compounds synthesized in this work, was developed to describe the relationship between structural features and photodynamic activity. The present study demonstrates that structural features significantly influence the photodynamic activity of tetrapyrrolic derivatives: diaryl compounds were more active with respect to the tetraarylporphyrins, and among the diaryl derivatives, hydroxy-substituted compounds were more effective than the corresponding methoxy-substituted ones. Furthermore, three monoarylporphyrins, isolated as byproducts during diarylporphyrin synthesis, were considered for both photodynamic and QSAR studies; surprisingly they were found to be particularly active photosensitizers.

  2. Photodynamic antimicrobial chemotherapy activity of (5,10,15,20-tetrakis(4-(4-carboxyphenycarbonoimidoyl)phenyl)porphyrinato) chloro gallium(III).

    PubMed

    Managa, Muthumuni; Amuhaya, Edith K; Nyokong, Tebello

    2015-12-05

    (5,10,15,20-Tetrakis(4-(4-carboxyphenycarbonoimidoyl)phenyl)porphyrinato) chloro gallium(III) (complex 1) was conjugated to platinum nanoparticles (PtNPs) (represented as 1-PtNPs). The resulting conjugate showed 18 nm red shift in the Soret band when compared to 1 alone. Complex 1 and 1-PtNPs showed promising photodynamic antimicrobial chemotherapy (PACT) activity against Staphylococcus aureus, Escherichia coli and Candida albicans in solution where the log reductions obtained were 4.92, 3.76, and 3.95, respectively for 1-PtNPs. The singlet oxygen quantum yields obtained were higher at 0.56 for 1-PtNPs in DMF while that of 1 was 0.52 in the same solvent. This resulted in improved PACT activity for 1-PtNPs compared to 1 alone.

  3. Influence of surface and subsurface tillage on soil physical properties and soil/plant relationships of planted loblolly pine

    SciTech Connect

    D. L. Kelting; H. L. Allen

    2000-05-01

    Soil tillage can improve tree survival and growth by reducing competing vegetation, increasing nutrient availability, improving planting quality, and improving soil physical properties. The authors conducted a tillage study with competition control and nutrient amendments to isolate the physical effects of tillage on tree growth. The objectives of this study were to understand: (1) how tillage affects soil physical properties; (2) the relationships between these properties and root growth; (3) linkages between root growth response and aboveground growth; and (4) tillage effects on aboveground growth. Four replicates of a 2x2 factorial combination of surface (disking) and subsurface (subsoiling) were installed on a well-drained, clay-textured subsoil, soil located on the Piedmont of North Carolina. Disking improved soil physical properties (reduced bulk density and increased aeration porosity) in the surface 20-cm of soil. Subsoiling improved soil physical properties at all depths in the planting row, with improvements still noted at 60-cm from the planting row in the surface 10-cm of soil. Rooting patterns followed the changes in soil physical properties. Despite improvements in soil physical properties and changes in rooting patterns, aboveground tree growth was not affected by tillage. The results of this study point to the need for better diagnostics for identifying sites were tillage is appropriate in situations where fertilization and vegetation control are planned. Potential factors to consider are presence and abundance of old root channels, soil shrink/swell capacity, soil structure, presence and depth to root restricting layers, and historical precipitation records.

  4. Silicification of holocene soils in northern Monitor Valley, Nevada

    NASA Technical Reports Server (NTRS)

    Chadwick, O. A.; Hendricks, D. M.; Nettleton, W. D.

    1989-01-01

    Chemical, physical, and microscopic data for three soils in the northern Monitor Valley are analyzed. The soils ranked in order of increasing age are: Mule, Rotinom, and Nayped. The procedures and techniques used to obtain and study that data are described. It is observed that: (1) redistribution of carbonate is detectable in all soils; (2) clay illuviation is insignificant in the Mule soil, weak but identifiable in the Rotinom soil, and significant in the Nayped soil; and (3) the maximum sodium adsorption ratio (SAR) and electrical conductivity (EC) for the Mule soil is between 64-89 cm, for the Rotinom soil the values are below 100 cm, and for Nayped the maximum SAR values range from 51-117 cm and maximum EC values are between 117-152 cm. The relationship between volcanic glass weathering and the amount of silica cementation in the soils is studied. It is noted that silicification of Monitor Valley holocene soils is due to there being enough moisture to release silica from volcanic glass, but not enough to leach the weathering products from the profile.

  5. An in vitro enzymatic assay to measure transcription inhibition by gallium(III) and H3 5,10,15-tris(pentafluorophenyl)corroles.

    PubMed

    Tang, Grace Y; Pribisko, Melanie A; Henning, Ryan K; Lim, Punnajit; Termini, John; Gray, Harry B; Grubbs, Robert H

    2015-03-18

    Chemotherapy often involves broad-spectrum cytotoxic agents with many side effects and limited targeting. Corroles are a class of tetrapyrrolic macrocycles that exhibit differential cytostatic and cytotoxic properties in specific cell lines, depending on the identities of the chelated metal and functional groups. The unique behavior of functionalized corroles towards specific cell lines introduces the possibility of targeted chemotherapy. Many anticancer drugs are evaluated by their ability to inhibit RNA transcription. Here we present a step-by-step protocol for RNA transcription in the presence of known and potential inhibitors. The evaluation of the RNA products of the transcription reaction by gel electrophoresis and UV-Vis spectroscopy provides information on inhibitive properties of potential anticancer drug candidates and, with modifications to the assay, more about their mechanism of action. Little is known about the molecular mechanism of action of corrole cytotoxicity. In this experiment, we consider two corrole compounds: gallium(III) 5,10,15-(tris)pentafluorophenylcorrole (Ga(tpfc)) and freebase analogue 5,10,15-(tris)pentafluorophenylcorrole (tpfc). An RNA transcription assay was used to examine the inhibitive properties of the corroles. Five transcription reactions were prepared: DNA treated with Actinomycin D, triptolide, Ga(tpfc), tpfc at a [complex]:[template DNA base] ratio of 0.01, respectively, and an untreated control. The transcription reactions were analyzed after 4 hr using agarose gel electrophoresis and UV-Vis spectroscopy. There is clear inhibition by Ga(tpfc), Actinomycin D, and triptolide. This RNA transcription assay can be modified to provide more mechanistic detail by varying the concentrations of the anticancer complex, DNA, or polymerase enzyme, or by incubating the DNA or polymerase with the complexes prior to RNA transcription; these modifications would differentiate between an inhibition mechanism involving the DNA or the enzyme