Science.gov

Sample records for 5-alpha reductase enzyme

  1. Genetics Home Reference: 5-alpha reductase deficiency

    MedlinePlus

    ... gene provides instructions for making an enzyme called steroid 5-alpha reductase 2. This enzyme is involved ... external genitalia. Mutations in the SRD5A2 gene prevent steroid 5-alpha reductase 2 from effectively converting testosterone ...

  2. 5 alpha-reductase deficiency without hypospadias.

    PubMed Central

    Ng, W K; Taylor, N F; Hughes, I A; Taylor, J; Ransley, P G; Grant, D B

    1990-01-01

    A boy aged 4 with penoscrotal hypospadias and his brother aged 12 with micropenis had typical changes of homozygous 5 alpha-reductase deficiency. After three injections of chorionic gonadotrophin there was a trivial rise in plasma dihydrotestosterone with a normal increase in plasma testosterone. Urine steroid chromatography showed abnormally high 5 beta: 5 alpha ratios and 5 alpha-reductase activity was appreciably reduced in genital skin fibroblasts. The results indicate that 5 alpha-reductase deficiency is not invariably associated with genital ambiguity. PMID:2248513

  3. Role of 5 alpha-reductase in health and disease.

    PubMed

    Randall, V A

    1994-04-01

    The mechanism of androgen action varies in different tissues, but in the majority of androgen target tissues either testosterone or 5 alpha-dihydrotestosterone (DHT) binds to a specific androgen receptor to form a complex that can regulate gene expression. Testosterone is metabolized to DHT by the enzyme 5 alpha-reductase. The autosomal recessive genetic disorder of 5 alpha-reductase deficiency has clearly shown that the requirement for DHT formation varies with different tissues. In this syndrome genetic males contain normal male internal structures including testes, but exhibit ambiguous or female external genitalia at birth; at puberty they undergo partial virilization which includes development of a male gender identity even if brought up as females. Their development suggests that testosterone itself is able to stimulate psychosexual behaviour, development of the embryonic wolffian duct, muscle development, voice deepening, spermatogenesis, and axillary and pubic hair growth; DHT seems to be essential for prostate development and growth, the development of the external genitalia and male patterns of facial and body hair growth or male-pattern baldness. How different hormones operate to regulate genes via the same receptor is currently unknown, but appears to involve cell-specific factors. The 5-alpha-reductase enzyme has proved difficult to isolate biochemically, but recently at least two human isoenzymes have been identified using molecular biological methods. All the various 5 alpha-reductase-deficient kindreds have been shown to have mutations in 5 alpha-reductase 2, the predominant form in the prostate. The biological role of 5 alpha-reductase 1 has not yet been ascertained, but at present it cannot be ruled out that some of the actions ascribed to testosterone are indeed in cells producing DHT via this enzyme. The activity of 5 alpha-reductase is also implicated in benign prostatic hypertrophy, hirsutism and possibly male-pattern baldness; recent evidence

  4. An overview on 5alpha-reductase inhibitors.

    PubMed

    Aggarwal, Saurabh; Thareja, Suresh; Verma, Abhilasha; Bhardwaj, Tilak Raj; Kumar, Manoj

    2010-02-01

    Benign prostatic hyperplasia (BPH) is the noncancerous proliferation of the prostate gland associated with benign prostatic obstruction and lower urinary tract symptoms (LUTS) such as frequency, hesitancy, urgency, etc. Its prevalence increases with age affecting around 70% by the age of 70 years. High activity of 5alpha-reductase enzyme in humans results in excessive dihydrotestosterone levels in peripheral tissues and hence suppression of androgen action by 5alpha-reductase inhibitors is a logical treatment for BPH as they inhibit the conversion of testosterone to dihydrotestosterone. Finasteride (13) was the first steroidal 5alpha-reductase inhibitor approved by U.S. Food and Drug Administration (USFDA). In human it decreases the prostatic DHT level by 70-90% and reduces the prostatic size. Dutasteride (27) another related analogue has been approved in 2002. Unlike Finasteride, Dutasteride is a competitive inhibitor of both 5alpha-reductase type I and type II isozymes, reduced DHT levels >90% following 1 year of oral administration. A number of classes of non-steroidal inhibitors of 5alpha-reductase have also been synthesized generally by removing one or more rings from the azasteroidal structure or by an early non-steroidal lead (ONO-3805) (261). In this review all categories of inhibitors of 5alpha-reductase have been covered. PMID:19879888

  5. Enzyme-linked immunosorbent assays for doping control of 5alpha-reductase inhibitors finasteride and dutasteride.

    PubMed

    Brun, Eva M; Torres, Ana; Ventura, Rosa; Puchades, Rosa; Maquieira, Angel

    2010-06-25

    Finasteride and dutasteride are 5alpha-reductase inhibitors included in the World Anti-Doping Agency's list of banned substances. Two highly sensitive and selective ELISA assays were developed for these compounds. Polyclonal rabbit antibodies were raised using synthesized haptens and other commercial products. The best immunoassay obtained, based on an antibody-coated format, showed a limit of detection of 0.01 microg L(-1) and an IC(50) of 0.75 microg L(-1) for finasteride (cross-reactivity with dutasteride<4%). The second assay allowed finasteride and dutasteride determination, with limits of detection of 0.013 and 0.021 microg L(-1), and IC(50) values 0.18 and 1.18 microg L(-1), respectively. Both assays were highly selective to a set of anabolic steroids, but they showed 37% and 30% cross-reactivity with the major urinary metabolite of finasteride, allowing its determination. The developed ELISA had better sensitivity than HPLC/MS/MS method and was applied as a screening technique to quantify dutasteride, finasteride, and its main metabolite in human urine without sample pre-treatment. Moreover, the analysis of dutasteride's excretion urines by ELISA was used to obtain its human excretion rate, essential to improve the analytical strategies about this type of drugs (permitted as medicines and prohibited in sport) and to establish an effective anti-doping policy. PMID:20541645

  6. 5 alpha-reductase deficiency in patients with micropenis.

    PubMed

    Gad, Y Z; Nasr, H; Mazen, I; Salah, N; el-Ridi, R

    1997-03-01

    The enzyme 5 alpha-reductase (5 alpha R), by virtue of its peripheral 5 alpha-reduction of testosterone (T) to dihydrotestosterone (DHT), is believed to play a major role in the differentiation and the subsequent growth of the penis. However, recent studies have reported 5 alpha R deficiency (5 alpha RD) in patients with isolated micropenis and hypothesized that 5 alpha RD is not invariably associated with genital ambiguity. In Egypt, 5 alpha RD has been reported frequently among intersex patients. The aim of this study was to assess the role of 5 alpha RD in the development of micropenis among Egyptian patients with abnormal sexual development. The study included 29 patients who were categorized into three groups (isolated micropenis, 9 patients; microphallus with genital ambiguity, 11 patients; genital ambiguity with normal-sized phallus, 9 patients). Activity of 5 alpha R was assessed by estimating T/DHT ratios in the basal state in pubertal subjects and following human chorionic gonadotropin (HCG) stimulation test in prepubertals. The results showed that the incidence of 5 alpha RD was much higher in cases of ambiguous genitalia with micropenis (5 families out of 10, 50%) than in those with isolated microphallus (1/9, 11.1%) or those with ambiguous genitalia and normal-sized phallus (1/8, 12.5%). In conclusion, the study showed that isolated micropenis is a heterogeneous disorder and that 5 alpha RD, despite its relative prevalence in Egypt, has a minimal role in the aetiology. On the other hand, 5 alpha RD seems to correlate with penile length in intersex cases.

  7. Molecular genetics of steroid 5 alpha-reductase 2 deficiency.

    PubMed Central

    Thigpen, A E; Davis, D L; Milatovich, A; Mendonca, B B; Imperato-McGinley, J; Griffin, J E; Francke, U; Wilson, J D; Russell, D W

    1992-01-01

    Two isozymes of steroid 5 alpha-reductase encoded by separate loci catalyze the conversion of testosterone to dihydrotestosterone. Inherited defects in the type 2 isozyme lead to male pseudohermaphroditism in which affected males have a normal internal urogenital tract but external genitalia resembling those of a female. The 5 alpha-reductase type 2 gene (gene symbol SRD5A2) was cloned and shown to contain five exons and four introns. The gene was localized to chromosome 2 band p23 by somatic cell hybrid mapping and chromosomal in situ hybridization. Molecular analysis of the SRD5A2 gene resulted in the identification of 18 mutations in 11 homozygotes, 6 compound heterozygotes, and 4 inferred compound heterozygotes from 23 families with 5 alpha-reductase deficiency. 6 apparent recurrent mutations were detected in 19 different ethnic backgrounds. In two patients, the catalytic efficiency of the mutant enzymes correlated with the severity of the disease. The high proportion of compound heterozygotes suggests that the carrier frequency of mutations in the 5 alpha-reductase type 2 gene may be higher than previously thought. Images PMID:1522235

  8. 5 alpha-reductase inhibitors and prostatic disease.

    PubMed

    Schröder, F H

    1994-08-01

    5 alpha-Reductase inhibitors are a new class of substances with very specific effects on type I and type II 5 alpha R which may be of use in the treatment of skin disease, such as male pattern baldness, male acne and hirsutism, as well as prostatic hyperplasia and prostate cancer. At least two types of 5 alpha R inhibitors with a different pH optimum have been described. cDNA encoding for both the type I and the type II enzyme has been cloned. Most of the orally effective 5 alpha R inhibitors belong to the class of 4-azasteroids. The radical substituted in the 17 position of the steroid ring seems to be related to species specific variations and to the types of 5 alpha R enzymes in different species and organ systems. 5 alpha R inhibitors lead to a decrease of plasma DHT by about 65% while there is a slight rise in plasma testosterone. The decrease of tissue DHT in the ventral prostate of the intact rat, the dog and in humans is more pronounced and amounts to about 85%. There is a reciprocal rise of tissue T in these systems. The application of an inhibitor of 5 alpha R type II leads to a shrinkage of BPH in men by about 30%. In the rat a similar shrinkage accompanied by a significant decrease of total organ DNA occurs. This decrease, however, is not as pronounced as can be achieved with castration.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7522999

  9. Prostates, pates, and pimples. The potential medical uses of steroid 5 alpha-reductase inhibitors.

    PubMed

    Tenover, J S

    1991-12-01

    The steroid 5 alpha-reductase enzyme is responsible for the formation of DHT from testosterone. DHT has been the major androgen implicated in the pathogenesis of benign prostatic hyperplasia, male pattern baldness, acne, and idiopathic female hirsutism. Although specific inhibitors of 5 alpha-reductase are not yet generally available for human use, it is expected that they will become available within the next several years. Based on biochemical, histologic, and anatomic information from animals given 5 alpha-reductase inhibitors, preliminary data on their use in humans, and knowledge gained from men with the inherited 5 alpha-reductase deficiency, it is expected that these 5 alpha-reductase inhibitors may have a major role in the medical management of benign prostatic hyperplasia. In addition, it is possible that these compounds will hold promise for the prevention of male pattern baldness and for the treatment of resistant acne and idiopathic hirsutism. PMID:1723383

  10. Finasteride: the first 5 alpha-reductase inhibitor.

    PubMed

    Sudduth, S L; Koronkowski, M J

    1993-01-01

    Finasteride is a synthetic 4-azasteroid that is a specific competitive inhibitor of 5 alpha-reductase, an intracellular enzyme that converts testosterone to dihydrotestosterone (DHT). It has no binding affinity for androgen receptor sites and itself possesses no androgenic, antiandrogenic, or other steroid hormone-related properties. It is well absorbed after oral administration, with absolute bioavailability in humans of 63% (range 34-108%). The mean time to maximum concentration is 1-2 hours, and it is approximately 90% plasma protein bound. The elimination half-life averages 6-8 hours. The agent is metabolized to a series of five metabolites, of which two are active and possess less than 20% of the 5 alpha-reductase activity of finasteride. Little is known about potential drug interactions, although they appear to be minimal and not clinically relevant. The drug is indicated for the treatment of symptomatic benign prostatic hyperplasia. Its efficacy in regression of prostate gland enlargement is rapid and predictable, although correlation with subsequent improvement in urinary flow and symptoms is highly variable. Dosages of 0.5-100 mg/day regress prostate enlargement; the recommended dosage is 5 mg once/day. Finasteride may hold promise for other DHT-mediated disorders such as acne, facial hirsutism, frontal lobe alopecia, and prostate cancer, but its use in these conditions remains investigational. The frequency of adverse drug events is low, with the most common side effects being impotence, decreased libido, and decreased volume of ejaculate. No reports of intentional overdose have been reported, and dosages of up to 80 mg/day for 3 months have been taken without adverse effect. PMID:7689728

  11. Selective non-steroidal inhibitors of 5 alpha-reductase type 1.

    PubMed

    Occhiato, Ernesto G; Guarna, Antonio; Danza, Giovanna; Serio, Mario

    2004-01-01

    The enzyme 5 alpha-reductase (5 alpha R) catalyses the reduction of testosterone (T) into the more potent androgen dihydrotestosterone (DHT). The abnormal production of DHT is associated to pathologies of the main target organs of this hormone: the prostate and the skin. Benign prostatic hyperplasia (BPH), prostate cancer, acne, androgenetic alopecia in men, and hirsutism in women appear related to the DHT production. Two isozymes of 5 alpha-reductase have been cloned, expressed and characterized (5 alpha R-1 and 5 alpha R-2). They share a poor homology, have different chromosomal localization, enzyme kinetic parameters, and tissue expression patterns. Since 5 alpha R-1 and 5 alpha R-2 are differently distributed in the androgen target organs, a different involvement of the two isozymes in the pathogenesis of prostate and skin disorders can be hypothesized. High interest has been paid to the synthesis of inhibitors of 5 alpha-reductase for the treatment of DHT related pathologies, and the selective inhibition of any single isozyme represents a great challenge for medical and pharmaceutical research in order to have more specific drugs. At present, no 5 alpha R-1 inhibitor is marketed for the treatment of 5 alpha R-1 related pathologies but pharmaceutical research is very active in this field. This paper will review the major classes of 5 alpha R inhibitors focusing in particular on non-steroidal inhibitors and on structural features that enhance the selectivity versus the type 1 isozyme. Biological tests to assess the inhibitory activity towards the two 5 alpha R isozymes will be also discussed. PMID:15026079

  12. New 5alpha-reductase inhibitors: in vitro and in vivo effects.

    PubMed

    Pérez-Ornelas, Víctor; Cabeza, Marisa; Bratoeff, Eugene; Heuze, Ivonne; Sánchez, Mauricio; Ramírez, Elena; Naranjo-Rodríguez, Elia

    2005-03-01

    The enzyme 5alpha-reductase is responsible for the conversion of testosterone (T) to its more potent androgen dihydrotestosterone (DHT). This steroid had been implicated in androgen-dependent diseases such as: benign prostatic hyperplasia, prostate cancer, acne and androgenic alopecia. The inhibition of 5alpha-reductase enzyme offers a potentially useful treatment for these diseases. In this study, we report the synthesis and pharmacological evaluation of several new 3-substituted pregna-4, 16-diene-6, 20-dione derivatives. These compounds were prepared from the commercially available 16-dehydropregnenolone acetate. The biological activity of the new steroidal derivatives was determined in vivo as well as in vitro experiments. In vivo experiments, the anti-androgenic effect of the steroids was demonstrated by the decrease of the weight of the prostate gland of gonadectomized hamster treated with T plus finasteride or the new steroids. The IC50 value of these steroids was determined by measuring the conversion of radio labeled T to DHT. The results of this study carried out with 5alpha-reductase enzyme from hamster and human prostate showed that four of the six steroidal derivatives (5, 7, 9, 10) exhibited much higher 5alpha-reductase inhibitory activity, as indicated by the IC50 values than the presently used Proscar 3 (finasteride). The comparison of the weight of the hamster's prostate gland indicated that compound 5 had a comparable weight decrease as finasteride. The overall data of this study showed very clearly those compounds 5, 7, 9, 10 are good inhibitors for the 5alpha-reductase enzyme. PMID:15763601

  13. 5-Alpha-Reductase Inhibitors and Combination Therapy.

    PubMed

    Füllhase, Claudius; Schneider, Marc P

    2016-08-01

    By inhibiting the conversion from testosterone to dihydrotestosterone 5-Alpha reductase inhibitors (5ARIs) are able to hinder prostatic growth, shrink prostate volumes, and improve BPH-related LUTS. 5ARIs are particularly beneficial for patients with larger prostates (>30-40ml). Generally the side effects of 5ARI treatment are mild, and according to the FORTA classification 5ARIs are suitable for frail elderly. 5ARI / alpha-blocker (AB) combination therapy showed the best symptomatic outcome and risk reduction for clinical progression. Combining Phosphodieseterase type 5 inhbibitors (PDE5Is) with 5ARIs counteracts the negative androgenic sexual side effects of 5ARIs, and simultaneously combines their synergistic effects on LUTS. PMID:27476125

  14. Antihormonal activities of 5 alpha-reductase and aromatase inhibitors.

    PubMed

    Zoppi, S; Cocconi, M; Lechuga, M J; Messi, E; Zanisi, M; Motta, M

    1988-10-01

    The problem of developing androgen antagonists has been tackled so far only by synthesizing steroids able to displace testosterone and other androgens from their specific receptor sites. The observation that testosterone has to be converted intracellularly either to 5 alpha-reduced metabolites (DHT, 3 alpha-diol, etc.) or to estrogens, in order to become fully active on androgen-dependent structures (both central and peripheral), has opened the possibility of creating molecules which prevent these conversions, and which could then block the actions of testosterone. The availability of these new compounds has allowed a better understanding of the selective physiological role of each of the metabolites of testosterone, and to provide the basis for the development of new hormone antagonists to be used in those clinical conditions for which an inhibition of the actions of testosterone is foreseen. The usefulness of these enzyme inhibitors is underlined by some examples described in this paper. The results obtained may permit the formulation of the following conclusions: (1) The conversion of testosterone to its 5 alpha-reduced metabolites occurring in the neuroendocrine structures may represent an essential step for the appearance of the inhibitory feedback effect testosterone exerts on LH secretion; (2) Testosterone exhibits its negative feedback effect on FSH secretion as such and not following the local aromatization to estrogens; (3) Testosterone exerts its effect on the intrahypothalamic stores of LHRH acting as such and not following its local conversion either to 5 alpha-reduced metabolites or to estrogenic molecules; (4) Some of the new enzyme inhibitors (e.g. 4-OH-A) may represent an interesting tool for the treatment and/or the prevention of BPH and possibly of other androgen-dependent diseases (prostate carcinoma, acne etc.), as shown by their ability to prevent the in vitro conversion of testosterone to its 5 alpha-reduced metabolites both in the normal

  15. Phenotypic classification of male pseudohermaphroditism due to steroid 5{alpha}-reductase 2 deficiency

    SciTech Connect

    Sinnecker, G.H.G; Hiort, O.; Kruse, K.; Dibbelt, L.

    1996-05-03

    Conversion of testosterone (T) to dihydrotestosterone (DHT) in genital tissue is catalysed by the enzyme 5{alpha}-reductase 2, which is encoded by the SRD5A2 gene. The potent androgen DHT is required for full masculinization of the external genitalia. Mutations of the SRD5A2 gene inhibit enzyme activity, diminish DHT formation, and hence cause masculinization defects of varying degree. The classical syndrome, formerly described as pseudovaginal perineoscrotal hypospadias, is characterized by a predominantly female phenotype at birth and significant virilization without gynecomastia at puberty. We investigated nine patients with steroid 5{alpha}-reductase 2 deficiency (SRD). T/DHT-ratios were highly increased in the classical syndrome, but variable in the less severe affected patients. Mutations in the SRD5A2 gene had been characterized using PCR-SSCP analysis and direct DNA sequencing. A small deletion was encountered in two patients, while all other patients had single base mutations which result in amino acid substitutions. We conclude that phenotypes may vary widely in patients with SRD5A2 gene mutations spanning the whole range from completely female to normal male without distinctive clinical signs of the disease. Hence, steroid 5{alpha}-reductase deficiency should be considered not only in sex reversed patients with female or ambiguous phenotypes, but also in those with mild symptoms of undermasculinization as encountered in patients with hypospadias and/or micropenis. A classification based on the severity of the masculinization defect may be used for correlation of phenotypes with enzyme activities and genotypes, and for comparisons of phenotypes between different patients as the basis for clinical decisions to be made in patients with pseudohermaphroditism due to steroid 5{alpha}-reductase 2 deficiency. 22 refs., 2 figs., 2 tabs.

  16. 5alpha-reductase: history and clinical importance.

    PubMed

    Marks, Leonard S

    2004-01-01

    The treatment of men with symptomatic benign prostatic hyperplasia (BPH) has shifted dramatically from surgery to drug therapy over the past decade. The revolution in BPH treatment began with the discovery of congenital 5alpha-reductase (5AR) deficiency, leading to the appreciation of 2 different androgenic hormones: testosterone, which mediates overt masculinization in the adult male, and dihydrotestosterone (DHT), which mediates prostatic growth, acne, facial beard, and male pattern baldness. Inhibition of DHT in adults results in prostatic shrinkage and symptomatic relief in many men, without the side effects seen with conventional androgen-deprivation therapy. The 5AR inhibitor drugs (finasteride and the dual inhibitor, dutasteride) are able to ablate the accumulation of intraprostatic DHT, the mechanism most responsible for prostate growth and maintenance. Not only may these drugs relieve symptoms, but they may also alter the natural history of the BPH process. Future indications for the 5ARI drugs could include chemoprevention of prostate cancer, prophylaxis of BPH-related complications, and treatment of BPH-associated hematuria. PMID:16985920

  17. Activity of type 1 5 alpha-reductase is greater in the follicular infrainfundibulum compared with the epidermis.

    PubMed

    Thiboutot, D M; Knaggs, H; Gilliland, K; Hagari, S

    1997-02-01

    The enzyme 5 alpha-reductase converts testosterone (T) to dihydrotestosterone (DHT). Although this enzyme has been localized to various regions of the pilosebaceous unit, its activity has not been studied in the follicular portion of either vellus or sebaceous follicles. The goal of our study was to determine the relative activities of 5 alpha-reductase within various regions of these follicles with particular emphasis on the infrainfundibulum. A finding of increased 5 alpha-reductase activity in upper follicles compared to epidermis might support the hypothesis that increased follicular production of DHT is involved in the hyperkeratinization observed in this region of the follicle in acne vulgaris. 5 alpha-reductase activity was determined at pH 5 (optimal for the type 2 isozyme) and pH 7 (optimal for the type 1 isozyme) in isolated infrainfundibular segments from sebaceous and vellus follicles, homogenized epidermis from various anatomical areas and in microdissected segments of the pilosebaceous unit from breast skin of normal subjects. Enzyme activity was also determined at pH 7 in cultured infrainfundibular keratinocytes and in interfollicular epidermal keratinocytes. Homogenates of infrainfundibular segments demonstrated significantly greater activity at pH 7 compared to pH 5 (P < 0.001), confirming activity of the type 1 5 alpha-reductase in this region. Activity of 5 alpha-reductase was much lower in homogenized epidermis and did not demonstrate a clear pH preference. Keratinocytes cultured from the infrainfundibulum demonstrated significantly greater 5 alpha-reductase activity compared to keratinocytes from interfollicular epidermis (P = 0.04). In the dissected segments of pilosebaceous units from breast skin, 5 alpha-reductase activity was greatest in the sebaceous gland followed by the sebaceous duct, infrainfundibulum, whole skin and epidermis. These data indicate that 5 alpha-reductase activity varies within regions of the pilosebaceous unit and

  18. Regulation of androgen receptor and 5 alpha-reductase in the skin of normal and hirsute women.

    PubMed

    Mauvais-Jarvis, P

    1986-05-01

    The hormonal activity of androgens is mediated in target cells, particularly in human skin, by two kinds of proteins: the androgen receptor and the enzyme 5 alpha-reductase. In well differentiated androgen target cells, 5 alpha-reductase achieves the transformation of testosterone (T) into dihydrotestosterone (DHT), a more active androgen than T, because of its higher affinity for the receptor. In other words, 5 alpha-reductase acts as an amplifier of the androgen signal but is not absolutely required for androgen action. Regarding the regulation of the androgen receptor, minimal information is available. However, in genital skin, the receptor seems to be predominantly localized in the cytosolic compartment before puberty in males and in the nuclear compartment after puberty. In hirsute patients, recent data on genital skin fibroblasts do not show significant differences between the binding capacity of fibroblasts from normal and hirsute women whereas there is no difference between normal men and women. 5 alpha-Reductase activity seems to be a very important step in the processes involved in androgen action. While 5 alpha-reductase activity present in the skin of external genitalia does not seem to be androgen dependent, this is not the case for the enzyme located in pubic skin. In this area, a sex difference between males and females may be observed both in skin homogenates and in cultured fibroblasts. In addition DHT added to a medium of pubic skin fibroblasts is capable of increasing 5 alpha-reductase activity. This increase is not observed when cyproterone acetate is added to the medium and in patients with testicular feminization syndrome without receptors. Pubic 5 alpha-reductase activity is an androgen receptor mediated phenomenon. In patients with hirsutism, and particularly idiopathic hirsutism, 5 alpha-reductase activity is high without an increase in circulating androgens. This may be observed both in pubic skin homogenates and in cultured fibroblasts

  19. Determination of oenothein B as the active 5-alpha-reductase-inhibiting principle of the folk medicine Epilobium parviflorum.

    PubMed

    Lesuisse, D; Berjonneau, J; Ciot, C; Devaux, P; Doucet, B; Gourvest, J F; Khemis, B; Lang, C; Legrand, R; Lowinski, M; Maquin, P; Parent, A; Schoot, B; Teutsch, G

    1996-05-01

    Several extracts from Epilobium parviflorum, a plant used in Central Europe for the treatment of prostate disorders, were evaluated in a biochemical assay with 5-alpha-reductase. The aqueous extract displaying inhibition of the enzyme was analyzed, the fraction responsible for this activity was purified, and the active compound identified as a macrocyclic tannin, oenothein B (1). PMID:8778238

  20. Induction of a deficiency of steroid delta 4-5 alpha-reductase activity in liver by a porphyrinogenic drug.

    PubMed Central

    Kappas, A; Bradlow, H L; Bickers, D R; Alvares, A P

    1977-01-01

    The hepatic enzymes that catalyze drug oxidations and the reductive metabolism of steroid hormones to 5alpha-derivatives are localized in membranes of the endoplasmic reticulum. Phenobarbital, which exacerbates acute intermittent porphyria in man, induces drug-oxidizing enzymes in liver. Additionally, patients in whome the primary gene defect (uroporphyrinogen-I-synthetase deficiency) of acute intermittent porphyria has become clinically expressed have low levels of hepatic steroid delta4-5alpha-reductase activity. This 5alpha-reductase deficiency in acute intermittent porphyria leads to the disproportionate generation of 5beta-steroid metabolites from precursor hormones; such steroid metabolites have significant porphyria-inducing action experimentally. In this study the effects of phenobarbital on drug oxidation and steroid 5alpha-reduction in man were examined to determine if this drug could produce changes in steroid 5alpha-reductase activity which mimicked those seen in patients with acute intermittent porphyria. Metabolic studies with [14C]-testosterone and 11beta-[3H]hydroxyandrostenedione were carried out in five normal volunteers. In all five subjects phenobarbital administration (2 mg/kg/per day for 21 days) enhanced plasma removal of the test drugs antipyrine and phenylbutazone as expected; but in four subjects phenobarbital also substantially depressed 5alpha-metabolite formation from [14C]testosterone and resulted in a pattern of hormone biotransformation characterized by a high ratio of 5beta/5alpha-metabolite formation. Studies with 11beta-[3H]hydroxy-androstenedione in three subjects confirmed that phenobarbital produced this high 5beta/5alpha ratio of steroid metabolism by depressing 5alpha-reductase activity for steroid hormones in liver. The high ratio of 5beta/5alpha-metabolites formed in normals after drug treatment mimicks the high 5beta/5alpha-steroid metabolite ratio formed from endogenous hormones in acute intermittent porphyria. The

  1. The 5 alpha-reductase inhibitory components from heartwood of Artocarpus incisus: structure-activity investigations.

    PubMed

    Shimizu, K; Fukuda, M; Kondo, R; Sakai, K

    2000-02-01

    The methanol extract of heartwood of Artocarpus incisus showed potent 5 alpha-reductase inhibitory activity. We investigated the 5 alpha-reductase inhibitory effects of nine compounds isolated from A. incisus. Chlorophorin (IC50 = 37 microM) and artocarpin (IC50 = 85 microM) showed more potent inhibitory effects than did alpha-linolenic acid, which is known as a naturally occurring potent inhibitor. Structure-activity investigations suggested that the presence of an isoprene substituent (prenyl and geranyl) would enhance 5 alpha-reductase inhibitory effects.

  2. The REDUCE trial: chemoprevention in prostate cancer using a dual 5alpha-reductase inhibitor, dutasteride.

    PubMed

    Musquera, Mireia; Fleshner, Neil E; Finelli, Antonio; Zlotta, Alexandre R

    2008-07-01

    Dutasteride, a dual 5alpha-reductase inhibitor, is used in the treatment of benign prostatic hyperplasia (BPH). It reduces serum prostate-specific antigen levels by approximately 50% at 6 months and total prostate volume by 25% after 2 years. Randomized placebo-controlled trials in BPH patients have shown the efficacy of dutasteride in symptomatic relief, improvements in quality of life and peak urinary flow rate. Side effects occurring with dutasteride are decreased libido, erectile dysfunction, ejaculation disorders and gynecomastia. Preliminary data from placebo-controlled BPH trials have shown a decrease in the detection of prostate cancer in patients treated with dutasteride, although these studies were not designed to look at this issue. Dutasteride differs from finasteride in that it inhibits both isoenzymes of 5alpha-reductase, type I and type II. The landmark Prostate Cancer Prevention Trial at the end of the 7-year study demonstrated a 24.8% reduction in the incidence of prostate cancer in the finasteride group compared with placebo. However, a 25.5% increase in the prevalence of high-grade Gleason tumors has been observed, the clinical significance of which has been debated. Preliminary data suggest a decrease in prostate cancer incidence in dutasteride-treated patients and demonstrate type I alphareductase enzyme expression in prostate cancer. As a result, dutasteride is being investigated for prostate cancer prevention in the ongoing Reduction by Dutasteride of Prostate Cancer Events (REDUCE) trial, which is discussed here. PMID:18588452

  3. The biochemical and phenotypic characterization of females homozygous for 5 alpha-reductase-2 deficiency.

    PubMed

    Katz, M D; Cai, L Q; Zhu, Y S; Herrera, C; DeFillo-Ricart, M; Shackleton, C H; Imperato-McGinley, J

    1995-11-01

    The biochemical and physiologic manifestations of decreased 5 alpha-dihydrotestosterone (DHT) in females are characterized. Three females from the large Dominican kindred with 5 alpha-reductase-2 deficiency were identified as homozygous for a point mutation (R246W, C-->T) on exon 5 of the 5 alpha-reductase-2 gene by single strand DNA conformational polymorphism analysis and DNA sequence analysis. Body hair was decreased; there was no history of acne. Despite delayed menarche, all were fertile, and two had twins. Urinary 5 beta/5 alpha C19 and C21 steroid metabolite ratios were elevated. Plasma testosterone was normal to elevated, with low DHT, resulting in an increased testosterone/DHT ratio. 3 alpha,5 alpha-Androstanediol glucuronide was low. Menstrual cycle profiling performed in two subjects showed ovulatory gonadotropin peaks. Sebum production was normal. 5 alpha-Reductase-2-deficient homozygotic females demonstrate the importance of DHT in the physiology and pathophysiology of body hair growth. Normal sebum implies regulation by the 5 alpha-reductase-1 isoenzyme. Delayed puberty suggests involvement of 5 alpha-reductase-2 in menarche at the hypothalamic/pituitary and/or ovarian level. As two had nonidentical twins, DHT and/or the DHT/estradiol ratio may regulate follicular development, with lower levels permitting more than one dominant follicle per cycle and higher levels impairing follicular development and ovulation. Thus, females with 5 alpha-reductase-2 deficiency highlight a role for DHT in hirsutism and/or menstrual disorders. PMID:7593420

  4. The use of 5-alpha reductase inhibitors for the prevention of prostate cancer.

    PubMed

    Yu, Eun-mi; El-Ayass, Walid; Aragon-Ching, Jeanny B

    2010-07-01

    The use of 5-alpha-reductase inhibitors has been studied not only in benign prostatic hyperplasia, but as a chemopreventive strategy in prostate cancer. Both finasteride and dutasteride, 5 alpha-reductase inhibitors (5ARI), have been shown to decrease the risk of prostate cancer. The results of the REDUCE trial using the dual alpha-reductase isoenzyme inhibitor dutasteride, has recently been published by Andriole et al. in the New England Journal of Medicine. Certain considerations regarding its use and applicability to men with high risk of developing prostate cancer are herein discussed. PMID:20574153

  5. Regulation of 5alpha-reductase isoforms by oxytocin in the rat ventral prostate.

    PubMed

    Assinder, S J; Johnson, C; King, K; Nicholson, H D

    2004-12-01

    Oxytocin (OT) is present in the male reproductive tract, where it is known to modulate contractility, cell growth, and steroidogenesis. Little is known about how OT regulates these processes. This study describes the localization of OT receptor in the rat ventral prostate and investigates if OT regulates gene expression and/or activity of 5alpha-reductase isoforms I and II. The ventral prostates of adult male Wistar rats were collected following daily sc administration of saline (control), OT, a specific OT antagonist or both OT plus antagonist for 3 d. Expression of the OT receptor was identified in the ventral prostate by RT-PCR and Western blot, and confirmed to be a single active binding site by radioreceptor assay. Immunohistochemistry localized the receptor to the epithelium of prostatic acini and to the stromal tissue. Real-time RT-PCR determined that OT treatment significantly reduced expression of 5alpha-reductase I but significantly increased 5alpha-reductase II expression in the ventral prostate. Activity of both isoforms of 5alpha-reductase was significantly increased by OT, resulting in increased concentration of prostatic dihydrotestosterone. In conclusion, OT is involved in regulating conversion of testosterone to the biologically active dihydrotestosterone in the rat ventral prostate. It does so by differential regulation of 5alpha-reductase isoforms I and II.

  6. Adverse Effects and Safety of 5-alpha Reductase Inhibitors (Finasteride, Dutasteride): A Systematic Review

    PubMed Central

    Hirshburg, Jason M.; Kelsey, Petra A.; Therrien, Chelsea A.; Gavino, A. Carlo; Reichenberg, Jason S.

    2016-01-01

    Finasteride and dutasteride, both 5-alpha reductase inhibitors, are considered first-line treatment for androgenetic hair loss in men and used increasingly in women. In each case, patients are expected to take the medications indefinitely despite the lack of research regarding long-term adverse effects. Concerns regarding the adverse effects of these medications has led the United States National Institutes of Health to add a link for post-finasteride syndrome to its Genetic and Rare Disease Information Center. Herein, the authors report the results of a literature search reviewing adverse events of 5-alpha reductase inhibitors as they relate to prostate cancer, psychological effects, sexual health, and use in women. Several large studies found no increase in incidence of prostate cancer, a possible increase of high-grade cancer when detected, and no change in survival rate with 5-alpha reductase inhibitor use. Currently, there is no direct link between 5-alpha reductase inhibitor use and depression; however, several small studies have led to depression being listed as a side effect on the medication packaging. Sexual effects including erectile dysfunction and decreased libido and ejaculate were reported in as many as 3.4 to 15.8 percent of men. To date, there are very few studies evaluating 5-alpha reductase inhibitor use in women. Risks include birth defects in male fetuses if used in pregnancy, decreased libido, headache, gastrointestinal discomfort, and isolated reports of changes in menstruation, acne, and dizziness. Overall, 5-alpha reductase inhibitors were well-tolerated in both men and women, but not without risk, highlighting the importance of patient education prior to treatment. PMID:27672412

  7. Adverse Effects and Safety of 5-alpha Reductase Inhibitors (Finasteride, Dutasteride): A Systematic Review

    PubMed Central

    Hirshburg, Jason M.; Kelsey, Petra A.; Therrien, Chelsea A.; Gavino, A. Carlo; Reichenberg, Jason S.

    2016-01-01

    Finasteride and dutasteride, both 5-alpha reductase inhibitors, are considered first-line treatment for androgenetic hair loss in men and used increasingly in women. In each case, patients are expected to take the medications indefinitely despite the lack of research regarding long-term adverse effects. Concerns regarding the adverse effects of these medications has led the United States National Institutes of Health to add a link for post-finasteride syndrome to its Genetic and Rare Disease Information Center. Herein, the authors report the results of a literature search reviewing adverse events of 5-alpha reductase inhibitors as they relate to prostate cancer, psychological effects, sexual health, and use in women. Several large studies found no increase in incidence of prostate cancer, a possible increase of high-grade cancer when detected, and no change in survival rate with 5-alpha reductase inhibitor use. Currently, there is no direct link between 5-alpha reductase inhibitor use and depression; however, several small studies have led to depression being listed as a side effect on the medication packaging. Sexual effects including erectile dysfunction and decreased libido and ejaculate were reported in as many as 3.4 to 15.8 percent of men. To date, there are very few studies evaluating 5-alpha reductase inhibitor use in women. Risks include birth defects in male fetuses if used in pregnancy, decreased libido, headache, gastrointestinal discomfort, and isolated reports of changes in menstruation, acne, and dizziness. Overall, 5-alpha reductase inhibitors were well-tolerated in both men and women, but not without risk, highlighting the importance of patient education prior to treatment.

  8. Adverse Effects and Safety of 5-alpha Reductase Inhibitors (Finasteride, Dutasteride): A Systematic Review.

    PubMed

    Hirshburg, Jason M; Kelsey, Petra A; Therrien, Chelsea A; Gavino, A Carlo; Reichenberg, Jason S

    2016-07-01

    Finasteride and dutasteride, both 5-alpha reductase inhibitors, are considered first-line treatment for androgenetic hair loss in men and used increasingly in women. In each case, patients are expected to take the medications indefinitely despite the lack of research regarding long-term adverse effects. Concerns regarding the adverse effects of these medications has led the United States National Institutes of Health to add a link for post-finasteride syndrome to its Genetic and Rare Disease Information Center. Herein, the authors report the results of a literature search reviewing adverse events of 5-alpha reductase inhibitors as they relate to prostate cancer, psychological effects, sexual health, and use in women. Several large studies found no increase in incidence of prostate cancer, a possible increase of high-grade cancer when detected, and no change in survival rate with 5-alpha reductase inhibitor use. Currently, there is no direct link between 5-alpha reductase inhibitor use and depression; however, several small studies have led to depression being listed as a side effect on the medication packaging. Sexual effects including erectile dysfunction and decreased libido and ejaculate were reported in as many as 3.4 to 15.8 percent of men. To date, there are very few studies evaluating 5-alpha reductase inhibitor use in women. Risks include birth defects in male fetuses if used in pregnancy, decreased libido, headache, gastrointestinal discomfort, and isolated reports of changes in menstruation, acne, and dizziness. Overall, 5-alpha reductase inhibitors were well-tolerated in both men and women, but not without risk, highlighting the importance of patient education prior to treatment. PMID:27672412

  9. 5 alpha-reductase and aromatase inhibitory constituents from Brassica rapa L. pollen.

    PubMed

    Li, Yong-Hui; Yang, Yi-Fang; Li, Kun; Jin, Li-Li; Yang, Nian-Yun; Kong, De-Yun

    2009-04-01

    In the screening of biologically active constituents from Brassica rapa pollen, the supercritical CO(2) fluid extract (SFE-CO(2)) showed potent 5 alpha-reductase and aromatase inhibiting activity. The SFE-CO(2) extract was separated by various chromatographic methods to give two new phytosterol derivatives, 24-methylenecholesterol linolenate (1) and cycloeucalenol linolenate (2), as well as eight known compounds, 24-methylenecholesterol palmitate (3), cycloeucalenol (4), pollinastanol (5), 24-methylenecholesterol (6), linolenic acid (7), palmitic acid (8), monolinolein (9) and monopalmitin (10), compounds 7 and 9 showed potent 5 alpha-reductase inhibitory activity; compounds 1-6 and 10 showed potent aromatase inhibitory activity.

  10. Molecular study of the 5 {alpha}-reductase type 2 gene in three European families with 5 {alpha}-reductase deficiency

    SciTech Connect

    Boudon, C.; Lumbroso, S.; Lobaccaro, J.M. ||

    1995-07-01

    The molecular basis of 5{alpha}-reductase (5{alpha}R) deficiency was investigated in four patients from three European families. In the French family, the first patient was raised as a female, and gonadectomy was performed before puberty. The second sibling, also raised as female, differed in that gonadal removal was performed after the onset of pubertal masculinization. The other two patients, both from Polish families, developed masculinization of external genitalia during puberty. All patients developed a female sexual identity. In all cases, no known consanguinity or family history of 5{alpha}R deficiency was reported. The genomic DNAs of the patients were sequenced after polymerase chain reaction amplification of the five exons of the 5{alpha}R type 2 gene. We found two homozygous mutations responsible for gutamine to arginine and histidine to arginine substitution in families 1 and 3, respectively. In family 2, we found a heterozygous mutation responsible for an asparagine to serine substitution at position 193. The glutamine/arginine 126 mutation in the French family was previously reported in a Creole ethnic group, and the Polish histidine/arginine 231 mutation was previously reported in a patient from Chicago, Moreover, all of the mutations created new restriction sites, which were used to determine the kindred carrier status in the three families. Because 5{alpha}R deficiency is known to be heterogenous disease in terms of clinical and biochemical expression, our data suggest that molecular biology analysis of the type 2 gene could be an essential step in diagnosing 5{alpha}R deficiency. 22 refs., 3 figs., 1 tab.

  11. Tissue distribution and ontogeny of steroid 5 alpha-reductase isozyme expression.

    PubMed Central

    Thigpen, A E; Silver, R I; Guileyardo, J M; Casey, M L; McConnell, J D; Russell, D W

    1993-01-01

    The synthesis of dihydrotestosterone is catalyzed by steroid 5 alpha-reductase isozymes, designated types 1 and 2. Mutation of type 2 results in male pseudohermaphroditism, in which the external genitalia are phenotypically female at birth. Two striking and unexplained features of this disorder are that external genitalia of affected males undergo virilization during puberty and that these individuals have less temporal hair regression. The tissue-specific and developmental expression patterns of the 5 alpha-reductase isozymes were investigated by immunoblotting. The type 1 isozyme is not detectable in the fetus, is transiently expressed in newborn skin and scalp, and permanently expressed in skin from the time of puberty. There was no qualitative difference in 5 alpha-reductase type 1 expression between adult balding vs. nonbalding scalp. The type 2 isozyme is transiently expressed in skin and scalp of newborns. Type 2 is the predominant isozyme detectable in fetal genital skin, male accessory sex glands, and in the prostate, including benign prostatic hyperplasia and prostate adenocarcinoma tissues. Both isozymes are expressed in the liver, but only after birth. These results are consistent with 5 alpha-reductase type 1 being responsible for virilization in type 2-deficient subjects during puberty, and suggest that the type 2 isozyme may be an initiating factor in development of male pattern baldness. Images PMID:7688765

  12. Male pseudohermaphroditism due to 5 alpha-reductase-2 deficiency in an Arab kindred.

    PubMed Central

    al-Attia, H. M.

    1997-01-01

    Six Arabs subjects (three postpubertal, two prepubertal and one pubertal) from three interrelated Omani families with male pseudohermaphroditism due to 5 alpha-reductase-2 deficiency were evaluated. These subjects had been raised as girls since birth as they were born with a clitoral-like phallus and ambiguous external genitalia of pseudovaginal perineoscrotal hypospadias with separate urethral and vaginal orifices. They underwent variable degrees of increased muscular habitus and phallic enlargement during puberty and beyond. Gynaecomastia was absent and the body and facial hair was insignificant. After diagnosis, a transition to male social sex occurred in two cases, one of which was interventional. Two retained the female social sex, one of which was also interventional, while the other two maintained an equivocal gender status. This report provides new data on the characterisation of 5 alpha-reductase-2 deficiency in various clusters. Images Figure 2 Figure 3 PMID:9497950

  13. 5alpha-Reductase inhibitor treatment of prostatic diseases: background and practical implications.

    PubMed

    Dörsam, J; Altwein, J

    2009-01-01

    This literature review discusses the theoretical background of 5alpha-reductase inhibitor (5ARI) treatment and the resulting clinical implications. A Medline-based search for peer-reviewed articles addressing 5ARIs, benign prostatic hyperplasia and prostate cancer was performed. The 5ARIs Finasteride and Dutasteride, which specifically inhibit the production of dihydrotestosterone by acting as competitive inhibitors of 5alpha-reductase, are clinically well tolerated and represent an effective treatment option for benign prostatic obstruction. Finasteride is the first compound which has a proven efficacy in chemoprevention of prostate cancer. The aim of this review was to elucidate, if there are sufficient data available to point out clinically relevant differences between the drugs. Both compounds achieve a significant reduction of prostate volume, an improvement of symptoms and a lower risk of acute urinary retention. Whether the different pharmacokinetic and pharmacodynamic properties of Finasteride and Dutasteride are of clinical importance cannot be judged at this time. PMID:19030020

  14. 5-Alpha-Reductase 2 Deficiency in a Woman with Primary Amenorrhea

    PubMed Central

    Kalantar Hormozi, Mohammadreza; Iranparvar Alamdari, Manouchehr; Tavosi, Zahra

    2013-01-01

    Steroid 5-alpha-reductase 2 deficiency is a rare disorder leading to male pseudohermaphroditism, a condition characterized by incomplete differentiation of male genitalia in 46,XY patients. Here, we report a case of a 21-year-old woman from Ardabil who presented with primary amenorrhea, ambiguous genitalia, and lack of breast development. All of the serum hormone profiles were normal except for raised serum total testosterone. Testosterone to DHT ratio (T/DHT) was elevated before (15.72) and further increased after hCG stimulation (32.46). A chromosomal study revealed a 46,XY karyotype. A bilateral gonadectomy, recessive cliteroplasty, urethroplasty, and vaginoplasty were performed and hormonal replacement therapy using estrogen was started. In conclusion, the diagnosis of 5-alpha-reductase 2 deficiency may be suspected in infants with ambiguous genitalia or in adolescents or young adults with the characteristic phenotype and serum hormone profiles. PMID:24383016

  15. 5-alpha reductase inhibitors in patients on active surveillance: do the benefits outweigh the risk?

    PubMed

    Al Edwan, Ghazi; Fleshner, Neil

    2013-06-01

    Prostate cancer (PCa) is a slow, progressive disease. Prostate specific antigen testing, screening, and aggressive case identification has made PCa the most frequently diagnosed cancer. Concerns regarding overdiagnosis and overtreatment flourish on a large scale. In order to avoid overtreatment for those in whom therapeutic intervention is not required, active surveillance for eligible patients with the use of 5-alpha reductase can be considered a safe and a promising approach to delay the progression of the disease with minimal side effects. PMID:23579402

  16. Proscar (Finasteride) inhibits 5 alpha-reductase activity in the ovaries and testes of Lytechinus variegatus Lamarck (Echinodermata: Echinoidea).

    PubMed

    Wasson, K M; Watts, S A

    1998-10-01

    Recent investigations into the steroid metabolic pathway in the echinoid Lytechinus variegatus demonstrated the capacity of the gonads to convert androstenedione, the classical mammalian precursor to bioactive androgens, into testosterone and a variety of 5 alpha-reduced androgens including 5 alpha-androstane-3 beta, 17 beta-diol and 5 alpha-androstane-3 alpha, 17 beta-diol. The synthesis of these steroids, which requires 5 alpha-reductase activity, varies with sex and reproductive state in L. variegatus, suggesting that these steroids may be involved in reproductive processes. The classical method of castration followed by steroid replacement therapy to determine the biological role of steroids in the gonads of higher vertebrates is not possible in echinoids. Therefore, this study was designed to determine the efficacy of finasteride, a selective 5 alpha-reductase inhibitor in the mammalian prostate gland, on 5 alpha-reductase activity in the gonads of L. variegatus. Finasteride inhibits echinoid 5 alpha-reductase in a dose-dependent manner with IC50 approximately 2.7 microM for both ovaries and testes. These echinoid IC50s are significantly higher than those reported for humans and rats. In addition, oral administration of finasteride to the echinoids appeared to inhibit 5 alpha-reductase with no apparent stress (no spine loss) to the animals. These data suggest that finasteride may be used to selectively and chemically ablate 5 alpha-reduced androgen synthesis in the gonads of L. variegatus. PMID:9827060

  17. Differential expression of 5-alpha reductase isozymes in the prostate and its clinical implications

    PubMed Central

    Wang, Kai; Fan, Dong-Dong; Jin, Song; Xing, Nian-Zeng; Niu, Yi-Nong

    2014-01-01

    The development of human benign or malignant prostatic diseases is closely associated with androgens, primarily testosterone (T) and dihydrotestosterone (DHT). T is converted to DHT by 5-alpha reductase (5-AR) isozymes. Differential expression of 5-AR isozymes is observed in both human benign and malignant prostatic tissues. 5-AR inhibitors (5-ARI) are commonly used for the treatment of benign prostatic hyperplasia (BPH) and were once promoted as chemopreventive agents for prostate cancer (PCa). This review discusses the role of the differential expression of 5-AR in the normal development of the human prostate and in the pathogenesis and progression of BPH and PCa. PMID:24457841

  18. Reprint of "Current perspectives on the androgen 5 alpha-dihydrotestosterone (DHT) and 5 alpha-reductases in teleost fishes and amphibians".

    PubMed

    Martyniuk, Christopher J; Bissegger, Sonja; Langlois, Valérie S

    2014-07-01

    The androgen 5 alpha-dihydrotestosterone (DHT) is a steroidogenic metabolite that has received little attention in non-mammalian species. DHT is produced by the reduction of the double-bond of testosterone by a group of enzymes called 5 alpha-reductases of which there can be multiple isoforms (i.e., srd5a1, srd5a2, and srd5a3). Data from amphibians suggest that the expression of the srd5a genes occurs in early development, and continues until adulthood; however insufficient data exist in fish species, where DHT is thought to be relatively biologically inactive. Here, we demonstrate that fathead minnow (FHM; Pimephales promelas) developing embryos and adults express srd5a enzyme isoforms. During FHM embryogenesis, both srd5a1 and srd5a3 mRNA levels were significantly correlated in expression levels while srd5a2 showed a more unique pattern of expression. In adult FHMs, males had significantly higher levels of srd5a2 in the liver and gonad compared to females. In the male and female liver, transcript levels for srd5a2 were more abundant compared to srd5a1 and srd5a3, suggesting a prominent role for srd5a2 in this tissue. Interestingly, the ovary expressed higher mRNA levels of srd5a3 than the testis. Thus, data suggest that srd5a isoforms can show sexually dimorphic expression patterns in fish. We also conducted a literature review of the biological effects observed in embryonic and adult fish and amphibians after treatments with DHT and DHT-related compounds. Treatments with DHT in teleost fishes and amphibians have resulted in unexpected biological responses that are characteristic of both androgens and anti-androgens. For example, in fish DHT can induce vitellogenin in vitro from male and female hepatocytes and can increase 17β-estradiol production from the teleost ovary. We propose, that to generate further understanding of the roles of DHT in non-mammals, studies are needed that (1) address how DHT is synthesized within tissues of fish and amphibians; (2

  19. Relationship of changing delta 4-steroid 5 alpha-reductase activity to (125I)iododeoxyuridine uptake during regeneration of involuted rat prostates

    SciTech Connect

    Kitahara, S.; Higashi, Y.; Takeuchi, S.; Oshima, H. )

    1989-04-01

    To elucidate the phenotypic expression of proliferating prostatic cells, rats were castrated, and the regenerating process of involuted ventral prostates during testosterone propionate (TP) administration was investigated by examining morphology, (5-{sup 125}I)iododeoxyuridine ({sup 125}I-UdR) uptake, DNA content, weight, acid phosphatase, and delta 4-steroid 5 alpha-reductase (5 alpha-reductase) activities. Morphologically, TP treatment initially increased the number of epithelial cells lining glandular lobules and subsequently restored the shape of epithelial cells. {sup 125}I-UdR uptake peaked on Day 3 of TP treatment and stayed at higher levels than for uncastrated controls until Day 14 of treatment. Prostatic weight, protein content, acid phosphatase, and DNA content returned to uncastrated control levels by Day 14 of TP treatment. TP administration markedly stimulated prostatic 5 alpha-reductase activity, which peaked on the Day 5 of treatment and decreased to uncastrated control levels by Day 14 of treatment. It is concluded that TP administration to castrated rats initially induced active mitotic division of the remaining stem cells, followed by formation of differentiated functional epithelial cells. Prostatic 5 alpha-reductase was highly active at the initial phase of active mitotic cell division. The major portion of the increased enzyme activity can be regarded as a phenotypic expression of stem or transient cells of prostatic epithelium.

  20. Testosterone 5alpha-reductase inhibitory active constituents of Piper nigrum leaf.

    PubMed

    Hirata, Noriko; Tokunaga, Masashi; Naruto, Shunsuke; Iinuma, Munekazu; Matsuda, Hideaki

    2007-12-01

    Previously we reported that Piper nigrum leaf extract showed a potent stimulation effect on melanogenesis and that (-)-cubebin (1) and (-)-3,4-dimethoxy-3,4-desmethylenedioxycubebin (2) were isolated as active constituents. As a part of our continuous studies on Piper species for the development of cosmetic hair-care agents, testosterone 5alpha-reductase inhibitory activity of aqueous ethanolic extracts obtained from several different parts of six Piper species, namely Piper nigrum, P. methysticum, P. betle, P. kadsura, P. longum, and P. cubeba, were examined. Among them, the extracts of P. nigrum leaf, P. nigrum fruit and P. cubeba fruit showed potent inhibitory activity. Activity-guided fractionation of P. nigrum leaf extract led to the isolation of 1 and 2. Fruits of P. cubeba contain 1 as a major lignan, thus inhibitory activity of the fruit may be attributable to 1. As a result of further assay on other known constituents of the cited Piper species, it was found that piperine, a major alkaloid amide of P. nigrum fruit, showed potent inhibitory activity, thus a part of the inhibitory activity of P. nigrum fruit may depend on piperine. The 5alpha-reductase inhibitory activities of 1 and piperine were found for the first time. In addition, the P. nigrum leaf extract showed in vivo anti-androgenic activity using the hair regrowth assay in testosterone sensitive male C57Black/6CrSlc strain mice.

  1. Chronic ethanol ingestion during puberty alters the transient increase in testicular 5 alpha-reductase in the Swiss-Webster mouse.

    PubMed

    Anderson, R A; Phillips, J F; Zaneveld, L J

    1989-01-01

    Previous experiments with inbred mice showed that chronic ethanol treatment delays male pubertal development. An initial event in sexual maturation in the rat is a transient increase in 5 alpha-reductase. The present study was conducted to determine whether similar ethanol effects occur in outbred mice (Swiss-Webster), to determine the ontological profile of testicular 5 alpha-reductase in the mouse, and to evaluate the effect of ethanol treatment on this enzyme. After 29 days of treatment with a liquid diet (beginning at age 20 days), reductions in the ethanol-treated mice as compared with the controls were noted in testicular weight (55.0 +/- 2.0 vs. 63.0 +/- 2.4 mg; P less than 0.01), epididymal sperm content (6.8 X 10(5) vs. 14.4 X 10(5); P less than 0.05), and sperm motility (45% vs. 57%; P less than 0.05). After 43 days, differences no longer existed. In chow-fed mice, a substantial rise in 5 alpha-reductase (1 unit = 1 pmole DHT formed/45 min/mg testis) began at age 24 days. Activity peaked at approximately 65 units at 25 to 30 days and gradually declined to 6.4 +/- 0.8 units at 63 days. After 29 days treatment, 5 alpha-reductase of the pair-fed control group was 26.8 +/- 4.9 units, which decreased to a baseline value of 7.0 +/- 2.1 units after 43 days treatment. In contrast, 5 alpha-reductase of the ethanol-treated group remained at baseline levels after 29 days (7.7 +/- 2.3 units) and 43 days of treatment (7.6 +/- 2.3 units).(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Different patterns of 5{alpha}-reductase expression, cellular distribution, and testosterone metabolism in human follicular dermal papilla cells

    SciTech Connect

    Liu, Shicheng Yamauchi, Hitoshi

    2008-04-18

    Androgens regulate hair growth, and 5{alpha}-reductase (5{alpha}R) plays a pivotal role in the action of androgens on target organs. To clarify the molecular mechanisms responsible for controlling hair growth, the present study presents evidence that the human follicular dermal papilla cells (DPCs) from either beard (bDPCs) or scalp hair (sDPCs) possess endogenous 5{alpha}R activity. Real-time RT-PCR revealed that the highest level of 5{alpha}R1 mRNA was found in bDPCs, followed by sDPCs, and a low but detectable level of 5{alpha}R1 mRNA was observed in fibroblasts. Minimally detectable levels of 5{alpha}R2 mRNA were found in all three cell types. A weak band at 26 kDa corresponding to the human 5{alpha}R1 protein was detected by Western blot in both DPCs, but not in fibroblasts. Immuonofluorescence analysis confirmed that 5{alpha}R1 was localized to the cytoplasm rather than in the nuclei in both DPCs Furthermore, a 5{alpha}R assay using [{sup 14}C]testosterone labeling in intact cells revealed that testosterone was transformed primarily into androstenedione, and in small amounts, into DHT. Our results demonstrate that the 5{alpha}R activities of either bDPCs or sDPCs are stronger than that of dermal fibroblasts, despite the fact that the major steroidogenic activity is attributed to 17{beta}-HSD rather than 5{alpha}R among the three cell types. The 5{alpha}R1 inhibitor MK386 exhibited a more potent inhibitory effect on 5{alpha}R activity than finasteride (5{alpha}R2 inhibitor) in bDPCs.

  3. Inhibition of type 1 and type 2 5alpha-reductase activity by free fatty acids, active ingredients of Permixon.

    PubMed

    Raynaud, Jean Pierre; Cousse, Henri; Martin, Pierre Marie

    2002-10-01

    In different cell systems, the lipido-sterolic extract of Serenoa repens (LSESr, Permixon inhibits both type 1 and type 2 5alpha-reductase activity (5alphaR1 and 5alphaR2). LSESr is mainly constituted of fatty acids (90+/-5%) essentially as free fatty acids (80%). Among these free fatty acids, the main components are oleic and lauric acids which represent 65% and linoleic and myristic acids 15%. To evaluate the inhibitory effect of the different components of LSESr on 5alphaR1 or 5alphaR2 activity, the corresponding type 1 and type 2 human genes have been cloned and expressed in the baculovirus-directed insect cell expression system Sf9. The cells were incubated at pH 5.5 (5alphaR2) and pH 7.4 (5alphaR1) with 1 or 3nM testosterone in presence or absence of various concentrations of LSESr or of its different components. Dihydrotestosterone formation was measured with an automatic system combining HPLC and an on-line radiodetector. The inhibition of 5alphaR1 and 5alphaR2 activity was only observed with free fatty acids: esterified fatty acids, alcohols as well as sterols assayed were inactive. A specificity of the fatty acids in 5alphaR1 or 5alphaR2 inhibition has been found. Long unsaturated chains (oleic and linolenic) were active (IC(50)=4+/-2 and 13+/-3 microg/ml, respectively) on 5alphaR1 but to a much lesser extent (IC(50)>100 and 35+/-21 microg/ml, respectively) on 5alphaR2. Palmitic and stearic acids were inactive on the two isoforms. Lauric acid was active on 5alphaR1 (IC(50)=17+/-3 microg/ml) and 5alphaR2 (IC(50)=19+/-9 microg/ml). The inhibitory activity of myristic acid was evaluated on 5alphaR2 only and found active on this isoform (IC(50)=4+/-2 microg/ml). The dual inhibitory activity of LSESr on 5alpha-reductase type 1 and type 2 can be attributed to its high content in free fatty acids.

  4. Gender identity of children and young adults with 5alpha-reductase deficiency.

    PubMed

    Praveen, E P; Desai, Ankush K; Khurana, M L; Philip, Jim; Eunice, Marumudi; Khadgawat, Rajesh; Kulshreshtha, Bindu; Kucheria, Kiran; Gupta, Devendra K; Seith, Ashu; Ammini, Ariachery C

    2008-02-01

    Male pseudohermaphroditism (46,XY DSD) due to 5alpha-reductase deficiency has been recognized for the last few decades. There is scant literature on this entity in India. We compiled data on five patients with this disorder. Four of our five patients were reared as females. Our assessment of these children reveals that they had male gender identity from childhood. Three of the four reared as females chose to change gender role at adolescence, while the fourth is still prepubertal. We conclude that all these patients had male gender identity from early childhood. The parents took note of this only after the appearance of male secondary sexual characteristics at puberty, thereby giving an impression of change in gender identity and gender role.

  5. Battling prostate cancer with 5-alpha-reductase inhibitors: a pyrrhic victory?

    PubMed

    Hoffman, Richard M; Roberts, Richard G; Barry, Michael J

    2011-07-01

    Given the relatively small impact of prostate cancer screening on cancer mortality, experts are now suggesting that chemoprevention with 5-alpha-reductase inhibitors (5-ARI) may be a more effective strategy for cancer control. Two large placebo-controlled randomized trials found that men receiving 5-ARI were about 25% less likely than controls to be detected with cancer. However, most cancers were detected on routine biopsies required by study protocols. The benefit from receiving 5-ARI was minimal among men who underwent biopsy for clinical indications. Additionally, men receiving 5-ARI were more likely than controls to be diagnosed with high-grade cancers, though post-hoc analyses adjusting for biases accounted for the excess risk in one of the studies. A recent guideline recommended that men considering prostate cancer screening also consider chemoprevention. The rationale is that reducing cancer incidence, given the known risks for overdiagnosis and subsequent overtreatment, is sufficient justification for chemoprevention. However, a large randomized controlled trial found that screening was associated with a 70% increase in prostate cancer diagnosis--which chemoprevention would then reduce by 25%. This does not seem an acceptable trade-off especially because the potential increased risk for high-grade cancers could lead to higher cancer mortality. PMID:21222171

  6. Male pseudohermaphroditism due to steroid 5alpha-reductase 2 deficiency. Diagnosis, psychological evaluation, and management.

    PubMed

    Mendonca, B B; Inacio, M; Costa, E M; Arnhold, I J; Silva, F A; Nicolau, W; Bloise, W; Russel, D W; Wilson, J D

    1996-03-01

    Sixteen subjects (from 10 Brazilian families) with male pseudohermaphroditism due to steroid 5alpha-reductase 2 deficiency have been evaluated in 1 clinic. The diagnoses were made on the basis of normal plasma testosterone values, normal or low plasma dihydrotestosterone levels and high testosterone/dihydrotestosterone ratios in the basal state in postpubertal subjects or after treatment with either human chorionic gonadotropin or testosterone in prepubertal subjects. The analysis of the ratios of etiocholanolone to androsterone in urine confirmed the diagnosis in all subjects who were tested, and the molecular basis of the underlying mutations was established in 9 of the families. Fourteen of the individuals were evaluated by the same psychologist. All subjects but 1 were given a female sex assignment at birth. Three of the subjects (1 the sibling of an individual who has undergone female to male social behavior) maintain a female social sex; they have been gonadectomized and treated with exogenous estrogens. Ten of 13 subjects of postpubertal age underwent a change of social sex from female to male, had surgical correction of the hypospadias, and were treated with high-dose testosterone esters by parenteral injection and subsequently with dihydrotestosterone cream. These regimens brought serum dihydrotestosterone levels to the normal male range (or above) but resulted only in limited growth of the prostate and penis and, in some, increase in body and facial hair and enhancement of libido and sexual performance. Treatment of the prepubertal boys with testosterone and/or dihydrotestosterone resulted in a doubling of penis size.

  7. Benzo[c]quinolizin-3-ones: a novel class of potent and selective nonsteroidal inhibitors of human steroid 5alpha-reductase 1.

    PubMed

    Guarna, A; Machetti, F; Occhiato, E G; Scarpi, D; Comerci, A; Danza, G; Mancina, R; Serio, M; Hardy, K

    2000-10-01

    The synthesis and biological evaluation of a series of novel, selective inhibitors of isoenzyme 1 of human 5alpha-reductase (5alphaR) (EC 1.3.99.5) are reported. The inhibitors are 4aH- (19-29) or 1H-tetrahydrobenzo[c]quinolizin-3-ones (35-47) bearing at positions 1, 4, 5, and 6 a methyl group and at position 8 a hydrogen, methyl group, or chlorine atom. All these compounds were tested toward 5alphaR-1 and 5alphaR-2 expressed in CHO cells (CHO 1827 and CHO 1829, respectively) resulting in selective inhibitors of the type 1 isoenzyme, with inhibitory potencies (IC(50)) ranging from 7.6 to 9100 nM. The inhibitors of the 4aH-series, having a double bond at position 1,2, were generally less active than the corresponding inhibitors of the 1H-series having the double bond at position 4,4a on the A ring. The presence of a methyl group at position 4 (as in compounds 39-40 and 45-47), associated with a substituent at position 8, determined the highest inhibition potency (IC(50) from 7.6 to 20 nM). Compounds 39 and 40, having K(i) values of 5.8+/-1.8 and 2.7+/-0.6 nM, respectively, toward 5alphaR-1 expressed in CHO cells, were also tested toward native 5alphaR-1 in human scalp and 5alphaR-2 in human prostate homogenates, in comparison with finasteride and the known 5alphaR-1-selective inhibitor LY191704, and their mechanism of inhibition was determined. They both inhibited the enzyme through a reversible competitive mechanism and again were selective inhibitors of 5alphaR-1 with IC(50) values of 41 nM. These specific features make these inhibitors suitable candidates for further development as drugs in the treatment of DHT-dependent disorders such as acne and androgenic alopecia in men and hirsutism in women. PMID:11020287

  8. Ribonucleotide Reductase-- a Radical Enzyme

    NASA Astrophysics Data System (ADS)

    Reichard, Peter; Ehrenberg, Anders

    1983-08-01

    Ribonucleotide reductases catalyze the enzymatic formation of deoxyribonucleotides, an obligatory step in DNA synthesis. The native form of the enzyme from Escherichia coli or from mammalian sources contains as part of its polypeptide structure a free tyrosyl radical, stabilized by an iron center. The radical participates in all probability in the catalytic process during the substitution of the hydroxyl group at C-2 of ribose by a hydrogen atom. A second, inactive form of the E. coli reductase lacks the tyrosyl radical. Extracts from E. coli contain activities that interconvert the two forms. The tyrosyl radical is introduced in the presence of oxygen, while anaerobiosis favors its removal, suggesting a regulatory role in DNA synthesis for oxygen.

  9. The role of 5-alpha reductase inhibitors in prostate pathophysiology: Is there an additional advantage to inhibition of type 1 isoenzyme?

    PubMed

    Goldenberg, Larry; So, Alan; Fleshner, Neil; Rendon, Ricardo; Drachenberg, Darrel; Elhilali, Mostafa

    2009-06-01

    Normal growth and function of the prostate are contingent on the reduction of testosterone to dihydrotestosterone (DHT) by 5-alpha reductase (5-AR) enzymes types 1 and 2. It has been theorized that an overabundance of DHT may be implicated in the pathogenesis of both benign prostatic hyperplasia (BPH) and prostate cancer. Inhibitors of 5-AR such as dutasteride and finasteride may therefore have an important role in the prevention and treatment of BPH and prostate cancer. Dutasteride provides greater suppression of DHT than finasteride, thereby underlying the hypothesis that inhibition of both type 1 and type 2 would provide correspondingly greater protection than inhibition of type 2 alone. We review the potential significance of the 5-AR inhibitors in reducing the risk of prostate cancer according to the basic biology of prostate disease. PMID:19543428

  10. Ockham's razor and selective androgen receptor modulators (SARMs): are we overlooking the role of 5alpha-reductase?

    PubMed

    Gao, Wenqing; Dalton, James T

    2007-02-01

    Selective Androgen Receptor Modulators (SARMs) are a novel class of AR ligands that possess tissue-selective pharmacological activities. SARMs of various chemical structures have been discovered and characterized, and lead compounds with much improved specificity for AR, in vivo pharmacokinetic profiles, and higher degree of tissue selectivity have entered clinical development, and are expected to dramatically expand the clinical applications of androgens. With the rapid progress in SARM discovery and increasing demand for mechanism-based drug design, more and more research efforts have been devoted to the mechanisms of action of the observed tissue selectivity of SARMs. There is increasing enthusiasm in adapting the molecular mechanisms of action from SERM research to the SARM field; however, is the SARM story really so complicated? The tissue-specific expression of 5alpha-reductase might provide a simple explanation for this puzzle.

  11. In vivo and in vitro effect of novel 4,16-pregnadiene-6,20-dione derivatives, as 5alpha-reductase inhibitors.

    PubMed

    Bratoeff, Eugene; Cabeza, Marisa; Pérez-Ornelas, Victor; Recillas, Sergio; Heuze, Ivonne

    2008-09-01

    In this study, we report the synthesis and biological evaluation of several new 3-substituted pregna-4,16-diene-6,20-dione derivatives (11a-11d). These compounds were prepared from the commercially available 16-dehydropregnenolone acetate. The biological effect of these steroids was demonstrated in in vivo and in vitro experiments. In the in vivo experiments, we measured the activity of the 11a-11d on the weight of the prostate gland of gonadectomized hamsters treated with testosterone plus finasteride or with the new steroids. For the studies in vitro, we determined the IC50 values by measuring the steroid concentration that inhibits 50% of the activity of 5alpha-reductase present in human prostate. In order to study the mechanism of action of 11a-11d, we also determined the capacity of these steroids to bind to the androgen receptor (AR) present in the rat prostate cytosol using labeled mibolerone as a tracer. The results from this work indicated that compounds 11a-11d significantly decreased the weight of the prostate as compared to testosterone treated animals and this reduction of the weight of the prostate was comparable to that produced by the finasteride. On the other hand 11a-11d exhibited a high inhibitory activity for the human 5alpha-reductase enzyme with IC50 values of 1.4 x 10(-8), 1.8 x 10(-9), 1.0 x 10(-8) and 4 x 10(-5) respectively. However the IC50 value of 11a (1.8 x 10(-9)) was the only one lower than that of finasteride (8.5 x 10(-9)). Nevertheless this compound did not show a higher potency in vivo as compared to that of compounds 11b-11d. The competition analysis for the androgen receptor indicated that the IC50 value of non-labeled mibolerone used in this experiment was 1nM, whereas steroids 10, 11a-11d did not inhibit the labeled mibolerone binding to the androgen receptor. On the other hand, steroid 10 did not show any activities in vitro or in vivo, and for this reason these steroidal derivatives (11a-11d) cannot be considered as

  12. 5-Alpha reductase inhibitor use and prostate cancer survival in the Finnish Prostate Cancer Screening Trial.

    PubMed

    Murtola, Teemu J; Karppa, Elina K; Taari, Kimmo; Talala, Kirsi; Tammela, Teuvo L J; Auvinen, Anssi

    2016-06-15

    Randomized clinical trials have shown that use of 5α-reductase inhibitors (5-ARIs) lowers overall prostate cancer (PCa) risk compared to placebo, while the proportion of Gleason 8-10 tumors is elevated. It is unknown whether this affects PCa-specific survival. We studied disease-specific survival by 5-ARI usage in a cohort of 6,537 prostate cancer cases diagnosed in the Finnish Prostate Cancer Screening Trial and linked to the national prescription database for information on medication use. Cox proportional hazards regression was used to estimate hazard ratios and 95% confidence intervals for prostate cancer-specific deaths. For comparison, survival among alpha-blocker users was also evaluated. During the median follow-up of 7.5 years after diagnosis a total of 2,478 men died; 617 due to prostate cancer and 1,861 due to other causes. The risk of prostate cancer death did not differ between 5-ARI users and nonusers (multivariable adjusted HR 0.94, 95% CI 0.72-1.24 and HR 0.98, 95% CI 0.69-1.41 for usage before and after the diagnosis, respectively). Alpha-blocker usage both before and after diagnosis was associated with increased risk of prostate cancer death (HR 1.29, 95% CI 1.08-1.54 and HR 1.56, 95% CI 1.30-1.86, respectively). The risk increase vanished in long-term alpha-blocker usage. Use of 5-ARIs does not appear to affect prostate cancer mortality when used in management of benign prostatic hyperplasia. Increased risk associated with alpha-blocker usage should prompt further exploration on the prognostic role of lower urinary tract symptoms.

  13. 5-Alpha reductase inhibitors in men with an enlarged prostate: an evaluation of outcomes and therapeutic alternatives.

    PubMed

    Naslund, Michael; Regan, Timothy S; Ong, Christine; Hogue, Susan L

    2008-05-01

    This article presents background information and highlights key findings from a managed care perspective related to enlarged prostate (EP) in Medicare-eligible patients. This article does not provide a comprehensive review of EP but instead attempts to increase the current understanding of EP through discussion of its prevalence in men aged > or =65 years, its associated economic burden, and some available treatment options. This supplement includes 3 additional articles, all of which present data from a naturalistic, managed care setting. The article by Fenter et al assesses differences in outcomes between elderly EP patients treated with finasteride and those treated with dutasteride in relation to the risks of acute urinary retention and prostate-related surgery. Issa et al conduct a comparative analysis of the combined use of alpha-blockers and 5-alpha reductase inhibitors to treat EP. The final article compares medical costs incurred within the first year of initiating treatment for EP patients receiving finasteride versus dutasteride. This supplement is intended to assist managed care formulary decision makers in evaluating key clinical and economic data that differentiate dutasteride and finasteride within the Medicare-aged population. Although the information presented is not designed to illustrate the superiority of one product over the other, it answers important questions in relation to treating EP in elderly men and raises substantial issues beyond medication costs. PMID:18611088

  14. Synthesis of some new testosterone derivatives fused with substituted pyrazoline ring as promising 5alpha-reductase inhibitors.

    PubMed

    Amr, Abd El-Galil El-Sayed; Abdel-Latif, Nehad Ahmed; Abdalla, Mohamed Mostafa

    2006-06-01

    Condensation of 3beta-hydroxy-16-[(4-chlorophenyl)methylene]androst-5-en-17-one (1) with hydrazine hydrate in acetic acid afforded N-acetyl pyrazoline derivative 2, while condensation of 1 with semicarbazide afforded compound 3. Also, compound 1 was treated with hydrazine hydrate in absolute methanol or ethanol to afford the corresponding alpha-methoxy (4) and alpha-ethoxy (5) derivatives, which were cyclized with etherated boron trifluoride to the pyrazoline derivative 6. The latter could be prepared directly by refluxing 1 with hydrazine hydrate in dioxane. Oxidation of compound 6 with Oppenour or Moffat oxidizing agents yielded 3-oxo-derivatives 7 and 8, respectively. On the other hand, condensation of compound 1 with substituted hydrazines, gave the corresponding 3beta-hydroxyandrostenopyrazolines 9a,b, which were oxidized using the Moffat method to give 3-oxo-androstenopyrazolines 10a,b, which were condensed with ethylene triphenyl-phosphorane in DMSO to yield 3-ethylene androstenopyrazolines 11a,b. Dehydrogenation of 9a,b with Wettestein oxidation afforded Delta4,6-diene-3-one analogues 12a,b, which were treated with chloranil to yield Delta(4,6,8(14))-tri-ene-3-one analogues 13a,b. Oppenour oxidation of 9a,b afforded Delta4-ene-3-one analogues 14a,b, which were treated with dichlorodicyanoquinone (DDQ) in dioxane to give Delta1,4,6-triene-3-one analogues 15a,b. Pharmacological screening showed that many of these compounds inhibit 5alpha-reductase activity. PMID:16613726

  15. The effect of 5alpha-reductase inhibition with finasteride and dutasteride on bone mineral density in older men with benign prostatic hyperplasia.

    PubMed

    Mačukat, Indira Radin; Spanjol, Josip; Orlič, Zeljka Crncevič; Butorac, Marta Zuvič; Marinovič, Marin; Ćupič, Dora Fučkar

    2014-09-01

    Testosterone is converted to dihyrotestosterone by two isoenzymes of 5alpha-reductase. Finasteride and dutasteride are 5alpha-reductase inhibitors commonly used in the treatment of benign prostatic hyperplasia. We compared indices of bone mineral density in 50 men treated with finasteride, 50 men treated with dutasteride and 50 men as control. Bone mineral density of spine and hip were measured using dual energy X-ray absorptiometry. Bone formation was assessed by measuring serum osteocalcin and bone resorptionby measuring serum C-terminal telopeptide of collagen type 1. In addition serum total testosteron and estradiol were determined. The dutasteride group had significantly higher mean bone min- eral density, mean bone mineral content, mean T score, mean Z score at femoral neck and mean total hip Z score than control. Mean total testosterone and estradiol levels were higher in the dutasteride group. There were no significant dif- ferences between the groups in lumbar spine bone density parameters or bone turnover markers. Our results provide evidence that long-term 5alpha-reductase suppression does not adversely affect bone mineral density. Dutasteride therapy could have beneficial effect on bone density. PMID:25507347

  16. The effect of 5alpha-reductase inhibition with finasteride and dutasteride on bone mineral density in older men with benign prostatic hyperplasia.

    PubMed

    Mačukat, Indira Radin; Spanjol, Josip; Orlič, Zeljka Crncevič; Butorac, Marta Zuvič; Marinovič, Marin; Ćupič, Dora Fučkar

    2014-09-01

    Testosterone is converted to dihyrotestosterone by two isoenzymes of 5alpha-reductase. Finasteride and dutasteride are 5alpha-reductase inhibitors commonly used in the treatment of benign prostatic hyperplasia. We compared indices of bone mineral density in 50 men treated with finasteride, 50 men treated with dutasteride and 50 men as control. Bone mineral density of spine and hip were measured using dual energy X-ray absorptiometry. Bone formation was assessed by measuring serum osteocalcin and bone resorptionby measuring serum C-terminal telopeptide of collagen type 1. In addition serum total testosteron and estradiol were determined. The dutasteride group had significantly higher mean bone min- eral density, mean bone mineral content, mean T score, mean Z score at femoral neck and mean total hip Z score than control. Mean total testosterone and estradiol levels were higher in the dutasteride group. There were no significant dif- ferences between the groups in lumbar spine bone density parameters or bone turnover markers. Our results provide evidence that long-term 5alpha-reductase suppression does not adversely affect bone mineral density. Dutasteride therapy could have beneficial effect on bone density. PMID:25420363

  17. Micropenis and the 5alpha-reductase-2 (SRD5A2) gene: mutation and V89L polymorphism analysis in 81 Japanese patients.

    PubMed

    Sasaki, Goro; Ogata, Tsutomu; Ishii, Tomohiro; Kosaki, Kenjiro; Sato, Seiji; Homma, Keiko; Takahashi, Takao; Hasegawa, Tomonobu; Matsuo, Nobutake

    2003-07-01

    The 5alpha-reductase-2 encoded by the SRD5A2 gene plays a critical role in male sex differentiation by converting testosterone into 5alpha dihydrotestosterone in the peripheral target tissues. In this study, we examined the SRD5A2 gene in 81 Japanese patients with micropenis (age, 0-14 yr; median, 7 yr) whose stretched penile lengths were between -2.5 SD and -2.0 SD in 39 patients (age, 0-13 yr; median, 8 yr) and below -2.5 SD in 42 patients (age, 0-14 yr; median, 6 yr), together with 100 control males (50 boys and 50 fertile adult males). Mutation analysis was performed for exons 1-5 and their flanking introns by denaturing HPLC and direct sequencing, revealing Y26X/R227Q in an 11-yr-old boy with a penile length of -2.6 SD, G34R/R227Q in a 9-yr-old boy with a penile length of -3.6 SD, and R227Q/R227Q in a 3-yr-old boy with a penile length of -2.4 SD, together with heterozygous R227Q in a control boy and a fertile adult male. Polymorphism analysis was carried out for the most frequent V89L known to reduce the enzyme activity by approximately 30% in 78 patients, except for the three patients with SRD5A2 mutations, and in the 100 control males by direct sequencing, showing that allele and genotype frequencies were similar between 78 patients with micropenis below -2.0 SD or 40 patients with micropenis below -2.5 SD and the 100 control males, the 50 boys, or the 50 fertile adult males, with no statistically significant differences. The results suggest that, in Japanese patients, micropenis can be caused by SRD5A2 gene mutations, especially by R227Q which has been shown to retain approximately 3.2% of normal enzyme activity and appears relatively frequent in Asian populations, and that V89L polymorphism is unlikely to raise the susceptibility to the development of micropenis.

  18. Selective induction of apoptosis in the hamster flank sebaceous gland organ by a topical liposome 5-alpha-reductase inhibitor: a treatment strategy for acne.

    PubMed

    Li, Lingna; Tang, Li; Baranov, Eugene; Yang, Meng; Amoh, Yasuyuki; Katsuoka, Kensei; Hoffman, Robert M

    2010-02-01

    Acne is a very widespread cosmesis problem. Isotretinoin, a synthetic oral retinoid is used to treat acne, which is androgen dependent. Numerous side-effects occur from this treatment. 5-alpha-Reductase plays a critical role in normal and pathological androgen-dependent processes. We have taken the approach to develop a selective, effective, topically-applied 5-alpha-reductase inhibitor to modify unwanted or pathological processes in the pilosebaceous unit such as acne. Toward this goal, we have previously developed a selective liposome hair follicle targeting system. We demonstrate in this report that the 5-alpha-reductase inhibitor N,N-diethyl-4-methyl-3-oxo-4-aza-5alpha-androstane-17beta-carboxamide (4-MA) incorporated into liposomes induces apoptosis and inhibits growth of the dihydrotestosterone (DHT)-dependent hamster flank organ sebaceous gland. We have compared topical application of liposome 4-MA and solvent-formulated 4-MA and observed selective efficacy of topical application of liposome 4-MA by the reduction of size and induction of apoptosis only in the treated hamster flank organ. Apoptosis induced by liposome 4-MA in the treated flank organ sebaceous gland cells was observed both by assays for DNA fragments (transferase deoxytidyl uridine end labeling) and by observation of condensed and fragmented nuclei. When 4-MA was topically applied formulated in ethanol and glycerol without liposomes, the selective efficacy was lost. Liposome 4-MA did not significantly affect prostate weight, testosterone/DHT ratios or bodyweight gain compared to controls indicating safety as well as efficacy of topical application of liposome 4-MA for pathological processes such as acne. PMID:20175850

  19. Theaflavin-3,3'-digallate and penta-O-galloyl-beta-D-glucose inhibit rat liver microsomal 5alpha-reductase activity and the expression of androgen receptor in LNCaP prostate cancer cells.

    PubMed

    Lee, Hung-Hsiao; Ho, Chi-Tang; Lin, Jen-Kun

    2004-07-01

    Androgens play a critical role in regulating the growth, differentiation and survival of epithelial cells in many androgen-responsive organs, such as prostate and skin. The enzyme steroid 5alpha-reductase (EC 1.3.99.5) catalyzes the conversion of testosterone (T) to a more active androgen, dihydrotestosterone (DHT). DHT then binds to androgen receptors (AR) and functions in the nucleus to regulate specific gene expression. Androgens via their cognate receptor may be involved in the development and progression of benign prostate hyperplasia, prostate cancer, hirsutism, male pattern alopecia and acne. The aim of this study was to determine whether theaflavin-3,3'-digallate (TF3) and penta-O-galloyl-beta-D-glucose (5GG) have inhibitory effects on androgen production and action. We found that TF3 and 5GG inhibit rat liver microsomal 5alpha-reductase activity. Furthermore, TF3 and 5GG significantly reduced androgen-responsive LNCaP prostate cancer cell growth, suppressed expression of the AR and lowered androgen-induced prostate-specific antigen secretion and fatty acid synthase protein level. In conclusion, our result suggests that TF3 and 5GG might be useful chemoprevention agents for prostate cancer through suppressing the function of androgen and its receptor. PMID:14963012

  20. Ribonucleotide reductases: essential enzymes for bacterial life

    PubMed Central

    Torrents, Eduard

    2014-01-01

    Ribonucleotide reductase (RNR) is a key enzyme that mediates the synthesis of deoxyribonucleotides, the DNA precursors, for DNA synthesis in every living cell. This enzyme converts ribonucleotides to deoxyribonucleotides, the building blocks for DNA replication, and repair. Clearly, RNR enzymes have contributed to the appearance of genetic material that exists today, being essential for the evolution of all organisms on Earth. The strict control of RNR activity and dNTP pool sizes is important, as pool imbalances increase mutation rates, replication anomalies, and genome instability. Thus, RNR activity should be finely regulated allosterically and at the transcriptional level. In this review we examine the distribution, the evolution, and the genetic regulation of bacterial RNRs. Moreover, this enzyme can be considered an ideal target for anti-proliferative compounds designed to inhibit cell replication in eukaryotic cells (cancer cells), parasites, viruses, and bacteria. PMID:24809024

  1. Ribonucleotide reductases: essential enzymes for bacterial life.

    PubMed

    Torrents, Eduard

    2014-01-01

    Ribonucleotide reductase (RNR) is a key enzyme that mediates the synthesis of deoxyribonucleotides, the DNA precursors, for DNA synthesis in every living cell. This enzyme converts ribonucleotides to deoxyribonucleotides, the building blocks for DNA replication, and repair. Clearly, RNR enzymes have contributed to the appearance of genetic material that exists today, being essential for the evolution of all organisms on Earth. The strict control of RNR activity and dNTP pool sizes is important, as pool imbalances increase mutation rates, replication anomalies, and genome instability. Thus, RNR activity should be finely regulated allosterically and at the transcriptional level. In this review we examine the distribution, the evolution, and the genetic regulation of bacterial RNRs. Moreover, this enzyme can be considered an ideal target for anti-proliferative compounds designed to inhibit cell replication in eukaryotic cells (cancer cells), parasites, viruses, and bacteria. PMID:24809024

  2. Ribonucleotide reductases: essential enzymes for bacterial life.

    PubMed

    Torrents, Eduard

    2014-01-01

    Ribonucleotide reductase (RNR) is a key enzyme that mediates the synthesis of deoxyribonucleotides, the DNA precursors, for DNA synthesis in every living cell. This enzyme converts ribonucleotides to deoxyribonucleotides, the building blocks for DNA replication, and repair. Clearly, RNR enzymes have contributed to the appearance of genetic material that exists today, being essential for the evolution of all organisms on Earth. The strict control of RNR activity and dNTP pool sizes is important, as pool imbalances increase mutation rates, replication anomalies, and genome instability. Thus, RNR activity should be finely regulated allosterically and at the transcriptional level. In this review we examine the distribution, the evolution, and the genetic regulation of bacterial RNRs. Moreover, this enzyme can be considered an ideal target for anti-proliferative compounds designed to inhibit cell replication in eukaryotic cells (cancer cells), parasites, viruses, and bacteria.

  3. MK-386, an inhibitor of 5alpha-reductase type 1, reduces dihydrotestosterone concentrations in serum and sebum without affecting dihydrotestosterone concentrations in semen.

    PubMed

    Schwartz, J I; Tanaka, W K; Wang, D Z; Ebel, D L; Geissler, L A; Dallob, A; Hafkin, B; Gertz, B J

    1997-05-01

    Two isozymes (types 1 and 2) of 5alpha-reductase (5alphaR; EC 1.3.99.5), with differential tissue distribution, catalyze the reduction of testosterone (T) to dihydrotestosterone (DHT) in humans. This study examined sequentially increasing oral doses of MK-386 (4,7beta-dimethyl-4-aza-5alpha-cholestan-3-one), an azasteroid that specifically inhibits the human 5alphaR1 isozyme in vitro. Finasteride, a selective inhibitor of 5alphaR2, was included for comparison. One hundred men were evaluated in a double blind, randomized, placebo-controlled, sequential, increasing dose, parallel group trial. Ten to 20 subjects received MK-386, and 2 to 5 received placebo in each of 6 panels. In 1 panel, 10 subjects received finasteride (5 mg), and 5 received placebo. Treatments were given once daily for 14 days, except in 1 panel in which MK-386 was administered 10 mg twice daily for comparison to 20 mg daily. Serum, sebum, and semen DHT concentrations and serum and sebum T concentrations were measured before and after treatment. The mean changes from baseline on day 14 for serum DHT after placebo and 0.1, 0.5, 5, 20, and 50 mg MK-386 were 6.9%, 4.6%, -2.7%, -1.2%, -14.1% (P < 0.05 vs. placebo), and -22.2% (P < 0.05 vs. placebo), respectively. No significant alterations in serum T were observed after any dose of MK-386. Serum DHT fell 65.8% from the baseline 14 days after finasteride treatment (P < 0.05 vs. placebo). The mean changes from baseline on day 14 in sebum DHT were 5.0%, 3.0%, -25.4% (P < 0.05 vs. placebo), -30.1% (P < 0.05 vs. placebo), and -49.1% (P < 0.05 vs. placebo) for the placebo and 0.5, 5, 20, and 50 mg MK-386 groups, respectively. Finasteride also reduced sebum DHT, but to a lesser extent (- 14.9%; P < 0.05 vs. placebo). Reciprocal increases in sebum T concentration were noted at doses of 5 mg or more of MK-386, but not with finasteride. The mean reduction in semen DHT with 5 mg finasteride was approximately 88% (P < 0.01 vs. placebo); no significant change in

  4. The Kinetics and Inhibition of the Enzyme Methemoglobin Reductase

    ERIC Educational Resources Information Center

    Splittgerber, A. G.; And Others

    1975-01-01

    Describes an undergraduate biochemistry experiment which involves the preparation and kinetics of an oxidation-reduction enzyme system, methemoglobin reductase. A crude enzyme extract is prepared and assayed spectrophotometrically. The enzyme system obeys Michaelis-Menton kinetics with respect to both substrate and the NADH cofactor. (MLH)

  5. Differential expression of steroid 5alpha-reductase isozymes and association with disease severity and angiogenic genes predict their biological role in prostate cancer.

    PubMed

    Das, Kakoli; Lorena, Pia D N; Ng, Lai Kuan; Lim, Diana; Shen, Liang; Siow, Woei Yun; Teh, Ming; Reichardt, Juergen K V; Salto-Tellez, Manuel

    2010-09-01

    The biological role of steroid 5alpha-reductase isozymes (encoded by the SRD5A1 and SRD5A2 genes) and angiogenic factors that play important roles in the pathogenesis and vascularization of prostate cancer (PC) is poorly understood. The sub-cellular expression of these isozymes and vascular endothelial growth factor (VEGF) in PC tissue microarrays (n=62) was examined using immunohistochemistry. The effect of SRD5A inhibition on the angiogenesis pathway genes in PC was also examined in prostate cell lines, LNCaP, PC3, and RWPE-1, by treating them with the SRD5A inhibitors finasteride and dutasteride, followed by western blot, quantitative PCR, and ELISA chip array techniques. In PC tissues, nuclear SRD5A1 expression was strongly associated with higher cancer Gleason scores (P=0.02), higher cancer stage (P=0.01), and higher serum prostate specific antigen (PSA) levels (P=0.01), whereas nuclear SRD5A2 expression was correlated with VEGF expression (P=0.01). Prostate tumor cell viability was significantly reduced in dutasteride-treated PC3 and RWPE-1 cells compared with finasteride-treated groups. Expression of the angiogenesis pathway genes transforming growth factor beta 1 (TGFB1), endothelin (EDN1), TGFalpha (TGFA), and VEGFR1 was upregulated in LNCaP cells, and at least 7 out of 21 genes were upregulated in PC3 cells treated with finasteride (25 muM). Our findings suggest that SRD5A1 expression predominates in advanced PC, and that inhibition of SRD5A1 and SRD5A2 together was more effective in reducing cell numbers than inhibition of SRD5A2 alone. However, these inhibitors did not show any significant difference in prostate cell angiogenic response. Interestingly, some angiogenic genes remained activated after treatment, possibly due to the duration of treatment and tumor resistance to inhibitors. PMID:20519274

  6. Respiratory arsenate reductase as a bidirectional enzyme

    USGS Publications Warehouse

    Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.

    2009-01-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe–S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  7. Respiratory arsenate reductase as a bidirectional enzyme

    SciTech Connect

    Richey, Christine; Chovanec, Peter; Hoeft, Shelley E.; Oremland, Ronald S.; Basu, Partha; Stolz, John F.

    2009-05-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe-S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  8. Mode of action of human pharmaceuticals in fish: the effects of the 5-alpha-reductase inhibitor, dutasteride, on reproduction as a case study.

    PubMed

    Margiotta-Casaluci, Luigi; Hannah, Robert E; Sumpter, John P

    2013-03-15

    In recent years, a growing number of human pharmaceuticals have been detected in the aquatic environment, generally at low concentrations (sub-ng/L-low μg/L). In most cases, these compounds are characterised by highly specific modes of action, and the evolutionary conservation of drug targets in wildlife species suggests the possibility that pharmaceuticals present in the environment may cause toxicological effects by acting through the same targets as they do in humans. Our research addressed the question of whether or not dutasteride, a pharmaceutical used to treat benign prostatic hyperplasia, may cause adverse effects in a teleost fish, the fathead minnow (Pimephales promelas), by inhibiting the activity of both isoforms of 5α-reductase (5αR), the enzyme that converts testosterone into dihydrotestosterone (DHT). Mammalian pharmacological and toxicological information were used to guide the experimental design and the selection of relevant endpoints, according to the so-called "read-across approach", suggesting that dutasteride may affect male fertility and steroid hormone dynamics. Therefore, a 21-day reproduction study was conducted to determine the effects of dutasteride (10, 32 and 100 μg/L) on fish reproduction. Exposure to dutasteride significantly reduced fecundity of fish and affected several aspects of reproductive endocrine functions in both males and females. However, none of the observed adverse effects occurred at concentrations of exposure lower than 32 μg/L; this, together with the low volume of drug prescribed every year (10.34 kg in the UK in 2011), and the extremely low predicted environmental concentration (0.03 ng/L), suggest that, at present, the potential presence of dutasteride in the environment does not represent a threat to wild fish populations. PMID:23280489

  9. Inhibition of Human Steroid 5-Reductase (AKR1D1) by Finasteride and Structure of the Enzyme-Inhibitor Complex

    SciTech Connect

    Drury, J.; Di Costanzo, L; Penning, T; Christianson, D

    2009-01-01

    The {Delta}{sup 4}-3-ketosteroid functionality is present in nearly all steroid hormones apart from estrogens. The first step in functionalization of the A-ring is mediated in humans by steroid 5{alpha}- or 5{beta}-reductase. Finasteride is a mechanism-based inactivator of 5{alpha}-reductase type 2 with subnanomolar affinity and is widely used as a therapeutic for the treatment of benign prostatic hyperplasia. It is also used for androgen deprivation in hormone-dependent prostate carcinoma, and it has been examined as a chemopreventive agent in prostate cancer. The effect of finasteride on steroid 5{beta}-reductase (AKR1D1) has not been previously reported. We show that finasteride competitively inhibits AKR1D1 with low micromolar affinity but does not act as a mechanism-based inactivator. The structure of the AKR1D1 {center_dot} NADP{sup +} {center_dot} finasteride complex determined at 1.7 {angstrom} resolution shows that it is not possible for NADPH to reduce the {Delta}{sup 1-2}-ene of finasteride because the cofactor and steroid are not proximal to each other. The C3-ketone of finasteride accepts hydrogen bonds from the catalytic residues Tyr-58 and Glu-120 in the active site of AKR1D1, providing an explanation for the competitive inhibition observed. This is the first reported structure of finasteride bound to an enzyme involved in steroid hormone metabolism.

  10. Pelvic MRI in a 17-year-old XY girl with 5-alpha reductase deficiency and a homozygous Gly115Asp mutation in SRD5A2.

    PubMed

    Sarfati, J; Trabado, S; Rocher, L; Mallet, D; Betari-Tabet, B; Morel, Y; Young, J

    2011-09-01

    We describe, here, the case report and detailed pelvic magnetic resonance imaging (MRI) aspect of a 17-year-old female XY teenager in which 5-α-reductase deficiency was caused by the homozygous Gly115Asp lost of function SRD5A2 mutation.

  11. Age and Obesity Promote Methylation and Suppression of 5-Alpha Reductase 2–Implications for Personalized Therapy in Benign Prostatic Hyperplasia

    PubMed Central

    Bechis, Seth K.; Otsetov, Alexander G.; Ge, Rongbin; Wang, Zongwei; Vangel, Mark G.; Wu, Chin-Lee; Tabatabaei, Shahin; Olumi, Aria F.

    2016-01-01

    Purpose 5α reductase inhibitors (5ARIs) are a main modality of treatment for men suffering from symptomatic benign prostatic hyperplasia (BPH). Over 30% of men do not respond to the therapeutic effects of 5ARIs. We have found that 1/3 of adult prostate samples do not express 5AR2 secondary to epigenetic modifications. We sought to evaluate whether 5AR2 expression in BPH specimens of symptomatic men was linked to methylation of the 5AR2 gene promoter and identify associations with age, obesity, cardiac risk factors, and prostate specific antigen (PSA). Materials and Methods Prostate samples from men undergoing transurethral prostate resection were used. 5AR2 protein expression and gene promoter methylation status were determined by common assays. Clinical variables included age, body mass index (BMI), hypertension, hyperlipidemia, diabetes, PSA, and prostate volume. Univariate and multivariate statistical analyses were performed, followed by stepwise logistic regression modeling. Results BMI and age were significantly correlated with methylation of the 5AR2 gene promoter (p<0.05), whereas prostate volume, PSA, or use of BPH medication were not. Methylation was highly correlated with 5AR protein expression (p<0.0001). In a predictive model, both increasing age and BMI significantly predicted methylation status and protein expression (p<0.01). Conclusions Increasing age and BMI correlate with increased 5AR2 gene promoter methylation and decreased protein expression in men with symptomatic BPH. These results highlight the interplay between age, obesity and gene regulation. Our findings suggest the presence of an individualized epigenetic signature for symptomatic BPH, which may be important for choosing appropriate personalized treatment options. PMID:25916673

  12. Ribonucleotide reductases: divergent evolution of an ancient enzyme.

    PubMed

    Torrents, Eduard; Aloy, Patrick; Gibert, Isidre; Rodríguez-Trelles, Francisco

    2002-08-01

    Ribonucleotide reductases (RNRs) are uniquely responsible for converting nucleotides to deoxynucleotides in all dividing cells. The three known classes of RNRs operate through a free radical mechanism but differ in the way in which the protein radical is generated. Class I enzymes depend on oxygen for radical generation, class II uses adenosylcobalamin, and the anaerobic class III requires S-adenosylmethionine and an iron-sulfur cluster. Despite their metabolic prominence, the evolutionary origin and relationships between these enzymes remain elusive. This gap in RNR knowledge can, to a major extent, be attributed to the fact that different RNR classes exhibit greatly diverged polypeptide chains, rendering homology assessments inconclusive. Evolutionary studies of RNRs conducted until now have focused on comparison of the amino acid sequence of the proteins, without considering how they fold into space. The present study is an attempt to understand the evolutionary history of RNRs taking into account their three-dimensional structure. We first infer the structural alignment by superposing the equivalent stretches of the three-dimensional structures of representatives of each family. We then use the structural alignment to guide the alignment of all publicly available RNR sequences. Our results support the hypothesis that the three RNR classes diverged from a common ancestor currently represented by the anaerobic class III. Also, lateral transfer appears to have played a significant role in the evolution of this protein family. PMID:12107591

  13. Synthesis of testosterone and 5alpha-androstanediols during nutritionally stimulated gonadal growth in Lytechinus variegatus lamarck (Echinodermata:Echinoidea).

    PubMed

    Wasson, K M; Hines, G A; Watts, S A

    1998-08-01

    Although sex steroids and steroid converting enzymes have been found in echinoids, the relationship between steroids and reproduction has not been demonstrated. On days 0, 4, 8, 16, 32, and 48 of feeding, the gonads of previously starved Lytechinus variegatus were excised and incubated with [3H]androstenedione for 0.5 h to determine if changes in steroidogenic capacity are correlated with gonadal growth. Total rates of androstenedione conversion in the testes and ovaries increased significantly during feeding. In addition, the types and relative quantities of metabolites synthesized varied, suggesting that androstenedione metabolism is influenced by nutritional status. Both testes and ovaries synthesized testosterone, 5alpha-androstane-3alpha,17beta-diol, and 5alpha-androstane-3beta, 17beta-diol (5alpha-adiols), 5alpha-androstanedione, epiandrosterone, and androsterone on all days of feeding. In the testes, the relative quantities of testosterone and 5alpha-adiols increased greatly on day 4 of feeding. In contrast, in the ovaries testosterone synthesis was not detectable on day 4, although the relative quantities of 5alpha-adiols increased threefold. The sex-specific changes in the synthesis of these metabolites reflect a shift in the metabolic pathway indicated by changes in the relative enzyme activity indices for 5alpha-reductase (5alpha-R) (necessary for the synthesis of 5alpha-reduced androgens) and 3alpha/beta-hydroxysteroid dehydrogenase (3alpha/beta-HSDs, necessary for the synthesis of 3alpha- or 3beta-hydroxylated androgens). In both testes and ovaries the relative activities of 5alpha-R and 3alpha/beta-HSD increased on day 4 of feeding. The physiological significance of changes in androstenedione metabolism may be associated with the initiation of biosynthetic processes associated with gametogenesis. PMID:9679091

  14. "Subversive" substrates for the enzyme trypanothione disulfide reductase: alternative approach to chemotherapy of Chagas disease.

    PubMed Central

    Henderson, G B; Ulrich, P; Fairlamb, A H; Rosenberg, I; Pereira, M; Sela, M; Cerami, A

    1988-01-01

    The trypanosomatid flavoprotein disulfide reductase, trypanothione reductase, is shown to catalyze one-electron reduction of suitably substituted naphthoquinone and nitrofuran derivatives. A number of such compounds have been chemically synthesized, and a structure-activity relationship has been established; the enzyme is most active with compounds that contain basic functional groups in side-chain residues. The reduced products are readily reoxidized by molecular oxygen and thus undergo classical enzyme-catalyzed redox cycling. In addition to their ability to act as substrates for trypanothione reductase, the compounds are also shown to effectively inhibit enzymatic reduction of the enzyme's physiological substrate, trypanothione disulfide. Under aerobic conditions, trypanothione reductase is not inactivated by these redox-cycling substrates, whereas under anaerobic conditions the nitrofuran compounds cause irreversible inactivation of the enzyme. When tested for biological activity against Trypanosoma cruzi trypomastigotes, many of the test compounds were trypanocidal, and this activity correlated with their relative ability to act as substrates for trypanothione reductase. The activity of the enzyme with these redox-cycling derivatives constitutes a subversion of its normal antioxidant role within the cell. For this reason these compounds may be termed "subversive" substrates for trypanothione reductase. PMID:3135548

  15. Aldose reductase catalysis and crystallography. Insights from recent advances in enzyme structure and function.

    PubMed

    Petrash, J M; Tarle, I; Wilson, D K; Quiocho, F A

    1994-08-01

    Enhanced metabolism of glucose via the polyol pathway may play an important role in the pathogenesis of diabetic retinopathy, neuropathy, and nephropathy. Aldose reductase catalyzes the NADPH-dependent conversion of glucose to sorbitol, the first step in the polyol pathway. Interruption of the polyol pathway by inhibition of aldose reductase holds considerable promise as a therapeutic measure to prevent or delay the onset and severity of these late complications of diabetes. Dramatic advances in our understanding of the molecular biology, enzymology, and three-dimensional structure of aldose reductase have occurred in recent years, providing new and challenging insights into the enzyme's catalytic mechanism. Recent developments in structure determination of aldose reductase and the implications for evaluation and development of aldose reductase inhibitors are summarized. PMID:8039602

  16. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network.

    PubMed

    Couto, Narciso; Wood, Jennifer; Barber, Jill

    2016-06-01

    In this review article we examine the role of glutathione reductase in the regulation, modulation and maintenance of cellular redox homoeostasis. Glutathione reductase is responsible for maintaining the supply of reduced glutathione; one of the most abundant reducing thiols in the majority of cells. In its reduced form, glutathione plays key roles in the cellular control of reactive oxygen species. Reactive oxygen species act as intracellular and extracellular signalling molecules and complex cross talk between levels of reactive oxygen species, levels of oxidised and reduced glutathione and other thiols, and antioxidant enzymes such as glutathione reductase determine the most suitable conditions for redox control within a cell or for activation of programmed cell death. Additionally, we discuss the translation and expression of glutathione reductase in a number of organisms including yeast and humans. In yeast and human cells, a single gene expresses more than one form of glutathione reductase, destined for residence in the cytoplasm or for translocation to different organelles; in plants, however, two genes encoding this protein have been described. In general, insects and kinetoplastids (a group of protozoa, including Plasmodia and Trypanosoma) do not express glutathione reductase or glutathione biosynthetic enzymes. Instead, they express either the thioredoxin system or the trypanothione system. The thioredoxin system is also present in organisms that have the glutathione system and there may be overlapping functions with cross-talk between the two systems. Finally we evaluate therapeutic targets to overcome oxidative stress associated cellular disorders.

  17. Periplasmic Nitrate Reductase (NapABC Enzyme) Supports Anaerobic Respiration by Escherichia coli K-12

    PubMed Central

    Stewart, Valley; Lu, Yiran; Darwin, Andrew J.

    2002-01-01

    Periplasmic nitrate reductase (NapABC enzyme) has been characterized from a variety of proteobacteria, especially Paracoccus pantotrophus. Whole-genome sequencing of Escherichia coli revealed the structural genes napFDAGHBC, which encode NapABC enzyme and associated electron transfer components. E. coli also expresses two membrane-bound proton-translocating nitrate reductases, encoded by the narGHJI and narZYWV operons. We measured reduced viologen-dependent nitrate reductase activity in a series of strains with combinations of nar and nap null alleles. The napF operon-encoded nitrate reductase activity was not sensitive to azide, as shown previously for the P. pantotrophus NapA enzyme. A strain carrying null alleles of narG and narZ grew exponentially on glycerol with nitrate as the respiratory oxidant (anaerobic respiration), whereas a strain also carrying a null allele of napA did not. By contrast, the presence of napA+ had no influence on the more rapid growth of narG+ strains. These results indicate that periplasmic nitrate reductase, like fumarate reductase, can function in anaerobic respiration but does not constitute a site for generating proton motive force. The time course of Φ(napF-lacZ) expression during growth in batch culture displayed a complex pattern in response to the dynamic nitrate/nitrite ratio. Our results are consistent with the observation that Φ(napF-lacZ) is expressed preferentially at relatively low nitrate concentrations in continuous cultures (H. Wang, C.-P. Tseng, and R. P. Gunsalus, J. Bacteriol. 181:5303-5308, 1999). This finding and other considerations support the hypothesis that NapABC enzyme may function in E. coli when low nitrate concentrations limit the bioenergetic efficiency of nitrate respiration via NarGHI enzyme. PMID:11844760

  18. Spinach nitrite reductase. Purification and properties of a siroheme-containing iron-sulfur enzyme.

    PubMed

    Vega, J M; Kamin, H

    1977-02-10

    Ferredoxin-nitrite reductase (EC 1.7.7.1.) from spinach has been purified to homogeneity with a specific activity of 110 units/mg of protein. The enzyme, Mr = 61,000 has 3 iron atoms (of which one is in siroheme) and 2 labile sulfides, i.e. 1 (Fe2-S2) per molecule, with absorption maxima at 276, 386 (Soret), 573 (alpha), and 690 nm, with an E386 of 3.97 X 10(4) M-1-cm-1, and A276/A386 absorptivity ratio of 1.8. Anaerobic addition of dithionite results in the loss of the 690 nm peak and the splitting of the 573 nm absorption band into two broad peaks at 545 and 585 nm. Reduction by dithionite is enhanced by cyanide (Fig. 7) and requires about 3 electron eq per mol of enzyme. With nitrite or hydroxylamine (substrates of the enzyme), cyanide (a competitive inhibitor with respect to nitrite), or sulfite, the 690 nm absorption band of substrate-free enzyme disappears and the absorbance in the Soret and alpha region are altered. The high spin EPR signals disappear (J. M. Vega, H. Kamin, N. R. Orme-Johnson, and W. H. Orme-Johnson, unpublished observations). Titration permits calculation of 1 mol of nitrite bound/mol of enzyme with a Kdiss of 3.2 X 10(-6) M. Dithionite-reduced enzyme also forms complexes with added nitrite, hydroxylamine, or cyanide, characterized by marked alterations in the 573 (alpha) absorption band. THus, substrates or competitive inhibitors can be bound to the oxidized or reduced enzyme forms. CO inhibits nitrite reductase and forms a complex with reduced enzyme (epsilonmax at 395, 543, and 585 nm). Formation or dissociation of the spectrophotometrically detectable CO complex correlates with inhibition or inhibition-reversal of nitrite reduction catalysis. During steady state turnover with dithionite and nitrite, the enzyme forms a complex with added nitrite with absorption difference maxima at 445, 538, and 580 nm with respect to reduced enzyme. When nearly all substrate is depleted the spectrum of a new species appears, indicating that nitrite

  19. New enzyme belonging to the family of molybdenum-free nitrate reductases.

    PubMed Central

    Antipov, Alexey N; Sorokin, Dimitry Y; L'Vov, Nikolay P; Kuenen, J Gijs

    2003-01-01

    A novel molybdenum-free nitrate reductase was isolated from the obligate chemolithoautotrophic and facultative anaerobic, (halo)alkaliphilic sulphur-oxidizing bacterium Thioalkalivibrio nitratireducens strain ALEN 2. The enzyme was found to contain vanadium and haem c as cofactors. Its native molecular mass was determined as 195 kDa, and the enzyme consists of four identical subunits with apparent molecular masses of 57 kDa. Apart from nitrate, the enzyme can utilize nitrite, chlorate, bromate, selenate and sulphite as electron acceptors. Moreover, it also has a haloperoxidase activity. PMID:12238951

  20. Sequence diversity and enzyme activity of ferric-chelate reductase LeFRO1 in tomato.

    PubMed

    Kong, Danyu; Chen, Chunlin; Wu, Huilan; Li, Ye; Li, Junming; Ling, Hong-Qing

    2013-11-20

    Ferric-chelate reductase which functions in the reduction of ferric to ferrous iron on root surface is a critical protein for iron homeostasis in strategy I plants. LeFRO1 is a major ferric-chelate reductase involved in iron uptake in tomato. To identify the natural variations of LeFRO1 and to assess their effect on the ferric-chelate reductase activity, we cloned the coding sequences of LeFRO1 from 16 tomato varieties collected from different regions, and detected three types of LeFRO1 (LeFRO1(MM), LeFRO1(Ailsa) and LeFRO1(Monita)) with five amino acid variations at the positions 21, 24, 112, 195 and 582. Enzyme activity assay revealed that the three types of LeFRO1 possessed different ferric-chelate reductase activity (LeFRO1(Ailsa) > LeFRO1(MM) > LeFRO1(Monita)). The 112th amino acid residue Ala of LeFRO1 is critical for maintaining the high activity of ferric-chelate reductase, because modification of this amino acid resulted in a significant reduction of enzyme activity. Further, we showed that the combination of the amino acid residue Ile at the site 24 with Lys at the site 582 played a positive role in the enzyme activity of LeFRO1. In conclusion, the findings are helpful to understand the natural adaptation mechanisms of plants to iron-limiting stress, and may provide new knowledge to select and manipulate LeFRO1 for improving the iron deficiency tolerance in tomato.

  1. Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism.

    PubMed

    Rižner, Tea Lanišnik; Penning, Trevor M

    2014-01-01

    Human aldo-keto reductases AKR1C1-AKR1C4 and AKR1D1 play essential roles in the metabolism of all steroid hormones, the biosynthesis of neurosteroids and bile acids, the metabolism of conjugated steroids, and synthetic therapeutic steroids. These enzymes catalyze NADPH dependent reductions at the C3, C5, C17 and C20 positions on the steroid nucleus and side-chain. AKR1C1-AKR1C4 act as 3-keto, 17-keto and 20-ketosteroid reductases to varying extents, while AKR1D1 acts as the sole Δ(4)-3-ketosteroid-5β-reductase (steroid 5β-reductase) in humans. AKR1 enzymes control the concentrations of active ligands for nuclear receptors and control their ligand occupancy and trans-activation, they also regulate the amount of neurosteroids that can modulate the activity of GABAA and NMDA receptors. As such they are involved in the pre-receptor regulation of nuclear and membrane bound receptors. Altered expression of individual AKR1C genes is related to development of prostate, breast, and endometrial cancer. Mutations in AKR1C1 and AKR1C4 are responsible for sexual development dysgenesis and mutations in AKR1D1 are causative in bile-acid deficiency.

  2. Expression, purification, crystallization and preliminary X-ray analysis of perakine reductase, a new member of the aldo-keto reductase enzyme superfamily from higher plants

    SciTech Connect

    Rosenthal, Cindy; Mueller, Uwe; Panjikar, Santosh; Sun, Lianli; Ruppert, Martin; Zhao, Yu; Stöckigt, Joachim

    2006-12-01

    Perakine reductase, a novel member of the aldo-keto reductase enzyme superfamily of higher plants, is involved in the biosynthesis of monoterpenoid indole alkaloids in the Indian medicinal plant Rauvolfia serpentina. The enzyme has been crystallized in C-centered orthorhombic space group and diffracts to 2.0 Å resolution. Perakine reductase (PR) is a novel member of the aldo-keto reductase enzyme superfamily from higher plants. PR from the plant Rauvolfia serpentina is involved in the biosynthesis of monoterpenoid indole alkaloids by performing NADPH-dependent reduction of perakine, yielding raucaffrinoline. However, PR can also reduce cinnamic aldehyde and some of its derivatives. After heterologous expression of a triple mutant of PR in Escherichia coli, crystals of the purified and methylated enzyme were obtained by the hanging-drop vapour-diffusion technique at 293 K with 100 mM sodium citrate pH 5.6 and 27% PEG 4000 as precipitant. Crystals belong to space group C222{sub 1} and diffract to 2.0 Å, with unit-cell parameters a = 58.9, b = 93.0, c = 143.4 Å.

  3. Structural and Biochemical Characterization of a Ferredoxin:Thioredoxin Reductase-like Enzyme from Methanosarcina acetivorans.

    PubMed

    Kumar, Adepu K; Kumar, R Siva Sai; Yennawar, Neela H; Yennawar, Hemant P; Ferry, James G

    2015-05-19

    Bioinformatics analyses predict the distribution in nature of several classes of diverse disulfide reductases that evolved from an ancestral plant-type ferredoxin:thioredoxin reductase (FTR) catalytic subunit to meet a variety of ecological needs. Methanosarcina acetivorans is a methane-producing species from the domain Archaea predicted to encode an FTR-like enzyme with two domains, one resembling the FTR catalytic subunit and the other containing a rubredoxin-like domain replacing the variable subunit of present-day FTR enzymes. M. acetivorans is of special interest as it was recently proposed to have evolved at the time of the end-Permian extinction and to be largely responsible for the most severe biotic crisis in the fossil record by converting acetate to methane. The crystal structure and biochemical characteristics were determined for the FTR-like enzyme from M. acetivorans, here named FDR (ferredoxin disulfide reductase). The results support a role for the rubredoxin-like center of FDR in transfer of electrons from ferredoxin to the active-site [Fe₄S₄] cluster adjacent to a pair of redox-active cysteines participating in reduction of disulfide substrates. A mechanism is proposed for disulfide reduction similar to one of two mechanisms previously proposed for the plant-type FTR. Overall, the results advance the biochemical and evolutionary understanding of the FTR-like family of enzymes and the conversion of acetate to methane that is an essential link in the global carbon cycle and presently accounts for most of this greenhouse gas that is biologically generated. PMID:25915695

  4. Defining the Role of the NADH-Cytochrome-b5 Reductase 3 in the Mitochondrial Amidoxime Reducing Component Enzyme System.

    PubMed

    Plitzko, Birte; Havemeyer, Antje; Bork, Bettina; Bittner, Florian; Mendel, Ralf; Clement, Bernd

    2016-10-01

    The importance of the mitochondrial amidoxime reducing component (mARC)-containing enzyme system in N-reductive metabolism has been studied extensively. It catalyzes the reduction of various N-hydroxylated compounds and therefore acts as the counterpart of cytochrome P450- and flavin-containing monooxygenase-catalyzed oxidations at nitrogen centers. This enzyme system was found to be responsible for the activation of amidoxime and N-hydroxyguanidine prodrugs in drug metabolism. The synergy of three components (mARC, cytochrome b5, and the appropriate reductase) is crucial to exert the N-reductive catalytic effect. Previous studies have demonstrated the involvement of the specific isoforms of the molybdoenzyme mARC and the electron transport protein cytochrome b5 in N-reductive metabolism. To date, the corresponding reductase involved in N-reductive metabolism has yet to be defined because previous investigations have presented ambiguous results. Using small interfering RNA-mediated knockdown in human cells and assessing the stoichiometry of the enzyme system reconstituted in vitro, we provide evidence that NADH-cytochrome-b5 reductase 3 is the principal reductase involved in the mARC enzyme system and is an essential component of N-reductive metabolism in human cells. In addition, only minimal levels of cytochrome-b5 reductase 3 protein are sufficient for catalysis, which impeded previous attempts to identify the reductase.

  5. Influence of the enzyme dissimilatory sulfite reductase on stable isotope fractionation during sulfate reduction

    NASA Astrophysics Data System (ADS)

    Mangalo, Muna; Einsiedl, Florian; Meckenstock, Rainer U.; Stichler, Willibald

    2008-03-01

    The stable isotopes of sulfate are often used as a tool to assess bacterial sulfate reduction on the macro scale. However, the mechanisms of stable isotope fractionation of sulfur and oxygen at the enzymatic level are not yet fully understood. In batch experiments with water enriched in 18O we investigated the effect of different nitrite concentrations on sulfur isotope fractionation by Desulfovibrio desulfuricans. With increasing nitrite concentrations, we found sulfur isotope enrichment factors ranging from -11.2 ± 1.8‰ to -22.5 ± 3.2‰. Furthermore, the δ18O values in the remaining sulfate increased from approximately 50-120‰ when 18O-enriched water was supplied. Since 18O-exchange with ambient water does not take place in sulfate, but rather in intermediates of the sulfate reduction pathway (e.g. SO32-), we suggest that nitrite affects the steady-state concentration and the extent of reoxidation of the metabolic intermediate sulfite to sulfate during sulfate reduction. Given that nitrite is known to inhibit the production of the enzyme dissimilatory sulfite reductase, our results suggest that the activity of the dissimilatory sulfite reductase regulates the kinetic isotope fractionation of sulfur and oxygen during bacterial sulfate reduction. Our novel results also imply that isotope fractionation during bacterial sulfate reduction strongly depends on the cell internal enzymatic regulation rather than on the physico-chemical features of the individual enzymes.

  6. Induction of the anticarcinogenic marker enzyme, quinone reductase, in murine hepatoma cells in vitro by flavonoids.

    PubMed

    Uda, Y; Price, K R; Williamson, G; Rhodes, M J

    1997-12-01

    Some flavonoids induce phase II enzymes both in vivo and in vitro. We have determined the structural requirements for this activity by examining the ability of naturally-occurring flavonoids to induce the phase II enzyme, quinone reductase (NAD(P)H:quinone oxidoreductase; EC 1.6.99.2), in murine Hepalclc7 cells. Hydroxylation of the B ring is not essential for induction, since galangin and kaempferol (with 0 and 1 hydroxyl in the B ring, respectively) are better inducers than quercetin (2 B ring hydroxyls). A 2,3 double bond in the C ring is essential for induction, since taxifolin, which has the same substitution pattern as quercetin but lacks the 2,3 double bond, is not an inducer. This is supported by catechin and epicatechin, which do not possess the 2,3 double bond and are also not inducers. A 3-hydroxyl group increases the activity but is not essential for induction, since apigenin is an inducer but kaempferol (which has the same structure as apigenin but possesses a 3-hydroxyl group) is more effective. The data show that, of the flavonoids, the flavonols are the most effective inducers of quinone reductase activity in Hepa1c1c7 cells (kaempferol approximately galangin > quercetin > myricetin approximately apigenin (a flavone)) and that flavanols and flavans are ineffective.

  7. Molecular cloning and functional expression of codeinone reductase: the penultimate enzyme in morphine biosynthesis in the opium poppy Papaver somniferum.

    PubMed

    Unterlinner, B; Lenz, R; Kutchan, T M

    1999-06-01

    The narcotic analgesic morphine is the major alkaloid of the opium poppy Papaver somniferum. Its biosynthetic precursor codeine is currently the most widely used and effective antitussive agent. Along the morphine biosynthetic pathway in opium poppy, codeinone reductase catalyzes the NADPH-dependent reduction of codeinone to codeine. In this study, we have isolated and characterized four cDNAs encoding codeinone reductase isoforms and have functionally expressed them in Escherichia coli. Heterologously expressed codeinone reductase-calmodulin-binding peptide fusion protein was purified from E. coli using calmodulin affinity column chromatography in a yield of 10 mg enzyme l-1. These four isoforms demonstrated very similar physical properties and substrate specificity. As least six alleles appear to be present in the poppy genome. A comparison of the translations of the nucleotide sequences indicate that the codeinone reductase isoforms are 53% identical to 6'-deoxychalcone synthase from soybean suggesting an evolutionary although not a functional link between enzymes of phenylpropanoid and alkaloid biosynthesis. By sequence comparison, both codeinone reductase and 6'-deoxy- chalcone synthase belong to the aldo/keto reductase family, a group of structurally and functionally related NADPH-dependent oxidoreductases, and thereby possibly arise from primary metabolism.

  8. 5Alpha-Reduced Steroids Are Major Metabolites in the Early Equine Embryo Proper and Its Membranes.

    PubMed

    Raeside, James I; Christie, Heather L; Betteridge, Keith J

    2015-09-01

    Steroid production and metabolism by early conceptuses are very important for the establishment and maintenance of pregnancy in horses. Our earlier work suggested the possible formation of 5alpha-reduced steroids in equine conceptuses. We have now demonstrated the formation of 5alpha-reduced metabolites of androstenedione, testosterone, and progesterone by the embryo and its membranes. A total of 44 conceptuses were collected from 26 mares between 20 and 31 days of pregnancy. Tissues from the embryo proper and from the separated components of the conceptus (bilaminar and trilaminar trophoblast, allantois) were incubated with tritium-labeled substrates. 5Alpha-reduced metabolites (5alpha-dihydro- and 3beta,5alpha-tetrahydro- steroids) as radiolabeled products were identified from a series of chromatographic steps using four solvent systems for high-performance liquid chromatography. Use of a 5alpha-reductase inhibitor confirmed the metabolites were indeed 5alpha-reduced steroids. For the embryo, the only products from androstenedione were 5alpha-dihydroandrostenedione and 3beta,5alpha-tetrahydroandrostenedione, with no evidence of more polar metabolites; there was some 3beta,5alpha-tetrahydrotestosterone but no 5alpha-dihydrotestosterone from testosterone, and formation of androstenedione was followed by the production of 5alpha-dihydroandrostenedione and 3beta,5alpha-tetrahydroandrostenedione. The major 5alpha-reduced product from progesterone was 3beta,5alpha-tetrahydroprogesterone, with lesser amounts of 5alpha-dihydroprogesterone. For the membranes, reductions to tetrahydro, 5alpha-reduced steroids were prominent in most instances, but also present were considerable amounts of products more polar than the substrates. The well-recognized activity of some 5alpha-reduced steroids--for example, 5alpha-dihydrotestosterone in male sexual differentiation--provokes interest in their even earlier appearance, as seen in this study, and suggests a possible role for them in

  9. Yarrowia lipolytica dehydrogenase/reductase: an enzyme tolerant for lipophilic compounds and carbohydrate substrates.

    PubMed

    Napora, Kamila; Wrodnigg, Tanja M; Kosmus, Patrick; Thonhofer, Martin; Robins, Karen; Winkler, Margit

    2013-06-01

    Yarrowia lipolytica short chain dehydrogenase/reductase (YlSDR) was expressed in Escherichia coli, purified and characterized in vitro. The substrate scope for YlSDR mediated oxidation was investigated with alcohols and unprotected carbohydrates spectrophotometrically, revealing a preference for secondary compared to primary alcohols. In reduction direction, YlSDR was highly active on ribulose and fructose, suggesting that the enzyme is a mannitol-2-dehydrogenase. In order to explore substrate tolerance especially for space-demanding, lipophilic protecting groups, 5-O-trityl-D-ribitol and 5-O-trityl-α,β-D-ribose were investigated as substrates: YlSDR oxidized 5-O-trityl-D-ribitol and 5-O-trityl-α,β-D-ribose and reduced the latter at the expense of NADP(H).

  10. Crystal structures of nitric oxide reductases provide key insights into functional conversion of respiratory enzymes.

    PubMed

    Tosha, Takehiko; Shiro, Yoshitsugu

    2013-03-01

    Respiration is an essential biological process to get bioenergy, ATP, for all kingdoms of life. Cytochrome c oxidase (COX) plays central role in aerobic respiration, catalyzing the reduction of O(2) coupled with pumping proton across the biological membrane. Nitric oxide reductase (NOR) involved in anaerobic nitrate respiration is suggested to be evolutionary related to COX and share the same progenitor with COX, on the basis of the amino acid sequence homology. Contrary to COX, NOR catalyzes the reduction of nitric oxide and shows no proton pumping ability. Thus, the respiratory enzyme acquires (or loses) proton pumping ability in addition to the conversion of the catalytic property along with the environmental change on earth. Recently, we solved the structures of two types of NORs, which provides novel insights into the functional conversion of the respiratory enzymes. In this review, we focus on the structural similarities and differences between COXs and NORs and discuss possible mechanism for the functional conversion of these enzymes during molecular evolution.

  11. Identification of Methionine Sulfoxide Diastereomers in Immunoglobulin Gamma Antibodies Using Methionine Sulfoxide Reductase enzymes

    SciTech Connect

    Khor, Hui K.; Jacoby, Michael E.; Squier, Thomas C.; Chu, Grace C.; Chelius, Dirk

    2010-06-01

    During prolonged periods of storage methionines in antibodies and other proteins are known to become oxidized to form methionine sulfoxides and sulfones. While these post-translational modifications are commonly identified by peptide mapping, it is currently problematic to identify the relative abundances of the S- and R-diastereomers of methionine sulfoxide (Met(O)) due to their identical polarities and masses. Accordingly, we have developed a separation methodology for the rapid and quantitative determination of the relative abundances of Met(O) diastereomers. Identification of these diastereomers takes advantage of the complementary stereospecificities of methionine sulfoxide reductase (Msr) enzymes MsrA and MsrB, which respectively promote the selective reduction of S- and R-diastereomers of Met(O). In addition, an MsrBA fusion protein that contained both Msr enzyme activities permitted the quantitative reduction of all Met(O). Using these Msr enzymes in combination with peptide mapping we are able to detect and differentiate Met-diastereomers in a monoclonal IgG2 and IgG1 antibody. We also monitored the formation of sulfones and studied the rate of oxidation in the different Met residues in our IgG2 antibody. The reported ability to separate and identify diastereomers of Met(O) permits a more complete characterization of Met oxidation products. All the affected Met residues (M251, M427, M396) in this study are conserved in human IgG sequences and therefore offer predictive potential in characterizing oxidative modification.

  12. Impact of residues remote from the catalytic centre on enzyme catalysis of copper nitrite reductase

    PubMed Central

    Leferink, Nicole G. H.; Antonyuk, Svetlana V.; Houwman, Joseline A.; Scrutton, Nigel S.; Eady, Robert R.; Hasnain, S. Samar

    2014-01-01

    Enzyme mechanisms are often probed by structure-informed point mutations and measurement of their effects on enzymatic properties to test mechanistic hypotheses. In many cases, the challenge is to report on complex, often inter-linked elements of catalysis. Evidence for long-range effects on enzyme mechanism resulting from mutations remains sparse, limiting the design/redesign of synthetic catalysts in a predictable way. Here we show that improving the accessibility of the active site pocket of copper nitrite reductase by mutation of a surface-exposed phenylalanine residue (Phe306), located 12 Å away from the catalytic site type-2 Cu (T2Cu), profoundly affects intra-molecular electron transfer, substrate-binding and catalytic activity. Structures and kinetic studies provide an explanation for the lower affinity for the substrate and the alteration of the rate-limiting step in the reaction. Our results demonstrate that distant residues remote from the active site can have marked effects on enzyme catalysis, by driving mechanistic change through relatively minor structural perturbations. PMID:25022223

  13. Impact of residues remote from the catalytic centre on enzyme catalysis of copper nitrite reductase.

    PubMed

    Leferink, Nicole G H; Antonyuk, Svetlana V; Houwman, Joseline A; Scrutton, Nigel S; Eady, Robert R; Hasnain, S Samar

    2014-07-15

    Enzyme mechanisms are often probed by structure-informed point mutations and measurement of their effects on enzymatic properties to test mechanistic hypotheses. In many cases, the challenge is to report on complex, often inter-linked elements of catalysis. Evidence for long-range effects on enzyme mechanism resulting from mutations remains sparse, limiting the design/redesign of synthetic catalysts in a predictable way. Here we show that improving the accessibility of the active site pocket of copper nitrite reductase by mutation of a surface-exposed phenylalanine residue (Phe306), located 12 Å away from the catalytic site type-2 Cu (T2Cu), profoundly affects intra-molecular electron transfer, substrate-binding and catalytic activity. Structures and kinetic studies provide an explanation for the lower affinity for the substrate and the alteration of the rate-limiting step in the reaction. Our results demonstrate that distant residues remote from the active site can have marked effects on enzyme catalysis, by driving mechanistic change through relatively minor structural perturbations.

  14. Insights into Enzyme Catalysis and Thyroid Hormone Regulation of Cerebral Ketimine Reductase/μ-Crystallin Under Physiological Conditions.

    PubMed

    Hallen, André; Cooper, Arthur J L; Jamie, Joanne F; Karuso, Peter

    2015-06-01

    Mammalian ketimine reductase is identical to μ-crystallin (CRYM)-a protein that is also an important thyroid hormone binding protein. This dual functionality implies a role for thyroid hormones in ketimine reductase regulation and also a reciprocal role for enzyme catalysis in thyroid hormone bioavailability. In this research we demonstrate potent sub-nanomolar inhibition of enzyme catalysis at neutral pH by the thyroid hormones L-thyroxine and 3,5,3'-triiodothyronine, whereas other thyroid hormone analogues were shown to be far weaker inhibitors. We also investigated (a) enzyme inhibition by the substrate analogues pyrrole-2-carboxylate, 4,5-dibromopyrrole-2-carboxylate and picolinate, and (b) enzyme catalysis at neutral pH of the cyclic ketimines S-(2-aminoethyl)-L-cysteine ketimine (owing to the complex nomenclature trivial names are used for the sulfur-containing cyclic ketimines as per the original authors' descriptions) (AECK), Δ(1)-piperideine-2-carboxylate (P2C), Δ(1)-pyrroline-2-carboxylate (Pyr2C) and Δ(2)-thiazoline-2-carboxylate. Kinetic data obtained at neutral pH suggests that ketimine reductase/CRYM plays a major role as a P2C/Pyr2C reductase and that AECK is not a major substrate at this pH. Thus, ketimine reductase is a key enzyme in the pipecolate pathway, which is the main lysine degradation pathway in the brain. In silico docking of various ligands into the active site of the X-ray structure of the enzyme suggests an unusual catalytic mechanism involving an arginine residue as a proton donor. Given the critical importance of thyroid hormones in brain function this research further expands on our knowledge of the connection between amino acid metabolism and regulation of thyroid hormone levels.

  15. Mechanism of action of clostridial glycine reductase: Isolation and characterization of a covalent acetyl enzyme intermediate

    SciTech Connect

    Arkowitz, R.A.; Abeles, R.H. )

    1991-04-23

    Clostridial glycine reductase consists of proteins A, B, and C and catalyzes the reaction glycine + P{sub i} + 2e{sup {minus}} {yields} acetyl phosphate + NH{sub 4}{sup +}. Evidence was previously obtained that is consistent with the involvement of an acyl enzyme intermediate in this reaction. The authors now demonstrate that protein C catalyzes exchange of ({sup 32}P)P{sub i} into acetyl phosphate, providing additional support for an acetyl enzyme intermediate on protein C. Furthermore, they have isolated acetyl protein C and shown that it is qualitatively, catalytically competent. Acetyl protein C can be obtained through the forward reaction from protein C and Se-(carboxymethyl)selenocysteine-protein A, which is generated by the reaction of glycine with proteins A and B. Acetyl protein C can also be generated through the reverse reaction by the addition of acetyl phosphate to protein C. Both procedures lead to the same acetyl enzyme. The acetyl enzyme reacts with P{sub i} to give acetyl phosphate. When ({sup 14}C)acetyl protein C is denaturated with TCA and redissolved with urea, radioactivity remained associated with the protein. Treatment with KBH{sub 4} removes all the radioactivity associated with protein C, resulting in the formation of ({sup 14}C)ethanol. They conclude that a thiol group on protein C is acetylated. Proteins A and C together catalyze the exchange of tritium atoms from ({sup 3}H)H{sub 2}O into acetyl phosphate. This exchange reaction supports the proposal that an enol of the acetyl enzyme is an intermediate in the reaction sequence.

  16. Serial crystallography captures enzyme catalysis in copper nitrite reductase at atomic resolution from one crystal

    PubMed Central

    Horrell, Sam; Antonyuk, Svetlana V.; Eady, Robert R.; Hasnain, S. Samar; Hough, Michael A.; Strange, Richard W.

    2016-01-01

    Relating individual protein crystal structures to an enzyme mechanism remains a major and challenging goal for structural biology. Serial crystallography using multiple crystals has recently been reported in both synchrotron-radiation and X-ray free-electron laser experiments. In this work, serial crystallography was used to obtain multiple structures serially from one crystal (MSOX) to study in crystallo enzyme catalysis. Rapid, shutterless X-ray detector technology on a synchrotron MX beamline was exploited to perform low-dose serial crystallography on a single copper nitrite reductase crystal, which survived long enough for 45 consecutive 100 K X-ray structures to be collected at 1.07–1.62 Å resolution, all sampled from the same crystal volume. This serial crystallography approach revealed the gradual conversion of the substrate bound at the catalytic type 2 Cu centre from nitrite to nitric oxide, following reduction of the type 1 Cu electron-transfer centre by X-ray-generated solvated electrons. Significant, well defined structural rearrangements in the active site are evident in the series as the enzyme moves through its catalytic cycle, namely nitrite reduction, which is a vital step in the global denitrification process. It is proposed that such a serial crystallography approach is widely applicable for studying any redox or electron-driven enzyme reactions from a single protein crystal. It can provide a ‘catalytic reaction movie’ highlighting the structural changes that occur during enzyme catalysis. The anticipated developments in the automation of data analysis and modelling are likely to allow seamless and near-real-time analysis of such data on-site at some of the powerful synchrotron crystallographic beamlines. PMID:27437114

  17. Serial crystallography captures enzyme catalysis in copper nitrite reductase at atomic resolution from one crystal.

    PubMed

    Horrell, Sam; Antonyuk, Svetlana V; Eady, Robert R; Hasnain, S Samar; Hough, Michael A; Strange, Richard W

    2016-07-01

    Relating individual protein crystal structures to an enzyme mechanism remains a major and challenging goal for structural biology. Serial crystallography using multiple crystals has recently been reported in both synchrotron-radiation and X-ray free-electron laser experiments. In this work, serial crystallography was used to obtain multiple structures serially from one crystal (MSOX) to study in crystallo enzyme catalysis. Rapid, shutterless X-ray detector technology on a synchrotron MX beamline was exploited to perform low-dose serial crystallography on a single copper nitrite reductase crystal, which survived long enough for 45 consecutive 100 K X-ray structures to be collected at 1.07-1.62 Å resolution, all sampled from the same crystal volume. This serial crystallography approach revealed the gradual conversion of the substrate bound at the catalytic type 2 Cu centre from nitrite to nitric oxide, following reduction of the type 1 Cu electron-transfer centre by X-ray-generated solvated electrons. Significant, well defined structural rearrangements in the active site are evident in the series as the enzyme moves through its catalytic cycle, namely nitrite reduction, which is a vital step in the global denitrification process. It is proposed that such a serial crystallography approach is widely applicable for studying any redox or electron-driven enzyme reactions from a single protein crystal. It can provide a 'catalytic reaction movie' highlighting the structural changes that occur during enzyme catalysis. The anticipated developments in the automation of data analysis and modelling are likely to allow seamless and near-real-time analysis of such data on-site at some of the powerful synchrotron crystallographic beamlines. PMID:27437114

  18. Serial crystallography captures enzyme catalysis in copper nitrite reductase at atomic resolution from one crystal.

    PubMed

    Horrell, Sam; Antonyuk, Svetlana V; Eady, Robert R; Hasnain, S Samar; Hough, Michael A; Strange, Richard W

    2016-07-01

    Relating individual protein crystal structures to an enzyme mechanism remains a major and challenging goal for structural biology. Serial crystallography using multiple crystals has recently been reported in both synchrotron-radiation and X-ray free-electron laser experiments. In this work, serial crystallography was used to obtain multiple structures serially from one crystal (MSOX) to study in crystallo enzyme catalysis. Rapid, shutterless X-ray detector technology on a synchrotron MX beamline was exploited to perform low-dose serial crystallography on a single copper nitrite reductase crystal, which survived long enough for 45 consecutive 100 K X-ray structures to be collected at 1.07-1.62 Å resolution, all sampled from the same crystal volume. This serial crystallography approach revealed the gradual conversion of the substrate bound at the catalytic type 2 Cu centre from nitrite to nitric oxide, following reduction of the type 1 Cu electron-transfer centre by X-ray-generated solvated electrons. Significant, well defined structural rearrangements in the active site are evident in the series as the enzyme moves through its catalytic cycle, namely nitrite reduction, which is a vital step in the global denitrification process. It is proposed that such a serial crystallography approach is widely applicable for studying any redox or electron-driven enzyme reactions from a single protein crystal. It can provide a 'catalytic reaction movie' highlighting the structural changes that occur during enzyme catalysis. The anticipated developments in the automation of data analysis and modelling are likely to allow seamless and near-real-time analysis of such data on-site at some of the powerful synchrotron crystallographic beamlines.

  19. Molecular characterization of tobacco sulfite reductase: enzyme purification, gene cloning, and gene expression analysis.

    PubMed

    Yonekura-Sakakibara, K; Ashikari, T; Tanaka, Y; Kusumi, T a; Hase, T

    1998-09-01

    A cDNA clone, NtSiR1, that encodes the precursor of ferredoxin-dependent sulfite reductase (Fd-SiR) has been isolated from a cDNA library of tobacco (Nicotiana tabacum cv. SR1). The identity of the cDNA was established by comparison of the purified protein and the predicted structure with the nucleotide sequence. The amino terminus of the purified enzyme was Thr62 of the precursor protein, and the mature region of NtSiR1 consisted of 632 amino acids. Tobacco Fd-SiR is 82, 77, and 48% identical with Fd-SiRs from Zea mays, Arabidopsis thaliana, and a cyanobacterium, respectively. Significant similarity was also found with Escherichia coli NADPH-SiR in the region involved in ligation of siroheme and the [4Fe-4S] cluster. On Northern blot analysis, a transcript of NtSiR1 was detected in leaves, stems, roots, and petals in similar amounts. We also isolated a genomic SiR clone named gNtSiR1. It consists of 8 exons and 7 introns. Genomic Southern blot analysis indicated that at least two SiR genes are present in the tobacco genome. PMID:9722674

  20. DFT Study on Enzyme Turnover Including Proton and Electron Transfers of Copper-Containing Nitrite Reductase.

    PubMed

    Lintuluoto, Masami; Lintuluoto, Juha M

    2016-08-23

    The reaction mechanism of copper-containing nitrite reductase (CuNiR) has been proposed to include two important events, an intramolecular electron transfer and a proton transfer. The two events have been suggested to be coupled, but the order of these events is currently under debate. We investigated the entire enzyme reaction mechanism of nitrite reduction at the T2 Cu site in thermophilic Geobacillus CuNiR from Geobacillus thermodenitrificans NG80-2 (GtNiR) using density functional theory calculations. We found significant conformational changes of His ligands coordinated to the T2 Cu site upon nitrite binding during the catalytic reaction. The reduction potentials and pKa values calculated for the relevant protonation and reduction states show two possible routes, A and B. Reduction of the T2 Cu site in the resting state is followed by endothermic nitrite binding in route A, while exothermic nitrite binding occurs prior to reduction of the T2 Cu site in route B. We concluded that our results support the random-sequential mechanism rather than the ordered mechanism. PMID:27455866

  1. Giardia, Entamoeba, and Trichomonas enzymes activate metronidazole (nitroreductases) and inactivate metronidazole (nitroimidazole reductases).

    PubMed

    Pal, Dibyarupa; Banerjee, Sulagna; Cui, Jike; Schwartz, Aaron; Ghosh, Sudip K; Samuelson, John

    2009-02-01

    Infections with Giardia lamblia, Entamoeba histolytica, and Trichomonas vaginalis, which cause diarrhea, dysentery, and vaginitis, respectively, are each treated with metronidazole. Here we show that Giardia, Entamoeba, and Trichomonas have oxygen-insensitive nitroreductase (ntr) genes which are homologous to those genes that have nonsense mutations in metronidazole-resistant Helicobacter pylori isolates. Entamoeba and Trichomonas also have nim genes which are homologous to those genes expressed in metronidazole-resistant Bacteroides fragilis isolates. Recombinant Giardia, Entamoeba, and Trichomonas nitroreductases used NADH rather than the NADPH used by Helicobacter, and two recombinant Entamoeba nitroreductases increased the metronidazole sensitivity of transformed Escherichia coli strains. Conversely, the recombinant nitroimidazole reductases (NIMs) of Entamoeba and Trichmonas conferred very strong metronidazole resistance to transformed bacteria. The Ehntr1 gene of the genome project HM-1:IMSS strain of Entamoeba histolytica had a nonsense mutation, and the same nonsense mutation was present in 3 of 22 clinical isolates of Entamoeba. While ntr and nim mRNAs were variably expressed by cultured Entamoeba and Trichomonas isolates, there was no relationship to metronidazole sensitivity. We conclude that microaerophilic protists have bacterium-like enzymes capable of activating metronidazole (nitroreductases) and inactivating metronidazole (NIMs). While Entamoeba and Trichomonas displayed some of the changes (nonsense mutations and gene overexpression) associated with metronidazole resistance in bacteria, these changes did not confer metronidazole resistance to the microaerophilic protists examined here.

  2. The Protein Oxidation Repair Enzyme Methionine Sulfoxide Reductase A Modulates Aβ Aggregation and Toxicity In Vivo

    PubMed Central

    Minniti, Alicia N.; Arrazola, Macarena S.; Bravo-Zehnder, Marcela; Ramos, Francisca; Inestrosa, Nibaldo C.

    2015-01-01

    Abstract Aims: To examine the role of the enzyme methionine sulfoxide reductase A-1 (MSRA-1) in amyloid-β peptide (Aβ)-peptide aggregation and toxicity in vivo, using a Caenorhabditis elegans model of the human amyloidogenic disease inclusion body myositis. Results: MSRA-1 specifically reduces oxidized methionines in proteins. Therefore, a deletion of the msra-1 gene was introduced into transgenic C. elegans worms that express the Aβ-peptide in muscle cells to prevent the reduction of oxidized methionines in proteins. In a constitutive transgenic Aβ strain that lacks MSRA-1, the number of amyloid aggregates decreases while the number of oligomeric Aβ species increases. These results correlate with enhanced synaptic dysfunction and mislocalization of the nicotinic acetylcholine receptor ACR-16 at the neuromuscular junction (NMJ). Innovation: This approach aims at modulating the oxidation of Aβ in vivo indirectly by dismantling the methionine sulfoxide repair system. The evidence presented here shows that the absence of MSRA-1 influences Aβ aggregation and aggravates locomotor behavior and NMJ dysfunction. The results suggest that therapies which boost the activity of the Msr system could have a beneficial effect in managing amyloidogenic pathologies. Conclusion: The absence of MSRA-1 modulates Aβ-peptide aggregation and increments its deleterious effects in vivo. Antioxid. Redox Signal. 22, 48–62. PMID:24988428

  3. The Methionine Sulfoxide Reduction System: Selenium Utilization and Methionine Sulfoxide Reductase Enzymes and Their Functions

    PubMed Central

    2013-01-01

    Abstract Significance: Selenium is utilized in the methionine sulfoxide reduction system that occurs in most organisms. Methionine sulfoxide reductases (Msrs), MsrA and MsrB, are the enzymes responsible for this system. Msrs repair oxidatively damaged proteins, protect against oxidative stress, and regulate protein function, and have also been implicated in the aging process. Selenoprotein forms of Msrs containing selenocysteine (Sec) at the catalytic site are found in bacteria, algae, and animals. Recent Advances: A selenoprotein MsrB1 knockout mouse has been developed. Significant progress in the biochemistry of Msrs has been made, which includes findings of a novel reducing system for Msrs and of an interesting reason for the use of Sec in the Msr system. The effects of mammalian MsrBs, including selenoprotein MsrB1 on fruit fly aging, have been investigated. Furthermore, it is evident that Msrs are involved in methionine metabolism and regulation of the trans-sulfuration pathway. Critical Issues: This article presents recent progress in the Msr field while focusing on the physiological roles of mammalian Msrs, functions of selenoprotein forms of Msrs, and their biochemistry. Future Directions: A deeper understanding of the roles of Msrs in redox signaling, the aging process, and metabolism will be achieved. The identity of selenoproteome of Msrs will be sought along with characterization of the identified selenoprotein forms. Exploring new cellular targets and new functions of Msrs is also warranted. Antioxid. Redox Signal. 19, 958–969. PMID:23198996

  4. A functional model for the cysteinate-ligated non-heme iron enzyme superoxide reductase (SOR).

    PubMed

    Kitagawa, Terutaka; Dey, Abhishek; Lugo-Mas, Priscilla; Benedict, Jason B; Kaminsky, Werner; Solomon, Edward; Kovacs, Julie A

    2006-11-15

    Superoxide reductases (SORs) are cysteine-ligated, non-heme iron enzymes that reduce toxic superoxide radicals (O2-). The functional role of the trans cysteinate, as well as the mechanism by which SOR reduces O2-, is unknown. Herein is described a rare example of a functional metalloenzyme analogue, which catalytically reduces superoxide in a proton-dependent mechanism, via a trans thiolate-ligated iron-peroxo intermediate, the first example of its type. Acetic-acid-promoted H2O2 release, followed by Cp2Co reduction, regenerates the active Fe(II) catalyst. The thiolate ligand and its trans positioning relative to the substrate are shown to contribute significantly to the catalyst's function, by lowering the redox potential, changing the spin state, and dramatically lowering the nuFe-O stretching frequency well-below that of any other reported iron-peroxo, while leaving nuO-O high, so as to favor superoxide reduction and Fe-O, as opposed to O-O, bond cleavage. Thus we provide critical insight into the relationship between the SOR structure and its function, as well as important benchmark parameters for characterizing highly unstable thiolate-ligated iron-peroxo intermediates. PMID:17090014

  5. Methyl-hydroxylamine as an efficacious antibacterial agent that targets the ribonucleotide reductase enzyme.

    PubMed

    Julián, Esther; Baelo, Aida; Gavaldà, Joan; Torrents, Eduard

    2015-01-01

    The emergence of multidrug-resistant bacteria has encouraged vigorous efforts to develop antimicrobial agents with new mechanisms of action. Ribonucleotide reductase (RNR) is a key enzyme in DNA replication that acts by converting ribonucleotides into the corresponding deoxyribonucleotides, which are the building blocks of DNA replication and repair. RNR has been extensively studied as an ideal target for DNA inhibition, and several drugs that are already available on the market are used for anticancer and antiviral activity. However, the high toxicity of these current drugs to eukaryotic cells does not permit their use as antibacterial agents. Here, we present a radical scavenger compound that inhibited bacterial RNR, and the compound's activity as an antibacterial agent together with its toxicity in eukaryotic cells were evaluated. First, the efficacy of N-methyl-hydroxylamine (M-HA) in inhibiting the growth of different Gram-positive and Gram-negative bacteria was demonstrated, and no effect on eukaryotic cells was observed. M-HA showed remarkable efficacy against Mycobacterium bovis BCG and Pseudomonas aeruginosa. Thus, given the M-HA activity against these two bacteria, our results showed that M-HA has intracellular antimycobacterial activity against BCG-infected macrophages, and it is efficacious in partially disassembling and inhibiting the further formation of P. aeruginosa biofilms. Furthermore, M-HA and ciprofloxacin showed a synergistic effect that caused a massive reduction in a P. aeruginosa biofilm. Overall, our results suggest the vast potential of M-HA as an antibacterial agent, which acts by specifically targeting a bacterial RNR enzyme. PMID:25782003

  6. Methyl-Hydroxylamine as an Efficacious Antibacterial Agent That Targets the Ribonucleotide Reductase Enzyme

    PubMed Central

    Julián, Esther; Baelo, Aida; Gavaldà, Joan; Torrents, Eduard

    2015-01-01

    The emergence of multidrug-resistant bacteria has encouraged vigorous efforts to develop antimicrobial agents with new mechanisms of action. Ribonucleotide reductase (RNR) is a key enzyme in DNA replication that acts by converting ribonucleotides into the corresponding deoxyribonucleotides, which are the building blocks of DNA replication and repair. RNR has been extensively studied as an ideal target for DNA inhibition, and several drugs that are already available on the market are used for anticancer and antiviral activity. However, the high toxicity of these current drugs to eukaryotic cells does not permit their use as antibacterial agents. Here, we present a radical scavenger compound that inhibited bacterial RNR, and the compound's activity as an antibacterial agent together with its toxicity in eukaryotic cells were evaluated. First, the efficacy of N-methyl-hydroxylamine (M-HA) in inhibiting the growth of different Gram-positive and Gram-negative bacteria was demonstrated, and no effect on eukaryotic cells was observed. M-HA showed remarkable efficacy against Mycobacterium bovis BCG and Pseudomonas aeruginosa. Thus, given the M-HA activity against these two bacteria, our results showed that M-HA has intracellular antimycobacterial activity against BCG-infected macrophages, and it is efficacious in partially disassembling and inhibiting the further formation of P. aeruginosa biofilms. Furthermore, M-HA and ciprofloxacin showed a synergistic effect that caused a massive reduction in a P. aeruginosa biofilm. Overall, our results suggest the vast potential of M-HA as an antibacterial agent, which acts by specifically targeting a bacterial RNR enzyme. PMID:25782003

  7. Structure and Function of the Unusual Tungsten Enzymes Acetylene Hydratase and Class II Benzoyl-Coenzyme A Reductase.

    PubMed

    Boll, Matthias; Einsle, Oliver; Ermler, Ulrich; Kroneck, Peter M H; Ullmann, G Matthias

    2016-01-01

    In biology, tungsten (W) is exclusively found in microbial enzymes bound to a bis-pyranopterin cofactor (bis-WPT). Previously known W enzymes catalyze redox oxo/hydroxyl transfer reactions by directly coordinating their substrates or products to the metal. They comprise the W-containing formate/formylmethanofuran dehydrogenases belonging to the dimethyl sulfoxide reductase (DMSOR) family and the aldehyde:ferredoxin oxidoreductase (AOR) families, which form a separate enzyme family within the Mo/W enzymes. In the last decade, initial insights into the structure and function of two unprecedented W enzymes were obtained: the acetaldehyde forming acetylene hydratase (ACH) belongs to the DMSOR and the class II benzoyl-coenzyme A (CoA) reductase (BCR) to the AOR family. The latter catalyzes the reductive dearomatization of benzoyl-CoA to a cyclic diene. Both are key enzymes in the degradation of acetylene (ACH) or aromatic compounds (BCR) in strictly anaerobic bacteria. They are unusual in either catalyzing a nonredox reaction (ACH) or a redox reaction without coordinating the substrate or product to the metal (BCR). In organic chemical synthesis, analogous reactions require totally nonphysiological conditions depending on Hg2+ (acetylene hydration) or alkali metals (benzene ring reduction). The structural insights obtained pave the way for biological or biomimetic approaches to basic reactions in organic chemistry.

  8. Reduction of the explosive 2,4,6-trinitrophenylmethylnitramine (tetryl) catalyzed by oxygen sensitive nitro reductase enzymes

    SciTech Connect

    Shah, M.M.; Spain, J.C.

    1995-12-01

    Reduction of nitroaromatic compounds by nitroreductase enzymes generally leads to the formation of the corresponding amines. However, we recently found that the incubation of the explosive 2,4,6-trinitrophenylmethylnitramine (tetryl) with ferredoxin-NADP oxidoreductase, an oxygen sensitive nitroreductase from spinach in the presence of NADPH led to the elimination of the nitramine nitro group from tetryl and the formation of N-methylpicramide (NMP). Other oxygen sensitive nitroreductase enzymes including glutathione reductase, xanthine oxidase, and cytochrome c reductase were also able to release nitrite from tetryl. Nitrite was not eliminated from tetryl by an oxygen insensitive nitrobenzene reductase. For every mole of tetryl reduced, one mole each of nitrite and NMP were produced. The rate of nitrite elimination was inhibited under aerobic conditions. Subsequent oxygen uptake studies suggested that under aerobic conditions, molecular oxygen was reduced by FNR and tetryl served as the redox mediator. Our results suggest that under aerobic conditions; tetryl is reduced to the nitroanion radical by the enzyme and this radical is involved in the reduction of molecular oxygen.

  9. Succinic semialdehyde reductase Gox1801 from Gluconobacter oxydans in comparison to other succinic semialdehyde-reducing enzymes.

    PubMed

    Meyer, Maria; Schweiger, Paul; Deppenmeier, Uwe

    2015-05-01

    Gluconobacter oxydans is an industrially important bacterium that possesses many uncharacterized oxidoreductases, which might be exploited for novel biotechnological applications. In this study, gene gox1801 was homologously overexpressed in G. oxydans and it was found that the relative expression of gox1801 was 13-fold higher than that in the control strain. Gox1801 was predicted to belong to the 3-hydroxyisobutyrate dehydrogenase-type proteins. The purified enzyme had a native molecular mass of 134 kDa and forms a homotetramer. Analysis of the enzymatic activity revealed that Gox1801 is a succinic semialdehyde reductase that used NADH and NADPH as electron donors. Lower activities were observed with glyoxal, methylglyoxal, and phenylglyoxal. The enzyme was compared to the succinic semialdehyde reductase GsSSAR from Geobacter sulfurreducens and the γ-hydroxybutyrate dehydrogenase YihU from Escherichia coli K-12. The comparison revealed that Gox1801 is the first enzyme from an aerobic bacterium reducing succinic semialdehyde with high catalytic efficiency. As a novel succinic semialdehyde reductase, Gox1801 has the potential to be used in the biotechnological production of γ-hydroxybutyrate. PMID:25425279

  10. Precorrin-6x reductase from Pseudomonas denitrificans: purification and characterization of the enzyme and identification of the structural gene.

    PubMed Central

    Blanche, F; Thibaut, D; Famechon, A; Debussche, L; Cameron, B; Crouzet, J

    1992-01-01

    Precorrin-6x reductase, which catalyzes the NADPH-dependent reduction of precorrin-6x to a dihydro derivative named precorrin-6y, was purified 14,300-fold to homogeneity with an 8% yield from extracts of a recombinant strain of Pseudomonas denitrificans. Precorrin-6y was identified by fast atom bombardment-mass spectrometry. It was converted in high yield (90%) to hydrogenobyrinic acid by cell-free protein preparations from P. denitrificans. For the purification and characterization of precorrin-6x reductase, a coupled-enzyme radioenzymatic assay was developed in which precorrin-6y was methylated in situ by the cobL gene product (F. Blanche, A. Famechon, D. Thibaut, L. Debussche, B. Cameron, J. Crouzet, J. Bacteriol. 174:1050-1052, 1992) in the presence of [methyl-3H]S-adenosyl-L-methionine. Molecular weights of precorrin-6x reductase obtained by gel filtration (Mr congruent to 27,000) and by analytical sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr congruent to 31,000) were consistent with the enzyme being a monomer. Km values of 3.6 +/- 0.2 microM for precorrin-6x and 23.5 +/- 3.5 microM for NADPH and a Vmax value of 17,000 U mg-1 were obtained at pH 7.7. The N-terminal sequence (six amino acids) and three internal sequences obtained after tryptic digestion of the enzyme were determined by microsequencing and established that precorrin-6x reductase is encoded by the cobK gene, located on a previously described 8.7-kb EcoRI fragment (J. Crouzet, B. Cameron, L. Cauchois, S. Rigault, M.-C. Rouyez, F. Blanche, D. Thibaut, and L. Debussche, J. Bacteriol. 172:5980-5990, 1990). However, the coding sequence was shown to be on the strand complementary to the one previously proposed as the coding strand. Images PMID:1732193

  11. Effect of Polygonum hydropiper sulfated flavonoids on lens aldose reductase and related enzymes.

    PubMed

    Haraguchi, H; Ohmi, I; Sakai, S; Fukuda, A; Toihara, Y; Fujimoto, T; Okamura, N; Yagi, A

    1996-04-01

    The sulfated flavonoids in Polygonum hydropiper showed potent inhibiton against lens aldose reductase. Among these flavonoids isorhamnetin 3,7-disulfate (5) was most potent. Kinetic analysis showed that 5 exhibited noncompetitive inhibition against both dl-glyceraldehyde and NADPH.

  12. In Situ Association of Calvin Cycle Enzymes, Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Activase, Ferredoxin-NADP+ Reductase, and Nitrite Reductase with Thylakoid and Pyrenoid Membranes of Chlamydomonas reinhardtii Chloroplasts as Revealed by Immunoelectron Microscopy.

    PubMed Central

    Suss, K. H.; Prokhorenko, I.; Adler, K.

    1995-01-01

    The in situ localization of the chloroplast enzymes ribulose-1,5-bisphosphate carboxylase (Rubisco), Rubisco activase, ribose-5-phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, aldolase, nitrite reductase, ferredoxin-NADP+ reductase, and H+-ATP synthase was studied by immunoelectron microscopy in Chlamydomonas reinhardtii. Immunogold labeling revealed that, despite Rubisco in the pyrenoid matrix, Calvin cycle enzymes, Rubisco activase, nitrite reductase, ferredoxin-NADP+ reductase, and H+-ATP synthase are associated predominantly with chloroplast thylakoid membranes and the inner surface of the pyrenoid membrane. This is in accord with previous enzyme localization studies in higher plants (K.H. Suss, C. Arkona, R. Manteuffel, K. Adler [1993] Proc Natl Acad Sci USA 90: 5514-5518). Pyrenoid tubules do not contain these enzymes. The pyrenoid matrix consists of Rubisco but is devoid of the other photosynthetic enzymes investigated. Evidence for the occurrence of two Rubisco forms differing in their spatial localization has also been obtained: Rubisco form I appears to be membrane associated like other Calvin cycle components, whereas Rubisco form II is confined to the pyrenoid matrix. It is proposed that enzyme form I represents an active Rubisco when assembled into Calvin cycle enzyme complexes, whereas Rubisco form II may be part of a CO2-concentrating mechanism. Pyrenoidal Calvin cycle complexes are thought to be highly active in CO2 fixation and important for the synthesis of starch around the pyrenoid. PMID:12228443

  13. In Situ Association of Calvin Cycle Enzymes, Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Activase, Ferredoxin-NADP+ Reductase, and Nitrite Reductase with Thylakoid and Pyrenoid Membranes of Chlamydomonas reinhardtii Chloroplasts as Revealed by Immunoelectron Microscopy.

    PubMed

    Suss, K. H.; Prokhorenko, I.; Adler, K.

    1995-04-01

    The in situ localization of the chloroplast enzymes ribulose-1,5-bisphosphate carboxylase (Rubisco), Rubisco activase, ribose-5-phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, aldolase, nitrite reductase, ferredoxin-NADP+ reductase, and H+-ATP synthase was studied by immunoelectron microscopy in Chlamydomonas reinhardtii. Immunogold labeling revealed that, despite Rubisco in the pyrenoid matrix, Calvin cycle enzymes, Rubisco activase, nitrite reductase, ferredoxin-NADP+ reductase, and H+-ATP synthase are associated predominantly with chloroplast thylakoid membranes and the inner surface of the pyrenoid membrane. This is in accord with previous enzyme localization studies in higher plants (K.H. Suss, C. Arkona, R. Manteuffel, K. Adler [1993] Proc Natl Acad Sci USA 90: 5514-5518). Pyrenoid tubules do not contain these enzymes. The pyrenoid matrix consists of Rubisco but is devoid of the other photosynthetic enzymes investigated. Evidence for the occurrence of two Rubisco forms differing in their spatial localization has also been obtained: Rubisco form I appears to be membrane associated like other Calvin cycle components, whereas Rubisco form II is confined to the pyrenoid matrix. It is proposed that enzyme form I represents an active Rubisco when assembled into Calvin cycle enzyme complexes, whereas Rubisco form II may be part of a CO2-concentrating mechanism. Pyrenoidal Calvin cycle complexes are thought to be highly active in CO2 fixation and important for the synthesis of starch around the pyrenoid.

  14. V-shaped structure of glutamyl-tRNA reductase, the first enzyme of tRNA-dependent tetrapyrrole biosynthesis

    PubMed Central

    Moser, Jürgen; Schubert, Wolf-Dieter; Beier, Viola; Bringemeier, Ingo; Jahn, Dieter; Heinz, Dirk W.

    2001-01-01

    Processes vital to life such as respiration and photosynthesis critically depend on the availability of tetrapyrroles including hemes and chlorophylls. tRNA-dependent catalysis generally is associated with protein biosynthesis. An exception is the reduction of glutamyl-tRNA to glutamate-1-semialdehyde by the enzyme glutamyl-tRNA reductase. This reaction is the indispensable initiating step of tetrapyrrole biosynthesis in plants and most prokaryotes. The crystal structure of glutamyl-tRNA reductase from the archaeon Methanopyrus kandleri in complex with the substrate-like inhibitor glutamycin at 1.9 Å resolution reveals an extended yet planar V-shaped dimer. The well defined interactions of the inhibitor with the active site support a thioester-mediated reduction process. Modeling the glutamyl-tRNA onto each monomer reveals an extensive protein–tRNA interface. We furthermore propose a model whereby the large void of glutamyl-tRNA reductase is occupied by glutamate-1-semialdehyde-1,2-mutase, the subsequent enzyme of this pathway, allowing for the efficient synthesis of 5-aminolevulinic acid, the common precursor of all tetrapyrroles. PMID:11726494

  15. Recombinant Escherichia coli GMP reductase: kinetic, catalytic and chemical mechanisms, and thermodynamics of enzyme-ligand binary complex formation.

    PubMed

    Martinelli, Leonardo Krás Borges; Ducati, Rodrigo Gay; Rosado, Leonardo Astolfi; Breda, Ardala; Selbach, Bruna Pelegrim; Santos, Diógenes Santiago; Basso, Luiz Augusto

    2011-04-01

    Guanosine monophosphate (GMP) reductase catalyzes the reductive deamination of GMP to inosine monophosphate (IMP). GMP reductase plays an important role in the conversion of nucleoside and nucleotide derivatives of guanine to adenine nucleotides. In addition, as a member of the purine salvage pathway, it also participates in the reutilization of free intracellular bases. Here we present cloning, expression and purification of Escherichia coli guaC-encoded GMP reductase to determine its kinetic mechanism, as well as chemical and thermodynamic features of this reaction. Initial velocity studies and isothermal titration calorimetry demonstrated that GMP reductase follows an ordered bi-bi kinetic mechanism, in which GMP binds first to the enzyme followed by NADPH binding, and NADP(+) dissociates first followed by IMP release. The isothermal titration calorimetry also showed that GMP and IMP binding are thermodynamically favorable processes. The pH-rate profiles showed groups with apparent pK values of 6.6 and 9.6 involved in catalysis, and pK values of 7.1 and 8.6 important to GMP binding, and a pK value of 6.2 important for NADPH binding. Primary deuterium kinetic isotope effects demonstrated that hydride transfer contributes to the rate-limiting step, whereas solvent kinetic isotope effects arise from a single protonic site that plays a modest role in catalysis. Multiple isotope effects suggest that protonation and hydride transfer steps take place in the same transition state, lending support to a concerted mechanism. Pre-steady-state kinetic data suggest that product release does not contribute to the rate-limiting step of the reaction catalyzed by E. coli GMP reductase.

  16. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae.

    PubMed

    Moon, Jaewoong; Liu, Z Lewis

    2015-04-01

    The aldehyde reductase gene ARI1 is a recently characterized member of an intermediate subfamily within the short-chain dehydrogenase/reductase (SDR) superfamily that clarified mechanisms of in situ detoxification of 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde by Saccharomyces cerevisiae. Uncharacterized open reading frames (ORFs) are common among tolerant candidate genes identified for lignocellulose-to-advanced biofuels conversion. This study presents partially purified proteins of two ORFs, YDR541C and YGL039W, and direct enzyme assay evidence against aldehyde-inhibitory compounds commonly encountered during lignocellulosic biomass fermentation processes. Each of the partially purified proteins encoded by these ORFs showed a molecular mass of approximately 38 kDa, similar to Ari1p, a protein encoded by aldehyde reductase gene. Both proteins demonstrated strong aldehyde reduction activities toward 14 aldehyde substrates, with high levels of reduction activity for Ydr541cp toward both aromatic and aliphatic aldehydes. While Ydr541cp was observed to have a significantly higher specific enzyme activity at 20 U/mg using co-factor NADPH, Ygl039wp displayed a NADH preference at 25 U/mg in reduction of butylaldehyde. Amino acid sequence analysis identified a characteristic catalytic triad, Ser, Tyr and Lys; a conserved catalytic motif of Tyr-X-X-X-Lys; and a cofactor-binding sequence motif, Gly-X-X-Gly-X-X-Ala, near the N-terminus that are shared by Ydr541cp, Ygl039wp, Yol151wp/GRE2 and Ari1p. Findings of aldehyde reductase genes contribute to the yeast gene annotation and aids development of the next-generation biocatalyst for advanced biofuels production. PMID:25656103

  17. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae.

    PubMed

    Moon, Jaewoong; Liu, Z Lewis

    2015-04-01

    The aldehyde reductase gene ARI1 is a recently characterized member of an intermediate subfamily within the short-chain dehydrogenase/reductase (SDR) superfamily that clarified mechanisms of in situ detoxification of 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde by Saccharomyces cerevisiae. Uncharacterized open reading frames (ORFs) are common among tolerant candidate genes identified for lignocellulose-to-advanced biofuels conversion. This study presents partially purified proteins of two ORFs, YDR541C and YGL039W, and direct enzyme assay evidence against aldehyde-inhibitory compounds commonly encountered during lignocellulosic biomass fermentation processes. Each of the partially purified proteins encoded by these ORFs showed a molecular mass of approximately 38 kDa, similar to Ari1p, a protein encoded by aldehyde reductase gene. Both proteins demonstrated strong aldehyde reduction activities toward 14 aldehyde substrates, with high levels of reduction activity for Ydr541cp toward both aromatic and aliphatic aldehydes. While Ydr541cp was observed to have a significantly higher specific enzyme activity at 20 U/mg using co-factor NADPH, Ygl039wp displayed a NADH preference at 25 U/mg in reduction of butylaldehyde. Amino acid sequence analysis identified a characteristic catalytic triad, Ser, Tyr and Lys; a conserved catalytic motif of Tyr-X-X-X-Lys; and a cofactor-binding sequence motif, Gly-X-X-Gly-X-X-Ala, near the N-terminus that are shared by Ydr541cp, Ygl039wp, Yol151wp/GRE2 and Ari1p. Findings of aldehyde reductase genes contribute to the yeast gene annotation and aids development of the next-generation biocatalyst for advanced biofuels production.

  18. Conversion of Human Steroid 5[beta]-Reductase (AKR1D1) into 3[beta]-Hydroxysteroid Dehydrogenase by Single Point Mutation E120H: Example of Perfect Enzyme Engineering

    SciTech Connect

    Chen, Mo; Drury, Jason E.; Christianson, David W.; Penning, Trevor M.

    2012-10-10

    Human aldo-keto reductase 1D1 (AKR1D1) and AKR1C enzymes are essential for bile acid biosynthesis and steroid hormone metabolism. AKR1D1 catalyzes the 5{beta}-reduction of {Delta}{sup 4}-3-ketosteroids, whereas AKR1C enzymes are hydroxysteroid dehydrogenases (HSDs). These enzymes share high sequence identity and catalyze 4-pro-(R)-hydride transfer from NADPH to an electrophilic carbon but differ in that one residue in the conserved AKR catalytic tetrad, His120 (AKR1D1 numbering), is substituted by a glutamate in AKR1D1. We find that the AKR1D1 E120H mutant abolishes 5{beta}-reductase activity and introduces HSD activity. However, the E120H mutant unexpectedly favors dihydrosteroids with the 5{alpha}-configuration and, unlike most of the AKR1C enzymes, shows a dominant stereochemical preference to act as a 3{beta}-HSD as opposed to a 3{alpha}-HSD. The catalytic efficiency achieved for 3{beta}-HSD activity is higher than that observed for any AKR to date. High resolution crystal structures of the E120H mutant in complex with epiandrosterone, 5{beta}-dihydrotestosterone, and {Delta}{sup 4}-androstene-3,17-dione elucidated the structural basis for this functional change. The glutamate-histidine substitution prevents a 3-ketosteroid from penetrating the active site so that hydride transfer is directed toward the C3 carbonyl group rather than the {Delta}{sup 4}-double bond and confers 3{beta}-HSD activity on the 5{beta}-reductase. Structures indicate that stereospecificity of HSD activity is achieved because the steroid flips over to present its {alpha}-face to the A-face of NADPH. This is in contrast to the AKR1C enzymes, which can invert stereochemistry when the steroid swings across the binding pocket. These studies show how a single point mutation in AKR1D1 can introduce HSD activity with unexpected configurational and stereochemical preference.

  19. Enzyme Mechanism and Slow-Onset Inhibition of Plasmodium falciparum Enoyl-Acyl Carrier Protein Reductase by an Inorganic Complex

    PubMed Central

    de Medeiros, Patrícia Soares de Maria; Ducati, Rodrigo Gay; Basso, Luiz Augusto; Santos, Diógenes Santiago; da Silva, Luiz Hildebrando Pereira

    2011-01-01

    Malaria continues to be a major cause of children's morbidity and mortality worldwide, causing nearly one million deaths annually. The human malaria parasite, Plasmodium falciparum, synthesizes fatty acids employing the Type II fatty acid biosynthesis system (FAS II), unlike humans that rely on the Type I (FAS I) pathway. The FAS II system elongates acyl fatty acid precursors of the cell membrane in Plasmodium. Enoyl reductase (ENR) enzyme is a member of the FAS II system. Here we present steady-state kinetics, pre-steady-state kinetics, and equilibrium fluorescence spectroscopy data that allowed proposal of P. falciparum ENR (PfENR) enzyme mechanism. Moreover, building on previous results, the present study also evaluates the PfENR inhibition by the pentacyano(isoniazid)ferrateII compound. This inorganic complex represents a new class of lead compounds for the development of antimalarial agents focused on the inhibition of PfENR. PMID:21603269

  20. Enzyme Mechanism and Slow-Onset Inhibition of Plasmodium falciparum Enoyl-Acyl Carrier Protein Reductase by an Inorganic Complex.

    PubMed

    de Medeiros, Patrícia Soares de Maria; Ducati, Rodrigo Gay; Basso, Luiz Augusto; Santos, Diógenes Santiago; da Silva, Luiz Hildebrando Pereira

    2011-01-01

    Malaria continues to be a major cause of children's morbidity and mortality worldwide, causing nearly one million deaths annually. The human malaria parasite, Plasmodium falciparum, synthesizes fatty acids employing the Type II fatty acid biosynthesis system (FAS II), unlike humans that rely on the Type I (FAS I) pathway. The FAS II system elongates acyl fatty acid precursors of the cell membrane in Plasmodium. Enoyl reductase (ENR) enzyme is a member of the FAS II system. Here we present steady-state kinetics, pre-steady-state kinetics, and equilibrium fluorescence spectroscopy data that allowed proposal of P. falciparum ENR (PfENR) enzyme mechanism. Moreover, building on previous results, the present study also evaluates the PfENR inhibition by the pentacyano(isoniazid)ferrateII compound. This inorganic complex represents a new class of lead compounds for the development of antimalarial agents focused on the inhibition of PfENR.

  1. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities.

    PubMed

    Akhtar, M Kalim; Turner, Nicholas J; Jones, Patrik R

    2013-01-01

    Aliphatic hydrocarbons such as fatty alcohols and petroleum-derived alkanes have numerous applications in the chemical industry. In recent years, the renewable synthesis of aliphatic hydrocarbons has been made possible by engineering microbes to overaccumulate fatty acids. However, to generate end products with the desired physicochemical properties (e.g., fatty aldehydes, alkanes, and alcohols), further conversion of the fatty acid is necessary. A carboxylic acid reductase (CAR) from Mycobacterium marinum was found to convert a wide range of aliphatic fatty acids (C(6)-C(18)) into corresponding aldehydes. Together with the broad-substrate specificity of an aldehyde reductase or an aldehyde decarbonylase, the catalytic conversion of fatty acids to fatty alcohols (C(8)-C(16)) or fatty alkanes (C(7)-C(15)) was reconstituted in vitro. This concept was applied in vivo, in combination with a chain-length-specific thioesterase, to engineer Escherichia coli BL21(DE3) strains that were capable of synthesizing fatty alcohols and alkanes. A fatty alcohol titer exceeding 350 mg·L(-1) was obtained in minimal media supplemented with glucose. Moreover, by combining the CAR-dependent pathway with an exogenous fatty acid-generating lipase, natural oils (coconut oil, palm oil, and algal oil bodies) were enzymatically converted into fatty alcohols across a broad chain-length range (C(8)-C(18)). Together with complementing enzymes, the broad substrate specificity and kinetic characteristics of CAR opens the road for direct and tailored enzyme-catalyzed conversion of lipids into user-ready chemical commodities.

  2. Multiple forms of the catalytic centre, CuZ, in the enzyme nitrous oxide reductase from Paracoccus pantotrophus.

    PubMed Central

    Rasmussen, Tim; Berks, Ben C; Butt, Julea N; Thomson, Andrew J

    2002-01-01

    Nitrous oxide reductase catalyses the reduction of nitrous oxide to dinitrogen at a unique tetranuclear copper site, called Cu(Z), which has a central inorganic sulphide ligand. Limited incubation with oxygen during the preparation of nitrous oxide reductase from Paracoccus pantotrophus results in changed redox properties of the catalytic centre by comparison with anaerobic preparations. While the anaerobically purified enzyme has a catalytic centre which performs a single electron step at a midpoint potential of E(m)=+60 mV versus the standard hydrogen electrode (n=1), the altered centre shows no redox change under similar experimental conditions. Spectroscopic properties of this 'redox fixed' centre are similar to spectra of the reduced 'redox active' form of CuZ, although the positions and intensities of a number of transitions are changed in the optical spectrum. These observations are interpreted in terms of two forms of the catalytic centre, called CuZ and CuZ*. The structural relationship between these forms is unclear. EPR and magnetic circular dichroism spectra suggest that the basic Cu4S structure is common to both. Curiously, steady-state activity of the aerobic enzyme preparation is slightly increased despite the fact the catalytic centre does not undergo detectable redox changes. PMID:12049645

  3. Failure of isolated rat tibial periosteal cells to 5 alpha reduce testosterone to 5 alpha-dihydrotestosterone

    SciTech Connect

    Turner, R.T.; Bleiberg, B.; Colvard, D.S.; Keeting, P.E.; Evans, G.; Spelsberg, T.C. )

    1990-07-01

    Periosteal cells were isolated from tibiae of adult male rats after collagenase treatment. Northern blot analysis of total cytoplasmic RNA extracted from the isolated periosteal cells was positive for expression of genes encoding the osteoblast marker proteins osteocalcin (BGP) and pre-pro-alpha 2(I) chain of type 1 precollagen. The isolated periosteal cells were incubated with 1 nM (3H)testosterone (({sup 3}H)T) for up to 240 minutes and the reaction products separated by high-performance liquid chromatography. ({sup 3}H)5 alpha-dihydrotestosterone (({sup 3}H)DHT) was not detected in extracts of periosteal cell incubations. In contrast, ({sup 3}H)DHT was produced in a time-dependent manner by cells from seminal vesicles. These results suggest that testosterone 5 alpha-reductase activity is not expressed by osteoblasts in rat tibial periosteum and that the anabolic effects of androgens in this tissue are not mediated by locally produced DHT.

  4. Metabolism of hydroxypyruvate in a mutant of barley lacking NADH-dependent hydroxypyruvate reductase, an important photorespiratory enzyme activity

    SciTech Connect

    Murray, A.J.S.; Blackwell, R.D.; Lea, P.J. )

    1989-09-01

    A mutant of barley (Hordeum vulgare L.), LaPr 88/29, deficient in NADH-dependent hydroxypyruvate reductase (HPR) activity has been isolated. The activities of both NADH (5%) and NADPH-dependent (19%) HPR were severely reduced in this mutant compared to the wild type. Although lacking an enzyme in the main carbon pathway of photorespiration, this mutant was capable of CO{sub 2} fixation rates equivalent to 75% of that of the wild type, in normal atmospheres and 50% O{sub 2}. There also appeared to be little disruption to the photorespiratory metabolism as ammonia release, CO{sub 2} efflux and {sup 14}CO{sub 2} release from L-(U-{sup 14}C)serine feeding were similar in both mutant and wild-type leaves. When leaves of LaPr 88/29 were fed either ({sup 14}C)serine or {sup 14}CO{sub 2}, the accumulation of radioactivity was in serine and not in hydroxypyruvate, although the mutant was still able to metabolize over 25% of the supplied ({sup 14}C)serine into sucrose. After 3 hours in air the soluble amino acid pool was almost totally dominated by serine and glycine. LaPr 88/29 has also been used to show that NADH-glyoxylate reductase and NADH-HPR are probably not catalyzed by the same enzyme in barley and that over 80% of the NADPH-dependent HPR activity is due to the NADH-dependent enzyme. We also suggest that the alternative NADPH activity can metabolize a proportion, but not all, of the hydroxypyruvate produced during photorespiration and may thus form a useful backup to the NADH-dependent enzyme under conditions of maximal photorespiration.

  5. 5α-Reductase, an enzyme regulating glucocorticoid action in the testis of Rhinella arenarum (Amphibia: Anura).

    PubMed

    Tesone, Amelia J; Regueira, Eleonora; Canosa, Luis Fabián; Ceballos, Nora R

    2012-05-01

    The reduction of A-ring of glucocorticoids to produce 5α-dihydro-derivatives by 5α-reductases has been considered as a pathway of irreversible inactivation. However, 5α-reduced metabolites of corticosterone and testosterone have significant biological activity. In this paper, we investigated whether toad testicular 5α-reductase (5α-Red) is able to transform corticosterone into 5α-dihydrocorticosterone. Furthermore, we studied the role of 5α-reduced metabolite of corticosterone as a glucocorticoid receptor (GR) agonist. The activity of 5α-Red was assayed in subcellular fractions with [(3)H]corticosterone or [(3)H]testosterone as substrate. The enzyme localizes in microsomes and its optimal pH is between 7 and 8. The activity is not inhibited by finasteride. These results support the conclusion that toad 5α-Red resembles mammalian type 1 isoenzyme. Kinetic studies indicate that neither K(m) nor V(max) for both corticosterone and testosterone were significantly different among reproductive periods. The K(m) value for testosterone was significantly higher than that for corticosterone, indicating that the C-21 steroid is the preferred substrate for the enzyme. Studies of the binding capacity of 5α-dihydrocorticosterone (5α-DHB) to the testicular GR show that 5α-DHB is able to displace the binding of [(3)H]dexamethasone to testicular cytosol with a similar potency than corticosterone. The inhibition constant (Ki) values for corticosterone and 5α-DHB were similar, 31.33±2.9 nM and 35.24±2.3 nM, respectively. In vitro experiments suggest that 5α-DHB is an agonist of toad testicular GR, decreasing the activity of the key enzyme for androgen synthesis, the cytochrome P450 17-hydroxylase, C17,20-lyase. PMID:22285601

  6. Location of the redox-active thiols of ribonucleotide reductase: sequences similarity between the Escherichia coli and Lactobacillus leichmannii enzymes

    SciTech Connect

    Lin, A.N.I.; Ashley, G.W.; Stubbe, J.

    1987-11-03

    The redox-active thiols of Escherichia coli ribonucleoside diphosphate reductase and of Lactobacillus leichmannii ribonucleoside triphosphate reductase have been located by a procedure involving (1) prereduction of enzyme with dithiothreitol, (2) specific oxidation of the redox-active thiols by treatment with substrate in the absence of exogenous reductant, (3) alkylation of other thiols with iodoacetamide, and (4) reduction of the disulfides with dithiothreitol and alkylation with (1-/sup 14/C)iodoacetamide. The dithiothreitol-reduce E. coli B1 subunit is able to convert 3 equiv of CDP to dCDP and is labeled with 5.4 equiv of /sup 14/C. Sequencing of tryptic peptides shows that 2.8 equiv of /sup 14/C is on cysteines-752 and -757 at the C-terminus of B1, while 1.0-1.5 equiv of /sup 14/C is on cysteines-222 and -227. It thus appears that two sets of redox-active dithiols are involved in substrate reduction. The L. leichmannii reductase is able to convert 1.1 equiv of CTP to dCTP and is labeled with 2.1 equiv of /sup 14/C. Sequencing of tryptic peptides shows that 1.4 equiv of /sup 14/C is located on the two cysteines of C-E-G-G-A-C-P-I-K. This peptide shows remarkable and unexpected similarity to the thiol-containing region of the C-terminal peptide of E. coli B1, C-E-S-G-A-C-K-I.

  7. NAD(P)H nitroblue tetrazolium reductase levels in apparently normoxic tissues: a histochemical study correlating enzyme activity with binding of radiolabelled misonidazole.

    PubMed

    Cobb, L M; Hacker, T; Nolan, J

    1990-04-01

    Hack and Helmy's method for the histochemical identification of NAD(P)H nitroblue tetrazolium reductase activity was employed to pinpoint reductase activity in certain cells in the mouse. High activity was observed in the following: lower airway epithelium, liver (centrilobular zone), eyelid (meibomian and sebaceous glands), vulval gland and parotid gland (striated cells of intralobular ducts). All of these cells had previously been identified as sites of binding of the reactive metabolites formed from the enzymic reduction of misonidazole (MISO) (Cobb et al., 1989). It had previously been thought that MISO binding would only take place in significant amounts in hypoxic tissues (tumour and possibly liver) since in normoxic tissues oxygen should reverse the initial one electron enzymic reduction, thus preventing progressive reduction to reactive species. We suggest that the very high levels of reductase in the above listed, probably normoxic, tissues contribute significantly to the accumulation of bound reactive MISO metabolite(s).

  8. Pyrithione-based ruthenium complexes as inhibitors of aldo-keto reductase 1C enzymes and anticancer agents.

    PubMed

    Kljun, Jakob; Anko, Maja; Traven, Katja; Sinreih, Maša; Pavlič, Renata; Peršič, Špela; Ude, Žiga; Codina, Elisa Esteve; Stojan, Jure; Lanišnik Rižner, Tea; Turel, Iztok

    2016-08-01

    Four ruthenium complexes of clinically used zinc ionophore pyrithione and its oxygen analog 2-hydroxypyridine N-oxide were prepared and evaluated as inhibitors of enzymes of the aldo-keto reductase subfamily 1C (AKR1C). A kinetic study assisted with docking simulations showed a mixed type of inhibition consisting of a fast reversible and a slow irreversible step in the case of both organometallic compounds 1A and 1B. Both compounds also showed a remarkable selectivity towards AKR1C1 and AKR1C3 which are targets for breast cancer drug design. The organoruthenium complex of ligand pyrithione as well as pyrithione itself also displayed toxicity on the hormone-dependent MCF-7 breast cancer cell line with EC50 values in the low micromolar range. PMID:27357845

  9. In vitro induction of the anticarcinogenic marker enzyme, quinone reductase, in human hepatoma cells by food extracts.

    PubMed

    Hashimoto, Kei; Kawamata, Shinsuke; Usui, Naomi; Tanaka, Ayako; Uda, Yasushi

    2002-06-01

    The effect of vegetable extracts on the activity of the anticarcinogenic phase II marker enzyme, quinone reductase (QR), was investigated by using human Hep G2 cells as the model system. Hep G2 cells were less sensitive than murine Hepa1c1c7 cells to QR-inducible compounds such as tert-butylhydroquinone which have been widely used to examine the QR-inducing activity of the compounds. However, among 45 different vegetable samples, an extract of ashitaba clearly induced QR activity in Hep G2 cells. Ashitaba is therefore considered to have contained certain substances that could induce QR activity, and such induction may play a role in the anticarcinogenic action of vegetables.

  10. Understanding how the thiolate sulfur contributes to the function of the non-heme iron enzyme superoxide reductase.

    PubMed

    Kovacs, Julie A; Brines, Lisa M

    2007-07-01

    Toxic superoxide radicals, generated via adventitious reduction of dioxygen, have been implicated in a number of disease states. The cysteinate-ligated non-heme iron enzyme superoxide reductase (SOR) degrades superoxide via reduction. Biomimetic analogues which provide insight into why nature utilizes a trans-thiolate to promote SOR function are described. Spectroscopic and/or structural characterization of the first examples of thiolate-ligated Fe (III)-peroxo complexes provides important benchmark parameters for the identification of biological intermediates. Oxidative addition of superoxide is favored by low redox potentials. The trans influence of the thiolate appears to significantly weaken the Fe-O peroxo bond, favoring proton-induced release of H 2O 2 from a high-spin Fe(III)-OOH complex. PMID:17536780

  11. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities

    PubMed Central

    Akhtar, M. Kalim; Turner, Nicholas J.; Jones, Patrik R.

    2013-01-01

    Aliphatic hydrocarbons such as fatty alcohols and petroleum-derived alkanes have numerous applications in the chemical industry. In recent years, the renewable synthesis of aliphatic hydrocarbons has been made possible by engineering microbes to overaccumulate fatty acids. However, to generate end products with the desired physicochemical properties (e.g., fatty aldehydes, alkanes, and alcohols), further conversion of the fatty acid is necessary. A carboxylic acid reductase (CAR) from Mycobacterium marinum was found to convert a wide range of aliphatic fatty acids (C6–C18) into corresponding aldehydes. Together with the broad-substrate specificity of an aldehyde reductase or an aldehyde decarbonylase, the catalytic conversion of fatty acids to fatty alcohols (C8–C16) or fatty alkanes (C7–C15) was reconstituted in vitro. This concept was applied in vivo, in combination with a chain-length-specific thioesterase, to engineer Escherichia coli BL21(DE3) strains that were capable of synthesizing fatty alcohols and alkanes. A fatty alcohol titer exceeding 350 mg·L−1 was obtained in minimal media supplemented with glucose. Moreover, by combining the CAR-dependent pathway with an exogenous fatty acid-generating lipase, natural oils (coconut oil, palm oil, and algal oil bodies) were enzymatically converted into fatty alcohols across a broad chain-length range (C8–C18). Together with complementing enzymes, the broad substrate specificity and kinetic characteristics of CAR opens the road for direct and tailored enzyme-catalyzed conversion of lipids into user-ready chemical commodities. PMID:23248280

  12. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities.

    PubMed

    Akhtar, M Kalim; Turner, Nicholas J; Jones, Patrik R

    2013-01-01

    Aliphatic hydrocarbons such as fatty alcohols and petroleum-derived alkanes have numerous applications in the chemical industry. In recent years, the renewable synthesis of aliphatic hydrocarbons has been made possible by engineering microbes to overaccumulate fatty acids. However, to generate end products with the desired physicochemical properties (e.g., fatty aldehydes, alkanes, and alcohols), further conversion of the fatty acid is necessary. A carboxylic acid reductase (CAR) from Mycobacterium marinum was found to convert a wide range of aliphatic fatty acids (C(6)-C(18)) into corresponding aldehydes. Together with the broad-substrate specificity of an aldehyde reductase or an aldehyde decarbonylase, the catalytic conversion of fatty acids to fatty alcohols (C(8)-C(16)) or fatty alkanes (C(7)-C(15)) was reconstituted in vitro. This concept was applied in vivo, in combination with a chain-length-specific thioesterase, to engineer Escherichia coli BL21(DE3) strains that were capable of synthesizing fatty alcohols and alkanes. A fatty alcohol titer exceeding 350 mg·L(-1) was obtained in minimal media supplemented with glucose. Moreover, by combining the CAR-dependent pathway with an exogenous fatty acid-generating lipase, natural oils (coconut oil, palm oil, and algal oil bodies) were enzymatically converted into fatty alcohols across a broad chain-length range (C(8)-C(18)). Together with complementing enzymes, the broad substrate specificity and kinetic characteristics of CAR opens the road for direct and tailored enzyme-catalyzed conversion of lipids into user-ready chemical commodities. PMID:23248280

  13. Ferredoxin-thioredoxin reductase: a catalytically active dithiol group links photoreduced ferredoxin to thioredoxin functional in photosynthetic enzyme regulation

    SciTech Connect

    Droux, M.; Miginiac-Maslow, M.; Jacquot, J.P.; Gadal, P.; Crawford, N.A.; Kosower, N.S.; Buchanan, B.B.

    1987-07-01

    The mechanism by which the ferredoxin-thioredoxin system activates the target enzyme, NADP-malate dehydrogenase, was investigated by analyzing the sulfhydryl status of individual protein components with (/sup 14/C)iodoacetate and monobromobimane. The data indicate that ferredoxin-thioredoxin reductase (FTR)--an iron-sulfur enzyme present in oxygenic photosynthetic organisms--is the first member of a thiol chain that links light to enzyme regulation. FTR possesses a catalytically active dithiol group localized on the 13 kDa (similar) subunit, that occurs in all species investigated and accepts reducing equivalents from photoreduced ferredoxin and transfers them stoichiometrically to the disulfide form of thioredoxin m. The reduced thioredoxin m, in turn, reduces NADP-malate dehydrogenase, thereby converting it from an inactive (S-S) to an active (SH) form. The means by which FTR is able to combine electrons (from photoreduced ferredoxin) with protons (from the medium) to reduce its active disulfide group remains to be determined.

  14. Functional Inference of Methylenetetrahydrofolate Reductase Gene Polymorphisms on Enzyme Stability as a Potential Risk Factor for Down Syndrome in Croatia

    PubMed Central

    Vraneković, Jadranka; Babić Božović, Ivana; Starčević Čizmarević, Nada; Buretić-Tomljanović, Alena; Ristić, Smiljana; Petrović, Oleg; Kapović, Miljenko; Brajenović-Milić, Bojana

    2010-01-01

    Understanding the biochemical structure and function of the methylenetetrahydrofolate reductase gene (MTHFR) provides new evidence in elucidating the risk of having a child with Down syndrome (DS) in association with two common MTHFR polymorphisms, C677T and A1298C. The aim of this study was to evaluate the risk for DS according to the presence of MTHFR C677T and A1298C polymorphisms as well as the stability of the enzyme configuration. This study included mothers from Croatia with a liveborn DS child (n = 102) or DS pregnancy (n = 9) and mothers with a healthy child (n = 141). MTHFR C677T and A1298C polymorphisms were assessed by PCR-RFLP. Allele/genotype frequencies differences were determined using χ2 test. Odds ratio and the 95% confidence intervals were calculated to evaluate the effects of different alleles/genotypes. No statistically significant differences were found between the frequencies of allele/genotype or genotype combinations of the MTHFR C677T and A1298C polymorphisms in the case and the control groups. Additionally, the observed frequencies of the stable (677CC/1298AA, 677CC/1298AC, 677CC/1298CC) and unstable (677CT/1298AA, 677CT/1298AC, 677TT/1298AA) enzyme configurations were not significantly different. We found no evidence to support the possibility that MTHFR polymorphisms and the stability of the enzyme configurations were associated with risk of having a child with DS in Croatian population. PMID:20592453

  15. Binding to large enzyme pockets: small-molecule inhibitors of trypanothione reductase.

    PubMed

    Persch, Elke; Bryson, Steve; Todoroff, Nickolay K; Eberle, Christian; Thelemann, Jonas; Dirdjaja, Natalie; Kaiser, Marcel; Weber, Maria; Derbani, Hassan; Brun, Reto; Schneider, Gisbert; Pai, Emil F; Krauth-Siegel, R Luise; Diederich, François

    2014-08-01

    The causative agents of the parasitic disease human African trypanosomiasis belong to the family of trypanosomatids. These parasitic protozoa exhibit a unique thiol redox metabolism that is based on the flavoenzyme trypanothione reductase (TR). TR was identified as a potential drug target and features a large active site that allows a multitude of possible ligand orientations, which renders rational structure-based inhibitor design highly challenging. Herein we describe the synthesis, binding properties, and kinetic analysis of a new series of small-molecule inhibitors of TR. The conjunction of biological activities, mutation studies, and virtual ligand docking simulations led to the prediction of a binding mode that was confirmed by crystal structure analysis. The crystal structures revealed that the ligands bind to the hydrophobic wall of the so-called "mepacrine binding site". The binding conformation and potency of the inhibitors varied for TR from Trypanosoma brucei and T. cruzi.

  16. Characterization of Arabidopsis thaliana pinoresinol reductase, a new type of enzyme involved in lignan biosynthesis.

    PubMed

    Nakatsubo, Tomoyuki; Mizutani, Masaharu; Suzuki, Shiro; Hattori, Takefumi; Umezawa, Toshiaki

    2008-06-01

    A lignan, lariciresinol, was isolated from Arabidopsis thaliana, the most widely used model plant in plant bioscience sectors, for the first time. In the A. thaliana genome database, there are two genes (At1g32100 and At4g13660) that are annotated as pinoresinol/lariciresinol reductase (PLR). The recombinant AtPLRs showed strict substrate preference toward pinoresinol but only weak or no activity toward lariciresinol, which is in sharp contrast to conventional PLRs of other plants that can reduce both pinoresinol and lariciresinol efficiently to lariciresinol and secoisolariciresinol, respectively. Therefore, we renamed AtPLRs as A. thaliana pinoresinol reductases (AtPrRs). The recombinant AtPrR2 encoded by At4g13660 reduced only (-)-pinoresinol to (-)-lariciresinol and not (+)-pinoresinol in the presence of NADPH. This enantiomeric selectivity accords with that of other PLRs of other plants so far reported, which can reduce one of the enantiomers selectively, whatever the preferential enantiomer. In sharp contrast, AtPrR1 encoded by At1g32100 reduced both (+)- and (-)-pinoresinols to (+)- and (-)-lariciresinols efficiently with comparative k(cat)/K(m) values. Analysis of lignans and spatiotemporal expression of AtPrR1 and AtPrR2 in their functionally deficient A. thaliana mutants and wild type indicated that both genes are involved in lariciresinol biosynthesis. In addition, the analysis of the enantiomeric compositions of lariciresinol isolated from the mutants and wild type showed that PrRs together with a dirigent protein(s) are involved in the enantiomeric control in lignan biosynthesis. Furthermore, it was demonstrated conclusively for the first time that differential expression of PrR isoforms that have distinct selectivities of substrate enantiomers can determine enantiomeric compositions of the product, lariciresinol.

  17. Trichomonas vaginalis: metronidazole and other nitroimidazole drugs are reduced by the flavin enzyme thioredoxin reductase and disrupt the cellular redox system. Implications for nitroimidazole toxicity and resistance.

    PubMed

    Leitsch, David; Kolarich, Daniel; Binder, Marina; Stadlmann, Johannes; Altmann, Friedrich; Duchêne, Michael

    2009-04-01

    Infections with the microaerophilic parasite Trichomonas vaginalis are treated with the 5-nitroimidazole drug metronidazole, which is also in use against Entamoeba histolytica, Giardia intestinalis and microaerophilic/anaerobic bacteria. Here we report that in T. vaginalis the flavin enzyme thioredoxin reductase displays nitroreductase activity with nitroimidazoles, including metronidazole, and with the nitrofuran drug furazolidone. Reactive metabolites of metronidazole and other nitroimidazoles form covalent adducts with several proteins that are known or assumed to be associated with thioredoxin-mediated redox regulation, including thioredoxin reductase itself, ribonucleotide reductase, thioredoxin peroxidase and cytosolic malate dehydrogenase. Disulphide reducing activity of thioredoxin reductase was greatly diminished in extracts of metronidazole-treated cells and intracellular non-protein thiol levels were sharply decreased. We generated a highly metronidazole-resistant cell line that displayed only minimal thioredoxin reductase activity, not due to diminished expression of the enzyme but due to the lack of its FAD cofactor. Reduction of free flavins, readily observed in metronidazole-susceptible cells, was also absent in the resistant cells. On the other hand, iron-depleted T. vaginalis cells, expressing only minimal amounts of PFOR and hydrogenosomal malate dehydrogenase, remained fully susceptible to metronidazole. Thus, taken together, our data suggest a flavin-based mechanism of metronidazole activation and thereby challenge the current model of hydrogenosomal activation of nitroimidazole drugs. PMID:19415801

  18. Selected Line Difference in the Effects of Ethanol Dependence and Withdrawal On Allopregnanolone Levels and 5α-reductase Enzyme Activity and Expression

    PubMed Central

    Tanchuck, Michelle A.; Long, Season L.; Ford, Matthew M.; Hashimoto, Joel; Crabbe, John C.; Roselli, Charles E.; Wiren, Kristine M.; Finn, Deborah A.

    2009-01-01

    Background Allopregnanolone (ALLO) is a progesterone derivative that rapidly potentiates γ-aminobutyric acidA (GABAA) receptor mediated inhibition and modulates symptoms of ethanol withdrawal. Since clinical and preclinical data indicate that ALLO levels are inversely related to symptoms of withdrawal, the present studies determined whether ethanol dependence and withdrawal differentially altered plasma and cortical ALLO levels in mice selectively bred for differences in ethanol withdrawal severity and determined whether the alterations in ALLO levels corresponded to a concomitant change in activity and expression of the biosynthetic enzyme 5α-reductase. Methods Male Withdrawal Seizure—Prone (WSP) and —Resistant (WSR) mice were exposed to 72 hr ethanol vapor or air and euthanized at select times following removal from the inhalation chambers. Blood was collected for analysis of ALLO and corticosterone levels by radioimmunoassay. Dissected amygdala, hippocampus, midbrain and cortex as well as adrenals were examined for 5α-reductase enzyme activity and expression levels. Results Plasma ALLO was decreased significantly only in WSP mice, and this corresponded to a decrease in adrenal 5α-reductase expression. Cortical ALLO was decreased up to 54% in WSP mice and up to 46% in WSR mice, with a similar decrease in cortical 5α-reductase activity during withdrawal in the lines. While cortical gene expression was significantly decreased during withdrawal in WSP mice, there was a 4-fold increase in expression in the WSR line during withdrawal. Hippocampal 5α-reductase activity and gene expression was decreased only in dependent WSP mice. Conclusions These results suggest that there are line and brain regional differences in the regulation of the neurosteroid biosynthetic enzyme 5α-reductase during ethanol dependence and withdrawal. In conjunction with the finding that WSP mice exhibit reduced sensitivity to ALLO during withdrawal, the present results are consistent

  19. Dihydroflavonol 4-reductase genes encode enzymes with contrasting substrate specificity and show divergent gene expression profiles in Fragaria species.

    PubMed

    Miosic, Silvija; Thill, Jana; Milosevic, Malvina; Gosch, Christian; Pober, Sabrina; Molitor, Christian; Ejaz, Shaghef; Rompel, Annette; Stich, Karl; Halbwirth, Heidi

    2014-01-01

    During fruit ripening, strawberries show distinct changes in the flavonoid classes that accumulate, switching from the formation of flavan 3-ols and flavonols in unripe fruits to the accumulation of anthocyanins in the ripe fruits. In the common garden strawberry (Fragaria×ananassa) this is accompanied by a distinct switch in the pattern of hydroxylation demonstrated by the almost exclusive accumulation of pelargonidin based pigments. In Fragaria vesca the proportion of anthocyanins showing one (pelargonidin) and two (cyanidin) hydroxyl groups within the B-ring is almost equal. We isolated two dihydroflavonol 4-reductase (DFR) cDNA clones from strawberry fruits, which show 82% sequence similarity. The encoded enzymes revealed a high variability in substrate specificity. One enzyme variant did not accept DHK (with one hydroxyl group present in the B-ring), whereas the other strongly preferred DHK as a substrate. This appears to be an uncharacterized DFR variant with novel substrate specificity. Both DFRs were expressed in the receptacle and the achenes of both Fragaria species and the DFR2 expression profile showed a pronounced dependence on fruit development, whereas DFR1 expression remained relatively stable. There were, however, significant differences in their relative rates of expression. The DFR1/DFR2 expression ratio was much higher in the Fragaria×ananassa and enzyme preparations from F.×ananassa receptacles showed higher capability to convert DHK than preparations from F. vesca. Anthocyanin concentrations in the F.×ananassa cultivar were more than twofold higher and the cyanidin:pelargonidin ratio was only 0.05 compared to 0.51 in the F. vesca cultivar. The differences in the fruit colour of the two Fragaria species can be explained by the higher expression of DFR1 in F.×ananassa as compared to F. vesca, a higher enzyme efficiency (Kcat/Km values) of DFR1 combined with the loss of F3'H activity late in fruit development of F.×ananassa.

  20. Dihydroflavonol 4-reductase genes encode enzymes with contrasting substrate specificity and show divergent gene expression profiles in Fragaria species.

    PubMed

    Miosic, Silvija; Thill, Jana; Milosevic, Malvina; Gosch, Christian; Pober, Sabrina; Molitor, Christian; Ejaz, Shaghef; Rompel, Annette; Stich, Karl; Halbwirth, Heidi

    2014-01-01

    During fruit ripening, strawberries show distinct changes in the flavonoid classes that accumulate, switching from the formation of flavan 3-ols and flavonols in unripe fruits to the accumulation of anthocyanins in the ripe fruits. In the common garden strawberry (Fragaria×ananassa) this is accompanied by a distinct switch in the pattern of hydroxylation demonstrated by the almost exclusive accumulation of pelargonidin based pigments. In Fragaria vesca the proportion of anthocyanins showing one (pelargonidin) and two (cyanidin) hydroxyl groups within the B-ring is almost equal. We isolated two dihydroflavonol 4-reductase (DFR) cDNA clones from strawberry fruits, which show 82% sequence similarity. The encoded enzymes revealed a high variability in substrate specificity. One enzyme variant did not accept DHK (with one hydroxyl group present in the B-ring), whereas the other strongly preferred DHK as a substrate. This appears to be an uncharacterized DFR variant with novel substrate specificity. Both DFRs were expressed in the receptacle and the achenes of both Fragaria species and the DFR2 expression profile showed a pronounced dependence on fruit development, whereas DFR1 expression remained relatively stable. There were, however, significant differences in their relative rates of expression. The DFR1/DFR2 expression ratio was much higher in the Fragaria×ananassa and enzyme preparations from F.×ananassa receptacles showed higher capability to convert DHK than preparations from F. vesca. Anthocyanin concentrations in the F.×ananassa cultivar were more than twofold higher and the cyanidin:pelargonidin ratio was only 0.05 compared to 0.51 in the F. vesca cultivar. The differences in the fruit colour of the two Fragaria species can be explained by the higher expression of DFR1 in F.×ananassa as compared to F. vesca, a higher enzyme efficiency (Kcat/Km values) of DFR1 combined with the loss of F3'H activity late in fruit development of F.×ananassa. PMID:25393679

  1. Purification of glucose-6-phosphate dehydrogenase and glutathione reductase enzymes from the gill tissue of Lake Van fish and analyzing the effects of some chalcone derivatives on enzyme activities.

    PubMed

    Kuzu, Muslum; Aslan, Abdulselam; Ahmed, Ishtiaq; Comakli, Veysel; Demirdag, Ramazan; Uzun, Naim

    2016-04-01

    Glucose-6-phosphate dehydrogenase (G6PD) and glutathione reductase (GR) are metabolically quite important enzymes. Within this study, these two enzymes were purified for the first time from the gills of Lake Van fish. In the purifying process, ammonium sulfate precipitation and 2',5'-ADP Sepharose 4B affinity column chromatography techniques for glucose-6-phosphate dehydrogenase, temperature degradation and 2',5'-ADP Sepharose 4B affinity column chromatography for glutathione reductase enzyme were used. The control of the enzyme purity and determination of molecular weight were done with sodium dodecyl sulfate polyacrylamide gel electrophoresis. K(M) and V(max) values were determined with Lineweaver-Burk plot. Besides, the effects of some chalcone derivatives on the purified enzymes were analyzed. For the ones showing inhibition effect, % activity-[I] figures were drawn and IC50 values were determined. K(i) value was calculated by using Cheng-Prusoff equation.

  2. Purification of glucose-6-phosphate dehydrogenase and glutathione reductase enzymes from the gill tissue of Lake Van fish and analyzing the effects of some chalcone derivatives on enzyme activities.

    PubMed

    Kuzu, Muslum; Aslan, Abdulselam; Ahmed, Ishtiaq; Comakli, Veysel; Demirdag, Ramazan; Uzun, Naim

    2016-04-01

    Glucose-6-phosphate dehydrogenase (G6PD) and glutathione reductase (GR) are metabolically quite important enzymes. Within this study, these two enzymes were purified for the first time from the gills of Lake Van fish. In the purifying process, ammonium sulfate precipitation and 2',5'-ADP Sepharose 4B affinity column chromatography techniques for glucose-6-phosphate dehydrogenase, temperature degradation and 2',5'-ADP Sepharose 4B affinity column chromatography for glutathione reductase enzyme were used. The control of the enzyme purity and determination of molecular weight were done with sodium dodecyl sulfate polyacrylamide gel electrophoresis. K(M) and V(max) values were determined with Lineweaver-Burk plot. Besides, the effects of some chalcone derivatives on the purified enzymes were analyzed. For the ones showing inhibition effect, % activity-[I] figures were drawn and IC50 values were determined. K(i) value was calculated by using Cheng-Prusoff equation. PMID:26676512

  3. [Properties of 2,5-diamino-4-oxy-6-ribosylaminopyrimidine-5'- phosphate reductase, a enzyme of the second stage of flavinogenesis in Pichia guilliermondii yeasts].

    PubMed

    Logvinenko, E M; Shavlovskiĭ, G M; Zakal'skiĭ, A E; Kontorovskaia, N Iu

    1989-01-01

    2,5-Diamino-4-oxy-6-ribosylaminopyrimidine-5'-phosphate reductase has been isolated from cells of Pichia guilliermondii and subjected to 20-fold purification by treating extracts with streptomycin sulphate, frationating proteins (NH4)2SO4 at 45-75% of saturation and chromatography on blue sepharose CL-6B. The use of gel filtration through Sephadex G-150 and chromatography on DEAE-cellulose proved to be less effective for the enzyme purification. It has been established that it is 2,5-diamino-4-oxy-6-ribosylaminopyrimidine-5-phosphate but not its dephosphorylated form that is the substrate of the given reductase; Km is equal to 7.10(-5) M. The reaction proceeds in the presence of NADPH or NADH. The enzyme affinity to NADPH (Km = 4.7.10(-5) M) is approximately one order higher than that to NADPH (Km = 5.5.10(-4) M). The enzyme manifests the optimum of action at pH 7.2 and the temperature of 37 degrees C; the molecular weight is 140 kD. EDTA as well as flavins in the concentration of 1.10(-3) M exert no effect on the reductase activity. The enzyme is labile at 4 degrees C and is inactivated in the frozen state at -15 degrees C. The 2.5-diamino-4-oxy-6-ribosylaminopyrimidine-5'-phosphate reductase has been also revealed in Torulopsis candida, Debaryomyces klöckeri, Schwanniomyces occidentalis, Eremothecium ashbyii (flavinogenic species) and Candida utilis. Aspergillus nidulans, Neurospora crassa (nonflavinogenic species). The synthesis of this enzyme contrary to other enzymes of the riboflavin biosynthesis is not regulated in flavinogenic yeast by iron ions. PMID:2511652

  4. [Properties of 2,5-diamino-4-oxy-6-ribosylaminopyrimidine-5'- phosphate reductase, a enzyme of the second stage of flavinogenesis in Pichia guilliermondii yeasts].

    PubMed

    Logvinenko, E M; Shavlovskiĭ, G M; Zakal'skiĭ, A E; Kontorovskaia, N Iu

    1989-01-01

    2,5-Diamino-4-oxy-6-ribosylaminopyrimidine-5'-phosphate reductase has been isolated from cells of Pichia guilliermondii and subjected to 20-fold purification by treating extracts with streptomycin sulphate, frationating proteins (NH4)2SO4 at 45-75% of saturation and chromatography on blue sepharose CL-6B. The use of gel filtration through Sephadex G-150 and chromatography on DEAE-cellulose proved to be less effective for the enzyme purification. It has been established that it is 2,5-diamino-4-oxy-6-ribosylaminopyrimidine-5-phosphate but not its dephosphorylated form that is the substrate of the given reductase; Km is equal to 7.10(-5) M. The reaction proceeds in the presence of NADPH or NADH. The enzyme affinity to NADPH (Km = 4.7.10(-5) M) is approximately one order higher than that to NADPH (Km = 5.5.10(-4) M). The enzyme manifests the optimum of action at pH 7.2 and the temperature of 37 degrees C; the molecular weight is 140 kD. EDTA as well as flavins in the concentration of 1.10(-3) M exert no effect on the reductase activity. The enzyme is labile at 4 degrees C and is inactivated in the frozen state at -15 degrees C. The 2.5-diamino-4-oxy-6-ribosylaminopyrimidine-5'-phosphate reductase has been also revealed in Torulopsis candida, Debaryomyces klöckeri, Schwanniomyces occidentalis, Eremothecium ashbyii (flavinogenic species) and Candida utilis. Aspergillus nidulans, Neurospora crassa (nonflavinogenic species). The synthesis of this enzyme contrary to other enzymes of the riboflavin biosynthesis is not regulated in flavinogenic yeast by iron ions.

  5. Glutathione reductase: Comparison of steady-state and rapid reaction primary kinetic isotope effects exhibited by the yeast, spinach, and Escherichia coli enzymes

    SciTech Connect

    Vanoni, M.A.; Wong, K.K.; Ballou, D.P.; Blanchard, J.S. )

    1990-06-19

    Kinetic parameters for NADPH and NADH have been determined at pH 8.1 for spinach, yeast, and E. coli glutathione reductases. NADPH exhibited low Km values for all enzymes (3-6 microM), while the Km values for NADH were 100 times higher (approximately 400 microM). Under our experimental conditions, the percentage of maximal velocities with NADH versus those measured with NADPH were 18.4, 3.7, and 0.13% for the spinach, yeast, and E. coli enzymes, respectively. Primary deuterium kinetic isotope effects were independent of GSSG concentration between Km and 15Km levels, supporting a ping-pong kinetic mechanism. For each of the three enzymes, NADPH yielded primary deuterium kinetic isotope effects on Vmax only, while NADH exhibited primary deuterium kinetic isotope effects on both V and V/K. The magnitude of DV/KNADH at pH 8.1 is 4.3 for the spinach enzyme, 2.7 for the yeast enzyme, and 1.6 for the E. coli glutathione reductase. The experimentally determined values of TV/KNADH of 7.4, 4.2, and 2.2 for the spinach, yeast, and E. coli glutathione reductases agree well with those calculated from the corresponding DV/KNADH using the Swain-Schaad expression. This suggests that the intrinsic primary kinetic isotope effect on NADH oxidation is fully expressed. In order to confirm this conclusion, single-turnover experiments have been performed. The measured primary deuterium kinetic isotope effects on the enzyme reduction half-reaction using NADH match those measured in the steady state for each of the three glutathione reductases.

  6. Studies on NADH (NADPH)-cytochrome c reductase (FMN-containing) from yeast. Isolation and physicochemical properties of the enzyme from top-fermenting ale yeast.

    PubMed

    Johnson, M S; Kuby, S A

    1985-10-01

    Only three major NADPH-nitrotetrazolium blue (NTB) reductases may be detected in a unique top-ale yeast (Saccharomyces cerevisiae, Narragansett strain), which appears to be of a near anaerobic type with the absence of cytochromes c and a/a3 and the presence of cytochromes P-450 and b5. Two of these three major NADPH-NTB reductases possessed NADH-NTB reductase activity; the third was specific for NADPH and was isolated in this laboratory (Tryon, E., Cress, M. C., Hamada, M., and Kuby, S. A. (1979) Arch. Biochem. Biophys. 197, 104-118) vis. NADPH-cytochrome c reductase (FAD-containing). A description of the isolation procedure is provided for one of these two NADH(NADPH)-NTB reductases, viz. NADH(NADPH)-cytochrome c reductase (FMN-containing), which accounts for about one-half of the total cyanide-insensitive menadione-activated respiration of this yeast. This NADH(NADPH)-cytochrome c reductase has been isolated from an extract of an acetone powder of the top-fermenting ale yeast, with an apparent purification of more than 67-fold and a final specific activity of 0.41 and 0.31 mumol/min/mg for NADH- and NADPH-dependent reduction, respectively. The isolated enzyme proved to be homogeneous by electrophoresis on cellulose acetate and on polyacrylamide gels. It had a pI of 5.25 (at gamma/2 = 0.05) and a molecular size under nondenaturing conditions (as determined by chromatography on Sephadex G-100 and Sephacryl S-200) of 70,000 daltons. On denaturation, the enzyme dissociated into two similar, if not identical, subunits which possessed a molecular weight of 34,000 by sodium dodecyl sulfate/urea-polyacrylamide gel electrophoresis and a weight average molecular weight of 35,000 by sedimentation equilibrium in the presence of 4.0 M guanidinium chloride. The absorbance spectrum of NADH(NADPH)-cytochrome c reductase (FMN-containing) showed three maxima at 464, 383, and 278 nm, with extinction coefficients of 9.88, 9.98, and 64.6 mM-1 cm-1, respectively. The reductase, as

  7. Studies on NADPH-cytochrome c reductase. II. Steady-state kinetic properties of the crystalline enzyme from ale yeast.

    PubMed

    Tryon, E; Kuby, S A

    1984-01-01

    From a study of the steady-state kinetics (at pH 7.6, 30 degrees C) of the reduction of cytochrome c, a 'ping-pong' mechanism may be postulated for the crystalline NADPH-cytochrome c reductase from ale yeast, Saccharomyces cerevisiae [1], a result derivable from a three-substrate ordered system with a rapid equilibrium random sequence in substrates, NADPH and FAD, followed by reactions of the third substrate, Cyt C3+. On this basis, estimates for the kinetic parameters were made together with the inhibitor dissociation constants for NADP+ (competitive with respect to NADPH as variable substrate, but noncompetitive with respect to cytochrome c3+ as the variable substrate). A noncompetitive type of inhibition was also found for cytochrome c2+ with NADPH as variable substrate, in confirmation of the proposed mechanism. With 2,6-dichloroindophenol as the acceptor, in place of cytochrome c3+, a value for KNADPH could be estimated which agreed with that estimated above, with cytochrome c3+ as the acceptor, again, in confirmation of the postulated mechanism. The reactions with molecular O2 catalyzed by the enzyme with NADPH as the reductant have been studied polarographically, and its Km for O2 estimated to be about 0.15 mmol/l at pH 7.6, 25 degrees C. The product of the reaction appears to be H2O2, which acts as a noncompetitive inhibitor for NADPH (Ki = 0.5 mmol/l), and tentatively an enzyme ternary complex containing oxygen and FADoh (semiquinone of FAD) may be assumed to be the kinetically important intermediate, which may be postulated to be in quasi-equilibrium with an enzyme ternary complex containing Oo2 (superoxide) and FAD.

  8. Isotope Effects Associated with N2O Production by Fungal and Bacterial Nitric Oxide Reductases: Implications for Enzyme Mechanisms

    NASA Astrophysics Data System (ADS)

    Hegg, E. L.; Yang, H.; Gandhi, H.; McQuarters, A.; Lehnert, N.; Ostrom, N. E.

    2014-12-01

    Nitrous oxide (N2O) is both a powerful greenhouse gas and a key participant in ozone destruction. Microbial activity accounts for over 70% of the N2O produced annually, and the atmospheric concentration of N2O continues to rise. Because the fungal and bacterial denitrification pathways are major contributors to microbial N2O production, understanding the mechanism by which NO is reduced to N2O will contribute to both N2O source tracing and quantification. Our strategy utilizes stable isotopes to probe the enzymatic mechanism of microbial N2O production. Although the use of stable isotopes to study enzyme mechanisms is not new, our approach is distinct in that we employ both measurements of isotopic preferences of purified enzyme and DFT calculations, thereby providing a synergistic combination of experimental and computational approaches. We analyzed δ18O, δ15Nα (central N atom in N2O), and δ15Nβ (terminal N atom) of N2O produced by purified fungal cytochrome P450 nitric oxide reductase (P450nor) from Histoplasma capsulatum as well as bacterial cytochrome c dependent nitric oxide reductase (cNOR) from Paracoccus denitrificans. P450nor exhibits an inverse kinetic isotope effect for Nβ (KIE = 0.9651) but a normal isotope effect for both Nα (KIE = 1.0127) and the oxygen atom (KIE = 1.0264). These results suggest a mechanism where NO binds to the ferric heme in the P450nor active site and becomes Nβ. Analysis of the NO-binding step indicated a greater difference in zero point energy in the transition state than the ground state, resulting in the inverse KIE observed for Nβ. Following protonation and rearrangement, it is speculated that this complex forms a FeIV-NHOH- species as a key intermediate. Our data are consistent with the second NO (which becomes Nα and O in the N2O product) attacking the FeIV-NHOH- species to generate a FeIII-N2O2H2 complex that enzymatically (as opposed to abiotically) breaks down to release N2O. Conversely, our preliminary data

  9. The discovery of methionine sulfoxide reductase enzymes: An historical account and future perspectives.

    PubMed

    Achilli, Cesare; Ciana, Annarita; Minetti, Giampaolo

    2015-05-01

    L-Methionine (L-Met) is the only sulphur-containing proteinogenic amino acid together with cysteine. Its importance is highlighted by it being the initiator amino acid for protein synthesis in all known living organisms. L-Met, free or inserted into proteins, is sensitive to oxidation of its sulfide moiety, with formation of L-Met sulfoxide. The sulfoxide could not be inserted into proteins, and the oxidation of L-Met in proteins often leads to the loss of biological activity of the affected molecule. Key discoveries revealed the existence, in rats, of a metabolic pathway for the reduction of free L-Met sulfoxide and, later, in Escherichia coli, of the enzymatic reduction of L-Met sulfoxide inserted in proteins. Upon oxidation, the sulphur atom becomes a new stereogenic center, and two stable diastereoisomers of L-Met sulfoxide exist. A fundamental discovery revealed the existence of two unrelated families of enzymes, MsrA and MsrB, whose members display opposite stereospecificity of reduction for the two sulfoxides. The importance of Msrs is additionally emphasized by the discovery that one of the only 25 selenoproteins expressed in humans is a Msr. The milestones on the road that led to the discovery and characterization of this group of antioxidant enzymes are recounted in this review.

  10. Uncoupling of allosteric and oligomeric regulation in a functional hybrid enzyme constructed from Escherichia coli and human ribonucleotide reductase.

    PubMed

    Fu, Yuan; Long, Marcus J C; Rigney, Mike; Parvez, Saba; Blessing, William A; Aye, Yimon

    2013-10-01

    An N-terminal-domain (NTD) and adjacent catalytic body (CB) make up subunit-α of ribonucleotide reductase (RNR), the rate-limiting enzyme for de novo dNTP biosynthesis. A strong linkage exists between ligand binding at the NTD and oligomerization-coupled RNR inhibition, inducible by both dATP and nucleotide chemotherapeutics. These observations have distinguished the NTD as an oligomeric regulation domain dictating the assembly of inactive RNR oligomers. Inactive states of RNR differ between eukaryotes and prokaryotes (α6 in human versus α4β4 in Escherichia coli , wherein β is RNR's other subunit); however, the NTD structurally interconnects individual α2 or α2 and β2 dimeric motifs within the respective α6 or α4β4 complexes. To elucidate the influence of NTD ligand binding on RNR allosteric and oligomeric regulation, we engineered a human- E. coli hybrid enzyme (HE) where human-NTD is fused to E. coli -CB. Both the NTD and the CB of the HE bind dATP. The HE specifically partners with E. coli -β to form an active holocomplex. However, although the NTD is the sole physical tether to support α2 and/or β2 associations in the dATP-bound α6 or α4β4 fully inhibited RNR complexes, the binding of dATP to the HE NTD only partially suppresses HE activity and fully precludes formation of higher-order HE oligomers. We postulate that oligomeric regulation is the ultimate mechanism for potent RNR inhibition, requiring species-specific NTD-CB interactions. Such interdomain cooperativity in RNR oligomerization is unexpected from structural studies alone or biochemical studies of point mutants.

  11. Details in the catalytic mechanism of mammalian thioredoxin reductase 1 revealed using point mutations and juglone-coupled enzyme activities.

    PubMed

    Xu, Jianqiang; Cheng, Qing; Arnér, Elias S J

    2016-05-01

    The mammalian selenoprotein thioredoxin reductase 1 (TrxR1) is a key enzyme in redox regulation, antioxidant defense, and cellular growth. TrxR1 can catalyze efficient reduction of juglone (5-hydroxy-1,4-naphthoquinone; walnut toxin) in a reaction which, in contrast to reduction of most other substrates of TrxR1, is not dependent upon an intact selenocysteine (Sec, U) residue of the enzyme. Using a number of TrxR1 mutant variants, we here found that a sole Cys residue at the C-terminal tail of TrxR1 is required for high-efficiency juglone-coupled NADPH oxidase activity of Sec-deficient enzyme, occurring with mixed one- and two-electron reactions producing superoxide. The activity also utilizes the FAD and the N-terminal redox active disulfide/dithiol motif of TrxR1. If a sole Cys residue at the C-terminal tail of TrxR1, in the absence of Sec, was moved further towards the C-terminal end of the protein compared to its natural position at residue 497, juglone reduction was, surprisingly, further increased. Ala substitutions of Trp407, Asn418 and Asn419 in a previously described "guiding bar", thought to mediate interactions of the C-terminal tail of TrxR1 with the FAD/dithiol site at the N-terminal domain of the other subunit in the dimeric enzyme, lowered turnover with juglone about 4.5-fold. Four residues of Sec-deficient TrxR1 were found to be easily arylated by juglone, including the Cys residue at position 497. Based upon our observations we suggest a model for involvement of the juglone-arylated C-terminal motif of TrxR1 to explain its high activity with juglone. This study thus provides novel insights into the catalytic mechanisms of TrxR1. One-electron juglone reduction by TrxR1 producing superoxide should furthermore contribute to the well-known prooxidant cytotoxicity of juglone. PMID:26898501

  12. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aldehyde reductase gene ARI1 is a recently characterized member of intermediate subfamily under SDR (short-chain dehydrogenase/reductase) superfamily that revealed mechanisms of in situ detoxification of furfural and HMF for tolerance of Saccharomyces cerevisiae. Uncharacterized open reading frames ...

  13. Inhibition of Vibrio harveyi bioluminescence by cerulenin: In vivo evidence for covalent modification of the reductase enzyme involved in aldehyde synthesis

    SciTech Connect

    Byers, D.M. ); Meighen, E.A. )

    1989-07-01

    Bacterial bioluminescence is very sensitive to cerulenin, a fungal antibiotic which is known to inhibit fatty acid synthesis. When Vibrio harveyi cells pretreated with cerulenin were incubated with ({sup 3}H)myristic acid in vivo, acylation of the 57-kilodalton reductase subunit of the luminescence-specific fatty acid reductase complex was specifically inhibited. Light emission of wild-type V. harveyi was 20-fold less sensitive to cerulenin at low concentrations (10{mu}g/ml) than that of the dark mutant strain M17, which requires exogenous myristic acid for luminescence because of a defective transferase subunit. The sensitivity of myristic acid-stimulated luminescence in the mutant strain M17 exceeded that of phospholipid synthesis from ({sup 14}C)acetate, whereas uptake and incorporation of exogenous ({sup 14}C)myristic acid into phospholipids was increased by cerulenin. The reductase subunit could be labeled by incubating M17 cells with ({sup 3}H)tetrahydrocerulenin; this labeling was prevented by preincubation with either unlabeled cerulenin or myristic acid. Labeling of the reductase subunit with ({sup 3}H)tetrahydrocerulenin was also noted in an aldehyde-stimulated mutant (A16) but not in wild-type cells or in another aldehyde-stimulated mutant (M42) in which ({sup 3}H)myristoyl turnover at the reductase subunit was found to be defective. These results indicate that (i) cerulenin specifically and covalently inhibits the reductase component of aldehyde synthesis, (ii) this enzyme is partially protected from cerulenin inhibition in the wild-type strain in vivo, and (iii) two dark mutants which exhibit similar luminescence phenotypes (mutants A16 and M42) are blocked at different stages of fatty acid reduction.

  14. The crystal structure of maleylacetate reductase from Rhizobium sp. strain MTP-10005 provides insights into the reaction mechanism of enzymes in its original family.

    PubMed

    Fujii, Tomomi; Sato, Ai; Okamoto, Yuko; Yamauchi, Takae; Kato, Shiro; Yoshida, Masahiro; Oikawa, Tadao; Hata, Yasuo

    2016-08-01

    Maleylacetate reductase plays a crucial role in catabolism of resorcinol by catalyzing the NAD(P)H-dependent reduction of maleylacetate, at a carbon-carbon double bond, to 3-oxoadipate. The crystal structure of maleylacetate reductase from Rhizobium sp. strain MTP-10005, GraC, has been elucidated by the X-ray diffraction method at 1.5 Å resolution. GraC is a homodimer, and each subunit consists of two domains: an N-terminal NADH-binding domain adopting an α/β structure and a C-terminal functional domain adopting an α-helical structure. Such structural features show similarity to those of the two existing families of enzymes in dehydroquinate synthase-like superfamily. However, GraC is distinct in dimer formation and activity expression mechanism from the families of enzymes. Two subunits in GraC have different structures from each other in the present crystal. One subunit has several ligands mimicking NADH and the substrate in the cleft and adopts a closed domain arrangement. In contrast, the other subunit does not contain any ligand causing structural changes and adopts an open domain arrangement. The structure of GraC reveals those of maleylacetate reductase both in the coenzyme, substrate-binding state and in the ligand-free state. The comparison of both subunit structures reveals a conformational change of the Tyr326 loop for interaction with His243 on ligand binding. Structures of related enzymes suggest that His243 is likely a catalytic residue of GraC. Mutational analyses of His243 and Tyr326 support the catalytic roles proposed from structural information. The crystal structure of GraC characterizes the maleylacetate reductase family as a third family in the dehydroquinate synthase-like superfamily. Proteins 2016; 84:1029-1042. © 2016 Wiley Periodicals, Inc. PMID:27040018

  15. Androgen-activating enzymes in the central nervous system.

    PubMed

    Poletti, A; Martini, L

    1999-01-01

    In the rat brain, several steroids can be converted by specific enzymes to either more potent compounds or to derivatives showing new biological effects. One of the most studied enzyme is the 5alpha-reductase (5alpha-R), which acts on 3keto-delta4 steroids. In males, testosterone is the main substrate and gives rise to the most potent natural androgen dihydrotestosterone. In females, progesterone is reduced to dihydroprogesterone, a precursor of allopregnanolone, a natural anxiolytic/anesthetic steroid. Other substrates are some gluco- and minero-corticoids. Two isoforms of the 5alpha-R, with limited degree of homology, have been cloned: 5alpha-R type 1 and type 2. The 5alpha-R type 1 possesses low affinity for the various substrates and is widely distributed in the body, with the highest levels in the liver; in the brain, this isoform is expressed throughout life and does not appear to be controlled by androgens. 5Alpha-R type 1 in the rat brain is mainly concentrated in myelin membranes, where it might be involved in the catabolism of potentially neurotoxic steroids. The 5alpha-R type 2 shows high affinity for the various substrates, a peculiar pH optimum at acidic values and is localized in androgen-dependent structures. In the rat brain, the type 2 isoform is expressed at high levels only in the perinatal period and is controlled by androgens, at least in males. In adulthood, the type 2 gene appears to be specifically expressed in localised brain regions, like the hypothalamus and the hippocampus. The 5alpha-R type 2 is present in the GT1 cells, a model of LHRH-secreting neurons. These cells also contain the androgen receptor, which is probably involved in the central negative feedback effect exerted by androgens on the hypothalamic-pituitary-gonadal axis. The physiological significance of these and additional data will be discussed.

  16. Quinone Reductase 2 Is a Catechol Quinone Reductase

    SciTech Connect

    Fu, Yue; Buryanovskyy, Leonid; Zhang, Zhongtao

    2008-09-05

    The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference between quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease.

  17. Characterization of the mechanism of the NADH-dependent polysulfide reductase (Npsr) from Shewanella loihica PV-4: formation of a productive NADH-enzyme complex and its role in the general mechanism of NADH and FAD-dependent enzymes.

    PubMed

    Lee, Kyu Hyun; Humbarger, Scott; Bahnvadia, Raj; Sazinsky, Matthew H; Crane, Edward J

    2014-09-01

    The NADH-dependent polysulfide reductase (Npsr) from Shewanella loihica PV-4 is a member of the single cysteine-containing subset of the family of disulfide reductases represented by glutathione reductase. We have determined the kinetics of the reductive half-reaction of the enzyme with NADH using stopped-flow spectroscopy and kinetic isotope effects, and these results indicate that the reductive and oxidative half-reactions are both partially rate-limiting for enzyme turnover. During reaction with NADH, the reduced nucleotide appears to bind rapidly in an unproductive conformation, followed by the formation of a productive E·NADH complex and subsequent electron transfer to FAD. F161 of Npsr fills the space in which the nicotinamide ring of NADH would be expected to bind. We have shown that while this residue is not absolutely required for catalysis, it does assist in the forward commitment to catalysis through its role in the reductive half reaction, where it appears to enhance hydride transfer in the productive E·NADH complex. While the fluorescence and absorbance spectra of the stable redox forms of the wild-type and F161A mutant enzymes are similar, intermediates formed during reduction and turnover have different characteristics and appear to indicate that the enzyme-NADH complex formed just prior to hydride transfer on the F161A enzyme has weaker FAD-NADH interactions than the wild-type enzyme, consistent with a "looser" enzyme-NADH complex. The 2.7Å crystal structure of the F161A mutant was determined, and shows that the nicotinamide ring of NADH would have the expected freedom of motion in the more open NADH binding cavity.

  18. Detoxifying Enzymes at the Cross-Roads of Inflammation, Oxidative Stress, and Drug Hypersensitivity: Role of Glutathione Transferase P1-1 and Aldose Reductase.

    PubMed

    Sánchez-Gómez, Francisco J; Díez-Dacal, Beatriz; García-Martín, Elena; Agúndez, José A G; Pajares, María A; Pérez-Sala, Dolores

    2016-01-01

    Phase I and II enzymes are involved in the metabolism of endogenous reactive compounds as well as xenobiotics, including toxicants and drugs. Genotyping studies have established several drug metabolizing enzymes as markers for risk of drug hypersensitivity. However, other candidates are emerging that are involved in drug metabolism but also in the generation of danger or costimulatory signals. Enzymes such as aldo-keto reductases (AKR) and glutathione transferases (GST) metabolize prostaglandins and reactive aldehydes with proinflammatory activity, as well as drugs and/or their reactive metabolites. In addition, their metabolic activity can have important consequences for the cellular redox status, and impacts the inflammatory response as well as the balance of inflammatory mediators, which can modulate epigenetic factors and cooperate or interfere with drug-adduct formation. These enzymes are, in turn, targets for covalent modification and regulation by oxidative stress, inflammatory mediators, and drugs. Therefore, they constitute a platform for a complex set of interactions involving drug metabolism, protein haptenation, modulation of the inflammatory response, and/or generation of danger signals with implications in drug hypersensitivity reactions. Moreover, increasing evidence supports their involvement in allergic processes. Here, we will focus on GSTP1-1 and aldose reductase (AKR1B1) and provide a perspective for their involvement in drug hypersensitivity. PMID:27540362

  19. Detoxifying Enzymes at the Cross-Roads of Inflammation, Oxidative Stress, and Drug Hypersensitivity: Role of Glutathione Transferase P1-1 and Aldose Reductase

    PubMed Central

    Sánchez-Gómez, Francisco J.; Díez-Dacal, Beatriz; García-Martín, Elena; Agúndez, José A. G.; Pajares, María A.; Pérez-Sala, Dolores

    2016-01-01

    Phase I and II enzymes are involved in the metabolism of endogenous reactive compounds as well as xenobiotics, including toxicants and drugs. Genotyping studies have established several drug metabolizing enzymes as markers for risk of drug hypersensitivity. However, other candidates are emerging that are involved in drug metabolism but also in the generation of danger or costimulatory signals. Enzymes such as aldo-keto reductases (AKR) and glutathione transferases (GST) metabolize prostaglandins and reactive aldehydes with proinflammatory activity, as well as drugs and/or their reactive metabolites. In addition, their metabolic activity can have important consequences for the cellular redox status, and impacts the inflammatory response as well as the balance of inflammatory mediators, which can modulate epigenetic factors and cooperate or interfere with drug-adduct formation. These enzymes are, in turn, targets for covalent modification and regulation by oxidative stress, inflammatory mediators, and drugs. Therefore, they constitute a platform for a complex set of interactions involving drug metabolism, protein haptenation, modulation of the inflammatory response, and/or generation of danger signals with implications in drug hypersensitivity reactions. Moreover, increasing evidence supports their involvement in allergic processes. Here, we will focus on GSTP1-1 and aldose reductase (AKR1B1) and provide a perspective for their involvement in drug hypersensitivity. PMID:27540362

  20. Plant progesterone 5beta-reductase is not homologous to the animal enzyme. Molecular evolutionary characterization of P5betaR from Digitalis purpurea.

    PubMed

    Gavidia, Isabel; Tarrío, Rosa; Rodríguez-Trelles, Francisco; Pérez-Bermúdez, Pedro; Seitz, H Ulrich

    2007-03-01

    Plants of the genus Digitalis produce cardiac glycosides, i.e. digoxin, which are widely used for congestive heart failure. Progesterone 5beta-reductase (P5betaR) is a key enzyme in the biosynthesis of these natural products. Here, we have carried out the purification and partial amino acid sequencing of the native P5betaR from foxglove (Digitalis purpurea), and isolated a cDNA encoding this enzyme. Similarly to other steroid 5beta-reductases, the recombinant P5betaR catalyzes the stereospecific reduction of the Delta(4)-double bond of several steroids with a 3-oxo,Delta(4,5) structure. The gene encoding P5betaR is expressed in all plant organs, and maximally transcribed in leaves and mature flowers. P5betaR belongs to the short-chain dehydrogenase/reductase (SDR) superfamily, bearing no structural homology to its mammalian counterpart, which is a member of the aldo-keto reductase (AKR) superfamily. A similar situation occurs with 3beta-hydroxy-Delta(5)-steroid dehydrogenase (3betaHSD), the gene immediately preceding P5betaR in the cardenolide pathway, which suggests that the entire route has evolved independently in animals and plants. P5betaR is retained only in plants, where it is ubiquitous, and a few distantly related bacterial lineages after its diversification from the last universal common ancestor. Evolutionary conserved changes in its putative active site suggest that plant P5betaR is a member of a novel subfamily of extended SDRs, or a new SDR family.

  1. Tropine Forming Tropinone Reductase Gene from Withania somnifera (Ashwagandha): Biochemical Characteristics of the Recombinant Enzyme and Novel Physiological Overtones of Tissue-Wide Gene Expression Patterns

    PubMed Central

    Kushwaha, Amit Kumar; Sangwan, Neelam Singh; Trivedi, Prabodh Kumar; Negi, Arvind Singh; Misra, Laxminarain; Sangwan, Rajender Singh

    2013-01-01

    Withania somnifera is one of the most reputed medicinal plants of Indian systems of medicine synthesizing diverse types of secondary metabolites such as withanolides, alkaloids, withanamides etc. Present study comprises cloning and E. coli over-expression of a tropinone reductase gene (WsTR-I) from W. somnifera, and elucidation of biochemical characteristics and physiological role of tropinone reductase enzyme in tropane alkaloid biosynthesis in aerial tissues of the plant. The recombinant enzyme was demonstrated to catalyze NADPH-dependent tropinone to tropine conversion step in tropane metabolism, through TLC, GC and GC-MS-MS analyses of the reaction product. The functionally active homodimeric ∼60 kDa enzyme catalyzed the reaction in reversible manner at optimum pH 6.7. Catalytic kinetics of the enzyme favoured its forward reaction (tropine formation). Comparative 3-D models of landscape of the enzyme active site contours and tropinone binding site were also developed. Tissue-wide and ontogenic stage-wise assessment of WsTR-I transcript levels revealed constitutive expression of the gene with relatively lower abundance in berries and young leaves. The tissue profiles of WsTR-I expression matched those of tropine levels. The data suggest that, in W. somnifera, aerial tissues as well possess tropane alkaloid biosynthetic competence. In vivo feeding of U-[14C]-sucrose to orphan shoot (twigs) and [14C]-chasing revealed substantial radiolabel incorporation in tropinone and tropine, confirming the de novo synthesizing ability of the aerial tissues. This inherent independent ability heralds a conceptual novelty in the backdrop of classical view that these tissues acquire the alkaloids through transportation from roots rather than synthesis. The TR-I gene expression was found to be up-regulated on exposure to signal molecules (methyl jasmonate and salicylic acid) and on mechanical injury. The enzyme's catalytic and structural properties as well as gene expression

  2. Identification and Partial Characterization of a Novel UDP-N-Acetylenolpyruvoylglucosamine Reductase/UDP-N-Acetylmuramate:l-Alanine Ligase Fusion Enzyme from Verrucomicrobium spinosum DSM 4136T

    PubMed Central

    Naqvi, Kubra F.; Patin, Delphine; Wheatley, Matthew S.; Savka, Michael A.; Dobson, Renwick C. J.; Gan, Han Ming; Barreteau, Hélène; Blanot, Didier; Mengin-Lecreulx, Dominique; Hudson, André O.

    2016-01-01

    The enzymes involved in synthesizing the bacterial cell wall are attractive targets for the design of antibacterial compounds, since this pathway is essential for bacteria and is absent in animals, particularly humans. A survey of the genome of a bacterium that belongs to the phylum Verrucomicrobia, the closest free-living relative to bacteria from the Chlamydiales phylum, shows genetic evidence that Verrucomicrobium spinosum possesses a novel fusion open reading frame (ORF) annotated by the locus tag (VspiD_010100018130). The ORF, which is predicted to encode the enzymes UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) and UDP-N-acetylmuramate:l-alanine ligase (MurC) that are involved in the cytoplasmic steps of peptidoglycan biosynthesis, was cloned. In vivo analyses using functional complementation showed that the fusion gene was able to complement Escherichia coli murB and murC temperature sensitive mutants. The purified recombinant fusion enzyme (MurB/CVs) was shown to be endowed with UDP-N-acetylmuramate:l-alanine ligase activity. In vitro analyses demonstrated that the latter enzyme had a pH optimum of 9.0, a magnesium optimum of 10 mM and a temperature optimum of 44–46°C. Its apparent Km values for ATP, UDP-MurNAc, and l-alanine were 470, 90, and 25 μM, respectively. However, all attempts to demonstrate an in vitro UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) activity were unsuccessful. Lastly, Hidden Markov Model-based similarity search and phylogenetic analysis revealed that this fusion enzyme could only be identified in specific lineages within the Verrucomicrobia phylum. PMID:27047475

  3. A maize gene encoding an NADPH binding enzyme highly homologous to isoflavone reductases is activated in response to sulfur starvation.

    PubMed

    Petrucco, S; Bolchi, A; Foroni, C; Percudani, R; Rossi, G L; Ottonello, S

    1996-01-01

    we isolated a novel gene that is selectively induced both in roots and shoots in response to sulfur starvation. This gene encodes a cytosolic, monomeric protein of 33 kD that selectively binds NADPH. The predicted polypeptide is highly homologous ( > 70%) to leguminous isoflavone reductases (IFRs), but the maize protein (IRL for isoflavone reductase-like) belongs to a novel family of proteins present in a variety of plants. Anti-IRL antibodies specifically recognize IFR polypeptides, yet the maize protein is unable to use various isoflavonoids as substrates. IRL expression is correlated closely to glutathione availability: it is persistently induced in seedlings whose glutathione content is about fourfold lower than controls, and it is down-regulated rapidly when control levels of glutathione are restored. This glutathione-dependent regulation indicates that maize IRL may play a crucial role in the establishment of a thiol-independent response to oxidative stress under glutathione shortage conditions.

  4. A maize gene encoding an NADPH binding enzyme highly homologous to isoflavone reductases is activated in response to sulfur starvation.

    PubMed Central

    Petrucco, S; Bolchi, A; Foroni, C; Percudani, R; Rossi, G L; Ottonello, S

    1996-01-01

    we isolated a novel gene that is selectively induced both in roots and shoots in response to sulfur starvation. This gene encodes a cytosolic, monomeric protein of 33 kD that selectively binds NADPH. The predicted polypeptide is highly homologous ( > 70%) to leguminous isoflavone reductases (IFRs), but the maize protein (IRL for isoflavone reductase-like) belongs to a novel family of proteins present in a variety of plants. Anti-IRL antibodies specifically recognize IFR polypeptides, yet the maize protein is unable to use various isoflavonoids as substrates. IRL expression is correlated closely to glutathione availability: it is persistently induced in seedlings whose glutathione content is about fourfold lower than controls, and it is down-regulated rapidly when control levels of glutathione are restored. This glutathione-dependent regulation indicates that maize IRL may play a crucial role in the establishment of a thiol-independent response to oxidative stress under glutathione shortage conditions. PMID:8597660

  5. Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants.

    PubMed

    Chao, Dai-Yin; Chen, Yi; Chen, Jiugeng; Shi, Shulin; Chen, Ziru; Wang, Chengcheng; Danku, John M; Zhao, Fang-Jie; Salt, David E

    2014-12-01

    Inorganic arsenic is a carcinogen, and its ingestion through foods such as rice presents a significant risk to human health. Plants chemically reduce arsenate to arsenite. Using genome-wide association (GWA) mapping of loci controlling natural variation in arsenic accumulation in Arabidopsis thaliana allowed us to identify the arsenate reductase required for this reduction, which we named High Arsenic Content 1 (HAC1). Complementation verified the identity of HAC1, and expression in Escherichia coli lacking a functional arsenate reductase confirmed the arsenate reductase activity of HAC1. The HAC1 protein accumulates in the epidermis, the outer cell layer of the root, and also in the pericycle cells surrounding the central vascular tissue. Plants lacking HAC1 lose their ability to efflux arsenite from roots, leading to both increased transport of arsenic into the central vascular tissue and on into the shoot. HAC1 therefore functions to reduce arsenate to arsenite in the outer cell layer of the root, facilitating efflux of arsenic as arsenite back into the soil to limit both its accumulation in the root and transport to the shoot. Arsenate reduction by HAC1 in the pericycle may play a role in limiting arsenic loading into the xylem. Loss of HAC1-encoded arsenic reduction leads to a significant increase in arsenic accumulation in shoots, causing an increased sensitivity to arsenate toxicity. We also confirmed the previous observation that the ACR2 arsenate reductase in A. thaliana plays no detectable role in arsenic metabolism. Furthermore, ACR2 does not interact epistatically with HAC1, since arsenic metabolism in the acr2 hac1 double mutant is disrupted in an identical manner to that described for the hac1 single mutant. Our identification of HAC1 and its associated natural variation provides an important new resource for the development of low arsenic-containing food such as rice. PMID:25464340

  6. Genome-wide Association Mapping Identifies a New Arsenate Reductase Enzyme Critical for Limiting Arsenic Accumulation in Plants

    PubMed Central

    Chao, Dai-Yin; Chen, Yi; Chen, Jiugeng; Shi, Shulin; Chen, Ziru; Wang, Chengcheng; Danku, John M.; Zhao, Fang-Jie; Salt, David E.

    2014-01-01

    Inorganic arsenic is a carcinogen, and its ingestion through foods such as rice presents a significant risk to human health. Plants chemically reduce arsenate to arsenite. Using genome-wide association (GWA) mapping of loci controlling natural variation in arsenic accumulation in Arabidopsis thaliana allowed us to identify the arsenate reductase required for this reduction, which we named High Arsenic Content 1 (HAC1). Complementation verified the identity of HAC1, and expression in Escherichia coli lacking a functional arsenate reductase confirmed the arsenate reductase activity of HAC1. The HAC1 protein accumulates in the epidermis, the outer cell layer of the root, and also in the pericycle cells surrounding the central vascular tissue. Plants lacking HAC1 lose their ability to efflux arsenite from roots, leading to both increased transport of arsenic into the central vascular tissue and on into the shoot. HAC1 therefore functions to reduce arsenate to arsenite in the outer cell layer of the root, facilitating efflux of arsenic as arsenite back into the soil to limit both its accumulation in the root and transport to the shoot. Arsenate reduction by HAC1 in the pericycle may play a role in limiting arsenic loading into the xylem. Loss of HAC1-encoded arsenic reduction leads to a significant increase in arsenic accumulation in shoots, causing an increased sensitivity to arsenate toxicity. We also confirmed the previous observation that the ACR2 arsenate reductase in A. thaliana plays no detectable role in arsenic metabolism. Furthermore, ACR2 does not interact epistatically with HAC1, since arsenic metabolism in the acr2 hac1 double mutant is disrupted in an identical manner to that described for the hac1 single mutant. Our identification of HAC1 and its associated natural variation provides an important new resource for the development of low arsenic-containing food such as rice. PMID:25464340

  7. Malonyl-Coenzyme A Reductase from Chloroflexus aurantiacus, a Key Enzyme of the 3-Hydroxypropionate Cycle for Autotrophic CO2 Fixation

    PubMed Central

    Hügler, Michael; Menendez, Castor; Schägger, Hermann; Fuchs, Georg

    2002-01-01

    The 3-hydroxypropionate cycle is a new autotrophic CO2 fixation pathway in Chloroflexus aurantiacus and some archaebacteria. The initial step is acetyl-coenzyme A (CoA) carboxylation to malonyl-CoA by acetyl-CoA carboxylase, followed by NADPH-dependent reduction of malonyl-CoA to 3-hydroxypropionate. This reduction step was studied in Chloroflexus aurantiacus. A new enzyme was purified, malonyl-CoA reductase, which catalyzed the two-step reduction malonyl-CoA + NADPH + H+ → malonate semialdehyde + NADP+ + CoA and malonate semialdehyde + NADPH + H+ → 3-hydroxypropionate + NADP+. The bifunctional enzyme (aldehyde dehydrogenase and alcohol dehydrogenase) had a native molecular mass of 300 kDa and consisted of a single large subunit of 145 kDa, suggesting an α2 composition. The N-terminal amino acid sequence was determined, and the incomplete gene was identified in the genome database. Obviously, the enzyme consists of an N-terminal short-chain alcohol dehydrogenase domain and a C-terminal aldehyde dehydrogenase domain. No indication of the presence of a prosthetic group was obtained; Mg2+ and Fe2+ stimulated and EDTA inhibited activity. The enzyme was highly specific for its substrates, with apparent Km values of 30 μM malonyl-CoA and 25 μM NADPH and a turnover number of 25 s−1 subunit−1. The specific activity in autotrophically grown cells was 0.08 μmol of malonyl-CoA reduced min−1 (mg of protein)−1, compared to 0.03 μmol min−1 (mg of protein)−1 in heterotrophically grown cells, indicating downregulation under heterotrophic conditions. Malonyl-CoA reductase is not required in any other known pathway and therefore can be taken as a characteristic enzyme of the 3-hydroxypropionate cycle. Furthermore, the enzyme may be useful for production of 3-hydroxypropionate and for a coupled spectrophotometric assay for activity screening of acetyl-CoA carboxylase, a target enzyme of potent herbicides. PMID:11948153

  8. Gene-specific amplicons from metagenomes as an alternative to directed evolution for enzyme screening: a case study using phenylacetaldehyde reductases.

    PubMed

    Itoh, Nobuya; Kazama, Miki; Takeuchi, Nami; Isotani, Kentaro; Kurokawa, Junji

    2016-06-01

    Screening gene-specific amplicons from metagenomes (S-GAM) is a highly promising technique for the isolation of genes encoding enzymes for biochemical and industrial applications. From metagenomes, we isolated phenylacetaldehyde reductase (par) genes, which code for an enzyme that catalyzes the production of various Prelog's chiral alcohols. Nearly full-length par genes were amplified by PCR from metagenomic DNA, the products of which were fused with engineered par sequences at both terminal regions of the expression vector to ensure proper expression and then used to construct Escherichia coli plasmid libraries. Sequence- and activity-based screening of these libraries identified different homologous par genes, Hpar-001 to -036, which shared more than 97% amino acid sequence identity with PAR. Comparative characterization of these active homologs revealed a wide variety of enzymatic properties including activity, substrate specificity, and thermal stability. Moreover, amino acid substitutions in these genes coincided with those of Sar268 and Har1 genes, which were independently engineered by error-prone PCR to exhibit increased activity in the presence of concentrated 2-propanol. The comparative data from both approaches suggest that sequence information from homologs isolated from metagenomes is quite useful for enzyme engineering. Furthermore, by examining the GAM-based sequence dataset derived from soil metagenomes, we easily found amino acid substitutions that increase the thermal stability of PAR/PAR homologs. Thus, GAM-based approaches can provide not only useful homologous enzymes but also an alternative to directed evolution methodologies. PMID:27419059

  9. Anaerobic degradation of nitrilotriacetate (NTA) in a denitrifying bacterium: purification and characterization of the NTA dehydrogenase-nitrate reductase enzyme complex.

    PubMed Central

    Jenal-Wanner, U; Egli, T

    1993-01-01

    The initial step in the anoxic metabolism of nitrilotriacetate (NTA) was investigated in a denitrifying member of the gamma subgroup of the Proteobacteria. In membrane-free cell extracts, the first step of NTA oxidation was catalyzed by a protein complex consisting of two enzymes, NTA dehydrogenase (NTADH) and nitrate reductase (NtR). The products formed were iminodiacetate and glyoxylate. Electrons derived from the oxidation of NTA were transferred to nitrate only via the artificial dye phenazine methosulfate, and nitrate was stoichiometrically reduced to nitrite. NTADH activity could be measured only in the presence of NtrR and vice versa. The NTADH-NtrR enzyme complex was purified and characterized. NTADH and NtrR were both alpha 2 dimers and had molecular weights of 170,000 and 105,000, respectively. NTADH contained covalently bound flavin cofactor, and NtrR contained a type b cytochrome. Optimum NTA-oxidizing activity was achieved at a molar ratio of NTADH to NtrR of approximately 1:1. So far, NTA is the only known substrate for NTADH. This is the first report of a redox enzyme complex catalyzing the oxidation of a substrate and concomitantly reducing nitrate. Images PMID:8250558

  10. Mannose-6-Phosphate Reductase, a Key Enzyme in Photoassimilate Partitioning, Is Abundant and Located in the Cytosol of Photosynthetically Active Cells of Celery (Apium graveolens L.) Source Leaves.

    PubMed

    Everard, J. D.; Franceschi, V. R.; Loescher, W. H.

    1993-06-01

    Mannitol, a major photosynthetic product and transport carbohydrate in many plants, accounts for approximately 50% of the carbon fixed by celery (Apium graveolens L.) leaves. Previous subfractionation studies of celery leaves indicated that the enzymes for mannitol synthesis were located in the cytosol, but these data are inconsistent with that published for the sites of sugar alcohol synthesis in other families and taxa, including apple (Malus) and a brown alga (Fucus). Using antibodies to a key synthetic enzyme, NADPH-dependent mannose-6-phosphate reductase (M6PR), and immunocytochemical techniques, we have resolved both the inter-cellular and intracellular sites of mannitol synthesis. In leaves, M6PR was found only in cells containing ribulose-1,5-bisphosphate carboxylase/oxygenase. M6PR was almost exclusively cytosolic in these cells, with the nucleus being the only organelle to show labeling. The key step in transport carbohydrate biosynthesis that is catalyzed by M6PR displays no apparent preferential association with vascular tissues or with the bundle sheath. These results show that M6PR and, thus, mannitol synthesis are closely associated with the distribution of photosynthetic carbon metabolism in celery leaves. The principal role of M6PR is, therefore, in the assimilation of carbon being exported from the chloroplast, and it seems unlikely that this enzyme plays even an indirect role in phloem loading of mannitol.

  11. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant.

    PubMed

    Kratzer, Regina; Kavanagh, Kathryn L; Wilson, David K; Nidetzky, Bernd

    2004-05-01

    Xylose reductase from the yeast Candida tenuis (CtXR) is a family 2 member of the aldo-keto reductase (AKR) superfamily of proteins and enzymes. Active site His-113 is conserved among AKRs, but a unified mechanism of how it affects catalytic activity is outstanding. We have replaced His-113 by alanine using site-directed mutagenesis, determined a 2.2 A structure of H113A mutant bound to NADP(+), and compared catalytic reaction profiles of NADH-dependent reduction of different aldehydes catalyzed by the wild type and the mutant. Deuterium kinetic isotope effects (KIEs) on k(cat) and k(cat)/K(m xylose) show that, relative to the wild type, the hydride transfer rate constant (k(7) approximately 0.16 s(-1)) has decreased about 1000-fold in H113A whereas xylose binding was not strongly affected. No solvent isotope effect was seen on k(cat) and k(cat)/K(m xylose) for H113A, suggesting that proton transfer has not become rate-limiting as a result of the mutation. The pH profiles of log(k(cat)/K(m xylose)) for the wild type and H113A decreased above apparent pK(a) values of 8.85 and 7.63, respectively. The DeltapK(a) of -1.2 pH units likely reflects a proximally disruptive character of the mutation, affecting the position of Asp-50. A steady-state kinetic analysis for H113A-catalyzed reduction of a homologous series of meta-substituted benzaldehyde derivatives was carried out, and quantitative structure-reactivity correlations were used to factor the observed kinetic substituent effect on k(cat) and k(cat)/K(m aldehyde) into an electronic effect and bonding effects (which are lacking in the wild type). Using the Hammett sigma scale, electronic parameter coefficients (rho) of +0.64 (k(cat)) and +0.78 (k(cat)/K(m aldehyde)) were calculated and clearly differ from rho(k(cat)/K(aldehyde)) and rho(k(cat)) values of +1.67 and approximately 0.0, respectively, for the wild-type enzyme. Hydride transfer rate constants of H113A, calculated from kinetic parameters and KIE data

  12. Arabidopsis thaliana contains two differentially expressed 3-hydroxy-3-methylglutaryl-CoA reductase genes, which encode microsomal forms of the enzyme.

    PubMed Central

    Enjuto, M; Balcells, L; Campos, N; Caelles, C; Arró, M; Boronat, A

    1994-01-01

    The enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR; EC 1.1.1.34) catalyzes the first rate-limiting step in plant isoprenoid biosynthesis. Arabidopsis thaliana contains two genes, HMG1 and HMG2, that encode HMGR. We have cloned these two genes and analyzed their structure and expression. HMG1 and HMG2 consist of four exons and three small introns that interrupt the coding sequence at equivalent positions. The two genes share sequence similarity in the coding regions but not in the 5'- or 3'-flanking regions. HMG1 mRNA is detected in all tissues, whereas the presence of HMG2 mRNA is restricted to young seedlings, roots, and inflorescences. The similarity between the two encoded proteins (HMGR1 and HMGR2) is restricted to the regions corresponding to the membrane and the catalytic domains. Arabidopsis HMGR2 represents a divergent form of the enzyme that has no counterpart among plant HMGRs characterized so far. By using a coupled in vitro transcription-translation assay, we show that both HMGR1 and HMGR2 are cotranslationally inserted into endoplasmic reticulum-derived microsomal membranes. Our results suggest that the endoplasmic reticulum is the only cell compartment for the targeting of HMGR in Arabidopsis and support the hypothesis that in higher plants the formation of mevalonate occurs solely in the cytosol. Images PMID:8302869

  13. Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato.

    PubMed

    Sawai, Satoru; Ohyama, Kiyoshi; Yasumoto, Shuhei; Seki, Hikaru; Sakuma, Tetsushi; Yamamoto, Takashi; Takebayashi, Yumiko; Kojima, Mikiko; Sakakibara, Hitoshi; Aoki, Toshio; Muranaka, Toshiya; Saito, Kazuki; Umemoto, Naoyuki

    2014-09-01

    Potatoes (Solanum tuberosum) contain α-solanine and α-chaconine, two well-known toxic steroidal glycoalkaloids (SGAs). Sprouts and green tubers accumulate especially high levels of SGAs. Although SGAs were proposed to be biosynthesized from cholesterol, the biosynthetic pathway for plant cholesterol is poorly understood. Here, we identify sterol side chain reductase 2 (SSR2) from potato as a key enzyme in the biosynthesis of cholesterol and related SGAs. Using in vitro enzyme activity assays, we determined that potato SSR2 (St SSR2) reduces desmosterol and cycloartenol to cholesterol and cycloartanol, respectively. These reduction steps are branch points in the biosynthetic pathways between C-24 alkylsterols and cholesterol in potato. Similar enzymatic results were also obtained from tomato SSR2. St SSR2-silenced potatoes or St SSR2-disrupted potato generated by targeted genome editing had significantly lower levels of cholesterol and SGAs without affecting plant growth. Our results suggest that St SSR2 is a promising target gene for breeding potatoes with low SGA levels. PMID:25217510

  14. Sterol Side Chain Reductase 2 Is a Key Enzyme in the Biosynthesis of Cholesterol, the Common Precursor of Toxic Steroidal Glycoalkaloids in Potato[W][OPEN

    PubMed Central

    Sawai, Satoru; Ohyama, Kiyoshi; Yasumoto, Shuhei; Seki, Hikaru; Sakuma, Tetsushi; Yamamoto, Takashi; Takebayashi, Yumiko; Kojima, Mikiko; Sakakibara, Hitoshi; Aoki, Toshio; Muranaka, Toshiya; Saito, Kazuki; Umemoto, Naoyuki

    2014-01-01

    Potatoes (Solanum tuberosum) contain α-solanine and α-chaconine, two well-known toxic steroidal glycoalkaloids (SGAs). Sprouts and green tubers accumulate especially high levels of SGAs. Although SGAs were proposed to be biosynthesized from cholesterol, the biosynthetic pathway for plant cholesterol is poorly understood. Here, we identify sterol side chain reductase 2 (SSR2) from potato as a key enzyme in the biosynthesis of cholesterol and related SGAs. Using in vitro enzyme activity assays, we determined that potato SSR2 (St SSR2) reduces desmosterol and cycloartenol to cholesterol and cycloartanol, respectively. These reduction steps are branch points in the biosynthetic pathways between C-24 alkylsterols and cholesterol in potato. Similar enzymatic results were also obtained from tomato SSR2. St SSR2-silenced potatoes or St SSR2-disrupted potato generated by targeted genome editing had significantly lower levels of cholesterol and SGAs without affecting plant growth. Our results suggest that St SSR2 is a promising target gene for breeding potatoes with low SGA levels. PMID:25217510

  15. The membrane topology of vitamin K epoxide reductase is conserved between human isoforms and the bacterial enzyme.

    PubMed

    Cao, Zhenbo; van Lith, Marcel; Mitchell, Lorna J; Pringle, Marie Anne; Inaba, Kenji; Bulleid, Neil J

    2016-04-01

    The membrane topology of vitamin K epoxide reductase (VKOR) is controversial with data supporting both a three transmembrane and a four transmembrane model. The positioning of the transmembrane domains and the loops between these domains is critical if we are to understand the mechanism of vitamin K oxidation and its recycling by members of the thioredoxin family of proteins and the mechanism of action of warfarin, an inhibitor of VKOR. Here we show that both mammalian VKOR isoforms adopt the same topology, with the large loop between transmembrane one and two facing the lumen of the endoplasmic reticulum (ER). We used a redox sensitive green fluorescent protein (GFP) fused to the N- or C-terminus to show that these regions face the cytosol, and introduction of glycosylation sites along with mixed disulfide formation with thioredoxin-like transmembrane protein (TMX) to demonstrate ER localization of the major loop. The topology is identical with the bacterial homologue from Synechococcussp., for which the structure and mechanism of recycling has been characterized. Our results provide a resolution to the membrane topology controversy and support previous results suggesting a role for members of the ER protein disulfide isomerase (PDI) family in recycling VKOR.

  16. Kinetic, inhibition and structural studies on 3-oxoacyl-ACP reductase from Plasmodium falciparum, a key enzyme in fatty acid biosynthesis

    PubMed Central

    Wickramasinghe, Sasala R.; Inglis, Kirstine A.; Urch, Jonathan E.; Müller, Sylke; van Aalten, Daan M. F.; Fairlamb, Alan H.

    2005-01-01

    Type II fatty acid biosynthesis represents an attractive target for the discovery of new antimalarial drugs. Previous studies have identified malarial ENR (enoyl acyl-carrier-protein reductase, or FabI) as the target for the antiseptic triclosan. In the present paper, we report the biochemical properties and 1.5 Å (1 Å=0.1 nm) crystal structure of OAR (3-oxoacyl acyl-carrier-protein reductase, or FabG), the second reductive step in fatty acid biosynthesis and its inhibition by hexachlorophene. Under optimal conditions of pH and ionic strength, Plasmodium falciparum OAR displays kinetic properties similar to those of OAR from bacteria or plants. Activity with NADH is <3% of that with NADPH. Fluorescence enhancement studies indicate that NADPH can bind to the free enzyme, consistent with kinetic and product inhibition studies suggesting a steady-state ordered mechanism. The crystal structure reveals a tetramer with a sulphate ion bound in the cofactor-binding site such that the side chains of the catalytic triad of serine, tyrosine and lysine are aligned in an active conformation, as previously observed in the Escherichia coli OAR–NADP+ complex. A cluster of positively charged residues is positioned at the entrance to the active site, consistent with the proposed recognition site for the physiological substrate (3-oxoacyl-acyl-carrier protein) in E. coli OAR. The antibacterial and anthelminthic agent hexachlorophene is a potent inhibitor of OAR (IC50 2.05 μM) displaying non-linear competitive inhibition with respect to NADPH. Hexachlorophene (EC50 6.2 μM) and analogues such as bithionol also have antimalarial activity in vitro, suggesting they might be useful leads for further development. PMID:16225460

  17. Ketanserin, an antidepressant, exerts its antileishmanial action via inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) enzyme of Leishmania donovani.

    PubMed

    Singh, Sushma; Dinesh, Neeradi; Kaur, Preet Kamal; Shamiulla, Baigadda

    2014-06-01

    Leishmaniasis is one of the major health problems existing globally. The current chemotherapy for leishmaniasis presents several drawbacks like toxicity and increased resistance to existing drugs, and hence, there is a necessity to look out for the novel drug targets and new chemical entities. Current trend in drug discovery arena is the "repurposing" of old drugs for the treatment of diseases. In the present study, an antidepressant, ketanserin, was found lethal to both Leishmania donovani promastigotes and intracellular amastigotes with no apparent toxicity to the cells. Ketanserin killed promastigotes and amastigotes with an IC50 value of 37 μM and 28 μM respectively, in a dose-dependent manner. Ketanserin was found to inhibit L. donovani recombinant 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) enzyme with an IC50 value of 43 μM. Ketanserin treated promastigotes were exogenously supplemented with sterols like ergosterol and cholesterol to rescue cell death. Ergosterol could recover the inhibition partially, whereas cholesterol supplementation completely failed to rescue the inhibited parasites. Further, HMGR-overexpressing parasites were generated by transfecting Leishmania promastigotes with an episomal pspα hygroα-HMGR construct. Wild-type and HMGR overexpressors of L. donovani were used to study the effect and mode of action of this inhibitor. The HMGR overexpressors showed twofold resistance to ketanserin. These observations suggest that the lethal effect of ketanserin is due to inhibition of HMGR, the rate-limiting enzyme of the ergosterol biosynthetic pathway. Since targeting of the sterol biosynthetic pathway enzymes may be useful therapeutically, the present study may have implications in treatment of leishmaniasis.

  18. Biophysical Characterization of Fluorotyrosine Probes Site-Specifically Incorporated into Enzymes: E. coli Ribonucleotide Reductase As an Example

    PubMed Central

    2016-01-01

    Fluorinated tyrosines (FnY’s, n = 2 and 3) have been site-specifically incorporated into E. coli class Ia ribonucleotide reductase (RNR) using the recently evolved M. jannaschii Y-tRNA synthetase/tRNA pair. Class Ia RNRs require four redox active Y’s, a stable Y radical (Y·) in the β subunit (position 122 in E. coli), and three transiently oxidized Y’s (356 in β and 731 and 730 in α) to initiate the radical-dependent nucleotide reduction process. FnY (3,5; 2,3; 2,3,5; and 2,3,6) incorporation in place of Y122-β and the X-ray structures of each resulting β with a diferric cluster are reported and compared with wt-β2 crystallized under the same conditions. The essential diferric-FnY· cofactor is self-assembled from apo FnY-β2, Fe2+, and O2 to produce ∼1 Y·/β2 and ∼3 Fe3+/β2. The FnY· are stable and active in nucleotide reduction with activities that vary from 5% to 85% that of wt-β2. Each FnY·-β2 has been characterized by 9 and 130 GHz electron paramagnetic resonance and high-field electron nuclear double resonance spectroscopies. The hyperfine interactions associated with the 19F nucleus provide unique signatures of each FnY· that are readily distinguishable from unlabeled Y·’s. The variability of the abiotic FnY pKa’s (6.4 to 7.8) and reduction potentials (−30 to +130 mV relative to Y at pH 7.5) provide probes of enzymatic reactions proposed to involve Y·’s in catalysis and to investigate the importance and identity of hopping Y·’s within redox active proteins proposed to protect them from uncoupled radical chemistry. PMID:27276098

  19. Fatty acyl-CoA reductase

    SciTech Connect

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  20. Genetics Home Reference: sepiapterin reductase deficiency

    MedlinePlus

    ... reductase enzyme. This enzyme is involved in the production of a molecule called tetrahydrobiopterin (also known as ... is responsible for the last step in the production of tetrahydrobiopterin. Tetrahydrobiopterin helps process several building blocks ...

  1. The MCD and EPR of the heme centers of nitric oxide reductase from Pseudomonas stutzeri: evidence that the enzyme is structurally related to the heme-copper oxidases.

    PubMed

    Cheesman, M R; Zumft, W G; Thomson, A J

    1998-03-17

    EPR spectra at liquid helium temperatures and MCD spectra at room temperature and 4.2 K are presented for fully oxidized nitric oxide reductase (NOR) from Pseudomonas stutzeri. The MCD spectra show that the enzyme contains three heme groups at equivalent concentrations but distinctive in their axial coordination. Two, in the low-spin ferric state at all temperatures, give rise to infrared charge-transfer transitions which show the hemes to have bis-histidine and histidine-methionine ligation, respectively. The EPR spectra show them to be magnetically isolated. The third heme has an unusual temperature-dependent spin state and spectroscopic features which are consistent with histidine-hydroxide coordination. No EPR signals have been detected from this heme. Together with its unusual near-infrared MCD, this suggests a spin-spin interaction between this heme and another paramagnet. The three hemes account for only 75% of the iron content, and it is concluded that the additional paramagnet is a mononuclear ferric ion. These results provide further evidence that NOR is indeed structurally related to heme-copper oxidases and that it contains a heme/non-heme iron spin-coupled pair at the active site.

  2. The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: Utility of renal specific P450 reductase knockout mouse models

    SciTech Connect

    Liu, Senyan; Yao, Yunyi; Lu, Shijun; Aldous, Kenneth; Ding, Xinxin; Mei, Changlin; Gu, Jun

    2013-10-01

    The kidney is a primary target for numerous toxic compounds. Cytochrome P450 enzymes (P450) are responsible for the metabolic activation of various chemical compounds, and in the kidney are predominantly expressed in proximal tubules. The aim of this study was to test the hypothesis that renal proximal tubular P450s are critical for nephrotoxicity caused by chemicals such as chloroform. We developed two new mouse models, one having proximal tubule-specific deletion of the cytochrome P450 reductase (Cpr) gene (the enzyme required for all microsomal P450 activities), designated proximal tubule-Cpr-null (PTCN), and the other having proximal tubule-specific rescue of CPR activity with the global suppression of CPR activity in all extra-proximal tubular tissues, designated extra-proximal tubule-Cpr-low (XPT-CL). The PTCN, XPT-CL, Cpr-low (CL), and wild-type (WT) mice were treated with a single oral dose of chloroform at 200 mg/kg. Blood, liver and kidney samples were obtained at 24 h after the treatment. Renal toxicity was assessed by measuring BUN and creatinine levels, and by pathological examination. The blood and tissue levels of chloroform were determined. The severity of toxicity was less in PTCN and CL mice, compared with that of WT and XPT-CL mice. There were no significant differences in chloroform levels in the blood, liver, or kidney, between PTCN and WT mice, or between XPT-CL and CL mice. These findings indicate that local P450-dependent activities play an important role in the nephrotoxicity induced by chloroform. Our results also demonstrate the usefulness of these novel mouse models for studies of chemical-induced kidney toxicity. - Highlights: • New mouse models were developed with varying P450 activities in the proximal tubule. • These mouse models were treated with chloroform, a nephrotoxicant. • Studies showed the importance of local P450s in chloroform-induced nephrotoxicity.

  3. Evidence that biliverdin-IX beta reductase and flavin reductase are identical.

    PubMed Central

    Shalloe, F; Elliott, G; Ennis, O; Mantle, T J

    1996-01-01

    A search of the database shows that human biliverdin-IX beta reductase and flavin reductase are identical. We have isolated flavin reductase from bovine erythrocytes and show that the activity co-elutes with biliverdin-IX beta reductase. Preparations of the enzyme that are electrophoretically homogeneous exhibit both flavin reductase and biliverdin-IX beta reductase activities; however, they are not capable of catalysing the reduction of biliverdin-IX alpha. Although there is little obvious sequence identity between biliverdin-IX alpha reductase (BVR-A) and biliverdin-IX beta reductase (BVR-B), they do show weak immunological cross-reactivity. Both enzymes bind to 2',5'-ADP-Sepharose. PMID:8687377

  4. Purification and Characterization of Glucose 6-Phosphate Dehydrogenase, 6-Phosphogluconate Dehydrogenase, and Glutathione Reductase from Rat Heart and Inhibition Effects of Furosemide, Digoxin, and Dopamine on the Enzymes Activities.

    PubMed

    Adem, Sevki; Ciftci, Mehmet

    2016-06-01

    The present study was aimed to investigate characterization and purification of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glutathione reductase from rat heart and the inhibitory effect of three drugs. The purification of the enzymes was performed using 2',5'-ADP sepharose 4B affinity material. The subunit and the natural molecular weights were analyzed by SDS-PAGE and gel filtration. Biochemical characteristics such as the optimum temperature, pH, stable pH, and salt concentration were examined for each enzyme. Types of product inhibition and Ki values with Km and Vmax values of the substrates and coenzymes were determined. According to the obtained Ki and IC50 values, furosemide, digoxin, and dopamine showed inhibitory effect on the enzyme activities at low millimolar concentrations in vitro conditions. Dopamine inhibited the activity of these enzymes as competitive, whereas furosemide and digoxin inhibited the activity of the enzyme as noncompetitive.

  5. Glutathione-S-transferase-omega [MMA(V) reductase] knockout mice: Enzyme and arsenic species concentrations in tissues after arsenate administration

    SciTech Connect

    Chowdhury, Uttam K.; Zakharyan, Robert A.; Hernandez, Alba; Avram, Mihaela D.; Kopplin, Michael J.; Aposhian, H. Vasken . E-mail: aposhian@u.arizona.edu

    2006-11-01

    Inorganic arsenic is a human carcinogen to which millions of people are exposed via their naturally contaminated drinking water. Its molecular mechanisms of carcinogenicity have remained an enigma, perhaps because arsenate is biochemically transformed to at least five other arsenic-containing metabolites. In the biotransformation of inorganic arsenic, GSTO1 catalyzes the reduction of arsenate, MMA(V), and DMA(V) to the more toxic + 3 arsenic species. MMA(V) reductase and human (hGSTO1-1) are identical proteins. The hypothesis that GST-Omega knockout mice biotransformed inorganic arsenic differently than wild-type mice has been tested. The livers of male knockout (KO) mice, in which 222 bp of Exon 3 of the GSTO1 gene were eliminated, were analyzed by PCR for mRNA. The level of transcripts of the GSTO1 gene in KO mice was 3.3-fold less than in DBA/1lacJ wild-type (WT) mice. The GSTO2 transcripts were about two-fold less in the KO mouse. When KO and WT mice were injected intramuscularly with Na arsenate (4.16 mg As/kg body weight); tissues removed at 0.5, 1, 2, 4, 8, and 12 h after arsenate injection; and the arsenic species measured by HPLC-ICP-MS, the results indicated that the highest concentration of the recently discovered and very toxic MMA(III), a key biotransformant, was in the kidneys of both KO and WT mice. The highest concentration of DMA(III) was in the urinary bladder tissue for both the KO and WT mice. The MMA(V) reducing activity of the liver cytosol of KO mice was only 20% of that found in wild-type mice. There appears to be another enzyme(s) other than GST-O able to reduce arsenic(V) species but to a lesser extent. This and other studies suggest that each step of the biotransformation of inorganic arsenic has an alternative enzyme to biotransform the arsenic substrate.

  6. Geometric and electronic structure of the Mn(IV)Fe(III) cofactor in class Ic ribonucleotide reductase: correlation to the class Ia binuclear non-heme iron enzyme.

    PubMed

    Kwak, Yeonju; Jiang, Wei; Dassama, Laura M K; Park, Kiyoung; Bell, Caleb B; Liu, Lei V; Wong, Shaun D; Saito, Makina; Kobayashi, Yasuhiro; Kitao, Shinji; Seto, Makoto; Yoda, Yoshitaka; Alp, E Ercan; Zhao, Jiyong; Bollinger, J Martin; Krebs, Carsten; Solomon, Edward I

    2013-11-20

    The class Ic ribonucleotide reductase (RNR) from Chlamydia trachomatis (Ct) utilizes a Mn/Fe heterobinuclear cofactor, rather than the Fe/Fe cofactor found in the β (R2) subunit of the class Ia enzymes, to react with O2. This reaction produces a stable Mn(IV)Fe(III) cofactor that initiates a radical, which transfers to the adjacent α (R1) subunit and reacts with the substrate. We have studied the Mn(IV)Fe(III) cofactor using nuclear resonance vibrational spectroscopy (NRVS) and absorption (Abs)/circular dichroism (CD)/magnetic CD (MCD)/variable temperature, variable field (VTVH) MCD spectroscopies to obtain detailed insight into its geometric/electronic structure and to correlate structure with reactivity; NRVS focuses on the Fe(III), whereas MCD reflects the spin-allowed transitions mostly on the Mn(IV). We have evaluated 18 systematically varied structures. Comparison of the simulated NRVS spectra to the experimental data shows that the cofactor has one carboxylate bridge, with Mn(IV) at the site proximal to Phe127. Abs/CD/MCD/VTVH MCD data exhibit 12 transitions that are assigned as d-d and oxo and OH(-) to metal charge-transfer (CT) transitions. Assignments are based on MCD/Abs intensity ratios, transition energies, polarizations, and derivative-shaped pseudo-A term CT transitions. Correlating these results with TD-DFT calculations defines the Mn(IV)Fe(III) cofactor as having a μ-oxo, μ-hydroxo core and a terminal hydroxo ligand on the Mn(IV). From DFT calculations, the Mn(IV) at site 1 is necessary to tune the redox potential to a value similar to that of the tyrosine radical in class Ia RNR, and the OH(-) terminal ligand on this Mn(IV) provides a high proton affinity that could gate radical translocation to the α (R1) subunit.

  7. Geometric and Electronic Structure of the Mn(IV)Fe(III) Cofactor in Class Ic Ribonucleotide Reductase: Correlation to the Class Ia Binuclear Non-Heme Iron Enzyme

    PubMed Central

    Kwak, Yeonju; Jiang, Wei; Dassama, Laura M.K.; Park, Kiyoung; Bell, Caleb B.; Liu, Lei V.; Wong, Shaun D.; Saito, Makina; Kobayashi, Yasuhiro; Kitao, Shinji; Seto, Makoto; Yoda, Yoshitaka; Alp, E. Ercan; Zhao, Jiyong; Bollinger, J Martin; Krebs, Carsten; Solomon, Edward I.

    2013-01-01

    The class Ic ribonucleotide reductase (RNR) from Chlamydia trachomatis (Ct) utilizes a Mn/Fe hetero-binuclear cofactor, rather than the Fe/Fe cofactor found in the β (R2) subunit of the class Ia enzymes, to react with O2. This reaction produces a stable MnIVFeIII cofactor that initiates a radical, which transfers to the adjacent α (R1) subunit and reacts with the substrate. We have studied the MnIVFeIII cofactor using nuclear resonance vibrational spectroscopy (NRVS) and absorption (Abs) / circular dichroism (CD) / magnetic CD (MCD) / variable temperature, variable field (VTVH) MCD spectroscopies to obtain detailed insight into its geometric/electronic structure and to correlate structure with reactivity; NRVS focuses on the FeIII, whereas MCD reflects the spin-allowed transitions mostly on the MnIV. We have evaluated 18 systematically varied structures. Comparison of the simulated NRVS spectra to the experimental data shows that the cofactor has one carboxylate bridge, with MnIV at the site proximal to Phe127. Abs/CD/MCD/VTVH MCD data exhibit 12 transitions that are assigned as d-d, and oxo and OH− to metal charge transfer (CT) transitions. Assignments are based on MCD/Abs intensity ratios, transition energies, polarizations, and derivative-shaped pseudo-A term CT transitions. Correlating these results with TD-DFT calculations defines the MnIVFeIII cofactor as having a µ-oxo, µ-hydroxo core and a terminal hydroxo ligand on the MnIV. From DFT calculations, the MnIV at site 1 is necessary to tune the redox potential to a value similar to that of the tyrosine radical in class Ia RNR, and the OH− terminal ligand on this MnIV provides a high proton affinity that could gate radical translocation to the α (R1) subunit. PMID:24131208

  8. Nitrite Reductase and Nitric-oxide Synthase Activity of the Mitochondrial Molybdopterin Enzymes mARC1 and mARC2*

    PubMed Central

    Sparacino-Watkins, Courtney E.; Tejero, Jesús; Sun, Bin; Gauthier, Marc C.; Thomas, John; Ragireddy, Venkata; Merchant, Bonnie A.; Wang, Jun; Azarov, Ivan; Basu, Partha; Gladwin, Mark T.

    2014-01-01

    Mitochondrial amidoxime reducing component (mARC) proteins are molybdopterin-containing enzymes of unclear physiological function. Both human isoforms mARC-1 and mARC-2 are able to catalyze the reduction of nitrite when they are in the reduced form. Moreover, our results indicate that mARC can generate nitric oxide (NO) from nitrite when forming an electron transfer chain with NADH, cytochrome b5, and NADH-dependent cytochrome b5 reductase. The rate of NO formation increases almost 3-fold when pH was lowered from 7.5 to 6.5. To determine if nitrite reduction is catalyzed by molybdenum in the active site of mARC-1, we mutated the putative active site cysteine residue (Cys-273), known to coordinate molybdenum binding. NO formation was abolished by the C273A mutation in mARC-1. Supplementation of transformed Escherichia coli with tungsten facilitated the replacement of molybdenum in recombinant mARC-1 and abolished NO formation. Therefore, we conclude that human mARC-1 and mARC-2 are capable of catalyzing reduction of nitrite to NO through reaction with its molybdenum cofactor. Finally, expression of mARC-1 in HEK cells using a lentivirus vector was used to confirm cellular nitrite reduction to NO. A comparison of NO formation profiles between mARC and xanthine oxidase reveals similar Kcat and Vmax values but more sustained NO formation from mARC, possibly because it is not vulnerable to autoinhibition via molybdenum desulfuration. The reduction of nitrite by mARC in the mitochondria may represent a new signaling pathway for NADH-dependent hypoxic NO production. PMID:24500710

  9. An Innovative Strategy for Dual Inhibitor Design and Its Application in Dual Inhibition of Human Thymidylate Synthase and Dihydrofolate Reductase Enzymes

    PubMed Central

    Arooj, Mahreen; Sakkiah, Sugunadevi; Cao, Guang ping; Lee, Keun Woo

    2013-01-01

    Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS) and human dihydrofolate reductase (hDHFR). These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both active sites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs. PMID:23577115

  10. Environmental enrichment attenuates the age-related decline in the mRNA expression of steroidogenic enzymes and reduces the methylation state of the steroid 5α-reductase type 1 gene in the rat hippocampus.

    PubMed

    Rossetti, María F; Varayoud, Jorgelina; Moreno-Piovano, Guillermo S; Luque, Enrique H; Ramos, Jorge G

    2015-09-01

    We analyzed the effects of aging and environmental enrichment on the mRNA expression and DNA methylation state of steroidogenic enzymes in the hippocampus. The effects of aging were evaluated by comparing young adult (90-day-old) and middle-aged (450-day-old) female Wistar rats. To elucidate the effects of environmental enrichment, a subgroup of middle-aged rats exposed to sensory and social stimulation for 105 days was compared to rats housed under standard laboratory conditions. Aging decreased the transcription of neurosteroidogenic-related genes and increased the promoter methylation state of cytochrome P450 side chain cleavage, 3α-hydroxysteroid dehydrogenase (3α-HSD) and 5α-reductase-1. Exposure of middle-aged rats to environmental enrichment increased mRNA levels of 5α-reductase-1, 3α-HSD and cytochrome P450 17α-hydroxylase/c17,20-lyase and decreased the methylation state of the 5α-reductase-1 gene. Thus, sensory and social stimulation attenuate the age-related decline in the mRNA expression of hippocampal steroidogenic enzymes. Epigenetic mechanisms associated with differential promoter methylation could be involved.

  11. Environmental enrichment attenuates the age-related decline in the mRNA expression of steroidogenic enzymes and reduces the methylation state of the steroid 5α-reductase type 1 gene in the rat hippocampus.

    PubMed

    Rossetti, María F; Varayoud, Jorgelina; Moreno-Piovano, Guillermo S; Luque, Enrique H; Ramos, Jorge G

    2015-09-01

    We analyzed the effects of aging and environmental enrichment on the mRNA expression and DNA methylation state of steroidogenic enzymes in the hippocampus. The effects of aging were evaluated by comparing young adult (90-day-old) and middle-aged (450-day-old) female Wistar rats. To elucidate the effects of environmental enrichment, a subgroup of middle-aged rats exposed to sensory and social stimulation for 105 days was compared to rats housed under standard laboratory conditions. Aging decreased the transcription of neurosteroidogenic-related genes and increased the promoter methylation state of cytochrome P450 side chain cleavage, 3α-hydroxysteroid dehydrogenase (3α-HSD) and 5α-reductase-1. Exposure of middle-aged rats to environmental enrichment increased mRNA levels of 5α-reductase-1, 3α-HSD and cytochrome P450 17α-hydroxylase/c17,20-lyase and decreased the methylation state of the 5α-reductase-1 gene. Thus, sensory and social stimulation attenuate the age-related decline in the mRNA expression of hippocampal steroidogenic enzymes. Epigenetic mechanisms associated with differential promoter methylation could be involved. PMID:26021641

  12. Behavioral action of ethanol in Porsolt's forced swim test: modulation by 3 alpha-hydroxy-5 alpha-pregnan-20-one.

    PubMed

    Hirani, K; Khisti, R T; Chopde, C T

    2002-12-01

    Ethanol is known to increase cortical and plasma content of GABAergic neurosteroid 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-THP) which is responsible for some of its behavioral and electrophysiological effects. We have previously demonstrated the antidepressant like effect of 3alpha,5alpha-THP in mice. This study investigated the role of 3alpha,5alpha-THP in acute, chronic and withdrawal effects of ethanol using mouse forced swim test (FST) paradigm. While acute systemic ethanol (2 or 2.5 g/kg) administration exhibited an antidepressant like effect, its prolonged consumption produced tolerance to this effect and its withdrawal, on the other hand, elicited enhanced behavioral despair (depression). The antidepressant like effect of ethanol was potentiated by GABA(A) receptor agonist, muscimol (0.5 mg/kg, i.p.), 3alpha,5alpha-THP (0.5, 1 or 2 microg/mouse, i.c.v.) and by neurosteroidogenic drugs viz. selective serotonin reuptake inhibitor (SSRI), fluoxetine (5 or 20 mg/kg, i.p.), agonist at mitochondrial diazepam binding inhibitor receptor, FGIN 1-27 (0.5 or 1 microg/mouse, i.c.v.), or 11beta-hydroxylase inhibitor, metyrapone (0.5 or 1 microg/mouse, i.c.v.) which are known to increase endogenous 3alpha,5alpha-THP content. Furthermore, inhibition of the endogenous neurosteroid biosynthesis by drugs like 5alpha-reductase inhibitor, finasteride (50 mg/kg, s.c.), 3beta-hydroxysteroid dehydrogenase inhibitor, trilostane (30 mg/kg i.p.) or 3alpha-hydroxysteroid dehydrogenase inhibitor, indomethacin (5 mg/kg, i.p.) and GABA(A) receptor antagonist, bicuculline (1 mg/kg, i.p.) blocked the antidepressant like effect of ethanol. Withdrawal of ethanol from mice consuming it chronically displayed enhanced behavioral despair and elicited tolerance to antidepressant like action of acute ethanol (2.5, 3 or 3.5 g/kg). Moreover, sub-antidepressant doses (0.25 or 0.5 microg/mouse, i.c.v.) of 3alpha,5alpha-THP and fluoxetine (5 mg/kg, i.p.) but not imipramine (1 mg/kg, i

  13. Enzyme

    MedlinePlus

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  14. The enzymes associated with denitrification

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Tomlinson, G. A.

    1988-01-01

    The enzymes involved in the reduction of nitrogenous oxides are thought to be intermediates in denitrification processes. This review examines the roles of nitrate reductase, nitrite reductases, nitric oxide reductase, mechanisms of N-N bond formation, and nitrous oxide reductases.

  15. A Model for the Active-Site Formation Process in DMSO Reductase Family Molybdenum Enzymes Involving Oxido-Alcoholato and Oxido-Thiolato Molybdenum(VI) Core Structures.

    PubMed

    Sugimoto, Hideki; Sato, Masanori; Asano, Kaori; Suzuki, Takeyuki; Mieda, Kaoru; Ogura, Takashi; Matsumoto, Takashi; Giles, Logan J; Pokhrel, Amrit; Kirk, Martin L; Itoh, Shinobu

    2016-02-15

    New bis(ene-1,2-dithiolato)-oxido-alcoholato molybdenum(VI) and -oxido-thiolato molybdenum(VI) anionic complexes, denoted as [Mo(VI)O(ER)L2](-) (E = O, S; L = dimethoxycarboxylate-1,2-ethylenedithiolate), were obtained from the reaction of the corresponding dioxido-molybdenum(VI) precursor complex with either an alcohol or a thiol in the presence of an organic acid (e.g., 10-camphorsulfonic acid) at low temperature. The [Mo(VI)O(ER)L2](-) complexes were isolated and characterized, and the structure of [Mo(VI)O(OEt)L2](-) was determined by X-ray crystallography. The Mo(VI) center in [Mo(VI)O(OEt)L2](-) exhibits a distorted octahedral geometry with the two ene-1,2-dithiolate ligands being symmetry inequivalent. The computed structure of [Mo(VI)O(SR)L2](-) is essentially identical to that of [Mo(VI)O(OR)L2](-). The electronic structures of the resulting molybdenum(VI) complexes were evaluated using electronic absorption spectroscopy and bonding calculations. The nature of the distorted O(h) geometry in these [Mo(VI)O(EEt)L2](-) complexes results in a lowest unoccupied molecular orbital wave function that possesses strong π* interactions between the Mo(d(xy)) orbital and the cis S(p(z)) orbital localized on one sulfur donor from a single ene-1,2-dithiolate ligand. The presence of a covalent Mo-S(dithiolene) bonding interaction in these monooxido Mo(VI) compounds contributes to their low-energy ligand-to-metal charge transfer transitions. A second important d-p π bonding interaction derives from the ∼180° O(oxo)-Mo-E-C dihedral angle involving the alcoholate and thiolate donors, and this contributes to ancillary ligand contributions to the electronic structure of these species. The formation of [Mo(VI)O(OEt)L2](-) and [Mo(VI)O(SEt)L2](-) from the dioxidomolybdenum(VI) precursor may be regarded as a model for the active-site formation process that occurs in the dimethyl sulfoxide reductase family of pyranopterin molybdenum enzymes.

  16. The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters.

    PubMed

    Sherameti, Irena; Shahollari, Bationa; Venus, Yvonne; Altschmied, Lothar; Varma, Ajit; Oelmüller, Ralf

    2005-07-15

    Piriformospora indica, an endophytic fungus of the Sebacinaceae family, promotes growth of Arabidopsis and tobacco seedlings and stimulates nitrogen accumulation and the expression of the genes for nitrate reductase and the starch-degrading enzyme glucan-water dikinase (SEX1) in roots. Neither growth promotion nor stimulation of the two enzymes requires heterotrimeric G proteins. P. indica also stimulates the expression of the uidA gene under the control of the Arabidopsis nitrate reductase (Nia2) promoter in transgenic tobacco seedlings. At least two regions (-470/-439 and -103/-89) are important for Nia2 promoter activity in tobacco roots. One of the regions contains an element, ATGATAGATAAT, that binds to a homeodomain transcription factor in vitro. The message for this transcription factor is up-regulated by P. indica. The transcription factor also binds to a CTGATAGATCT segment in the SEX1 promoter in vitro. We propose that the growth-promoting effect initiated by P. indica is accompanied by a co-regulated stimulation of enzymes involved in nitrate and starch metabolisms. PMID:15710607

  17. Nitrate Reductase Regulates Expression of Nitrite Uptake and Nitrite Reductase Activities in Chlamydomonas reinhardtii 1

    PubMed Central

    Galván, Aurora; Cárdenas, Jacobo; Fernández, Emilio

    1992-01-01

    In Chlamydomonas reinhardtii mutants defective at the structural locus for nitrate reductase (nit-1) or at loci for biosynthesis of the molybdopterin cofactor (nit-3, nit-4, or nit-5 and nit-6), both nitrite uptake and nitrite reductase activities were repressed in ammonium-grown cells and expressed at high amounts in nitrogen-free media or in media containing nitrate or nitrite. In contrast, wild-type cells required nitrate induction for expression of high levels of both activities. In mutants defective at the regulatory locus for nitrate reductase (nit-2), very low levels of nitrite uptake and nitrite reductase activities were expressed even in the presence of nitrate or nitrite. Both restoration of nitrate reductase activity in mutants defective at nit-1, nit-3, and nit-4 by isolating diploid strains among them and transformation of a structural mutant upon integration of the wild-type nit-1 gene gave rise to the wild-type expression pattern for nitrite uptake and nitrite reductase activities. Conversely, inactivation of nitrate reductase by tungstate treatment in nitrate, nitrite, or nitrogen-free media made wild-type cells respond like nitrate reductase-deficient mutants with respect to the expression of nitrite uptake and nitrite reductase activities. Our results indicate that nit-2 is a regulatory locus for both the nitrite uptake system and nitrite reductase, and that the nitrate reductase enzyme plays an important role in the regulation of the expression of both enzyme activities. PMID:16668656

  18. Effects of over-expression of the regulatory enzymes DraT and DraG on the ammonium-dependent post-translational regulation of nitrogenase reductase in Azospirillum brasilense.

    PubMed

    Huergo, Luciano F; Souza, Emanuel M; Steffens, Maria B R; Yates, M Geoffrey; Pedrosa, Fábio O; Chubatsu, Leda S

    2005-03-01

    Nitrogen fixation in Azospirillum brasilense is regulated at transcriptional and post-translational levels. Post-translational control occurs through the reversible ADP-ribosylation of dinitrogenase reductase (Fe Protein), mediated by the dinitrogenase reductase ADP-ribosyltransferase (DraT) and dinitrogenase reductase glycohydrolase (DraG). Although the DraT and DraG activities are regulated in vivo, the molecules responsible for such regulation remain unknown. We have constructed broad-host-range plasmids capable of over-expressing, upon IPTG induction, the regulatory enzymes DraT and DraG as six-histidine-N-terminal fused proteins (His). Both DraT-His and DraG-His are functional in vivo. We have analyzed the effects of DraT-His and DraG-His over-expression on the post-translational modification of Fe Protein. The DraT-His over-expression led to Fe Protein modification in the absence of ammonium addition, while cells over-expressing DraG-His showed only partial ADP-ribosylation of Fe Protein by adding ammonium. These results suggest that both DraT-His and DraG-His lose their regulation upon over-expression, possible by titrating out negative regulators.

  19. Vasodilating effect of norethisterone and its 5 alpha metabolites: a novel nongenomic action.

    PubMed

    Perusquía, Mercedes; Villalón, Carlos M; Navarrete, Erika; García, Gustavo A; Pérez-Palacios, Gregorio; Lemus, Ana E

    2003-08-15

    Estrogens are generally administered in hormone replacement therapy in combination with synthetic progestins. Studies of cardiovascular risk factors in postmenopausal women have shown a variety of responses according to the molecular structure of the progestin used in hormone replacement therapy schemes. The present study sets out to determine the vasoactive effects of norethisterone and its 5alpha-dihydro (5alpha-norethisterone) and -tetrahydro (3alpha,5alpha-norethisterone and 3beta,5alpha-norethisterone) metabolites in isolated precontracted rat thoracic aorta. The addition of norethisterone and 3alpha,5alpha-norethisterone in rat aorta exhibited a potent, concentration-response inhibition of noradrenaline-induced contraction, while 5alpha- and 3beta,5alpha-norethisterone had very little, if any, vasorelaxing effect. Relaxation to norethisterone and 3alpha,5alpha-norethisterone had very rapid time-courses and it was neither affected by the absence of endothelium nor by the inhibitor of nitric oxide synthase, Nomega-nitro-L-arginine methyl ester (L-NAME). The addition of specific anti-androgen, anti-progestin and anti-estrogen compounds and protein synthesis inhibitors did not preclude the vasorelaxing effect of norethisterone and its 3alpha,5alpha-reduced metabolite. The results strongly suggest that these effects are not mediated by nuclear sex steroid hormone receptors. The overall data document a novel nongenomic endothelium-independent vasorelaxing action of a 19-nor synthetic progestin and one of its A-ring-reduced derivatives.

  20. TRIM5{alpha} association with cytoplasmic bodies is not required for antiretroviral activity

    SciTech Connect

    Song, Byeongwoon; Diaz-Griffero, Felipe; Park, Do Hyun; Rogers, Thomas; Stremlau, Matthew; Sodroski, Joseph . E-mail: joseph_sodroski@dfci.harvard.edu

    2005-12-20

    The tripartite motif (TRIM) protein, TRIM5{alpha}, restricts infection by particular retroviruses. Many TRIM proteins form cytoplasmic bodies of unknown function. We investigated the relationship between cytoplasmic body formation and the structure and antiretroviral activity of TRIM5{alpha}. In addition to diffuse cytoplasmic staining, the TRIM5{alpha} proteins from several primate species were located in cytoplasmic bodies of different sizes; by contrast, TRIM5{alpha} from spider monkeys did not form cytoplasmic bodies. Despite these differences, all of the TRIM5{alpha} proteins exhibited the ability to restrict infection by particular retroviruses. Treatment of cells with geldanamycin, an Hsp90 inhibitor, resulted in disappearance or reduction of the TRIM5{alpha}-associated cytoplasmic bodies, yet exerted little effect on the restriction of retroviral infection. Studies of green fluorescent protein-TRIM5{alpha} fusion proteins indicated that no TRIM5{alpha} domain is specifically required for association with cytoplasmic bodies. Apparently, the formation of cytoplasmic bodies is not required for the antiretroviral activity of TRIM5{alpha}.

  1. Evaluation of nitrate reductase activity in Rhizobium japonicum

    SciTech Connect

    Streeter, J.G.; DeVine, P.J.

    1983-08-01

    Nitrate reductase activity was evaluated by four approaches, using four strains of Rhizobium japonicum and 11 chlorate-resistant mutants of the four strains. It was concluded that in vitro assays with bacteria or bacteroids provide the most simple and reliable assessment of the presence or absence of nitrate reductase. Nitrite reductase activity with methyl viologen and dithionite was found, but the enzyme activity does not confound the assay of nitrate reductase. 18 references

  2. Ethanol induced attenuation of oxidative stress is unable to alter mRNA expression pattern of catalase, glutathione reductase, glutathione-S- transferase (GST1A), and superoxide dismutase (SOD3) enzymes in Japanese rice fish (Oryzias latipes) embryogenesis

    PubMed Central

    Wu, Minghui; Shariat-Madar, Bahbak; Haron, Mona H.; Wu, Mengmeng; Khan, Ikhlas A.; Dasmahapatra, Asok K.

    2010-01-01

    Although the mechanism of ethanol toxicity during embryogenesis is unknown, our earlier studies on Japanese rice fish (Oryzias latipes) embryos indicated that the effects might be mediated through oxidative stress. In this study we have determined the oxidative stress and the mRNA content of four antioxidant enzymes (catalase, glutathione reductase, glutathione-S-transferase, and superoxide dismutase) during Japanese rice fish embryogenesis (from 0 day post-fertilization to hatching) and after exposing the embryos to ethanol (100 and 300 mM) for 48 h at three stages (0–2, 1–3 and 4–6 day post fertilization, dpf) of organogenesis. We observed that oxidative stress was minimal in blastula, gastrula or neurula stages, increased gradually with the advancement of morphogenesis and reached its maximum level in hatchlings. The antioxidant enzyme mRNAs were constitutively expressed throughout development; however, the expression pattern was not identical among the enzymes. Catalase and superoxide dismutase (SOD) mRNAs were minimal in the fertilized eggs, but increased significantly in 1 dpf and then either sharply dropped (SOD) or maintained a steady-state (catalase). Glutathione S-transferase (GST) was very high in fertilized eggs and sharply dropped 1 dpf and then gradually increased thereafter. Glutathione reductase (GR) maintained a steady-state throughout the development. Ethanol was able to attenuate oxidative stress in embryos exposed only to 300 mM 1–3 dpf; no significant difference with controls was observed in other ethanol-treated groups. The antioxidant enzyme mRNAs also remained unaltered after ethanol treatment. From these data we conclude that the attenuation of oxidative stress by ethanol is probably due to the inhibition of normal growth of the embryos rather than by inhibiting catalase, GST, GR or SOD- dependent activities. PMID:20965276

  3. Two enzymes catalyze vitamin K 2,3-epoxide reductase activity in mouse: VKORC1 is highly expressed in exocrine tissues while VKORC1L1 is highly expressed in brain.

    PubMed

    Caspers, Michael; Czogalla, Katrin J; Liphardt, Kerstin; Müller, Jens; Westhofen, Philipp; Watzka, Matthias; Oldenburg, Johannes

    2015-05-01

    VKORC1 and VKORC1L1 are enzymes that both catalyze the reduction of vitamin K2,3-epoxide via vitamin K quinone to vitamin K hydroquinone. VKORC1 is the key enzyme of the classical vitamin K cycle by which vitamin K-dependent (VKD) proteins are γ-carboxylated by the hepatic γ-glutamyl carboxylase (GGCX). In contrast, the VKORC1 paralog enzyme, VKORC1L1, is chiefly responsible for antioxidative function by reduction of vitamin K to prevent damage by intracellular reactive oxygen species. To investigate tissue-specific vitamin K 2,3-epoxide reductase (VKOR) function of both enzymes, we quantified mRNA levels for VKORC1, VKORC1L1, GGCX, and NQO1 and measured VKOR enzymatic activities in 29 different mouse tissues. VKORC1 and GGCX are highly expressed in liver, lung and exocrine tissues including mammary gland, salivary gland and prostate suggesting important extrahepatic roles for the vitamin K cycle. Interestingly, VKORC1L1 showed highest transcription levels in brain. Due to the absence of detectable NQO1 transcription in liver, we assume this enzyme has no bypass function with respect to activation of VKD coagulation proteins. Our data strongly suggest diverse functions for the vitamin K cycle in extrahepatic biological pathways.

  4. Zeatin reductase in Phaseolus embryos

    SciTech Connect

    Martin, R.C.; Mok, David, W.S.; Mok, M.C. )

    1989-04-01

    Zeatin was converted to O-xylosylzeatin in embryos of Phaseolus vulgaris . O-xylosyldihydrozeatin was also identified as a zeatin metabolite. Incubation of embryo extracts with {sup 14}C-zeatin and {sup 14}C-O-xylosylzeatin revealed that reduction preceeds the O-xylosylation of zeatin. An enzyme responsible for reducing the N{sup 6}-side chain was isolated and partially purified using ammonium sulfate fractionation and affinity, gel filtration and anion exchange chromatography. The NADPH dependent reductase was zeatin specific and did not recognize cis-zeatin, ribosylzeatin, i{sup 6}Ade or i{sup 6}Ado. Two forms of the reductase could be separated by either gel filtration or anion exchange HPLC. The HMW isozyme (Mr. 55,000) eluted from the anion exchange column later than the LMW isozyme (Mr. 25,000). Interspecific differences in zeatin reductase activity were also detected.

  5. Design and synthesis of pyridazinone-substituted benzenesulphonylurea derivatives as anti-hyperglycaemic agents and inhibitors of aldose reductase - an enzyme embroiled in diabetic complications.

    PubMed

    Yaseen, Raed; Pushpalatha, H; Reddy, G Bhanuprakash; Ismael, Ameer; Ahmed, Ayad; Dheyaa, Alhamza; Ovais, Syed; Rathore, Pooja; Samim, Mohammed; Akthar, Mymoona; Sharma, Kalicharan; Shafi, Syed; Singh, Surender; Javed, Kalim

    2016-12-01

    Thirty new aryl-pyridazinone-substituted benzenesulphonylurea derivatives (I-XXX) were synthesized and evaluated for their anti-hyperglycaemic activity in glucose-fed hyperglycaemic normal rats. Twenty-three compounds (III-XI, XIV-XVII, XIX-XXIV, XXVI and XXVIII-XXX) showed more or comparable area under the curve (AUC) reduction percentage (ranging from 21.9% to 35.5%) as compared to the standard drug gliclazide (22.0%). On the basis of docking results, 18 compounds were screened for their in vitro ability to inhibit rat lens aldose reductase. Ten compounds (III-VI, XII, XVI-XVIII, XXI and XXVII) showed ARI activity with IC50 ranging from 34 to 242 μM. Out of these, two compounds IV and V showed best ARI activity which is comparable with that of quercetin. As a result, two compounds (IV and V) possessing significant dual action (anti-hyperglycaemic and aldose reductase inhibition) were identified and may be used as lead compounds for developing new drugs. PMID:26879420

  6. The interaction of an ionizing ligand with enzymes having a single ionizing group. Implications for the reaction of folate analogues with dihydrofolate reductase.

    PubMed

    Stone, S R; Morrison, J F

    1983-06-29

    Binding theory has been developed for the reaction of an ionizing enzyme with an ionizing ligand. Consideration has been given to the most general scheme in which all possible reactions and interconversions occur as well as to schemes in which certain interactions do not take place. Equations have been derived in terms of the variation of the apparent dissociation constant (Kiapp) as a function of pH. These equations indicate that plots of pKiapp against pH can be wave-, half-bell- or bell-shaped according to the reactions involved. A wave is obtained whenever there is formation of the enzyme-ligand complexes, ionized enzyme . ionized ligand and protonated enzyme . protonated ligand. The additional formation of singly protonated enzyme-ligand complexes does not affect the wave form of the plot, but can influence the shape of the overall curve. The formation of either ionized enzyme . ionized ligand or protonated enzyme . protonated ligand, with or without singly protonated enzyme-ligand species, gives rise to a half-bell-shaped plot. If only singly protonated enzyme-ligand complexes are formed the plots are bell-shaped, but it is not possible to deduce the ionic forms of the reactants that participate in complex formation. Depending on the reaction pathways, true values for the ionization and dissociation constants may or may not be determined.

  7. Safety and Tolerability of the Dual 5-Alpha Reductase Inhibitor Dutasteride in the Treatment of Androgenetic Alopecia

    PubMed Central

    Choi, Gwang Seong; Kim, Joon Hyung; Oh, Shin-Young; Park, Jung-Min; Hong, Ji-Soo; Lee, Yil-Seob

    2016-01-01

    Background After the approval of dutastride for androgenic alopecia (AGA) in 2009, Korean authority required a post-marketing surveillance to obtain further data on its safety profile. Objective The objective was to monitor adverse events (AEs) of dutasteride 0.5 mg in Korean AGA male patients in a clinical practice environment. Methods Open label, multi-center, non-interventional observational study was done from July 2009 to July 2013. AGA subjects (18~41 years of age) with no experience of dutasteride were enrolled. Dosage regimen was recommended according to the prescribing information. The incidences of any AEs, serious adverse events (SAEs), and adverse drug reactions (ADRs) were evaluated. Multiple logistic regression method was used to identify risk factors related to ADRs. Effectiveness was generally evaluated by physicians. Results During study period, 712 subjects were enrolled. The subjects of 29.3±6.0 years old exposed to dutasteride for 204.7±161.5 days. One hundred and ten (15.4%) of subjects reported 138 AEs. Four subjects (0.6%) reported 5 SAEs (right radius fracture, 2 events of chronic follicular tonsillitis, influenza infection, and acute appendicitis). Sixty-six subjects (9.3%) reported 80 ADRs. Most frequent ADRs were libido decreased (9 subjects, 1.3%), dyspepsia (8 subjects, 1.1%), impotence (7 subjects, 1.0%), and fatigue (5 subjects, 0.7%). Other interested ADRs were sexual function abnormality (4 subjects, 0.6%), gynecomastia (2 subjects, 0.3%), and ejaculation disorder (1 subject, 0.1%). Most subjects (78.6%) showed overall improvement after treatment of dutasteride in the effectiveness. Conclusion Dutasteride 0.5 mg is to be well-tolerated in 18 to 41 years old AGA patients in a clinical practice environment. PMID:27489426

  8. Pulmonary Embolism in a Sarcoidosis Patient Double Heterozygous for Methylenetetrahydrofolate Reductase Gene Polymorphisms and Factor V Leiden and Homozygous for the D-Allele of Angiotensin Converting Enzyme Gene

    PubMed Central

    El-Majzoub, Nadim; Mahfouz, Rami; Kanj, Nadim

    2015-01-01

    Sarcoidosis is a multisystem granulomatous disease of unknown etiology and pathogenesis. It presents in patients younger than 40 years of age. The lungs are the most commonly affected organ. Till the present day, there is no single specific test that will accurately diagnose sarcoidosis; as a result, the diagnosis of sarcoidosis relies on a combination of clinical, radiologic, and histologic findings. Patients with sarcoidosis have been found to have an increased risk of pulmonary embolism compared to the normal population. MTHFR and factor V Leiden mutations have been reported to increase the risk of thrombosis in patients. We hereby present a case of a middle aged man with sarcoidosis who developed a right main pulmonary embolism and was found to be double heterozygous for methylenetetrahydrofolate reductase gene polymorphisms and factor V Leiden and homozygous for the D-allele of the angiotensin converting enzyme gene. PMID:26347783

  9. Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases.

    PubMed

    Gang, D R; Kasahara, H; Xia, Z Q; Vander Mijnsbrugge, K; Bauw, G; Boerjan, W; Van Montagu, M; Davin, L B; Lewis, N G

    1999-03-12

    Pinoresinol-lariciresinol and isoflavone reductase classes are phylogenetically related, as is a third, the so-called "isoflavone reductase homologs." This study establishes the first known catalytic function for the latter, as being able to engender the NADPH-dependent reduction of phenylcoumaran benzylic ethers. Accordingly, all three reductase classes are involved in the biosynthesis of important and related phenylpropanoid-derived plant defense compounds. In this investigation, the phenylcoumaran benzylic ether reductase from the gymnosperm, Pinus taeda, was cloned, with the recombinant protein heterologously expressed in Escherichia coli. The purified enzyme reduces the benzylic ether functionalities of both dehydrodiconiferyl alcohol and dihydrodehydrodiconiferyl alcohol, with a higher affinity for the former, as measured by apparent Km and Vmax values and observed kinetic 3H-isotope effects. It abstracts the 4R-hydride of the required NADPH cofactor in a manner analogous to that of the pinoresinol-lariciresinol reductases and isoflavone reductases. A similar catalytic function was observed for the corresponding recombinant reductase whose gene was cloned from the angiosperm, Populus trichocarpa. Interestingly, both pinoresinol-lariciresinol reductases and isoflavone reductases catalyze enantiospecific conversions, whereas the phenylcoumaran benzylic ether reductase only shows regiospecific discrimination. A possible evolutionary relationship among the three reductase classes is proposed, based on the supposition that phenylcoumaran benzylic ether reductases represent the progenitors of pinoresinol-lariciresinol and isoflavone reductases.

  10. In vitro interactions between the PII proteins and the nitrogenase regulatory enzymes dinitrogenase reductase ADP-ribosyltransferase (DraT) and dinitrogenase reductase-activating glycohydrolase (DraG) in Azospirillum brasilense.

    PubMed

    Huergo, Luciano F; Merrick, Mike; Monteiro, Rose A; Chubatsu, Leda S; Steffens, Maria B R; Pedrosa, Fábio O; Souza, Emanuel M

    2009-03-13

    The activity of the nitrogenase enzyme in the diazotroph Azospirillum brasilense is reversibly inactivated by ammonium through ADP-ribosylation of the nitrogenase NifH subunit. This process is catalyzed by DraT and is reversed by DraG, and the activities of both enzymes are regulated according to the levels of ammonium through direct interactions with the P(II) proteins GlnB and GlnZ. We have previously shown that DraG interacts with GlnZ both in vivo and in vitro and that DraT interacts with GlnB in vivo. We have now characterized the influence of P(II) uridylylation status and the P(II) effectors (ATP, ADP, and 2-oxoglutarate) on the in vitro formation of DraT-GlnB and DraG-GlnZ complexes. We observed that both interactions are maximized when P(II) proteins are de-uridylylated and when ADP is present. The DraT-GlnB complex formed in vivo was purified to homogeneity in the presence of ADP. The stoichiometry of the DraT-GlnB complex was determined by three independent approaches, all of which indicated a 1:1 stoichiometry (DraT monomer:GlnB trimer). Our results suggest that the intracellular fluctuation of the P(II) ligands ATP, ADP, and 2-oxoglutarate play a key role in the post-translational regulation of nitrogenase activity.

  11. Synthesis and structure-activity relationships for 1-(4-(piperidin-1-ylsulfonyl)phenyl)pyrrolidin-2-ones as novel non-carboxylate inhibitors of the aldo-keto reductase enzyme AKR1C3.

    PubMed

    Heinrich, Daniel M; Flanagan, Jack U; Jamieson, Stephen M F; Silva, Shevan; Rigoreau, Laurent J M; Trivier, Elisabeth; Raynham, Tony; Turnbull, Andrew P; Denny, William A

    2013-04-01

    High expression of the aldo-keto reductase enzyme AKR1C3 in the human prostate and breast has implicated it in the development and progression of leukemias and of prostate and breast cancers. Inhibitors are thus of interest as potential drugs. Most inhibitors of AKR1C3 are carboxylic acids, whose transport into cells is likely dominated by carrier-mediated processes. We describe here a series of (piperidinosulfonamidophenyl)pyrrolidin-2-ones as potent (<100 nM) and isoform-selective non-carboxylate inhibitors of AKR1C3. Structure-activity relationships identified the sulfonamide was critical, and a crystal structure showed the 2-pyrrolidinone does not interact directly with residues in the oxyanion hole. Variations in the position, co-planarity or electronic nature of the pyrrolidinone ring severely diminished activity, as did altering the size or polarity of the piperidino ring. There was a broad correlation between the enzyme potencies of the compounds and their effectiveness at inhibiting AKR1C3 activity in cells.

  12. Molecular cloning of mevalonate pathway genes from Taraxacum brevicorniculatum and functional characterisation of the key enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase.

    PubMed

    van Deenen, Nicole; Bachmann, Anne-Lena; Schmidt, Thomas; Schaller, Hubert; Sand, Jennifer; Prüfer, Dirk; Schulze Gronover, Christian

    2012-04-01

    Taraxacum brevicorniculatum is known to produce high quality rubber. The biosynthesis of rubber is dependent on isopentenyl pyrophosphate (IPP) precursors derived from the mevalonate (MVA) pathway. The cDNA sequences of seven MVA pathway genes from latex of T. brevicorniculatum were isolated, including three cDNA sequences encoding for 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductases (TbHMGR1-3). Expression analyses indicate an important role of TbHMGR1 as well as for the HMG-CoA synthase (TbHMGS), the diphosphomevalonate decarboxylase and the mevalonate kinase in the provision of precursors for rubber biosynthesis. The amino acid sequences of the TbHMGRs show the typical motifs described for plant HMGRs such as two transmembrane domains and a catalytic domain containing two HMG-CoA and two NADP(H) binding sites. The functionality of the HMGRs was demonstrated by complementation assay using an IPP auxotroph mutant of Escherichia coli. Furthermore, the transient expression of the catalytic domains of TbHMGR1 and TbHMGR2 in Nicotiana benthamiana resulted in a strong accumulation of sterol precursors, one of the major groups of pathway end-products.

  13. DFT study on the oxygen transfer mechanism in nitroethenediamine based H2-receptor antagonists using the bis-dithiolene complex as the model catalyst for N-oxide reductase enzyme.

    PubMed

    Dhaked, Devendra K; Bharatam, Prasad V

    2015-01-01

    Nitroethenediamine is an important functional unit, which is present in H2-receptor antagonists. These drugs show low bioavailability due to the bacterial degradation caused by the N-oxide reductase type of enzymes present in the human colon. Quantum chemical studies have been carried out to elucidate the mechanism of metabolic degradation of nitroethenediamine in the active site of N-oxide reductase. Three different pathways have been explored for the N-oxide bond cleavage by the model system, Mo(IV) bis-dithiolene complex [Mo(OMe)(mdt)2](-), (where mdt=1,2-dimethyl-ethene-1,2-dithiolate) using B3LYP/6-311+G(d,p) and M06/6-311+G(d,p) Density Functional Theory methods. The oxygen atom transfer from the nitrogen atom of nitroethenediamine to the Mo(IV) complex, involves simultaneous weakening of the N-oxide bond and the formation of Mo-O bond through a least motion path. During this transfer, Mo center is converted from a square pyramidal geometry to a distorted octahedral geometry, to facilitate the process of oxygen atom transfer. The energy barrier for the oxygen atom transfer from the imine tautomer has been estimated to be 25.9kcal/mol however, the overall reaction has been found to be endothermic. On the other hand, oxygen transfer reaction from the nitronic acid tautomer requires 30.5kcal/mol energy leading to a highly exothermic metabolite (M-1) directly hence, this path can be considered thermodynamically favorable for this metabolite. The alternative path involving the oxygen atom transfer from the enamine tautomer requires comparatively a higher energy barrier (32.6kcal/mol) and leads to a slightly endothermic metabolite. This study established the structural and energetic details associated with the Mo(IV) bis-dithiolene complex that catalyzes the degradation of nitroethenediamine based drug molecules.

  14. Temporal changes in the expression of the translocator protein TSPO and the steroidogenic enzyme 5α-reductase in the dorsal spinal cord of animals with neuropathic pain: Effects of progesterone administration.

    PubMed

    Coronel, María F; Sánchez Granel, María L; Raggio, María C; Adler, Natalia S; De Nicola, Alejandro F; Labombarda, Florencia; González, Susana L

    2016-06-15

    Neuropathic pain is a frequent complication of spinal cord injury (SCI), still refractory to conventional treatment. The presence and biological activity of steroidogenic regulatory proteins and enzymes in the spinal cord suggests that neurosteroids locally generated could modulate pain messages. In this study we explored temporal changes in the spinal expression of the 18kDa translocator protein TSPO, the steroidogenic acute regulatory protein (StAr) and the steroidogenic enzyme 5α-reductase (5α-RI/II) in an experimental model of central chronic pain. Male Sprague-Dawley rats were subjected to a SCI and sacrificed at different time points (1, 14 or 28days). The development of mechanical and cold allodynia was assessed. Injured animals showed an early increase in the mRNA levels of TSPO and 5α-RII, whereas in the chronic phase a significant decrease in the expression of 5α-RI and 5α-RII was observed, coinciding with the presence of allodynic behaviors. Furthermore, since we have shown that progesterone (PG) administration may offer a promising perspective in pain modulation, we also evaluated the expression of steroidogenic proteins and enzymes in injured animals receiving daily injections of the steroid. PG-treated did not develop allodynia and showed a marked increase in the mRNA levels of TSPO, StAR, 5α-RI and 5α-RII 28days after injury. Our results suggest that in the acute phase after SCI, the increased expression of TSPO and 5α-RII may represent a protective endogenous response against tissue injury, which is not maintained in the chronic allodynic phase. PG may favor local steroidogenesis and the production of its reduced metabolites, which could contribute to the antiallodynic effects observed after PG treatment.

  15. Nitrate reductase from Rhodopseudomonas sphaeroides.

    PubMed Central

    Kerber, N L; Cardenas, J

    1982-01-01

    The facultative phototroph Rhodopseudomonas sphaeroides DSM158 was incapable of either assimilating or dissimilating nitrate, although the organism could reduce it enzymatically to nitrite either anaerobically in the light or aerobically in the dark. Reduction of nitrate was mediated by a nitrate reductase bound to chromatophores that could be easily solubilized and functioned with chemically reduced viologens or photochemically reduced flavins as electron donors. The enzyme was solubilized, and some of its kinetic and molecular parameters were determined. It seemed to be nonadaptive, ammonia did not repress its synthesis, and its activity underwent a rapid decline when the cells entered the stationary growth phase. Studies with inhibitors and with metal antagonists indicated that molybdenum and possibly iron participate in the enzymatic reduction of nitrate. The conjectural significance of this nitrate reductase in phototrophic bacteria is discussed. PMID:6978883

  16. Kinetic analysis of electron flux in cytochrome P450 reductases reveals differences in rate-determining steps in plant and mammalian enzymes.

    PubMed

    Whitelaw, Douglas A; Tonkin, Rochelle; Meints, Carla E; Wolthers, Kirsten R

    2015-10-15

    Herein, we compare the kinetic properties of CPR from Arabidopsis thaliana (ATR2), with CPR from Artemisia annua (aaCPR) and human CPR (hCPR). While all three CPR forms elicit comparable rates for cytochrome c(3+) turnover, NADPH reduction of the FAD cofactor is ∼50-fold faster in aaCPR and ATR2 compared to hCPR, with a kobs of ∼500 s(-1) (6 °C). Stopped-flow analysis of the isolated FAD-domains reveals that NADP(+)-FADH2 charge-transfer complex formation is also significantly faster in the plant enzymes, but the rate of its decay is comparable for all three proteins. In hCPR, transfer of a hydride ion from NADPH to FAD is tightly coupled to subsequent FAD to FMN electron transfer, indicating that the former catalytic event is slow relative to the latter. In contrast, interflavin electron transfer is slower than NADPH hydride transfer in aaCPR and ATR2, occurring with an observed rate constant of ∼50 s(-1). Finally, the transfer of electrons from FMN to cytochrome c(3+) is rapid (>10(3) s(-1)) in all three enzymes and does not limit catalytic turnover. In combination, the data reveal differences in rate-determining steps between plant CPR and their mammalian equivalent in mediating the flux of reducing equivalents from NADPH to external electron acceptors. PMID:26361974

  17. Application of Osmotic Pumps for Sustained Release of 1-Aminobenzotriazole and Inhibition of Cytochrome P450 Enzymes in Mice: Model Comparison with the Hepatic P450 Reductase Null Mouse.

    PubMed

    Stringer, Rowan A; Ferreira, Suzie; Rose, Jonathan; Ronseaux, Sebastien

    2016-08-01

    The effectiveness of controlled release 1-aminobenzotriazole (ABT) administration to inhibit cytochrome P450 (P450) enzymes has been evaluated in mice. To maximize the duration of P450 inhibition in vivo, ABT was administered via an osmotic pump. The degree of P450 inhibition was compared with that achieved with a single bolus dose of ABT. Two-hour prior subcutaneous treatment of mice with ABT (50 mg/kg) inhibited antipyrine clearance by 88%. A less pronounced inhibitory effect (29% reduction in clearance) was observed when ABT was administered 24-hours before antipyrine administration, indicating partial restoration of P450 activity during this longer pretreatment time. The duration of ABT in mice was very short (mean residence time = 1.7 hours) after subcutaneous bolus administration. When the inhibitor was delivered by an osmotic pump, maximum blood concentrations of the inhibitor were observed 24 hours after device implantation and were maintained at steady state for 6 days. Inhibition of P450 activity, as measured by antipyrine clearance, was confirmed at 24 hours and 120 hours after pump implantation, highlighting the utility of this method as a longer-term model for P450 inhibition in mice. The magnitude of P450 inhibition in ABT-treated mice was compared with that in hepatic P450 reductase null mice and both models were comparable. In vivo ABT administration by an osmotic pump offers an effective approach for longer-term P450 inhibition in mice and avoids the necessity for multiple dosing of the inhibitor.

  18. Rational genomics I: antisense open reading frames and codon bias in short-chain oxido reductase enzymes and the evolution of the genetic code.

    PubMed

    Duax, William L; Huether, Robert; Pletnev, Vladimir Z; Langs, David; Addlagatta, Anthony; Connare, Sonjay; Habegger, Lukas; Gill, Jay

    2005-12-01

    The short-chain oxidoreductase (SCOR) family of enzymes includes over 6000 members, extending from bacteria and archaea to humans. Nucleic acid sequence analysis reveals that significant numbers of these genes are remarkably free of stopcodons in reading frames other than the coding frame, including those on the antisense strand. The genes from this subset also use almost entirely the GC-rich half of the 64 codons. Analysis of a million hypothetical genes having random nucleotide composition shows that the percentage of SCOR genes having multiple open reading frames exceeds random by a factor of as much as 1 x 10(6). Nevertheless, screening the content of the SWISS-PROT TrEMBL database reveals that 15% of all genes contain multiple open reading frames. The SCOR genes having multiple open reading frames and a GC-rich coding bias exhibit a similar GC bias in the nucleotide triple composition of their DNA. This bias is not correlated with the GC content of the species in which the SCOR genes are found. One possible explanation for the conservation of multiple open reading frames and extreme bias in nucleic acid composition in the family of Rossman folds is that the primordial member of this family was encoded early using only very stable GC-rich DNA and that evolution proceeded with extremely limited introduction of any codons having two or more adenine or thymine nucleotides. These and other data suggest that the SCOR family of enzymes may even have diverged from a common ancestor before most of the AT-rich half of the genetic code was fully defined.

  19. Promiscuity and diversity in 3-ketosteroid reductases

    PubMed Central

    Penning, Trevor M.; Chen, Mo; Jin, Yi

    2014-01-01

    Many steroid hormones contain a Δ4-3-ketosteroid functionality that undergoes sequential reduction by 5α- or 5β- steroid reductases to produce 5α- or 5β-dihydrosteroids; and a subsequent 3-keto-reduction to produce a series of isomeric tetrahydrosteroids. Apart from steroid 5α-reductase all the remaining enzymes involved in the two step reduction process in humans belong to the aldo-keto reductase (AKR) superfamily. The enzymes involved in 3-ketosteroid reduction are AKR1C1–AKR1C4. These enzymes are promiscuous and also catalyze 20-keto- and 17-keto-steroid reduction. Interest in these reactions exist since they regulate steroid hormone metabolism in the liver, and in steroid target tissues, they may regulate steroid hormone receptor occupancy. In addition many of the dihydrosteroids are not biologically inert. The same enzymes are also involved in the metabolism of synthetic steroids e.g., hormone replacement therapeutics, contraceptive agents and inhaled glucocorticoids, and may regulate drug efficacy at their cognate receptors. This article reviews these reactions and the structural basis for substrate diversity in AKR1C1–AKR1C4, ketosteroid reductases. This article is part of a Special Issue entitled ‘Steroid/Sterol signaling’. PMID:25500069

  20. Promiscuity and diversity in 3-ketosteroid reductases.

    PubMed

    Penning, Trevor M; Chen, Mo; Jin, Yi

    2015-07-01

    Many steroid hormones contain a Δ(4)-3-ketosteroid functionality that undergoes sequential reduction by 5α- or 5β- steroid reductases to produce 5α- or 5β-dihydrosteroids; and a subsequent 3-keto-reduction to produce a series of isomeric tetrahydrosteroids. Apart from steroid 5α-reductase all the remaining enzymes involved in the two step reduction process in humans belong to the aldo-keto reductase (AKR) superfamily. The enzymes involved in 3-ketosteroid reduction are AKR1C1-AKR1C4. These enzymes are promiscuous and also catalyze 20-keto- and 17-keto-steroid reduction. Interest in these reactions exist since they regulate steroid hormone metabolism in the liver, and in steroid target tissues, they may regulate steroid hormone receptor occupancy. In addition many of the dihydrosteroids are not biologically inert. The same enzymes are also involved in the metabolism of synthetic steroids e.g., hormone replacement therapeutics, contraceptive agents and inhaled glucocorticoids, and may regulate drug efficacy at their cognate receptors. This article reviews these reactions and the structural basis for substrate diversity in AKR1C1-AKR1C4, ketosteroid reductases. This article is part of a Special Issue entitled 'Steroid/Sterol signaling'.

  1. Structural and mechanistic insights on nitrate reductases.

    PubMed

    Coelho, Catarina; Romão, Maria João

    2015-12-01

    Nitrate reductases (NR) belong to the DMSO reductase family of Mo-containing enzymes and perform key roles in the metabolism of the nitrogen cycle, reducing nitrate to nitrite. Due to variable cell location, structure and function, they have been divided into periplasmic (Nap), cytoplasmic, and membrane-bound (Nar) nitrate reductases. The first crystal structure obtained for a NR was that of the monomeric NapA from Desulfovibrio desulfuricans in 1999. Since then several new crystal structures were solved providing novel insights that led to the revision of the commonly accepted reaction mechanism for periplasmic nitrate reductases. The two crystal structures available for the NarGHI protein are from the same organism (Escherichia coli) and the combination with electrochemical and spectroscopic studies also lead to the proposal of a reaction mechanism for this group of enzymes. Here we present an overview on the current advances in structural and functional aspects of bacterial nitrate reductases, focusing on the mechanistic implications drawn from the crystallographic data. PMID:26362109

  2. Taxol biosynthesis: differential transformations of taxadien-5 alpha-ol and its acetate ester by cytochrome P450 hydroxylases from Taxus suspension cells.

    PubMed

    Wheeler, A L; Long, R M; Ketchum, R E; Rithner, C D; Williams, R M; Croteau, R

    2001-06-15

    The biosynthesis of the diterpenoid antineoplastic drug Taxol in Taxus species involves the cyclization of the ubiquitous isoprenoid intermediate geranylgeranyl diphosphate to taxa-4(5),11(12)-diene followed by cytochrome P450-mediated hydroxylation (with allylic rearrangement) of this olefin precursor to taxa-4(20),11(12)-dien-5 alpha-ol, and further oxygenation and acylation reactions. Based on the abundances of naturally occurring taxoids, the subsequent order of oxygenation of the taxane core is considered to occur at C10, then C2 and C9, followed by C13, and finally C7 and C1. Circumstantial evidence suggests that the acetylation of taxadien-5 alpha-ol may constitute the third specific step of Taxol biosynthesis. To determine whether taxadienol or the corresponding acetate ester serves as the direct precursor of subsequent oxygenation reactions, microsomal preparations isolated from induced Taxus cells and optimized for cytochrome P450 catalysis were incubated with each potential substrate. Both taxadienol and taxadienyl acetate were oxygenated to the level of a diol and to higher polyols at comparable rates by cytochrome P450 enzymes of the microsomal preparation. Preparative-scale incubation allowed the isolation of sufficient quantities of the diol derived from taxadienol to permit the NMR-based structural elucidation of this metabolite as taxa-4(20),11(12)-dien-5 alpha,13 alpha-diol, which may represent an alternate route of taxoid metabolism in induced cells. GC-MS-based structural definition of the diol monoacetate derived in microsomes from taxadienyl acetate confirmed this metabolite as taxa-4(20),11(12)-dien-5 alpha-acetoxy-10 beta-ol, thereby indicating that acetylation at C5 of taxadienol precedes the cytochrome P450-mediated insertion of the C10-beta-hydroxyl group of Taxol. PMID:11396929

  3. Simultaneous quantification of GABAergic 3alpha,5alpha/3alpha,5beta neuroactive steroids in human and rat serum.

    PubMed

    Porcu, Patrizia; O'Buckley, Todd K; Alward, Sarah E; Marx, Christine E; Shampine, Lawrence J; Girdler, Susan S; Morrow, A Leslie

    2009-01-01

    The 3alpha,5alpha- and 3alpha,5beta-reduced derivatives of progesterone, deoxycorticosterone, dehydroepiandrosterone and testosterone enhance GABAergic neurotransmission and produce inhibitory neurobehavioral and anti-inflammatory effects. Despite substantial information on the progesterone derivative (3alpha,5alpha)-3-hydroxypregnan-20-one (3alpha,5alpha-THP, allopregnanolone), the physiological significance of the other endogenous GABAergic neuroactive steroids has remained elusive. Here, we describe the validation of a method using gas chromatography-mass spectrometry to simultaneously identify serum levels of the eight 3alpha,5alpha- and 3alpha,5beta-reduced derivatives of progesterone, deoxycorticosterone, dehydroepiandrosterone and testosterone. The method shows specificity, sensitivity and enhanced throughput compared to other methods already available for neuroactive steroid quantification. Administration of pregnenolone to rats and progesterone to women produced selective effects on the 3alpha,5alpha- and 3alpha,5beta-reduced neuroactive steroids, indicating differential regulation of their biosynthetic pathways. Pregnenolone administration increased serum levels of 3alpha,5alpha-THP (+1488%, p<0.001), (3alpha,5alpha)-3,21-dihydroxypregnan-20-one (3alpha,5alpha-THDOC, +205%, p<0.01), (3alpha,5alpha)-3-hydroxyandrostan-17-one (3alpha,5alpha-A, +216%, p<0.001), (3alpha,5alpha,17beta)-androstane-3,17-diol (3alpha,5alpha-A-diol, +190%, p<0.01). (3alpha,5beta)-3-hydroxypregnan-20-one (3alpha,5beta-THP) and (3alpha,5beta)-3-hydroxyandrostan-17-one (3alpha,5beta-A) were not altered, while (3alpha,5beta)-3,21-dihydroxypregnan-20-one (3alpha,5beta-THDOC) and (3alpha,5beta,17beta)-androstane-3,17-diol (3alpha,5beta-A-diol) were increased from undetectable levels to 271+/-100 and 2.4+/-0.9 pg+/-SEM, respectively (5/8 rats). Progesterone administration increased serum levels of 3alpha,5alpha-THP (+1806%, p<0.0001), 3alpha,5beta-THP (+575%, p<0.001), 3alpha,5alpha

  4. p62/sequestosome-1 associates with and sustains the expression of retroviral restriction factor TRIM5alpha.

    PubMed

    O'Connor, Christopher; Pertel, Thomas; Gray, Seth; Robia, Seth L; Bakowska, Joanna C; Luban, Jeremy; Campbell, Edward M

    2010-06-01

    TRIM5 proteins mediate a potent block to the cross-species transmission of retroviruses, the most well known being the TRIM5alpha protein from rhesus macaques, which potently inhibits human immunodeficiency virus type 1 (HIV-1) infection. This restriction occurs at an early stage in the replication cycle and is mediated by the binding of TRIM5 proteins to determinants present in the retroviral capsid. TRIM5alpha, as well as other TRIM family proteins, has been shown to be regulated by interferons (IFN). Here we show that TRIM5alpha associates with another IFN-induced gene, sequestosome-1/p62 (p62). p62 plays a role in several signal transduction cascades that are important for maintaining the antiviral state of cells. Here we demonstrate that p62 localizes to both human and rhesus macaque TRIM5alpha cytoplasmic bodies, and fluorescence resonance energy transfer (FRET) analysis demonstrates that these proteins closely associate in these structures. When p62 expression was knocked down via small interfering RNA (siRNA), the number of TRIM5alpha cytoplasmic bodies and the level of TRIM5alpha protein expression were reduced in cell lines stably expressing epitope-tagged versions of TRIM5alpha. In accordance with these data, p62 knockdown resulted in reduced TRIM5alpha-mediated retroviral restriction in cells expressing epitope-tagged TRIM5alpha or expressing endogenously expressed human TRIM5alpha. p62 may therefore operate to enhance TRIM5alpha-mediated retroviral restriction, contributing to the antiviral state of cells following IFN treatment.

  5. Synthesis of Nitrate Reductase in Chlorella

    PubMed Central

    Funkhouser, Edward A.; Shen, Teh-Chien; Ackermann, Renate

    1980-01-01

    Synthesis of nitrate reductase (EC 1.6.6.1) in Chlorella vulgaris was studied under inducing conditions, i.e. with cells grown on ammonia and then transferred to nitrate medium. Cycloheximide (but not chloramphenicol) completely inhibited synthesis of the enzyme, but only if it was added at the start (i.e. at the time of nitrate addition) of the induction period. Cycloheximide inhibition became less effective as induction by nitrate proceeded. Enzyme from small quantities of culture (1 to 3 milliliters of packed cells) was purified to homogeneity with the aid of blue dextran-Sepharose chromatography. Incorporation of radioactivity from labeled arginine into nitrate reductase was measured in the presence and absence of cycloheximide. Conditions were found under which the inhibitor completely blocked the incorporation of labeled amino acid, but only slightly decreased the increase in nitrate reductase activity. The results indicate that synthesis of nitrate reductase from amino acids proceeds by way of a protein precursor which is inactive enzymically. PMID:16661310

  6. Ubiquitin is conjugated by membrane ubiquitin ligase to three sites, including the N terminus, in transmembrane region of mammalian 3-hydroxy-3-methylglutaryl coenzyme A reductase: implications for sterol-regulated enzyme degradation.

    PubMed

    Doolman, Ram; Leichner, Gil S; Avner, Rachel; Roitelman, Joseph

    2004-09-10

    The stability of the endoplasmic reticulum (ER) glycoprotein 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), the key enzyme in cholesterol biosynthesis, is negatively regulated by sterols. HMGR is anchored in the ER via its N-terminal region, which spans the membrane eight times and contains a sterol-sensing domain. We have previously established that degradation of mammalian HMGR is mediated by the ubiquitin-proteasome system (Ravid, T., Doolman, R., Avner, R., Harats, D., and Roitelman, J. (2000) J. Biol. Chem. 275, 35840-35847). Here we expressed in HEK-293 cells an HA-tagged-truncated version of HMGR that encompasses all eight transmembrane spans (350 N-terminal residues). Similar to endogenous HMGR, degradation of this HMG(350)-3HA protein was accelerated by sterols, validating it as a model to study HMGR turnover. The degradation of HMG(240)-3HA, which lacks the last two transmembrane spans yet retains an intact sterol-sensing domain, was no longer accelerated by sterols. Using HMG(350)-3HA, we demonstrate that transmembrane region of HMGR is ubiquitinated in a sterol-regulated fashion. Through site-directed Lys --> Arg mutagenesis, we pinpoint Lys(248) and Lys(89) as the internal lysines for ubiquitin attachment, with Lys(248) serving as the major acceptor site for polyubiquitination. Moreover, the data indicate that the N terminus is also ubiquitinated. The degradation rates of the Lys --> Arg mutants correlates with their level of ubiquitination. Notably, lysine-less HMG(350)-3HA is degraded faster than wild-type protein, suggesting that lysines other than Lys(89) and Lys(248) attenuate ubiquitination at the latter residues. The ATP-dependent ubiquitination of HMGR in isolated microsomes requires E1 as the sole cytosolic protein, indicating that ER-bound E2 and E3 enzymes catalyze this modification. Polyubiquitination of HMGR is correlated with its extraction from the ER membrane, a process likely to be assisted by cytosolic p97/VCP/Cdc48p-Ufd1-Npl

  7. Regulation of a ribonucleoside reductase during the early generative phase in Acetabularia.

    PubMed

    de Groot, E J; Schweiger, H G

    1985-02-01

    The activity of a ribonucleoside reductase was estimated during the life cycle of Acetabularia. During the early generative phase the enzyme activity was dramatically increased. Regulation of the ribonucleoside reductase was observed even in the absence of the nucleus. The increase in activity was inhibited by chloramphenicol but not by cycloheximide. These results indicate that the enzyme is translated on 70 S ribosomes.

  8. Analytical properties of some commercially available nitrate reductase enzymes evaluated as replacements for cadmium in automated, semiautomated, and manual colorimetric methods for determination of nitrate plus nitrite in water

    USGS Publications Warehouse

    Patton, Charles J.; Kryskalla, Jennifer R.

    2013-01-01

    A multiyear research effort at the U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) evaluated several commercially available nitrate reductase (NaR) enzymes as replacements for toxic cadmium in longstanding automated colorimetric air-segmented continuous-flow analyzer (CFA) methods for determining nitrate plus nitrite (NOx) in water. This research culminated in USGS approved standard- and low-level enzymatic reduction, colorimetric automated discrete analyzer NOx methods that have been in routine operation at the NWQL since October 2011. The enzyme used in these methods (AtNaR2) is a product of recombinant expression of NaR from Arabidopsis thaliana (L.) Heynh. (mouseear cress) in the yeast Pichia pastoris. Because the scope of the validation report for these new automated discrete analyzer methods, published as U.S. Geological Survey Techniques and Methods 5–B8, was limited to performance benchmarks and operational details, extensive foundational research with different enzymes—primarily YNaR1, a product of recombinant expression of NaR from Pichia angusta in the yeast Pichia pastoris—remained unpublished until now. This report documents research and development at the NWQL that was foundational to development and validation of the discrete analyzer methods. It includes: (1) details of instrumentation used to acquire kinetics data for several NaR enzymes in the presence and absence of known or suspected inhibitors in relation to reaction temperature and reaction pH; and (2) validation results—method detection limits, precision and bias estimates, spike recoveries, and interference studies—for standard- and low-level automated colorimetric CFA-YNaR1 reduction NOx methods in relation to corresponding USGS approved CFA cadmium-reduction (CdR) NOx methods. The cornerstone of this validation is paired sample statistical and graphical analysis of NOx concentrations from more than 3,800 geographically and seasonally diverse surface

  9. Sterol biosynthesis: strong inhibition of maize delta 5,7-sterol delta 7-reductase by novel 6-aza-B-homosteroids and other analogs of a presumptive carbocationic intermediate of the reduction reaction.

    PubMed

    Rahier, A; Taton, M

    1996-06-01

    A series of mono- and diazasteroids have been synthesized as analogs of a predicted carbocationic intermediate of delta 5,7-sterol delta 7-reductase (delta 7-SR). 6-Aza-B-homo-5 alpha-cholest-7-en-3 beta-ol (4), a novel compound whose synthesis is described for the first time, and 6,7-diaza-5 alpha-cholest-8(14)-en-3 beta-ol (6) were shown to be very powerful inhibitors of delta 7-SR in a preparation isolated from maize (Zea mays) (K(i),app = 50-70 nM, Ki,app/Km,app = 1.0 x 10(-4) to 1.3 x 10(-4). The data are consistent with a carbonium ion mechanism for the reduction; compounds 4 and 6 probably act as reaction intermediate analogs. Compound 4, in contrast to compound 6, displayed in the same microsomal preparation more than 50-fold selectivity for inhibition of the delta 7-SR versus delta 8-delta 7-sterol isomerase, cycloeucalenol isomerase, and delta 8,14-sterol delta 14-reductase, the mechanism of these four enzymes involving presumptive cationic intermediates centered respectively at C7, C8, C9, and C14. These observations highlight the paramount importance of the location of the positively charged nitrogen atom(s) in the B-ring structure for selectivity among these enzymes involving structurally close cationic reaction intermediates. Efficient in vivo inhibition of sterol biosynthesis in bramble cell suspension cultures by a low concentration of compound 4 was demonstrated and confirmed the in vitro properties of this derivative.) PMID:8679532

  10. The aldo-keto reductase superfamily homepage.

    PubMed

    Hyndman, David; Bauman, David R; Heredia, Vladi V; Penning, Trevor M

    2003-02-01

    The aldo-keto reductases (AKRs) are one of the three enzyme superfamilies that perform oxidoreduction on a wide variety of natural and foreign substrates. A systematic nomenclature for the AKR superfamily was adopted in 1996 and was updated in September 2000 (visit www.med.upenn.edu/akr). Investigators have been diligent in submitting sequences of functional proteins to the Web site. With the new additions, the superfamily contains 114 proteins expressed in prokaryotes and eukaryotes that are distributed over 14 families (AKR1-AKR14). The AKR1 family contains the aldose reductases, the aldehyde reductases, the hydroxysteroid dehydrogenases and steroid 5beta-reductases, and is the largest. Other families of interest include AKR6, which includes potassium channel beta-subunits, and AKR7 the aflatoxin aldehyde reductases. Two new families include AKR13 (yeast aldose reductase) and AKR14 (Escherichia coli aldehyde reductase). Crystal structures of many AKRs and their complexes with ligands are available in the PDB and accessible through the Web site. Each structure has the characteristic (alpha/beta)(8)-barrel motif of the superfamily, a conserved cofactor binding site and a catalytic tetrad, and variable loop structures that define substrate specificity. Although the majority of AKRs are monomeric proteins of about 320 amino acids in length, the AKR2, AKR6 and AKR7 family may form multimers. To expand the nomenclature to accommodate multimers, we recommend that the composition and stoichiometry be listed. For example, AKR7A1:AKR7A4 (1:3) would designate a tetramer of the composition indicated. The current nomenclature is recognized by the Human Genome Project (HUGO) and the Web site provides a link to genomic information including chromosomal localization, gene boundaries, human ESTs and SNPs and much more.

  11. Reduced affinity of the androgen receptor for 5 alpha-dihydrotestosterone but not methyltrienolone in a form of partial androgen resistance. Studies on cultured genital skin fibroblasts.

    PubMed Central

    Pinsky, L; Kaufman, M; Chudley, A E

    1985-01-01

    We have studied a child with posterior labial fusion, clitoral phallus, female urethra, and a short, blind vagina born to a mother with decreased axillary and pubic hair. Her karyotype is 46,XY. At 2 yr of age, the child's basal level of plasma testosterone was less than 0.35 nM and after human chorionic gonadotropin stimulation, it rose to 2.6. Testis and epididymis histology were normal. Her cultured genital (labial) skin fibroblasts have normal testosterone 5 alpha-reductase activity, and metabolize 5 alpha-dihydrotestosterone (DHT) normally, but they do not augment (up-regulate) their basal androgen-receptor binding activity during prolonged incubation with DHT. With DHT, the androgen receptor in her genital skin fibroblasts has a normal binding capacity (maximum binding capacity = 25 fmol/mg protein), but an increased rate constant of dissociation (k = 11.6 X 10(-3) min-1; normal, 6 +/- 1.2 (+/- SD)), and a decreased apparent equilibrium binding affinity (Kd = 0.6 nM; normal, 0.22 +/- 0.09) that is evident in the results of 2-h assays but not of those lasting 0.5 h. With the synthetic androgen, methyltrienolone, all three binding properties of the receptor are normal, and her receptor activity up-regulates normally. We interpret these results to mean that the subject has a ligand-selective defect in the time-dependent transformation of initial, low-affinity androgen-receptor complexes to serial states of higher affinity, presumably as the result of a structural mutation at the X-linked locus that encodes the androgen receptor protein. PMID:3872888

  12. Structure of an integral membrane sterol reductase from Methylomicrobium alcaliphilum

    PubMed Central

    Li, Xiaochun; Roberti, Rita; Blobel, Günter

    2014-01-01

    Sterols are essential biological molecules in the majority of life forms. Sterol reductases1 including Delta-14 sterol reductase (C14SR), 7-dehydrocholesterol reductase (DHCR7) and 24-dehydrocholesterol reductase (DHCR24) reduce specific carbon-carbon double bonds of the sterol moiety using a reducing cofactor during sterol biosynthesis. Lamin B Receptor2 (LBR), an integral inner nuclear membrane protein, also contains a functional C14SR domain. Here we report the crystal structure of a Delta-14 sterol reductase (maSR1) from the methanotrophic bacterium Methylomicrobium alcaliphilum 20Z, a homolog of human C14SR, LBR, and DHCR7, with the cofactor NADPH. The enzyme contains 10 transmembrane segments (TM). Its catalytic domain comprises the C-terminal half (containing TM6-10) and envelops two interconnected pockets, one of which faces the cytoplasm and houses NADPH, while the other one is accessible from the lipid bilayer. Comparison with a soluble steroid 5β-reductase structure3 suggests that the reducing end of NADPH meets the sterol substrate at the juncture of the two pockets. A sterol reductase activity assay proves maSR1 can reduce the double bond of a cholesterol biosynthetic intermediate demonstrating functional conservation to human C14SR. Therefore, our structure as a prototype of integral membrane sterol reductases provides molecular insight into mutations in DHCR7 and LBR for inborn human diseases. PMID:25307054

  13. Selenate reductase activity in Escherichia coli requires Isc iron-sulfur cluster biosynthesis genes.

    PubMed

    Yee, Nathan; Choi, Jessica; Porter, Abigail W; Carey, Sean; Rauschenbach, Ines; Harel, Arye

    2014-12-01

    The selenate reductase in Escherichia coli is a multi-subunit enzyme predicted to bind Fe-S clusters. In this study, we examined the iron-sulfur cluster biosynthesis genes that are required for selenate reductase activity. Mutants devoid of either the iscU or hscB gene in the Isc iron-sulfur cluster biosynthesis pathway lost the ability to reduce selenate. Genetic complementation by the wild-type sequences restored selenate reductase activity. The results indicate the Isc biosynthetic system plays a key role in selenate reductase Fe-S cofactor assembly and is essential for enzyme activity.

  14. Androgen receptor protein binding properties and tissue distribution of 2-selena-a-nor-5alpha-androstan-17beta-ol in the rat.

    PubMed

    Skinner, R W; Pozderac, R V; Counsell, R E; Hsu, C F; Weinhold, P A

    1977-07-01

    2-selena-A-nor-5alpha-androstan-17beta-ol was studied in vitro and in vivo in the rat prostate gland. The data demonstrates the ability of this compound to selectively complex with the specific receptors of 5alpha-dihydrotestosterone (5alpha-DHT) in the cytosol and to be retained in the nuclei in an unaltered form. Studies with selenium-75 labeled material suggests that the uptake and localization is similar to endogenous 5alpha-dihydrotestosterone.

  15. Measurement of nitrite reductase in leaf tissue of Vigna mungo : A new method.

    PubMed

    Srivastava, R C; Bose, B; Mukerji, D; Mathur, S N; Srivastava, H S

    1979-12-01

    The enzyme nitrite reductase (EC 1.6.6.4) is generally assayed in terms of disappearance of nitrite from the assay medium. We describe a technique which allowed estimation of the enzyme level in leaf tissues of Vigna mungo (L). Hepper in terms of the release of the product (NH3) of the enzyme reaction. The technique is offered as an alternative, possibly more convenient method for assay of nitrite reductase in plant tissue in vivo.

  16. 5alpha-Reduced androgens block estradiol-BSA-stimulated release of oxytocin.

    PubMed

    Caldwell, Jack D; Song, Yan; Englöf, Ila; Höfle, Simone; Key, Mary; Morris, Mariana

    2003-06-27

    In this study we test the postulate that estradiol conjugated to bovine serum albumin (E-BSA) acts via receptors for the steroid-binding protein sex hormone binding globulin (SHBG) by attempting to block E-BSA-stimulated release of oxytocin with two antagonists of SHBG receptor actions: the 5alpha-reduced androgens dihydrotestosterone (DHT) and 3alpha-diol. Simultaneous superfusion with either DHT or 3alpha-diol significantly blocked E-BSA-stimulated release of oxytocin. We also found that a wide range of free 17beta-estradiol was unable to stimulate oxytocin release, suggesting that E-BSA stimulates receptors other than those for free estradiol to release oxytocin, perhaps SHBG receptors.

  17. Regulation of the Neurospora crassa assimilatory nitrate reductase.

    PubMed Central

    Ketchum, P A; Zeeb, D D; Owens, M S

    1977-01-01

    Reduced nicotinamide adenine dinucleotide phosphate (NADPH)-nitrate reductase from Neurospora crassa was purified and found to be stimulated by certain amino acids, citrate, and ethylenediaminetetraacetic acid (EDTA). Stimulation by citrate and the amino acids was dependent upon the prior removal of EDTA from the enzyme preparations, since low quantities of EDTA resulted in maximal stimulation. Removal of EDTA from enzyme preparations by dialysis against Chelex-containing buffer resulted in a loss of nitrate reductase activity. Addition of alanine, arginine, glycine, glutamine, glutamate, histidine, tryptophan, and citrate restored and stimulated nitrate reductase activity from 29- to 46-fold. The amino acids tested altered the Km of NADPH-nitrate reductase for NADPH but did not significantly change that for nitrate. The Km of nitrate reductase for NADPH increased with increasing concentrations of histidine but decreased with increasing concentrations of glutamine. Amino acid modulation of NADPH-nitrate reductase activity is discussed in relation to the conservation of energy (NADPH) by Neurospora when nitrate is the nitrogen source. PMID:19423

  18. Substrate induction of nitrate reductase in barley aleurone layers.

    PubMed

    Ferrari, T E; Varner, J E

    1969-01-01

    Nitrate induces the formation of nitrate reductase activity in barley (Hordeum vulgare L. cv. Himalaya) aleurone layers. Previous work has demonstrated de novo synthesis of alpha-amylase by gibberellic acid in the same tissue. The increase in nitrate reductase activity is inhibited by cycloheximide and 6-methylpurine, but not by actinomycin D. Nitrate does not induce alpha-amylase synthesis, and it has no effect on the gibberellic acid-induced synthesis of alpha-amylase. Also, there is little or no direct effect of gibberellic acid (during the first 6 hr of induction) or of abscisic acid on the nitrate-induced formation of nitrate reductase. Gibberellic acid does interfere with nitrate reductase activity during long-term experiments (greater than 6 hr). However, the time course of this inhibition suggests that the inhibition may be a secondary one. Barley aleurone layers therefore provide a convenient tissue for the study of both substrate- and hormone-induced enzyme formation.

  19. Characterization of recombinant glutathione reductase from the psychrophilic Antarctic bacterium Colwellia psychrerythraea.

    PubMed

    Ji, Mikyoung; Barnwell, Callie V; Grunden, Amy M

    2015-07-01

    Glutathione reductases catalyze the reduction of oxidized glutathione (glutathione disulfide, GSSG) using NADPH as the substrate to produce reduced glutathione (GSH), which is an important antioxidant molecule that helps maintain the proper reducing environment of the cell. A recombinant form of glutathione reductase from Colwellia psychrerythraea, a marine psychrophilic bacterium, has been biochemically characterized to determine its molecular and enzymatic properties. C. psychrerythraea glutathione reductase was shown to be a homodimer with a molecular weight of 48.7 kDa using SDS-PAGE, MALDI-TOF mass spectrometry and gel filtration. The C. psychrerythraea glutathione reductase sequence shows significant homology to that of Escherichia coli glutathione reductase (66 % identity), and it possesses the FAD and NADPH binding motifs, as well as absorption spectrum features which are characteristic of flavoenzymes such as glutathione reductase. The psychrophilic C. psychrerythraea glutathione reductase exhibits higher k cat and k cat/K m at lower temperatures (4 °C) compared to mesophilic Baker's yeast glutathione reductase. However, C. psychrerythraea glutathione reductase was able to complement an E. coli glutathione reductase deletion strain in oxidative stress growth assays, demonstrating the functionality of C. psychrerythraea glutathione reductase over a broad temperature range, which suggests its potential utility as an antioxidant enzyme in heterologous systems. PMID:26101017

  20. Thioredoxin Reductase and its Inhibitors

    PubMed Central

    Saccoccia, Fulvio; Angelucci, Francesco; Boumis, Giovanna; Carotti, Daniela; Desiato, Gianni; Miele, Adriana E; Bellelli, Andrea

    2014-01-01

    Thioredoxin plays a crucial role in a wide number of physiological processes, which span from reduction of nucleotides to deoxyriboucleotides to the detoxification from xenobiotics, oxidants and radicals. The redox function of Thioredoxin is critically dependent on the enzyme Thioredoxin NADPH Reductase (TrxR). In view of its indirect involvement in the above mentioned physio/pathological processes, inhibition of TrxR is an important clinical goal. As a general rule, the affinities and mechanisms of binding of TrxR inhibitors to the target enzyme are known with scarce precision and conflicting results abound in the literature. A relevant analysis of published results as well as the experimental procedures is therefore needed, also in view of the critical interest of TrxR inhibitors. We review the inhibitors of TrxR and related flavoreductases and the classical treatment of reversible, competitive, non competitive and uncompetitive inhibition with respect to TrxR, and in some cases we are able to reconcile contradictory results generated by oversimplified data analysis. PMID:24875642

  1. Transformation of epiandrosterone into 3-oxa-, 3-thia-, 3-selena-, and 3-aza-17-oxaandrostanes of the 5 alpha series based on beta-scission of alkoxyl radicals.

    PubMed

    Suginome, H; Wang, J B

    1990-08-01

    3 beta-Hydroxy-5 alpha-androstan-17-one was transformed into 17-oxa-5 alpha-androstan-3 beta-ol in five steps involving conversion of the 17-ketone via the corresponding lactol to its hypoiodite and thence a regioselective beta-scission under irradiation to give ring D seco iodoformate, from which the 17-oxasteroids were derived. Four bisheterosteroids 3,17-dioxa-5 alpha-androstane, 3-thia-17-oxa-5 alpha-androstane, 3-aza-17-oxa-5 alpha-androstane, and 3-selena-17-oxa-5 alpha-androstane) were synthesized from 17-oxa-5 alpha-androstan-3 beta-ol via 5, 8, 8, and 9 steps, respectively, involving a second regioselective beta-scission of an alkoxyl radical as the key step.

  2. Sequence and properties of pentaerythritol tetranitrate reductase from Enterobacter cloacae PB2.

    PubMed Central

    French, C E; Nicklin, S; Bruce, N C

    1996-01-01

    Pentaerythritol tetranitrate reductase, which reductively liberates nitrite from nitrate esters, is related to old yellow enzyme. Pentaerythritol tetranitrate reductase follows a ping-pong mechanism with competitive substrate inhibition by NADPH, is strongly inhibited by steroids, and is capable of reducing the unsaturated bond of 2-cyclohexen-1-one. PMID:8932320

  3. Nitrate Reductase-Deficient Mutants in Barley 1

    PubMed Central

    Somers, David A.; Kuo, Tsung-Min; Kleinhofs, Andris; Warner, Robert L.

    1983-01-01

    Nitrate reductase-deficient barley (Hordeum vulgare L.) mutants were assayed for the presence of a functional molybdenum cofactor determined from the activity of the molybdoenzyme, xanthine dehydrogenase, and for nitrate reductase-associated activities. Rocket immunoelectrophoresis was used to detect nitrate reductase cross-reacting material in the mutants. The cross-reacting material levels of the mutants ranged from 8 to 136% of the wild type and were correlated with their nitrate reductase-associated activities, except for nar 1c, which lacked all associated nitrate reductase activities but had 38% of the wild-type cross-reacting material. The cross-reacting material of two nar 1 mutants, as well as nar 2a, Xno 18, Xno 19, and Xno 29, exhibited rocket immunoprecipitates that were similar to the wild-type enzyme indicating structural homology between the mutant and wild-type nitrate reductase proteins. The cross-reacting materials of the seven remaining nar 1 alleles formed rockets only in the presence of purified wild-type nitrate reductase, suggesting structural modifications of the mutant cross-reacting materials. All nar 1 alleles and Xno 29 had xanthine dehydrogenase activity indicating the presence of functional molybdenum cofactors. These results suggest that nar 1 is the structural gene for nitrate reductase. Mutants nar 2a, Xno 18, and Xno 19 lacked xanthine dehydrogenase activity and are considered to be molybdenum cofactor deficient mutants. Cross-reacting material was not detected in uninduced wild-type or mutant extracts, suggesting that nitrate reductase is synthesized de novo in response to nitrate. Images Fig. 1 Fig. 3 PMID:16662774

  4. Equine 5α-reductase activity and expression in epididymis.

    PubMed

    Corbin, C J; Legacki, E L; Ball, B A; Scoggin, K E; Stanley, S D; Conley, A J

    2016-10-01

    The 5α-reductase enzymes play an important role during male sexual differentiation, and in pregnant females, especially equine species where maintenance relies on 5α-reduced progesterone, 5α-dihydroprogesterone (DHP). Epididymis expresses 5α-reductases but was not studied elaborately in horses. Epididymis from younger and older postpubertal stallions was divided into caput, corpus and cauda and examined for 5α-reductase activity and expression of type 1 and 2 isoforms by quantitative real-time polymerase chain reaction (qPCR). Metabolism of progesterone and testosterone to DHP and dihydrotestosterone (DHT), respectively, by epididymal microsomal protein was examined by thin-layer chromatography and verified by liquid chromatography tandem mass spectrometry (LC-MS/MS). Relative inhibitory potencies of finasteride and dutasteride toward equine 5α-reductase activity were investigated. Pregnenolone was investigated as an additional potential substrate for 5α-reductase, suggested previously from in vivo studies in mares but never directly examined. No regional gradient of 5α-reductase expression was observed by either enzyme activity or transcript analysis. Results of PCR experiments suggested that type 1 isoform predominates in equine epididymis. Primers for the type 2 isoform were unable to amplify product from any samples examined. Progesterone and testosterone were readily reduced to DHP and DHT, and activity was effectively inhibited by both inhibitors. Using epididymis as an enzyme source, no experimental evidence was obtained supporting the notion that pregnenolone could be directly metabolized by equine 5α-reductases as has been suggested by previous investigators speculating on alternative metabolic pathways leading to DHP synthesis in placenta during equine pregnancies. PMID:27466384

  5. Equine 5α-reductase activity and expression in epididymis.

    PubMed

    Corbin, C J; Legacki, E L; Ball, B A; Scoggin, K E; Stanley, S D; Conley, A J

    2016-10-01

    The 5α-reductase enzymes play an important role during male sexual differentiation, and in pregnant females, especially equine species where maintenance relies on 5α-reduced progesterone, 5α-dihydroprogesterone (DHP). Epididymis expresses 5α-reductases but was not studied elaborately in horses. Epididymis from younger and older postpubertal stallions was divided into caput, corpus and cauda and examined for 5α-reductase activity and expression of type 1 and 2 isoforms by quantitative real-time polymerase chain reaction (qPCR). Metabolism of progesterone and testosterone to DHP and dihydrotestosterone (DHT), respectively, by epididymal microsomal protein was examined by thin-layer chromatography and verified by liquid chromatography tandem mass spectrometry (LC-MS/MS). Relative inhibitory potencies of finasteride and dutasteride toward equine 5α-reductase activity were investigated. Pregnenolone was investigated as an additional potential substrate for 5α-reductase, suggested previously from in vivo studies in mares but never directly examined. No regional gradient of 5α-reductase expression was observed by either enzyme activity or transcript analysis. Results of PCR experiments suggested that type 1 isoform predominates in equine epididymis. Primers for the type 2 isoform were unable to amplify product from any samples examined. Progesterone and testosterone were readily reduced to DHP and DHT, and activity was effectively inhibited by both inhibitors. Using epididymis as an enzyme source, no experimental evidence was obtained supporting the notion that pregnenolone could be directly metabolized by equine 5α-reductases as has been suggested by previous investigators speculating on alternative metabolic pathways leading to DHP synthesis in placenta during equine pregnancies.

  6. Identification and characterization of 2-naphthoyl-coenzyme A reductase, the prototype of a novel class of dearomatizing reductases.

    PubMed

    Eberlein, Christian; Estelmann, Sebastian; Seifert, Jana; von Bergen, Martin; Müller, Michael; Meckenstock, Rainer U; Boll, Matthias

    2013-06-01

    The enzymatic dearomatization of aromatic ring systems by reduction represents a highly challenging redox reaction in biology and plays a key role in the degradation of aromatic compounds under anoxic conditions. In anaerobic bacteria, most monocyclic aromatic growth substrates are converted to benzoyl-coenzyme A (CoA), which is then dearomatized to a conjugated dienoyl-CoA by ATP-dependent or -independent benzoyl-CoA reductases. It was unresolved whether or not related enzymes are involved in the anaerobic degradation of environmentally relevant polycyclic aromatic hydrocarbons (PAHs). In this work, a previously unknown dearomatizing 2-naphthoyl-CoA reductase was purified from extracts of the naphthalene-degrading, sulphidogenic enrichment culture N47. The oxygen-tolerant enzyme dearomatized the non-activated ring of 2-naphthoyl-CoA by a four-electron reduction to 5,6,7,8-tetrahydro-2-naphthoyl-CoA. The dimeric 150 kDa enzyme complex was composed of a 72 kDa subunit showing sequence similarity to members of the flavin-containing 'old yellow enzyme' family. NCR contained FAD, FMN, and an iron-sulphur cluster as cofactors. Extracts of Escherichia coli expressing the encoding gene catalysed 2-naphthoyl-CoA reduction. The identified NCR is a prototypical enzyme of a previously unknown class of dearomatizing arylcarboxyl-CoA reductases that are involved in anaerobic PAH degradation; it fundamentally differs from known benzoyl-CoA reductases.

  7. Body fat distribution and cortisol metabolism in healthy men: enhanced 5beta-reductase and lower cortisol/cortisone metabolite ratios in men with fatty liver.

    PubMed

    Westerbacka, Jukka; Yki-Järvinen, Hannele; Vehkavaara, Satu; Häkkinen, Anna-Maija; Andrew, Ruth; Wake, Deborah J; Seckl, Jonathan R; Walker, Brian R

    2003-10-01

    In Cushing's syndrome, cortisol causes fat accumulation in specific sites most likely to be associated with insulin resistance, notably in omental adipose and also perhaps in the liver. In idiopathic obesity, cortisol-metabolizing enzymes may play a key role in determining body fat distribution. Increased regeneration of cortisol from cortisone within adipose by 11beta-hydroxysteroid dehydrogenase (HSD) type 1 (11HSD1) has been proposed to cause visceral fat accumulation, whereas decreased hepatic 11HSD1 may protect the liver from glucocorticoid excess. Increased inactivation of cortisol by 5alpha- and 5beta-reductases in the liver may drive compensatory activation of the hypothalamic-pituitary-adrenal axis, hence increasing adrenal androgens and 'android' central obesity. This study aimed to examine relationships between these enzymes and detailed measurements of body fat distribution. Twenty-five healthy men (age, 22-57 yr; body mass index, 20.6-35.6 kg/m(2)) were recruited from occupational health services. Body composition was assessed by anthropometric measurements, bioimpedance, and cross-sectional abdominal magnetic resonance imaging scans. Liver fat content was assessed by magnetic resonance imaging spectroscopy. Insulin sensitivity was measured in a euglycemic hyperinsulinemic clamp. Cortisol metabolites were measured in a 24-h urine sample by gas chromatography-mass spectrometry. In vivo hepatic 11HSD1 activity was measured by generation of plasma cortisol after an oral dose of cortisone. In vitro 11HSD1 activity and mRNA were measured in 18 subjects who consented to provide abdominal sc adipose biopsies. Indices of obesity (body mass index, whole-body percentage fat, waist/hip ratio) were associated with higher urinary excretion of 5alpha- and 5beta-reduced cortisol metabolites (for percentage fat, P < 0.05 and P < 0.01, respectively) and increased adipose 11HSD1 activity (P < 0.05). Liver fat accumulation was associated with a selective increase in

  8. Asian plantain (Plantago asiatica) essential oils suppress 3-hydroxy-3-methyl-glutaryl-co-enzyme A reductase expression in vitro and in vivo and show hypocholesterolaemic properties in mice.

    PubMed

    Chung, Mi Ja; Park, Kuen Woo; Kim, Kyoung Heon; Kim, Cheong-Tae; Baek, Jun Pill; Bang, Kyong-Hwan; Choi, Young-Mi; Lee, Sung-Joon

    2008-01-01

    Asian plantain (Plantago asiatica) essential oil (PAEO) contains multiple bioactive compounds, but its potential effects on lipid metabolism have not been examined. PAEO was found to be mostly composed of oxygenated monoterpenes, with linalool as the major component (82.5 %, w/w), measured using GC-MS. Incubation of 0-200 microg PAEO/ml with HepG2 cells for 24 h resulted in no significant toxicity. Incubation with 0.2 mg PAEO/ml altered the expression of LDL receptor (+83 %; P < 0.05) and 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase ( - 37 %; P < 0.05), as assessed using RT-PCR. LDL oxidation was markedly inhibited by PAEO treatment due to the prevalence of linalool compounds in PAEO. Oral administration of PAEO for 3 weeks in C57BL/6 mice significantly reduced plasma total cholesterol and TAG concentrations by 29 and 46 %, respectively. The mRNA (+58 %; P < 0.05), but not protein, levels of the LDL receptor were significantly higher, whereas both mRNA and protein levels of HMG-CoA reductase were significantly lower ( - 46 and - 11 %, respectively; P < 0.05) in the liver of PAEO-fed than of control mice. The mRNA levels of CYP7A1 were marginally reduced in HepG2 cells, but not in mouse liver after PAEO treatment. Thus, PAEO may have hypocholesterolaemic effects by altering the expression of HMG-CoA reductase. Reduced TAG and oxidised LDL may provide additional cardiovascular protective benefits. PMID:17697428

  9. Localization and Regulation of Synthesis of Nitrate Reductase in Escherichia coli

    PubMed Central

    Showe, Michael K.; DeMoss, J. A.

    1968-01-01

    The nitrate reductase of Escherichia coli K-12 was localized in a particulate fraction of the cell and it sedimented as if it were bound to a large substructure that is subject to fragmentation during cell disruption procedures. Soluble enzyme, exhibiting a homogenous profile in sucrose gradients, was released from this fraction by an alkaline-heat treatment. Less than 1.5% of total active nitrate reductase apparently occurred in this soluble form during the course of formation of the particulate enzyme. Enzyme synthesis was repressed by aeration in the presence or absence of nitrate. Under anaerobic conditions, nitrate reductase was synthesized at a rate that could be increased 20-fold by the addition of nitrate. When enzyme synthesis was initiated by induction with nitrate or anaerobiosis, biphasic kinetics were obtained. We interpreted the results as evidence for the existence of a redox-sensitive repressor which mediates nitrate reductase regulation. PMID:4869216

  10. Some physical and immunological properties of ox kidney biliverdin reductase.

    PubMed Central

    Rigney, E M; Phillips, O; Mantle, T J

    1988-01-01

    The liver, kidney and spleen of the mouse and rat and the kidney and spleen of the ox express a monomeric form of biliverdin reductase (Mr 34,000), which in the case of the ox kidney enzyme exists in two forms (pI 5.4 and 5.2) that are probably charge isomers. The livers of the mouse and rats express, in addition, a protein (Mr 46,000) that cross-reacts with antibodies raised against the ox kidney enzyme and may be related to form 2 described by Frydman, Tomaro, Awruch & Frydman [(1983) Biochim. Biophys. Acta 759, 257-263]. Higher-Mr forms appear to exist in the guinea pig and hamster. The ox kidney enzyme has three thiol groups, of which two are accessible to 5,5'-dithiobis-(2-nitrobenzoate) in the native enzyme. Immunocytochemical analysis reveals that biliverdin reductase is localized in proximal tubules of the inner cortex of the rat kidney. Biliverdin reductase antiserum also stains proximal tubules in human and ox kidney. The staining of podocytes in glomeruli of ox kidney with antiserum to aldose reductase is particularly prominent. The localization of biliverdin reductase in the inner cortical zone of rat kidney is similar to that described for glutathione S-transferase YfYf, and it is suggested that one function of this 'intracellular binding protein' may be to maintain a low free concentration of biliverdin to allow biliverdin reductase to operate efficiently. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:3060109

  11. Characterization of mitochondrial thioredoxin reductase from C. elegans

    SciTech Connect

    Lacey, Brian M.; Hondal, Robert J. . E-mail: Robert.Hondal@uvm.edu

    2006-08-04

    Thioredoxin reductase catalyzes the NADPH-dependent reduction of the catalytic disulfide bond of thioredoxin. In mammals and other higher eukaryotes, thioredoxin reductases contain the rare amino acid selenocysteine at the active site. The mitochondrial enzyme from Caenorhabditis elegans, however, contains a cysteine residue in place of selenocysteine. The mitochondrial C. elegans thioredoxin reductase was cloned from an expressed sequence tag and then produced in Escherichia coli as an intein-fusion protein. The purified recombinant enzyme has a k {sub cat} of 610 min{sup -1} and a K {sub m} of 610 {mu}M using E. coli thioredoxin as substrate. The reported k {sub cat} is 25% of the k {sub cat} of the mammalian enzyme and is 43-fold higher than a cysteine mutant of mammalian thioredoxin reductase. The enzyme would reduce selenocysteine, but not hydrogen peroxide or insulin. The flanking glycine residues of the GCCG motif were mutated to serine. The mutants improved substrate binding, but decreased the catalytic rate.

  12. Accumulation of 5 alpha-reduced androgen glucosiduronates associated with impaired removal in young male hemodialysis patients.

    PubMed

    Boudou, P; Naret, C; Fiet, J; Bonete, R; Tritto, G; Le Duc, A; Poignet, J L; Man, N K

    1995-12-01

    Hypothalamic-pituitary gonadal function is commonly altered in dialysis patients. Even though an improvement in general status and well-being has been noted after recombinant human erythropoietin supplementation, no significant changes were observed in the sex hormone profile. Pituitary gonadal axis as well as 5 alpha-reduced androgen glucosiduronates (i.e. 5 alpha-androstane,3 alpha,17 beta-diol and androsterone) profiles were studied in 23 young male stable dialyzed patients and compared to an age-matched group of healthy subjects. 5 alpha-Reduced androgen glucosiduronates are products of peripheral testosterone (T) metabolism and seem to be a useful tool in assessment of the male androgen status. Their polarity facilitates their urinary excretion, and their clearance is similar to the glomerular filtration rate in healthy men. We observed 1) a pituitary-Leydig cell dysfunction supported by normal serum estradiol and T levels, low free T, and increased LH levels; 2) an alteration of the dehydroepiandrosterone (DHEA) sulfate-DHEA interconversion, reflected by a dramatic decrease in DHEA while DHEA sulfate levels remained in the normal range; 3) an accumulation of 5 alpha-reduced androgen glucosiduronates, whose removal was impaired as shown by their very low sieving coefficients (< 0.012). Taken together, the above observations are consistent with alteration of spermatogenesis with respect to dialysis duration in which earlier elevated baseline serum LH levels indicate a primary defect in Leydig cell function.

  13. Partial vinylphenol reductase purification and characterization from Brettanomyces bruxellensis.

    PubMed

    Tchobanov, Iavor; Gal, Laurent; Guilloux-Benatier, Michèle; Remize, Fabienne; Nardi, Tiziana; Guzzo, Jean; Serpaggi, Virginie; Alexandre, Hervé

    2008-07-01

    Brettanomyces is the major microbial cause for wine spoilage worldwide and causes significant economic losses. The reasons are the production of ethylphenols that lead to an unpleasant taint described as 'phenolic odour'. Despite its economic importance, Brettanomyces has remained poorly studied at the metabolic level. The origin of the ethylphenol results from the conversion of vinylphenols in ethylphenol by Brettanomyces hydroxycinnamate decarboxylase. However, no information is available on the vinylphenol reductase responsible for the conversion of vinylphenols in ethylphenols. In this study, a vinylphenol reductase was partially purified from Brettanomyces bruxellensis that was active towards 4-vinylguaiacol and 4-vinylphenol only among the substrates tested. First, a vinylphenol reductase activity assay was designed that allowed us to show that the enzyme was NADH dependent. The vinylphenol reductase was purified 152-fold with a recovery yield of 1.77%. The apparent K(m) and V(max) values for the hydrolysis of 4-vinylguaiacol were, respectively, 0.14 mM and 1900 U mg(-1). The optimal pH and temperature for vinylphenol reductase were pH 5-6 and 30 degrees C, respectively. The molecular weight of the enzyme was 26 kDa. Trypsic digest of the protein was performed and the peptides were sequenced, which allowed us to identify in Brettanomyces genome an ORF coding for a 210 amino acid protein.

  14. Inactivation kinetics of dihydrofolate reductase from Chinese hamster during urea denaturation.

    PubMed Central

    Wu, J W; Wang, Z X; Zhou, J M

    1997-01-01

    The kinetic theory of substrate reaction during modification of enzyme activity has been applied to the study of inactivation kinetics of Chinese hamster dihydrofolate reductase by urea [Tsou (1988) Adv. Enzymol. Relat. Areas Mol. Biol. 61, 381-436]. On the basis of the kinetic equation of substrate reaction in the presence of urea, all microscopic kinetic constants for the free enzyme and enzyme-substrate binary and ternary complexes have been determined. The results of the present study indicate that the denaturation of dihydrofolate reductase by urea follows single-phase kinetics, and changes in enzyme activity and tertiary structure proceed simultaneously in the unfolding process. Both substrates, NADPH and 7,8-dihydrofolate, protect dihydrofolate reductase against inactivation, and enzyme-substrate complexes lose their activity less rapidly than the free enzyme. PMID:9182696

  15. Immunocytochemical localization of short-chain family reductases involved in menthol biosynthesis in peppermint.

    PubMed

    Turner, Glenn W; Davis, Edward M; Croteau, Rodney B

    2012-06-01

    Biosynthesis of the p-menthane monoterpenes in peppermint occurs in the secretory cells of the peltate glandular trichomes and results in the accumulation of primarily menthone and menthol. cDNAs and recombinant enzymes are well characterized for eight of the nine enzymatic steps leading from the 5-carbon precursors to menthol, and subcellular localization of several key enzymes suggests a complex network of substrate and product movement is required during oil biosynthesis. In addition, studies concerning the regulation of oil biosynthesis have demonstrated a temporal partition of the pathway into an early, biosynthetic program that results in the accumulation of menthone and a later, oil maturation program that leads to menthone reduction and concomitant menthol accumulation. The menthone reductase responsible for the ultimate pathway reduction step, menthone-menthol reductase (MMR), has been characterized and found to share significant sequence similarity with its counterpart reductase, a menthone-neomenthol reductase, which catalyzes a minor enzymatic reaction associated with oil maturation. Further, the menthone reductases share significant sequence similarity with the temporally separate and mechanistically different isopiperitenone reductase (IPR). Here we present immunocytochemical localizations for these reductases using a polyclonal antibody raised against menthone-menthol reductase. The polyclonal antibody used for this study showed little specificity between these three reductases, but by using it for immunostaining of tissues of different ages we were able to provisionally separate staining of an early biosynthetic enzyme, IPR, found in young, immature leaves from that of the oil maturation enzyme, MMR, found in older, mature leaves. Both reductases were localized to the cytoplasm and nucleoplasm of the secretory cells of peltate glandular trichomes, and were absent from all other cell types examined. PMID:22170164

  16. 3-Oxoacyl-[ACP] reductase from oilseed rape (Brassica napus).

    PubMed

    Sheldon, P S; Kekwick, R G; Smith, C G; Sidebottom, C; Slabas, A R

    1992-04-01

    3-Oxoacyl-[ACP] reductase (E.C. 1.1.1.100, alternatively known as beta-ketoacyl-[ACP] reductase), a component of fatty acid synthetase has been purified from seeds of rape by ammonium sulphate fractionation, Procion Red H-E3B chromatography, FPLC gel filtration and high performance hydroxyapatite chromatography. The purified enzyme appears on SDS-PAGE as a number of 20-30 kDa components and has a strong tendency to exist in a dimeric form, particularly when dithiothreitol is not present to reduce disulphide bonds. Cleveland mapping and cross-reactivity with antiserum raised against avocado 3-oxoacyl-[ACP] reductase both indicate that the multiple components have similar primary structures. On gel filtration the enzyme appears to have a molecular mass of 120 kDa suggesting that the native structure is tetrameric. The enzyme has a strong preference for the acetoacetyl ester of acyl carrier protein (Km = 3 microM) over the corresponding esters of the model substrates N-acetyl cysteamine (Km = 35 mM) and CoA (Km = 261 microM). It is inactivated by dilution but this can be partly prevented by the inclusion of NADPH. Using an antiserum prepared against avocado 3-oxoacyl-[ACP] reductase, the enzyme has been visualised inside the plastids of rape embryo and leaf tissues by immunoelectron microscopy. Amino acid sequencing of two peptides prepared by digestion of the purified enzyme with trypsin showed strong similarities with 3-oxoacyl-[ACP] reductase from avocado pear and the Nod G gene product from Rhizobium meliloti.

  17. The flavin inhibitor diphenyleneiodonium renders Trichomonas vaginalis resistant to metronidazole, inhibits thioredoxin reductase and flavin reductase, and shuts off hydrogenosomal enzymatic pathways.

    PubMed

    Leitsch, David; Kolarich, Daniel; Duchêne, Michael

    2010-05-01

    Infections with the microaerophilic protozoan parasite Trichomonas vaginalis are commonly treated with metronidazole, a 5-nitroimidazole drug. Metronidazole is selectively toxic to microaerophiles and anaerobes because reduction at the drug's nitro group, which is a precondition for toxicity, occurs only quantitatively in these organisms. In our previous work we identified the flavin enzyme thioredoxin reductase as an electron donor to 5-nitroimidazole drugs in T. vaginalis and observed that highly metronidazole-resistant cell lines lack thioredoxin reductase and flavin reductase activities. In this study we added the flavin inhibitor diphenyleneiodonium (DPI) to T. vaginalis cultures in order to test our hypothesis that metronidazole reduction is catalyzed by flavin enzymes, e.g. thioredoxin reductase, and intracellular free flavins. Indeed, within hours, DPI rendered T. vaginalis insensitive to metronidazole concentrations as high as 1mM and prevented the formation of metronidazole adducts with proteins. Thioredoxin reductase activity was absent from DPI-treated cells and flavin reductase activity was sharply decreased. In addition, DPI-treated cells also upregulated the expression of antioxidant enzymes, i.e. thioredoxin peroxidases and superoxide dismutases, and displayed a fundamentally altered metabolism caused by inactivation of pyruvate:ferredoxin oxidoreductase (PFOR) and concomitant upregulation of lactate dehydrogenase (LDH) activity. Thus, the disruption of the cellular flavin metabolism by DPI mediated metabolic steps which are similar to that of cells with metronidazole resistance induced in vitro. Finally, we present direct evidence that the increased expression of antioxidant enzymes is dispensable for acquiring resistance to metronidazole. PMID:20093143

  18. Distinguishing two groups of flavin reductases by analyzing the protonation state of an active site carboxylic acid.

    PubMed

    Dumit, Verónica I; Cortez, Néstor; Matthias Ullmann, G

    2011-07-01

    Flavin-containing reductases are involved in a wide variety of physiological reactions such as photosynthesis, nitric oxide synthesis, and detoxification of foreign compounds, including therapeutic drugs. Ferredoxin-NADP(H)-reductase (FNR) is the prototypical enzyme of this family. The fold of this protein is highly conserved and occurs as one domain of several multidomain enzymes such as the members of the diflavin reductase family. The enzymes of this family have emerged as fusion of a FNR and a flavodoxin. Although the active sites of these enzymes are very similar, different enzymes function in opposite directions, that is, some reduce oxidized nicotinamide adenine dinucleotide phosphate (NADP(+)) and some oxidize reduced nicotinamide adenine dinucleotide phosphate (NADPH). In this work, we analyze the protonation behavior of titratable residues of these enzymes through electrostatic calculations. We find that a highly conserved carboxylic acid in the active site shows a different titration behavior in different flavin reductases. This residue is deprotonated in flavin reductases present in plastids, but protonated in bacterial counterparts and in diflavin reductases. The protonation state of the carboxylic acid may also influence substrate binding. The physiological substrate for plastidic enzymes is NADP(+), but it is NADPH for the other mentioned reductases. In this article, we discuss the relevance of the environment of this residue for its protonation and its importance in catalysis. Our results allow to reinterpret and explain experimental data. PMID:21538544

  19. Imaging enzyme kinetics at atomic resolution.

    PubMed

    Spence, John; Lattman, Eaton

    2016-07-01

    Serial crystallography at a synchrotron has been used to obtain time-resolved atomic resolution density maps of enzyme catalysis in copper nitrite reductase. Similar XFEL studies, intended to out-run radiation damage, will also soon appear. PMID:27437108

  20. Steroid 5 α-reductase inhibitors targeting BPH and prostate cancer.

    PubMed

    Schmidt, Lucy J; Tindall, Donald J

    2011-05-01

    Steroid 5 alpha-reductase inhibitors (5ARIs) have been approved for use clinically in treatment of benign prostate hyperplasia (BPH) and accompanying lower urinary tract symptoms (LUTS) and have also been evaluated in clinical trials for prevention and treatment of prostate cancer. There are currently two steroidal inhibitors in use, finasteride and dutasteride, both with distinct pharmacokinetic properties. This review will examine the evidence presented by various studies supporting the use of these steroidal inhibitors in the prevention and treatment of prostate disease. Article from the Special issue on Targeted Inhibitors. PMID:20883781

  1. The aldo-keto reductases (AKRs): Overview.

    PubMed

    Penning, Trevor M

    2015-06-01

    The aldo-keto reductase (AKR) protein superfamily contains >190 members that fall into 16 families and are found in all phyla. These enzymes reduce carbonyl substrates such as: sugar aldehydes; keto-steroids, keto-prostaglandins, retinals, quinones, and lipid peroxidation by-products. Exceptions include the reduction of steroid double bonds catalyzed by AKR1D enzymes (5β-reductases); and the oxidation of proximate carcinogen trans-dihydrodiol polycyclic aromatic hydrocarbons; while the β-subunits of potassium gated ion channels (AKR6 family) control Kv channel opening. AKRs are usually 37kDa monomers, have an (α/β)8-barrel motif, display large loops at the back of the barrel which govern substrate specificity, and have a conserved cofactor binding domain. AKRs catalyze an ordered bi bi kinetic mechanism in which NAD(P)H cofactor binds first and leaves last. In enzymes that favor NADPH, the rate of release of NADP(+) is governed by a slow isomerization step which places an upper limit on kcat. AKRs retain a conserved catalytic tetrad consisting of Tyr55, Asp50, Lys84, and His117 (AKR1C9 numbering). There is conservation of the catalytic mechanism with short-chain dehydrogenases/reductases (SDRs) even though they show different protein folds. There are 15 human AKRs of these AKR1B1, AKR1C1-1C3, AKR1D1, and AKR1B10 have been implicated in diabetic complications, steroid hormone dependent malignancies, bile acid deficiency and defects in retinoic acid signaling, respectively. Inhibitor programs exist world-wide to target each of these enzymes to treat the aforementioned disorders. Inherited mutations in AKR1C and AKR1D1 enzymes are implicated in defects in the development of male genitalia and bile acid deficiency, respectively, and occur in evolutionarily conserved amino acids. The human AKRs have a large number of nsSNPs and splice variants, but in many instances functional genomics is lacking. AKRs and their variants are now poised to be interrogated using

  2. X-ray structure of trypanothione reductase from Crithidia fasciculata at 2. 4- angstrom resolution

    SciTech Connect

    Kuriyan, J.; Xiangpeng Kong; Krishna, T.S.R.; Murgolo, N.J.; Field, H.; Cerami, A.; Henderson, G.B. ); Sweet, R.M. )

    1991-10-01

    Trypanosomes and related protozoan parasites lack glutathione reductase and possess instead a closely related enzyme that serves as the reductant of a bis(glutathione)-spermidien conjugate, trypanothione. The human and parasite enzymes have mutually exclusive substrate specificities, providing a route for the design of therapeutic agents by specific inhibition of the parasite enzyme. The authors report here the three-dimensional structure of trypanothione reductase from Crithidia fasciculata and show that it closely resembles the structure of human glutathione reductase. In particular, the core structure surrounding the catalytic machinery is almost identical in the two enzymes. However, significant differences are found at the substrate binding sites. A cluster of basic residues in glutathione reductase is replaced by neutral, hydrophobic, or acidic residues in trypanothione reductase, consistent with the nature of the spermidine linkage and the change in overall charge of the substrate from {minus}2 to +1, respectively. The binding site is more open in trypanothione reductase due to rotations of about 4{degree} in the domains that form in site, with relative shifts of as much as 2-3 {angstrom} in residues that can interact with potential inhibitors and complement previous modeling and mutagenesis studies on the two enzymes.

  3. The mechanism of the quinone reductase reaction of pig heart lipoamide dehydrogenase.

    PubMed Central

    Vienozinskis, J; Butkus, A; Cenas, N; Kulys, J

    1990-01-01

    The relationship between the NADH:lipoamide reductase and NADH:quinone reductase reactions of pig heart lipoamide dehydrogenase (EC 1.6.4.3) was investigated. At pH 7.0 the catalytic constant of the quinone reductase reaction (kcat.) is 70 s-1 and the rate constant of the active-centre reduction by NADH (kcat./Km) is 9.2 x 10(5) M-1.s-1. These constants are almost an order lower than those for the lipoamide reductase reaction. The maximal quinone reductase activity is observed at pH 6.0-5.5. The use of [4(S)-2H]NADH as substrate decreases kcat./Km for the lipoamide reductase reaction and both kcat. and kcat./Km for the quinone reductase reaction. The kcat./Km values for quinones in this case are decreased 1.85-3.0-fold. NAD+ is a more effective inhibitor in the quinone reductase reaction than in the lipoamide reductase reaction. The pattern of inhibition reflects the shift of the reaction equilibrium. Various forms of the four-electron-reduced enzyme are believed to reduce quinones. Simple and 'hybrid ping-pong' mechanisms of this reaction are discussed. The logarithms of kcat./Km for quinones are hyperbolically dependent on their single-electron reduction potentials (E1(7]. A three-step mechanism for a mixed one-electron and two-electron reduction of quinones by lipoamide dehydrogenase is proposed. PMID:2375745

  4. Identification of the 7-Hydroxymethyl Chlorophyll a Reductase of the Chlorophyll Cycle in Arabidopsis[W

    PubMed Central

    Meguro, Miki; Ito, Hisashi; Takabayashi, Atsushi; Tanaka, Ryouichi; Tanaka, Ayumi

    2011-01-01

    The interconversion of chlorophyll a and chlorophyll b, referred to as the chlorophyll cycle, plays a crucial role in the processes of greening, acclimation to light intensity, and senescence. The chlorophyll cycle consists of three reactions: the conversions of chlorophyll a to chlorophyll b by chlorophyllide a oxygenase, chlorophyll b to 7-hydroxymethyl chlorophyll a by chlorophyll b reductase, and 7-hydroxymethyl chlorophyll a to chlorophyll a by 7-hydroxymethyl chlorophyll a reductase. We identified 7-hydroxymethyl chlorophyll a reductase, which is the last remaining unidentified enzyme of the chlorophyll cycle, from Arabidopsis thaliana by genetic and biochemical methods. Recombinant 7-hydroxymethyl chlorophyll a reductase converted 7-hydroxymethyl chlorophyll a to chlorophyll a using ferredoxin. Both sequence and biochemical analyses showed that 7-hydroxymethyl chlorophyll a reductase contains flavin adenine dinucleotide and an iron-sulfur center. In addition, a phylogenetic analysis elucidated the evolution of 7-hydroxymethyl chlorophyll a reductase from divinyl chlorophyllide vinyl reductase. A mutant lacking 7-hydroxymethyl chlorophyll a reductase was found to accumulate 7-hydroxymethyl chlorophyll a and pheophorbide a. Furthermore, this accumulation of pheophorbide a in the mutant was rescued by the inactivation of the chlorophyll b reductase gene. The downregulation of pheophorbide a oxygenase activity is discussed in relation to 7-hydroxymethyl chlorophyll a accumulation. PMID:21934147

  5. 4-Dimethylaminoazobenzenes: carcinogenicities and reductive cleavage by microsomal azo reductase.

    PubMed

    Lambooy, J P; Koffman, B M

    1985-01-01

    Twenty-four 4-dimethylaminoazobenzenes (DABs) in which systematic structural modifications have been made in the prime ring have been studied for substrate specificity for microsomal azo reductase. The DABs were also evaluated for carcinogenicity and it was found that there was no correlation between carcinogenicity and extent of azo bond cleavage by azo reductase. While any substituent in the prime ring reduces the rate of cleavage of the azo bond relative to the unsubstituted dye, there is a correlation between substituent size and susceptibility to the enzyme. Substituent size was also found to be a significant factor in the induction of hepatomas by the dyes. Preliminary studies have shown that there appears to be a positive correlation between microsomal riboflavin content and the activity of the azo reductase.

  6. Nitrate and periplasmic nitrate reductases

    PubMed Central

    Sparacino-Watkins, Courtney; Stolz, John F.; Basu, Partha

    2014-01-01

    The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types – periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed. PMID:24141308

  7. Pinpointing a Mechanistic Switch Between Ketoreduction and "Ene" Reduction in Short-Chain Dehydrogenases/Reductases.

    PubMed

    Lygidakis, Antonios; Karuppiah, Vijaykumar; Hoeven, Robin; Ní Cheallaigh, Aisling; Leys, David; Gardiner, John M; Toogood, Helen S; Scrutton, Nigel S

    2016-08-01

    Three enzymes of the Mentha essential oil biosynthetic pathway are highly homologous, namely the ketoreductases (-)-menthone:(-)-menthol reductase and (-)-menthone:(+)-neomenthol reductase, and the "ene" reductase isopiperitenone reductase. We identified a rare catalytic residue substitution in the last two, and performed comparative crystal structure analyses and residue-swapping mutagenesis to investigate whether this determines the reaction outcome. The result was a complete loss of native activity and a switch between ene reduction and ketoreduction. This suggests the importance of a catalytic glutamate vs. tyrosine residue in determining the outcome of the reduction of α,β-unsaturated alkenes, due to the substrate occupying different binding conformations, and possibly also to the relative acidities of the two residues. This simple switch in mechanism by a single amino acid substitution could potentially generate a large number of de novo ene reductases. PMID:27411040

  8. Steroid production and Excretion by the pregnant mouse, particularly in relation to pregnancies with fetuses deficient in Δ7-sterol reductase (Dhcr7), the enzyme associated with Smith-Lemli-Opitz syndrome

    PubMed Central

    Matabosch, Xavier; Rahman, Mahbuba; Hughes, Beverly; Patel, Shailendra B.; Watson, Gordon; Shackleton, Cedric

    2010-01-01

    This study has shown that the mouse has a great increase in steroid production during pregnancy in similar fashion to the human. Many steroids were provisionally identified in maternal urine of the wild-type mouse. The major progesterone metabolites appear to be hydroxylated pregnanolones, particularly with hydroxyl groups in the 16α position. Rather than estriol being the major end-product of feto-placental steroid synthesis as in the human, the pregnant mouse produces and excretes large amounts of androgen metabolites, ranging in polarity from androstanetriols to androstanepentols. These steroids have 15α- or 18-hydroxyl groups with additional hydroxylation at uncharacterized positions. From metabolite data the peak of pregnancy progesterone production appears to be between 7.5-14.5 gestational days, while for C19 metabolites peak excretion is later. The starting-point of the studies was to study pregnancy steroid production by a mouse model for Smith-Lemli-Opitz syndrome, 7-dehydrosterol reductase (DHCR7) deficiency. In human pregnancies with DHCR7 deficient fetuses large amounts of 7- and 8-dehydrosteroids are excreted, products secondary to high fetal 7- and 8-dehydrocholesterol (DHC) accumulation. This agrees with existing evidence that human feto-placental steroid synthesis utilizes little maternal cholesterol as precursor. In contrast, this study has shown that pregnant mice carrying dhcr7 deficient fetuses with relatively high DHC production had essentially undetectable maternal excretions of steroids with Δ7- and Δ8- unsaturation. As mutant mouse mothers have essentially normal cholesterol production (little or no DHC build-up), this suggests maternal cholesterol is primarily utilized for pregnancy steroid synthesis in the mouse. PMID:19406241

  9. Steroid production and excretion by the pregnant mouse, particularly in relation to pregnancies with fetuses deficient in Delta7-sterol reductase (Dhcr7), the enzyme associated with Smith-Lemli-Opitz syndrome.

    PubMed

    Matabosch, Xavier; Rahman, Mahbuba; Hughes, Beverly; Patel, Shailendra B; Watson, Gordon; Shackleton, Cedric

    2009-08-01

    This study has shown that the mouse has a great increase in steroid production during pregnancy in similar fashion to the human. Many steroids were provisionally identified in maternal urine of the wild-type mouse. The major progesterone metabolites appear to be hydroxylated pregnanolones, particularly with hydroxyl groups in the 16alpha position. Rather than estriol being the major end-product of feto-placental steroid synthesis as in the human, the pregnant mouse produces and excretes large amounts of androgen metabolites, ranging in polarity from androstanetriols to androstanepentols. These steroids have 15alpha- or 18-hydroxyl groups with additional hydroxylation at uncharacterized positions. From metabolite data the peak of pregnancy progesterone production appears to be between 7.5 and 14.5 gestational days, while for C(19) metabolites peak excretion is later. The starting-point of the studies was to study pregnancy steroid production by a mouse model for Smith-Lemli-Opitz syndrome, 7-dehydrosterol reductase (DHCR7) deficiency. In human pregnancies with DHCR7 deficient fetuses large amounts of 7- and 8-dehydrosteroids are excreted, products secondary to high fetal 7- and 8-dehydrocholesterol (DHC) accumulation. This agrees with existing evidence that human feto-placental steroid synthesis utilizes little maternal cholesterol as precursor. In contrast, this study has shown that pregnant mice carrying dhcr7 deficient fetuses with relatively high DHC production had essentially undetectable maternal excretions of steroids with Delta(7)- and Delta(8)-unsaturation. As mutant mouse mothers have essentially normal cholesterol production (little or no DHC build-up), this suggests maternal cholesterol is primarily utilized for pregnancy steroid synthesis in the mouse.

  10. The cytochrome bd respiratory oxygen reductases

    PubMed Central

    Borisov, Vitaliy B.; Gennis, Robert B.; Hemp, James; Verkhovsky, Michael I.

    2011-01-01

    Summary Cytochrome bd is a respiratory quinol:O2 oxidoreductase found in many prokaryotes, including a number of pathogens. The main bioenergetic function of the enzyme is the production of a proton motive force by the vectorial charge transfer of protons. The sequences of cytochromes bd are not homologous to those of the other respiratory oxygen reductases, i.e., the heme-copper oxygen reductases or alternative oxidases (AOX). Generally, cytochromes bd are noteworthy for their high affinity for O2 and resistance to inhibition by cyanide. In E. coli, for example, cytochrome bd (specifically, cytochrome bd-I) is expressed under O2-limited conditions. Among the members of the bd-family are the so-called cyanide-insensitive quinol oxidases (CIO) which often have a low content of the eponymous heme d but, instead, have heme b in place of heme d in at least a majority of the enzyme population. However, at this point, no sequence motif has been identified to distinguish cytochrome bd (with a stoichiometric complement of heme d) from an enzyme designated as CIO. Members of the bd-family can be subdivided into those which contain either a long or a short hydrophilic connection between transmembrane helices 6 and 7 in subunit I, designated as the Q-loop. However, it is not clear whether there is a functional consequence of this difference. This review summarizes current knowledge on the physiological functions, genetics, structural and catalytic properties of cytochromes bd. Included in this review are descriptions of the intermediates of the catalytic cycle, the proposed site for the reduction of O2, evidence for a proton channel connecting this active site to the bacterial cytoplasm, and the molecular mechanism by which a membrane potential is generated. PMID:21756872

  11. The cytochrome bd respiratory oxygen reductases.

    PubMed

    Borisov, Vitaliy B; Gennis, Robert B; Hemp, James; Verkhovsky, Michael I

    2011-11-01

    Cytochrome bd is a respiratory quinol: O₂ oxidoreductase found in many prokaryotes, including a number of pathogens. The main bioenergetic function of the enzyme is the production of a proton motive force by the vectorial charge transfer of protons. The sequences of cytochromes bd are not homologous to those of the other respiratory oxygen reductases, i.e., the heme-copper oxygen reductases or alternative oxidases (AOX). Generally, cytochromes bd are noteworthy for their high affinity for O₂ and resistance to inhibition by cyanide. In E. coli, for example, cytochrome bd (specifically, cytochrome bd-I) is expressed under O₂-limited conditions. Among the members of the bd-family are the so-called cyanide-insensitive quinol oxidases (CIO) which often have a low content of the eponymous heme d but, instead, have heme b in place of heme d in at least a majority of the enzyme population. However, at this point, no sequence motif has been identified to distinguish cytochrome bd (with a stoichiometric complement of heme d) from an enzyme designated as CIO. Members of the bd-family can be subdivided into those which contain either a long or a short hydrophilic connection between transmembrane helices 6 and 7 in subunit I, designated as the Q-loop. However, it is not clear whether there is a functional consequence of this difference. This review summarizes current knowledge on the physiological functions, genetics, structural and catalytic properties of cytochromes bd. Included in this review are descriptions of the intermediates of the catalytic cycle, the proposed site for the reduction of O₂, evidence for a proton channel connecting this active site to the bacterial cytoplasm, and the molecular mechanism by which a membrane potential is generated.

  12. The Anticancer Drug Ellipticine Activated with Cytochrome P450 Mediates DNA Damage Determining Its Pharmacological Efficiencies: Studies with Rats, Hepatic Cytochrome P450 Reductase Null (HRN™) Mice and Pure Enzymes

    PubMed Central

    Stiborová, Marie; Černá, Věra; Moserová, Michaela; Mrízová, Iveta; Arlt, Volker M.; Frei, Eva

    2014-01-01

    Ellipticine is a DNA-damaging agent acting as a prodrug whose pharmacological efficiencies and genotoxic side effects are dictated by activation with cytochrome P450 (CYP). Over the last decade we have gained extensive experience in using pure enzymes and various animal models that helped to identify CYPs metabolizing ellipticine. In this review we focus on comparison between the in vitro and in vivo studies and show a necessity of both approaches to obtain valid information on CYP enzymes contributing to ellipticine metabolism. Discrepancies were found between the CYP enzymes activating ellipticine to 13-hydroxy- and 12-hydroxyellipticine generating covalent DNA adducts and those detoxifying this drug to 9-hydroxy- and 7-hydroellipticine in vitro and in vivo. In vivo, formation of ellipticine-DNA adducts is dependent not only on expression levels of CYP3A, catalyzing ellipticine activation in vitro, but also on those of CYP1A that oxidize ellipticine in vitro mainly to the detoxification products. The finding showing that cytochrome b5 alters the ratio of ellipticine metabolites generated by CYP1A1/2 and 3A4 explained this paradox. Whereas the detoxification of ellipticine by CYP1A and 3A is either decreased or not changed by cytochrome b5, activation leading to ellipticine-DNA adducts increased considerably. We show that (I) the pharmacological effects of ellipticine mediated by covalent ellipticine-derived DNA adducts are dictated by expression levels of CYP1A, 3A and cytochrome b5, and its own potency to induce these enzymes in tumor tissues, (II) animal models, where levels of CYPs are either knocked out or induced are appropriate to identify CYPs metabolizing ellipticine in vivo, and (III) extrapolation from in vitro data to the situation in vivo is not always possible, confirming the need for these animal models. PMID:25547492

  13. Partial Purification and Characterization of d-Ribose-5-phosphate Reductase from Adonis vernalis L. Leaves

    PubMed Central

    Negm, Fayek B.; Marlow, Gary C.

    1985-01-01

    This study presents evidence for a new enzyme, d-ribose-5-P reductase, which catalyzes the reaction: d-ribose-5-P + NADPH + H+ → d-ribitol-5-P + NADP+. The enzyme was isolated from Adonis vernalis L. leaves in 38% yield and was purified 71-fold. The reductase was NADPH specific and had a pH optimum in the range of 5.5 to 6.0. The Michaelis constant value for d-ribose-5-P reduction was 1.35 millimolar. The enzyme also reduced d-erythrose-4-P, d-erythrose, dl-glyceraldehyde, and the aromatic aldehyde 3-pyridinecarboxaldehyde. Hexoses, hexose phosphates, pentoses, and dihydroxyacetone did not serve as substrates. d-Ribose-5-P reductase is distinct from the other known ribitol synthesizing enzymes detected in bacteria and yeast, and may be responsible for ribitol synthesis in Adonis vernalis. PMID:16664320

  14. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases

    NASA Technical Reports Server (NTRS)

    Min, Tongpil; Kasahara, Hiroyuki; Bedgar, Diana L.; Youn, Buhyun; Lawrence, Paulraj K.; Gang, David R.; Halls, Steven C.; Park, HaJeung; Hilsenbeck, Jacqueline L.; Davin, Laurence B.; Lewis, Norman G.; Kang, ChulHee

    2003-01-01

    Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.

  15. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases.

    PubMed

    Min, Tongpil; Kasahara, Hiroyuki; Bedgar, Diana L; Youn, Buhyun; Lawrence, Paulraj K; Gang, David R; Halls, Steven C; Park, HaJeung; Hilsenbeck, Jacqueline L; Davin, Laurence B; Lewis, Norman G; Kang, ChulHee

    2003-12-12

    Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.

  16. (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia. Protein purification, cDNA cloning, heterologous expression and comparison to isoflavone reductase.

    PubMed

    Dinkova-Kostova, A T; Gang, D R; Davin, L B; Bedgar, D L; Chu, A; Lewis, N G

    1996-11-15

    Lignans are a widely distributed class of natural products, whose functions and distribution suggest that they are one of the earliest forms of defense to have evolved in vascular plants; some, such as podophyllotoxin and enterodiol, have important roles in cancer chemotherapy and prevention, respectively. Entry into lignan enzymology has been gained by the approximately 3000-fold purification of two isoforms of (+)-pinoresinol/(+)-lariciresinol reductase, a pivotal branchpoint enzyme in lignan biosynthesis. Both have comparable ( approximately 34.9 kDa) molecular mass and kinetic (Vmax/Km) properties and catalyze sequential, NADPH-dependent, stereospecific, hydride transfers where the incoming hydride takes up the pro-R position. The gene encoding (+)-pinoresinol/(+)-lariciresinol reductase has been cloned and the recombinant protein heterologously expressed as a functional beta-galactosidase fusion protein. Its amino acid sequence reveals a strong homology to isoflavone reductase, a key branchpoint enzyme in isoflavonoid metabolism and primarily found in the Fabaceae (angiosperms). This is of great evolutionary significance since both lignans and isoflavonoids have comparable plant defense properties, as well as similar roles as phytoestrogens. Given that lignans are widespread from primitive plants onwards, whereas the isoflavone reductase-derived isoflavonoids are mainly restricted to the Fabaceae, it is tempting to speculate that this branch of the isoflavonoid pathway arose via evolutionary divergence from that giving the lignans.

  17. Amplification and loss of dihydrofolate reductase genes in a Chinese hamster ovary cell line

    SciTech Connect

    Kaufman, R.J.; Schimke, R.T.

    1981-12-01

    During stepwise increases in the methotrexate concentration in culture medium, the authors selected Chinese hamster ovary cells that contained elevated dihydrofolate reductase levels which were proportional to the number of dihydrofolate reductase gene copies (i.e., gene amplification). The authors studied the dihydrofolate reductase levels in individual cells that underwent the initial steps of methotrexate resistance by using the fluorescence-activated cell sorter technique. Such cells constituted a heterogeneous population with differing dihydrofolate reductase levels, and they characteristically lost the elevated enzyme levels when they were grown in the absence of methotrexate. The progeny of individual cells with high enzyme levels behaved differently and could lose all or variable numbers of the amplified genes.

  18. Ascorbate free radical reductase mRNA levels are induced by wounding.

    PubMed Central

    Grantz, A A; Brummell, D A; Bennett, A B

    1995-01-01

    A cDNA clone encoding ascorbate free radical (AFR) reductase (EC 1.6.5.4) was isolated from tomato (Lycopersicon esculentum Mill.) and its mRNA levels were analyzed. The cDNA encoded a deduced protein of 433 amino acids and possessed amino acid domains characteristic of flavin adenine dinucleotide- and NAD(P)H-binding proteins but did not possess typical eukaryotic targeting sequences, suggesting that it encodes a cytosolic form of AFR reductase. Low-stringency genomic DNA gel blot analysis indicated that a single nuclear gene encoded this enzyme. Total ascorbate contents were greatest in leaves, with decreasing amounts in stems and roots and relatively constant levels in all stages of fruit. AFR reductase activity was inversely correlated with total ascorbate content, whereas the relative abundance of AFR reductase mRNA was directly correlated with enzyme activity in tissues examined. AFR reductase mRNA abundance increased dramatically in response to wounding, a treatment that is known to also induce ascorbate-dependent prolyl hydroxylation required for the accumulation of hydroxyproline-rich glycoproteins. In addition, AFR reductase may contribute to maintaining levels of ascorbic acid for protection against wound-induced free radical-mediated damage. Collectively, the results suggest that AFR reductase activity is regulated at the level of mRNA abundance by low ascorbate contents or by factors that promote ascorbate utilization. PMID:7784511

  19. Purification, properties, and sequence of glycerol trinitrate reductase from Agrobacterium radiobacter.

    PubMed Central

    Snape, J R; Walkley, N A; Morby, A P; Nicklin, S; White, G F

    1997-01-01

    Glycerol trinitrate (GTN) reductase, which enables Agrobacterium radiobacter to utilize GTN and related explosives as sources of nitrogen for growth, was purified and characterized, and its gene was cloned and sequenced. The enzyme was a 39-kDa monomeric protein which catalyzed the NADH-dependent reductive scission of GTN (Km = 23 microM) to glycerol dinitrates (mainly the 1,3-isomer) with a pH optimum of 6.5, a temperature optimum of 35 degrees C, and no dependence on metal ions for activity. It was also active on pentaerythritol tetranitrate (PETN), on isosorbide dinitrate, and, very weakly, on ethyleneglycol dinitrate, but it was inactive on isopropyl nitrate, hexahydro-1,3,5-trinitro-1,3,5-triazine, 2,4,6-trinitrotoluene, ammonium ions, nitrate, or nitrite. The amino acid sequence deduced from the DNA sequence was homologous (42 to 51% identity and 61 to 69% similarity) to those of PETN reductase from Enterobacter cloacae, N-ethylmaleimide reductase from Escherichia coli, morphinone reductase from Pseudomonas putida, and old yellow enzyme from Saccharomyces cerevisiae, placing the GTN reductase in the alpha/beta barrel flavoprotein group of proteins. GTN reductase and PETN reductase were very similar in many respects except in their distinct preferences for NADH and NADPH cofactors, respectively. PMID:9401040

  20. Short synthesis of 16beta-hydroxy-5alpha-cholestane-3,6-dione a novel cytotoxic marine oxysterol.

    PubMed

    Denancé, Mickaël; Guyot, Michèle; Samadi, Mohammad

    2006-07-01

    The first and short synthesis of 16beta-hydroxy-5alpha-cholestane-3,6-dione 1 a metabolite from marine algae, has been achieved in six steps from readily available diosgenin 5. Selective deoxygenation of primary alcohol of triol 6 has been accomplished in one step using Et(3)SiH and catalytic amount of B(C(6)F(5))(3) to produce compound 9 in high yield. Oxidation of 11 with PCC, allowed the introduction of 3,6-ene-dione functionality, and further catalytic hydrogenation and deprotection furnished the 3,6-diketo steroid 1.

  1. Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase

    SciTech Connect

    French, C.E.; Bruce, N.C.; Nicklin, S.

    1998-08-01

    Enterobacter cloacae PB2 was originally isolated on the basis of its ability to utilize nitrate esters, such as pentaerythritol tetranitrate (PETN) and glycerol trinitrate, as the sole nitrogen source for growth. The enzyme responsible is an NADPH-dependent reductase designated PETN reductase. E. cloacae PB2 was found to be capable of slow aerobic growth with 2,4,6-trinitrotoluene (TNT) as the sole nitrogen source. Dinitrotoluenes were not produced and could not be used as nitrogen sources. Purified PETN reductase was found to reduce TNT to its hydride-Meisenheimer complex, which was further reduced to the dihydride-Meisenheimer complex. Purified PETN reductase and recombinant Escherichia coli expressing PETN reductase were able to liberate nitrogen as nitrite from TNT. The ability to remove nitrogen from TNT suggests that PB2 or recombinant organisms expressing PETN reductase may be useful for bioremediation of TNT-contaminated soil and water.

  2. Separation of NADH-fumarate reductase and succinate dehydrogenase activities in Trypanosoma cruzi.

    PubMed

    Christmas, P B; Turrens, J F

    2000-02-15

    A recent review suggested that the activity of NADH-fumarate reductase from trypanosomatids could be catalyzed by succinate dehydrogenase working in reverse (Tielens and van Hellemond, Parasitol. Today 14, 265-271, 1999). The results reported in this study demonstrate that the two activities can easily be separated without any loss in either activity, suggesting that fumarate reductase and succinate dehydrogenase are separate enzymes.

  3. Using chemical approaches to study selenoproteins - focus on thioredoxin reductases

    PubMed Central

    Hondal, Robert J.

    2009-01-01

    The study of selenocysteine-containing proteins is difficult due to the problems associated with the heterologous production of these proteins. These problems are due to the intricate recoding mechanism used by cells to translate the UGA codon as a sense codon for selenocysteine. The process is further complicated by the fact that eukaryotes and prokaryotes have different UGA recoding machineries. This review focuses on chemical approaches to produce selenoproteins and study the mechanism of selenoenzymes. The use of intein-mediated peptide ligation is discussed with respect to the production of the mammalian selenoenzymes thioredoxin reductase and selenoprotein R, also known as methionine sulfoxide reductase B1. New methods for removing protecting groups from selenocysteine post-synthesis and methods for selenosulfide/diselenide formation are also reviewed. Chemical approaches have also been used to study the enzymatic mechanism of thioredoxin reductase. The approach divides the enzyme into two modules, a large protein module lacking selenocysteine and a small, synthetic selenocysteine-containing peptide. Study of this semisynthetic enzyme has revealed three distinct enzymatic pathways that depend on the properties of the substrate. The enzyme utilizes a macromolecular mechanism for protein substrates, a second mechanism for small molecule substrates and a third pathway for selenium-containing substrates such as selenocystine. PMID:19406205

  4. Copper-dependent inhibition and oxidative inactivation with affinity cleavage of yeast glutathione reductase.

    PubMed

    Murakami, Keiko; Tsubouchi, Ryoko; Fukayama, Minoru; Yoshino, Masataka

    2014-06-01

    Effects of copper on the activity and oxidative inactivation of yeast glutathione reductase were analyzed. Glutathione reductase from yeast was inhibited by cupric ion and more potently by cuprous ion. Copper ion inhibited the enzyme noncompetitively with respect to the substrate GSSG and NADPH. The Ki values of the enzyme for Cu(2+) and Cu(+) ion were determined to be 1 and 0.35 μM, respectively. Copper-dependent inactivation of glutathione reductase was also analyzed. Hydrogen peroxide and copper/ascorbate also caused an inactivation with the cleavage of peptide bond of the enzyme. The inactivation/fragmentation of the enzyme was prevented by addition of catalase, suggesting that hydroxyl radical produced through the cuprous ion-dependent reduction of oxygen is responsible for the inactivation/fragmentation of the enzyme. SDS-PAGE and TOF-MS analysis confirmed eight fragments, which were further determined to result from the cleavage of the Met17-Ser18, Asn20-Thr21, Glu251-Gly252, Ser420-Pro421, Pro421-Thr422 bonds of the enzyme by amino-terminal sequencing analysis. Based on the kinetic analysis and no protective effect of the substrates, GSSG and NADPH on the copper-mediated inactivation/fragmentation of the enzyme, copper binds to the sites apart from the substrate-sites, causing the peptide cleavage by hydroxyl radical. Copper-dependent oxidative inactivation/fragmentation of glutathione reductase can explain the prooxidant properties of copper under the in vivo conditions.

  5. Copper-dependent inhibition and oxidative inactivation with affinity cleavage of yeast glutathione reductase.

    PubMed

    Murakami, Keiko; Tsubouchi, Ryoko; Fukayama, Minoru; Yoshino, Masataka

    2014-06-01

    Effects of copper on the activity and oxidative inactivation of yeast glutathione reductase were analyzed. Glutathione reductase from yeast was inhibited by cupric ion and more potently by cuprous ion. Copper ion inhibited the enzyme noncompetitively with respect to the substrate GSSG and NADPH. The Ki values of the enzyme for Cu(2+) and Cu(+) ion were determined to be 1 and 0.35 μM, respectively. Copper-dependent inactivation of glutathione reductase was also analyzed. Hydrogen peroxide and copper/ascorbate also caused an inactivation with the cleavage of peptide bond of the enzyme. The inactivation/fragmentation of the enzyme was prevented by addition of catalase, suggesting that hydroxyl radical produced through the cuprous ion-dependent reduction of oxygen is responsible for the inactivation/fragmentation of the enzyme. SDS-PAGE and TOF-MS analysis confirmed eight fragments, which were further determined to result from the cleavage of the Met17-Ser18, Asn20-Thr21, Glu251-Gly252, Ser420-Pro421, Pro421-Thr422 bonds of the enzyme by amino-terminal sequencing analysis. Based on the kinetic analysis and no protective effect of the substrates, GSSG and NADPH on the copper-mediated inactivation/fragmentation of the enzyme, copper binds to the sites apart from the substrate-sites, causing the peptide cleavage by hydroxyl radical. Copper-dependent oxidative inactivation/fragmentation of glutathione reductase can explain the prooxidant properties of copper under the in vivo conditions. PMID:24671306

  6. Transcriptional networks associated with 5-alpha-dihydrotestosterone in the fathead minnow (Pimephales promelas) ovary.

    PubMed

    Ornostay, Anna; Marr, Joshua; Loughery, Jennifer R; Martyniuk, Christopher J

    2016-01-01

    Androgens play a significant role in regulating oogenesis in teleost fishes. The androgen dihydrotestosterone (DHT) is a potent non-aromatizable androgen involved in sexual differentiation in mammals; however, its actions are not well understood in teleost fish. To better characterize the physiological role of DHT in the fathead minnow (FHM) ovary on a temporal scale, in vitro assays for 17β-estradiol (E2) production were conducted in parallel with microarray analysis. Ovarian explants were incubated at different concentrations of DHT (10(-6), 10(-7), and 10(-8)M DHT) in three separate experiments conducted at 6, 9, and 12h. DHT treatment resulted in a rapid and consistent increase in E2 production from the ovary at all three time points. Therefore, DHT may act to shift the balance of metabolites in the steroidogenic pathway within the ovary. Major biological themes affected by DHT in the ovary in one or more of the time points included those related to blood (e.g. vasodilation, blood vessel contraction, clotting), lipids (e.g. lipid storage, cholesterol metabolism, lipid degradation) and reproduction (e.g. hormone and steroid metabolism). Gene networks related to immune responses and calcium signaling were also affected by DHT, suggesting that this androgen may play a role in regulating these processes in the ovary. This study detected no change in mRNA levels of steroidogenic enzymes (cyp19a1, star, 11βhsd, 17βhsd, srd5a isoforms), suggesting that the observed increase in E2 production is likely more dependent on the pre-existing gene or protein complement in the ovary rather than the de novo expression of transcripts. This study increases knowledge regarding the roles of DHT and androgens in general in the teleost ovary and identifies molecular signaling pathways that may be associated with increased E2 production.

  7. Photoaffinity labeling of mitochondrial adenosinetriphosphatase by 2-azidoadenosine 5'-(alpha-32P)diphosphate

    SciTech Connect

    Boulay, F.; Dalbon, P.; Vignais, P.V.

    1985-12-03

    2-Azidoadenosine 5'-diphosphate (2-azido-ADP) labeled with 32P in the alpha-position was prepared and used to photolabel the nucleotide binding sites of beef heart mitochondrial F1-ATPase. The native F1 prepared by the procedure of Knowles and Penefsky (Knowles, A. F., and Penefsky, H. S. (1972)) contained an average of 2.9 mol of tightly bound ADP plus ATP per mole of enzyme. Short-term incubation of F1 with micromolar concentrations of (alpha-32P)-2-azido-ADP in the dark in a Mg2+-supplemented medium resulted in the rapid supplementary binding of 3 mol of label/mol of F1, consistent with the presence of six nucleotide binding sites per F1. The Kd relative to the reversible binding of (alpha-32P)-2-azido-ADP to mitochondrial F1 in the dark was 5 microM in the presence of MgCl2 and 30 microM in the presence of ethylenediaminetetraacetic acid. A linear relationship between the percentage of inactivation of F1 and the extent of covalent photolabeling by (alpha-32P)-2-azido-ADP was observed for percentages of inactivation up to 90%, extrapolating to 2 mol of covalently bound (alpha-32P)-2-azido-ADP/mol of F1. Under these conditions, only the beta subunit was photolabeled. Covalent binding of one photolabel per beta subunit was ascertained by electrophoretic separation of labeled and unlabeled beta subunits based on charge differences and by mapping studies showing one major radioactive peptide segment per photolabeled beta subunit.

  8. Dietary withdrawal of phytoestrogens resulted in higher gene expression of 3-beta-HSD and ARO but lower 5-alpha-R-1 in male rats.

    PubMed

    Andreoli, María F; Stoker, Cora; Rossetti, María F; Lazzarino, Gisela P; Luque, Enrique H; Ramos, Jorge G

    2016-09-01

    Removing dietary phytoestrogens causes obesity and diabetes in adult male rats. Based on the facts that hypothalamic food intake control is disrupted in phytoestrogen-deprived animals and that several steroids affect food intake, we hypothesized that phytoestrogen withdrawal alters the expression of hypothalamic steroidogenic enzymes. Male Wistar rats fed with a high-phytoestrogen diet from conception to adulthood were subjected to phytoestrogen withdrawal by feeding them a low-phytoestrogen diet or a high-phytoestrogen, high-fat diet. Withdrawal of dietary phytoestrogens increased 3β-hydroxysteroid dehydrogenase and P450 aromatase gene expression and decreased those of 5α-reductase-1. This is a direct effect of the lack of dietary phytoestrogens and not a consequence of obesity, as it was not observed in high-fat-fed rats. Phytoestrogen withdrawal and high-fat diet intake reduced hypothalamic expression of estrogen receptor (ER)α correlated with low levels of ERα-O, ERα-OS, and ERα-OT transcripts. Variations in gene expression of steroidogenic enzymes may affect the content of neurosteroids. As neurosteroids are related to food intake control, the changes observed may be a novel mechanism in the regulation of energy balance in obese phytoestrogen-deprived animals. In rats, steroidogenesis and ER signaling appear to be altered by phytoestrogen withdrawal in the rat. The ubiquity of phytoestrogens in the diet and changing intakes or withdrawal suggest that aspects of human health could be affected based on the rat and warrant further research. PMID:27632921

  9. Dietary withdrawal of phytoestrogens resulted in higher gene expression of 3-beta-HSD and ARO but lower 5-alpha-R-1 in male rats.

    PubMed

    Andreoli, María F; Stoker, Cora; Rossetti, María F; Lazzarino, Gisela P; Luque, Enrique H; Ramos, Jorge G

    2016-09-01

    Removing dietary phytoestrogens causes obesity and diabetes in adult male rats. Based on the facts that hypothalamic food intake control is disrupted in phytoestrogen-deprived animals and that several steroids affect food intake, we hypothesized that phytoestrogen withdrawal alters the expression of hypothalamic steroidogenic enzymes. Male Wistar rats fed with a high-phytoestrogen diet from conception to adulthood were subjected to phytoestrogen withdrawal by feeding them a low-phytoestrogen diet or a high-phytoestrogen, high-fat diet. Withdrawal of dietary phytoestrogens increased 3β-hydroxysteroid dehydrogenase and P450 aromatase gene expression and decreased those of 5α-reductase-1. This is a direct effect of the lack of dietary phytoestrogens and not a consequence of obesity, as it was not observed in high-fat-fed rats. Phytoestrogen withdrawal and high-fat diet intake reduced hypothalamic expression of estrogen receptor (ER)α correlated with low levels of ERα-O, ERα-OS, and ERα-OT transcripts. Variations in gene expression of steroidogenic enzymes may affect the content of neurosteroids. As neurosteroids are related to food intake control, the changes observed may be a novel mechanism in the regulation of energy balance in obese phytoestrogen-deprived animals. In rats, steroidogenesis and ER signaling appear to be altered by phytoestrogen withdrawal in the rat. The ubiquity of phytoestrogens in the diet and changing intakes or withdrawal suggest that aspects of human health could be affected based on the rat and warrant further research.

  10. An ethoxyquin-inducible aldehyde reductase from rat liver that metabolizes aflatoxin B1 defines a subfamily of aldo-keto reductases.

    PubMed

    Ellis, E M; Judah, D J; Neal, G E; Hayes, J D

    1993-11-01

    Protection of liver against the toxic and carcinogenic effects of aflatoxin B1 (AFB1) can be achieved through the induction of detoxification enzymes by chemoprotectors such as the phenolic antioxidant ethoxyquin. We have cloned and sequenced a cDNA encoding an aldehyde reductase (AFB1-AR), which is expressed in rat liver in response to dietary ethoxyquin. Expression of the cDNA in Escherichia coli and purification of the recombinant enzyme reveals that the protein exhibits aldehyde reductase activity and is capable of converting the protein-binding dialdehyde form of AFB1-dihydrodiol to the nonbinding dialcohol metabolite. We show that the mRNA encoding this enzyme is markedly elevated in the liver of rats fed an ethoxyquin-containing diet, correlating with acquisition of resistance to AFB1. AFB1-AR represents the only carcinogen-metabolizing aldehyde reductase identified to date that is induced by a chemoprotector. Alignment of the amino acid sequence of AFB1-AR with other known and putative aldehyde reductases shows that it defines a subfamily within the aldo-keto reductase superfamily. PMID:8234296

  11. The purification and properties of a cd-cytochrome nitrite reductase from Paracoccus halodenitrificans

    NASA Technical Reports Server (NTRS)

    Mancinelli, R. L.; Cronin, S.; Hochstein, L. I.

    1986-01-01

    Paracoccus halodenitrificans, grown anaerobically in the presence of nitrite, contained membrane and cytoplasmic nitrite reductases. When assayed in the presence of phenazine methosulfate and ascorbate, the membrane-bound enzyme produced nitrous oxide whereas the cytoplasmic enzyme produced nitric oxide. When both enzymes were assayed in the presence of methyl viologen and dithionite, the cytoplasmic enzyme produced ammonia. Following solubilization, the membrane-bound enzyme behaved like the cytoplasmic enzyme, producing nitric oxide in the presence of phenazine methosulfate and ascorbate, and ammonia when assayed in the presence of methyl viologen and dithionite. The cytoplasmic and membrane-bound enzymes were purified to essentially the same specific activity. Only a single nitrite-reductase activity was detected on electrophoretic gels and the electrophoretic behavior of both enzymes suggested they were identical. The spectral properties of both enzymes suggested they were cd-type cytochromes. These data suggest that the products of nitrite reduction by the cd-cytochrome nitrite reductase are determined by the location of the enzyme and the redox potential of the electron donor.

  12. Isolated menthone reductase and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney B; Davis, Edward M; Ringer, Kerry L

    2013-04-23

    The present invention provides isolated menthone reductase proteins, isolated nucleic acid molecules encoding menthone reductase proteins, methods for expressing and isolating menthone reductase proteins, and transgenic plants expressing elevated levels of menthone reductase protein.

  13. Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules.

    PubMed

    Das, Undurti N

    2008-01-01

    Lowering plasma low density lipoprotein-cholesterol (LDL-C), blood pressure, homocysteine, and preventing platelet aggregation using a combination of a statin, three blood pressure lowering drugs such as a thiazide, a beta blocker, and an angiotensin converting enzyme (ACE) inhibitor each at half standard dose; folic acid; and aspirin-called as polypill- was estimated to reduce cardiovascular events by approximately 80%. Essential fatty acids (EFAs) and their long-chain metabolites: gamma-linolenic acid (GLA), dihomo-GLA (DGLA), arachidonic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) and other products such as prostaglandins E1 (PGE1), prostacyclin (PGI2), PGI3, lipoxins (LXs), resolvins, protectins including neuroprotectin D1 (NPD1) prevent platelet aggregation, lower blood pressure, have anti-arrhythmic action, reduce LDL-C, ameliorate the adverse actions of homocysteine, show anti-inflammatory actions, activate telomerase, and have cytoprotective properties. Thus, EFAs and their metabolites show all the classic actions expected of the "polypill". Unlike the proposed "polypill", EFAs are endogenous molecules present in almost all tissues, have no significant or few side effects, can be taken orally for long periods of time even by pregnant women, lactating mothers, and infants, children, and adults; and have been known to reduce the incidence cardiovascular diseases including stroke. In addition, various EFAs and their long-chain metabolites not only enhance nitric oxide generation but also react with nitric oxide to yield their respective nitroalkene derivatives that produce vascular relaxation, inhibit neutrophil degranulation and superoxide formation, inhibit platelet activation, and possess PPAR-gamma ligand activity and release NO, thus prevent platelet aggregation, thrombus formation, atherosclerosis, and cardiovascular diseases. Based on these evidences, I propose that a rational combination of omega-3 and omega-6 fatty acids and the

  14. Purification and properties of a dissimilatory nitrate reductase from Haloferax denitrificans

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Lang, F.

    1991-01-01

    A membrane-bound nitrate reductase (nitrite:(acceptor) oxidoreductase, EC 1.7.99.4) from the extremely halophilic bacterium Haloferax denitrificans was solubilized by incubating membranes in buffer lacking NaCl and purified by DEAE, hydroxylapatite, and Sepharose 6B gel filtration chromatography. The purified nitrate reductase reduced chlorate and was inhibited by azide and cyanide. Preincubating the enzyme with cyanide increased the extent of inhibition which in turn was intensified when dithionite was present. Although cyanide was a noncompetitive inhibitor with respect to nitrate, nitrate protected against inhibition. The enzyme, as isolated, was composed of two subunits (Mr 116,000 and 60,000) and behaved as a dimer during gel filtration (Mr 380,000). Unlike other halobacterial enzymes, this nitrate reductase was most active, as well as stable, in the absence of salt.

  15. Domain evolution and functional diversification of sulfite reductases.

    PubMed

    Dhillon, Ashita; Goswami, Sulip; Riley, Monica; Teske, Andreas; Sogin, Mitchell

    2005-02-01

    Sulfite reductases are key enzymes of assimilatory and dissimilatory sulfur metabolism, which occur in diverse bacterial and archaeal lineages. They share a highly conserved domain "C-X5-C-n-C-X3-C" for binding siroheme and iron-sulfur clusters that facilitate electron transfer to the substrate. For each sulfite reductase cluster, the siroheme-binding domain is positioned slightly differently at the N-terminus of dsrA and dsrB, while in the assimilatory proteins the siroheme domain is located at the C-terminus. Our sequence and phylogenetic analysis of the siroheme-binding domain shows that sulfite reductase sequences diverged from a common ancestor into four separate clusters (aSir, alSir, dsr, and asrC) that are biochemically distinct; each serves a different assimilatory or dissimilatory role in sulfur metabolism. The phylogenetic distribution and functional grouping in sulfite reductase clusters (dsrA and dsrB vs. aSiR, asrC, and alSir) suggest that their functional diversification during evolution may have preceded the bacterial/archaeal divergence.

  16. Thioredoxin and NADP-thioredoxin reductase from cultured carrot cells

    NASA Technical Reports Server (NTRS)

    Johnson, T. C.; Cao, R. Q.; Kung, J. E.; Buchanan, B. B.

    1987-01-01

    Dark-grown carrot (Daucus carota L.) tissue cultures were found to contain both protein components of the NADP/thioredoxin system--NADP-thioredoxin reductase and the thioredoxin characteristic of heterotrophic systems, thioredoxin h. Thioredoxin h was purified to apparent homogeneity and, like typical bacterial counterparts, was a 12-kdalton (kDa) acidic protein capable of activating chloroplast NADP-malate dehydrogenase (EC 1.1.1.82) more effectively than fructose-1,6-bisphosphatase (EC 3.1.3.11). NADP-thioredoxin reductase (EC 1.6.4.5) was partially purified and found to be an arsenite-sensitive enzyme composed of two 34-kDa subunits. Carrot NADP-thioredoxin reductase resembled more closely its counterpart from bacteria rather than animal cells in acceptor (thioredoxin) specificity. Upon greening of the cells, the content of NADP-thioredoxin-reductase activity, and, to a lesser extent, thioredoxin h decreased. The results confirm the presence of a heterotrophic-type thioredoxin system in plant cells and raise the question of its physiological function.

  17. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    NASA Astrophysics Data System (ADS)

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-09-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5-8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5-8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5-8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction.

  18. A detoxifying oxygen reductase in the anaerobic protozoan Entamoeba histolytica.

    PubMed

    Vicente, João B; Tran, Vy; Pinto, Liliana; Teixeira, Miguel; Singh, Upinder

    2012-09-01

    We report the characterization of a bacterial-type oxygen reductase abundant in the cytoplasm of the anaerobic protozoan parasite Entamoeba histolytica. Upon host infection, E. histolytica is confronted with various oxygen tensions in the host intestine, as well as increased reactive oxygen and nitrogen species at the site of local tissue inflammation. Resistance to oxygen-derived stress thus plays an important role in the pathogenic potential of E. histolytica. The genome of E. histolytica has four genes that encode flavodiiron proteins, which are bacterial-type oxygen or nitric oxide reductases and were likely acquired by lateral gene transfer from prokaryotes. The EhFdp1 gene has higher expression in virulent than in nonvirulent Entamoeba strains and species, hinting that the response to oxidative stress may be one correlate of virulence potential. We demonstrate that EhFdp1 is abundantly expressed in the cytoplasm of E. histolytica and that the protein levels are markedly increased (up to ~5-fold) upon oxygen exposure. Additionally, we produced fully functional recombinant EhFdp1 and demonstrated that this enzyme is a specific and robust oxygen reductase but has poor nitric oxide reductase activity. This observation represents a new mechanism of oxygen resistance in the anaerobic protozoan pathogen E. histolytica.

  19. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    PubMed Central

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-01-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5–8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5–8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5–8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction. PMID:26412036

  20. Domain Evolution and Functional Diversification of Sulfite Reductases

    NASA Astrophysics Data System (ADS)

    Dhillon, Ashita; Goswami, Sulip; Riley, Monica; Teske, Andreas; Sogin, Mitchell

    2005-02-01

    Sulfite reductases are key enzymes of assimilatory and dissimilatory sulfur metabolism, which occur in diverse bacterial and archaeal lineages. They share a highly conserved domain "C-X5-C-n-C-X3-C" for binding siroheme and iron-sulfur clusters that facilitate electron transfer to the substrate. For each sulfite reductase cluster, the siroheme-binding domain is positioned slightly differently at the N-terminus of dsrA and dsrB, while in the assimilatory proteins the siroheme domain is located at the C-terminus. Our sequence and phylogenetic analysis of the siroheme-binding domain shows that sulfite reductase sequences diverged from a common ancestor into four separate clusters (aSir, alSir, dsr, and asrC) that are biochemically distinct; each serves a different assimilatory or dissimilatory role in sulfur metabolism. The phylogenetic distribution and functional grouping in sulfite reductase clusters (dsrA and dsrB vs. aSiR, asrC, and alSir) suggest that their functional diversification during evolution may have preceded the bacterial/archaeal divergence.

  1. A mutant of barley lacking NADH-hydroxypyruvate reductase

    SciTech Connect

    Blackwell, R.; Lea, P. )

    1989-04-01

    A mutant of barley, LaPr 88/29, deficient in peroxisomal NADH-hydroxypyruvate reductase (HPR) activity has been identified. Compared to the wild type the activities of NADH-HPR and NADPH-HPR were severely reduced but the mutant was still capable of fixing CO{sub 2} at rates equivalent to 75% of that of the wild type in air. Although lacking an enzyme in the main photorespiratory pathway, there appeared to be little disruption to photorespiratory metabolism as ammonia release, CO{sub 2} efflux and {sup 14}CO{sub 2} release from L-(U-{sup 14}C) serine were similar in both mutant and wild type. LaPr 88/29 has been used to show that NADH-glyoxylate reductase (GR) and NADH-HPR are probably not catalyzed by the same enzyme in barley and that over 80% of the NADPH-HPR activity is due to the NADH-HPR enzyme. Immunological studies, using antibodies raised against spinach HPR, have shown that the NADH-dependent enzyme protein is absent in LaPr 88/29 but there appears to be enhanced synthesis of the NADPH-dependent enzyme protein.

  2. Transgenic Over Expression of Nicotinic Receptor Alpha 5, Alpha 3, and Beta 4 Subunit Genes Reduces Ethanol Intake in Mice

    PubMed Central

    Gallego, Xavier; Ruiz, Jessica; Valverde, Olga; Molas, Susanna; Robles, Noemí; Sabrià, Josefa; Crabbe, John C.; Dierssen, Mara

    2012-01-01

    Abuse of alcohol and smoking are extensively co-morbid. Some studies suggest partial commonality of action of alcohol and nicotine mediated through nicotinic acetylcholine receptors (nAChRs). We tested mice with transgenic over expression of the alpha 5, alpha 3, beta 4 receptor subunit genes, which lie in a cluster on human chromosome 15, that were previously shown to have increased nicotine self-administration, for several responses to ethanol. Transgenic and wild-type mice did not differ in sensitivity to several acute behavioral responses to ethanol. However, transgenic mice drank less ethanol than wild-type in a two-bottle (ethanol vs. water) preference test. These results suggest a complex role for this receptor subunit gene cluster in the modulation of ethanol’s as well as nicotine’s effects. PMID:22459873

  3. Metabolism of 5'alpha,8'-cycloabscisic acid, a highly potent and long-lasting abscisic acid analogue, in radish seedlings.

    PubMed

    Todoroki, Yasushi; Sawada, Masao; Matsumoto, Miyuki; Tsukada, Shigeko; Ueno, Kotomi; Isaka, Masatoshi; Owaki, Mariko; Hirai, Nobuhiro

    2004-01-15

    We synthesized 5'alpha,8'-cycloabscisic acid (CycloABA), a highly potent and long-lasting abscisic acid (ABA) analogue, by a different method from that reported before. CycloABA fed to radish seedlings had more metabolic tolerance than ABA. The major metabolite of CycloABA was the glucose conjugate, which was the minor metabolite of ABA. The 8'-hydroxylated metabolite and its cyclized isomer, which were major metabolites of ABA, were not found as metabolites of CycloABA. The present results suggest that the highly potent and long-lasting activity of CycloABA is caused by resistance to ABA 8'-hydroxylase, and that CycloABA is partially metabolized to the glucose conjugate by ABA glucosyltransferase.

  4. Transgenic over expression of nicotinic receptor alpha 5, alpha 3, and beta 4 subunit genes reduces ethanol intake in mice.

    PubMed

    Gallego, Xavier; Ruiz-Medina, Jessica; Valverde, Olga; Molas, Susanna; Robles, Noemí; Sabrià, Josefa; Crabbe, John C; Dierssen, Mara

    2012-05-01

    Abuse of alcohol and smoking are extensively co-morbid. Some studies suggest partial commonality of action of alcohol and nicotine mediated through nicotinic acetylcholine receptors (nAChRs). We tested mice with transgenic over expression of the alpha 5, alpha 3, beta 4 receptor subunit genes, which lie in a cluster on human chromosome 15, that were previously shown to have increased nicotine self-administration, for several responses to ethanol. Transgenic and wild-type mice did not differ in sensitivity to several acute behavioral responses to ethanol. However, transgenic mice drank less ethanol than wild-type in a two-bottle (ethanol vs. water) preference test. These results suggest a complex role for this receptor subunit gene cluster in the modulation of ethanol's as well as nicotine's effects.

  5. Reversibility of the inhibitory effect of atrazine and lindane on cytosol 5. alpha. -dihydrotestosterone receptor complex formation in rat prostate

    SciTech Connect

    Simic, B.; Kniewald, Z.; Kniewald, J. ); Davies, J.E. )

    1991-01-01

    Once entering the bloodstream, most toxic substances, including pesticides, can reach organs involved in the reproductive system. They can cross the placenta, as well as the brain barrier, posing various risks to the reproductive processes. The organochlorine insecticide lindane and the s-triazine herbicide atrazine produce changes in hormone-dependent reactions in the rat hypothalamus, anterior pituitary, and prostate. Lindane also causes histological and biochemical alterations in the rat testis. In vivo treatment with atrazine produces a markedly inhibitory influence of 5{alpha}-dihydrotestosterone - receptor complex formation in rat prostate cytosol. Therefore, the aim of this study was to investigate whether such changes in the crucial step in the reproductive process are reversible. A parallel investigation using lindane was also undertaken.

  6. Affinity purifications of aldose reductase and xylitol dehydrogenase from the xylose-fermenting yeast Pachysolen tannophilus

    SciTech Connect

    Bolen, P.L.; Roth, K.A.; Freer, S.N.

    1986-10-01

    Although xylose is a major product of hydrolysis of lignocellulosic materials, few yeasts are able to convert it to ethanol. In Pachysolen tannophilus, one of the few xylose-fermenting yeasts found, aldose reductase and xylitol dehydrogenase were found to be key enzymes in the metabolic pathway for xylose fermentation. This paper presents a method for the rapid and simultaneous purification of both aldose reductase and xylitol dehydrogenase from P. tannophilus. Preliminary studies indicate that this method may be easily adapted to purify similar enzymes from other xylose-fermenting yeasts.

  7. Purification and characterization of (+)dihydroflavonol (3-hydroxyflavanone) 4-reductase from flowers of Dahlia variabilis.

    PubMed

    Fischer, D; Stich, K; Britsch, L; Grisebach, H

    1988-07-01

    Individual flowers from inflorescences of Dahlia variabilis (cv Scarlet Star) in young developmental stages contained relatively high activity of (+)-dihydroflavonol (DHF) 4-reductase. The DHF reductase was purified from such flowers to apparent homogeneity by a five-step procedure. This included affinity adsorption on Blue Sepharose and elution of the enzyme with NADP+. By gel filtration and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis it was shown that DHF reductase contains only one polypeptide chain with a Mr of about 41,000. The reductase required NADPH as cofactor and catalyzed transfer of the pro-S hydrogen of NADPH to the substrate. Flavanones and dihydroflavonols (3-hydroxyflavanones) were substrates for DHF reductase with pH optima of about 6.0 for flavanones and of about 6.8 for dihydroflavonols. Flavanones were reduced to the corresponding flavan-4-ols and (+)-dihydroflavonols to flavan-3,4-cis-diols. Apparent Michaelis constants determined for (2S)-naringenin, (2S)-eriodicytol, (+)-dihydrokaempferol, (+)-dihydroquercetin, and NADPH were, respectively, 2.3, 2, 10, 15, and 42 microM. V/Km values were higher for dihydroflavonols than for flavanones. Conversion of dihydromyricetin to leucodelphinidin was also catalyzed by the enzyme at a low rate, whereas flavones and flavonols were not accepted as substrates. DHF reductase was not inhibited by metal chelators. PMID:3293532

  8. Human carbonyl reductase (CBR) localized to band 21q22. 1 by high-resolution fluorescence in situ hybridization displays gene dosage effects in trisomy 21 cells

    SciTech Connect

    Lemieux, N. ); Malfoy, B. ); Forrest, G.L. )

    1993-01-01

    Human carbonyl reductase (CBR) belongs to a group of NADPH-dependent enzymes called aldo-keto reductases. The enzyme can function as an aldo-keto reductase or as a quinone reductase with potential for modulating quinone-mediated oxygen free radicals. The CBR gene was mapped by high-resolution fluorescence in situ hybridization to band 21q22.12, very close to the SOD1 locus at position 2lq22.11. CBR displayed gene dosage effects in trisomy 21 human lymphoblasts at the DNA and mRNA levels. Lymphoblasts with increasing chromosome 21 ploidy also showed increased aldo-keto reductase activity and increased quinone reductase activity. Both aldo-keto reductase activity and quinone reductase activity have been shown to be associated with carbonyl reductase. The location of CBR near SOD1 and the increased enzyme activity and potential for free radical modulation in trisomy 21 cells implicate CBR as a candidate for contributing to the pathology of certain diseases such as Down syndrome and Alzheimer disease. 28 refs., 1 fig., 1 tab.

  9. Structural and functional diversity of ferredoxin-NADP(+) reductases.

    PubMed

    Aliverti, Alessandro; Pandini, Vittorio; Pennati, Andrea; de Rosa, Matteo; Zanetti, Giuliana

    2008-06-15

    Although all ferredoxin-NADP(+) reductases (FNRs) catalyze the same reaction, i.e. the transfer of reducing equivalents between NADP(H) and ferredoxin, they belong to two unrelated families of proteins: the plant-type and the glutathione reductase-type of FNRs. Aim of this review is to provide a general classification scheme for these enzymes, to be used as a framework for the comparison of their properties. Furthermore, we report on some recent findings, which significantly increased the understanding of the structure-function relationships of FNRs, i.e. the ability of adrenodoxin reductase and its homologs to catalyze the oxidation of NADP(+) to its 4-oxo derivative, and the properties of plant-type FNRs from non-photosynthetic organisms. Plant-type FNRs from bacteria and Apicomplexan parasites provide examples of novel ways of FAD- and NADP(H)-binding. The recent characterization of an FNR from Plasmodium falciparum brings these enzymes into the field of drug design.

  10. Aldo-Keto Reductases 1B in Adrenal Cortex Physiology.

    PubMed

    Pastel, Emilie; Pointud, Jean-Christophe; Martinez, Antoine; Lefrançois-Martinez, A Marie

    2016-01-01

    Aldose reductase (AKR1B) proteins are monomeric enzymes, belonging to the aldo-keto reductase (AKR) superfamily. They perform oxidoreduction of carbonyl groups from a wide variety of substrates, such as aliphatic and aromatic aldehydes or ketones. Due to the involvement of human aldose reductases in pathologies, such as diabetic complications and cancer, AKR1B subgroup enzymatic properties have been extensively characterized. However, the issue of AKR1B function in non-pathologic conditions remains poorly resolved. Adrenal activities generated large amount of harmful aldehydes from lipid peroxidation and steroidogenesis, including 4-hydroxynonenal (4-HNE) and isocaproaldehyde (4-methylpentanal), which can both be reduced by AKR1B proteins. More recently, some AKR1B isoforms have been shown to be endowed with prostaglandin F synthase (PGFS) activity, suggesting that, in addition to possible scavenger function, they could instigate paracrine signals. Interestingly, the adrenal gland is one of the major sites for human and murine AKR1B expression, suggesting that their detoxifying/signaling activity could be specifically required for the correct handling of adrenal function. Moreover, chronic effects of ACTH result in a coordinated regulation of genes encoding the steroidogenic enzymes and some AKR1B isoforms. This review presents the molecular mechanisms accounting for the adrenal-specific expression of some AKR1B genes. Using data from recent mouse genetic models, we will try to connect their enzymatic properties and regulation with adrenal functions.

  11. Aldo-Keto Reductases 1B in Adrenal Cortex Physiology

    PubMed Central

    Pastel, Emilie; Pointud, Jean-Christophe; Martinez, Antoine; Lefrançois-Martinez, A. Marie

    2016-01-01

    Aldose reductase (AKR1B) proteins are monomeric enzymes, belonging to the aldo-keto reductase (AKR) superfamily. They perform oxidoreduction of carbonyl groups from a wide variety of substrates, such as aliphatic and aromatic aldehydes or ketones. Due to the involvement of human aldose reductases in pathologies, such as diabetic complications and cancer, AKR1B subgroup enzymatic properties have been extensively characterized. However, the issue of AKR1B function in non-pathologic conditions remains poorly resolved. Adrenal activities generated large amount of harmful aldehydes from lipid peroxidation and steroidogenesis, including 4-hydroxynonenal (4-HNE) and isocaproaldehyde (4-methylpentanal), which can both be reduced by AKR1B proteins. More recently, some AKR1B isoforms have been shown to be endowed with prostaglandin F synthase (PGFS) activity, suggesting that, in addition to possible scavenger function, they could instigate paracrine signals. Interestingly, the adrenal gland is one of the major sites for human and murine AKR1B expression, suggesting that their detoxifying/signaling activity could be specifically required for the correct handling of adrenal function. Moreover, chronic effects of ACTH result in a coordinated regulation of genes encoding the steroidogenic enzymes and some AKR1B isoforms. This review presents the molecular mechanisms accounting for the adrenal-specific expression of some AKR1B genes. Using data from recent mouse genetic models, we will try to connect their enzymatic properties and regulation with adrenal functions. PMID:27499746

  12. Aldo-Keto Reductases 1B in Adrenal Cortex Physiology.

    PubMed

    Pastel, Emilie; Pointud, Jean-Christophe; Martinez, Antoine; Lefrançois-Martinez, A Marie

    2016-01-01

    Aldose reductase (AKR1B) proteins are monomeric enzymes, belonging to the aldo-keto reductase (AKR) superfamily. They perform oxidoreduction of carbonyl groups from a wide variety of substrates, such as aliphatic and aromatic aldehydes or ketones. Due to the involvement of human aldose reductases in pathologies, such as diabetic complications and cancer, AKR1B subgroup enzymatic properties have been extensively characterized. However, the issue of AKR1B function in non-pathologic conditions remains poorly resolved. Adrenal activities generated large amount of harmful aldehydes from lipid peroxidation and steroidogenesis, including 4-hydroxynonenal (4-HNE) and isocaproaldehyde (4-methylpentanal), which can both be reduced by AKR1B proteins. More recently, some AKR1B isoforms have been shown to be endowed with prostaglandin F synthase (PGFS) activity, suggesting that, in addition to possible scavenger function, they could instigate paracrine signals. Interestingly, the adrenal gland is one of the major sites for human and murine AKR1B expression, suggesting that their detoxifying/signaling activity could be specifically required for the correct handling of adrenal function. Moreover, chronic effects of ACTH result in a coordinated regulation of genes encoding the steroidogenic enzymes and some AKR1B isoforms. This review presents the molecular mechanisms accounting for the adrenal-specific expression of some AKR1B genes. Using data from recent mouse genetic models, we will try to connect their enzymatic properties and regulation with adrenal functions. PMID:27499746

  13. Cloning and Sequence Analysis of Two Pseudomonas Flavoprotein Xenobiotic Reductases

    PubMed Central

    Blehert, David S.; Fox, Brian G.; Chambliss, Glenn H.

    1999-01-01

    The genes encoding flavin mononucleotide-containing oxidoreductases, designated xenobiotic reductases, from Pseudomonas putida II-B and P. fluorescens I-C that removed nitrite from nitroglycerin (NG) by cleavage of the nitroester bond were cloned, sequenced, and characterized. The P. putida gene, xenA, encodes a 39,702-Da monomeric, NAD(P)H-dependent flavoprotein that removes either the terminal or central nitro groups from NG and that reduces 2-cyclohexen-1-one but did not readily reduce 2,4,6-trinitrotoluene (TNT). The P. fluorescens gene, xenB, encodes a 37,441-Da monomeric, NAD(P)H-dependent flavoprotein that exhibits fivefold regioselectivity for removal of the central nitro group from NG and that transforms TNT but did not readily react with 2-cyclohexen-1-one. Heterologous expression of xenA and xenB was demonstrated in Escherichia coli DH5α. The transcription initiation sites of both xenA and xenB were identified by primer extension analysis. BLAST analyses conducted with the P. putida xenA and the P. fluorescens xenB sequences demonstrated that these genes are similar to several other bacterial genes that encode broad-specificity flavoprotein reductases. The prokaryotic flavoprotein reductases described herein likely shared a common ancestor with old yellow enzyme of yeast, a broad-specificity enzyme which may serve a detoxification role in antioxidant defense systems. PMID:10515912

  14. Participation of NADPH-cytochrome C reductase in thyroid hormone biosynthesis.

    PubMed

    Yamamoto, K; DeGroot, L J

    1975-04-01

    Purified rat liver NADPH-cytochrome c reductase supports iodination of tyrosine in a system including NADPH, cytochrome c and thyroid perioxidase. Catalase inhibits the iodination of tyrosine, while superoxide dismutase has no effect. Antibody developed in the rabbit against purified rat liver NADPH-cytochrome c reductase inhibits both reduction of cytochrome c and tyrosine iodination supported by the enzyme. The antibody forms a single precipitation line with thyroid extract, and inhibits NADPH cytochrome c reductase activity of the thyroid. The antibody partially inhibits iodination in a thyroid mitochondrial-microsomal fraction, but does not inhibit NADH-dependent iodination. The immunochemical studies indicate the participation of NADPH-cytochrome c reductase in thyroidal H2O generation, and the independent existence of NADPH-dependent and NADH-dependent H2O2 generation mechanisms in the thyroid. PMID:235416

  15. Involvement of nitrate reductase in auxin-induced NO synthesis

    PubMed Central

    Erdei, L

    2008-01-01

    It is well known for a long time, that nitric oxide (NO) functions in variable physiological and developmental processes in plants, however the source of this signaling molecule in the diverse plant responses is very obscure.1 Although existance of nitric oxide sythase (NOS) in plants is still questionable, LNMMA (NG-monomethyl-L-arginine)-sensitive NO generation was observed in different plant species.2,3 In addition, nitrate reductase (NR) is confirmed to have a major role as source of NO.4,5 This multifaced molecule acts also in auxin-induced lateral root (LR) formation, since exogenous auxin enhanced NO levels in regions of Arabidopsis LR initiatives. Our results pointed out the involvement of nitrate reductase enzyme in auxin-induced NO formation. In this addendum, we speculate on auxin-induced NO production in lateral root primordial formation. PMID:19704423

  16. Involvement of nitrate reductase in auxin-induced NO synthesis.

    PubMed

    Kolbert, Zsuzsanna; Erdei, L

    2008-11-01

    It is well known for a long time, that nitric oxide (NO) functions in variable physiological and developmental processes in plants, however the source of this signaling molecule in the diverse plant responses is very obscure.1 Although existance of nitric oxide sythase (NOS) in plants is still questionable, LNMMA (N(G)-monomethyl-L-arginine)-sensitive NO generation was observed in different plant species.2,3 In addition, nitrate reductase (NR) is confirmed to have a major role as source of NO.4,5 This multifaced molecule acts also in auxin-induced lateral root (LR) formation, since exogenous auxin enhanced NO levels in regions of Arabidopsis LR initiatives. Our results pointed out the involvement of nitrate reductase enzyme in auxin-induced NO formation. In this addendum, we speculate on auxin-induced NO production in lateral root primordial formation. PMID:19704423

  17. Probing the chemical mechanism of saccharopine reductase from Saccharomyces cerevisiae using site-directed mutagenesis.

    PubMed

    Vashishtha, Ashwani K; West, Ann H; Cook, Paul F

    2015-10-15

    Saccharopine reductase catalyzes the reductive amination of l-α-aminoadipate-δ-semialdehyde with l-glutamate to give saccharopine. Two mechanisms have been proposed for the reductase, one that makes use of enzyme side chains as acid-base catalytic groups, and a second, in which the reaction is catalyzed by enzyme-bound reactants. Site-directed mutagenesis was used to change acid-base candidates in the active site of the reductase to eliminate their ionizable side chain. Thus, the D126A, C154S and Y99F and several double mutant enzymes were prepared. Kinetic parameters in the direction of glutamate formation exhibited modest decreases, inconsistent with the loss of an acid-base catalyst. The pH-rate profiles obtained with all mutant enzymes decrease at low and high pH, suggesting acid and base catalytic groups are still present in all enzymes. Solvent kinetic deuterium isotope effects are all larger than those observed for wild type enzyme, and approximately equal to one another, suggesting the slow step is the same as that of wild type enzyme, a conformational change to open the site and release products (in the direction of saccharopine formation). Overall, the acid-base chemistry is likely catalyzed by bound reactants, with the exception of deprotonation of the α-amine of glutamate, which likely requires an enzyme residue. PMID:26342457

  18. Probing the chemical mechanism of saccharopine reductase from Saccharomyces cerevisiae using site-directed mutagenesis.

    PubMed

    Vashishtha, Ashwani K; West, Ann H; Cook, Paul F

    2015-10-15

    Saccharopine reductase catalyzes the reductive amination of l-α-aminoadipate-δ-semialdehyde with l-glutamate to give saccharopine. Two mechanisms have been proposed for the reductase, one that makes use of enzyme side chains as acid-base catalytic groups, and a second, in which the reaction is catalyzed by enzyme-bound reactants. Site-directed mutagenesis was used to change acid-base candidates in the active site of the reductase to eliminate their ionizable side chain. Thus, the D126A, C154S and Y99F and several double mutant enzymes were prepared. Kinetic parameters in the direction of glutamate formation exhibited modest decreases, inconsistent with the loss of an acid-base catalyst. The pH-rate profiles obtained with all mutant enzymes decrease at low and high pH, suggesting acid and base catalytic groups are still present in all enzymes. Solvent kinetic deuterium isotope effects are all larger than those observed for wild type enzyme, and approximately equal to one another, suggesting the slow step is the same as that of wild type enzyme, a conformational change to open the site and release products (in the direction of saccharopine formation). Overall, the acid-base chemistry is likely catalyzed by bound reactants, with the exception of deprotonation of the α-amine of glutamate, which likely requires an enzyme residue.

  19. Isolation of Assimilatory- and Dissimilatory-Type Sulfite Reductases from Desulfovibrio vulgaris

    PubMed Central

    Lee, Jin-Po; LeGall, Jean; Peck, Harry D.

    1973-01-01

    Bisulfite reductase (desulfoviridin) and an assimilatory sulfite reductase have been purified from extracts of Desulfovibrio vulgaris. The bisulfite reductase has absorption maxima at 628, 580, 408, 390, and 279 nm, and a molecular weight of 226,000 by sedimentation equilibrium, and was judged to be free of other proteins by disk electrophoresis and ultracentrifugation. On gels, purified bisulfite reductase exhibited two green bands which coincided with activity and protein. The enzyme appears to be a tetramer but was shown to have two different types of subunits having molecular weights of 42,000 and 50,000. The chromophore did not form an alkaline ferrohemochromogen, was not reduced with dithionite or borohydride, and did not form a spectrally visible complex with CO. The assimilatory sulfite reductase has absorption maxima at 590, 545, 405 and 275 nm and a molecular weight of 26,800, and appears to consist of a single polypeptide chain as it is not dissociated into subunits by sodium dodecyl sulfate. By disk electrophoresis, purified sulfite reductase exhibited a single greenish-brown band which coincided with activity and protein. The sole product of the reduction was sulfide, and the chromophore was reduced by borohydride in the presence of sulfite. Carbon monoxide reacted with the reduced chromophore but it did not form a typical pyridine ferrohemochromogen. Thiosulfate, trithionate, and tetrathionate were not reduced by either enzyme preparation. In the presence of 8 M urea, the spectrum of bisulfite reductase resembles that of the sulfite reductase, thus suggesting a chemical relationship between the two chromophores. Images PMID:4725615

  20. Characterization of Streptococcus pneumoniae enoyl-(acyl-carrier protein) reductase (FabK).

    PubMed

    Marrakchi, Hedia; Dewolf, Walter E; Quinn, Chad; West, Joshua; Polizzi, Brian J; So, Chi Y; Holmes, David J; Reed, Shannon L; Heath, Richard J; Payne, David J; Rock, Charles O; Wallis, Nicola G

    2003-03-15

    The enoyl-(acyl-carrier protein) (ACP) reductase catalyses the last step in each cycle of fatty acid elongation in the type II fatty acid synthase systems. An extensively characterized NADH-dependent reductase, FabI, is widely distributed in bacteria and plants, whereas the enoyl-ACP reductase, FabK, is a distinctly different member of this enzyme group discovered in Streptococcus pneumoniae. We were unable to delete the fabK gene from Strep. pneumoniae, suggesting that this is the only enoyl-ACP reductase in this organism. The FabK enzyme was purified and the biochemical properties of the reductase were examined. The visible absorption spectrum of the purified protein indicated the presence of a flavin cofactor that was identified as FMN by MS, and was present in a 1:1 molar ratio with protein. FabK specifically required NADH and the protein activity was stimulated by ammonium ions. FabK also exhibited NADH oxidase activity in the absence of substrate. Strep. pneumoniae belongs to the Bacillus / Lactobacillus / Streptococcus group that includes Staphylococcus aureus and Bacillus subtilis. These two organisms also contain FabK-related genes, suggesting that they may also express a FabK-like enoyl-ACP reductase. However, the genes did not complement a fabI (Ts) mutant and the purified flavoproteins were unable to reduce enoyl-ACP in vitro and did not exhibit NAD(P)H oxidase activity, indicating they were not enoyl-ACP reductases. The restricted occurrence of the FabK enoyl-ACP reductase may be related to the role of substrate-independent NADH oxidation in oxygen-dependent anaerobic energy metabolism.

  1. Isolation and Characterization of cDNAs Encoding Leucoanthocyanidin Reductase and Anthocyanidin Reductase from Populus trichocarpa

    PubMed Central

    Lu, Wanxiang; Yang, Li; Karim, Abdul; Luo, Keming

    2013-01-01

    Proanthocyanidins (PAs) contribute to poplar defense mechanisms against biotic and abiotic stresses. Transcripts of PA biosynthetic genes accumulated rapidly in response to infection by the fungus Marssonina brunnea f.sp. multigermtubi, treatments of salicylic acid (SA) and wounding, resulting in PA accumulation in poplar leaves. Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) are two key enzymes of the PA biosynthesis that produce the main subunits: (+)-catechin and (−)-epicatechin required for formation of PA polymers. In Populus, ANR and LAR are encoded by at least two and three highly related genes, respectively. In this study, we isolated and functionally characterized genes PtrANR1 and PtrLAR1 from P. trichocarpa. Phylogenetic analysis shows that Populus ANR1 and LAR1 occurr in two distinct phylogenetic lineages, but both genes have little difference in their tissue distribution, preferentially expressed in roots. Overexpression of PtrANR1 in poplar resulted in a significant increase in PA levels but no impact on catechin levels. Antisense down-regulation of PtrANR1 showed reduced PA accumulation in transgenic lines, but increased levels of anthocyanin content. Ectopic expression of PtrLAR1 in poplar positively regulated the biosynthesis of PAs, whereas the accumulation of anthocyanin and flavonol was significantly reduced (P<0.05) in all transgenic plants compared to the control plants. These results suggest that both PtrANR1 and PtrLAR1 contribute to PA biosynthesis in Populus. PMID:23741362

  2. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    PubMed

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  3. Pinpointing a Mechanistic Switch Between Ketoreduction and “Ene” Reduction in Short‐Chain Dehydrogenases/Reductases

    PubMed Central

    Lygidakis, Antonios; Karuppiah, Vijaykumar; Hoeven, Robin; Ní Cheallaigh, Aisling; Leys, David; Gardiner, John M.; Toogood, Helen S.

    2016-01-01

    Abstract Three enzymes of the Mentha essential oil biosynthetic pathway are highly homologous, namely the ketoreductases (−)‐menthone:(−)‐menthol reductase and (−)‐menthone:(+)‐neomenthol reductase, and the “ene” reductase isopiperitenone reductase. We identified a rare catalytic residue substitution in the last two, and performed comparative crystal structure analyses and residue‐swapping mutagenesis to investigate whether this determines the reaction outcome. The result was a complete loss of native activity and a switch between ene reduction and ketoreduction. This suggests the importance of a catalytic glutamate vs. tyrosine residue in determining the outcome of the reduction of α,β‐unsaturated alkenes, due to the substrate occupying different binding conformations, and possibly also to the relative acidities of the two residues. This simple switch in mechanism by a single amino acid substitution could potentially generate a large number of de novo ene reductases. PMID:27411040

  4. Pinpointing a Mechanistic Switch Between Ketoreduction and “Ene” Reduction in Short‐Chain Dehydrogenases/Reductases

    PubMed Central

    Lygidakis, Antonios; Karuppiah, Vijaykumar; Hoeven, Robin; Ní Cheallaigh, Aisling; Leys, David; Gardiner, John M.; Toogood, Helen S.

    2016-01-01

    Abstract Three enzymes of the Mentha essential oil biosynthetic pathway are highly homologous, namely the ketoreductases (−)‐menthone:(−)‐menthol reductase and (−)‐menthone:(+)‐neomenthol reductase, and the “ene” reductase isopiperitenone reductase. We identified a rare catalytic residue substitution in the last two, and performed comparative crystal structure analyses and residue‐swapping mutagenesis to investigate whether this determines the reaction outcome. The result was a complete loss of native activity and a switch between ene reduction and ketoreduction. This suggests the importance of a catalytic glutamate vs. tyrosine residue in determining the outcome of the reduction of α,β‐unsaturated alkenes, due to the substrate occupying different binding conformations, and possibly also to the relative acidities of the two residues. This simple switch in mechanism by a single amino acid substitution could potentially generate a large number of de novo ene reductases. PMID:27587903

  5. The C-terminal loop of aldehyde reductase determines the substrate and inhibitor specificity.

    PubMed

    Barski, O A; Gabbay, K H; Bohren, K M

    1996-11-12

    Human aldehyde reductase has a preference for carboxyl group-containing negatively charged substrates. It belongs to the NADPH-dependent aldo-keto reductase superfamily whose members are in part distinguished by unique C-terminal loops. To probe the role of the C-terminal loops in determining substrate specificities in these enzymes, two arginine residues, Arg308 and Arg311, located in the C-terminal loop of aldehyde reductase, and not found in any other C-terminal loop, were replaced with alanine residues. The catalytic efficiency of the R311A mutant for aldehydes containing a carboxyl group is reduced 150-250-fold in comparison to that of the wild-type enzyme, while substrates not containing a negative charge are unaffected. The R311A mutant is also significantly less sensitive to inhibition by dicarboxylic acids, indicating that Arg311 interacts with one of the carboxyl groups. The inhibition pattern indicates that the other carboxyl group binds to the anion binding site formed by Tyr49, His112, and the nicotinamide moiety of NADP+. The correlation between inhibitor potency and the length of the dicarboxylic acid molecules suggests a distance of approximately 10 A between the amino group of Arg311 and the anion binding site in the aldehyde reductase molecule. The sensitivity of inhibition of the R311A mutant by several commercially available aldose reductase inhibitors (ARIs) was variable, with tolrestat and zopolrestat becoming more potent inhibitors (30- and 5-fold, respectively), while others remained the same or became less potent. The catalytic properties, substrate specificity, and susceptibility to inhibition of the R308A mutant remained similar to that of the wild-type enzyme. The data provide direct evidence for C-terminal loop participation in determining substrate and inhibitor specificity of aldo-keto reductases and specifically identifies Arg311 as the basis for the carboxyl-containing substrate preference of aldehyde reductase. PMID:8916913

  6. Molecular cloning and transcription expression of 3-dehydroecdysone 3α-reductase (3de 3α-reductase) in the different tissues and the developing stage from the silkworm, Bombyx mori L.

    PubMed

    Yang, Hua-jun; Xin, Hu-hu; Lu, Yan; Cai, Zi-zheng; Wang, Mei-xian; Chen, Rui-Ting; Liang, Shuang; Singh, Chabungbam Orville; Kim, Jong-nam; Miao, Yun-gen

    2013-10-01

    Molting in insects is regulated by molting hormones (ecdysteroids), which are also crucial to insect growth, development, and reproduction etc. The decreased ecdysteroid in titre results from enhanced ecdysteroid inactivation reactions including the formation of 3-epiecdyson under ecdysone oxidase and 3-dehydroecdysone 3α-reductase (3DE 3α-reductase). In this paper, we cloned and characterized 3-dehydroecdysone 3α-reductase (3DE 3α-reductase) in different tissues and developing stage of the silkworm, Bombyx mori L. The B. mori 3DE 3α-reductase cDNA contains an ORF 783 bp and the deduced protein sequence containing 260 amino acid residues. Analysis showed the deduced 3DE 3α-reductase belongs to SDR family, which has the NAD(P)-binding domain. Using the Escherichia coli, a high level expression of a fusion polypeptide band of approx. 33 kDa was observed. High transcription of 3DE 3α-reductase was mainly presented in the midgut and hemolymph in the third day of fifth instar larvae in silkworm. The expression of 3DE 3α-reductase at different stages of larval showed that the activity in the early instar was high, and then reduced in late instar. This is parallel to the changes of molting hormone titer in larval. 3DE 3α-reductase is key enzyme in inactivation path of ecdysteroid. The data elucidate the regulation of 3DE 3α-reductase in ecdyteroid titer of its targeting organs and the relationship between the enzyme and metamorphosis. PMID:24038161

  7. Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation

    PubMed Central

    Begara-Morales, Juan C.; Sánchez-Calvo, Beatriz; Chaki, Mounira; Mata-Pérez, Capilla; Valderrama, Raquel; Padilla, María N.; Luque, Francisco; Corpas, Francisco J.; Barroso, Juan B.

    2015-01-01

    The ascorbate–glutathione cycle is a metabolic pathway that detoxifies hydrogen peroxide and involves enzymatic and non-enzymatic antioxidants. Proteomic studies have shown that some enzymes in this cycle such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), and glutathione reductase (GR) are potential targets for post-translational modifications (PMTs) mediated by nitric oxide-derived molecules. Using purified recombinant pea peroxisomal MDAR and cytosolic and chloroplastic GR enzymes produced in Escherichia coli, the effects of peroxynitrite (ONOO–) and S-nitrosoglutathione (GSNO) which are known to mediate protein nitration and S-nitrosylation processes, respectively, were analysed. Although ONOO– and GSNO inhibit peroxisomal MDAR activity, chloroplastic and cytosolic GR were not affected by these molecules. Mass spectrometric analysis of the nitrated MDAR revealed that Tyr213, Try292, and Tyr345 were exclusively nitrated to 3-nitrotyrosine by ONOO–. The location of these residues in the structure of pea peroxisomal MDAR reveals that Tyr345 is found at 3.3 Å of His313 which is involved in the NADP-binding site. Site-directed mutagenesis confirmed Tyr345 as the primary site of nitration responsible for the inhibition of MDAR activity by ONOO–. These results provide new insights into the molecular regulation of MDAR which is deactivated by nitration and S-nitrosylation. However, GR was not affected by ONOO– or GSNO, suggesting the existence of a mechanism to conserve redox status by maintaining the level of reduced GSH. Under a nitro-oxidative stress induced by salinity (150mM NaCl), MDAR expression (mRNA, protein, and enzyme activity levels) was increased, probably to compensate the inhibitory effects of S-nitrosylation and nitration on the enzyme. The present data show the modulation of the antioxidative response of key enzymes in the ascorbate–glutathione cycle by nitric oxide (NO)-PTMs, thus indicating the close involvement

  8. Crystallization and preliminary X-ray crystallographic analysis of Sulfolobus solfataricus thioredoxin reductase

    SciTech Connect

    Ruggiero, Alessia; Ruocco, Maria Rosaria; Grimaldi, Pasquale; Arcari, Paolo; Masullo, Mariorosario; Zagari, Adriana; Vitagliano, Luigi

    2005-10-01

    The thioredoxin reductase isolated from S. solfataricus has been crystallized. Diffraction data have been collected from the wild type and from the NADP-bound form of the enzyme to 1.80 and 1.95 Å, respectively. The structure of the thioredoxin reductase has been solved using MAD diffraction data. A thermostable thioredoxin reductase isolated from Sulfolobus solfataricus (SsTrxR) has been successfully crystallized in the absence and in the presence of NADP. Two different crystal forms have been obtained. Crystals of the form that yields higher resolution data (1.8 Å) belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 76.77, b = 120.68, c = 126.85 Å. The structure of the enzyme has been solved by MAD methods using the anomalous signal from the Se atoms of selenomethionine-labelled SsTrxR.

  9. Crystal structure of red chlorophyll catabolite reductase: enlargement of the ferredoxin-dependent bilin reductase family.

    PubMed

    Sugishima, Masakazu; Kitamori, Yuka; Noguchi, Masato; Kohchi, Takayuki; Fukuyama, Keiichi

    2009-06-01

    The key steps in the degradation pathway of chlorophylls are the ring-opening reaction catalyzed by pheophorbide a oxygenase and sequential reduction by red chlorophyll catabolite reductase (RCCR). During these steps, chlorophyll catabolites lose their color and phototoxicity. RCCR catalyzes the ferredoxin-dependent reduction of the C20/C1 double bond of red chlorophyll catabolite. RCCR appears to be evolutionarily related to the ferredoxin-dependent bilin reductase (FDBR) family, which synthesizes a variety of phytobilin pigments, on the basis of sequence similarity, ferredoxin dependency, and the common tetrapyrrole skeleton of their substrates. The evidence, however, is not robust; the identity between RCCR and FDBR HY2 from Arabidopsis thaliana is only 15%, and the oligomeric states of these enzymes are different. Here, we report the crystal structure of A. thaliana RCCR at 2.4 A resolution. RCCR forms a homodimer, in which each subunit folds in an alpha/beta/alpha sandwich. The tertiary structure of RCCR is similar to those of FDBRs, strongly supporting that these enzymes evolved from a common ancestor. The two subunits are related by noncrystallographic 2-fold symmetry in which the alpha-helices near the edge of the beta-sheet unique in RCCR participate in intersubunit interaction. The putative RCC-binding site, which was derived by superimposing RCCR onto biliverdin-bound forms of FDBRs, forms an open pocket surrounded by conserved residues among RCCRs. Glu154 and Asp291 of A. thaliana RCCR, which stand opposite each other in the pocket, likely are involved in substrate binding and/or catalysis.

  10. Alteration of the alkaloid profile in genetically modified tobacco reveals a role of methylenetetrahydrofolate reductase in nicotine N-demethylation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme of the tetrahydrofolate (THF)-mediated one-carbon (C1) metabolic network. This enzyme catalyzes reduction of 5,10-methylene-THF to 5-methyl-THF. The latter donates its methyl group to homocysteine forming Met, which is then used for the syn...

  11. Purification and characterization of an NADPH-cytochrome P450 (cytochrome c) reductase from spearmint (Mentha spicata) glandular trichomes.

    PubMed

    Ponnamperuma, K; Croteau, R

    1996-05-01

    Solubilized NADPH-cytochrome c (P450) reductase was purified to homogeneity from an extract of spearmint (Mentha spicata) glandular trichomes by dye-ligand interaction chromatography on Matrex-Gel Red A and affinity chromatography on 2', 5'-adenosine diphosphate agarose. SDS-PAGE of the purified enzyme preparation revealed the presence of two similar proteins with masses of 82 kDa (major) and 77 kDa (minor) that crossreacted on immunoblot analysis with polyclonal antibodies directed against NADPH-cytochrome P450 reductase from Jerusalem artichoke and from mung bean. Complete immunoinhibition of reductase activity was observed with both types of polyclonal antibodies, while only partial inhibition of activity resulted using a family of monoclonal antibodies directed against the Jerusalem artichoke cytochrome P450 reductase. Inhibition of the spearmint oil gland cytochrome c reductase was also observed with the diphenyliodonium ion. The K(m) values for the cosubstrates NADPH and cytochrome c were 6.2 and 3.7 microM, respectively, and the pH optimum for activity was at 8.5. The NADPH-cytochrome c reductase reconstituted NADPH-dependent (-)-4S-limonene-6-hydroxylase activity in the presence of cytochrome P450, purified from the microsomal fraction of spearmint oil gland cells and dilauroyl phosphatidyl choline. These characteristics establish the identity of the purified enzyme as a NADPH-cytochrome P450 reductase.

  12. Comparative functional analysis of human medium-chain dehydrogenases, short-chain dehydrogenases/reductases and aldo-keto reductases with retinoids

    PubMed Central

    Gallego, Oriol; Belyaeva, Olga V.; Porté, Sergio; Ruiz, F. Xavier; Stetsenko, Anton V.; Shabrova, Elena V.; Kostereva, Natalia V.; Farrés, Jaume; Parés, Xavier; Kedishvili, Natalia Y.

    2006-01-01

    Retinoic acid biosynthesis in vertebrates occurs in two consecutive steps: the oxidation of retinol to retinaldehyde followed by the oxidation of retinaldehyde to retinoic acid. Enzymes of the MDR (medium-chain dehydrogenase/reductase), SDR (short-chain dehydrogenase/reductase) and AKR (aldo-keto reductase) superfamilies have been reported to catalyse the conversion between retinol and retinaldehyde. Estimation of the relative contribution of enzymes of each type was difficult since kinetics were performed with different methodologies, but SDRs would supposedly play a major role because of their low Km values, and because they were found to be active with retinol bound to CRBPI (cellular retinol binding protein type I). In the present study we employed detergent-free assays and HPLC-based methodology to characterize side-by-side the retinoid-converting activities of human MDR [ADH (alcohol dehydrogenase) 1B2 and ADH4), SDR (RoDH (retinol dehydrogenase)-4 and RDH11] and AKR (AKR1B1 and AKR1B10) enzymes. Our results demonstrate that none of the enzymes, including the SDR members, are active with CRBPI-bound retinoids, which questions the previously suggested role of CRBPI as a retinol supplier in the retinoic acid synthesis pathway. The members of all three superfamilies exhibit similar and low Km values for retinoids (0.12–1.1 μM), whilst they strongly differ in their kcat values, which range from 0.35 min−1 for AKR1B1 to 302 min−1 for ADH4. ADHs appear to be more effective retinol dehydrogenases than SDRs because of their higher kcat values, whereas RDH11 and AKR1B10 are efficient retinaldehyde reductases. Cell culture studies support a role for RoDH-4 as a retinol dehydrogenase and for AKR1B1 as a retinaldehyde reductase in vivo. PMID:16787387

  13. A conservative region of the mercuric reductase gene (mera) as a molecular marker of bacterial mercury resistance

    PubMed Central

    Sotero-Martins, Adriana; de Jesus, Michele Silva; Lacerda, Michele; Moreira, Josino Costa; Filgueiras, Ana Luzia Lauria; Barrocas, Paulo Rubens Guimarães

    2008-01-01

    The most common bacterial mercury resistance mechanism is based on the reduction of Hg(II) to Hg0, which is dependent of the mercuric reductase enzyme (MerA) activity. The use of a 431 bp fragment of a conservative region of the mercuric reductase (merA) gene was applied as a molecular marker of this mechanism, allowing the identification of mercury resistant bacterial strains. PMID:24031221

  14. Cotton Benzoquinone Reductase: Up-regulation During Early Cotton Fiber Developement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Benzoquinone reductase (BR; EC 1.6.5.7) is an enzyme that catalyzes the bivalent redox reactions of quinones without the production of free radical intermediates. Using 2-D PAGE comparisons, two proteins were found to be up-regulated in wild-type cotton ovules during the fiber initiation stage but ...

  15. Identification and in vitro characterization of a Marek’s disease virus encoded ribonucleotide reductase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease virus (MDV) encodes a ribonucleotide reductase (RR), a key regulatory enzyme in the DNA synthesis pathway. The gene coding for the RR of MDV is located in the unique long (UL) region of the genome. The large subunit is encoded by UL39 (RR1) and is predicted to comprise 860 amino acid...

  16. Purification and partial characterization of NADPH-cytochrome c reductase from Petunia hybrida flowers.

    PubMed Central

    Menting, J G; Cornish, E; Scopes, R K

    1994-01-01

    NADPH-cytochrome c reductase was solubilized from the microsomal fraction of Petunia hybrida flowers by 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate detergent and purified by adenosine 2',5'-bisphosphate-Sepharose chromatography, followed by high-performance anion-exchange chromatography. Two proteins with molecular sizes of 75 and 81 kD were detected in the purified preparation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Western blot analysis showed that both purified proteins cross-reacted with two different monoclonal antibodies raised against P. hybrida NADPH-cytochrome c reductase and rabbit anti-Jerusalem artichoke NADPH-cytochrome P450 reductase antibodies. Only one 84-kD protein was detected by western blot analysis of fresh microsomal extracts. Amino acid sequence analysis of tryptic peptides revealed significant similarity to the NADPH binding region of plant and animal NADPH-cytochrome P450 reductases and Bacillus megaterium cytochrome P450:NADPH-cytochrome P450 reductase. The pH optimum for reduction of ferricytochrome c was 7.4 and the Km values for the binding of NADPH and ferricytochrome c were 9.2 and 2.8 microM, respectively. We believe that the purified enzyme is a P. hybrida NADPH-cytochrome P450 reductase (EC 1.6.2.4). PMID:7991686

  17. A novel L-xylulose reductase essential for L-arabinose catabolism in Trichoderma reesei.

    PubMed

    Metz, Benjamin; Mojzita, Dominik; Herold, Silvia; Kubicek, Christian P; Richard, Peter; Seiboth, Bernhard

    2013-04-01

    L-Xylulose reductases belong to the superfamily of short chain dehydrogenases and reductases (SDRs) and catalyze the NAD(P)H-dependent reduction of L-xylulose to xylitol in L-arabinose and glucuronic acid catabolism. Here we report the identification of a novel L-xylulose reductase LXR3 in the fungus Trichoderma reesei by a bioinformatic approach in combination with a functional analysis. LXR3, a 31 kDa protein, catalyzes the reduction of L-xylulose to xylitol via NADPH and is also able to convert D-xylulose, D-ribulose, L-sorbose, and D-fructose to their corresponding polyols. Transcription of lxr3 is specifically induced by L-arabinose and L-arabitol. Deletion of lxr3 affects growth on L-arabinose and L-arabitol and reduces total NADPH-dependent LXR activity in cell free extracts. A phylogenetic analysis of known L-xylulose reductases shows that LXR3 is phylogenetically different from the Aspergillus niger L-xylulose reductase LxrA and, moreover, that all identified true L-xylulose reductases belong to different clades within the superfamily of SDRs. This indicates that the enzymes responsible for the reduction of L-xylulose in L-arabinose and glucuronic acid catabolic pathways have evolved independently and that even the fungal LXRs of the L-arabinose catabolic pathway have evolved in different clades of the superfamily of SDRs.

  18. Physiological roles for two periplasmic nitrate reductases in Rhodobacter sphaeroides 2.4.3 (ATCC 17025).

    PubMed

    Hartsock, Angela; Shapleigh, James P

    2011-12-01

    The metabolically versatile purple bacterium Rhodobacter sphaeroides 2.4.3 is a denitrifier whose genome contains two periplasmic nitrate reductase-encoding gene clusters. This work demonstrates nonredundant physiological roles for these two enzymes. One cluster is expressed aerobically and repressed under low oxygen while the second is maximally expressed under low oxygen. Insertional inactivation of the aerobically expressed nitrate reductase eliminated aerobic nitrate reduction, but cells of this strain could still respire nitrate anaerobically. In contrast, when the anaerobic nitrate reductase was absent, aerobic nitrate reduction was detectable, but anaerobic nitrate reduction was impaired. The aerobic nitrate reductase was expressed but not utilized in liquid culture but was utilized during growth on solid medium. Growth on a variety of carbon sources, with the exception of malate, the most oxidized substrate used, resulted in nitrite production on solid medium. This is consistent with a role for the aerobic nitrate reductase in redox homeostasis. These results show that one of the nitrate reductases is specific for respiration and denitrification while the other likely plays a role in redox homeostasis during aerobic growth. PMID:21949073

  19. Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues.

    PubMed

    Youngblut, Matthew D; Tsai, Chi-Lin; Clark, Iain C; Carlson, Hans K; Maglaqui, Adrian P; Gau-Pan, Phonchien S; Redford, Steven A; Wong, Alan; Tainer, John A; Coates, John D

    2016-04-22

    Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 μm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO3 (2-) bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth.

  20. Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues.

    PubMed

    Youngblut, Matthew D; Tsai, Chi-Lin; Clark, Iain C; Carlson, Hans K; Maglaqui, Adrian P; Gau-Pan, Phonchien S; Redford, Steven A; Wong, Alan; Tainer, John A; Coates, John D

    2016-04-22

    Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 μm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO3 (2-) bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth. PMID:26940877

  1. 24xi-Methyl 5 alpha-cholestane-3 alpha,6 beta,9 alpha,25-tetrol 24-monoacetate, a novel polyhydroxylated steroid from the soft coral Sarcophyton tortuosum.

    PubMed

    Su, J Y; Peng, T S; Long, K H; Zeng, L M

    1986-01-01

    A novel polyhydroxylated steroid, named sartortuosterol A, with rare 3 alpha- and 6-hydroxyl groups, was isolated from the South China Sea soft coral Sarcophyton tortuosum Tixier-Durivault, and its structure was established as 24xi-methyl 5 alpha-cholestane-3 alpha, 6 beta, 9 alpha,25-tetrol 25-monoacetate from spectroscopic data and chemical conversions.

  2. Nitrate reductase activity in heme-deficient mutants of Staphylococcus aureus.

    PubMed Central

    Burke, K A; Lascelles, J

    1976-01-01

    Mutants H-14 and H-18 of Staphylococcus aureus require hemin for growth on glycerol and other nonfermentable substrates. H-14 also responds to delta-aminolevulinate. Heme-deficient cells grown in the presence of nitrate do not have lactate-nitrate reductase activity but gain this activity when incubated with hemin in buffer and glucose. Lactate-nitrate reductase activity is also restored to the membrane fraction from such cells by incubation with hemin and dithiothreitol; addition of adenosine 5'-triphosphate has no effect upon the restoration. Cells grown with nitrate in the absence of hemin have two to five times more reduced benzyl viologen-nitrate reductase activity than do those grown with hemin. The activity increases throughout the growth period in the absence of hemin, but with hemin present enzyme formation ceases before the end of growth. There was no evidence of enzyme destruction. The distribution of nitrate reductase activity between membrane and cytoplasm was similar in cells grown with and without hemin; 70 to 90% was in the cytoplasm. It is concluded that heme-deficient staphylococci form apo-cytochrome b, which readily combines in vitro with its prosthetic group to restore normal function. The avaliability of the heme prosthetic group influences the formation of nitrate reductase. PMID:1262303

  3. Mitochondrial fumarate reductase as a target of chemotherapy: from parasites to cancer cells.

    PubMed

    Sakai, Chika; Tomitsuka, Eriko; Esumi, Hiroyasu; Harada, Shigeharu; Kita, Kiyoshi

    2012-05-01

    Recent research on respiratory chain of the parasitic helminth, Ascaris suum has shown that the mitochondrial NADH-fumarate reductase system (fumarate respiration), which is composed of complex I (NADH-rhodoquinone reductase), rhodoquinone and complex II (rhodoquinol-fumarate reductase) plays an important role in the anaerobic energy metabolism of adult parasites inhabiting hosts. The enzymes in these parasite-specific pathways are potential target for chemotherapy. We isolated a novel compound, nafuredin, from Aspergillus niger, which inhibits NADH-fumarate reductase in helminth mitochondria at nM order. It competes for the quinone-binding site in complex I and shows high selective toxicity to the helminth enzyme. Moreover, nafuredin exerts anthelmintic activity against Haemonchus contortus in in vivo trials with sheep indicating that mitochondrial complex I is a promising target for chemotherapy. In addition to complex I, complex II is a good target because its catalytic direction is reverse of succinate-ubiquionone reductase in the host complex II. Furthermore, we found atpenin and flutolanil strongly and specifically inhibit mitochondrial complex II. Interestingly, fumarate respiration was found not only in the parasites but also in some types of human cancer cells. Analysis of the mitochondria from the cancer cells identified an anthelminthic as a specific inhibitor of the fumarate respiration. Role of isoforms of human complex II in the hypoxic condition of cancer cells and fetal tissues is a challenge. This article is part of a Special Issue entitled Biochemistry of Mitochondria, Life and Intervention 2010. PMID:22226661

  4. Reduction of amphetamine hydroxylamine and other aliphatic hydroxylamines by benzamidoxime reductase and human liver microsomes.

    PubMed

    Clement, B; Behrens, D; Möller, W; Cashman, J R

    2000-10-01

    For the reduction of N-hydroxylated derivatives of strongly basic functional groups, such as amidines, guanidines, and aminohydrazones, an oxygen-insensitive liver microsomal system, the benzamidoxime reductase, has been described. To reconstitute the complete activity of the benzamidoxime reductase, the system required cytochrome b(5), NADH-cytochrome b(5)-reductase, and the benzamidoxime reductase, a cytochrome P450 enzyme, which has been purified to homogeneity from pig liver. It was not known if this enzyme system was also capable of reducing aliphatic hydroxylamines. The N-hydroxylation of aliphatic amines is a well-known metabolic process. It was of interest to study the possibility of benzamidoxime reductase reducing N-hydroxylated metabolites of aliphatic amines back to the parent compound. Overall, N-hydroxylation and reduction would constitute a futile metabolic cycle. As examples of medicinally relevant compounds, the hydroxylamines of methamphetamine, amphetamine, and N-methylamine as model compounds were investigated. Formation of methamphetamine and amphetamine was analyzed by newly developed HPLC methods. All three hydroxylamines were easily reduced by benzamidoxime reductase to their parent amines with reduction rates of 220.6 nmol min(-1) (mg of protein)(-1) for methamphetamine, 5.25 nmol min(-1) (mg of protein)(-1) for amphetamine, and 153 nmol min(-1) (mg of protein)(-1) for N-methylhydroxylamine. Administration of synthetic hydroxylamines of amphetamine and methamphetamine to primary rat neuronal cultures produced frank cell toxicity. Compared with amphetamine or the oxime of amphetamine, the hydroxylamines were significantly more toxic to primary neuronal cells. The benzamidoxime reductase is therefore involved in the detoxication of these reactive hydroxylamines.

  5. Relative Activities and Characteristics of Some Oxidative Respiratory Enzymes from Conidia of Verticillium albo-atrum

    PubMed Central

    Throneberry, G. O.

    1967-01-01

    Conidia of Verticillium albo-atrum Reinke and Berthold, collected from shake cultures grown in Czapek broth, were sonified for 4 or 8 minutes or ground frozen in a mortar to obtain cell-free homogenates. These were assayed for certain enzymes associated with respiratory pathways. Malic dehydrogenase was the most active, glucose-6-P and NADH dehydrogenase were less active, NADH-cytochrome c reductase, NADPH dehydrogenase, and cytochrome oxidase were low in activity, and succinic dehydrogenase and succinic cytochrome c reductase were very low to negligible in activity. No NADH oxidase activity was detected. With the exception of NADH-cytochrome c reductase and possibly succinic dehydrogenase and cytochrome c reductase, there was no evident increase in specific activity of the enzymes during germination. Some NADH-cytochrome c reductase and a small amount of succinic-dehydrogenase and cytochrome c reductase were associated with the particulate fraction from 105,000 × g centrifugation. The other enzymes, including cytochrome oxidase, almost completely remained in the supernatant fraction. Menadione and vitamin K-S(II) markedly stimulated NADH-cytochrome c reductase activity in the supernatant fraction but had much less effect on NADPH-cytochrome c reductase in this fraction or on either of these enzyme systems in the particulate fraction. Electron transport inhibitors affected particulate NADH- and NADPH-cytochrome c reductase activity but had no effect on these in the supernatant fraction. PMID:16656681

  6. Phytoalexin synthesis in soybean cells: elicitor induction of reductase involved in biosynthesis of 6'-deoxychalcone.

    PubMed

    Welle, R; Grisebach, H

    1989-07-01

    Chromatofocusing on Mono P proved to be an efficient purification procedure for the NADPH-dependent reductase from soybean (Glycine max L.) cell cultures which acts together with chalcone synthase in the biosynthesis of 2',4',4-trihydroxychalcone (6'-deoxychalcone). By isoelectric focusing the pI of reductase was determined to be 6.3. Addition of pure soybean reductase to cell-free extracts from stimulated cell cultures of parsley and bean (Phaseolus vulgaris) and from young flowers of Dahlia variabilis caused in each case synthesis of 6'-deoxychalcone. When 4-coumaroyl-CoA was replaced by caffeoyl-CoA in the reductase assay, formation of 2',4',3,4-tetrahydrochalcone (butein) was observed. A polyclonal antireductase antiserum was raised in rabbits and proved to be specific in Ouchterlony diffusion experiments, Western blots and immunotitration. The reductase antiserum showed no cross-reactivity with soybean chalcone synthase (CHS). A biotin/[125I]streptavidin system provided a quantitative Western blot for the reductase. Changes in the activities, amounts of protein, and mRNA activities of reductase and CHS were determined after challenge of soybean cell cultures by elicitor (from Phytophthora megasperma f.sp. glycinea or yeast). For both enzymes a pronounced and parallel increase in activity and amounts of protein was observed after elicitor addition with a maximum at about 16 h after challenge. Parallel increases in mRNA activities occurred earlier. The results indicate a parallel induction of de novo synthesis of reductase and CHS which coact in synthesis of 6'-deoxychalcone. PMID:2500065

  7. Effect of carbon source addition on toluene biodegradation by an Escherichia coli DH5alpha transconjugant harboring the TOL plasmid.

    PubMed

    Ikuma, Kaoru; Gunsch, Claudia

    2010-10-01

    Horizontal gene transfer (HGT) of plasmids is a naturally occurring phenomenon which could be manipulated for bioremediation applications. Specifically, HGT may prove useful to enhance bioremediation through genetic bioaugmentation. However, because the transfer of a plasmid between donor and recipient cells does not always result in useful functional phenotypes, the conditions under which HGT events result in enhanced degradative capabilities must first be elucidated. The objective of this study was to determine if the addition of alternate carbon substrates could improve toluene degradation in Escherichia coli DH5alpha transconjugants. The addition of glucose (0.5-5 g/L) and Luria-Bertani (LB) broth (10-100%) resulted in enhanced toluene degradation. On average, the toluene degradation rate increased 14.1 (+/-2.1)-fold in the presence of glucose while the maximum increase was 18.4 (+/-1.7)-fold in the presence of 25% LB broth. Gene expression of xyl genes was upregulated in the presence of glucose but not LB broth, which implies different inducing mechanisms by the two types of alternate carbon source. The increased toluene degradation by the addition of glucose or LB broth was persistent over the short-term, suggesting the pulse amendment of an alternative carbon source may be helpful in bioremediation. While the effects of recipient genome GC content and other conditions must still be examined, our results suggest that changes in environmental conditions such as alternate substrate availability may significantly improve the functionality of the transferred phenotypes in HGT and therefore may be an important parameter for genetic bioaugmentation optimization.

  8. Aldose Reductase, Oxidative Stress, and Diabetic Mellitus

    PubMed Central

    Tang, Wai Ho; Martin, Kathleen A.; Hwa, John

    2012-01-01

    Diabetes mellitus (DM) is a complex metabolic disorder arising from lack of insulin production or insulin resistance (Diagnosis and classification of diabetes mellitus, 2007). DM is a leading cause of morbidity and mortality in the developed world, particularly from vascular complications such as atherothrombosis in the coronary vessels. Aldose reductase (AR; ALR2; EC 1.1.1.21), a key enzyme in the polyol pathway, catalyzes nicotinamide adenosine dinucleotide phosphate-dependent reduction of glucose to sorbitol, leading to excessive accumulation of intracellular reactive oxygen species (ROS) in various tissues of DM including the heart, vasculature, neurons, eyes, and kidneys. As an example, hyperglycemia through such polyol pathway induced oxidative stress, may have dual heart actions, on coronary blood vessel (atherothrombosis) and myocardium (heart failure) leading to severe morbidity and mortality (reviewed in Heather and Clarke, 2011). In cells cultured under high glucose conditions, many studies have demonstrated similar AR-dependent increases in ROS production, confirming AR as an important factor for the pathogenesis of many diabetic complications. Moreover, recent studies have shown that AR inhibitors may be able to prevent or delay the onset of cardiovascular complications such as ischemia/reperfusion injury, atherosclerosis, and atherothrombosis. In this review, we will focus on describing pivotal roles of AR in the pathogenesis of cardiovascular diseases as well as other diabetic complications, and the potential use of AR inhibitors as an emerging therapeutic strategy in preventing DM complications. PMID:22582044

  9. Aldose reductase, oxidative stress, and diabetic mellitus.

    PubMed

    Tang, Wai Ho; Martin, Kathleen A; Hwa, John

    2012-01-01

    Diabetes mellitus (DM) is a complex metabolic disorder arising from lack of insulin production or insulin resistance (Diagnosis and classification of diabetes mellitus, 2007). DM is a leading cause of morbidity and mortality in the developed world, particularly from vascular complications such as atherothrombosis in the coronary vessels. Aldose reductase (AR; ALR2; EC 1.1.1.21), a key enzyme in the polyol pathway, catalyzes nicotinamide adenosine dinucleotide phosphate-dependent reduction of glucose to sorbitol, leading to excessive accumulation of intracellular reactive oxygen species (ROS) in various tissues of DM including the heart, vasculature, neurons, eyes, and kidneys. As an example, hyperglycemia through such polyol pathway induced oxidative stress, may have dual heart actions, on coronary blood vessel (atherothrombosis) and myocardium (heart failure) leading to severe morbidity and mortality (reviewed in Heather and Clarke, 2011). In cells cultured under high glucose conditions, many studies have demonstrated similar AR-dependent increases in ROS production, confirming AR as an important factor for the pathogenesis of many diabetic complications. Moreover, recent studies have shown that AR inhibitors may be able to prevent or delay the onset of cardiovascular complications such as ischemia/reperfusion injury, atherosclerosis, and atherothrombosis. In this review, we will focus on describing pivotal roles of AR in the pathogenesis of cardiovascular diseases as well as other diabetic complications, and the potential use of AR inhibitors as an emerging therapeutic strategy in preventing DM complications. PMID:22582044

  10. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations

    PubMed Central

    Steinkellner, Georg; Gruber, Christian C.; Pavkov-Keller, Tea; Binter, Alexandra; Steiner, Kerstin; Winkler, Christoph; Łyskowski, Andrzej; Schwamberger, Orsolya; Oberer, Monika; Schwab, Helmut; Faber, Kurt; Macheroux, Peter; Gruber, Karl

    2014-01-01

    The exploitation of catalytic promiscuity and the application of de novo design have recently opened the access to novel, non-natural enzymatic activities. Here we describe a structural bioinformatic method for predicting catalytic activities of enzymes based on three-dimensional constellations of functional groups in active sites (‘catalophores’). As a proof-of-concept we identify two enzymes with predicted promiscuous ene-reductase activity (reduction of activated C–C double bonds) and compare them with known ene-reductases, that is, members of the Old Yellow Enzyme family. Despite completely different amino acid sequences, overall structures and protein folds, high-resolution crystal structures reveal equivalent binding modes of typical Old Yellow Enzyme substrates and ligands. Biochemical and biocatalytic data show that the two enzymes indeed possess ene-reductase activity and reveal an inverted stereopreference compared with Old Yellow Enzymes for some substrates. This method could thus be a tool for the identification of viable starting points for the development and engineering of novel biocatalysts. PMID:24954722

  11. The metabolism of nitrosothiols in the Mycobacteria: identification and characterization of S-nitrosomycothiol reductase.

    PubMed Central

    Vogt, Ryan N; Steenkamp, Daniel J; Zheng, Renjian; Blanchard, John S

    2003-01-01

    When grown in culture Mycobacterium smegmatis metabolized S-nitrosoglutathione to oxidized glutathione and nitrate, which suggested a possible involvement of an S-nitrosothiol reductase and mycobacterial haemoglobin. The mycothiol-dependent formaldehyde dehydrogenase from M. smegmatis was purified by a combination of Ni2+-IMAC (immobilized metal ion affinity chromatography), hydrophobic interaction, anion-exchange and affinity chromatography. The enzyme had a subunit molecular mass of 38263 kDa. Steady-state kinetic studies indicated that the enzyme catalyses the NAD+-dependent conversion of S-hydroxymethylmycothiol into formic acid and mycothiol by a rapid-equilibrium ordered mechanism. The enzyme also catalysed an NADH-dependent decomposition of S-nitrosomycothiol (MSNO) by a sequential mechanism and with an equimolar stoichiometry of NADH:MSNO, which indicated that the enzyme reduces the nitroso group to the oxidation level of nitroxyl. Vmax for the MSNO reductase reaction indicated a turnover per subunit of approx. 116700 min(-1), which was 76-fold faster than the formaldehyde dehydrogenase activity. A gene, Rv2259, annotated as a class III alcohol dehydrogenase in the Mycobacterium tuberculosis genome was cloned and expressed in M. smegmatis as the C-terminally His6-tagged product. The purified recombinant enzyme from M. tuberculosis also catalysed both activities. M. smegmatis S-nitrosomycothiol reductase converted MSNO into the N -hydroxysulphenamide, which readily rearranged to mycothiolsulphinamide. In the presence of MSNO reductase, M. tuberculosis HbN (haemoglobin N) was converted with low efficiency into metHbN [HbN(Fe3+)] and this conversion was dependent on turnover of MSNO reductase. These observations suggest a possible route in vivo for the dissimilation of S-nitrosoglutathione. PMID:12809551

  12. Putative Role of the Aldo-Keto Reductase from Trypanosoma cruzi in Benznidazole Metabolism.

    PubMed

    Garavaglia, Patricia Andrea; Laverrière, Marc; Cannata, Joaquín J B; García, Gabriela Andrea

    2016-05-01

    Benznidazole (Bz), the drug used for treatment of Chagas' disease (caused by the protozoan Trypanosoma cruzi), is activated by a parasitic NADH-dependent type I nitroreductase (NTR I). However, several studies have shown that other enzymes are involved. The aim of this study was to evaluate whether the aldo-keto reductase from T. cruzi (TcAKR), a NADPH-dependent oxido-reductase previously described by our group, uses Bz as the substrate. We demonstrated that both recombinant and native TcAKR enzymes reduce Bz by using NADPH, but not NADH, as a cofactor. TcAKR-overexpressing epimastigotes showed higher NADPH-dependent Bz reductase activity and a 50% inhibitory concentration (IC50) value for Bz 1.8-fold higher than that of the controls, suggesting that TcAKR is involved in Bz detoxification instead of activation. To understand the role of TcAKR in Bz metabolism, we studied TcAKR expression and NADPH/NADH-dependent Bz reductase activities in two T. cruzi strains with differential susceptibility to Bz: CL Brener and Nicaragua. Taking into account the results obtained with TcAKR-overexpressing epimastigotes, we expected the more resistant strain, Nicaragua, to have higher TcAKR levels than CL Brener. However, the results were the opposite. CL Brener showed 2-fold higher TcAKR expression and 5.7-fold higher NADPH-Bz reduction than the Nicaragua strain. In addition, NADH-dependent Bz reductase activity, characteristic of NTR I, was also higher in CL Brener than in Nicaragua. We conclude that although TcAKR uses Bz as the substrate, TcAKR activity is not a determinant of Bz resistance in wild-type strains and may be overcome by other enzymes involved in Bz activation, such as NADPH- and NADH-dependent reductases. PMID:26856844

  13. Biochemical Characterization of Inducible 'Reductase' Component of Benzoate Dioxygenase and Phthalate Isomer Dioxygenases from Pseudomonas aeruginosa strain PP4.

    PubMed

    Karandikar, Rohini; Badri, Abinaya; Phale, Prashant S

    2015-09-01

    The first step involved in the degradation of phthalate isomers (phthalate, isophthalate and terephthalate) is the double hydroxylation by respective aromatic-ring hydroxylating dioxygenases. These are two component enzymes consisting of 'oxygenase' and 'reductase' components. Soil isolate Pseudomonas aeruginosa strain PP4 degrades phthalate isomers via protocatechuate and benzoate via catechol 'ortho' ring cleavage pathway. Metabolic studies suggest that strain PP4 has carbon source-specific inducible phthalate isomer dioxygenase and benzoate dioxygenase. Thus, it was of interest to study the properties of reductase components of these enzymes. Reductase activity from phthalate isomer-grown cells was 3-5-folds higher than benzoate grown cells. In-gel activity staining profile showed a reductase activity band of R f 0.56 for phthalate isomer-grown cells as compared to R f 0.73 from benzoate-grown cells. Partially purified reductase components from phthalate isomer grown cells showed K m in the range of 30-40 μM and V max = 34-48 μmol min(-1) mg(-1). However, reductase from benzoate grown cells showed K m = 49 μM and V max = 10 μmol min(-1) mg(-1). Strikingly similar molecular and kinetic properties of reductase component from phthalate isomer-grown cells suggest that probably the same reductase component is employed in three phthalate isomer dioxygenases. However, reductase component is different, with respect to kinetic properties and zymogram analysis, from benzoate-grown cells when compared to that from phthalate isomer grown cells of PP4.

  14. The two-domain structure of 5'-adenylylsulfate (APS) reductase from Enteromorpha intestinalis is a requirement for efficient APS reductase activity.

    PubMed

    Kim, Sung-Kun; Gomes, Varinnia; Gao, Yu; Chandramouli, Kala; Johnson, Michael K; Knaff, David B; Leustek, Thomas

    2007-01-16

    5'-Adenylylsulfate (APS) reductase from Enteromorpha intestinalis (EiAPR) is composed of two domains that function together to reduce APS to sulfite. The carboxyl-terminal domain functions as a glutaredoxin that mediates the transfer of electrons from glutathione to the APS reduction site on the amino-terminal domain. To study the basis for the interdomain interaction, a heterologous system was constructed in which the C domain of EiAPR was fused to the carboxyl terminus of the APS reductase from Pseudomonas aeruginosa (PaAPR), an enzyme that normally uses thioredoxin as an electron donor and is incapable of using glutathione for this function. The hybrid enzyme, which retains the [4Fe-4S] cluster from PaAPR, was found to use both thioredoxin and glutathione as an electron donor for APS reduction. The ability to use glutathione was enhanced by the addition of Na2SO4 to the reaction buffer, a property that the hybrid enzyme shares with EiAPR. When the C domain was added as a separate component, it was much less efficient in conferring PaAPR with the ability to use glutathione as an electron donor, despite the fact that the separately expressed C domain functioned in two activities that are typical for glutaredoxins, hydroxyethyl disulfide reduction and electron donation to ribonucleotide reductase. These results suggest that the physical connection of the reductase and C domain on a single polypeptide is critical for the electron-transfer reaction. Moreover, the effect of Na2SO4 suggests that a water-ordering component of the reaction milieu is critical for the catalytic function of plant-type APS reductases by promoting the interdomain interaction.

  15. Purification and Characterization of the Nitrate Reductase from the Diatom Thalassiosira pseudonana1

    PubMed Central

    Amy, Nancy K.; Garrett, Reginald H.

    1974-01-01

    The assimilatory nitrate reductase (NADH: nitrate oxidoreductase, E.C. 1.6.6.2.) from the marine diatom Thalassiosira pseudonana, Hasle and Heimdal, has been purified 200-fold and characterized. The regulation of nitrate reductase in response to various conditions of nitrogen nutrition has been investigated. Nitrate reductase activity is repressed by the presence of ammonium in vivo, and its synthesis is derepressed when ammonium is absent. The derepression process is sensitive to cycloheximide and apparently requires protein synthesis. Repression of enzyme activity by ammonium is neither inhibited nor delayed by the presence of cycloheximide. In vitro, ammonium does not inhibit enzyme activity. NADH is the physiological electron donor for the enzyme in a flavin-dependent reaction. Spectral studies have indicated the presence of a b-type cytochrome associated with the enzyme. It is possible to observe enzymatic oxidation-reduction reactions which represent partial functions of the over-all electron transport capacity of this enzyme. Nitrate reductase will accept electrons from artificial electron donors such as reduced methyl viologen in a flavin-independent reaction. Further, dithionitereduced flavin adenine dinucleotide can donate electrons to the enzyme to reduce nitrate to nitrite. Finally, the nitrate reductase will exhibit a diaphorase activity and reduce the artificial electron acceptor mammalian cytochrome c in flavin-adeninedinucleotide-dependent reaction. Inhibition studies with potassium cyanide, sodium azide, and o-phenanthroline have yielded indirect evidence for metal component (s) of the enzyme. The inhibition of the NADH-requiring enzyme activities by p-hydroxymercuribenzoate has shown that an essential sulfhydryl group is involved in the initial portion of the electron transport. Heat treatment exerts an effect similar to the p-hydroxymercuribenzoate inhibition; namely, the NADH-requiring activities are rapidly inactivated, whereas the terminal

  16. Crystallization and preliminary X-ray diffraction studies of ferredoxin reductase from Leptospira interrogans

    SciTech Connect

    Nascimento, Alessandro S.; Ferrarezi, Thiago; Catalano-Dupuy, Daniela L.; Ceccarelli, Eduardo A.; Polikarpov, Igor

    2006-07-01

    Crystals adequate for X-ray diffraction analysis have been prepared from L. interrogans ferredoxin-NADP{sup +} reductase. Ferredoxin-NADP{sup +} reductase (FNR) is an FAD-containing enzyme that catalyzes electron transfer between NADP(H) and ferredoxin. Here, results are reported of the recombinant expression, purification and crystallization of FNR from Leptospira interrogans, a parasitic bacterium of animals and humans. The L. interrogans FNR crystals belong to a primitive monoclinic space group and diffract to 2.4 Å resolution at a synchrotron source.

  17. Isolation of xylose reductase gene of Pichia stipitis and its expression in Saccharomyces cerevisiae

    SciTech Connect

    Takuma, Shinya; Nakashima, Noriyuki; Tantirungkij, Manee

    1991-12-31

    A NADPH/NADH-dependent xylose reductase gene was isolated from the xylose-assimilating yeast, Pichia stipitis. DNA sequence analysis showed that the gene consists of 951 bp. The gene introduced in Saccharomyces cerevisiae was transcribed to mRNA, and a considerable amount of enzyme activity was observed constitutively, whereas transcription and translation in P steps were inducible. S. cerevisiae carrying the xylose reductase gene could not, however, grow on xylose medium, and could not produce ethanol from xylose. Since xylose uptake and accumulation of xylitol by S. cerevisiae were observed, the conversion of xylitol to xylulose seemed to be limited.

  18. Synthesis and degradation of nitrate reductase during the cell cycle of Chlorella sorokiniana

    NASA Technical Reports Server (NTRS)

    Velasco, P. J.; Tischner, R.; Huffaker, R. C.; Whitaker, J. R.

    1989-01-01

    Studies on the diurnal variations of nitrate reductase (NR) activity during the life cycle of synchronized Chlorella sorokiniana cells grown with a 7:5 light-dark cycle showed that the NADH:NR activity, as well as the NR partial activities NADH:cytochrome c reductase and reduced methyl viologen:NR, closely paralleled the appearance and disappearance of NR protein as shown by sodium dodecyl sulfate gel electrophoresis and immunoblots. Results of pulse-labeling experiments with [35S]methionine further confirmed that diurnal variations of the enzyme activities can be entirely accounted for by the concomitant synthesis and degradation of the NR protein.

  19. Testosterone induction of microsomal acyl-CoA reductase and a cytosolic regulatory protein in mouse preputial glands.

    PubMed

    Lee, T C; Kirk, P; Snyder, F

    1986-01-01

    Alkyl and alk-1-enyl (plasmalogens) ether-linked glycerolipids are prominent components of many mammalian cells; moreover, an acetylated form of an alkyl phospholipid was recently found to possess potent hypotensive, inflammatory and allergic properties. In our studies, preputial glands of mice were selected as a model to investigate the regulation of factors involved in the biosynthesis of ether-linked lipids, since these glands contain high concentrations of ether-linked neutral lipids that are under the influence of hormonal control. We found that a key enzyme in the ether-lipid metabolic pathway, microsomal acyl-CoA reductase that catalyzes the formation of long-chain fatty alcohols (precursor of the O-alkyl chain), was increased 16-fold after injecting testosterone into male, castrated mice. This induction was highly specific, since testosterone did not affect another microsomal enzyme, NADPH-cytochrome c reductase. Based on kinetics of enzyme activity changes, the half-life of acyl-CoA reductase was calculated to be 61-70 h. In addition, the activity of a cytosolic stimulatory protein for the acyl-CoA reductase (but not for a different cytosolic protein, lactate dehydrogenase) was also enhanced in the testosterone-treated, male, castrated mice. These findings indicate that acyl-CoA reductase is an important regulatory enzyme in the reactions that lead to the formation of the ether bond in glycerolipids and that it is modulated through hormonal control. PMID:3940533

  20. Purification and characterization of the periplasmic nitrate reductase from Thiosphaera pantotropha.

    PubMed

    Berks, B C; Richardson, D J; Robinson, C; Reilly, A; Aplin, R T; Ferguson, S J

    1994-02-15

    The periplasmic nitrate reductase of Thiosphaera pantotropha has been purified from a mutant strain (M-6) that overproduces the enzyme activity under anaerobic growth conditions. The enzyme is a complex of a 93-kDa polypeptide and a 16-kDa nitrate-oxidizable cytochrome c552. The complex contains molybdenum; a fluorescent compound with spectral features of a pterin derivative can be extracted. In contrast to the dissimilatory membrane-bound nitrate reductases, the periplasmic nitrate reductase shows high specificity for nitrate as a substrate and is insensitive to inhibition by azide. The 93-kDa subunit exhibits immunological cross-reactivity with the catalytic subunit of Rhodobacter capsulatus N22DNAR+ periplasmic nitrate reductase. Mass spectrometric comparisons of holo-cytochrome c552 and apo-cytochrome c552 demonstrated that the polypeptide bound two haem groups. Mediated redox potentiometry of the cytochrome indicated that the haem groups have reduction potentials (pH = 7.0) of approximately -15 mV and + 80 mV. The functional significance of these potentials is discussed in relation to the proposed physiological role of the enzyme as a redox valve. PMID:8119278

  1. Purification and characterization of thermostable endo-1,5-alpha-L-arabinase from a strain of Bacillus thermodenitrificans.

    PubMed

    Takao, Makoto; Akiyama, Kana; Sakai, Takuo

    2002-04-01

    A strain of a thermophilic bacterium, tentatively designated Bacillus thermodenitrificans TS-3, with arabinan-degrading activity was isolated. It produced an endo-arabinase (ABN) (EC 3.2.1.99) and two arabinofuranosidases (EC 3.2.1.55) extracellularly when grown at 60 degrees C on a medium containing sugar beet arabinan. The ABN (tentatively called an ABN-TS) was purified 7,417-fold by anion-exchange, hydrophobic, size exclusion, and hydroxyapatite chromatographies. The molecular mass of ABN-TS was 35 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the isoelectric point was pH 4.5. The enzyme was observed to be more thermostable than known ABNs; it had a half-life of 4 h at 75 degrees C. The enzyme had optimal activity at 70 degrees C and pH 6.0. The enzyme had apparent K(m) values of 8.5 and 45 mg/ml and apparent V(max) values of 1.6 and 1.1 mmol/min/mg of protein against debranched arabinan (alpha-1,5-arabinan) and arabinan, respectively. The enzyme had no pectin-releasing activity (protopectinase activity) from sugar beet protopectin, differing from an ABN (protopectinase-C) from mesophilic Bacillus subtilis IFO 3134. The pattern of degradation of debranched arabinan by ABN-TS indicated that the enzyme was an endo-acting enzyme and the main end products were arabinobiose and arabinose. The results of preliminary experiments indicated that the culture filtrate of strain TS-3 is suitable for L-arabinose production from sugar beet pulp at high temperature.

  2. Crystal structure of isoflavone reductase from alfalfa (Medicago sativa L.).

    PubMed

    Wang, Xiaoqiang; He, Xianzhi; Lin, Jianqiao; Shao, Hui; Chang, Zhenzhan; Dixon, Richard A

    2006-05-19

    Isoflavonoids play important roles in plant defense and exhibit a range of mammalian health-promoting activities. Isoflavone reductase (IFR) specifically recognizes isoflavones and catalyzes a stereospecific NADPH-dependent reduction to (3R)-isoflavanone. The crystal structure of Medicago sativa IFR with deletion of residues 39-47 has been determined at 1.6A resolution. Structural analysis, molecular modeling and docking, and comparison with the structures of other NADPH-dependent enzymes, defined the putative binding sites for co-factor and substrate and potential key residues for enzyme activity and substrate specificity. Further mutagenesis has confirmed the role of Lys144 as a catalytic residue. This study provides a structural basis for understanding the enzymatic mechanism and substrate specificity of IFRs as well as the functions of IFR-like proteins.

  3. A calibration curve for immobilized dihydrofolate reductase activity assay.

    PubMed

    Singh, Priyanka; Morris, Holly; Tivanski, Alexei V; Kohen, Amnon

    2015-09-01

    An assay was developed for measuring the active-site concentration, activity, and thereby the catalytic turnover rate (k cat) of an immobilized dihydrofolate reductase model system (Singh et al., (2015), Anal. Biochem). This data article contains a calibration plot for the developed assay. In the calibration plot rate is plotted as a function of DHFR concentration and shows linear relationship. The concentration of immobilized enzyme was varied by using 5 different size mica chips. The dsDNA concentration was the same for all chips, assuming that the surface area of the mica chip dictates the resulting amount of bound enzyme (i.e. larger sized chip would have more bound DHFR). The activity and concentration of each chip was measured.

  4. Nitrate metabolism in tobacco leaves overexpressing Arabidopsis nitrite reductase.

    PubMed

    Davenport, Susie; Le Lay, Pascaline; Sanchez-Tamburrrino, Juan Pablo

    2015-12-01

    Primary nitrogen assimilation in plants includes the reduction of nitrite to ammonium in the chloroplasts by the enzyme nitrite reductase (NiR EC:1.7.7.1) or in the plastids of non-photosynthetic organs. Here we report on a study overexpressing the Arabidopsis thaliana NiR (AtNiR) gene in tobacco plants under the control of a constitutive promoter (CERV - Carnation Etched Ring Virus). The aim was to overexpress AtNiR in an attempt to alter the level of residual nitrite in the leaf which can act as precursor to the formation of nitrosamines. The impact of increasing the activity of AtNiR produced an increase in leaf protein and a stay-green phenotype in the primary transformed AtNiR population. Investigation of the T1 homozygous population demonstrated elevated nitrate reductase (NR) activity, reductions in leaf nitrite and nitrate and the amino acids proline, glutamine and glutamate. Chlorophyl content of the transgenic lines was increased, as evidenced by the stay-green phenotype. This reveals the importance of NiR in primary nitrogen assimilation and how modification of this key enzyme affects both the nitrogen and carbon metabolism of tobacco plants. PMID:26447683

  5. Evolution Alters the Enzymatic Reaction Coordinate of Dihydrofolate Reductase

    PubMed Central

    2015-01-01

    How evolution has affected enzyme function is a topic of great interest in the field of biophysical chemistry. Evolutionary changes from Escherichia coli dihydrofolate reductase (ecDHFR) to human dihydrofolate reductase (hsDHFR) have resulted in increased catalytic efficiency and an altered dynamic landscape in the human enzyme. Here, we show that a subpicosecond protein motion is dynamically coupled to hydride transfer catalyzed by hsDHFR but not ecDHFR. This motion propagates through residues that correspond to mutational events along the evolutionary path from ecDHFR to hsDHFR. We observe an increase in the variability of the transition states, reactive conformations, and times of barrier crossing in the human system. In the hsDHFR active site, we detect structural changes that have enabled the coupling of fast protein dynamics to the reaction coordinate. These results indicate a shift in the DHFR family to a form of catalysis that incorporates rapid protein dynamics and a concomitant shift to a more flexible path through reactive phase space. PMID:25369552

  6. Role of the Tat Transport System in Nitrous Oxide Reductase Translocation and Cytochrome cd1 Biosynthesis in Pseudomonas stutzeri

    PubMed Central

    Heikkilä, Mari P.; Honisch, Ulrike; Wunsch, Patrick; Zumft, Walter G.

    2001-01-01

    By transforming N2O to N2, the multicopper enzyme nitrous oxide reductase provides a periplasmic electron sink for a respiratory chain that is part of denitrification. The signal sequence of the enzyme carries the heptameric twin-arginine consensus motif characteristic of the Tat pathway. We have identified tat genes of Pseudomonas stutzeri and functionally analyzed the unlinked tatC and tatE loci. A tatC mutant retained N2O reductase in the cytoplasm in the unprocessed form and lacking the metal cofactors. This is contrary to viewing the Tat system as specific only for fully assembled proteins. A C618V exchange in the electron transfer center CuA rendered the enzyme largely incompetent for transport. The location of the mutation in the C-terminal domain of N2O reductase implies that the Tat system acts on a completely synthesized protein and is sensitive to a late structural variation in folding. By generating a tatE mutant and a reductase-overproducing strain, we show a function for TatE in N2O reductase translocation. Further, we have found that the Tat and Sec pathways have to cooperate to produce a functional nitrite reductase system. The cytochrome cd1 nitrite reductase was found in the periplasm of the tatC mutant, suggesting export by the Sec pathway; however, the enzyme lacked the heme D1 macrocycle. The NirD protein as part of a complex required for heme D1 synthesis or processing carries a putative Tat signal peptide. Since NO reduction was also inhibited in the tatC mutant, the Tat protein translocation system is necessary in multiple ways for establishing anaerobic nitrite denitrification. PMID:11160097

  7. Enzyme Substrate Reactions in High Magnetic Fields

    PubMed Central

    Maling, J. E.; Weissbluth, M.; Jacobs, E. E.

    1965-01-01

    The reaction rates of two enzyme substrate systems, ribonuclease-RNA and succinate-cytochrome c reductase, were followed as a function of magnetic field from zero to 48,000 gauss. The reaction rates remained constant to within 10 per cent. PMID:5884011

  8. The Occurrence of Nitrate Reductase in Leaves of Prunus Species 1

    PubMed Central

    Leece, D. R.; Dilley, David R.; Kenworthy, A. L.

    1972-01-01

    Nitrate reductase was found in leaves of apricot Prunus armeniaca, sour cherry P. cerasus, sweet cherry P. avium, and plum P. domestica, but not in peach P. persica, from trees grown in sand culture receiving a nitrate containing nutrient solution. Nitrate was found in the leaves of all species. Nitrate and nitrate reductase were found in leaves of field-grown apricot, sour cherry, and plum trees. The enzyme-extracting medium contained insoluble polyvinylpyrrolidone, and including dithiothreitol or mercaptobenzothiazole did not improve enzyme recovery. Inclusion of cherry leaf extract diminished, and peach leaf extract abolished, recovery of nitrate reductase from oat tissue. Low molecular weight phenols liberated during extraction were probably responsible for inactivation of the enzyme. The enzyme from apricot was two to three times as active as from the other species. Both nicotine adenine diphosphopyridine nucleotide and flavin mononucleotide were effective electron donors. The enzyme was readily induced in apricot leaves by 10 mm nitrate supplied through the leaf petiole. PMID:16658037

  9. Molecular cloning and catalytic characterization of a recombinant tropine biosynthetic tropinone reductase from Withania coagulans leaf.

    PubMed

    Kushwaha, Amit K; Sangwan, Neelam S; Tripathi, Sandhya; Sangwan, Rajender S

    2013-03-10

    Tropinone reductases (TRs) are small proteins belonging to the SDR (short chain dehydrogenase/reductase) family of enzymes. TR-I and TR-II catalyze the conversion of tropinone into tropane alcohols (tropine and pseudotropine, respectively). The steps are intermediary enroute to biosynthesis of tropane esters of medicinal importance, hyoscyamine/scopolamine, and calystegins, respectively. Biosynthesis of tropane alkaloids has been proposed to occur in roots. However, in the present report, a tropine forming tropinone reductase (TR-I) cDNA was isolated from the aerial tissue (leaf) of a medicinal plant, Withania coagulans. The ORF was deduced to encode a polypeptide of 29.34 kDa. The complete cDNA (WcTRI) was expressed in E. coli and the recombinant His-tagged protein was purified for functional characterization. The enzyme had a narrow pH range of substantial activity with maxima at 6.6. Relatively superior thermostability of the enzyme (30% retention of activity at 60 °C) was catalytic novelty in consonance with the desert area restricted habitat of the plant. The in vitro reaction kinetics predominantly favoured the forward reaction. The enzyme had wide substrate specificity but did not cover the substrates of other well-known plant SDR related to menthol metabolism. To our knowledge, this pertains to be the first report on any gene and enzyme of secondary metabolism from the commercially and medicinally important vegetable rennet species.

  10. Evolution of the Ferric Reductase Domain (FRD) Superfamily: Modularity, Functional Diversification, and Signature Motifs

    PubMed Central

    Zhang, Xuezhi; Krause, Karl-Heinz; Xenarios, Ioannis; Soldati, Thierry; Boeckmann, Brigitte

    2013-01-01

    A heme-containing transmembrane ferric reductase domain (FRD) is found in bacterial and eukaryotic protein families, including ferric reductases (FRE), and NADPH oxidases (NOX). The aim of this study was to understand the phylogeny of the FRD superfamily. Bacteria contain FRD proteins consisting only of the ferric reductase domain, such as YedZ and short bFRE proteins. Full length FRE and NOX enzymes are mostly found in eukaryotic cells and all possess a dehydrogenase domain, allowing them to catalyze electron transfer from cytosolic NADPH to extracellular metal ions (FRE) or oxygen (NOX). Metazoa possess YedZ-related STEAP proteins, possibly derived from bacteria through horizontal gene transfer. Phylogenetic analyses suggests that FRE enzymes appeared early in evolution, followed by a transition towards EF-hand containing NOX enzymes (NOX5- and DUOX-like). An ancestral gene of the NOX(1-4) family probably lost the EF-hands and new regulatory mechanisms of increasing complexity evolved in this clade. Two signature motifs were identified: NOX enzymes are distinguished from FRE enzymes through a four amino acid motif spanning from transmembrane domain 3 (TM3) to TM4, and YedZ/STEAP proteins are identified by the replacement of the first canonical heme-spanning histidine by a highly conserved arginine. The FRD superfamily most likely originated in bacteria. PMID:23505460

  11. 3-Oxoacyl-(acyl-carrier protein) reductase from avocado (Persea americana) fruit mesocarp.

    PubMed Central

    Sheldon, P S; Kekwick, R G; Sidebottom, C; Smith, C G; Slabas, A R

    1990-01-01

    The NADPH-linked 3-oxoacyl-(acyl-carrier protein) (ACP) reductase (EC 1.1.1.100), also known as 'beta-ketoacyl-ACP reductase', has been purified from the mesocarp of mature avocado pears (Persea americana). The enzyme is inactivated by low ionic strength and low temperature. On SDS/PAGE under reducing conditions, purified 3-oxoacyl-ACP reductase migrated as a single polypeptide giving a molecular mass of 28 kDa. Gel-filtration chromatography gave an apparent native molecular mass of 130 kDa, suggesting that the enzyme is tetrameric. The enzyme is inactivated by dilution, but some protection is afforded by the presence of NADPH. Kinetic constants have been determined using synthetic analogues as well as the natural ACP substrate. It exhibits a broad pH optimum around neutrality. Phenylglyoxal inactivates the enzyme, and partial protection is given by 1 mM-NADPH. Antibodies have been raised against the protein, which were used to localize it using immunogold electron microscopy. It is localized in plastids. N-Terminal amino-acid-sequence analysis was performed on the enzyme, and it shows close structural similarity with cytochrome f. Internal amino-acid-sequence data, derived from tryptic peptides, shows similarity with the putative gene products encoded by the nodG gene from the nitrogen-fixing bacterium Rhizobium meliloti and the gra III act III genes from Streptomyces spp. Images Fig. 2. Fig. 5. Fig. 6. PMID:2244875

  12. Purification and characterization of rat lens pyrroline-5-carboxylate reductase.

    PubMed

    Shiono, T; Kador, P F; Kinoshita, J J

    1986-03-19

    delta 1-Pyrroline-5-carboxylate reductase (L-proline:NAD(P)+ 5-oxidoreductase, EC 1.5.1.2) has been purified from rat lens and biochemically characterized. Purification steps included ammonium sulfate fractionation, affinity chromatography on Amicon Matrex Orange A, and gel filtration with Sephadex G-200. These steps were carried out at ambient temperature (22 degrees C) in 20 mM sodium phosphate/potassium phosphate buffer (pH 7.5) containing 10% glycerol, 7 mM mercaptoethanol and 0.5 mM EDTA. The enzyme, purified to apparent homogeneity, displayed a molecular weight of 240 000 by gel chromatography and 30 000 by SDS-polyacrylamide gel electrophoresis. This suggests that the enzyme is composed of eight subunits. The purified enzyme displays a pH optimum between 6.5 and 7.1 and is inhibited by heavy metal ions and p-chloromercuribenzoate. Kinetic studies indicated Km values of 0.62 mM and 0.051 mM for DL-pyrroline-5-carboxylate as substrate when NADH and NADPH respectively were employed as cofactors. The Km values for the cofactors NADH and NADPH with DL-pyrroline-5-carboxylate as substrate were 0.37 mM and 0.006 mM, respectively. With L-pyrroline-5-carboxylate as substrate, Km values of 0.21 mM and 0.022 mM were obtained for NADH and NADPH, respectively. Enzyme activity is potentially inhibited by NADP+ and ATP, suggesting that delta 1-pyrroline-5-carboxylate reductase may be regulated by the energy level and redox state of the lens.

  13. Synthetic and Crystallographic Studies of a New Inhibitor Series Targeting Bacillus anthracis Dihydrofolate Reductase

    PubMed Central

    Beierlein, Jennifer M.; Frey, Kathleen M.; Bolstad, David B.; Pelphrey, Phillip M.; Joska, Tammy M.; Smith, Adrienne E.; Priestley, Nigel D.; Wright, Dennis L.; Anderson, Amy C.

    2008-01-01

    Bacillus anthracis, the causative agent of anthrax, poses a significant biodefense danger. Serious limitations in approved therapeutics and the generation of resistance have produced a compelling need for new therapeutic agents against this organism. Bacillus anthracis is known to be insensitive to the clinically used antifolate, trimethoprim, because of a lack of potency against the dihydrofolate reductase enzyme. Herein, we describe a novel lead series of B. anthracis dihydrofolate reductase inhibitors characterized by an extended trimethoprim-like scaffold. The best lead compound adds only 22 Da to the molecular weight and is 82-fold more potent than trimethoprim. An X-ray crystal structure of this lead compound bound to B. anthracis dihydrofolate reductase in the presence of NADPH was determined to 2.25 Å resolution. The structure reveals several features that can be exploited for further development of this lead series. PMID:19007108

  14. Structure of Physarum polycephalum cytochrome b 5 reductase at 1.56 Å resolution

    PubMed Central

    Kim, Sangwoo; Suga, Michihiro; Ogasahara, Kyoko; Ikegami, Terumi; Minami, Yoshiko; Yubisui, Toshitsugu; Tsukihara, Tomitake

    2007-01-01

    Physarum polycephalum cytochrome b 5 reductase catalyzes the reduction of cytochrome b 5 by NADH. The structure of P. polycephalum cytochrome b 5 reductase was determined at a resolution of 1.56 Å. The molecular structure was compared with that of human cytochrome b 5 reductase, which had previously been determined at 1.75 Å resolution [Bando et al. (2004 ▶), Acta Cryst. D60, 1929–1934]. The high-resolution structure revealed conformational differences between the two enzymes in the adenosine moiety of the FAD, the lid region and the linker region. The structural properties of both proteins were inspected in terms of hydrogen bonding, ion pairs, accessible surface area and cavity volume. The differences in these structural properties between the two proteins were consistent with estimates of their thermostabilities obtained from differential scanning calorimetry data. PMID:17401193

  15. Synthetic and Crystallographic Studies of a New Inhibitor Series Targeting Bacillus anthracis Dihydrofolate Reductase

    SciTech Connect

    Beierlein, J.; Frey, K; Bolstad, D; Pelphrey, P; Joska, T; Smith, A; Priestley, N; Wright, D; Anderson, A

    2008-01-01

    Bacillus anthracis, the causative agent of anthrax, poses a significant biodefense danger. Serious limitations in approved therapeutics and the generation of resistance have produced a compelling need for new therapeutic agents against this organism. Bacillus anthracis is known to be insensitive to the clinically used antifolate, trimethoprim, because of a lack of potency against the dihydrofolate reductase enzyme. Herein, we describe a novel lead series of B. anthracis dihydrofolate reductase inhibitors characterized by an extended trimethoprim-like scaffold. The best lead compound adds only 22 Da to the molecular weight and is 82-fold more potent than trimethoprim. An X-ray crystal structure of this lead compound bound to B. anthracis dihydrofolate reductase in the presence of NADPH was determined to 2.25 A resolution. The structure reveals several features that can be exploited for further development of this lead series.

  16. Interplay between the cis-prenyltransferases and polyprenol reductase in the yeast Saccharomyces cerevisiae.

    PubMed

    Szkopinska, Anna; Swiezewska, Ewa; Rytka, Joanna

    2006-01-01

    Dolichol formation is examined in three Saccharomyces cerevisiae strains with mutations in the ERG20 gene encoding farnesyl diphosphate synthase (mevalonic acid pathway) and/or the ERG9 gene encoding squalene synthase (sterol synthesis pathway) differing in the amount and chain length of the polyisoprenoids synthesized. Our results suggest that the activities of two yeast cis-prenyltransferases Rer2p and Srt1p and polyprenol reductase are not co-regulated and that reductase may be the rate-limiting enzyme in dolichol synthesis if the amount of polyisoprenoids synthesized exceeds a certain level. We demonstrate that reductase preferentially acts on typical polyprenols with 13-18 isoprene residues but can reduce much longer polyprenols with even 32 isoprene residues.

  17. Biliverdin reductase isozymes in metabolism.

    PubMed

    O'Brien, Luke; Hosick, Peter A; John, Kezia; Stec, David E; Hinds, Terry D

    2015-04-01

    The biliverdin reductase (BVR) isozymes BVRA and BVRB are cell surface membrane receptors with pleiotropic functions. This review compares, for the first time, the structural and functional differences between the isozymes. They reduce biliverdin, a byproduct of heme catabolism, to bilirubin, display kinase activity, and BVRA, but not BVRB, can act as a transcription factor. The binding motifs present in the BVR isozymes allow a wide range of interactions with components of metabolically important signaling pathways such as the insulin receptor kinase cascades, protein kinases (PKs), and inflammatory mediators. In addition, serum bilirubin levels have been negatively associated with abdominal obesity and hypertriglyceridemia. We discuss the roles of the BVR isozymes in metabolism and their potential as therapeutic targets. PMID:25726384

  18. An electrogenic nitric oxide reductase.

    PubMed

    Al-Attar, Sinan; de Vries, Simon

    2015-07-22

    Nitric oxide reductases (Nors) are members of the heme-copper oxidase superfamily that reduce nitric oxide (NO) to nitrous oxide (N₂O). In contrast to the proton-pumping cytochrome oxidases, Nors studied so far have neither been implicated in proton pumping nor have they been experimentally established as electrogenic. The copper-A-dependent Nor from Bacillus azotoformans uses cytochrome c₅₅₁ as electron donor but lacks menaquinol activity, in contrast to our earlier report (Suharti et al., 2001). Employing reduced phenazine ethosulfate (PESH) as electron donor, the main NO reduction pathway catalyzed by Cu(A)Nor reconstituted in liposomes involves transmembrane cycling of the PES radical. We show that Cu(A)Nor reconstituted in liposomes generates a proton electrochemical gradient across the membrane similar in magnitude to cytochrome aa₃, highlighting that bacilli using Cu(A)Nor can exploit NO reduction for increased cellular ATP production compared to organisms using cNor. PMID:26149211

  19. Inactivation of Escherichia coli JM109, DH5alpha, and O157:H7 suspended in Butterfield's Phosphate Buffer by gamma irradiation.

    PubMed

    Sommers, C H; Rajkowski, K T

    2008-03-01

    Food irradiation is a safe and effective method for inactivation of pathogenic bacteria, including Escherichia coli O157:H7, in meat, leafy greens, and complex ready-to-eat foods without affecting food product quality. Determining the radiation dose needed to inactivate E. coli O157:H7 in foods and the validation of new irradiation technologies are often performed through inoculation of model systems or food products with cocktails of the target bacterium, or use of single well-characterized isolates. In this study, the radiation resistance of 4 E. coli strains, 2 DNA repair deficient strains used for cloning and recombinant DNA technology (JM109 and DH5alpha) and 2 strains of serotype O157:H7 (C9490 and ATCC 35150), were determined. The D-10 values for C9490, ATCC 35150, JM109, and DH5alpha stationary phase cells suspended in Butterfield's Phosphate Buffer and irradiated at 4 degrees C were 229 (+/- 9.00), 257 (+/- 7.00), 61.2 (+/- 10.4), and 51.2 (+/- 8.82) Gy, respectively. The results of this study indicate that the extreme radiation sensitivity of JM109 and DH5alpha makes them unsuitable for use as surrogate microorganisms for pathogenic E. coli in the field of food irradiation research. Use of E. coli JM109 and DH5alpha, which carry mutations of the recA and gyrA genes required for efficient DNA repair and replication, is not appropriate for determination of radiation inactivation kinetics and validation of radiation processing equipment.

  20. Metabolism of cholesteryl palmitate by rat brain in vitro; formation of cholesterol epoxides and cholestane-3beta,5alpha,6beta-triol.

    PubMed

    Martin, C M; Nicholas, H J

    1973-11-01

    Incubation of [4-(14)C]cholesteryl palmitate with the 12,000 g supernatant fraction of adult rat brain fortified with an NADPH-generating system and beta-mercaptoethylamine resulted in formation (2-5%) of more polar metabolites characterized as a mixture of cholesterol-5,6-epoxides. Under extended incubation conditions, cholestane-3beta-5alpha-6beta-triol was isolated as the major end product of the incubations. Free [4-(14)C]cholesterol incubated under similar conditions was not oxidized, whereas oxidation of [4-(14)C]cholesteryl palmitate appeared to be dependent upon hydrolysis of the ester by the rat brain microsomal subcellular fraction. Elimination of the NADPH-generating system or the addition of EDTA to the incubation mixture inhibited epoxide formation, suggesting that the products are derived from an NADPH-dependent enzymatic lipoperoxidation mechanism. The in vitro conversion of [4-(14)C]cholesterol-5alpha,6alpha-epoxide to cholestane-3beta,5alpha,6beta-triol was also demonstrated in rat brain subcellular fractions in the absence of added cofactors.

  1. 40 CFR 180.1065 - 2-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the requirement of a tolerance. 180.1065...-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the requirement of a tolerance. The inert ingredient,...

  2. 40 CFR 180.1065 - 2-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the requirement of a tolerance. 180.1065...-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the requirement of a tolerance. The inert ingredient,...

  3. 40 CFR 180.1065 - 2-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the requirement of a tolerance. 180.1065...-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the requirement of a tolerance. The inert ingredient,...

  4. 40 CFR 180.1065 - 2-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the requirement of a tolerance. The inert ingredient, 2-amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha... 40 Protection of Environment 24 2011-07-01 2011-07-01 false...

  5. 40 CFR 180.1065 - 2-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the requirement of a tolerance. The inert ingredient, 2-amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha... 40 Protection of Environment 23 2010-07-01 2010-07-01 false...

  6. Sterol synthesis. A novel reductive rearrangement of an alpha,beta-unsaturated steroidal epoxide; a new chemical synthesis of 5alpha-cholest-8(14)-en-3beta, 15alpha-diol.

    PubMed

    Parish, E J; Schroepfer, G J

    1977-04-01

    Reduction of 3beta-benzoyloxy-14alpha,15alpha-epoxy-5alpha-cholest-7-ene with either lithium triethylboro-hydride or lithium aluminum hydride (4 molar excess) gave 5-alpha-cholest-8(14)-en-3beta,15alpha-diol in high yield. Reduction of the epoxy ester with lithium triethylborodeuteride or lithium aluminum deuteride (4 molar excess) gave [7alpha-2-H]-5alpha-cholest-8(14)-en-3beta,15alpha-diol. Reduction of 2beta-benzoyloxy-14alpha,15alpha-epoxy-5alpha-cholest-7-ene with a large excess (24 molar excess) of lithium aluminum hydride gave, in addition to the expected 5alpha-cholest-8(14)-en-3beta,15alpha-diol, a significant yield (33%) of 5alpha-cholest-8(14)-en-3beta-o1. Reduction of the epoxy ester with a large excess (24 molar excess) of lithium aluminum deuteride gave [7alpha-2H]-5alpha-cholest-8(14)-en-3beta,15alpha-diol and 5alpha-cholest-8(14)-en-3beta-o1 which contained two atoms of stably bound deuterium. PMID:858170

  7. Identification of periplasmic nitrate reductase Mo(V) EPR signals in intact cells of Paracoccus denitrificans.

    PubMed

    Sears, H J; Bennett, B; Spiro, S; Thomson, A J; Richardson, D J

    1995-08-15

    EPR spectroscopy has been successfully used to detect signals due to molybdenum (V) and ferric iron in intact cells of aerobically grown Paracoccus denitrificans. The signals are ascribed to the catalytic molybdenum centre and to the haem iron of the periplasmic nitrate reductase. These signals are absent from a mutant strain deficient in this enzyme. The Mo(V) signal is due to the High-g Split species which has been well characterized in the purified enzyme. This confirms that the High-g Split is the physiologically relevant signal of a number observed in the previous work on the purified enzyme. PMID:7646461

  8. Ribosome display for selection of active dihydrofolate reductase mutants using immobilized methotrexate on agarose beads.

    PubMed

    Takahashi, Fumio; Ebihara, Takashi; Mie, Masayasu; Yanagida, Yasuko; Endo, Yaeta; Kobatake, Eiry; Aizawa, Masuo

    2002-03-01

    Ribosome display was applied to the selection of an enzyme. As a model, we selected and amplified the dihydrofolate reductase (DHFR) gene by ribosome display utilizing a wheat germ cell-free protein synthesis system based on binding affinity to its substrate analog, methotrexate, immobilized on agarose beads. After three rounds of selection, the DHFR gene could be effectively selected and preferentially amplified from a small proportion in a mixture also containing competitive genes. Active enzymes were expressed and amplified and by sequence analysis, four mutants of DHFR were identified. These mutants showed as much activity as the wild-type enzyme.

  9. Affinity Chromatography Purification of Cytochrome c Binding Enzymes

    NASA Astrophysics Data System (ADS)

    Azzi, Angelo; Bill, Kurt; Broger, Clemens

    1982-04-01

    An efficient affinity chromatography procedure for the isolation of mitochondrial cytochrome c oxidase and reductase is described. Saccharomyces cerevisiae cytochrome c was used as a ligand, bound to a thiol-Sepharose 4B gel through cysteine-107. In this way, the site of interaction of cytochrome c with cytochrome oxidase and reductase remained unmodified and available for binding to a number of partner enzymes. The procedure is adequate for the purification of all those proteins having in common the property of binding with high affinity to cytochrome c--e.g., cytochrome c oxidase, reductase, and peroxidase, sulfite oxidase, and reaction centers of photosynthetic bacteria.

  10. DNA damage induction of ribonucleotide reductase.

    PubMed

    Elledge, S J; Davis, R W

    1989-11-01

    RNR2 encodes the small subunit of ribonucleotide reductase, the enzyme that catalyzes the first step in the pathway for the production of deoxyribonucleotides needed for DNA synthesis. RNR2 is a member of a group of genes whose activities are cell cycle regulated and that are transcriptionally induced in response to the stress of DNA damage. An RNR2-lacZ fusion was used to further characterize the regulation of RNR2 and the pathway responsible for its response to DNA damage. beta-Galactosidase activity in yeast strains containing the RNR2-lacZ fusion was inducible in response to DNA-damaging agents (UV light, 4-nitroquinoline-1-oxide [4-NQO], and methyl methanesulfonate [MMS]) and agents that block DNA replication (hydroxyurea [HU] and methotrexate) but not heat shock. When MATa cells were arrested in G1 by alpha-factor, RNR2 mRNA was still inducible by DNA damage, indicating that the observed induction can occur outside of S phase. In addition, RNR2 induction was not blocked by the presence of cycloheximide and is therefore likely to be independent of protein synthesis. A mutation, rnr2-314, was found to confer hypersensitivity to HU and increased sensitivity to MMS. In rnr2-314 mutant strains, the DNA damage stress response was found to be partially constitutive as well as hypersensitive to induction by HU but not MMS. The induction properties of RNR2 were examined in a rad4-2 mutant background; in this genetic background, RNR2 was hypersensitive to induction by 4-NQO but not MMS. Induction of the RNR2-lacZ fusion in a RAD(+) strain in response to 4-NQO was not enhanced by the presence of an equal number of rad4-2 cells that lacked the fusion, implying that the DNA damage stress response in cell autonomous. PMID:2513480

  11. Adventitious Arsenate Reductase Activity of the Catalytic Domain of the Human Cdc25B and Cdc25C Phosphatases†

    PubMed Central

    Bhattacharjee, Hiranmoy; Sheng, Ju; Ajees, A. Abdul; Mukhopadhyay, Rita; Rosen, Barry P.

    2013-01-01

    A number of eukaryotic enzymes that function as arsenate reductases are homologues of the catalytic domain of the human Cdc25 phosphatase. For example, the Leishmania major enzyme LmACR2 is both a phosphatase and an arsenate reductase, and its structure bears similarity to the structure of the catalytic domain of human Cdc25 phosphatase. These reductases contain an active site C-X5-R signature motif, where C is the catalytic cysteine, the five X residues form a phosphate binding loop, and R is a highly conserved arginine, which is also present in human Cdc25 phosphatases. We therefore investigated the possibility that the three human Cdc25 isoforms might have adventitious arsenate reductase activity. The sequences for the catalytic domains of Cdc25A, -B, and -C were cloned individually into a prokaryotic expression vector, and their gene products were purified from a bacterial host using nickel affinity chromatography. While each of the three Cdc25 catalytic domains exhibited phosphatase activity, arsenate reductase activity was observed only with Cdc25B and -C. These two enzymes reduced inorganic arsenate but not methylated pentavalent arsenicals. Alteration of either the cysteine and arginine residues of the Cys-X5-Arg motif led to the loss of both reductase and phosphatase activities. Our observations suggest that Cdc25B and -C may adventitiously reduce arsenate to the more toxic arsenite and may also provide a framework for identifying other human protein tyrosine phosphatases containing the active site Cys-X5-Arg loop that might moonlight as arsenate reductases. PMID:20025242

  12. Identification of the reactive cysteine residue (Cys227) in human carbonyl reductase.

    PubMed

    Tinguely, J N; Wermuth, B

    1999-02-01

    Carbonyl reductase is highly susceptible to inactivation by organomercurials suggesting the presence of a reactive cysteine residue in, or close to, the active site. This residue is also close to a site which binds glutathione. Structurally, carbonyl reductase belongs to the short-chain dehydrogenase/reductase family and contains five cysteine residues, none of which is conserved within the family. In order to identify the reactive residue and investigate its possible role in glutathione binding, alanine was substituted for each cysteine residue of human carbonyl reductase by site-directed mutagenesis. The mutant enzymes were expressed in Escherichia coli and purified to homogeneity. Four of the five mutants (C26A, C122A C150A and C226A) exhibited wild-type-like enzyme activity, although K(m) values of C226A for three structurally different substrates were increased threefold to 10-fold. The fifth mutant, C227A, showed a 10-15-fold decrease in kcat and a threefold to 40-fold increase in K(m), resulting in a 30-500-fold drop in kcat/K(m). NaCl (300 mM) increased the activity of C227A 16-fold, whereas the activity of the wild-type enzyme was only doubled. Substitution of serine rather than alanine for Cys227 similarly affected the kinetic constants with the exception that NaCl did not activate the enzyme. Both C227A and C227S mutants were insensitive to inactivation by 4-hydroxymercuribenzoate. Unlike the parent carbonyl compounds, the glutathione adducts of menadione and prostaglandin A1 were better substrates for the C227A and C227S mutants than the wild-type enzyme. Conversely, the binding of free glutathione to both mutants was reduced. Our findings indicate that Cys227 is the reactive residue and suggest that it is involved in the binding of both substrate and glutathione. PMID:10091578

  13. Glutathione reductase-mediated synthesis of tellurium-containing nanostructures exhibiting antibacterial properties.

    PubMed

    Pugin, Benoit; Cornejo, Fabián A; Muñoz-Díaz, Pablo; Muñoz-Villagrán, Claudia M; Vargas-Pérez, Joaquín I; Arenas, Felipe A; Vásquez, Claudio C

    2014-11-01

    Tellurium, a metalloid belonging to group 16 of the periodic table, displays very interesting physical and chemical properties and lately has attracted significant attention for its use in nanotechnology. In this context, the use of microorganisms for synthesizing nanostructures emerges as an eco-friendly and exciting approach compared to their chemical synthesis. To generate Te-containing nanostructures, bacteria enzymatically reduce tellurite to elemental tellurium. In this work, using a classic biochemical approach, we looked for a novel tellurite reductase from the Antarctic bacterium Pseudomonas sp. strain BNF22 and used it to generate tellurium-containing nanostructures. A new tellurite reductase was identified as glutathione reductase, which was subsequently overproduced in Escherichia coli. The characterization of this enzyme showed that it is an NADPH-dependent tellurite reductase, with optimum reducing activity at 30°C and pH 9.0. Finally, the enzyme was able to generate Te-containing nanostructures, about 68 nm in size, which exhibit interesting antibacterial properties against E. coli, with no apparent cytotoxicity against eukaryotic cells. PMID:25193000

  14. Discovering Echinococcus granulosus thioredoxin glutathione reductase inhibitors through site-specific dynamic combinatorial chemistry.

    PubMed

    Saiz, Cecilia; Castillo, Valerie; Fontán, Pablo; Bonilla, Mariana; Salinas, Gustavo; Rodríguez-Haralambides, Alejandra; Mahler, S Graciela

    2014-02-01

    In this study, we report a strategy using dynamic combinatorial chemistry for targeting the thioredoxin (Trx)-reductase catalytic site on Trx glutathione reductase (TGR), a pyridine nucleotide thiol-disulfide oxido-reductase. We chose Echinococcus granulosus TGR since it is a bottleneck enzyme of platyhelminth parasites and a validated pharmacological target. A dynamic combinatorial library (DCL) was constructed based on thiol-disulfide reversible exchange. We demonstrate the use of 5-thio-2-nitrobenzoic acid (TNB) as a non-covalent anchor fragment in a DCL templated by E. granulosus TGR. The heterodimer of TNB and bisthiazolidine (2af) was identified, upon library analysis by HPLC (IC50 = 24 μM). Furthermore, 14 analogs were synthetically prepared and evaluated against TGR. This allowed the study of a structure-activity relationship and the identification of a disulfide TNB-tricyclic bisthiazolidine (2aj) as the best enzyme inhibitor in these series, with an IC50 = 24 μM. Thus, our results validate the use of DCL for targeting thiol-disulfide oxido-reductases.

  15. Molecular cloning and expression of the human delta7-sterol reductase.

    PubMed

    Moebius, F F; Fitzky, B U; Lee, J N; Paik, Y K; Glossmann, H

    1998-02-17

    Inhibitors of the last steps of cholesterol biosynthesis such as AY9944 and BM15766 severely impair brain development. Their molecular target is the Delta7-sterol reductase (EC 1.3.1.21), suspected to be defective in the Smith-Lemli-Opitz syndrome, a frequent inborn disorder of sterol metabolism. Molecular cloning of the cDNA revealed that the human enzyme is a membrane-bound protein with a predicted molecular mass of 55 kDa and six to nine putative transmembrane segments. The protein is structurally related to plant and yeast sterol reductases. In adults the ubiquitously transcribed mRNA is most abundant in adrenal gland, liver, testis, and brain. The Delta7-sterol reductase is the ultimate enzyme of cholesterol biosynthesis in vertebrates and is absent from yeast. Microsomes from Saccharomyces cerevisiae strains heterologously expressing the human cDNA remove the C7-8 double bond in 7-dehydrocholesterol. The conversion to cholesterol depends on NADPH and is potently inhibited by AY9944 (IC50 0.013 microM), BM15766 (IC50 1.2 microM), and triparanol (IC50 14 microM). Our work paves the way to clarify whether a defect in the delta7-sterol reductase gene underlies the Smith-Lemli-Opitz syndrome. PMID:9465114

  16. Molecular cloning and expression of the human Δ7-sterol reductase

    PubMed Central

    Moebius, Fabian F.; Fitzky, Barbara U.; Lee, Joon No; Paik, Young-Ki; Glossmann, Hartmut

    1998-01-01

    Inhibitors of the last steps of cholesterol biosynthesis such as AY9944 and BM15766 severely impair brain development. Their molecular target is the Δ7-sterol reductase (EC 1.3.1.21), suspected to be defective in the Smith–Lemli–Opitz syndrome, a frequent inborn disorder of sterol metabolism. Molecular cloning of the cDNA revealed that the human enzyme is a membrane-bound protein with a predicted molecular mass of 55 kDa and six to nine putative transmembrane segments. The protein is structurally related to plant and yeast sterol reductases. In adults the ubiquitously transcribed mRNA is most abundant in adrenal gland, liver, testis, and brain. The Δ7-sterol reductase is the ultimate enzyme of cholesterol biosynthesis in vertebrates and is absent from yeast. Microsomes from Saccharomyces cerevisiae strains heterologously expressing the human cDNA remove the C7–8 double bond in 7-dehydrocholesterol. The conversion to cholesterol depends on NADPH and is potently inhibited by AY9944 (IC50 0.013 μM), BM15766 (IC50 1.2 μM), and triparanol (IC50 14 μM). Our work paves the way to clarify whether a defect in the Δ7-sterol reductase gene underlies the Smith–Lemli–Opitz syndrome. PMID:9465114

  17. Glutathione Reductase-Mediated Synthesis of Tellurium-Containing Nanostructures Exhibiting Antibacterial Properties

    PubMed Central

    Pugin, Benoit; Cornejo, Fabián A.; Muñoz-Díaz, Pablo; Muñoz-Villagrán, Claudia M.; Vargas-Pérez, Joaquín I.; Arenas, Felipe A.

    2014-01-01

    Tellurium, a metalloid belonging to group 16 of the periodic table, displays very interesting physical and chemical properties and lately has attracted significant attention for its use in nanotechnology. In this context, the use of microorganisms for synthesizing nanostructures emerges as an eco-friendly and exciting approach compared to their chemical synthesis. To generate Te-containing nanostructures, bacteria enzymatically reduce tellurite to elemental tellurium. In this work, using a classic biochemical approach, we looked for a novel tellurite reductase from the Antarctic bacterium Pseudomonas sp. strain BNF22 and used it to generate tellurium-containing nanostructures. A new tellurite reductase was identified as glutathione reductase, which was subsequently overproduced in Escherichia coli. The characterization of this enzyme showed that it is an NADPH-dependent tellurite reductase, with optimum reducing activity at 30°C and pH 9.0. Finally, the enzyme was able to generate Te-containing nanostructures, about 68 nm in size, which exhibit interesting antibacterial properties against E. coli, with no apparent cytotoxicity against eukaryotic cells. PMID:25193000

  18. Functional genomic studies of aldo-keto reductases.

    PubMed

    Petrash, J M; Murthy, B S; Young, M; Morris, K; Rikimaru, L; Griest, T A; Harter, T

    2001-01-30

    Aldose reductase (AR) is considered a potential mediator of diabetic complications and is a drug target for inhibitors of diabetic retinopathy and neuropathy in clinical trials. However, the physiological role of this enzyme still has not been established. Since effective inhibition of diabetic complications will require early intervention, it is important to delineate whether AR fulfills a physiological role that cannot be compensated by an alternate aldo-keto reductase. Functional genomics provides a variety of powerful new tools to probe the physiological roles of individual genes, especially those comprising gene families. Several eucaryotic genomes have been sequenced and annotated, including yeast, nematode and fly. To probe the function of AR, we have chosen to utilize the budding yeast Saccharomyces cerevisiae as a potential model system. Unlike Caenorhabditis elegans and D. melanogaster, yeast provides a more desirable system for our studies because its genome is manipulated more readily and is able to sustain multiple gene deletions in the presence of either drug or auxotrophic selectable markers. Using BLAST searches against the human AR gene sequence, we identified six genes in the complete S. cerevisiae genome with strong homology to AR. In all cases, amino acids thought to play important catalytic roles in human AR are conserved in the yeast AR-like genes. All six yeast AR-like open reading frames (ORFs) have been cloned into plasmid expression vectors. Substrate and AR inhibitor specificities have been surveyed on four of the enzyme forms to identify, which are the most functionally similar to human AR. Our data reveal that two of the enzymes (YDR368Wp and YHR104Wp) are notable for their similarity to human AR in terms of activity with aldoses and substituted aromatic aldehydes. Ongoing studies are aimed at characterizing the phenotypes of yeast strains containing single and multiple knockouts of the AR-like genes. PMID:11306085

  19. Characterization of the nitric oxide reductase from Thermus thermophilus.

    PubMed

    Schurig-Briccio, Lici A; Venkatakrishnan, Padmaja; Hemp, James; Bricio, Carlos; Berenguer, José; Gennis, Robert B

    2013-07-30

    Nitrous oxide (N2O) is a powerful greenhouse gas implicated in climate change. The dominant source of atmospheric N2O is incomplete biological dentrification, and the enzymes responsible for the release of N2O are NO reductases. It was recently reported that ambient emissions of N2O from the Great Boiling Spring in the United States Great Basin are high, and attributed to incomplete denitrification by Thermus thermophilus and related bacterial species [Hedlund BP, et al. (2011) Geobiology 9(6)471-480]. In the present work, we have isolated and characterized the NO reductase (NOR) from T. thermophilus. The enzyme is a member of the cNOR family of enzymes and belongs to a phylogenetic clade that is distinct from previously examined cNORs. Like other characterized cNORs, the T. thermophilus cNOR consists of two subunits, NorB and NorC, and contains a one heme c, one Ca(2+), a low-spin heme b, and an active site consisting of a high-spin heme b and FeB. The roles of conserved residues within the cNOR family were investigated by site-directed mutagenesis. The most important and unexpected result is that the glutamic acid ligand to FeB is not essential for function. The E211A mutant retains 68% of wild-type activity. Mutagenesis data and the pattern of conserved residues suggest that there is probably not a single pathway for proton delivery from the periplasm to the active site that is shared by all cNORs, and that there may be multiple pathways within the T. thermophilus cNOR. PMID:23858452

  20. Characterization of the nitric oxide reductase from Thermus thermophilus

    PubMed Central

    Schurig-Briccio, Lici A.; Venkatakrishnan, Padmaja; Hemp, James; Bricio, Carlos; Berenguer, José; Gennis, Robert B.

    2013-01-01

    Nitrous oxide (N2O) is a powerful greenhouse gas implicated in climate change. The dominant source of atmospheric N2O is incomplete biological dentrification, and the enzymes responsible for the release of N2O are NO reductases. It was recently reported that ambient emissions of N2O from the Great Boiling Spring in the United States Great Basin are high, and attributed to incomplete denitrification by Thermus thermophilus and related bacterial species [Hedlund BP, et al. (2011) Geobiology 9(6)471–480]. In the present work, we have isolated and characterized the NO reductase (NOR) from T. thermophilus. The enzyme is a member of the cNOR family of enzymes and belongs to a phylogenetic clade that is distinct from previously examined cNORs. Like other characterized cNORs, the T. thermophilus cNOR consists of two subunits, NorB and NorC, and contains a one heme c, one Ca2+, a low-spin heme b, and an active site consisting of a high-spin heme b and FeB. The roles of conserved residues within the cNOR family were investigated by site-directed mutagenesis. The most important and unexpected result is that the glutamic acid ligand to FeB is not essential for function. The E211A mutant retains 68% of wild-type activity. Mutagenesis data and the pattern of conserved residues suggest that there is probably not a single pathway for proton delivery from the periplasm to the active site that is shared by all cNORs, and that there may be multiple pathways within the T. thermophilus cNOR. PMID:23858452

  1. A dissimilatory nitrite reductase in Paracoccus halodenitrificans

    NASA Technical Reports Server (NTRS)

    Grant, M. A.; Hochstein, L. I.

    1984-01-01

    Paracoccus halodenitrificans produced a membrane-associated nitrite reductase. Spectrophotometric analysis showed it to be associated with a cd-cytochrome and located on the inner side of the cytoplasmic membrane. When supplied with nitrite, membrane preparations produced nitrous oxide and nitric oxide in different ratios depending on the electron donor employed. The nitrite reductase was maximally active at relatively low concentrations of sodium chloride and remained attached to the membranes at 100 mM sodium chloride.

  2. Presence of the 5,10-methylenetetrahydrofolate reductase C677T mutation in Puerto Rican patients with neural tube defects.

    PubMed

    García-Fragoso, Lourdes; García-García, Inés; de la Vega, Alberto; Renta, Jessicca; Cadilla, Carmen L

    2002-01-01

    Folic acid supplementation can reduce the incidence of neural tube defects. The first reported genetic risk factor for neural tube defects is a C677T mutation in the 5,10-methylenetetrahydrofolate reductase gene, resulting in decreased activity of the enzyme. We examined the enzyme mutation role of methylenetetrahydrofolate reductase in the etiology of neural tube defects in our population. The study group consisted of 204 Puerto Rican individuals including 37 pregnant females with a prenatal diagnosis of neural tube defects in their fetuses, 31 newborns, 36 fathers, and 100 healthy adults. The prevalence of the C677T mutation was examined. Homozygosity for the alanine to valine substitution (TT) was observed in 9% of the controls and 19% of the mothers with children with neural tube defects. Our results indicate that the presence of the T allele at the methylenetetrahydrofolate reductase 677 position may increase the risk of giving birth to an infant with a neural tube defect.

  3. Purification and kinetic analysis of cytosolic and mitochondrial thioredoxin glutathione reductase extracted from Taenia solium cysticerci.

    PubMed

    Plancarte, Agustin; Nava, Gabriela

    2015-02-01

    Thioredoxin glutathione reductases (TGRs) (EC 1.8.1.9) were purified to homogeneity from the cytosolic (cTsTGR) and mitochondrial (mTsTGR) fractions of Taenia solium, the agent responsible for neurocysticercosis, one of the major central nervous system parasitic diseases in humans. TsTGRs had a relative molecular weight of 132,000, while the corresponding value per subunit obtained under denaturing conditions, was of 62,000. Specific activities for thioredoxin reductase and glutathione reductase substrates for both TGRs explored were in the range or lower than values obtained for other platyhelminths and mammalian TGRs. cTsTGR and mTsTGR also showed hydroperoxide reductase activity using hydroperoxide as substrate. Km(DTNB) and Kcat(DTNB) values for cTsTGR and mTsTGR (88 µM and 1.9 s(-1); 45 µM and 12.6 s(-1), respectively) and Km(GSSG) and Kcat(GSSG) values for cTsTGR and mTsTGR (6.3 µM and 0.96 s(-1); 4 µM and 1.62 s(-1), respectively) were similar to or lower than those reported for mammalian TGRs. Mass spectrometry analysis showed that 12 peptides from cTsTGR and seven from mTsTGR were a match for gi|29825896 thioredoxin glutathione reductase [Echinococcus granulosus], confirming that both enzymes are TGRs. Both T. solium TGRs were inhibited by the gold compound auranofin, a selective inhibitor of thiol-dependent flavoreductases (I₅₀ = 3.25, 2.29 nM for DTNB and GSSG substrates, respectively for cTsTGR; I₅₀ = 5.6, 25.4 nM for mTsTGR toward the same substrates in the described order). Glutathione reductase activity of cTsTGR and mTsTGR exhibited hysteretic behavior with moderate to high concentrations of GSSG; this result was not observed either with thioredoxin, DTNB or NADPH. However, the observed hysteretic kinetics was suppressed with increasing amounts of both parasitic TGRs. These data suggest the existence of an effective substitute which may account for the lack of the detoxification enzymes glutathione reductase

  4. Marek’s disease virus encoded ribonucleotide reductase large subunit is essential for in vivo replication and plays a critical role in viral pathogenesis.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease virus encodes a ribonucleotide reductase (RR) that consists of two subunits namely RR1 and RR2, both of which associate to form an active holoenzyme and both subunits are necessary for enzyme activity. It is an essential enzyme for the conversion of ribonucleotides to deoxyribonucleo...

  5. [Comparison of Physico-chemical Aspects between E. coli and Human Dihydrofolate Reductase: an Equilibrium Unfolding Study].

    PubMed

    Thapliyal, Charu; Jain, Neha; Chaudhuri, Pratima

    2015-01-01

    A protein, differing in origin, may exhibit variable physicochemical behaviour, difference in sequence homology, fold and function. Thus studying structure-function relationship of proteins from altered sources is meaningful in the sense that it may give rise to comparative aspects of their sequence-structure-function relationship. Dihydrofolate reductase is an enzyme involved in cell cycle regulation. It is a significant enzyme as.a target for developing anticancer drugs. Hence, detailed understanding of structure-function relationships of wide variants of the enzyme dihydrofolate reductase would be important for developing an inhibitor or an antagonist against the enzyme involved in the cellular developmental processes. In this communication, we have reported the comparative structure-function relationship between E. coli and human dihydrofolate reductase. The differences in the unfolding behaviour of these two proteins have been investigated to understand various properties of these two proteins like relative' stability differences and variation in conformational changes under identical denaturing conditions. The equilibrium unfolding mechanism of dihydrofolate reductase proteins using guanidine hydrochloride as a denaturant in the presence of various types of osmolytes has been monitored using loss in enzymatic activity, intrinsic tryptophan fluorescence and an extrinsic fluorophore 8-anilino-1-naphthalene-sulfonic acid as probes. It has been observed that osmolytes, such as 1M sucrose, and 30% glycerol, provided enhanced stability to both variants of dihydrofolate reductase. Their level of stabilisation has been observed to be dependent on intrinsic protein stability. It was observed that 100 mM proline does not show any 'significant stabilisation to either of dihydrofolate reductases. In the present study, it has been observed that the human protein is relatively less stable than the E.coli counterpart.

  6. Molecular cloning, expression and catalytic activity of a human AKR7 member of the aldo-keto reductase superfamily: evidence that the major 2-carboxybenzaldehyde reductase from human liver is a homologue of rat aflatoxin B1-aldehyde reductase.

    PubMed Central

    Ireland, L S; Harrison, D J; Neal, G E; Hayes, J D

    1998-01-01

    The masking of charged amino or carboxy groups by N-phthalidylation and O-phthalidylation has been used to improve the absorption of many drugs, including ampicillin and 5-fluorouracil. Following absorption of such prodrugs, the phthalidyl group is hydrolysed to release 2-carboxybenzaldehyde (2-CBA) and the pharmaceutically active compound; in humans, 2-CBA is further metabolized to 2-hydroxymethylbenzoic acid by reduction of the aldehyde group. In the present work, the enzyme responsible for the reduction of 2-CBA in humans is identified as a homologue of rat aflatoxin B1-aldehyde reductase (rAFAR). This novel human aldo-keto reductase (AKR) has been cloned from a liver cDNA library, and together with the rat protein, establishes the AKR7 family of the AKR superfamily. Unlike its rat homologue, human AFAR (hAFAR) appears to be constitutively expressed in human liver, and is widely expressed in extrahepatic tissues. The deduced human and rat protein sequences share 78% identity and 87% similarity. Although the two AKR7 proteins are predicted to possess distinct secondary structural features which distinguish them from the prototypic AKR1 family of AKRs, the catalytic- and NADPH-binding residues appear to be conserved in both families. Certain of the predicted structural features of the AKR7 family members are shared with the AKR6 beta-subunits of voltage-gated K+-channels. In addition to reducing the dialdehydic form of aflatoxin B1-8,9-dihydrodiol, hAFAR shows high affinity for the gamma-aminobutyric acid metabolite succinic semialdehyde (SSA) which is structurally related to 2-CBA, suggesting that hAFAR could function as both a SSA reductase and a 2-CBA reductase in vivo. This hypothesis is supported in part by the finding that the major peak of 2-CBA reductase activity in human liver co-purifies with hAFAR protein. PMID:9576847

  7. Crystal Structure of ChrR -- A Quinone Reductase with the Capacity to Reduce Chromate

    SciTech Connect

    Eswaramoorthy S.; Poulain, S.; Hienerwadel, R.; Bremond, N.; Sylvester, M. D.; Zhang, Y.-B.; Berthomieu, C.; van der Lelie, D.; Matin, A.

    2012-04-01

    The Escherichia coli ChrR enzyme is an obligatory two-electron quinone reductase that has many applications, such as in chromate bioremediation. Its crystal structure, solved at 2.2 {angstrom} resolution, shows that it belongs to the flavodoxin superfamily in which flavin mononucleotide (FMN) is firmly anchored to the protein. ChrR crystallized as a tetramer, and size exclusion chromatography showed that this is the oligomeric form that catalyzes chromate reduction. Within the tetramer, the dimers interact by a pair of two hydrogen bond networks, each involving Tyr128 and Glu146 of one dimer and Arg125 and Tyr85 of the other; the latter extends to one of the redox FMN cofactors. Changes in each of these amino acids enhanced chromate reductase activity of the enzyme, showing that this network is centrally involved in chromate reduction.

  8. Crystal Structure of ChrR—A Quinone Reductase with the Capacity to Reduce Chromate

    PubMed Central

    Hienerwadel, Rainer; Bremond, Nicolas; Sylvester, Matthew D.; Zhang, Yian-Biao; Berthomieu, Catherine; Van Der Lelie, Daniel; Matin, A.

    2012-01-01

    The Escherichia coli ChrR enzyme is an obligatory two-electron quinone reductase that has many applications, such as in chromate bioremediation. Its crystal structure, solved at 2.2 Å resolution, shows that it belongs to the flavodoxin superfamily in which flavin mononucleotide (FMN) is firmly anchored to the protein. ChrR crystallized as a tetramer, and size exclusion chromatography showed that this is the oligomeric form that catalyzes chromate reduction. Within the tetramer, the dimers interact by a pair of two hydrogen bond networks, each involving Tyr128 and Glu146 of one dimer and Arg125 and Tyr85 of the other; the latter extends to one of the redox FMN cofactors. Changes in each of these amino acids enhanced chromate reductase activity of the enzyme, showing that this network is centrally involved in chromate reduction. PMID:22558308

  9. Changes in cerebrospinal fluid levels of malondialdehyde and glutathione reductase activity in multiple sclerosis.

    PubMed

    Calabrese, V; Raffaele, R; Cosentino, E; Rizza, V

    1994-01-01

    The chemical composition of human cerebrospinal fluid (CSF) is considered to reflect brain metabolism. In this study we measured malondialdehyde (MDA) levels and the activity of enzymes involved in antioxidative processes, glutathione reductase and glutathione peroxidase, in human cerebrospinal fluid of multiple-sclerosis (MS) patients and normal healthy volunteers. Our results indicated that the cerebrospinal fluid in MS showed significantly higher endogenous levels of MDA than the control, as well as a much greater resistance to in-vitro stimulation test. In addition, we found the activity of GSH reductase significantly increased, about twice the control values, whereas the activity of glutathione peroxidase was markedly decreased as compared to control values. Our findings suggest that in MS the activity of antioxidant enzymes is modified, and indicates the conceivable possibility of a pathogenic role of oxidative stress in the determinism of the disease. PMID:7607784

  10. The Impact of Enzyme Orientation and Electrode Topology on the Catalytic Activity of Adsorbed Redox Enzymes

    PubMed Central

    McMillan, Duncan G. G.; Marritt, Sophie J.; Kemp, Gemma L.; Gordon-Brown, Piers; Butt, Julea N.; Jeuken, Lars J. C.

    2014-01-01

    It is well established that the structural details of electrodes and their interaction with adsorbed enzyme influences the interfacial electron transfer rate. However, for nanostructured electrodes, it is likely that the structure also impacts on substrate flux near the adsorbed enzymes and thus catalytic activity. Furthermore, for enzymes converting macro-molecular substrates it is possible that the enzyme orientation determines the nature of interactions between the adsorbed enzyme and substrate and therefore catalytic rates. In essence the electrode may impede substrate access to the active site of the enzyme. We have tested these possibilities through studies of the catalytic performance of two enzymes adsorbed on topologically distinct electrode materials. Escherichia coli NrfA, a nitrite reductase, was adsorbed on mesoporous, nanocrystalline SnO2 electrodes. CymA from Shewanella oneidensis MR-1 reduces menaquinone-7 within 200 nm sized liposomes and this reaction was studied with the enzyme adsorbed on SAM modified ultra-flat gold electrodes. PMID:24634538

  11. The Impact of Enzyme Orientation and Electrode Topology on the Catalytic Activity of Adsorbed Redox Enzymes.

    PubMed

    McMillan, Duncan G G; Marritt, Sophie J; Kemp, Gemma L; Gordon-Brown, Piers; Butt, Julea N; Jeuken, Lars J C

    2013-11-01

    It is well established that the structural details of electrodes and their interaction with adsorbed enzyme influences the interfacial electron transfer rate. However, for nanostructured electrodes, it is likely that the structure also impacts on substrate flux near the adsorbed enzymes and thus catalytic activity. Furthermore, for enzymes converting macro-molecular substrates it is possible that the enzyme orientation determines the nature of interactions between the adsorbed enzyme and substrate and therefore catalytic rates. In essence the electrode may impede substrate access to the active site of the enzyme. We have tested these possibilities through studies of the catalytic performance of two enzymes adsorbed on topologically distinct electrode materials. Escherichia coli NrfA, a nitrite reductase, was adsorbed on mesoporous, nanocrystalline SnO2 electrodes. CymA from Shewanella oneidensis MR-1 reduces menaquinone-7 within 200 nm sized liposomes and this reaction was studied with the enzyme adsorbed on SAM modified ultra-flat gold electrodes.

  12. Possible involvement of a L-delta 1-pyrroline-5-carboxylate (P5C) reductase in the synthesis of proline in Desulfovibrio desulfuricans Norway.

    PubMed

    Fons, M; Cami, B; Chippaux, M

    1991-09-16

    A L-delta 1-pyrroline-5-carboxylate reductase activity has been detected in crude extracts of Desulfovibrio desulfuricans Norway. This P5C reductase activity is also found when a 2.5 kb D. desulfuricans DNA fragment is introduced into an Escherichia coli proC mutant. Although it restores growth of the proC mutant, the ProDd enzyme might be detrimental to the E. coli host since the plasmid carrying the cognate proDd gene is segregated at high rate by the cells but is stabilized by small deletions which lead to a loss of the P5C reductase activity. PMID:1898390

  13. Monoterpene metabolism. Cloning, expression, and characterization of menthone reductases from peppermint.

    PubMed

    Davis, Edward M; Ringer, Kerry L; McConkey, Marie E; Croteau, Rodney

    2005-03-01

    (-)-Menthone is the predominant monoterpene produced in the essential oil of maturing peppermint (Mentha x piperita) leaves during the filling of epidermal oil glands. This early biosynthetic process is followed by a second, later oil maturation program (approximately coincident with flower initiation) in which the C3-carbonyl of menthone is reduced to yield (-)-(3R)-menthol and (+)-(3S)-neomenthol by two distinct NADPH-dependent ketoreductases. An activity-based in situ screen, by expression in Escherichia coli of 23 putative redox enzymes from an immature peppermint oil gland expressed sequence tag library, was used to isolate a cDNA encoding the latter menthone:(+)-(3S)-neomenthol reductase. Reverse transcription-PCR amplification and RACE were used to acquire the former menthone:(-)-(3R)-menthol reductase directly from mRNA isolated from the oil gland secretory cells of mature leaves. The deduced amino acid sequences of these two reductases share 73% identity, provide no apparent subcellular targeting information, and predict inclusion in the short-chain dehydrogenase/reductase family of enzymes. The menthone:(+)-(3S)-neomenthol reductase cDNA encodes a 35,722-D protein, and the recombinant enzyme yields 94% (+)-(3S)-neomenthol and 6% (-)-(3R)-menthol from (-)-menthone as substrate, and 86% (+)-(3S)-isomenthol and 14% (+)-(3R)-neoisomenthol from (+)-isomenthone as substrate, has a pH optimum of 9.3, and K(m) values of 674 mum, > 1 mm, and 10 mum for menthone, isomenthone, and NADPH, respectively, with a k(cat) of 0.06 s(-1). The recombinant menthone:(-)-(3R)-menthol reductase has a deduced size of 34,070 D and converts (-)-menthone to 95% (-)-(3R)-menthol and 5% (+)-(3S)-neomenthol, and (+)-isomenthone to 87% (+)-(3R)-neoisomenthol and 13% (+)-(3S)-isomenthol, displays optimum activity at neutral pH, and has K(m) values of 3.0 mum, 41 mum, and 0.12 mum for menthone, isomenthone, and NADPH, respectively, with a k(cat) of 0.6 s(-1). The respective activities of

  14. Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species.

    PubMed

    Gray, Joshua P; Mishin, Vladimir; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2010-09-01

    Inhalation of vesicants including sulfur mustard can cause significant damage to the upper airways. This is the result of vesicant-induced modifications of proteins important in maintaining the integrity of the lung. Cytochrome P450s are the major enzymes in the lung mediating detoxification of sulfur mustard and its metabolites. NADPH cytochrome P450 reductase is a flavin-containing electron donor for cytochrome P450. The present studies demonstrate that the sulfur mustard analog, 2-chloroethyl ethyl sulfide (CEES), is a potent inhibitor of human recombinant cytochrome P450 reductase, as well as native cytochrome P450 reductase from liver microsomes of saline and beta-naphthoflavone-treated rats, and cytochrome P450 reductase from type II lung epithelial cells. Using rat liver microsomes from beta-naphthoflavone-treated rats, CEES was found to inhibit CYP 1A1 activity. This inhibition was overcome by microsomal cytochrome P450 reductase from saline-treated rats, which lack CYP 1A1 activity, demonstrating that the CEES inhibitory activity was selective for cytochrome P450 reductase. Cytochrome P450 reductase also generates reactive oxygen species (ROS) via oxidation of NADPH. In contrast to its inhibitory effects on the reduction of cytochrome c and CYP1A1 activity, CEES was found to stimulate ROS formation. Taken together, these data demonstrate that sulfur mustard vesicants target cytochrome P450 reductase and that this effect may be an important mechanism mediating oxidative stress and lung injury.

  15. Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species

    SciTech Connect

    Gray, Joshua P.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2010-09-01

    Inhalation of vesicants including sulfur mustard can cause significant damage to the upper airways. This is the result of vesicant-induced modifications of proteins important in maintaining the integrity of the lung. Cytochrome P450s are the major enzymes in the lung mediating detoxification of sulfur mustard and its metabolites. NADPH cytochrome P450 reductase is a flavin-containing electron donor for cytochrome P450. The present studies demonstrate that the sulfur mustard analog, 2-chloroethyl ethyl sulfide (CEES), is a potent inhibitor of human recombinant cytochrome P450 reductase, as well as native cytochrome P450 reductase from liver microsomes of saline and {beta}-naphthoflavone-treated rats, and cytochrome P450 reductase from type II lung epithelial cells. Using rat liver microsomes from {beta}-naphthoflavone-treated rats, CEES was found to inhibit CYP 1A1 activity. This inhibition was overcome by microsomal cytochrome P450 reductase from saline-treated rats, which lack CYP 1A1 activity, demonstrating that the CEES inhibitory activity was selective for cytochrome P450 reductase. Cytochrome P450 reductase also generates reactive oxygen species (ROS) via oxidation of NADPH. In contrast to its inhibitory effects on the reduction of cytochrome c and CYP1A1 activity, CEES was found to stimulate ROS formation. Taken together, these data demonstrate that sulfur mustard vesicants target cytochrome P450 reductase and that this effect may be an important mechanism mediating oxidative stress and lung injury.

  16. Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species.

    PubMed

    Gray, Joshua P; Mishin, Vladimir; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2010-09-01

    Inhalation of vesicants including sulfur mustard can cause significant damage to the upper airways. This is the result of vesicant-induced modifications of proteins important in maintaining the integrity of the lung. Cytochrome P450s are the major enzymes in the lung mediating detoxification of sulfur mustard and its metabolites. NADPH cytochrome P450 reductase is a flavin-containing electron donor for cytochrome P450. The present studies demonstrate that the sulfur mustard analog, 2-chloroethyl ethyl sulfide (CEES), is a potent inhibitor of human recombinant cytochrome P450 reductase, as well as native cytochrome P450 reductase from liver microsomes of saline and beta-naphthoflavone-treated rats, and cytochrome P450 reductase from type II lung epithelial cells. Using rat liver microsomes from beta-naphthoflavone-treated rats, CEES was found to inhibit CYP 1A1 activity. This inhibition was overcome by microsomal cytochrome P450 reductase from saline-treated rats, which lack CYP 1A1 activity, demonstrating that the CEES inhibitory activity was selective for cytochrome P450 reductase. Cytochrome P450 reductase also generates reactive oxygen species (ROS) via oxidation of NADPH. In contrast to its inhibitory effects on the reduction of cytochrome c and CYP1A1 activity, CEES was found to stimulate ROS formation. Taken together, these data demonstrate that sulfur mustard vesicants target cytochrome P450 reductase and that this effect may be an important mechanism mediating oxidative stress and lung injury. PMID:20561902

  17. Properties of seleno-methionine substituted assimilatory nitrate reductase

    SciTech Connect

    Solomonson, L.P.; Barber, M.J. )

    1991-03-11

    Assimilatory NADH:nitrate reductase contains FAD, heme and Mo-pterin arranged in an NADH{yields}FAD{yields}heme{yields}Mo-Pterin{yields}NO{sub 3} electron transfer sequence. A functional Mo-pterin center is essential for all nitrate-reducing activities. To assess the possible functional role of Met, a Se-Met substituted NR was obtained by addition of Se-Met to ammonia-grown Chlorella cells prior to induction of NR activity. Increase in NADH:dehydrogenase partial activities and nitrate reductase protein proceeded normally following induction but little or no nitrate-reducing activity was expressed. This effect was observed with as little as 10{sup {minus}5} Se-Met and was prevented by a 10-fold excess of Met. A less pronounced effect was observed with 10{sup {minus}4}M Se-Cys. The purified Se-Met substituted enzyme exhibited the same apparent physical size, spectral properties and NADH dehydrogenase activities as control NR but was devoid of nitrate-reducing activities. These results suggest that one or more Met residues are essential for the catalytic function of the molybdo-pterin center of assimilatory NR.

  18. Life with too much polyprenol: polyprenol reductase deficiency.

    PubMed

    Gründahl, J E H; Guan, Z; Rust, S; Reunert, J; Müller, B; Du Chesne, I; Zerres, K; Rudnik-Schöneborn, S; Ortiz-Brüchle, N; Häusler, M G; Siedlecka, J; Swiezewska, E; Raetz, C R H; Marquardt, T

    2012-04-01

    Congenital disorders of glycosylation (CDG) are caused by a dysfunction of glycosylation, an essential step in the manufacturing process of glycoproteins. This paper focuses on a 6-year-old patient with a new type of CDG-I caused by a defect of the steroid 5α reductase type 3 gene (SRD5A3). The clinical features were psychomotor retardation, pathological nystagmus, slight muscular hypotonia and microcephaly. SRD5A3 was recently identified encoding the polyprenol reductase, an enzyme catalyzing the final step of the biosynthesis of dolichol, which is required for the assembly of the glycans needed for N-glycosylation. Although an early homozygous stop-codon (c.57G>A [W19X]) with no functional protein was found in the patient, about 70% of transferrin (Tf) was correctly glycosylated. Quantification of dolichol and unreduced polyprenol in the patient's fibroblasts demonstrated a high polyprenol/dolichol ratio with normal amounts of dolichol, indicating that high polyprenol levels might compete with dolichol for the initiation of N-glycan assembly but without supporting normal glycosylation and that there must be an alternative pathway for dolichol biosynthesis.

  19. Recessive congenital methaemoglobinaemia: cytochrome b(5) reductase deficiency.

    PubMed

    Percy, Melanie J; Lappin, Terry R

    2008-05-01

    Some 60 years ago, Quentin Gibson reported the first hereditary disorder involving an enzyme when he deduced that familial methaemoglobinaemia was caused by an enzymatic lesion associated with the glycolysis pathway in red blood cells. This disorder, now known as recessive congenital methaemoglobinaemia (RCM), is caused by NADH-cytochrome b5 reductase (cb(5)r) deficiency. Two distinct clinical forms, types I and II, have been recognized, both characterized by cyanosis from birth. In type II, the cyanosis is accompanied by neurological impairment and reduced life expectancy. Cytochrome b(5) reductase is composed of one FAD and one NADH binding domain linked by a hinge region. It is encoded by the CYB5R3 (previously known as DIA1) gene and more than 40 mutations have been described, some of which are common to both types of RCM. Mutations associated with type II tend to cause incorrect splicing, disruption of the active site or truncation of the protein. At present the description of the sequence variants of cb(5)r in the literature is confusing, due to the use of two conventions which differ by one codon position. Herein we propose a new system for nomenclature of cb(5)r based on recommendations of the Human Genome Variation Society. The development of a heterologous expression system has allowed the impact of naturally occurring variants of cb(5)r to be assessed and has provided insight into the function of cb(5)r. PMID:18318771

  20. Stereospecificity of (+)-pinoresinol and (+)-lariciresinol reductases from Forsythia intermedia.

    PubMed

    Chu, A; Dinkova, A; Davin, L B; Bedgar, D L; Lewis, N G

    1993-12-25

    Pinoresinol/lariciresinol reductase catalyzes the first known example of a highly unusual benzylic ether reduction in plants; its mechanism of hydride transfer is described. The enzyme was found in Forsythia intermedia and catalyzes the presumed regulatory branch-points in the pathway leading to benzylaryltetrahydrofuran, dibenzylbutane, dibenzylbutyrolactone, and aryltetrahydronaphthalene lignans. Using [7,7'-2H2]-pinoresinol and [7,7'-2H3]lariciresinol as substrates, the hydride transfers of the highly unusual reductase were demonstrated to be completely stereospecific (> 99%). The incoming hydrides were found to take up the pro-R position at C-7' (and/or C-7) in lariciresinol and secoisolariciresinol, thereby eliminating the possibility of random hydride delivery to a planar quinone methide intermediate. As might be expected, the mode of hydride abstraction from NADPH was also stereospecific: using [4R-3H] and [4S-3H]NADPH, it was found that only the 4 pro-R hydrogen was abstracted for enzymatic hydride transfer.

  1. Cotton Benzoquinon Reductase: Up-Regulation During Early Fiber Development and Heterologous Expresson and Characterization in Pichia Pastoris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Benzoquinone reductase (BR) is an enzyme which catalyzes the bivalent redox reactions of quinones without the production of free radical intermediates. Using 2-D PAGE, two proteins were found to be up-regulated in wild-type cotton ovules during the fiber initiation stage. These proteins were excis...

  2. Characterization of developmental and stress mediated expression of cinnamoyl-CoA reductase (CCR) in kenaf (Hibiscus cannabinus L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cinnamoyl-CoA reductase (CCR) is an important enzyme for lignin biosynthesis as it catalyzes the first specific committed step in monolignol biosynthesis. We have cloned a full length coding sequence of CCR from kenaf (Hibiscus cannabinus L.), which contains a 1,020-bp open reading frame (ORF), enco...

  3. Genotypic variation in sulfur assimilation and metabolism of onion (Allium cepa L.) III. Characterization of sulfite reductase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic and cDNA sequences corresponding to a ferredoxin-sulfite reductase (SiR) have been cloned from bulb onion (Allium cepa L.) and the expression of the gene and activity of the enzyme characterised with respect to sulfur (S) supply. Cloning, mapping and expression studies revealed that onion ha...

  4. Identification of an L-arabinose reductase gene in Aspergillus niger and its role in L-arabinose catabolism.

    PubMed

    Mojzita, Dominik; Penttilä, Merja; Richard, Peter

    2010-07-30

    The first enzyme in the pathway for l-arabinose catabolism in eukaryotic microorganisms is a reductase, reducing l-arabinose to l-arabitol. The enzymes catalyzing this reduction are in general nonspecific and would also reduce d-xylose to xylitol, the first step in eukaryotic d-xylose catabolism. It is not clear whether microorganisms use different enzymes depending on the carbon source. Here we show that Aspergillus niger makes use of two different enzymes. We identified, cloned, and characterized an l-arabinose reductase, larA, that is different from the d-xylose reductase, xyrA. The larA is up-regulated on l-arabinose, while the xyrA is up-regulated on d-xylose. There is however an initial up-regulation of larA also on d-xylose but that fades away after about 4 h. The deletion of the larA gene in A. niger results in a slow growth phenotype on l-arabinose, whereas the growth on d-xylose is unaffected. The l-arabinose reductase can convert l-arabinose and d-xylose to their corresponding sugar alcohols but has a higher affinity for l-arabinose. The K(m) for l-arabinose is 54 + or - 6 mm and for d-xylose 155 + or - 15 mm.

  5. Characterization of a Ca/sup 2 +/, calmodulin-dependent protein kinase which is able to phosphorylate native and protease cleaved purified hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase

    SciTech Connect

    Beg, Z.H.; Stonik, J.A.; Brewer, H.B. Jr.

    1986-05-01

    The authors have extensively purified a low molecular weight Ca/sup 2 +/, calmodulin-dependent protein kinase from rat brain cytosol. This kinase (M/sub r/ 120,000) is able to phosphorylate both native and soluble purified HMG-CoA reductase. The concomitant inactivation and phosphorylation of purified HMG-CoA reductase was completely dependent on Ca/sup 2 +/ and calmodulin. Incubation of phosphorylated /sup 32/P-HMG-CoA reductase was associated with the loss of /sup 32/P-radioactivity and reactivation of inactive enzyme. Maximal phosphorylation of purified HMG-CoA reductase involved the introduction of approximately 0.5 mol phosphate/53,000 enzyme fragment. The apparent Km for purified HMG-CoA reductase was .045 mg/ml. Microsomal native HMG-CoA reductase (M/sub r/ 100,000) was also phosphorylated and inactivated following incubation with calmodulin stimulated kinase, calmodulin, Ca/sup 2 +/ and Mg-ATP; dephosphorylation (reactivation) was catalyzed by the phosphoprotein phosphatase. The isolation and characterization of the M/sub r/ 120,000 calmodulin-binding enzyme complex provides additional insights into the mechanisms of the Ca/sup 2 +/ dependent regulation of HMG-CoA reductase phosphorylation. Based on these data and the authors previous in vitro and in vivo studies, they now propose that HMG-CoA reductase activity is modulated by three separate kinase systems.

  6. The aryl hydrocarbon receptor interacts with ATP5{alpha}1, a subunit of the ATP synthase complex, and modulates mitochondrial function

    SciTech Connect

    Tappenden, Dorothy M.; Lynn, Scott G.; Crawford, Robert B.; Lee, KangAe; Vengellur, Ajith; Kaminski, Norbert E.; Thomas, Russell S.; LaPres, John J.

    2011-08-01

    Dioxins, including 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD), produce a wide range of toxic effects in mammals. Most, if not all, of these toxic effects are regulated by the aryl hydrocarbon receptor (AHR). The AHR is a ligand activated transcription factor that has been shown to interact with numerous proteins capable of influencing the receptor's function. The ability of secondary proteins to alter AHR-mediated transcriptional events, a necessary step for toxicity, led us to determine whether additional interacting proteins could be identified. To this end, we have employed tandem affinity purification (TAP) of the AHR in Hepa1c1c7 cells. TAP of the AHR, followed by mass spectrometry (MS) identified ATP5{alpha}1, a subunit of the ATP synthase complex, as a strong AHR interactor in the absence of ligand. The interaction was lost upon exposure to TCDD. The association was confirmed by co-immunoprecipitation in multiple cell lines. In addition, cell fractionation experiments showed that a fraction of the AHR is found in the mitochondria. To ascribe a potential functional role to the AHR:ATP5{alpha}1 interaction, TCDD was shown to induce a hyperpolarization of the mitochondrial membrane in an AHR-dependent and transcription-independent manner. These results suggest that a fraction of the total cellular AHR pool is localized to the mitochondria and contributes to the organelle's homeostasis. - Highlights: > The AHR interacts with the mitochondrial protein, ATP5{alpha}1. > Cell fractionation experiments show that the AHR can be found in the mitochondria. > TCDD-exposure induces a hyperpolarization of the mitochondrial inner membrane. > The hyperpolarization is AHR-dependent. > The hyperpolarization occurs without altering ATP levels within the cell.

  7. Molecular modeling toward selective inhibitors of dihydrofolate reductase from the biological warfare agent Bacillus anthracis.

    PubMed

    Giacoppo, Juliana O S; Mancini, Daiana T; Guimarães, Ana P; Gonçalves, Arlan S; da Cunha, Elaine F F; França, Tanos C C; Ramalho, Teodorico C

    2015-02-16

    In the present work, we applied docking and molecular dynamics techniques to study 11 compounds inside the enzymes dihydrofolate reductase (DHFR) from the biological warfare agent Bacillus anthracis (BaDHFR) and Homo sapiens sapiens (HssDHFR). Six of these compounds were selected for a study with the mutant BaF96IDHFR. Our results corroborated with experimental data and allowed the proposition of a new molecule with potential activity and better selectivity for BaDHFR.

  8. Fragment Discovery for the Design of Nitrogen Heterocycles as Mycobacterium tuberculosis Dihydrofolate Reductase Inhibitors.

    PubMed

    Shelke, Rupesh U; Degani, Mariam S; Raju, Archana; Ray, Mukti Kanta; Rajan, Mysore G R

    2016-08-01

    Fragment-based drug design was used to identify Mycobacterium tuberculosis (Mtb) dihydrofolate reductase (DHFR) inhibitors. Screening of ligands against the Mtb DHFR enzyme resulted in the identification of multiple fragment hits with IC50 values in the range of 38-90 μM versus Mtb DHFR and minimum inhibitory concentration (MIC) values in the range of 31.5-125 μg/mL. These fragment scaffolds would be useful for anti-tubercular drug design.

  9. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase

    NASA Astrophysics Data System (ADS)

    Bredt, David S.; Hwang, Paul M.; Glatt, Charles E.; Lowenstein, Charles; Reed, Randall R.; Snyder, Solomon H.

    1991-06-01

    Nitric oxide is a messenger molecule, mediating the effect of endothelium-derived relaxing factor in blood vessels and the cytotoxic actions of macrophages, and playing a part in neuronal communication in the brain. Cloning of a complementary DNA for brain nitric oxide synthase reveals recognition sites for NADPH, FAD, flavin mononucleotide and calmodulin as well as phosphorylation sites, indicating that the synthase is regulated by many different factors. The only known mammalian enzyme with close homology is cytochrome P-450 reductase.

  10. Physiological Roles for Two Periplasmic Nitrate Reductases in Rhodobacter sphaeroides 2.4.3 (ATCC 17025)▿

    PubMed Central

    Hartsock, Angela; Shapleigh, James P.

    2011-01-01

    The metabolically versatile purple bacterium Rhodobacter sphaeroides 2.4.3 is a denitrifier whose genome contains two periplasmic nitrate reductase-encoding gene clusters. This work demonstrates nonredundant physiological roles for these two enzymes. One cluster is expressed aerobically and repressed under low oxygen while the second is maximally expressed under low oxygen. Insertional inactivation of the aerobically expressed nitrate reductase eliminated aerobic nitrate reduction, but cells of this strain could still respire nitrate anaerobically. In contrast, when the anaerobic nitrate reductase was absent, aerobic nitrate reduction was detectable, but anaerobic nitrate reduction was impaired. The aerobic nitrate reductase was expressed but not utilized in liquid culture but was utilized during growth on solid medium. Growth on a variety of carbon sources, with the exception of malate, the most oxidized substrate used, resulted in nitrite production on solid medium. This is consistent with a role for the aerobic nitrate reductase in redox homeostasis. These results show that one of the nitrate reductases is specific for respiration and denitrification while the other likely plays a role in redox homeostasis during aerobic growth. PMID:21949073

  11. Synthesis and characterization of potent inhibitors of Trypanosoma cruzi dihydrofolate reductase

    SciTech Connect

    Schormann, Norbert; Velu, Sadanandan E.; Murugesan, Srinivasan; Senkovich, Olga; Walker, Kiera; Chenna, Bala C.; Shinkre, Bidhan; Desai, Amar; Chattopadhyay, Debasish

    2010-09-17

    Dihydrofolate reductase (DHFR) of the parasite Trypanosoma cruzi (T. cruzi) is a potential target for developing drugs to treat Chagas disease. We have undertaken a detailed structure-activity study of this enzyme. We report here synthesis and characterization of six potent inhibitors of the parasitic enzyme. Inhibitory activity of each compound was determined against T. cruzi and human DHFR. One of these compounds, ethyl 4-(5-[(2,4-diamino-6-quinazolinyl)methyl]amino-2-methoxyphenoxy)butanoate (6b) was co-crystallized with the bifunctional dihydrofolate reductase-thymidylate synthase enzyme of T. cruzi and the crystal structure of the ternary enzyme:cofactor:inhibitor complex was determined. Molecular docking was used to analyze the potential interactions of all inhibitors with T. cruzi DHFR and human DHFR. Inhibitory activities of these compounds are discussed in the light of enzyme-ligand interactions. Binding affinities of each inhibitor for the respective enzymes were calculated based on the experimental or docked binding mode. An estimated 60-70% of the total binding energy is contributed by the 2,4-diaminoquinazoline scaffold.

  12. Effects of Univalent Cations on the Inductive Formation of Nitrate Reductase 1

    PubMed Central

    Nitsos, Ronald E.; Evans, Harold J.

    1966-01-01

    An investigation has been made to determine the effectiveness of univalent cations as cofactors for the inductive synthesis of nitrate reductase. In these experiments K+ functions more effectively as the univalent cation activator than other univalent cations. Substitution of Rb+ for K+ resulted in enzyme formation at a rate of about one-half of that obtained with K+. Sodium, Li+, or NH4+ either failed to stimulate or completely inhibited the inductive formation of the enzyme. When no univalent cations were present in the induction medium, enzyme formation was delayed for an initial 3-hour period in contrast to the normal one-hour delay in enzyme formation where adequate K+ was present in the induction medium. During the period of inductive formation of nitrate reductase the activity of pyruvic kinase, a constitutive enzyme, was assayed under conditions where adequate K+ was present. Results indicate that the presence of the different univalent cations in the induction medium had no striking effect on the activity of this enzyme during the induction period. PMID:5956844

  13. Naegleria fowleri: a free-living highly pathogenic amoeba contains trypanothione/trypanothione reductase and glutathione/glutathione reductase systems.

    PubMed

    Ondarza, Raúl N; Hurtado, Gerardo; Tamayo, Elsa; Iturbe, Angélica; Hernández, Eva

    2006-11-01

    This paper presents definitive data showing that the thiol-bimane compound isolated and purified by HPLC from Naegleria fowleri trophozoites unequivocally corresponds by matrix assisted laser-desorption ionization-time-of-flight MS, to the characteristic monoprotonated ion of trypanothione-(bimane)(2) [M(+)H(+)] of m/z 1104.57 and to the trypanothione-(bimane) of m/z 914.46. The trypanothione disulfide T(S)(2) was also found to have a molecular ion of m/z 723.37. Additionally HPLC demonstrated that thiol-bimane compounds corresponding to cysteine and glutathione were present in Naegleria. The ion patterns of the thiol-bimane compounds prepared from commercial trypanothione standard, Entamoeba histolytica and Crithidia luciliae are identical to the Naegleria thiol-bimane compound. Partially purified extracts from N. fowleri showed the coexistence of glutathione and trypanothione reductases activities. There is not doubt that the thiol compound trypanothione, which was previously thought to occur only in Kinetoplastida, is also present in the human pathogens E. histolytica and N. fowleri, as well as in the non-pathogenic euglenozoan E. gracilis. The presence of the trypanothione/trypanothione reductase system in N. fowleri creates the possibility of using this enzyme as a new "drug target" for rationally designed drugs to eliminate the parasite, without affecting the human host.

  14. A Novel Role for Coenzyme A during Hydride Transfer in 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase

    PubMed Central

    Steussy, C. Nicklaus; Critchelow, Chandra J.; Schmidt, Tim; Min, Jung-Ki; Wrensford, Louise V.; Burgner, John W.; Rodwell, Victor W.; Stauffacher, Cynthia V.

    2014-01-01

    In this study, we take advantage of the ability of HMG-CoA reductase (HMGR) from Pseudomonas mevalonii to remain active while in its crystallized form to study the changing interactions between the ligands and protein as the first reaction intermediate is created. HMG-CoA reductase catalyzes one of the few double oxidation–reduction reactions in intermediary metabolism that take place in a single active site. Our laboratory has undertaken an exploration of this reaction space using structures of HMG-CoA reductase complexed with various substrate, nucleotide, product, and inhibitor combinations. With a focus in this publication on the first hydride transfer, our structures follow this reduction reaction as the enzyme converts the HMG-CoA thioester from a flat sp2-like geometry to a pyramidal thiohemiacetal configuration consistent with a transition to an sp3 orbital. This change in the geometry propagates through the coenzyme A (CoA) ligand whose first amide bond is rotated 180° where it anchors a web of hydrogen bonds that weave together the nucleotide, the reaction intermediate, the enzyme, and the catalytic residues. This creates a stable intermediate structure prepared for nucleotide exchange and the second reduction reaction within the HMG-CoA reductase active site. Identification of this reaction intermediate provides a template for the development of an inhibitor that would act as an antibiotic effective against the HMG-CoA reductase of methicillin-resistant Staphylococcus aureus. PMID:23802607

  15. Human leukemia and normal leukocytes contain a species of immunoreactive but nonfunctional dihydrofolate reductase.

    PubMed Central

    Rothenberg, S P; Iqbal, M P

    1982-01-01

    A quantitative radioimmunoassay has been developed for human dihydrofolate reductase (tetrahydrofolate dehydrogenase; 5,6,7,8-tetrahydrofolate:NADP+ oxidoreductase, EC 1.5.1.3) by using antiserum raised in rabbits against the active enzyme purified from calf liver. An immunoreactive protein could be identified in the cytoplasm of chronic myelogenous leukemia cells, which contained no functional dihydrofolate reductase activity. Its concentration was stoichiometric to the volume of cytoplasm assayed and paralleled the standard curve obtained with purified enzyme, indicating that this protein in the human cells is antigenically similar to the homologous antigen. The concentration of this immunoreactive protein in the cytoplasm of human leukemia and normal leukocytes in all instances greatly exceeded the concentration of functional dihydrofolate reductase, which was measured by the binding of [3H]methotrexate. This nonfunctional immunoreactive protein in the cytoplasm and cytosol from two different samples of chronic myelogenous leukemia cells analyzed by gel filtration had an apparent molecular weight of 41,000, which is twice the molecular weight of the functional enzyme. Images PMID:6952216

  16. Medium-chain and short-chain dehydrogenases/reductases in retinoid metabolism

    PubMed Central

    Parés, X.; Farrés, J.; Kedishvili, N.; Duester, G.

    2009-01-01

    Retinoic acid (RA), the most active retinoid, is synthesized in two steps from retinol. The first step, oxidation of retinol to retinaldehyde, is catalyzed by cytosolic alcohol dehydrogenases (ADHs) of the medium-chain dehydrogenase/reductase (MDR) superfamily and microsomal retinol dehydrogenases (RDHs) of the short-chain dehydrogenase/reductase (SDR) superfamily. The second step, oxidation of retinaldehyde to RA, is catalyzed by several aldehyde dehydrogenases. ADH1 and ADH2 are the major MDR enzymes in liver retinol detoxification, while ADH3 (less active) and ADH4 (most active) participate in RA generation in tissues. Several NAD+- and NADP+-dependent SDRs are retinoid active. Their in vivo contribution has been demonstrated in the visual cycle (RDH5, RDH12), adult retinoid homeostasis (RDH1) and embryogenesis (RDH10). Km values for most retinoid-active ADHs and RDHs are close to 1 μM or lower, suggesting that they participate physiologically in retinol/retinaldehyde interconversion. Probably none of these enzymes uses retinoids bound to cellular retinol-binding protein, but only free retinoids. The large number of enzymes involved in the two directions of this step, also including aldoketo reductases, suggests that retinaldehyde levels are strictly regulated. PMID:19011747

  17. Functional significance of evolving protein sequence in dihydrofolate reductase from bacteria to humans

    PubMed Central

    Liu, C. Tony; Hanoian, Philip; French, Jarrod B.; Pringle, Thomas H.; Hammes-Schiffer, Sharon; Benkovic, Stephen J.

    2013-01-01

    With the rapidly growing wealth of genomic data, experimental inquiries on the functional significance of important divergence sites in protein evolution are becoming more accessible. Here we trace the evolution of dihydrofolate reductase (DHFR) and identify multiple key divergence sites among 233 species between humans and bacteria. We connect these sites, experimentally and computationally, to changes in the enzyme’s binding properties and catalytic efficiency. One of the identified evolutionarily important sites is the N23PP modification (∼mid-Devonian, 415–385 Mya), which alters the conformational states of the active site loop in Escherichia coli dihydrofolate reductase and negatively impacts catalysis. This enzyme activity was restored with the inclusion of an evolutionarily significant lid domain (G51PEKN in E. coli enzyme; ∼2.4 Gya). Guided by this evolutionary genomic analysis, we generated a human-like E. coli dihydrofolate reductase variant through three simple mutations despite only 26% sequence identity between native human and E. coli DHFRs. Molecular dynamics simulations indicate that the overall conformational motions of the protein within a common scaffold are retained throughout evolution, although subtle changes to the equilibrium conformational sampling altered the free energy barrier of the enzymatic reaction in some cases. The data presented here provide a glimpse into the evolutionary trajectory of functional DHFR through its protein sequence space that lead to the diverged binding and catalytic properties of the E. coli and human enzymes. PMID:23733948

  18. Biofilm modifies expression of ribonucleotide reductase genes in Escherichia coli.

    PubMed

    Cendra, Maria del Mar; Juárez, Antonio; Torrents, Eduard

    2012-01-01

    Ribonucleotide reductase (RNR) is an essential enzyme for all living organisms since is the responsible for the last step in the synthesis of the four deoxyribonucleotides (dNTPs) necessary for DNA replication and repair. In this work, we have investigated the expression of the three-RNR classes (Ia, Ib and III) during Escherichia coli biofilm formation. We show the temporal and spatial importance of class Ib and III RNRs during this process in two different E. coli wild-type strains, the commensal MG1655 and the enteropathogenic and virulent E2348/69, the prototype for the enteropathogenic E. coli (EPEC). We have established that class Ib RNR, so far considered cryptic, play and important role during biofilm formation. The implication of this RNR class under the specific growth conditions of biofilm formation is discussed. PMID:23050019

  19. B-factor Analysis and Conformational Rearrangement of Aldose Reductase.

    PubMed

    Balendiran, Ganesaratnam K; Pandian, J Rajendran; Drake, Evin; Vinayak, Anubhav; Verma, Malkhey; Cascio, Duilio

    2014-01-01

    The NADPH-dependent reduction of glucose reaction that is catalyzed by Aldose Reductase (AR) follows a sequential ordered kinetic mechanism in which the co-factor NADPH binds to the enzyme prior to the aldehyde substrate. The kinetic/structural experiments have found a conformational change involving a hinge-like movement of a surface loop (residues 213-224) which is anticipated to take place upon the binding of the diphosphate moiety of NADPH. The reorientation of this loop, expected to permit the release of NADP(+), represents the rate-limiting step of the catalytic mechanism. This study reveals: 1) The Translation/Libration/Screw (TLS) analysis of absolute B-factors of apo AR crystal structures indicates that the 212-224 loop might move as a rigid group. 2) Residues that make the flexible loop slide in the AR binary and ternary complexes. 3) The normalized B-factors separate this segment into three different clusters with fewer residues.

  20. Mechanism of inhibition of ribonucleotide reductase with motexafin gadolinium (MGd)

    SciTech Connect

    Zahedi Avval, Farnaz; Berndt, Carsten; Pramanik, Aladdin; Holmgren, Arne

    2009-02-13

    Motexafin gadolinium (MGd) is an expanded porphyrin anticancer agent which selectively targets tumor cells and works as a radiation enhancer, with promising results in clinical trials. Its mechanism of action is oxidation of intracellular reducing molecules and acting as a direct inhibitor of mammalian ribonucleotide reductase (RNR). This paper focuses on the mechanism of inhibition of RNR by MGd. Our experimental data present at least two pathways for inhibition of RNR; one precluding subunits oligomerization and the other direct inhibition of the large catalytic subunit of the enzyme. Co-localization of MGd and RNR in the cytoplasm particularly in the S-phase may account for its inhibitory properties. These data can elucidate an important effect of MGd on the cancer cells with overproduction of RNR and its efficacy as an anticancer agent and not only as a general radiosensitizer.

  1. Simultaneous purification and characterization of cytochrome b5 reductase and cytochrome b5 from sheep liver.

    PubMed

    Arinç, E; Cakir, D

    1999-02-01

    Cytochrome b5 was purified from detergent solubilized sheep liver microsomes by using three successive DEAE-cellulose, and Sephadex G-100 column chromatographies. It was purified 54-fold and the yield was 23.5% with respect to microsomes. The apparent Mr of cytochrome b5 was estimated to be 16,200 +/- 500 by SDS-PAGE. Absolute absorption spectrum of the purified cytochrome b5 showed maximal absorption at 412 nm and dithionite-reduced cytochrome b5 gave peaks at 557, 526.5 and 423 nm. The ability of the purified sheep liver cytochrome b5 to transfer electrons from NADH-cytochrome b5 reductase to cytochrome c was investigated. The K(m) and Vmax values were calculated to be 0.088 microM cytochrome b5 and 315.8 microM cytochrome c reduced/min/mg enzyme, respectively. Also the reduction of cytochrome b5 by reductase was studied and K(m) and Vmax values were determined to be 5 microM cytochrome b5 and 5200 nmol cytochrome b5 reduced/min/mg enzyme, respectively. The K(m) and Vmax values for the cofactor NADH in the presence of saturating concentration of cytochrome b5 were found to be 0.0017 mM NADH and 6944 nmol cytochrome b5 reduced/min/mg enzyme, respectively. NADH-cytochrome b5 reductase was also partially purified from the same source, detergent solubilized sheep liver microsomes, by using two successive DEAE-cellulose, and 5'-ADP-agarose affinity column chromatographies. It was purified 144-fold and the yield was 7% with respect to microsomes. The apparent monomer Mr of reductase was estimated to be 34,000 by SDS-PAGE. When ferricyanide was used as an electron acceptor, reductase showed maximum activity between 6.8 and 7.5. The K(m) and Vmax values of the enzyme for ferricyanide were calculated as 0.024 mM ferricyanide and 673 mumol ferricyanide reduced/min/mg enzyme, respectively. The K(m) and Vmax values for the cofactor NADH in the presence of saturating amounts of ferricyanide were found to be 0.020 mM NADH and 699 mumol ferricyanide reduced/min/mg enzyme

  2. Evidence for a Hexaheteromeric Methylenetetrahydrofolate Reductase in Moorella thermoacetica

    PubMed Central

    Mock, Johanna; Wang, Shuning; Huang, Haiyan; Kahnt, Jörg

    2014-01-01

    Moorella thermoacetica can grow with H2 and CO2, forming acetic acid from 2 CO2 via the Wood-Ljungdahl pathway. All enzymes involved in this pathway have been characterized to date, except for methylenetetrahydrofolate reductase (MetF). We report here that the M. thermoacetica gene that putatively encodes this enzyme, metF, is part of a transcription unit also containing the genes hdrCBA, mvhD, and metV. MetF copurified with the other five proteins encoded in the unit in a hexaheteromeric complex with an apparent molecular mass in the 320-kDa range. The 40-fold-enriched preparation contained per mg protein 3.1 nmol flavin adenine dinucleotide (FAD), 3.4 nmol flavin mononucleotide (FMN), and 110 nmol iron, almost as predicted from the primary structure of the six subunits. It catalyzed the reduction of methylenetetrahydrofolate with reduced benzyl viologen but not with NAD(P)H in either the absence or presence of oxidized ferredoxin. It also catalyzed the reversible reduction of benzyl viologen with NADH (diaphorase activity). Heterologous expression of the metF gene in Escherichia coli revealed that the subunit MetF contains one FMN rather than FAD. MetF exhibited 70-fold-higher methylenetetrahydrofolate reductase activity with benzyl viologen when produced together with MetV, which in part shows sequence similarity to MetF. Heterologously produced HdrA contained 2 FADs and had NAD-specific diaphorase activity. Our results suggested that the physiological electron donor for methylenetetrahydrofolate reduction in M. thermoacetica is NADH and that the exergonic reduction of methylenetetrahydrofolate with NADH is coupled via flavin-based electron bifurcation with the endergonic reduction of an electron acceptor, whose identity remains unknown. PMID:25002540

  3. DT-diaphorase and cytochrome B5 reductase in human lung and breast tumours.

    PubMed Central

    Marín, A.; López de Cerain, A.; Hamilton, E.; Lewis, A. D.; Martinez-Peñuela, J. M.; Idoate, M. A.; Bello, J.

    1997-01-01

    The level of expression of enzymes that can activate or detoxify bioreductive agents within tumours has emerged as an important feature in the development of these anti-tumour compounds. The levels of two such reductase enzymes have been determined in 19 human non-small-cell lung tumours and 20 human breast tumours, together with the corresponding normal tissue. DT-diaphorase (DTD) enzyme levels (both expression and activity) were determined in these samples. Cytochrome b5 reductase (Cytb5R) activity was also assessed. With the exception of six patients, the levels of DTD activity were below 45 nmol min(-1) mg(-1) in the normal tissues assayed. DTD tumour activity was extremely variable, distinguishing two different groups of patients, one with DTD activity above 79 nmol min(-1) mg(-1) and the other with levels that were in the same range as found for the normal tissues. In 53% of the lung tumour samples, DTD activity was increased with respect to the normal tissue by a factor of 2.4-90.3 (range 79-965 nmol min[-1] mg[-1]). In 70% of the breast tumour samples, DTD activity was over 80 nmol min(-1) mg(-1) (range 83-267 nmol min[-1] mg[-1]). DTD expression measured by Western blot correlated well with the enzyme activity measured in both tumour and normal tissues. The levels of the other reductase enzyme, Cytb5R, were not as variable as those for DTD, being in the same range in both tumour and normal tissue or slightly higher in the normal tissues. The heterogeneous nature of DTD activity and expression reinforces the need to measure enzyme levels in individual patients before therapy with DTD-activated bioreductive drugs. Images Figure 1 Figure 2 PMID:9328153

  4. Optical observation of correlated motions in dihydrofolate reductase

    NASA Astrophysics Data System (ADS)

    Xu, Mengyang; Niessen, Katherine; Pace, James; Cody, Vivian; Markelz, Andrea

    2015-03-01

    Enzyme function relies on its structural flexibility to make conformational changes for substrate binding and product release. An example of a metabolic enzyme where such structural changes are vital is dihydrofolate reductase (DHFR). DHFR is essential in both prokaryotes and eukaryotes for the nucleotide biosynthesis by catalyzing the reduction of dihydrofolate to tetrahydrofolate. NMR dynamical measurements found large amplitude fast dynamics that could indicate rigid-body, twisting-hinge motion for ecDHFR that may mediate flux. The role of such long-range correlated motions in function was suggested by the observed sharp decrease in enzyme activity for the single point mutation G121V, which is remote from active sites. This decrease in activity may be caused by the mutation interfering with the long-range intramolecular vibrations necessary for rapid access to functional configurations. We use our new technique of crystal anisotropy terahertz microscopy (CATM), to observe correlated motions in ecDHFR crystals with the bonding of NADPH and methotrexate. We compare the measured intramolecular vibrational spectrum with calculations using normal mode analysis.

  5. Chromate reductase activity in Streptomyces sp. MC1.

    PubMed

    Polti, Marta A; Amoroso, María J; Abate, Carlos M

    2010-02-01

    Biological transformation of Cr(VI) to Cr(III) by enzymatic reduction may provide a less costly and more environmentally friendly approach to remediation. In a previous report a Cr(VI) resistant actinomycete strain, Streptomyces sp. MC1, was able to reduce Cr(VI) present in a synthetic medium, soil extract and soil samples. This is the first time optimal conditions such as pH, temperature, growth phase and electron donor have been elucidated in vitro for Cr(VI) reduction by a streptomycete. Chromate reductase of Streptomyces sp. MC1 is a constitutive enzyme which was mainly associated with biomass and required NAD(P)H as an electron donor. It was active over a broad temperature (19-39 degrees C) and pH (5-8) range, and optimum conditions were 30 degrees C and pH 7. The enzyme was present in supernatant, pellet and cell free extract. Bioremediation with the enzyme was observed in non-compatible cell reproduction systems, conditions frequently found in contaminated environments. PMID:20339215

  6. Expression analysis of dihydroflavonol 4-reductase genes in Petunia hybrida.

    PubMed

    Chu, Y X; Chen, H R; Wu, A Z; Cai, R; Pan, J S

    2015-01-01

    Dihydroflavonol 4-reductase (DFR) genes from Rosa chinensis (Asn type) and Calibrachoa hybrida (Asp type), driven by a CaMV 35S promoter, were integrated into the petunia (Petunia hybrida) cultivar 9702. Exogenous DFR gene expression characteristics were similar to flower-color changes, and effects on anthocyanin concentration were observed in both types of DFR gene transformants. Expression analysis showed that exogenous DFR genes were expressed in all of the tissues, but the expression levels were significantly different. However, both of them exhibited a high expression level in petals that were starting to open. The introgression of DFR genes may significantly change DFR enzyme activity. Anthocyanin ultra-performance liquid chromatography results showed that anthocyanin concentrations changed according to DFR enzyme activity. Therefore, the change in flower color was probably the result of a DFR enzyme change. Pelargonidin 3-O-glucoside was found in two different transgenic petunias, indicating that both CaDFR and RoDFR could catalyze dihydrokaempferol. Our results also suggest that transgenic petunias with DFR gene of Asp type could biosynthesize pelargonidin 3-O-glucoside. PMID:25966276

  7. Ligand-Dependent Conformational Dynamics of Dihydrofolate Reductase

    PubMed Central

    Reddish, Michael J.; Vaughn, Morgan B.; Fu, Rong; Dyer, R. Brian

    2016-01-01

    Enzymes are known to change among several conformational states during turnover. The role of such dynamic structural changes in catalysis is not fully understood. The influence of dynamics in catalysis can be inferred, but not proven, by comparison of equilibrium structures of protein variants and protein–ligand complexes. A more direct way to establish connections between protein dynamics and the catalytic cycle is to probe the kinetics of specific protein motions in comparison to progress along the reaction coordinate. We have examined the enzyme model system dihydrofolate reductase (DHFR) from Escherichia coli with tryptophan fluorescence-probed temperature-jump spectroscopy. We aimed to observe the kinetics of the ligand binding and ligand-induced conformational changes of three DHFR complexes to establish the relationship among these catalytic steps. Surprisingly, in all three complexes, the observed kinetics do not match a simple sequential two-step process. Through analysis of the relationship between ligand concentration and observed rate, we conclude that the observed kinetics correspond to the ligand binding step of the reaction and a noncoupled enzyme conformational change. The kinetics of the conformational change vary with the ligand's identity and presence but do not appear to be directly related to progress along the reaction coordinate. These results emphasize the need for kinetic studies of DHFR with highly specific spectroscopic probes to determine which dynamic events are coupled to the catalytic cycle and which are not. PMID:26901612

  8. Atypical features of Thermus thermophilus succinate:quinone reductase.

    PubMed

    Kolaj-Robin, Olga; Noor, Mohamed R; O'Kane, Sarah R; Baymann, Frauke; Soulimane, Tewfik

    2013-01-01

    The Thermus thermophilus succinate:quinone reductase (SQR), serving as the respiratory complex II, has been homologously produced under the control of a constitutive promoter and subsequently purified. The detailed biochemical characterization of the resulting wild type (wt-rcII) and His-tagged (rcII-His(8)-SdhB and rcII-SdhB-His(6)) complex II variants showed the same properties as the native enzyme with respect to the subunit composition, redox cofactor content and sensitivity to the inhibitors malonate, oxaloacetate, 3-nitropropionic acid and nonyl-4-hydroxyquinoline-N-oxide (NQNO). The position of the His-tag determined whether the enzyme retained its native trimeric conformation or whether it was present in a monomeric form. Only the trimer exhibited positive cooperativity at high temperatures. The EPR signal of the [2Fe-2S] cluster was sensitive to the presence of substrate and showed an increased rhombicity in the presence of succinate in the native and in all recombinant forms of the enzyme. The detailed analysis of the shape of this signal as a function of pH, substrate concentration and in the presence of various inhibitors and quinones is presented, leading to a model for the molecular mechanism that underlies the influence of succinate on the rhombicity of the EPR signal of the proximal iron-sulfur cluster.

  9. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase.

    PubMed

    Leavitt, William D; Bradley, Alexander S; Santos, André A; Pereira, Inês A C; Johnston, David T

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major ((34)S/(32)S) and minor ((33)S/(32)S, (36)S/(32)S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in (34)S/(32)S (hereafter, [Formula: see text]) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in (33)S, described as [Formula: see text], is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3-0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in (34)εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of [Formula: see text] is similar to the median value of experimental observations compiled from all known published work, where (34)ε r-p = 16.1‰ (r-p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments ([Formula: see text] 17.3 ± 1.5‰, 2σ) and in modern marine sediments ([Formula: see text] 17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the

  10. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase

    PubMed Central

    Leavitt, William D.; Bradley, Alexander S.; Santos, André A.; Pereira, Inês A. C.; Johnston, David T.

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major (34S/32S) and minor (33S/32S, 36S/32S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in 34S/32S (hereafter, 34εDsrAB) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in 33S, described as 33λDsrAB, is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3–0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in 34εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of 34εDsrAB is similar to the median value of experimental observations compiled from all known published work, where 34εr−p = 16.1‰ (r–p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments (34εSO4−H2S =  17.3 ± 1.5‰, 2σ) and in modern marine sediments (34εSO4−H2S =  17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the biogeochemical and geobiological sulfur isotope records in

  11. Aldo-Keto Reductases 1B in Endocrinology and Metabolism

    PubMed Central

    Pastel, Emilie; Pointud, Jean-Christophe; Volat, Fanny; Martinez, Antoine; Lefrançois-Martinez, Anne-Marie

    2012-01-01

    The aldose reductase (AR; human AKR1B1/mouse Akr1b3) has been the focus of many research because of its role in diabetic complications. The starting point of these alterations is the massive entry of glucose in polyol pathway where it is converted into sorbitol by this enzyme. However, the issue of AR function in non-diabetic condition remains unresolved. AR-like enzymes (AKR1B10, Akr1b7, and Akr1b8) are highly related isoforms often co-expressed with bona fide AR, making functional analysis of one or the other isoform a challenging task. AKR1B/Akr1b members share at least 65% protein identity and the general ability to reduce many redundant substrates such as aldehydes provided from lipid peroxidation, steroids and their by-products, and xenobiotics in vitro. Based on these properties, AKR1B/Akr1b are generally considered as detoxifying enzymes. Considering that divergences should be more informative than similarities to help understanding their physiological functions, we chose to review specific hallmarks of each human/mouse isoforms by focusing on tissue distribution and specific mechanisms of gene regulation. Indeed, although the AR shows ubiquitous expression, AR-like proteins exhibit tissue-specific patterns of expression. We focused on three organs where certain isoforms are enriched, the adrenal gland, enterohepatic, and adipose tissues and tried to connect recent enzymatic and regulation data with endocrine and metabolic functions of these organs. We presented recent mouse models showing unsuspected physiological functions in the regulation of glucido-lipidic metabolism and adipose tissue homeostasis. Beyond the widely accepted idea that AKR1B/Akr1b are detoxification enzymes, these recent reports provide growing evidences that they are able to modify or generate signal molecules. This conceptually shifts this class of enzymes from unenviable status of scavenger to upper class of messengers. PMID:22876234

  12. The Effect of Protein Mass Modulation on Human Dihydrofolate Reductase.

    PubMed

    Francis, Kevin; Sapienza, Paul J; Lee, Andrew L; Kohen, Amnon

    2016-02-23

    Dihydrofolate reductase (DHFR) from Escherichia coli has long served as a model enzyme with which to elucidate possible links between protein dynamics and the catalyzed reaction. Such physical properties of its human counterpart have not been rigorously studied so far, but recent computer-based simulations suggest that these two DHFRs differ significantly in how closely coupled the protein dynamics and the catalyzed C-H → C hydride transfer step are. To test this prediction, two contemporary probes for studying the effect of protein dynamics on catalysis were combined here: temperature dependence of intrinsic kinetic isotope effects (KIEs), which are sensitive to the physical nature of the chemical step, and protein mass modulation, which slows down fast dynamics (femto- to picosecond time scale) throughout the protein. The intrinsic H/T KIEs of human DHFR, like those of E. coli DHFR, are shown to be temperature-independent in the range from 5 to 45 °C, indicating fast sampling of donor and acceptor distances (DADs) at the reaction's transition state (or tunneling ready state, TRS). Mass modulation of these enzymes through isotopic labeling with (13)C, (15)N, and (2)H at nonexchangeable hydrogens yields an 11% heavier enzyme. The additional mass has no effect on the intrinsic KIEs of the human enzyme. This finding indicates that the mass modulation of the human DHFR affects neither DAD distribution nor the DAD's conformational sampling dynamics. Furthermore, reduction in the enzymatic turnover number and the dissociation rate constant for the product indicate that the isotopic substitution affects kinetic steps that are not the catalyzed C-H → C hydride transfer. The findings are discussed in terms of fast dynamics and their role in catalysis, the comparison of calculations and experiments, and the interpretation of isotopically modulated heavy enzymes in general.

  13. Aldo-Keto Reductases 1B in Endocrinology and Metabolism.

    PubMed

    Pastel, Emilie; Pointud, Jean-Christophe; Volat, Fanny; Martinez, Antoine; Lefrançois-Martinez, Anne-Marie

    2012-01-01

    The aldose reductase (AR; human AKR1B1/mouse Akr1b3) has been the focus of many research because of its role in diabetic complications. The starting point of these alterations is the massive entry of glucose in polyol pathway where it is converted into sorbitol by this enzyme. However, the issue of AR function in non-diabetic condition remains unresolved. AR-like enzymes (AKR1B10, Akr1b7, and Akr1b8) are highly related isoforms often co-expressed with bona fide AR, making functional analysis of one or the other isoform a challenging task. AKR1B/Akr1b members share at least 65% protein identity and the general ability to reduce many redundant substrates such as aldehydes provided from lipid peroxidation, steroids and their by-products, and xenobiotics in vitro. Based on these properties, AKR1B/Akr1b are generally considered as detoxifying enzymes. Considering that divergences should be more informative than similarities to help understanding their physiological functions, we chose to review specific hallmarks of each human/mouse isoforms by focusing on tissue distribution and specific mechanisms of gene regulation. Indeed, although the AR shows ubiquitous expression, AR-like proteins exhibit tissue-specific patterns of expression. We focused on three organs where certain isoforms are enriched, the adrenal gland, enterohepatic, and adipose tissues and tried to connect recent enzymatic and regulation data with endocrine and metabolic functions of these organs. We presented recent mouse models showing unsuspected physiological functions in the regulation of glucido-lipidic metabolism and adipose tissue homeostasis. Beyond the widely accepted idea that AKR1B/Akr1b are detoxification enzymes, these recent reports provide growing evidences that they are able to modify or generate signal molecules. This conceptually shifts this class of enzymes from unenviable status of scavenger to upper class of messengers.

  14. The Effect of Protein Mass Modulation on Human Dihydrofolate Reductase.

    PubMed

    Francis, Kevin; Sapienza, Paul J; Lee, Andrew L; Kohen, Amnon

    2016-02-23

    Dihydrofolate reductase (DHFR) from Escherichia coli has long served as a model enzyme with which to elucidate possible links between protein dynamics and the catalyzed reaction. Such physical properties of its human counterpart have not been rigorously studied so far, but recent computer-based simulations suggest that these two DHFRs differ significantly in how closely coupled the protein dynamics and the catalyzed C-H → C hydride transfer step are. To test this prediction, two contemporary probes for studying the effect of protein dynamics on catalysis were combined here: temperature dependence of intrinsic kinetic isotope effects (KIEs), which are sensitive to the physical nature of the chemical step, and protein mass modulation, which slows down fast dynamics (femto- to picosecond time scale) throughout the protein. The intrinsic H/T KIEs of human DHFR, like those of E. coli DHFR, are shown to be temperature-independent in the range from 5 to 45 °C, indicating fast sampling of donor and acceptor distances (DADs) at the reaction's transition state (or tunneling ready state, TRS). Mass modulation of these enzymes through isotopic labeling with (13)C, (15)N, and (2)H at nonexchangeable hydrogens yields an 11% heavier enzyme. The additional mass has no effect on the intrinsic KIEs of the human enzyme. This finding indicates that the mass modulation of the human DHFR affects neither DAD distribution nor the DAD's conformational sampling dynamics. Furthermore, reduction in the enzymatic turnover number and the dissociation rate constant for the product indicate that the isotopic substitution affects kinetic steps that are not the catalyzed C-H → C hydride transfer. The findings are discussed in terms of fast dynamics and their role in catalysis, the comparison of calculations and experiments, and the interpretation of isotopically modulated heavy enzymes in general. PMID:26813442

  15. Function of S-nitrosoglutathione reductase (GSNOR) in plant development and under biotic/abiotic stress

    PubMed Central

    Leterrier, Marina; Chaki, Mounira; Airaki, Morad; Valderrama, Raquel; Palma, José M; Barroso, Juan B

    2011-01-01

    During the last decade, it was established that the class III alcohol dehydrogenase (ADH3) enzyme, also known as glutathione-dependent formaldehyde dehydrogenase (FALDH; EC 1.2.1.1), catalyzes the NADH-dependent reduction of S-nitrosoglutathione (GSNO) and therefore was also designated as GSNO reductase. This finding has opened new aspects in the metabolism of nitric oxide (NO) and NO-derived molecules where GSNO is a key component. In this article, current knowledge of the involvement and potential function of this enzyme during plant development and under biotic/abiotic stress is briefly reviewed. PMID:21543898

  16. Mutational analysis of the nor gene cluster which encodes nitric-oxide reductase from Paracoccus denitrificans.

    PubMed

    de Boer, A P; van der Oost, J; Reijnders, W N; Westerhoff, H V; Stouthamer, A H; van Spanning, R J

    1996-12-15

    The genes that encode the hc-type nitric-oxide reductase from Paracoccus denitrificans have been identified. They are part of a cluster of six genes (norCBQDEF) and are found near the gene cluster that encodes the cd1-type nitrite reductase, which was identified earlier [de Boer, A. P. N., Reijnders, W. N. M., Kuenen, J. G., Stouthamer, A. H. & van Spanning, R. J. M. (1994) Isolation, sequencing and mutational analysis of a gene cluster involved in nitrite reduction in Paracoccus denitrificans, Antonie Leeu wenhoek 66, 111-127]. norC and norB encode the cytochrome-c-containing subunit II and cytochrome b-containing subunit I of nitric-oxide reductase (NO reductase), respectively. norQ encodes a protein with an ATP-binding motif and has high similarity to NirQ from Pseudomonas stutzeri and Pseudomonas aeruginosa and CbbQ from Pseudomonas hydrogenothermophila. norE encodes a protein with five putative transmembrane alpha-helices and has similarity to CoxIII, the third subunit of the aa3-type cytochrome-c oxidases. norF encodes a small protein with two putative transmembrane alpha-helices. Mutagenesis of norC, norB, norQ and norD resulted in cells unable to grow anaerobically. Nitrite reductase and NO reductase (with succinate or ascorbate as substrates) and nitrous oxide reductase (with succinate as substrate) activities were not detected in these mutant strains. Nitrite extrusion was detected in the medium, indicating that nitrate reductase was active. The norQ and norD mutant strains retained about 16% and 23% of the wild-type level of NorC, respectively. The norE and norF mutant strains had specific growth rates and NorC contents similar to those of the wild-type strain, but had reduced NOR and NIR activities, indicating that their gene products are involved in regulation of enzyme activity. Mutant strains containing the norCBQDEF region on the broad-host-range vector pEG400 were able to grow anaerobically, although at a lower specific growth rate and with lower

  17. 5α-Reductase inhibitors alter steroid metabolism and may contribute to insulin resistance, diabetes, metabolic syndrome and vascular disease: a medical hypothesis.

    PubMed

    Traish, Abdulmaged M; Guay, Andre T; Zitzmann, Michael

    2014-12-01

    5α-reductases, a unique family of enzymes with a wide host of substrates and tissue distributions, play a key role in the metabolism of androgens, progestins, mineralocorticoids and glucocorticoids. These enzymes are the rate-limiting step in the synthesis of a host of neurosteroids, which are critical for central nervous system function. Androgens and glucocorticoids modulate mitochondrial function, carbohydrate, protein and lipid metabolism and energy balance. Thus, the inhibition of these regulatory enzymes results in an imbalance in steroid metabolism and clearance rates, which leads to altered physiological processes. In this report, we advance the hypothesis that inhibition of 5α-reductases by finasteride and dutasteride alters not only steroid metabolism but also interferes with the downstream actions and signaling of these hormones. We suggest that finasteride and dutasteride inhibit 5α-reductase activities and reduce the clearance of glucocorticoids and mineralocorticoids, potentiating insulin resistance, diabetes and vascular disease. PMID:25460297

  18. Design, synthesis and evaluation of 2,4-diaminoquinazolines as inhibitors of trypanosomal and leishmanial dihydrofolate reductase.

    PubMed

    Khabnadideh, Soghra; Pez, Didier; Musso, Alexander; Brun, Reto; Pérez, Luis M Ruiz; González-Pacanowska, Dolores; Gilbert, Ian H

    2005-04-01

    This paper describes the design, synthesis and evaluation of a series of 2,4-diaminoquinazolines as inhibitors of leishmanial and trypanosomal dihydrofolate reductase. Compounds were designed by a generating virtual library of compounds and docking them into the enzyme active site. Following their synthesis, they were found to be potent and selective inhibitors of leishmanial dihydrofolate reductase. The compounds were also found to have potent activity against Trypanosoma brucei rhodesiense, a causative organism of African trypanosomiasis and also against Trypanosoma cruzi, the causative organism of Chagas disease. There was significantly lower activity against Leishmania donovani, one of the causative organisms of leishmaniasis. PMID:15755663

  19. Cloning and expression of Candida guilliermondii xylose reductase gene (xyl1) in Pichia pastoris.

    PubMed

    Handumrongkul, C; Ma, D P; Silva, J L

    1998-04-01

    A xylose reductase gene (xyl1) of Candida guilliermondii ATCC 20118 was cloned and characterized. The open reading frame of xyl1 contained 954 nucleotides encoding a protein of 317 amino acids with a predicted molecular mass of 36 kDa. The derived amino acid sequence of C. guilliermondii xylose reductase was 70.4% homologous to that of Pichia stipitis. The gene was placed under the control of an alcohol oxidase promoter (AOX1) and integrated into the genome of a methylotrophic yeast, Pichia pastoris. Methanol induced the expression of the 36-kDa xylose reductase in both intracellular and secreted expression systems. The expressed enzyme preferentially utilized NADPH as a cofactor and was functional both in vitro and in vivo. The different cofactor specificity between P. pastoris and C. guilliermondii xylose reductases might be due to the difference in the numbers of histidine residues and their locations between the two proteins. The recombinant was able to ferment xylose, and the maximum xylitol accumulation (7.8 g/l) was observed when the organism was grown under aerobic conditions. PMID:9615481

  20. Roles of rat and human aldo-keto reductases in metabolism of farnesol and geranylgeraniol

    PubMed Central

    Endo, Satoshi; Matsunaga, Toshiyuki; Ohta, Chisato; Soda, Midori; Kanamori, Ayano; Kitade, Yukio; Ohno, Satoshi; Tajima, Kazuo; El-Kabbani, Ossama; Hara, Akira

    2011-01-01

    Farnesol (FOH) and geranylgeraniol (GGOH) with multiple biological actions are produced from the mevalonate pathway, and catabolized into farnesoic acid and geranylgeranoic acid, respectively, via the aldehyde intermediates (farnesal and geranylgeranial). We investigated the intracellular distribution, sequences and properties of the oxidoreductases responsible for the metabolic steps in rat tissues. The oxidation of FOH and GGOH into their aldehyde intermediates were mainly mediated by alcohol dehydrogenases 1 (in the liver and colon) and 7 (in the stomach and lung), and the subsequent step into the carboxylic acids was catalyzed by a microsomal aldehyde dehydrogenase. In addition, high reductase activity catalyzing the aldehyde intermediates into FOH (or GGOH) was detected in the cytosols of the extra-hepatic tissues, where the major reductase was identified as aldo-keto reductase (AKR) 1C15. Human reductases with similar specificity were identified as AKR1B10 and AKR1C3, which most efficiently reduced farnesal and geranylgeranial among seven enzymes in the AKR1A-1C subfamilies. The overall metabolism from FOH to farnesoic acid in cultured cells was significantly decreased by overexpression of AKR1C15, and increased by addition of AKR1C3 inhibitors, tolfenamic acid and R-flurbiprofen. Thus, AKRs (1C15 in rats, and 1B10 and 1C3 in humans) may play an important role in controlling the bioavailability of FOH and GGOH. PMID:21187079

  1. Purification and characterization of a soybean flour-inducible ferredoxin reductase of Streptomyces griseus.

    PubMed Central

    Ramachandra, M; Seetharam, R; Emptage, M H; Sariaslani, F S

    1991-01-01

    We have purified an NADH-dependent ferredoxin reductase from crude extracts of Streptomyces griseus cells grown in soybean flour-enriched medium. The purified protein has a molecular weight of 60,000 as determined by sodium dodecyl sulfate gel electrophoresis. The enzyme requires Mg2+ ion for catalytic activity in reconstituted assays, and its spectral properties resemble those of many other flavin adenine dinucleotide-containing flavoproteins. A relatively large number of hydrophobic amino acid residues are found by amino acid analysis, and beginning with residue 7, a consensus flavin adenine dinucleotide binding sequence, GXGXXGXXXA, is revealed in this protein. In the presence of NADH, the ferredoxin reductase reduces various electron acceptors such as cytochrome c, potassium ferricyanide, dichlorophenolindophenol, and nitroblue tetrazolium. However, only cytochrome c reduction by the ferredoxin reductase is enhanced by the addition of ferredoxin. In the presence of NADH, S. griseus ferredoxin and cytochrome P-450soy, the ferredoxin reductase mediates O dealkylation of 7-ethoxycoumarin. Images FIG. 2 PMID:1938912

  2. Enzymes useful for chiral compound synthesis: structural biology, directed evolution, and protein engineering for industrial use.

    PubMed

    Kataoka, Michihiko; Miyakawa, Takuya; Shimizu, Sakayu; Tanokura, Masaru

    2016-07-01

    Biocatalysts (enzymes) have many advantages as catalysts for the production of useful compounds as compared to chemical catalysts. The stereoselectivity of the enzymes is one advantage, and thus the stereoselective production of chiral compounds using enzymes is a promising approach. Importantly, industrial application of the enzymes for chiral compound production requires the discovery of a novel useful enzyme or enzyme function; furthermore, improving the enzyme properties through protein engineering and directed evolution approaches is significant. In this review, the significance of several enzymes showing stereoselectivity (quinuclidinone reductase, aminoalcohol dehydrogenase, old yellow enzyme, and threonine aldolase) in chiral compound production is described, and the improvement of these enzymes using protein engineering and directed evolution approaches for further usability is discussed. Currently, enzymes are widely used as catalysts for the production of chiral compounds; however, for further use of enzymes in chiral compound production, improvement of enzymes should be more essential, as well as discovery of novel enzymes and enzyme functions.

  3. Enzymes useful for chiral compound synthesis: structural biology, directed evolution, and protein engineering for industrial use.

    PubMed

    Kataoka, Michihiko; Miyakawa, Takuya; Shimizu, Sakayu; Tanokura, Masaru

    2016-07-01

    Biocatalysts (enzymes) have many advantages as catalysts for the production of useful compounds as compared to chemical catalysts. The stereoselectivity of the enzymes is one advantage, and thus the stereoselective production of chiral compounds using enzymes is a promising approach. Importantly, industrial application of the enzymes for chiral compound production requires the discovery of a novel useful enzyme or enzyme function; furthermore, improving the enzyme properties through protein engineering and directed evolution approaches is significant. In this review, the significance of several enzymes showing stereoselectivity (quinuclidinone reductase, aminoalcohol dehydrogenase, old yellow enzyme, and threonine aldolase) in chiral compound production is described, and the improvement of these enzymes using protein engineering and directed evolution approaches for further usability is discussed. Currently, enzymes are widely used as catalysts for the production of chiral compounds; however, for further use of enzymes in chiral compound production, improvement of enzymes should be more essential, as well as discovery of novel enzymes and enzyme functions. PMID:27188776

  4. Low Trimethoprim Susceptibility of Anaerobic Bacteria Due to Insensitive Dihydrofolate Reductases

    PubMed Central

    Then, Rudolf L.; Angehrn, Peter

    1979-01-01

    All the 28 Bacteroides fragilis strains investigated were susceptible to sulfamethoxazole (minimal inhibitory concentration < 16 μg/ml) and resistant to trimethoprim (TMP; minimal inhibitory concentration > 4 μg/ml). Synergism between sulfamethoxazole and TMP was present in all strains at a ratio of 1:1. The few clostridia investigated proved more resistant to both compounds. Dihydrofolate reductases from B. fragilis, C. perfringens, and some other anaerobic species were isolated. Inhibition profiles with six structurally different inhibitors revealed major differences in all enzymes. For 50% inhibition, the enzyme from B. fragilis and all clostridia required concentrations of TMP which were between several hundredfold and 1,000-fold higher than those required for the enzyme of Escherichia coli, whereas the enzyme from Propionibacterium acnes only needed a threefold higher concentration. In vitro activities of TMP were seen to correspond to the activity at the enzymatic level in B. fragilis and P. acnes, but correspond to a much lesser extent to the activity at the enzymatic level in clostridia, where a poor penetration is assumed to be involved. Dihydrofolate reductase inhibitors other than TMP were found to be as active as TMP both at the enzyme and in vitro. In B. fragilis, higher concentrations of exogenous thymidine were required for increasing the minimal inhibitory concentration of TMP than in E. coli and probably also in C. perfringens. PMID:218496

  5. Structural prototypes for an extended family of flavoprotein reductases: comparison of phthalate dioxygenase reductase with ferredoxin reductase and ferredoxin.

    PubMed Central

    Correll, C. C.; Ludwig, M. L.; Bruns, C. M.; Karplus, P. A.

    1993-01-01

    The structure of phthalate dioxygenase reductase (PDR), a monomeric iron-sulfur flavoprotein that delivers electrons from NADH to phthalate dioxygenase, is compared to ferredoxin-NADP+ reductase (FNR) and ferredoxin, the proteins that reduce NADP+ in the final reaction of photosystem I. The folding patterns of the domains that bind flavin, NAD(P), and [2Fe-2S] are very similar in the two systems. Alignment of the X-ray structures of PDR and FNR substantiates the assignment of features that characterize a family of flavoprotein reductases whose members include cytochrome P-450 reductase, sulfite and nitrate reductases, and nitric oxide synthase. Hallmarks of this subfamily of flavoproteins, here termed the FNR family, are an antiparallel beta-barrel that binds the flavin prosthetic group, and a characteristic variant of the classic pyridine nucleotide-binding fold. Despite the similarities between FNR and PDR, attempts to model the structure of a dissociable FNR:ferredoxin complex by analogy with PDR reveal features that are at odds with chemical crosslinking studies (Zanetti, G., Morelli, D., Ronchi, S., Negri, A., Aliverti, A., & Curti, B., 1988, Biochemistry 27, 3753-3759). Differences in the binding sites for flavin and pyridine nucleotides determine the nucleotide specificities of FNR and PDR. The specificity of FNR for NADP+ arises primarily from substitutions in FNR that favor interactions with the 2' phosphate of NADP+. Variations in the conformation and sequences of the loop adjoining the flavin phosphate affect the selectivity for FAD versus FMN. The midpoint potentials for reduction of the flavin and [2Fe-2S] groups in PDR are higher than their counterparts in FNR and spinach ferredoxin, by about 120 mV and 260 mV, respectively. Comparisons of the structure of PDR with spinach FNR and with ferredoxin from Anabaena 7120, along with calculations of electrostatic potentials, suggest that local interactions, including hydrogen bonds, are the dominant

  6. Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Moe, Owen; Cornelius, Richard

    1988-01-01

    Conveys an appreciation of enzyme kinetic analysis by using a practical and intuitive approach. Discusses enzyme assays, kinetic models and rate laws, the kinetic constants (V, velocity, and Km, Michaels constant), evaluation of V and Km from experimental data, and enzyme inhibition. (CW)

  7. 5. alpha. -cholest-8(14)-en-3. beta. -ol-15-one. Studies on its metabolism in cultured cells and male baboons. Volume 1 and 2

    SciTech Connect

    Pajewski, T.N.

    1989-01-01

    5{alpha}-Cholest-8(14)-en-3{beta}-ol-15-one is a potent is a potent inhibitor of cholesterol biosynthesis which has been found to have significant hypocholesterolemic action upon oral administration to rodents and nonhuman primates. The metabolism of (2,4-{sup 3}H)5{alpha}-cholest-8(14)-3n-3{beta}-ol-15-one was studied in Chinese hamster ovary (CHO-K1) cells. The incorporation of the labeled 15-ketosterol into the cells was linear with respect to sterol concentration in the medium over the range of concentrations studied and was higher than the uptake of cholesterol. The results of detailed analyses of the lipids recovered from the cells after 6 hours of incubation with the (2,4-{sup 3}H)-15-ketosterol indicated that most of the {sup 3}H was associated with the free 15-ketosterol. Considerably smaller amounts of {sup 3}H were associated with esters of the 15-ketosterol. No conversion of the 15-ketosterol to cholesterol or other C{sup 27} monohydroxysterols was observed. The labeled material with the chromatographic behavior of esters of the 15-ketosterol gave, after mild saponification, the free 15-ketosterol which was characterized by cocrystallization and chromatographic studies. The metabolism of the 15-ketosterol was also studied in male baboons (Papio cynocephalus) treated with the 15-ketosterol. After oral administration of a mixture of (2,4-{sup 3}H)5{alpha}-cholest-8(14)-en-3{beta}-ol-15-one and (4-{sup 14}C)cholesterol, blood samples were obtained at various times. Marked differences in the time courses of the levels of {sup 3}H and {sup 14}C in plasma were observed. {sup 3}H showed maximum levels at 4 to 8 h, while maximum values for the levels of {sup 14}C were observed much later. Total lipid extraction of plasma showed that essentially all of the {sup 14}C of plasma was recovered in the lipid extract.

  8. The evolution of respiratory O2/NO reductases: an out-of-the-phylogenetic-box perspective

    PubMed Central

    Ducluzeau, Anne-Lise; Schoepp-Cothenet, Barbara; van Lis, Robert; Baymann, Frauke; Russell, Michael J.; Nitschke, Wolfgang

    2014-01-01

    Complex life on our planet crucially depends on strong redox disequilibria afforded by the almost ubiquitous presence of highly oxidizing molecular oxygen. However, the history of O2-levels in the atmosphere is complex and prior to the Great Oxidation Event some 2.3 billion years ago, the amount of O2 in the biosphere is considered to have been extremely low as compared with present-day values. Therefore the evolutionary histories of life and of O2-levels are likely intricately intertwined. The obvious biological proxy for inferring the impact of changing O2-levels on life is the evolutionary history of the enzyme allowing organisms to tap into the redox power of molecular oxygen, i.e. the bioenergetic O2 reductases, alias the cytochrome and quinol oxidases. Consequently, molecular phylogenies reconstructed for this enzyme superfamily have been exploited over the last two decades in attempts to elucidate the interlocking between O2 levels in the environment and the evolution of respiratory bioenergetic processes. Although based on strictly identical datasets, these phylogenetic approaches have led to diametrically opposite scenarios with respect to the history of both the enzyme superfamily and molecular oxygen on the Earth. In an effort to overcome the deadlock of molecular phylogeny, we here review presently available structural, functional, palaeogeochemical and thermodynamic information pertinent to the evolution of the superfamily (which notably also encompasses the subfamily of nitric oxide reductases). The scenario which, in our eyes, most closely fits the ensemble of these non-phylogenetic data, sees the low O2-affinity SoxM- (or A-) type enzymes as the most recent evolutionary innovation and the high-affinity O2 reductases (SoxB or B and cbb3 or C) as arising independently from NO-reducing precursor enzymes. PMID:24968694

  9. The evolution of respiratory O2/NO reductases: an out-of-the-phylogenetic-box perspective.

    PubMed

    Ducluzeau, Anne-Lise; Schoepp-Cothenet, Barbara; van Lis, Robert; Baymann, Frauke; Russell, Michael J; Nitschke, Wolfgang

    2014-09-01

    Complex life on our planet crucially depends on strong redox disequilibria afforded by the almost ubiquitous presence of highly oxidizing molecular oxygen. However, the history of O2-levels in the atmosphere is complex and prior to the Great Oxidation Event some 2.3 billion years ago, the amount of O2 in the biosphere is considered to have been extremely low as compared with present-day values. Therefore the evolutionary histories of life and of O2-levels are likely intricately intertwined. The obvious biological proxy for inferring the impact of changing O2-levels on life is the evolutionary history of the enzyme allowing organisms to tap into the redox power of molecular oxygen, i.e. the bioenergetic O2 reductases, alias the cytochrome and quinol oxidases. Consequently, molecular phylogenies reconstructed for this enzyme superfamily have been exploited over the last two decades in attempts to elucidate the interlocking between O2 levels in the environment and the evolution of respiratory bioenergetic processes. Although based on strictly identical datasets, these phylogenetic approaches have led to diametrically opposite scenarios with respect to the history of both the enzyme superfamily and molecular oxygen on the Earth. In an effort to overcome the deadlock of molecular phylogeny, we here review presently available structural, functional, palaeogeochemical and thermodynamic information pertinent to the evolution of the superfamily (which notably also encompasses the subfamily of nitric oxide reductases). The scenario which, in our eyes, most closely fits the ensemble of these non-phylogenetic data, sees the low O2-affinity SoxM- (or A-) type enzymes as the most recent evolutionary innovation and the high-affinity O2 reductases (SoxB or B and cbb3 or C) as arising independently from NO-reducing precursor enzymes.

  10. Biochemical characterization and substrate profiling of a new NADH-dependent enoate reductase from Lactobacillus casei.

    PubMed

    Gao, Xiuzhen; Ren, Jie; Wu, Qiaqing; Zhu, Dunming

    2012-06-10

    Carbon-carbon double bond of α,β-unsaturated carbonyl compounds can be reduced by enoate reductase (ER), which is an important reaction in fine chemical synthesis. A putative enoate reductase gene from Lactobacillus casei str. Zhang was cloned into pET-21a+ and expressed in Escherichia coli BL21 (DE3) host cells. The encoded enzyme (LacER) was purified by ammonium sulfate precipitation and treatment in an acidic buffer. This enzyme was identified as a NADH-dependent enoate reductase, which had a K(m) of 0.034 ± 0.006 mM and k(cat) of (3.2 ± 0.2) × 10³ s⁻¹ toward NADH using 2-cyclohexen-1-one as the substrate. Its K(m) and k(cat) toward substrate 2-cyclohexen-1-one were 1.94 ± 0.04 mM and (8.4 ± 0.2) × 10³ s⁻¹, respectively. The enzyme showed a maximum activity at pH 8.0-9.0. The optimum temperature of the enzyme was 50-55°C, and LacER was relatively stable below 60 °C. The enzyme was active toward aliphatic alkenyl aldehyde, ketones and some cyclic anhydrides. Substituted groups of cyclic α,β-unsaturated ketones and its ring size have positive or negative effects on activity. (R)-(-)-Carvone was reduced to (2R,5R)-dihydrocarvone with 99% conversion and 98% (diasteromeric excess: de) stereoselectivity, indicating a high synthetic potential of LacER in asymmetric synthesis. PMID:22579387

  11. Purification and properties of glutathione reductase from the cyanobacterium Anabaena sp. strain 7119

    SciTech Connect

    Serrano, A.; Rivas, J.; Losada, M.

    1984-04-01

    An NADPH-glutathione reductase (EC 1.6.4.2) has been purified 6000-fold to electrophoretic homogeneity from the filamentous cyanobacterium Anabaena sp. strain 7119. The purified enzyme exhibits a specific activity of 249 U/mg and is characterized by being a dimeric flavin adenine dinucleotide-containing protein with a ratio of absorbance at 280 nm to absorbance at 462 nm of 5.8, a native molecular weight of 104,000, a Stokes radius of 4.13 nm, and a pI of 4.02. The enzyme activity is inhibited by sulfhydryl reagents and heavy-metal ions, especially in the presence of NADPH, with oxidized glutathione behaving as a protective agent. As is the case with the same enzyme from other sources, the kinetic data are consistent with a branched mechanism. Nevertheless, the cyanobacterial enzyme presents three distinctive

  12. Localization of Methyl-Coenzyme M reductase as metabolic marker for diverse methanogenic Archaea.

    PubMed

    Wrede, Christoph; Walbaum, Ulrike; Ducki, Andrea; Heieren, Iris; Hoppert, Michael

    2013-01-01

    Methyl-Coenzyme M reductase (MCR) as key enzyme for methanogenesis as well as for anaerobic oxidation of methane represents an important metabolic marker for both processes in microbial biofilms. Here, the potential of MCR-specific polyclonal antibodies as metabolic marker in various methanogenic Archaea is shown. For standard growth conditions in laboratory culture, the cytoplasmic localization of the enzyme in Methanothermobacter marburgensis, Methanothermobacter wolfei, Methanococcus maripaludis, Methanosarcina mazei, and in anaerobically methane-oxidizing biofilms is demonstrated. Under growth limiting conditions on nickel-depleted media, at low linear growth of cultures, a fraction of 50-70% of the enzyme was localized close to the cytoplasmic membrane, which implies "facultative" membrane association of the enzyme. This feature may be also useful for assessment of growth-limiting conditions in microbial biofilms.

  13. Post-translational Regulation of Nitrate Reductase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate reductase (NR) catalyzes the reduction of nitrate to nitrite, which is the first step in the nitrate assimilation pathway, but can also reduce nitrite to nitric oxide (NO), an important signaling molecule that is thought to mediate a wide array of of developmental and physiological processes...

  14. The energy-conserving nitric-oxide-reductase system in Paracoccus denitrificans. Distinction from the nitrite reductase that catalyses synthesis of nitric oxide and evidence from trapping experiments for nitric oxide as a free intermediate during denitrification.

    PubMed

    Carr, G J; Page, M D; Ferguson, S J

    1989-02-15

    1. A Clark-