Science.gov

Sample records for 5-alpha reductase enzyme

  1. Genetics Home Reference: 5-alpha reductase deficiency

    MedlinePlus

    ... gene provides instructions for making an enzyme called steroid 5-alpha reductase 2. This enzyme is involved ... external genitalia. Mutations in the SRD5A2 gene prevent steroid 5-alpha reductase 2 from effectively converting testosterone ...

  2. Molecular analysis of the 5 alpha-steroid reductase type 2 gene in a family with deficiency of the enzyme.

    PubMed

    Vilchis, F; Canto, P; Chávez, B; Ulloa-Aguirre, A; Méndez, J P

    1997-03-01

    This report describes the identification of a point mutation in the 5 alpha-reductase type 2 (5 alpha-SR2) gene from a family in which both sibs (6 and 3 years old) have steroid 5 alpha-reductase 2 deficiency. The five exons of the gene were individually amplified by the polymerase chain reaction (PCR) and analysed for single-strand conformation polymorphisms (SSCP) to detect mutations. Direct sequencing of the mutant PCR products demonstrated a single C-->T mutation, within exon 4, changing codon 227 from CGA (Arg) to TGA (premature termination signal). Both patients were homozygous for the mutation, but their parents were heterozygous. These results suggest that the mutation at codon 227 impairs normal 5 alpha-SR2 function, thus leading to the phenotypical expression of this rare enzymatic defect. PMID:9066886

  3. An overview on 5alpha-reductase inhibitors.

    PubMed

    Aggarwal, Saurabh; Thareja, Suresh; Verma, Abhilasha; Bhardwaj, Tilak Raj; Kumar, Manoj

    2010-02-01

    Benign prostatic hyperplasia (BPH) is the noncancerous proliferation of the prostate gland associated with benign prostatic obstruction and lower urinary tract symptoms (LUTS) such as frequency, hesitancy, urgency, etc. Its prevalence increases with age affecting around 70% by the age of 70 years. High activity of 5alpha-reductase enzyme in humans results in excessive dihydrotestosterone levels in peripheral tissues and hence suppression of androgen action by 5alpha-reductase inhibitors is a logical treatment for BPH as they inhibit the conversion of testosterone to dihydrotestosterone. Finasteride (13) was the first steroidal 5alpha-reductase inhibitor approved by U.S. Food and Drug Administration (USFDA). In human it decreases the prostatic DHT level by 70-90% and reduces the prostatic size. Dutasteride (27) another related analogue has been approved in 2002. Unlike Finasteride, Dutasteride is a competitive inhibitor of both 5alpha-reductase type I and type II isozymes, reduced DHT levels >90% following 1 year of oral administration. A number of classes of non-steroidal inhibitors of 5alpha-reductase have also been synthesized generally by removing one or more rings from the azasteroidal structure or by an early non-steroidal lead (ONO-3805) (261). In this review all categories of inhibitors of 5alpha-reductase have been covered. PMID:19879888

  4. Enzyme-linked immunosorbent assays for doping control of 5alpha-reductase inhibitors finasteride and dutasteride.

    PubMed

    Brun, Eva M; Torres, Ana; Ventura, Rosa; Puchades, Rosa; Maquieira, Angel

    2010-06-25

    Finasteride and dutasteride are 5alpha-reductase inhibitors included in the World Anti-Doping Agency's list of banned substances. Two highly sensitive and selective ELISA assays were developed for these compounds. Polyclonal rabbit antibodies were raised using synthesized haptens and other commercial products. The best immunoassay obtained, based on an antibody-coated format, showed a limit of detection of 0.01 microg L(-1) and an IC(50) of 0.75 microg L(-1) for finasteride (cross-reactivity with dutasteride<4%). The second assay allowed finasteride and dutasteride determination, with limits of detection of 0.013 and 0.021 microg L(-1), and IC(50) values 0.18 and 1.18 microg L(-1), respectively. Both assays were highly selective to a set of anabolic steroids, but they showed 37% and 30% cross-reactivity with the major urinary metabolite of finasteride, allowing its determination. The developed ELISA had better sensitivity than HPLC/MS/MS method and was applied as a screening technique to quantify dutasteride, finasteride, and its main metabolite in human urine without sample pre-treatment. Moreover, the analysis of dutasteride's excretion urines by ELISA was used to obtain its human excretion rate, essential to improve the analytical strategies about this type of drugs (permitted as medicines and prohibited in sport) and to establish an effective anti-doping policy. PMID:20541645

  5. Inhibition of rat steroid 5 alpha-reductase (isozyme 1) by suramin.

    PubMed

    Taylor, M F; Bhattacharyya, A K; Collins, D C

    1995-07-01

    In this study, we show the inhibition of rat steroid 5 alpha-reductase (isozyme 1) by suramin. The enzyme activity decreased in a dose-dependent manner as suramin concentrations increased with the calculated drug dose required for 50% inhibition (at 5 microM testosterone and 200 microM NADPH) being 13 microM. Suramin showed non-competitive inhibition of 5 alpha-reductase with respect to testosterone (KT1 = 2.4 microM) and competitive inhibition with respect to NADPH (KiNADPH = 220 nM). Furthermore, suramin and NADP+, but not NAD+, protected 5 alpha-reductase from labeling by 2-azido-NADP+, a photoactive probe which has recently been used to identify the NADPH binding domain of 5 alpha-reductase. These results suggest that suramin inhibits rat steroid 5 alpha-reductase (isozyme 1) at the level of NADPH binding to the enzyme. PMID:7482629

  6. Photoaffinity labelling of nuclear steroid 5 alpha-reductase of rat ventral prostate.

    PubMed

    Enderle-Schmitt, U; Seitz, J; Aumüller, G

    1989-09-01

    In order to get more information on the molecular structure of the rat prostatic 5 alpha-reductase (3-oxo-5 alpha-steroid: NADP+ 4-ene-oxidoreductase, EC 1.3:1.22) a systematic photoaffinity labelling study has been performed. To irreversibly freeze the status quo of interaction, either testosterone, the physiological ligand, or diazo-MAPD (21-diazo-4-methyl-4-aza-5 alpha-pregnane-3,20-dione), a specific 5 alpha-reductase inhibitor, was irradiated with isolated nuclei or with purified nuclear membranes or with solubilized nuclear membrane proteins and checked for optimal labelling conditions. The principal substances covalently labelled were phospholipids and at a minor ratio proteins. Analysis by SDS-PAGE and autoradiofluorography revealed two labelled polypeptides with molecular weights of 20 kDa and 26 kDa. The following evidence indicates that these polypeptides might be derived from the enzyme 5 alpha-reductase: both proteins are labelled only when specific ligands for 5 alpha-reductase are used; binding can be reduced by the addition of an excess of unlabelled ligand; enzyme activity is irreversibly suppressed when irradiated in the presence of these ligands; only subcellular fractions containing 5 alpha-reductase reveal the labelled proteins; in all 5 alpha-reductase containing preparations with increasing specific activity, independent of the polypeptide pattern, the same proteins are labelled. PMID:2779229

  7. Photoaffinity labeling of steroid 5 alpha-reductase of rat liver and prostate microsomes

    SciTech Connect

    Liang, T.; Cheung, A.H.; Reynolds, G.F.; Rasmusson, G.H.

    1985-04-25

    21-Diazo-4-methyl-4-aza-5 alpha-pregnane-3,20-dione (Diazo-MAPD) inhibits steroid 5 alpha-reductase in liver microsomes of female rats with a K/sub i/ value of 8.7 +/- 1.7 nM, and the inhibition is competitive with testosterone. It also inhibits the binding of a 5 alpha-reductase inhibitor, (/sup 3/H) 17 beta-N,N-diethylcarbamoyl-4-methyl-4-aza-5 alpha-androstan-3-one ((/sup 3/H)4-MA), to the enzyme in liver microsomes. The inhibition of 5 alpha-reductase activity and of inhibitor binding activity by diazo-MAPD becomes irreversible upon UV irradiation. (1,2-/sup 3/H)Diazo-MAPD binds to a single high affinity site in liver microsomes of female rats, and this binding requires NADPH. Without UV irradiation, this binding is reversible, and it becomes irreversible upon UV irradiation. Both the initial reversible binding and the subsequent irreversible conjugation after UV irradiation are inhibited by inhibitors (diazo-MAPD and 4-MA) and substrates (progesterone and testosterone) of 5 alpha-reductase, but they are not inhibited by 5 alpha-reduced steroids. Photoaffinity labeled liver microsomes of female rats were solubilized and fractionated by high performance gel filtration. The radioactive conjugate eluted in one major peak at Mr 50,000.

  8. Photoaffinity labeling of steroid 5 alpha-reductase of rat liver and prostate microsomes.

    PubMed

    Liang, T; Cheung, A H; Reynolds, G F; Rasmusson, G H

    1985-04-25

    21-Diazo-4-methyl-4-aza-5 alpha-pregnane-3,20-dione (Diazo-MAPD) inhibits steroid 5 alpha-reductase in liver microsomes of female rats with a Ki value of 8.7 +/- 1.7 nM, and the inhibition is competitive with testosterone. It also inhibits the binding of a 5 alpha-reductase inhibitor, [3H] 17 beta-N,N-diethylcarbamoyl-4-methyl-4-aza-5 alpha-androstan-3-one ([3H]4-MA), to the enzyme in liver microsomes. The inhibition of 5 alpha-reductase activity and of inhibitor binding activity by diazo-MAPD becomes irreversible upon UV irradiation. [1,2-3H]Diazo-MAPD binds to a single high affinity site (Kd 8 nM, 125 pmol binding sites/mg of protein) in liver microsomes of female rats, and this binding requires NADPH. Without UV irradiation, this binding is reversible, and it becomes irreversible upon UV irradiation. Both the initial reversible binding and the subsequent irreversible conjugation after UV irradiation are inhibited by inhibitors (diazo-MAPD and 4-MA) and substrates (progesterone and testosterone) of 5 alpha-reductase, but they are not inhibited by 5 alpha-reduced steroids (5 alpha-dihydrotestosterone and 5 alpha-androstan-3 alpha, 17 beta-diol). NADPH stimulates the binding of [3H] diazo-MAPD to microsomes of male rat liver and prostate. UV irradiation also induces conjugation of [3H] diazo-MAPD to these microsomes. Photoaffinity labeled liver microsomes of female rats were solubilized and fractionated by high performance gel filtration. The radioactive conjugate eluted in one major peak at Mr 50,000. PMID:3988737

  9. Establishment of type II 5alpha-reductase over-expressing cell line as an inhibitor screening model.

    PubMed

    Jang, Sunhyae; Lee, Young; Hwang, Seong-Lok; Lee, Min-Ho; Park, Su Jin; Lee, In Ho; Kang, Sangjin; Roh, Seok-Seon; Seo, Young-Joon; Park, Jang-Kyu; Lee, Jeung-Hoon; Kim, Chang Deok

    2007-01-01

    Dihydrotestosterone (DHT) is the most potent male hormone that causes androgenetic alopecia. The type II 5alpha-reductase is an enzyme that catalyzes the conversion of testosterone (T) to DHT, therefore it can be expected that specific inhibitors for type II 5alpha-reductase may improve the pathophysiologic status of androgenetic alopecia. In this study, we attempted to establish the reliable and convenient screening model for type II 5alpha-reductase inhibitors. After transfection of human cDNA for type II 5alpha-reductase into HEK293 cells, the type II 5alpha-reductase over-expressing stable cells were selected by G418 treatment. RT-PCR and Western blot analyses confirmed that type II 5alpha-reductase gene was expressed in the stable cells. In in vitro enzymatic assay, 10 microg of stable cell extract completely converted 1 microCi (approximately 0.015 nmol) of T into DHT. The type II 5alpha-reductase activity was inhibited by finasteride in a dose-dependent manner, confirming the reliability of screening system. In cell culture condition, 2 x 10(5) of stable cells completely converted all the input T (approximately 0.03 nmol) into DHT by 4h incubation, demonstrating that the stable cell line can be used as a cell-based assay system. Using this system, we selected the extracts of Curcumae longae rhizoma and Mori ramulus as the potential inhibitors for type II 5alpha-reductase. These results demonstrate that the type II 5alpha-reductase over-expressing stable cell line is a convenient and reliable model for screening and evaluation of inhibitors. PMID:17646096

  10. Phenotypic classification of male pseudohermaphroditism due to steroid 5{alpha}-reductase 2 deficiency

    SciTech Connect

    Sinnecker, G.H.G; Hiort, O.; Kruse, K.; Dibbelt, L.

    1996-05-03

    Conversion of testosterone (T) to dihydrotestosterone (DHT) in genital tissue is catalysed by the enzyme 5{alpha}-reductase 2, which is encoded by the SRD5A2 gene. The potent androgen DHT is required for full masculinization of the external genitalia. Mutations of the SRD5A2 gene inhibit enzyme activity, diminish DHT formation, and hence cause masculinization defects of varying degree. The classical syndrome, formerly described as pseudovaginal perineoscrotal hypospadias, is characterized by a predominantly female phenotype at birth and significant virilization without gynecomastia at puberty. We investigated nine patients with steroid 5{alpha}-reductase 2 deficiency (SRD). T/DHT-ratios were highly increased in the classical syndrome, but variable in the less severe affected patients. Mutations in the SRD5A2 gene had been characterized using PCR-SSCP analysis and direct DNA sequencing. A small deletion was encountered in two patients, while all other patients had single base mutations which result in amino acid substitutions. We conclude that phenotypes may vary widely in patients with SRD5A2 gene mutations spanning the whole range from completely female to normal male without distinctive clinical signs of the disease. Hence, steroid 5{alpha}-reductase deficiency should be considered not only in sex reversed patients with female or ambiguous phenotypes, but also in those with mild symptoms of undermasculinization as encountered in patients with hypospadias and/or micropenis. A classification based on the severity of the masculinization defect may be used for correlation of phenotypes with enzyme activities and genotypes, and for comparisons of phenotypes between different patients as the basis for clinical decisions to be made in patients with pseudohermaphroditism due to steroid 5{alpha}-reductase 2 deficiency. 22 refs., 2 figs., 2 tabs.

  11. 5-Alpha-Reductase Inhibitors and Combination Therapy.

    PubMed

    Füllhase, Claudius; Schneider, Marc P

    2016-08-01

    By inhibiting the conversion from testosterone to dihydrotestosterone 5-Alpha reductase inhibitors (5ARIs) are able to hinder prostatic growth, shrink prostate volumes, and improve BPH-related LUTS. 5ARIs are particularly beneficial for patients with larger prostates (>30-40ml). Generally the side effects of 5ARI treatment are mild, and according to the FORTA classification 5ARIs are suitable for frail elderly. 5ARI / alpha-blocker (AB) combination therapy showed the best symptomatic outcome and risk reduction for clinical progression. Combining Phosphodieseterase type 5 inhbibitors (PDE5Is) with 5ARIs counteracts the negative androgenic sexual side effects of 5ARIs, and simultaneously combines their synergistic effects on LUTS. PMID:27476125

  12. 5alpha-reductase: history and clinical importance.

    PubMed

    Marks, Leonard S

    2004-01-01

    The treatment of men with symptomatic benign prostatic hyperplasia (BPH) has shifted dramatically from surgery to drug therapy over the past decade. The revolution in BPH treatment began with the discovery of congenital 5alpha-reductase (5AR) deficiency, leading to the appreciation of 2 different androgenic hormones: testosterone, which mediates overt masculinization in the adult male, and dihydrotestosterone (DHT), which mediates prostatic growth, acne, facial beard, and male pattern baldness. Inhibition of DHT in adults results in prostatic shrinkage and symptomatic relief in many men, without the side effects seen with conventional androgen-deprivation therapy. The 5AR inhibitor drugs (finasteride and the dual inhibitor, dutasteride) are able to ablate the accumulation of intraprostatic DHT, the mechanism most responsible for prostate growth and maintenance. Not only may these drugs relieve symptoms, but they may also alter the natural history of the BPH process. Future indications for the 5ARI drugs could include chemoprevention of prostate cancer, prophylaxis of BPH-related complications, and treatment of BPH-associated hematuria. PMID:16985920

  13. Mechanistic studies with solubilized rat liver steroid 5 alpha-reductase: Elucidation of the kinetic mechanism

    SciTech Connect

    Levy, M.A.; Brandt, M.; Greway, A.T. )

    1990-03-20

    A solubilized preparation of steroid 5 alpha-reductase from rat liver has been used in studies focused toward an understanding of the kinetic mechanism associated with enzyme catalysis. From the results of analyses with product and dead-end inhibitors, a preferentially ordered binding of substrates and release of products from the surface of the enzyme is proposed. The observations from these experiments were identical with those using the steroid 5 alpha-reductase activity associated with rat liver microsomes. The primary isotope effects on steady-state kinetic parameters when (4S-2H)NADPH was used also were consistent with an ordered kinetic mechanism. Normal isotope effects were observed for all three kinetic parameters (Vm/Km for both testosterone and NADPH and Vm) at all substrate concentrations used experimentally. Upon extrapolation to infinite concentration of testosterone, the isotope effect on Vm/Km for NADPH approached unity, indicating that the nicotinamide dinucleotide phosphate is the first substrate binding to and the second product released from the enzyme. The isotope effects on Vm/Km for testosterone at infinite concentration of cofactor and on Vm were 3.8 +/- 0.5 and 3.3 +/- 0.4, respectively. Data from the pH profiles of these three steady-state parameters and the inhibition constants (1/Ki) of competitive inhibitors versus both substrates indicate that the binding of nicotinamide dinucleotide phosphate involves coordination of its anionic 2'-phosphate to a protonated enzyme-associated base with an apparent pK near 8.0. From these results, relative limits have been placed on several of the internal rate constants used to describe the ordered mechanism of the rat liver steroid 5 alpha-reductase.

  14. Determination of oenothein B as the active 5-alpha-reductase-inhibiting principle of the folk medicine Epilobium parviflorum.

    PubMed

    Lesuisse, D; Berjonneau, J; Ciot, C; Devaux, P; Doucet, B; Gourvest, J F; Khemis, B; Lang, C; Legrand, R; Lowinski, M; Maquin, P; Parent, A; Schoot, B; Teutsch, G

    1996-05-01

    Several extracts from Epilobium parviflorum, a plant used in Central Europe for the treatment of prostate disorders, were evaluated in a biochemical assay with 5-alpha-reductase. The aqueous extract displaying inhibition of the enzyme was analyzed, the fraction responsible for this activity was purified, and the active compound identified as a macrocyclic tannin, oenothein B (1). PMID:8778238

  15. Biosynthesis of catalytically active rat testosterone 5. alpha. -reductase in microinjected Xenopus oocytes: Evidence for tissue-specific differences in translatable mRNA

    SciTech Connect

    Farkash, Y.; Soreq, H.; Orly, J. )

    1988-08-01

    The enzyme 4-ene-3-ketosteroid-5{alpha}-oxidoreductase plays a key role in androgen-dependent target tissues, where it catalyzes the conversion of testosterone to the biologically active dihydrotestosterone. The regulation of 5{alpha}-reductase expression has not been studied at the molecular level as the enzyme is a membrane protein that is labile in cell-free homogenates. The authors developed a sensitive bioassay of the enzyme activity expressed in Xenopus oocytes microinjected with rat liver and prostate mRNA. After microinjection, incubation of intact oocytes in the presence of ({sup 3}H)testosterone revealed the in ovo appearance of active 5{alpha}-reductase. Polyandenylylated RNA was fractionated by sucrose gradient centrifugation, and the enzymatic activity was shown to be encoded by a 1,600- to 2,000-base-pair fraction of hepatic poly(A){sup +} RNA. 5{alpha}-Reductase mRNA was most efficiently translated when up to 80 ng of RNA was injected per oocyte. In the injected oocytes, 5{alpha}-reductase mRNA was found to be a short-lived molecule whereas its in ovo translatable 5{alpha}-reductase protein exhibited stable enzymatic activity for over 40 hr. Moreover, the levels of translatable tissue-specific 5{alpha}-reductase mRNAs as monitored in the Xenopus oocytes correlated with the variable 5{alpha}-reductase activities in female rat liver, male rat liver, and prostate homogenates. Altogether, these results provide supporting evidence in favor of the transcriptional control of 5{alpha}-reductase expression in rat tissues.

  16. New evidence of similarity between human and plant steroid metabolism: 5alpha-reductase activity in Solanum malacoxylon.

    PubMed

    Rosati, Fabiana; Danza, Giovanna; Guarna, Antonio; Cini, Nicoletta; Racchi, Milvia Luisa; Serio, Mario

    2003-01-01

    The physiological role of steroid hormones in humans is well known, and the metabolic pathway and mechanisms of action are almost completely elucidated. The role of plant steroid hormones, brassinosteroids, is less known, but an increasing amount of data on brassinosteroid biosynthesis is showing unexpected similarities between human and plant steroid metabolic pathways. Here we focus our attention on the enzyme 5alpha-reductase (5alphaR) for which a plant ortholog of the mammalian system, DET2, was recently described in Arabidopsis thaliana. We demonstrate that campestenone, the natural substrate of DET2, is reduced to 5alpha-campestanone by both human 5alphaR isozymes but with different affinities. Solanum malacoxylon, which is a calcinogenic plant very active in the biosynthesis of vitamin D-like molecules and sterols, was used to study 5alphaR activity. Leaves and calli were chosen as examples of differentiated and undifferentiated tissues, respectively. Two separate 5alphaR activities were found in calli and leaves of Solanum using campestenone as substrate. The use of progesterone allowed the detection of both activities in calli. Support for the existence of two 5alphaR isozymes in S. malacoxylon was provided by the differential actions of inhibitors of the human 5alphaR in calli and leaves. The evidence for the presence of two isozymes in different plant tissues extends the analogies between plant and mammalian steroid metabolic pathways. PMID:12488348

  17. The REDUCE trial: chemoprevention in prostate cancer using a dual 5alpha-reductase inhibitor, dutasteride.

    PubMed

    Musquera, Mireia; Fleshner, Neil E; Finelli, Antonio; Zlotta, Alexandre R

    2008-07-01

    Dutasteride, a dual 5alpha-reductase inhibitor, is used in the treatment of benign prostatic hyperplasia (BPH). It reduces serum prostate-specific antigen levels by approximately 50% at 6 months and total prostate volume by 25% after 2 years. Randomized placebo-controlled trials in BPH patients have shown the efficacy of dutasteride in symptomatic relief, improvements in quality of life and peak urinary flow rate. Side effects occurring with dutasteride are decreased libido, erectile dysfunction, ejaculation disorders and gynecomastia. Preliminary data from placebo-controlled BPH trials have shown a decrease in the detection of prostate cancer in patients treated with dutasteride, although these studies were not designed to look at this issue. Dutasteride differs from finasteride in that it inhibits both isoenzymes of 5alpha-reductase, type I and type II. The landmark Prostate Cancer Prevention Trial at the end of the 7-year study demonstrated a 24.8% reduction in the incidence of prostate cancer in the finasteride group compared with placebo. However, a 25.5% increase in the prevalence of high-grade Gleason tumors has been observed, the clinical significance of which has been debated. Preliminary data suggest a decrease in prostate cancer incidence in dutasteride-treated patients and demonstrate type I alphareductase enzyme expression in prostate cancer. As a result, dutasteride is being investigated for prostate cancer prevention in the ongoing Reduction by Dutasteride of Prostate Cancer Events (REDUCE) trial, which is discussed here. PMID:18588452

  18. The use of 5-alpha reductase inhibitors for the prevention of prostate cancer.

    PubMed

    Yu, Eun-mi; El-Ayass, Walid; Aragon-Ching, Jeanny B

    2010-07-01

    The use of 5-alpha-reductase inhibitors has been studied not only in benign prostatic hyperplasia, but as a chemopreventive strategy in prostate cancer. Both finasteride and dutasteride, 5 alpha-reductase inhibitors (5ARI), have been shown to decrease the risk of prostate cancer. The results of the REDUCE trial using the dual alpha-reductase isoenzyme inhibitor dutasteride, has recently been published by Andriole et al. in the New England Journal of Medicine. Certain considerations regarding its use and applicability to men with high risk of developing prostate cancer are herein discussed. PMID:20574153

  19. Molecular study of the 5 {alpha}-reductase type 2 gene in three European families with 5 {alpha}-reductase deficiency

    SciTech Connect

    Boudon, C.; Lumbroso, S.; Lobaccaro, J.M.

    1995-07-01

    The molecular basis of 5{alpha}-reductase (5{alpha}R) deficiency was investigated in four patients from three European families. In the French family, the first patient was raised as a female, and gonadectomy was performed before puberty. The second sibling, also raised as female, differed in that gonadal removal was performed after the onset of pubertal masculinization. The other two patients, both from Polish families, developed masculinization of external genitalia during puberty. All patients developed a female sexual identity. In all cases, no known consanguinity or family history of 5{alpha}R deficiency was reported. The genomic DNAs of the patients were sequenced after polymerase chain reaction amplification of the five exons of the 5{alpha}R type 2 gene. We found two homozygous mutations responsible for gutamine to arginine and histidine to arginine substitution in families 1 and 3, respectively. In family 2, we found a heterozygous mutation responsible for an asparagine to serine substitution at position 193. The glutamine/arginine 126 mutation in the French family was previously reported in a Creole ethnic group, and the Polish histidine/arginine 231 mutation was previously reported in a patient from Chicago, Moreover, all of the mutations created new restriction sites, which were used to determine the kindred carrier status in the three families. Because 5{alpha}R deficiency is known to be heterogenous disease in terms of clinical and biochemical expression, our data suggest that molecular biology analysis of the type 2 gene could be an essential step in diagnosing 5{alpha}R deficiency. 22 refs., 3 figs., 1 tab.

  20. Inhibition of 5 alpha-reductase and aromatase by the ellagitannins oenothein A and oenothein B from Epilobium species.

    PubMed

    Ducrey, B; Marston, A; Göhring, S; Hartmann, R W; Hostettmann, K

    1997-04-01

    Species of the genus Epilobium (Onagraceae) have been investigated for their activity against 5 alpha-reductase and aromatase, two enzymes which are involved in the aetiology of benign prostatic hyperplasia (BPH). Activity-guided fractionation has led to the identification of two macrocyclic ellagitannins, oenothein A (1) and oenothein B (2), as the main constituents responsible for the inhibition of the two enzymes. Quantitation of oenothein B in 10 different species of Epilobium has shown that amounts of up to 14% in the crude plant extracts are possible. PMID:9140222

  1. 5alpha-Reductase inhibitor treatment of prostatic diseases: background and practical implications.

    PubMed

    Dörsam, J; Altwein, J

    2009-01-01

    This literature review discusses the theoretical background of 5alpha-reductase inhibitor (5ARI) treatment and the resulting clinical implications. A Medline-based search for peer-reviewed articles addressing 5ARIs, benign prostatic hyperplasia and prostate cancer was performed. The 5ARIs Finasteride and Dutasteride, which specifically inhibit the production of dihydrotestosterone by acting as competitive inhibitors of 5alpha-reductase, are clinically well tolerated and represent an effective treatment option for benign prostatic obstruction. Finasteride is the first compound which has a proven efficacy in chemoprevention of prostate cancer. The aim of this review was to elucidate, if there are sufficient data available to point out clinically relevant differences between the drugs. Both compounds achieve a significant reduction of prostate volume, an improvement of symptoms and a lower risk of acute urinary retention. Whether the different pharmacokinetic and pharmacodynamic properties of Finasteride and Dutasteride are of clinical importance cannot be judged at this time. PMID:19030020

  2. 5-alpha reductase inhibitors in patients on active surveillance: do the benefits outweigh the risk?

    PubMed

    Al Edwan, Ghazi; Fleshner, Neil

    2013-06-01

    Prostate cancer (PCa) is a slow, progressive disease. Prostate specific antigen testing, screening, and aggressive case identification has made PCa the most frequently diagnosed cancer. Concerns regarding overdiagnosis and overtreatment flourish on a large scale. In order to avoid overtreatment for those in whom therapeutic intervention is not required, active surveillance for eligible patients with the use of 5-alpha reductase can be considered a safe and a promising approach to delay the progression of the disease with minimal side effects. PMID:23579402

  3. 5alpha-reductase inhibitors in benign prostatic hyperplasia and prostate cancer risk reduction.

    PubMed

    Rittmaster, Roger S

    2008-04-01

    Androgens play an essential role in prostatic development and function, but are also involved in prostate disease pathogenesis. The primary prostatic androgen, dihydrotestosterone (DHT), is synthesized from testosterone by 5alpha-reductase types 1 and 2. Inhibition of the 5alpha-reductase isoenzymes therefore has potential therapeutic benefit in prostate disease. The two currently approved 5alpha-reductase inhibitors (5ARIs), finasteride and dutasteride, have demonstrated long-term efficacy and safety in the treatment of benign prostatic hyperplasia. Finasteride, a type-2 5ARI, has also been studied for its ability to reduce the incidence of biopsy-detectable prostate cancer in the Prostate Cancer Prevention Trial. Treatment with dutasteride, a dual 5ARI, has been shown to result in a greater degree and consistency of DHT suppression compared with finasteride. Two large-scale studies of dutasteride are currently investigating the role of near-maximal DHT suppression in the settings of prostate cancer risk reduction and expectant management of localized prostate cancer. PMID:18471794

  4. A role for 5alpha-reductase activity in the development of male homosexuality?

    PubMed

    Alias, A G

    2004-12-01

    Higher body hair with lower mesmorphism ratings were observed in Caucasian homosexual men compared with the general male population, reflecting elevated 5alpha-reductase (5alphaR) activity, and higher dihydrotestosterone-to-testosterone (DHT-to-T) ratio, in sharp contrast to 46,XY 5alphaR 2 deficiency subjects, who are often born with ambiguous, or female genitalia, but tend to grow up to be muscular, heterosexual men with very little body hair, or beard. One study also showed them scoring around dull normal IQs. A greater prevalence of liberal body hair growth in men with higher IQs and/or educational levels was also observed in several samples. The exceptions to this statistical trend are too unsettling, however. Nevertheless, the results of a number of published studies, including one showing higher DHT-to-T ratio in homosexual men, done with different objectives over a span of 80 years, together strongly support these findings. Furthermore, in an animal model, "cognitive-enhancing effects" of "5alpha-reduced androgen [metabolites]" were recently demonstrated. PMID:15677419

  5. Relationship of changing delta 4-steroid 5 alpha-reductase activity to (125I)iododeoxyuridine uptake during regeneration of involuted rat prostates

    SciTech Connect

    Kitahara, S.; Higashi, Y.; Takeuchi, S.; Oshima, H. )

    1989-04-01

    To elucidate the phenotypic expression of proliferating prostatic cells, rats were castrated, and the regenerating process of involuted ventral prostates during testosterone propionate (TP) administration was investigated by examining morphology, (5-{sup 125}I)iododeoxyuridine ({sup 125}I-UdR) uptake, DNA content, weight, acid phosphatase, and delta 4-steroid 5 alpha-reductase (5 alpha-reductase) activities. Morphologically, TP treatment initially increased the number of epithelial cells lining glandular lobules and subsequently restored the shape of epithelial cells. {sup 125}I-UdR uptake peaked on Day 3 of TP treatment and stayed at higher levels than for uncastrated controls until Day 14 of treatment. Prostatic weight, protein content, acid phosphatase, and DNA content returned to uncastrated control levels by Day 14 of TP treatment. TP administration markedly stimulated prostatic 5 alpha-reductase activity, which peaked on the Day 5 of treatment and decreased to uncastrated control levels by Day 14 of treatment. It is concluded that TP administration to castrated rats initially induced active mitotic division of the remaining stem cells, followed by formation of differentiated functional epithelial cells. Prostatic 5 alpha-reductase was highly active at the initial phase of active mitotic cell division. The major portion of the increased enzyme activity can be regarded as a phenotypic expression of stem or transient cells of prostatic epithelium.

  6. 17 beta-(N-tert-butylcarbamoyl)-4-aza-5 alpha-androstan-1-en-3-one is an active site-directed slow time-dependent inhibitor of human steroid 5 alpha-reductase 1.

    PubMed

    Tian, G; Stuart, J D; Moss, M L; Domanico, P L; Bramson, H N; Patel, I R; Kadwell, S H; Overton, L K; Kost, T A; Mook, R A

    1994-03-01

    17 beta-(N-tert-butylcarbamoyl)-4-aza-5 alpha-androstan-1-en-3-one (finasteride), which has been approved for treatment of benign prostatic hyperplasia, is shown here to be a slow time-dependent inhibitor of human steroid 5 alpha-reductase isozyme 1. This inhibition is characterized by an initial, fast step where the inhibitor binds to the enzyme followed by a slow step that leads to a final enzyme-inhibitor complex (EI*). No recovery of activity from this EI* complex was observed after dialysis for 3 days. The formation of EI* is diminished in the presence of a competitive, reversible inhibitor, indicating that the inhibition is active site-directed. At 37 degrees C and pH 7.0, the rate constant for the second, slow inhibition step, k3, is (1.40 +/- 0.04) x 10(-3) s-1 and the pseudo-bimolecular rate constant, k3/Ki, is (4.0 +/- 0.3) x 10(3) M-1 s-1. This latter rate constant is less than the value of 2.7 x 10(5) M-1 s-1 determined for the inhibition of 5 alpha-reductase 2 by finasteride [Faller, B., Farley, D., & Nick, H. (1993) Biochemistry 32, 5705-5710].(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8117686

  7. Different patterns of 5{alpha}-reductase expression, cellular distribution, and testosterone metabolism in human follicular dermal papilla cells

    SciTech Connect

    Liu, Shicheng Yamauchi, Hitoshi

    2008-04-18

    Androgens regulate hair growth, and 5{alpha}-reductase (5{alpha}R) plays a pivotal role in the action of androgens on target organs. To clarify the molecular mechanisms responsible for controlling hair growth, the present study presents evidence that the human follicular dermal papilla cells (DPCs) from either beard (bDPCs) or scalp hair (sDPCs) possess endogenous 5{alpha}R activity. Real-time RT-PCR revealed that the highest level of 5{alpha}R1 mRNA was found in bDPCs, followed by sDPCs, and a low but detectable level of 5{alpha}R1 mRNA was observed in fibroblasts. Minimally detectable levels of 5{alpha}R2 mRNA were found in all three cell types. A weak band at 26 kDa corresponding to the human 5{alpha}R1 protein was detected by Western blot in both DPCs, but not in fibroblasts. Immuonofluorescence analysis confirmed that 5{alpha}R1 was localized to the cytoplasm rather than in the nuclei in both DPCs Furthermore, a 5{alpha}R assay using [{sup 14}C]testosterone labeling in intact cells revealed that testosterone was transformed primarily into androstenedione, and in small amounts, into DHT. Our results demonstrate that the 5{alpha}R activities of either bDPCs or sDPCs are stronger than that of dermal fibroblasts, despite the fact that the major steroidogenic activity is attributed to 17{beta}-HSD rather than 5{alpha}R among the three cell types. The 5{alpha}R1 inhibitor MK386 exhibited a more potent inhibitory effect on 5{alpha}R activity than finasteride (5{alpha}R2 inhibitor) in bDPCs.

  8. The 5 Alpha-Reductase Isozyme Family: A Review of Basic Biology and Their Role in Human Diseases

    PubMed Central

    Azzouni, Faris; Godoy, Alejandro; Li, Yun; Mohler, James

    2012-01-01

    Despite the discovery of 5 alpha-reduction as an enzymatic step in steroid metabolism in 1951, and the discovery that dihydrotestosterone is more potent than testosterone in 1968, the significance of 5 alpha-reduced steroids in human diseases was not appreciated until the discovery of 5 alpha-reductase type 2 deficiency in 1974. Affected males are born with ambiguous external genitalia, despite normal internal genitalia. The prostate is hypoplastic, nonpalpable on rectal examination and approximately 1/10th the size of age-matched normal glands. Benign prostate hyperplasia or prostate cancer does not develop in these patients. At puberty, the external genitalia virilize partially, however, secondary sexual hair remains sparse and male pattern baldness and acne develop rarely. Several compounds have been developed to inhibit the 5 alpha-reductase isozymes and they play an important role in the prevention and treatment of many common diseases. This review describes the basic biochemical properties, functions, tissue distribution, chromosomal location, and clinical significance of the 5 alpha-reductase isozyme family. PMID:22235201

  9. Battling prostate cancer with 5-alpha-reductase inhibitors: a pyrrhic victory?

    PubMed

    Hoffman, Richard M; Roberts, Richard G; Barry, Michael J

    2011-07-01

    Given the relatively small impact of prostate cancer screening on cancer mortality, experts are now suggesting that chemoprevention with 5-alpha-reductase inhibitors (5-ARI) may be a more effective strategy for cancer control. Two large placebo-controlled randomized trials found that men receiving 5-ARI were about 25% less likely than controls to be detected with cancer. However, most cancers were detected on routine biopsies required by study protocols. The benefit from receiving 5-ARI was minimal among men who underwent biopsy for clinical indications. Additionally, men receiving 5-ARI were more likely than controls to be diagnosed with high-grade cancers, though post-hoc analyses adjusting for biases accounted for the excess risk in one of the studies. A recent guideline recommended that men considering prostate cancer screening also consider chemoprevention. The rationale is that reducing cancer incidence, given the known risks for overdiagnosis and subsequent overtreatment, is sufficient justification for chemoprevention. However, a large randomized controlled trial found that screening was associated with a 70% increase in prostate cancer diagnosis--which chemoprevention would then reduce by 25%. This does not seem an acceptable trade-off especially because the potential increased risk for high-grade cancers could lead to higher cancer mortality. PMID:21222171

  10. The Economic Impact of Delaying 5-Alpha Reductase Inhibitor Therapy in Men Receiving Treatment for Symptomatic Benign Prostatic Hyperplasia

    PubMed Central

    Naslund, Michael; Eaddy, Michael T.; Hogue, Susan L.; Kruep, Eric J.; Shah, Manan B.

    2011-01-01

    Background Pharmacologic treatment of lower urinary tract symptoms associated with benign prostatic hyperplasia often includes alpha-blockers and 5-alpha reductase inhibitors. Many clinicians use alpha-blockers for rapid symptom control, later adding 5-alpha reductase inhibitors to modify long-term disease progression. Delaying the addition of these medications has been shown to result in reduced clinical outcomes. The economic impact of this practice has not been widely studied or reported to date. Objective The objective of this study was to assess the economic impact of delaying initiation of concomitant 5-alpha reductase inhibitor therapy (≥30 days) in patients receiving alpha-blockers for lower urinary tract symptoms. Methods Using 2 nationally representative databases (Integrated Health Care Information Solutions and PharMetrics), 2 retrospective analyses were conducted involving 2636 and 4260 men, respectively, aged ≥50 years treated for benign prostatic hyperplasia between 2000 and 2007. Economic outcomes (ie, the cost of therapy and the use of healthcare resources) were compared for adding 5-alpha reductase inhibitor therapy early (within <30 days of initiating an alpha-blocker) versus delaying these medications (≥30 days after initiating an alpha-blocker). Results In the Integrated Health Care Information Solutions analysis, patients in the early add-on therapy group (n = 1572) had lower benign prostatic hyperplasia–related medical costs in the posttreatment period than those in the delayed-therapy group (n = 1064), $349 versus $618 (P <.0001). Similar trends were seen in the PharMetrics analysis—the medical costs in the early add-on therapy group (n = 2604) and delayed group (n = 1656) were $344 versus $449, respectively (P <.001). Pharmacy costs were $1068 for the early-treatment cohort and $989 for the delayed-treatment cohort for the Integrated Health Care Information Solutions database, yielding total costs of $1417 and $1606, respectively

  11. Novel 5alpha-reductase inhibitors: synthesis, structure-activity studies, and pharmacokinetic profile of phenoxybenzoylphenyl acetic acids.

    PubMed

    Salem, Ola I A; Frotscher, Martin; Scherer, Christiane; Neugebauer, Alexander; Biemel, Klaus; Streiber, Martina; Maas, Ruth; Hartmann, Rolf W

    2006-01-26

    Novel substituted benzoyl benzoic acids and phenylacetic acids 1-14 have been synthesized and evaluated for inhibition of rat and human steroid 5alpha-reductase isozymes 1 and 2. The compounds turned out to be potent and selective human type 2 enzyme inhibitors, exhibiting IC(50) values in the nanomolar range. The phenylacetic acid derivatives were more potent than the analogous benzoic acids. Bromination in the 4-position of the phenoxy moiety led to the strongest inhibitor in this class (12; IC(50) = 5 nM), which was equipotent to finasteride. Since oral absorption is essential for a potential drug, 12 was further examined. In the parallel artificial membrane permeation assay (PAMPA) it turned out to be a good permeator, whereas it was a medium permeator in Caco2 cells. After oral administration (40 mg/kg) to rats a high bioavailability and a biological half-life of 5.5 h were observed, making it a promising candidate for clinical evaluation. PMID:16420060

  12. Effect of 5-alpha Reductase Inhibitor on Storage Symptoms in Patients with Benign Prostatic Hyperplasia

    PubMed Central

    Cho, Kang Jun; Kang, Se Hee; Kim, Hyo Sin; Koh, Jun Sung

    2011-01-01

    Purpose Many patients with benign prostatic hyperplasia (BPH) have storage symptoms. The aim of this study was to evaluate the effects of treatment with a 5-alpha reductase inhibitor (5ARI) on storage symptoms in patients with BPH. Methods This study was conducted in 738 patients with lower urinary tract symptoms secondary to BPH. Patients with a prostate volume of higher than 30 mL on the transrectal ultrasound were classified into two groups: group A, in which an alpha blocker was solely administered for at least 12 months, and group B, in which a combination treatment regimen of an alpha blocker plus 5ARI was used. This was followed by an analysis of the changes in parameters such as the total International Prostate Symptom Score (IPSS), voiding symptom subscore, and storage symptom subscore between the two groups. In addition, we examined whether there was a significant difference between the two groups in the degree of change in storage symptoms between before and after the pharmacological treatment. Results Of the 738 men, 331 had a prostate volume ≥30 mL, including 150 patients in group A and 181 patients in group B. Total IPSS, the voiding symptom subscore, and the storage symptom subscore were significantly lower after treatment than before treatment in both groups (P<0.05). A comparison of the degree of change between before and after treatment, however, showed no significant differences in the storage symptom subscore between the two groups (P>0.05). Conclusions Alpha blocker and 5ARI combination treatment is effective for patients with BPH including storage symptoms. However, 5ARI does not exert a significant effect on storage symptoms in BPH patients. PMID:22087424

  13. Clinical Effects of Discontinuing 5-Alpha Reductase Inhibitor in Patients With Benign Prostatic Hyperplasia

    PubMed Central

    Kim, Won; Jung, Jae Hung; Kang, Tae Wook; Song, Jae Mann

    2014-01-01

    Purpose To assess changes in lower urinary tract symptoms (LUTS), prostate volume, and serum prostate-specific antigen (PSA) after discontinuation of 5-alpha reductase inhibitor (5ARI) combination therapy in patients with benign prostatic hyperplasia (BPH). Materials and Methods From December 2003 to December 2012, data were collected retrospectively from 81 men more than 40 years of age with moderate to severe BPH symptoms (International Prostate Symptom Score [IPSS]≥8). The men were classified into group 1 (n=42) and group 2 (n=39) according to the use of 5ARI therapy. A combination of dutasteride 0.5 mg with tamsulosin 0.2 mg was given daily to all patients for 1 year. For the next 1 year, group 1 (n=42) received the combination therapy and group 2 (n=39) received tamsulosin 0.2 mg monotherapy only. The IPSS, prostate volume, and PSA level were measured at baseline and at 12 and 24 months according to the use of dutasteride. Results Discontinuation of dutasteride led to significant deterioration of LUTS, increased prostate volume, and increased PSA level. The repeated-measures analysis of variance showed that the changes in IPSS, prostate volume, and PSA level over time also differed significantly between groups 1 and 2 (p<0.001). Conclusions Withdrawal of 5ARI during combination therapy resulted in prostate regrowth and deterioration of LUTS. The PSA level is also affected by the use of 5ARI. Therefore, regular check-up of the IPSS and PSA level may be helpful for all patients who either continue or discontinue the use of 5ARI. PMID:24466398

  14. Anabolic effects of testosterone are preserved during inhibition of 5alpha-reductase.

    PubMed

    Borst, Stephen E; Conover, Christine F; Carter, Christy S; Gregory, Chris M; Marzetti, Emanuele; Leeuwenburgh, Christiaan; Vandenborne, Krista; Wronski, Thomas J

    2007-08-01

    At replacement doses, testosterone produces only modest increases in muscle strength and bone mineral density in older hypogonadal men. Although higher doses of testosterone are more anabolic, there is concern over increased adverse effects, notably prostate enlargement. We tested a novel strategy for obtaining robust anabolic effects without prostate enlargement. Orchiectomized (ORX) male rats were treated for 56 days with 1.0 mg testosterone/day, with and without 0.75 mg/day of the 5alpha-reductase inhibitor MK-434. Testosterone administration elevated the prostate dihydrotestosterone concentration and caused prostate enlargement. Both effects were inhibited by MK-434. ORX produced a catabolic state manifested in reduced food intake, blunted weight gain, reduced hemoglobin concentration, decreased kidney mass, and increased bone resorption, and in the proximal tibia there was both decreased cancellous bone volume and a decreased number of trabeculae. In soleus and extensor digitorum longus muscles, ORX reduced both the percentage of type I muscle fibers and the cross-sectional area of type 1 and 2 fibers. Testosterone administration caused a number of anabolic effects, including increases in food intake, hemoglobin concentration, and grip strength, and reversed the catabolic effects of ORX on bone. Testosterone administration also partially reversed ORX-induced changes in muscle fibers. In contrast to the prostate effects of testosterone, the effects on muscle, bone, and hemoglobin concentration were not blocked by MK-434. Our study demonstrates that the effects of testosterone on muscle and bone can be separated from the prostate effects and provides a testable strategy for combating sarcopenia and osteopenia in older hypogonadal men. PMID:17488806

  15. [Effect of anticancer agents on rat prostate. Evaluation of organ weight, histological finding and 5 alpha-reductase activities].

    PubMed

    Takeda, M; Hosaka, M; Kitajima, N; Noguchi, K; Fujii, H; Oshima, H; Harada, M

    1985-01-01

    To evaluate the effect of anticancer chemotherapeutic antigens on rat prostate, ten kinds of anticancer agents corresponding to the dose generally used for humans were intraperitoneally injected to 63-day-old Wistar rats. The anticancer agents were administered as follows: Cyclophosphamide (CPM) was used at the dose of 8 mg/kg for 7 days. Methotrexate (MTX), actinomycin-D (ACD) and cis-platinum (CDDP), 163 micrograms/kg, 8 micrograms/kg and 833 micrograms/kg for 5 days, respectively. Nitrogen mustard (NM), bleomycin (BLM), peplomycin (PLM), adriamycin (ADM), vincristine (VCR), and vinblastine (VBL), 500 micrograms/kg, 250 micrograms/kg, 170 micrograms/kg, 2.5 mg/kg, 33 micrograms/kg and 83 micrograms/kg, twice in a week, respectively. The rats were killed on the fifth day after completion of the schedule. Then, the weight of the body, the prostate, the epididymis and the adrenal gland were measured. In addition, 5 alpha-reductase activities and histological findings in the prostate were examined. For determination of 5 alpha-reductase activities, cell-free homogenate obtained from the rat ventral prostate was incubated with C14-testosterone at 37 degrees C for 30 minutes in an atmosphere of 95% of O2 and 5% of CO2. Subsequently, the metabolites from testosterone were separated and purified with thin layer chromatography using the solvent system with benzene acetone, 4:1 (v/v). 5 alpha-Reductase activity was determined with the sum of dihydrotestosterone (DHT) and androstanediol converted from testosterone and indicated as pmol product/mg protein. The 5 alpha-reductase activity was employed as a biological marker for the degree of androgenic dependency in the prostate. The results were summarized as follows. CDDP significantly reduced the weight of the body (p less than 0.001, n = 7), but not the activity of 5 alpha-reductase. NM and VBL had a specific action to reduce the weight of the prostate (p less than 0.01, n = 8) without causing loss of body weight. NM and

  16. Inhibition of human steroid 5alpha reductases type I and II by 6-aza-steroids: structural determinants of one-step vs two-step mechanism.

    PubMed

    Moss, M L; Kuzmic, P; Stuart, J D; Tian, G; Peranteau, A G; Frye, S V; Kadwell, S H; Kost, T A; Overton, L K; Patel, I R

    1996-03-19

    We have discovered that 17beta-[N,N-(diethyl)carbamoyl]-6-azaandrost-4-en-3-one is a time-dependent inhibitor of type II 5alpha-reductase, as is the drug finasteride. Unlike finasteride, the 6-aza-steroid is not a time-dependent inhibitor of type I 5 alpha-reductase. Finasteride inhibition of type II enzyme proceeds in a two-step mechanism. At pH 6 and 37 degrees C, an initial finasteride-reductase complex is formed with a K(i)(app) of 11.9 +/- 4.1 nM. In a second step, an irreversible complex is formed with a rate constant of inactivation of 0.09 +/- 0.01 s(-1). In contrast, the 6-aza-steroid is a reversible inhibitor. From the results of a simplified mathematical analysis, based on the rapid equilibrium approximation, the inhibitor and the enzyme form an initial complex with a K(i) of 6.8 +/- 0.2 nM. The reversible formation of a final complex, with an overall K(i) of 0.07 +/- 0.02 nM, is characterized by a first-order isomerization rate constant 0.0035 +/- 0.0001 s(-1) for the forward step and 0.00025 +/- 0.00006 s(-1) for the backward step. All rate constants for the two-step mechanism were obtained by using a general numerical integration method. The best fit values for the association and dissociation rate constants were 5.0 microM(-1) s(-1) and 0.033 +/- 0.008 s(-1), respectively, and the isomerization rate constants were 0.0035 +/- 0.007 s(-1) and 0.000076 +/- 0.000019 s(-1). These values correspond to an initial K(i) of 6.5 nM and an overall dissociation constant of 0.14 nM. The data presented here show that both finasteride and the 6-aza-steroid analogs are potent against type II 5alpha-reductase, although their mechanisms of inhibition are different. PMID:8639496

  17. The role of 5-alpha reductase inhibitors in prostate pathophysiology: Is there an additional advantage to inhibition of type 1 isoenzyme?

    PubMed

    Goldenberg, Larry; So, Alan; Fleshner, Neil; Rendon, Ricardo; Drachenberg, Darrel; Elhilali, Mostafa

    2009-06-01

    Normal growth and function of the prostate are contingent on the reduction of testosterone to dihydrotestosterone (DHT) by 5-alpha reductase (5-AR) enzymes types 1 and 2. It has been theorized that an overabundance of DHT may be implicated in the pathogenesis of both benign prostatic hyperplasia (BPH) and prostate cancer. Inhibitors of 5-AR such as dutasteride and finasteride may therefore have an important role in the prevention and treatment of BPH and prostate cancer. Dutasteride provides greater suppression of DHT than finasteride, thereby underlying the hypothesis that inhibition of both type 1 and type 2 would provide correspondingly greater protection than inhibition of type 2 alone. We review the potential significance of the 5-AR inhibitors in reducing the risk of prostate cancer according to the basic biology of prostate disease. PMID:19543428

  18. In vivo and in vitro effect of novel 4,16-pregnadiene-6,20-dione derivatives, as 5alpha-reductase inhibitors.

    PubMed

    Bratoeff, Eugene; Cabeza, Marisa; Pérez-Ornelas, Victor; Recillas, Sergio; Heuze, Ivonne

    2008-09-01

    In this study, we report the synthesis and biological evaluation of several new 3-substituted pregna-4,16-diene-6,20-dione derivatives (11a-11d). These compounds were prepared from the commercially available 16-dehydropregnenolone acetate. The biological effect of these steroids was demonstrated in in vivo and in vitro experiments. In the in vivo experiments, we measured the activity of the 11a-11d on the weight of the prostate gland of gonadectomized hamsters treated with testosterone plus finasteride or with the new steroids. For the studies in vitro, we determined the IC50 values by measuring the steroid concentration that inhibits 50% of the activity of 5alpha-reductase present in human prostate. In order to study the mechanism of action of 11a-11d, we also determined the capacity of these steroids to bind to the androgen receptor (AR) present in the rat prostate cytosol using labeled mibolerone as a tracer. The results from this work indicated that compounds 11a-11d significantly decreased the weight of the prostate as compared to testosterone treated animals and this reduction of the weight of the prostate was comparable to that produced by the finasteride. On the other hand 11a-11d exhibited a high inhibitory activity for the human 5alpha-reductase enzyme with IC50 values of 1.4 x 10(-8), 1.8 x 10(-9), 1.0 x 10(-8) and 4 x 10(-5) respectively. However the IC50 value of 11a (1.8 x 10(-9)) was the only one lower than that of finasteride (8.5 x 10(-9)). Nevertheless this compound did not show a higher potency in vivo as compared to that of compounds 11b-11d. The competition analysis for the androgen receptor indicated that the IC50 value of non-labeled mibolerone used in this experiment was 1nM, whereas steroids 10, 11a-11d did not inhibit the labeled mibolerone binding to the androgen receptor. On the other hand, steroid 10 did not show any activities in vitro or in vivo, and for this reason these steroidal derivatives (11a-11d) cannot be considered as

  19. 5-Alpha reductase inhibitor use and prostate cancer survival in the Finnish Prostate Cancer Screening Trial.

    PubMed

    Murtola, Teemu J; Karppa, Elina K; Taari, Kimmo; Talala, Kirsi; Tammela, Teuvo Lj; Auvinen, Anssi

    2016-06-15

    Randomized clinical trials have shown that use of 5α-reductase inhibitors (5-ARIs) lowers overall prostate cancer (PCa) risk compared to placebo, while the proportion of Gleason 8-10 tumors is elevated. It is unknown whether this affects PCa-specific survival. We studied disease-specific survival by 5-ARI usage in a cohort of 6,537 prostate cancer cases diagnosed in the Finnish Prostate Cancer Screening Trial and linked to the national prescription database for information on medication use. Cox proportional hazards regression was used to estimate hazard ratios and 95% confidence intervals for prostate cancer-specific deaths. For comparison, survival among alpha-blocker users was also evaluated. During the median follow-up of 7.5 years after diagnosis a total of 2,478 men died; 617 due to prostate cancer and 1,861 due to other causes. The risk of prostate cancer death did not differ between 5-ARI users and nonusers (multivariable adjusted HR 0.94, 95% CI 0.72-1.24 and HR 0.98, 95% CI 0.69-1.41 for usage before and after the diagnosis, respectively). Alpha-blocker usage both before and after diagnosis was associated with increased risk of prostate cancer death (HR 1.29, 95% CI 1.08-1.54 and HR 1.56, 95% CI 1.30-1.86, respectively). The risk increase vanished in long-term alpha-blocker usage. Use of 5-ARIs does not appear to affect prostate cancer mortality when used in management of benign prostatic hyperplasia. Increased risk associated with alpha-blocker usage should prompt further exploration on the prognostic role of lower urinary tract symptoms. PMID:26804670

  20. Pharmacokinetic parameters and mechanisms of inhibition of rat type 1 and 2 steroid 5alpha-reductases: determinants for different in vivo activities of GI198745 and finasteride in the rat.

    PubMed

    Stuart, J D; Lee, F W; Simpson Noel, D; Kadwell, S H; Overton, L K; Hoffman, C R; Kost, T A; Tippin, T K; Yeager, R L; Batchelor, K W; Bramson, H N

    2001-10-01

    The interaction of baculovirus expressed rat steroid 5alpha-reductase types 1 and 2 (r5AR1 and r5AR2) with 17beta-N-(2,5-bis(trifluoromethyl)phenyl)carbamoyl-4-aza-5alpha-androst-1-en-3-one (GI198745) was investigated at pH 7 and 37 degrees. This 5alpha-reductase inhibitor was found previously to be a time-dependent inhibitor of the two human 5alpha-reductase isozymes. In contrast, we demonstrate in the present study that although GI198745 is a potent time-dependent inhibitor of r5AR2, it is a classical rapid-equilibrium inhibitor of r5AR1. This type of behavior with human and rat 5alpha-reductases has been shown for the inhibitor 17beta-(N-tert-butylcarbamoyl)-4-aza-5alpha-androst-1-en-3-one (finasteride), a current therapy for benign prostatic hyperplasia. Inhibition of r5AR1 by GI198745 was competitive with testosterone and followed Michaelis-Menten kinetics with a K(i) value of 0.3 +/- 0.02 nM. Data for the inhibition of r5AR2 by GI198745 were consistent with a two-step mechanism, where K(i) is the dissociation constant for an initial enzyme-inhibitor complex and k(3) is the rate constant for the second slow step. The pseudo-bimolecular rate constant (k(3)/K(i)) for the association of GI198745 with r5AR2 was (2.0 +/- 0.4) x 10(7) M(-1) sec(-1). The high affinity of this inhibitor for r5AR2 was further demonstrated by the inability of the enzyme-inhibitor complex to dissociate after approximately 7 days of dialysis at 4 degrees. Both GI198745 and finasteride appear to inactivate r5AR2 by apparent irreversible modification, but are classical, reversible inhibitors of r5AR1. Therefore, we hypothesize that because of its pharmacokinetic parameters and increased potency against r5AR1, GI198745 is more effective than finasteride in preventing the growth of the rat prostate. PMID:11543729

  1. 5-Alpha reductase inhibitors in men with an enlarged prostate: an evaluation of outcomes and therapeutic alternatives.

    PubMed

    Naslund, Michael; Regan, Timothy S; Ong, Christine; Hogue, Susan L

    2008-05-01

    This article presents background information and highlights key findings from a managed care perspective related to enlarged prostate (EP) in Medicare-eligible patients. This article does not provide a comprehensive review of EP but instead attempts to increase the current understanding of EP through discussion of its prevalence in men aged > or =65 years, its associated economic burden, and some available treatment options. This supplement includes 3 additional articles, all of which present data from a naturalistic, managed care setting. The article by Fenter et al assesses differences in outcomes between elderly EP patients treated with finasteride and those treated with dutasteride in relation to the risks of acute urinary retention and prostate-related surgery. Issa et al conduct a comparative analysis of the combined use of alpha-blockers and 5-alpha reductase inhibitors to treat EP. The final article compares medical costs incurred within the first year of initiating treatment for EP patients receiving finasteride versus dutasteride. This supplement is intended to assist managed care formulary decision makers in evaluating key clinical and economic data that differentiate dutasteride and finasteride within the Medicare-aged population. Although the information presented is not designed to illustrate the superiority of one product over the other, it answers important questions in relation to treating EP in elderly men and raises substantial issues beyond medication costs. PMID:18611088

  2. Synthesis and in vitro activity of some epimeric 20 alpha-hydroxy, 20-oxime and aziridine pregnene derivatives as inhibitors of human 17 alpha-hydroxylase/C17,20-lyase and 5 alpha-reductase.

    PubMed

    Ling, Y Z; Li, J S; Kato, K; Liu, Y; Wang, X; Klus, G T; Marat, K; Nnane, I P; Brodie, A M

    1998-10-01

    Some epimeric 20-hydroxy, 20-oxime, 16 alpha, 17 alpha-, 17,20- and 20,21-aziridine derivatives of progesterone were synthesized and evaluated as inhibitors of human 17 alpha-hydroxylase/C17,20-lyase (P450(17) alpha) and 5 alpha-reductase (5 alpha-R). The reduction of 16-dehydropregenolone acetate (3a) was reinvestigated. NaBH4 in the presence of CeCl3 gave better stereo-selectivity for 20 beta-ol [20 alpha/20 beta-OH (4 alpha/4 beta) = 1/2.7] than LTBAH or the Meerwein-Pondroff method reported; reduction with Zn in HOAc formed exclusively 20 alpha-ol (4 alpha b). The 20 alpha- and 20 beta-hydroxy-4,16-pregnadien-3-one (9 alpha) and (9 beta) were synthesized from the alcohols 4 alpha b and 4 beta b. Several 20-oxime pregnadienes and 16 alpha, 17 alpha-, 17,20- and 20,21-aziridinyl-5-pregnene derivatives were also synthesized. LiAlH4 reduction of the 16-en-20-oxime (12b) yielded 20 (R)-(13a) and 20(S)-17 alpha,20-aziridine (13b) and 20(R)-17 beta,20-aziridine (14a). Several compounds inhibited the human P450(17) alpha with greater potency than ketoconzole. The 5 alpha-R enzyme assay showed that while (9 alpha) did not have any activity, (9 beta) and (3b) were potent 5 alpha-reductase (IC50 = 21 and 31 nM) inhibitors with activities similar to finasteride. The 20-oximes (17a) and (17b) were potent dual inhibitors for both 5 alpha-R (IC50 = 63 and 115 nM, compared to 33 nM for finasteride) and P450(17) alpha (IC50 = 43 and 25 nM, compared to 78 nM for ketoconazole). PMID:9839000

  3. Synthesis of some new testosterone derivatives fused with substituted pyrazoline ring as promising 5alpha-reductase inhibitors.

    PubMed

    Amr, Abd El-Galil El-Sayed; Abdel-Latif, Nehad Ahmed; Abdalla, Mohamed Mostafa

    2006-06-01

    Condensation of 3beta-hydroxy-16-[(4-chlorophenyl)methylene]androst-5-en-17-one (1) with hydrazine hydrate in acetic acid afforded N-acetyl pyrazoline derivative 2, while condensation of 1 with semicarbazide afforded compound 3. Also, compound 1 was treated with hydrazine hydrate in absolute methanol or ethanol to afford the corresponding alpha-methoxy (4) and alpha-ethoxy (5) derivatives, which were cyclized with etherated boron trifluoride to the pyrazoline derivative 6. The latter could be prepared directly by refluxing 1 with hydrazine hydrate in dioxane. Oxidation of compound 6 with Oppenour or Moffat oxidizing agents yielded 3-oxo-derivatives 7 and 8, respectively. On the other hand, condensation of compound 1 with substituted hydrazines, gave the corresponding 3beta-hydroxyandrostenopyrazolines 9a,b, which were oxidized using the Moffat method to give 3-oxo-androstenopyrazolines 10a,b, which were condensed with ethylene triphenyl-phosphorane in DMSO to yield 3-ethylene androstenopyrazolines 11a,b. Dehydrogenation of 9a,b with Wettestein oxidation afforded Delta4,6-diene-3-one analogues 12a,b, which were treated with chloranil to yield Delta(4,6,8(14))-tri-ene-3-one analogues 13a,b. Oppenour oxidation of 9a,b afforded Delta4-ene-3-one analogues 14a,b, which were treated with dichlorodicyanoquinone (DDQ) in dioxane to give Delta1,4,6-triene-3-one analogues 15a,b. Pharmacological screening showed that many of these compounds inhibit 5alpha-reductase activity. PMID:16613726

  4. Tetrathionate reductase of Salmonella thyphimurium: a molybdenum containing enzyme

    SciTech Connect

    Hinojosa-Leon, M.; Dubourdieu, M.; Sanchez-Crispin, J.A.; Chippaux, M.

    1986-04-29

    Use of radioactive molybdenum demonstrates that the tetrathionate reductase of Salmonella typhimurium is a molydenum containing enzyme. It is proposed that this enzyme shares with other molybdo-proteins, such as nitrate reductase, a common molybdenum containing cofactor the defect of which leads to the loss of the tetrathionate reductase and nitrate reductase activities.

  5. The effect of 5alpha-reductase inhibition with finasteride and dutasteride on bone mineral density in older men with benign prostatic hyperplasia.

    PubMed

    Mačukat, Indira Radin; Spanjol, Josip; Orlič, Zeljka Crncevič; Butorac, Marta Zuvič; Marinovič, Marin; Ćupič, Dora Fučkar

    2014-09-01

    Testosterone is converted to dihyrotestosterone by two isoenzymes of 5alpha-reductase. Finasteride and dutasteride are 5alpha-reductase inhibitors commonly used in the treatment of benign prostatic hyperplasia. We compared indices of bone mineral density in 50 men treated with finasteride, 50 men treated with dutasteride and 50 men as control. Bone mineral density of spine and hip were measured using dual energy X-ray absorptiometry. Bone formation was assessed by measuring serum osteocalcin and bone resorptionby measuring serum C-terminal telopeptide of collagen type 1. In addition serum total testosteron and estradiol were determined. The dutasteride group had significantly higher mean bone min- eral density, mean bone mineral content, mean T score, mean Z score at femoral neck and mean total hip Z score than control. Mean total testosterone and estradiol levels were higher in the dutasteride group. There were no significant dif- ferences between the groups in lumbar spine bone density parameters or bone turnover markers. Our results provide evidence that long-term 5alpha-reductase suppression does not adversely affect bone mineral density. Dutasteride therapy could have beneficial effect on bone density. PMID:25507347

  6. The effect of 5alpha-reductase inhibition with finasteride and dutasteride on bone mineral density in older men with benign prostatic hyperplasia.

    PubMed

    Mačukat, Indira Radin; Spanjol, Josip; Orlič, Zeljka Crncevič; Butorac, Marta Zuvič; Marinovič, Marin; Ćupič, Dora Fučkar

    2014-09-01

    Testosterone is converted to dihyrotestosterone by two isoenzymes of 5alpha-reductase. Finasteride and dutasteride are 5alpha-reductase inhibitors commonly used in the treatment of benign prostatic hyperplasia. We compared indices of bone mineral density in 50 men treated with finasteride, 50 men treated with dutasteride and 50 men as control. Bone mineral density of spine and hip were measured using dual energy X-ray absorptiometry. Bone formation was assessed by measuring serum osteocalcin and bone resorptionby measuring serum C-terminal telopeptide of collagen type 1. In addition serum total testosteron and estradiol were determined. The dutasteride group had significantly higher mean bone min- eral density, mean bone mineral content, mean T score, mean Z score at femoral neck and mean total hip Z score than control. Mean total testosterone and estradiol levels were higher in the dutasteride group. There were no significant dif- ferences between the groups in lumbar spine bone density parameters or bone turnover markers. Our results provide evidence that long-term 5alpha-reductase suppression does not adversely affect bone mineral density. Dutasteride therapy could have beneficial effect on bone density. PMID:25420363

  7. Selective induction of apoptosis in the hamster flank sebaceous gland organ by a topical liposome 5-alpha-reductase inhibitor: a treatment strategy for acne.

    PubMed

    Li, Lingna; Tang, Li; Baranov, Eugene; Yang, Meng; Amoh, Yasuyuki; Katsuoka, Kensei; Hoffman, Robert M

    2010-02-01

    Acne is a very widespread cosmesis problem. Isotretinoin, a synthetic oral retinoid is used to treat acne, which is androgen dependent. Numerous side-effects occur from this treatment. 5-alpha-Reductase plays a critical role in normal and pathological androgen-dependent processes. We have taken the approach to develop a selective, effective, topically-applied 5-alpha-reductase inhibitor to modify unwanted or pathological processes in the pilosebaceous unit such as acne. Toward this goal, we have previously developed a selective liposome hair follicle targeting system. We demonstrate in this report that the 5-alpha-reductase inhibitor N,N-diethyl-4-methyl-3-oxo-4-aza-5alpha-androstane-17beta-carboxamide (4-MA) incorporated into liposomes induces apoptosis and inhibits growth of the dihydrotestosterone (DHT)-dependent hamster flank organ sebaceous gland. We have compared topical application of liposome 4-MA and solvent-formulated 4-MA and observed selective efficacy of topical application of liposome 4-MA by the reduction of size and induction of apoptosis only in the treated hamster flank organ. Apoptosis induced by liposome 4-MA in the treated flank organ sebaceous gland cells was observed both by assays for DNA fragments (transferase deoxytidyl uridine end labeling) and by observation of condensed and fragmented nuclei. When 4-MA was topically applied formulated in ethanol and glycerol without liposomes, the selective efficacy was lost. Liposome 4-MA did not significantly affect prostate weight, testosterone/DHT ratios or bodyweight gain compared to controls indicating safety as well as efficacy of topical application of liposome 4-MA for pathological processes such as acne. PMID:20175850

  8. Use of 5-Alpha-Reductase Inhibitors Did Not Increase the Risk of Cardiovascular Diseases in Patients with Benign Prostate Hyperplasia: A Five-Year Follow-Up Study

    PubMed Central

    Lee, Shang-Sen; Lin, Tien-Huang; Liu, Hsin-Ho; Tsai, Tsung-Hsun; Chen, Chi-Cheng; Huang, Yung-Sung; Lee, Ching-Chih

    2015-01-01

    Background This nationwide population-based study investigated the risk of cardiovascular diseases after 5-alpha-reductase inhibitor therapy for benign prostate hyperplasia (BPH) using the National Health Insurance Research Database (NHIRD) in Taiwan. Methods In total, 1,486 adult patients newly diagnosed with BPH and who used 5-alpha-reductase inhibitors were recruited as the study cohort, along with 9,995 subjects who did not use 5-alpha-reductase inhibitors as a comparison cohort from 2003 to 2008. Each patient was monitored for 5 years, and those who subsequently had cardiovascular diseases were identified. A Cox proportional hazards model was used to compare the risk of cardiovascular diseases between the study and comparison cohorts after adjusting for possible confounding risk factors. Results The patients who received 5-alpha-reductase inhibitor therapy had a lower cumulative rate of cardiovascular diseases than those who did not receive 5-alpha-reductase inhibitor therapy during the 5-year follow-up period (8.4% vs. 11.2%, P=0.003). In subgroup analysis, the 5-year cardiovascular event hazard ratio (HR) was lower among the patients older than 65 years with 91 to 365 cumulative defined daily dose (cDDD) 5-alpha-reductase inhibitor use (HR=0.63, 95% confidence interval (CI) 0.42 to 0.92; P=0.018), however there was no difference among the patients with 28 to 90 and more than 365 cDDD 5-alpha-reductase inhibitor use (HR=1.14, 95% CI 0.77 to 1.68; P=0.518 and HR=0.83, 95% CI 0.57 to 1.20; P=0.310, respectively). Conclusions 5-alpha-reductase inhibitor therapy did not increase the risk of cardiovascular events in the BPH patients in 5 years of follow-up. Further mechanistic research is needed. PMID:25803433

  9. Regulation of steroid 5-{alpha} reductase type 2 (Srd5a2) by sterol regulatory element binding proteins and statin

    SciTech Connect

    Seo, Young-Kyo; Zhu, Bing; Jeon, Tae-Il; Osborne, Timothy F.

    2009-11-01

    In this study, we show that sterol regulatory element binding proteins (SREBPs) regulate expression of Srd5a2, an enzyme that catalyzes the irreversible conversion of testosterone to dihydroxytestosterone in the male reproductive tract and is highly expressed in androgen-sensitive tissues such as the prostate and skin. We show that Srd5a2 is induced in livers and prostate from mice fed a chow diet supplemented with lovastatin plus ezitimibe (L/E), which increases the activity of nuclear SREBP-2. The three fold increase in Srd5a2 mRNA mediated by L/E treatment was accompanied by the induction of SREBP-2 binding to the Srd5a2 promoter detected by a ChIP-chip assay in liver. We identified a SREBP-2 responsive region within the first 300 upstream bases of the mouse Srd5a2 promoter by co-transfection assays which contain a site that bound SREBP-2 in vitro by an EMSA. Srd5a2 protein was also induced in cells over-expressing SREBP-2 in culture. The induction of Srd5a2 through SREBP-2 provides a mechanistic explanation for why even though statin therapy is effective in reducing cholesterol levels in treating hypercholesterolemia it does not compromise androgen production in clinical studies.

  10. The Kinetics and Inhibition of the Enzyme Methemoglobin Reductase

    ERIC Educational Resources Information Center

    Splittgerber, A. G.; And Others

    1975-01-01

    Describes an undergraduate biochemistry experiment which involves the preparation and kinetics of an oxidation-reduction enzyme system, methemoglobin reductase. A crude enzyme extract is prepared and assayed spectrophotometrically. The enzyme system obeys Michaelis-Menton kinetics with respect to both substrate and the NADH cofactor. (MLH)

  11. Respiratory arsenate reductase as a bidirectional enzyme

    USGS Publications Warehouse

    Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.

    2009-01-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe–S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  12. Respiratory arsenate reductase as a bidirectional enzyme

    SciTech Connect

    Richey, Christine; Chovanec, Peter; Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 ; Hoeft, Shelley E.; Oremland, Ronald S.; Basu, Partha; Stolz, John F.

    2009-05-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe-S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  13. Differential expression of steroid 5alpha-reductase isozymes and association with disease severity and angiogenic genes predict their biological role in prostate cancer.

    PubMed

    Das, Kakoli; Lorena, Pia D N; Ng, Lai Kuan; Lim, Diana; Shen, Liang; Siow, Woei Yun; Teh, Ming; Reichardt, Juergen K V; Salto-Tellez, Manuel

    2010-09-01

    The biological role of steroid 5alpha-reductase isozymes (encoded by the SRD5A1 and SRD5A2 genes) and angiogenic factors that play important roles in the pathogenesis and vascularization of prostate cancer (PC) is poorly understood. The sub-cellular expression of these isozymes and vascular endothelial growth factor (VEGF) in PC tissue microarrays (n=62) was examined using immunohistochemistry. The effect of SRD5A inhibition on the angiogenesis pathway genes in PC was also examined in prostate cell lines, LNCaP, PC3, and RWPE-1, by treating them with the SRD5A inhibitors finasteride and dutasteride, followed by western blot, quantitative PCR, and ELISA chip array techniques. In PC tissues, nuclear SRD5A1 expression was strongly associated with higher cancer Gleason scores (P=0.02), higher cancer stage (P=0.01), and higher serum prostate specific antigen (PSA) levels (P=0.01), whereas nuclear SRD5A2 expression was correlated with VEGF expression (P=0.01). Prostate tumor cell viability was significantly reduced in dutasteride-treated PC3 and RWPE-1 cells compared with finasteride-treated groups. Expression of the angiogenesis pathway genes transforming growth factor beta 1 (TGFB1), endothelin (EDN1), TGFalpha (TGFA), and VEGFR1 was upregulated in LNCaP cells, and at least 7 out of 21 genes were upregulated in PC3 cells treated with finasteride (25 muM). Our findings suggest that SRD5A1 expression predominates in advanced PC, and that inhibition of SRD5A1 and SRD5A2 together was more effective in reducing cell numbers than inhibition of SRD5A2 alone. However, these inhibitors did not show any significant difference in prostate cell angiogenic response. Interestingly, some angiogenic genes remained activated after treatment, possibly due to the duration of treatment and tumor resistance to inhibitors. PMID:20519274

  14. Inhibition of Human Steroid 5-Reductase (AKR1D1) by Finasteride and Structure of the Enzyme-Inhibitor Complex

    SciTech Connect

    Drury, J.; Di Costanzo, L; Penning, T; Christianson, D

    2009-01-01

    The {Delta}{sup 4}-3-ketosteroid functionality is present in nearly all steroid hormones apart from estrogens. The first step in functionalization of the A-ring is mediated in humans by steroid 5{alpha}- or 5{beta}-reductase. Finasteride is a mechanism-based inactivator of 5{alpha}-reductase type 2 with subnanomolar affinity and is widely used as a therapeutic for the treatment of benign prostatic hyperplasia. It is also used for androgen deprivation in hormone-dependent prostate carcinoma, and it has been examined as a chemopreventive agent in prostate cancer. The effect of finasteride on steroid 5{beta}-reductase (AKR1D1) has not been previously reported. We show that finasteride competitively inhibits AKR1D1 with low micromolar affinity but does not act as a mechanism-based inactivator. The structure of the AKR1D1 {center_dot} NADP{sup +} {center_dot} finasteride complex determined at 1.7 {angstrom} resolution shows that it is not possible for NADPH to reduce the {Delta}{sup 1-2}-ene of finasteride because the cofactor and steroid are not proximal to each other. The C3-ketone of finasteride accepts hydrogen bonds from the catalytic residues Tyr-58 and Glu-120 in the active site of AKR1D1, providing an explanation for the competitive inhibition observed. This is the first reported structure of finasteride bound to an enzyme involved in steroid hormone metabolism.

  15. Nickel site of methane catalysis in the methyl reductase enzyme

    SciTech Connect

    Shelnutt, J.A.; Shiemke, A.K.; Scott, R.A.

    1988-01-01

    Methyl reductase is the enzyme of methanogenic bacteria that catalyzed the two-electron reduction of the methyl group of 2-(methylthio)ethanesulfonic acid (methyl-S-CoM) to methane and HS-CoM. The methyl group of methyl-S-CoM ultimately comes from the six-electron reduction of CO/sub 2/ by hydrogen, which also provides the reducing equivalents needed by methyl reductase. The nature of the catalytic site of methyl reductase is of current interest from the point of view of developing biomimetic C/sub 1/, chemistries directed toward methane synthesis and activation. In particular, Sandia is using molecular graphics and energy optimization techniques to design macromolecular catalysts that mimic the structure of sites of proteins that carry out C/sub 1/ chemistry. The goal is to produce catalysts whose function is the oxidation of low molecular weight hydrocarbon gases to generate liquid fuels or, alternatively, the reduction of abundant inorganic resources such as CO/sub 2/ to generate gaseous fuels. Unfortunately, the catalytic sites of many of the enzymes of interest, e.g., methyl reductase and methane monooxygenase, have not been characterized by X-ray crystallography and other structural techniques. With the goal of learning more about the structure of one of these naturally occurring sites of C/sub 1/ chemistry, we have obtained the first resonance Raman spectra of the nickel-macrocycle, called F/sub 430/, at the site of catalysis in methyl reductase. To help us structurally interpret the Raman spectra of the enzyme we have also obtained Raman spectra of solutions of the major forms of F/sub 430/ (salt-extracted and cytosol-free) at room temperature and at 77/degree/K and also, under similar solution conditions, spectra of a nickel-corphinoid derivative that is related to F/sub 430/.

  16. Mode of action of human pharmaceuticals in fish: the effects of the 5-alpha-reductase inhibitor, dutasteride, on reproduction as a case study.

    PubMed

    Margiotta-Casaluci, Luigi; Hannah, Robert E; Sumpter, John P

    2013-03-15

    In recent years, a growing number of human pharmaceuticals have been detected in the aquatic environment, generally at low concentrations (sub-ng/L-low μg/L). In most cases, these compounds are characterised by highly specific modes of action, and the evolutionary conservation of drug targets in wildlife species suggests the possibility that pharmaceuticals present in the environment may cause toxicological effects by acting through the same targets as they do in humans. Our research addressed the question of whether or not dutasteride, a pharmaceutical used to treat benign prostatic hyperplasia, may cause adverse effects in a teleost fish, the fathead minnow (Pimephales promelas), by inhibiting the activity of both isoforms of 5α-reductase (5αR), the enzyme that converts testosterone into dihydrotestosterone (DHT). Mammalian pharmacological and toxicological information were used to guide the experimental design and the selection of relevant endpoints, according to the so-called "read-across approach", suggesting that dutasteride may affect male fertility and steroid hormone dynamics. Therefore, a 21-day reproduction study was conducted to determine the effects of dutasteride (10, 32 and 100 μg/L) on fish reproduction. Exposure to dutasteride significantly reduced fecundity of fish and affected several aspects of reproductive endocrine functions in both males and females. However, none of the observed adverse effects occurred at concentrations of exposure lower than 32 μg/L; this, together with the low volume of drug prescribed every year (10.34 kg in the UK in 2011), and the extremely low predicted environmental concentration (0.03 ng/L), suggest that, at present, the potential presence of dutasteride in the environment does not represent a threat to wild fish populations. PMID:23280489

  17. A high-throughput assay format for determination of nitrate reductase and nitrite reductase enzyme activities

    SciTech Connect

    McNally, N.; Liu, Xiang Yang; Choudary, P.V.

    1997-01-01

    The authors describe a microplate-based high-throughput procedure for rapid assay of the enzyme activities of nitrate reductase and nitrite reductase, using extremely small volumes of reagents. The new procedure offers the advantages of rapidity, small sample size-nanoliter volumes, low cost, and a dramatic increase in the throughput sample number that can be analyzed simultaneously. Additional advantages can be accessed by using microplate reader application software packages that permit assigning a group type to the wells, recording of the data on exportable data files and exercising the option of using the kinetic or endpoint reading modes. The assay can also be used independently for detecting nitrite residues/contamination in environmental/food samples. 10 refs., 2 figs.

  18. Optimisation of nitrate reductase enzyme activity to synthesise silver nanoparticles.

    PubMed

    Khodashenas, Bahareh; Ghorbani, Hamid Reza

    2016-06-01

    Today, the synthesis of silver nanoparticles (Ag NPs) is very common since it has many applications in different areas. The synthesis of these nanoparticles is done by means of physical, chemical, or biological methods. However, due to its inexpensive and environmentally friendly features, the biological method is more preferable. In the present study, using nitrate reductase enzyme available in the Escherichia coli (E. coli) bacterium, the biosynthesis of Ag NPs was investigated. In addition, the activity of the nitrate reductase enzyme was optimised by changing its cultural conditions, and the effects of silver nitrate (AgNO(3)) concentration and enzyme amount on nanoparticles synthesis were studied. Finally, the produced nanoparticles were studied using ultraviolet -visible (UV-Vis) spectrophotometer, dynamic light scattering technique, and transmission electron microscopy. UV-Visible spectrophotometric study showed the characteristic peak for Ag NPs at wavelength 405-420 nm for 1 mM metal precursor solution (AgNO(3)) with 1, 5, 10, and 20 cc supernatant and 435 nm for 0.01M AgNO(3) with 20 cc supernatant. In this study, it was found that there is a direct relationship between the AgNO(3) concentration and the size of produced Ag NPs. PMID:27256897

  19. A simple enzymic method for the synthesis of adenosine 5'-[alpha-32P]triphosphate on a preparative scale.

    PubMed Central

    Martin, B R; Voorheis, H P

    1977-01-01

    A simple, rapid and inexpensive method is described for the enzymic synthesis of [alpha-32P]ATP from [32P]Pi on a preparative scale with an overall yield of 53%. The final product contained all of the detectable radioactivity (less than 99.9%) in the alpha position and has been shown to behave identically with commerically availabe [alpha-32P]ATP during the synthesis of 3':5'-cyclic AMP in the reaction catalysed by adenylate cyclase. PMID:851430

  20. Analysis of enzyme-catalyzed nucleotide modification by aldose reductase

    SciTech Connect

    Grimshaw, C.E.

    1987-05-01

    Homogeneous bovine kidney aldose reductase catalyzes two reactions in addition to the normal aldehyde-dependent oxidation of NADPH. First, adduct formation between the oxidized nucleotide and the oxidized substrate is observed during turnover due to initial formation of a reversible E:NADP/sup +/:R-CHO ternary complex, which subsequently reacts to give the covalent complex (E:NADP/sup +/-R-CHO). The reaction is enzyme-catalyzed with substantial enhancement of both the pseudo-first order rate constant and the overall K/sub eq/ relative to the reaction with free NADP/sup +/ in aqueous buffer. Analysis of the concentration dependence and time-course for reversible dead-end and covalent complex formation are described for several aldehyde and nucleotide substrates. Non-linear time courses for aldehyde reduction and substrate inhibition by the aldehyde substrate in initial velocity studies are completely accounted for by this mechanism, thereby eliminating a simple Dalziel-type explanation for the substrate activation by aldehyde which is also observed. Second, enzyme-catalyzed oxidation of NADPH occurs in the absence of aldehyde substrate with a rate equal to .03% of V/sub max/ for the normal reduction of glyceraldehyde. By 500 MHz /sup 1/H-NMR, the enzyme-catalyzed oxidation of (4-/sup 2/H)NADPH appears to be greater than 95% stereospecific. Spectroscopic evidence for a similar oxidation reaction is observed for the covalent E:NADP/sup +/-R-CHO adduct with glyceraldehyde, but not with glycolaldehyde.

  1. Age and Obesity Promote Methylation and Suppression of 5-Alpha Reductase 2–Implications for Personalized Therapy in Benign Prostatic Hyperplasia

    PubMed Central

    Bechis, Seth K.; Otsetov, Alexander G.; Ge, Rongbin; Wang, Zongwei; Vangel, Mark G.; Wu, Chin-Lee; Tabatabaei, Shahin; Olumi, Aria F.

    2016-01-01

    Purpose 5α reductase inhibitors (5ARIs) are a main modality of treatment for men suffering from symptomatic benign prostatic hyperplasia (BPH). Over 30% of men do not respond to the therapeutic effects of 5ARIs. We have found that 1/3 of adult prostate samples do not express 5AR2 secondary to epigenetic modifications. We sought to evaluate whether 5AR2 expression in BPH specimens of symptomatic men was linked to methylation of the 5AR2 gene promoter and identify associations with age, obesity, cardiac risk factors, and prostate specific antigen (PSA). Materials and Methods Prostate samples from men undergoing transurethral prostate resection were used. 5AR2 protein expression and gene promoter methylation status were determined by common assays. Clinical variables included age, body mass index (BMI), hypertension, hyperlipidemia, diabetes, PSA, and prostate volume. Univariate and multivariate statistical analyses were performed, followed by stepwise logistic regression modeling. Results BMI and age were significantly correlated with methylation of the 5AR2 gene promoter (p<0.05), whereas prostate volume, PSA, or use of BPH medication were not. Methylation was highly correlated with 5AR protein expression (p<0.0001). In a predictive model, both increasing age and BMI significantly predicted methylation status and protein expression (p<0.01). Conclusions Increasing age and BMI correlate with increased 5AR2 gene promoter methylation and decreased protein expression in men with symptomatic BPH. These results highlight the interplay between age, obesity and gene regulation. Our findings suggest the presence of an individualized epigenetic signature for symptomatic BPH, which may be important for choosing appropriate personalized treatment options. PMID:25916673

  2. "Subversive" substrates for the enzyme trypanothione disulfide reductase: alternative approach to chemotherapy of Chagas disease.

    PubMed Central

    Henderson, G B; Ulrich, P; Fairlamb, A H; Rosenberg, I; Pereira, M; Sela, M; Cerami, A

    1988-01-01

    The trypanosomatid flavoprotein disulfide reductase, trypanothione reductase, is shown to catalyze one-electron reduction of suitably substituted naphthoquinone and nitrofuran derivatives. A number of such compounds have been chemically synthesized, and a structure-activity relationship has been established; the enzyme is most active with compounds that contain basic functional groups in side-chain residues. The reduced products are readily reoxidized by molecular oxygen and thus undergo classical enzyme-catalyzed redox cycling. In addition to their ability to act as substrates for trypanothione reductase, the compounds are also shown to effectively inhibit enzymatic reduction of the enzyme's physiological substrate, trypanothione disulfide. Under aerobic conditions, trypanothione reductase is not inactivated by these redox-cycling substrates, whereas under anaerobic conditions the nitrofuran compounds cause irreversible inactivation of the enzyme. When tested for biological activity against Trypanosoma cruzi trypomastigotes, many of the test compounds were trypanocidal, and this activity correlated with their relative ability to act as substrates for trypanothione reductase. The activity of the enzyme with these redox-cycling derivatives constitutes a subversion of its normal antioxidant role within the cell. For this reason these compounds may be termed "subversive" substrates for trypanothione reductase. PMID:3135548

  3. Dihydrofolate reductase as a model for studies of enzyme dynamics and catalysis

    PubMed Central

    Kohen, Amnon

    2015-01-01

    Dihydrofolate reductase from Escherichia coli (ecDHFR) serves as a model system for investigating the role of protein dynamics in enzyme catalysis. We discuss calculations predicting a network of dynamic motions that is coupled to the chemical step catalyzed by this enzyme. Kinetic studies testing these predictions are presented, and their potential use in better understanding the role of these dynamics in enzyme catalysis is considered. The cumulative results implicate motions across the entire protein in catalysis. PMID:26918149

  4. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network.

    PubMed

    Couto, Narciso; Wood, Jennifer; Barber, Jill

    2016-06-01

    In this review article we examine the role of glutathione reductase in the regulation, modulation and maintenance of cellular redox homoeostasis. Glutathione reductase is responsible for maintaining the supply of reduced glutathione; one of the most abundant reducing thiols in the majority of cells. In its reduced form, glutathione plays key roles in the cellular control of reactive oxygen species. Reactive oxygen species act as intracellular and extracellular signalling molecules and complex cross talk between levels of reactive oxygen species, levels of oxidised and reduced glutathione and other thiols, and antioxidant enzymes such as glutathione reductase determine the most suitable conditions for redox control within a cell or for activation of programmed cell death. Additionally, we discuss the translation and expression of glutathione reductase in a number of organisms including yeast and humans. In yeast and human cells, a single gene expresses more than one form of glutathione reductase, destined for residence in the cytoplasm or for translocation to different organelles; in plants, however, two genes encoding this protein have been described. In general, insects and kinetoplastids (a group of protozoa, including Plasmodia and Trypanosoma) do not express glutathione reductase or glutathione biosynthetic enzymes. Instead, they express either the thioredoxin system or the trypanothione system. The thioredoxin system is also present in organisms that have the glutathione system and there may be overlapping functions with cross-talk between the two systems. Finally we evaluate therapeutic targets to overcome oxidative stress associated cellular disorders. PMID:26923386

  5. Periplasmic Nitrate Reductase (NapABC Enzyme) Supports Anaerobic Respiration by Escherichia coli K-12

    PubMed Central

    Stewart, Valley; Lu, Yiran; Darwin, Andrew J.

    2002-01-01

    Periplasmic nitrate reductase (NapABC enzyme) has been characterized from a variety of proteobacteria, especially Paracoccus pantotrophus. Whole-genome sequencing of Escherichia coli revealed the structural genes napFDAGHBC, which encode NapABC enzyme and associated electron transfer components. E. coli also expresses two membrane-bound proton-translocating nitrate reductases, encoded by the narGHJI and narZYWV operons. We measured reduced viologen-dependent nitrate reductase activity in a series of strains with combinations of nar and nap null alleles. The napF operon-encoded nitrate reductase activity was not sensitive to azide, as shown previously for the P. pantotrophus NapA enzyme. A strain carrying null alleles of narG and narZ grew exponentially on glycerol with nitrate as the respiratory oxidant (anaerobic respiration), whereas a strain also carrying a null allele of napA did not. By contrast, the presence of napA+ had no influence on the more rapid growth of narG+ strains. These results indicate that periplasmic nitrate reductase, like fumarate reductase, can function in anaerobic respiration but does not constitute a site for generating proton motive force. The time course of Φ(napF-lacZ) expression during growth in batch culture displayed a complex pattern in response to the dynamic nitrate/nitrite ratio. Our results are consistent with the observation that Φ(napF-lacZ) is expressed preferentially at relatively low nitrate concentrations in continuous cultures (H. Wang, C.-P. Tseng, and R. P. Gunsalus, J. Bacteriol. 181:5303-5308, 1999). This finding and other considerations support the hypothesis that NapABC enzyme may function in E. coli when low nitrate concentrations limit the bioenergetic efficiency of nitrate respiration via NarGHI enzyme. PMID:11844760

  6. Purification and Characterization of the Bifunctional Enzyme Lysine-Ketoglutarate Reductase-Saccharopine Dehydrogenase from Maize.

    PubMed Central

    Goncalves-Butruille, M.; Szajner, P.; Torigoi, E.; Leite, A.; Arruda, P.

    1996-01-01

    The first enzyme of the lysine degradation pathway in maize (Zea mays L.), lysine-ketoglutarate reductase, condenses lysine and [alpha]-ketoglutarate into saccharopine using NADPH as a cofactor, whereas the second, saccharopine dehydrogenase, converts saccharopine to [alpha]-aminoadipic-[delta]-semialdehyde and glutamic acid using NAD+ or NADP+ as a cofactor. The reductase and dehydrogenase activities are optimal at pH 7.0 and 9.0, respectively. Both enzyme activities, co-purified on diethylaminoethyl-cellulose and gel filtration columns, were detected on nondenaturing polyacrylamide gels as single bands with identical electrophoretic mobilities and share tissue specificity for the endosperm. The highly purified preparation containing the reductase and dehydrogenase activities showed a single polypeptide band of 125 kD on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native form of the enzyme is a dimer of 260 kD. Limited proteolysis with elastase indicated that lysine-ketoglutarate reductase and saccharopine dehydrogenase from maize endosperm are located in two functionally independent domains of a bifunctional polypeptide. PMID:12226216

  7. Increased Catalytic Efficiency Following Gene Fusion of Bifunctional Methionine Sulfoxide Reductase Enzymes from Shewanella oneidensis

    SciTech Connect

    Chen, Baowei; Markillie, Lye Meng; Xiong, Yijia; Mayer, M. Uljana; Squier, Thomas C.

    2007-11-11

    Methionine sulfoxide reductase enzymes MsrA and MsrB have complementary stereospecificies that respectively reduce the S- and R-stereoisomers of methionine sulfoxide (MetSO), and together function as critical antioxidant enzymes. In some pathogenic and metal reducing bacteria these genes are fused to form a bifunctional methionine sulfoxide reductase (i.e., MsrBA) enzyme. To investigate the impact of gene fusion on the substrate specificity and catalytic activities of Msr, we have cloned and expressed the MsrBA enzyme from Shewanella oneidensis, a metal reducing bacterium and fish pathogen. For comparison, we also cloned and expressed the wild-type MsrA enzyme and a genetically engineered MsrB protein. We report that MsrBA is able to completely reduce (i.e., repair) MetSO in the calcium regulatory protein calmodulin; in comparison only partial repair is observed using both MsrA and MsrB enzymes together at 25 °C. MsrBA has a twenty-fold enhanced rate of repair for MetSO in proteins in comparison with the individual MsrA or MsrB enzymes alone and respective 14- and 50-fold increases in catalytic efficiency (i.e., kcat/KM). In comparison, MsrBA and MsrA have similar catalytic efficiencies when free MetSO is used as a substrate. These results indicate that the individual domains within bifunctional MsrBA work cooperatively to selectively recognize and reduce MetSO in highly oxidized proteins. The enhanced catalytic activity of MsrBA against oxidized proteins and its common expression in bacterial pathogens is consistent with an important role for this enzyme activity in promoting bacterial survival under highly oxidizing conditions associated with pathogenesis or bioremediation.

  8. Expression, purification, crystallization and preliminary X-ray analysis of perakine reductase, a new member of the aldo-keto reductase enzyme superfamily from higher plants

    SciTech Connect

    Rosenthal, Cindy; Mueller, Uwe; Panjikar, Santosh; Sun, Lianli; Ruppert, Martin; Zhao, Yu; Stöckigt, Joachim

    2006-12-01

    Perakine reductase, a novel member of the aldo-keto reductase enzyme superfamily of higher plants, is involved in the biosynthesis of monoterpenoid indole alkaloids in the Indian medicinal plant Rauvolfia serpentina. The enzyme has been crystallized in C-centered orthorhombic space group and diffracts to 2.0 Å resolution. Perakine reductase (PR) is a novel member of the aldo-keto reductase enzyme superfamily from higher plants. PR from the plant Rauvolfia serpentina is involved in the biosynthesis of monoterpenoid indole alkaloids by performing NADPH-dependent reduction of perakine, yielding raucaffrinoline. However, PR can also reduce cinnamic aldehyde and some of its derivatives. After heterologous expression of a triple mutant of PR in Escherichia coli, crystals of the purified and methylated enzyme were obtained by the hanging-drop vapour-diffusion technique at 293 K with 100 mM sodium citrate pH 5.6 and 27% PEG 4000 as precipitant. Crystals belong to space group C222{sub 1} and diffract to 2.0 Å, with unit-cell parameters a = 58.9, b = 93.0, c = 143.4 Å.

  9. Structural and Biochemical Characterization of a Ferredoxin:Thioredoxin Reductase-like Enzyme from Methanosarcina acetivorans.

    PubMed

    Kumar, Adepu K; Kumar, R Siva Sai; Yennawar, Neela H; Yennawar, Hemant P; Ferry, James G

    2015-05-19

    Bioinformatics analyses predict the distribution in nature of several classes of diverse disulfide reductases that evolved from an ancestral plant-type ferredoxin:thioredoxin reductase (FTR) catalytic subunit to meet a variety of ecological needs. Methanosarcina acetivorans is a methane-producing species from the domain Archaea predicted to encode an FTR-like enzyme with two domains, one resembling the FTR catalytic subunit and the other containing a rubredoxin-like domain replacing the variable subunit of present-day FTR enzymes. M. acetivorans is of special interest as it was recently proposed to have evolved at the time of the end-Permian extinction and to be largely responsible for the most severe biotic crisis in the fossil record by converting acetate to methane. The crystal structure and biochemical characteristics were determined for the FTR-like enzyme from M. acetivorans, here named FDR (ferredoxin disulfide reductase). The results support a role for the rubredoxin-like center of FDR in transfer of electrons from ferredoxin to the active-site [Fe₄S₄] cluster adjacent to a pair of redox-active cysteines participating in reduction of disulfide substrates. A mechanism is proposed for disulfide reduction similar to one of two mechanisms previously proposed for the plant-type FTR. Overall, the results advance the biochemical and evolutionary understanding of the FTR-like family of enzymes and the conversion of acetate to methane that is an essential link in the global carbon cycle and presently accounts for most of this greenhouse gas that is biologically generated. PMID:25915695

  10. Molecular analysis of the SRD5A2 in 46,XY subjects with incomplete virilization: the P212R substitution of the steroid 5alpha-reductase 2 may constitute an ancestral founder mutation in Mexican patients.

    PubMed

    Vilchis, Felipe; Ramos, Luis; Méndez, Juan Pablo; Benavides, Socorro; Canto, Patricia; Chávez, Bertha

    2010-01-01

    Inactivating mutations of the SRD5A2 gene result in steroid 5α-reductase 2 deficiency, an autosomal recessive disorder expressed as a male-limited disorder of sex development. Herein, genomic DNA was isolated from 11 new patients with apparent steroid 5α-reductase 2 deficiency. Coding sequence abnormalities in SRD5A2 were assessed by exon-specific polymerase chain reaction, single-stranded conformation polymorphism, and direct sequencing. Likewise, enzymatic activity of the P212R gene variant of SRD5A2 was assessed. DNA analysis revealed mutations in all patients (G115D, R171S, N193S, E197D, G203S, P212R). Three individuals were compound heterozygotes, 6 were homozygotes, and 2 more were single heterozygotes for SRD5A2 mutations; remarkably, 40% of the mutant alleles (9/22) contained the gene variant P212R. The results described in this study represent, along with our previous reports, the largest number of patients with steroid 5α-reductase 2 deficiency belonging to nonrelated families. Regarding the frequency of the p.P212R mutation in our population and its presence throughout all of our country, it allows us to hypothesize that the presence of this mutation may constitute a founder gene effect. PMID:20019388

  11. Defining the Role of the NADH-Cytochrome-b5 Reductase 3 in the Mitochondrial Amidoxime Reducing Component Enzyme System.

    PubMed

    Plitzko, Birte; Havemeyer, Antje; Bork, Bettina; Bittner, Florian; Mendel, Ralf; Clement, Bernd

    2016-10-01

    The importance of the mitochondrial amidoxime reducing component (mARC)-containing enzyme system in N-reductive metabolism has been studied extensively. It catalyzes the reduction of various N-hydroxylated compounds and therefore acts as the counterpart of cytochrome P450- and flavin-containing monooxygenase-catalyzed oxidations at nitrogen centers. This enzyme system was found to be responsible for the activation of amidoxime and N-hydroxyguanidine prodrugs in drug metabolism. The synergy of three components (mARC, cytochrome b5, and the appropriate reductase) is crucial to exert the N-reductive catalytic effect. Previous studies have demonstrated the involvement of the specific isoforms of the molybdoenzyme mARC and the electron transport protein cytochrome b5 in N-reductive metabolism. To date, the corresponding reductase involved in N-reductive metabolism has yet to be defined because previous investigations have presented ambiguous results. Using small interfering RNA-mediated knockdown in human cells and assessing the stoichiometry of the enzyme system reconstituted in vitro, we provide evidence that NADH-cytochrome-b5 reductase 3 is the principal reductase involved in the mARC enzyme system and is an essential component of N-reductive metabolism in human cells. In addition, only minimal levels of cytochrome-b5 reductase 3 protein are sufficient for catalysis, which impeded previous attempts to identify the reductase. PMID:27469001

  12. Influence of the enzyme dissimilatory sulfite reductase on stable isotope fractionation during sulfate reduction

    NASA Astrophysics Data System (ADS)

    Mangalo, Muna; Einsiedl, Florian; Meckenstock, Rainer U.; Stichler, Willibald

    2008-03-01

    The stable isotopes of sulfate are often used as a tool to assess bacterial sulfate reduction on the macro scale. However, the mechanisms of stable isotope fractionation of sulfur and oxygen at the enzymatic level are not yet fully understood. In batch experiments with water enriched in 18O we investigated the effect of different nitrite concentrations on sulfur isotope fractionation by Desulfovibrio desulfuricans. With increasing nitrite concentrations, we found sulfur isotope enrichment factors ranging from -11.2 ± 1.8‰ to -22.5 ± 3.2‰. Furthermore, the δ18O values in the remaining sulfate increased from approximately 50-120‰ when 18O-enriched water was supplied. Since 18O-exchange with ambient water does not take place in sulfate, but rather in intermediates of the sulfate reduction pathway (e.g. SO32-), we suggest that nitrite affects the steady-state concentration and the extent of reoxidation of the metabolic intermediate sulfite to sulfate during sulfate reduction. Given that nitrite is known to inhibit the production of the enzyme dissimilatory sulfite reductase, our results suggest that the activity of the dissimilatory sulfite reductase regulates the kinetic isotope fractionation of sulfur and oxygen during bacterial sulfate reduction. Our novel results also imply that isotope fractionation during bacterial sulfate reduction strongly depends on the cell internal enzymatic regulation rather than on the physico-chemical features of the individual enzymes.

  13. Increased Catalytic Efficiency Following Gene Fusion of Bifunctional Methionine Sulfoxide Reductase Enzymes from Shewanella oneidensis

    PubMed Central

    Chen, Baowei; Markillie, Lye Meng; Xiong, Yijia; Mayer, M. Uljana; Squier, Thomas C.

    2008-01-01

    Methionine sulfoxide reductase enzymes MsrA and MsrB have complementary stereospecificies that respectively reduce the S- and R-stereoisomers of methionine sulfoxide (MetSO), and together function as critical antioxidant enzymes. In some pathogenic and metal -reducing bacteria these genes are fused to form a bifunctional methionine sulfoxide reductase (i.e., MsrBA) enzyme. To investigate how gene fusion affects the substrate specificity and catalytic activities of Msr, we have cloned and expressed the MsrBA enzyme from Shewanella oneidensis, a metal-reducing bacterium and fish pathogen. For comparison, we also cloned and expressed the wild-type MsrA enzyme from Shewanella oneidensis and a genetically engineered MsrB protein. MsrBA is able to completely reduce (i.e., repair) MetSO in the calcium regulatory protein calmodulin (CaM); while only partial repair is observed using both MsrA and MsrB enzymes together at 25 °C. A restoration of the normal protein fold is observed coincident with the repair of MetSO in oxidized CaM by MsrBA, as monitored by the time-dependent increases in the anisotropy associated with the rigidly bound multiuse affinity probe 4′5′-bis(1,3,2-dithoarsolan-2yl)fluorescein (FlAsH). Underlying the efficient repair of MetSO in oxidized CaM is the coordinate activity of the two catalytic domains in the MsrBA fusion protein, which results in an order of magnitude rate enhancement in comparison to the individual MsrA or MsrB enzymes alone. The coordinate binding of both domains of MsrBA permits the full repair of all MetSO in CaMox. The common expression of Msr fusion proteins in bacterial pathogens is consistent with an important role for this enzyme activity in the maintenance of protein function necessary for bacterial survival under highly oxidizing conditions associated with pathogenesis or bioremediation. PMID:17997579

  14. Posttranslational regulation of nitrogenase in Rhodospirillum rubrum strains overexpressing the regulatory enzymes dinitrogenase reductase ADP-ribosyltransferase and dinitrogenase reductase activating glycohydrolase.

    PubMed Central

    Grunwald, S K; Lies, D P; Roberts, G P; Ludden, P W

    1995-01-01

    Rhodospirillum rubrum strains that overexpress the enzymes involved in posttranslational nitrogenase regulation, dinitrogenase reductase ADP-ribosyltransferase (DRAT) and dinitrogenase reductase activating glycohydrolase (DRAG), were constructed, and the effect of this overexpression on in vivo DRAT and DRAG regulation was investigated. Broad-host-range plasmid constructs containing a fusion of the R. rubrum nifH promoter and translation initiation sequences to the second codon of draT, the first gene of the dra operon, were constructed. Overexpression plasmid constructs which overexpressed (i) only functional DRAT, (ii) only functional DRAG and presumably the putative downstream open reading frame (ORF)-encoded protein, or (iii) all three proteins were generated and introduced into wild-type R. rubrum. Overexpression of DRAT still allowed proper regulation of nitrogenase activity, with ADP-ribosylation of dinitrogenase reductase by DRAT occurring only upon dark or ammonium stimuli, suggesting that DRAT is still regulated upon overexpression. However, overexpression of DRAG and the downstream ORF altered nitrogenase regulation such that dinitrogenase reductase did not accumulate in the ADP-ribosylated form under inactivation conditions, suggesting that DRAG was constitutively active and that therefore DRAG regulation is altered upon overexpression. Proper DRAG regulation was observed in a strain overexpressing DRAT, DRAG, and the downstream ORF, suggesting that a proper balance of DRAT and DRAG levels is required for proper DRAG regulation. PMID:7836296

  15. High-quality life extension by the enzyme peptide methionine sulfoxide reductase

    PubMed Central

    Ruan, Hongyu; Tang, Xiang Dong; Chen, M.-L.; Joiner, M. A.; Sun, Guangrong; Brot, Nathan; Weissbach, Herbert; Heinemann, Stephen H.; Iverson, Linda; Wu, Chun-Fang; Hoshi, Toshinori

    2002-01-01

    Cumulative oxidative damages to cell constituents are considered to contribute to aging and age-related diseases. The enzyme peptide methionine sulfoxide reductase A (MSRA) catalyzes the repair of oxidized methionine in proteins by reducing methionine sulfoxide back to methionine. However, whether MSRA plays a role in the aging process is poorly understood. Here we report that overexpression of the msrA gene predominantly in the nervous system markedly extends the lifespan of the fruit fly Drosophila. The MSRA transgenic animals are more resistant to paraquat-induced oxidative stress, and the onset of senescence-induced decline in the general activity level and reproductive capacity is delayed markedly. The results suggest that oxidative damage is an important determinant of lifespan, and MSRA may be important in increasing the lifespan in other organisms including humans. PMID:11867705

  16. Identification of Methionine Sulfoxide Diastereomers in Immunoglobulin Gamma Antibodies Using Methionine Sulfoxide Reductase enzymes

    SciTech Connect

    Khor, Hui K.; Jacoby, Michael E.; Squier, Thomas C.; Chu, Grace C.; Chelius, Dirk

    2010-06-01

    During prolonged periods of storage methionines in antibodies and other proteins are known to become oxidized to form methionine sulfoxides and sulfones. While these post-translational modifications are commonly identified by peptide mapping, it is currently problematic to identify the relative abundances of the S- and R-diastereomers of methionine sulfoxide (Met(O)) due to their identical polarities and masses. Accordingly, we have developed a separation methodology for the rapid and quantitative determination of the relative abundances of Met(O) diastereomers. Identification of these diastereomers takes advantage of the complementary stereospecificities of methionine sulfoxide reductase (Msr) enzymes MsrA and MsrB, which respectively promote the selective reduction of S- and R-diastereomers of Met(O). In addition, an MsrBA fusion protein that contained both Msr enzyme activities permitted the quantitative reduction of all Met(O). Using these Msr enzymes in combination with peptide mapping we are able to detect and differentiate Met-diastereomers in a monoclonal IgG2 and IgG1 antibody. We also monitored the formation of sulfones and studied the rate of oxidation in the different Met residues in our IgG2 antibody. The reported ability to separate and identify diastereomers of Met(O) permits a more complete characterization of Met oxidation products. All the affected Met residues (M251, M427, M396) in this study are conserved in human IgG sequences and therefore offer predictive potential in characterizing oxidative modification.

  17. Serial crystallography captures enzyme catalysis in copper nitrite reductase at atomic resolution from one crystal.

    PubMed

    Horrell, Sam; Antonyuk, Svetlana V; Eady, Robert R; Hasnain, S Samar; Hough, Michael A; Strange, Richard W

    2016-07-01

    Relating individual protein crystal structures to an enzyme mechanism remains a major and challenging goal for structural biology. Serial crystallography using multiple crystals has recently been reported in both synchrotron-radiation and X-ray free-electron laser experiments. In this work, serial crystallography was used to obtain multiple structures serially from one crystal (MSOX) to study in crystallo enzyme catalysis. Rapid, shutterless X-ray detector technology on a synchrotron MX beamline was exploited to perform low-dose serial crystallography on a single copper nitrite reductase crystal, which survived long enough for 45 consecutive 100 K X-ray structures to be collected at 1.07-1.62 Å resolution, all sampled from the same crystal volume. This serial crystallography approach revealed the gradual conversion of the substrate bound at the catalytic type 2 Cu centre from nitrite to nitric oxide, following reduction of the type 1 Cu electron-transfer centre by X-ray-generated solvated electrons. Significant, well defined structural rearrangements in the active site are evident in the series as the enzyme moves through its catalytic cycle, namely nitrite reduction, which is a vital step in the global denitrification process. It is proposed that such a serial crystallography approach is widely applicable for studying any redox or electron-driven enzyme reactions from a single protein crystal. It can provide a 'catalytic reaction movie' highlighting the structural changes that occur during enzyme catalysis. The anticipated developments in the automation of data analysis and modelling are likely to allow seamless and near-real-time analysis of such data on-site at some of the powerful synchrotron crystallographic beamlines. PMID:27437114

  18. Dissection of malonyl-coenzyme A reductase of Chloroflexus aurantiacus results in enzyme activity improvement.

    PubMed

    Liu, Changshui; Wang, Qi; Xian, Mo; Ding, Yamei; Zhao, Guang

    2013-01-01

    The formation of fusion protein in biosynthetic pathways usually improves metabolic efficiency either channeling intermediates and/or colocalizing enzymes. In the metabolic engineering of biochemical pathways, generating unnatural protein fusions between sequential biosynthetic enzymes is a useful method to increase system efficiency and product yield. Here, we reported a special case. The malonyl-CoA reductase (MCR) of Chloroflexus aurantiacus catalyzes the conversion of malonyl-CoA to 3-hydroxypropionate (3HP), and is a key enzyme in microbial production of 3HP, an important platform chemical. Functional domain analysis revealed that the N-terminal region of MCR (MCR-N; amino acids 1-549) and the C-terminal region of MCR (MCR-C; amino acids 550-1219) were functionally distinct. The malonyl-CoA was reduced into free intermediate malonate semialdehyde with NADPH by MCR-C fragment, and further reduced to 3HP by MCR-N fragment. In this process, the initial reduction of malonyl-CoA was rate limiting. Site-directed mutagenesis demonstrated that the TGXXXG(A)X(1-2)G and YXXXK motifs were important for enzyme activities of both MCR-N and MCR-C fragments. Moreover, the enzyme activity increased when MCR was separated into two individual fragments. Kinetic analysis showed that MCR-C fragment had higher affinity for malonyl-CoA and 4-time higher K cat/K m value than MCR. Dissecting MCR into MCR-N and MCR-C fragments also had a positive effect on the 3HP production in a recombinant Escherichia coli strain. Our study showed the feasibility of protein dissection as a new strategy in biosynthetic systems. PMID:24073271

  19. Enzymic and structural studies on Drosophila alcohol dehydrogenase and other short-chain dehydrogenases/reductases.

    PubMed

    Smilda, T; Kamminga, A H; Reinders, P; Baron, W; van Hylckama Vlieg, J E; Beintema, J J

    2001-05-01

    Enzymic and structural studies on Drosophila alcohol dehydrogenases and other short-chain dehydrogenases/reductases (SDRs) are presented. Like alcohol dehydrogenases from other Drosophila species, the enzyme from D. simulans is more active on secondary than on primary alcohols, although ethanol is its only known physiological substrate. Several secondary alcohols were used to determine the kinetic parameters kcat and Km. The results of these experiments indicate that the substrate-binding region of the enzyme allows optimal binding of a short ethyl side-chain in a small binding pocket, and of a propyl or butyl side-chain in large binding pocket, with stereospecificity for R(-) alcohols. At a high concentration of R(-) alcohols substrate activation occurs. The kcat and Km values determined under these conditions are about two-fold, and two orders of magnitude, respectively, higher than those at low substrate concentrations. Sequence alignment of several SDRs of known, and unknown three-dimensional structures, indicate the presence of several conserved residues in addition to those involved in the catalyzed reactions. Structural roles of these conserved residues could be derived from observations made on superpositioned structures of several SDRs with known structures. Several residues are conserved in tetrameric SDRs, but not in dimeric ones. Two halohydrin-halide-lyases show significant homology with SDRs in the catalytic domains of these enzymes, but they do not have the structural features required for binding NAD+. Probably these lyases descend from an SDR, which has lost the capability to bind NAD+, but the enzyme reaction mechanisms may still be similar. PMID:11443349

  20. Serial crystallography captures enzyme catalysis in copper nitrite reductase at atomic resolution from one crystal

    PubMed Central

    Horrell, Sam; Antonyuk, Svetlana V.; Eady, Robert R.; Hasnain, S. Samar; Hough, Michael A.; Strange, Richard W.

    2016-01-01

    Relating individual protein crystal structures to an enzyme mechanism remains a major and challenging goal for structural biology. Serial crystallography using multiple crystals has recently been reported in both synchrotron-radiation and X-ray free-electron laser experiments. In this work, serial crystallography was used to obtain multiple structures serially from one crystal (MSOX) to study in crystallo enzyme catalysis. Rapid, shutterless X-ray detector technology on a synchrotron MX beamline was exploited to perform low-dose serial crystallography on a single copper nitrite reductase crystal, which survived long enough for 45 consecutive 100 K X-ray structures to be collected at 1.07–1.62 Å resolution, all sampled from the same crystal volume. This serial crystallography approach revealed the gradual conversion of the substrate bound at the catalytic type 2 Cu centre from nitrite to nitric oxide, following reduction of the type 1 Cu electron-transfer centre by X-ray-generated solvated electrons. Significant, well defined structural rearrangements in the active site are evident in the series as the enzyme moves through its catalytic cycle, namely nitrite reduction, which is a vital step in the global denitrification process. It is proposed that such a serial crystallography approach is widely applicable for studying any redox or electron-driven enzyme reactions from a single protein crystal. It can provide a ‘catalytic reaction movie’ highlighting the structural changes that occur during enzyme catalysis. The anticipated developments in the automation of data analysis and modelling are likely to allow seamless and near-real-time analysis of such data on-site at some of the powerful synchrotron crystallographic beamlines. PMID:27437114

  1. Mechanism of action of clostridial glycine reductase: Isolation and characterization of a covalent acetyl enzyme intermediate

    SciTech Connect

    Arkowitz, R.A.; Abeles, R.H. )

    1991-04-23

    Clostridial glycine reductase consists of proteins A, B, and C and catalyzes the reaction glycine + P{sub i} + 2e{sup {minus}} {yields} acetyl phosphate + NH{sub 4}{sup +}. Evidence was previously obtained that is consistent with the involvement of an acyl enzyme intermediate in this reaction. The authors now demonstrate that protein C catalyzes exchange of ({sup 32}P)P{sub i} into acetyl phosphate, providing additional support for an acetyl enzyme intermediate on protein C. Furthermore, they have isolated acetyl protein C and shown that it is qualitatively, catalytically competent. Acetyl protein C can be obtained through the forward reaction from protein C and Se-(carboxymethyl)selenocysteine-protein A, which is generated by the reaction of glycine with proteins A and B. Acetyl protein C can also be generated through the reverse reaction by the addition of acetyl phosphate to protein C. Both procedures lead to the same acetyl enzyme. The acetyl enzyme reacts with P{sub i} to give acetyl phosphate. When ({sup 14}C)acetyl protein C is denaturated with TCA and redissolved with urea, radioactivity remained associated with the protein. Treatment with KBH{sub 4} removes all the radioactivity associated with protein C, resulting in the formation of ({sup 14}C)ethanol. They conclude that a thiol group on protein C is acetylated. Proteins A and C together catalyze the exchange of tritium atoms from ({sup 3}H)H{sub 2}O into acetyl phosphate. This exchange reaction supports the proposal that an enol of the acetyl enzyme is an intermediate in the reaction sequence.

  2. 5Alpha-Reduced Steroids Are Major Metabolites in the Early Equine Embryo Proper and Its Membranes.

    PubMed

    Raeside, James I; Christie, Heather L; Betteridge, Keith J

    2015-09-01

    Steroid production and metabolism by early conceptuses are very important for the establishment and maintenance of pregnancy in horses. Our earlier work suggested the possible formation of 5alpha-reduced steroids in equine conceptuses. We have now demonstrated the formation of 5alpha-reduced metabolites of androstenedione, testosterone, and progesterone by the embryo and its membranes. A total of 44 conceptuses were collected from 26 mares between 20 and 31 days of pregnancy. Tissues from the embryo proper and from the separated components of the conceptus (bilaminar and trilaminar trophoblast, allantois) were incubated with tritium-labeled substrates. 5Alpha-reduced metabolites (5alpha-dihydro- and 3beta,5alpha-tetrahydro- steroids) as radiolabeled products were identified from a series of chromatographic steps using four solvent systems for high-performance liquid chromatography. Use of a 5alpha-reductase inhibitor confirmed the metabolites were indeed 5alpha-reduced steroids. For the embryo, the only products from androstenedione were 5alpha-dihydroandrostenedione and 3beta,5alpha-tetrahydroandrostenedione, with no evidence of more polar metabolites; there was some 3beta,5alpha-tetrahydrotestosterone but no 5alpha-dihydrotestosterone from testosterone, and formation of androstenedione was followed by the production of 5alpha-dihydroandrostenedione and 3beta,5alpha-tetrahydroandrostenedione. The major 5alpha-reduced product from progesterone was 3beta,5alpha-tetrahydroprogesterone, with lesser amounts of 5alpha-dihydroprogesterone. For the membranes, reductions to tetrahydro, 5alpha-reduced steroids were prominent in most instances, but also present were considerable amounts of products more polar than the substrates. The well-recognized activity of some 5alpha-reduced steroids--for example, 5alpha-dihydrotestosterone in male sexual differentiation--provokes interest in their even earlier appearance, as seen in this study, and suggests a possible role for them in

  3. Plant fatty acyl reductases: enzymes generating fatty alcohols for protective layers with potential for industrial applications.

    PubMed

    Rowland, Owen; Domergue, Frédéric

    2012-09-01

    Primary fatty alcohols are found throughout the biological world, either in free form or in a combined state. They are common components of plant surface lipids (i.e. cutin, suberin, sporopollenin, and associated waxes) and their absence can significantly perturb these essential barriers. Fatty alcohols and/or derived compounds are also likely to have direct functions in plant biotic and abiotic interactions. An evolutionarily related set of alcohol-forming fatty acyl reductases (FARs) is present in all kingdoms of life. Plant microsomal and plastid-associated FAR enzymes have been characterized, acting on acyl-coenzymeA (acyl-CoA) or acyl-acyl carrier protein (acyl-ACP) substrates, respectively. FARs have distinct substrate specificities both with regard to chain length and chain saturation. Fatty alcohols and wax esters, which are a combination of fatty alcohol and fatty acid, have a variety of commercial applications. The expression of FARs with desired specificities in transgenic microbes or oilseed crops would provide a novel means of obtaining these valuable compounds. In the present review, we report on recent progress in characterizing plant FAR enzymes and in understanding the biological roles of primary fatty alcohols, as well as describe the biotechnological production and industrial uses of fatty alcohols. PMID:22794916

  4. Dydrogesterone metabolism in human liver by aldo-keto reductases and cytochrome P450 enzymes.

    PubMed

    Olbrich, Matthias; Weigl, Kevin; Kahler, Elke; Mihara, Katsuhiro

    2016-10-01

    1. The metabolism of dydrogesterone was investigated in human liver cytosol (HLC) and human liver microsomes (HLM). Enzymes involved in dydrogesterone metabolism were identified and their relative contributions were estimated. 2. Dydrogesterone clearance was clearly higher in HLC compared to HLM. The major active metabolite 20α-dihydrodydrogesterone (20α-DHD) was only produced in HLC. 3. The formation of 20α-DHD by cytosolic aldo-keto reductase 1C (AKR1C) was confirmed with isoenzyme-specific AKR inhibitors. 4. Using recombinantly expressed human cytochrome P450 (CYP) isoenzymes, dydrogesterone was shown to be metabolically transformed by CYP3A4 and CYP2C19. 5. A clear contribution of CYP3A4 to microsomal metabolism of dydrogesterone was demonstrated with HLM and isoenzyme-specific CYP inhibitors, and confirmed by a significant correlation between dydrogesterone clearance and CYP3A4 activity. 6. Contribution of CYP2C19 was shown to be clearly less than CYP3A4 and restricted to a small group of human individuals with very high CYP2C19 activity. Therefore, it is expected that CYP2C19 genetic variations will not affect dydrogesterone pharmacokinetics in man. 7. In conclusion, dydrogesterone metabolism in the liver is dominated primarily by cytosolic enzymes (particularly AKR1C) and secondarily by CYP3A4, with the former exclusively responsible for 20α-DHD formation. PMID:26796435

  5. The Protein Oxidation Repair Enzyme Methionine Sulfoxide Reductase A Modulates Aβ Aggregation and Toxicity In Vivo

    PubMed Central

    Minniti, Alicia N.; Arrazola, Macarena S.; Bravo-Zehnder, Marcela; Ramos, Francisca; Inestrosa, Nibaldo C.

    2015-01-01

    Abstract Aims: To examine the role of the enzyme methionine sulfoxide reductase A-1 (MSRA-1) in amyloid-β peptide (Aβ)-peptide aggregation and toxicity in vivo, using a Caenorhabditis elegans model of the human amyloidogenic disease inclusion body myositis. Results: MSRA-1 specifically reduces oxidized methionines in proteins. Therefore, a deletion of the msra-1 gene was introduced into transgenic C. elegans worms that express the Aβ-peptide in muscle cells to prevent the reduction of oxidized methionines in proteins. In a constitutive transgenic Aβ strain that lacks MSRA-1, the number of amyloid aggregates decreases while the number of oligomeric Aβ species increases. These results correlate with enhanced synaptic dysfunction and mislocalization of the nicotinic acetylcholine receptor ACR-16 at the neuromuscular junction (NMJ). Innovation: This approach aims at modulating the oxidation of Aβ in vivo indirectly by dismantling the methionine sulfoxide repair system. The evidence presented here shows that the absence of MSRA-1 influences Aβ aggregation and aggravates locomotor behavior and NMJ dysfunction. The results suggest that therapies which boost the activity of the Msr system could have a beneficial effect in managing amyloidogenic pathologies. Conclusion: The absence of MSRA-1 modulates Aβ-peptide aggregation and increments its deleterious effects in vivo. Antioxid. Redox Signal. 22, 48–62. PMID:24988428

  6. DFT Study on Enzyme Turnover Including Proton and Electron Transfers of Copper-Containing Nitrite Reductase.

    PubMed

    Lintuluoto, Masami; Lintuluoto, Juha M

    2016-08-23

    The reaction mechanism of copper-containing nitrite reductase (CuNiR) has been proposed to include two important events, an intramolecular electron transfer and a proton transfer. The two events have been suggested to be coupled, but the order of these events is currently under debate. We investigated the entire enzyme reaction mechanism of nitrite reduction at the T2 Cu site in thermophilic Geobacillus CuNiR from Geobacillus thermodenitrificans NG80-2 (GtNiR) using density functional theory calculations. We found significant conformational changes of His ligands coordinated to the T2 Cu site upon nitrite binding during the catalytic reaction. The reduction potentials and pKa values calculated for the relevant protonation and reduction states show two possible routes, A and B. Reduction of the T2 Cu site in the resting state is followed by endothermic nitrite binding in route A, while exothermic nitrite binding occurs prior to reduction of the T2 Cu site in route B. We concluded that our results support the random-sequential mechanism rather than the ordered mechanism. PMID:27455866

  7. Molecular characterization of tobacco sulfite reductase: enzyme purification, gene cloning, and gene expression analysis.

    PubMed

    Yonekura-Sakakibara, K; Ashikari, T; Tanaka, Y; Kusumi, T a; Hase, T

    1998-09-01

    A cDNA clone, NtSiR1, that encodes the precursor of ferredoxin-dependent sulfite reductase (Fd-SiR) has been isolated from a cDNA library of tobacco (Nicotiana tabacum cv. SR1). The identity of the cDNA was established by comparison of the purified protein and the predicted structure with the nucleotide sequence. The amino terminus of the purified enzyme was Thr62 of the precursor protein, and the mature region of NtSiR1 consisted of 632 amino acids. Tobacco Fd-SiR is 82, 77, and 48% identical with Fd-SiRs from Zea mays, Arabidopsis thaliana, and a cyanobacterium, respectively. Significant similarity was also found with Escherichia coli NADPH-SiR in the region involved in ligation of siroheme and the [4Fe-4S] cluster. On Northern blot analysis, a transcript of NtSiR1 was detected in leaves, stems, roots, and petals in similar amounts. We also isolated a genomic SiR clone named gNtSiR1. It consists of 8 exons and 7 introns. Genomic Southern blot analysis indicated that at least two SiR genes are present in the tobacco genome. PMID:9722674

  8. Potential Biological Functions of Cytochrome P450 Reductase-dependent Enzymes in Small Intestine

    PubMed Central

    D'Agostino, Jaime; Ding, Xinxin; Zhang, Peng; Jia, Kunzhi; Fang, Cheng; Zhu, Yi; Spink, David C.; Zhang, Qing-Yu

    2012-01-01

    NADPH-cytochrome P450 reductase (POR) is essential for the functioning of microsomal cytochrome P450 (P450) monooxygenases and heme oxygenases. The biological roles of the POR-dependent enzymes in the intestine have not been defined, despite the wealth of knowledge on the biochemical properties of the various oxygenases. In this study, cDNA microarray analysis revealed significant changes in gene expression in enterocytes isolated from the small intestine of intestinal epithelium-specific Por knock-out (named IE-Cpr-null) mice compared with that observed in wild-type (WT) littermates. Gene ontology analyses revealed significant changes in terms related to P450s, transporters, cholesterol biosynthesis, and, unexpectedly, antigen presentation/processing. The genomic changes were confirmed at either mRNA or protein level for selected genes, including those of the major histocompatibility complex class II (MHC II). Cholesterol biosynthetic activity was greatly reduced in the enterocytes of the IE-Cpr-null mice, as evidenced by the accumulation of the lanosterol metabolite, 24-dihydrolanosterol. However, no differences in either circulating or enterocyte cholesterol levels were observed between IE-Cpr-null and WT mice. Interestingly, the levels of the cholesterol precursor farnesyl pyrophosphate and its derivative geranylgeranyl pyrophosphate were also increased in the enterocytes of the IE-Cpr-null mice. Furthermore, the expression of STAT1 (signal transducer and activator of transcription 1), a downstream target of geranylgeranyl pyrophosphate signaling, was enhanced. STAT1 is an activator of CIITA, the class II transactivator for MHC II expression; CIITA expression was concomitantly increased in IE-Cpr-null mice. Overall, these findings provide a novel and mechanistic link between POR-dependent enzymes and the expression of MHC II genes in the small intestine. PMID:22453923

  9. Acrylyl-coenzyme A reductase, an enzyme involved in the assimilation of 3-hydroxypropionate by Rhodobacter sphaeroides.

    PubMed

    Asao, Marie; Alber, Birgit E

    2013-10-01

    The anoxygenic phototroph Rhodobacter sphaeroides uses 3-hydroxypropionate as a sole carbon source for growth. Previously, we showed that the gene (RSP_1434) known as acuI, which encodes a protein of the medium-chain dehydrogenase/reductase (MDR) superfamily, was involved in 3-hydroxypropionate assimilation via the reductive conversion to propionyl-coenzyme A (CoA). Based on these results, we speculated that acuI encoded acrylyl-CoA reductase. In this work, we characterize the in vitro enzyme activity of purified, recombinant AcuI using a coupled spectrophotometric assay. AcuI from R. sphaeroides catalyzes the NADPH-dependent acrylyl-CoA reduction to produce propionyl-CoA. Two other members of the MDR012 family within the MDR superfamily, the products of SPO_1914 from Ruegeria pomeroyi and yhdH from Escherichia coli, were shown to also be part of this new class of NADPH-dependent acrylyl-CoA reductases. The activities of the three enzymes were characterized by an extremely low Km for acrylyl-CoA (<3 μM) and turnover numbers of 45 to 80 s(-1). These homodimeric enzymes were highly specific for NADPH (Km = 18 to 33 μM), with catalytic efficiencies of more than 10-fold higher for NADPH than for NADH. The introduction of codon-optimized SPO_1914 or yhdH into a ΔacuI::kan mutant of R. sphaeroides on a plasmid complemented 3-hydroxypropionate-dependent growth. However, in their native hosts, SPO_1914 and yhdH are believed to function in the metabolism of substrates other than 3-hydroxypropionate, where acrylyl-CoA is an intermediate. Complementation of the ΔacuI::kan mutant phenotype by crotonyl-CoA carboxylase/reductase from R. sphaeroides was attributed to the fact that the enzyme also uses acrylyl-CoA as a substrate. PMID:23955006

  10. Structure and Function of the Unusual Tungsten Enzymes Acetylene Hydratase and Class II Benzoyl-Coenzyme A Reductase.

    PubMed

    Boll, Matthias; Einsle, Oliver; Ermler, Ulrich; Kroneck, Peter M H; Ullmann, G Matthias

    2016-01-01

    In biology, tungsten (W) is exclusively found in microbial enzymes bound to a bis-pyranopterin cofactor (bis-WPT). Previously known W enzymes catalyze redox oxo/hydroxyl transfer reactions by directly coordinating their substrates or products to the metal. They comprise the W-containing formate/formylmethanofuran dehydrogenases belonging to the dimethyl sulfoxide reductase (DMSOR) family and the aldehyde:ferredoxin oxidoreductase (AOR) families, which form a separate enzyme family within the Mo/W enzymes. In the last decade, initial insights into the structure and function of two unprecedented W enzymes were obtained: the acetaldehyde forming acetylene hydratase (ACH) belongs to the DMSOR and the class II benzoyl-coenzyme A (CoA) reductase (BCR) to the AOR family. The latter catalyzes the reductive dearomatization of benzoyl-CoA to a cyclic diene. Both are key enzymes in the degradation of acetylene (ACH) or aromatic compounds (BCR) in strictly anaerobic bacteria. They are unusual in either catalyzing a nonredox reaction (ACH) or a redox reaction without coordinating the substrate or product to the metal (BCR). In organic chemical synthesis, analogous reactions require totally nonphysiological conditions depending on Hg2+ (acetylene hydration) or alkali metals (benzene ring reduction). The structural insights obtained pave the way for biological or biomimetic approaches to basic reactions in organic chemistry. PMID:26959374

  11. Reduction of the explosive 2,4,6-trinitrophenylmethylnitramine (tetryl) catalyzed by oxygen sensitive nitro reductase enzymes

    SciTech Connect

    Shah, M.M.; Spain, J.C.

    1995-12-01

    Reduction of nitroaromatic compounds by nitroreductase enzymes generally leads to the formation of the corresponding amines. However, we recently found that the incubation of the explosive 2,4,6-trinitrophenylmethylnitramine (tetryl) with ferredoxin-NADP oxidoreductase, an oxygen sensitive nitroreductase from spinach in the presence of NADPH led to the elimination of the nitramine nitro group from tetryl and the formation of N-methylpicramide (NMP). Other oxygen sensitive nitroreductase enzymes including glutathione reductase, xanthine oxidase, and cytochrome c reductase were also able to release nitrite from tetryl. Nitrite was not eliminated from tetryl by an oxygen insensitive nitrobenzene reductase. For every mole of tetryl reduced, one mole each of nitrite and NMP were produced. The rate of nitrite elimination was inhibited under aerobic conditions. Subsequent oxygen uptake studies suggested that under aerobic conditions, molecular oxygen was reduced by FNR and tetryl served as the redox mediator. Our results suggest that under aerobic conditions; tetryl is reduced to the nitroanion radical by the enzyme and this radical is involved in the reduction of molecular oxygen.

  12. [Assessment of the concentrations of carbonylated proteins and carbonyl reductase enzyme in mexican women with breast cancer: A pilot study].

    PubMed

    Gutiérrez-Salinas, José; García-Ortiz, Liliana; Mondragón-Terán, Paul; Hernández-Rodríguez, Sergio; Ramírez-García, Sotero; Núñez-Ramos, Norma Rebeca

    2016-01-01

    Oxidative stress could promote the development of cancer and implicate carbonylated proteins in the carcinogenic process. The goal of this study was to assess the concentrations of carbonylated proteins and carbonyl reductase enzyme in women with breast cancer and determine whether these markers were possible indicators of tissue damage caused by the disease. A total of 120 healthy women and 123 women with a diagnosis of breast cancer were included. The concentration of carbonylated proteins in plasma and the concentration of carbonyl reductase enzyme in leukocytes were determined using the ELISA assay. There was a 3.76-fold increase in the amount of carbonylated proteins in the plasma from the patient group compared with healthy control group (5±3.27 vs. 1.33±2.31 nmol carbonyls/mg protein; p<0.05). Additionally, a 60% increase in the carbonyl reductase enzyme was observed in the patient group compared with the healthy control group (3.27±0.124 vs. 2.04±0.11 ng/mg protein; p<0.05). A positive correlation (r=0.95; p<0.001) was found between both measurements. These results suggest the presence of tissue damage produced by cancer; therefore, these parameters could be used to indicate tissue damage in cancer patients. PMID:26927639

  13. Succinic semialdehyde reductase Gox1801 from Gluconobacter oxydans in comparison to other succinic semialdehyde-reducing enzymes.

    PubMed

    Meyer, Maria; Schweiger, Paul; Deppenmeier, Uwe

    2015-05-01

    Gluconobacter oxydans is an industrially important bacterium that possesses many uncharacterized oxidoreductases, which might be exploited for novel biotechnological applications. In this study, gene gox1801 was homologously overexpressed in G. oxydans and it was found that the relative expression of gox1801 was 13-fold higher than that in the control strain. Gox1801 was predicted to belong to the 3-hydroxyisobutyrate dehydrogenase-type proteins. The purified enzyme had a native molecular mass of 134 kDa and forms a homotetramer. Analysis of the enzymatic activity revealed that Gox1801 is a succinic semialdehyde reductase that used NADH and NADPH as electron donors. Lower activities were observed with glyoxal, methylglyoxal, and phenylglyoxal. The enzyme was compared to the succinic semialdehyde reductase GsSSAR from Geobacter sulfurreducens and the γ-hydroxybutyrate dehydrogenase YihU from Escherichia coli K-12. The comparison revealed that Gox1801 is the first enzyme from an aerobic bacterium reducing succinic semialdehyde with high catalytic efficiency. As a novel succinic semialdehyde reductase, Gox1801 has the potential to be used in the biotechnological production of γ-hydroxybutyrate. PMID:25425279

  14. Purification and characterization of 3-hydroxymethylglutaryl-coenzyme A reductase of Schistosoma mansoni: regulation of parasite enzyme activity differs from mammalian host.

    PubMed

    Chen, G Z; Foster, L; Bennett, J L

    1991-07-01

    The enzyme 3-hydroxymethylglutaryl-CoA (HMG-CoA) reductase plays a critical role in regulating the production of cholesterol, dolichols, and ubiquinones in mammals. The inhibition of this enzyme in Schistosoma mansoni is accompanied by a cessation of egg production by the female parasite and a reduced ability of the parasite to properly glycoslyate their proteins. Furthermore, we recently demonstrated that mevinolin, if given continuously over a period of 10-14 days, is a potent antischistosomal drug. In this paper, we describe the properties of purified HMG-CoA reductase from S. mansoni. Using affinity chromatography, we were able to obtain a 417-fold purification of the enzyme which had Km values similar to the rat enzyme for HMG-CoA and NADPH. The Ki value for mevinolin, a potent and selective inhibitor of the rat reductase (Ki = 0.6 nM), was significantly higher (Ki = 46 nM) for the schistosome enzyme. SDS-PAGE and HPLC of the purified enzyme resulted in the appearance of a single protein, which had a molecular weight (66,000) in the range reported for the rat enzyme. Parasite reductase activity, unlike that of its host, did not display a circadian rhythm. Furthermore, agents which elevate (cholestyramine) or decrease (cholesterol) mammalian reductase activity had no effect on the parasite enzyme. Our results suggest that the mechanism which regulates production of the parasite's enzyme may differ from its mammalian host. PMID:1905241

  15. Coenzyme A disulfide reductase, the primary low molecular weight disulfide reductase from Staphylococcus aureus. Purification and characterization of the native enzyme.

    PubMed

    delCardayre, S B; Stock, K P; Newton, G L; Fahey, R C; Davies, J E

    1998-03-01

    The human pathogen Staphylococcus aureus does not utilize the glutathione thiol/disulfide redox system employed by eukaryotes and many bacteria. Instead, this organism produces CoA as its major low molecular weight thiol. We report the identification and purification of the disulfide reductase component of this thiol/disulfide redox system. Coenzyme A disulfide reductase (CoADR) catalyzes the specific reduction of CoA disulfide by NADPH. CoADR has a pH optimum of 7.5-8.0 and is a dimer of identical subunits of Mr 49,000 each. The visible absorbance spectrum is indicative of a flavoprotein with a lambdamax = 452 nm. The liberated flavin from thermally denatured enzyme was identified as flavin adenine dinucleotide. Steady-state kinetic analysis revealed that CoADR catalyzes the reduction of CoA disulfide by NADPH at pH 7.8 with a Km for NADPH of 2 muM and for CoA disulfide of 11 muM. In addition to CoA disulfide CoADR reduces 4,4'-diphosphopantethine but has no measurable ability to reduce oxidized glutathione, cystine, pantethine, or H2O2. CoADR demonstrates a sequential kinetic mechanism and employs a single active site cysteine residue that forms a stable mixed disulfide with CoA during catalysis. These data suggest that S. aureus employs a thiol/disulfide redox system based on CoA/CoA-disulfide and CoADR, an unorthodox new member of the pyridine nucleotide-disulfide reductase superfamily. PMID:9488707

  16. Precorrin-6x reductase from Pseudomonas denitrificans: purification and characterization of the enzyme and identification of the structural gene.

    PubMed Central

    Blanche, F; Thibaut, D; Famechon, A; Debussche, L; Cameron, B; Crouzet, J

    1992-01-01

    Precorrin-6x reductase, which catalyzes the NADPH-dependent reduction of precorrin-6x to a dihydro derivative named precorrin-6y, was purified 14,300-fold to homogeneity with an 8% yield from extracts of a recombinant strain of Pseudomonas denitrificans. Precorrin-6y was identified by fast atom bombardment-mass spectrometry. It was converted in high yield (90%) to hydrogenobyrinic acid by cell-free protein preparations from P. denitrificans. For the purification and characterization of precorrin-6x reductase, a coupled-enzyme radioenzymatic assay was developed in which precorrin-6y was methylated in situ by the cobL gene product (F. Blanche, A. Famechon, D. Thibaut, L. Debussche, B. Cameron, J. Crouzet, J. Bacteriol. 174:1050-1052, 1992) in the presence of [methyl-3H]S-adenosyl-L-methionine. Molecular weights of precorrin-6x reductase obtained by gel filtration (Mr congruent to 27,000) and by analytical sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr congruent to 31,000) were consistent with the enzyme being a monomer. Km values of 3.6 +/- 0.2 microM for precorrin-6x and 23.5 +/- 3.5 microM for NADPH and a Vmax value of 17,000 U mg-1 were obtained at pH 7.7. The N-terminal sequence (six amino acids) and three internal sequences obtained after tryptic digestion of the enzyme were determined by microsequencing and established that precorrin-6x reductase is encoded by the cobK gene, located on a previously described 8.7-kb EcoRI fragment (J. Crouzet, B. Cameron, L. Cauchois, S. Rigault, M.-C. Rouyez, F. Blanche, D. Thibaut, and L. Debussche, J. Bacteriol. 172:5980-5990, 1990). However, the coding sequence was shown to be on the strand complementary to the one previously proposed as the coding strand. Images PMID:1732193

  17. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae.

    PubMed

    Moon, Jaewoong; Liu, Z Lewis

    2015-04-01

    The aldehyde reductase gene ARI1 is a recently characterized member of an intermediate subfamily within the short-chain dehydrogenase/reductase (SDR) superfamily that clarified mechanisms of in situ detoxification of 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde by Saccharomyces cerevisiae. Uncharacterized open reading frames (ORFs) are common among tolerant candidate genes identified for lignocellulose-to-advanced biofuels conversion. This study presents partially purified proteins of two ORFs, YDR541C and YGL039W, and direct enzyme assay evidence against aldehyde-inhibitory compounds commonly encountered during lignocellulosic biomass fermentation processes. Each of the partially purified proteins encoded by these ORFs showed a molecular mass of approximately 38 kDa, similar to Ari1p, a protein encoded by aldehyde reductase gene. Both proteins demonstrated strong aldehyde reduction activities toward 14 aldehyde substrates, with high levels of reduction activity for Ydr541cp toward both aromatic and aliphatic aldehydes. While Ydr541cp was observed to have a significantly higher specific enzyme activity at 20 U/mg using co-factor NADPH, Ygl039wp displayed a NADH preference at 25 U/mg in reduction of butylaldehyde. Amino acid sequence analysis identified a characteristic catalytic triad, Ser, Tyr and Lys; a conserved catalytic motif of Tyr-X-X-X-Lys; and a cofactor-binding sequence motif, Gly-X-X-Gly-X-X-Ala, near the N-terminus that are shared by Ydr541cp, Ygl039wp, Yol151wp/GRE2 and Ari1p. Findings of aldehyde reductase genes contribute to the yeast gene annotation and aids development of the next-generation biocatalyst for advanced biofuels production. PMID:25656103

  18. Conversion of Human Steroid 5[beta]-Reductase (AKR1D1) into 3[beta]-Hydroxysteroid Dehydrogenase by Single Point Mutation E120H: Example of Perfect Enzyme Engineering

    SciTech Connect

    Chen, Mo; Drury, Jason E.; Christianson, David W.; Penning, Trevor M.

    2012-10-10

    Human aldo-keto reductase 1D1 (AKR1D1) and AKR1C enzymes are essential for bile acid biosynthesis and steroid hormone metabolism. AKR1D1 catalyzes the 5{beta}-reduction of {Delta}{sup 4}-3-ketosteroids, whereas AKR1C enzymes are hydroxysteroid dehydrogenases (HSDs). These enzymes share high sequence identity and catalyze 4-pro-(R)-hydride transfer from NADPH to an electrophilic carbon but differ in that one residue in the conserved AKR catalytic tetrad, His120 (AKR1D1 numbering), is substituted by a glutamate in AKR1D1. We find that the AKR1D1 E120H mutant abolishes 5{beta}-reductase activity and introduces HSD activity. However, the E120H mutant unexpectedly favors dihydrosteroids with the 5{alpha}-configuration and, unlike most of the AKR1C enzymes, shows a dominant stereochemical preference to act as a 3{beta}-HSD as opposed to a 3{alpha}-HSD. The catalytic efficiency achieved for 3{beta}-HSD activity is higher than that observed for any AKR to date. High resolution crystal structures of the E120H mutant in complex with epiandrosterone, 5{beta}-dihydrotestosterone, and {Delta}{sup 4}-androstene-3,17-dione elucidated the structural basis for this functional change. The glutamate-histidine substitution prevents a 3-ketosteroid from penetrating the active site so that hydride transfer is directed toward the C3 carbonyl group rather than the {Delta}{sup 4}-double bond and confers 3{beta}-HSD activity on the 5{beta}-reductase. Structures indicate that stereospecificity of HSD activity is achieved because the steroid flips over to present its {alpha}-face to the A-face of NADPH. This is in contrast to the AKR1C enzymes, which can invert stereochemistry when the steroid swings across the binding pocket. These studies show how a single point mutation in AKR1D1 can introduce HSD activity with unexpected configurational and stereochemical preference.

  19. Bacillus subtilis class Ib ribonucleotide reductase is a dimanganese(III)-tyrosyl radical enzyme.

    PubMed

    Zhang, Yan; Stubbe, Joanne

    2011-06-28

    Bacillus subtilis class Ib ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to deoxynucleotides, providing the building blocks for DNA replication and repair. It is composed of two proteins: α (NrdE) and β (NrdF). β contains the metallo-cofactor, essential for the initiation of the reduction process. The RNR genes are organized within the nrdI-nrdE-nrdF-ymaB operon. Each protein has been cloned, expressed, and purified from Escherichia coli. As isolated, recombinant NrdF (rNrdF) contained a diferric-tyrosyl radical [Fe(III)(2)-Y(•)] cofactor. Alternatively, this cluster could be self-assembled from apo-rNrdF, Fe(II), and O(2). Apo-rNrdF loaded using 4 Mn(II)/β(2), O(2), and reduced NrdI (a flavodoxin) can form a dimanganese(III)-Y(•) [Mn(III)(2)-Y(•)] cofactor. In the presence of rNrdE, ATP, and CDP, Mn(III)(2)-Y(•) and Fe(III)(2)-Y(•) rNrdF generate dCDP at rates of 132 and 10 nmol min(-1) mg(-1), respectively (both normalized for 1 Y(•)/β(2)). To determine the endogenous cofactor of NrdF in B. subtilis, the entire operon was placed behind a Pspank(hy) promoter and integrated into the B. subtilis genome at the amyE site. All four genes were induced in cells grown in Luria-Bertani medium, with levels of NrdE and NrdF elevated 35-fold relative to that of the wild-type strain. NrdE and NrdF were copurified in a 1:1 ratio from this engineered B. subtilis. The visible, EPR, and atomic absorption spectra of the purified NrdENrdF complex (eNrdF) exhibited characteristics of a Mn(III)(2)-Y(•) center with 2 Mn/β(2) and 0.5 Y(•)/β(2) and an activity of 318-363 nmol min(-1) mg(-1) (normalized for 1 Y(•)/β(2)). These data strongly suggest that the B. subtilis class Ib RNR is a Mn(III)(2)-Y(•) enzyme. PMID:21561096

  20. Structural and transcriptional analysis of plant genes encoding the bifunctional lysine ketoglutarate reductase saccharopine dehydrogenase enzyme

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The analysis of a wheat lysine ketoglutarate reductase – saccharopine dehydrogenase (LKR/SDH) gene and comparative structural and functional analyses among available plant genes provides new information on this important gene. Both the structure of the LKR/SDH gene and the immediately adjacent genes...

  1. Metabolism of hydroxypyruvate in a mutant of barley lacking NADH-dependent hydroxypyruvate reductase, an important photorespiratory enzyme activity

    SciTech Connect

    Murray, A.J.S.; Blackwell, R.D.; Lea, P.J. )

    1989-09-01

    A mutant of barley (Hordeum vulgare L.), LaPr 88/29, deficient in NADH-dependent hydroxypyruvate reductase (HPR) activity has been isolated. The activities of both NADH (5%) and NADPH-dependent (19%) HPR were severely reduced in this mutant compared to the wild type. Although lacking an enzyme in the main carbon pathway of photorespiration, this mutant was capable of CO{sub 2} fixation rates equivalent to 75% of that of the wild type, in normal atmospheres and 50% O{sub 2}. There also appeared to be little disruption to the photorespiratory metabolism as ammonia release, CO{sub 2} efflux and {sup 14}CO{sub 2} release from L-(U-{sup 14}C)serine feeding were similar in both mutant and wild-type leaves. When leaves of LaPr 88/29 were fed either ({sup 14}C)serine or {sup 14}CO{sub 2}, the accumulation of radioactivity was in serine and not in hydroxypyruvate, although the mutant was still able to metabolize over 25% of the supplied ({sup 14}C)serine into sucrose. After 3 hours in air the soluble amino acid pool was almost totally dominated by serine and glycine. LaPr 88/29 has also been used to show that NADH-glyoxylate reductase and NADH-HPR are probably not catalyzed by the same enzyme in barley and that over 80% of the NADPH-dependent HPR activity is due to the NADH-dependent enzyme. We also suggest that the alternative NADPH activity can metabolize a proportion, but not all, of the hydroxypyruvate produced during photorespiration and may thus form a useful backup to the NADH-dependent enzyme under conditions of maximal photorespiration.

  2. Stopped-flow kinetic studies of electron transfer in the reductase domain of neuronal nitric oxide synthase: re-evaluation of the kinetic mechanism reveals new enzyme intermediates and variation with cytochrome P450 reductase.

    PubMed Central

    Knight, Kirsty; Scrutton, Nigel S

    2002-01-01

    The reduction by NADPH of the FAD and FMN redox centres in the isolated flavin reductase domain of calmodulin-bound rat neuronal nitric oxide synthase (nNOS) has been studied by anaerobic stopped-flow spectroscopy using absorption and fluorescence detection. We show by global analysis of time-dependent photodiode array spectra, single wavelength absorption and NADPH fluorescence studies, that at least four resolvable steps are observed in stopped-flow studies with NADPH and that flavin reduction is reversible. The first reductive step represents the rapid formation of an equilibrium between an NADPH-enzyme charge-transfer species and two-electron-reduced enzyme bound to NADP(+). The second and third steps represent further reduction of the enzyme flavins and NADP(+) release. The fourth step is attributed to the slow accumulation of an enzyme species that is inferred not to be relevant catalytically in steady-state reactions. Stopped-flow flavin fluorescence studies indicate the presence of slow kinetic phases, the timescales of which correspond to the slow phase observed in absorption and NADPH fluorescence transients. By analogy with stopped-flow studies of cytochrome P450 reductase, we attribute these slow fluorescence and absorption changes to enzyme disproportionation and/or conformational change. Unlike for the functionally related cytochrome P450 reductase, transfer of the first hydride equivalent from NADPH to nNOS reductase does not generate the flavin di-semiquinoid state. This indicates that internal electron transfer is relatively slow and is probably gated by NADP(+) release. Release of calmodulin from the nNOS reductase does not affect the kinetics of inter-flavin electron transfer under stopped-flow conditions, although the observed rate of formation of the equilibrium between the NADPH-oxidized enzyme charge-transfer species and two-electron-reduced enzyme bound to NADP(+) is modestly slower in calmodulin-depleted enzyme. Our studies indicate the

  3. The neurosteroidogenic enzyme 5α-reductase modulates the role of D1 dopamine receptors in rat sensorimotor gating.

    PubMed

    Frau, Roberto; Mosher, Laura J; Bini, Valentina; Pillolla, Giuliano; Pes, Romina; Saba, Pierluigi; Fanni, Silvia; Devoto, Paola; Bortolato, Marco

    2016-01-01

    Neurosteroids exert diverse modulatory actions on dopamine neurotransmission and signaling. We previously documented that the enzyme 5α-reductase, which catalyzes the main rate-limiting step in neurosteroid synthesis, is required for the behavioral responses of Sprague-Dawley rats to non-selective dopaminergic agonists, such as the D1-D2 receptor agonist apomorphine. Specifically, systemic and intra-accumbal administrations of the 5α-reductase inhibitor finasteride countered apomorphine-induced deficits of sensorimotor gating, as measured by the prepulse inhibition (PPI) of the startle reflex; the classes of dopamine receptors involved in these effects, however, remain unknown. Prior rodent studies have revealed that the contributions of dopamine receptors to PPI regulation vary depending on the genetic background; thus, we analyzed the effect of finasteride on the PPI deficits induced by selective dopamine receptor agonists in Long-Evans (a strain exhibiting PPI deficits in response to both D1 and D2 receptor agonists) and Sprague-Dawley rats (which display PPI reductions following treatment with D2, and D3, but not D1 receptor agonists). In Long-Evans rats, finasteride opposed the PPI deficits induced by activation of D1, but not D2 receptors; conversely, in Sprague-Dawley rats, finasteride prevented the reductions in %PPI and accumbal dopamine extracellular levels caused by selective stimulation of D3, but not D2 receptors; however, the effects on %PPI were not confirmed by analyses on absolute PPI values. Our findings suggest that 5α-reductase modulates the effects of D1, but not D2 receptor agonists on sensorimotor gating. These data may help elucidate the role of neurosteroids in neuropsychiatric disorders featuring PPI deficits, including schizophrenia and Tourette syndrome. PMID:26415119

  4. Failure of isolated rat tibial periosteal cells to 5 alpha reduce testosterone to 5 alpha-dihydrotestosterone

    SciTech Connect

    Turner, R.T.; Bleiberg, B.; Colvard, D.S.; Keeting, P.E.; Evans, G.; Spelsberg, T.C. )

    1990-07-01

    Periosteal cells were isolated from tibiae of adult male rats after collagenase treatment. Northern blot analysis of total cytoplasmic RNA extracted from the isolated periosteal cells was positive for expression of genes encoding the osteoblast marker proteins osteocalcin (BGP) and pre-pro-alpha 2(I) chain of type 1 precollagen. The isolated periosteal cells were incubated with 1 nM (3H)testosterone (({sup 3}H)T) for up to 240 minutes and the reaction products separated by high-performance liquid chromatography. ({sup 3}H)5 alpha-dihydrotestosterone (({sup 3}H)DHT) was not detected in extracts of periosteal cell incubations. In contrast, ({sup 3}H)DHT was produced in a time-dependent manner by cells from seminal vesicles. These results suggest that testosterone 5 alpha-reductase activity is not expressed by osteoblasts in rat tibial periosteum and that the anabolic effects of androgens in this tissue are not mediated by locally produced DHT.

  5. Pyrithione-based ruthenium complexes as inhibitors of aldo-keto reductase 1C enzymes and anticancer agents.

    PubMed

    Kljun, Jakob; Anko, Maja; Traven, Katja; Sinreih, Maša; Pavlič, Renata; Peršič, Špela; Ude, Žiga; Codina, Elisa Esteve; Stojan, Jure; Lanišnik Rižner, Tea; Turel, Iztok

    2016-08-01

    Four ruthenium complexes of clinically used zinc ionophore pyrithione and its oxygen analog 2-hydroxypyridine N-oxide were prepared and evaluated as inhibitors of enzymes of the aldo-keto reductase subfamily 1C (AKR1C). A kinetic study assisted with docking simulations showed a mixed type of inhibition consisting of a fast reversible and a slow irreversible step in the case of both organometallic compounds 1A and 1B. Both compounds also showed a remarkable selectivity towards AKR1C1 and AKR1C3 which are targets for breast cancer drug design. The organoruthenium complex of ligand pyrithione as well as pyrithione itself also displayed toxicity on the hormone-dependent MCF-7 breast cancer cell line with EC50 values in the low micromolar range. PMID:27357845

  6. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities.

    PubMed

    Akhtar, M Kalim; Turner, Nicholas J; Jones, Patrik R

    2013-01-01

    Aliphatic hydrocarbons such as fatty alcohols and petroleum-derived alkanes have numerous applications in the chemical industry. In recent years, the renewable synthesis of aliphatic hydrocarbons has been made possible by engineering microbes to overaccumulate fatty acids. However, to generate end products with the desired physicochemical properties (e.g., fatty aldehydes, alkanes, and alcohols), further conversion of the fatty acid is necessary. A carboxylic acid reductase (CAR) from Mycobacterium marinum was found to convert a wide range of aliphatic fatty acids (C(6)-C(18)) into corresponding aldehydes. Together with the broad-substrate specificity of an aldehyde reductase or an aldehyde decarbonylase, the catalytic conversion of fatty acids to fatty alcohols (C(8)-C(16)) or fatty alkanes (C(7)-C(15)) was reconstituted in vitro. This concept was applied in vivo, in combination with a chain-length-specific thioesterase, to engineer Escherichia coli BL21(DE3) strains that were capable of synthesizing fatty alcohols and alkanes. A fatty alcohol titer exceeding 350 mg·L(-1) was obtained in minimal media supplemented with glucose. Moreover, by combining the CAR-dependent pathway with an exogenous fatty acid-generating lipase, natural oils (coconut oil, palm oil, and algal oil bodies) were enzymatically converted into fatty alcohols across a broad chain-length range (C(8)-C(18)). Together with complementing enzymes, the broad substrate specificity and kinetic characteristics of CAR opens the road for direct and tailored enzyme-catalyzed conversion of lipids into user-ready chemical commodities. PMID:23248280

  7. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities

    PubMed Central

    Akhtar, M. Kalim; Turner, Nicholas J.; Jones, Patrik R.

    2013-01-01

    Aliphatic hydrocarbons such as fatty alcohols and petroleum-derived alkanes have numerous applications in the chemical industry. In recent years, the renewable synthesis of aliphatic hydrocarbons has been made possible by engineering microbes to overaccumulate fatty acids. However, to generate end products with the desired physicochemical properties (e.g., fatty aldehydes, alkanes, and alcohols), further conversion of the fatty acid is necessary. A carboxylic acid reductase (CAR) from Mycobacterium marinum was found to convert a wide range of aliphatic fatty acids (C6–C18) into corresponding aldehydes. Together with the broad-substrate specificity of an aldehyde reductase or an aldehyde decarbonylase, the catalytic conversion of fatty acids to fatty alcohols (C8–C16) or fatty alkanes (C7–C15) was reconstituted in vitro. This concept was applied in vivo, in combination with a chain-length-specific thioesterase, to engineer Escherichia coli BL21(DE3) strains that were capable of synthesizing fatty alcohols and alkanes. A fatty alcohol titer exceeding 350 mg·L−1 was obtained in minimal media supplemented with glucose. Moreover, by combining the CAR-dependent pathway with an exogenous fatty acid-generating lipase, natural oils (coconut oil, palm oil, and algal oil bodies) were enzymatically converted into fatty alcohols across a broad chain-length range (C8–C18). Together with complementing enzymes, the broad substrate specificity and kinetic characteristics of CAR opens the road for direct and tailored enzyme-catalyzed conversion of lipids into user-ready chemical commodities. PMID:23248280

  8. Functional Inference of Methylenetetrahydrofolate Reductase Gene Polymorphisms on Enzyme Stability as a Potential Risk Factor for Down Syndrome in Croatia

    PubMed Central

    Vraneković, Jadranka; Babić Božović, Ivana; Starčević Čizmarević, Nada; Buretić-Tomljanović, Alena; Ristić, Smiljana; Petrović, Oleg; Kapović, Miljenko; Brajenović-Milić, Bojana

    2010-01-01

    Understanding the biochemical structure and function of the methylenetetrahydrofolate reductase gene (MTHFR) provides new evidence in elucidating the risk of having a child with Down syndrome (DS) in association with two common MTHFR polymorphisms, C677T and A1298C. The aim of this study was to evaluate the risk for DS according to the presence of MTHFR C677T and A1298C polymorphisms as well as the stability of the enzyme configuration. This study included mothers from Croatia with a liveborn DS child (n = 102) or DS pregnancy (n = 9) and mothers with a healthy child (n = 141). MTHFR C677T and A1298C polymorphisms were assessed by PCR-RFLP. Allele/genotype frequencies differences were determined using χ2 test. Odds ratio and the 95% confidence intervals were calculated to evaluate the effects of different alleles/genotypes. No statistically significant differences were found between the frequencies of allele/genotype or genotype combinations of the MTHFR C677T and A1298C polymorphisms in the case and the control groups. Additionally, the observed frequencies of the stable (677CC/1298AA, 677CC/1298AC, 677CC/1298CC) and unstable (677CT/1298AA, 677CT/1298AC, 677TT/1298AA) enzyme configurations were not significantly different. We found no evidence to support the possibility that MTHFR polymorphisms and the stability of the enzyme configurations were associated with risk of having a child with DS in Croatian population. PMID:20592453

  9. The role of enzyme dynamics and tunnelling in catalysing hydride transfer: studies of distal mutants of dihydrofolate reductase

    PubMed Central

    Wang, Lin; Goodey, Nina M; Benkovic, Stephen J; Kohen, Amnon

    2006-01-01

    Residues M42 and G121 of Escherichia coli dihydrofolate reductase (ecDHFR) are on opposite sides of the catalytic centre (15 and 19 Å away from it, respectively). Theoretical studies have suggested that these distal residues might be part of a dynamics network coupled to the reaction catalysed at the active site. The ecDHFR mutant G121V has been extensively studied and appeared to have a significant effect on rate, but only a mild effect on the nature of H-transfer. The present work examines the effect of M42W on the physical nature of the catalysed hydride transfer step. Intrinsic kinetic isotope effects (KIEs), their temperature dependence and activation parameters were studied. The findings presented here are in accordance with the environmentally coupled hydrogen tunnelling. In contrast to the wild-type (WT), fluctuations of the donor–acceptor distance were required, leading to a significant temperature dependence of KIEs and deflated intercepts. A comparison of M42W and G121V to the WT enzyme revealed that the reduced rates, the inflated primary KIEs and their temperature dependences resulted from an imperfect potential surface pre-arrangement relative to the WT enzyme. Apparently, the coupling of the enzyme's dynamics to the reaction coordinate was altered by the mutation, supporting the models in which dynamics of the whole protein is coupled to its catalysed chemistry. PMID:16873118

  10. Ferredoxin-thioredoxin reductase: a catalytically active dithiol group links photoreduced ferredoxin to thioredoxin functional in photosynthetic enzyme regulation

    SciTech Connect

    Droux, M.; Miginiac-Maslow, M.; Jacquot, J.P.; Gadal, P.; Crawford, N.A.; Kosower, N.S.; Buchanan, B.B.

    1987-07-01

    The mechanism by which the ferredoxin-thioredoxin system activates the target enzyme, NADP-malate dehydrogenase, was investigated by analyzing the sulfhydryl status of individual protein components with (/sup 14/C)iodoacetate and monobromobimane. The data indicate that ferredoxin-thioredoxin reductase (FTR)--an iron-sulfur enzyme present in oxygenic photosynthetic organisms--is the first member of a thiol chain that links light to enzyme regulation. FTR possesses a catalytically active dithiol group localized on the 13 kDa (similar) subunit, that occurs in all species investigated and accepts reducing equivalents from photoreduced ferredoxin and transfers them stoichiometrically to the disulfide form of thioredoxin m. The reduced thioredoxin m, in turn, reduces NADP-malate dehydrogenase, thereby converting it from an inactive (S-S) to an active (SH) form. The means by which FTR is able to combine electrons (from photoreduced ferredoxin) with protons (from the medium) to reduce its active disulfide group remains to be determined.

  11. Inhibition of yeast ribonucleotide reductase by Sml1 depends on the allosteric state of the enzyme.

    PubMed

    Misko, Tessianna A; Wijerathna, Sanath R; Radivoyevitch, Tomas; Berdis, Anthony J; Ahmad, Md Faiz; Harris, Michael E; Dealwis, Chris G

    2016-06-01

    Sml1 is an intrinsically disordered protein inhibitor of Saccharomyces cerevisiae ribonucleotide reductase (ScRR1), but its inhibition mechanism is poorly understood. RR reduces ribonucleoside diphosphates to their deoxy forms, and balances the nucleotide pool. Multiple turnover kinetics show that Sml1 inhibition of dGTP/ADP- and ATP/CDP-bound ScRR follows a mixed inhibition mechanism. However, Sml1 cooperatively binds to the ES complex in the dGTP/ADP form, whereas with ATP/CDP, Sml1 binds weakly and noncooperatively. Gel filtration and mutagenesis studies indicate that Sml1 does not alter the oligomerization equilibrium and the CXXC motif is not involved in the inhibition. The data suggest that Sml1 is an allosteric inhibitor. PMID:27155231

  12. Purification of glucose-6-phosphate dehydrogenase and glutathione reductase enzymes from the gill tissue of Lake Van fish and analyzing the effects of some chalcone derivatives on enzyme activities.

    PubMed

    Kuzu, Muslum; Aslan, Abdulselam; Ahmed, Ishtiaq; Comakli, Veysel; Demirdag, Ramazan; Uzun, Naim

    2016-04-01

    Glucose-6-phosphate dehydrogenase (G6PD) and glutathione reductase (GR) are metabolically quite important enzymes. Within this study, these two enzymes were purified for the first time from the gills of Lake Van fish. In the purifying process, ammonium sulfate precipitation and 2',5'-ADP Sepharose 4B affinity column chromatography techniques for glucose-6-phosphate dehydrogenase, temperature degradation and 2',5'-ADP Sepharose 4B affinity column chromatography for glutathione reductase enzyme were used. The control of the enzyme purity and determination of molecular weight were done with sodium dodecyl sulfate polyacrylamide gel electrophoresis. K M and V max values were determined with Lineweaver-Burk plot. Besides, the effects of some chalcone derivatives on the purified enzymes were analyzed. For the ones showing inhibition effect, % activity-[I] figures were drawn and IC50 values were determined. K i value was calculated by using Cheng-Prusoff equation. PMID:26676512

  13. High-resolution structure of the nitrile reductase QueF combined with molecular simulations provide insight into enzyme mechanism.

    SciTech Connect

    Kim, Y.; Zhou, M.; Moy, S.; Morales, J.; Cunningham, M.; Joachimiak, A.; Biosciences Division; Univ. of Texas-Pan American

    2010-01-01

    Here, we report the 1.53-{angstrom} crystal structure of the enzyme 7-cyano-7-deazaguanine reductase (QueF) from Vibrio cholerae, which is responsible for the complete reduction of a nitrile (C {triple_bond} N) bond to a primary amine (H{sub 2}C-NH{sub 2}). At present, this is the only example of a biological pathway that includes reduction of a nitrile bond, establishing QueF as particularly noteworthy. The structure of the QueF monomer resembles two connected ferrodoxin-like domains that assemble into dimers. Ligands identified in the crystal structure suggest the likely binding conformation of the native substrates NADPH and 7-cyano-7-deazaguanine. We also report on a series of numerical simulations that have shed light on the mechanism by which this enzyme affects the transfer of four protons (and electrons) to the 7-cyano-7-deazaguanine substrate. In particular, the simulations suggest that the initial step of the catalytic process is the formation of a covalent adduct with the residue Cys194, in agreement with previous studies. The crystal structure also suggests that two conserved residues (His233 and Asp102) play an important role in the delivery of a fourth proton to the substrate.

  14. Tobacco Nectarin III is a bifunctional enzyme with monodehydroascorbate reductase and carbonic anhydrase activities.

    PubMed

    Carter, Clay J; Thornburg, Robert W

    2004-02-01

    Tobacco plants secrete a limited array of proteins (nectarins) into their floral nectar. N-terminal sequencing of the Nectarin II ( NEC2; 35kD) and the Nectarin III ( NEC3; 40kD) proteins revealed that they both share identity with dioscorin, the major soluble protein of yam tubers. These sequences also revealed that NEC2 is a breakdown product of NEC3. Using these N-terminal peptide sequences, degenerate oligonucleotides were designed that permitted the isolation of a partial NEC3 cDNA. This cDNA was then used to probe a nectary specific cDNA library and a full-length NEC3 cDNA clone was isolated. Complete sequence analysis confirmed the identity of NEC3 as a dioscorin-like protein. MALDI-TOF mass spectrometric fingerprinting of tryptic peptides derived from the purified NEC3 confirmed that this protein was encoded by the isolated cDNA. NEC3 was shown to possess both carbonic anhydrase and monodehydroascorbate reductase activities. RT-PCR based expression analyses demonstrated that NEC3 transcript is expressed throughout nectary development as well as in other floral organs. A proposed function in the maintenance of pH and oxidative balance in nectar is discussed. PMID:15284496

  15. Measuring the Cytochrome c Nitrite Reductase Activity—Practical Considerations on the Enzyme Assays

    PubMed Central

    Silveira, Célia M.; Besson, Stéphane; Moura, Isabel; Moura, José J. G.; Almeida, M. Gabriela

    2010-01-01

    The cytochrome c nitrite reductase (ccNiR) from Desulfovibrio desulfuricans ATCC 27774 is able to reduce nitrite to ammonia in a six-electron transfer reaction. Although extensively characterized from the spectroscopic and structural points-of-view, some of its kinetic aspects are still under explored. In this work the kinetic behaviour of ccNiR has been evaluated in a systematic manner using two different spectrophotometric assays carried out in the presence of different redox mediators and a direct electrochemical approach. Solution assays have proved that the specific activity of ccNiR decreases with the reduction potential of the electronic carriers and ammonium is always the main product of nitrite reduction. The catalytic parameters were discussed on the basis of the mediator reducing power and also taking into account the location of their putative docking sites with ccNiR. Due to the fast kinetics of ccNiR, electron delivering from reduced electron donors is rate-limiting in all spectrophotometric assays, so the estimated kinetic constants are apparent only. Nevertheless, this limitation could be overcome by using a direct electrochemical approach which shows that the binding affinity for nitrite decreases whilst turnover increases with the reductive driving force. PMID:20689707

  16. [Properties of 2,5-diamino-4-oxy-6-ribosylaminopyrimidine-5'- phosphate reductase, a enzyme of the second stage of flavinogenesis in Pichia guilliermondii yeasts].

    PubMed

    Logvinenko, E M; Shavlovskiĭ, G M; Zakal'skiĭ, A E; Kontorovskaia, N Iu

    1989-01-01

    2,5-Diamino-4-oxy-6-ribosylaminopyrimidine-5'-phosphate reductase has been isolated from cells of Pichia guilliermondii and subjected to 20-fold purification by treating extracts with streptomycin sulphate, frationating proteins (NH4)2SO4 at 45-75% of saturation and chromatography on blue sepharose CL-6B. The use of gel filtration through Sephadex G-150 and chromatography on DEAE-cellulose proved to be less effective for the enzyme purification. It has been established that it is 2,5-diamino-4-oxy-6-ribosylaminopyrimidine-5-phosphate but not its dephosphorylated form that is the substrate of the given reductase; Km is equal to 7.10(-5) M. The reaction proceeds in the presence of NADPH or NADH. The enzyme affinity to NADPH (Km = 4.7.10(-5) M) is approximately one order higher than that to NADPH (Km = 5.5.10(-4) M). The enzyme manifests the optimum of action at pH 7.2 and the temperature of 37 degrees C; the molecular weight is 140 kD. EDTA as well as flavins in the concentration of 1.10(-3) M exert no effect on the reductase activity. The enzyme is labile at 4 degrees C and is inactivated in the frozen state at -15 degrees C. The 2.5-diamino-4-oxy-6-ribosylaminopyrimidine-5'-phosphate reductase has been also revealed in Torulopsis candida, Debaryomyces klöckeri, Schwanniomyces occidentalis, Eremothecium ashbyii (flavinogenic species) and Candida utilis. Aspergillus nidulans, Neurospora crassa (nonflavinogenic species). The synthesis of this enzyme contrary to other enzymes of the riboflavin biosynthesis is not regulated in flavinogenic yeast by iron ions. PMID:2511652

  17. Glutathione reductase: Comparison of steady-state and rapid reaction primary kinetic isotope effects exhibited by the yeast, spinach, and Escherichia coli enzymes

    SciTech Connect

    Vanoni, M.A.; Wong, K.K.; Ballou, D.P.; Blanchard, J.S. )

    1990-06-19

    Kinetic parameters for NADPH and NADH have been determined at pH 8.1 for spinach, yeast, and E. coli glutathione reductases. NADPH exhibited low Km values for all enzymes (3-6 microM), while the Km values for NADH were 100 times higher (approximately 400 microM). Under our experimental conditions, the percentage of maximal velocities with NADH versus those measured with NADPH were 18.4, 3.7, and 0.13% for the spinach, yeast, and E. coli enzymes, respectively. Primary deuterium kinetic isotope effects were independent of GSSG concentration between Km and 15Km levels, supporting a ping-pong kinetic mechanism. For each of the three enzymes, NADPH yielded primary deuterium kinetic isotope effects on Vmax only, while NADH exhibited primary deuterium kinetic isotope effects on both V and V/K. The magnitude of DV/KNADH at pH 8.1 is 4.3 for the spinach enzyme, 2.7 for the yeast enzyme, and 1.6 for the E. coli glutathione reductase. The experimentally determined values of TV/KNADH of 7.4, 4.2, and 2.2 for the spinach, yeast, and E. coli glutathione reductases agree well with those calculated from the corresponding DV/KNADH using the Swain-Schaad expression. This suggests that the intrinsic primary kinetic isotope effect on NADH oxidation is fully expressed. In order to confirm this conclusion, single-turnover experiments have been performed. The measured primary deuterium kinetic isotope effects on the enzyme reduction half-reaction using NADH match those measured in the steady state for each of the three glutathione reductases.

  18. Stereospecific capillary electrophoresis assays using pentapeptide substrates for the study of Aspergillus nidulans methionine sulfoxide reductase A and mutant enzymes.

    PubMed

    Zhu, Qingfu; El-Mergawy, Rabab G; Zhou, Yuzhen; Chen, Chunyang; Heinemann, Stefan H; Schönherr, Roland; Robaa, Dina; Sippl, Wolfgang; Scriba, Gerhard K E

    2016-07-01

    Stereospecific capillary electrophoresis-based methods for the analysis of methionine sulfoxide [Met(O)]-containing pentapeptides were developed in order to investigate the reduction of Met(O)-containing peptide substrates by recombinant Aspergillus nidulans methionine sulfoxide reductase A (MsrA) as well as enzymes carrying mutations in position Glu99 and Asp134. The separation of the diastereomers of the N-acetylated, C-terminally 2,4-dinitrophenyl (Dnp)-labeled pentapeptides ac-Lys-Phe-Met(O)-Lys-Lys-Dnp, ac-Lys-Asp-Met(O)-Asn-Lys-Dnp and ac-Lys-Asn-Met(O)-Asp-Lys-Dnp was achieved in 50 mM Tris-HCl buffers containing sulfated β-CD in fused-silica capillaries, while the diastereomer separation of ac-Lys-Asp-Met(O)-Asp-Lys-Dnp was achieved by sulfated β-CD-mediated MEKC. The methods were validated with regard to range, linearity, accuracy, limits of detection and quantitation as well as precision. Subsequently, the substrates were incubated with wild-type MsrA and three mutants in the presence of dithiothreitol as reductant. Wild-type MsrA displayed the highest activity towards all substrates compared to the mutants. Substitution of Glu99 by Gln resulted in the mutant with the lowest activity towards all substrates except for ac-Lys-Asn-Met(O)-Asp-Lys-Dnp, while replacement Asn for Asp134 lead to a higher activity towards ac-Lys-Asp-Met(O)-Asn-Lys-Dnp compared with the Glu99 mutant. The mutant with Glu instead of Asp134 was the most active among the mutant enzymes. Molecular modeling indicated that the conserved Glu99 residue is buried in the Met-S-(O) groove, which might contribute to the correct placing of substrates and, consequently, to the catalytic activity of MsrA, while Asp134 did not form hydrogen bonds with the substrates but only within the enzyme. PMID:27145186

  19. Isotope Effects Associated with N2O Production by Fungal and Bacterial Nitric Oxide Reductases: Implications for Enzyme Mechanisms

    NASA Astrophysics Data System (ADS)

    Hegg, E. L.; Yang, H.; Gandhi, H.; McQuarters, A.; Lehnert, N.; Ostrom, N. E.

    2014-12-01

    Nitrous oxide (N2O) is both a powerful greenhouse gas and a key participant in ozone destruction. Microbial activity accounts for over 70% of the N2O produced annually, and the atmospheric concentration of N2O continues to rise. Because the fungal and bacterial denitrification pathways are major contributors to microbial N2O production, understanding the mechanism by which NO is reduced to N2O will contribute to both N2O source tracing and quantification. Our strategy utilizes stable isotopes to probe the enzymatic mechanism of microbial N2O production. Although the use of stable isotopes to study enzyme mechanisms is not new, our approach is distinct in that we employ both measurements of isotopic preferences of purified enzyme and DFT calculations, thereby providing a synergistic combination of experimental and computational approaches. We analyzed δ18O, δ15Nα (central N atom in N2O), and δ15Nβ (terminal N atom) of N2O produced by purified fungal cytochrome P450 nitric oxide reductase (P450nor) from Histoplasma capsulatum as well as bacterial cytochrome c dependent nitric oxide reductase (cNOR) from Paracoccus denitrificans. P450nor exhibits an inverse kinetic isotope effect for Nβ (KIE = 0.9651) but a normal isotope effect for both Nα (KIE = 1.0127) and the oxygen atom (KIE = 1.0264). These results suggest a mechanism where NO binds to the ferric heme in the P450nor active site and becomes Nβ. Analysis of the NO-binding step indicated a greater difference in zero point energy in the transition state than the ground state, resulting in the inverse KIE observed for Nβ. Following protonation and rearrangement, it is speculated that this complex forms a FeIV-NHOH- species as a key intermediate. Our data are consistent with the second NO (which becomes Nα and O in the N2O product) attacking the FeIV-NHOH- species to generate a FeIII-N2O2H2 complex that enzymatically (as opposed to abiotically) breaks down to release N2O. Conversely, our preliminary data

  20. Dihydroflavonol 4-Reductase Genes Encode Enzymes with Contrasting Substrate Specificity and Show Divergent Gene Expression Profiles in Fragaria Species

    PubMed Central

    Miosic, Silvija; Thill, Jana; Milosevic, Malvina; Gosch, Christian; Pober, Sabrina; Molitor, Christian; Ejaz, Shaghef; Rompel, Annette; Stich, Karl; Halbwirth, Heidi

    2014-01-01

    During fruit ripening, strawberries show distinct changes in the flavonoid classes that accumulate, switching from the formation of flavan 3-ols and flavonols in unripe fruits to the accumulation of anthocyanins in the ripe fruits. In the common garden strawberry (Fragaria×ananassa) this is accompanied by a distinct switch in the pattern of hydroxylation demonstrated by the almost exclusive accumulation of pelargonidin based pigments. In Fragaria vesca the proportion of anthocyanins showing one (pelargonidin) and two (cyanidin) hydroxyl groups within the B-ring is almost equal. We isolated two dihydroflavonol 4-reductase (DFR) cDNA clones from strawberry fruits, which show 82% sequence similarity. The encoded enzymes revealed a high variability in substrate specificity. One enzyme variant did not accept DHK (with one hydroxyl group present in the B-ring), whereas the other strongly preferred DHK as a substrate. This appears to be an uncharacterized DFR variant with novel substrate specificity. Both DFRs were expressed in the receptacle and the achenes of both Fragaria species and the DFR2 expression profile showed a pronounced dependence on fruit development, whereas DFR1 expression remained relatively stable. There were, however, significant differences in their relative rates of expression. The DFR1/DFR2 expression ratio was much higher in the Fragaria×ananassa and enzyme preparations from F.×ananassa receptacles showed higher capability to convert DHK than preparations from F. vesca. Anthocyanin concentrations in the F.×ananassa cultivar were more than twofold higher and the cyanidin:pelargonidin ratio was only 0.05 compared to 0.51 in the F. vesca cultivar. The differences in the fruit colour of the two Fragaria species can be explained by the higher expression of DFR1 in F.×ananassa as compared to F. vesca, a higher enzyme efficiency (Kcat/Km values) of DFR1 combined with the loss of F3’H activity late in fruit development of F.×ananassa. PMID:25393679

  1. Details in the catalytic mechanism of mammalian thioredoxin reductase 1 revealed using point mutations and juglone-coupled enzyme activities.

    PubMed

    Xu, Jianqiang; Cheng, Qing; Arnér, Elias S J

    2016-05-01

    The mammalian selenoprotein thioredoxin reductase 1 (TrxR1) is a key enzyme in redox regulation, antioxidant defense, and cellular growth. TrxR1 can catalyze efficient reduction of juglone (5-hydroxy-1,4-naphthoquinone; walnut toxin) in a reaction which, in contrast to reduction of most other substrates of TrxR1, is not dependent upon an intact selenocysteine (Sec, U) residue of the enzyme. Using a number of TrxR1 mutant variants, we here found that a sole Cys residue at the C-terminal tail of TrxR1 is required for high-efficiency juglone-coupled NADPH oxidase activity of Sec-deficient enzyme, occurring with mixed one- and two-electron reactions producing superoxide. The activity also utilizes the FAD and the N-terminal redox active disulfide/dithiol motif of TrxR1. If a sole Cys residue at the C-terminal tail of TrxR1, in the absence of Sec, was moved further towards the C-terminal end of the protein compared to its natural position at residue 497, juglone reduction was, surprisingly, further increased. Ala substitutions of Trp407, Asn418 and Asn419 in a previously described "guiding bar", thought to mediate interactions of the C-terminal tail of TrxR1 with the FAD/dithiol site at the N-terminal domain of the other subunit in the dimeric enzyme, lowered turnover with juglone about 4.5-fold. Four residues of Sec-deficient TrxR1 were found to be easily arylated by juglone, including the Cys residue at position 497. Based upon our observations we suggest a model for involvement of the juglone-arylated C-terminal motif of TrxR1 to explain its high activity with juglone. This study thus provides novel insights into the catalytic mechanisms of TrxR1. One-electron juglone reduction by TrxR1 producing superoxide should furthermore contribute to the well-known prooxidant cytotoxicity of juglone. PMID:26898501

  2. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aldehyde reductase gene ARI1 is a recently characterized member of intermediate subfamily under SDR (short-chain dehydrogenase/reductase) superfamily that revealed mechanisms of in situ detoxification of furfural and HMF for tolerance of Saccharomyces cerevisiae. Uncharacterized open reading frames ...

  3. Inhibition of Vibrio harveyi bioluminescence by cerulenin: In vivo evidence for covalent modification of the reductase enzyme involved in aldehyde synthesis

    SciTech Connect

    Byers, D.M. ); Meighen, E.A. )

    1989-07-01

    Bacterial bioluminescence is very sensitive to cerulenin, a fungal antibiotic which is known to inhibit fatty acid synthesis. When Vibrio harveyi cells pretreated with cerulenin were incubated with ({sup 3}H)myristic acid in vivo, acylation of the 57-kilodalton reductase subunit of the luminescence-specific fatty acid reductase complex was specifically inhibited. Light emission of wild-type V. harveyi was 20-fold less sensitive to cerulenin at low concentrations (10{mu}g/ml) than that of the dark mutant strain M17, which requires exogenous myristic acid for luminescence because of a defective transferase subunit. The sensitivity of myristic acid-stimulated luminescence in the mutant strain M17 exceeded that of phospholipid synthesis from ({sup 14}C)acetate, whereas uptake and incorporation of exogenous ({sup 14}C)myristic acid into phospholipids was increased by cerulenin. The reductase subunit could be labeled by incubating M17 cells with ({sup 3}H)tetrahydrocerulenin; this labeling was prevented by preincubation with either unlabeled cerulenin or myristic acid. Labeling of the reductase subunit with ({sup 3}H)tetrahydrocerulenin was also noted in an aldehyde-stimulated mutant (A16) but not in wild-type cells or in another aldehyde-stimulated mutant (M42) in which ({sup 3}H)myristoyl turnover at the reductase subunit was found to be defective. These results indicate that (i) cerulenin specifically and covalently inhibits the reductase component of aldehyde synthesis, (ii) this enzyme is partially protected from cerulenin inhibition in the wild-type strain in vivo, and (iii) two dark mutants which exhibit similar luminescence phenotypes (mutants A16 and M42) are blocked at different stages of fatty acid reduction.

  4. [Polymorphism of genes coding for angiotensin I converting enzyme and methylenetetrahydrofolate reductase in patients with ischemic heart disease].

    PubMed

    Goracy, I

    2000-01-01

    Due to its multifarious biological activity the renin-angiotensin system occupies a special position among risk factors of ischemic heart disease. The discovery of I/D polymorphism of the ACE gene led to a better understanding of genetic control of this enzyme. Hyperhomocysteinemia is an independent risk factor of ischemic heart disease. Elevated plasma levels of homocysteine may be due to improper diet (e.g. shortage of folic acid) and/or genetic influence. Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme in the metabolism of homocysteine. The present study was performed in 100 patients (14 women and 86 men, mean age 54.2 +/- 9.2 years) with a history of myocardial infarction. The control group included 100 patients (10 women and 90 men, mean age 52.3 +/- 10 years) without such history. PCR was used to detect I/D ACE and C677T MTHFR polymorphisms. Genomic DNA was isolated from peripheral blood nuclear cells and amplified by PCR with two pairs of primers flanking the polymorphic regions. The restriction enzyme Hinf I was used to identify genotypes of the MTHFR polymorphism. No difference between both groups was found concerning the distribution of I/D ACE genotypes (31% II, 51% ID, 18% DD in the study group; 30% II, 57% ID, 13% DD in the control group; Tab. 1) or the distribution of C677T MTHFR genotypes (46% CC, 45% CT, 9% TT in the study group; 39% CC, 50% CT, 11% TT in the control group; Tab. 2). There was a significant effect of I/D genotype on ACE activity (IU/L) in the study (II = 18.2 +/- 17.9; ID = 33.5 +/- 19.9; DD = 68.9 +/- 21.9) and in the control group (II = 24.2 +/- 18.1; ID = 31.5 +/- 20.9; DD = 51.4 +/- 19.5; Tab. 3). No correlation was confirmed between ACE or MTHFR genotypes and age at infarction or left ventricular mass (Tabs. 4, 5, 6). The results indicate that neither the I/D ACE nor the C677T MTHFR polymorphisms are associated with risk of myocardial infarction in the Polish population. PMID:11712321

  5. The crystal structure of maleylacetate reductase from Rhizobium sp. strain MTP-10005 provides insights into the reaction mechanism of enzymes in its original family.

    PubMed

    Fujii, Tomomi; Sato, Ai; Okamoto, Yuko; Yamauchi, Takae; Kato, Shiro; Yoshida, Masahiro; Oikawa, Tadao; Hata, Yasuo

    2016-08-01

    Maleylacetate reductase plays a crucial role in catabolism of resorcinol by catalyzing the NAD(P)H-dependent reduction of maleylacetate, at a carbon-carbon double bond, to 3-oxoadipate. The crystal structure of maleylacetate reductase from Rhizobium sp. strain MTP-10005, GraC, has been elucidated by the X-ray diffraction method at 1.5 Å resolution. GraC is a homodimer, and each subunit consists of two domains: an N-terminal NADH-binding domain adopting an α/β structure and a C-terminal functional domain adopting an α-helical structure. Such structural features show similarity to those of the two existing families of enzymes in dehydroquinate synthase-like superfamily. However, GraC is distinct in dimer formation and activity expression mechanism from the families of enzymes. Two subunits in GraC have different structures from each other in the present crystal. One subunit has several ligands mimicking NADH and the substrate in the cleft and adopts a closed domain arrangement. In contrast, the other subunit does not contain any ligand causing structural changes and adopts an open domain arrangement. The structure of GraC reveals those of maleylacetate reductase both in the coenzyme, substrate-binding state and in the ligand-free state. The comparison of both subunit structures reveals a conformational change of the Tyr326 loop for interaction with His243 on ligand binding. Structures of related enzymes suggest that His243 is likely a catalytic residue of GraC. Mutational analyses of His243 and Tyr326 support the catalytic roles proposed from structural information. The crystal structure of GraC characterizes the maleylacetate reductase family as a third family in the dehydroquinate synthase-like superfamily. Proteins 2016; 84:1029-1042. © 2016 Wiley Periodicals, Inc. PMID:27040018

  6. Studies of Ribonucleotide Reductase in Crucian Carp—An Oxygen Dependent Enzyme in an Anoxia Tolerant Vertebrate

    PubMed Central

    Sandvik, Guro K.; Tomter, Ane B.; Bergan, Jonas; Zoppellaro, Giorgio; Barra, Anne-Laure; Røhr, Åsmund K.; Kolberg, Matthias; Ellefsen, Stian

    2012-01-01

    The enzyme ribonucleotide reductase (RNR) catalyzes the conversion of ribonucleotides to deoxyribonucleotides, the precursors for DNA. RNR requires a thiyl radical to activate the substrate. In RNR of eukaryotes (class Ia RNR), this radical originates from a tyrosyl radical formed in reaction with oxygen (O2) and a ferrous di-iron center in RNR. The crucian carp (Carassius carassius) is one of very few vertebrates that can tolerate several months completely without oxygen (anoxia), a trait that enables this fish to survive under the ice in small ponds that become anoxic during the winter. Previous studies have found indications of cell division in this fish after 7 days of anoxia. This appears nearly impossible, as DNA synthesis requires the production of new deoxyribonucleotides and therefore active RNR. We have here characterized RNR in crucian carp, to search for adaptations to anoxia. We report the full-length sequences of two paralogs of each of the RNR subunits (R1i, R1ii, R2i, R2ii, p53R2i and p53R2ii), obtained by cloning and sequencing. The mRNA levels of these subunits were measured with quantitative PCR and were generally well maintained in hypoxia and anoxia in heart and brain. We also report maintained or increased mRNA levels of the cell division markers proliferating cell nuclear antigen (PCNA), brain derived neurotrophic factor (BDNF) and Ki67 in anoxic hearts and brains. Electron paramagnetic resonance (EPR) measurements on in vitro expressed crucian carp R2 and p53R2 proteins gave spectra similar to mammalian RNRs, including previously unpublished human and mouse p53R2 EPR spectra. However, the radicals in crucian carp RNR small subunits, especially in the p53R2ii subunit, were very stable at 0°C. A long half-life of the tyrosyl radical during wintertime anoxia could allow for continued cell division in crucian carp. PMID:22916159

  7. Purification and characterization of a furfural reductase (FFR) from Escherichia coli strain LYO1--an enzyme important in the detoxification of furfural during ethanol production.

    PubMed

    Gutiérrez, Tony; Ingram, Lonnie O; Preston, James F

    2006-01-24

    Furfural, an inhibitor of ethanol production from hemicellulose acid hydrolysates, is reductively detoxified to furfuryl alcohol by the ethanologenic bacterium Escherichia coli strain LYO1. Furfural reductase was purified 106-fold from this bacterium to approximately 50% homogeneity. It has a native molecular mass of 135 kDa, determined by gel filtration, and subunit molecular mass of approximately 68 kDa, determined by denaturing gel electrophoresis, indicating the holoenzyme is a dimer of two similar if not identical subunits. The enzyme shows strong activity from pH 4 to 8 (optimum pH 7.0), relatively high temperature tolerance (50-55 degrees C), and an apparent Km and Vmax for furfural of 1.5x10(-4)M and 28.5 micromol/min/mg of protein, respectively. It catalyzes the essentially irreversible reduction of furfural with NADPH, is specific for NADPH as cofactor, and is relatively specific for the reduction of furfural and benzaldehyde; 2-acetylfuran, xylose, and glucose were not reduced, while acetaldehyde was reduced at a rate 25-fold lower than furfural. This is the first description of a furfural reductase which, based upon size and substrate specificity, appears to represent a new type of alcohol-aldehyde oxido-reductase. The conversion of relatively toxic furfural to less toxic furfuryl alcohol suggests a beneficial role for this enzyme in mitigating furfural toxicity encountered during ethanol production from lignocellulosic biomass. PMID:16111779

  8. Radiation inactivation analysis of assimilatory NADH:nitrate reductase. Apparent functional sizes of partial activities associated with intact and proteolytically modified enzyme

    SciTech Connect

    Solomonson, L.P.; McCreery, M.J.; Kay, C.J.; Barber, M.J.

    1987-06-25

    Recently we demonstrated that target sizes for the partial activities of nitrate reductase were considerably smaller than the 100-kDa subunit which corresponded to the target size of the full (physiologic) activity NADH:nitrate reductase. These results suggested that the partial activities resided on functionally independent domains and that radiation inactivation may be due to localized rather than extensive damage to protein structure. The present study extends these observations and addresses several associated questions. Monophasic plots were observed over a wide range of radiation doses, suggesting a single activity component in each case. No apparent differences were observed over a 10-fold range of concentration for each substrate, suggesting that the observed slopes were not due to marked changes in Km values. Apparent target sizes estimated for partial activities associated with native enzyme and with limited proteolysis products of native enzyme suggested that the functional size obtained by radiation inactivation analysis is independent of the size of the polypeptide chain. The presence of free radical scavengers during irradiation reduced the apparent target size of both the physiologic and partial activities by an amount ranging from 24 to 43%, suggesting that a free radical mechanism is at least partially responsible for the inactivation. Immunoblot analysis of nitrate reductase irradiated in the presence of free radical scavengers revealed formation of distinct bands at 90, 75, and 40 kDa with increasing doses of irradiation rather than complete destruction of the polypeptide chain.

  9. Quinone Reductase 2 Is a Catechol Quinone Reductase

    SciTech Connect

    Fu, Yue; Buryanovskyy, Leonid; Zhang, Zhongtao

    2008-09-05

    The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference between quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease.

  10. Structural Studies of Cinnamoyl-CoA Reductase and Cinnamyl-Alcohol Dehydrogenase, Key Enzymes of Monolignol Biosynthesis[C][W

    PubMed Central

    Pan, Haiyun; Zhou, Rui; Louie, Gordon V.; Mühlemann, Joëlle K.; Bomati, Erin K.; Bowman, Marianne E.; Dudareva, Natalia; Dixon, Richard A.; Noel, Joseph P.; Wang, Xiaoqiang

    2014-01-01

    The enzymes cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the two key reduction reactions in the conversion of cinnamic acid derivatives into monolignol building blocks for lignin polymers in plant cell walls. Here, we describe detailed functional and structural analyses of CCRs from Medicago truncatula and Petunia hybrida and of an atypical CAD (CAD2) from M. truncatula. These enzymes are closely related members of the short-chain dehydrogenase/reductase (SDR) superfamily. Our structural studies support a reaction mechanism involving a canonical SDR catalytic triad in both CCR and CAD2 and an important role for an auxiliary cysteine unique to CCR. Site-directed mutants of CAD2 (Phe226Ala and Tyr136Phe) that enlarge the phenolic binding site result in a 4- to 10-fold increase in activity with sinapaldehyde, which in comparison to the smaller coumaraldehyde and coniferaldehyde substrates is disfavored by wild-type CAD2. This finding demonstrates the potential exploitation of rationally engineered forms of CCR and CAD2 for the targeted modification of monolignol composition in transgenic plants. Thermal denaturation measurements and structural comparisons of various liganded and unliganded forms of CCR and CAD2 highlight substantial conformational flexibility of these SDR enzymes, which plays an important role in the establishment of catalytically productive complexes of the enzymes with their NADPH and phenolic substrates. PMID:25217505

  11. Detoxifying Enzymes at the Cross-Roads of Inflammation, Oxidative Stress, and Drug Hypersensitivity: Role of Glutathione Transferase P1-1 and Aldose Reductase

    PubMed Central

    Sánchez-Gómez, Francisco J.; Díez-Dacal, Beatriz; García-Martín, Elena; Agúndez, José A. G.; Pajares, María A.; Pérez-Sala, Dolores

    2016-01-01

    Phase I and II enzymes are involved in the metabolism of endogenous reactive compounds as well as xenobiotics, including toxicants and drugs. Genotyping studies have established several drug metabolizing enzymes as markers for risk of drug hypersensitivity. However, other candidates are emerging that are involved in drug metabolism but also in the generation of danger or costimulatory signals. Enzymes such as aldo-keto reductases (AKR) and glutathione transferases (GST) metabolize prostaglandins and reactive aldehydes with proinflammatory activity, as well as drugs and/or their reactive metabolites. In addition, their metabolic activity can have important consequences for the cellular redox status, and impacts the inflammatory response as well as the balance of inflammatory mediators, which can modulate epigenetic factors and cooperate or interfere with drug-adduct formation. These enzymes are, in turn, targets for covalent modification and regulation by oxidative stress, inflammatory mediators, and drugs. Therefore, they constitute a platform for a complex set of interactions involving drug metabolism, protein haptenation, modulation of the inflammatory response, and/or generation of danger signals with implications in drug hypersensitivity reactions. Moreover, increasing evidence supports their involvement in allergic processes. Here, we will focus on GSTP1-1 and aldose reductase (AKR1B1) and provide a perspective for their involvement in drug hypersensitivity. PMID:27540362

  12. Detoxifying Enzymes at the Cross-Roads of Inflammation, Oxidative Stress, and Drug Hypersensitivity: Role of Glutathione Transferase P1-1 and Aldose Reductase.

    PubMed

    Sánchez-Gómez, Francisco J; Díez-Dacal, Beatriz; García-Martín, Elena; Agúndez, José A G; Pajares, María A; Pérez-Sala, Dolores

    2016-01-01

    Phase I and II enzymes are involved in the metabolism of endogenous reactive compounds as well as xenobiotics, including toxicants and drugs. Genotyping studies have established several drug metabolizing enzymes as markers for risk of drug hypersensitivity. However, other candidates are emerging that are involved in drug metabolism but also in the generation of danger or costimulatory signals. Enzymes such as aldo-keto reductases (AKR) and glutathione transferases (GST) metabolize prostaglandins and reactive aldehydes with proinflammatory activity, as well as drugs and/or their reactive metabolites. In addition, their metabolic activity can have important consequences for the cellular redox status, and impacts the inflammatory response as well as the balance of inflammatory mediators, which can modulate epigenetic factors and cooperate or interfere with drug-adduct formation. These enzymes are, in turn, targets for covalent modification and regulation by oxidative stress, inflammatory mediators, and drugs. Therefore, they constitute a platform for a complex set of interactions involving drug metabolism, protein haptenation, modulation of the inflammatory response, and/or generation of danger signals with implications in drug hypersensitivity reactions. Moreover, increasing evidence supports their involvement in allergic processes. Here, we will focus on GSTP1-1 and aldose reductase (AKR1B1) and provide a perspective for their involvement in drug hypersensitivity. PMID:27540362

  13. Identification and Partial Characterization of a Novel UDP-N-Acetylenolpyruvoylglucosamine Reductase/UDP-N-Acetylmuramate:l-Alanine Ligase Fusion Enzyme from Verrucomicrobium spinosum DSM 4136T

    PubMed Central

    Naqvi, Kubra F.; Patin, Delphine; Wheatley, Matthew S.; Savka, Michael A.; Dobson, Renwick C. J.; Gan, Han Ming; Barreteau, Hélène; Blanot, Didier; Mengin-Lecreulx, Dominique; Hudson, André O.

    2016-01-01

    The enzymes involved in synthesizing the bacterial cell wall are attractive targets for the design of antibacterial compounds, since this pathway is essential for bacteria and is absent in animals, particularly humans. A survey of the genome of a bacterium that belongs to the phylum Verrucomicrobia, the closest free-living relative to bacteria from the Chlamydiales phylum, shows genetic evidence that Verrucomicrobium spinosum possesses a novel fusion open reading frame (ORF) annotated by the locus tag (VspiD_010100018130). The ORF, which is predicted to encode the enzymes UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) and UDP-N-acetylmuramate:l-alanine ligase (MurC) that are involved in the cytoplasmic steps of peptidoglycan biosynthesis, was cloned. In vivo analyses using functional complementation showed that the fusion gene was able to complement Escherichia coli murB and murC temperature sensitive mutants. The purified recombinant fusion enzyme (MurB/CVs) was shown to be endowed with UDP-N-acetylmuramate:l-alanine ligase activity. In vitro analyses demonstrated that the latter enzyme had a pH optimum of 9.0, a magnesium optimum of 10 mM and a temperature optimum of 44–46°C. Its apparent Km values for ATP, UDP-MurNAc, and l-alanine were 470, 90, and 25 μM, respectively. However, all attempts to demonstrate an in vitro UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) activity were unsuccessful. Lastly, Hidden Markov Model-based similarity search and phylogenetic analysis revealed that this fusion enzyme could only be identified in specific lineages within the Verrucomicrobia phylum. PMID:27047475

  14. On the inhibitor effects of bergamot juice flavonoids binding to the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme.

    PubMed

    Leopoldini, Monica; Malaj, Naim; Toscano, Marirosa; Sindona, Giovanni; Russo, Nino

    2010-10-13

    Density functional theory was applied to study the binding mode of new flavonoids as possible inhibitors of the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), an enzyme that catalyzes the four-electron reduction of HMGCoA to mevalonate, the committed step in the biosynthesis of sterols. The investigated flavonoid conjugates brutieridin and melitidin were recently quantified in the bergamot fruit extracts and identified to be structural analogues of statins, lipids concentration lowering drugs that inhibit HMGR. Computations allowed us to perform a detailed analysis of the geometrical and electronic features affecting the binding of these compounds, as well as that of the excellent simvastatin drug, to the active site of the enzyme and to give better insight into the inhibition process. PMID:20843083

  15. A maize gene encoding an NADPH binding enzyme highly homologous to isoflavone reductases is activated in response to sulfur starvation.

    PubMed Central

    Petrucco, S; Bolchi, A; Foroni, C; Percudani, R; Rossi, G L; Ottonello, S

    1996-01-01

    we isolated a novel gene that is selectively induced both in roots and shoots in response to sulfur starvation. This gene encodes a cytosolic, monomeric protein of 33 kD that selectively binds NADPH. The predicted polypeptide is highly homologous ( > 70%) to leguminous isoflavone reductases (IFRs), but the maize protein (IRL for isoflavone reductase-like) belongs to a novel family of proteins present in a variety of plants. Anti-IRL antibodies specifically recognize IFR polypeptides, yet the maize protein is unable to use various isoflavonoids as substrates. IRL expression is correlated closely to glutathione availability: it is persistently induced in seedlings whose glutathione content is about fourfold lower than controls, and it is down-regulated rapidly when control levels of glutathione are restored. This glutathione-dependent regulation indicates that maize IRL may play a crucial role in the establishment of a thiol-independent response to oxidative stress under glutathione shortage conditions. PMID:8597660

  16. Genome-wide Association Mapping Identifies a New Arsenate Reductase Enzyme Critical for Limiting Arsenic Accumulation in Plants

    PubMed Central

    Chao, Dai-Yin; Chen, Yi; Chen, Jiugeng; Shi, Shulin; Chen, Ziru; Wang, Chengcheng; Danku, John M.; Zhao, Fang-Jie; Salt, David E.

    2014-01-01

    Inorganic arsenic is a carcinogen, and its ingestion through foods such as rice presents a significant risk to human health. Plants chemically reduce arsenate to arsenite. Using genome-wide association (GWA) mapping of loci controlling natural variation in arsenic accumulation in Arabidopsis thaliana allowed us to identify the arsenate reductase required for this reduction, which we named High Arsenic Content 1 (HAC1). Complementation verified the identity of HAC1, and expression in Escherichia coli lacking a functional arsenate reductase confirmed the arsenate reductase activity of HAC1. The HAC1 protein accumulates in the epidermis, the outer cell layer of the root, and also in the pericycle cells surrounding the central vascular tissue. Plants lacking HAC1 lose their ability to efflux arsenite from roots, leading to both increased transport of arsenic into the central vascular tissue and on into the shoot. HAC1 therefore functions to reduce arsenate to arsenite in the outer cell layer of the root, facilitating efflux of arsenic as arsenite back into the soil to limit both its accumulation in the root and transport to the shoot. Arsenate reduction by HAC1 in the pericycle may play a role in limiting arsenic loading into the xylem. Loss of HAC1-encoded arsenic reduction leads to a significant increase in arsenic accumulation in shoots, causing an increased sensitivity to arsenate toxicity. We also confirmed the previous observation that the ACR2 arsenate reductase in A. thaliana plays no detectable role in arsenic metabolism. Furthermore, ACR2 does not interact epistatically with HAC1, since arsenic metabolism in the acr2 hac1 double mutant is disrupted in an identical manner to that described for the hac1 single mutant. Our identification of HAC1 and its associated natural variation provides an important new resource for the development of low arsenic-containing food such as rice. PMID:25464340

  17. Gene-specific amplicons from metagenomes as an alternative to directed evolution for enzyme screening: a case study using phenylacetaldehyde reductases.

    PubMed

    Itoh, Nobuya; Kazama, Miki; Takeuchi, Nami; Isotani, Kentaro; Kurokawa, Junji

    2016-06-01

    Screening gene-specific amplicons from metagenomes (S-GAM) is a highly promising technique for the isolation of genes encoding enzymes for biochemical and industrial applications. From metagenomes, we isolated phenylacetaldehyde reductase (par) genes, which code for an enzyme that catalyzes the production of various Prelog's chiral alcohols. Nearly full-length par genes were amplified by PCR from metagenomic DNA, the products of which were fused with engineered par sequences at both terminal regions of the expression vector to ensure proper expression and then used to construct Escherichia coli plasmid libraries. Sequence- and activity-based screening of these libraries identified different homologous par genes, Hpar-001 to -036, which shared more than 97% amino acid sequence identity with PAR. Comparative characterization of these active homologs revealed a wide variety of enzymatic properties including activity, substrate specificity, and thermal stability. Moreover, amino acid substitutions in these genes coincided with those of Sar268 and Har1 genes, which were independently engineered by error-prone PCR to exhibit increased activity in the presence of concentrated 2-propanol. The comparative data from both approaches suggest that sequence information from homologs isolated from metagenomes is quite useful for enzyme engineering. Furthermore, by examining the GAM-based sequence dataset derived from soil metagenomes, we easily found amino acid substitutions that increase the thermal stability of PAR/PAR homologs. Thus, GAM-based approaches can provide not only useful homologous enzymes but also an alternative to directed evolution methodologies. PMID:27419059

  18. Structural and Biochemical Characterizations of Methanoredoxin from Methanosarcina acetivorans, a Glutaredoxin-Like Enzyme with Coenzyme M-Dependent Protein Disulfide Reductase Activity.

    PubMed

    Yenugudhati, Deepa; Prakash, Divya; Kumar, Adepu K; Kumar, R Siva Sai; Yennawar, Neela H; Yennawar, Hemant P; Ferry, James G

    2016-01-19

    Glutaredoxins (GRXs) are thiol-disulfide oxidoreductases abundant in prokaryotes, although little is understood of these enzymes from the domain Archaea. The numerous characterized GRXs from the domain Bacteria utilize a diversity of low-molecular-weight thiols in addition to glutathione as reductants. We report here the biochemical and structural properties of a GRX-like protein named methanoredoxin (MRX) from Methanosarcina acetivorans of the domain Archaea. MRX utilizes coenzyme M (CoMSH) as reductant for insulin disulfide reductase activity, which adds to the diversity of thiol protectants in prokaryotes. Cell-free extracts of M. acetivorans displayed CoMS-SCoM reductase activity that complements the CoMSH-dependent activity of MRX. The crystal structure exhibits a classic thioredoxin-glutaredoxin fold comprising three α-helices surrounding four antiparallel β-sheets. A pocket on the surface contains a CVWC motif, identifying the active site with architecture similar to GRXs. Although it is a monomer in solution, the crystal lattice has four monomers in a dimer of dimers arrangement. A cadmium ion is found within the active site of each monomer. Two such ions stabilize the N-terminal tails and dimer interfaces. Our modeling studies indicate that CoMSH and glutathione (GSH) bind to the active site of MRX similar to the binding of GSH in GRXs, although there are differences in the amino acid composition of the binding motifs. The results, combined with our bioinformatic analyses, show that MRX represents a class of GRX-like enzymes present in a diversity of methane-producing Archaea. PMID:26684934

  19. Anaerobic degradation of nitrilotriacetate (NTA) in a denitrifying bacterium: purification and characterization of the NTA dehydrogenase-nitrate reductase enzyme complex.

    PubMed Central

    Jenal-Wanner, U; Egli, T

    1993-01-01

    The initial step in the anoxic metabolism of nitrilotriacetate (NTA) was investigated in a denitrifying member of the gamma subgroup of the Proteobacteria. In membrane-free cell extracts, the first step of NTA oxidation was catalyzed by a protein complex consisting of two enzymes, NTA dehydrogenase (NTADH) and nitrate reductase (NtR). The products formed were iminodiacetate and glyoxylate. Electrons derived from the oxidation of NTA were transferred to nitrate only via the artificial dye phenazine methosulfate, and nitrate was stoichiometrically reduced to nitrite. NTADH activity could be measured only in the presence of NtrR and vice versa. The NTADH-NtrR enzyme complex was purified and characterized. NTADH and NtrR were both alpha 2 dimers and had molecular weights of 170,000 and 105,000, respectively. NTADH contained covalently bound flavin cofactor, and NtrR contained a type b cytochrome. Optimum NTA-oxidizing activity was achieved at a molar ratio of NTADH to NtrR of approximately 1:1. So far, NTA is the only known substrate for NTADH. This is the first report of a redox enzyme complex catalyzing the oxidation of a substrate and concomitantly reducing nitrate. Images PMID:8250558

  20. Cucurbitacin delta 23-reductase from the fruit of Cucurbita maxima var. Green Hubbard. Physicochemical and fluorescence properties and enzyme-ligand interactions.

    PubMed Central

    Dirr, H W; Schabort, J C; Weitz, C

    1986-01-01

    Cucurbitacin delta 23-reductase from Cucurbita maxima var. Green Hubbard fruit displays an apparent Mr of 32,000, a Stokes radius of 263 nm and a diffusion coefficient of 8.93 X 10(-7) cm2 X s-1. The enzyme appears to possess a homogeneous dimeric quaternary structure with a subunit Mr of 15,000. Two tryptophan and fourteen tyrosine residues per dimer were found. Emission spectral properties of the enzyme and fluorescence quenching by iodide indicate the tryptophan residues to be buried within the protein molecule. In the pH range 5-7, where no conformational changes were detected, protonation of a sterically related ionizable group with a pK of approx. 6.0 markedly influenced the fluorescence of the tryptophan residues. Protein fluorescence quenching was employed to determine the dissociation constants for binding of NADPH (Kd 17 microM), NADP+ (Kd 30 microM) and elaterinide (Kd 227 microM). Fluorescence energy transfer between the tryptophan residues and enzyme-bound NADPH was observed. Images Fig. 1. PMID:3707515

  1. Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato.

    PubMed

    Sawai, Satoru; Ohyama, Kiyoshi; Yasumoto, Shuhei; Seki, Hikaru; Sakuma, Tetsushi; Yamamoto, Takashi; Takebayashi, Yumiko; Kojima, Mikiko; Sakakibara, Hitoshi; Aoki, Toshio; Muranaka, Toshiya; Saito, Kazuki; Umemoto, Naoyuki

    2014-09-01

    Potatoes (Solanum tuberosum) contain α-solanine and α-chaconine, two well-known toxic steroidal glycoalkaloids (SGAs). Sprouts and green tubers accumulate especially high levels of SGAs. Although SGAs were proposed to be biosynthesized from cholesterol, the biosynthetic pathway for plant cholesterol is poorly understood. Here, we identify sterol side chain reductase 2 (SSR2) from potato as a key enzyme in the biosynthesis of cholesterol and related SGAs. Using in vitro enzyme activity assays, we determined that potato SSR2 (St SSR2) reduces desmosterol and cycloartenol to cholesterol and cycloartanol, respectively. These reduction steps are branch points in the biosynthetic pathways between C-24 alkylsterols and cholesterol in potato. Similar enzymatic results were also obtained from tomato SSR2. St SSR2-silenced potatoes or St SSR2-disrupted potato generated by targeted genome editing had significantly lower levels of cholesterol and SGAs without affecting plant growth. Our results suggest that St SSR2 is a promising target gene for breeding potatoes with low SGA levels. PMID:25217510

  2. Sterol Side Chain Reductase 2 Is a Key Enzyme in the Biosynthesis of Cholesterol, the Common Precursor of Toxic Steroidal Glycoalkaloids in Potato[W][OPEN

    PubMed Central

    Sawai, Satoru; Ohyama, Kiyoshi; Yasumoto, Shuhei; Seki, Hikaru; Sakuma, Tetsushi; Yamamoto, Takashi; Takebayashi, Yumiko; Kojima, Mikiko; Sakakibara, Hitoshi; Aoki, Toshio; Muranaka, Toshiya; Saito, Kazuki; Umemoto, Naoyuki

    2014-01-01

    Potatoes (Solanum tuberosum) contain α-solanine and α-chaconine, two well-known toxic steroidal glycoalkaloids (SGAs). Sprouts and green tubers accumulate especially high levels of SGAs. Although SGAs were proposed to be biosynthesized from cholesterol, the biosynthetic pathway for plant cholesterol is poorly understood. Here, we identify sterol side chain reductase 2 (SSR2) from potato as a key enzyme in the biosynthesis of cholesterol and related SGAs. Using in vitro enzyme activity assays, we determined that potato SSR2 (St SSR2) reduces desmosterol and cycloartenol to cholesterol and cycloartanol, respectively. These reduction steps are branch points in the biosynthetic pathways between C-24 alkylsterols and cholesterol in potato. Similar enzymatic results were also obtained from tomato SSR2. St SSR2-silenced potatoes or St SSR2-disrupted potato generated by targeted genome editing had significantly lower levels of cholesterol and SGAs without affecting plant growth. Our results suggest that St SSR2 is a promising target gene for breeding potatoes with low SGA levels. PMID:25217510

  3. Analysis of Novel Soluble Chromate and Uranyl Reductases and Generation of an Improved Enzyme by Directed Evolution

    SciTech Connect

    Barak,Y.; Ackerley, D.; Dodge, C.; Banwari, L.; Alex, C.; Francis, A.; Matin, A.

    2006-01-01

    Most polluted sites contain mixed waste. This is especially true of the U.S. Department of Energy (DOE) waste sites which hold a complex mixture of heavy metals, radionuclides, and organic solvents. In such environments enzymes that can remediate multiple pollutants are advantageous. We report here evolution of an enzyme, ChrR6 (formerly referred to as Y6), which shows a markedly enhanced capacity for remediating two of the most serious and prevalent DOE contaminants, chromate and uranyl. ChrR6 is a soluble enzyme and reduces chromate and uranyl intracellularly. Thus, the reduced product is at least partially sequestered and nucleated, minimizing the chances of reoxidation. Only one amino acid change, Tyr128Asn, was responsible for the observed improvement. We show here that ChrR6 makes Pseudomonas putida and Escherichia coli more efficient agents for bioremediation if the cellular permeability barrier to the metals is decreased.

  4. Cytochrome b5 reductase, a plasma membrane redox enzyme, protects neuronal cells against metabolic and oxidative stress through maintaining redox state and bioenergetics.

    PubMed

    Hyun, Dong-Hoon; Lee, Ga-Hyun

    2015-12-01

    The plasma membrane redox system (PMRS) containing NADH-dependent reductases is known to be involved in the maintenance of redox state and bioenergetics. Neuronal cells are very vulnerable to oxidative stress and altered energy metabolism linked to mitochondrial dysfunction. However, the role of the PMRS in these pathways is far from clear. In this study, in order to investigate how cytochrome b5 reductase (b5R), one of the PM redox enzymes, regulates cellular response under stressed conditions, human neuroblastoma cells transfected with b5R were used for viability and mitochondrial functional assays. Cells transfected with b5R exhibited significantly higher levels of the NAD(+)/NADH ratio, consistent with increased levels of b5R activity. Overexpression of b5R made cells more resistant to H2O2 (oxidative stress), 2-deoxyglucose (metabolic stress), rotenone and antimycin A (energetic stress), and lactacystin (proteotoxic stress), but did not protect cells against H2O2 and serum withdrawal. Overexpression of b5R induced higher mitochondrial functions such as ATP production rate, oxygen consumption rate, and activities of complexes I and II, without formation of further reactive oxygen species, consistent with lower levels of oxidative/nitrative damage and resistance to apoptotic cell death. In conclusion, higher NAD(+)/NADH ratio and consequent more efficient mitochondrial functions are induced by the PMRS, enabling them to maintain redox state and energy metabolism under conditions of some energetic stresses. This suggests that b5R can be a target for therapeutic intervention for aging and neurodegenerative diseases. PMID:26611738

  5. Androstenedione is an important precursor of dihydrotestosterone in the genital skin of women and is metabolized via 5 alpha-androstanedione.

    PubMed

    Stanczyk, F Z; Matteri, R K; Kaufman, F R; Gentzschein, E; Lobo, R A

    1990-09-01

    Androgen action is largely determined by the formation of dihydrotestosterone in target tissues. In women, androstenedione is the major precursor of dihydrotestosterone production in female genital skin. The present study was initiated to determine whether androstenedione is converted to dihydrotestosterone primarily via testosterone or 5 alpha-androstane-3,17-dione (5 alpha-androstanedione), and to examine the pathway of androstenedione metabolism in genital skin. Genital skin was obtained from 9 normal premenopausal women and 2 normal men. Each tissue was incubated with [3H]androstenedione in RPMI-1640 medium for 1 h at 37 degrees C in 95% O2/5% CO2. The metabolites were separated and purified by paper partition and thin-layer chromatography. The conversions of androstenedione to 5 alpha-androstanedione and to androsterone were similar (10.45 +/- 1.46 and 11.04 +/- 2.04%/200 mg tissue), and were approx. 12, 8 and 23 times higher than the conversion of androstenedione to testosterone, dihydrotestosterone and 5 alpha-androstane-3 alpha,17 beta-diol, respectively. The male samples showed a similar pattern of metabolism. These data indicate that 5 alpha-androstanedione is the most important intermediate in the conversion of androstenedione to dihydrotestosterone. The data also confirm the importance of 5 alpha-reductase activity over that of 17 beta-hydroxysteroid oxidoreductase activity in the expression of androgen action in women. PMID:2242346

  6. The membrane topology of vitamin K epoxide reductase is conserved between human isoforms and the bacterial enzyme.

    PubMed

    Cao, Zhenbo; van Lith, Marcel; Mitchell, Lorna J; Pringle, Marie Anne; Inaba, Kenji; Bulleid, Neil J

    2016-04-01

    The membrane topology of vitamin K epoxide reductase (VKOR) is controversial with data supporting both a three transmembrane and a four transmembrane model. The positioning of the transmembrane domains and the loops between these domains is critical if we are to understand the mechanism of vitamin K oxidation and its recycling by members of the thioredoxin family of proteins and the mechanism of action of warfarin, an inhibitor of VKOR. Here we show that both mammalian VKOR isoforms adopt the same topology, with the large loop between transmembrane one and two facing the lumen of the endoplasmic reticulum (ER). We used a redox sensitive green fluorescent protein (GFP) fused to the N- or C-terminus to show that these regions face the cytosol, and introduction of glycosylation sites along with mixed disulfide formation with thioredoxin-like transmembrane protein (TMX) to demonstrate ER localization of the major loop. The topology is identical with the bacterial homologue fromSynechococcussp., for which the structure and mechanism of recycling has been characterized. Our results provide a resolution to the membrane topology controversy and support previous results suggesting a role for members of the ER protein disulfide isomerase (PDI) family in recycling VKOR. PMID:26772871

  7. Androgen replacement and/or 5 alpha reductase inhibitors in aging men.

    PubMed

    Klotz, Laurence H

    2006-02-01

    A case study of a typical 65 year old man with symptoms of both LUTS with established BPH, and andropause, is presented. The case for 5ARI therapy versus androgen replacement therapy is discussed, and the evidence for the use of these drugs in combination is reviewed. PMID:16526981

  8. BIOCHEMICAL AND PHARMACOGENETIC DISSECTION OF HUMAN STEROID 5ALPHA REDUCTASE TYPE II. (R828599)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  9. Biochemical and biophysical characterization of a chimeric TRIM21-TRIM5alpha protein.

    PubMed

    Kar, Alak Kanti; Diaz-Griffero, Felipe; Li, Yuan; Li, Xing; Sodroski, Joseph

    2008-12-01

    The tripartite motif (TRIM) protein, TRIM5alpha, is an endogenous factor in primates that recognizes the capsids of certain retroviruses after virus entry into the host cell. TRIM5alpha promotes premature uncoating of the capsid, thus blocking virus infection. Low levels of expression and tendencies to aggregate have hindered the biochemical, biophysical, and structural characterization of TRIM proteins. Here, a chimeric TRIM5alpha protein (TRIM5(Rh)-21R) with a RING domain derived from TRIM21 was expressed in baculovirus-infected insect cells and purified. Although a fraction of the TRIM5(Rh)-21R protein formed large aggregates, soluble fractions of the protein formed oligomers (mainly dimers), exhibited a protease-resistant core, and contained a high percentage of helical secondary structure. Cross-linking followed by negative staining and electron microscopy suggested a globular structure. The purified TRIM5(Rh)-21R protein displayed E3-ligase activity in vitro and also self-ubiquitylated in the presence of ubiquitin-activating and -conjugating enzymes. The purified TRIM5(Rh)-21R protein specifically associated with human immunodeficiency virus type 1 capsid-like complexes; a deletion within the V1 variable region of the B30.2(SPRY) domain decreased capsid binding. Thus, the TRIM5(Rh)-21R restriction factor can directly recognize retroviral capsid-like complexes in the absence of other mammalian proteins. PMID:18799572

  10. Human brain aldehyde reductases: relationship to succinic semialdehyde reductase and aldose reductase.

    PubMed

    Hoffman, P L; Wermuth, B; von Wartburg, J P

    1980-08-01

    Human brain contains multiple forms of aldehyde-reducing enzymes. One major form (AR3), as previously shown, has properties that indicate its identity with NADPH-dependent aldehyde reductase isolated from brain and other organs of various species; i.e., low molecular weight, use of NADPH as the preferred cofactor, and sensitivity to inhibition by barbiturates. A second form of aldehyde reductase ("SSA reductase") specifically reduces succinic semialdehyde (SSA) to produce gamma-hydroxybutyrate. This enzyme form has a higher molecular weight than AR3, and uses NADH as well as NADPH as cofactor. SSA reductase was not inhibited by pyrazole, oxalate, or barbiturates, and the only effective inhibitor found was the flavonoid quercetine. Although AR3 can also reduce SSA, the relative specificity of SSA reductase may enhance its in vivo role. A third form of human brain aldehyde reductase, AR2, appears to be comparable to aldose reductases characterized in several species, on the basis of its activity pattern with various sugar aldehydes and its response to characteristic inhibitors and activators, as well as kinetic parameters. This enzyme is also the most active in reducing the aldehyde derivatives of biogenic amines. These studies suggest that the various forms of human brain aldehyde reductases may have specific physiological functions. PMID:6778961

  11. The Conserved Lys-95 Charged Residue Cluster Is Critical for the Homodimerization and Enzyme Activity of Human Ribonucleotide Reductase Small Subunit M2*

    PubMed Central

    Chen, Xinhuan; Xu, Zhijian; Zhang, Lingna; Liu, Hongchuan; Liu, Xia; Lou, Meng; Zhu, Lijun; Huang, Bingding; Yang, Cai-Guang; Zhu, Weiliang; Shao, Jimin

    2014-01-01

    Ribonucleotide reductase (RR) catalyzes the reduction of ribonucleotides to deoxyribonucleotides for DNA synthesis. Human RR small subunit M2 exists in a homodimer form. However, the importance of the dimer form to the enzyme and the related mechanism remain unclear. In this study, we tried to identify the interfacial residues that may mediate the assembly of M2 homodimer by computational alanine scanning based on the x-ray crystal structure. Co-immunoprecipitation, size exclusion chromatography, and RR activity assays showed that the K95E mutation in M2 resulted in dimer disassembly and enzyme activity inhibition. In comparison, the charge-exchanging double mutation of K95E and E98K recovered the dimerization and activity. Structural comparisons suggested that a conserved cluster of charged residues, including Lys-95, Glu-98, Glu-105, and Glu-174, at the interface may function as an ionic lock for M2 homodimer. Although the measurements of the radical and iron contents showed that the monomer (the K95E mutant) was capable of generating the diiron and tyrosyl radical cofactor, co-immunoprecipitation and competitive enzyme inhibition assays indicated that the disassembly of M2 dimer reduced its interaction with the large subunit M1. In addition, the immunofluorescent and fusion protein-fluorescent imaging analyses showed that the dissociation of M2 dimer altered its subcellular localization. Finally, the transfection of the wild-type M2 but not the K95E mutant rescued the G1/S phase cell cycle arrest and cell growth inhibition caused by the siRNA knockdown of M2. Thus, the conserved Lys-95 charged residue cluster is critical for human RR M2 homodimerization, which is indispensable to constitute an active holoenzyme and function in cells. PMID:24253041

  12. CDP-6-deoxy-delta 3,4-glucoseen reductase from Yersinia pseudotuberculosis: enzyme purification and characterization of the cloned gene.

    PubMed Central

    Lo, S F; Miller, V P; Lei, Y; Thorson, J S; Liu, H W; Schottel, J L

    1994-01-01

    The 3,6-dideoxyhexoses, usually confined to the cell wall lipopolysaccharide of gram-negative bacteria, are essential to serological specificity and are formed via a complex biosynthetic pathway beginning with CDP-D-hexoses. In particular, the biosynthesis of CDP-ascarylose, one of the naturally occurring 3,6-dideoxyhexoses, consists of five enzymatic steps, with CDP-6-deoxy-delta 3,4-glucoseen reductase (E3) participating as the key enzyme in this catalysis. This enzyme has been previously purified from Yersinia pseudotuberculosis by an unusual procedure (protocol I) including a trypsin digestion step (O. Han, V.P. Miller, and H.-W. Liu, J. Biol. Chem. 265:8033-8041, 1990). However, the cloned gene showed disparity with the expected gene characteristics, and upon expression, the resulting gene product exhibited no E3 activity. These findings strongly suggested that the protein isolated by protocol I may have been misidentified as E3. A reinvestigation of the purification protocol produced a new and improved procedure (protocol II) consisting of DEAE-Sephacel, phenyl-Sepharose, Cibacron blue A, and Sephadex G-100 chromatography, which efficiently yielded a new homogeneous enzyme composed of a single polypeptide with a molecular weight of 39,000. This highly purified protein had a specific activity nearly 8,000-fold higher than that of cell lysates, and more importantly, the corresponding gene (ascD) was found to be part of the ascarylose biosynthetic cluster. Presented are the identification and confirmation of the E3 gene through cloning and overexpression and the culminating purification and unambiguous assignment of homogeneous E3. The nucleotide and translated amino acid sequences of the genuine E3 are also presented. Images PMID:8288541

  13. Structures of reduced and ligand-bound nitric oxide reductase provide insights into functional differences in respiratory enzymes.

    PubMed

    Sato, Nozomi; Ishii, Shoko; Sugimoto, Hiroshi; Hino, Tomoya; Fukumori, Yoshihiro; Sako, Yoshihiko; Shiro, Yoshitsugu; Tosha, Takehiko

    2014-07-01

    Nitric oxide reductase (NOR) catalyzes the generation of nitrous oxide (N2O) via the reductive coupling of two nitric oxide (NO) molecules at a heme/non-heme Fe center. We report herein on the structures of the reduced and ligand-bound forms of cytochrome c-dependent NOR (cNOR) from Pseudomonas aeruginosa at a resolution of 2.3-2.7 Å, to elucidate structure-function relationships in NOR, and compare them to those of cytochrome c oxidase (CCO) that is evolutionarily related to NOR. Comprehensive crystallographic refinement of the CO-bound form of cNOR suggested that a total of four atoms can be accommodated at the binuclear center. Consistent with this, binding of bulky acetaldoxime (CH3-CH=N-OH) to the binuclear center of cNOR was confirmed by the structural analysis. Active site reduction and ligand binding in cNOR induced only ∼0.5 Å increase in the heme/non-heme Fe distance, but no significant structural change in the protein. The highly localized structural change is consistent with the lack of proton-pumping activity in cNOR, because redox-coupled conformational changes are thought to be crucial for proton pumping in CCO. It also permits the rapid decomposition of cytotoxic NO in denitrification. In addition, the shorter heme/non-heme Fe distance even in the bulky ligand-bound form of cNOR (∼4.5 Å) than the heme/Cu distance in CCO (∼5 Å) suggests the ability of NOR to maintain two NO molecules within a short distance in the confined space of the active site, thereby facilitating N-N coupling to produce a hyponitrite intermediate for the generation of N2O. PMID:24338896

  14. Biophysical Characterization of Fluorotyrosine Probes Site-Specifically Incorporated into Enzymes: E. coli Ribonucleotide Reductase As an Example

    PubMed Central

    2016-01-01

    Fluorinated tyrosines (FnY’s, n = 2 and 3) have been site-specifically incorporated into E. coli class Ia ribonucleotide reductase (RNR) using the recently evolved M. jannaschii Y-tRNA synthetase/tRNA pair. Class Ia RNRs require four redox active Y’s, a stable Y radical (Y·) in the β subunit (position 122 in E. coli), and three transiently oxidized Y’s (356 in β and 731 and 730 in α) to initiate the radical-dependent nucleotide reduction process. FnY (3,5; 2,3; 2,3,5; and 2,3,6) incorporation in place of Y122-β and the X-ray structures of each resulting β with a diferric cluster are reported and compared with wt-β2 crystallized under the same conditions. The essential diferric-FnY· cofactor is self-assembled from apo FnY-β2, Fe2+, and O2 to produce ∼1 Y·/β2 and ∼3 Fe3+/β2. The FnY· are stable and active in nucleotide reduction with activities that vary from 5% to 85% that of wt-β2. Each FnY·-β2 has been characterized by 9 and 130 GHz electron paramagnetic resonance and high-field electron nuclear double resonance spectroscopies. The hyperfine interactions associated with the 19F nucleus provide unique signatures of each FnY· that are readily distinguishable from unlabeled Y·’s. The variability of the abiotic FnY pKa’s (6.4 to 7.8) and reduction potentials (−30 to +130 mV relative to Y at pH 7.5) provide probes of enzymatic reactions proposed to involve Y·’s in catalysis and to investigate the importance and identity of hopping Y·’s within redox active proteins proposed to protect them from uncoupled radical chemistry. PMID:27276098

  15. Fatty acyl-CoA reductase

    SciTech Connect

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  16. Genetics Home Reference: sepiapterin reductase deficiency

    MedlinePlus

    ... reductase enzyme. This enzyme is involved in the production of a molecule called tetrahydrobiopterin (also known as ... is responsible for the last step in the production of tetrahydrobiopterin. Tetrahydrobiopterin helps process several building blocks ...

  17. ISOLATION OF THE FIRST NON-PRIMATE TRIM5-ALPHA FROM CATTLE INDICATES THAT TRIM5-ALPHA MEDIATED INNATE IMMUNITY TO RETROVIRAL INFECTION MAY BE WIDESPREAD AMONG MAMMALS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TRIM5-alpha has recently emerged as an important factor influencing species-specific permissivity to retroviral infection in a range of primates including humans. Old World monkey TRIM5-alpha blocks HIV-1 infectivity and human or New World TRIM5-alpha proteins are inactive against HIV-1 but active a...

  18. Flavonoids from the buds of Rosa damascena inhibit the activity of 3-hydroxy-3-methylglutaryl-coenzyme a reductase and angiotensin I-converting enzyme.

    PubMed

    Kwon, Eun-Kyung; Lee, Dae-Young; Lee, Hyungjae; Kim, Dae-Ok; Baek, Nam-In; Kim, Young-Eon; Kim, Hae-Yeong

    2010-01-27

    Rosa damascena has been manufactured as various food products, including tea, in Korea. A new flavonoid glycoside, kaempferol-3-O-beta-D-glucopyranosyl(1-->4)-beta-D-xylopyranoside, named roxyloside A was isolated from the buds of this plant, along with four known compounds, isoquercitrin, afzelin, cyanidin-3-O-beta-glucoside, and quercetin gentiobioside. The chemical structures of these compounds were determined by spectroscopic analyses, including FAB-MS, UV, IR, (1)H and (13)C NMR, DEPT, and 2D NMR (COSY, HSQC, and HMBC). All the isolated compounds except cyanidin-3-O-beta-glucoside exhibited high levels of inhibitory activity against 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase with IC(50) values ranging from 47.1 to 80.6 microM. Cyanidin-3-O-beta-glucoside significantly suppressed angiotensin I-converting enzyme (ACE) activity, with an IC(50) value of 138.8 microM, while the other four compounds were ineffective. These results indicate that R. damascena and its flavonoids may be effective to improve the cardiovascular system. PMID:20038104

  19. Rat peptide methionine sulphoxide reductase: cloning of the cDNA, and down-regulation of gene expression and enzyme activity during aging.

    PubMed Central

    Petropoulos, I; Mary, J; Perichon, M; Friguet, B

    2001-01-01

    Peptide methionine sulphoxide reductase (PMSR, EC 1.8.4.6), the msrA or pmsR gene product, is a ubiquitous enzyme catalysing the reduction of methionine sulphoxide to methionine in proteins. Decreased expression and/or activity of the PMSR with age could explain, at least in part, the accumulation of oxidized protein observed upon aging. To test this hypothesis, the rat pmsR cDNA was cloned and sequenced. The recombinant protein was expressed, its catalytic activity checked with a synthetic substrate and polyclonal antibodies were raised against recombinant PMSR. The expression of the pmsR gene and protein as well as its catalytic activity were then analysed as a function of age in the rat brain and in two organs that express the most PMSR, liver and kidney. It appears that pmsR gene expression decreases with age in liver and kidney as early as 18 months, whereas protein level and protein activity are reduced in the three organs at the very end of the life of the rat (26 months). These results suggest that the down-regulation of PMSR can contribute to the accumulation of oxidized protein that has been associated with the aging process. PMID:11311146

  20. Structure of (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate reductase, the terminal enzyme of the non-mevalonate pathway.

    PubMed

    Rekittke, Ingo; Wiesner, Jochen; Röhrich, Rene; Demmer, Ulrike; Warkentin, Eberhard; Xu, Weiya; Troschke, Kathrin; Hintz, Martin; No, Joo Hwan; Duin, Evert C; Oldfield, Eric; Jomaa, Hassan; Ermler, Ulrich

    2008-12-24

    Molecular evolution has evolved two metabolic routes for isoprenoid biosynthesis: the mevalonate and the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway. The MEP pathway is used by most pathogenic bacteria and some parasitic protozoa (including the malaria parasite, Plasmodium falciparum) as well as by plants, but is not present in animals. The terminal reaction of the MEP pathway is catalyzed by (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) reductase (LytB), an enzyme that converts HMBPP into isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Here, we present the structure of Aquifex aeolicus LytB, at 1.65 A resolution. The protein adopts a cloverleaf or trefoil-like structure with each monomer in the dimer containing three alpha/beta domains surrounding a central [Fe3S4] cluster ligated to Cys13, Cys96, and Cys193. Two highly conserved His (His 42 and His 124) and a totally conserved Glu (Glu126) are located in the same central site and are proposed to be involved in ligand binding and catalysis. Substrate access is proposed to occur from the front-side face of the protein, with the HMBPP diphosphate binding to the two His and the 4OH of HMBPP binding to the fourth iron thought to be present in activated clusters, while Glu126 provides the protons required for IPP/DMAPP formation. PMID:19035630

  1. A new role for an old enzyme: Nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana

    PubMed Central

    Desikan, Radhika; Griffiths, Rachael; Hancock, John; Neill, Steven

    2002-01-01

    The plant hormone abscisic acid (ABA), synthesized in response to water-deficit stress, induces stomatal closure via activation of complex signaling cascades. Recent work has established that nitric oxide (NO) is a key signaling molecule mediating ABA-induced stomatal closure. However, the biosynthetic origin of NO in guard cells has not yet been resolved. Here, we provide pharmacological, physiological, and genetic evidence that NO synthesis in Arabidopsis guard cells is mediated by the enzyme nitrate reductase (NR). Guard cells of wild-type Arabidopsis generate NO in response to treatment with ABA and nitrite, a substrate for NR. Moreover, NR-mediated NO synthesis is required for ABA-induced stomatal closure. However, in the NR double mutant, nia1, nia2 that has diminished NR activity, guard cells do not synthesize NO nor do the stomata close in response to ABA or nitrite, although stomatal opening is still inhibited by ABA. Furthermore, by using the ABA-insensitive (ABI) abi1–1 and abi2–1 mutants, we show that the ABI1 and ABI2 protein phosphatases are downstream of NO in the ABA signal-transduction cascade. These data demonstrate a previously uncharacterized signaling role for NR, that of mediating ABA-induced NO synthesis in Arabidopsis guard cells. PMID:12446847

  2. The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: Utility of renal specific P450 reductase knockout mouse models

    SciTech Connect

    Liu, Senyan; Yao, Yunyi; Lu, Shijun; Aldous, Kenneth; Ding, Xinxin; Mei, Changlin; Gu, Jun

    2013-10-01

    The kidney is a primary target for numerous toxic compounds. Cytochrome P450 enzymes (P450) are responsible for the metabolic activation of various chemical compounds, and in the kidney are predominantly expressed in proximal tubules. The aim of this study was to test the hypothesis that renal proximal tubular P450s are critical for nephrotoxicity caused by chemicals such as chloroform. We developed two new mouse models, one having proximal tubule-specific deletion of the cytochrome P450 reductase (Cpr) gene (the enzyme required for all microsomal P450 activities), designated proximal tubule-Cpr-null (PTCN), and the other having proximal tubule-specific rescue of CPR activity with the global suppression of CPR activity in all extra-proximal tubular tissues, designated extra-proximal tubule-Cpr-low (XPT-CL). The PTCN, XPT-CL, Cpr-low (CL), and wild-type (WT) mice were treated with a single oral dose of chloroform at 200 mg/kg. Blood, liver and kidney samples were obtained at 24 h after the treatment. Renal toxicity was assessed by measuring BUN and creatinine levels, and by pathological examination. The blood and tissue levels of chloroform were determined. The severity of toxicity was less in PTCN and CL mice, compared with that of WT and XPT-CL mice. There were no significant differences in chloroform levels in the blood, liver, or kidney, between PTCN and WT mice, or between XPT-CL and CL mice. These findings indicate that local P450-dependent activities play an important role in the nephrotoxicity induced by chloroform. Our results also demonstrate the usefulness of these novel mouse models for studies of chemical-induced kidney toxicity. - Highlights: • New mouse models were developed with varying P450 activities in the proximal tubule. • These mouse models were treated with chloroform, a nephrotoxicant. • Studies showed the importance of local P450s in chloroform-induced nephrotoxicity.

  3. Identifying the emerging human pathogen Scedosporium prolificans by using a species-specific monoclonal antibody that binds to the melanin biosynthetic enzyme tetrahydroxynaphthalene reductase.

    PubMed

    Thornton, Christopher R; Ryder, Lauren S; Le Cocq, Kate; Soanes, Darren M

    2015-04-01

    The dematiaceous (melanized) fungus Scedosporium prolificans is an emerging and frequently fatal pathogen of immunocompromised humans and which, along with the closely related fungi Pseudallescheria boydii, Scedosporium apiospermum and S. aurantiacum in the Pseudallescheria-Scedosporium complex, is a contributing aetiology to tsunami lung and central nervous system infections in near-drowning victims who have aspirated water laden with spores. At present, the natural habitat of the fungus is largely unknown, and accurate detection methods are needed to identify environmental reservoirs of infectious propagules. In this study, we report the development of a monoclonal antibody (mAb) (CA4) specific to S. prolificans, which does not cross-react with closely related fungi in the Pseudallescheria-Scedosporium complex or with a wide range of mould and yeast species pathogenic to humans. Using genome sequencing of a soil isolate and targeted gene disruption of the CA4 antigen-encoding gene, we show that mAb CA4 binds to the melanin-biosynthetic enzyme tetrahydroxynaphthalene reductase. Enzyme-deficient mutants produce orange-brown or green-brown spore suspensions compared with the black spore suspension of the wild-type strain. Using mAb CA4 and a mAb (HG12) specific to the related fungi P. boydii, P. apiosperma, S. apiospermum and S. aurantiacum, we demonstrate how the mAbs can be used in combination with a semiselective isolation procedure to track these opportunistic pathogens in environmental samples containing mixed populations of human pathogenic fungi. Specificity of mAb CA4 was confirmed by sequencing of the internally transcribed spacer 1 (ITS1)-5.8S-ITS2 rRNA-encoding regions of fungi isolated from estuarine muds. PMID:24684242

  4. VKORC1L1, an Enzyme Rescuing the Vitamin K 2,3-Epoxide Reductase Activity in Some Extrahepatic Tissues during Anticoagulation Therapy*

    PubMed Central

    Hammed, Abdessalem; Matagrin, Benjamin; Spohn, Gabriele; Prouillac, Caroline; Benoit, Etienne; Lattard, Virginie

    2013-01-01

    Vitamin K is involved in the γ-carboxylation of the vitamin K-dependent proteins, and vitamin K epoxide is a by-product of this reaction. Due to the limited intake of vitamin K, its regeneration is necessary and involves vitamin K 2,3-epoxide reductase (VKOR) activity. This activity is known to be supported by VKORC1 protein, but recently a second gene, VKORC1L1, appears to be able to support this activity when the encoded protein is expressed in HEK293T cells. Nevertheless, this protein was described as being responsible for driving the vitamin K-mediated antioxidation pathways. In this paper we precisely analyzed the catalytic properties of VKORC1L1 when expressed in Pichia pastoris and more particularly its susceptibility to vitamin K antagonists. Vitamin K antagonists are also inhibitors of VKORC1L1, but this enzyme appears to be 50-fold more resistant to vitamin K antagonists than VKORC1. The expression of Vkorc1l1 mRNA was observed in all tissues assayed, i.e. in C57BL/6 wild type and VKORC1-deficient mouse liver, lung, and testis and rat liver, lung, brain, kidney, testis, and osteoblastic cells. The characterization of VKOR activity in extrahepatic tissues demonstrated that a part of the VKOR activity, more or less important according to the tissue, may be supported by VKORC1L1 enzyme especially in testis, lung, and osteoblasts. Therefore, the involvement of VKORC1L1 in VKOR activity partly explains the low susceptibility of some extrahepatic tissues to vitamin K antagonists and the lack of effects of vitamin K antagonists on the functionality of the vitamin K-dependent protein produced by extrahepatic tissues such as matrix Gla protein or osteocalcin. PMID:23928358

  5. Purification and Characterization of Glucose 6-Phosphate Dehydrogenase, 6-Phosphogluconate Dehydrogenase, and Glutathione Reductase from Rat Heart and Inhibition Effects of Furosemide, Digoxin, and Dopamine on the Enzymes Activities.

    PubMed

    Adem, Sevki; Ciftci, Mehmet

    2016-06-01

    The present study was aimed to investigate characterization and purification of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glutathione reductase from rat heart and the inhibitory effect of three drugs. The purification of the enzymes was performed using 2',5'-ADP sepharose 4B affinity material. The subunit and the natural molecular weights were analyzed by SDS-PAGE and gel filtration. Biochemical characteristics such as the optimum temperature, pH, stable pH, and salt concentration were examined for each enzyme. Types of product inhibition and Ki values with Km and Vmax values of the substrates and coenzymes were determined. According to the obtained Ki and IC50 values, furosemide, digoxin, and dopamine showed inhibitory effect on the enzyme activities at low millimolar concentrations in vitro conditions. Dopamine inhibited the activity of these enzymes as competitive, whereas furosemide and digoxin inhibited the activity of the enzyme as noncompetitive. PMID:26820767

  6. Glutathione-S-transferase-omega [MMA(V) reductase] knockout mice: Enzyme and arsenic species concentrations in tissues after arsenate administration

    SciTech Connect

    Chowdhury, Uttam K.; Zakharyan, Robert A.; Hernandez, Alba; Avram, Mihaela D.; Kopplin, Michael J.; Aposhian, H. Vasken . E-mail: aposhian@u.arizona.edu

    2006-11-01

    Inorganic arsenic is a human carcinogen to which millions of people are exposed via their naturally contaminated drinking water. Its molecular mechanisms of carcinogenicity have remained an enigma, perhaps because arsenate is biochemically transformed to at least five other arsenic-containing metabolites. In the biotransformation of inorganic arsenic, GSTO1 catalyzes the reduction of arsenate, MMA(V), and DMA(V) to the more toxic + 3 arsenic species. MMA(V) reductase and human (hGSTO1-1) are identical proteins. The hypothesis that GST-Omega knockout mice biotransformed inorganic arsenic differently than wild-type mice has been tested. The livers of male knockout (KO) mice, in which 222 bp of Exon 3 of the GSTO1 gene were eliminated, were analyzed by PCR for mRNA. The level of transcripts of the GSTO1 gene in KO mice was 3.3-fold less than in DBA/1lacJ wild-type (WT) mice. The GSTO2 transcripts were about two-fold less in the KO mouse. When KO and WT mice were injected intramuscularly with Na arsenate (4.16 mg As/kg body weight); tissues removed at 0.5, 1, 2, 4, 8, and 12 h after arsenate injection; and the arsenic species measured by HPLC-ICP-MS, the results indicated that the highest concentration of the recently discovered and very toxic MMA(III), a key biotransformant, was in the kidneys of both KO and WT mice. The highest concentration of DMA(III) was in the urinary bladder tissue for both the KO and WT mice. The MMA(V) reducing activity of the liver cytosol of KO mice was only 20% of that found in wild-type mice. There appears to be another enzyme(s) other than GST-O able to reduce arsenic(V) species but to a lesser extent. This and other studies suggest that each step of the biotransformation of inorganic arsenic has an alternative enzyme to biotransform the arsenic substrate.

  7. Enzyme

    MedlinePlus

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  8. An Innovative Strategy for Dual Inhibitor Design and Its Application in Dual Inhibition of Human Thymidylate Synthase and Dihydrofolate Reductase Enzymes

    PubMed Central

    Arooj, Mahreen; Sakkiah, Sugunadevi; Cao, Guang ping; Lee, Keun Woo

    2013-01-01

    Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS) and human dihydrofolate reductase (hDHFR). These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both active sites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs. PMID:23577115

  9. Nitrite Reductase and Nitric-oxide Synthase Activity of the Mitochondrial Molybdopterin Enzymes mARC1 and mARC2*

    PubMed Central

    Sparacino-Watkins, Courtney E.; Tejero, Jesús; Sun, Bin; Gauthier, Marc C.; Thomas, John; Ragireddy, Venkata; Merchant, Bonnie A.; Wang, Jun; Azarov, Ivan; Basu, Partha; Gladwin, Mark T.

    2014-01-01

    Mitochondrial amidoxime reducing component (mARC) proteins are molybdopterin-containing enzymes of unclear physiological function. Both human isoforms mARC-1 and mARC-2 are able to catalyze the reduction of nitrite when they are in the reduced form. Moreover, our results indicate that mARC can generate nitric oxide (NO) from nitrite when forming an electron transfer chain with NADH, cytochrome b5, and NADH-dependent cytochrome b5 reductase. The rate of NO formation increases almost 3-fold when pH was lowered from 7.5 to 6.5. To determine if nitrite reduction is catalyzed by molybdenum in the active site of mARC-1, we mutated the putative active site cysteine residue (Cys-273), known to coordinate molybdenum binding. NO formation was abolished by the C273A mutation in mARC-1. Supplementation of transformed Escherichia coli with tungsten facilitated the replacement of molybdenum in recombinant mARC-1 and abolished NO formation. Therefore, we conclude that human mARC-1 and mARC-2 are capable of catalyzing reduction of nitrite to NO through reaction with its molybdenum cofactor. Finally, expression of mARC-1 in HEK cells using a lentivirus vector was used to confirm cellular nitrite reduction to NO. A comparison of NO formation profiles between mARC and xanthine oxidase reveals similar Kcat and Vmax values but more sustained NO formation from mARC, possibly because it is not vulnerable to autoinhibition via molybdenum desulfuration. The reduction of nitrite by mARC in the mitochondria may represent a new signaling pathway for NADH-dependent hypoxic NO production. PMID:24500710

  10. Geometric and Electronic Structure of the Mn(IV)Fe(III) Cofactor in Class Ic Ribonucleotide Reductase: Correlation to the Class Ia Binuclear Non-Heme Iron Enzyme

    PubMed Central

    Kwak, Yeonju; Jiang, Wei; Dassama, Laura M.K.; Park, Kiyoung; Bell, Caleb B.; Liu, Lei V.; Wong, Shaun D.; Saito, Makina; Kobayashi, Yasuhiro; Kitao, Shinji; Seto, Makoto; Yoda, Yoshitaka; Alp, E. Ercan; Zhao, Jiyong; Bollinger, J Martin; Krebs, Carsten; Solomon, Edward I.

    2013-01-01

    The class Ic ribonucleotide reductase (RNR) from Chlamydia trachomatis (Ct) utilizes a Mn/Fe hetero-binuclear cofactor, rather than the Fe/Fe cofactor found in the β (R2) subunit of the class Ia enzymes, to react with O2. This reaction produces a stable MnIVFeIII cofactor that initiates a radical, which transfers to the adjacent α (R1) subunit and reacts with the substrate. We have studied the MnIVFeIII cofactor using nuclear resonance vibrational spectroscopy (NRVS) and absorption (Abs) / circular dichroism (CD) / magnetic CD (MCD) / variable temperature, variable field (VTVH) MCD spectroscopies to obtain detailed insight into its geometric/electronic structure and to correlate structure with reactivity; NRVS focuses on the FeIII, whereas MCD reflects the spin-allowed transitions mostly on the MnIV. We have evaluated 18 systematically varied structures. Comparison of the simulated NRVS spectra to the experimental data shows that the cofactor has one carboxylate bridge, with MnIV at the site proximal to Phe127. Abs/CD/MCD/VTVH MCD data exhibit 12 transitions that are assigned as d-d, and oxo and OH− to metal charge transfer (CT) transitions. Assignments are based on MCD/Abs intensity ratios, transition energies, polarizations, and derivative-shaped pseudo-A term CT transitions. Correlating these results with TD-DFT calculations defines the MnIVFeIII cofactor as having a µ-oxo, µ-hydroxo core and a terminal hydroxo ligand on the MnIV. From DFT calculations, the MnIV at site 1 is necessary to tune the redox potential to a value similar to that of the tyrosine radical in class Ia RNR, and the OH− terminal ligand on this MnIV provides a high proton affinity that could gate radical translocation to the α (R1) subunit. PMID:24131208

  11. Environmental enrichment attenuates the age-related decline in the mRNA expression of steroidogenic enzymes and reduces the methylation state of the steroid 5α-reductase type 1 gene in the rat hippocampus.

    PubMed

    Rossetti, María F; Varayoud, Jorgelina; Moreno-Piovano, Guillermo S; Luque, Enrique H; Ramos, Jorge G

    2015-09-01

    We analyzed the effects of aging and environmental enrichment on the mRNA expression and DNA methylation state of steroidogenic enzymes in the hippocampus. The effects of aging were evaluated by comparing young adult (90-day-old) and middle-aged (450-day-old) female Wistar rats. To elucidate the effects of environmental enrichment, a subgroup of middle-aged rats exposed to sensory and social stimulation for 105 days was compared to rats housed under standard laboratory conditions. Aging decreased the transcription of neurosteroidogenic-related genes and increased the promoter methylation state of cytochrome P450 side chain cleavage, 3α-hydroxysteroid dehydrogenase (3α-HSD) and 5α-reductase-1. Exposure of middle-aged rats to environmental enrichment increased mRNA levels of 5α-reductase-1, 3α-HSD and cytochrome P450 17α-hydroxylase/c17,20-lyase and decreased the methylation state of the 5α-reductase-1 gene. Thus, sensory and social stimulation attenuate the age-related decline in the mRNA expression of hippocampal steroidogenic enzymes. Epigenetic mechanisms associated with differential promoter methylation could be involved. PMID:26021641

  12. The enzymes associated with denitrification

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Tomlinson, G. A.

    1988-01-01

    The enzymes involved in the reduction of nitrogenous oxides are thought to be intermediates in denitrification processes. This review examines the roles of nitrate reductase, nitrite reductases, nitric oxide reductase, mechanisms of N-N bond formation, and nitrous oxide reductases.

  13. Characterization of a fatty acyl-CoA reductase from Marinobacter aquaeolei VT8: a bacterial enzyme catalyzing the reduction of fatty acyl-CoA to fatty alcohol.

    PubMed

    Willis, Robert M; Wahlen, Bradley D; Seefeldt, Lance C; Barney, Brett M

    2011-12-01

    Fatty alcohols are of interest as a renewable feedstock to replace petroleum compounds used as fuels, in cosmetics, and in pharmaceuticals. One biological approach to the production of fatty alcohols involves the sequential action of two bacterial enzymes: (i) reduction of a fatty acyl-CoA to the corresponding fatty aldehyde catalyzed by a fatty acyl-CoA reductase, followed by (ii) reduction of the fatty aldehyde to the corresponding fatty alcohol catalyzed by a fatty aldehyde reductase. Here, we identify, purify, and characterize a novel bacterial enzyme from Marinobacter aquaeolei VT8 that catalyzes the reduction of fatty acyl-CoA by four electrons to the corresponding fatty alcohol, eliminating the need for a separate fatty aldehyde reductase. The enzyme is shown to reduce fatty acyl-CoAs ranging from C8:0 to C20:4 to the corresponding fatty alcohols, with the highest rate found for palmitoyl-CoA (C16:0). The dependence of the rate of reduction of palmitoyl-CoA on substrate concentration was cooperative, with an apparent K(m) ~ 4 μM, V(max) ~ 200 nmol NADP(+) min(-1) (mg protein)(-1), and n ~ 3. The enzyme also reduced a range of fatty aldehydes with decanal having the highest activity. The substrate cis-11-hexadecenal was reduced in a cooperative manner with an apparent K(m) of ~50 μM, V(max) of ~8 μmol NADP(+) min(-1) (mg protein)(-1), and n ~ 2. PMID:22035211

  14. Purification of NADPH-dependent dehydroascorbate reductase from rat liver and its identification with 3 alpha-hydroxysteroid dehydrogenase.

    PubMed Central

    Del Bello, B; Maellaro, E; Sugherini, L; Santucci, A; Comporti, M; Casini, A F

    1994-01-01

    Rat liver cytosol has been found to reduce dehydroascorbic acid (DHAA) to ascorbic acid in the presence of NADPH. The enzyme responsible for such activity has been purified by ammonium sulphate fractionation, DEAE-Sepharose, Sephadex G-100 SF and Reactive Red column chromatography, with an overall recovery of 27%. SDS/PAGE of the purified enzyme showed one single protein band with an M(r) of 37,500. A similar value (36,800) was found by gel filtration on a Sephadex G-100 SF column. The results indicate that the enzyme is a homogeneous monomer. The Km for DHAA was 4.6 mM and the Vmax. was 1.55 units/mg of protein; for NADPH Km and Vmax. were 4.3 microM and 1.10 units/mg of protein respectively. The optimum pH was around 6.2. Several typical substrates and inhibitors of the aldo-keto reductase superfamily have been tested. The strong inhibition of DHAA reductase effected by steroidal and non-steroidal anti-inflammatory drugs, together with the ability to reduce 5 alpha-androstane-3,17-dione strongly, suggest the possibility that DHAA reductase corresponds to 3 alpha-hydroxysteroid dehydrogenase. Microsequence analysis performed on the electro-transferred enzyme band shows that the N-terminus is blocked. Internal primary structure data were obtained from CNBr-derived fragments and definitely proved the identity of NADPH-dependent DHAA reductase with 3 alpha-hydroxysteroid dehydrogenase. Images Figure 2 Figure 4 PMID:7998972

  15. A Model for the Active-Site Formation Process in DMSO Reductase Family Molybdenum Enzymes Involving Oxido-Alcoholato and Oxido-Thiolato Molybdenum(VI) Core Structures.

    PubMed

    Sugimoto, Hideki; Sato, Masanori; Asano, Kaori; Suzuki, Takeyuki; Mieda, Kaoru; Ogura, Takashi; Matsumoto, Takashi; Giles, Logan J; Pokhrel, Amrit; Kirk, Martin L; Itoh, Shinobu

    2016-02-15

    New bis(ene-1,2-dithiolato)-oxido-alcoholato molybdenum(VI) and -oxido-thiolato molybdenum(VI) anionic complexes, denoted as [Mo(VI)O(ER)L2](-) (E = O, S; L = dimethoxycarboxylate-1,2-ethylenedithiolate), were obtained from the reaction of the corresponding dioxido-molybdenum(VI) precursor complex with either an alcohol or a thiol in the presence of an organic acid (e.g., 10-camphorsulfonic acid) at low temperature. The [Mo(VI)O(ER)L2](-) complexes were isolated and characterized, and the structure of [Mo(VI)O(OEt)L2](-) was determined by X-ray crystallography. The Mo(VI) center in [Mo(VI)O(OEt)L2](-) exhibits a distorted octahedral geometry with the two ene-1,2-dithiolate ligands being symmetry inequivalent. The computed structure of [Mo(VI)O(SR)L2](-) is essentially identical to that of [Mo(VI)O(OR)L2](-). The electronic structures of the resulting molybdenum(VI) complexes were evaluated using electronic absorption spectroscopy and bonding calculations. The nature of the distorted O(h) geometry in these [Mo(VI)O(EEt)L2](-) complexes results in a lowest unoccupied molecular orbital wave function that possesses strong π* interactions between the Mo(d(xy)) orbital and the cis S(p(z)) orbital localized on one sulfur donor from a single ene-1,2-dithiolate ligand. The presence of a covalent Mo-S(dithiolene) bonding interaction in these monooxido Mo(VI) compounds contributes to their low-energy ligand-to-metal charge transfer transitions. A second important d-p π bonding interaction derives from the ∼180° O(oxo)-Mo-E-C dihedral angle involving the alcoholate and thiolate donors, and this contributes to ancillary ligand contributions to the electronic structure of these species. The formation of [Mo(VI)O(OEt)L2](-) and [Mo(VI)O(SEt)L2](-) from the dioxidomolybdenum(VI) precursor may be regarded as a model for the active-site formation process that occurs in the dimethyl sulfoxide reductase family of pyranopterin molybdenum enzymes. PMID:26816115

  16. Analysis of the apo E/apo C-I, angiotensin converting enzyme and methylenetetrahydrofolate reductase genes as candidates affecting human longevity.

    PubMed

    Galinsky, D; Tysoe, C; Brayne, C E; Easton, D F; Huppert, F A; Dening, T R; Paykel, E S; Rubinsztein, D C

    1997-03-21

    Genetic factors are likely to affect human survival, since twin studies have shown greater concordance for age of death in monozygotic compared to dizygotic twins. Coronary artery disease is an important contributor to premature mortality in the UK. Accordingly, we have chosen genes associated with cardiovascular risk, apo E/apo C-I, angiotensin converting enzyme (ACE) and methylenetetrahydrofolate reductase (MTHFR), as candidates which may affect longevity/survival into old age. An association study was performed by comparing allele and genotype frequencies at polymorphic loci associated with these genes in 182 women and 100 men aged 84 years and older with 100 boys and 100 girls younger than 17 years. MTHFR allele and genotype frequencies were similar in the elderly and young populations. Apo C-I allele and genotype frequencies were significantly different in the elderly women compared to the younger sample (P < 0.05). No difference was observed in the elderly men. At the neighbouring apo E gene, we only observed a difference between genotypes in the elderly women and the young sample; however, this did not retain significance when the genotype frequencies of the young sample were adjusted to values expected from the allele frequencies on the basis of Hardy-Weinberg equilibrium and compared to observed genotypes in elderly men and women. In contrast to previous studies, apo E2 was not overrepresented in the elderly men or women. Thus, the proposition that apo E2, E3 and E4 protein isoforms are themselves functionally associated with increasing risks for early death, may be too simplistic. The I/I ACE was depleted in the elderly males but not the elderly females. Furthermore, significant differences were observed between ACE genotypes in elderly men and elderly women. These data suggest that the penetrance of loci which influence survival may vary according to sex. The depletion of the ACE I/I genotype in elderly men is generally consistent with a previous study

  17. Mutation for Nonsyndromic Mental Retardation in the trans-2-Enoyl-CoA Reductase TER Gene Involved in Fatty Acid Elongation Impairs the Enzyme Activity and Stability, Leading to Change in Sphingolipid Profile*

    PubMed Central

    Abe, Kensuke; Ohno, Yusuke; Sassa, Takayuki; Taguchi, Ryo; Çalışkan, Minal; Ober, Carole; Kihara, Akio

    2013-01-01

    Very long-chain fatty acids (VLCFAs, chain length >C20) exist in tissues throughout the body and are synthesized by repetition of the fatty acid (FA) elongation cycle composed of four successive enzymatic reactions. In mammals, the TER gene is the only gene encoding trans-2-enoyl-CoA reductase, which catalyzes the fourth reaction in the FA elongation cycle. The TER P182L mutation is the pathogenic mutation for nonsyndromic mental retardation. This mutation substitutes a leucine for a proline residue at amino acid 182 in the TER enzyme. Currently, the mechanism by which the TER P182L mutation causes nonsyndromic mental retardation is unknown. To understand the effect of this mutation on the TER enzyme and VLCFA synthesis, we have biochemically characterized the TER P182L mutant enzyme using yeast and mammalian cells transfected with the TER P182L mutant gene and analyzed the FA elongation cycle in the B-lymphoblastoid cell line with the homozygous TER P182L mutation (TERP182L/P182L B-lymphoblastoid cell line). We have found that TER P182L mutant enzyme exhibits reduced trans-2-enoyl-CoA reductase activity and protein stability, thereby impairing VLCFA synthesis and, in turn, altering the sphingolipid profile (i.e. decreased level of C24 sphingomyelin and C24 ceramide) in the TERP182L/P182L B-lymphoblastoid cell line. We have also found that in addition to the TER enzyme-catalyzed fourth reaction, the third reaction in the FA elongation cycle is affected by the TER P182L mutation. These findings provide new insight into the biochemical defects associated with this genetic mutation. PMID:24220030

  18. Evaluation of nitrate reductase activity in Rhizobium japonicum

    SciTech Connect

    Streeter, J.G.; DeVine, P.J.

    1983-08-01

    Nitrate reductase activity was evaluated by four approaches, using four strains of Rhizobium japonicum and 11 chlorate-resistant mutants of the four strains. It was concluded that in vitro assays with bacteria or bacteroids provide the most simple and reliable assessment of the presence or absence of nitrate reductase. Nitrite reductase activity with methyl viologen and dithionite was found, but the enzyme activity does not confound the assay of nitrate reductase. 18 references

  19. Multiple aldehyde reductases of human brain.

    PubMed

    Hoffman, P L; Wermuth, B; von Wartburg, J P

    1980-01-01

    Human brain contains four forms of aldehyde reducing enzymes. One major activity, designated AR3, has properties indicating its identity with the NADPH-dependent aldehyde reductase, EC 1.1.1.2. The other major form of human brain enzyme, AR1, which is also NADPH-dependent, reduces both aldehyde and ketone-containing substrates, including vitamin K3 (menadione) and daunorubicin, a cancer chemotherapeutic agent. This enzyme is very sensitive to inhibition by the flavonoids quercitrin and quercetine, and may be analogous to a daunorubicin reductase previously described in liver of other species. One minor form of human brain aldehyde reductase, AR2, demonstrates substrate specificity and inhibitor sensitivity which suggest its similarity to aldose reductases found in lens and other tissues of many species. This enzyme, which can also use NADH as cofactor to some extent, is the most active in reducing the aldehyde derivatives of the biogenic amines. The fourth human brain enzyme ("SSA reductase") differs from the other forms in its ability to use NADH as well as or better than NADPH as cofactor, and in its molecular weight, which is nearly twice that of the other forms. It is quite specific for succinic semialdehyde (SSA) as substrate, and was found to be significantly inhibited only by quercetine and quercitrin. AR3 can also reduce SSA, and both enzymes may contribute to the production of gamma-hydroxybutyric acid in vivo. These results indicate that the human brain aldehyde reductases can play relatively specific physiologic roles. PMID:7424738

  20. Thioredoxin reductase.

    PubMed

    Mustacich, D; Powis, G

    2000-02-15

    The mammalian thioredoxin reductases (TrxRs) are a family of selenium-containing pyridine nucleotide-disulphide oxidoreductases with mechanistic and sequence identity, including a conserved -Cys-Val-Asn-Val-Gly-Cys- redox catalytic site, to glutathione reductases. TrxRs catalyse the NADPH-dependent reduction of the redox protein thioredoxin (Trx), as well as of other endogenous and exogenous compounds. The broad substrate specificity of mammalian TrxRs is due to a second redox-active site, a C-terminal -Cys-SeCys- (where SeCys is selenocysteine), that is not found in glutathione reductase or Escherichia coli TrxR. There are currently two confirmed forms of mammalian TrxRs, TrxR1 and TrxR2, and it is possible that other forms will be identified. The availability of Se is a key factor determining TrxR activity both in cell culture and in vivo, and the mechanism(s) for the incorporation of Se into TrxRs, as well as the regulation of TrxR activity, have only recently begun to be investigated. The importance of Trx to many aspects of cell function make it likely that TrxRs also play a role in protection against oxidant injury, cell growth and transformation, and the recycling of ascorbate from its oxidized form. Since TrxRs are able to reduce a number of substrates other than Trx, it is likely that additional biological effects will be discovered for TrxR. Furthermore, inhibiting TrxR with drugs may lead to new treatments for human diseases such as cancer, AIDS and autoimmune diseases. PMID:10657232

  1. TRIM5{alpha} association with cytoplasmic bodies is not required for antiretroviral activity

    SciTech Connect

    Song, Byeongwoon; Diaz-Griffero, Felipe; Park, Do Hyun; Rogers, Thomas; Stremlau, Matthew; Sodroski, Joseph . E-mail: joseph_sodroski@dfci.harvard.edu

    2005-12-20

    The tripartite motif (TRIM) protein, TRIM5{alpha}, restricts infection by particular retroviruses. Many TRIM proteins form cytoplasmic bodies of unknown function. We investigated the relationship between cytoplasmic body formation and the structure and antiretroviral activity of TRIM5{alpha}. In addition to diffuse cytoplasmic staining, the TRIM5{alpha} proteins from several primate species were located in cytoplasmic bodies of different sizes; by contrast, TRIM5{alpha} from spider monkeys did not form cytoplasmic bodies. Despite these differences, all of the TRIM5{alpha} proteins exhibited the ability to restrict infection by particular retroviruses. Treatment of cells with geldanamycin, an Hsp90 inhibitor, resulted in disappearance or reduction of the TRIM5{alpha}-associated cytoplasmic bodies, yet exerted little effect on the restriction of retroviral infection. Studies of green fluorescent protein-TRIM5{alpha} fusion proteins indicated that no TRIM5{alpha} domain is specifically required for association with cytoplasmic bodies. Apparently, the formation of cytoplasmic bodies is not required for the antiretroviral activity of TRIM5{alpha}.

  2. Vasodilating effect of norethisterone and its 5 alpha metabolites: a novel nongenomic action.

    PubMed

    Perusquía, Mercedes; Villalón, Carlos M; Navarrete, Erika; García, Gustavo A; Pérez-Palacios, Gregorio; Lemus, Ana E

    2003-08-15

    Estrogens are generally administered in hormone replacement therapy in combination with synthetic progestins. Studies of cardiovascular risk factors in postmenopausal women have shown a variety of responses according to the molecular structure of the progestin used in hormone replacement therapy schemes. The present study sets out to determine the vasoactive effects of norethisterone and its 5alpha-dihydro (5alpha-norethisterone) and -tetrahydro (3alpha,5alpha-norethisterone and 3beta,5alpha-norethisterone) metabolites in isolated precontracted rat thoracic aorta. The addition of norethisterone and 3alpha,5alpha-norethisterone in rat aorta exhibited a potent, concentration-response inhibition of noradrenaline-induced contraction, while 5alpha- and 3beta,5alpha-norethisterone had very little, if any, vasorelaxing effect. Relaxation to norethisterone and 3alpha,5alpha-norethisterone had very rapid time-courses and it was neither affected by the absence of endothelium nor by the inhibitor of nitric oxide synthase, Nomega-nitro-L-arginine methyl ester (L-NAME). The addition of specific anti-androgen, anti-progestin and anti-estrogen compounds and protein synthesis inhibitors did not preclude the vasorelaxing effect of norethisterone and its 3alpha,5alpha-reduced metabolite. The results strongly suggest that these effects are not mediated by nuclear sex steroid hormone receptors. The overall data document a novel nongenomic endothelium-independent vasorelaxing action of a 19-nor synthetic progestin and one of its A-ring-reduced derivatives. PMID:12954372

  3. Zeatin reductase in Phaseolus embryos

    SciTech Connect

    Martin, R.C.; Mok, David, W.S.; Mok, M.C. )

    1989-04-01

    Zeatin was converted to O-xylosylzeatin in embryos of Phaseolus vulgaris . O-xylosyldihydrozeatin was also identified as a zeatin metabolite. Incubation of embryo extracts with {sup 14}C-zeatin and {sup 14}C-O-xylosylzeatin revealed that reduction preceeds the O-xylosylation of zeatin. An enzyme responsible for reducing the N{sup 6}-side chain was isolated and partially purified using ammonium sulfate fractionation and affinity, gel filtration and anion exchange chromatography. The NADPH dependent reductase was zeatin specific and did not recognize cis-zeatin, ribosylzeatin, i{sup 6}Ade or i{sup 6}Ado. Two forms of the reductase could be separated by either gel filtration or anion exchange HPLC. The HMW isozyme (Mr. 55,000) eluted from the anion exchange column later than the LMW isozyme (Mr. 25,000). Interspecific differences in zeatin reductase activity were also detected.

  4. Pulmonary Embolism in a Sarcoidosis Patient Double Heterozygous for Methylenetetrahydrofolate Reductase Gene Polymorphisms and Factor V Leiden and Homozygous for the D-Allele of Angiotensin Converting Enzyme Gene

    PubMed Central

    El-Majzoub, Nadim; Mahfouz, Rami; Kanj, Nadim

    2015-01-01

    Sarcoidosis is a multisystem granulomatous disease of unknown etiology and pathogenesis. It presents in patients younger than 40 years of age. The lungs are the most commonly affected organ. Till the present day, there is no single specific test that will accurately diagnose sarcoidosis; as a result, the diagnosis of sarcoidosis relies on a combination of clinical, radiologic, and histologic findings. Patients with sarcoidosis have been found to have an increased risk of pulmonary embolism compared to the normal population. MTHFR and factor V Leiden mutations have been reported to increase the risk of thrombosis in patients. We hereby present a case of a middle aged man with sarcoidosis who developed a right main pulmonary embolism and was found to be double heterozygous for methylenetetrahydrofolate reductase gene polymorphisms and factor V Leiden and homozygous for the D-allele of the angiotensin converting enzyme gene. PMID:26347783

  5. A Conserved Acidic Motif in the N-Terminal Domain of Nitrate Reductase Is Necessary for the Inactivation of the Enzyme in the Dark by Phosphorylation and 14-3-3 Binding1

    PubMed Central

    Pigaglio, Emmanuelle; Durand, Nathalie; Meyer, Christian

    1999-01-01

    It has previously been shown that the N-terminal domain of tobacco (Nicotiana tabacum) nitrate reductase (NR) is involved in the inactivation of the enzyme by phosphorylation, which occurs in the dark (L. Nussaume, M. Vincentz, C. Meyer, J.P. Boutin, and M. Caboche [1995] Plant Cell 7: 611–621). The activity of a mutant NR protein lacking this N-terminal domain was no longer regulated by light-dark transitions. In this study smaller deletions were performed in the N-terminal domain of tobacco NR that removed protein motifs conserved among higher plant NRs. The resulting truncated NR-coding sequences were then fused to the cauliflower mosaic virus 35S RNA promoter and introduced in NR-deficient mutants of the closely related species Nicotiana plumbaginifolia. We found that the deletion of a conserved stretch of acidic residues led to an active NR protein that was more thermosensitive than the wild-type enzyme, but it was relatively insensitive to the inactivation by phosphorylation in the dark. Therefore, the removal of this acidic stretch seems to have the same effects on NR activation state as the deletion of the N-terminal domain. A hypothetical explanation for these observations is that a specific factor that impedes inactivation remains bound to the truncated enzyme. A synthetic peptide derived from this acidic protein motif was also found to be a good substrate for casein kinase II. PMID:9880364

  6. A novel point mutation in a 3{prime} splice site of the NADH-cytochrome b{sub 5} reductase gene results in immunologically undetectable enzyme and impaired NADH-dependent ascorbate regeneration in cultured fibroblasts of a patient with type II hereditary methemoglobinemia

    SciTech Connect

    Shirabe, Komie; Takeshita, Masazumi; Landi, M.T.

    1995-08-01

    Hereditary methemoglobinemia with generalized deficiency of NADH-cytochrome b{sub 5} reductase (b{sub 5}R) (type II) is a rare disease characterized by severe developmental abnormalities, which often lead to premature death. Although the molecular relationship between the symptoms of this condition and the enzyme deficit are not understood, it is thought that an important cause is the loss of the lipid metabolizing activities of the endoplasmic reticulum-located reductase. However, the functions of the form located on outer mitochondrial membranes have not been considered previously. In this study, we have analyzed the gene of an Italian patient and identified a novel G{r_arrow}T transversion at the splice-acceptor site of the 9th exon, which results in the complete absence of immunologically detectable b{sub 5}R in blood cells and skin fibroblasts. In cultured fibroblasts of the patient, NADH-dependent cytochrome c reductase, ferricyanide reductase, and semidehydroascorbate reductase activities were severely reduced. The latter activity is known to be due to b{sub 5}R located on outer mitochondrial membranes. Thus, our results demonstrate that the reductase in its two membrane locations, endoplasmic reticulum and outer mitochondrial membranes, is the product of the same gene and suggest that a defect in ascorbate regeneration may contribute to the phenotype of hereditary methemoglobinemia of generalized type. 37 refs., 5 figs., 2 tabs.

  7. RNRdb, a curated database of the universal enzyme family ribonucleotide reductase, reveals a high level of misannotation in sequences deposited to Genbank

    PubMed Central

    2009-01-01

    Background Ribonucleotide reductases (RNRs) catalyse the only known de novo pathway for deoxyribonucleotide synthesis, and are therefore essential to DNA-based life. While ribonucleotide reduction has a single evolutionary origin, significant differences between RNRs nevertheless exist, notably in cofactor requirements, subunit composition and allosteric regulation. These differences result in distinct operational constraints (anaerobicity, iron/oxygen dependence and cobalamin dependence), and form the basis for the classification of RNRs into three classes. Description In RNRdb (Ribonucleotide Reductase database), we have collated and curated all known RNR protein sequences with the aim of providing a resource for exploration of RNR diversity and distribution. By comparing expert manual annotations with annotations stored in Genbank, we find that significant inaccuracies exist in larger databases. To our surprise, only 23% of protein sequences included in RNRdb are correctly annotated across the key attributes of class, role and function, with 17% being incorrectly annotated across all three categories. This illustrates the utility of specialist databases for applications where a high degree of annotation accuracy may be important. The database houses information on annotation, distribution and diversity of RNRs, and links to solved RNR structures, and can be searched through a BLAST interface. RNRdb is accessible through a public web interface at http://rnrdb.molbio.su.se. Conclusion RNRdb is a specialist database that provides a reliable annotation and classification resource for RNR proteins, as well as a tool to explore distribution patterns of RNR classes. The recent expansion in available genome sequence data have provided us with a picture of RNR distribution that is more complex than believed only a few years ago; our database indicates that RNRs of all three classes are found across all three cellular domains. Moreover, we find a number of organisms that

  8. Effect of 5alpha-dihydrotestosterone and testosterone on apoptosis in human dermal papilla cells.

    PubMed

    Winiarska, A; Mandt, N; Kamp, H; Hossini, A; Seltmann, H; Zouboulis, C C; Blume-Peytavi, U

    2006-01-01

    Pathogenetic mechanisms in androgenetic alopecia are not yet fully understood; however, it is commonly accepted that androgens like testosterone (T) and 5alpha-dihydrotestosterone (5alpha-DHT) inhibit hair follicle activity with early induction of the catagen. Thus, we investigated the influence of T and 5alpha-DHT on proliferation, cell death and bcl-2/bax expression in cultured dermal papilla cells (DPC) from nonbalding scalp regions of healthy volunteers. T and 5alpha-DHT induced apoptosis in DPC in a dose-dependent and time-related manner; in addition a necrotic effect due to T at 10(-5) M was found. Interestingly, bcl-2 protein expression was decreased in T- and 5alpha-DHT-treated cells, leading to an increase in the bax/bcl-2 ratio. In addition, T and 5alpha-DHT induced proteolytic cleavage of caspase 8 and inhibited proliferation of DPC at 10(-5) M. High concentrations of T and 5alpha-DHT were needed to induce apoptotic effects in DPC. These data suggest that DPC from nonbalding scalp regions do have the capacity to undergo apoptosis, but need a high androgen stimulus. The present study provides an interesting new pathogenetic approach in androgenetic alopecia. PMID:16931898

  9. Safety and Tolerability of the Dual 5-Alpha Reductase Inhibitor Dutasteride in the Treatment of Androgenetic Alopecia

    PubMed Central

    Choi, Gwang Seong; Kim, Joon Hyung; Oh, Shin-Young; Park, Jung-Min; Hong, Ji-Soo; Lee, Yil-Seob

    2016-01-01

    Background After the approval of dutastride for androgenic alopecia (AGA) in 2009, Korean authority required a post-marketing surveillance to obtain further data on its safety profile. Objective The objective was to monitor adverse events (AEs) of dutasteride 0.5 mg in Korean AGA male patients in a clinical practice environment. Methods Open label, multi-center, non-interventional observational study was done from July 2009 to July 2013. AGA subjects (18~41 years of age) with no experience of dutasteride were enrolled. Dosage regimen was recommended according to the prescribing information. The incidences of any AEs, serious adverse events (SAEs), and adverse drug reactions (ADRs) were evaluated. Multiple logistic regression method was used to identify risk factors related to ADRs. Effectiveness was generally evaluated by physicians. Results During study period, 712 subjects were enrolled. The subjects of 29.3±6.0 years old exposed to dutasteride for 204.7±161.5 days. One hundred and ten (15.4%) of subjects reported 138 AEs. Four subjects (0.6%) reported 5 SAEs (right radius fracture, 2 events of chronic follicular tonsillitis, influenza infection, and acute appendicitis). Sixty-six subjects (9.3%) reported 80 ADRs. Most frequent ADRs were libido decreased (9 subjects, 1.3%), dyspepsia (8 subjects, 1.1%), impotence (7 subjects, 1.0%), and fatigue (5 subjects, 0.7%). Other interested ADRs were sexual function abnormality (4 subjects, 0.6%), gynecomastia (2 subjects, 0.3%), and ejaculation disorder (1 subject, 0.1%). Most subjects (78.6%) showed overall improvement after treatment of dutasteride in the effectiveness. Conclusion Dutasteride 0.5 mg is to be well-tolerated in 18 to 41 years old AGA patients in a clinical practice environment. PMID:27489426

  10. The cystathionine-β-synthase domains on the guanosine 5''-monophosphate reductase and inosine 5'-monophosphate dehydrogenase enzymes from Leishmania regulate enzymatic activity in response to guanylate and adenylate nucleotide levels.

    PubMed

    Smith, Sabrina; Boitz, Jan; Chidambaram, Ehzilan Subramanian; Chatterjee, Abhishek; Ait-Tihyaty, Maria; Ullman, Buddy; Jardim, Armando

    2016-06-01

    The Leishmania guanosine 5'-monophosphate reductase (GMPR) and inosine 5'-monophosphate dehydrogenase (IMPDH) are purine metabolic enzymes that function maintaining the cellular adenylate and guanylate nucleotide. Interestingly, both enzymes contain a cystathionine-β-synthase domain (CBS). To investigate this metabolic regulation, the Leishmania GMPR was cloned and shown to be sufficient to complement the guaC (GMPR), but not the guaB (IMPDH), mutation in Escherichia coli. Kinetic studies confirmed that the Leishmania GMPR catalyzed a strict NADPH-dependent reductive deamination of GMP to produce IMP. Addition of GTP or high levels of GMP induced a marked increase in activity without altering the Km values for the substrates. In contrast, the binding of ATP decreased the GMPR activity and increased the GMP Km value 10-fold. These kinetic changes were correlated with changes in the GMPR quaternary structure, induced by the binding of GMP, GTP, or ATP to the GMPR CBS domain. The capacity of these CBS domains to mediate the catalytic activity of the IMPDH and GMPR provides a regulatory mechanism for balancing the intracellular adenylate and guanylate pools. PMID:26853689

  11. TRIM5alpha disrupts the structure of assembled HIV-1 capsid complexes in vitro.

    PubMed

    Black, Lesa R; Aiken, Christopher

    2010-07-01

    The host restriction factor TRIM5alpha provides intrinsic defense against retroviral infections in mammalian cells. TRIM5alpha blocks infection by targeting the viral capsid after entry but prior to completion of reverse transcription, but whether this interaction directly alters the structure of the viral capsid is unknown. A previous study reported that rhesus macaque TRIM5alpha protein stably associates with cylindrical complexes formed by assembly of recombinant HIV-1 CA-NC protein in vitro and that restriction leads to accelerated HIV-1 uncoating in target cells. To gain further insight into the mechanism of TRIM5alpha-dependent restriction, we examined the structural effects of TRIM5 proteins on preassembled CA-NC complexes by electron microscopy. Incubation of assembled complexes with lysate of cells expressing the restrictive rhesus TRIM5alpha protein resulted in marked disruption of the normal cylindrical structure of the complexes. In contrast, incubation with lysate of control cells or cells expressing comparable levels of the nonrestrictive human TRIM5alpha protein had little effect on the complexes. Incubation with lysate of cells expressing the TRIMCyp restriction factor also disrupted the cylinders. The effect of TRIMCyp was prevented by the addition of cyclosporine, which inhibits binding of TRIMCyp to the HIV-1 capsid. Thus, disruption of CA-NC cylinders by TRIM5alpha and TRIMCyp was correlated with the specificity of restriction. Collectively, these results suggest that TRIM5alpha-dependent restriction of HIV-1 infection results from structural perturbation of the viral capsid leading to aberrant HIV-1 uncoating in target cells. PMID:20410272

  12. Temporal changes in the expression of the translocator protein TSPO and the steroidogenic enzyme 5α-reductase in the dorsal spinal cord of animals with neuropathic pain: Effects of progesterone administration.

    PubMed

    Coronel, María F; Sánchez Granel, María L; Raggio, María C; Adler, Natalia S; De Nicola, Alejandro F; Labombarda, Florencia; González, Susana L

    2016-06-15

    Neuropathic pain is a frequent complication of spinal cord injury (SCI), still refractory to conventional treatment. The presence and biological activity of steroidogenic regulatory proteins and enzymes in the spinal cord suggests that neurosteroids locally generated could modulate pain messages. In this study we explored temporal changes in the spinal expression of the 18kDa translocator protein TSPO, the steroidogenic acute regulatory protein (StAr) and the steroidogenic enzyme 5α-reductase (5α-RI/II) in an experimental model of central chronic pain. Male Sprague-Dawley rats were subjected to a SCI and sacrificed at different time points (1, 14 or 28days). The development of mechanical and cold allodynia was assessed. Injured animals showed an early increase in the mRNA levels of TSPO and 5α-RII, whereas in the chronic phase a significant decrease in the expression of 5α-RI and 5α-RII was observed, coinciding with the presence of allodynic behaviors. Furthermore, since we have shown that progesterone (PG) administration may offer a promising perspective in pain modulation, we also evaluated the expression of steroidogenic proteins and enzymes in injured animals receiving daily injections of the steroid. PG-treated did not develop allodynia and showed a marked increase in the mRNA levels of TSPO, StAR, 5α-RI and 5α-RII 28days after injury. Our results suggest that in the acute phase after SCI, the increased expression of TSPO and 5α-RII may represent a protective endogenous response against tissue injury, which is not maintained in the chronic allodynic phase. PG may favor local steroidogenesis and the production of its reduced metabolites, which could contribute to the antiallodynic effects observed after PG treatment. PMID:27150077

  13. Evaluation of plasma enzyme activities using gas chromatography-mass spectrometry based steroid signatures.

    PubMed

    Ha, Young Wan; Moon, Ju-Yeon; Jung, Hyun-Jin; Chung, Bong Chul; Choi, Man Ho

    2009-12-15

    The simultaneous quantification of 65 plasma steroids, including 22 androgens, 15 estrogens, 15 corticoids and 13 progestins, was developed using gas chromatography-mass spectrometry (GC-MS). The extraction efficiency of the catechol estrogens was improved by the addition of l-ascorbic acid in several steps. All steroids, as their trimethylsilyl derivatives, were well separated with good peak shapes within a 50min run. The devised method provided good linearity (correlation coefficient, r(2)>0.993), while the limit of quantification ranged from 0.2 to 2.0ngmL(-1). The precision (% CV) and accuracy (% bias) were 2.0-12.4% and 93.5-109.2%, respectively. The metabolic changes were evaluated by applying this method to plasma samples obtained from 26 healthy male subjects grouped according to the pre- and post-administration of dutasteride, which inhibits 5alpha-reductase isoenzyme types 1 and 2. The levels of three plasma steroids, such as dihydrotestosterone, 5alpha-androstanedione and allotetrahydrocortisol, were decreased significantly after drug administration, while the levels of testosterone and 5beta-androstane-3beta,17alpha-diol were increased. In addition, the ratios of the steroid precursors and their metabolites, which represent the activities of the related enzymes, were z-score transformed for visualization in heat maps generated using supervised hierarchical clustering analysis. These results validated the data transformation because 5alpha-reductase is an indicator for the biological actions of dutasteride. GC-MS base quantitative visualization might be found in the integration with the mining biomarkers in drug evaluations and hormone-dependent diseases. PMID:19939750

  14. Design and synthesis of phosphonoacetic acid (PPA) ester and amide bioisosters of ribofuranosylnucleoside diphosphates as potential ribonucleotide reductase inhibitors and evaluation of their enzyme inhibitory, cytostatic and antiviral activity.

    PubMed

    Manfredini, Stefano; Solaroli, Nicola; Angusti, Angela; Nalin, Federico; Durini, Elisa; Vertuani, Silvia; Pricl, Sabrina; Ferrone, Marco; Spadari, Silvio; Focher, Federico; Verri, Annalisa; De Clercq, Erik; Balzarini, Jan

    2003-07-01

    Continuing our investigations on inhibitors of ribonucleotide reductase (RNR), the crucial enzyme that catalyses the reduction of ribonucleotides to deoxyribonucleotides, we have now prepared and evaluated 5'-phosphonoacetic acid, amide and ester analogues of adenosine, uridine and cytidine with the aim to verify both substrate specificity and contribution to biological activity of diphosphate mimic moieties. A molecular modelling study has been conducted on the RNR R1 subunit, in order to verify the possible interaction of the proposed bioisosteric moieties. The study compounds were finally tested on the recombinant murine RNR showing a degree of inhibition that ranged from 350 microM for the UDP analogue 5'-deoxy-5'-N-(phosphon-acetyl)uridine sodium salt (amide) to 600 microM for the CDP analogue 5'-O-[(diethyl-phosphon)acetyl]cytidine (ester). None of the tested compounds displayed noteworthy cytostatic activity at 100-500 microM concentrations, whereas ADP analogue 5'-N-[(diethyl-phosphon) acetyl]adenosine (amide) and 5'-deoxy-5'-N-(phosphon-acetyl)adenosine sodium salt (amide) showed a moderate inhibitory activity (EC50: 48 microM) against HSV-2 and a modest inhibitory activity (EC50: 110 microM) against HIV-1, respectively. PMID:14582847

  15. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions.

    PubMed

    Shitara, Yoshihisa; Sugiyama, Yuichi

    2006-10-01

    3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) are widely used for the treatment of hypercholesterolemia. Their efficacy in preventing cardiovascular events has been shown by a large number of clinical trials. However, myotoxic side effects, sometimes severe, including myopathy or rhabdomyolysis, are associated with the use of statins. In some cases, such toxicity is associated with pharmacokinetic alterations. In this review, the pharmacokinetic aspects and physicochemical properties of statins are reviewed in order to understand the mechanism governing their pharmacokinetic alterations. Among the statins, simvastatin, lovastatin and atorvastatin are metabolized by cytochrome P450 3A4 (CYP3A4) while fluvastatin is metabolized by CYP2C9. Cerivastatin is subjected to 2 metabolic pathways mediated by CYP2C8 and 3A4. Pravastatin, rosuvastatin and pitavastatin undergo little metabolism. Their plasma clearances are governed by the transporters involved in the hepatic uptake and biliary excretion. Also for other statins, which are orally administered as open acid forms (i.e. fluvastatin, cerivastatin and atorvastatin), hepatic uptake transporter(s) play important roles in their clearances. Based on such information, pharmacokinetic alterations of statins can be predicted following coadministration of other drugs or in patients with lowered activities in drug metabolism and/or transport. We also present a quantitative analysis of the effect of some factors on the pharmacokinetics of statins based on a physiologically based pharmacokinetic model. To avoid a pharmacokinetic alteration, we need to have information about the metabolizing enzyme(s) and transporter(s) involved in the pharmacokinetics of statins and, along with such information, model-based prediction is also useful. PMID:16714062

  16. Variation in Sulfur and Selenium Accumulation Is Controlled by Naturally Occurring Isoforms of the Key Sulfur Assimilation Enzyme ADENOSINE 5′-PHOSPHOSULFATE REDUCTASE2 across the Arabidopsis Species Range1[W][OPEN

    PubMed Central

    Chao, Dai-Yin; Baraniecka, Patrycja; Danku, John; Koprivova, Anna; Lahner, Brett; Luo, Hongbing; Yakubova, Elena; Dilkes, Brian; Kopriva, Stanislav; Salt, David E.

    2014-01-01

    Natural variation allows the investigation of both the fundamental functions of genes and their role in local adaptation. As one of the essential macronutrients, sulfur is vital for plant growth and development and also for crop yield and quality. Selenium and sulfur are assimilated by the same process, and although plants do not require selenium, plant-based selenium is an important source of this essential element for animals. Here, we report the use of linkage mapping in synthetic F2 populations and complementation to investigate the genetic architecture of variation in total leaf sulfur and selenium concentrations in a diverse set of Arabidopsis (Arabidopsis thaliana) accessions. We identify in accessions collected from Sweden and the Czech Republic two variants of the enzyme ADENOSINE 5′-PHOSPHOSULFATE REDUCTASE2 (APR2) with strongly diminished catalytic capacity. APR2 is a key enzyme in both sulfate and selenate reduction, and its reduced activity in the loss-of-function allele apr2-1 and the two Arabidopsis accessions Hodonín and Shahdara leads to a lowering of sulfur flux from sulfate into the reduced sulfur compounds, cysteine and glutathione, and into proteins, concomitant with an increase in the accumulation of sulfate in leaves. We conclude from our observation, and the previously identified weak allele of APR2 from the Shahdara accession collected in Tadjikistan, that the catalytic capacity of APR2 varies by 4 orders of magnitude across the Arabidopsis species range, driving significant differences in sulfur and selenium metabolism. The selective benefit, if any, of this large variation remains to be explored. PMID:25245030

  17. Delta 4-3-oxosteroid 5 beta-reductase deficiency described in identical twins with neonatal hepatitis. A new inborn error in bile acid synthesis.

    PubMed Central

    Setchell, K D; Suchy, F J; Welsh, M B; Zimmer-Nechemias, L; Heubi, J; Balistreri, W F

    1988-01-01

    A new inborn error in bile acid synthesis, manifest in identical infant twins as severe intrahepatic cholestasis, is described involving the delta 4-3-oxosteroid 5 beta-reductase catalyzed conversion of the key intermediates, 7 alpha-hydroxy-4-cholesten-3-one and 7 alpha,12 alpha-dihydroxy-4-cholesten-3-one for chenodeoxycholic and cholic acid synthesis, to the respective 3 alpha-hydroxy-5 beta (H) products. This defect was detected by fast atom bombardment ionization-mass spectrometry from an elevated excretion and predominance of taurine conjugated unsaturated hydroxy-oxo-bile acids. Gas chromatography-mass spectrometry confirmed these to be 7 alpha-hydroxy-3-oxo-4-cholenoic and 7 alpha,12 alpha-dihydroxy-3-oxo-4-cholenoic acids (75-92% of total). Fasting serum bile acid concentrations were greater than 37 mumol/liter; chenodeoxycholic acid was the major bile acid, but significant amounts of allo(5 alpha-H)-bile acids (approximately 30%) were present. Biliary bile acid concentration was less than 2 mumol/liter and consisted of chenodeoxycholic, allo-chenodeoxycholic, and allo-cholic acids. These biochemical findings, which were identical in both infants, indicate a defect in bile acid synthesis involving the conversion of the delta 4-3-oxo-C27 intermediates into the corresponding 3 alpha-hydroxy-5 beta(H)-structures, a reaction that is catalyzed by a delta 4-3-oxosteroid-5 beta reductase enzyme. This defect resulted in markedly reduced primary bile acid synthesis and concomitant accumulation of delta 4-3-oxo-and allo-bile acids. These findings indicate a pathway in bile acid synthesis whereby side chain oxidation can occur despite incomplete alterations to the steroid nucleus, and lend support for an active delta 4-3-oxosteroid 5 alpha-reductase catalyzing the conversion of the delta 4-3-oxosteroid intermediates to the respective 3 alpha-hydroxy-5 alpha(H)-structures. PMID:3198770

  18. Promiscuity and diversity in 3-ketosteroid reductases.

    PubMed

    Penning, Trevor M; Chen, Mo; Jin, Yi

    2015-07-01

    Many steroid hormones contain a Δ(4)-3-ketosteroid functionality that undergoes sequential reduction by 5α- or 5β- steroid reductases to produce 5α- or 5β-dihydrosteroids; and a subsequent 3-keto-reduction to produce a series of isomeric tetrahydrosteroids. Apart from steroid 5α-reductase all the remaining enzymes involved in the two step reduction process in humans belong to the aldo-keto reductase (AKR) superfamily. The enzymes involved in 3-ketosteroid reduction are AKR1C1-AKR1C4. These enzymes are promiscuous and also catalyze 20-keto- and 17-keto-steroid reduction. Interest in these reactions exist since they regulate steroid hormone metabolism in the liver, and in steroid target tissues, they may regulate steroid hormone receptor occupancy. In addition many of the dihydrosteroids are not biologically inert. The same enzymes are also involved in the metabolism of synthetic steroids e.g., hormone replacement therapeutics, contraceptive agents and inhaled glucocorticoids, and may regulate drug efficacy at their cognate receptors. This article reviews these reactions and the structural basis for substrate diversity in AKR1C1-AKR1C4, ketosteroid reductases. This article is part of a Special Issue entitled 'Steroid/Sterol signaling'. PMID:25500069

  19. Promiscuity and diversity in 3-ketosteroid reductases

    PubMed Central

    Penning, Trevor M.; Chen, Mo; Jin, Yi

    2014-01-01

    Many steroid hormones contain a Δ4-3-ketosteroid functionality that undergoes sequential reduction by 5α- or 5β- steroid reductases to produce 5α- or 5β-dihydrosteroids; and a subsequent 3-keto-reduction to produce a series of isomeric tetrahydrosteroids. Apart from steroid 5α-reductase all the remaining enzymes involved in the two step reduction process in humans belong to the aldo-keto reductase (AKR) superfamily. The enzymes involved in 3-ketosteroid reduction are AKR1C1–AKR1C4. These enzymes are promiscuous and also catalyze 20-keto- and 17-keto-steroid reduction. Interest in these reactions exist since they regulate steroid hormone metabolism in the liver, and in steroid target tissues, they may regulate steroid hormone receptor occupancy. In addition many of the dihydrosteroids are not biologically inert. The same enzymes are also involved in the metabolism of synthetic steroids e.g., hormone replacement therapeutics, contraceptive agents and inhaled glucocorticoids, and may regulate drug efficacy at their cognate receptors. This article reviews these reactions and the structural basis for substrate diversity in AKR1C1–AKR1C4, ketosteroid reductases. This article is part of a Special Issue entitled ‘Steroid/Sterol signaling’. PMID:25500069

  20. Structural and mechanistic insights on nitrate reductases.

    PubMed

    Coelho, Catarina; Romão, Maria João

    2015-12-01

    Nitrate reductases (NR) belong to the DMSO reductase family of Mo-containing enzymes and perform key roles in the metabolism of the nitrogen cycle, reducing nitrate to nitrite. Due to variable cell location, structure and function, they have been divided into periplasmic (Nap), cytoplasmic, and membrane-bound (Nar) nitrate reductases. The first crystal structure obtained for a NR was that of the monomeric NapA from Desulfovibrio desulfuricans in 1999. Since then several new crystal structures were solved providing novel insights that led to the revision of the commonly accepted reaction mechanism for periplasmic nitrate reductases. The two crystal structures available for the NarGHI protein are from the same organism (Escherichia coli) and the combination with electrochemical and spectroscopic studies also lead to the proposal of a reaction mechanism for this group of enzymes. Here we present an overview on the current advances in structural and functional aspects of bacterial nitrate reductases, focusing on the mechanistic implications drawn from the crystallographic data. PMID:26362109

  1. Purification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae.

    PubMed Central

    Kuhn, A; van Zyl, C; van Tonder, A; Prior, B A

    1995-01-01

    A cytosolic aldo-keto reductase was purified from Saccharomyces cerevisiae ATCC 26602 to homogeneity by affinity chromatography, chromatofocusing, and hydroxylapatite chromatography. The relative molecular weights of the aldo-keto reductase as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and size exclusion chromatography were 36,800 and 35,000, respectively, indicating that the enzyme is monomeric. Amino acid composition and N-terminal sequence analysis revealed that the enzyme is closely related to the aldose reductases of xylose-fermenting yeasts and mammalian tissues. The enzyme was apparently immunologically unrelated to the aldose reductases of other xylose-fermenting yeasts. The aldo-keto reductase is NADPH specific and catalyzes the reduction of a variety of aldehydes. The best substrate for the enzyme is the aromatic aldehyde p-nitrobenzaldehyde (Km = 46 microM; kcat/Km = 52,100 s-1 M-1), whereas among the aldoses, DL-glyceraldehyde was the preferred substrate (Km = 1.44 mM; kcat/Km = 1,790 s-1 M-1). The enzyme failed to catalyze the reduction of menadione and p-benzoquinone, substrates for carbonyl reductase. The enzyme was inhibited only slightly by 2 mM sodium valproate and was activated by pyridoxal 5'-phosphate. The optimum pH of the enzyme is 5. These data indicate that the S. cerevisiae aldo-keto reductase is a monomeric NADPH-specific reductase with strong similarities to the aldose reductases. PMID:7747971

  2. Increased accumulation of the cardio-cerebrovascular disease treatment drug tanshinone in Salvia miltiorrhiza hairy roots by the enzymes 3-hydroxy-3-methylglutaryl CoA reductase and 1-deoxy-D-xylulose 5-phosphate reductoisomerase.

    PubMed

    Shi, Min; Luo, Xiuqin; Ju, Guanhua; Yu, Xiaohong; Hao, Xiaolong; Huang, Qiang; Xiao, Jianbo; Cui, Lijie; Kai, Guoyin

    2014-09-01

    Tanshinone is widely used for treatment of cardio-cerebrovascular diseases with increasing demand. Herein, key enzyme genes SmHMGR (3-hydroxy-3-methylglutaryl CoA reductase) and SmDXR (1-deoxy-D-xylulose 5-phosphate reductoisomerase) involved in the tanshinone biosynthetic pathway were introduced into Salvia miltiorrhiza (Sm) hairy roots to enhance tanshinone production. Over-expression of SmHMGR or SmDXR in hairy root lines can significantly enhance the yield of tanshinone. Transgenic hairy root lines co-expressing HMGR and DXR (HD lines) produced evidently higher levels of total tanshinone (TT) compared with the control and single gene transformed lines. The highest tanshinone production was observed in HD42 with the concentration of 3.25 mg g(-1) DW. Furthermore, the transgenic hairy roots showed higher antioxidant activity than control. In addition, transgenic hairy root harboring HMGR and DXR (HD42) exhibited higher tanshinone content after elicitation by yeast extract and/or Ag(+) than before. Tanshinone can be significantly enhanced to 5.858, 6.716, and 4.426 mg g(-1) DW by YE, Ag(+), and YE-Ag(+) treatment compared with non-induced HD42, respectively. The content of cryptotanshinone and dihydrotanshinone was effectively elevated upon elicitor treatments, whereas there was no obvious promotion effect for the other two compounds tanshinone I and tanshinone IIA. Our results provide a useful strategy to improve tanshinone content as well as other natural active products by combination of genetic engineering with elicitors. PMID:24913677

  3. Application of Osmotic Pumps for Sustained Release of 1-Aminobenzotriazole and Inhibition of Cytochrome P450 Enzymes in Mice: Model Comparison with the Hepatic P450 Reductase Null Mouse.

    PubMed

    Stringer, Rowan A; Ferreira, Suzie; Rose, Jonathan; Ronseaux, Sebastien

    2016-08-01

    The effectiveness of controlled release 1-aminobenzotriazole (ABT) administration to inhibit cytochrome P450 (P450) enzymes has been evaluated in mice. To maximize the duration of P450 inhibition in vivo, ABT was administered via an osmotic pump. The degree of P450 inhibition was compared with that achieved with a single bolus dose of ABT. Two-hour prior subcutaneous treatment of mice with ABT (50 mg/kg) inhibited antipyrine clearance by 88%. A less pronounced inhibitory effect (29% reduction in clearance) was observed when ABT was administered 24-hours before antipyrine administration, indicating partial restoration of P450 activity during this longer pretreatment time. The duration of ABT in mice was very short (mean residence time = 1.7 hours) after subcutaneous bolus administration. When the inhibitor was delivered by an osmotic pump, maximum blood concentrations of the inhibitor were observed 24 hours after device implantation and were maintained at steady state for 6 days. Inhibition of P450 activity, as measured by antipyrine clearance, was confirmed at 24 hours and 120 hours after pump implantation, highlighting the utility of this method as a longer-term model for P450 inhibition in mice. The magnitude of P450 inhibition in ABT-treated mice was compared with that in hepatic P450 reductase null mice and both models were comparable. In vivo ABT administration by an osmotic pump offers an effective approach for longer-term P450 inhibition in mice and avoids the necessity for multiple dosing of the inhibitor. PMID:27271368

  4. Taxol biosynthesis: differential transformations of taxadien-5 alpha-ol and its acetate ester by cytochrome P450 hydroxylases from Taxus suspension cells.

    PubMed

    Wheeler, A L; Long, R M; Ketchum, R E; Rithner, C D; Williams, R M; Croteau, R

    2001-06-15

    The biosynthesis of the diterpenoid antineoplastic drug Taxol in Taxus species involves the cyclization of the ubiquitous isoprenoid intermediate geranylgeranyl diphosphate to taxa-4(5),11(12)-diene followed by cytochrome P450-mediated hydroxylation (with allylic rearrangement) of this olefin precursor to taxa-4(20),11(12)-dien-5 alpha-ol, and further oxygenation and acylation reactions. Based on the abundances of naturally occurring taxoids, the subsequent order of oxygenation of the taxane core is considered to occur at C10, then C2 and C9, followed by C13, and finally C7 and C1. Circumstantial evidence suggests that the acetylation of taxadien-5 alpha-ol may constitute the third specific step of Taxol biosynthesis. To determine whether taxadienol or the corresponding acetate ester serves as the direct precursor of subsequent oxygenation reactions, microsomal preparations isolated from induced Taxus cells and optimized for cytochrome P450 catalysis were incubated with each potential substrate. Both taxadienol and taxadienyl acetate were oxygenated to the level of a diol and to higher polyols at comparable rates by cytochrome P450 enzymes of the microsomal preparation. Preparative-scale incubation allowed the isolation of sufficient quantities of the diol derived from taxadienol to permit the NMR-based structural elucidation of this metabolite as taxa-4(20),11(12)-dien-5 alpha,13 alpha-diol, which may represent an alternate route of taxoid metabolism in induced cells. GC-MS-based structural definition of the diol monoacetate derived in microsomes from taxadienyl acetate confirmed this metabolite as taxa-4(20),11(12)-dien-5 alpha-acetoxy-10 beta-ol, thereby indicating that acetylation at C5 of taxadienol precedes the cytochrome P450-mediated insertion of the C10-beta-hydroxyl group of Taxol. PMID:11396929

  5. Characterization of erythrose reductases from filamentous fungi.

    PubMed

    Jovanović, Birgit; Mach, Robert L; Mach-Aigner, Astrid R

    2013-01-01

    Proteins with putative erythrose reductase activity have been identified in the filamentous fungi Trichoderma reesei, Aspergillus niger, and Fusarium graminearum by in silico analysis. The proteins found in T. reesei and A. niger had earlier been characterized as glycerol dehydrogenase and aldehyde reductase, respectively. Corresponding genes from all three fungi were cloned, heterologously expressed in Escherichia coli, and purified. Subsequently, they were used to establish optimal enzyme assay conditions. All three enzymes strictly require NADPH as cofactor, whereas with NADH no activity could be observed. The enzymatic characterization of the three enzymes using ten substrates revealed high substrate specificity and activity with D-erythrose and D-threose. The enzymes from T. reesei and A. niger herein showed comparable activities, whereas the one from F. graminearum reached only about a tenth of it for all tested substrates. In order to proof in vivo the proposed enzyme function, we overexpressed the erythrose reductase-encoding gene in T. reesei. An increased production of erythritol by the recombinant strain compared to the parental strain could be detected. PMID:23924507

  6. Dihydropteridine reductase from Escherichia coli.

    PubMed Central

    Vasudevan, S G; Shaw, D C; Armarego, W L

    1988-01-01

    A dihydropteridine reductase from Escherichia coli was purified to apparent homogeneity. It is a dimeric enzyme with identical subunits (Mr 27000) and a free N-terminal group. It can use NADH (Vmax./Km 3.36 s-1) and NADPH (Vmax./Km 1.07 s-1) when 6-methyldihydro-(6H)-pterin is the second substrate, as well as quinonoid dihydro-(6H)-biopterin (Vmax./Km 0.69 s-1), dihydro-(6H)-neopterin (Vmax./Km 0.58 s-1), dihydro-(6H)-monapterin 0.66 s-1), 6-methyldihydro-(6H)-pterin and cis-6,7-dimethyldihydro-(6H)-pterin (Vmax./Km 0.66 s-1) when NADH is the second substrate. The pure reductase has a yellow colour and contains bound FAD. The enzyme also has pterin-independent NADH and NADPH oxidoreductase activities when potassium ferricyanide is the electron acceptor. Images Fig. 2. PMID:3060113

  7. Analytical properties of some commercially available nitrate reductase enzymes evaluated as replacements for cadmium in automated, semiautomated, and manual colorimetric methods for determination of nitrate plus nitrite in water

    USGS Publications Warehouse

    Patton, Charles J.; Kryskalla, Jennifer R.

    2013-01-01

    A multiyear research effort at the U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) evaluated several commercially available nitrate reductase (NaR) enzymes as replacements for toxic cadmium in longstanding automated colorimetric air-segmented continuous-flow analyzer (CFA) methods for determining nitrate plus nitrite (NOx) in water. This research culminated in USGS approved standard- and low-level enzymatic reduction, colorimetric automated discrete analyzer NOx methods that have been in routine operation at the NWQL since October 2011. The enzyme used in these methods (AtNaR2) is a product of recombinant expression of NaR from Arabidopsis thaliana (L.) Heynh. (mouseear cress) in the yeast Pichia pastoris. Because the scope of the validation report for these new automated discrete analyzer methods, published as U.S. Geological Survey Techniques and Methods 5–B8, was limited to performance benchmarks and operational details, extensive foundational research with different enzymes—primarily YNaR1, a product of recombinant expression of NaR from Pichia angusta in the yeast Pichia pastoris—remained unpublished until now. This report documents research and development at the NWQL that was foundational to development and validation of the discrete analyzer methods. It includes: (1) details of instrumentation used to acquire kinetics data for several NaR enzymes in the presence and absence of known or suspected inhibitors in relation to reaction temperature and reaction pH; and (2) validation results—method detection limits, precision and bias estimates, spike recoveries, and interference studies—for standard- and low-level automated colorimetric CFA-YNaR1 reduction NOx methods in relation to corresponding USGS approved CFA cadmium-reduction (CdR) NOx methods. The cornerstone of this validation is paired sample statistical and graphical analysis of NOx concentrations from more than 3,800 geographically and seasonally diverse surface

  8. Sterol biosynthesis: strong inhibition of maize delta 5,7-sterol delta 7-reductase by novel 6-aza-B-homosteroids and other analogs of a presumptive carbocationic intermediate of the reduction reaction.

    PubMed

    Rahier, A; Taton, M

    1996-06-01

    A series of mono- and diazasteroids have been synthesized as analogs of a predicted carbocationic intermediate of delta 5,7-sterol delta 7-reductase (delta 7-SR). 6-Aza-B-homo-5 alpha-cholest-7-en-3 beta-ol (4), a novel compound whose synthesis is described for the first time, and 6,7-diaza-5 alpha-cholest-8(14)-en-3 beta-ol (6) were shown to be very powerful inhibitors of delta 7-SR in a preparation isolated from maize (Zea mays) (K(i),app = 50-70 nM, Ki,app/Km,app = 1.0 x 10(-4) to 1.3 x 10(-4). The data are consistent with a carbonium ion mechanism for the reduction; compounds 4 and 6 probably act as reaction intermediate analogs. Compound 4, in contrast to compound 6, displayed in the same microsomal preparation more than 50-fold selectivity for inhibition of the delta 7-SR versus delta 8-delta 7-sterol isomerase, cycloeucalenol isomerase, and delta 8,14-sterol delta 14-reductase, the mechanism of these four enzymes involving presumptive cationic intermediates centered respectively at C7, C8, C9, and C14. These observations highlight the paramount importance of the location of the positively charged nitrogen atom(s) in the B-ring structure for selectivity among these enzymes involving structurally close cationic reaction intermediates. Efficient in vivo inhibition of sterol biosynthesis in bramble cell suspension cultures by a low concentration of compound 4 was demonstrated and confirmed the in vitro properties of this derivative.) PMID:8679532

  9. Purification and characterization of assimilatory nitrite reductase from Candida utilis.

    PubMed Central

    Sengupta, S; Shaila, M S; Rao, G R

    1996-01-01

    Nitrate assimilation in many plants, algae, yeasts and bacteria is mediated by two enzymes, nitrate reductase (EC 1.6.6.2) and nitrite reductase (EC 1.7.7.1). They catalyse the stepwise reduction of nitrate to nitrite and nitrite to ammonia respectively. The nitrite reductase from an industrially important yeast, Candida utilis, has been purified to homogeneity. Purified nitrite reductase is a heterodimer and the molecular masses of the two subunits are 58 and 66 kDa. The native enzyme exhibits a molecular mass of 126 kDa as analysed by gel filtration. The identify of the two subunits of nitrite reductase was confirmed by immunoblotting using antibody for Cucurbita pepo leaf nitrite reductase. The presence of two different sized transcripts coding for the two subunits was confirmed by (a) in vitro translation of mRNA from nitrate-induced C. utilis followed by immunoprecipitation of the in vitro translated products with heterologous nitrite reductase antibody and (b) Northern-blot analysis. The 66 kDa subunit is acidic in nature which is probably due to its phosphorylated status. The enzyme is stable over a range of temperatures. Both subunits can catalyse nitrite reduction, and the reconstituted enzyme, at a higher protein concentration, shows an activity similar to that of the purified enzyme. Each of these subunits has been shown to contain a few unique peptides in addition to a large number of common peptides. Reduced Methyl Viologen has been found to be as effective an electron donor as NADPH in the catalytic process, a phenomenon not commonly seen for nitrite reductases from other systems. PMID:8694757

  10. Influence of N,N-dimethylaniline on the association of phenobarbital-induced cytochrome P-450 and NADPH-cytochrome c(P-450) reductase in a reconstituted rabbit liver microsomal enzyme system.

    PubMed

    Hlavica, P; Golly, I; Wolf, J

    1987-09-01

    N,N-Dimethylaniline when added to reaction mixtures provokes deviation from Michaelis-Menten law of the interaction kinetics of NADPH-cytochrome c(P-450) reductase (NADPH:ferrihaemoprotein oxidoreductase, EC 1.6.2.4) with highly purified phenobarbital-induced rabbit liver microsomal cytochrome P-450 (P-450LM2). This phenomenon is not associated with the low-to-high spin transition in the iron-coordination sphere of the haemoprotein, as elicited by the arylamine. Substrate-triggered departure from linearity of the kinetics is abolished by inclusion into the assay media of p-chloromercuribenzoate, hinting at a vital role in the process of thiols. Similarly, the parabolic progress curve (nH = 1.7) is transformed to a straight line (nH = 1.01) when the N-terminal reductase-binding domain in the P-450LM2 molecule is selectively blocked through covalent attachment of fluorescein isothiocyanate (FITC); such a modification does not alter the affinity of the haemoprotein for the amine substrate. Steady-state fluorescence polarization measurements reveal that N,N-dimethylaniline perturbs the motional properties of the fluorophore-bearing reductase-binding region, suggesting the induction of a conformational change. Summarizing these results, the data possibly indicate N,N-dimethylaniline-induced cooperativity in the association of reductase with P-450LM2. PMID:3113486

  11. Aldo-keto reductase 1C subfamily genes in skin are UV-inducible: possible role in keratinocytes survival.

    PubMed

    Marín, Yarí E; Seiberg, Miri; Lin, Connie B

    2009-07-01

    Please cite this paper as: Aldo-keto reductase 1C subfamily genes in skin are UV-inducible: possible role in keratinocytes survival. Experimental Dermatology 2009; 18: 611-618.Abstract: Human skin is endowed with the capacity to synthesize and metabolize steroid hormones, a function of importance in skin physiology and pathology. It is the hormone-regulatory enzymes, including the aldo-keto reductase 1C subfamily (AKR1Cs) that are largely responsible for the local levels of active steroid hormones. AKR1C1 and AKR1C2 inactivate progesterone and 5alpha-dihydrotestosterone, respectively, whereas AKR1C3 activates oestradiol and testosterone. Here, we show that AKR1C1-3 are expressed in keratinocytes and fibroblasts, with marginal expression in melanocytes. In human primary keratinocytes, AKR1C1 and -2 were UVB-inducible in a dose-dependent manner, as shown by quantitative PCR and Western blot analyses. The induction of AKR1C1 by UVB was concomitant with the presence of an apoptotic marker, the cleavage product of poly-ADP ribose polymerase. Similarly, the activation of AKR1C1 and -2 upon UVB exposure was demonstrated in swine skin in vivo and in human skin explants. As expected, hydrogen peroxide-derived reactive oxygen species also induced AKR1C1 and -2 mRNA and protein levels in keratinocytes in a dose-dependent manner. Furthermore, down-regulation of AKR1Cs by small interfering ribonucleic acid led to significantly reduced cell viability. Based on the combined evidence of the presence of an apoptotic marker in the UVB-exposed keratinocytes with increased AKR1Cs expression and reduced cell viability in down-regulated AKR1Cs, we suggest that AKR1C subfamily genes are stress-inducible and might function as survival factors in keratinocytes. PMID:19320734

  12. Reaction mechanism and regulation of mammalian thioredoxin/glutathione reductase.

    PubMed

    Sun, Qi-An; Su, Dan; Novoselov, Sergey V; Carlson, Bradley A; Hatfield, Dolph L; Gladyshev, Vadim N

    2005-11-01

    Thioredoxin/glutathione reductase (TGR) is a recently discovered member of the selenoprotein thioredoxin reductase family in mammals. In contrast to two other mammalian thioredoxin reductases, it contains an N-terminal glutaredoxin domain and exhibits a wide spectrum of enzyme activities. To elucidate the reaction mechanism and regulation of TGR, we prepared a recombinant mouse TGR in the selenoprotein form as well as various mutants and individual domains of this enzyme. Using these proteins, we showed that the glutaredoxin and thioredoxin reductase domains of TGR could independently catalyze reactions normally associated with each domain. The glutaredoxin domain is a monothiol glutaredoxin containing a CxxS motif at the active site, which could receive electrons from either the thioredoxin reductase domain of TGR or thioredoxin reductase 1. We also found that the C-terminal penultimate selenocysteine was required for transfer of reducing equivalents from the thiol/disulfide active site of TGR to the glutaredoxin domain. Thus, the physiologically relevant NADPH-dependent activities of TGR were dependent on this residue. In addition, we examined the effects of selenium levels in the diet and perturbations in selenocysteine tRNA function on TGR biosynthesis and found that expression of this protein was regulated by both selenium and tRNA status in liver, but was more resistant to this regulation in testes. PMID:16262253

  13. Regulation of the Neurospora crassa assimilatory nitrate reductase.

    PubMed Central

    Ketchum, P A; Zeeb, D D; Owens, M S

    1977-01-01

    Reduced nicotinamide adenine dinucleotide phosphate (NADPH)-nitrate reductase from Neurospora crassa was purified and found to be stimulated by certain amino acids, citrate, and ethylenediaminetetraacetic acid (EDTA). Stimulation by citrate and the amino acids was dependent upon the prior removal of EDTA from the enzyme preparations, since low quantities of EDTA resulted in maximal stimulation. Removal of EDTA from enzyme preparations by dialysis against Chelex-containing buffer resulted in a loss of nitrate reductase activity. Addition of alanine, arginine, glycine, glutamine, glutamate, histidine, tryptophan, and citrate restored and stimulated nitrate reductase activity from 29- to 46-fold. The amino acids tested altered the Km of NADPH-nitrate reductase for NADPH but did not significantly change that for nitrate. The Km of nitrate reductase for NADPH increased with increasing concentrations of histidine but decreased with increasing concentrations of glutamine. Amino acid modulation of NADPH-nitrate reductase activity is discussed in relation to the conservation of energy (NADPH) by Neurospora when nitrate is the nitrogen source. PMID:19423

  14. Selective regulation of 3 alpha-hydroxysteroid oxido-reductase expression in dorsal root ganglion neurons: a possible mechanism to cope with peripheral nerve injury-induced chronic pain.

    PubMed

    Patte-Mensah, Christine; Meyer, Laurence; Schaeffer, Véronique; Mensah-Nyagan, Ayikoe G

    2010-09-01

    The enzyme 3alpha-hydroxysteroid oxido-reductase (3alpha-HSOR) catalyzes the synthesis and bioavailability of 3alpha,5alpha-neurosteroids as allopregnanolone (3alpha,5alpha-THP) which activates GABA(A) receptors and blocks T-type calcium channels involved in pain mechanisms. Here, we used a multidisciplinary approach to demonstrate that 3alpha-HSOR is a cellular target the modulation of which in dorsal root ganglia (DRG) may contribute to suppress pain resulting from peripheral nerve injury. Immunohistochemistry and confocal microscope analyses showed 3alpha-HSOR-immunostaining in naive rat DRG sensory neurons and glial cells. Pulse-chase, high performance liquid chromatography and Flo/One characterization of neurosteroids demonstrated 3alpha,5alpha-THP production in DRG. Behavioral methods allowed identification of pain symptoms (thermal and mechanical hyperalgesia and/or allodynia) in rats subjected to sciatic nerve chronic constriction injury (CCI). Reverse transcription and real-time polymerase chain reaction revealed that 3alpha-HSOR mRNA concentration in CCI-rat ipsilateral DRG, 5-fold higher than in contralateral DRG, was also 4- to 6-fold elevated than that in sham-operated or naive rat DRG. Consistently, Western blotting confirmed increased 3alpha-HSOR protein levels in CCI-rat ipsilateral DRG and double immunolabeling showed that 3alpha-HSOR overexpression occurred in DRG neurons but not in glia. Functional plasticity of 3alpha-HSOR leading to increased 3alpha,5alpha-THP production was evidenced in CCI-rat DRG. Interestingly, behavioral and molecular time-course investigations revealed that 3alpha-HSOR gene upregulation was correlated to pain symptom development. Most importantly, in vivo knockdown of 3alpha-HSOR expression in healthy rat DRG using 6-carboxyfluorescein-3alpha-HSOR-siRNA exacerbated thermal and mechanical pain perceptions. This paper is the first to show that siRNA-induced knockdown of a key neurosteroid-synthesizing enzyme directly

  15. Characterization of recombinant glutathione reductase from the psychrophilic Antarctic bacterium Colwellia psychrerythraea.

    PubMed

    Ji, Mikyoung; Barnwell, Callie V; Grunden, Amy M

    2015-07-01

    Glutathione reductases catalyze the reduction of oxidized glutathione (glutathione disulfide, GSSG) using NADPH as the substrate to produce reduced glutathione (GSH), which is an important antioxidant molecule that helps maintain the proper reducing environment of the cell. A recombinant form of glutathione reductase from Colwellia psychrerythraea, a marine psychrophilic bacterium, has been biochemically characterized to determine its molecular and enzymatic properties. C. psychrerythraea glutathione reductase was shown to be a homodimer with a molecular weight of 48.7 kDa using SDS-PAGE, MALDI-TOF mass spectrometry and gel filtration. The C. psychrerythraea glutathione reductase sequence shows significant homology to that of Escherichia coli glutathione reductase (66 % identity), and it possesses the FAD and NADPH binding motifs, as well as absorption spectrum features which are characteristic of flavoenzymes such as glutathione reductase. The psychrophilic C. psychrerythraea glutathione reductase exhibits higher k cat and k cat/K m at lower temperatures (4 °C) compared to mesophilic Baker's yeast glutathione reductase. However, C. psychrerythraea glutathione reductase was able to complement an E. coli glutathione reductase deletion strain in oxidative stress growth assays, demonstrating the functionality of C. psychrerythraea glutathione reductase over a broad temperature range, which suggests its potential utility as an antioxidant enzyme in heterologous systems. PMID:26101017

  16. Sequence and properties of pentaerythritol tetranitrate reductase from Enterobacter cloacae PB2.

    PubMed Central

    French, C E; Nicklin, S; Bruce, N C

    1996-01-01

    Pentaerythritol tetranitrate reductase, which reductively liberates nitrite from nitrate esters, is related to old yellow enzyme. Pentaerythritol tetranitrate reductase follows a ping-pong mechanism with competitive substrate inhibition by NADPH, is strongly inhibited by steroids, and is capable of reducing the unsaturated bond of 2-cyclohexen-1-one. PMID:8932320

  17. Activated and unactivated forms of human erythrocyte aldose reductase.

    PubMed Central

    Srivastava, S K; Hair, G A; Das, B

    1985-01-01

    Aldose reductase (alditol:NADP+ 1-oxidoreductase, EC 1.1.1.21) has been partially purified from human erythrocytes by DEAE-cellulose (DE-52) column chromatography. This enzyme is activated severalfold upon incubation with 10 microM each glucose 6-phosphate, NADPH, and glucose. The activation of the enzyme was confirmed by following the oxidation of NADPH as well as the formation of sorbitol with glucose as substrate. The activated form of aldose reductase exhibited monophasic kinetics with both glyceraldehyde and glucose (Km of glucose = 0.68 mM and Km of glyceraldehyde = 0.096 mM), whereas the native (unactivated) enzyme exhibited biphasic kinetics (Km of glucose = 9.0 and 0.9 mM and Km of glyceraldehyde = 1.1 and 0.14 mM). The unactivated enzyme was strongly inhibited by aldose reductase inhibitors such as sorbinil, alrestatin, and quercetrin, and by phosphorylated intermediates such as ADP, glycerate 3-phosphate, glycerate 1,3-bisphosphate, and glycerate 2,3-trisphosphate. The activated form of the enzyme was less susceptible to inhibition by aldose reductase inhibitors and phosphorylated intermediates. PMID:3933003

  18. Thioredoxin Reductase and its Inhibitors

    PubMed Central

    Saccoccia, Fulvio; Angelucci, Francesco; Boumis, Giovanna; Carotti, Daniela; Desiato, Gianni; Miele, Adriana E; Bellelli, Andrea

    2014-01-01

    Thioredoxin plays a crucial role in a wide number of physiological processes, which span from reduction of nucleotides to deoxyriboucleotides to the detoxification from xenobiotics, oxidants and radicals. The redox function of Thioredoxin is critically dependent on the enzyme Thioredoxin NADPH Reductase (TrxR). In view of its indirect involvement in the above mentioned physio/pathological processes, inhibition of TrxR is an important clinical goal. As a general rule, the affinities and mechanisms of binding of TrxR inhibitors to the target enzyme are known with scarce precision and conflicting results abound in the literature. A relevant analysis of published results as well as the experimental procedures is therefore needed, also in view of the critical interest of TrxR inhibitors. We review the inhibitors of TrxR and related flavoreductases and the classical treatment of reversible, competitive, non competitive and uncompetitive inhibition with respect to TrxR, and in some cases we are able to reconcile contradictory results generated by oversimplified data analysis. PMID:24875642

  19. Equine 5α-reductase activity and expression in epididymis.

    PubMed

    Corbin, C J; Legacki, E L; Ball, B A; Scoggin, K E; Stanley, S D; Conley, A J

    2016-10-01

    The 5α-reductase enzymes play an important role during male sexual differentiation, and in pregnant females, especially equine species where maintenance relies on 5α-reduced progesterone, 5α-dihydroprogesterone (DHP). Epididymis expresses 5α-reductases but was not studied elaborately in horses. Epididymis from younger and older postpubertal stallions was divided into caput, corpus and cauda and examined for 5α-reductase activity and expression of type 1 and 2 isoforms by quantitative real-time polymerase chain reaction (qPCR). Metabolism of progesterone and testosterone to DHP and dihydrotestosterone (DHT), respectively, by epididymal microsomal protein was examined by thin-layer chromatography and verified by liquid chromatography tandem mass spectrometry (LC-MS/MS). Relative inhibitory potencies of finasteride and dutasteride toward equine 5α-reductase activity were investigated. Pregnenolone was investigated as an additional potential substrate for 5α-reductase, suggested previously from in vivo studies in mares but never directly examined. No regional gradient of 5α-reductase expression was observed by either enzyme activity or transcript analysis. Results of PCR experiments suggested that type 1 isoform predominates in equine epididymis. Primers for the type 2 isoform were unable to amplify product from any samples examined. Progesterone and testosterone were readily reduced to DHP and DHT, and activity was effectively inhibited by both inhibitors. Using epididymis as an enzyme source, no experimental evidence was obtained supporting the notion that pregnenolone could be directly metabolized by equine 5α-reductases as has been suggested by previous investigators speculating on alternative metabolic pathways leading to DHP synthesis in placenta during equine pregnancies. PMID:27466384

  20. Structure of the Molybdenum Site of EEcherichia Coli Trimethylamine N-Oxide Reductase

    SciTech Connect

    Zhang, L.; Nelson, K.Johnson; Rajagopalan, K.V.; George, G.N.

    2009-05-28

    We report a structural characterization of the molybdenum site of recombinant Escherichia coli trimethylamine N-oxide (TMAO) reductase using X-ray absorption spectroscopy. The enzyme active site shows considerable similarity to that of dimethyl sulfoxide (DMSO) reductase, in that, like DMSO reductase, the TMAO reductase active site can exist in multiple forms. Examination of the published crystal structure of TMAO oxidase from Shewanella massilia indicates that the postulated Mo coordination structure is chemically impossible. The presence of multiple active site structures provides a potential explanation for the anomalous features reported from the crystal structure.

  1. Body fat distribution and cortisol metabolism in healthy men: enhanced 5beta-reductase and lower cortisol/cortisone metabolite ratios in men with fatty liver.

    PubMed

    Westerbacka, Jukka; Yki-Järvinen, Hannele; Vehkavaara, Satu; Häkkinen, Anna-Maija; Andrew, Ruth; Wake, Deborah J; Seckl, Jonathan R; Walker, Brian R

    2003-10-01

    In Cushing's syndrome, cortisol causes fat accumulation in specific sites most likely to be associated with insulin resistance, notably in omental adipose and also perhaps in the liver. In idiopathic obesity, cortisol-metabolizing enzymes may play a key role in determining body fat distribution. Increased regeneration of cortisol from cortisone within adipose by 11beta-hydroxysteroid dehydrogenase (HSD) type 1 (11HSD1) has been proposed to cause visceral fat accumulation, whereas decreased hepatic 11HSD1 may protect the liver from glucocorticoid excess. Increased inactivation of cortisol by 5alpha- and 5beta-reductases in the liver may drive compensatory activation of the hypothalamic-pituitary-adrenal axis, hence increasing adrenal androgens and 'android' central obesity. This study aimed to examine relationships between these enzymes and detailed measurements of body fat distribution. Twenty-five healthy men (age, 22-57 yr; body mass index, 20.6-35.6 kg/m(2)) were recruited from occupational health services. Body composition was assessed by anthropometric measurements, bioimpedance, and cross-sectional abdominal magnetic resonance imaging scans. Liver fat content was assessed by magnetic resonance imaging spectroscopy. Insulin sensitivity was measured in a euglycemic hyperinsulinemic clamp. Cortisol metabolites were measured in a 24-h urine sample by gas chromatography-mass spectrometry. In vivo hepatic 11HSD1 activity was measured by generation of plasma cortisol after an oral dose of cortisone. In vitro 11HSD1 activity and mRNA were measured in 18 subjects who consented to provide abdominal sc adipose biopsies. Indices of obesity (body mass index, whole-body percentage fat, waist/hip ratio) were associated with higher urinary excretion of 5alpha- and 5beta-reduced cortisol metabolites (for percentage fat, P < 0.05 and P < 0.01, respectively) and increased adipose 11HSD1 activity (P < 0.05). Liver fat accumulation was associated with a selective increase in

  2. Carboxylation mechanism and stereochemistry of crotonyl-CoA carboxylase/reductase, a carboxylating enoyl-thioester reductase

    PubMed Central

    Erb, Tobias J.; Brecht, Volker; Fuchs, Georg; Müller, Michael; Alber, Birgit E.

    2009-01-01

    Chemo- and stereoselective reductions are important reactions in chemistry and biology, and reductases from biological sources are increasingly applied in organic synthesis. In contrast, carboxylases are used only sporadically. We recently described crotonyl-CoA carboxylase/reductase, which catalyzes the reduction of (E)-crotonyl-CoA to butyryl-CoA but also the reductive carboxylation of (E)-crotonyl-CoA to ethylmalonyl-CoA. In this study, the complete stereochemical course of both reactions was investigated in detail. The pro-(4R) hydrogen of NADPH is transferred in both reactions to the re face of the C3 position of crotonyl-CoA. In the course of the carboxylation reaction, carbon dioxide is incorporated in anti fashion at the C2 atom of crotonyl-CoA. For the reduction reaction that yields butyryl-CoA, a solvent proton is added in anti fashion instead of the CO2. Amino acid sequence analysis showed that crotonyl-CoA carboxylase/reductase is a member of the medium-chain dehydrogenase/reductase superfamily and shares the same phylogenetic origin. The stereospecificity of the hydride transfer from NAD(P)H within this superfamily is highly conserved, although the substrates and reduction reactions catalyzed by its individual representatives differ quite considerably. Our findings led to a reassessment of the stereospecificity of enoyl(-thioester) reductases and related enzymes with respect to their amino acid sequence, revealing a general pattern of stereospecificity that allows the prediction of the stereochemistry of the hydride transfer for enoyl reductases of unknown specificity. Further considerations on the reaction mechanism indicated that crotonyl-CoA carboxylase/reductase may have evolved from enoyl-CoA reductases. This may be useful for protein engineering of enoyl reductases and their application in biocatalysis. PMID:19458256

  3. Analysis of plasmids cloned from a virulent avian Escherichia coli and transformed into Escherichia coli DH5 alpha.

    PubMed

    Wooley, R E; Gibbs, P S; Dickerson, H W; Brown, J; Nolan, L K

    1996-01-01

    Three of four plasmids from a virulent wild-type avian Escherichia coli were cloned or transformed into an avirulent laboratory recipient E. coli DH5 alpha and tested for the ability to confer a virulence phenotype. The three plasmids transformed into E. coli DH5 alpha were 5, 6, and 56 kb. A fourth plasmid of 64 kb was not successfully transformed. Parameters used to measure virulence included presence of type 1 pili and a smooth lipopolysaccharide (LPS) layer, motility, production of Colicin V, resistance to host complement, and embryo lethality. The 5-kb plasmid encoded for ampicillin resistance, whereas the 6-kb plasmid encoded for tetracycline resistance. The 56-kb plasmid encoded for streptomycin, sulfisoxazole, and tetracycline resistance. Twelve-day embryos inoculated with 467 colony-forming units of E. coli DH5 alpha containing the 56-kb plasmid had increased death rates (45%) in the embryo lethality assay and a decreased weight of surviving embryos with cranial hemorrhages as compared with embryos inoculated with similar amounts of E. coli DH5 alpha (0%) and phosphate-buffered saline (0%). Embryos inoculated with the wild-type virulent E. coli had 90% deaths. The 56-kb plasmid also had homology with a probe for Colicin V production (cvaC). No differences in LPS layer, complement resistance, motility, Colicin V activity, type 1 pili, cell-free supernatant proteins, or outer membrane proteins were observed in the transformants when compared with nontransformed E. coli DH5 alpha. PMID:8883780

  4. Characterization of mitochondrial thioredoxin reductase from C. elegans

    SciTech Connect

    Lacey, Brian M.; Hondal, Robert J. . E-mail: Robert.Hondal@uvm.edu

    2006-08-04

    Thioredoxin reductase catalyzes the NADPH-dependent reduction of the catalytic disulfide bond of thioredoxin. In mammals and other higher eukaryotes, thioredoxin reductases contain the rare amino acid selenocysteine at the active site. The mitochondrial enzyme from Caenorhabditis elegans, however, contains a cysteine residue in place of selenocysteine. The mitochondrial C. elegans thioredoxin reductase was cloned from an expressed sequence tag and then produced in Escherichia coli as an intein-fusion protein. The purified recombinant enzyme has a k {sub cat} of 610 min{sup -1} and a K {sub m} of 610 {mu}M using E. coli thioredoxin as substrate. The reported k {sub cat} is 25% of the k {sub cat} of the mammalian enzyme and is 43-fold higher than a cysteine mutant of mammalian thioredoxin reductase. The enzyme would reduce selenocysteine, but not hydrogen peroxide or insulin. The flanking glycine residues of the GCCG motif were mutated to serine. The mutants improved substrate binding, but decreased the catalytic rate.

  5. Inactivation kinetics of dihydrofolate reductase from Chinese hamster during urea denaturation.

    PubMed Central

    Wu, J W; Wang, Z X; Zhou, J M

    1997-01-01

    The kinetic theory of substrate reaction during modification of enzyme activity has been applied to the study of inactivation kinetics of Chinese hamster dihydrofolate reductase by urea [Tsou (1988) Adv. Enzymol. Relat. Areas Mol. Biol. 61, 381-436]. On the basis of the kinetic equation of substrate reaction in the presence of urea, all microscopic kinetic constants for the free enzyme and enzyme-substrate binary and ternary complexes have been determined. The results of the present study indicate that the denaturation of dihydrofolate reductase by urea follows single-phase kinetics, and changes in enzyme activity and tertiary structure proceed simultaneously in the unfolding process. Both substrates, NADPH and 7,8-dihydrofolate, protect dihydrofolate reductase against inactivation, and enzyme-substrate complexes lose their activity less rapidly than the free enzyme. PMID:9182696

  6. Cloning and characterization of the methyl coenzyme M reductase genes from Methanobacterium thermoautotrophicum.

    PubMed Central

    Bokranz, M; Bäumner, G; Allmansberger, R; Ankel-Fuchs, D; Klein, A

    1988-01-01

    The genes coding for methyl coenzyme M reductase were cloned from a genomic library of Methanobacterium thermoautotrophicum Marburg into Escherichia coli by using plasmid expression vectors. When introduced into E. coli, the reductase genes were expressed, yielding polypeptides identical in size to the three known subunits of the isolated enzyme, alpha, beta, and gamma. The polypeptides also reacted with the antibodies raised against the respective enzyme subunits. In M. thermoautotrophicum, the subunits are encoded by a gene cluster whose transcript boundaries were mapped. Sequence analysis revealed two more open reading frames of unknown function located between two of the methyl coenzyme M reductase genes. Images PMID:2448287

  7. Immunocytochemical localization of short-chain family reductases involved in menthol biosynthesis in peppermint.

    PubMed

    Turner, Glenn W; Davis, Edward M; Croteau, Rodney B

    2012-06-01

    Biosynthesis of the p-menthane monoterpenes in peppermint occurs in the secretory cells of the peltate glandular trichomes and results in the accumulation of primarily menthone and menthol. cDNAs and recombinant enzymes are well characterized for eight of the nine enzymatic steps leading from the 5-carbon precursors to menthol, and subcellular localization of several key enzymes suggests a complex network of substrate and product movement is required during oil biosynthesis. In addition, studies concerning the regulation of oil biosynthesis have demonstrated a temporal partition of the pathway into an early, biosynthetic program that results in the accumulation of menthone and a later, oil maturation program that leads to menthone reduction and concomitant menthol accumulation. The menthone reductase responsible for the ultimate pathway reduction step, menthone-menthol reductase (MMR), has been characterized and found to share significant sequence similarity with its counterpart reductase, a menthone-neomenthol reductase, which catalyzes a minor enzymatic reaction associated with oil maturation. Further, the menthone reductases share significant sequence similarity with the temporally separate and mechanistically different isopiperitenone reductase (IPR). Here we present immunocytochemical localizations for these reductases using a polyclonal antibody raised against menthone-menthol reductase. The polyclonal antibody used for this study showed little specificity between these three reductases, but by using it for immunostaining of tissues of different ages we were able to provisionally separate staining of an early biosynthetic enzyme, IPR, found in young, immature leaves from that of the oil maturation enzyme, MMR, found in older, mature leaves. Both reductases were localized to the cytoplasm and nucleoplasm of the secretory cells of peltate glandular trichomes, and were absent from all other cell types examined. PMID:22170164

  8. Immunochemical characterization of NADPH-cytochrome P-450 reductase from Jerusalem artichoke and other higher plants.

    PubMed Central

    Benveniste, I; Lesot, A; Hasenfratz, M P; Durst, F

    1989-01-01

    Polyclonal antibodies were prepared against NADPH-cytochrome P-450 reductase purified from Jerusalem artichoke. These antibodies inhibited efficiently the NADPH-cytochrome c reductase activity of the purified enzyme, as well as of Jerusalem artichoke microsomes. Likewise, microsomal NADPH-dependent cytochrome P-450 mono-oxygenases (cinnamate and laurate hydroxylases) were efficiently inhibited. The antibodies were only slightly inhibitory toward microsomal NADH-cytochrome c reductase activity, but lowered NADH-dependent cytochrome P-450 mono-oxygenase activities. The Jerusalem artichoke NADPH-cytochrome P-450 reductase is characterized by its high Mr (82,000) as compared with the enzyme from animals (76,000-78,000). Western blot analysis revealed cross-reactivity of the Jerusalem artichoke reductase antibodies with microsomes from plants belonging to different families (monocotyledons and dicotyledons). All of the proteins recognized by the antibodies had an Mr of approx. 82,000. No cross-reaction was observed with microsomes from rat liver or Locusta migratoria midgut. The cross-reactivity generally paralleled well the inhibition of reductase activity: the enzyme from most higher plants tested was inhibited by the antibodies; whereas Gingko biloba, Euglena gracilis, yeast, rat liver and insect midgut activities were insensitive to the antibodies. These results point to structural differences, particularly at the active site, between the reductases from higher plants and the enzymes from phylogenetically distant plants and from animals. Images Fig. 5. PMID:2499315

  9. A49T, R227Q and TA repeat polymorphism of steroid 5 alpha-reductase type II gene and Hypospadias risk in North Indian children

    PubMed Central

    Samtani, Ratika; Bajpai, Minu; Ghosh, P.K.; Saraswathy, K.N.

    2014-01-01

    Background/Aims Hypospadias is a common congenital error of genital development, the frequency of which is increasing. As androgens have a significant role in the development of the male urethra, we sought to investigate the association between functional polymorphisms of SRD5A2 gene in relation to hypospadias. Methods We examined DNA samples of 96 cases and 105 controls for SRD5A2-A49T, R227Q and TA repeat gene polymorphisms. Result Absence of 49T locus and 227Q locus was observed in the present study. At the (TA) n repeat site, TA (0) allele was observed to be the most common allele in both cases (91.7%) and controls (90%). TA (9/9) genotype exhibited an odds ratio of 3.03 (95% C.I. = 0.18–50.14, p = 0) with respect to only middle phenotypes. Analysis of the demographic data depicted the agricultural background aspect of the parents of the cases. 72.27% of the cases (affected with Hypospadias) have parents having agriculture as a primary occupation. Conclusion As longer TA repeats are associated with lower enzymatic activity and lower DHT levels as reported among Caucasians, this polymorphism may have an effect (rather small) in predisposing the population of the present study to the risk of Hypospadias of lesser severity. Due to small sample size, the 3.03 O.R. is not significant and a larger sample is needed to validate the results. Large scale screening of Hypospadias and other 46 X,Y disorders of sexual development is needed especially in India, where the majority of the population is from agricultural background. The results of the present study are likely to assist the health planners to initiate screening of Hypospadias among the farmer community to combat the risk of Hypospadias. PMID:25685716

  10. Characterization of thyroidal glutathione reductase

    SciTech Connect

    Raasch, R.J.

    1989-01-01

    Glutathione levels were determined in bovine and rat thyroid tissue by enzymatic conjugation with 1-chloro-2,4-dinitrobenzene using glutathione S-transferase. Bovine thyroid tissue contained 1.31 {+-} 0.04 mM reduced glutathione (GSH) and 0.14 {+-} 0.02 mM oxidized glutathione (GSSG). In the rat, the concentration of GSH was 2.50 {+-} 0.05 mM while GSSG was 0.21 {+-} 0.03 mM. Glutathione reductase (GR) was purified from bovine thyroid to electrophoretic homogeneity by ion exchange, affinity and molecular exclusion chromatography. A molecular weight range of 102-109 kDa and subunit size of 55 kDa were determined for GR. Thyroidal GR was shown to be a favoprotein with one FAD per subunit. The Michaelis constants of bovine thyroidal GR were determined to be 21.8 {mu}M for NADPH and 58.8 {mu}M for GSSG. The effect of thyroid stimulating hormone (TSH) and thyroxine (T{sub 4}) on in vivo levels of GR and glucose 6-phosphate dehydrogenase were determined in rat thyroid homogenates. Both enzymes were stimulated by TSH treatment and markedly reduced following T{sub 4} treatment. Lysosomal hydrolysis of ({sup 125}I)-labeled and unlabeled thyroglobulin was examined using size exclusion HPLC.

  11. Nitrite and Nitrous Oxide Reductase Regulation by Nitrogen Oxides in Rhodobacter sphaeroides f. sp. denitrificans IL106

    PubMed Central

    Sabaty, Monique; Schwintner, Carole; Cahors, Sandrine; Richaud, Pierre; Verméglio, Andre

    1999-01-01

    We have cloned the nap locus encoding the periplasmic nitrate reductase in Rhodobacter sphaeroides f. sp. denitrificans IL106. A mutant with this enzyme deleted is unable to grow under denitrifying conditions. Biochemical analysis of this mutant shows that in contrast to the wild-type strain, the level of synthesis of the nitrite and N2O reductases is not increased by the addition of nitrate. Growth under denitrifying conditions and induction of N oxide reductase synthesis are both restored by the presence of a plasmid containing the genes encoding the nitrate reductase. This demonstrates that R. sphaeroides f. sp. denitrificans IL106 does not possess an efficient membrane-bound nitrate reductase and that nitrate is not the direct inducer for the nitrite and N2O reductases in this species. In contrast, we show that nitrite induces the synthesis of the nitrate reductase. PMID:10498715

  12. Nitrite and nitrous oxide reductase regulation by nitrogen oxides in Rhodobacter sphaeroides f. sp. denitrificans IL106.

    PubMed

    Sabaty, M; Schwintner, C; Cahors, S; Richaud, P; Verméglio, A

    1999-10-01

    We have cloned the nap locus encoding the periplasmic nitrate reductase in Rhodobacter sphaeroides f. sp. denitrificans IL106. A mutant with this enzyme deleted is unable to grow under denitrifying conditions. Biochemical analysis of this mutant shows that in contrast to the wild-type strain, the level of synthesis of the nitrite and N(2)O reductases is not increased by the addition of nitrate. Growth under denitrifying conditions and induction of N oxide reductase synthesis are both restored by the presence of a plasmid containing the genes encoding the nitrate reductase. This demonstrates that R. sphaeroides f. sp. denitrificans IL106 does not possess an efficient membrane-bound nitrate reductase and that nitrate is not the direct inducer for the nitrite and N(2)O reductases in this species. In contrast, we show that nitrite induces the synthesis of the nitrate reductase. PMID:10498715

  13. Distinguishing two groups of flavin reductases by analyzing the protonation state of an active site carboxylic acid.

    PubMed

    Dumit, Verónica I; Cortez, Néstor; Matthias Ullmann, G

    2011-07-01

    Flavin-containing reductases are involved in a wide variety of physiological reactions such as photosynthesis, nitric oxide synthesis, and detoxification of foreign compounds, including therapeutic drugs. Ferredoxin-NADP(H)-reductase (FNR) is the prototypical enzyme of this family. The fold of this protein is highly conserved and occurs as one domain of several multidomain enzymes such as the members of the diflavin reductase family. The enzymes of this family have emerged as fusion of a FNR and a flavodoxin. Although the active sites of these enzymes are very similar, different enzymes function in opposite directions, that is, some reduce oxidized nicotinamide adenine dinucleotide phosphate (NADP(+)) and some oxidize reduced nicotinamide adenine dinucleotide phosphate (NADPH). In this work, we analyze the protonation behavior of titratable residues of these enzymes through electrostatic calculations. We find that a highly conserved carboxylic acid in the active site shows a different titration behavior in different flavin reductases. This residue is deprotonated in flavin reductases present in plastids, but protonated in bacterial counterparts and in diflavin reductases. The protonation state of the carboxylic acid may also influence substrate binding. The physiological substrate for plastidic enzymes is NADP(+), but it is NADPH for the other mentioned reductases. In this article, we discuss the relevance of the environment of this residue for its protonation and its importance in catalysis. Our results allow to reinterpret and explain experimental data. PMID:21538544

  14. Synthesis and biological activity of furostanic analogues of brassinosteroids bearing the 5alpha-hydroxy-6-oxo moiety.

    PubMed

    Romero-Avila, Margarita; de Dios-Bravo, Guadalupe; Mendez-Stivalet, Jóse M; Rodríguez-Sotres, Rogelio; Iglesias-Arteaga, Martin A

    2007-12-01

    Two furostanic analogues of brassinosteroids bearing the 5alpha-hydroxy-6-oxo moiety were synthesized and their biological activity studied using the bean second internode elongation test. One of the compounds produced significant stimulation at doses of 2.5 and 5ng/plant. PMID:17905389

  15. X-ray structure of trypanothione reductase from Crithidia fasciculata at 2. 4- angstrom resolution

    SciTech Connect

    Kuriyan, J.; Xiangpeng Kong; Krishna, T.S.R.; Murgolo, N.J.; Field, H.; Cerami, A.; Henderson, G.B. ); Sweet, R.M. )

    1991-10-01

    Trypanosomes and related protozoan parasites lack glutathione reductase and possess instead a closely related enzyme that serves as the reductant of a bis(glutathione)-spermidien conjugate, trypanothione. The human and parasite enzymes have mutually exclusive substrate specificities, providing a route for the design of therapeutic agents by specific inhibition of the parasite enzyme. The authors report here the three-dimensional structure of trypanothione reductase from Crithidia fasciculata and show that it closely resembles the structure of human glutathione reductase. In particular, the core structure surrounding the catalytic machinery is almost identical in the two enzymes. However, significant differences are found at the substrate binding sites. A cluster of basic residues in glutathione reductase is replaced by neutral, hydrophobic, or acidic residues in trypanothione reductase, consistent with the nature of the spermidine linkage and the change in overall charge of the substrate from {minus}2 to +1, respectively. The binding site is more open in trypanothione reductase due to rotations of about 4{degree} in the domains that form in site, with relative shifts of as much as 2-3 {angstrom} in residues that can interact with potential inhibitors and complement previous modeling and mutagenesis studies on the two enzymes.

  16. Evaluation of 5α-reductase inhibitory activity of certain herbs useful as antiandrogens.

    PubMed

    Nahata, A; Dixit, V K

    2014-08-01

    This study demonstrates 5α-reductase inhibitory activity of certain herbs useful in the management of androgenic disorders. Ganoderma lucidum (Curtis) P. Karst (GL), Urtica dioica Linn. (UD), Caesalpinia bonducella Fleming. (CB), Tribulus terrestris Linn. (TT), Pedalium murex Linn. (PM), Sphaeranthus indicus Linn. (SI), Cuscuta reflexa Roxb. (CR), Citrullus colocynthis Schrad. (CC), Benincasa hispida Cogn. (BH), Phyllanthus niruri Linn. (PN) and Echinops echinatus Linn. (EE) were included in the study. Petroleum ether, ethanol and aqueous extracts of these herbs were tested for their 5α-reductase inhibitory activity against the standard 5α-reductase inhibitor, finasteride. A biochemical method to determine the activity of 5α-reductase was used to evaluate the inhibition of different extracts to the enzyme. The optical density (OD) value of each sample was measured continuously with ultraviolet spectrophotometer for the reason that the substrate NADPH has a specific absorbance at 340 nm. As the enzyme 5α-reductase uses NADPH as a substrate, so in the presence of 5α-reductase inhibitor, the NADPH concentration will increase with the function of time. This method thus implicates the activity of 5α-reductase. The method proved to be extremely useful to screen the herbs for their 5α-reductase inhibitory potential. GL, UD, BH, SI and CR came out to be promising candidates for further exploring their antiandrogenic properties. PMID:23710567

  17. Steroid 5 α-reductase inhibitors targeting BPH and prostate cancer.

    PubMed

    Schmidt, Lucy J; Tindall, Donald J

    2011-05-01

    Steroid 5 alpha-reductase inhibitors (5ARIs) have been approved for use clinically in treatment of benign prostate hyperplasia (BPH) and accompanying lower urinary tract symptoms (LUTS) and have also been evaluated in clinical trials for prevention and treatment of prostate cancer. There are currently two steroidal inhibitors in use, finasteride and dutasteride, both with distinct pharmacokinetic properties. This review will examine the evidence presented by various studies supporting the use of these steroidal inhibitors in the prevention and treatment of prostate disease. Article from the Special issue on Targeted Inhibitors. PMID:20883781

  18. Flavodiiron Oxygen Reductase from Entamoeba histolytica

    PubMed Central

    Gonçalves, Vera L.; Vicente, João B.; Pinto, Liliana; Romão, Célia V.; Frazão, Carlos; Sarti, Paolo; Giuffrè, Alessandro; Teixeira, Miguel

    2014-01-01

    Flavodiiron proteins (FDPs) are a family of enzymes endowed with bona fide oxygen- and/or nitric-oxide reductase activity, although their substrate specificity determinants remain elusive. After a comprehensive comparison of available three-dimensional structures, particularly of FDPs with a clear preference toward either O2 or NO, two main differences were identified near the diiron active site, which led to the construction of site-directed mutants of Tyr271 and Lys53 in the oxygen reducing Entamoeba histolytica EhFdp1. The biochemical and biophysical properties of these mutants were studied by UV-visible and electron paramagnetic resonance (EPR) spectroscopies coupled to potentiometry. Their reactivity with O2 and NO was analyzed by stopped-flow absorption spectroscopy and amperometric methods. These mutations, whereas keeping the overall properties of the redox cofactors, resulted in increased NO reductase activity and faster inactivation of the enzyme in the reaction with O2, pointing to a role of the mutated residues in substrate selectivity. PMID:25151360

  19. Steroid 5β-Reductase from Leaves of Vitis vinifera: Molecular Cloning, Expression, and Modeling.

    PubMed

    Ernst, Mona; Munkert, Jennifer; Campa, Manuela; Malnoy, Mickael; Martens, Stefan; Müller-Uri, Frieder

    2015-11-25

    A steroid 5β-reductase gene corresponding to the hypothetical protein LOC100247199 from leaves of Vitis vinifera (var. 'Chardonnay') was cloned and overexpressed in Escherichia coli. The recombinant protein showed 5β-reductase activity when progesterone was used as a substrate. The reaction was stereoselective, producing only 5β-products such as 5β-pregnane-3,20-dione. Other small substrates (terpenoids and enones) were also accepted as substrates, indicating the highly promiscuous character of the enzyme class. Our results show that the steroid 5β-reductase gene, encoding an orthologous enzyme described as a key enzyme in cardenolide biosynthesis, is also expressed in leaves of the cardenolide-free plant V. vinifera. We emphasize the fact that, on some occasions, different reductases (e.g., progesterone 5β-reductase and monoterpenoid reductase) can also use molecules that are similar to the final products as a substrate. Therefore, in planta, the different reductases may contribute to the immense number of diverse small natural products finally leading to the flavor of wine. PMID:26537436

  20. The isolation of a hexaheme cytochrome from Desulfovibrio desulfuricans and its identification as a new type of nitrite reductase

    SciTech Connect

    Liu, M.-C.; Peck, H.D., Jr.

    1981-12-01

    Desulfovibrio desulfuricans (ATCC 27774), a strictly anaerobic sulfate-reducing bacteria, is able to perform anaerobic nitrate respiration in which nitrate is first reduced to nitrite by the action of nitrate reductase, and nitrite reductase then catalyzes the six-electron reduction of nitrite to ammonia. The nitrite reductase was found to be a membrane-bound enzyme and has been purified to electrophoretic homogeneity. The purified enzyme has a minimal M/sub r/=66,000 as judged by sodium dodecyl sulfate gel electrophoresis and contains 6 c-type heme groups/molecule. Pure nitrite reductase exhibits a typical c-type cytochrome absorption spectrum with reduced..cap alpha..-band at 552.5 nm. NADH and NADPH do not function as direct electron donors for the nitrite reductase. Desulfovibrio vulgaris hydrogenase,however, is able to transfer electrons from H/sub 2/ to the nitrite reductase using FAD as the electron transfer mediator. The dithionite-reduced nitrite reductase was demonstrated to be auto-oxidizable even in the presence of potassium cyanide. On addition of nitrite, the dithionite-reduced enzyme is re-oxidized immediately. Hydroxylamine, however, can only partially reoxidize the reduced enzyme. Ascorbate reduces the enzyme to a limited extent and the partially reduced enzyme is neither auto-oxidizable by nitrite or hydroxylamine. Purified nitrite reductase has a pH optimum in the range of 8.0-9.5 and optimal activity at 57/sup o/C. Purified nitrite reductase also has hydroxylamine reductase activity, and the K/sub m/ for nitrite was determined to be 1.14 mM.

  1. Nitrate and periplasmic nitrate reductases

    PubMed Central

    Sparacino-Watkins, Courtney; Stolz, John F.; Basu, Partha

    2014-01-01

    The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types – periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed. PMID:24141308

  2. Pinpointing a Mechanistic Switch Between Ketoreduction and "Ene" Reduction in Short-Chain Dehydrogenases/Reductases.

    PubMed

    Lygidakis, Antonios; Karuppiah, Vijaykumar; Hoeven, Robin; Ní Cheallaigh, Aisling; Leys, David; Gardiner, John M; Toogood, Helen S; Scrutton, Nigel S

    2016-08-01

    Three enzymes of the Mentha essential oil biosynthetic pathway are highly homologous, namely the ketoreductases (-)-menthone:(-)-menthol reductase and (-)-menthone:(+)-neomenthol reductase, and the "ene" reductase isopiperitenone reductase. We identified a rare catalytic residue substitution in the last two, and performed comparative crystal structure analyses and residue-swapping mutagenesis to investigate whether this determines the reaction outcome. The result was a complete loss of native activity and a switch between ene reduction and ketoreduction. This suggests the importance of a catalytic glutamate vs. tyrosine residue in determining the outcome of the reduction of α,β-unsaturated alkenes, due to the substrate occupying different binding conformations, and possibly also to the relative acidities of the two residues. This simple switch in mechanism by a single amino acid substitution could potentially generate a large number of de novo ene reductases. PMID:27411040

  3. Steroid production and Excretion by the pregnant mouse, particularly in relation to pregnancies with fetuses deficient in Δ7-sterol reductase (Dhcr7), the enzyme associated with Smith-Lemli-Opitz syndrome

    PubMed Central

    Matabosch, Xavier; Rahman, Mahbuba; Hughes, Beverly; Patel, Shailendra B.; Watson, Gordon; Shackleton, Cedric

    2010-01-01

    This study has shown that the mouse has a great increase in steroid production during pregnancy in similar fashion to the human. Many steroids were provisionally identified in maternal urine of the wild-type mouse. The major progesterone metabolites appear to be hydroxylated pregnanolones, particularly with hydroxyl groups in the 16α position. Rather than estriol being the major end-product of feto-placental steroid synthesis as in the human, the pregnant mouse produces and excretes large amounts of androgen metabolites, ranging in polarity from androstanetriols to androstanepentols. These steroids have 15α- or 18-hydroxyl groups with additional hydroxylation at uncharacterized positions. From metabolite data the peak of pregnancy progesterone production appears to be between 7.5-14.5 gestational days, while for C19 metabolites peak excretion is later. The starting-point of the studies was to study pregnancy steroid production by a mouse model for Smith-Lemli-Opitz syndrome, 7-dehydrosterol reductase (DHCR7) deficiency. In human pregnancies with DHCR7 deficient fetuses large amounts of 7- and 8-dehydrosteroids are excreted, products secondary to high fetal 7- and 8-dehydrocholesterol (DHC) accumulation. This agrees with existing evidence that human feto-placental steroid synthesis utilizes little maternal cholesterol as precursor. In contrast, this study has shown that pregnant mice carrying dhcr7 deficient fetuses with relatively high DHC production had essentially undetectable maternal excretions of steroids with Δ7- and Δ8- unsaturation. As mutant mouse mothers have essentially normal cholesterol production (little or no DHC build-up), this suggests maternal cholesterol is primarily utilized for pregnancy steroid synthesis in the mouse. PMID:19406241

  4. The anticancer drug ellipticine activated with cytochrome P450 mediates DNA damage determining its pharmacological efficiencies: studies with rats, Hepatic Cytochrome P450 Reductase Null (HRN™) mice and pure enzymes.

    PubMed

    Stiborová, Marie; Černá, Věra; Moserová, Michaela; Mrízová, Iveta; Arlt, Volker M; Frei, Eva

    2015-01-01

    Ellipticine is a DNA-damaging agent acting as a prodrug whose pharmacological efficiencies and genotoxic side effects are dictated by activation with cytochrome P450 (CYP). Over the last decade we have gained extensive experience in using pure enzymes and various animal models that helped to identify CYPs metabolizing ellipticine. In this review we focus on comparison between the in vitro and in vivo studies and show a necessity of both approaches to obtain valid information on CYP enzymes contributing to ellipticine metabolism. Discrepancies were found between the CYP enzymes activating ellipticine to 13-hydroxy- and 12-hydroxyellipticine generating covalent DNA adducts and those detoxifying this drug to 9-hydroxy- and 7-hydroellipticine in vitro and in vivo. In vivo, formation of ellipticine-DNA adducts is dependent not only on expression levels of CYP3A, catalyzing ellipticine activation in vitro, but also on those of CYP1A that oxidize ellipticine in vitro mainly to the detoxification products. The finding showing that cytochrome b5 alters the ratio of ellipticine metabolites generated by CYP1A1/2 and 3A4 explained this paradox. Whereas the detoxification of ellipticine by CYP1A and 3A is either decreased or not changed by cytochrome b5, activation leading to ellipticine-DNA adducts increased considerably. We show that (I) the pharmacological effects of ellipticine mediated by covalent ellipticine-derived DNA adducts are dictated by expression levels of CYP1A, 3A and cytochrome b5, and its own potency to induce these enzymes in tumor tissues, (II) animal models, where levels of CYPs are either knocked out or induced are appropriate to identify CYPs metabolizing ellipticine in vivo, and (III) extrapolation from in vitro data to the situation in vivo is not always possible, confirming the need for these animal models. PMID:25547492

  5. Partial Purification and Characterization of d-Ribose-5-phosphate Reductase from Adonis vernalis L. Leaves

    PubMed Central

    Negm, Fayek B.; Marlow, Gary C.

    1985-01-01

    This study presents evidence for a new enzyme, d-ribose-5-P reductase, which catalyzes the reaction: d-ribose-5-P + NADPH + H+ → d-ribitol-5-P + NADP+. The enzyme was isolated from Adonis vernalis L. leaves in 38% yield and was purified 71-fold. The reductase was NADPH specific and had a pH optimum in the range of 5.5 to 6.0. The Michaelis constant value for d-ribose-5-P reduction was 1.35 millimolar. The enzyme also reduced d-erythrose-4-P, d-erythrose, dl-glyceraldehyde, and the aromatic aldehyde 3-pyridinecarboxaldehyde. Hexoses, hexose phosphates, pentoses, and dihydroxyacetone did not serve as substrates. d-Ribose-5-P reductase is distinct from the other known ribitol synthesizing enzymes detected in bacteria and yeast, and may be responsible for ribitol synthesis in Adonis vernalis. PMID:16664320

  6. Converting the NiFeS Carbon Monoxide Dehydrogenase to a Hydrogenase and a Hydroxylamine Reductase

    PubMed Central

    Heo, Jongyun; Wolfe, Marcus T.; Staples, Christopher R.; Ludden, Paul W.

    2002-01-01

    Substitution of one amino acid for another at the active site of an enzyme usually diminishes or eliminates the activity of the enzyme. In some cases, however, the specificity of the enzyme is changed. In this study, we report that the changing of a metal ligand at the active site of the NiFeS-containing carbon monoxide dehydrogenase (CODH) converts the enzyme to a hydrogenase or a hydroxylamine reductase. CODH with alanine substituted for Cys531 exhibits substantial uptake hydrogenase activity, and this activity is enhanced by treatment with CO. CODH with valine substituted for His265 exhibits hydroxylamine reductase activity. Both Cys531 and His265 are ligands to the active-site cluster of CODH. Further, CODH with Fe substituted for Ni at the active site acquires hydroxylamine reductase activity. PMID:12374822

  7. Regulation of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Activity in Human Fibroblasts by Lipoproteins

    PubMed Central

    Brown, Michael S.; Dana, Suzanna E.; Goldstein, Joseph L.

    1973-01-01

    The activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (EC 1.1.1.34), the rate-limiting enzyme of hepatic cholesterol biosynthesis, is suppressed in human fibroblasts cultured in the presence of serum. This enzyme activity increases by more than 10-fold after the removal of serum from the medium. The rise in enzyme activity requires de novo protein synthesis and is not accompanied by changes in the activities of several other cellular enzymes. The factor responsible for the suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in cultured fibroblasts is present in the sera of at least four mammalian species, and in human serum it is found in the low-density lipoproteins. Human high-density lipoproteins, very low-density lipoproteins from chicken egg yolk, and the fraction of human serum containing no lipoproteins do not suppress the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase. PMID:4352976

  8. Pyrroline-5-Carboxylate Reductase in Chlorella autotrophica and Chlorella saccharophila in Relation to Osmoregulation 1

    PubMed Central

    Laliberté, Gilles; Hellebust, Johan A.

    1989-01-01

    Pyrroline-5-carboxylate (P5C) reductase (EC 1.5.1.2), which catalyzes the reduction of P5C to proline, was partially purified from two Chlorella species; Chlorella autotrophica, a euryhaline marine alga that responds to increases in salinity by accumulating proline and ions, and Chlorella saccharophila, which does not accumulate proline for osmoregulation. From the elution profile of this enzyme from an anion exchange column in Tris-HCl buffer (pH 7.6), containing sorbitol and glycine betaine, it was shown that P5C reductase from C. autotrophica was a neutral protein whereas the enzyme from C. saccharophila was negatively charged. The kinetic mechanisms of the reductase was characteristic of a ping-pong mechanism with double competitive substrate inhibition. Both enzymes showed high specificity for NADH as cofactor. The affinities of the reductases for their substrates did not change when the cells were grown at different salinities. In both algae, the apparent Km values of the reductase for P5C and NADH were 0.17 and 0.10 millimolar, respectively. A fourfold increase in maximal velocity of the reductase was observed when C. autotrophica was transferred from 50 to 150% artificial sea water. Even though the reductase was inhibited by NaCl, KCl, and proline, it still showed appreciable activity in the presence of these compounds at molar concentrations. A possible role for the regulation of proline synthesis at the step catalyzed by P5C reductase is discussed in relation to the specificity of P5C reductase for NADH and its responses to salt treatments. PMID:16667157

  9. The cytochrome bd respiratory oxygen reductases

    PubMed Central

    Borisov, Vitaliy B.; Gennis, Robert B.; Hemp, James; Verkhovsky, Michael I.

    2011-01-01

    Summary Cytochrome bd is a respiratory quinol:O2 oxidoreductase found in many prokaryotes, including a number of pathogens. The main bioenergetic function of the enzyme is the production of a proton motive force by the vectorial charge transfer of protons. The sequences of cytochromes bd are not homologous to those of the other respiratory oxygen reductases, i.e., the heme-copper oxygen reductases or alternative oxidases (AOX). Generally, cytochromes bd are noteworthy for their high affinity for O2 and resistance to inhibition by cyanide. In E. coli, for example, cytochrome bd (specifically, cytochrome bd-I) is expressed under O2-limited conditions. Among the members of the bd-family are the so-called cyanide-insensitive quinol oxidases (CIO) which often have a low content of the eponymous heme d but, instead, have heme b in place of heme d in at least a majority of the enzyme population. However, at this point, no sequence motif has been identified to distinguish cytochrome bd (with a stoichiometric complement of heme d) from an enzyme designated as CIO. Members of the bd-family can be subdivided into those which contain either a long or a short hydrophilic connection between transmembrane helices 6 and 7 in subunit I, designated as the Q-loop. However, it is not clear whether there is a functional consequence of this difference. This review summarizes current knowledge on the physiological functions, genetics, structural and catalytic properties of cytochromes bd. Included in this review are descriptions of the intermediates of the catalytic cycle, the proposed site for the reduction of O2, evidence for a proton channel connecting this active site to the bacterial cytoplasm, and the molecular mechanism by which a membrane potential is generated. PMID:21756872

  10. Amplification and loss of dihydrofolate reductase genes in a Chinese hamster ovary cell line

    SciTech Connect

    Kaufman, R.J.; Schimke, R.T.

    1981-12-01

    During stepwise increases in the methotrexate concentration in culture medium, the authors selected Chinese hamster ovary cells that contained elevated dihydrofolate reductase levels which were proportional to the number of dihydrofolate reductase gene copies (i.e., gene amplification). The authors studied the dihydrofolate reductase levels in individual cells that underwent the initial steps of methotrexate resistance by using the fluorescence-activated cell sorter technique. Such cells constituted a heterogeneous population with differing dihydrofolate reductase levels, and they characteristically lost the elevated enzyme levels when they were grown in the absence of methotrexate. The progeny of individual cells with high enzyme levels behaved differently and could lose all or variable numbers of the amplified genes.

  11. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases.

    PubMed

    Min, Tongpil; Kasahara, Hiroyuki; Bedgar, Diana L; Youn, Buhyun; Lawrence, Paulraj K; Gang, David R; Halls, Steven C; Park, HaJeung; Hilsenbeck, Jacqueline L; Davin, Laurence B; Lewis, Norman G; Kang, ChulHee

    2003-12-12

    Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed. PMID:13129921

  12. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases

    NASA Technical Reports Server (NTRS)

    Min, Tongpil; Kasahara, Hiroyuki; Bedgar, Diana L.; Youn, Buhyun; Lawrence, Paulraj K.; Gang, David R.; Halls, Steven C.; Park, HaJeung; Hilsenbeck, Jacqueline L.; Davin, Laurence B.; Lewis, Norman G.; Kang, ChulHee

    2003-01-01

    Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.

  13. Purification, properties, and sequence of glycerol trinitrate reductase from Agrobacterium radiobacter.

    PubMed Central

    Snape, J R; Walkley, N A; Morby, A P; Nicklin, S; White, G F

    1997-01-01

    Glycerol trinitrate (GTN) reductase, which enables Agrobacterium radiobacter to utilize GTN and related explosives as sources of nitrogen for growth, was purified and characterized, and its gene was cloned and sequenced. The enzyme was a 39-kDa monomeric protein which catalyzed the NADH-dependent reductive scission of GTN (Km = 23 microM) to glycerol dinitrates (mainly the 1,3-isomer) with a pH optimum of 6.5, a temperature optimum of 35 degrees C, and no dependence on metal ions for activity. It was also active on pentaerythritol tetranitrate (PETN), on isosorbide dinitrate, and, very weakly, on ethyleneglycol dinitrate, but it was inactive on isopropyl nitrate, hexahydro-1,3,5-trinitro-1,3,5-triazine, 2,4,6-trinitrotoluene, ammonium ions, nitrate, or nitrite. The amino acid sequence deduced from the DNA sequence was homologous (42 to 51% identity and 61 to 69% similarity) to those of PETN reductase from Enterobacter cloacae, N-ethylmaleimide reductase from Escherichia coli, morphinone reductase from Pseudomonas putida, and old yellow enzyme from Saccharomyces cerevisiae, placing the GTN reductase in the alpha/beta barrel flavoprotein group of proteins. GTN reductase and PETN reductase were very similar in many respects except in their distinct preferences for NADH and NADPH cofactors, respectively. PMID:9401040

  14. Ascorbate free radical reductase mRNA levels are induced by wounding.

    PubMed Central

    Grantz, A A; Brummell, D A; Bennett, A B

    1995-01-01

    A cDNA clone encoding ascorbate free radical (AFR) reductase (EC 1.6.5.4) was isolated from tomato (Lycopersicon esculentum Mill.) and its mRNA levels were analyzed. The cDNA encoded a deduced protein of 433 amino acids and possessed amino acid domains characteristic of flavin adenine dinucleotide- and NAD(P)H-binding proteins but did not possess typical eukaryotic targeting sequences, suggesting that it encodes a cytosolic form of AFR reductase. Low-stringency genomic DNA gel blot analysis indicated that a single nuclear gene encoded this enzyme. Total ascorbate contents were greatest in leaves, with decreasing amounts in stems and roots and relatively constant levels in all stages of fruit. AFR reductase activity was inversely correlated with total ascorbate content, whereas the relative abundance of AFR reductase mRNA was directly correlated with enzyme activity in tissues examined. AFR reductase mRNA abundance increased dramatically in response to wounding, a treatment that is known to also induce ascorbate-dependent prolyl hydroxylation required for the accumulation of hydroxyproline-rich glycoproteins. In addition, AFR reductase may contribute to maintaining levels of ascorbic acid for protection against wound-induced free radical-mediated damage. Collectively, the results suggest that AFR reductase activity is regulated at the level of mRNA abundance by low ascorbate contents or by factors that promote ascorbate utilization. PMID:7784511

  15. Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase

    SciTech Connect

    French, C.E.; Bruce, N.C.; Nicklin, S.

    1998-08-01

    Enterobacter cloacae PB2 was originally isolated on the basis of its ability to utilize nitrate esters, such as pentaerythritol tetranitrate (PETN) and glycerol trinitrate, as the sole nitrogen source for growth. The enzyme responsible is an NADPH-dependent reductase designated PETN reductase. E. cloacae PB2 was found to be capable of slow aerobic growth with 2,4,6-trinitrotoluene (TNT) as the sole nitrogen source. Dinitrotoluenes were not produced and could not be used as nitrogen sources. Purified PETN reductase was found to reduce TNT to its hydride-Meisenheimer complex, which was further reduced to the dihydride-Meisenheimer complex. Purified PETN reductase and recombinant Escherichia coli expressing PETN reductase were able to liberate nitrogen as nitrite from TNT. The ability to remove nitrogen from TNT suggests that PB2 or recombinant organisms expressing PETN reductase may be useful for bioremediation of TNT-contaminated soil and water.

  16. Methyltetrahydrofolate reductase polymorphism influences onset of Huntington's disease.

    PubMed

    Brune, N; Andrich, J; Gencik, M; Saft, C; Müller, Th; Valentin, S; Przuntek, H; Epplen, J T

    2004-01-01

    Onset of Huntington's disease (HD) negatively correlates with CAG repeat length of the HD gene, which encodes the protein huntingtin. This protein interacts with the homocysteine metabolizing enzyme cystathionine betasynthase (CBS). Objective of this study was to analyze the impact of CAG repeats, polymorphisms of various homocysteine metabolizing enzymes, like CBS, Methyltetrahydrofolate Reductase (MTHTR), Methionine Synthase Reductase (MSR) and methionine synthase (MS) on HD onset in 171 patients. The significant impact of CAG repeats on HD onset (chi2= 25.54, FG = 4, p<0.0001) with a significant correlation between both (R= -0.521, p=0.01) was obvious. HD patients with the homozygous MTHFR-1298-CC significantly (p = 0.024) earlier experienced HD symptoms. There was no influence demonstrable of CBS, MSR and MS. Determination of MTHFR polymorphisms and CAG repeats enables screening for subjects with putative early HD onset in order to study neuroprotective compounds in their efficacy to delay HD symptoms. PMID:15354395

  17. Enzymatic removal of diacetyl from beer. II. Further studies on the use of diacetyl reductase.

    PubMed

    Tolls, T N; Shovers, J; Sandine, W E; Elliker, P R

    1970-04-01

    Diacetyl removal from beer was studied with whole cells and crude enzyme extracts of yeasts and bacteria. Cells of Streptococcus diacetilactis 18-16 destroyed diacetyl in solutions at a rate almost equal to that achieved by the addition of whole yeast cells. Yeast cells impregnated in a diatomaceous earth filter bed removed all diacetyl from solutions percolated through the bed. Undialyzed crude enzyme extracts from yeast cells removed diacetyl very slowly from beer at its normal pH (4.1); at a pH of 5.0 or higher, rapid diacetyl removal was achieved. Dialyzed crude enzyme extracts from yeast cells were found to destroy diacetyl in a manner quite similar to that of diacetyl reductase from Aerobacter aerogenes, and both the bacterial and the yeast extracts were stimulated significantly by the addition of reduced nicotinamide adenine dinucleotide (NADH). Diacetyl reductase activity of four strains of A. aerogenes was compared; three of the strains produced enzyme with approximately twice the specific activity of the other strain (8724). Gel electrophoresis results indicated that at least three different NADH-oxidizing enzymes were present in crude extracts of diacetyl reductase. Sephadex-gel chromotography separated NADH oxidase from diacetyl reductase. It was also noted that ethyl alcohol concentrations approximately equivalent to those found in beer were quite inhibitory to diacetyl reductase. PMID:4315861

  18. In vitro expression of rat lens aldose reductase in Escherichia coli.

    PubMed Central

    Old, S E; Sato, S; Kador, P F; Carper, D A

    1990-01-01

    Aldose reductase (alditol:NADP+ oxidoreductase, EC 1.1.1.21), an enzyme that converts glucose to sorbitol, the first step of the polyol pathway, has been implicated in secondary complications of diabetes, such as cataracts, retinopathy, neuropathy, and nephropathy. Aldose reductase inhibitors have been observed to prevent or delay the onset of these complications; however, more potent and specific inhibitors are needed. Development of new inhibitors necessitates a better understanding of the molecular structure of this protein. To elucidate the structure-function relationships of aldose reductase and to develop methods of regulating this enzyme, large and homogeneous quantities of rat lens aldose reductase have been expressed in bacterial cells. A construction of the complete coding sequence and 3' untranslated region for rat lens aldose reductase was assembled in the expression vector pKK233-2 (Pharmacia). This construction expresses an active enzyme that has been purified and demonstrates kinetic, immunological, and inhibitory properties similar to rat lens aldose reductase. Images PMID:2114645

  19. Carbonyl reductase of dog liver: purification, properties, and kinetic mechanism.

    PubMed

    Hara, A; Nakayama, T; Deyashiki, Y; Kariya, K; Sawada, H

    1986-01-01

    A carbonyl reductase has been extracted into 0.5 M KCl from dog liver and purified to apparent homogeneity by a three-step procedure consisting of chromatography on CM-Sephadex, Matrex green A, and Sephadex G-100 in high-ionic-strength buffers. The enzyme is a dimer composed of two identical subunits of molecular weight 27,000. The pH optimum is 5.5 and the isoelectric point of the enzyme is 9.3. The enzyme reduces aromatic ketones and aldehydes; the aromatic ketones with adjacent medium alkyl chains are the best substrates. Quinones, ketosteroids, prostaglandins, and aliphatic carbonyl compounds are poor or inactive substrates for the enzyme. As a cofactor the enzyme utilizes NADPH, the pro-S hydrogen atom of which is transferred to the substrate. Two moles of NADPH bind to one mole of the enzyme molecule, causing a blue shift and enhancement of the cofactor fluorescence. The reductase reaction is reversible and the equilibrium constant determined at pH 7.0 is 12.8. Steady-state kinetic measurements in both directions suggest that the reaction proceeds through a di-iso ordered bi-bi mechanism. PMID:3511844

  20. Using chemical approaches to study selenoproteins - focus on thioredoxin reductases

    PubMed Central

    Hondal, Robert J.

    2009-01-01

    The study of selenocysteine-containing proteins is difficult due to the problems associated with the heterologous production of these proteins. These problems are due to the intricate recoding mechanism used by cells to translate the UGA codon as a sense codon for selenocysteine. The process is further complicated by the fact that eukaryotes and prokaryotes have different UGA recoding machineries. This review focuses on chemical approaches to produce selenoproteins and study the mechanism of selenoenzymes. The use of intein-mediated peptide ligation is discussed with respect to the production of the mammalian selenoenzymes thioredoxin reductase and selenoprotein R, also known as methionine sulfoxide reductase B1. New methods for removing protecting groups from selenocysteine post-synthesis and methods for selenosulfide/diselenide formation are also reviewed. Chemical approaches have also been used to study the enzymatic mechanism of thioredoxin reductase. The approach divides the enzyme into two modules, a large protein module lacking selenocysteine and a small, synthetic selenocysteine-containing peptide. Study of this semisynthetic enzyme has revealed three distinct enzymatic pathways that depend on the properties of the substrate. The enzyme utilizes a macromolecular mechanism for protein substrates, a second mechanism for small molecule substrates and a third pathway for selenium-containing substrates such as selenocystine. PMID:19406205

  1. Dynamics of trimethoprim bound to dihydrofolate reductase

    SciTech Connect

    Searle, M.S.; Forster, M.J.; Birdsall, B.; Roberts, G.C.K.; Feeney, J.; Cheung, H.T.A.; Kompis, I.; Geddes, A.J. )

    1988-06-01

    The conformation of a small molecule in its binding site on a protein is a major factor in the specificity of the interaction between them. In this paper, the authors report the use of {sup 1}H and {sup 13}C NMR spectroscopy to study the fluctuations in conformation of the anti-bacterial drug trimethoprim when it is bound to its target, dihydrofolate reductase. {sup 13}C relaxation measurements reveal dihedral angle changes of {plus minus}25{degree} to {plus minus}35{degree} on the subnanosecond time scale, while {sup 13}C line-shape analysis demonstrates dihedral angle changes of at least {plus minus}65{degree} on the millisecond time scale. {sup 1}H NMR shows that a specific hydrogen bond between the inhibitor and enzyme, which is believed to make an important contribution to binding, makes and breaks rapidly at room temperature.

  2. The purification and properties of a cd-cytochrome nitrite reductase from Paracoccus halodenitrificans

    NASA Technical Reports Server (NTRS)

    Mancinelli, R. L.; Cronin, S.; Hochstein, L. I.

    1986-01-01

    Paracoccus halodenitrificans, grown anaerobically in the presence of nitrite, contained membrane and cytoplasmic nitrite reductases. When assayed in the presence of phenazine methosulfate and ascorbate, the membrane-bound enzyme produced nitrous oxide whereas the cytoplasmic enzyme produced nitric oxide. When both enzymes were assayed in the presence of methyl viologen and dithionite, the cytoplasmic enzyme produced ammonia. Following solubilization, the membrane-bound enzyme behaved like the cytoplasmic enzyme, producing nitric oxide in the presence of phenazine methosulfate and ascorbate, and ammonia when assayed in the presence of methyl viologen and dithionite. The cytoplasmic and membrane-bound enzymes were purified to essentially the same specific activity. Only a single nitrite-reductase activity was detected on electrophoretic gels and the electrophoretic behavior of both enzymes suggested they were identical. The spectral properties of both enzymes suggested they were cd-type cytochromes. These data suggest that the products of nitrite reduction by the cd-cytochrome nitrite reductase are determined by the location of the enzyme and the redox potential of the electron donor.

  3. An ethoxyquin-inducible aldehyde reductase from rat liver that metabolizes aflatoxin B1 defines a subfamily of aldo-keto reductases.

    PubMed Central

    Ellis, E M; Judah, D J; Neal, G E; Hayes, J D

    1993-01-01

    Protection of liver against the toxic and carcinogenic effects of aflatoxin B1 (AFB1) can be achieved through the induction of detoxification enzymes by chemoprotectors such as the phenolic antioxidant ethoxyquin. We have cloned and sequenced a cDNA encoding an aldehyde reductase (AFB1-AR), which is expressed in rat liver in response to dietary ethoxyquin. Expression of the cDNA in Escherichia coli and purification of the recombinant enzyme reveals that the protein exhibits aldehyde reductase activity and is capable of converting the protein-binding dialdehyde form of AFB1-dihydrodiol to the nonbinding dialcohol metabolite. We show that the mRNA encoding this enzyme is markedly elevated in the liver of rats fed an ethoxyquin-containing diet, correlating with acquisition of resistance to AFB1. AFB1-AR represents the only carcinogen-metabolizing aldehyde reductase identified to date that is induced by a chemoprotector. Alignment of the amino acid sequence of AFB1-AR with other known and putative aldehyde reductases shows that it defines a subfamily within the aldo-keto reductase superfamily. Images Fig. 2 Fig. 3 Fig. 4 PMID:8234296

  4. The effect of copper and gallium compounds on ribonucleotide reductase

    SciTech Connect

    Narasimhan, J.

    1992-01-01

    The mode of action of copper complexes (CuL and CuKTS) and gallium compounds (gallium nitrate and citrate) in cytotoxicity was studied. The effects of these agents on the enzyme ribonucleotide reductase was investigated by monitoring the tyrosyl free radical present in the active site of the enzyme through electron spin resonance (ESR) spectroscopy. Ribonucleotide reductase, a key enzyme in cellular proliferation, consists of two subunits. M1, a dimer of molecular weight 170,000 contains the substrate and effector binding sites. M2, a dimer of molecular weight 88,000, contains non-heme iron and tyrosyl free radical essential for the activity of the enzyme. In studies using copper complexes, the cellular oxidative chemistry was examined by ESR studies on adduct formation with membranes, and oxidation of thiols. Membrane thiols were oxidized through the reduction of the ESR signal of the thiol adduct and the analysis of sulfhydryl content. Using the radiolabel [sup 59]Fe, the inhibitory action of copper thiosemicarbazones on cellular iron uptake was shown. The inhibitory action of CuL on ribonucleotide reductase was shown by the quenching of the tyrosyl free radical on the M2 subunit. The hypothesis that gallium directly interacts with the M2 subunit of the enzyme and displaces the iron from it was proven. The tyrosyl free radical signal from cell lysates was inhibited by the direct addition of gallium compounds. Gallium content in the cells was measured by a fluorimetric method, to ensure the presence of sufficient amounts of gallium to compete with the iron in the M2 subunit. The enzyme activity, measured by the conversion of [sup 14]C-CDP to the labeled deoxy CDP, was inhibited by the addition of gallium nitrate in a cell free assay system. The immunoprecipitation studies of the [sup 59]Fe labeled M2 protein using the monoclonal antibody directed against this subunit suggested that gallium releases iron from the M2 subunit.

  5. Nitrite Reductase Activity in Engineered Azurin Variants.

    PubMed

    Berry, Steven M; Strange, Jacob N; Bladholm, Erika L; Khatiwada, Balabhadra; Hedstrom, Christine G; Sauer, Alexandra M

    2016-05-01

    Nitrite reductase (NiR) activity was examined in a series of dicopper P.a. azurin variants in which a surface binding copper site was added through site-directed mutagenesis. Four variants were synthesized with copper binding motifs inspired by the catalytic type 2 copper binding sites found in the native noncoupled dinuclear copper enzymes nitrite reductase and peptidylglycine α-hydroxylating monooxygenase. The four azurin variants, denoted Az-NiR, Az-NiR3His, Az-PHM, and Az-PHM3His, maintained the azurin electron transfer copper center, with the second designed copper site located over 13 Å away and consisting of mutations Asn10His,Gln14Asp,Asn16His-azurin, Asn10His,Gln14His,Asn16His-azurin, Gln8Met,Gln14His,Asn16His-azurin, and Gln8His,Gln14His,Asn16His-azurin, respectively. UV-visible absorption spectroscopy, EPR spectroscopy, and electrochemistry of the sites demonstrate copper binding as well as interaction with small exogenous ligands. The nitrite reduction activity of the variants was determined, including the catalytic Michaelis-Menten parameters. The variants showed activity (0.34-0.59 min(-1)) that was slower than that of native NiRs but comparable to that of other model systems. There were small variations in activity of the four variants that correlated with the number of histidines in the added copper site. Catalysis was found to be reversible, with nitrite produced from NO. Reactions starting with reduced azurin variants demonstrated that electrons from both copper centers were used to reduce nitrite, although steady-state catalysis required the T2 copper center and did not require the T1 center. Finally, experiments separating rates of enzyme reduction from rates of reoxidation by nitrite demonstrated that the reaction with nitrite was rate limiting during catalysis. PMID:27055058

  6. Short synthesis of 16beta-hydroxy-5alpha-cholestane-3,6-dione a novel cytotoxic marine oxysterol.

    PubMed

    Denancé, Mickaël; Guyot, Michèle; Samadi, Mohammad

    2006-07-01

    The first and short synthesis of 16beta-hydroxy-5alpha-cholestane-3,6-dione 1 a metabolite from marine algae, has been achieved in six steps from readily available diosgenin 5. Selective deoxygenation of primary alcohol of triol 6 has been accomplished in one step using Et(3)SiH and catalytic amount of B(C(6)F(5))(3) to produce compound 9 in high yield. Oxidation of 11 with PCC, allowed the introduction of 3,6-ene-dione functionality, and further catalytic hydrogenation and deprotection furnished the 3,6-diketo steroid 1. PMID:16620894

  7. Isolated menthone reductase and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney B; Davis, Edward M; Ringer, Kerry L

    2013-04-23

    The present invention provides isolated menthone reductase proteins, isolated nucleic acid molecules encoding menthone reductase proteins, methods for expressing and isolating menthone reductase proteins, and transgenic plants expressing elevated levels of menthone reductase protein.

  8. Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules.

    PubMed

    Das, Undurti N

    2008-01-01

    Lowering plasma low density lipoprotein-cholesterol (LDL-C), blood pressure, homocysteine, and preventing platelet aggregation using a combination of a statin, three blood pressure lowering drugs such as a thiazide, a beta blocker, and an angiotensin converting enzyme (ACE) inhibitor each at half standard dose; folic acid; and aspirin-called as polypill- was estimated to reduce cardiovascular events by approximately 80%. Essential fatty acids (EFAs) and their long-chain metabolites: gamma-linolenic acid (GLA), dihomo-GLA (DGLA), arachidonic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) and other products such as prostaglandins E1 (PGE1), prostacyclin (PGI2), PGI3, lipoxins (LXs), resolvins, protectins including neuroprotectin D1 (NPD1) prevent platelet aggregation, lower blood pressure, have anti-arrhythmic action, reduce LDL-C, ameliorate the adverse actions of homocysteine, show anti-inflammatory actions, activate telomerase, and have cytoprotective properties. Thus, EFAs and their metabolites show all the classic actions expected of the "polypill". Unlike the proposed "polypill", EFAs are endogenous molecules present in almost all tissues, have no significant or few side effects, can be taken orally for long periods of time even by pregnant women, lactating mothers, and infants, children, and adults; and have been known to reduce the incidence cardiovascular diseases including stroke. In addition, various EFAs and their long-chain metabolites not only enhance nitric oxide generation but also react with nitric oxide to yield their respective nitroalkene derivatives that produce vascular relaxation, inhibit neutrophil degranulation and superoxide formation, inhibit platelet activation, and possess PPAR-gamma ligand activity and release NO, thus prevent platelet aggregation, thrombus formation, atherosclerosis, and cardiovascular diseases. Based on these evidences, I propose that a rational combination of omega-3 and omega-6 fatty acids and the

  9. Discovery and characterization of a xylose reductase from Zymomonas mobilis ZM4.

    PubMed

    Agrawal, Manoj; Chen, Rachel Ruizhen

    2011-11-01

    Formation of xylitol, a byproduct from xylose fermentation, is a major limiting factor in ethanol production from xylose in engineered Zymomonas strains, yet the postulated xylose reductase remains elusive. We report here the discovery of xylose reductase in Zymomonas mobilis and, for the first time, to associate the enzyme function with its gene. Besides xylose and xylulose, the enzyme was active towards benzaldehyde, furfural, 5-hydroxymethyl furfural, and acetaldehyde, exhibiting nearly 150-times higher affinity with benzaldehyde than xylose. The discovery of xylose reductase paves the way for further improvement of xylose fermentation in Z. mobilis. The enzyme may also be used to mitigate toxicity of furfural and other inhibitors from plant biomass. PMID:21720846

  10. Overproduction of dihydrofolate reductase and gene amplification in methotrexate-resistant Chinese hamster ovary cells

    SciTech Connect

    Flintoff, W.F.; Weber, M.K.; Nagainis, C.R.; Essani, A.K.; Robertson, D.; Salser, W.

    1982-03-01

    Stable isolates of Chinese hamster ovary cells that are highly resistant to methotrexate have been selected in a multistep selection process. Quantitative immunoprecipitations have indicated that these isolates synthesize dihydrofolate reductase at an elevated rate over its synthesis in sensitive cells. Restriction enzyme and Southern blot analyses with a murine reductase cDNA probe indicate that the highly resistant isolates contain amplifications of the dihydrofolate reductase gene number. Depending upon the parental line used to select these resistant cells, they overproduce either a wild-type enzyme or a structurally altered enzyme. Karyotype analysis shows that some of these isolates contain chromosomes with homogeneously staining regions whereas others do not contain such chromosomes.

  11. Purification and properties of a dissimilatory nitrate reductase from Haloferax denitrificans

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Lang, F.

    1991-01-01

    A membrane-bound nitrate reductase (nitrite:(acceptor) oxidoreductase, EC 1.7.99.4) from the extremely halophilic bacterium Haloferax denitrificans was solubilized by incubating membranes in buffer lacking NaCl and purified by DEAE, hydroxylapatite, and Sepharose 6B gel filtration chromatography. The purified nitrate reductase reduced chlorate and was inhibited by azide and cyanide. Preincubating the enzyme with cyanide increased the extent of inhibition which in turn was intensified when dithionite was present. Although cyanide was a noncompetitive inhibitor with respect to nitrate, nitrate protected against inhibition. The enzyme, as isolated, was composed of two subunits (Mr 116,000 and 60,000) and behaved as a dimer during gel filtration (Mr 380,000). Unlike other halobacterial enzymes, this nitrate reductase was most active, as well as stable, in the absence of salt.

  12. Thioredoxin and NADP-thioredoxin reductase from cultured carrot cells

    NASA Technical Reports Server (NTRS)

    Johnson, T. C.; Cao, R. Q.; Kung, J. E.; Buchanan, B. B.

    1987-01-01

    Dark-grown carrot (Daucus carota L.) tissue cultures were found to contain both protein components of the NADP/thioredoxin system--NADP-thioredoxin reductase and the thioredoxin characteristic of heterotrophic systems, thioredoxin h. Thioredoxin h was purified to apparent homogeneity and, like typical bacterial counterparts, was a 12-kdalton (kDa) acidic protein capable of activating chloroplast NADP-malate dehydrogenase (EC 1.1.1.82) more effectively than fructose-1,6-bisphosphatase (EC 3.1.3.11). NADP-thioredoxin reductase (EC 1.6.4.5) was partially purified and found to be an arsenite-sensitive enzyme composed of two 34-kDa subunits. Carrot NADP-thioredoxin reductase resembled more closely its counterpart from bacteria rather than animal cells in acceptor (thioredoxin) specificity. Upon greening of the cells, the content of NADP-thioredoxin-reductase activity, and, to a lesser extent, thioredoxin h decreased. The results confirm the presence of a heterotrophic-type thioredoxin system in plant cells and raise the question of its physiological function.

  13. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    NASA Astrophysics Data System (ADS)

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-09-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5-8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5-8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5-8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction.

  14. Domain Evolution and Functional Diversification of Sulfite Reductases

    NASA Astrophysics Data System (ADS)

    Dhillon, Ashita; Goswami, Sulip; Riley, Monica; Teske, Andreas; Sogin, Mitchell

    2005-02-01

    Sulfite reductases are key enzymes of assimilatory and dissimilatory sulfur metabolism, which occur in diverse bacterial and archaeal lineages. They share a highly conserved domain "C-X5-C-n-C-X3-C" for binding siroheme and iron-sulfur clusters that facilitate electron transfer to the substrate. For each sulfite reductase cluster, the siroheme-binding domain is positioned slightly differently at the N-terminus of dsrA and dsrB, while in the assimilatory proteins the siroheme domain is located at the C-terminus. Our sequence and phylogenetic analysis of the siroheme-binding domain shows that sulfite reductase sequences diverged from a common ancestor into four separate clusters (aSir, alSir, dsr, and asrC) that are biochemically distinct; each serves a different assimilatory or dissimilatory role in sulfur metabolism. The phylogenetic distribution and functional grouping in sulfite reductase clusters (dsrA and dsrB vs. aSiR, asrC, and alSir) suggest that their functional diversification during evolution may have preceded the bacterial/archaeal divergence.

  15. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    PubMed Central

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-01-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5–8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5–8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5–8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction. PMID:26412036

  16. A mutant of barley lacking NADH-hydroxypyruvate reductase

    SciTech Connect

    Blackwell, R.; Lea, P. )

    1989-04-01

    A mutant of barley, LaPr 88/29, deficient in peroxisomal NADH-hydroxypyruvate reductase (HPR) activity has been identified. Compared to the wild type the activities of NADH-HPR and NADPH-HPR were severely reduced but the mutant was still capable of fixing CO{sub 2} at rates equivalent to 75% of that of the wild type in air. Although lacking an enzyme in the main photorespiratory pathway, there appeared to be little disruption to photorespiratory metabolism as ammonia release, CO{sub 2} efflux and {sup 14}CO{sub 2} release from L-(U-{sup 14}C) serine were similar in both mutant and wild type. LaPr 88/29 has been used to show that NADH-glyoxylate reductase (GR) and NADH-HPR are probably not catalyzed by the same enzyme in barley and that over 80% of the NADPH-HPR activity is due to the NADH-HPR enzyme. Immunological studies, using antibodies raised against spinach HPR, have shown that the NADH-dependent enzyme protein is absent in LaPr 88/29 but there appears to be enhanced synthesis of the NADPH-dependent enzyme protein.

  17. Structural Basis for Substrate Specificity in Human Monomeric Carbonyl Reductases

    PubMed Central

    El-Hawari, Yasser; Dunford, James E.; Kochan, Grazyna; Wsol, Vladimir; Martin, Hans-Joerg; Maser, Edmund; Oppermann, Udo

    2009-01-01

    Carbonyl reduction constitutes a phase I reaction for many xenobiotics and is carried out in mammals mainly by members of two protein families, namely aldo-keto reductases and short-chain dehydrogenases/reductases. In addition to their capacity to reduce xenobiotics, several of the enzymes act on endogenous compounds such as steroids or eicosanoids. One of the major carbonyl reducing enzymes found in humans is carbonyl reductase 1 (CBR1) with a very broad substrate spectrum. A paralog, carbonyl reductase 3 (CBR3) has about 70% sequence identity and has not been sufficiently characterized to date. Screening of a focused xenobiotic compound library revealed that CBR3 has narrower substrate specificity and acts on several orthoquinones, as well as isatin or the anticancer drug oracin. To further investigate structure-activity relationships between these enzymes we crystallized CBR3, performed substrate docking, site-directed mutagenesis and compared its kinetic features to CBR1. Despite high sequence similarities, the active sites differ in shape and surface properties. The data reveal that the differences in substrate specificity are largely due to a short segment of a substrate binding loop comprising critical residues Trp229/Pro230, Ala235/Asp236 as well as part of the active site formed by Met141/Gln142 in CBR1 and CBR3, respectively. The data suggest a minor role in xenobiotic metabolism for CBR3. Enhanced version This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1. PMID:19841672

  18. A human TRIM5alpha B30.2/SPRY domain mutant gains the ability to restrict and prematurely uncoat B-tropic murine leukemia virus.

    PubMed

    Diaz-Griffero, Felipe; Perron, Michel; McGee-Estrada, Kathleen; Hanna, Robert; Maillard, Pierre V; Trono, Didier; Sodroski, Joseph

    2008-09-01

    Human TRIM5alpha restricts N-tropic murine leukemia virus (N-MLV) but not B-tropic MLV (B-MLV) infection. Here we study B30.2/SPRY domain mutants of human TRIM5alpha that acquire the ability to inhibit B-MLV infection prior to reverse transcription without losing the ability to restrict N-MLV infection. Remarkably, these mutants gain the ability to decrease the amount of particulate B-MLV capsids in the cytosol of infected cells. In addition, these mutants gain the ability to restrict SIV(mac) and HIV-2 infection. B-MLV and SIV(mac) infections were blocked by the mutant TRIM5alpha proteins prior to reverse transcription. Thus, the range of retroviruses restricted by human TRIM5alpha can be increased by changes in the B30.2/SPRY domain, which also result in the ability to cause premature uncoating of the restricted retroviral capsid. PMID:18586294

  19. In vivo estradiol production in postovulatory ovaries is enhanced by administration of testosterone but not by 5 alpha-dihydrotestosterone.

    PubMed

    Suzuki, K; Tamaoki, B

    1984-02-01

    Pre- and postovulatory states of ovaries were induced by the injection of PMSG and PMSG + hCG treatments, respectively, to immature rats. The concentration of ovarian estradiol measured by radioimmunoassay decreased significantly following hCG treatment to PMSG-pretreated rats. Subcutaneous administration of testosterone in soybean oil-glycerol mixture (9:1, v/v) restored the decreased concentration of the ovarian estradiol markedly in the PMSG + hCG treated rats, but not in the group treated with PMSG alone or in the control group treated with no gonadotropin. On the other hand, 5 alpha-dihydrotestosterone showed no increase in the ovarian estradiol of any group. When an ethanol solution of testosterone was administered s.c. to the PMSG + hCG treated rats, the ovarian estradiol level was maximally enhanced from 0.5 to 1.0 h after the injection. On the other hand, 5 alpha-dihydrotestosterone, dehydroepiandrosterone and 17 alpha-hydroxyprogesterone in ethanol showed no effect 1 h after the injection. These results indicate that the drastic decrease in ovarian estradiol production due to the hCG administration is caused by an acute decrease in the supply of aromatizable androgens to ovarian aromatase. PMID:6714511

  20. Transcriptional networks associated with 5-alpha-dihydrotestosterone in the fathead minnow (Pimephales promelas) ovary.

    PubMed

    Ornostay, Anna; Marr, Joshua; Loughery, Jennifer R; Martyniuk, Christopher J

    2016-01-01

    Androgens play a significant role in regulating oogenesis in teleost fishes. The androgen dihydrotestosterone (DHT) is a potent non-aromatizable androgen involved in sexual differentiation in mammals; however, its actions are not well understood in teleost fish. To better characterize the physiological role of DHT in the fathead minnow (FHM) ovary on a temporal scale, in vitro assays for 17β-estradiol (E2) production were conducted in parallel with microarray analysis. Ovarian explants were incubated at different concentrations of DHT (10(-6), 10(-7), and 10(-8)M DHT) in three separate experiments conducted at 6, 9, and 12h. DHT treatment resulted in a rapid and consistent increase in E2 production from the ovary at all three time points. Therefore, DHT may act to shift the balance of metabolites in the steroidogenic pathway within the ovary. Major biological themes affected by DHT in the ovary in one or more of the time points included those related to blood (e.g. vasodilation, blood vessel contraction, clotting), lipids (e.g. lipid storage, cholesterol metabolism, lipid degradation) and reproduction (e.g. hormone and steroid metabolism). Gene networks related to immune responses and calcium signaling were also affected by DHT, suggesting that this androgen may play a role in regulating these processes in the ovary. This study detected no change in mRNA levels of steroidogenic enzymes (cyp19a1, star, 11βhsd, 17βhsd, srd5a isoforms), suggesting that the observed increase in E2 production is likely more dependent on the pre-existing gene or protein complement in the ovary rather than the de novo expression of transcripts. This study increases knowledge regarding the roles of DHT and androgens in general in the teleost ovary and identifies molecular signaling pathways that may be associated with increased E2 production. PMID:26344943

  1. Human carbonyl reductase (CBR) localized to band 21q22. 1 by high-resolution fluorescence in situ hybridization displays gene dosage effects in trisomy 21 cells

    SciTech Connect

    Lemieux, N. ); Malfoy, B. ); Forrest, G.L. )

    1993-01-01

    Human carbonyl reductase (CBR) belongs to a group of NADPH-dependent enzymes called aldo-keto reductases. The enzyme can function as an aldo-keto reductase or as a quinone reductase with potential for modulating quinone-mediated oxygen free radicals. The CBR gene was mapped by high-resolution fluorescence in situ hybridization to band 21q22.12, very close to the SOD1 locus at position 2lq22.11. CBR displayed gene dosage effects in trisomy 21 human lymphoblasts at the DNA and mRNA levels. Lymphoblasts with increasing chromosome 21 ploidy also showed increased aldo-keto reductase activity and increased quinone reductase activity. Both aldo-keto reductase activity and quinone reductase activity have been shown to be associated with carbonyl reductase. The location of CBR near SOD1 and the increased enzyme activity and potential for free radical modulation in trisomy 21 cells implicate CBR as a candidate for contributing to the pathology of certain diseases such as Down syndrome and Alzheimer disease. 28 refs., 1 fig., 1 tab.

  2. Affinity purifications of aldose reductase and xylitol dehydrogenase from the xylose-fermenting yeast Pachysolen tannophilus

    SciTech Connect

    Bolen, P.L.; Roth, K.A.; Freer, S.N.

    1986-10-01

    Although xylose is a major product of hydrolysis of lignocellulosic materials, few yeasts are able to convert it to ethanol. In Pachysolen tannophilus, one of the few xylose-fermenting yeasts found, aldose reductase and xylitol dehydrogenase were found to be key enzymes in the metabolic pathway for xylose fermentation. This paper presents a method for the rapid and simultaneous purification of both aldose reductase and xylitol dehydrogenase from P. tannophilus. Preliminary studies indicate that this method may be easily adapted to purify similar enzymes from other xylose-fermenting yeasts.

  3. Aldo-Keto Reductases 1B in Adrenal Cortex Physiology

    PubMed Central

    Pastel, Emilie; Pointud, Jean-Christophe; Martinez, Antoine; Lefrançois-Martinez, A. Marie

    2016-01-01

    Aldose reductase (AKR1B) proteins are monomeric enzymes, belonging to the aldo-keto reductase (AKR) superfamily. They perform oxidoreduction of carbonyl groups from a wide variety of substrates, such as aliphatic and aromatic aldehydes or ketones. Due to the involvement of human aldose reductases in pathologies, such as diabetic complications and cancer, AKR1B subgroup enzymatic properties have been extensively characterized. However, the issue of AKR1B function in non-pathologic conditions remains poorly resolved. Adrenal activities generated large amount of harmful aldehydes from lipid peroxidation and steroidogenesis, including 4-hydroxynonenal (4-HNE) and isocaproaldehyde (4-methylpentanal), which can both be reduced by AKR1B proteins. More recently, some AKR1B isoforms have been shown to be endowed with prostaglandin F synthase (PGFS) activity, suggesting that, in addition to possible scavenger function, they could instigate paracrine signals. Interestingly, the adrenal gland is one of the major sites for human and murine AKR1B expression, suggesting that their detoxifying/signaling activity could be specifically required for the correct handling of adrenal function. Moreover, chronic effects of ACTH result in a coordinated regulation of genes encoding the steroidogenic enzymes and some AKR1B isoforms. This review presents the molecular mechanisms accounting for the adrenal-specific expression of some AKR1B genes. Using data from recent mouse genetic models, we will try to connect their enzymatic properties and regulation with adrenal functions. PMID:27499746

  4. Redesigning alcohol dehydrogenases/reductases for more efficient biosynthesis of enantiopure isomers.

    PubMed

    Zhang, Rongzhen; Xu, Yan; Xiao, Rong

    2015-12-01

    Alcohol dehydrogenases/reductases predominantly catalyze the asymmetric biosynthesis of optically pure stereoisomers because of their unique chiral constitutions. The enantioselectivities of alcohol dehydrogenases/reductases are substrate- and cofactor-dependent, and therefore they usually catalyze specific reactions with high enantioselectivity under physiological conditions; this may not be suitable for asymmetric biosynthesis with non-natural substrates or non-natural cofactors, and under nonphysiological conditions. It is therefore necessary to modify alcohol dehydrogenases/reductases using various redesigning tools such as directed evolution and rational design, and their combinations, as well as engineering enzyme modules for more efficient production of "non-natural" products. In this article, progress in these aspects of alcohol dehydrogenase/reductase design is reviewed, and future challenges are discussed. PMID:26320091

  5. The androgen 5alpha-dihydrotestosterone and its metabolite 5alpha-androstan-3beta, 17beta-diol inhibit the hypothalamo-pituitary-adrenal response to stress by acting through estrogen receptor beta-expressing neurons in the hypothalamus.

    PubMed

    Lund, Trent D; Hinds, Laura R; Handa, Robert J

    2006-02-01

    Estrogen receptor beta (ERbeta) and androgen receptor (AR) are found in high levels within populations of neurons in the hypothalamus. To determine whether AR or ERbeta plays a role in regulating hypothalamo-pituitary-adrenal (HPA) axis function by direct action on these neurons, we examined the effects of central implants of 17beta-estradiol (E2), 5alpha-dihydrotestosterone (DHT), the DHT metabolite 5alpha-androstan-3beta, 17beta-diol (3beta-diol), and several ER subtype-selective agonists on the corticosterone and adrenocorticotropin (ACTH) response to immobilization stress. In addition, activation of neurons in the paraventricular nucleus (PVN) was monitored by examining c-fos mRNA expression. Pellets containing these compounds were stereotaxically implanted near the PVN of gonadectomized male rats. Seven days later, animals were killed directly from their home cage (nonstressed) or were restrained for 30 min (stressed) before they were killed. Compared with controls, E2 and the ERalpha-selective agonists moxestrol and propyl-pyrazole-triol significantly increased the stress induced release of corticosterone and ACTH. In contrast, central administration of DHT, 3beta-diol, and the ERbeta-selective compound diarylpropionitrile significantly decreased the corticosterone and ACTH response to immobilization. Cotreatment with the ER antagonist tamoxifen completely blocked the effects of 3beta-diol and partially blocked the effect of DHT, whereas the AR antagonist flutamide had no effect. Moreover, DHT, 3beta-diol, and diarylpropionitrile treatment significantly decreased restraint-induced c-fos mRNA expression in the PVN. Together, these studies indicate that the inhibitory effects of DHT on HPA axis activity may be in part mediated via its conversion to 3beta-diol and subsequent binding to ERbeta. PMID:16452668

  6. Biological Role of Aldo–Keto Reductases in Retinoic Acid Biosynthesis and Signaling

    PubMed Central

    Ruiz, F. Xavier; Porté, Sergio; Parés, Xavier; Farrés, Jaume

    2012-01-01

    Several aldo–keto reductase (AKR) enzymes from subfamilies 1B and 1C show retinaldehyde reductase activity, having low Km and kcat values. Only AKR1B10 and 1B12, with all-trans-retinaldehyde, and AKR1C3, with 9-cis-retinaldehyde, display high catalytic efficiency. Major structural determinants for retinaldehyde isomer specificity are located in the external loops (A and C for AKR1B10, and B for AKR1C3), as assessed by site-directed mutagenesis and molecular dynamics. Cellular models have shown that AKR1B and 1C enzymes are well suited to work in vivo as retinaldehyde reductases and to regulate retinoic acid (RA) biosynthesis at hormone pre-receptor level. An additional physiological role for the retinaldehyde reductase activity of these enzymes, consistent with their tissue localization, is their participation in β-carotene absorption. Retinaldehyde metabolism may be subjected to subcellular compartmentalization, based on enzyme localization. While retinaldehyde oxidation to RA takes place in the cytosol, reduction to retinol could take place in the cytosol by AKRs or in the membranes of endoplasmic reticulum by microsomal retinaldehyde reductases. Upregulation of some AKR1 enzymes in different cancer types may be linked to their induction by oxidative stress and to their participation in different signaling pathways related to cell proliferation. AKR1B10 and AKR1C3, through their retinaldehyde reductase activity, trigger a decrease in the RA biosynthesis flow, resulting in RA deprivation and consequently lower differentiation, with an increased cancer risk in target tissues. Rational design of selective AKR inhibitors could lead to development of novel drugs for cancer treatment as well as reduction of chemotherapeutic drug resistance. PMID:22529810

  7. Isolation of Assimilatory- and Dissimilatory-Type Sulfite Reductases from Desulfovibrio vulgaris

    PubMed Central

    Lee, Jin-Po; LeGall, Jean; Peck, Harry D.

    1973-01-01

    Bisulfite reductase (desulfoviridin) and an assimilatory sulfite reductase have been purified from extracts of Desulfovibrio vulgaris. The bisulfite reductase has absorption maxima at 628, 580, 408, 390, and 279 nm, and a molecular weight of 226,000 by sedimentation equilibrium, and was judged to be free of other proteins by disk electrophoresis and ultracentrifugation. On gels, purified bisulfite reductase exhibited two green bands which coincided with activity and protein. The enzyme appears to be a tetramer but was shown to have two different types of subunits having molecular weights of 42,000 and 50,000. The chromophore did not form an alkaline ferrohemochromogen, was not reduced with dithionite or borohydride, and did not form a spectrally visible complex with CO. The assimilatory sulfite reductase has absorption maxima at 590, 545, 405 and 275 nm and a molecular weight of 26,800, and appears to consist of a single polypeptide chain as it is not dissociated into subunits by sodium dodecyl sulfate. By disk electrophoresis, purified sulfite reductase exhibited a single greenish-brown band which coincided with activity and protein. The sole product of the reduction was sulfide, and the chromophore was reduced by borohydride in the presence of sulfite. Carbon monoxide reacted with the reduced chromophore but it did not form a typical pyridine ferrohemochromogen. Thiosulfate, trithionate, and tetrathionate were not reduced by either enzyme preparation. In the presence of 8 M urea, the spectrum of bisulfite reductase resembles that of the sulfite reductase, thus suggesting a chemical relationship between the two chromophores. Images PMID:4725615

  8. Involvement of nitrate reductase in auxin-induced NO synthesis

    PubMed Central

    Erdei, L

    2008-01-01

    It is well known for a long time, that nitric oxide (NO) functions in variable physiological and developmental processes in plants, however the source of this signaling molecule in the diverse plant responses is very obscure.1 Although existance of nitric oxide sythase (NOS) in plants is still questionable, LNMMA (NG-monomethyl-L-arginine)-sensitive NO generation was observed in different plant species.2,3 In addition, nitrate reductase (NR) is confirmed to have a major role as source of NO.4,5 This multifaced molecule acts also in auxin-induced lateral root (LR) formation, since exogenous auxin enhanced NO levels in regions of Arabidopsis LR initiatives. Our results pointed out the involvement of nitrate reductase enzyme in auxin-induced NO formation. In this addendum, we speculate on auxin-induced NO production in lateral root primordial formation. PMID:19704423

  9. Involvement of nitrate reductase in auxin-induced NO synthesis.

    PubMed

    Kolbert, Zsuzsanna; Erdei, L

    2008-11-01

    It is well known for a long time, that nitric oxide (NO) functions in variable physiological and developmental processes in plants, however the source of this signaling molecule in the diverse plant responses is very obscure.1 Although existance of nitric oxide sythase (NOS) in plants is still questionable, LNMMA (N(G)-monomethyl-L-arginine)-sensitive NO generation was observed in different plant species.2,3 In addition, nitrate reductase (NR) is confirmed to have a major role as source of NO.4,5 This multifaced molecule acts also in auxin-induced lateral root (LR) formation, since exogenous auxin enhanced NO levels in regions of Arabidopsis LR initiatives. Our results pointed out the involvement of nitrate reductase enzyme in auxin-induced NO formation. In this addendum, we speculate on auxin-induced NO production in lateral root primordial formation. PMID:19704423

  10. Pinpointing a Mechanistic Switch Between Ketoreduction and “Ene” Reduction in Short‐Chain Dehydrogenases/Reductases

    PubMed Central

    Lygidakis, Antonios; Karuppiah, Vijaykumar; Hoeven, Robin; Ní Cheallaigh, Aisling; Leys, David; Gardiner, John M.; Toogood, Helen S.

    2016-01-01

    Abstract Three enzymes of the Mentha essential oil biosynthetic pathway are highly homologous, namely the ketoreductases (−)‐menthone:(−)‐menthol reductase and (−)‐menthone:(+)‐neomenthol reductase, and the “ene” reductase isopiperitenone reductase. We identified a rare catalytic residue substitution in the last two, and performed comparative crystal structure analyses and residue‐swapping mutagenesis to investigate whether this determines the reaction outcome. The result was a complete loss of native activity and a switch between ene reduction and ketoreduction. This suggests the importance of a catalytic glutamate vs. tyrosine residue in determining the outcome of the reduction of α,β‐unsaturated alkenes, due to the substrate occupying different binding conformations, and possibly also to the relative acidities of the two residues. This simple switch in mechanism by a single amino acid substitution could potentially generate a large number of de novo ene reductases. PMID:27587903

  11. Pinpointing a Mechanistic Switch Between Ketoreduction and “Ene” Reduction in Short‐Chain Dehydrogenases/Reductases

    PubMed Central

    Lygidakis, Antonios; Karuppiah, Vijaykumar; Hoeven, Robin; Ní Cheallaigh, Aisling; Leys, David; Gardiner, John M.; Toogood, Helen S.

    2016-01-01

    Abstract Three enzymes of the Mentha essential oil biosynthetic pathway are highly homologous, namely the ketoreductases (−)‐menthone:(−)‐menthol reductase and (−)‐menthone:(+)‐neomenthol reductase, and the “ene” reductase isopiperitenone reductase. We identified a rare catalytic residue substitution in the last two, and performed comparative crystal structure analyses and residue‐swapping mutagenesis to investigate whether this determines the reaction outcome. The result was a complete loss of native activity and a switch between ene reduction and ketoreduction. This suggests the importance of a catalytic glutamate vs. tyrosine residue in determining the outcome of the reduction of α,β‐unsaturated alkenes, due to the substrate occupying different binding conformations, and possibly also to the relative acidities of the two residues. This simple switch in mechanism by a single amino acid substitution could potentially generate a large number of de novo ene reductases. PMID:27411040

  12. Reversibility of the inhibitory effect of atrazine and lindane on cytosol 5. alpha. -dihydrotestosterone receptor complex formation in rat prostate

    SciTech Connect

    Simic, B.; Kniewald, Z.; Kniewald, J. ); Davies, J.E. )

    1991-01-01

    Once entering the bloodstream, most toxic substances, including pesticides, can reach organs involved in the reproductive system. They can cross the placenta, as well as the brain barrier, posing various risks to the reproductive processes. The organochlorine insecticide lindane and the s-triazine herbicide atrazine produce changes in hormone-dependent reactions in the rat hypothalamus, anterior pituitary, and prostate. Lindane also causes histological and biochemical alterations in the rat testis. In vivo treatment with atrazine produces a markedly inhibitory influence of 5{alpha}-dihydrotestosterone - receptor complex formation in rat prostate cytosol. Therefore, the aim of this study was to investigate whether such changes in the crucial step in the reproductive process are reversible. A parallel investigation using lindane was also undertaken.

  13. Isolation and Characterization of cDNAs Encoding Leucoanthocyanidin Reductase and Anthocyanidin Reductase from Populus trichocarpa

    PubMed Central

    Lu, Wanxiang; Yang, Li; Karim, Abdul; Luo, Keming

    2013-01-01

    Proanthocyanidins (PAs) contribute to poplar defense mechanisms against biotic and abiotic stresses. Transcripts of PA biosynthetic genes accumulated rapidly in response to infection by the fungus Marssonina brunnea f.sp. multigermtubi, treatments of salicylic acid (SA) and wounding, resulting in PA accumulation in poplar leaves. Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) are two key enzymes of the PA biosynthesis that produce the main subunits: (+)-catechin and (−)-epicatechin required for formation of PA polymers. In Populus, ANR and LAR are encoded by at least two and three highly related genes, respectively. In this study, we isolated and functionally characterized genes PtrANR1 and PtrLAR1 from P. trichocarpa. Phylogenetic analysis shows that Populus ANR1 and LAR1 occurr in two distinct phylogenetic lineages, but both genes have little difference in their tissue distribution, preferentially expressed in roots. Overexpression of PtrANR1 in poplar resulted in a significant increase in PA levels but no impact on catechin levels. Antisense down-regulation of PtrANR1 showed reduced PA accumulation in transgenic lines, but increased levels of anthocyanin content. Ectopic expression of PtrLAR1 in poplar positively regulated the biosynthesis of PAs, whereas the accumulation of anthocyanin and flavonol was significantly reduced (P<0.05) in all transgenic plants compared to the control plants. These results suggest that both PtrANR1 and PtrLAR1 contribute to PA biosynthesis in Populus. PMID:23741362

  14. Purine nucleoside phosphorylase as a cytosolic arsenate reductase.

    PubMed

    Gregus, Zoltán; Németi, Balázs

    2002-11-01

    The findings of the accompanying paper (Németi and Gregus, Toxicol: Sci. 70, 4-12) indicate that the arsenate (AsV) reductase activity of rat liver cytosol is due to an SH enzyme that uses phosphate (or its analogue, arsenate, AsV) and a purine nucleoside (guanosine or inosine) as substrates. Purine nucleoside phosphorylase (PNP) is such an enzyme. It catalyzes the phosphorolytic cleavage of 6-oxopurine nucleosides according to the following scheme: guanosine (or inosine) + phosphate <--> guanine (or hypoxanthine) + ribose-1-phosphate. Therefore, we have tested the hypothesis that PNP is responsible for the thiol- and purine nucleoside-dependent reduction of AsV to AsIII by rat liver cytosol. AsIII formed from AsV was quantified by HPLC-hydride generation-atomic fluorescence spectrometry analysis of the deproteinized incubates. The following findings support the conclusion that PNP reduces AsV to AsIII, using AsV instead of phosphate in the reaction above: (1) Specific PNP inhibitors (CI-1000, BCX-1777) at a concentration of 1 microM completely inhibited cytosolic AsV reductase activity. (2) During anion-exchange chromatography of cytosolic proteins, PNP activity perfectly coeluted with the AsV reductase activity, suggesting that both activities belong to the same protein. (3) PNP purified from calf spleen catalyzed reduction of AsV to AsIII in the presence of dithiothreitol (DTT) and a 6-oxopurine nucleoside (guanosine or inosine). (4) AsV reductase activity of purified PNP, like the cytosolic AsV reductase activity, was inhibited by phosphate (a substrate of PNP alternative to AsV), guanine and hypoxanthine (products of PNP favoring the reverse reaction), mercurial thiol reagents (nonspecific inhibitors of PNP), as well as CI-1000 and BCX-1777 (specific PNP inhibitors). Thus, PNP appears to be responsible for the AsV reductase activity of rat liver cytosol in the presence of DTT. Further research should clarify the mechanism and the in vivo significance of PNP

  15. The C-terminal loop of aldehyde reductase determines the substrate and inhibitor specificity.

    PubMed

    Barski, O A; Gabbay, K H; Bohren, K M

    1996-11-12

    Human aldehyde reductase has a preference for carboxyl group-containing negatively charged substrates. It belongs to the NADPH-dependent aldo-keto reductase superfamily whose members are in part distinguished by unique C-terminal loops. To probe the role of the C-terminal loops in determining substrate specificities in these enzymes, two arginine residues, Arg308 and Arg311, located in the C-terminal loop of aldehyde reductase, and not found in any other C-terminal loop, were replaced with alanine residues. The catalytic efficiency of the R311A mutant for aldehydes containing a carboxyl group is reduced 150-250-fold in comparison to that of the wild-type enzyme, while substrates not containing a negative charge are unaffected. The R311A mutant is also significantly less sensitive to inhibition by dicarboxylic acids, indicating that Arg311 interacts with one of the carboxyl groups. The inhibition pattern indicates that the other carboxyl group binds to the anion binding site formed by Tyr49, His112, and the nicotinamide moiety of NADP+. The correlation between inhibitor potency and the length of the dicarboxylic acid molecules suggests a distance of approximately 10 A between the amino group of Arg311 and the anion binding site in the aldehyde reductase molecule. The sensitivity of inhibition of the R311A mutant by several commercially available aldose reductase inhibitors (ARIs) was variable, with tolrestat and zopolrestat becoming more potent inhibitors (30- and 5-fold, respectively), while others remained the same or became less potent. The catalytic properties, substrate specificity, and susceptibility to inhibition of the R308A mutant remained similar to that of the wild-type enzyme. The data provide direct evidence for C-terminal loop participation in determining substrate and inhibitor specificity of aldo-keto reductases and specifically identifies Arg311 as the basis for the carboxyl-containing substrate preference of aldehyde reductase. PMID:8916913

  16. Molecular cloning and transcription expression of 3-dehydroecdysone 3α-reductase (3de 3α-reductase) in the different tissues and the developing stage from the silkworm, Bombyx mori L.

    PubMed

    Yang, Hua-jun; Xin, Hu-hu; Lu, Yan; Cai, Zi-zheng; Wang, Mei-xian; Chen, Rui-Ting; Liang, Shuang; Singh, Chabungbam Orville; Kim, Jong-nam; Miao, Yun-gen

    2013-10-01

    Molting in insects is regulated by molting hormones (ecdysteroids), which are also crucial to insect growth, development, and reproduction etc. The decreased ecdysteroid in titre results from enhanced ecdysteroid inactivation reactions including the formation of 3-epiecdyson under ecdysone oxidase and 3-dehydroecdysone 3α-reductase (3DE 3α-reductase). In this paper, we cloned and characterized 3-dehydroecdysone 3α-reductase (3DE 3α-reductase) in different tissues and developing stage of the silkworm, Bombyx mori L. The B. mori 3DE 3α-reductase cDNA contains an ORF 783 bp and the deduced protein sequence containing 260 amino acid residues. Analysis showed the deduced 3DE 3α-reductase belongs to SDR family, which has the NAD(P)-binding domain. Using the Escherichia coli, a high level expression of a fusion polypeptide band of approx. 33 kDa was observed. High transcription of 3DE 3α-reductase was mainly presented in the midgut and hemolymph in the third day of fifth instar larvae in silkworm. The expression of 3DE 3α-reductase at different stages of larval showed that the activity in the early instar was high, and then reduced in late instar. This is parallel to the changes of molting hormone titer in larval. 3DE 3α-reductase is key enzyme in inactivation path of ecdysteroid. The data elucidate the regulation of 3DE 3α-reductase in ecdyteroid titer of its targeting organs and the relationship between the enzyme and metamorphosis. PMID:24038161

  17. Regulation and degradation of HMGCo-A reductase.

    PubMed

    Panda, T; Devi, V Amutha

    2004-12-01

    The enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) controls the biosynthesis of cholesterol. Hypercholesterolemia and atherosclerosis are critical health risk factors. One way of controlling these risk factors is to manipulate regulation as well as degradation of HMGR. At present, a class of compounds called statins, which are HMGR inhibitors, are used for the treatment of hypercholesterolemia. However, statins suffer major setbacks as their use produces more adverse reactions than the desirable one of inhibiting the enzyme. Genetically engineered forms of HMGR are also studied in primitive life forms like bacteria, but detailed investigation of this enzyme in human systems is certainly required. Extensive studies have been made on the regulatory aspects of this enzyme, but no breakthrough is conspicuous in the clinical background to find an alternative treatment for hypercholesterolemia. The immediate need is to find an alternate way of regulating degradation of the enzyme. This review presents the importance of regulation and degradation of the HMGR enzyme in different systems to gain possible insight into alternative schemes for regulating this enzyme and, if these exist, the feasibility of extending them same to studies in mammalian systems. A high degree of similarity exists between mammalian and yeast HMGR. Detailed studies reported on the regulation and degradation of the yeast enzyme also throw more light on the mammalian system, leading to a better understanding of ways of controlling hypercholesterolemia. PMID:15558272

  18. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    PubMed

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases. PMID:12626517

  19. Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation.

    PubMed

    Begara-Morales, Juan C; Sánchez-Calvo, Beatriz; Chaki, Mounira; Mata-Pérez, Capilla; Valderrama, Raquel; Padilla, María N; López-Jaramillo, Javier; Luque, Francisco; Corpas, Francisco J; Barroso, Juan B

    2015-09-01

    The ascorbate-glutathione cycle is a metabolic pathway that detoxifies hydrogen peroxide and involves enzymatic and non-enzymatic antioxidants. Proteomic studies have shown that some enzymes in this cycle such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), and glutathione reductase (GR) are potential targets for post-translational modifications (PMTs) mediated by nitric oxide-derived molecules. Using purified recombinant pea peroxisomal MDAR and cytosolic and chloroplastic GR enzymes produced in Escherichia coli, the effects of peroxynitrite (ONOO(-)) and S-nitrosoglutathione (GSNO) which are known to mediate protein nitration and S-nitrosylation processes, respectively, were analysed. Although ONOO(-) and GSNO inhibit peroxisomal MDAR activity, chloroplastic and cytosolic GR were not affected by these molecules. Mass spectrometric analysis of the nitrated MDAR revealed that Tyr213, Try292, and Tyr345 were exclusively nitrated to 3-nitrotyrosine by ONOO(-). The location of these residues in the structure of pea peroxisomal MDAR reveals that Tyr345 is found at 3.3 Å of His313 which is involved in the NADP-binding site. Site-directed mutagenesis confirmed Tyr345 as the primary site of nitration responsible for the inhibition of MDAR activity by ONOO(-). These results provide new insights into the molecular regulation of MDAR which is deactivated by nitration and S-nitrosylation. However, GR was not affected by ONOO(-) or GSNO, suggesting the existence of a mechanism to conserve redox status by maintaining the level of reduced GSH. Under a nitro-oxidative stress induced by salinity (150mM NaCl), MDAR expression (mRNA, protein, and enzyme activity levels) was increased, probably to compensate the inhibitory effects of S-nitrosylation and nitration on the enzyme. The present data show the modulation of the antioxidative response of key enzymes in the ascorbate-glutathione cycle by nitric oxide (NO)-PTMs, thus indicating the close involvement of

  20. Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation

    PubMed Central

    Begara-Morales, Juan C.; Sánchez-Calvo, Beatriz; Chaki, Mounira; Mata-Pérez, Capilla; Valderrama, Raquel; Padilla, María N.; Luque, Francisco; Corpas, Francisco J.; Barroso, Juan B.

    2015-01-01

    The ascorbate–glutathione cycle is a metabolic pathway that detoxifies hydrogen peroxide and involves enzymatic and non-enzymatic antioxidants. Proteomic studies have shown that some enzymes in this cycle such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), and glutathione reductase (GR) are potential targets for post-translational modifications (PMTs) mediated by nitric oxide-derived molecules. Using purified recombinant pea peroxisomal MDAR and cytosolic and chloroplastic GR enzymes produced in Escherichia coli, the effects of peroxynitrite (ONOO–) and S-nitrosoglutathione (GSNO) which are known to mediate protein nitration and S-nitrosylation processes, respectively, were analysed. Although ONOO– and GSNO inhibit peroxisomal MDAR activity, chloroplastic and cytosolic GR were not affected by these molecules. Mass spectrometric analysis of the nitrated MDAR revealed that Tyr213, Try292, and Tyr345 were exclusively nitrated to 3-nitrotyrosine by ONOO–. The location of these residues in the structure of pea peroxisomal MDAR reveals that Tyr345 is found at 3.3 Å of His313 which is involved in the NADP-binding site. Site-directed mutagenesis confirmed Tyr345 as the primary site of nitration responsible for the inhibition of MDAR activity by ONOO–. These results provide new insights into the molecular regulation of MDAR which is deactivated by nitration and S-nitrosylation. However, GR was not affected by ONOO– or GSNO, suggesting the existence of a mechanism to conserve redox status by maintaining the level of reduced GSH. Under a nitro-oxidative stress induced by salinity (150mM NaCl), MDAR expression (mRNA, protein, and enzyme activity levels) was increased, probably to compensate the inhibitory effects of S-nitrosylation and nitration on the enzyme. The present data show the modulation of the antioxidative response of key enzymes in the ascorbate–glutathione cycle by nitric oxide (NO)-PTMs, thus indicating the close involvement

  1. Alteration of the alkaloid profile in genetically modified tobacco reveals a role of methylenetetrahydrofolate reductase in nicotine N-demethylation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme of the tetrahydrofolate (THF)-mediated one-carbon (C1) metabolic network. This enzyme catalyzes reduction of 5,10-methylene-THF to 5-methyl-THF. The latter donates its methyl group to homocysteine forming Met, which is then used for the syn...

  2. Substrate specificity of an aflatoxin-metabolizing aldehyde reductase.

    PubMed Central

    Ellis, E M; Hayes, J D

    1995-01-01

    The enzyme from rat liver that reduces aflatoxin B1-dialdehyde exhibits a unique catalytic specificity distinct from that of other aldo-keto reductases. This enzyme, designated AFAR, displays high activity towards dicarbonyl-containing compounds with ketone groups on adjacent carbon atoms; 9,10-phenanthrenequinone, acenaphthenequinone and camphorquinone were found to be good substrates. Although AFAR can also reduce aromatic and aliphatic aldehydes such as succinic semialdehyde, it is inactive with glucose, galactose and xylose. The enzyme also exhibits low activity towards alpha,beta-unsaturated carbonyl-containing compounds. Determination of the apparent Km reveals that AFAR has highest affinity for 9,10-phenanthrenequinone and succinic semialdehyde, and low affinity for glyoxal and DL-glyceraldehyde. PMID:8526867

  3. Cotton Benzoquinone Reductase: Up-regulation During Early Cotton Fiber Developement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Benzoquinone reductase (BR; EC 1.6.5.7) is an enzyme that catalyzes the bivalent redox reactions of quinones without the production of free radical intermediates. Using 2-D PAGE comparisons, two proteins were found to be up-regulated in wild-type cotton ovules during the fiber initiation stage but ...

  4. Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase

    SciTech Connect

    Park, C.H.; Keyhan, M.; Wielinga, B.; Fendorf, S.; Matin, A.

    2000-05-01

    Cr(VI) (chromate) is a widespread environmental contaminant. Bacterial chromate reductases can convert soluble and toxic chromate to the insoluble and less toxic Cr(III). Bioremediation can therefore be effective in removing chromate from the environment, especially if the bacterial propensity for such removal is enhanced by genetic and biochemical engineering. To clone the chromate reductase-encoding gene, the authors purified to homogeneity and characterized a novel soluble chromate reductase from Pseudomonas putida, using ammonium sulfate precipitation, anion-exchange chromatography, chromatofocusing, and gel filtration. The enzyme activity was dependent on NADH or NADPH; the temperature and pH optima for chromate reduction were 80 C and 5, respectively; and the K{sub m} was 374 {micro}M, with a V{sub max} of 1.72 {micro}mol/min/mg of protein. Sulfate inhibited the enzyme activity noncompetitively. The reductase activity remained virtually unaltered after 30 min of exposure to 50 C; even exposure to higher temperatures did not immediately inactivate the enzyme. X-ray absorption near-edge-structure spectra showed quantitative conversion of chromate to Cr(III) during the enzyme reaction.

  5. Cloning and functional characterization of MtFRO1, a root iron reductase from Medicago truncatula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Iron is an essential micronutrient, and although it is abundant in the soil, it can be poorly available under certain soil conditions. The activity of the Fe(III) reductase enzyme, an integral plasma membrane protein belonging to the super-family of the flavocytochromes (1), is the rate-limiting phy...

  6. EFFECT OF LINDANE ON INTESTINAL NITROREDUCTASE, AZO REDUCTASE, B-GLUCURONIDASE, DECHLORINASE AND DEHYDROCHLORINASE ACTIVITY

    EPA Science Inventory

    The effect of daily p.o. injections of 20 mg/kg lindane on nitroreductase, azo reductase, B-glucuronidase, dechlorinase and dehydrochlorinase enzyme activity in the rat intestinal tract vas investigated after 2 weeks and 5 weeks of treatment. Antibiotics were administered to half...

  7. The biological activity of 3alpha-hydroxysteroid oxido-reductase in the spinal cord regulates thermal and mechanical pain thresholds after sciatic nerve injury.

    PubMed

    Meyer, Laurence; Venard, Christine; Schaeffer, Véronique; Patte-Mensah, Christine; Mensah-Nyagan, Ayikoe G

    2008-04-01

    Identification of cellular targets pertinent for the development of effective therapies against pathological pain constitutes a difficult challenge. We combined several approaches to show that 3alpha-hydroxysteroid oxido-reductase (3alpha-HSOR), abundantly expressed in the spinal cord (SC), is a key target, the modulation of which markedly affects nociception. 3alpha-HSOR catalyzes the biosynthesis and oxidation of 3alpha,5alpha-reduced neurosteroids as allopregnanolone (3alpha,5alpha-THP), which stimulates GABA(A) receptors. Intrathecal injection of Provera (pharmacological inhibitor of 3alpha-HSOR activity) in naive rat SC decreased thermal and mechanical nociceptive thresholds assessed with behavioral methods. In contrast, pain thresholds were dose-dependently increased by 3alpha,5alpha-THP. In animals subjected to sciatic nerve injury-evoked neuropathic pain, molecular and biochemical experiments revealed an up-regulation of 3alpha-HSOR reductive activity in the SC. Enhancement of 3alpha,5alpha-THP concentration in the SC induced analgesia in neuropathic rats while Provera exacerbated their pathological state. Possibilities are opened for chronic pain control with drugs modulating 3alpha-HSOR activity in nerve cells. PMID:18291663

  8. Purification and partial characterization of NADPH-cytochrome c reductase from Petunia hybrida flowers.

    PubMed Central

    Menting, J G; Cornish, E; Scopes, R K

    1994-01-01

    NADPH-cytochrome c reductase was solubilized from the microsomal fraction of Petunia hybrida flowers by 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate detergent and purified by adenosine 2',5'-bisphosphate-Sepharose chromatography, followed by high-performance anion-exchange chromatography. Two proteins with molecular sizes of 75 and 81 kD were detected in the purified preparation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Western blot analysis showed that both purified proteins cross-reacted with two different monoclonal antibodies raised against P. hybrida NADPH-cytochrome c reductase and rabbit anti-Jerusalem artichoke NADPH-cytochrome P450 reductase antibodies. Only one 84-kD protein was detected by western blot analysis of fresh microsomal extracts. Amino acid sequence analysis of tryptic peptides revealed significant similarity to the NADPH binding region of plant and animal NADPH-cytochrome P450 reductases and Bacillus megaterium cytochrome P450:NADPH-cytochrome P450 reductase. The pH optimum for reduction of ferricytochrome c was 7.4 and the Km values for the binding of NADPH and ferricytochrome c were 9.2 and 2.8 microM, respectively. We believe that the purified enzyme is a P. hybrida NADPH-cytochrome P450 reductase (EC 1.6.2.4). PMID:7991686

  9. Characterization of anaerobic sulfite reduction by Salmonella typhimurium and purification of the anaerobically induced sulfite reductase

    SciTech Connect

    Hallenbeck, P.C. ); Clark, M.A.; Barrett, E.L. )

    1989-06-01

    Mutants of Salmonella typhimurium that lack the biosynthetic sulfite reductase (cysI and cysJ mutants) retain the ability to reduce sulfite for growth under anaerobic conditions. Here we report studies of sulfite reduction by a cysI mutant of S. typhimurium and purification of the associated anaerobic sulfite reductase. Sulfite reduction for anaerobic growth did not require a reducing atmosphere but was prevented by an argon atmosphere contaminated with air (<0.33%). It was also prevented by the presence of 0.1 mM nitrate. Anaerobic growth in liquid minimal medium, but not on agar, was found to require additions of trace amounts (10{sup {minus}7} M) of cysteine. Spontaneous mutants that grew under the argon contaminated with air also lost the requirement for 10{sup {minus}7}M cysteine for anaerobic growth in liquid. A role for sulfite reduction in anaerobic energy generation was contraindicated by the findings that sulfite reduction did not improve cell yields, and anaerobic sulfite reductase activity was greatest during the stationary phase of growth. Sulfite reductase was purified from the cytoplasmic fraction of the anaerobically grown cysI mutant and was purified 190-fold. The most effective donor in crude extracts was NADH. NADHP and methyl viologen were, respectively, 40 and 30% as effective as NADH. Oxygen reversibly inhibited the enzyme. The anaerobic sulfite reductase showed some resemblance to the biosynthetic sulfite reductase, but apparently it has a unique, as yet unidentified function.

  10. Controlling Cholesterol Synthesis beyond 3-Hydroxy-3-methylglutaryl-CoA Reductase (HMGCR)*

    PubMed Central

    Sharpe, Laura J.; Brown, Andrew J.

    2013-01-01

    3-Hydroxy-3-methylglutaryl-CoA reductase (HMGCR) is the target of the statins, important drugs that lower blood cholesterol levels and treat cardiovascular disease. Consequently, the regulation of HMGCR has been investigated in detail. However, this enzyme acts very early in the cholesterol synthesis pathway, with ∼20 subsequent enzymes needed to produce cholesterol. How they are regulated is largely unexplored territory, but there is growing evidence that enzymes beyond HMGCR serve as flux-controlling points. Here, we introduce some of the known regulatory mechanisms affecting enzymes beyond HMGCR and highlight the need to further investigate their control. PMID:23696639

  11. Nitroimidazole Action in Entamoeba histolytica: A Central Role for Thioredoxin Reductase

    PubMed Central

    Leitsch, David; Kolarich, Daniel; Wilson, Iain B. H; Altmann, Friedrich; Duchêne, Michael

    2007-01-01

    Metronidazole, a 5-nitroimidazole drug, has been the gold standard for several decades in the treatment of infections with microaerophilic protist parasites, including Entamoeba histolytica. For activation, the drug must be chemically reduced, but little is known about the targets of the active metabolites. Applying two-dimensional gel electrophoresis and mass spectrometry, we searched for protein targets in E. histolytica. Of all proteins visualized, only five were found to form adducts with metronidazole metabolites: thioredoxin, thioredoxin reductase, superoxide dismutase, purine nucleoside phosphorylase, and a previously unknown protein. Recombinant thioredoxin reductase carrying the modification displayed reduced enzymatic activity. In treated cells, essential non-protein thiols such as free cysteine were also affected by covalent adduct formation, their levels being drastically reduced. Accordingly, addition of cysteine allowed E. histolytica to survive in the presence of otherwise lethal metronidazole concentrations and reduced protein adduct formation. Finally, we discovered that thioredoxin reductase reduces metronidazole and other nitro compounds, suggesting a new model of metronidazole activation in E. histolytica with a central role for thioredoxin reductase. By reducing metronidazole, the enzyme renders itself and associated thiol-containing proteins vulnerable to adduct formation. Because thioredoxin reductase is a ubiquitous enzyme, similar processes could occur in other eukaryotic or prokaryotic organisms. PMID:17676992

  12. Testosterone selectively affects aromatase and 5α-reductase activities in the green anole lizard brain

    PubMed Central

    Cohen, Rachel E.; Wade, Juli

    2011-01-01

    Testosterone (T) and its metabolites are important in the regulation of reproductive behavior in males of a variety of vertebrate species. Aromatase converts T to estradiol and 5α-reductase converts T to 5α-dihydrotestosterone (DHT). Male green anole reproduction depends on androgens, yet 5α-reductase in the brain is not sexually dimorphic and does not vary with season. In contrast, aromatase activity in the male brain is increased during the breeding compared to non-breeding season, and males have higher levels than females during the breeding season. Aromatase is important for female, but not male, sexual behaviors. The present experiment was conducted to determine whether 5α-reductase and aromatase are regulated by T. Enzyme activity was quantified in whole brain homogenates in both the breeding and non-breeding seasons in males and females that had been treated with either a T or blank implant. In males only, T increased 5α-reductase activity regardless of season and up-regulated aromatase during the breeding season specifically. Thus, regulation of both enzymes occurs in males, whereas females do not show parallel sensitivity to T. When considered with previous results, the data suggest that aromatase might influence a male function associated with the breeding season other than sexual behavior. 5α-Reductase can be mediated by T availability, but this regulation may not serve a sex- or season-specific purpose. PMID:19917285

  13. Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues.

    PubMed

    Youngblut, Matthew D; Tsai, Chi-Lin; Clark, Iain C; Carlson, Hans K; Maglaqui, Adrian P; Gau-Pan, Phonchien S; Redford, Steven A; Wong, Alan; Tainer, John A; Coates, John D

    2016-04-22

    Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 μm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO3 (2-) bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth. PMID:26940877

  14. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations

    PubMed Central

    Steinkellner, Georg; Gruber, Christian C.; Pavkov-Keller, Tea; Binter, Alexandra; Steiner, Kerstin; Winkler, Christoph; Łyskowski, Andrzej; Schwamberger, Orsolya; Oberer, Monika; Schwab, Helmut; Faber, Kurt; Macheroux, Peter; Gruber, Karl

    2014-01-01

    The exploitation of catalytic promiscuity and the application of de novo design have recently opened the access to novel, non-natural enzymatic activities. Here we describe a structural bioinformatic method for predicting catalytic activities of enzymes based on three-dimensional constellations of functional groups in active sites (‘catalophores’). As a proof-of-concept we identify two enzymes with predicted promiscuous ene-reductase activity (reduction of activated C–C double bonds) and compare them with known ene-reductases, that is, members of the Old Yellow Enzyme family. Despite completely different amino acid sequences, overall structures and protein folds, high-resolution crystal structures reveal equivalent binding modes of typical Old Yellow Enzyme substrates and ligands. Biochemical and biocatalytic data show that the two enzymes indeed possess ene-reductase activity and reveal an inverted stereopreference compared with Old Yellow Enzymes for some substrates. This method could thus be a tool for the identification of viable starting points for the development and engineering of novel biocatalysts. PMID:24954722

  15. The metabolism of nitrosothiols in the Mycobacteria: identification and characterization of S-nitrosomycothiol reductase.

    PubMed Central

    Vogt, Ryan N; Steenkamp, Daniel J; Zheng, Renjian; Blanchard, John S

    2003-01-01

    When grown in culture Mycobacterium smegmatis metabolized S-nitrosoglutathione to oxidized glutathione and nitrate, which suggested a possible involvement of an S-nitrosothiol reductase and mycobacterial haemoglobin. The mycothiol-dependent formaldehyde dehydrogenase from M. smegmatis was purified by a combination of Ni2+-IMAC (immobilized metal ion affinity chromatography), hydrophobic interaction, anion-exchange and affinity chromatography. The enzyme had a subunit molecular mass of 38263 kDa. Steady-state kinetic studies indicated that the enzyme catalyses the NAD+-dependent conversion of S-hydroxymethylmycothiol into formic acid and mycothiol by a rapid-equilibrium ordered mechanism. The enzyme also catalysed an NADH-dependent decomposition of S-nitrosomycothiol (MSNO) by a sequential mechanism and with an equimolar stoichiometry of NADH:MSNO, which indicated that the enzyme reduces the nitroso group to the oxidation level of nitroxyl. Vmax for the MSNO reductase reaction indicated a turnover per subunit of approx. 116700 min(-1), which was 76-fold faster than the formaldehyde dehydrogenase activity. A gene, Rv2259, annotated as a class III alcohol dehydrogenase in the Mycobacterium tuberculosis genome was cloned and expressed in M. smegmatis as the C-terminally His6-tagged product. The purified recombinant enzyme from M. tuberculosis also catalysed both activities. M. smegmatis S-nitrosomycothiol reductase converted MSNO into the N -hydroxysulphenamide, which readily rearranged to mycothiolsulphinamide. In the presence of MSNO reductase, M. tuberculosis HbN (haemoglobin N) was converted with low efficiency into metHbN [HbN(Fe3+)] and this conversion was dependent on turnover of MSNO reductase. These observations suggest a possible route in vivo for the dissimilation of S-nitrosoglutathione. PMID:12809551

  16. Enzyme Substrate Reactions in High Magnetic Fields

    PubMed Central

    Maling, J. E.; Weissbluth, M.; Jacobs, E. E.

    1965-01-01

    The reaction rates of two enzyme substrate systems, ribonuclease-RNA and succinate-cytochrome c reductase, were followed as a function of magnetic field from zero to 48,000 gauss. The reaction rates remained constant to within 10 per cent. PMID:5884011

  17. Biochemical Characterization of Inducible 'Reductase' Component of Benzoate Dioxygenase and Phthalate Isomer Dioxygenases from Pseudomonas aeruginosa strain PP4.

    PubMed

    Karandikar, Rohini; Badri, Abinaya; Phale, Prashant S

    2015-09-01

    The first step involved in the degradation of phthalate isomers (phthalate, isophthalate and terephthalate) is the double hydroxylation by respective aromatic-ring hydroxylating dioxygenases. These are two component enzymes consisting of 'oxygenase' and 'reductase' components. Soil isolate Pseudomonas aeruginosa strain PP4 degrades phthalate isomers via protocatechuate and benzoate via catechol 'ortho' ring cleavage pathway. Metabolic studies suggest that strain PP4 has carbon source-specific inducible phthalate isomer dioxygenase and benzoate dioxygenase. Thus, it was of interest to study the properties of reductase components of these enzymes. Reductase activity from phthalate isomer-grown cells was 3-5-folds higher than benzoate grown cells. In-gel activity staining profile showed a reductase activity band of R f 0.56 for phthalate isomer-grown cells as compared to R f 0.73 from benzoate-grown cells. Partially purified reductase components from phthalate isomer grown cells showed K m in the range of 30-40 μM and V max = 34-48 μmol min(-1) mg(-1). However, reductase from benzoate grown cells showed K m = 49 μM and V max = 10 μmol min(-1) mg(-1). Strikingly similar molecular and kinetic properties of reductase component from phthalate isomer-grown cells suggest that probably the same reductase component is employed in three phthalate isomer dioxygenases. However, reductase component is different, with respect to kinetic properties and zymogram analysis, from benzoate-grown cells when compared to that from phthalate isomer grown cells of PP4. PMID:26201480

  18. Putative Role of the Aldo-Keto Reductase from Trypanosoma cruzi in Benznidazole Metabolism.

    PubMed

    Garavaglia, Patricia Andrea; Laverrière, Marc; Cannata, Joaquín J B; García, Gabriela Andrea

    2016-05-01

    Benznidazole (Bz), the drug used for treatment of Chagas' disease (caused by the protozoan Trypanosoma cruzi), is activated by a parasitic NADH-dependent type I nitroreductase (NTR I). However, several studies have shown that other enzymes are involved. The aim of this study was to evaluate whether the aldo-keto reductase from T. cruzi (TcAKR), a NADPH-dependent oxido-reductase previously described by our group, uses Bz as the substrate. We demonstrated that both recombinant and native TcAKR enzymes reduce Bz by using NADPH, but not NADH, as a cofactor. TcAKR-overexpressing epimastigotes showed higher NADPH-dependent Bz reductase activity and a 50% inhibitory concentration (IC50) value for Bz 1.8-fold higher than that of the controls, suggesting that TcAKR is involved in Bz detoxification instead of activation. To understand the role of TcAKR in Bz metabolism, we studied TcAKR expression and NADPH/NADH-dependent Bz reductase activities in two T. cruzi strains with differential susceptibility to Bz: CL Brener and Nicaragua. Taking into account the results obtained with TcAKR-overexpressing epimastigotes, we expected the more resistant strain, Nicaragua, to have higher TcAKR levels than CL Brener. However, the results were the opposite. CL Brener showed 2-fold higher TcAKR expression and 5.7-fold higher NADPH-Bz reduction than the Nicaragua strain. In addition, NADH-dependent Bz reductase activity, characteristic of NTR I, was also higher in CL Brener than in Nicaragua. We conclude that although TcAKR uses Bz as the substrate, TcAKR activity is not a determinant of Bz resistance in wild-type strains and may be overcome by other enzymes involved in Bz activation, such as NADPH- and NADH-dependent reductases. PMID:26856844

  19. Aldose reductase, oxidative stress, and diabetic mellitus.

    PubMed

    Tang, Wai Ho; Martin, Kathleen A; Hwa, John

    2012-01-01

    Diabetes mellitus (DM) is a complex metabolic disorder arising from lack of insulin production or insulin resistance (Diagnosis and classification of diabetes mellitus, 2007). DM is a leading cause of morbidity and mortality in the developed world, particularly from vascular complications such as atherothrombosis in the coronary vessels. Aldose reductase (AR; ALR2; EC 1.1.1.21), a key enzyme in the polyol pathway, catalyzes nicotinamide adenosine dinucleotide phosphate-dependent reduction of glucose to sorbitol, leading to excessive accumulation of intracellular reactive oxygen species (ROS) in various tissues of DM including the heart, vasculature, neurons, eyes, and kidneys. As an example, hyperglycemia through such polyol pathway induced oxidative stress, may have dual heart actions, on coronary blood vessel (atherothrombosis) and myocardium (heart failure) leading to severe morbidity and mortality (reviewed in Heather and Clarke, 2011). In cells cultured under high glucose conditions, many studies have demonstrated similar AR-dependent increases in ROS production, confirming AR as an important factor for the pathogenesis of many diabetic complications. Moreover, recent studies have shown that AR inhibitors may be able to prevent or delay the onset of cardiovascular complications such as ischemia/reperfusion injury, atherosclerosis, and atherothrombosis. In this review, we will focus on describing pivotal roles of AR in the pathogenesis of cardiovascular diseases as well as other diabetic complications, and the potential use of AR inhibitors as an emerging therapeutic strategy in preventing DM complications. PMID:22582044

  20. Isolation and characterization of nitric oxide reductase from Paracoccus halodenitrificans.

    PubMed

    Sakurai, N; Sakurai, T

    1997-11-11

    Nitric oxide reductase was isolated from the membrane fraction of a denitrifying bacterium, Paracoccus halodenitrificans, in the presence of n-dodecyl beta-D-maltoside. A relatively simple and effective procedure to purify NO reductase using DEAE-Toyopearl and hydroxyapatite (ceramic) chromatographies has been developed. The enzyme consisted of two subunits with molecular masses of 20 and 42 kDa associated with the c-type heme and two b-type hemes, respectively. The optical and magnetic circular dichroism (MCD) spectra of the oxidized (as isolated) and reduced enzymes indicated that the heme c is in the low-spin state and the hemes b are in the high- and low-spin states. The EPR spectrum also showed the presence of the split high-spin component (g perpendicular = 6.6, 6.0) and two low spin components (gz,y,x = 2.96, 2.26, 1.46, gz = 3.59). Although the presence of an extra iron was suggested from atomic absorption spectroscopy, a non-heme iron could not be detected by colorimetric titrations using ferene and 2-(5-nitro-2-pyridylazo)- 5-(N-propyl-N-sulfopropylamino)phenolate (PAPS). One of the extra signals at g = 4.3 and 2.00 might come from a non-heme iron, while they may originate from an adventitious iron and a certain nonmetallic radical, respectively. When CO acted on the reduced enzyme, both of the low-spin hemes were not affected, and when NO acted on the reduced enzyme, the optical and MCD spectra were of a mixture of the oxidized and reduced enzymes. Consequently, the reduction of NO was supposed to take place at the high-spin heme b. The heme c and the low-spin heme b centers were considered to function as electron mediators during the intermolecular and intramolecular processes. PMID:9374857

  1. Androgen-metabolizing enzymes: A structural perspective.

    PubMed

    Manenda, Mahder Seifu; Hamel, Charles Jérémie; Masselot-Joubert, Loreleï; Picard, Marie-Ève; Shi, Rong

    2016-07-01

    Androgen-metabolizing enzymes convert cholesterol, a relatively inert molecule, into some of the most potent chemical messengers in vertebrates. This conversion involves thermodynamically challenging reactions catalyzed by P450 enzymes and redox reactions catalyzed by Aldo-Keto Reductases (AKRs). This review covers the structures of these enzymes with a focus on active site interactions and proposed mechanisms. Due to their role in a number of diseases, particularly in cancer, androgen-metabolizing enzymes have been targets of drug design. Hence we will also highlight how existing knowledge of structure is being used to this end. PMID:26924584

  2. Isolation of xylose reductase gene of Pichia stipitis and its expression in Saccharomyces cerevisiae

    SciTech Connect

    Takuma, Shinya; Nakashima, Noriyuki; Tantirungkij, Manee

    1991-12-31

    A NADPH/NADH-dependent xylose reductase gene was isolated from the xylose-assimilating yeast, Pichia stipitis. DNA sequence analysis showed that the gene consists of 951 bp. The gene introduced in Saccharomyces cerevisiae was transcribed to mRNA, and a considerable amount of enzyme activity was observed constitutively, whereas transcription and translation in P steps were inducible. S. cerevisiae carrying the xylose reductase gene could not, however, grow on xylose medium, and could not produce ethanol from xylose. Since xylose uptake and accumulation of xylitol by S. cerevisiae were observed, the conversion of xylitol to xylulose seemed to be limited.

  3. Synthesis and degradation of nitrate reductase during the cell cycle of Chlorella sorokiniana

    NASA Technical Reports Server (NTRS)

    Velasco, P. J.; Tischner, R.; Huffaker, R. C.; Whitaker, J. R.

    1989-01-01

    Studies on the diurnal variations of nitrate reductase (NR) activity during the life cycle of synchronized Chlorella sorokiniana cells grown with a 7:5 light-dark cycle showed that the NADH:NR activity, as well as the NR partial activities NADH:cytochrome c reductase and reduced methyl viologen:NR, closely paralleled the appearance and disappearance of NR protein as shown by sodium dodecyl sulfate gel electrophoresis and immunoblots. Results of pulse-labeling experiments with [35S]methionine further confirmed that diurnal variations of the enzyme activities can be entirely accounted for by the concomitant synthesis and degradation of the NR protein.

  4. Interaction of Product Analogues With the Active Site of Rhodobacter Sphaeroides Dimethyl Sulfoxide Reductase

    SciTech Connect

    George, G.N.; Nelson, K.J.; Harris, H.H.; Doonan, C.J.; Rajagopalan, K.V.; /Saskatchewan U. /Duke U. /Sydney U.

    2007-07-09

    We report a structural characterization using X-ray absorption spectroscopy of Rhodobacter sphaeroides dimethylsulfoxide (DMSO) reductase reduced with trimethylarsine, and show that this is structurally analogous to the physiologically relevant dimethylsulfide-reduced DMSO reductase. Our data unambiguously indicate that these species should be regarded as formal MoIV species, and indicate a classical coordination complex of trimethylarsine oxide, with no special structural distortions. The similarity of the trimethylarsine and dimethylsulfide complexes suggests in turn that the dimethylsulfide reduced enzyme possesses a classical coordination of DMSO with no special elongation of the S-O bond, as previously suggested.

  5. Crystallization and preliminary X-ray diffraction studies of ferredoxin reductase from Leptospira interrogans

    SciTech Connect

    Nascimento, Alessandro S.; Ferrarezi, Thiago; Catalano-Dupuy, Daniela L.; Ceccarelli, Eduardo A.; Polikarpov, Igor

    2006-07-01

    Crystals adequate for X-ray diffraction analysis have been prepared from L. interrogans ferredoxin-NADP{sup +} reductase. Ferredoxin-NADP{sup +} reductase (FNR) is an FAD-containing enzyme that catalyzes electron transfer between NADP(H) and ferredoxin. Here, results are reported of the recombinant expression, purification and crystallization of FNR from Leptospira interrogans, a parasitic bacterium of animals and humans. The L. interrogans FNR crystals belong to a primitive monoclinic space group and diffract to 2.4 Å resolution at a synchrotron source.

  6. Interaction of Product Analogs with the Active Site of Rhodobacter sphaeroides Dimethylsulfoxide Reductase

    PubMed Central

    George, Graham N.; Nelson, Kimberly Johnson; Harris, Hugh H.; Doonan, Christian J.; Rajagopalan, K.V.

    2007-01-01

    We report a structural characterization using X-ray absorption spectroscopy of Rhodobacter sphaeroides dimethylsulfoxide (DMSO) reductase reduced with trimethylarsine, and show that this is structurally analogous to the physiologically relevant dimethylsulfide-reduced DMSO reductase. Our data unambiguously indicate that these species should be regarded as formal MoIV species, and indicate a classical coordination complex of trimethylarsine oxide, with no special structural distortions. The similarity of the trimethylarsine and dimethylsulfide complexes suggests in turn that the dimethylsulfide reduced enzyme possesses a classical coordination of DMSO with no special elongation of the S—O bond, as previously suggested. PMID:17361996

  7. 16Beta-hydroxy-5alpha-cholestane-3,6-dione, a novel cytotoxic oxysterol from the red alga Jania rubens.

    PubMed

    Ktari, L; Blond, A; Guyot, M

    2000-11-20

    A new cytotoxic oxysterol, 16beta-hydroxy-5alpha-cholestane-3,6-dione was isolated from the red alga Jania rubens. Its structure was established by spectroscopic method. The ID50 value was 0.5 microg/mL. PMID:11086730

  8. Modulation of retroviral restriction and proteasome inhibitor-resistant turnover by changes in the TRIM5alpha B-box 2 domain.

    PubMed

    Diaz-Griffero, Felipe; Kar, Alak; Perron, Michel; Xiang, Shi-Hua; Javanbakht, Hassan; Li, Xing; Sodroski, Joseph

    2007-10-01

    An intact B-box 2 domain is essential for the antiretroviral activity of TRIM5alpha. We modeled the structure of the B-box 2 domain of TRIM5alpha based on the existing three-dimensional structure of the B-box 2 domain of human TRIM29. Using this model, we altered the residues predicted to be exposed on the surface of this globular structure. Most of the alanine substitutions in these residues exerted little effect on the antiretroviral activity of human TRIM5alphahu or rhesus monkey TRIM5alpharh. However, alteration of arginine 119 of TRIM5alphahu or the corresponding arginine 121 of TRIM5alpharh diminished the abilities of the proteins to restrict retroviral infection without affecting trimerization or recognition of the viral capsid. The abilities of these functionally defective TRIM5alpha proteins to accelerate the uncoating of the targeted retroviral capsid were abolished. Removal of the positively charged side chain from B-box 2 arginines 119/120/121 resulted in diminished proteasome-independent turnover of TRIM5alpha and the related restriction factor TRIMCyp. However, testing of an array of mutants revealed that the rapid turnover and retroviral restriction functions of this B-box 2 region are separable. PMID:17626085

  9. Purification and characterization of the periplasmic nitrate reductase from Thiosphaera pantotropha.

    PubMed

    Berks, B C; Richardson, D J; Robinson, C; Reilly, A; Aplin, R T; Ferguson, S J

    1994-02-15

    The periplasmic nitrate reductase of Thiosphaera pantotropha has been purified from a mutant strain (M-6) that overproduces the enzyme activity under anaerobic growth conditions. The enzyme is a complex of a 93-kDa polypeptide and a 16-kDa nitrate-oxidizable cytochrome c552. The complex contains molybdenum; a fluorescent compound with spectral features of a pterin derivative can be extracted. In contrast to the dissimilatory membrane-bound nitrate reductases, the periplasmic nitrate reductase shows high specificity for nitrate as a substrate and is insensitive to inhibition by azide. The 93-kDa subunit exhibits immunological cross-reactivity with the catalytic subunit of Rhodobacter capsulatus N22DNAR+ periplasmic nitrate reductase. Mass spectrometric comparisons of holo-cytochrome c552 and apo-cytochrome c552 demonstrated that the polypeptide bound two haem groups. Mediated redox potentiometry of the cytochrome indicated that the haem groups have reduction potentials (pH = 7.0) of approximately -15 mV and + 80 mV. The functional significance of these potentials is discussed in relation to the proposed physiological role of the enzyme as a redox valve. PMID:8119278

  10. X-Ray Absorption Spectroscopic Characterization of the Molybdenum Site of 'Escherichia Coli' Dimethyl Sulfoxide Reductase

    SciTech Connect

    George, G.N.; Doonan, C.J.; Rothery, R.A.; Boroumand, N.; Weiner, J.H.; /Saskatchewan U. /Alberta U.

    2007-07-09

    Structural studies of dimethyl sulfoxide (DMSO) reductases were hampered by modification of the active site during purification. We report an X-ray absorption spectroscopic analysis of the molybdenum active site of Escherichia coli DMSO reductase contained within its native membranes. The enzyme in these preparations is expected to be very close to the form found in vivo. The oxidized active site was found to have four Mo-S ligands at 2.43 angstroms, one Mo=O at 1.71 angstroms, and a longer Mo-O at 1.90 angstroms. We conclude that the oxidized enzyme is a monooxomolybdenum(VI) species coordinated by two molybdopterin dithiolenes and a serine. The bond lengths determined for E. coli DMSO reductase are very similar to those determined for the well-characterized Rhodobacter sphaeroides DMSO reductase, suggesting similar active site structures for the two enzymes. Furthermore, our results suggest that the form found in vivo is the monooxobis(molybdopterin) species.

  11. Tungstate, a Molybdate Analog Inactivating Nitrate Reductase, Deregulates the Expression of the Nitrate Reductase Structural Gene

    PubMed Central

    Deng, Mingde; Moureaux, Thérèse; Caboche, Michel

    1989-01-01

    Nitrate reductase (NR, EC 1.6.6.1) from higher plants is a homodimeric enzyme carrying a molybdenum cofactor at the catalytic site. Tungsten can be substituted for molybdenum in the cofactor structure, resulting in an inactive enzyme. When nitratefed Nicotiana tabacum plants were grown on a nutrient solution in which tungstate was substituted for molybdate, NR activity in the leaves decreased to a very low level within 24 hours while NR protein accumulated progressively to a level severalfold higher than the control after 6 days. NR mRNA level in molybdate-grown plants exhibited a considerable day-night fluctuation. However, when plants were treated with tungstate, NR mRNA level remained very high. NR activity and protein increased over a 24-hour period when nitrate was added back to N-starved molybdate-grown plants. NR mRNA level increased markedly during the first 2 hours and then decreased. In the presence of tungstate, however, the induction of NR activity by nitrate was totally abolished while high levels of NR protein and mRNA were both induced, and the high level of NR mRNA was maintained over a 10-hour period. These results suggest that the substitution of tungsten for molybdenum in NR complex leads to an overexpression of the NR structural gene. Possible mechanisms involved in this deregulation are discussed. Images Figure 2 Figure 3 Figure 5 PMID:16667015

  12. The intracellular location of NADH:cytochrome b5 reductase modulates the cytotoxicity of the mitomycins to Chinese hamster ovary cells.

    PubMed

    Belcourt, M F; Hodnick, W F; Rockwell, S; Sartorelli, A C

    1998-04-10

    NADH:cytochrome b5 reductase activates the mitomycins to alkylating intermediates in vitro. To investigate the intracellular role of this enzyme in mitomycin bioactivation, Chinese hamster ovary cell transfectants overexpressing rat NADH:cytochrome b5 reductase were generated. An NADH:cytochrome b5 reductase-transfected clone expressed 9-fold more enzyme than did parental cells; the levels of other mitomycin-activating oxidoreductases were unchanged. Although this enzyme activates the mitomycins in vitro, its overexpression in living cells caused decreases in sensitivity to mitomycin C in air and decreases in sensitivity to porfiromycin under both air and hypoxia. Mitomycin C cytotoxicity under hypoxia was similar to parental cells. Because NADH:cytochrome b5 reductase resides predominantly in the mitochondria of these cells, this enzyme may sequester these drugs in this compartment, thereby decreasing nuclear DNA alkylations and reducing cytotoxicity. A cytosolic form of NADH:cytochrome b5 reductase was generated. Transfectants expressing the cytosolic enzyme were restored to parental line sensitivity to both mitomycin C and porfiromycin in air with marked increases in drug sensitivity under hypoxia. The results implicate NADH:cytochrome b5 reductase in the differential bioactivation of the mitomycins and indicate that the subcellular site of drug activation can have complex effects on drug cytotoxicity. PMID:9535868

  13. Role of the Tat Transport System in Nitrous Oxide Reductase Translocation and Cytochrome cd1 Biosynthesis in Pseudomonas stutzeri

    PubMed Central

    Heikkilä, Mari P.; Honisch, Ulrike; Wunsch, Patrick; Zumft, Walter G.

    2001-01-01

    By transforming N2O to N2, the multicopper enzyme nitrous oxide reductase provides a periplasmic electron sink for a respiratory chain that is part of denitrification. The signal sequence of the enzyme carries the heptameric twin-arginine consensus motif characteristic of the Tat pathway. We have identified tat genes of Pseudomonas stutzeri and functionally analyzed the unlinked tatC and tatE loci. A tatC mutant retained N2O reductase in the cytoplasm in the unprocessed form and lacking the metal cofactors. This is contrary to viewing the Tat system as specific only for fully assembled proteins. A C618V exchange in the electron transfer center CuA rendered the enzyme largely incompetent for transport. The location of the mutation in the C-terminal domain of N2O reductase implies that the Tat system acts on a completely synthesized protein and is sensitive to a late structural variation in folding. By generating a tatE mutant and a reductase-overproducing strain, we show a function for TatE in N2O reductase translocation. Further, we have found that the Tat and Sec pathways have to cooperate to produce a functional nitrite reductase system. The cytochrome cd1 nitrite reductase was found in the periplasm of the tatC mutant, suggesting export by the Sec pathway; however, the enzyme lacked the heme D1 macrocycle. The NirD protein as part of a complex required for heme D1 synthesis or processing carries a putative Tat signal peptide. Since NO reduction was also inhibited in the tatC mutant, the Tat protein translocation system is necessary in multiple ways for establishing anaerobic nitrite denitrification. PMID:11160097

  14. Molecular cloning and catalytic characterization of a recombinant tropine biosynthetic tropinone reductase from Withania coagulans leaf.

    PubMed

    Kushwaha, Amit K; Sangwan, Neelam S; Tripathi, Sandhya; Sangwan, Rajender S

    2013-03-10

    Tropinone reductases (TRs) are small proteins belonging to the SDR (short chain dehydrogenase/reductase) family of enzymes. TR-I and TR-II catalyze the conversion of tropinone into tropane alcohols (tropine and pseudotropine, respectively). The steps are intermediary enroute to biosynthesis of tropane esters of medicinal importance, hyoscyamine/scopolamine, and calystegins, respectively. Biosynthesis of tropane alkaloids has been proposed to occur in roots. However, in the present report, a tropine forming tropinone reductase (TR-I) cDNA was isolated from the aerial tissue (leaf) of a medicinal plant, Withania coagulans. The ORF was deduced to encode a polypeptide of 29.34 kDa. The complete cDNA (WcTRI) was expressed in E. coli and the recombinant His-tagged protein was purified for functional characterization. The enzyme had a narrow pH range of substantial activity with maxima at 6.6. Relatively superior thermostability of the enzyme (30% retention of activity at 60 °C) was catalytic novelty in consonance with the desert area restricted habitat of the plant. The in vitro reaction kinetics predominantly favoured the forward reaction. The enzyme had wide substrate specificity but did not cover the substrates of other well-known plant SDR related to menthol metabolism. To our knowledge, this pertains to be the first report on any gene and enzyme of secondary metabolism from the commercially and medicinally important vegetable rennet species. PMID:23266822

  15. Evolution of the Ferric Reductase Domain (FRD) Superfamily: Modularity, Functional Diversification, and Signature Motifs

    PubMed Central

    Zhang, Xuezhi; Krause, Karl-Heinz; Xenarios, Ioannis; Soldati, Thierry; Boeckmann, Brigitte

    2013-01-01

    A heme-containing transmembrane ferric reductase domain (FRD) is found in bacterial and eukaryotic protein families, including ferric reductases (FRE), and NADPH oxidases (NOX). The aim of this study was to understand the phylogeny of the FRD superfamily. Bacteria contain FRD proteins consisting only of the ferric reductase domain, such as YedZ and short bFRE proteins. Full length FRE and NOX enzymes are mostly found in eukaryotic cells and all possess a dehydrogenase domain, allowing them to catalyze electron transfer from cytosolic NADPH to extracellular metal ions (FRE) or oxygen (NOX). Metazoa possess YedZ-related STEAP proteins, possibly derived from bacteria through horizontal gene transfer. Phylogenetic analyses suggests that FRE enzymes appeared early in evolution, followed by a transition towards EF-hand containing NOX enzymes (NOX5- and DUOX-like). An ancestral gene of the NOX(1-4) family probably lost the EF-hands and new regulatory mechanisms of increasing complexity evolved in this clade. Two signature motifs were identified: NOX enzymes are distinguished from FRE enzymes through a four amino acid motif spanning from transmembrane domain 3 (TM3) to TM4, and YedZ/STEAP proteins are identified by the replacement of the first canonical heme-spanning histidine by a highly conserved arginine. The FRD superfamily most likely originated in bacteria. PMID:23505460

  16. Affinity Chromatography Purification of Cytochrome c Binding Enzymes

    NASA Astrophysics Data System (ADS)

    Azzi, Angelo; Bill, Kurt; Broger, Clemens

    1982-04-01

    An efficient affinity chromatography procedure for the isolation of mitochondrial cytochrome c oxidase and reductase is described. Saccharomyces cerevisiae cytochrome c was used as a ligand, bound to a thiol-Sepharose 4B gel through cysteine-107. In this way, the site of interaction of cytochrome c with cytochrome oxidase and reductase remained unmodified and available for binding to a number of partner enzymes. The procedure is adequate for the purification of all those proteins having in common the property of binding with high affinity to cytochrome c--e.g., cytochrome c oxidase, reductase, and peroxidase, sulfite oxidase, and reaction centers of photosynthetic bacteria.

  17. Crystal structure of isoflavone reductase from alfalfa (Medicago sativa L.).

    PubMed

    Wang, Xiaoqiang; He, Xianzhi; Lin, Jianqiao; Shao, Hui; Chang, Zhenzhan; Dixon, Richard A

    2006-05-19

    Isoflavonoids play important roles in plant defense and exhibit a range of mammalian health-promoting activities. Isoflavone reductase (IFR) specifically recognizes isoflavones and catalyzes a stereospecific NADPH-dependent reduction to (3R)-isoflavanone. The crystal structure of Medicago sativa IFR with deletion of residues 39-47 has been determined at 1.6A resolution. Structural analysis, molecular modeling and docking, and comparison with the structures of other NADPH-dependent enzymes, defined the putative binding sites for co-factor and substrate and potential key residues for enzyme activity and substrate specificity. Further mutagenesis has confirmed the role of Lys144 as a catalytic residue. This study provides a structural basis for understanding the enzymatic mechanism and substrate specificity of IFRs as well as the functions of IFR-like proteins. PMID:16600295

  18. Nitrate metabolism in tobacco leaves overexpressing Arabidopsis nitrite reductase.

    PubMed

    Davenport, Susie; Le Lay, Pascaline; Sanchez-Tamburrrino, Juan Pablo

    2015-12-01

    Primary nitrogen assimilation in plants includes the reduction of nitrite to ammonium in the chloroplasts by the enzyme nitrite reductase (NiR EC:1.7.7.1) or in the plastids of non-photosynthetic organs. Here we report on a study overexpressing the Arabidopsis thaliana NiR (AtNiR) gene in tobacco plants under the control of a constitutive promoter (CERV - Carnation Etched Ring Virus). The aim was to overexpress AtNiR in an attempt to alter the level of residual nitrite in the leaf which can act as precursor to the formation of nitrosamines. The impact of increasing the activity of AtNiR produced an increase in leaf protein and a stay-green phenotype in the primary transformed AtNiR population. Investigation of the T1 homozygous population demonstrated elevated nitrate reductase (NR) activity, reductions in leaf nitrite and nitrate and the amino acids proline, glutamine and glutamate. Chlorophyl content of the transgenic lines was increased, as evidenced by the stay-green phenotype. This reveals the importance of NiR in primary nitrogen assimilation and how modification of this key enzyme affects both the nitrogen and carbon metabolism of tobacco plants. PMID:26447683

  19. Molecular cloning and characterization of Schistosoma japonicum aldose reductase.

    PubMed

    Liu, Jian; Wang, Jipeng; Wang, Shuqi; Xu, Bin; Liu, Xiufeng; Wang, Xiaoning; Hu, Wei

    2013-02-01

    Antioxidant defense is an essential mechanism for schistosomes to cope with damage from host immune-generated reactive oxygen species. The evaluation of the effects of aldose reductase, an important enzyme that may be involved in this system, has long been neglected. In the present study, aldose reductase of Schistosoma japonicum (SjAR) was cloned and characterized. The activity of SjAR was assessed in vitro and was suppressed by the reported inhibitor, epalrestat. RT-PCR analysis revealed that SjAR was expressed at each of the development stages analyzed with increased levels in cercariae. The results also showed that SjAR was expressed at higher levels in adult male worms than in adult female worms. Indirect enzyme-linked immunosorbent assay and western blot analysis indicated that the purified recombinant SjAR (rSjAR) protein displayed a significant level of antigenicity. Immunolocalization analysis revealed that SjAR was mainly distributed in the gynecophoral canal of adult male worms. BALB/c mice immunized with rSjAR induced a 32.91 % worm reduction compared to the adjuvant group (P < 0.01). Moreover, a 28.27 % reduction in egg development in the liver (P > 0.05) and a 42.75 % reduction in egg development in the fecal samples (P < 0.05) were also observed. These results suggested that SjAR may be a potential new drug target or vaccine candidate for schistosomes. PMID:23160889

  20. Evolution Alters the Enzymatic Reaction Coordinate of Dihydrofolate Reductase

    PubMed Central

    2015-01-01

    How evolution has affected enzyme function is a topic of great interest in the field of biophysical chemistry. Evolutionary changes from Escherichia coli dihydrofolate reductase (ecDHFR) to human dihydrofolate reductase (hsDHFR) have resulted in increased catalytic efficiency and an altered dynamic landscape in the human enzyme. Here, we show that a subpicosecond protein motion is dynamically coupled to hydride transfer catalyzed by hsDHFR but not ecDHFR. This motion propagates through residues that correspond to mutational events along the evolutionary path from ecDHFR to hsDHFR. We observe an increase in the variability of the transition states, reactive conformations, and times of barrier crossing in the human system. In the hsDHFR active site, we detect structural changes that have enabled the coupling of fast protein dynamics to the reaction coordinate. These results indicate a shift in the DHFR family to a form of catalysis that incorporates rapid protein dynamics and a concomitant shift to a more flexible path through reactive phase space. PMID:25369552

  1. An electron-bifurcating caffeyl-CoA reductase.

    PubMed

    Bertsch, Johannes; Parthasarathy, Anutthaman; Buckel, Wolfgang; Müller, Volker

    2013-04-19

    A low potential electron carrier ferredoxin (E0' ≈ -500 mV) is used to fuel the only bioenergetic coupling site, a sodium-motive ferredoxin:NAD(+) oxidoreductase (Rnf) in the acetogenic bacterium Acetobacterium woodii. Because ferredoxin reduction with physiological electron donors is highly endergonic, it must be coupled to an exergonic reaction. One candidate is NADH-dependent caffeyl-CoA reduction. We have purified a complex from A. woodii that contains a caffeyl-CoA reductase and an electron transfer flavoprotein. The enzyme contains three subunits encoded by the carCDE genes and is predicted to have, in addition to FAD, two [4Fe-4S] clusters as cofactor, which is consistent with the experimental determination of 4 mol of FAD, 9 mol of iron, and 9 mol of acid-labile sulfur. The enzyme complex catalyzed caffeyl-CoA-dependent oxidation of reduced methyl viologen. With NADH as donor, it catalyzed caffeyl-CoA reduction, but this reaction was highly stimulated by the addition of ferredoxin. Spectroscopic analyses revealed that ferredoxin and caffeyl-CoA were reduced simultaneously, and a stoichiometry of 1.3:1 was determined. Apparently, the caffeyl-CoA reductase-Etf complex of A. woodii uses the novel mechanism of flavin-dependent electron bifurcation to drive the endergonic ferredoxin reduction with NADH as reductant by coupling it to the exergonic NADH-dependent reduction of caffeyl-CoA. PMID:23479729

  2. Effects of Elevated Cytosolic Glutathione Reductase Activity on the Cellular Glutathione Pool and Photosynthesis in Leaves under Normal and Stress Conditions.

    PubMed

    Foyer, C; Lelandais, M; Galap, C; Kunert, K J

    1991-11-01

    Tobacco (Nicotiana tabacum var Samsun) was transformed using the bacterial gor gene coding for the enzyme glutathione reductase. Transgenic plants were selected by their kanamycin resistence and expression of the bacterial gor gene. After separation by isoelectric focusing techniques, leaf extracts from transgenic plants having both native and bacterial glutathione reductase activity gave, in addition to the six bands of the native enzyme, two further closely running isoenzymes. These additional bands originating from the expression of the bacterial gor gene were nonchloroplastic. Leaves from transgenic plants had two- to 10-fold higher glutathione reductase activity than non-transgenic controls. The amount of extractable glutathione reductase activity obtained in transgenic plants was dependent on leaf age and the conditions to which leaves were exposed. Both light and exposure to methylviologen increased leaf glutathione reductase activity. Elevated levels of cytosolic glutathione reductase activity in transgenic plants had no effect on the amount or reduction state of the reduced glutathione/oxidized glutathione pool under optimal conditions or oxidative conditions induced by methylviologen. The glutathione pool was unaltered despite the oxidation-dependent loss of CO(2) assimilation and oxidation of enzymes involved in photosynthesis. However, the reduction state of the ascorbate pool was greater in transgenic plants relative to nontransgenic controls following illumination of methylviologen-treated leaf discs. Therefore, we conclude that in the natural state glutathione reductase is present in tobacco at levels above those required for maximal operation of the ascorbate-glutathione pathway. PMID:16668524

  3. Structural changes induced by catalytic turnover at the molybdenum site of arabidopsis nitrate reductase

    SciTech Connect

    George, G.N.; Mertens, J.A.; Campbell, W.H.

    1999-10-20

    Assimilatory nitrate reductases catalyze the reduction of nitrate to nitrite, which is the first and rate-limiting step of nitrogen assimilation in algae, fungi, and higher plants. The nitrate reductase from the thale cress, Arabidopsis thaliana, is a dimer, with each of the {approximately} 103,000 molecular weight monomers containing one molybdenum associated with a single pterin dithiolene cofactor, a flavin adenine dinucleotide cofactor, and a cytochrome b-type heme. During the catalytic cycle, reducing equivalents in the form of NADH enter the enzyme at the flavin site and are subsequently transferred by intramolecular electron transfer via the heme to the molybdenum center, where the two-electron reduction of nitrate takes place. In this paper the authors present the Mo K-edge EXAFS of Arabidopsis nitrate reductase in three different forms: oxidized as-isolated, reduced, and oxidized after catalytic turnover of excess nitrate (nitrate-oxidized).

  4. Synthetic and Crystallographic Studies of a New Inhibitor Series Targeting Bacillus anthracis Dihydrofolate Reductase

    SciTech Connect

    Beierlein, J.; Frey, K; Bolstad, D; Pelphrey, P; Joska, T; Smith, A; Priestley, N; Wright, D; Anderson, A

    2008-01-01

    Bacillus anthracis, the causative agent of anthrax, poses a significant biodefense danger. Serious limitations in approved therapeutics and the generation of resistance have produced a compelling need for new therapeutic agents against this organism. Bacillus anthracis is known to be insensitive to the clinically used antifolate, trimethoprim, because of a lack of potency against the dihydrofolate reductase enzyme. Herein, we describe a novel lead series of B. anthracis dihydrofolate reductase inhibitors characterized by an extended trimethoprim-like scaffold. The best lead compound adds only 22 Da to the molecular weight and is 82-fold more potent than trimethoprim. An X-ray crystal structure of this lead compound bound to B. anthracis dihydrofolate reductase in the presence of NADPH was determined to 2.25 A resolution. The structure reveals several features that can be exploited for further development of this lead series.

  5. Serum homocysteine, folate level and methylenetetrahydrofolate reductase 677, 1298 gene polymorphism in Korean schizophrenic patients.

    PubMed

    Lee, Young Sik; Han, Doug Hyun; Jeon, Chang Moo; Lyoo, In Kyoon; Na, Chul; Chae, Seok Lae; Cho, Soo Churl

    2006-05-15

    High homocysteine serum level has been regarded as one of the important factors that influence the development of schizophrenia. Genetic variations of methylenetetrahydrofolate reductase, which is a main enzyme reducing homocysteine level, are reported in schizophrenic patients. We measured the serum level of homocysteine/folate and methylenetetrahydrofolate reductase C677T/A1298C gene polymorphism in 235 patients with schizophrenia. Plasma homocysteine levels were higher and folate levels were lower in patients than in comparison subjects. Variations of C677T were more frequent in patients than in comparison subjects. Patients with the 677TT genotype showed higher homocysteine levels than patients with the CC and CT genotypes. These findings suggest that folate supplement may be beneficial to some schizophrenic patients with homocysteinemia due to the genetic defect of methylenetetrahydrofolate reductase. PMID:16641680

  6. Enzyme markers

    MedlinePlus

    ... or defects passed down through families (inherited) can affect how enzymes work. Some enzymes are affected by several genes. Test results are usually reported as a percentage of normal enzyme activity.

  7. Purification and characterization of NADPH--cytochrome c reductase from the midgut of the southern armyworm (Spodoptera eridania).

    PubMed

    Crankshaw, D L; Hetnarski, K; Wilkinson, C F

    1979-09-01

    1. NADPH-cytochrome c reductase was solubilized with bromelain and purified about 400-fold from sucrose/pyrophosphate-washed microsomal fractions from southern armyworm (Spodoptera eridania) larval midguts. 2. The enzyme has a mol.wt. of 70 035 +/- 1300 and contained 2 mol of flavin/mol of enzyme consisting of almost equimolar amounts of FMN and FAD. 3. Aerobic titration of the enzyme with NADPH caused the formation of a stable half-reduced state at 0.5 mol of NADPH/mol of flavin. 4. Kinetic analysis showed that the reduction of cytochrome c proceeded by a Bi Bi Ping Pong mechanism. 5. Apparent Km values for NADPH and cytochrome c and Ki values for NADP+ and 2'-AMP were considerably higher for the insect reductase than for the mammalian liver enzyme. 6. These are discussed in relation to possible differences in the active sites of the enzymes. PMID:117798

  8. Purification and characterization of NADPH--cytochrome c reductase from the midgut of the southern armyworm (Spodoptera eridania).

    PubMed Central

    Crankshaw, D L; Hetnarski, K; Wilkinson, C F

    1979-01-01

    1. NADPH-cytochrome c reductase was solubilized with bromelain and purified about 400-fold from sucrose/pyrophosphate-washed microsomal fractions from southern armyworm (Spodoptera eridania) larval midguts. 2. The enzyme has a mol.wt. of 70 035 +/- 1300 and contained 2 mol of flavin/mol of enzyme consisting of almost equimolar amounts of FMN and FAD. 3. Aerobic titration of the enzyme with NADPH caused the formation of a stable half-reduced state at 0.5 mol of NADPH/mol of flavin. 4. Kinetic analysis showed that the reduction of cytochrome c proceeded by a Bi Bi Ping Pong mechanism. 5. Apparent Km values for NADPH and cytochrome c and Ki values for NADP+ and 2'-AMP were considerably higher for the insect reductase than for the mammalian liver enzyme. 6. These are discussed in relation to possible differences in the active sites of the enzymes. Images Fig. 3. PMID:117798

  9. Identification of periplasmic nitrate reductase Mo(V) EPR signals in intact cells of Paracoccus denitrificans.

    PubMed

    Sears, H J; Bennett, B; Spiro, S; Thomson, A J; Richardson, D J

    1995-08-15

    EPR spectroscopy has been successfully used to detect signals due to molybdenum (V) and ferric iron in intact cells of aerobically grown Paracoccus denitrificans. The signals are ascribed to the catalytic molybdenum centre and to the haem iron of the periplasmic nitrate reductase. These signals are absent from a mutant strain deficient in this enzyme. The Mo(V) signal is due to the High-g Split species which has been well characterized in the purified enzyme. This confirms that the High-g Split is the physiologically relevant signal of a number observed in the previous work on the purified enzyme. PMID:7646461

  10. Metabolism of the Synthetic Progestogen Norethynodrel by Human Ketosteroid Reductases of the Aldo-Keto Reductase Superfamily

    PubMed Central

    Jin, Yi; Duan, Ling; Chen, Mo; Penning, Trevor M; Kloosterboer, Helenius J.

    2012-01-01

    Human ketosteroid reductases of the aldo-keto reductase (AKR) superfamily, i.e. AKR1C1-4, are implicated in the biotransformation of synthetic steroid hormones. Norethynodrel (NOR, 17α-ethynyl-17β-hydroxy-estra-5(10)-en-3-one), the progestin component of the first marketed oral contraceptive, is known to undergo rapid and extensive metabolism to 3α- and 3β-hydroxy metabolites. The ability of the four human AKR1C enzymes to catalyze the metabolism of NOR has now been characterized. AKR1C1 and AKR1C2 almost exclusively converted NOR to 3β-hydroxy NOR, while AKR1C3 gave 3β-hydroxy NOR as the main product and AKR1C4 predominantly formed 3α-hydroxy NOR. Individual AKR1C enzymes also displayed distinct kinetic properties in the reaction of NOR. In contrast, norethindrone (NET), the Δ4-isomer of NOR and the most commonly used synthetic progestin, was not a substrate for the AKR1C enzymes. NOR is also structurally identical to the hormone replacement therapeutic tibolone (TIB), except TIB has a methyl group at the 7α-position. Product profiles and kinetic parameters for the reduction of NOR catalyzed by each individual AKR1C isoform were identical to those for the reduction of TIB catalyzed by the respective isoform. These data suggest that the presence of the 7α-methyl group has a minimal effect on the stereochemical outcome of the reaction and kinetic behavior of each enzyme. Results indicate a role of AKR1C in the hepatic and peripheral metabolism of NOR to 3α- and 3β-hydroxy NOR and provide insights into the differential pharmacological properties of NOR, NET and TIB. PMID:22210085

  11. The archaeon Methanosarcina acetivorans contains a protein disulfide reductase with an iron-sulfur cluster.

    PubMed

    Lessner, Daniel J; Ferry, James G

    2007-10-01

    Methanosarcina acetivorans, a strictly anaerobic methane-producing species belonging to the domain Archaea, contains a gene cluster annotated with homologs encoding oxidative stress proteins. One of the genes (MA3736) is annotated as a gene encoding an uncharacterized carboxymuconolactone decarboxylase, an enzyme required for aerobic growth with aromatic compounds by species in the domain Bacteria. Methane-producing species are not known to utilize aromatic compounds, suggesting that MA3736 is incorrectly annotated. The product of MA3736, overproduced in Escherichia coli, had protein disulfide reductase activity dependent on a C(67)XXC(70) motif not found in carboxymuconolactone decarboxylase. We propose that MA3736 be renamed mdrA (methanosarcina disulfide reductase). Further, unlike carboxymuconolactone decarboxylase, MdrA contained an Fe-S cluster. Binding of the Fe-S cluster was dependent on essential cysteines C(67) and C(70), while cysteines C(39) and C(107) were not required. Loss of the Fe-S cluster resulted in conversion of MdrA from an inactive hexamer to a trimer with protein disulfide reductase activity. The data suggest that MdrA is the prototype of a previously unrecognized protein disulfide reductase family which contains an intermolecular Fe-S cluster that controls oligomerization as a mechanism to regulate protein disulfide reductase activity. PMID:17675382

  12. An electrogenic nitric oxide reductase.

    PubMed

    Al-Attar, Sinan; de Vries, Simon

    2015-07-22

    Nitric oxide reductases (Nors) are members of the heme-copper oxidase superfamily that reduce nitric oxide (NO) to nitrous oxide (N₂O). In contrast to the proton-pumping cytochrome oxidases, Nors studied so far have neither been implicated in proton pumping nor have they been experimentally established as electrogenic. The copper-A-dependent Nor from Bacillus azotoformans uses cytochrome c₅₅₁ as electron donor but lacks menaquinol activity, in contrast to our earlier report (Suharti et al., 2001). Employing reduced phenazine ethosulfate (PESH) as electron donor, the main NO reduction pathway catalyzed by Cu(A)Nor reconstituted in liposomes involves transmembrane cycling of the PES radical. We show that Cu(A)Nor reconstituted in liposomes generates a proton electrochemical gradient across the membrane similar in magnitude to cytochrome aa₃, highlighting that bacilli using Cu(A)Nor can exploit NO reduction for increased cellular ATP production compared to organisms using cNor. PMID:26149211

  13. Farnesol is not the nonsterol regulator mediating degradation of HMG-CoA reductase in rat liver.

    PubMed

    Keller, R K; Zhao, Z; Chambers, C; Ness, G C

    1996-04-15

    A recent report, in which cultured tumor cells were used, identified farnesol as the nonsterol mevalonate-derived metabolite required for the accelerated degradation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (C. C. Correll, L. Ng, and P. A. Edwards, 1994, J. Biol. Chem. 269, 17390-17393). We examined this proposed linkage in animals by measuring hepatic farnesol levels and rates of HMG-CoA reductase degradation under conditions previously shown to alter the stability of the reductase. In normal rats, the hepatic farnesol level, quantified by high-pressure liquid chromatography, was 0.10 +/- 0.08 microgram/g and the half-life of HMG-CoA reductase was 2.5 h. Administration of mevalonolactone at 1 g/kg body wt to provide all nonsterol metabolites in addition to cholesterol increased farnesol levels 6-fold without significantly affecting the half-life of the reductase. Treatment of rats with zaragozic acid A, an inhibitor of squalene synthase, raised hepatic farnesol levels 10-fold and decreased the half-life of HMG-CoA reductase to 0.25 h. However, feeding lovastatin to rats did not lower hepatic farnesol levels despite a marked stabilization of HMB-CoA reductase protein. Moreover, intubation of rats with 500 mg/kg body wt of farnesol failed to decrease the half-life of HMG-CoA reductase protein, alter the levels of enzyme activity, or change of the levels of immunoreactive protein despite an increase of 1000-fold in hepatic farnesol levels. These observations indicate that farnesol per se does not induce accelerated degradation of HMG-CoA reductase in rat liver. PMID:8645011

  14. Adventitious Arsenate Reductase Activity of the Catalytic Domain of the Human Cdc25B and Cdc25C Phosphatases†

    PubMed Central

    Bhattacharjee, Hiranmoy; Sheng, Ju; Ajees, A. Abdul; Mukhopadhyay, Rita; Rosen, Barry P.

    2013-01-01

    A number of eukaryotic enzymes that function as arsenate reductases are homologues of the catalytic domain of the human Cdc25 phosphatase. For example, the Leishmania major enzyme LmACR2 is both a phosphatase and an arsenate reductase, and its structure bears similarity to the structure of the catalytic domain of human Cdc25 phosphatase. These reductases contain an active site C-X5-R signature motif, where C is the catalytic cysteine, the five X residues form a phosphate binding loop, and R is a highly conserved arginine, which is also present in human Cdc25 phosphatases. We therefore investigated the possibility that the three human Cdc25 isoforms might have adventitious arsenate reductase activity. The sequences for the catalytic domains of Cdc25A, -B, and -C were cloned individually into a prokaryotic expression vector, and their gene products were purified from a bacterial host using nickel affinity chromatography. While each of the three Cdc25 catalytic domains exhibited phosphatase activity, arsenate reductase activity was observed only with Cdc25B and -C. These two enzymes reduced inorganic arsenate but not methylated pentavalent arsenicals. Alteration of either the cysteine and arginine residues of the Cys-X5-Arg motif led to the loss of both reductase and phosphatase activities. Our observations suggest that Cdc25B and -C may adventitiously reduce arsenate to the more toxic arsenite and may also provide a framework for identifying other human protein tyrosine phosphatases containing the active site Cys-X5-Arg loop that might moonlight as arsenate reductases. PMID:20025242

  15. Role of the cellular oxidation-reduction state in methotrexate binding to dihydrofolate reductase and dissociation induced by reduced folates.

    PubMed

    Matherly, L H; Anderson, L A; Goldman, I D

    1984-06-01

    5-Formyltetrahydrofolate promotes the net dissociation of methotrexate bound to dihydrofolate reductase in the Ehrlich ascites tumor (L. H. Matherly et al., Cancer Res., 43: 2694-2699, 1983). Treatment of Ehrlich tumor cells with glucose or inhibitors of electron transfer stabilized the association of the antifolate with dihydrofolate reductase as reflected by a 2-fold increased fraction of dihydrofolate reductase-bound methotrexate and an abolition of the 5-formyltetrahydrofolate-induced dissociation of the inhibitor-enzyme complex. Glucose and azide were also found to increase the intracellular ratio of reduced nicotinamide adenine dinucleotide phosphate (NADPH) to oxidized nicotinamide adenine dinucleotide phosphate (NADP+) in the tumor approximately 8- and 11-fold, respectively. However, other agents which enhanced the association between methotrexate and its target enzyme were less effective in increasing the intracellular level of NADPH relative to NADP+. Micromolar concentrations of NADPH promoted methotrexate binding to the purified Ehrlich tumor dihydrofolate reductase. Bound methotrexate could be dissociated from the purified enzyme by 5-methyltetrahydrofolate but less readily by 5-formyltetrahydrofolate and only in the presence of reduced levels of NADPH relative to NADP+. The tetraglutamate derivative of 5-methyltetrahydrofolate was even more effective than the underivatized compound in dissociating methotrexate from dihydrofolate reductase. These findings suggest a critical role for the cellular oxidation-reduction state in determining the affinity of dihydrofolate reductase for methotrexate and thus the cellular sensitivity to the antifolate. In addition, the data are consistent with the possibility that dihydrofolate reductase is a key locus for intracellular competitive interactions between reduced folates and methotrexate during leucovorin rescue from the pharmacological effects of the antifolate. PMID:6609765

  16. Partial purification and some properties of a latent CO2 reductase from green potato tuber chloroplasts.

    PubMed

    Arora, S; Ramaswamy, N K; Nair, P M

    1985-12-16

    We have partially purified the CO2 reductase, present in green potato tuber chloroplasts, as a latent form. Illumination of the chloroplasts in the absence of substrate, bicarbonate, activated the enzyme, which could then be obtained in soluble forms. Purification of the enzyme was achieved by (NH4)2SO4 fractionation (0-30%) and adsorption and elution from a DEAE-Sephadex A-50 column. The final preparation showed 15-fold purification and 50% recovery of the activity. The pH optimum for CO2 reductase was 8.0. Hepes and Tricine buffers showed maximum activity whereas Tris/phosphate or borate failed to show any activity. The enzyme reaction was sensitive to the presence of metal ions like Fe3+, Hg2+, Cu2+, Mo6+ and Zn2+, however, a threefold activation was observed with Fe2+. The metal requirement for CO2 reductase was evident from the observed inhibition by metal chelators like o-phenanthroline, alpha, alpha'-dipyridyl, bathocuproine, 8-hydroxyquinoline etc. Out of these o-phenanthroline was the strongest inhibitor and its concentration for 50% inhibition was 40 microM. The presence of Fe2+ ions in the reaction mixture protected the enzyme from heat denaturation upto 50 degrees C. Maximum enzyme activity was observed at 15 degrees C. The enzyme activity showed a 30-s lag period and the maximum was reached in 90 s. Supplementation of sodium dithionite in the reaction activated enzyme activity threefold, suggesting involvement of dithiol groups in the catalytic activity. There was strong inhibition by -SH inhibitors like 5,5'-dithiobis(2-nitrobenzoic acid) and N-ethylmaleimide and -SH reagents like dithiothreitol, 2-mercaptoethanol and cysteine. Various nucleotide coenzyme tried inhibited the enzyme strongly. PMID:3841062

  17. DNA damage induction of ribonucleotide reductase.

    PubMed Central

    Elledge, S J; Davis, R W

    1989-01-01

    RNR2 encodes the small subunit of ribonucleotide reductase, the enzyme that catalyzes the first step in the pathway for the production of deoxyribonucleotides needed for DNA synthesis. RNR2 is a member of a group of genes whose activities are cell cycle regulated and that are transcriptionally induced in response to the stress of DNA damage. An RNR2-lacZ fusion was used to further characterize the regulation of RNR2 and the pathway responsible for its response to DNA damage. beta-Galactosidase activity in yeast strains containing the RNR2-lacZ fusion was inducible in response to DNA-damaging agents (UV light, 4-nitroquinoline-1-oxide [4-NQO], and methyl methanesulfonate [MMS]) and agents that block DNA replication (hydroxyurea [HU] and methotrexate) but not heat shock. When MATa cells were arrested in G1 by alpha-factor, RNR2 mRNA was still inducible by DNA damage, indicating that the observed induction can occur outside of S phase. In addition, RNR2 induction was not blocked by the presence of cycloheximide and is therefore likely to be independent of protein synthesis. A mutation, rnr2-314, was found to confer hypersensitivity to HU and increased sensitivity to MMS. In rnr2-314 mutant strains, the DNA damage stress response was found to be partially constitutive as well as hypersensitive to induction by HU but not MMS. The induction properties of RNR2 were examined in a rad4-2 mutant background; in this genetic background, RNR2 was hypersensitive to induction by 4-NQO but not MMS. Induction of the RNR2-lacZ fusion in a RAD(+) strain in response to 4-NQO was not enhanced by the presence of an equal number of rad4-2 cells that lacked the fusion, implying that the DNA damage stress response in cell autonomous. Images PMID:2513480

  18. Identification of the reactive cysteine residue (Cys227) in human carbonyl reductase.

    PubMed

    Tinguely, J N; Wermuth, B

    1999-02-01

    Carbonyl reductase is highly susceptible to inactivation by organomercurials suggesting the presence of a reactive cysteine residue in, or close to, the active site. This residue is also close to a site which binds glutathione. Structurally, carbonyl reductase belongs to the short-chain dehydrogenase/reductase family and contains five cysteine residues, none of which is conserved within the family. In order to identify the reactive residue and investigate its possible role in glutathione binding, alanine was substituted for each cysteine residue of human carbonyl reductase by site-directed mutagenesis. The mutant enzymes were expressed in Escherichia coli and purified to homogeneity. Four of the five mutants (C26A, C122A C150A and C226A) exhibited wild-type-like enzyme activity, although K(m) values of C226A for three structurally different substrates were increased threefold to 10-fold. The fifth mutant, C227A, showed a 10-15-fold decrease in kcat and a threefold to 40-fold increase in K(m), resulting in a 30-500-fold drop in kcat/K(m). NaCl (300 mM) increased the activity of C227A 16-fold, whereas the activity of the wild-type enzyme was only doubled. Substitution of serine rather than alanine for Cys227 similarly affected the kinetic constants with the exception that NaCl did not activate the enzyme. Both C227A and C227S mutants were insensitive to inactivation by 4-hydroxymercuribenzoate. Unlike the parent carbonyl compounds, the glutathione adducts of menadione and prostaglandin A1 were better substrates for the C227A and C227S mutants than the wild-type enzyme. Conversely, the binding of free glutathione to both mutants was reduced. Our findings indicate that Cys227 is the reactive residue and suggest that it is involved in the binding of both substrate and glutathione. PMID:10091578

  19. Ferric reductase activity in Azotobacter vinelandii and its inhibition by Zn2+.

    PubMed

    Huyer, M; Page, W J

    1989-07-01

    Ferric reductase activity was examined in Azotobacter vinelandii and was found to be located in the cytoplasm. The specific activities of soluble cell extracts were not affected by the iron concentration of the growth medium; however, activity was inhibited by the presence of Zn2+ during cell growth and also by the addition of Zn2+ to the enzyme assays. Intracellular Fe2+ levels were lower and siderophore production was increased in Zn2+-grown cells. The ferric reductase was active under aerobic conditions, had an optimal pH of approximately 7.5, and required flavin mononucleotide and Mg2+ for maximum activity. The enzyme utilized NADH to reduce iron supplied as a variety of iron chelates, including the ferrisiderophores of A. vinelandii. The enzyme was purified by conventional protein purification techniques, and the final preparation consisted of two major proteins with molecular weights of 44,600 and 69,000. The apparent Km values of the ferric reductase for Fe3+ (supplied as ferric citrate) and NADH were 10 and 15.8 microM, respectively, and the data for the enzyme reaction were consistent with Ping Pong Bi Bi kinetics. The approximate Ki values resulting from inhibition of the enzyme by Zn2+, which was a hyperbolic (partial) mixed-type inhibitor, were 25 microM with respect to iron and 1.7 microM with respect to NADH. These results suggested that ferric reductase activity may have a regulatory role in the processes of iron assimilation in A. vinelandii. PMID:2525550

  20. Structure of Physarum polycephalum cytochrome b{sub 5} reductase at 1.56 Å resolution

    SciTech Connect

    Kim, Sangwoo; Suga, Michihiro; Ogasahara, Kyoko; Ikegami, Terumi; Minami, Yoshiko; Yubisui, Toshitsugu; Tsukihara, Tomitake

    2007-04-01

    The structure of P. polycephalum cytochrome b{sub 5} reductase, an enzyme which catalyzes the reduction of cytochrome b{sub 5} by NADH, was determined at a resolution of 1.56 Å. Physarum polycephalum cytochrome b{sub 5} reductase catalyzes the reduction of cytochrome b{sub 5} by NADH. The structure of P. polycephalum cytochrome b{sub 5} reductase was determined at a resolution of 1.56 Å. The molecular structure was compared with that of human cytochrome b{sub 5} reductase, which had previously been determined at 1.75 Å resolution [Bando et al. (2004 ▶), Acta Cryst. D60, 1929–1934]. The high-resolution structure revealed conformational differences between the two enzymes in the adenosine moiety of the FAD, the lid region and the linker region. The structural properties of both proteins were inspected in terms of hydrogen bonding, ion pairs, accessible surface area and cavity volume. The differences in these structural properties between the two proteins were consistent with estimates of their thermostabilities obtained from differential scanning calorimetry data.

  1. Glutathione reductase-mediated synthesis of tellurium-containing nanostructures exhibiting antibacterial properties.

    PubMed

    Pugin, Benoit; Cornejo, Fabián A; Muñoz-Díaz, Pablo; Muñoz-Villagrán, Claudia M; Vargas-Pérez, Joaquín I; Arenas, Felipe A; Vásquez, Claudio C

    2014-11-01

    Tellurium, a metalloid belonging to group 16 of the periodic table, displays very interesting physical and chemical properties and lately has attracted significant attention for its use in nanotechnology. In this context, the use of microorganisms for synthesizing nanostructures emerges as an eco-friendly and exciting approach compared to their chemical synthesis. To generate Te-containing nanostructures, bacteria enzymatically reduce tellurite to elemental tellurium. In this work, using a classic biochemical approach, we looked for a novel tellurite reductase from the Antarctic bacterium Pseudomonas sp. strain BNF22 and used it to generate tellurium-containing nanostructures. A new tellurite reductase was identified as glutathione reductase, which was subsequently overproduced in Escherichia coli. The characterization of this enzyme showed that it is an NADPH-dependent tellurite reductase, with optimum reducing activity at 30°C and pH 9.0. Finally, the enzyme was able to generate Te-containing nanostructures, about 68 nm in size, which exhibit interesting antibacterial properties against E. coli, with no apparent cytotoxicity against eukaryotic cells. PMID:25193000

  2. Glutathione Reductase-Mediated Synthesis of Tellurium-Containing Nanostructures Exhibiting Antibacterial Properties

    PubMed Central

    Pugin, Benoit; Cornejo, Fabián A.; Muñoz-Díaz, Pablo; Muñoz-Villagrán, Claudia M.; Vargas-Pérez, Joaquín I.; Arenas, Felipe A.

    2014-01-01

    Tellurium, a metalloid belonging to group 16 of the periodic table, displays very interesting physical and chemical properties and lately has attracted significant attention for its use in nanotechnology. In this context, the use of microorganisms for synthesizing nanostructures emerges as an eco-friendly and exciting approach compared to their chemical synthesis. To generate Te-containing nanostructures, bacteria enzymatically reduce tellurite to elemental tellurium. In this work, using a classic biochemical approach, we looked for a novel tellurite reductase from the Antarctic bacterium Pseudomonas sp. strain BNF22 and used it to generate tellurium-containing nanostructures. A new tellurite reductase was identified as glutathione reductase, which was subsequently overproduced in Escherichia coli. The characterization of this enzyme showed that it is an NADPH-dependent tellurite reductase, with optimum reducing activity at 30°C and pH 9.0. Finally, the enzyme was able to generate Te-containing nanostructures, about 68 nm in size, which exhibit interesting antibacterial properties against E. coli, with no apparent cytotoxicity against eukaryotic cells. PMID:25193000

  3. 40 CFR 180.1065 - 2-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the requirement of a tolerance. 180.1065...-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the requirement of a tolerance. The inert ingredient,...

  4. 40 CFR 180.1065 - 2-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the requirement of a tolerance. 180.1065...-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the requirement of a tolerance. The inert ingredient,...

  5. 40 CFR 180.1065 - 2-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the requirement of a tolerance. 180.1065...-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the requirement of a tolerance. The inert ingredient,...

  6. 40 CFR 180.1065 - 2-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the requirement of a tolerance. The inert ingredient, 2-amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha... 40 Protection of Environment 23 2010-07-01 2010-07-01 false...

  7. 40 CFR 180.1065 - 2-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the requirement of a tolerance. The inert ingredient, 2-amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha... 40 Protection of Environment 24 2011-07-01 2011-07-01 false...

  8. New artificial electron donors for in vitro assay of nitrate reductase isolated from cultured tobacco cells and other organisms.

    PubMed

    Hoarau, J; Hirel, B; Nato, A

    1986-04-01

    The capacity of bromphenol blue and its analogs to act as electron donors for measurement of in vitro nitrate reductase activity from tobacco cells (Nicotiana tabacum var Techné SP 25 strain) was determined. Competitive inhibition was demonstrated to occur between NADH, the natural electron donor, and bromphenol blue, the artificial electron donor, suggesting that both donors bind to a similar active site on the enzyme. NADH-dependent or bromphenol blue-dependent nitrate reductase activity was carried out by a similar molecular weight protein exhibiting similar antigenic sites. Following ammonium sulfate precipitation, sucrose density gradient and two chromatographic steps, nitrate reductase activity from tobacco cells was purified near homogeneity using bromphenol blue as an electron donor in the absence of measurable NADH-dependent activity. The enzyme is composed of two identical subunits of 83 kilodaltons < Momega < 94 kilodaltons. PMID:16664746

  9. Characterization of the nitric oxide reductase from Thermus thermophilus

    PubMed Central

    Schurig-Briccio, Lici A.; Venkatakrishnan, Padmaja; Hemp, James; Bricio, Carlos; Berenguer, José; Gennis, Robert B.

    2013-01-01

    Nitrous oxide (N2O) is a powerful greenhouse gas implicated in climate change. The dominant source of atmospheric N2O is incomplete biological dentrification, and the enzymes responsible for the release of N2O are NO reductases. It was recently reported that ambient emissions of N2O from the Great Boiling Spring in the United States Great Basin are high, and attributed to incomplete denitrification by Thermus thermophilus and related bacterial species [Hedlund BP, et al. (2011) Geobiology 9(6)471–480]. In the present work, we have isolated and characterized the NO reductase (NOR) from T. thermophilus. The enzyme is a member of the cNOR family of enzymes and belongs to a phylogenetic clade that is distinct from previously examined cNORs. Like other characterized cNORs, the T. thermophilus cNOR consists of two subunits, NorB and NorC, and contains a one heme c, one Ca2+, a low-spin heme b, and an active site consisting of a high-spin heme b and FeB. The roles of conserved residues within the cNOR family were investigated by site-directed mutagenesis. The most important and unexpected result is that the glutamic acid ligand to FeB is not essential for function. The E211A mutant retains 68% of wild-type activity. Mutagenesis data and the pattern of conserved residues suggest that there is probably not a single pathway for proton delivery from the periplasm to the active site that is shared by all cNORs, and that there may be multiple pathways within the T. thermophilus cNOR. PMID:23858452

  10. Marek’s disease virus encoded ribonucleotide reductase large subunit is essential for in vivo replication and plays a critical role in viral pathogenesis.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease virus encodes a ribonucleotide reductase (RR) that consists of two subunits namely RR1 and RR2, both of which associate to form an active holoenzyme and both subunits are necessary for enzyme activity. It is an essential enzyme for the conversion of ribonucleotides to deoxyribonucleo...

  11. A dissimilatory nitrite reductase in Paracoccus halodenitrificans

    NASA Technical Reports Server (NTRS)

    Grant, M. A.; Hochstein, L. I.

    1984-01-01

    Paracoccus halodenitrificans produced a membrane-associated nitrite reductase. Spectrophotometric analysis showed it to be associated with a cd-cytochrome and located on the inner side of the cytoplasmic membrane. When supplied with nitrite, membrane preparations produced nitrous oxide and nitric oxide in different ratios depending on the electron donor employed. The nitrite reductase was maximally active at relatively low concentrations of sodium chloride and remained attached to the membranes at 100 mM sodium chloride.

  12. Possible involvement of a L-delta 1-pyrroline-5-carboxylate (P5C) reductase in the synthesis of proline in Desulfovibrio desulfuricans Norway.

    PubMed

    Fons, M; Cami, B; Chippaux, M

    1991-09-16

    A L-delta 1-pyrroline-5-carboxylate reductase activity has been detected in crude extracts of Desulfovibrio desulfuricans Norway. This P5C reductase activity is also found when a 2.5 kb D. desulfuricans DNA fragment is introduced into an Escherichia coli proC mutant. Although it restores growth of the proC mutant, the ProDd enzyme might be detrimental to the E. coli host since the plasmid carrying the cognate proDd gene is segregated at high rate by the cells but is stabilized by small deletions which lead to a loss of the P5C reductase activity. PMID:1898390

  13. Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species.

    PubMed

    Gray, Joshua P; Mishin, Vladimir; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2010-09-01

    Inhalation of vesicants including sulfur mustard can cause significant damage to the upper airways. This is the result of vesicant-induced modifications of proteins important in maintaining the integrity of the lung. Cytochrome P450s are the major enzymes in the lung mediating detoxification of sulfur mustard and its metabolites. NADPH cytochrome P450 reductase is a flavin-containing electron donor for cytochrome P450. The present studies demonstrate that the sulfur mustard analog, 2-chloroethyl ethyl sulfide (CEES), is a potent inhibitor of human recombinant cytochrome P450 reductase, as well as native cytochrome P450 reductase from liver microsomes of saline and beta-naphthoflavone-treated rats, and cytochrome P450 reductase from type II lung epithelial cells. Using rat liver microsomes from beta-naphthoflavone-treated rats, CEES was found to inhibit CYP 1A1 activity. This inhibition was overcome by microsomal cytochrome P450 reductase from saline-treated rats, which lack CYP 1A1 activity, demonstrating that the CEES inhibitory activity was selective for cytochrome P450 reductase. Cytochrome P450 reductase also generates reactive oxygen species (ROS) via oxidation of NADPH. In contrast to its inhibitory effects on the reduction of cytochrome c and CYP1A1 activity, CEES was found to stimulate ROS formation. Taken together, these data demonstrate that sulfur mustard vesicants target cytochrome P450 reductase and that this effect may be an important mechanism mediating oxidative stress and lung injury. PMID:20561902

  14. Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species

    SciTech Connect

    Gray, Joshua P.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2010-09-01

    Inhalation of vesicants including sulfur mustard can cause significant damage to the upper airways. This is the result of vesicant-induced modifications of proteins important in maintaining the integrity of the lung. Cytochrome P450s are the major enzymes in the lung mediating detoxification of sulfur mustard and its metabolites. NADPH cytochrome P450 reductase is a flavin-containing electron donor for cytochrome P450. The present studies demonstrate that the sulfur mustard analog, 2-chloroethyl ethyl sulfide (CEES), is a potent inhibitor of human recombinant cytochrome P450 reductase, as well as native cytochrome P450 reductase from liver microsomes of saline and {beta}-naphthoflavone-treated rats, and cytochrome P450 reductase from type II lung epithelial cells. Using rat liver microsomes from {beta}-naphthoflavone-treated rats, CEES was found to inhibit CYP 1A1 activity. This inhibition was overcome by microsomal cytochrome P450 reductase from saline-treated rats, which lack CYP 1A1 activity, demonstrating that the CEES inhibitory activity was selective for cytochrome P450 reductase. Cytochrome P450 reductase also generates reactive oxygen species (ROS) via oxidation of NADPH. In contrast to its inhibitory effects on the reduction of cytochrome c and CYP1A1 activity, CEES was found to stimulate ROS formation. Taken together, these data demonstrate that sulfur mustard vesicants target cytochrome P450 reductase and that this effect may be an important mechanism mediating oxidative stress and lung injury.

  15. Characterization of a Ca/sup 2 +/, calmodulin-dependent protein kinase which is able to phosphorylate native and protease cleaved purified hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase

    SciTech Connect

    Beg, Z.H.; Stonik, J.A.; Brewer, H.B. Jr.

    1986-05-01

    The authors have extensively purified a low molecular weight Ca/sup 2 +/, calmodulin-dependent protein kinase from rat brain cytosol. This kinase (M/sub r/ 120,000) is able to phosphorylate both native and soluble purified HMG-CoA reductase. The concomitant inactivation and phosphorylation of purified HMG-CoA reductase was completely dependent on Ca/sup 2 +/ and calmodulin. Incubation of phosphorylated /sup 32/P-HMG-CoA reductase was associated with the loss of /sup 32/P-radioactivity and reactivation of inactive enzyme. Maximal phosphorylation of purified HMG-CoA reductase involved the introduction of approximately 0.5 mol phosphate/53,000 enzyme fragment. The apparent Km for purified HMG-CoA reductase was .045 mg/ml. Microsomal native HMG-CoA reductase (M/sub r/ 100,000) was also phosphorylated and inactivated following incubation with calmodulin stimulated kinase, calmodulin, Ca/sup 2 +/ and Mg-ATP; dephosphorylation (reactivation) was catalyzed by the phosphoprotein phosphatase. The isolation and characterization of the M/sub r/ 120,000 calmodulin-binding enzyme complex provides additional insights into the mechanisms of the Ca/sup 2 +/ dependent regulation of HMG-CoA reductase phosphorylation. Based on these data and the authors previous in vitro and in vivo studies, they now propose that HMG-CoA reductase activity is modulated by three separate kinase systems.

  16. A qualitative and quantitative cytochemical assay of dihydrofolate reductase in erythroid cells.

    PubMed

    Nano, R; Gerzeli, G; Invernizzi, R; Supino, R

    1989-01-01

    The distribution and intensity of dihydrofolate reductase (DHFR) cytochemically demonstrable was studied in erythroid cells. Cells of normal human bone marrow, of human erythroleukaemia (M6), and cells of the Friend (MEL) clone 745A murine erythroleukaemia (also after differentiation with dimethylsulphoxide, DMSO) were stained according to Gerzeli and de Piceis Polver (1969) technique; quantification of the reaction product was made using a Vickers M86 microdensitometer. The enzyme activity progressively decreased during the normal differentiation of the erythropoietic series while persisted at high levels in erythroleukaemia cells. It can be suggested that in the 1st case, the cytochemical pattern of dihydrofolate reductase may be a useful added tool for studying the erythroid differentiation. In the 2nd case, the increased level of this enzyme may be related to an amplification of the gene of DHFR in the malignant transformation. PMID:2496572

  17. Crystal Structure of ChrR -- A Quinone Reductase with the Capacity to Reduce Chromate

    SciTech Connect

    Eswaramoorthy S.; Poulain, S.; Hienerwadel, R.; Bremond, N.; Sylvester, M. D.; Zhang, Y.-B.; Berthomieu, C.; van der Lelie, D.; Matin, A.

    2012-04-01

    The Escherichia coli ChrR enzyme is an obligatory two-electron quinone reductase that has many applications, such as in chromate bioremediation. Its crystal structure, solved at 2.2 {angstrom} resolution, shows that it belongs to the flavodoxin superfamily in which flavin mononucleotide (FMN) is firmly anchored to the protein. ChrR crystallized as a tetramer, and size exclusion chromatography showed that this is the oligomeric form that catalyzes chromate reduction. Within the tetramer, the dimers interact by a pair of two hydrogen bond networks, each involving Tyr128 and Glu146 of one dimer and Arg125 and Tyr85 of the other; the latter extends to one of the redox FMN cofactors. Changes in each of these amino acids enhanced chromate reductase activity of the enzyme, showing that this network is centrally involved in chromate reduction.

  18. Crystal Structure of ChrR—A Quinone Reductase with the Capacity to Reduce Chromate

    PubMed Central

    Hienerwadel, Rainer; Bremond, Nicolas; Sylvester, Matthew D.; Zhang, Yian-Biao; Berthomieu, Catherine; Van Der Lelie, Daniel; Matin, A.

    2012-01-01

    The Escherichia coli ChrR enzyme is an obligatory two-electron quinone reductase that has many applications, such as in chromate bioremediation. Its crystal structure, solved at 2.2 Å resolution, shows that it belongs to the flavodoxin superfamily in which flavin mononucleotide (FMN) is firmly anchored to the protein. ChrR crystallized as a tetramer, and size exclusion chromatography showed that this is the oligomeric form that catalyzes chromate reduction. Within the tetramer, the dimers interact by a pair of two hydrogen bond networks, each involving Tyr128 and Glu146 of one dimer and Arg125 and Tyr85 of the other; the latter extends to one of the redox FMN cofactors. Changes in each of these amino acids enhanced chromate reductase activity of the enzyme, showing that this network is centrally involved in chromate reduction. PMID:22558308

  19. The dual function of flavodiiron proteins: oxygen and/or nitric oxide reductases.

    PubMed

    Romão, Célia V; Vicente, João B; Borges, Patrícia T; Frazão, Carlos; Teixeira, Miguel

    2016-03-01

    Flavodiiron proteins have emerged in the last two decades as a newly discovered family of oxygen and/or nitric oxide reductases widespread in the three life domains, and present in both aerobic and anaerobic organisms. Herein we present the main features of these fascinating enzymes, with a particular emphasis on the metal sites, as more appropriate for this special issue in memory of the exceptional bioinorganic scientist R. J. P. Williams who pioneered the notion of (metal) element availability-driven evolution. We also compare the flavodiiron proteins with the other oxygen and nitric oxide reductases known until now, highlighting how throughout evolution Nature arrived at different solutions for similar functions, in some cases adding extra features, such as energy conservation. These enzymes are an example of the (bioinorganic) unpredictable diversity of the living world. PMID:26767750

  20. Molecular cloning, expression and catalytic activity of a human AKR7 member of the aldo-keto reductase superfamily: evidence that the major 2-carboxybenzaldehyde reductase from human liver is a homologue of rat aflatoxin B1-aldehyde reductase.

    PubMed Central

    Ireland, L S; Harrison, D J; Neal, G E; Hayes, J D

    1998-01-01

    The masking of charged amino or carboxy groups by N-phthalidylation and O-phthalidylation has been used to improve the absorption of many drugs, including ampicillin and 5-fluorouracil. Following absorption of such prodrugs, the phthalidyl group is hydrolysed to release 2-carboxybenzaldehyde (2-CBA) and the pharmaceutically active compound; in humans, 2-CBA is further metabolized to 2-hydroxymethylbenzoic acid by reduction of the aldehyde group. In the present work, the enzyme responsible for the reduction of 2-CBA in humans is identified as a homologue of rat aflatoxin B1-aldehyde reductase (rAFAR). This novel human aldo-keto reductase (AKR) has been cloned from a liver cDNA library, and together with the rat protein, establishes the AKR7 family of the AKR superfamily. Unlike its rat homologue, human AFAR (hAFAR) appears to be constitutively expressed in human liver, and is widely expressed in extrahepatic tissues. The deduced human and rat protein sequences share 78% identity and 87% similarity. Although the two AKR7 proteins are predicted to possess distinct secondary structural features which distinguish them from the prototypic AKR1 family of AKRs, the catalytic- and NADPH-binding residues appear to be conserved in both families. Certain of the predicted structural features of the AKR7 family members are shared with the AKR6 beta-subunits of voltage-gated K+-channels. In addition to reducing the dialdehydic form of aflatoxin B1-8,9-dihydrodiol, hAFAR shows high affinity for the gamma-aminobutyric acid metabolite succinic semialdehyde (SSA) which is structurally related to 2-CBA, suggesting that hAFAR could function as both a SSA reductase and a 2-CBA reductase in vivo. This hypothesis is supported in part by the finding that the major peak of 2-CBA reductase activity in human liver co-purifies with hAFAR protein. PMID:9576847

  1. Monoterpene Metabolism. Cloning, Expression, and Characterization of Menthone Reductases from Peppermint1

    PubMed Central

    Davis, Edward M.; Ringer, Kerry L.; McConkey, Marie E.; Croteau, Rodney

    2005-01-01

    (−)-Menthone is the predominant monoterpene produced in the essential oil of maturing peppermint (Mentha x piperita) leaves during the filling of epidermal oil glands. This early biosynthetic process is followed by a second, later oil maturation program (approximately coincident with flower initiation) in which the C3-carbonyl of menthone is reduced to yield (−)-(3R)-menthol and (+)-(3S)-neomenthol by two distinct NADPH-dependent ketoreductases. An activity-based in situ screen, by expression in Escherichia coli of 23 putative redox enzymes from an immature peppermint oil gland expressed sequence tag library, was used to isolate a cDNA encoding the latter menthone:(+)-(3S)-neomenthol reductase. Reverse transcription-PCR amplification and RACE were used to acquire the former menthone:(−)-(3R)-menthol reductase directly from mRNA isolated from the oil gland secretory cells of mature leaves. The deduced amino acid sequences of these two reductases share 73% identity, provide no apparent subcellular targeting information, and predict inclusion in the short-chain dehydrogenase/reductase family of enzymes. The menthone:(+)-(3S)-neomenthol reductase cDNA encodes a 35,722-D protein, and the recombinant enzyme yields 94% (+)-(3S)-neomenthol and 6% (−)-(3R)-menthol from (−)-menthone as substrate, and 86% (+)-(3S)-isomenthol and 14% (+)-(3R)-neoisomenthol from (+)-isomenthone as substrate, has a pH optimum of 9.3, and Km values of 674 μm, > 1 mm, and 10 μm for menthone, isomenthone, and NADPH, respectively, with a kcat of 0.06 s−1. The recombinant menthone:(−)-(3R)-menthol reductase has a deduced size of 34,070 D and converts (−)-menthone to 95% (−)-(3R)-menthol and 5% (+)-(3S)-neomenthol, and (+)-isomenthone to 87% (+)-(3R)-neoisomenthol and 13% (+)-(3S)-isomenthol, displays optimum activity at neutral pH, and has Km values of 3.0 μm, 41 μm, and 0.12 μm for menthone, isomenthone, and NADPH, respectively, with a kcat of 0.6 s−1. The respective

  2. Cotton Benzoquinon Reductase: Up-Regulation During Early Fiber Development and Heterologous Expresson and Characterization in Pichia Pastoris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Benzoquinone reductase (BR) is an enzyme which catalyzes the bivalent redox reactions of quinones without the production of free radical intermediates. Using 2-D PAGE, two proteins were found to be up-regulated in wild-type cotton ovules during the fiber initiation stage. These proteins were excis...

  3. Marek’s Disease Virus Encoded Ribonucleotide Reductase Large Subunit is not Essential for In Vitro Replication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease virus (MDV) infected cells express a viral ribonucleotide reductase (RR) that is distinguishable from that present in uninfected cells by monoclonal antibody T81. Open reading frames UL39 and UL40 of the MDV genome encode the large (RR1) and small (RR2) subunits of RR enzyme, respe...

  4. Genotypic variation in sulfur assimilation and metabolism of onion (Allium cepa L.) III. Characterization of sulfite reductase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic and cDNA sequences corresponding to a ferredoxin-sulfite reductase (SiR) have been cloned from bulb onion (Allium cepa L.) and the expression of the gene and activity of the enzyme characterised with respect to sulfur (S) supply. Cloning, mapping and expression studies revealed that onion ha...

  5. Life with too much polyprenol–polyprenol reductase deficiency

    PubMed Central

    Gründahl, J.E.H.; Guan, Z.; Rust, S.; Reunert, J.; Müller, B.; Du Chesne, I.; Zerres, K.; Rudnik-Schöneborn, S.; Ortiz-Brüchle, N.; Häusler, M.G.; Siedlecka, J.; Swiezewska, E.; Raetz, C.R.H.; Marquardt, T.

    2012-01-01

    Congenital disorders of glycosylation (CDG) are caused by a dysfunction of glycosylation, an essential step in the manufacturing process of glycoproteins. This paper focuses on a 6-year-old patient with a new type of CDG-I caused by a defect of the steroid 5α reductase type 3 gene (SRD5A3). The clinical features were psychomotor retardation, pathological nystagmus, slight muscular hypotonia and microcephaly. SRD5A3 was recently identified encoding the polyprenol reductase, an enzyme catalyzing the final step of the biosynthesis of dolichol, which is required for the assembly of the glycans needed for N-glycosylation. Although an early homozygous stop-codon (c.57G> A [W19X]) with no functional protein was found in the patient, about 70% of transferrin (Tf) was correctly glycosylated. Quantification of dolichol and unreduced polyprenol in the patient's fibroblasts demonstrated a high polyprenol/dolichol ratio with normal amounts of dolichol, indicating that high polyprenol levels might compete with dolichol for the initiation of N-glycan assembly but without supporting normal glycosylation and that there must be an alternative pathway for dolichol biosynthesis. PMID:22304929

  6. New pteridine substrates for dihydropteridine reductase and horseradish peroxidase.

    PubMed Central

    Armarego, W L; Ohnishi, A; Taguchi, H

    1986-01-01

    The oxidation of 4,5-diaminopyrimidin-6(1H)-one, 5,6,7,8-tetrahydropteridin-4(3H)-one, its 6-methyl and cis-6,7-dimethyl derivatives, and 6-methyl- and cis-6-7-dimethyl-5,6,7,8-tetrahydropterins, by horseradish peroxidase/H2O2 is enzymic and follows Michaelis-Menten kinetics, and its Km and kcat. values were determined. This oxidation of 5,6,7,8-tetrahydropterins produces quinonoid dihydropterins of established structure, and they are known to be specific substrates for dihydropteridine reductase. By analogy the peroxidase/H2O2 oxidation of the 5,6,7,8-tetrahydropteridin-4(3H)-ones should produce similar quinonoid dihydro species. The quinonoid species derived from 5,6,7,8-tetrahydropteridin-4(3H)-one and its 6-methyl and cis-6,7-dimethyl derivatives are shown to be viable substrates for human brain dihydropteridine reductase, and apparent Km and Vmax. values are reported. PMID:3718470

  7. Recessive congenital methaemoglobinaemia: cytochrome b(5) reductase deficiency.

    PubMed

    Percy, Melanie J; Lappin, Terry R

    2008-05-01

    Some 60 years ago, Quentin Gibson reported the first hereditary disorder involving an enzyme when he deduced that familial methaemoglobinaemia was caused by an enzymatic lesion associated with the glycolysis pathway in red blood cells. This disorder, now known as recessive congenital methaemoglobinaemia (RCM), is caused by NADH-cytochrome b5 reductase (cb(5)r) deficiency. Two distinct clinical forms, types I and II, have been recognized, both characterized by cyanosis from birth. In type II, the cyanosis is accompanied by neurological impairment and reduced life expectancy. Cytochrome b(5) reductase is composed of one FAD and one NADH binding domain linked by a hinge region. It is encoded by the CYB5R3 (previously known as DIA1) gene and more than 40 mutations have been described, some of which are common to both types of RCM. Mutations associated with type II tend to cause incorrect splicing, disruption of the active site or truncation of the protein. At present the description of the sequence variants of cb(5)r in the literature is confusing, due to the use of two conventions which differ by one codon position. Herein we propose a new system for nomenclature of cb(5)r based on recommendations of the Human Genome Variation Society. The development of a heterologous expression system has allowed the impact of naturally occurring variants of cb(5)r to be assessed and has provided insight into the function of cb(5)r. PMID:18318771

  8. Interspecific variation for thermal dependence of glutathione reductase in sainfoin.

    PubMed

    Kidambi, S P; Mahan, J R; Matches, A G

    1990-05-01

    Understanding the biochemical and physiological consequences of species variation would expedite improvement in agronomically useful genotypes of sainfoin (Onobrychis spp.) Information on variation among sainfoin species is lacking on thermal dependence of glutathione reductase (B.C. 1.6.4.2.), which plays an important role in the protection of plants from both high and low temperature stresses by preventing harmful oxidation of enzymes and membranes. Our objective was to investigate the interspecific variation for thermal dependency of glutathione reductase in sainfoin. Large variation among species was found for: (i) the minimum apparent Km (0.4-2.5 μM NADPH), (ii) the temperature at which the minimum apparent Km was observed (15°-5°C), and (iii) the thermal kinetic windows (2°-30°C width) over a 15°-45°C temperature gradient. In general, tetraploid species had narrower (≤17°C) thermal kinetic windows than did diploid species (∼30°C), with one exception among the diploids. Within the tetraploid species, the cultivars of O. viciifolia had a broader thermal kinetic window (≥7°C) than the plant introduction (PI 212241, >2 °C) itself. PMID:24226572

  9. Properties of seleno-methionine substituted assimilatory nitrate reductase

    SciTech Connect

    Solomonson, L.P.; Barber, M.J. )

    1991-03-11

    Assimilatory NADH:nitrate reductase contains FAD, heme and Mo-pterin arranged in an NADH{yields}FAD{yields}heme{yields}Mo-Pterin{yields}NO{sub 3} electron transfer sequence. A functional Mo-pterin center is essential for all nitrate-reducing activities. To assess the possible functional role of Met, a Se-Met substituted NR was obtained by addition of Se-Met to ammonia-grown Chlorella cells prior to induction of NR activity. Increase in NADH:dehydrogenase partial activities and nitrate reductase protein proceeded normally following induction but little or no nitrate-reducing activity was expressed. This effect was observed with as little as 10{sup {minus}5} Se-Met and was prevented by a 10-fold excess of Met. A less pronounced effect was observed with 10{sup {minus}4}M Se-Cys. The purified Se-Met substituted enzyme exhibited the same apparent physical size, spectral properties and NADH dehydrogenase activities as control NR but was devoid of nitrate-reducing activities. These results suggest that one or more Met residues are essential for the catalytic function of the molybdo-pterin center of assimilatory NR.

  10. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase

    NASA Astrophysics Data System (ADS)

    Bredt, David S.; Hwang, Paul M.; Glatt, Charles E.; Lowenstein, Charles; Reed, Randall R.; Snyder, Solomon H.

    1991-06-01

    Nitric oxide is a messenger molecule, mediating the effect of endothelium-derived relaxing factor in blood vessels and the cytotoxic actions of macrophages, and playing a part in neuronal communication in the brain. Cloning of a complementary DNA for brain nitric oxide synthase reveals recognition sites for NADPH, FAD, flavin mononucleotide and calmodulin as well as phosphorylation sites, indicating that the synthase is regulated by many different factors. The only known mammalian enzyme with close homology is cytochrome P-450 reductase.

  11. Regulation of schistosome egg production by HMG CoA reductase

    SciTech Connect

    VandeWaa, E.A.; Bennett, J.L.

    1986-03-05

    Hydroxymethylglutaryl coenzyme A reductase (HMG CoA reductase) catalyzes the conversion of HMG CoA to mevalonate in the synthesis of steroids, isoprenoids and terpenes. Mevinolin, an inhibitor of this enzyme, decreased egg production in Schistosoma mansoni during in vitro incubations. This was associated with a reduction in the incorporation of /sup 14/C-acetate into polyisoprenoids and a reduction in the formation of a lipid-linked oligosaccharide. In vivo, mevinolin in daily doses of 50 mg/kg (p.o., from days 30-48 post-infection) caused no change in gross liver pathology in S. mansoni infected mice. However, when parasites exposed to mevinolin or its vehicle in vivo were cultured in vitro, worms from mevinolin-treated mice produced six times more eggs than control parasites. When infected mice were dosed with 250 mg/kg mevinolin daily (p.o., from days 35-45 post-infection), liver pathology was reduced in comparison to control mice. Thus, during in vivo exposure to a high dose of the drug egg production is decreased, while at a lower dose it appears unaffected until the parasites are cultured in a drug-free in vitro system wherein egg production is stimulated to extraordinarily high levels. It may be that at low doses mevinolin, by inhibiting the enzyme, is blocking the formation of a product (such as an isoprenoid) which normally acts to down-regulate enzyme synthesis, resulting in enzyme induction. Induction of HMG CoA reductase is then expressed as increased egg production when the worms are removed from the drug. These data suggest that HMG CoA reductase plays a role in schistosome egg production.

  12. Structural Basis of Free Reduced Flavin Generation by Flavin Reductase from Thermus thermophilus HB8*

    PubMed Central

    Imagawa, Takahito; Tsurumura, Toshiharu; Sugimoto, Yasushi; Aki, Kenji; Ishidoh, Kazumi; Kuramitsu, Seiki; Tsuge, Hideaki

    2011-01-01

    Free reduced flavins are involved in a variety of biological functions. They are generated from NAD(P)H by flavin reductase via co-factor flavin bound to the enzyme. Although recent findings on the structure and function of flavin reductase provide new information about co-factor FAD and substrate NAD, there have been no reports on the substrate flavin binding site. Here we report the structure of TTHA0420 from Thermus thermophilus HB8, which belongs to flavin reductase, and describe the dual binding mode of the substrate and co-factor flavins. We also report that TTHA0420 has not only the flavin reductase motif GDH but also a specific motif YGG in C terminus as well as Phe-41 and Arg-11, which are conserved in its subclass. From the structure, these motifs are important for the substrate flavin binding. On the contrary, the C terminus is stacked on the NADH binding site, apparently to block NADH binding to the active site. To identify the function of the C-terminal region, we designed and expressed a mutant TTHA0420 enzyme in which the C-terminal five residues were deleted (TTHA0420-ΔC5). Notably, the activity of TTHA0420-ΔC5 was about 10 times higher than that of the wild-type enzyme at 20–40 °C. Our findings suggest that the C-terminal region of TTHA0420 may regulate the alternative binding of NADH and substrate flavin to the enzyme. PMID:22052907

  13. Molecular modeling toward selective inhibitors of dihydrofolate reductase from the biological warfare agent Bacillus anthracis.

    PubMed

    Giacoppo, Juliana O S; Mancini, Daiana T; Guimarães, Ana P; Gonçalves, Arlan S; da Cunha, Elaine F F; França, Tanos C C; Ramalho, Teodorico C

    2015-02-16

    In the present work, we applied docking and molecular dynamics techniques to study 11 compounds inside the enzymes dihydrofolate reductase (DHFR) from the biological warfare agent Bacillus anthracis (BaDHFR) and Homo sapiens sapiens (HssDHFR). Six of these compounds were selected for a study with the mutant BaF96IDHFR. Our results corroborated with experimental data and allowed the proposition of a new molecule with potential activity and better selectivity for BaDHFR. PMID:24985033

  14. Spectroscopic studies of copper enzymes

    SciTech Connect

    Dooley, D.M.; Moog, R.; Zumft, W.; Koenig, S.H.; Scott, R.A.; Cote, C.E.; McGuirl, M.

    1986-05-01

    Several spectroscopic methods, including absorption, circular dichroism (CD), magnetic CD (MCD), X-ray absorption, resonance Raman, EPR, NMR, and quasi-elastic light-scattering spectroscopy, have been used to probe the structures of copper-containing amine oxidases, nitrite reductase, and nitrous oxide reductase. The basic goals are to determine the copper site structure, electronic properties, and to generate structure-reactivity correlations. Collectively, the results on the amine oxidases permit a detailed model for the Cu(II) sites in these enzymes to be constructed that, in turn, rationalizes the ligand-binding chemistry. Resonance Raman spectra of the phenylhydrazine and 2,4-dinitrophenyl-hydrazine derivatives of bovine plasma amine oxidase and models for its organic cofactor, e.g. pyridoxal, methoxatin, are most consistent with methoxatin being the intrinsic cofactor. The structure of the Cu(I) forms of the amine oxidases have been investigated by X-ray absorption spectroscopy (XAS); the copper coordination geometry is significantly different in the oxidized and reduced forms. Some anomalous properties of the amine oxidases in solution are explicable in terms of their reversible aggregation, which the authors have characterized via light scattering. Nitrite and nitrous oxide reductases display several novel spectral properties. The data suggest that new types of copper sites are present.

  15. Purification and some characteristics of nitrous oxide reductase from Paracoccus denitrificans.

    PubMed

    Snyder, S W; Hollocher, T C

    1987-05-15

    Nitrous oxide reductase from the denitrifying bacterium Paracoccus denitrificans has been purified very nearly to homogeneity by an anaerobic procedure that results in a product with high specific activity. The enzyme is a dimer of about Mr 144,000 composed of two subunits of apparently equal Mr and contains 4 mol of Cu per mol of subunit. The isoelectric point is 4.3; specific activity at 25 degrees C, pH 7.1, is 122 mumol X min-1 X mg of protein-1; and Km is about 7 microM N2O under the same conditions. The N2O- and O2-oxidized forms of the enzyme had principal absorption bands at 550 and 820 nm; the dithionite-reduced form, at 650 nm. The extinction coefficient at 550 nm for the oxidized enzyme is about 5300 (M subunit)-1 X cm-1. Ferricyanide-oxidized enzyme and enzyme exposed to O2 for a couple of days at 4 degrees C exhibited additional bands at 480, 620, and 780 nm and had very low specific activities. Cu-EPR signals were observed with oxidized and reduced forms of the enzyme with g perpendicular values at 2.042 and 2.055, respectively. The O2-oxidized enzyme had g parallel and A parallel values of about 2.244 and 35 gauss, respectively, based on the observation of four hyperfine lines in the g parallel region. The enzyme may therefore contain at least one Cu atom approximating the "Type 1" class. Spin counts against Cu-EDTA standards suggest that 20-30% of the enzyme-bound Cu is EPR detectable in the O2-oxidized enzyme and 7-15% in the enzyme as prepared and in the reduced enzyme. Much of the Cu thus appears to be EPR silent. Nitrous oxide reductase was observed to undergo turnover-dependent inactivation, and nitrite and fluoride among other anions were found to accelerate this process. In a number of characteristics, the enzyme resembles nitrous oxide reductase recently purified from Pseudomonas perfectomarina and Rhodopseudomonas sphaeroides, particularly the former. Some differences appear related to whether or not purification is carried out entirely

  16. Physiological Roles for Two Periplasmic Nitrate Reductases in Rhodobacter sphaeroides 2.4.3 (ATCC 17025)▿

    PubMed Central

    Hartsock, Angela; Shapleigh, James P.

    2011-01-01

    The metabolically versatile purple bacterium Rhodobacter sphaeroides 2.4.3 is a denitrifier whose genome contains two periplasmic nitrate reductase-encoding gene clusters. This work demonstrates nonredundant physiological roles for these two enzymes. One cluster is expressed aerobically and repressed under low oxygen while the second is maximally expressed under low oxygen. Insertional inactivation of the aerobically expressed nitrate reductase eliminated aerobic nitrate reduction, but cells of this strain could still respire nitrate anaerobically. In contrast, when the anaerobic nitrate reductase was absent, aerobic nitrate reduction was detectable, but anaerobic nitrate reduction was impaired. The aerobic nitrate reductase was expressed but not utilized in liquid culture but was utilized during growth on solid medium. Growth on a variety of carbon sources, with the exception of malate, the most oxidized substrate used, resulted in nitrite production on solid medium. This is consistent with a role for the aerobic nitrate reductase in redox homeostasis. These results show that one of the nitrate reductases is specific for respiration and denitrification while the other likely plays a role in redox homeostasis during aerobic growth. PMID:21949073

  17. The prenyltransferase UBIAD1 is the target of geranylgeraniol in degradation of HMG CoA reductase

    PubMed Central

    Schumacher, Marc M; Elsabrouty, Rania; Seemann, Joachim; Jo, Youngah; DeBose-Boyd, Russell A

    2015-01-01

    Schnyder corneal dystrophy (SCD) is an autosomal dominant disorder in humans characterized by abnormal accumulation of cholesterol in the cornea. SCD-associated mutations have been identified in the gene encoding UBIAD1, a prenyltransferase that synthesizes vitamin K2. Here, we show that sterols stimulate binding of UBIAD1 to the cholesterol biosynthetic enzyme HMG CoA reductase, which is subject to sterol-accelerated, endoplasmic reticulum (ER)-associated degradation augmented by the nonsterol isoprenoid geranylgeraniol through an unknown mechanism. Geranylgeraniol inhibits binding of UBIAD1 to reductase, allowing its degradation and promoting transport of UBIAD1 from the ER to the Golgi. CRISPR-CAS9-mediated knockout of UBIAD1 relieves the geranylgeraniol requirement for reductase degradation. SCD-associated mutations in UBIAD1 block its displacement from reductase in the presence of geranylgeraniol, thereby preventing degradation of reductase. The current results identify UBIAD1 as the elusive target of geranylgeraniol in reductase degradation, the inhibition of which may contribute to accumulation of cholesterol in SCD. DOI: http://dx.doi.org/10.7554/eLife.05560.001 PMID:25742604

  18. Regulation of synthesis and degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase by low density lipoprotein and 25-hydroxycholesterol in UT-1 cells.

    PubMed Central

    Faust, J R; Luskey, K L; Chin, D J; Goldstein, J L; Brown, M S

    1982-01-01

    UT-1 cells are a clone of Chinese hamster ovary cells that were selected to grow in the presence of compactin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase [mevalonate: NADP+ oxidoreductase (CoA-acylating), EC 1.1.1.34]. These cells have 100- to 1,000-fold more immunoprecipitable reductase than normal. The enzyme activity is rapidly decreased when low density lipoprotein (LDL) or 25-hydroxycholesterol is added to the culture medium. In this current study, a quantitative immunoprecipitation assay was used to determine whether LDL and 25-hydroxycholesterol inhibit the synthesis or stimulate the degradation of reductase in UT-1 cells. Each of these agents inhibited the incorporation of [35S]methionine into immunoprecipitable reductase by more than 98%. Pulse-chase experiments showed that reductase was degraded with a half-life of 10-13 hr in UT-1 cells and that the rate of degradation of preformed enzyme was increased 3-fold by the addition of either LDL or 25-hydroxycholesterol. We conclude that the predominant mechanism by which LDL and 25-hydroxycholesterol decrease reductase activity in UT-1 cells is a profound suppression of synthesis of the enzyme. Images PMID:6957860

  19. Synthesis and characterization of potent inhibitors of Trypanosoma cruzi dihydrofolate reductase

    SciTech Connect

    Schormann, Norbert; Velu, Sadanandan E.; Murugesan, Srinivasan; Senkovich, Olga; Walker, Kiera; Chenna, Bala C.; Shinkre, Bidhan; Desai, Amar; Chattopadhyay, Debasish

    2010-09-17

    Dihydrofolate reductase (DHFR) of the parasite Trypanosoma cruzi (T. cruzi) is a potential target for developing drugs to treat Chagas disease. We have undertaken a detailed structure-activity study of this enzyme. We report here synthesis and characterization of six potent inhibitors of the parasitic enzyme. Inhibitory activity of each compound was determined against T. cruzi and human DHFR. One of these compounds, ethyl 4-(5-[(2,4-diamino-6-quinazolinyl)methyl]amino-2-methoxyphenoxy)butanoate (6b) was co-crystallized with the bifunctional dihydrofolate reductase-thymidylate synthase enzyme of T. cruzi and the crystal structure of the ternary enzyme:cofactor:inhibitor complex was determined. Molecular docking was used to analyze the potential interactions of all inhibitors with T. cruzi DHFR and human DHFR. Inhibitory activities of these compounds are discussed in the light of enzyme-ligand interactions. Binding affinities of each inhibitor for the respective enzymes were calculated based on the experimental or docked binding mode. An estimated 60-70% of the total binding energy is contributed by the 2,4-diaminoquinazoline scaffold.

  20. Enzymes useful for chiral compound synthesis: structural biology, directed evolution, and protein engineering for industrial use.

    PubMed

    Kataoka, Michihiko; Miyakawa, Takuya; Shimizu, Sakayu; Tanokura, Masaru

    2016-07-01

    Biocatalysts (enzymes) have many advantages as catalysts for the production of useful compounds as compared to chemical catalysts. The stereoselectivity of the enzymes is one advantage, and thus the stereoselective production of chiral compounds using enzymes is a promising approach. Importantly, industrial application of the enzymes for chiral compound production requires the discovery of a novel useful enzyme or enzyme function; furthermore, improving the enzyme properties through protein engineering and directed evolution approaches is significant. In this review, the significance of several enzymes showing stereoselectivity (quinuclidinone reductase, aminoalcohol dehydrogenase, old yellow enzyme, and threonine aldolase) in chiral compound production is described, and the improvement of these enzymes using protein engineering and directed evolution approaches for further usability is discussed. Currently, enzymes are widely used as catalysts for the production of chiral compounds; however, for further use of enzymes in chiral compound production, improvement of enzymes should be more essential, as well as discovery of novel enzymes and enzyme functions. PMID:27188776

  1. Molecular cloning of mannose-6-phosphate reductase and its developmental expression in celery.

    PubMed Central

    Everard, J D; Cantini, C; Grumet, R; Plummer, J; Loescher, W H

    1997-01-01

    Compared with other primary photosynthetic products (e.g. sucrose and starch), little is known about sugar alcohol metabolism, its regulation, and the manner in which it is integrated with other pathways. Mannose-6-phosphate reductase (M6PR) is a key enzyme that is involved in mannitol biosynthesis in celery (Apium graveolens L.). The M6PR gene was cloned from a leaf cDNA library, and clonal authenticity was established by assays of M6PR activity, western blots, and comparisons of the deduced amino acid sequence with a celery M6PR tryptic digestion product. Recombinant M6PR, purified from Escherichia coli, had specific activity, molecular mass, and kinetic characteristics indistinguishable from those of authentic celery M6PR. Sequence analyses showed M6PR to be a member of the aldo-keto reductase superfamily, which includes both animal and plant enzymes. The greatest sequence similarity was with aldose-6-phosphate reductase (EC 1.1.1.200), a key enzyme in sorbitol synthesis in Rosaceae. Developmental studies showed M6PR to be limited to green tissues and to be under tight transcriptional regulation during leaf initiation, expansion, and maturation. These data confirmed a close relationship between the development of photosynthetic capacity, mannitol synthesis, and M6PR activity. PMID:9112783

  2. Human leukemia and normal leukocytes contain a species of immunoreactive but nonfunctional dihydrofolate reductase

    SciTech Connect

    Rothenbery, S.P.; Iqbal, M.P.

    1982-01-01

    A quantitative radioimmunoassay has been developed for human dihydrofolate reductase (tetrahydrofolate dehydrogenase; 5,6,7,8-tetrahdrofolate:NADP/sup +/ oxidoreductase, EC 1.5.1.3) by using antiserum raised in rabbits against the active enzyme purified from calf liver. An immunoreactive protein could be identified in the cytoplasm of chronic myelogenous leukemia cells, which contained no functional dihydrofolate reductase activity. Its concentration was stoichiometric to the volume of cytoplasm assayed and paralleled the standard curve obtained with purified enzyme, indicating that this protein in the human cells is antigenically similar to the homologous antigen. The concentration of this immunoreactive protein in the cytoplasm of human leukemia and normal leukocytes in all instances greatly exceeded the concentration of functional dihydrofolate reductase, which was measured by the binding of (/sup 3/H)methotrexate. This nonfunctional immunoreactive protein in the cytoplasm and cytosol from two different samples of chronic myelogenous leukemia cells analyzed by gel filtration had an apparent molecular weight of 41,000, which is twice the molecular weight of the functional enzyme.

  3. Morelloflavone from Garcinia dulcis as a novel biflavonoid inhibitor of HMG-CoA reductase.

    PubMed

    Tuansulong, Ku-Aida; Hutadilok-Towatana, Nongporn; Mahabusarakam, Wilawan; Pinkaew, Decha; Fujise, Ken

    2011-03-01

    Morelloflavone, a biflavonoid from Garcinia dulcis previously shown to have hypocholesterolemic activity, was examined for its effect on HMG-CoA reductase, the rate-limiting enzyme of the cholesterol biosynthetic pathway. By using the catalytic domain of house mouse HMG-CoA reductase, morelloflavone was found to inhibit the enzyme activity by competing with HMG-CoA whereas it was non-competitive towards NADPH. The inhibition constants (K(i)) with respect to HMG-CoA and NADPH were 80.87 ± 0.06 µm and 103 ± 0.07 µm, respectively. Both flavonoid subunits of this compound, naringenin and luteolin, equally competed with HMG-CoA with K(i) of 83.58 ± 4.37 µm and 83.59 ± 0.94 µm, respectively, and were also non-competitive with NADPH (K(i) of 182 ± 0.67 µm and 188 ± 0.14 µm, respectively). Due to these findings, we suggest that each subunit of morelloflavone would occupy the active site of the enzyme, thereby blocking access of its substrate. The present study thus demonstrates the ability of morelloflavone from G. dulcis to inhibit HMG-CoA reductase in vitro. As a result, this biflavonoid might serve as a new candidate for the future development of hypocholesterolemic agents. PMID:20734327

  4. Human leukemia and normal leukocytes contain a species of immunoreactive but nonfunctional dihydrofolate reductase.

    PubMed Central

    Rothenberg, S P; Iqbal, M P

    1982-01-01

    A quantitative radioimmunoassay has been developed for human dihydrofolate reductase (tetrahydrofolate dehydrogenase; 5,6,7,8-tetrahydrofolate:NADP+ oxidoreductase, EC 1.5.1.3) by using antiserum raised in rabbits against the active enzyme purified from calf liver. An immunoreactive protein could be identified in the cytoplasm of chronic myelogenous leukemia cells, which contained no functional dihydrofolate reductase activity. Its concentration was stoichiometric to the volume of cytoplasm assayed and paralleled the standard curve obtained with purified enzyme, indicating that this protein in the human cells is antigenically similar to the homologous antigen. The concentration of this immunoreactive protein in the cytoplasm of human leukemia and normal leukocytes in all instances greatly exceeded the concentration of functional dihydrofolate reductase, which was measured by the binding of [3H]methotrexate. This nonfunctional immunoreactive protein in the cytoplasm and cytosol from two different samples of chronic myelogenous leukemia cells analyzed by gel filtration had an apparent molecular weight of 41,000, which is twice the molecular weight of the functional enzyme. Images PMID:6952216

  5. A novel NAD(P)H-dependent carbonyl reductase specifically expressed in the thyroidectomized chicken fatty liver: catalytic properties and crystal structure.

    PubMed

    Fukuda, Yudai; Sone, Takeki; Sakuraba, Haruhiko; Araki, Tomohiro; Ohshima, Toshihisa; Shibata, Takeshi; Yoneda, Kazunari

    2015-10-01

    A gene encoding a functionally unknown protein that is specifically expressed in the thyroidectomized chicken fatty liver and has a predicted amino acid sequence similar to that of NAD(P)H-dependent carbonyl reductase was overexpressed in Escherichia coli; its product was purified and characterized. The expressed enzyme was an NAD(P)H-dependent broad substrate specificity carbonyl reductase and was inhibited by arachidonic acid at 1.5 μm. Enzymological characterization indicated that the enzyme could be classified as a cytosolic-type carbonyl reductase. The enzyme's 3D structure was determined using the molecular replacement method at 1.98 Å resolution in the presence of NADPH and ethylene glycol. The asymmetric unit consisted of two subunits, and a noncrystallographic twofold axis generated the functional dimer. The structures of the subunits, A and B, differed from each other. In subunit A, the active site contained an ethylene glycol molecule absent in subunit B. Consequently, Tyr172 in subunit A rotated by 103.7° in comparison with subunit B, which leads to active site closure in subunit A. In Y172A mutant, the Km value for 9,10-phenanthrenequinone (model substrate) was 12.5 times higher than that for the wild-type enzyme, indicating that Tyr172 plays a key role in substrate binding in this carbonyl reductase. Because the Tyr172-containing active site lid structure (Ile164-Gln174) is not conserved in all known carbonyl reductases, our results provide new insights into substrate binding of carbonyl reductase. The catalytic properties and crystal structure revealed that thyroidectomized chicken fatty liver carbonyl reductase is a novel enzyme. PMID:26206323

  6. Expression and characterization of a functional canine variant of cytochrome b5 reductase.

    PubMed

    Roma, Glenn W; Crowley, Louis J; Barber, Michael J

    2006-08-01

    Cytochrome b5 reductase (cb5r), a member of the flavoprotein transhydrogenase family of oxidoreductase enzymes, catalyzes the transfer of reducing equivalents from the physiological electron donor, NADH, to two molecules of cytochrome b5. We have determined the correct nucleotide sequence for the putative full-length, membrane-associated enzyme from Canis familiaris, and have generated a heterologous expression system for production of a histidine-tagged variant of the soluble, catalytic diaphorase domain, comprising residues I33 to F300. Using a simple two-step chromatographic procedure, the recombinant diaphorase domain has been purified to homogeneity and demonstrated to be a simple flavoprotein with a molecular mass of 31,364 (m/z) that retained both NADH:ferricyanide reductase and NADH:cytochrome b5 reductase activities. The recombinant protein contained a full complement of FAD and exhibited absorption and CD spectra comparable to those of a recombinant form of the rat cytochrome b5 reductase diaphorase domain generated using an identical expression system, suggesting similar protein folding. Oxidation-reduction potentiometric titrations yielded a standard midpoint potential (Eo') for the FAD/FADH2 couple of -273+/-5 mV which was identical to the value obtained for the corresponding rat domain. Thermal denaturation studies revealed that the canine domain exhibited stability comparable to that of the rat protein, confirming similar protein conformations. Initial-rate kinetic studies revealed the canine diaphorase domain retained a marked preference for NADH versus NADPH as reducing substrate and exhibited kcat's of 767 and 600 s(-1) for NADH:ferricyanide reductase and NADH:cytochrome b5 reductase activities, respectively, with Km's of 7, 8, and 12 microM for NADH, K3Fe(CN)6, and cytochrome b5, respectively. Spectral-binding constants (Ks) determined for a variety of NAD+ analogs indicated the highest and lowest affinities were observed for APAD+ (Ks=71 micro

  7. Human monomethylarsonic acid (MMA(V)) reductase is a member of the glutathione-S-transferase superfamily.

    PubMed

    Zakharyan, R A; Sampayo-Reyes, A; Healy, S M; Tsaprailis, G; Board, P G; Liebler, D C; Aposhian, H V

    2001-08-01

    The drinking of water containing large amounts of inorganic arsenic is a worldwide major public health problem because of arsenic carcinogenicity. Yet an understanding of the specific mechanism(s) of inorganic arsenic toxicity has been elusive. We have now partially purified the rate-limiting enzyme of inorganic arsenic metabolism, human liver MMA(V) reductase, using ion exchange, molecular exclusion, and hydroxyapatite chromatography. When SDS-beta-mercaptoethanol-PAGE was performed on the most purified fraction, seven protein bands were obtained. Each band was excised from the gel, sequenced by LC-MS/MS and identified according to the SWISS-PROT and TrEMBL Protein Sequence databases. Human liver MMA(V) reductase is 100% identical, over 92% of sequence that we analyzed, with the recently discovered human glutathione-S-transferase Omega class hGSTO 1-1. Recombinant human GSTO1-1 had MMA(V) reductase activity with K(m) and V(max) values comparable to those of human liver MMA(V) reductase. The partially purified human liver MMA(V) reductase had glutathione S-transferase (GST) activity. MMA(V) reductase activity was competitively inhibited by the GST substrate, 1-chloro 2,4-dinitrobenzene and also by the GST inhibitor, deoxycholate. Western blot analysis of the most purified human liver MMA(V) reductase showed one band when probed with hGSTO1-1 antiserum. We propose that MMA(V) reductase and hGSTO 1-1 are identical proteins. PMID:11511179

  8. Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Moe, Owen; Cornelius, Richard

    1988-01-01

    Conveys an appreciation of enzyme kinetic analysis by using a practical and intuitive approach. Discusses enzyme assays, kinetic models and rate laws, the kinetic constants (V, velocity, and Km, Michaels constant), evaluation of V and Km from experimental data, and enzyme inhibition. (CW)

  9. Go Green: The Anti-Inflammatory Effects of Biliverdin Reductase

    PubMed Central

    Wegiel, Barbara; Otterbein, Leo E.

    2012-01-01

    Biliverdin (BV) has emerged as a cytoprotective and important anti-inflammatory molecule. Conversion of BV to bilirubin (BR) is catalyzed by biliverdin reductase (BVR) and is required for the downstream signaling and nuclear localization of BVR. Recent data by others and us make clear that BVR is a critical regulator of innate immune responses resulting from acute insult and injury and moreover, that a lack of BVR results in an enhanced proinflammatory phenotype. In macrophages, BVR is regulated by its substrate BV which leads to activation of the PI3K–Akt-IL-10 axis and inhibition of TLR4 expression via direct binding of BVR to the TLR4 promoter. In this review, we will summarize recent findings on the role of BVR and the bile pigments in inflammation in context with its activity as an enzyme, receptor, and transcriptional regulator. PMID:22438844

  10. Pulse radiolysis studies on superoxide reductase from Treponema pallidum.

    PubMed

    Nivière, V; Lombard, M; Fontecave, M; Houée-Levin, C

    2001-05-25

    Superoxide reductases (SORs) are small metalloenzymes, which catalyze reduction of O2*- to H2O2. The reaction of the enzyme from Treponema pallidum with superoxide was studied by pulse radiolysis methods. The first step is an extremely fast bi-molecular reaction of the ferrous center with O2, with a rate constant of 6 x 10 (8) M(-1) s(-1). A first intermediate is formed which is converted to a second one with a slower rate constant of 4800 s(-1). This latter value is 10 times higher than the corresponding one previously reported in the case of SOR from Desulfoarculus baarsii. The reconstituted spectra for the two intermediates are consistent with formation of transient iron-peroxide species. PMID:11377434

  11. Mechanism of inhibition of ribonucleotide reductase with motexafin gadolinium (MGd)

    SciTech Connect

    Zahedi Avval, Farnaz; Berndt, Carsten; Pramanik, Aladdin; Holmgren, Arne

    2009-02-13

    Motexafin gadolinium (MGd) is an expanded porphyrin anticancer agent which selectively targets tumor cells and works as a radiation enhancer, with promising results in clinical trials. Its mechanism of action is oxidation of intracellular reducing molecules and acting as a direct inhibitor of mammalian ribonucleotide reductase (RNR). This paper focuses on the mechanism of inhibition of RNR by MGd. Our experimental data present at least two pathways for inhibition of RNR; one precluding subunits oligomerization and the other direct inhibition of the large catalytic subunit of the enzyme. Co-localization of MGd and RNR in the cytoplasm particularly in the S-phase may account for its inhibitory properties. These data can elucidate an important effect of MGd on the cancer cells with overproduction of RNR and its efficacy as an anticancer agent and not only as a general radiosensitizer.

  12. Detoxification of hexavalent chromium by Leucobacter sp. uses a reductase with specificity for dihydrolipoamide.

    PubMed

    Sarangi, Abhipsa; Krishnan, Chandraraj

    2016-02-01

    Leucobacter sp. belongs to the metal stressed community and possesses higher tolerance to metals including chromium and can detoxify toxic hexavalent chromium by reduction to less toxic trivalent chromium. But, the mechanism of reduction of hexavalent chromium by Leucobacter sp. has not been studied. Understanding the enzyme catalyzing reduction of chromium is important to improve the species for application in bioremediation. Hence, a soluble reductase catalyzing the reduction of hexavalent chromium was purified from a Leucobacter sp. and characterized. The pure chromate reductase was obtained from the cell-free extract through hydrophobic interaction and gel filtration column chromatographic methods. It was a monomeric enzyme and showed similar molecular weights in both gel filtration (∼68 KDa) and SDS-PAGE (64 KDa). It reduced Cr(VI) using both NADH and NADPH as the electron donor, but exhibited higher activity with NADH. The optimal activity was found at pH 5.5 and 30 °C. The K(m) and V(max) for Cr(VI) reduction with NADH were 46.57 μM and 0.37 μmol min(-1) (mg protein) (-1), respectively. The activity was inhibited by p-hydroxy mercury benzoate, Ag(2+) and Hg(2+) indicating the role of thiol groups in the catalysis. The spectrophotometric analysis of the purified enzyme showed the absence of bound flavin in the enzyme. The N-terminal amino acid sequence and LC/MS analysis of trypsin digested purified enzyme showed similarity to dihydrolipoyl dehydrogenase. The purified enzyme had dihydrolipoyl dehydrogenase activity with dihydrolipoamide as the substrate, which suggested that Leucobacter sp. uses reductase with multiple substrate specificity for reduction of Cr(VI) detoxification. PMID:26377775

  13. DT-diaphorase and cytochrome B5 reductase in human lung and breast tumours.

    PubMed Central

    Marín, A.; López de Cerain, A.; Hamilton, E.; Lewis, A. D.; Martinez-Peñuela, J. M.; Idoate, M. A.; Bello, J.

    1997-01-01

    The level of expression of enzymes that can activate or detoxify bioreductive agents within tumours has emerged as an important feature in the development of these anti-tumour compounds. The levels of two such reductase enzymes have been determined in 19 human non-small-cell lung tumours and 20 human breast tumours, together with the corresponding normal tissue. DT-diaphorase (DTD) enzyme levels (both expression and activity) were determined in these samples. Cytochrome b5 reductase (Cytb5R) activity was also assessed. With the exception of six patients, the levels of DTD activity were below 45 nmol min(-1) mg(-1) in the normal tissues assayed. DTD tumour activity was extremely variable, distinguishing two different groups of patients, one with DTD activity above 79 nmol min(-1) mg(-1) and the other with levels that were in the same range as found for the normal tissues. In 53% of the lung tumour samples, DTD activity was increased with respect to the normal tissue by a factor of 2.4-90.3 (range 79-965 nmol min[-1] mg[-1]). In 70% of the breast tumour samples, DTD activity was over 80 nmol min(-1) mg(-1) (range 83-267 nmol min[-1] mg[-1]). DTD expression measured by Western blot correlated well with the enzyme activity measured in both tumour and normal tissues. The levels of the other reductase enzyme, Cytb5R, were not as variable as those for DTD, being in the same range in both tumour and normal tissue or slightly higher in the normal tissues. The heterogeneous nature of DTD activity and expression reinforces the need to measure enzyme levels in individual patients before therapy with DTD-activated bioreductive drugs. Images Figure 1 Figure 2 PMID:9328153

  14. Mevalonic acid-dependent degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in vivo and in vitro.

    PubMed

    Correll, C C; Edwards, P A

    1994-01-01

    The microsomal enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase is subject to rapid degradation when cells are incubated with sterols or mevalonic acid (MVA). It has been shown that this rapid degradation is dependent upon both a sterol and another MVA-derived metabolite (Nakanishi, M., Goldstein, J. L., and Brown, M. S. (1988) J. Biol. Chem. 258, 8929-8937). In the current study, inhibitors of the isoprene biosynthetic pathway were used to define further this mevalonic acid derivative involved in the accelerated degradation of HMG-CoA reductase. The accelerated degradation of HMG-CoA reductase in met-18b-2 cells, which is induced by the addition of MVA, was inhibited by the presence of the squalene synthase inhibitor, zaragozic acid/squalestatin, or the squalene epoxidase inhibitor, NB-598. Accelerated degradation of HMG-CoA reductase was observed when NB-598-treated cells were incubated with both MVA and sterols. In contrast, the addition of MVA and sterols to zaragozic acid/squalestatin-treated cells did not result in rapid enzyme degradation. This MVA- and sterol-dependent degradation of HMG-CoA reductase persisted in cells permeabilized with reduced streptolysin O. Finally, the selective degradation of HMG-CoA reductase was also observed in rat hepatic microsomes incubated in vitro in the absence of ATP and cytosol. We conclude that the MVA-derived component that is required for the accelerated degradation of HMG-CoA reductase is derived from farnesyl disphosphate and/or squalene in the isoprenoid biosynthetic pathway. We propose that this component has a permissive effect and does not, by itself, induce the degradation of HMG-CoA reductase. We also conclude that the degradation of HMG-CoA occurs in the endoplasmic reticulum, and, once the degradation of HMG-CoA reductase has been initiated by MVA and sterols, all necessary components for the continued degradation of HMG-CoA reductase reside in the endoplasmic reticulum. PMID:8276863

  15. Overexpression of human NADPH:cytochrome c (P450) reductase confers enhanced sensitivity to both tirapazamine (SR 4233) and RSU 1069.

    PubMed Central

    Patterson, A. V.; Saunders, M. P.; Chinje, E. C.; Talbot, D. C.; Harris, A. L.; Strafford, I. J.

    1997-01-01

    P450 reductase (NADPH: cytochrome c (P450) reductase, EC 1.6.2.4) plays an important role in the reductive activation of the bioreductive drug tirapazamine (SR4233). Thus, in a panel of human breast cancer cell lines, expression of P450 reductase correlated with both the hypoxic toxicity and the metabolism of tirapazamine [Patterson et al (1995) Br J Cancer 72: 1144-1150]. To examine this dependence in more detail, the MDA231 cell line, which has the lowest activity of P450 reductase in our breast cell line panel, was transfected with the human P450 reductase cDNA. Isolated clones expressed a 78-kDa protein, which was detected with anti-P450 reductase antibody, and were shown to have up to a 53-fold increase in activity of the enzyme. Using six stable transfected clones covering the 53-fold range of activity of P450 reductase, it was shown that the enzyme activity correlated directly with both hypoxic and aerobic toxicity of tirapazamine, and metabolism of the drug under hypoxic conditions. No metabolism was detected under aerobic conditions. For RSU1069, toxicity was also correlated with P450 reductase activity, but only under hypoxic conditions. Measurable activity of P450 reductase was found in a selection of 14 primary human breast tumours. Activity covered an 18-fold range, which was generally higher than that seen in cell lines but within the range of activity measured in the transfected clones. These results suggest that if breast tumours have significant areas of low oxygen tension, then they are likely to be highly sensitive to the cytotoxic action of tirapazamine and RSU 1069. Images Figure 1 PMID:9374381

  16. Evidence for a hexaheteromeric methylenetetrahydrofolate reductase in Moorella thermoacetica.

    PubMed

    Mock, Johanna; Wang, Shuning; Huang, Haiyan; Kahnt, Jörg; Thauer, Rudolf K

    2014-09-01

    Moorella thermoacetica can grow with H₂ and CO₂, forming acetic acid from 2 CO₂ via the Wood-Ljungdahl pathway. All enzymes involved in this pathway have been characterized to date, except for methylenetetrahydrofolate reductase (MetF). We report here that the M. thermoacetica gene that putatively encodes this enzyme, metF, is part of a transcription unit also containing the genes hdrCBA, mvhD, and metV. MetF copurified with the other five proteins encoded in the unit in a hexaheteromeric complex with an apparent molecular mass in the 320-kDa range. The 40-fold-enriched preparation contained per mg protein 3.1 nmol flavin adenine dinucleotide (FAD), 3.4 nmol flavin mononucleotide (FMN), and 110 nmol iron, almost as predicted from the primary structure of the six subunits. It catalyzed the reduction of methylenetetrahydrofolate with reduced benzyl viologen but not with NAD(P)H in either the absence or presence of oxidized ferredoxin. It also catalyzed the reversible reduction of benzyl viologen with NADH (diaphorase activity). Heterologous expression of the metF gene in Escherichia coli revealed that the subunit MetF contains one FMN rather than FAD. MetF exhibited 70-fold-higher methylenetetrahydrofolate reductase activity with benzyl viologen when produced together with MetV, which in part shows sequence similarity to MetF. Heterologously produced HdrA contained 2 FADs and had NAD-specific diaphorase activity. Our results suggested that the physiological electron donor for methylenetetrahydrofolate reduction in M. thermoacetica is NADH and that the exergonic reduction of methylenetetrahydrofolate with NADH is coupled via flavin-based electron bifurcation with the endergonic reduction of an electron acceptor, whose identity remains unknown. PMID:25002540

  17. Fatty acyl-CoA reductases of birds

    PubMed Central

    2011-01-01

    Background Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids and unbranched fatty alcohols, whereas that of barn owl contains fatty acids and alcohols both of which are branched. Alcohol-forming fatty acyl-CoA reductases (FAR) catalyze the reduction of activated acyl groups to fatty alcohols that can be esterified with acyl-CoA thioesters forming wax esters. Results cDNA sequences encoding fatty acyl-CoA reductases were cloned from the uropygial glands of barn owl (Tyto alba), domestic chicken (Gallus gallus domesticus) and domestic goose (Anser anser domesticus). Heterologous expression in Saccharomyces cerevisiae showed that they encode membrane associated enzymes which catalyze a NADPH dependent reduction of acyl-CoA thioesters to fatty alcohols. By feeding studies of transgenic yeast cultures and in vitro enzyme assays with membrane fractions of transgenic yeast cells two groups of isozymes with different properties were identified, termed FAR1 and FAR2. The FAR1 group mainly synthesized 1-hexadecanol and accepted substrates in the range between 14 and 18 carbon atoms, whereas the FAR2 group preferred stearoyl-CoA and accepted substrates between 16 and 20 carbon atoms. Expression studies with tissues of domestic chicken indicated that FAR transcripts were not restricted to the uropygial gland. Conclusion The data of our study suggest that the identified and characterized avian FAR isozymes, FAR1 and FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis. PMID:22151413

  18. Evidence for a Hexaheteromeric Methylenetetrahydrofolate Reductase in Moorella thermoacetica

    PubMed Central

    Mock, Johanna; Wang, Shuning; Huang, Haiyan; Kahnt, Jörg

    2014-01-01

    Moorella thermoacetica can grow with H2 and CO2, forming acetic acid from 2 CO2 via the Wood-Ljungdahl pathway. All enzymes involved in this pathway have been characterized to date, except for methylenetetrahydrofolate reductase (MetF). We report here that the M. thermoacetica gene that putatively encodes this enzyme, metF, is part of a transcription unit also containing the genes hdrCBA, mvhD, and metV. MetF copurified with the other five proteins encoded in the unit in a hexaheteromeric complex with an apparent molecular mass in the 320-kDa range. The 40-fold-enriched preparation contained per mg protein 3.1 nmol flavin adenine dinucleotide (FAD), 3.4 nmol flavin mononucleotide (FMN), and 110 nmol iron, almost as predicted from the primary structure of the six subunits. It catalyzed the reduction of methylenetetrahydrofolate with reduced benzyl viologen but not with NAD(P)H in either the absence or presence of oxidized ferredoxin. It also catalyzed the reversible reduction of benzyl viologen with NADH (diaphorase activity). Heterologous expression of the metF gene in Escherichia coli revealed that the subunit MetF contains one FMN rather than FAD. MetF exhibited 70-fold-higher methylenetetrahydrofolate reductase activity with benzyl viologen when produced together with MetV, which in part shows sequence similarity to MetF. Heterologously produced HdrA contained 2 FADs and had NAD-specific diaphorase activity. Our results suggested that the physiological electron donor for methylenetetrahydrofolate reduction in M. thermoacetica is NADH and that the exergonic reduction of methylenetetrahydrofolate with NADH is coupled via flavin-based electron bifurcation with the endergonic reduction of an electron acceptor, whose identity remains unknown. PMID:25002540

  19. Expression analysis of dihydroflavonol 4-reductase genes in Petunia hybrida.

    PubMed

    Chu, Y X; Chen, H R; Wu, A Z; Cai, R; Pan, J S

    2015-01-01

    Dihydroflavonol 4-reductase (DFR) genes from Rosa chinensis (Asn type) and Calibrachoa hybrida (Asp type), driven by a CaMV 35S promoter, were integrated into the petunia (Petunia hybrida) cultivar 9702. Exogenous DFR gene expression characteristics were similar to flower-color changes, and effects on anthocyanin concentration were observed in both types of DFR gene transformants. Expression analysis showed that exogenous DFR genes were expressed in all of the tissues, but the expression levels were significantly different. However, both of them exhibited a high expression level in petals that were starting to open. The introgression of DFR genes may significantly change DFR enzyme activity. Anthocyanin ultra-performance liquid chromatography results showed that anthocyanin concentrations changed according to DFR enzyme activity. Therefore, the change in flower color was probably the result of a DFR enzyme change. Pelargonidin 3-O-glucoside was found in two different transgenic petunias, indicating that both CaDFR and RoDFR could catalyze dihydrokaempferol. Our results also suggest that transgenic petunias with DFR gene of Asp type could biosynthesize pelargonidin 3-O-glucoside. PMID:25966276

  20. Optical observation of correlated motions in dihydrofolate reductase

    NASA Astrophysics Data System (ADS)

    Xu, Mengyang; Niessen, Katherine; Pace, James; Cody, Vivian; Markelz, Andrea

    2015-03-01

    Enzyme function relies on its structural flexibility to make conformational changes for substrate binding and product release. An example of a metabolic enzyme where such structural changes are vital is dihydrofolate reductase (DHFR). DHFR is essential in both prokaryotes and eukaryotes for the nucleotide biosynthesis by catalyzing the reduction of dihydrofolate to tetrahydrofolate. NMR dynamical measurements found large amplitude fast dynamics that could indicate rigid-body, twisting-hinge motion for ecDHFR that may mediate flux. The role of such long-range correlated motions in function was suggested by the observed sharp decrease in enzyme activity for the single point mutation G121V, which is remote from active sites. This decrease in activity may be caused by the mutation interfering with the long-range intramolecular vibrations necessary for rapid access to functional configurations. We use our new technique of crystal anisotropy terahertz microscopy (CATM), to observe correlated motions in ecDHFR crystals with the bonding of NADPH and methotrexate. We compare the measured intramolecular vibrational spectrum with calculations using normal mode analysis.

  1. Chromate reductase activity in Streptomyces sp. MC1.

    PubMed

    Polti, Marta A; Amoroso, María J; Abate, Carlos M

    2010-02-01

    Biological transformation of Cr(VI) to Cr(III) by enzymatic reduction may provide a less costly and more environmentally friendly approach to remediation. In a previous report a Cr(VI) resistant actinomycete strain, Streptomyces sp. MC1, was able to reduce Cr(VI) present in a synthetic medium, soil extract and soil samples. This is the first time optimal conditions such as pH, temperature, growth phase and electron donor have been elucidated in vitro for Cr(VI) reduction by a streptomycete. Chromate reductase of Streptomyces sp. MC1 is a constitutive enzyme which was mainly associated with biomass and required NAD(P)H as an electron donor. It was active over a broad temperature (19-39 degrees C) and pH (5-8) range, and optimum conditions were 30 degrees C and pH 7. The enzyme was present in supernatant, pellet and cell free extract. Bioremediation with the enzyme was observed in non-compatible cell reproduction systems, conditions frequently found in contaminated environments. PMID:20339215

  2. Reductive activation of E. coli respiratory nitrate reductase.

    PubMed

    Ceccaldi, Pierre; Rendon, Julia; Léger, Christophe; Toci, René; Guigliarelli, Bruno; Magalon, Axel; Grimaldi, Stéphane; Fourmond, Vincent

    2015-10-01

    Over the past decades, a number of authors have reported the presence of inactive species in as-prepared samples of members of the Mo/W-bisPGD enzyme family. This greatly complicated the spectroscopic studies of these enzymes, since it is impossible to discriminate between active and inactive species on the basis of the spectroscopic signatures alone. Escherichia coli nitrate reductase A (NarGHI) is a member of the Mo/W-bisPGD family that allows anaerobic respiration using nitrate as terminal electron acceptor. Here, using protein film voltammetry on NarGH films, we show that the enzyme is purified in a functionally heterogeneous form that contains between 20 and 40% of inactive species that activate the first time they are reduced. This activation proceeds in two steps: a non-redox reversible reaction followed by an irreversible reduction. By carefully correlating electrochemical and EPR spectroscopic data, we show that neither the two major Mo(V) signals nor those of the two FeS clusters that are the closest to the Mo center are associated with the two inactive species. We also conclusively exclude the possibility that the major "low-pH" and "high-pH" Mo(V) EPR signatures correspond to species in acid-base equilibrium. PMID:26073890

  3. Ligand-Dependent Conformational Dynamics of Dihydrofolate Reductase

    PubMed Central

    Reddish, Michael J.; Vaughn, Morgan B.; Fu, Rong; Dyer, R. Brian

    2016-01-01

    Enzymes are known to change among several conformational states during turnover. The role of such dynamic structural changes in catalysis is not fully understood. The influence of dynamics in catalysis can be inferred, but not proven, by comparison of equilibrium structures of protein variants and protein–ligand complexes. A more direct way to establish connections between protein dynamics and the catalytic cycle is to probe the kinetics of specific protein motions in comparison to progress along the reaction coordinate. We have examined the enzyme model system dihydrofolate reductase (DHFR) from Escherichia coli with tryptophan fluorescence-probed temperature-jump spectroscopy. We aimed to observe the kinetics of the ligand binding and ligand-induced conformational changes of three DHFR complexes to establish the relationship among these catalytic steps. Surprisingly, in all three complexes, the observed kinetics do not match a simple sequential two-step process. Through analysis of the relationship between ligand concentration and observed rate, we conclude that the observed kinetics correspond to the ligand binding step of the reaction and a noncoupled enzyme conformational change. The kinetics of the conformational change vary with the ligand's identity and presence but do not appear to be directly related to progress along the reaction coordinate. These results emphasize the need for kinetic studies of DHFR with highly specific spectroscopic probes to determine which dynamic events are coupled to the catalytic cycle and which are not. PMID:26901612

  4. The aryl hydrocarbon receptor interacts with ATP5{alpha}1, a subunit of the ATP synthase complex, and modulates mitochondrial function

    SciTech Connect

    Tappenden, Dorothy M.; Lynn, Scott G.; Crawford, Robert B.; Lee, KangAe; Vengellur, Ajith; Kaminski, Norbert E.; Thomas, Russell S.; LaPres, John J.

    2011-08-01

    Dioxins, including 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD), produce a wide range of toxic effects in mammals. Most, if not all, of these toxic effects are regulated by the aryl hydrocarbon receptor (AHR). The AHR is a ligand activated transcription factor that has been shown to interact with numerous proteins capable of influencing the receptor's function. The ability of secondary proteins to alter AHR-mediated transcriptional events, a necessary step for toxicity, led us to determine whether additional interacting proteins could be identified. To this end, we have employed tandem affinity purification (TAP) of the AHR in Hepa1c1c7 cells. TAP of the AHR, followed by mass spectrometry (MS) identified ATP5{alpha}1, a subunit of the ATP synthase complex, as a strong AHR interactor in the absence of ligand. The interaction was lost upon exposure to TCDD. The association was confirmed by co-immunoprecipitation in multiple cell lines. In addition, cell fractionation experiments showed that a fraction of the AHR is found in the mitochondria. To ascribe a potential functional role to the AHR:ATP5{alpha}1 interaction, TCDD was shown to induce a hyperpolarization of the mitochondrial membrane in an AHR-dependent and transcription-independent manner. These results suggest that a fraction of the total cellular AHR pool is localized to the mitochondria and contributes to the organelle's homeostasis. - Highlights: > The AHR interacts with the mitochondrial protein, ATP5{alpha}1. > Cell fractionation experiments show that the AHR can be found in the mitochondria. > TCDD-exposure induces a hyperpolarization of the mitochondrial inner membrane. > The hyperpolarization is AHR-dependent. > The hyperpolarization occurs without altering ATP levels within the cell.

  5. 5α-Reductase inhibitors alter steroid metabolism and may contribute to insulin resistance, diabetes, metabolic syndrome and vascular disease: a medical hypothesis.

    PubMed

    Traish, Abdulmaged M; Guay, Andre T; Zitzmann, Michael

    2014-12-01

    5α-reductases, a unique family of enzymes with a wide host of substrates and tissue distributions, play a key role in the metabolism of androgens, progestins, mineralocorticoids and glucocorticoids. These enzymes are the rate-limiting step in the synthesis of a host of neurosteroids, which are critical for central nervous system function. Androgens and glucocorticoids modulate mitochondrial function, carbohydrate, protein and lipid metabolism and energy balance. Thus, the inhibition of these regulatory enzymes results in an imbalance in steroid metabolism and clearance rates, which leads to altered physiological processes. In this report, we advance the hypothesis that inhibition of 5α-reductases by finasteride and dutasteride alters not only steroid metabolism but also interferes with the downstream actions and signaling of these hormones. We suggest that finasteride and dutasteride inhibit 5α-reductase activities and reduce the clearance of glucocorticoids and mineralocorticoids, potentiating insulin resistance, diabetes and vascular disease. PMID:25460297

  6. Aldo-Keto Reductases 1B in Endocrinology and Metabolism

    PubMed Central

    Pastel, Emilie; Pointud, Jean-Christophe; Volat, Fanny; Martinez, Antoine; Lefrançois-Martinez, Anne-Marie

    2012-01-01

    The aldose reductase (AR; human AKR1B1/mouse Akr1b3) has been the focus of many research because of its role in diabetic complications. The starting point of these alterations is the massive entry of glucose in polyol pathway where it is converted into sorbitol by this enzyme. However, the issue of AR function in non-diabetic condition remains unresolved. AR-like enzymes (AKR1B10, Akr1b7, and Akr1b8) are highly related isoforms often co-expressed with bona fide AR, making functional analysis of one or the other isoform a challenging task. AKR1B/Akr1b members share at least 65% protein identity and the general ability to reduce many redundant substrates such as aldehydes provided from lipid peroxidation, steroids and their by-products, and xenobiotics in vitro. Based on these properties, AKR1B/Akr1b are generally considered as detoxifying enzymes. Considering that divergences should be more informative than similarities to help understanding their physiological functions, we chose to review specific hallmarks of each human/mouse isoforms by focusing on tissue distribution and specific mechanisms of gene regulation. Indeed, although the AR shows ubiquitous expression, AR-like proteins exhibit tissue-specific patterns of expression. We focused on three organs where certain isoforms are enriched, the adrenal gland, enterohepatic, and adipose tissues and tried to connect recent enzymatic and regulation data with endocrine and metabolic functions of these organs. We presented recent mouse models showing unsuspected physiological functions in the regulation of glucido-lipidic metabolism and adipose tissue homeostasis. Beyond the widely accepted idea that AKR1B/Akr1b are detoxification enzymes, these recent reports provide growing evidences that they are able to modify or generate signal molecules. This conceptually shifts this class of enzymes from unenviable status of scavenger to upper class of messengers. PMID:22876234

  7. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase

    PubMed Central

    Leavitt, William D.; Bradley, Alexander S.; Santos, André A.; Pereira, Inês A. C.; Johnston, David T.

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major (34S/32S) and minor (33S/32S, 36S/32S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in 34S/32S (hereafter, 34εDsrAB) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in 33S, described as 33λDsrAB, is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3–0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in 34εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of 34εDsrAB is similar to the median value of experimental observations compiled from all known published work, where 34εr−p = 16.1‰ (r–p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments (34εSO4−H2S =  17.3 ± 1.5‰, 2σ) and in modern marine sediments (34εSO4−H2S =  17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the biogeochemical and geobiological sulfur isotope records in

  8. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase.

    PubMed

    Leavitt, William D; Bradley, Alexander S; Santos, André A; Pereira, Inês A C; Johnston, David T

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major ((34)S/(32)S) and minor ((33)S/(32)S, (36)S/(32)S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in (34)S/(32)S (hereafter, [Formula: see text]) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in (33)S, described as [Formula: see text], is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3-0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in (34)εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of [Formula: see text] is similar to the median value of experimental observations compiled from all known published work, where (34)ε r-p = 16.1‰ (r-p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments ([Formula: see text] 17.3 ± 1.5‰, 2σ) and in modern marine sediments ([Formula: see text] 17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the

  9. Intestinal absorption and fecal excretion of 5,6 alpha-epoxy-5 alpha-cholesta-3 beta-ol by the male Wistar rat

    SciTech Connect

    Bascoul, J.; Domergue, N.; Mourot, J.; Debry, G.; Crastes de Paulet, A.

    1986-12-01

    The intestinal absorption of 5,6 alpha-epoxy-5 alpha-cholesta-3 beta-ol, an oxysterol formed by cholesterol autoxidation, has been evaluated in the male Wistar rat. Measurement of the /sup 14/C//sup 3/H ratio in the serum (by the method of Zilversmit and Hugues) and in the feces showed that a large proportion of the epoxide was absorbed. Epoxide clearance from the blood was very rapid, but its excretion in the stool continued for several days, corresponding to the fraction of the epoxide stored in the animal.

  10. Purification and characterization of rat liver naloxone reductase that is identical to 3alpha-hydroxysteroid dehydrogenase.

    PubMed

    Yamano, S; Nakamoto, N; Toki, S

    1999-09-01

    1. Rat liver cytosol produced exclusively 6beta-naloxol from naloxone in the presence of either NADPH or NADH at pH 7.4. The amount of 6beta-naloxol formed with NADPH was about four times that with NADH. The enzyme responsible for this reaction, termed naloxone reductase, was purified to a homogeneous protein by various chromatographic techniques. 2. The purified enzyme is a monomeric protein with a molecular weight of 34000 and an isoelectric point of 5.9, and it has a dual co-factor specificity for NADPH and NADH. The enzyme catalysed the reduction of various carbonyl compounds as well as naloxone analogues, and the dehydrogenation of 3alpha-hydroxysteroids and alicyclic alcohols. Indomethacin, quercetin and sulphhydryl reagents potently inhibited the enzyme, but pyrazole and barbital had no effect on the enzyme activity. 3. Identity of naloxone reductase and 3alpha-hydroxysteroid dehydrogenase in rat liver was demonstrated by comparing the elution profiles of the two enzyme activities during purification, the ratios of the two enzyme activities at each purification steps, and thermal stability and susceptibility to inhibitors for the two enzyme activities. 4. Amino acid sequences of five peptides obtained by proteolytic digestion of the purified enzyme were completely identical to the corresponding regions of previously reported 3alpha-hydroxysteroid dehydrogenase. PMID:10548452

  11. Mutational analysis of the nor gene cluster which encodes nitric-oxide reductase from Paracoccus denitrificans.

    PubMed

    de Boer, A P; van der Oost, J; Reijnders, W N; Westerhoff, H V; Stouthamer, A H; van Spanning, R J

    1996-12-15

    The genes that encode the hc-type nitric-oxide reductase from Paracoccus denitrificans have been identified. They are part of a cluster of six genes (norCBQDEF) and are found near the gene cluster that encodes the cd1-type nitrite reductase, which was identified earlier [de Boer, A. P. N., Reijnders, W. N. M., Kuenen, J. G., Stouthamer, A. H. & van Spanning, R. J. M. (1994) Isolation, sequencing and mutational analysis of a gene cluster involved in nitrite reduction in Paracoccus denitrificans, Antonie Leeu wenhoek 66, 111-127]. norC and norB encode the cytochrome-c-containing subunit II and cytochrome b-containing subunit I of nitric-oxide reductase (NO reductase), respectively. norQ encodes a protein with an ATP-binding motif and has high similarity to NirQ from Pseudomonas stutzeri and Pseudomonas aeruginosa and CbbQ from Pseudomonas hydrogenothermophila. norE encodes a protein with five putative transmembrane alpha-helices and has similarity to CoxIII, the third subunit of the aa3-type cytochrome-c oxidases. norF encodes a small protein with two putative transmembrane alpha-helices. Mutagenesis of norC, norB, norQ and norD resulted in cells unable to grow anaerobically. Nitrite reductase and NO reductase (with succinate or ascorbate as substrates) and nitrous oxide reductase (with succinate as substrate) activities were not detected in these mutant strains. Nitrite extrusion was detected in the medium, indicating that nitrate reductase was active. The norQ and norD mutant strains retained about 16% and 23% of the wild-type level of NorC, respectively. The norE and norF mutant strains had specific growth rates and NorC contents similar to those of the wild-type strain, but had reduced NOR and NIR activities, indicating that their gene products are involved in regulation of enzyme activity. Mutant strains containing the norCBQDEF region on the broad-host-range vector pEG400 were able to grow anaerobically, although at a lower specific growth rate and with lower

  12. Cloning and expression of Candida guilliermondii xylose reductase gene (xyl1) in Pichia pastoris.

    PubMed

    Handumrongkul, C; Ma, D P; Silva, J L

    1998-04-01

    A xylose reductase gene (xyl1) of Candida guilliermondii ATCC 20118 was cloned and characterized. The open reading frame of xyl1 contained 954 nucleotides encoding a protein of 317 amino acids with a predicted molecular mass of 36 kDa. The derived amino acid sequence of C. guilliermondii xylose reductase was 70.4% homologous to that of Pichia stipitis. The gene was placed under the control of an alcohol oxidase promoter (AOX1) and integrated into the genome of a methylotrophic yeast, Pichia pastoris. Methanol induced the expression of the 36-kDa xylose reductase in both intracellular and secreted expression systems. The expressed enzyme preferentially utilized NADPH as a cofactor and was functional both in vitro and in vivo. The different cofactor specificity between P. pastoris and C. guilliermondii xylose reductases might be due to the difference in the numbers of histidine residues and their locations between the two proteins. The recombinant was able to ferment xylose, and the maximum xylitol accumulation (7.8 g/l) was observed when the organism was grown under aerobic conditions. PMID:9615481

  13. Roles of rat and human aldo-keto reductases in metabolism of farnesol and geranylgeraniol

    PubMed Central

    Endo, Satoshi; Matsunaga, Toshiyuki; Ohta, Chisato; Soda, Midori; Kanamori, Ayano; Kitade, Yukio; Ohno, Satoshi; Tajima, Kazuo; El-Kabbani, Ossama; Hara, Akira

    2011-01-01

    Farnesol (FOH) and geranylgeraniol (GGOH) with multiple biological actions are produced from the mevalonate pathway, and catabolized into farnesoic acid and geranylgeranoic acid, respectively, via the aldehyde intermediates (farnesal and geranylgeranial). We investigated the intracellular distribution, sequences and properties of the oxidoreductases responsible for the metabolic steps in rat tissues. The oxidation of FOH and GGOH into their aldehyde intermediates were mainly mediated by alcohol dehydrogenases 1 (in the liver and colon) and 7 (in the stomach and lung), and the subsequent step into the carboxylic acids was catalyzed by a microsomal aldehyde dehydrogenase. In addition, high reductase activity catalyzing the aldehyde intermediates into FOH (or GGOH) was detected in the cytosols of the extra-hepatic tissues, where the major reductase was identified as aldo-keto reductase (AKR) 1C15. Human reductases with similar specificity were identified as AKR1B10 and AKR1C3, which most efficiently reduced farnesal and geranylgeranial among seven enzymes in the AKR1A-1C subfamilies. The overall metabolism from FOH to farnesoic acid in cultured cells was significantly decreased by overexpression of AKR1C15, and increased by addition of AKR1C3 inhibitors, tolfenamic acid and R-flurbiprofen. Thus, AKRs (1C15 in rats, and 1B10 and 1C3 in humans) may play an important role in controlling the bioavailability of FOH and GGOH. PMID:21187079

  14. The anaerobic ribonucleoside triphosphate reductase from Escherichia coli requires S-adenosylmethionine as a cofactor.

    PubMed Central

    Eliasson, R; Fontecave, M; Jörnvall, H; Krook, M; Pontis, E; Reichard, P

    1990-01-01

    Extracts from anaerobically grown Escherichia coli contain an oxygen-sensitive activity that reduces CTP to dCTP in the presence of NADPH, dithiothreitol, Mg2+ ions, and ATP, different from the aerobic ribonucleoside diphosphate reductase (2'-deoxyribonucleoside-diphosphate: oxidized-thioredoxin 2'-oxidoreductase, EC 1.17.4.1) present in aerobically grown E. coli. After fractionation, the activity required at least five components, two heat-labile protein fractions and several low molecular weight fractions. One protein fraction, suggested to represent the actual ribonucleoside triphosphate reductase was purified extensively and on denaturing gel electrophoresis gave rise to several defined protein bands, all of which were stained by a polyclonal antibody against one of the two subunits (protein B1) of the aerobic reductase but not by monoclonal anti-B1 antibodies. Peptide mapping and sequence analyses revealed partly common structures between two types of protein bands but also suggested the presence of an additional component. Obviously, the preparations are heterogeneous and the structure of the reductase is not yet established. The second, crude protein fraction is believed to contain several ancillary enzymes required for the reaction. One of the low molecular weight components is S-adenosylmethionine; a second component is a loosely bound metal. We propose that S-adenosylmethionine together with a metal participates in the generation of the radical required for the reduction of carbon 2' of the ribosyl moiety of CTP. Images PMID:2185465

  15. Inhibition of human anthracycline reductases by emodin - A possible remedy for anthracycline resistance.

    PubMed

    Hintzpeter, Jan; Seliger, Jan Moritz; Hofman, Jakub; Martin, Hans-Joerg; Wsol, Vladimir; Maser, Edmund

    2016-02-15

    The clinical application of anthracyclines, like daunorubicin and doxorubicin, is limited by two factors: dose-related cardiotoxicity and drug resistance. Both have been linked to reductive metabolism of the parent drug to their metabolites daunorubicinol and doxorubicinol, respectively. These metabolites show significantly less anti-neoplastic properties as their parent drugs and accumulate in cardiac tissue leading to chronic cardiotoxicity. Therefore, we aimed to identify novel and potent natural inhibitors for anthracycline reductases, which enhance the anticancer effect of anthracyclines by preventing the development of anthracycline resistance. Human enzymes responsible for the reductive metabolism of daunorubicin were tested for their sensitivity towards anthrachinones, in particular emodin and anthraflavic acid. Intense inhibition kinetic data for the most effective daunorubicin reductases, including IC50- and Ki-values, the mode of inhibition, as well as molecular docking, were compiled. Subsequently, a cytotoxicity profile and the ability of emodin to reverse daunorubicin resistance were determined using multiresistant A549 lung cancer and HepG2 liver cancer cells. Emodin potently inhibited the four main human daunorubicin reductases in vitro. Further, we could demonstrate that emodin is able to synergistically sensitize human cancer cells towards daunorubicin at clinically relevant concentrations. Therefore, emodin may yield the potential to enhance the therapeutic effectiveness of anthracyclines by preventing anthracycline resistance via inhibition of the anthracycline reductases. In symphony with its known pharmacological properties, emodin might be a compound of particular interest in the management of anthracycline chemotherapy efficacy and their adverse effects. PMID:26773812

  16. Aldo–Keto Reductase 1B10 and Its Role in Proliferation Capacity of Drug-Resistant Cancers

    PubMed Central

    Matsunaga, Toshiyuki; Wada, Yasuhiro; Endo, Satoshi; Soda, Midori; El-Kabbani, Ossama; Hara, Akira

    2011-01-01

    The human aldo–keto reductase AKR1B10, originally identified as an aldose reductase-like protein and human small intestine aldose reductase, is a cytosolic NADPH-dependent reductase that metabolizes a variety of endogenous compounds, such as aromatic and aliphatic aldehydes and dicarbonyl compounds, and some drug ketones. The enzyme is highly expressed in solid tumors of several tissues including lung and liver, and as such has received considerable interest as a relevant biomarker for the development of those tumors. In addition, AKR1B10 has been recently reported to be significantly up-regulated in some cancer cell lines (medulloblastoma D341 and colon cancer HT29) acquiring resistance toward chemotherapeutic agents (cyclophosphamide and mitomycin c), suggesting the validity of the enzyme as a chemoresistance marker. Although the detailed information on the AKR1B10-mediated mechanisms leading to the drug resistance process is not well understood so far, the enzyme has been proposed to be involved in functional regulations of cell proliferation and metabolism of drugs and endogenous lipids during the development of chemoresistance. This article reviews the current literature focusing mainly on expression profile and roles of AKR1B10 in the drug resistance of cancer cells. Recent developments of AKR1B10 inhibitors and their usefulness in restoring sensitivity to anticancer drugs are also reviewed. PMID:22319498

  17. Purification and properties of the NADH reductase component of alkene monooxygenase from Mycobacterium strain E3.

    PubMed Central

    Weber, F J; van Berkel, W J; Hartmans, S; de Bont, J A

    1992-01-01

    Alkene monooxygenase, a multicomponent enzyme system which catalyzes the epoxidation of short-chain alkenes, is induced in Mycobacterium strain E3 when it is grown on ethene. We purified the NADH reductase component of this enzyme system to homogeneity. Recovery of the enzyme was 19%, with a purification factor of 920-fold. The enzyme is a monomer with a molecular mass of 56 kDa as determined by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It is yellow-red with absorption maxima at 384, 410, and 460 nm. Flavin adenine dinucleotide (FAD) was identified as a prosthetic group at a FAD-protein ratio of 1:1. Tween 80 prevented irreversible dissociation of FAD from the enzyme during chromatographic purification steps. Colorimetric analysis revealed 2 mol each of iron and acid-labile sulfide, indicating the presence of a [2Fe-2S] cluster. The presence of this cluster was confirmed by electron paramagnetic resonance spectroscopy (g values at 2.011, 1.921, and 1.876). Anaerobic reduction of the reductase by NADH resulted in formation of a flavin semiquinone. Images PMID:1315734

  18. Inducible chromate reductase exhibiting extracellular activity in Bacillus methylotrophicus for chromium bioremediation.

    PubMed

    Sandana Mala, John Geraldine; Sujatha, Dhanasingh; Rose, Chellan

    2015-01-01

    Chromium toxicity is one of the major causes of environmental pollution due to its heavy discharge in industrial wastewaters. Chromate reduction is a viable method to detoxify hexavalent chromium to nontoxic trivalent species mediated by enzymes and metabolites. A new Bacillus methylotrophicus strain was isolated from tannery sludge and was an efficient candidate for chromate reduction. An initial chromate reductase activity of 212.84 U/mg protein was obtained at 48 h in a low-cost defined medium formulation with 0.25 mM chromate. The extracellular enzyme was inducible at 12h substrate addition with 312.99 U/mg at 48 h. Reduced glutathione was required for enhanced specific activity of 356.48 U/mg. Enzyme activity was optimum at pH 7.0 and at 30 °C, and was stable in the presence of EDTA, DTT and metal ions. The enzyme exhibited a Vmax of 59.89 μM/min/mg protein and a Km of 86.5 μM, suggesting feasibility of the reaction with K₂Cr₂O₇ as substrate. Application of the crude reductase in tannery effluent resulted in 91.3% chromate reduction at 48 h. An enzyme-mediated chromate reduction process has therefore been developed for bioremediation of toxic chromium sp. in industrial effluents. PMID:24985094

  19. Phylogenomics of Mycobacterium Nitrate Reductase Operon.

    PubMed

    Huang, Qinqin; Abdalla, Abualgasim Elgaili; Xie, Jianping

    2015-07-01

    NarGHJI operon encodes a nitrate reductase that can reduce nitrate to nitrite. This process enhances bacterial survival by nitrate respiration under anaerobic conditions. NarGHJI operon exists in many bacteria, especially saprophytic bacteria living in soil which play a key role in the nitrogen cycle. Most actinomycetes, including Mycobacterium tuberculosis, possess NarGHJI operons. M. tuberculosis is a facultative intracellular pathogen that expands in macrophages and has the ability to persist in a non-replicative form in granuloma lifelong. Nitrogen and nitrogen compounds play crucial roles in the struggle between M. tuberculosis and host. M. tuberculosis can use nitrate as a final electron acceptor under anaerobic conditions to enhance its survival. In this article, we reviewed the mechanisms regulating nitrate reductase expression and affecting its activity. Potential genes involved in regulating the nitrate reductase expression in M. tuberculosis were identified. The conserved NarG might be an alternative mycobacterium taxonomic marker. PMID:25980349

  20. Enzyme Informatics

    PubMed Central

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  1. IN VITRO INHIBITION OF GLUTATHIONE REDUCTASE BY ARSENOTRI-GLUTATHIONE

    EPA Science Inventory

    Arsenotriglutathione, a product of the reduction of arsenate and the complexation of arsenite by glutathione, is a mixed type inhibitor of the reduction of glutathione disulfide by purified yeast glutathione reductase or the glutathione reductase activity in rabbit erythrocyte ly...

  2. Biochemical characterization and substrate profiling of a new NADH-dependent enoate reductase from Lactobacillus casei.

    PubMed

    Gao, Xiuzhen; Ren, Jie; Wu, Qiaqing; Zhu, Dunming

    2012-06-10

    Carbon-carbon double bond of α,β-unsaturated carbonyl compounds can be reduced by enoate reductase (ER), which is an important reaction in fine chemical synthesis. A putative enoate reductase gene from Lactobacillus casei str. Zhang was cloned into pET-21a+ and expressed in Escherichia coli BL21 (DE3) host cells. The encoded enzyme (LacER) was purified by ammonium sulfate precipitation and treatment in an acidic buffer. This enzyme was identified as a NADH-dependent enoate reductase, which had a K(m) of 0.034 ± 0.006 mM and k(cat) of (3.2 ± 0.2) × 10³ s⁻¹ toward NADH using 2-cyclohexen-1-one as the substrate. Its K(m) and k(cat) toward substrate 2-cyclohexen-1-one were 1.94 ± 0.04 mM and (8.4 ± 0.2) × 10³ s⁻¹, respectively. The enzyme showed a maximum activity at pH 8.0-9.0. The optimum temperature of the enzyme was 50-55°C, and LacER was relatively stable below 60 °C. The enzyme was active toward aliphatic alkenyl aldehyde, ketones and some cyclic anhydrides. Substituted groups of cyclic α,β-unsaturated ketones and its ring size have positive or negative effects on activity. (R)-(-)-Carvone was reduced to (2R,5R)-dihydrocarvone with 99% conversion and 98% (diasteromeric excess: de) stereoselectivity, indicating a high synthetic potential of LacER in asymmetric synthesis. PMID:22579387

  3. The evolution of respiratory O2/NO reductases: an out-of-the-phylogenetic-box perspective

    PubMed Central

    Ducluzeau, Anne-Lise; Schoepp-Cothenet, Barbara; van Lis, Robert; Baymann, Frauke; Russell, Michael J.; Nitschke, Wolfgang

    2014-01-01

    Complex life on our planet crucially depends on strong redox disequilibria afforded by the almost ubiquitous presence of highly oxidizing molecular oxygen. However, the history of O2-levels in the atmosphere is complex and prior to the Great Oxidation Event some 2.3 billion years ago, the amount of O2 in the biosphere is considered to have been extremely low as compared with present-day values. Therefore the evolutionary histories of life and of O2-levels are likely intricately intertwined. The obvious biological proxy for inferring the impact of changing O2-levels on life is the evolutionary history of the enzyme allowing organisms to tap into the redox power of molecular oxygen, i.e. the bioenergetic O2 reductases, alias the cytochrome and quinol oxidases. Consequently, molecular phylogenies reconstructed for this enzyme superfamily have been exploited over the last two decades in attempts to elucidate the interlocking between O2 levels in the environment and the evolution of respiratory bioenergetic processes. Although based on strictly identical datasets, these phylogenetic approaches have led to diametrically opposite scenarios with respect to the history of both the enzyme superfamily and molecular oxygen on the Earth. In an effort to overcome the deadlock of molecular phylogeny, we here review presently available structural, functional, palaeogeochemical and thermodynamic information pertinent to the evolution of the superfamily (which notably also encompasses the subfamily of nitric oxide reductases). The scenario which, in our eyes, most closely fits the ensemble of these non-phylogenetic data, sees the low O2-affinity SoxM- (or A-) type enzymes as the most recent evolutionary innovation and the high-affinity O2 reductases (SoxB or B and cbb3 or C) as arising independently from NO-reducing precursor enzymes. PMID:24968694

  4. Nitrogen and oxygen regulation of Bacillus subtilis nasDEF encoding NADH-dependent nitrite reductase by TnrA and ResDE.

    PubMed

    Nakano, M M; Hoffmann, T; Zhu, Y; Jahn, D

    1998-10-01

    The nitrate and nitrite reductases of Bacillus subtilis have two different physiological functions. Under conditions of nitrogen limitation, these enzymes catalyze the reduction of nitrate via nitrite to ammonia for the anabolic incorporation of nitrogen into biomolecules. They also function catabolically in anaerobic respiration, which involves the use of nitrate and nitrite as terminal electron acceptors. Two distinct nitrate reductases, encoded by narGHI and nasBC, function in anabolic and catabolic nitrogen metabolism, respectively. However, as reported herein, a single NADH-dependent, soluble nitrite reductase encoded by the nasDE genes is required for both catabolic and anabolic processes. The nasDE genes, together with nasBC (encoding assimilatory nitrate reductase) and nasF (required for nitrite reductase siroheme cofactor formation), constitute the nas operon. Data presented show that transcription of nasDEF is driven not only by the previously characterized nas operon promoter but also from an internal promoter residing between the nasC and nasD genes. Transcription from both promoters is activated by nitrogen limitation during aerobic growth by the nitrogen regulator, TnrA. However, under conditions of oxygen limitation, nasDEF expression and nitrite reductase activity were significantly induced. Anaerobic induction of nasDEF required the ResDE two-component regulatory system and the presence of nitrite, indicating partial coregulation of NasDEF with the respiratory nitrate reductase NarGHI during nitrate respiration. PMID:9765565

  5. Nitrogen and Oxygen Regulation of Bacillus subtilis nasDEF Encoding NADH-Dependent Nitrite Reductase by TnrA and ResDE

    PubMed Central

    Nakano, Michiko M.; Hoffmann, Tamara; Zhu, Yi; Jahn, Dieter

    1998-01-01

    The nitrate and nitrite reductases of Bacillus subtilis have two different physiological functions. Under conditions of nitrogen limitation, these enzymes catalyze the reduction of nitrate via nitrite to ammonia for the anabolic incorporation of nitrogen into biomolecules. They also function catabolically in anaerobic respiration, which involves the use of nitrate and nitrite as terminal electron acceptors. Two distinct nitrate reductases, encoded by narGHI and nasBC, function in anabolic and catabolic nitrogen metabolism, respectively. However, as reported herein, a single NADH-dependent, soluble nitrite reductase encoded by the nasDE genes is required for both catabolic and anabolic processes. The nasDE genes, together with nasBC (encoding assimilatory nitrate reductase) and nasF (required for nitrite reductase siroheme cofactor formation), constitute the nas operon. Data presented show that transcription of nasDEF is driven not only by the previously characterized nas operon promoter but also from an internal promoter residing between the nasC and nasD genes. Transcription from both promoters is activated by nitrogen limitation during aerobic growth by the nitrogen regulator, TnrA. However, under conditions of oxygen limitation, nasDEF expression and nitrite reductase activity were significantly induced. Anaerobic induction of nasDEF required the ResDE two-component regulatory system and the presence of nitrite, indicating partial coregulation of NasDEF with the respiratory nitrate reductase NarGHI during nitrate respiration. PMID:9765565

  6. The energy-conserving nitric-oxide-reductase system in Paracoccus denitrificans. Distinction from the nitrite reductase that catalyses synthesis of nitric oxide and evidence from trapping experiments for nitric oxide as a free intermediate during denitrification.

    PubMed

    Carr, G J; Page, M D; Ferguson, S J

    1989-02-15

    1. A Clark-type electrode that responds to nitric oxide has been used to show that cytoplasmic membrane vesicles of Paracoccus denitrificans have a nitric-oxide reductase activity. Nitrous oxide is the reaction product. NADH, succinate or isoascorbate plus 2,3,5,6-tetramethyl-1,4-phenylene diamine can act as reductants. The NADH-dependent activity is resistant to freezing of the vesicles and thus the NADH:nitric-oxide oxidoreductase activity of stored frozen vesicles provides a method for calibrating the electrode by titration of dissolved nitric oxide with NADH. The periplasmic nitrite reductase and nitrous-oxide reductase enzymes are absent from the vesicles which indicates that nitric-oxide reductase is a discrete enzyme associated with the denitrification process. This conclusion was supported by the finding that nitric-oxide reductase activity was absent from both membranes prepared from aerobically grown P. denitrificans and bovine heart submitochondrial particles. 2. The NADH: nitric-oxide oxidoreductase activity was inhibited by concentrations of antimycin or myxothiazol that were just sufficient to inhibit the cytochrome bc1 complex of the ubiquinol--cytochrome-c oxidoreductase. The activity was deduced to be proton translocating by the observations of: (a) up to 3.5-fold stimulation upon addition of an uncoupler; and (b) ATP synthesis with a P:2e ratio of 0.75. 3. Nitrite reductase of cytochrome cd1 type was highly purified from P. denitrificans in a new, high-yield, rapid two- or three-step procedure. This enzyme catalysed stoichiometric synthesis of nitric oxide. This observation, taken together with the finding that the maximum rate of NADH:nitric-oxide oxidoreductase activity catalysed by the vesicles was comparable with that of NADH:nitrate-oxidoreductase, is consistent with a role for nitric-oxide reductase in the physiological conversion of nitrate or nitrite to dinitrogen gas. 4. Intact cells of P. denitrificans also reduced nitric oxide in an

  7. Gene expression of monodehydroascorbate reductase and dehydroascorbate reductase during fruit ripening and in response to environmental stresses in acerola (Malpighia glabra).

    PubMed

    Eltelib, Hani A; Badejo, Adebanjo A; Fujikawa, Yukichi; Esaka, Muneharu

    2011-04-15

    Acerola (Malpighia glabra) is an exotic fruit cultivated primarily for its abundant ascorbic acid (AsA) content. The molecular mechanisms that regulate the metabolism of AsA in acerola have yet to be defined. Monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR) are key enzymes of the ascorbate-glutathione cycle that maintain reduced pools of ascorbic acid and serve as important antioxidants. cDNAs encoding MDHAR and DHAR were isolated from acerola using RT-PCR and RACE. Phylogenetic trees associated acerola MDHAR and DHAR with other plant cytosolic MDHARs and DHARs. Expressions of the two genes correlated with their enzymatic activities and were differentially regulated during fruit ripening. Interestingly, MDHAR expression was only detected in overripe fruits, whereas the transcript level of DHAR was highest at the intermediate stage of fruit ripening. Under dark conditions, there was a sharp and significant decline in the total and reduced ascorbate contents, accompanied by a decrease in the level of transcripts and enzyme activities of the two genes in acerola leaves. MDHAR and DHAR transcripts and enzyme activities were significantly up-regulated in the leaves of acerola under cold and salt stress conditions, indicating that expression of both genes are transcriptionally regulated under these stresses. PMID:20933298

  8. Identification of inhibitors of bacterial enoyl-acyl carrier protein reductase.

    PubMed

    Moir, Donald T

    2005-09-01

    The FabI-related enoyl-ACP reductase enzymes of bacteria meet many of the criteria for antibacterial targets. These enzymes are essential for the growth of several pathogenic species, have no significant mammalian homologs, catalyze a rate-limiting step in a vital macromolecular biosynthetic pathway, and are already the targets of antibacterials used in the clinic (isoniazid) and in consumer products (triclosan). The suitability of FabI as an antibiotic target is diminished somewhat by the discovery that many pathogens carry an alternate unrelated enoyl-ACP reductase (FabK) or both reductases. However, a key human pathogen, Staphylococcus aureus and its increasingly common drug-resistant derivative MRSA are sensitive to FabI inhibitors. Screening for inhibitors of this target has resulted in the identification of five chemical classes of potent inhibitors. In addition, analogs of triclosan with increased potency and with pro-drug features have been engineered. At least one of these classes of inhibitors has been optimized and tested in animals for pharmacokinetic properties and efficacy. Further development of one or more of these classes and further screening are expected to generate new FabI inhibitors for application in the clinic against drug-resistant S. aureus. PMID:16181147

  9. Increased Reactive Oxygen Species Production During Reductive Stress: The Roles of Mitochondrial Glutathione and Thioredoxin Reductases

    PubMed Central

    Korge, Paavo; Calmettes, Guillaume; Weiss, James N.

    2015-01-01

    Both extremes of redox balance are known to cause cardiac injury, with mounting evidence revealing that the injury induced by both oxidative and reductive stress is oxidative in nature. During reductive stress, when electron acceptors are expected to be mostly reduced, some redox proteins can donate electrons to O2 instead, which increases reactive oxygen species (ROS) production. However, the high level of reducing equivalents also concomitantly enhances ROS scavenging systems involving redox couples such as NADPH/NADP+ and GSH/GSSG. Here our objective was to explore how reductive stress paradoxically increases net mitochondrial ROS production despite the concomitant enhancement of ROS scavenging systems. Using recombinant enzymes and isolated permeabilized cardiac mitochondria, we show that two normally antioxidant matrix NADPH reductases, glutathione reductase and thioredoxin reductase, generate H2O2 by leaking electrons from their reduced flavoprotein to O2 when electron flow is impaired by inhibitors or because of limited availability of their natural electron acceptors, GSSG and oxidized thioredoxin. The spillover of H2O2 under these conditions depends on H2O2 reduction by peroxiredoxin activity, which may regulate redox signaling in response to endogenous or exogenous factors. These findings may explain how ROS production during reductive stress overwhelms ROS scavenging capability, generating the net mitochondrial ROS spillover causing oxidative injury. These enzymes could potentially targeted to increase cancer cell death or modulate H2O2-induced redox signaling to protect the heart against ischemia/reperfusion damage. PMID:25701705

  10. Cellular localization of 5α-reductase in the rat cerebellum.

    PubMed

    Kiyokage, Emi; Toida, Kazunori; Suzuki-Yamamoto, Toshiko; Ishimura, Kazunori

    2014-09-01

    The enzyme 5α-reductase catalyzes the transformation of progesterone, testosterone, and deoxycorticosterone into 5α-reduced metabolites, which are recognized as neurosteroids in the brain with variable potential neuroactivity. Two isoforms of 5α-reductase were identified in rodents, and, of these, 5α-reductase type 1 (5α-R1) is abundantly expressed in the brain. To understand the multiple influences of neurosteroids in the central nervous system, we need to know their region-specific synthesis. The present study reports the detailed localization of 5α-R1 in the adult rat cerebellum. The occurrence of 5α-R1 was detected by reverse transcription-polymerase chain reaction. The enzyme activity was also detected by thin layer chromatography. Immunocytochemistry showed 5α-R1 immunoreactive cells in all cerebellar layers. Multiple immunolabeling revealed that 5α-R1 was mainly localized in glia, such as astrocytes and oligodendrocytes. The most intense immunoreactivity for 5α-R1 was found in Bergmann glia, and the processes of these glia were associated with dendrites of both Purkinje cells and interneurons in the molecular layer. The 5α-R1 in the cerebellum was expressed consistently throughout different ages and sexes, in both gonadectomized and hypophysectomized rats. Thus, 5α-R1 may contribute to the formation and maintenance of the cerebellar neurons through 5α-reduced metabolites, which are synthesized through a complex interaction between neurons and glia. PMID:24810015

  11. Progesterone 5β-reductase genes of the Brassicaceae family as function-associated molecular markers.

    PubMed

    Munkert, J; Costa, C; Budeanu, O; Petersen, J; Bertolucci, S; Fischer, G; Müller-Uri, F; Kreis, W

    2015-11-01

    This study aimed to define progesterone 5β-reductases (P5βR, EC 1.3.99.6, enone 1,4-reductases) as function-associated molecular markers at the plant family level. Therefore cDNAs were isolated from 25 Brassicaceae species, including two species, Erysimum crepidifolium and Draba aizoides, known to produce cardiac glycosides. The sequences were used in a molecular phylogeny study. The cladogram created is congruent to the existing molecular analyses. Recombinant His-tagged forms of the P5βR cDNAs from Aethionema grandiflorum, Draba aizoides, Nasturtium officinale, Raphanus sativus and Sisymbrium officinale were expressed in E. coli. Enone 1,4-reductase activity was demonstrated in vitro using progesterone and 2-cyclohexen-1-one as substrates. Evidence is provided that functional P5βRs are ubiquitous in the Brassicaceae. The recombinant P5βR enzymes showed different substrate preferences towards progesterone and 2-cyclohexen-1-one. Sequence comparison of the catalytic pocket of the P5βR enzymes and homology modelling using Digitalis lanata P5βR (PDB ID: 2V6G) as template highlighted the importance of the hydrophobicity of the binding pocket for substrate discrimination. It is concluded that P5βR genes or P5βR proteins can be used as valuable function-associated molecular markers to infer taxonomic relationship and evolutionary diversification from a metabolic/catalytic perspective. PMID:26108256

  12. Major peptides from amaranth (Amaranthus cruentus) protein inhibit HMG-CoA reductase activity.

    PubMed

    Soares, Rosana Aparecida Manólio; Mendonça, Simone; de Castro, Luíla Ívini Andrade; Menezes, Amanda Caroline Cardoso Corrêa Carlos; Arêas, José Alfredo Gomes

    2015-01-01

    The objective of this study was to identify the major peptides generated by the in vitro hydrolysis of Amaranthus cruentus protein and to verify the effect of these peptides on the activity of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase), a key enzyme in cholesterol biosynthesis. A protein isolate was prepared, and an enzymatic hydrolysis that simulated the in vivo digestion of the protein was performed. After hydrolysis, the peptide mixture was filtered through a 3 kDa membrane. The peptide profile of this mixture was determined by reversed phase high performance chromatography (RP-HPLC), and the peptide identification was performed by LC-ESI MS/MS. Three major peptides under 3 kDa were detected, corresponding to more than 90% of the peptides of similar size produced by enzymatic hydrolysis. The sequences identified were GGV, IVG or LVG and VGVI or VGVL. These peptides had not yet been described for amaranth protein nor are they present in known sequences of amaranth grain protein, except LVG, which can be found in amaranth α‑amylase. Their ability to inhibit the activity of HMG-CoA reductase was determined, and we found that the sequences GGV, IVG, and VGVL, significantly inhibited this enzyme, suggesting a possible hypocholesterolemic effect. PMID:25690031

  13. Overexpression of Soybean Isoflavone Reductase (GmIFR) Enhances Resistance to Phytophthora sojae in Soybean

    PubMed Central

    Cheng, Qun; Li, Ninghui; Dong, Lidong; Zhang, Dayong; Fan, Sujie; Jiang, Liangyu; Wang, Xin; Xu, Pengfei; Zhang, Shuzhen

    2015-01-01

    Isoflavone reductase (IFR) is an enzyme involved in the biosynthetic pathway of isoflavonoid phytoalexin in plants. IFRs are unique to the plant kingdom and are considered to have crucial roles in plant response to various biotic and abiotic environmental stresses. Here, we report the characterization of a novel member of the soybean isoflavone reductase gene family GmIFR. Overexpression of GmIFR transgenic soybean exhibited enhanced resistance to Phytophthora sojae. Following stress treatments, GmIFR was significantly induced by P. sojae, ethephon (ET), abscisic acid (placeCityABA), salicylic acid (SA). It is located in the cytoplasm when transiently expressed in soybean protoplasts. The daidzein levels reduced greatly for the seeds of transgenic plants, while the relative content of glyceollins in transgenic plants was significantly higher than that of non-transgenic plants. Furthermore, we found that the relative expression levels of reactive oxygen species (ROS) of transgenic soybean plants were significantly lower than those of non-transgenic plants after incubation with P. sojae, suggesting an important role of GmIFR might function as an antioxidant to reduce ROS in soybean. The enzyme activity assay suggested that GmIFR has isoflavone reductase activity. PMID:26635848

  14. Redox-Linked Domain Movements in the Catalytic Cycle of Cytochrome P450 Reductase

    PubMed Central

    Huang, Wei-Cheng; Ellis, Jacqueline; Moody, Peter C.E.; Raven, Emma L.; Roberts, Gordon C.K.

    2013-01-01

    Summary NADPH-cytochrome P450 reductase is a key component of the P450 mono-oxygenase drug-metabolizing system. There is evidence for a conformational equilibrium involving large-scale domain motions in this enzyme. We now show, using small-angle X-ray scattering (SAXS) and small-angle neutron scattering, that delivery of two electrons to cytochrome P450 reductase leads to a shift in this equilibrium from a compact form, similar to the crystal structure, toward an extended form, while coenzyme binding favors the compact form. We present a model for the extended form of the enzyme based on nuclear magnetic resonance and SAXS data. Using the effects of changes in solution conditions and of site-directed mutagenesis, we demonstrate that the conversion to the extended form leads to an enhanced ability to transfer electrons to cytochrome c. This structural evidence shows that domain motion is linked closely to the individual steps of the catalytic cycle of cytochrome P450 reductase, and we propose a mechanism for this. PMID:23911089

  15. Major Peptides from Amaranth (Amaranthus cruentus) Protein Inhibit HMG-CoA Reductase Activity

    PubMed Central

    Soares, Rosana Aparecida Manólio; Mendonça, Simone; de Castro, Luíla Ívini Andrade; Menezes, Amanda Caroline Cardoso Corrêa Carlos; Arêas, José Alfredo Gomes

    2015-01-01

    The objective of this study was to identify the major peptides generated by the in vitro hydrolysis of Amaranthus cruentus protein and to verify the effect of these peptides on the activity of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase), a key enzyme in cholesterol biosynthesis. A protein isolate was prepared, and an enzymatic hydrolysis that simulated the in vivo digestion of the protein was performed. After hydrolysis, the peptide mixture was filtered through a 3 kDa membrane. The peptide profile of this mixture was determined by reversed phase high performance chromatography (RP-HPLC), and the peptide identification was performed by LC-ESI MS/MS. Three major peptides under 3 kDa were detected, corresponding to more than 90% of the peptides of similar size produced by enzymatic hydrolysis. The sequences identified were GGV, IVG or LVG and VGVI or VGVL. These peptides had not yet been described for amaranth protein nor are they present in known sequences of amaranth grain protein, except LVG, which can be found in amaranth α‑amylase. Their ability to inhibit the activity of HMG-CoA reductase was determined, and we found that the sequences GGV, IVG, and VGVL, significantly inhibited this enzyme, suggesting a possible hypocholesterolemic effect. PMID:25690031

  16. Overexpression of Soybean Isoflavone Reductase (GmIFR) Enhances Resistance to Phytophthora sojae in Soybean.

    PubMed

    Cheng, Qun; Li, Ninghui; Dong, Lidong; Zhang, Dayong; Fan, Sujie; Jiang, Liangyu; Wang, Xin; Xu, Pengfei; Zhang, Shuzhen

    2015-01-01

    Isoflavone reductase (IFR) is an enzyme involved in the biosynthetic pathway of isoflavonoid phytoalexin in plants. IFRs are unique to the plant kingdom and are considered to have crucial roles in plant response to various biotic and abiotic environmental stresses. Here, we report the characterization of a novel member of the soybean isoflavone reductase gene family GmIFR. Overexpression of GmIFR transgenic soybean exhibited enhanced resistance to Phytophthora sojae. Following stress treatments, GmIFR was significantly induced by P. sojae, ethephon (ET), abscisic acid (placeCityABA), salicylic acid (SA). It is located in the cytoplasm when transiently expressed in soybean protoplasts. The daidzein levels reduced greatly for the seeds of transgenic plants, while the relative content of glyceollins in transgenic plants was significantly higher than that of non-transgenic plants. Furthermore, we found that the relative expression levels of reactive oxygen species (ROS) of transgenic soybean plants were significantly lower than those of non-transgenic plants after incubation with P. sojae, suggesting an important role of GmIFR might function as an antioxidant to reduce ROS in soybean. The enzyme activity assay suggested that GmIFR has isoflavone reductase activity. PMID:26635848

  17. Development of novel pyrazolone derivatives as inhibitors of aldose reductase: an eco-friendly one-pot synthesis, experimental screening and in silico analysis.

    PubMed

    Kadam, Aparna; Dawane, Bhaskar; Pawar, Manisha; Shegokar, Harshala; Patil, Kapil; Meshram, Rohan; Gacche, Rajesh

    2014-04-01

    Aldose reductase is the key enzyme of polypol pathway leading to accumulation of sorbitol. Sorbitol does not diffuse across the cell membranes easily and therefore accumulates within the cell, causing osmotic damage which leads to retinopathy (cataractogenesis), neuropathy and other diabetic complications. Currently, aldose reductase inhibitors like epalrestat, ranirestat and fidarestat are used for the amelioration of diabetic complications. However, such drugs are effective in patients having good glycemic control and less severe diabetic complications. In present study we have designed novel pyrazolone derivative and performed eco-friendly synthesis approach and tested the synthesized compounds as potential inhibitors of aldose reductase activity. Additional in silico analysis in current study indicates presence of highly conserved chemical environment in active site of goat lens aldose reductase. The reported data is expected to be useful for developing novel pyrazolone derivatives as lead compounds in the management of diabetic complications. PMID:24607578

  18. Comparative characterization of novel ene-reductases from cyanobacteria.

    PubMed

    Fu, Yilei; Castiglione, Kathrin; Weuster-Botz, Dirk

    2013-05-01

    The growing importance of biocatalysis in the syntheses of enantiopure molecules results from the benefits of enzymes regarding selectivity and specificity of the reaction and ecological issues of the process. Ene-reductases (ERs) from the old yellow enzyme family have received much attention in the last years. These flavo-enzymes catalyze the trans-specific reduction of activated C=C bonds, which is an important reaction in asymmetric synthesis, because up to two stereogenic centers can be created in one reaction. However, limitations of ERs described in the literature such as their moderate catalytic activity and their strong preference for NADPH promote the search for novel ERs with improved properties. In this study, we characterized nine novel ERs from cyanobacterial strains belonging to different taxonomic orders and habitats. ERs were identified with activities towards a broad spectrum of alkenes. The reduction of maleimide was catalyzed with activities of up to 35.5 U mg(-1) using NADPH. Ketoisophorone and (R)-carvone, which were converted to the highly valuable compounds (R)-levodione and (2R,5R)-dihydrocarvone, were reduced with reaction rates of up to 2.2 U mg(-1) with NADPH. In contrast to other homologous ERs from the literature, NADH was accepted at moderate to high rates as well: Enzyme activities of up to 16.7 U mg(-1) were obtained for maleimide and up to 1.3 U mg(-1) for ketoisophorone and (R)-carvone. Additionally, excellent stereoselectivities were achieved in the reduction of (R)-carvone (97-99% de). In particular, AnabaenaER3 from Anabaena variabilis ATCC 29413 and AcaryoER1 from Acaryochloris marina MBIC 11017 were identified as useful biocatalysts. Therefore, novel ERs from cyanobacteria with high catalytic efficiency were added to the toolbox for the asymmetric reduction of alkenes. PMID:23280373

  19. Aldo-keto reductase (AKR) superfamily: genomics and annotation.

    PubMed

    Mindnich, Rebekka D; Penning, Trevor M

    2009-07-01

    Aldo-keto reductases (AKRs) are phase I metabolising enzymes that catalyse the reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H)-dependent reduction of carbonyl groups to yield primary and secondary alcohols on a wide range of substrates, including aliphatic and aromatic aldehydes and ketones, ketoprostaglandins, ketosteroids and xenobiotics. In so doing they functionalise the carbonyl group for conjugation (phase II enzyme reactions). Although functionally diverse, AKRs form a protein superfamily based on their high sequence identity and common protein fold, the (alpha/beta) 8 -barrel structure. Well over 150 AKR enzymes, from diverse organisms, have been annotated so far and given systematic names according to a nomenclature that is based on multiple protein sequence alignment and degree of identity. Annotation of non-vertebrate AKRs at the National Center for Biotechnology Information or Vertebrate Genome Annotation (vega) database does not often include the systematic nomenclature name, so the most comprehensive overview of all annotated AKRs is found on the AKR website (http://www.med.upenn.edu/akr/). This site also hosts links to more detailed and specialised information (eg on crystal structures, gene expression and single nucleotide polymorphisms [SNPs]). The protein-based AKR nomenclature allows unambiguous identification of a given enzyme but does not reflect the wealth of genomic and transcriptomic variation that exists in the various databases. In this context, identification of putative new AKRs and their distinction from pseudogenes are challenging. This review provides a short summary of the characteristic features of AKR biochemistry and structure that have been reviewed in great detail elsewhere, and focuses mainly on nomenclature and database entries of human AKRs that so far have not been subject to systematic annotation. Recent developments in the annotation of SNP and transcript variance in AKRs are also summarised. PMID:19706366

  20. Enzymes, Industrial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enzymes serve key roles in numerous biotechnology processes and products that are commonly encountered in the forms of food and beverages, cleaning supplies, clothing, paper products, transportation fuels, pharmaceuticals, and monitoring devices. Enzymes can display regio- and stereo-specificity, p...

  1. Understanding Enzymes.

    ERIC Educational Resources Information Center

    Sinnott, M. L.

    1979-01-01

    Describes the way enzymes operate through reaction energetics, and explains that most of the catalytic power of enzymes lies in the strong noncovalent forces responsible for initial binding of substrate, which are only manifested at the transition state of the reaction. (Author/GA)

  2. Soil Enzymes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The functionality and resilience of natural and managed ecosystems mainly rely on the metabolic abilities of microbial communities, the main source of enzymes in soils. Enzyme mediated reactions are critical in the decomposition of organic matter, cycling of nutrients, and in the breakdown of herbic...

  3. Post-translational Regulation of Nitrate Reductase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate reductase (NR) catalyzes the reduction of nitrate to nitrite, which is the first step in the nitrate assimilation pathway, but can also reduce nitrite to nitric oxide (NO), an important signaling molecule that is thought to mediate a wide array of of developmental and physiological processes...

  4. Ferrisiderophore reductase activity in Agrobacterium tumefaciens.

    PubMed Central

    Lodge, J S; Gaines, C G; Arceneaux, J E; Byers, B R

    1982-01-01

    Reduction of the iron in ferriagrobactin by the cytoplasmic fraction of Agrobacterium tumefaciens strictly required NaDH as the reductant. Addition of flavin mononucleotide and anaerobic conditions were necessary for the reaction; when added with flavin mononucleotide, magnesium was stimulatory. This ferrisiderophore reductase activity may be a part of the iron assimilation process in A. tumefaciens. PMID:7056702

  5. Characterization of a New Type of Dissimilatory Sulfite Reductase Present in Thermodesulfobacterium commune

    PubMed Central

    Hatchikian, E. C.; Zeikus, J. G.

    1983-01-01

    A new type of dissimilatory bisulfite reductase, desulfofuscidin, was isolated from the nonsporeforming thermophilic sulfate-reducing microorganism Thermodesulfobacterium commune. The molecular weight of the enzyme was estimated at 167,000 by sedimentation equilibrium, and the protein was pure by both disc electrophoresis and ultracentrifugation. The bisulfite reductase was a tetramer and had two types of subunits with an α2β2 structure and an individual molecular weight of 47,000. The enzyme exhibited absorption maxima at 576, 389, and 279 nm, with a weak band at 693 nm. Upon the addition of dithionite, the absorption maxima at 576 and 693 nm were weakened, and a new band appeared at 605 nm. The protein reacted with CO in the presence of dithionite to give a complex with absorption peaks at 593, 548, and 395 nm. The extinction coefficients of the purified enzyme at 576, 389, and 279 nm were 89,000, 310,000, and 663,000 M−1 cm−1, respectively. Siroheme was detected as the prosthetic group. The protein contains 20 to 21 nonheme iron atoms and 16 to 17 acid-labile sulfur groups per molecule. The data suggest the presence of four sirohemes and probably four (4Fe-4S) centers per molecule by comparison with desulfoviridin, the dissimilatory sulfite reductase from Desulfovibrio species. The protein contains 36 cysteine residues and is high in acidic and aromatic amino acids. The N-terminal amino acids of the α and β subunits were threonine and serine, respectively. With reduced methyl viologen as electron donor, the major product of sulfite reduction was trithionate, and the pH optimum for activity was 6.0. The enzyme was stable to 70°C and denatured rapidly above this temperature. The dependence of T. commune bisulfite reductase activity on temperature was linear between 35 and 65°C, and the Q10 values observed were above 3. The presence of this new type of dissimilatory bisulfite reductase in T. commune is discussed in terms of taxonomic significance. PMID

  6. Expression and purification of spinach nitrite reductase in E. coli

    SciTech Connect

    Bellissimo, D.; Privalle, L. )

    1991-03-11

    The study of structure-function relationships in nitrite reductase (NiR) by site-directed mutagenesis requires an expression system from which suitable quantities of active enzyme can be purified. Spinach NiR cDNA was cloned into pUC18 and expressed in E.coli JM109 as a beta-galactosidase fusion protein. The IPTG-induced fusion protein contains five additional amino acids at the N-terminus. The expressed NiR in aerobic cultures was mostly insoluble and inactive indicating the presence of inclusion bodies. By altering growth conditions, active NiR could represent 0.5-1.0% of the total E.coli protein, Effects of the addition of delta-aminolevulinic acid, a heme precursor, and anaerobic growth were also examined. Spinach NiR was purified approximately 200 fold to homogeneity. When subjected to electrophoresis on SDS polyacrylamide gels, the NiR migrated as a single band with similar mobility to pure spinach enzyme. The expressed enzyme also reacted with rabbit anti-spinach NiR antibody as visualized by Western blot analysis. The absorption spectrum of the E.coli-expressed enzyme was identical to spinach enzyme with a Soret and alpha band a 386 and 573 nm, respectively, and an A{sub 278}/A{sub 386} = 1.9. The addition of nitrite produced the characteristic shifts in the spectrum. The E. coli-expressed NiR catalyzed the methylviologen-dependent reduction of nitrite. The specific activity was 100 U/mg. The K{sub m} determined for nitrite was 0.3 mM which is in agreement with values reported for the enzyme. These results indicate that the E.coli-expressed NiR is fully comparable to spinach NiR in purity, catalytic activity and physical state. Site-directed mutants have been made using PCR to examine structure-function relationships in this enzyme.

  7. Diurnal variation in the fraction of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in the active form in the mammary gland of the lactating rat.

    PubMed Central

    Smith, R A; Middleton, B; West, D W

    1986-01-01

    'Expressed' and 'total' activities of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) were measured in freeze-clamped samples of mammary glands from lactating rats at intervals throughout the 24 h light/dark cycle. 'Expressed' activities were measured in microsomal fractions isolated and assayed in the presence of 100 mM-KF. 'Total' activities were determined in microsomal preparations from the same homogenates but washed free of KF and incubated with exogenously added sheep liver phosphoprotein phosphatase before assay. Both 'expressed' and 'total' activities of HMG-CoA reductase underwent a diurnal cycle, which had a major peak 6 h into the light phase and a nadir 15 h later, i.e. 9 h into the dark period. Both activities showed a secondary peak of activity (around 68% of the maximum activity) at the time of changeover from dark to light, with a trough in the value of the 'expressed' activity that was close to the nadir value. 'Expressed' activity was lower than 'total' at all time points, indicating the presence of enzyme molecules inactivated by covalent phosphorylation. Nevertheless the 'expressed'/'total' activity ratio was comparatively constant and varied only between 43% and 75%. Immunotitration of enzyme activity, with antiserum raised in sheep against purified rat liver HMG-CoA reductase, confirmed the presence of both active and inactive forms of the enzyme and indicated that at the peak and nadir the variation in 'expressed' HMG-CoA reductase activity resulted from changes in the total number of enzyme molecules rather than from covalent modification. The sample obtained after 3 h of the light phase exhibited an anomalously low 'total' HMG-CoA reductase activity, which could be increased when Cl- replaced F- in the homogenization medium. The result suggests that at that time the activity of the enzyme could be regulated by mechanisms other than covalent phosphorylation or degradation. PMID:3814075

  8. Biochemical and antitumor activity of trimidox, a new inhibitor of ribonucleotide reductase.

    PubMed

    Szekeres, T; Gharehbaghi, K; Fritzer, M; Woody, M; Srivastava, A; van't Riet, B; Jayaram, H N; Elford, H L

    1994-01-01

    Trimidox (3,4,5-trihydroxybenzamidoxime), a newly synthesized analog of didox (N,3,4-trihydroxybenzamide) reduced the activity of ribonucleotide reductase (EC 1.17.4.1) in extracts of L1210 cells by 50% (50% growth-inhibitory concentration, IC50) at 5 microM, whereas hydroxyurea, the only ribonucleotide reductase inhibitor in clinical use, exhibited an IC50 of 500 microM. Ribonucleotide reductase activity was also measured in situ by incubating L1210 cells for 24 h with trimidox at 7.5 microM, a concentration that inhibits cell proliferation by 50% (IC50) or at 100 microM for 2 h; these concentrations resulted in a decrease in enzyme activity to 22% and 50% of the control value, respectively. Trimidox and hydroxyurea were cytotoxic to L1210 cells with IC50 values of 7.5 and 50 microM, respectively. Versus ribonucleotide reductase, trimidox and hydroxyurea yielded IC50 values of 12 and 87 microM, respectively. A dose-dependent increase in life span was observed in mice bearing intraperitoneally transplanted L1210 tumors. Trimidox treatment (200 mg/kg; q1dx9) significantly increased the life span of mice bearing L1210 leukemia (by 82% in male mice and 112% in female mice). The anti-tumor activity appeared more pronounced in female mice than in male mice. Viewed in concert, these findings suggest that trimidox is a new and potent inhibitor of ribonucleotide reductase and that it is a promising candidate for the chemotherapy of cancer in humans. PMID:8174204

  9. Berberine inhibits androgen synthesis by interaction with aldo-keto reductase 1C3 in 22Rv1 prostate cancer cells

    PubMed Central

    Tian, Yuantong; Zhao, Lijing; Wang, Ye; Zhang, Haitao; Xu, Duo; Zhao, Xuejian; Li, Yi; Li, Jing

    2016-01-01

    Aldo-keto reductase family 1 member C3 has recently been regarded as a potential therapeutic target in castrate-resistant prostate cancer. Herein, we investigated whether berberine delayed the progression of castrate-resistant prostate cancer by reducing androgen synthesis through the inhibition of Aldo-keto reductase family 1 member C3. Cell viability and cellular testosterone content were measured in prostate cancer cells. Aldo-keto reductase family 1 member C3 mRNA and protein level were detected by RT-PCR and Western bolt analyses, respectively. Computer analysis with AutoDock Tools explored the molecular interaction of berberine with Aldo-keto reductase family 1 member C3. We found that berberine inhibited 22Rv1 cells proliferation and decreased cellular testosterone formation in a dose-dependent manner. Berberine inhibited Aldo-keto reductase family 1 member C3 enzyme activity, rather than influenced mRNA and protein expressions. Molecular docking study demonstrated that berberine could enter the active center of Aldo-keto reductase family 1 member C3 and form π-π interaction with the amino-acid residue Phe306 and Phe311. In conclusion, the structural interaction of berberine with Aldo-keto reductase family 1 member C3 is attributed to the suppression of Aldo-keto reductase family 1 member C3 enzyme activity and the inhibition of 22Rv1 prostate cancer cell growth by decreasing the intracellular androgen synthesis. Our result provides the experimental basis for the design, research, and development of AKR1C3 inhibitors using berberine as the lead compound. PMID:26698234

  10. Berberine inhibits androgen synthesis by interaction with aldo-keto reductase 1C3 in 22Rv1 prostate cancer cells.

    PubMed

    Tian, Yuantong; Zhao, Lijing; Wang, Ye; Zhang, Haitao; Xu, Duo; Zhao, Xuejian; Li, Yi; Li, Jing

    2016-01-01

    Aldo-keto reductase family 1 member C3 has recently been regarded as a potential therapeutic target in castrate-resistant prostate cancer. Herein, we investigated whether berberine delayed the progression of castrate-resistant prostate cancer by reducing androgen synthesis through the inhibition of Aldo-keto reductase family 1 member C3. Cell viability and cellular testosterone content were measured in prostate cancer cells. Aldo-keto reductase family 1 member C3 mRNA and protein level were detected by RT-PCR and Western bolt analyses, respectively. Computer analysis with AutoDock Tools explored the molecular interaction of berberine with Aldo-keto reductase family 1 member C3. We found that berberine inhibited 22Rv1 cells proliferation and decreased cellular testosterone formation in a dose-dependent manner. Berberine inhibited Aldo-keto reductase family 1 member C3 enzyme activity, rather than influenced mRNA and protein expressions. Molecular docking study demonstrated that berberine could enter the active center of Aldo-keto reductase family 1 member C3 and form p-p interaction with the amino-acid residue Phe306 and Phe311. In conclusion, the structural interaction of berberine with Aldo-keto reductase family 1 member C3 is attributed to the suppression of Aldo-keto reductase family 1 member C3 enzyme activity and the inhibition of 22Rv1 prostate cancer cell growth by decreasing the intracellular androgen synthesis. Our result provides the experimental basis for the design, research, and development of AKR1C3 inhibitors using berberine as the lead compound. PMID:26698234

  11. The cytochrome b5 reductase HPO-19 is required for biosynthesis of polyunsaturated fatty acids in Caenorhabditis elegans.

    PubMed

    Zhang, Yuru; Wang, Haizhen; Zhang, Jingjing; Hu, Ying; Zhang, Linqiang; Wu, Xiaoyun; Su, Xiong; Li, Tingting; Zou, Xiaoju; Liang, Bin

    2016-04-01

    Polyunsaturated fatty acids (PUFAs) are fatty acids with backbones containing more than one double bond, which are introduced by a series of desaturases that insert double bonds at specific carbon atoms in the fatty acid chain. It has been established that desaturases need flavoprotein-NADH-dependent cytochrome b5 reductase (simplified as cytochrome b5 reductase) and cytochrome b5 to pass through electrons for activation. However, it has remained unclear how this multi-enzyme system works for distinct desaturases. The model organism Caenorhabditis elegans contains seven desaturases (FAT-1, -2, -3, -4, -5, -6, -7) for the biosynthesis of PUFAS, providing an excellent model in which to characterize different desaturation reactions. Here, we show that RNAi inactivation of predicted cytochrome b5 reductases hpo-19 and T05H4.4 led to increased levels of C18:1n-9 but decreased levels of PUFAs, small lipid droplets, decreased fat accumulation, reduced brood size and impaired development. Dietary supplementation with different fatty acids showed that HPO-19 and T05H4.4 likely affect the activity of FAT-1, FAT-2, FAT-3, and FAT-4 desaturases, suggesting that these four desaturases use the same cytochrome b5 reductase to function. Collectively, these findings indicate that cytochrome b5 reductase HPO-19/T05H4.4 is required for desaturation to biosynthesize PUFAs in C. elegans. PMID:26806391

  12. DNA from uncultured organisms as a source of 2,5-diketo-L-gluconic acid reductases.

    SciTech Connect

    Eschenfeldt, W. H.; Stols, L.; Rosenbaum, H.; Khambatta, Z. S.; Quaite, E. R.; Wu, S.; Kilgore, D. C.; Trent, J. D.; Donnelly, M. I.; Genencor International; Eastman Chemical Company

    2001-09-01

    Total DNA of a population of uncultured organisms was extracted from soil samples, and by using PCR methods, the genes encoding two different 2,5-diketo-D-gluconic acid reductases (DKGRs) were recovered. Degenerate PCR primers based on published sequence information gave internal gene fragments homologous to known DKGRs. Nested primers specific for the internal fragments were combined with random primers to amplify flanking gene fragments from the environmental DNA, and two hypothetical full-length genes were predicted from the combined sequences. Based on these predictions, specific primers were used to amplify the two complete genes in single PCRs. These genes were cloned and expressed in Escherichia coli. The purified gene products catalyzed the reduction of 2,5-diketo-D-gluconic acid to 2-keto-L-gulonic acid. Compared to previously described DKGRs isolated from Corynebacterium spp., these environmental reductases possessed some valuable properties. Both exhibited greater than 20-fold-higher k{sub cat}/K{sub m} values than those previously determined, primarily as a result of better binding of substrate. The K{sub m} values for the two new reductases were 57 and 67 {mu}M, versus 2 and 13 mM for the Corynebacterium enzymes. Both environmental DKGRs accepted NADH as well as NADPH as a cosubstrate; other DKGRs and most related aldo-keto reductases use only NADPH. In addition, one of the new reductases was more thermostable than known DKGRs.

  13. Isolation, characterization, and biological activity of ferredoxin-NAD+ reductase from the methane oxidizer Methylosinus trichosporium OB3b.

    PubMed Central

    Chen, Y P; Yoch, D C

    1989-01-01

    A ferredoxin-NAD+ oxidoreductase (EC 1.18.1.3) has been isolated from extracts of the obligate methanotroph Methylosinus trichosporium OB3b. This enzyme was shown to couple electron flow from formate dehydrogenase (NAD+ requiring) to ferredoxin. Ferredoxin-NAD+ reductase was purified to homogeneity by conventional chromatography techniques and was shown to be a flavoprotein with a molecular weight of 36,000 +/- 1,000. This ferredoxin reductase was specific for NADH (Km, 125 microM) and coupled electron flow to the native ferredoxin and to ferredoxins from spinach, Clostridium pasteurianum, and Rhodospirillum rubrum (ferredoxin II). M. trichosporium ferredoxin saturated the ferredoxin-NAD+ reductase at a concentration 2 orders of magnitude lower (3 nM) than did spinach ferredoxin (0.4 microM). Ferredoxin-NAD+ reductase also had transhydrogenase activity which transferred electrons and protons from NADH to thionicotinamide adenine dinucleotide phosphate (Km, 9 microM) and from NADPH to 3-acetylpyridine adenine dinucleotide (Km, 16 microM). Reconstitution of a soluble electron transport pathway that coupled formate oxidation to ferredoxin reduction required formate dehydrogenase, NAD+, and ferredoxin-NAD+ reductase. Images PMID:2768195

  14. Loop interactions during catalysis by dihydrofolate reductase from Moritella profunda.

    PubMed

    Behiry, Enas M; Evans, Rhiannon M; Guo, Jiannan; Loveridge, E Joel; Allemann, Rudolf K

    2014-07-29

    Dihydrofolate reductase (DHFR) is often used as a model system to study the relation between protein dynamics and catalysis. We have studied a number of variants of the cold-adapted DHFR from Moritella profunda (MpDHFR), in which the catalytically important M20 and FG loops have been altered, and present a comparison with the corresponding variants of the well-studied DHFR from Escherichia coli (EcDHFR). Mutations in the M20 loop do not affect the actual chemical step of transfer of hydride from reduced nicotinamide adenine dinucleotide phosphate to the substrate 7,8-dihydrofolate in the catalytic cycle in either enzyme; they affect the steady state turnover rate in EcDHFR but not in MpDHFR. Mutations in the FG loop also have different effects on catalysis by the two DHFRs. Despite the two enzymes most likely sharing a common catalytic cycle at pH 7, motions of these loops, known to be important for progression through the catalytic cycle in EcDHFR, appear not to play a significant role in MpDHFR. PMID:25014120

  15. Fasciola gigantica thioredoxin glutathione reductase: Biochemical properties and structural modeling.

    PubMed

    Gupta, Ankita; Kesherwani, Manish; Velmurugan, Devadasan; Tripathi, Timir

    2016-08-01

    Platyhelminth thioredoxin glutathione reductase (TGR) is a multifunctional enzyme that crosstalk between the conventional thioredoxin (Trx) and glutathione (GSH) system. It has been validated as a potential drug target in blood flukes. In the present study, we have performed a biochemical study on Fasciola gigantica TGR with substrates DTNB and GSSG. The Michaelis constant (Km) with DTNB was found to be 4.34±0.12μM while it was 61.15±1.50μM with GSSG. The kinetic results were compared with the TGR activities of other helminths. FgTGR showed typical hysteretic behavior with GSSG as other TGRs. We also described a homology-based structure of FgTGR. The cofactors (NADPH and FAD) and substrates (GSSG and DTNB) were docked, and two possible binding sites for substrates were identified in a single chain. The substrates were found to bind more favorably in the second site of TrxR domains. We also presented the first report on binding interaction of DTNB with a TGR. DTNB forms H-bond with His204 and Arg450 of chain A, Sec597, and Gly598 from chain B, salt-bridge with Lys124, and numerous other hydrophobic interactions. Helminth TGR represents an important enzyme in the redox and antioxidant system; hence, its inhibition can be used as an effective strategy against liver flukes. PMID:27112978

  16. The Role of Large-Scale Motions in Catalysis by Dihydrofolate Reductase

    PubMed Central

    2011-01-01

    Dihydrofolate reductase has long been used as a model system to study the coupling of protein motions to enzymatic hydride transfer. By studying environmental effects on hydride transfer in dihydrofolate reductase (DHFR) from the cold-adapted bacterium Moritella profunda (MpDHFR) and comparing the flexibility of this enzyme to that of DHFR from Escherichia coli (EcDHFR), we demonstrate that factors that affect large-scale (i.e., long-range, but not necessarily large amplitude) protein motions have no effect on the kinetic isotope effect on hydride transfer or its temperature dependence, although the rates of the catalyzed reaction are affected. Hydrogen/deuterium exchange studies by NMR-spectroscopy show that MpDHFR is a more flexible enzyme than EcDHFR. NMR experiments with EcDHFR in the presence of cosolvents suggest differences in the conformational ensemble of the enzyme. The fact that enzymes from different environmental niches and with different flexibilities display the same behavior of the kinetic isotope effect on hydride transfer strongly suggests that, while protein motions are important to generate the reaction ready conformation, an optimal conformation with the correct electrostatics and geometry for the reaction to occur, they do not influence the nature of the chemical step itself; large-scale motions do not couple directly to hydride transfer proper in DHFR. PMID:22060818

  17. Structural Insight into Dihydrodipicolinate Reductase from Corybebacterium glutamicum for Lysine Biosynthesis.

    PubMed

    Sagong, Hye-Young; Kim, Kyung-Jin

    2016-02-28

    Dihydrodipicolinate reductase is an enzyme that converts dihydrod