Science.gov

Sample records for 5-aminoimidazole-4-carboxamide ribonucleoside aicar

  1. Identification of yeast and human 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAr) transporters.

    PubMed

    Ceschin, Johanna; Saint-Marc, Christelle; Laporte, Jean; Labriet, Adrien; Philippe, Chloé; Moenner, Michel; Daignan-Fornier, Bertrand; Pinson, Benoît

    2014-06-13

    5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAr) is the precursor of the active monophosphate form (AICAR), a small molecule with potent anti-proliferative and low energy mimetic properties. The molecular bases for AICAR toxicity at the cellular level are poorly understood. Here, we report the isolation and characterization of several yeast AICAr-hypersensitive mutants. Identification of the cognate genes allowed us to establish that thiamine transporters Thi7 and Thi72 can efficiently take up AICAr under conditions where they are overexpressed. We establish that, under standard growth conditions, Nrt1, the nicotinamide riboside carrier, is the major AICAr transporter in yeast. A study of AICAR accumulation in human cells revealed substantial disparities among cell lines and confirmed that AICAr enters cells via purine nucleoside transporters. Together, our results point to significant differences between yeast and human cells for both AICAr uptake and AICAR accumulation. PMID:24778186

  2. Identification of Yeast and Human 5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAr) Transporters*

    PubMed Central

    Ceschin, Johanna; Saint-Marc, Christelle; Laporte, Jean; Labriet, Adrien; Philippe, Chloé; Moenner, Michel; Daignan-Fornier, Bertrand; Pinson, Benoît

    2014-01-01

    5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAr) is the precursor of the active monophosphate form (AICAR), a small molecule with potent anti-proliferative and low energy mimetic properties. The molecular bases for AICAR toxicity at the cellular level are poorly understood. Here, we report the isolation and characterization of several yeast AICAr-hypersensitive mutants. Identification of the cognate genes allowed us to establish that thiamine transporters Thi7 and Thi72 can efficiently take up AICAr under conditions where they are overexpressed. We establish that, under standard growth conditions, Nrt1, the nicotinamide riboside carrier, is the major AICAr transporter in yeast. A study of AICAR accumulation in human cells revealed substantial disparities among cell lines and confirmed that AICAr enters cells via purine nucleoside transporters. Together, our results point to significant differences between yeast and human cells for both AICAr uptake and AICAR accumulation. PMID:24778186

  3. The influence of the BRAF V600E mutation in thyroid cancer cell lines on the anticancer effects of 5-aminoimidazole-4-carboxamide-ribonucleoside.

    PubMed

    Choi, Hyun-Jeung; Kim, Tae Yong; Chung, Namhyun; Yim, Ji Hye; Kim, Won Gu; Kim, Jin A; Kim, Won Bae; Shong, Young Kee

    2011-10-01

    5-Aminoimidazole-4-carboxamide-ribonucleoside (AICAR) is an activator of 5'-AMP-activated protein kinase (AMPK), which plays a role in the maintenance of cellular energy homeostasis. Activated AMPK inhibits the protein kinase mechanistic target of rapamycin, thereby reducing the extent of protein translation and suppressing both cell growth and cell cycle entry. Recent reports indicate that AMPK-mediated growth inhibition is achieved via an action of the RAF-MEK-ERK mitogen-activated protein kinase pathway in melanoma cells harboring the V600E mutant form of the BRAF oncogene. In this study, we investigated the anti-cancer efficacy of AICAR by measuring its effects on proliferation, apoptosis, and cell cycle progression of BRAF wild-type and V600E-mutant thyroid cancer cell lines. We also explored the mechanism underlying these effects. AICAR inhibited the proliferation of BRAF V600E-mutant thyroid cancer cell lines more strongly than was the case with wild-type cell lines. The suppressive effect of AICAR on cell proliferation was associated with increased S-phase cell cycle arrest and apoptosis. Interestingly, AICAR suppressed phosphorylation of ERK and p70S6K in BRAF V600E-mutant thyroid cancer cells, but rather increased phosphorylation in wild-type cells. Together, the results indicate that AICAR-induced AMPK activation in BRAF V600E-mutant thyroid cancer cell lines resulted in increases in apoptosis and S-phase arrest via downregulation of ERK and p70S6K activity. Thus, regulation of AMPK activity may be potentially useful as a therapy for thyroid cancer if the cancer harbors a BRAF V600E mutation.

  4. 5-Aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR) enhances the efficacy of rapamycin in human cancer cells

    PubMed Central

    Mukhopadhyay, Suman; Chatterjee, Amrita; Kogan, Diane; Patel, Deven; Foster, David A

    2015-01-01

    mTOR – the mammalian/mechanistic target of rapamycin – has been implicated as a key signaling node for promoting survival of cancer cells. However, clinical trials that have targeted mTOR with rapamycin or rapamycin analogs have had minimal impact. In spite of the high specificity of rapamycin for mTOR, the doses needed to suppress key mTOR substrates have proved toxic. We report here that rapamycin when combined with AICAR – a compound that activates AMP-activated protein kinase makes rapamycin cytotoxic rather than cytostatic at doses that are tolerated clinically. AICAR by itself is able to suppress mTOR complex 1 (mTORC1), but also stimulates a feedback activation of mTORC2, which activates the survival kinase Akt. However, AICAR also suppresses production of phosphatidic acid (PA), which interacts with mTOR in a manner that is competitive with rapamycin. The reduced level of PA sensitizes mTORC2 to rapamycin at tolerable nano-molar doses leading reduced Akt phosphorylation and apoptosis. This study reveals how the use of AICAR enhances the efficacy of rapamycin such that rapamycin at low nano-molar doses can suppress mTORC2 and induce apoptosis in human cancer cells at doses that are clinically tolerable. PMID:26323019

  5. Over-expression of sterol-regulatory-element-binding protein-1c (SREBP1c) in rat pancreatic islets induces lipogenesis and decreases glucose-stimulated insulin release: modulation by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR).

    PubMed Central

    Diraison, Frédérique; Parton, Laura; Ferré, Pascal; Foufelle, Fabienne; Briscoe, Celia P; Leclerc, Isabelle; Rutter, Guy A

    2004-01-01

    Accumulation of intracellular lipid by pancreatic islet beta-cells has been proposed to inhibit normal glucose-regulated insulin secretion ('glucolipotoxicity'). In the present study, we determine whether over-expression in rat islets of the lipogenic transcription factor SREBP1c (sterol-regulatory-element-binding protein-1c) affects insulin release, and whether changes in islet lipid content may be reversed by activation of AMPK (AMP-activated protein kinase). Infection with an adenovirus encoding the constitutively active nuclear fragment of SREBP1c resulted in expression of the protein in approx. 20% of islet cell nuclei, with a preference for beta-cells at the islet periphery. Real-time PCR (TaqMan) analysis showed that SREBP1c up-regulated the expression of FAS (fatty acid synthase; 6-fold), acetyl-CoA carboxylase-1 (2-fold), as well as peroxisomal-proliferator-activated receptor-gamma (7-fold), uncoupling protein-2 (1.4-fold) and Bcl2 (B-cell lymphocytic-leukaemia proto-oncogene 2; 1.3-fold). By contrast, levels of pre-proinsulin, pancreatic duodenal homeobox-1, glucokinase and GLUT2 (glucose transporter isoform-2) mRNAs were unaltered. SREBP1c-transduced islets displayed a 3-fold increase in triacylglycerol content, decreased glucose oxidation and ATP levels, and a profound inhibition of glucose-, but not depolarisation-, induced insulin secretion. Culture of islets with the AMPK activator 5-amino-4-imidazolecarboxamide riboside decreased the expression of the endogenous SREBP1c and FAS genes, and reversed the effect of over-expressing active SREBP1c on FAS mRNA levels and cellular triacylglycerol content. We conclude that SREBP1c over-expression, even when confined to a subset of beta-cells, leads to defective insulin secretion from islets and may contribute to some forms of Type II diabetes. PMID:14690455

  6. Characterization of two 5-aminoimidazole-4-carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase isozymes from Saccharomyces cerevisiae.

    PubMed

    Tibbetts, A S; Appling, D R

    2000-07-01

    The Saccharomyces cerevisiae ADE16 and ADE17 genes encode 5-aminoimidazole-4-carboxamide ribonucleotide transformylase isozymes that catalyze the penultimate step of the de novo purine biosynthesis pathway. Disruption of these two chromosomal genes results in adenine auxotrophy, whereas expression of either gene alone is sufficient to support growth without adenine. In this work, we show that an ade16 ade17 double disruption also leads to histidine auxotrophy, similar to the adenine/histidine auxotrophy of ade3 mutant yeast strains. We also report the purification and characterization of the ADE16 and ADE17 gene products (Ade16p and Ade17p). Like their counterparts in other organisms, the yeast isozymes are bifunctional, containing both 5-aminoimidazole-4-carboxamide ribonucleotide transformylase and inosine monophosphate cyclohydrolase activities, and exist as homodimers based on cross-linking studies. Both isozymes are localized to the cytosol, as shown by subcellular fractionation experiments and immunofluorescent staining. Epitope-tagged constructs were used to study expression of the two isozymes. The expression of Ade17p is repressed by the addition of adenine to the media, whereas Ade16p expression is not affected by adenine. Ade16p was observed to be more abundant in cells grown on nonfermentable carbon sources than in glucose-grown cells, suggesting a role for this isozyme in respiration or sporulation.

  7. Inhibition of 5-aminoimidazole-4-carboxamide ribotide transformylase, adenosine deaminase and 5'-adenylate deaminase by polyglutamates of methotrexate and oxidized folates and by 5-aminoimidazole-4-carboxamide riboside and ribotide.

    PubMed Central

    Baggott, J E; Vaughn, W H; Hudson, B B

    1986-01-01

    With the use of a continuous spectrophotometric assay and initial rates determined by the method of Waley [Biochem. J. (1981) 193, 1009-1012] methotrexate was found to be a non-competitive inhibitor, with Ki(intercept) = 72 microM and Ki(slope) = 41 microM, of 5-aminoimidazole-4-carboxamide ribotide transformylase, whereas a polyglutamate of methotrexate containing three gamma-linked glutamate residues was a competitive inhibitor, with Ki = 3.15 microM. Pentaglutamates of folic acid and 10-formylfolic acid were also competitive inhibitors of the transformylase, with Ki values of 0.088 and 1.37 microM respectively. Unexpectedly, the pentaglutamate of 10-formyldihydrofolic acid was a good substrate for the transformylase, with a Km of 0.51 microM and a relative Vmax. of 0.72, which compared favourably with a Km of 0.23 microM and relative Vmax. of 1.0 for the tetrahydro analogue. An analysis of the progress curve of the transformylase-catalysed reaction with the above dihydro coenzyme revealed that the pentaglutamate of dihydrofolic acid was a competitive product inhibitor, with Ki = 0.14 microM. The continuous spectrophotometric assay for adenosine deaminase based on change in the absorbance at 265 nm was shown to be valid with adenosine concentrations above 100 microM, which contradicts a previous report [Murphy, Baker, Behling & Turner (1982) Anal. Biochem. 122, 328-337] that this assay was invalid above this concentration. With the spectrophotometric assay, 5-aminoimidazole-4-carboxamide riboside was found to be a competitive inhibitor of adenosine deaminase, with (Ki = 362 microM), whereas the ribotide was a competitive inhibitor of 5'-adenylate deaminase, with Ki = 1.01 mM. Methotrexate treatment of susceptible cells results in (1) its conversion into polyglutamates, (2) the accumulation of oxidized folate polyglutamates, and (3) the accumulation of 5-aminoimidazole-4-carboxamide riboside and ribotide. The above metabolic events may be integral elements

  8. Genistein, Resveratrol, and 5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside Induce Cytochrome P450 4F2 Expression through an AMP-Activated Protein Kinase-Dependent PathwayS⃞

    PubMed Central

    Hsu, Mei-Hui; Savas, Üzen; Lasker, Jerome M.

    2011-01-01

    Activators of AMP-activated protein kinase (AMPK) increase the expression of the human microsomal fatty acid ω-hydroxylase CYP4F2. A 24-h treatment of either primary human hepatocytes or the human hepatoma cell line HepG2 with 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), which is converted to 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranosyl 5′-monophosphate, an activator of AMPK, caused an average 2.5- or 7-fold increase, respectively, of CYP4F2 mRNA expression but not of CYP4A11 or CYP4F3, CYP4F11, and CYP4F12 mRNA. Activation of CYP4F2 expression by AICAR was significantly reduced in HepG2 cells by an AMPK inhibitor, 6-[4-(2-piperidin-1-yl-ethoxy)-phenyl)]-3-pyridin-4-yl-pyrrazolo[1,5-a]-pyrimidine (compound C) or by transfection with small interfering RNAs for AMPKα isoforms α1 and α2. A 2.5-fold increase in CYP4F2 mRNA expression was observed upon treatment of HepG2 cells with 6,7-dihydro-4-hydroxy-3-(2′-hydroxy[1,1′-biphenyl]-4-yl)-6-oxo-thieno[2,3-b]pyridine-5-carbonitrile (A-769662), a direct activator for AMPK. In addition, the indirect activators of AMPK, genistein and resveratrol increased CYP4F2 mRNA expression in HepG2 cells. Pretreatment with compound C or 1,2-dihydro-3H-naphtho[2,1-b]pyran-3-one (splitomicin), an inhibitor of the NAD+ activated deacetylase SIRT1, only partially blocked activation of CYP4F2 expression by resveratrol, suggesting that a SIRT1/AMPK-independent pathway also contributes to increased CYP4F2 expression. Compound C greatly diminished genistein activation of CYP4F2 expression. 7H-benz[de]benzimidazo[2,1-a]isoquinoline-7-one-3-carboxylic acid acetate (STO-609), a calmodulin kinase kinase (CaMKK) inhibitor, reduced the level of expression of CYP4F2 elicited by genistein, suggesting that CaMKK activation contributed to AMPK activation by genistein. Transient transfection studies in HepG2 cells with reporter constructs containing the CYP4F2 proximal promoter demonstrated that AICAR, genistein, and

  9. Association of the 5-aminoimidazole-4-carboxamide ribonucleotide transformylase gene with response to methotrexate in juvenile idiopathic arthritis

    PubMed Central

    Hinks, Anne; Moncrieffe, Halima; Martin, Paul; Ursu, Simona; Lal, Sham; Kassoumeri, Laura; Weiler, Tracey; Glass, David N; Thompson, Susan D; Wedderburn, Lucy R; Thomson, Wendy

    2011-01-01

    Objectives Methotrexate (MTX) is the mainstay treatment for juvenile idiopathic arthritis (JIA), however approximately 30% of children will fail to respond to the drug. Identification of genetic predictors of response to MTX would be invaluable in developing optimal treatment strategies for JIA. Using a candidate gene approach, single nucleotide polymorphisms (SNPs) within genes in the metabolic pathway of MTX, were investigated for association with response to treatment in JIA cases. Methods Tagging SNPs were selected across 13 MTX metabolic pathway genes and were genotyped using Sequenom genotyping technology in subjects recruited from the Sparks Childhood Arthritis Response to Medication Study. Response to MTX was defined using the American College of Rheumatology (ACR) paediatric response criteria and SNP genotype frequencies were compared between the worst and best responders (ACR-Ped70) to MTX. An independent cohort of US JIA cases was available for validation of initial findings. Results One SNP within the inosine triphosphate pyrophosphatase gene (ITPA) and two SNPs within 5-aminoimidazole-4-carboxamide ribonucleotide transformylase gene (ATIC) were significantly associated with a poor response to MTX. One of the ATIC SNPs showed a trend towards association with MTX response in an independent cohort of US JIA cases. Meta-analysis of the two studies strengthened this association (combined p value=0.002). Conclusions This study presents association of a SNP in the ATIC gene with response to MTX in JIA. There is now growing evidence to support a role of the ATIC gene with response to MTX treatment. These results could contribute towards a better understanding of and ability to predict MTX response in JIA. PMID:21515602

  10. Infection of soybean and pea nodules by Rhizobium spp. purine auxotrophs in the presence of 5-aminoimidazole-4-carboxamide riboside.

    PubMed Central

    Newman, J D; Diebold, R J; Schultz, B W; Noel, K D

    1994-01-01

    Purine auxotrophs of various Rhizobium species are symbiotically defective, usually unable to initiate or complete the infection process. Earlier studies demonstrated that, in the Rhizobium etli-bean symbiosis, infection by purine auxotrophs is partially restored by supplementation of the plant medium with 5-amino-imidazole-4-carboxamide (AICA) riboside, the unphosphorylated form of the purine biosynthetic intermediate AICAR. The addition of purine to the root environment does not have this effect. In this study, purine auxotrophs of Rhizobium fredii HH303 and Rhizobium leguminosarum 128C56 (bv. viciae) were examined. Nutritional and genetic characterization indicated that each mutant was blocked in purine biosynthesis prior to the production of AICAR. R. fredii HH303 and R. leguminosarum 128C56 appeared to be deficient in AICA riboside transport and/or conversion into AICAR, and the auxotrophs derived from them grew very poorly with AICA riboside as a purine source. All of the auxotrophs elicited poorly developed, uninfected nodules on their appropriate hosts. On peas, addition of AICA riboside or purine to the root environment led to enhanced nodulation; however, infection threads were observed only in the presence of AICA riboside. On soybeans, only AICA riboside was effective in enhancing nodulation and promoting infection. Although AICA riboside supplementation of the auxotrophs led to infection thread development on both hosts, the numbers of bacteria recovered from the nodules were still 2 or more orders of magnitude lower than in fully developed nodules populated by wild-type bacteria. The ability to AICA riboside to promote infection by purine auxotrophs, despite serving as a very poor purine source for these strains, supports the hypothesis that AICAR plays a role in infection other than merely promoting bacterial growth. Images PMID:8195084

  11. Discovery of 5-substituted pyrrolo[2,3-d]pyrimidine antifolates as dual acting inhibitors of glycinamide ribonucleotide formyltransferase and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase in de novo purine nucleotide biosynthesis: implications of inhibiting 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase to AMPK activation and anti-tumor activity

    PubMed Central

    Raghavan, Sudhir; Ravindra, Manasa Punaha; Hales, Eric; Orr, Steven; Cherian, Christina; Hou, Zhanjun

    2014-01-01

    We synthesized 5-substituted pyrrolo[2,3-d]pyrimidine antifolates (compounds 5–10) with 1 to 6 bridge carbons and a benozyl ring in the side chain as antitumor agents. Compound 8 with a 4-carbon bridge was the most active analog and potently inhibited proliferation of folate receptor (FR) α-expressing Chinese hamster ovary and KB human tumor cells. Growth inhibition was reversed completely or in part by excess folic acid, indicating that FRα is involved in cellular uptake, and resulted in S-phase accumulation and apoptosis. Anti-proliferative effects of compound 8 toward KB cells were protected by excess adenosine but not thymidine, establishing de novo purine nucleotide biosynthesis as the targeted pathway. However, 5-aminoimidazole-4-carboxamide (AICA) protection was incomplete, suggesting inhibition of both AICA ribonucleotide formyltransferase (AICARFTase) and glycinamide ribonucleotide formyltransferase (GARFTase). Inhibition of GARFTase and AICARFTase by compound 8 was confirmed by cellular metabolic assays and resulted in ATP pool depletion. To our knowledge, this is the first example of an antifolate that acts as a dual inhibitor of GARFTase and AICARFTase as its principal mechanism of action. PMID:24256410

  12. 5-aminoimidazole-4-carboxamide Riboside Induces Apoptosis Through AMP-activated Protein Kinase-independent and NADPH Oxidase-dependent Pathways.

    PubMed

    Wi, Sae Mi; Lee, Ki-Young

    2014-10-01

    It is debatable whether AMP-activated protein kinase (AMPK) activation is involved in anti-apoptotic or pro-apoptotic signaling. AICAR treatment increases AMPK-α1 phosphorylation, decreases intracellular reactive oxygen species (ROS) levels, and significantly increases Annexin V-positive cells, DNA laddering, and caspase activity in human myeloid cell. AMPK activation is therefore implicated in apoptosis. However, AMPK-α1-knockdown THP-1 cells are more sensitive to apoptosis than control THP-1 cells are, suggesting that the apoptosis is AMPK-independent. Low doses of AICAR induce cell proliferation, whereas high doses of AICAR suppress cell proliferation. Moreover, these effects are significantly correlated with the downregulation of intracellular ROS, strongly suggesting that AICAR-induced apoptosis is critically associated with the inhibition of NADPH oxidase by AICAR. Collectively, our results demonstrate that in AICAR-induced apoptosis, intracellular ROS levels are far more relevant than AMPK activation.

  13. AICAR and Metformin Exert AMPK-dependent Effects on INS-1E Pancreatic β-cell Apoptosis via Differential Downstream Mechanisms

    PubMed Central

    Dai, Yu-Lu; Huang, Su-Ling; Leng, Ying

    2015-01-01

    The role of AMP-activated protein kinase (AMPK) in pancreatic β-cell apoptosis is still controversial, and the reasons for the discrepancies have not been clarified. In the current study, we observed the effects of two well-known AMPK activators 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and metformin, on apoptosis in rat insulinoma INS-1E cells, and further explored their possible mechanisms. Both AICAR and metformin protected INS-1E cells from palmitate-induced apoptosis, as reflected by decreases in both cleaved caspase 3 protein expression and caspase 3/7 activity, and these protective effects were abrogated by AMPK inhibitor compound C. The protective action of AICAR was probably mediated by the suppression of triacylglycerol accumulation, increase in Akt phosphorylation and decrease in p38 MAPK phosphorylation, while metformin might exert its protective effect on INS-1E cells by decreases in both JNK and p38 MAPK phosphorylation. All these regulations were dependent on AMPK activation. However, under standard culture condition, AICAR increased JNK phosphorylation and promoted INS-1E cell apoptosis in an AMPK-dependent manner, whereas metformin showed no effect on apoptosis. Our study revealed that AMPK activators AICAR and metformin exhibited different effects on INS-1E cell apoptosis under different culture conditions, which might be largely attributed to different downstream mediators. Our results provided new and informative clues for better understanding of the role of AMPK in β-cell apoptosis. PMID:26435693

  14. AICAR and Metformin Exert AMPK-dependent Effects on INS-1E Pancreatic β-cell Apoptosis via Differential Downstream Mechanisms.

    PubMed

    Dai, Yu-Lu; Huang, Su-Ling; Leng, Ying

    2015-01-01

    The role of AMP-activated protein kinase (AMPK) in pancreatic β-cell apoptosis is still controversial, and the reasons for the discrepancies have not been clarified. In the current study, we observed the effects of two well-known AMPK activators 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and metformin, on apoptosis in rat insulinoma INS-1E cells, and further explored their possible mechanisms. Both AICAR and metformin protected INS-1E cells from palmitate-induced apoptosis, as reflected by decreases in both cleaved caspase 3 protein expression and caspase 3/7 activity, and these protective effects were abrogated by AMPK inhibitor compound C. The protective action of AICAR was probably mediated by the suppression of triacylglycerol accumulation, increase in Akt phosphorylation and decrease in p38 MAPK phosphorylation, while metformin might exert its protective effect on INS-1E cells by decreases in both JNK and p38 MAPK phosphorylation. All these regulations were dependent on AMPK activation. However, under standard culture condition, AICAR increased JNK phosphorylation and promoted INS-1E cell apoptosis in an AMPK-dependent manner, whereas metformin showed no effect on apoptosis. Our study revealed that AMPK activators AICAR and metformin exhibited different effects on INS-1E cell apoptosis under different culture conditions, which might be largely attributed to different downstream mediators. Our results provided new and informative clues for better understanding of the role of AMPK in β-cell apoptosis.

  15. Novel 5-Substituted Pyrrolo[2,3-d]pyrimidines as Dual Inhibitors of Glycinamide Ribonucleotide Formyltransferase and 5-Aminoimidazole-4-carboxamide Ribonucleotide Formyltransferase and as Potential Antitumor Agents

    PubMed Central

    Wang, Yiqiang; Mitchell-Ryan, Shermaine; Raghavan, Sudhir; George, Christina; Orr, Steven; Hou, Zhanjun; Matherly, Larry H.; Gangjee, Aleem

    2016-01-01

    A new series of 5-substituted thiopheneyl pyrrolo[2,3-d]pyrimidines 6–11 with varying chain lengths (n = 1–6) were designed and synthesized as hybrids of the clinically used anticancer drug pemetrexed (PMX) and our 6-substituted thiopheneyl pyrrolo[2,3-d]pyrimidines 2c and 2d with folate receptor (FR) α and proton-coupled folate transporter (PCFT) uptake specificity over the reduced folate carrier (RFC) and inhibition of de novo purine nucleotide biosynthesis at glycinamide ribonucleotide formyltransferase (GARFTase). Compounds 6–11 inhibited KB human tumor cells in the order 9 = 10 > 8 > 7 > 6 = 11. Compounds 8–10 were variously transported by FRα, PCFT, and RFC and, unlike PMX, inhibited de novo purine nucleotide rather than thymidylate biosynthesis. The antiproliferative effects of 8 and 9 appeared to be due to their dual inhibitions of both GARFTase and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase. Our studies identify a unique structure–activity relationship for transport and dual target inhibition. PMID:25602637

  16. The enzymatic activity of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase is enhanced by NPM-ALK: new insights in ALK-mediated pathogenesis and the treatment of ALCL

    PubMed Central

    Boccalatte, Francesco E.; Voena, Claudia; Riganti, Chiara; Bosia, Amalia; D'Amico, Lucia; Riera, Ludovica; Cheng, Mangeng; Ruggeri, Bruce; Jensen, Ole N.; Goss, Valerie L.; Lee, Kimberly; Nardone, Julie; Rush, John; Polakiewicz, Roberto D.; Comb, Michael J.; Chiarle, Roberto

    2009-01-01

    Anaplastic large cell lymphoma represents a subset of neoplasms caused by translocations that juxtapose the anaplastic lymphoma kinase (ALK) to dimerization partners. The constitutive activation of ALK fusion proteins leads to cellular transformation through a complex signaling network. To elucidate the ALK pathways sustaining lymphomagenesis and tumor maintenance, we analyzed the tyrosine-kinase protein profiles of ALK-positive cell lines using 2 complementary proteomic-based approaches, taking advantage of a specific ALK RNA interference (RNAi) or cell-permeable inhibitors. A well-defined set of ALK-associated tyrosine phosphopeptides, including metabolic enzymes, kinases, ribosomal and cytoskeletal proteins, was identified. Validation studies confirmed that vasodilator-stimulated phosphoprotein and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC) associated with nucleophosmin (NPM)–ALK, and their phosphorylation required ALK activity. ATIC phosphorylation was documented in cell lines and primary tumors carrying ALK proteins and other tyrosine kinases, including TPR-Met and wild type c-Met. Functional analyses revealed that ALK-mediated ATIC phosphorylation enhanced its enzymatic activity, dampening the methotrexate-mediated transformylase activity inhibition. These findings demonstrate that proteomic approaches in well-controlled experimental settings allow the definition of informative proteomic profiles and the discovery of novel ALK downstream players that contribute to the maintenance of the neoplastic phenotype. Prediction of tumor responses to methotrexate may justify specific molecular-based chemotherapy. PMID:18845790

  17. AICAR stimulation metabolome widely mimics electrical contraction in isolated rat epitrochlearis muscle.

    PubMed

    Miyamoto, Licht; Egawa, Tatsuro; Oshima, Rieko; Kurogi, Eriko; Tomida, Yosuke; Tsuchiya, Koichiro; Hayashi, Tatsuya

    2013-12-15

    Physical exercise has potent therapeutic and preventive effects against metabolic disorders. A number of studies have suggested that 5'-AMP-activated protein kinase (AMPK) plays a pivotal role in regulating carbohydrate and lipid metabolism in contracting skeletal muscles, while several genetically manipulated animal models revealed the significance of AMPK-independent pathways. To elucidate significance of AMPK and AMPK-independent signals in contracting skeletal muscles, we conducted a metabolomic analysis that compared the metabolic effects of 5-aminoimidazole-4-carboxamide-1-β-D-ribonucleoside (AICAR) stimulation with the electrical contraction ex vivo in isolated rat epitrochlearis muscles, in which both α1- and α2-isoforms of AMPK and glucose uptake were equally activated. The metabolomic analysis using capillary electrophoresis time-of-flight mass spectrometry detected 184 peaks and successfully annotated 132 small molecules. AICAR stimulation exhibited high similarity to the electrical contraction in overall metabolites. Principal component analysis (PCA) demonstrated that the major principal component characterized common effects whereas the minor principal component distinguished the difference. PCA and a factor analysis suggested a substantial change in redox status as a result of AMPK activation. We also found a decrease in reduced glutathione levels in both AICAR-stimulated and contracting muscles. The muscle contraction-evoked influences related to the metabolism of amino acids, in particular, aspartate, alanine, or lysine, are supposed to be independent of AMPK activation. Our results substantiate the significance of AMPK activation in contracting skeletal muscles and provide novel evidence that AICAR stimulation closely mimics the metabolomic changes in the contracting skeletal muscles.

  18. AMPK-independent inhibition of human macrophage ER stress response by AICAR

    PubMed Central

    Boß, Marcel; Newbatt, Yvette; Gupta, Sahil; Collins, Ian; Brüne, Bernhard; Namgaladze, Dmitry

    2016-01-01

    Obesity-associated insulin resistance is driven by inflammatory processes in response to metabolic overload. Obesity-associated inflammation can be recapitulated in cell culture by exposing macrophages to saturated fatty acids (SFA), and endoplasmic reticulum (ER) stress responses essentially contribute to pro-inflammatory signalling. AMP-activated protein kinase (AMPK) is a central metabolic regulator with established anti-inflammatory actions. Whether pharmacological AMPK activation suppresses SFA-induced inflammation in a human system is unclear. In a setting of hypoxia-potentiated inflammation induced by SFA palmitate, we found that the AMP-mimetic AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) potently suppressed upregulation of ER stress marker mRNAs and pro-inflammatory cytokines. Furthermore, AICAR inhibited macrophage ER stress responses triggered by ER-stressors thapsigargin or tunicamycin. Surprisingly, AICAR acted independent of AMPK or AICAR conversion to 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl monophosphate (ZMP) while requiring intracellular uptake via the equilibrative nucleoside transporter (ENT) ENT1 or the concentrative nucleoside transporter (CNT) CNT3. AICAR did not affect the initiation of the ER stress response, but inhibited the expression of major ER stress transcriptional effectors. Furthermore, AICAR inhibited autophosphorylation of the ER stress sensor inositol-requiring enzyme 1α (IRE1α), while activating its endoribonuclease activity in vitro. Our results suggest that AMPK-independent inhibition of ER stress responses contributes to anti-inflammatory and anti-diabetic effects of AICAR. PMID:27562249

  19. AMPK-independent inhibition of human macrophage ER stress response by AICAR.

    PubMed

    Boß, Marcel; Newbatt, Yvette; Gupta, Sahil; Collins, Ian; Brüne, Bernhard; Namgaladze, Dmitry

    2016-01-01

    Obesity-associated insulin resistance is driven by inflammatory processes in response to metabolic overload. Obesity-associated inflammation can be recapitulated in cell culture by exposing macrophages to saturated fatty acids (SFA), and endoplasmic reticulum (ER) stress responses essentially contribute to pro-inflammatory signalling. AMP-activated protein kinase (AMPK) is a central metabolic regulator with established anti-inflammatory actions. Whether pharmacological AMPK activation suppresses SFA-induced inflammation in a human system is unclear. In a setting of hypoxia-potentiated inflammation induced by SFA palmitate, we found that the AMP-mimetic AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) potently suppressed upregulation of ER stress marker mRNAs and pro-inflammatory cytokines. Furthermore, AICAR inhibited macrophage ER stress responses triggered by ER-stressors thapsigargin or tunicamycin. Surprisingly, AICAR acted independent of AMPK or AICAR conversion to 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl monophosphate (ZMP) while requiring intracellular uptake via the equilibrative nucleoside transporter (ENT) ENT1 or the concentrative nucleoside transporter (CNT) CNT3. AICAR did not affect the initiation of the ER stress response, but inhibited the expression of major ER stress transcriptional effectors. Furthermore, AICAR inhibited autophosphorylation of the ER stress sensor inositol-requiring enzyme 1α (IRE1α), while activating its endoribonuclease activity in vitro. Our results suggest that AMPK-independent inhibition of ER stress responses contributes to anti-inflammatory and anti-diabetic effects of AICAR. PMID:27562249

  20. Methotrexate increases skeletal muscle GLUT4 expression and improves metabolic control in experimental diabetes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term administration of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) mimics the effects of endurance exercise by activating AMP kinase and by increasing skeletal muscle expression of GLUT4 glucose transporter. AICAR is an intermediate in the purine de novo synthesis, and its tissue conc...

  1. AICAR induces AMPK-independent programmed necrosis in prostate cancer cells.

    PubMed

    Guo, Feng; Liu, Shuang-Qing; Gao, Xing-Hua; Zhang, Long-Yang

    2016-05-27

    AICAR (5-Aminoimidazole-4-carboxamide riboside or acadesine) is an AMP-activated protein kinase (AMPK) agonist, which induces cytotoxic effect to several cancer cells. Its potential activity in prostate cancer cells and the underlying signaling mechanisms have not been extensively studied. Here, we showed that AICAR primarily induced programmed necrosis, but not apoptosis, in prostate cancer cells (LNCaP, PC-3 and PC-82 lines). AICAR's cytotoxicity to prostate cancer cells was largely attenuated by the necrosis inhibitor necrostatin-1. Mitochondrial protein cyclophilin-D (CYPD) is required for AICAR-induced programmed necrosis. CYPD inhibitors (cyclosporin A and sanglifehrin A) as well as CYPD shRNAs dramatically attenuated AICAR-induced prostate cancer cell necrosis and cytotoxicity. Notably, AICAR-induced cell necrosis appeared independent of AMPK, yet requiring reactive oxygen species (ROS) production. ROS scavengers (N-acetylcysteine and MnTBAP), but not AMPKα shRNAs, largely inhibited prostate cancer cell necrosis and cytotoxicity by AICAR. In summary, the results of the present study demonstrate mechanistic evidences that AMPK-independent programmed necrosis contributes to AICAR's cytotoxicity in prostate cancer cells. PMID:27103440

  2. Aminoimidazole carboxamide ribonucleotide (AICAR) inhibits the growth of retinoblastoma in vivo by decreasing angiogenesis and inducing apoptosis.

    PubMed

    Theodoropoulou, Sofia; Brodowska, Katarzyna; Kayama, Maki; Morizane, Yuki; Miller, Joan W; Gragoudas, Evangelos S; Vavvas, Demetrios G

    2013-01-01

    5-Aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR), an analog of AMP is widely used as an activator of AMP-kinase (AMPK), a protein that regulates the responses of the cell to energy change. Recently, we showed that AICAR-induced AMPK activation inhibits the growth of retinoblastoma cells in vitro by decreasing cyclins and by inducing apoptosis and S-phase arrest. In this study, we investigated the effects of AMPK activator AICAR on the growth of retinoblastoma in vivo. Intraperitoneal injection of AICAR resulted in 48% growth inhibition of Y79 retinoblastoma cell tumors in mice. Tumors isolated from mice treated with AICAR had decreased expression of Ki67 and increased apoptotic cells (TUNEL positive) compared with the control. In addition, AICAR treatment suppressed significantly tumor vessel density and macrophage infiltration. We also showed that AICAR administration resulted in AMPK activation and mTOR pathway inhibition. Paradoxically observed down-regulation of p21, which indicates that p21 may have a novel function of an oncogene in retinoblastoma tumor. Our results indicate that AICAR treatment inhibited the growth of retinoblastoma tumor in vivo via AMPK/mTORC1 pathway and by apoptogenic, anti-proliferative, anti-angiogenesis mechanism. AICAR is a promising novel non-chemotherapeutic drug that may be effective as an adjuvant in treating Retinoblastoma. PMID:23300996

  3. Retinoblastoma cells are inhibited by aminoimidazole carboxamide ribonucleotide (AICAR) partially through activation of AMP-dependent kinase.

    PubMed

    Theodoropoulou, Sofia; Kolovou, Paraskevi E; Morizane, Yuki; Kayama, Maki; Nicolaou, Fotini; Miller, Joan W; Gragoudas, Evangelos; Ksander, Bruce R; Vavvas, Demetrios G

    2010-08-01

    5-Aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR), an analog of AMP, is widely used as an activator of AMP-kinase (AMPK), a protein that regulates the responses of the cell to energy change. We studied the effects of AICAR on the growth of retinoblastoma cell lines (Y79, WERI, and RB143). AICAR inhibited Rb cell growth, induced apoptosis and S-phase cell cycle arrest, and led to activation of AMPK. These effects were abolished by treatment with dypiridamole, an inhibitor that blocks entrance of AICAR into cells. Treatment with the adenosine kinase inhibitor 5-iodotubericidin to inhibit the conversion of AICAR to ZMP (the direct activator of AMPK) reversed most of the growth-inhibiting effects of AICAR, indicating that some of the antiproliferative effects of AICAR are mediated through AMPK activation. In addition, AICAR treatment was associated with inhibition of the mammalian target of rapamycin pathway, decreased phosphorylation of ribosomal protein-S6 and 4E-BP1, down-regulation of cyclins A and E, and decreased expression of p21. Our results indicate that AICAR-induced activation of AMPK inhibits retinoblastoma cell growth. This is one of the first descriptions of a nonchemotherapeutic drug with low toxicity that may be effective in treating Rb patients. PMID:20371623

  4. Metabolomics Analysis Reveals that AICAR Affects Glycerolipid, Ceramide and Nucleotide Synthesis Pathways in INS-1 Cells.

    PubMed

    ElAzzouny, Mahmoud A; Evans, Charles R; Burant, Charles F; Kennedy, Robert T

    2015-01-01

    AMPK regulates many metabolic pathways including fatty acid and glucose metabolism, both of which are closely associated with insulin secretion in pancreatic β-cells. Insulin secretion is regulated by metabolic coupling factors such as ATP/ADP ratio and other metabolites generated by the metabolism of nutrients such as glucose, fatty acid and amino acids. However, the connection between AMPK activation and insulin secretion in β-cells has not yet been fully elucidated at a metabolic level. To study the effect of AMPK activation on glucose stimulated insulin secretion, we applied the pharmacological activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) to an INS-1 (832/13) β-cell line. We measured the change in 66 metabolites in the presence or absence of AICAR using different stable isotopic labeled nutrients to probe selected pathways. AMPK activation by AICAR increased basal insulin secretion and reduced the glucose stimulation index. Although ATP/ADP ratios were not strongly affected by AICAR, several other metabolites and pathways important for insulin secretion were affected by AICAR treatment including long-chain CoAs, malonyl-CoA, 3-hydroxy-3 methylglutaryl CoA, diacylglycerol, and farnesyl pyrophosphate. Tracer studies using 13C-glucose revealed lower glucose flux in the purine and pyrimidine pathway and in the glycerolipid synthesis pathway. Untargeted metabolomics revealed reduction in ceramides caused by AICAR that may explain the beneficial role of AMPK in protecting β-cells from lipotoxicity. Taken together, the results provide an overall picture of the metabolic changes associated with AICAR treatment and how it modulates insulin secretion and β-cell survival.

  5. Exercise-mimetic AICAR transiently benefits brain function.

    PubMed

    Guerrieri, Davide; van Praag, Henriette

    2015-07-30

    Exercise enhances learning and memory in animals and humans. The role of peripheral factors that may trigger the beneficial effects of running on brain function has been sparsely examined. In particular, it is unknown whether AMP-kinase (AMPK) activation in muscle can predict enhancement of brain plasticity. Here we compare the effects of running and administration of AMPK agonist 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR, 500 mg/kg), for 3, 7 or 14 days in one-month-old male C57BL/6J mice, on muscle AMPK signaling. At the time-points where we observed equivalent running- and AICAR-induced muscle pAMPK levels (7 and 14 days), cell proliferation, synaptic plasticity and gene expression, as well as markers of oxidative stress and inflammation in the dentate gyrus (DG) of the hippocampus and lateral entorhinal cortex (LEC) were evaluated. At the 7-day time-point, both regimens increased new DG cell number and brain-derived neurotrophic factor (BDNF) protein levels. Furthermore, microarray analysis of DG and LEC tissue showed a remarkable overlap between running and AICAR in the regulation of neuronal, mitochondrial and metabolism related gene classes. Interestingly, while similar outcomes for both treatments were stable over time in muscle, in the brain an inversion occurred at fourteen days. The compound no longer increased DG cell proliferation or neurotrophin levels, and upregulated expression of apoptotic genes and inflammatory cytokine interleukin-1β. Thus, an exercise mimetic that produces changes in muscle consistent with those of exercise does not have the same sustainable positive effects on the brain, indicating that only running consistently benefits brain function. PMID:26286955

  6. Exercise-mimetic AICAR transiently benefits brain function.

    PubMed

    Guerrieri, Davide; van Praag, Henriette

    2015-07-30

    Exercise enhances learning and memory in animals and humans. The role of peripheral factors that may trigger the beneficial effects of running on brain function has been sparsely examined. In particular, it is unknown whether AMP-kinase (AMPK) activation in muscle can predict enhancement of brain plasticity. Here we compare the effects of running and administration of AMPK agonist 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR, 500 mg/kg), for 3, 7 or 14 days in one-month-old male C57BL/6J mice, on muscle AMPK signaling. At the time-points where we observed equivalent running- and AICAR-induced muscle pAMPK levels (7 and 14 days), cell proliferation, synaptic plasticity and gene expression, as well as markers of oxidative stress and inflammation in the dentate gyrus (DG) of the hippocampus and lateral entorhinal cortex (LEC) were evaluated. At the 7-day time-point, both regimens increased new DG cell number and brain-derived neurotrophic factor (BDNF) protein levels. Furthermore, microarray analysis of DG and LEC tissue showed a remarkable overlap between running and AICAR in the regulation of neuronal, mitochondrial and metabolism related gene classes. Interestingly, while similar outcomes for both treatments were stable over time in muscle, in the brain an inversion occurred at fourteen days. The compound no longer increased DG cell proliferation or neurotrophin levels, and upregulated expression of apoptotic genes and inflammatory cytokine interleukin-1β. Thus, an exercise mimetic that produces changes in muscle consistent with those of exercise does not have the same sustainable positive effects on the brain, indicating that only running consistently benefits brain function.

  7. Depression-like behaviors in mice subjected to co-treatment of high-fat diet and corticosterone are ameliorated by AICAR and exercise.

    PubMed

    Liu, Weina; Zhai, Xiaofeng; Li, Haipeng; Ji, Liu

    2014-03-01

    Major depressive disorder (MDD) and type II diabetes mellitus (T2DM) are highly co-morbid, and there may be a bi-directional connection between the two. Herein, we have described a mouse model of a depression-like and insulin-resistant (DIR) state induced by the co-treatment of high-fat diet (HFD) and corticosterone (CORT). 5-Aminoimidazole-4-carboxamide-1-β-d- ribofuranoside (AICAR), a pharmacological activator of AMP-activated protein kinase (AMPK), was originally used to improve insulin resistance (IR). Interestingly, our results show a clear potential for AICAR as a putative antidepressant with a chronic action on the DIR mice. In contrast to the traditional antidepressants, AICAR as a promising antidepressant avoids reducing insulin actions of skeletal muscle in the context of long-term HFD. Exercise also produced antidepressant effects. Our data suggest that the effects of AICAR and exercise on DIR may further increase our understanding on the link between depression and diabetes.

  8. AMP kinase activation with AICAR further increases fatty acid oxidation and blunts triacylglycerol hydrolysis in contracting rat soleus muscle.

    PubMed

    Smith, Angela C; Bruce, Clinton R; Dyck, David J

    2005-06-01

    Muscle contraction increases glucose uptake and fatty acid (FA) metabolism in isolated rat skeletal muscle, due at least in part to an increase in AMP-activated kinase activity (AMPK). However, the extent to which AMPK plays a role in the regulation of substrate utilization during contraction is not fully understood. We examined the acute effects of 5-aminoimidazole-4-carboxamide riboside (AICAR; 2 mm), a pharmacological activator of AMPK, on FA metabolism and glucose oxidation during high intensity tetanic contraction in isolated rat soleus muscle strips. Muscle strips were exposed to two different FA concentrations (low fatty acid, LFA, 0.2 mm; high fatty acid, HFA, 1 mm) to examine the role that FA availability may play in both exogenous and endogenous FA metabolism with contraction and AICAR. Synergistic increases in AMPK alpha2 activity (+45%; P<0.05) were observed after 30 min of contraction with AICAR, which further increased exogenous FA oxidation (LFA: +71%, P<0.05; HFA: +46%, P<0.05) regardless of FA availability. While there were no changes in triacylglycerol (TAG) esterification, AICAR did increase the ratio of FA partitioned to oxidation relative to TAG esterification (LFA: +65%, P<0.05). AICAR significantly blunted endogenous TAG hydrolysis (LFA: -294%, P<0.001; HFA: -117%, P<0.05), but had no effect on endogenous oxidation rates, suggesting a better matching between TAG hydrolysis and subsequent oxidative needs of the muscle. There was no effect of AICAR on the already elevated rates of glucose oxidation during contraction. These results suggest that FA metabolism is very sensitive to AMPK alpha2 stimulation during contraction.

  9. Screening for Active Small Molecules in Mitochondrial Complex I Deficient Patient's Fibroblasts, Reveals AICAR as the Most Beneficial Compound

    PubMed Central

    Weissman, Sarah; Link, Gabriela; Wikstrom, Jakob D.; Saada, Ann

    2011-01-01

    Congenital deficiency of the mitochondrial respiratory chain complex I (CI) is a common defect of oxidative phosphorylation (OXPHOS). Despite major advances in the biochemical and molecular diagnostics and the deciphering of CI structure, function assembly and pathomechanism, there is currently no satisfactory cure for patients with mitochondrial complex I defects. Small molecules provide one feasible therapeutic option, however their use has not been systematically evaluated using a standardized experimental system. In order to evaluate potentially therapeutic compounds, we set up a relatively simple system measuring different parameters using only a small amount of patient's fibroblasts, in glucose free medium, where growth is highly OXPOS dependent. Ten different compounds were screened using fibroblasts derived from seven CI patients, harboring different mutations. 5-Aminoimidazole-4-carboxamide ribotide (AICAR) was found to be the most beneficial compound improving growth and ATP content while decreasing ROS production. AICAR also increased mitochondrial biogenesis without altering mitochondrial membrane potential (Δψ). Fluorescence microscopy data supported increased mitochondrial biogenesis and activation of the AMP activated protein kinase (AMPK). Other compounds such as; bezafibrate and oltipraz were rated as favorable while polyphenolic phytochemicals (resverastrol, grape seed extract, genistein and epigallocatechin gallate) were found not significant or detrimental. Although the results have to be verified by more thorough investigation of additional OXPHOS parameters, preliminary rapid screening of potential therapeutic compounds in individual patient's fibroblasts could direct and advance personalized medical treatment. PMID:22046392

  10. To eat or not to eat: the effect of AICAR on food intake regulation in yellow-bellied marmots (Marmota flaviventris).

    PubMed

    Florant, Gregory L; Fenn, Ashley M; Healy, Jessica E; Wilkerson, Gregory K; Handa, Robert J

    2010-06-15

    Mammals that hibernate (hibernators) exhibit a circannual rhythm of food intake and body mass. In the laboratory during the winter hibernation period, many hibernators enter a series of multi-day torpor bouts, dropping their body temperature to near ambient, and cease to feed even if food is present in their cage. The mechanism(s) that regulates food intake in hibernators is unclear. Recently, AMP-activated protein kinase (AMPK) has been shown to play a key role in the central regulation of food intake in mammals. We hypothesized that infusing an AMPK activator, 5-aminoimidazole-4-carboxamide 1 B-D-ribofuranoside (AICAR), intracerebroventricularly (ICV) into the third ventricle of the hypothalamus would stimulate yellow-bellied marmots (Marmota flaviventris) to feed during their hibernation season. Infusion of AICAR ICV into marmots at an ambient temperature of 22 degrees C caused a significant (P<0.05) increase in food intake. In addition, animals stimulated to feed did not enter torpor during the infusion period. Marmots ICV infused with saline did not increase food intake and these animals continued to undergo torpor at an ambient temperature of 22 degrees C. Our results suggest that AICAR stimulated the food intake pathway, presumably by activating AMPK. These results support the hypothesis that AMPK may be involved in regulating food intake in hibernators and that there may be common neural pathways involved in regulating feeding and eliciting torpor.

  11. Inhibitory crosstalk between ERK and AMPK in the growth and proliferation of cardiac fibroblasts

    SciTech Connect

    Du Jianhai; Guan Tongju; Zhang Hui; Xia Yi; Liu Fei; Zhang Youyi

    2008-04-04

    Extracellular signal-regulated kinase (ERK) is one of the key protein kinases that regulate the growth and proliferation in cardiac fibroblasts (CFs). As an energy sensor of cellular metabolism, AMP-activated protein kinase (AMPK) is found recently to be involved in myocardial remodeling. In this study, we investigated the crosstalk between ERK and AMPK in the growth and proliferation of CFs. In neonatal rat cardiac fibroblasts (NRCFs), we found that serum significantly inhibited basal AMPK phosphorylation between 10 min and 24 h and also partially inhibited AMPK phosphorylation by AMPK activator, 5-aminoimidazole-4-carboxamide-ribonucleoside (AICAR). Furthermore, ERK inhibitor could greatly reverse the inhibition of AMPK by serum. Conversely, activation of AMPK by AICAR also showed a significant inhibition of basal and serum-induced ERK phosphorylation but it showed a delayed and steadfast inhibition which appeared after 60 min and lasted until 12 h. Moreover, inhibition of ERK could repress the activation of p70S6K, an important kinase in cardiac proliferation, and AICAR could also inhibit p70S6K phosphorylation. In addition, under both serum and serum-free medium, AICAR significantly inhibited the DNA synthesis and cell numbers, and reduced cells at S phase. In conclusion, AMPK activation with AICAR inhibited growth and proliferation in cardiac fibroblasts, which involved inhibitory interactions between ERK and AMPK. This is the first report that AMPK could be a target of ERK in growth factors-induced proliferation, which may give a new mechanism that growth factors utilize in their promotion of proliferation in cardiac fibroblasts.

  12. Small Molecule Inhibitor of AICAR Transformylase Homodimerization

    PubMed Central

    Spurr, Ian B.; Birts, Charles N.; Cuda, Francesco; Benkovic, Stephen J; Blaydes, Jeremy P.; Tavassoli, Ali

    2012-01-01

    Aminoimidazole carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC) is a bifunctional homodimeric enzyme that catalyses the last two steps of de novo purine biosynthesis. Homodimerization of ATIC, a protein-protein interaction with an interface of over 5000 Å2, is required for its aminoimidazole carboxamide ribonucleotide (AICAR) transformylase activity, with the active sites forming at the interface of the interacting proteins. Here, we report the development of a small-molecule inhibitor of AICAR transformylase that functions by preventing the homodimerization of ATIC. The compound is derived from a previously reported cyclic hexa-peptide inhibitor of AICAR transformylase (with a Ki of 17 μM), identified by high-throughput screening. The active motif of the cyclic peptide is identified as an arginine-tyrosine dipeptide, a capped analogue of which inhibits AICAR transformylase with a Ki of 84 μM. A library of non-natural analogues of this dipeptide was designed, synthesized, and assayed. The most potent compound inhibits AICAR transformylase with a Ki of 685 nM, a 25-fold improvement in activity from the parent cyclic peptide. The potential for this AICAR transformylase inhibitor in cancer therapy is assessed by studying its effect on the proliferation of a model breast cancer cell line. Using a non-radioactive proliferation assay and live cell imaging, a dose-dependent reduction in cell numbers and cell division rates was observed in cells treated with our ATIC dimerization inhibitor. PMID:22764122

  13. Antiaging Gene Klotho Deficiency Promoted High-Fat Diet-Induced Arterial Stiffening via Inactivation of AMP-Activated Protein Kinase.

    PubMed

    Lin, Yi; Chen, Jianglei; Sun, Zhongjie

    2016-03-01

    Klotho was originally discovered as an aging-suppressor gene. The objective of this study is to investigate whether klotho gene deficiency affects high-fat diet (HFD)-induced arterial stiffening. Heterozygous Klotho-deficient (KL(+/-)) mice and WT littermates were fed on HFD or normal diet. HFD increased pulse wave velocity within 5 weeks in KL(+/-) mice but not in wild-type mice, indicating that klotho deficiency accelerates and exacerbates HFD-induced arterial stiffening. A greater increase in blood pressure was found in KL(+/-) mice fed on HFD. Protein expressions of phosphorylated AMP-activated protein kinase-α (AMPKα), phosphorylated endothelial nitric oxide synthase (eNOS), and manganese-dependent superoxide dismutase (Mn-SOD) were decreased, whereas protein expressions of collagen I, transforming growth factor-β1, and Runx2 were increased in aortas of KL(+/-) mice fed on HFD. Interestingly, daily injections of an AMPKα activator, 5-aminoimidazole-4-carboxamide-3-ribonucleoside, abolished the increases in pulse wave velocity, blood pressure, and blood glucose in KL(+/-) mice fed on HFD. Treatment with 5-aminoimidazole-4-carboxamide-3-ribonucleoside for 2 weeks not only abolished the downregulation of phosphorylated AMPKα, phosphorylated eNOS, and Mn-SOD levels but also attenuated the increased levels of collagen I, transforming growth factor-β1, Runx2, superoxide, elastic lamellae breaks, and calcification in aortas of KL(+/-) mice fed on HFD. In cultured mouse aortic smooth muscle cells, cholesterol plus KL-deficient serum decreased phosphorylation levels of AMPKα and LKB1 (an important upstream regulator of AMPKα activity) but increased collagen I synthesis, which can be eliminated by activation of AMPKα by 5-aminoimidazole-4-carboxamide-3-ribonucleoside. In conclusions, Klotho deficiency promoted HFD-induced arterial stiffening and hypertension via downregulation of AMPKα activity. PMID:26781278

  14. Allosteric Inhibitors at the Heterodimer Interface of Imidazole Glycerol Phosphate Synthase

    NASA Astrophysics Data System (ADS)

    Snoeberger, Ning-Shiuan Nicole

    Imidazole glycerol phosphate synthase (IGPS) from Thermotoga maritima is a heterodimeric enzyme composed of the HisH and HisF proteins. It is attractive as a pathological target since it is absent in mammals but found in plant and opportunistic human pathogens. IGPS was experimentally determined to be a V-type allosteric enzyme that is involved in an essential biosynthetic pathway of microorganisms. The enzyme catalyzes the hydrolysis of glutamine to form NH3 in the HisH protein, followed by cyclization of NH3 with N'-[(5'-phosphoribulosyl)imino]-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) in the HisF subunit, forming imidazole glycerol phosphate (IGP) and 5-aminoimidazole-4-carboxamide ribotide (AICAR) that enter the histidine and purine biosynthetic pathways. Allosteric motions induced upon the binding of the effector PRFAR to HisF propagate through the non-covalent HisH/HisF interface and synchronize catalytic activity at the two distant active sites. However, the nature of the allosteric pathway and the feasibility of manipulating signal transduction by using allosteric drug-like molecules remain to be established. Molecular docking studies of commercial drugs at the HisH/HisF interface were used to identify stable candidates with a potential allosteric effect on the reaction mechanism. Molecular dynamic simulations and calculations of NMR chemical shifts were combined to elucidate the allosteric pathway of IGPS.

  15. AICAR-Induced Activation of AMPK Inhibits TSH/SREBP-2/HMGCR Pathway in Liver

    PubMed Central

    Liu, Shudong; Jing, Fei; Yu, Chunxiao; Gao, Ling; Qin, Yejun; Zhao, Jiajun

    2015-01-01

    Our previous study found that thyroid-stimulating hormone promoted sterol regulatory element-binding protein-2 (SREBP-2) expression and suppressed AMP-activated protein kinase (AMPK) activity in the liver, but it was unclear whether there was a direct link between TSH, AMPK and SREBP-2. Here, we demonstrate that the 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR)-induced activation of AMPK directly inhibited the expression of SREBP-2 and its target genes HMGCR and HMGCS, which are key enzymes in cholesterol biosynthesis, and suppressed the TSH-stimulated up-regulation of SREBP-2 in HepG2 cells; similar results were obtained in TSH receptor knockout mice. Furthermore, AMPK, an evolutionally conserved serine/threonine kinase, phosphorylated threonine residues in the precursor and nuclear forms of SREBP-2, and TSH interacted with AMPK to influence SREBP-2 phosphorylation. These findings may represent a molecular mechanism by which AMPK ameliorates the hepatic steatosis and hypercholesterolemia associated with high TSH levels in patients with subclinical hypothyroidism (SCH). PMID:25933205

  16. Maintaining Moderate Platelet Aggregation and Improving Metabolism of Endothelial Progenitor Cells Increase the Patency Rate of Tissue-Engineered Blood Vessels.

    PubMed

    Wu, Yangxiao; Li, Li; Chen, Wen; Zeng, Wen; Zeng, Lingqin; Wen, Can; Zhu, Chuhong

    2015-07-01

    Small-diameter tissue-engineered blood vessels (TEBVs) have been associated with low, long-term patency rates primarily because of acute thrombosis in early stages and an inability to achieve early endothelialization. Platelets and endothelial progenitor cells (EPCs) play a key role in these processes. A nano delayed-release 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR)-bound TEBV was implanted in rat carotid arteries for 3 months. AICAR-bound TEBVs had a high patency rate compared with control TEBVs after 3 months. We found that AICAR maintained moderate platelet aggregation in vivo. In vitro data indicated that AICAR inhibits the release of 5-hydroxytryptamine and thromboxane A2 in activating platelets to reduce platelet aggregation. Then, we confirmed that AICAR strengthens the EPC energy state, which results in earlier endothelialization. The homing, migration, and paracrine function of EPCs were enhanced by AICAR in vitro. Besides, AICAR can contribute to the migration of endothelial cells near the anastomosis. The cellularization of TEBVs at different time points was observed too. In conclusion, our study suggests that the application of nanodelivery material containing AICAR can effectively improve small-diameter TEBVs by maintaining moderate platelet aggregation and improving metabolism of EPCs.

  17. LKB1 promotes cell survival by modulating TIF-IA-mediated pre-ribosomal RNA synthesis under uridine downregulated conditions.

    PubMed

    Liu, Fakeng; Jin, Rui; Liu, Xiuju; Huang, Henry; Wilkinson, Scott C; Zhong, Diansheng; Khuri, Fadlo R; Fu, Haian; Marcus, Adam; He, Yulong; Zhou, Wei

    2016-01-19

    We analyzed the mechanism underlying 5-aminoimidazole-4-carboxamide riboside (AICAR) mediated apoptosis in LKB1-null non-small cell lung cancer (NSCLC) cells. Metabolic profile analysis revealed depletion of the intracellular pyrimidine pool after AICAR treatment, but uridine was the only nucleotide precursor capable of rescuing this apoptosis, suggesting the involvement of RNA metabolism. Because half of RNA transcription in cancer is for pre-ribosomal RNA (rRNA) synthesis, which is suppressed by over 90% after AICAR treatment, we evaluated the role of TIF-IA-mediated rRNA synthesis. While the depletion of TIF-IA by RNAi alone promoted apoptosis in LKB1-null cells, the overexpression of a wild-type or a S636A TIF-IA mutant, but not a S636D mutant, attenuated AICAR-induced apoptosis. In LKB1-null H157 cells, pre-rRNA synthesis was not suppressed by AICAR when wild-type LKB1 was present, and cellular fractionation analysis indicated that TIF-IA quickly accumulated in the nucleus in the presence of a wild-type LKB1 but not a kinase-dead mutant. Furthermore, ectopic expression of LKB1 was capable of attenuating AICAR-induced death in AMPK-null cells. Because LKB1 promotes cell survival by modulating TIF-IA-mediated pre-rRNA synthesis, this discovery suggested that targeted depletion of uridine related metabolites may be exploited in the clinic to eliminate LKB1-null cancer cells.

  18. Regulation of a ribonucleoside reductase during the early generative phase in Acetabularia.

    PubMed

    de Groot, E J; Schweiger, H G

    1985-02-01

    The activity of a ribonucleoside reductase was estimated during the life cycle of Acetabularia. During the early generative phase the enzyme activity was dramatically increased. Regulation of the ribonucleoside reductase was observed even in the absence of the nucleus. The increase in activity was inhibited by chloramphenicol but not by cycloheximide. These results indicate that the enzyme is translated on 70 S ribosomes.

  19. Synthesis of 1H-indole-2,3-dione-3-thiosemicarbazone ribonucleosides as antibacterial agents.

    PubMed

    Kassab, Shaymaa E; Hegazy, Gehan H; Eid, Nahed M; Amin, Kamelia M; El-Gendy, Adel A

    2010-01-01

    A new isatin ribonucleoside (3) was synthesized in a good yield by trimethylsilyl trifluoromethanesulfonate (TMSOTf) catalyzed coupling reaction between the silylated nitrogenated base of 1H-Indole-2,3-dione (1) and 1,2,3,5-tetra-O-acetyl-beta-D-ribfuranose (2). Thiosemicarbazides 4a-e were utilized by the prepared ribonucleoside (3) to give new series of 1H-indole-2,3-dione-3-thiosemicarbazone ribonucleosides 5a-e. All compounds tested as antibacterial agents showed slight inhibitory activity against the selected bacterial strains.

  20. AMPK-dependent and independent effects of AICAR and compound C on T-cell responses

    PubMed Central

    Rao, Enyu; Zhang, Yuwen; Li, Qiang; Hao, Jiaqing; Egilmez, Nejat K.; Suttles, Jill; Li, Bing

    2016-01-01

    As a master metabolic sensor, AMP-activated protein kinase (AMPK) is involved in different fundamental cellular processes. Regulation of AMPK activity either by agonists (e.g., AICAR) or by antagonists (e.g., Compound C) has been widely employed to study the physiological functions of AMPK. However, mounting evidence indicates AMPK-independent effects for these chemicals and how they regulate immune cell functions remains largely unknown. Herein, using T cells from AMPK conditional knockout mice and their wild type littermates, we demonstrate that AICAR and Compound C can, indeed, activate or inhibit AMPK activity in T cells, respectively. Specifically, AICAR inhibits, but Compound C promotes, Ca2+-induced T cell death in an AMPK-dependent manner. In contrast, our data also demonstrate that AICAR and Compound C inhibit T cell activation and cytokine production in an AMPK-independent manner. Moreover, we find that the AMPK-independent activity of AICAR and Compound Cis mediated via the mTOR signaling pathway in activated T cells. Our results not only reveal the critical role of AMPK in regulating T cell survival and function, but also demonstrate AMPK-dependent and independent rolesof AICAR/Compound C in regulating T cell responses, thus suggesting a context-dependent effect of these “AMPK regulators”. PMID:27177226

  1. Activation of AMP kinase α1 subunit induces aortic vasorelaxation in mice

    PubMed Central

    Goirand, Françoise; Solar, Myriam; Athea, Yoni; Viollet, Benoit; Mateo, Philippe; Fortin, Dominique; Leclerc, Jocelyne; Hoerter, Jacqueline; Ventura-Clapier, Renée; Garnier, Anne

    2007-01-01

    Vasodilatation is a vital mechanism of systemic blood flow regulation that occurs during periods of increased energy demand. The AMP-dependent protein kinase (AMPK) is a serine/threonine kinase that is activated by conditions that increase the AMP-to-ATP ratio, such as exercise and metabolic stress. We hypothesized that AMPK could trigger vasodilatation and participate in blood flow regulation. Rings of thoracic aorta were isolated from C57Bl6 mice and mice deficient in the AMPK catalytic α1 (AMPKα1−/−) or α2 (AMPKα2−/−) subunit and their littermate controls, and mounted in an organ bath. Aortas were preconstricted with phenylephrine (1 μm) and activation of AMPK was induced by addition of increasing concentrations of 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR). AICAR (0.1–3 mm) dose-dependently induced relaxation of precontracted C57BL6, AMPKα1+/+ and α2+/+ aorta (P < 0.001, n = 5–7 per group). This AICAR induced vasorelaxation was not inhibited by the addition of adenosine receptor antagonists. Moreover, when aortic rings were freed of endothelium by gentle rubbing, AICAR still induced aortic ring relaxation, suggesting a direct effect of AICAR on smooth muscle cells. When aortic rings were pretreated with l-NMMA (30 μm) to inhibit nitric oxide synthase activity, AICAR still induced relaxation. Western blot analysis of C57Bl6 mice denuded aorta showed that AMPK was phosphorylated after incubation with AICAR and that AMPKα1 was the main catalytic subunit expressed. Finally, AICAR-induced relaxation of aortic rings was completely abolished in AMPKα1−/− but not AMPKα2−/− mice. Taken together, the results show that activation of AMPKα1 but not AMPKα2 is able to induce aortic relaxation in mice, in an endothelium- and eNOS-independent manner. PMID:17446219

  2. Mechanistic studies of ribonucleoside triphosphate reductase from Lactobacillus leichmannii

    SciTech Connect

    Harris, G.M.

    1984-01-01

    The mechanism of action of the adenosylcobalamin (AdoCbl)-dependent ribonucleoside triphosphate reductase (RTPR) was investigated using isotope effect and substrate specificity studies. These experiments were conducted on RTPR purified by a new method from Lactobacillus leichmannii. Isotope effect studies using (3{prime}-{sup 3}H)UTP and (3{prime}-{sup 3}H)ATP demonstrated that the 3{prime} C-H bond of the nucleotide is cleaved in order to cleave the 2{prime} C-OH bond. AdoCbl does not act as a direct H abstractor from the 3{prime} position of the substrate, but instead is thought to act as a radical chain initiator to generate an amino acid radical on the enzyme. Further support for this enzyme mediated cleavage of the 3{prime} C-H bond of the nucleotide and the novel role of AdoCbl came from studies using (3{prime}{sup 3}H)2{prime}-chloro-2{prime}-deoxyuridine 5{prime}-triphosphate ((3{prime}-{sup 3}H)CIUTP). Evidence is presented that during the course of this reaction, the {sup 3}H abstracted from the 3{prime} position of (3{prime}-{sup 3}H)CIUTP was either exchanged with the solvent or returned to the {beta} face of the 2{prime} position to produce (2{prime}{sup 3}H)-2{prime}-deoxy-3{prime}-ketoUTP. This result demonstrates that RTPR is capable of catalyzing a rearrangement reaction. The significance of the RTPR-catalyzed rearrangement with respect to the AdoCbl-dependent enzymes which catalyze rearrangements is discussed.

  3. Activation of 5' adenosine monophosphate-activated protein kinase blocks cumulus cell expansion through inhibition of protein synthesis during in vitro maturation in Swine.

    PubMed

    Santiquet, Nicolas; Sasseville, Maxime; Laforest, Martin; Guillemette, Christine; Gilchrist, Robert B; Richard, François J

    2014-08-01

    The serine/threonine kinase 5' adenosine monophosphate-activated protein kinase (AMPK), a heterotrimeric protein known as a metabolic switch, is involved in oocyte nuclear maturation in mice, cattle, and swine. The present study analyzed AMPK activation in cumulus cell expansion during in vitro maturation (IVM) of porcine cumulus-oocyte complexes (COC). 5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) is a well-known activator of AMPK. It inhibited oocyte meiotic resumption in COC. Moreover, cumulus cell expansion did not occur in the presence of AICAR, demonstrating its marked impact on cumulus cells. Activation of AMPK was supported by AICAR-mediated phosphorylation of alpha AMPK subunits. Furthermore, the presence of AICAR increased glucose uptake, a classical response to activation of this metabolic switch in response to depleted cellular energy levels. Neither nuclear maturation nor cumulus expansion was reversed by glucosamine, an alternative substrate in hyaluronic acid synthesis, through the hexosamine biosynthetic pathway, which ruled out possible depletion of substrates. Both increased gap junction communication and phosphodiesterase activity in COC are dependent on protein synthesis during the initial hours of IVM; however, both were inhibited in the presence of AICAR, which supports the finding that activation of AMPK by AICAR mediated inhibition of protein synthesis. Moreover, this protein synthesis inhibition was equivalent to that of the well-known protein synthesis inhibitor cycloheximide, as observed on cumulus expansion and protein concentration. Finally, the phosphorylation level of selected kinases was investigated. The pattern of raptor phosphorylation is supportive of activation of AMPK-mediated inhibition of protein synthesis. In conclusion, AICAR-mediated AMPK activation in porcine COC inhibited cumulus cell expansion and protein synthesis. These results bring new considerations to the importance of this kinase in ovarian

  4. LKB1 promotes cell survival by modulating TIF-IA-mediated pre-ribosomal RNA synthesis under uridine downregulated conditions

    PubMed Central

    Liu, Xiuju; Huang, Henry; Wilkinson, Scott C.; Zhong, Diansheng; Khuri, Fadlo R.; Fu, Haian; Marcus, Adam; He, Yulong; Zhou, Wei

    2016-01-01

    We analyzed the mechanism underlying 5-aminoimidazole-4-carboxamide riboside (AICAR) mediated apoptosis in LKB1-null non-small cell lung cancer (NSCLC) cells. Metabolic profile analysis revealed depletion of the intracellular pyrimidine pool after AICAR treatment, but uridine was the only nucleotide precursor capable of rescuing this apoptosis, suggesting the involvement of RNA metabolism. Because half of RNA transcription in cancer is for pre-ribosomal RNA (rRNA) synthesis, which is suppressed by over 90% after AICAR treatment, we evaluated the role of TIF-IA-mediated rRNA synthesis. While the depletion of TIF-IA by RNAi alone promoted apoptosis in LKB1-null cells, the overexpression of a wild-type or a S636A TIF-IA mutant, but not a S636D mutant, attenuated AICAR-induced apoptosis. In LKB1-null H157 cells, pre-rRNA synthesis was not suppressed by AICAR when wild-type LKB1 was present, and cellular fractionation analysis indicated that TIF-IA quickly accumulated in the nucleus in the presence of a wild-type LKB1 but not a kinase-dead mutant. Furthermore, ectopic expression of LKB1 was capable of attenuating AICAR-induced death in AMPK-null cells. Because LKB1 promotes cell survival by modulating TIF-IA-mediated pre-rRNA synthesis, this discovery suggested that targeted depletion of uridine related metabolites may be exploited in the clinic to eliminate LKB1-null cancer cells. PMID:26506235

  5. Folate-Dependent Purine Nucleotide Biosynthesis in Humans1

    PubMed Central

    Baggott, Joseph E; Tamura, Tsunenobu

    2015-01-01

    Purine nucleotide biosynthesis de novo (PNB) requires 2 folate-dependent transformylases—5′-phosphoribosyl-glycinamide (GAR) and 5′-phosphoribosyl-5-aminoimidazole-4-carboxamide (AICAR) transformylases—to introduce carbon 8 (C8) and carbon 2 (C2) into the purine ring. Both transformylases utilize 10-formyltetrahydrofolate (10-formyl-H4folate), where the formyl-carbon sources include ring-2-C of histidine, 3-C of serine, 2-C of glycine, and formate. Our findings in human studies indicate that glycine provides the carbon for GAR transformylase (exclusively C8), whereas histidine and formate are the predominant carbon sources for AICAR transformylase (C2). Contrary to the previous notion, these carbon sources may not supply a general 10-formyl-H4folate pool, which was believed to equally provide carbons to C8 and C2. To explain these phenomena, we postulate that GAR transformylase is in a complex with the trifunctional folate-metabolizing enzyme (TFM) and serine hydroxymethyltransferase to channel carbons of glycine and serine to C8. There is no evidence for channeling carbons of histidine and formate to AICAR transformylase (C2). GAR transformylase may require the TFM to furnish 10-formyl-H4folate immediately after its production from serine to protect its oxidation to 10-formyldihydrofolate (10-formyl-H2folate), whereas AICAR transformylase can utilize both 10-formyl-H2folate and 10-formyl-H4folate. Human liver may supply AICAR to AICAR transformylase in erythrocytes/erythroblasts. Incorporation of ring-2-C of histidine and formate into C2 of urinary uric acid presented a circadian rhythm with a peak in the morning, which corresponds to the maximum DNA synthesis in the bone marrow, and it may be useful in the timing of the administration of drugs that block PNB for the treatment of cancer and autoimmune disease. PMID:26374178

  6. Folate-Dependent Purine Nucleotide Biosynthesis in Humans.

    PubMed

    Baggott, Joseph E; Tamura, Tsunenobu

    2015-09-01

    Purine nucleotide biosynthesis de novo (PNB) requires 2 folate-dependent transformylases-5'-phosphoribosyl-glycinamide (GAR) and 5'-phosphoribosyl-5-aminoimidazole-4-carboxamide (AICAR) transformylases-to introduce carbon 8 (C8) and carbon 2 (C2) into the purine ring. Both transformylases utilize 10-formyltetrahydrofolate (10-formyl-H4folate), where the formyl-carbon sources include ring-2-C of histidine, 3-C of serine, 2-C of glycine, and formate. Our findings in human studies indicate that glycine provides the carbon for GAR transformylase (exclusively C8), whereas histidine and formate are the predominant carbon sources for AICAR transformylase (C2). Contrary to the previous notion, these carbon sources may not supply a general 10-formyl-H4folate pool, which was believed to equally provide carbons to C8 and C2. To explain these phenomena, we postulate that GAR transformylase is in a complex with the trifunctional folate-metabolizing enzyme (TFM) and serine hydroxymethyltransferase to channel carbons of glycine and serine to C8. There is no evidence for channeling carbons of histidine and formate to AICAR transformylase (C2). GAR transformylase may require the TFM to furnish 10-formyl-H4folate immediately after its production from serine to protect its oxidation to 10-formyldihydrofolate (10-formyl-H2folate), whereas AICAR transformylase can utilize both 10-formyl-H2folate and 10-formyl-H4folate. Human liver may supply AICAR to AICAR transformylase in erythrocytes/erythroblasts. Incorporation of ring-2-C of histidine and formate into C2 of urinary uric acid presented a circadian rhythm with a peak in the morning, which corresponds to the maximum DNA synthesis in the bone marrow, and it may be useful in the timing of the administration of drugs that block PNB for the treatment of cancer and autoimmune disease. PMID:26374178

  7. Prolonged AICAR-induced AMP-kinase activation promotes energy dissipation in white adipocytes: novel mechanisms integrating HSL and ATGL.

    PubMed

    Gaidhu, Mandeep P; Fediuc, Sergiu; Anthony, Nicole M; So, Mandy; Mirpourian, Mani; Perry, Robert L S; Ceddia, Rolando B

    2009-04-01

    This study was designed to investigate the effects of prolonged activation of AMP-activated protein kinase (AMPK) on lipid partitioning and the potential molecular mechanisms involved in these processes in white adipose tissue (WAT). Rat epididymal adipocytes were incubated with 5'-aminoimidasole-4-carboxamide-1-beta-d-ribofuranoside (AICAR;0.5 mM) for 15 h. Also, epididymal adipocytes were isolated 15 h after AICAR was injected (i.p. 0.7 g/kg body weight) in rats. Adipocytes were utilized for various metabolic assays and for determination of gene expression and protein content. Time-dependent in vivo plasma NEFA concentrations were determined. AICAR treatment significantly increased AMPK activation, inhibited lipogenesis, and increased FA oxidation. This was accompanied by upregulation of peroxisome proliferator-activated receptor (PPAR)alpha, PPARdelta, and PPARgamma-coactivator-1alpha (PGC-1alpha) mRNA levels. Lipolysis was first suppressed, but then increased, both in vitro and in vivo, with prolonged AICAR treatment. Exposure to AICAR increased adipose triglyceride lipase (ATGL) content and FA release, despite inhibition of basal and epinephrine-stimulated hormone-sensitive lipase (HSL) activity. Here, we provide evidence that prolonged AICAR-induced AMPK activation can remodel adipocyte metabolism by upregulating pathways that favor energy dissipation versus lipid storage in WAT. Additionally, we show novel time-dependent effects of AICAR-induced AMPK activation on lipolysis, which involves antagonistic modulation of HSL and ATGL.

  8. Insulin and AMPK regulate FA translocase/CD36 plasma membrane recruitment in cardiomyocytes via Rab GAP AS160 and Rab8a Rab GTPase.

    PubMed

    Samovski, Dmitri; Su, Xiong; Xu, Yingcheng; Abumrad, Nada A; Stahl, Philip D

    2012-04-01

    The FA translocase cluster of differentiation 36 (CD36) facilitates FA uptake by the myocardium, and its surface recruitment in cardiomyocytes is induced by insulin, AMP-dependent protein kinase (AMPK), or contraction. Dysfunction of CD36 trafficking contributes to disordered cardiac FA utilization and promotes progression to disease. The Akt substrate 160 (AS160) Rab GTPase-activating protein (GAP) is a key regulator of vesicular trafficking, and its activity is modulated via phosphorylation. Our study documents that AS160 mediates insulin or AMPK-stimulated surface translocation of CD36 in cardiomyocytes. Knock-down of AS160 redistributes CD36 to the surface and abrogates its translocation by insulin or the AMPK agonist 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR). Conversely, overexpression of a phosphorylation-deficient AS160 mutant (AS160 4P) suppresses the stimulated membrane recruitment of CD36. The AS160 substrate Rab8a GTPase is shown via overexpression and knock-down studies to be specifically involved in insulin/AICAR-induced CD36 membrane recruitment. Our findings directly demonstrate AS160 regulation of CD36 trafficking. In myocytes, the AS160 pathway also mediates the effect of insulin, AMPK, or contraction on surface recruitment of the glucose transporter GLUT4. Thus, AS160 constitutes a point of convergence for coordinating physiological regulation of CD36 and GLUT4 membrane recruitment.

  9. The imidazoline compound RX871024 promotes insulinoma cell death independent of AMP-activated protein kinase inhibition.

    PubMed

    Zaitseva, Irina I; Zaitsev, Sergei V; Berggren, Per-Olof

    2016-08-01

    We have previously shown that the insulinotropic imidazoline compound RX871024 induces death of insulinoma MIN6 cells, an effect involving stimulation of c-Jun N-terminal kinase (JNK) and caspase 3. It has also been reported that AMP-activated protein kinase (AMPK) activates JNK and induces β-cell death. Here we show that RX871024, but not another insulinotropic imidazoline compound (BL11282), suppressed AMPK activity in MIN6 cells. The inhibitory effect of RX871024 on AMPK was supported by the observation that the imidazoline induced lipid droplet formation in the cytoplasm of MIN6 cells. This reflects stimulation of anabolic pathways and inhibition of catabolic pathways in the cell that happen under conditions when AMPK is inhibited. Activation of AMPK by 5-aminoimidazole-4-carboxamide riboside (AICAR) elevated basal and cytokine-induced death in primary β-cells and in insulinoma MIN6 cells. RX871024 aggravated AICAR-induced insulinoma MIN6 cell death regardless of the presence of pro-inflammatory cytokines. The specific cytotoxic effect of imidazoline compound RX871024 on insulinoma cell death but not primary β-cell death is independent of its action on AMPK and may suggest the possibility of using this type of compound in the treatment of insulinomas. PMID:27221730

  10. Stimulation of Brain AMP-Activated Protein Kinase Attenuates Inflammation and Acute Lung Injury in Sepsis

    PubMed Central

    Mulchandani, Nikhil; Yang, Weng-Lang; Khan, Mohammad Moshahid; Zhang, Fangming; Marambaud, Philippe; Nicastro, Jeffrey; Coppa, Gene F; Wang, Ping

    2015-01-01

    Sepsis and septic shock are enormous public health problems with astronomical financial repercussions on health systems worldwide. The central nervous system (CNS) is closely intertwined in the septic process but the underlying mechanism is still obscure. AMP-activated protein kinase (AMPK) is a ubiquitous energy sensor enzyme and plays a key role in regulation of energy homeostasis and cell survival. In this study, we hypothesized that activation of AMPK in the brain would attenuate inflammatory responses in sepsis, particularly in the lungs. Adult C57BL/6 male mice were treated with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR, 20 ng), an AMPK activator, or vehicle (normal saline) by intracerebroventricular (ICV) injection, followed by cecal ligation and puncture (CLP) at 30 min post-ICV. The septic mice treated with AICAR exhibited elevated phosphorylation of AMPKα in the brain along with reduced serum levels of aspartate aminotransferase, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), compared with the vehicle. Similarly, the expressions of TNF-α, IL-1β, keratinocyte-derived chemokine and macrophage inflammatory protein-2 as well as myeloperoxidase activity in the lungs of AICAR-treated mice were significantly reduced. Moreover, histological findings in the lungs showed improvement of morphologic features and reduction of apoptosis with AICAR treatment. We further found that the beneficial effects of AICAR on septic mice were diminished in AMPKα2 deficient mice, showing that AMPK mediates these effects. In conclusion, our findings reveal a new functional role of activating AMPK in the CNS to attenuate inflammatory responses and acute lung injury in sepsis. PMID:26252187

  11. Characterization of the effects of metformin on porcine oocyte meiosis and on AMP-activated protein kinase activation in oocytes and cumulus cells.

    PubMed

    Bilodeau-Goeseels, Sylvie; Magyara, Nora; Collignon, Coralie

    2014-05-01

    The adenosine monophosphate-activated protein kinase (AMPK) activators 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR) and metformin (MET) inhibit resumption of meiosis in porcine cumulus-enclosed oocytes. The objective of this study was to characterize the inhibitory effect of MET on porcine oocyte meiosis by: (1) determining the effects of an AMPK inhibitor and of inhibitors of signalling pathways involved in MET-induced AMPK activation in other cell types on MET-mediated meiotic arrest in porcine cumulus-enclosed oocytes; (2) determining whether MET and AICAR treatments lead to increased activation of porcine oocyte and/or cumulus cell AMPK as measured by phosphorylation of its substrate acetyl-CoA carboxylase; and (3) determining the effects of inhibition of the AMPK kinase, Ca2+/calmodulin-dependent protein kinase kinase (CaMKK), and Ca2+ chelation on oocyte meiotic maturation and AMPK activation in porcine oocytes and cumulus cells. The AMPK inhibitor compound C (CC; 1 μM) did not reverse the inhibitory effect of AICAR (1 mM) and MET (2 mM) on porcine oocyte meiosis. Additionally, CC had a significant inhibitory effect on its own. eNOS, c-Src and PI-3 kinase pathway inhibitors did not reverse the effect of metformin on porcine oocyte meiosis. The level of acetyl-CoA carboxylase (ACC) phosphorylation in oocytes and cumulus cells did not change in response to culture in the presence of MET, AICAR, CC, the CaMKK inhibitor STO-609 or the Ca2+ chelator BAPTA-AM for 3 h, but STO-609 increased the percentage of porcine cumulus-enclosed oocytes (CEO) that remained at the germinal vesicle (GV) stage after 24 h of culture. These results indicate that the inhibitory effect of MET and AICAR on porcine oocyte meiosis was probably not mediated through activation of AMPK.

  12. A platform for discovery and quantification of modified ribonucleosides in RNA: Application to stress-induced reprogramming of tRNA modifications

    PubMed Central

    Cai, Weiling Maggie; Chionh, Yok Hian; Hia, Fabian; Gu, Chen; Kellner, Stefanie; McBee, Megan E.; Ng, Chee Sheng; Pang, Yan Ling Joy; Prestwich, Erin G.; Lim, Kok Seong; Babu, I. Ramesh; Begley, Thomas J.; Dedon, Peter C.

    2016-01-01

    Here we describe an analytical platform for systems-level quantitative analysis of modified ribonucleosides in any RNA species, with a focus on stress-induced reprogramming of tRNA as part of a system of translational control of cell stress response. The chapter emphasizes strategies and caveats for each of the seven steps of the platform workflow: 1) RNA isolation, 2) RNA purification, 3) RNA hydrolysis to individual ribonucleosides, 4) chromatographic resolution of ribonucleosides, 5) identification of the full set of modified ribonucleosides, 6) mass spectrometric quantification of ribonucleosides, 6) interrogation of ribonucleoside datasets, and 7) mapping the location of stress-sensitive modifications in individual tRNA molecules. We have focused on the critical determinants of analytical sensitivity, specificity, precision and accuracy in an effort to ensure the most biologically meaningful data on mechanisms of translational control of cell stress response. The methods described here should find wide use in virtually any analysis involving RNA modifications. PMID:26253965

  13. LD-Aminopterin in the Canine Homologue of Human Atopic Dermatitis: A Randomized, Controlled Trial Reveals Dosing Factors Affecting Optimal Therapy

    PubMed Central

    Zebala, John A.; Mundell, Alan; Messinger, Linda; Griffin, Craig E.; Schuler, Aaron D.; Kahn, Stuart J.

    2014-01-01

    Background Options are limited for patients with atopic dermatitis (AD) who do not respond to topical treatments. Antifolate therapy with systemic methotrexate improves the disease, but is associated with adverse effects. The investigational antifolate LD-aminopterin may offer improved safety. It is not known how antifolate dose and dosing frequency affect efficacy in AD, but a primary mechanism is thought to involve the antifolate-mediated accumulation of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR). However, recent in vitro studies indicate that AICAR increases then decreases as a function of antifolate concentration. To address this issue and understand how dosing affects antifolate efficacy in AD, we examined the efficacy and safety of different oral doses and schedules of LD-aminopterin in the canine model of AD. Methods and Findings This was a multi-center, double-blind trial involving 75 subjects with canine AD randomized to receive up to 12 weeks of placebo, once-weekly (0.007, 0.014, 0.021 mg/kg) or twice-weekly (0.007 mg/kg) LD-aminopterin. The primary efficacy outcome was the Global Score (GS), a composite of validated measures of disease severity and itch. GS improved in all once-weekly cohorts, with 0.014 mg/kg being optimal and significant (43%, P<0.01). The majority of improvement was seen by 8 weeks. In contrast, GS in the twice-weekly cohort was similar to placebo and worse than all once-weekly cohorts. Adverse events were similar across all treated cohorts and placebo. Conclusions Once-weekly LD-aminopterin was safe and efficacious in canine AD. Twice-weekly dosing negated efficacy despite having the same daily and weekly dose as effective once-weekly regimens. Optimal dosing in this homologue of human AD correlated with the concentration-selective accumulation of AICAR in vitro, consistent with AICAR mediating LD-aminopterin efficacy in AD. PMID:25255447

  14. AMPK inhibits MTDH expression via GSK3β and SIRT1 activation: potential role in triple negative breast cancer cell proliferation.

    PubMed

    Gollavilli, Paradesi Naidu; Kanugula, Anantha Koteswararao; Koyyada, Rajeswari; Karnewar, Santosh; Neeli, Praveen Kumar; Kotamraju, Srigiridhar

    2015-10-01

    Recent studies have highlighted the involvement of metadherin (MTDH), an oncogenic protein, in promoting cancer progression, metastasis and chemoresistance in many cancers including mammary carcinomas. However, the molecular regulation of MTDH is still not completely understood. In this study we document that AMP activated protein kinase (AMPK) activation-induced anti-proliferative effects are, in part, mediated by inhibiting MTDH expression in MDA-MB-231 and BT-549 triple negative breast cancer (TNBC) cells. 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR), an AMPK activator, caused growth arrest, inhibition of migration and invasion of TNBC cells. Intriguingly, AICAR or metformin treatment resulted in significant downregulation of MTDH expression via inhibiting c-Myc expression. In contrast, treatment of cells with compound C, an inhibitor of AMPK, increased both c-Myc and MTDH expressions in TNBC cells. Also, AMPK activation caused increased glycogen synthase kinase 3β (GSK3β) activity by inhibiting the inactive phosphorylation at Ser9, on the one hand, and activation of sirtuin1 (SIRT1) by inhibiting Ser47 phosphorylation, as evidenced by deacetylation of p53, on the other hand. Moreover, AMPK-induced GSK3β and SIRT1 activities were found to be responsible for inhibiting c-Myc-mediated upregulation of MTDH, as LiCl (an inhibitor of GSK3β) and EX-527 (an inhibitor of SIRT1) reversed AICAR-mediated downregulation of c-Myc and MTDH expressions. Similar results were observed with siSIRT1 treatment. Furthermore, AICAR and EX-527 treatments caused increased cell death under MTDH-depleted conditions. Finally, we uncovered a novel regulation of MTDH expression and showed that AMPK activation by inducing GSK3β and SIRT1 downregulates MTDH expression via inhibiting c-Myc in TNBC cells. PMID:26236947

  15. AMP-activated protein kinase inhibits TGF-β-induced fibrogenic responses of hepatic stellate cells by targeting transcriptional coactivator p300.

    PubMed

    Lim, Joong-Yeon; Oh, Min-A; Kim, Won Ho; Sohn, Hee-Young; Park, Sang Ick

    2012-03-01

    Liver fibrosis is a common consequence of various chronic liver injuries, including virus infection and ethanol. Activated hepatic stellate cells (HSCs) contribute to liver fibrosis through the accumulation of extracellular matrix proteins, including type I alpha collagen (COL1A). The activation of adenosine monophosphate-activated protein kinase (AMPK) modulates HSCs activation, but its underlying mechanism remains unclear. Here, we report that AMPK inhibits transforming growth factor (TGF)-β-induced fibrogenic property of HSCs by regulating transcriptional coactivator p300. We treated human (LX-2) and rat (CFSC-2G) HSC lines with TGF-β to induce fibrogenic activation of HSCs. Pharmacological activation of AMPK by treatment with 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR), metformin, or adiponectin lowered TGF-β-induced expression of COL1A and myofibroblast marker alpha-smooth muscle actin (α-SMA). Transient transduction of constitutively active AMPKα (caAMPKα) was sufficient to attenuate COL1A and α-SMA expression, whereas an AMPK inhibitor considerably abrogated the inhibitory effect of AICAR on fibrogenic gene expression. Although AMPK significantly suppressed Smad-dependent transcription, it did not affect TGF-β-stimulated phosphorylation, nuclear localization, or DNA-binding activity of Smad2/3. AICAR rather attenuated TGF-β-induced Smad3 interaction with transcriptional coactivator p300 accompanying with reduction of Smad3 acetylation. Moreover, AICAR induced not only physical interaction between AMPK and p300 but also proteasomal degradation of p300 protein. Our data provide substantial evidence that AMPK could be a novel therapeutic target for treatment of liver fibrosis, by demonstrating the underlying mechanism of AMPK-induced antifibrotic function in HSCs.

  16. Insulin Resistance Prevents AMPK-induced Tau Dephosphorylation through Akt-mediated Increase in AMPKSer-485 Phosphorylation.

    PubMed

    Kim, Bhumsoo; Figueroa-Romero, Claudia; Pacut, Crystal; Backus, Carey; Feldman, Eva L

    2015-07-31

    Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors including obesity, diabetes, and dyslipidemia, and insulin resistance (IR) is the central feature of MetS. Recent studies suggest that MetS is a risk factor for Alzheimer disease (AD). AMP-activated kinase (AMPK) is an evolutionarily conserved fuel-sensing enzyme and a key player in regulating energy metabolism. In this report, we examined the role of IR on the regulation of AMPK phosphorylation and AMPK-mediated Tau phosphorylation. We found that AMPK(Ser-485), but not AMPK(Thr-172), phosphorylation is increased in the cortex of db/db and high fat diet-fed obese mice, two mouse models of IR. In vitro, treatment of human cortical stem cell line (HK-5320) and primary mouse embryonic cortical neurons with the AMPK activator, 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), induced AMPK phosphorylation at both Thr-172 and Ser-485. AMPK activation also triggered Tau dephosphorylation. When IR was mimicked in vitro by chronically treating the cells with insulin, AICAR specifically induced AMPK(Ser-485), but not AMPK(Thr-172), hyperphosphorylation whereas AICAR-induced Tau dephosphorylation was inhibited. IR also resulted in the overactivation of Akt by AICAR treatment; however, preventing Akt overactivation during IR prevented AMPK(Ser-485) hyperphosphorylation and restored AMPK-mediated Tau dephosphorylation. Transfection of AMPK(S485A) mutant caused similar results. Therefore, our results suggest the following mechanism for the adverse effect of IR on AD pathology: IR → chronic overactivation of Akt → AMPK(Ser-485) hyperphosphorylation → inhibition of AMPK-mediated Tau dephosphorylation. Together, our results show for the first time a possible contribution of IR-induced AMPK(Ser-485) phosphorylation to the increased risk of AD in obesity and diabetes.

  17. Glucagon-like peptide-1 prevents methylglyoxal-induced apoptosis of beta cells through improving mitochondrial function and suppressing prolonged AMPK activation

    PubMed Central

    Chang, Tien-Jyun; Tseng, Hsing-Chi; Liu, Meng-Wei; Chang, Yi-Cheng; Hsieh, Meng-Lun; Chuang, Lee-Ming

    2016-01-01

    Accumulation of methylglyoxal (MG) contributes to glucotoxicity and mediates beta cell apoptosis. The molecular mechanism by which GLP-1 protects MG-induced beta cell apoptosis remains unclear. Metformin is a first-line drug for treating type 2 diabetes associated with AMPK activation. However, whether metformin prevents MG-induced beta cell apoptosis is controversial. Here, we explored the signaling pathway involved in the anti-apoptotic effect of GLP-1, and investigated whether metformin had an anti-apoptotic effect on beta cells. MG treatment induced apoptosis of beta cells, impaired mitochondrial function, and prolonged activation of AMP-dependent protein kinase (AMPK). The MG-induced pro-apoptotic effects were abolished by an AMPK inhibitor. Pretreatment of GLP-1 reversed MG-induced apoptosis, and mitochondrial dysfunction, and suppressed prolonged AMPK activation. Pretreatment of GLP-1 reversed AMPK activator 5-aminoimidazole-4-carboxamide riboside (AICAR)-induced apoptosis, and suppressed prolonged AMPK activation. However, metformin neither leads to beta cell apoptosis nor ameliorates MG-induced beta cell apoptosis. In parallel, GLP-1 also prevents MG-induced beta cell apoptosis through PKA and PI3K-dependent pathway. In conclusion, these data indicates GLP-1 but not metformin protects MG-induced beta cell apoptosis through improving mitochondrial function, and alleviating the prolonged AMPK activation. Whether adding GLP-1 to metformin provides better beta cell survival and delays disease progression remains to be validated. PMID:26997114

  18. Acute Exercise Improves Insulin Clearance and Increases the Expression of Insulin-Degrading Enzyme in the Liver and Skeletal Muscle of Swiss Mice.

    PubMed

    Kurauti, Mirian A; Freitas-Dias, Ricardo; Ferreira, Sandra M; Vettorazzi, Jean F; Nardelli, Tarlliza R; Araujo, Hygor N; Santos, Gustavo J; Carneiro, Everardo M; Boschero, Antonio C; Rezende, Luiz F; Costa-Júnior, José M

    2016-01-01

    The effects of exercise on insulin clearance and IDE expression are not yet fully elucidated. Here, we have explored the effect of acute exercise on insulin clearance and IDE expression in lean mice. Male Swiss mice were subjected to a single bout of exercise on a speed/angle controlled treadmill for 3-h at approximately 60-70% of maximum oxygen consumption. As expected, acute exercise reduced glycemia and insulinemia, and increased insulin tolerance. The activity of AMPK-ACC, but not of IR-Akt, pathway was increased in the liver and skeletal muscle of trained mice. In an apparent contrast to the reduced insulinemia, glucose-stimulated insulin secretion was increased in isolated islets of these mice. However, insulin clearance was increased after acute exercise and was accompanied by increased expression of the insulin-degrading enzyme (IDE), in the liver and skeletal muscle. Finally, C2C12, but not HEPG2 cells, incubated at different concentrations of 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) for 3-h, showed increased expression of IDE. In conclusion, acute exercise increases insulin clearance, probably due to an augmentation of IDE expression in the liver and skeletal muscle. The elevated IDE expression, in the skeletal muscle, seems to be mediated by activation of AMPK-ACC pathway, in response to exercise. We believe that the increase in the IDE expression, comprise a safety measure to maintain glycemia at or close to physiological levels, turning physical exercise more effective and safe. PMID:27467214

  19. Acute Exercise Improves Insulin Clearance and Increases the Expression of Insulin-Degrading Enzyme in the Liver and Skeletal Muscle of Swiss Mice.

    PubMed

    Kurauti, Mirian A; Freitas-Dias, Ricardo; Ferreira, Sandra M; Vettorazzi, Jean F; Nardelli, Tarlliza R; Araujo, Hygor N; Santos, Gustavo J; Carneiro, Everardo M; Boschero, Antonio C; Rezende, Luiz F; Costa-Júnior, José M

    2016-01-01

    The effects of exercise on insulin clearance and IDE expression are not yet fully elucidated. Here, we have explored the effect of acute exercise on insulin clearance and IDE expression in lean mice. Male Swiss mice were subjected to a single bout of exercise on a speed/angle controlled treadmill for 3-h at approximately 60-70% of maximum oxygen consumption. As expected, acute exercise reduced glycemia and insulinemia, and increased insulin tolerance. The activity of AMPK-ACC, but not of IR-Akt, pathway was increased in the liver and skeletal muscle of trained mice. In an apparent contrast to the reduced insulinemia, glucose-stimulated insulin secretion was increased in isolated islets of these mice. However, insulin clearance was increased after acute exercise and was accompanied by increased expression of the insulin-degrading enzyme (IDE), in the liver and skeletal muscle. Finally, C2C12, but not HEPG2 cells, incubated at different concentrations of 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) for 3-h, showed increased expression of IDE. In conclusion, acute exercise increases insulin clearance, probably due to an augmentation of IDE expression in the liver and skeletal muscle. The elevated IDE expression, in the skeletal muscle, seems to be mediated by activation of AMPK-ACC pathway, in response to exercise. We believe that the increase in the IDE expression, comprise a safety measure to maintain glycemia at or close to physiological levels, turning physical exercise more effective and safe.

  20. Glucagon-like peptide-1 prevents methylglyoxal-induced apoptosis of beta cells through improving mitochondrial function and suppressing prolonged AMPK activation.

    PubMed

    Chang, Tien-Jyun; Tseng, Hsing-Chi; Liu, Meng-Wei; Chang, Yi-Cheng; Hsieh, Meng-Lun; Chuang, Lee-Ming

    2016-01-01

    Accumulation of methylglyoxal (MG) contributes to glucotoxicity and mediates beta cell apoptosis. The molecular mechanism by which GLP-1 protects MG-induced beta cell apoptosis remains unclear. Metformin is a first-line drug for treating type 2 diabetes associated with AMPK activation. However, whether metformin prevents MG-induced beta cell apoptosis is controversial. Here, we explored the signaling pathway involved in the anti-apoptotic effect of GLP-1, and investigated whether metformin had an anti-apoptotic effect on beta cells. MG treatment induced apoptosis of beta cells, impaired mitochondrial function, and prolonged activation of AMP-dependent protein kinase (AMPK). The MG-induced pro-apoptotic effects were abolished by an AMPK inhibitor. Pretreatment of GLP-1 reversed MG-induced apoptosis, and mitochondrial dysfunction, and suppressed prolonged AMPK activation. Pretreatment of GLP-1 reversed AMPK activator 5-aminoimidazole-4-carboxamide riboside (AICAR)-induced apoptosis, and suppressed prolonged AMPK activation. However, metformin neither leads to beta cell apoptosis nor ameliorates MG-induced beta cell apoptosis. In parallel, GLP-1 also prevents MG-induced beta cell apoptosis through PKA and PI3K-dependent pathway. In conclusion, these data indicates GLP-1 but not metformin protects MG-induced beta cell apoptosis through improving mitochondrial function, and alleviating the prolonged AMPK activation. Whether adding GLP-1 to metformin provides better beta cell survival and delays disease progression remains to be validated. PMID:26997114

  1. An Ancient Riboswitch Class in Bacteria Regulates Purine Biosynthesis and One-carbon Metabolism

    PubMed Central

    Kim, Peter B.; Nelson, James W.; Breaker, Ronald R.

    2015-01-01

    SUMMARY Over thirty years ago, ZTP (5-amino-4-imidazole carboxamide riboside 5'-triphosphate), a modified purine biosynthetic intermediate, was proposed to signal 10-formyl-tetrahydrofolate (10f-THF) deficiency in bacteria. However, the mechanisms by which this putative alarmone or its precursor ZMP (5-aminoimidazole-4-carboxamide ribonucleotide, also known as AICAR) brings about any metabolic changes remain unexplained. Herein we report the existence of a widespread riboswitch class that is most commonly associated with genes related to de novo purine biosynthesis and one carbon metabolism. Biochemical data confirms that members of this riboswitch class selectively bind ZMP and ZTP with nanomolar affinity, while strongly rejecting numerous natural analogs. Indeed, increases in the ZMP/ZTP pool, caused by folate stress in bacterial cells, trigger changes in the expression of a reporter gene fused to representative ZTP riboswitches in vivo. The wide distribution of this riboswitch class suggests that ZMP/ZTP signaling is important for species in numerous bacterial lineages. PMID:25616067

  2. Resveratrol up-regulates AMPA receptor expression via AMP-activated protein kinase-mediated protein translation.

    PubMed

    Wang, Guan; Amato, Stephen; Gilbert, James; Man, Heng-Ye

    2015-08-01

    Resveratrol is a phytoalexin that confers overall health benefits including positive regulation in brain function such as learning and cognition. However, whether and how resveratrol affects synaptic activity remains largely unknown. α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are glutamatergic receptors that mediate the majority of fast excitatory transmission and synaptic plasticity, and thus play a critical role in higher brain functions, including learning and memory. We find that in rat primary neurons, resveratrol can rapidly increase AMPAR protein level, AMPAR synaptic accumulation and the strength of excitatory synaptic transmission. The resveratrol effect on AMPAR protein expression is independent of sirtuin 1 (SIRT1), the conventional downstream target of resveratrol, but rather is mediated by AMP-activated protein kinase (AMPK) and subsequent downstream phosphoinositide 3-kinase (PI3K)/Akt signaling. Application of the AMPK specific activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) mimics the effects of resveratrol on both signaling and AMPAR expression. The resveratrol-induced increase in AMPAR expression results from elevated protein synthesis via regulation of the eukaryotic initiation factor (eIF) 4E/4G complex. Disruption of the translation initiation complex completely blocks resveratrol-dependent AMPAR up-regulation. These findings indicate that resveratrol may regulate brain function through facilitation of AMPAR biogenesis and synaptic transmission.

  3. Acute Exercise Improves Insulin Clearance and Increases the Expression of Insulin-Degrading Enzyme in the Liver and Skeletal Muscle of Swiss Mice

    PubMed Central

    Ferreira, Sandra M.; Vettorazzi, Jean F.; Nardelli, Tarlliza R.; Araujo, Hygor N.; Santos, Gustavo J.; Carneiro, Everardo M.; Boschero, Antonio C.; Rezende, Luiz F.; Costa-Júnior, José M.

    2016-01-01

    The effects of exercise on insulin clearance and IDE expression are not yet fully elucidated. Here, we have explored the effect of acute exercise on insulin clearance and IDE expression in lean mice. Male Swiss mice were subjected to a single bout of exercise on a speed/angle controlled treadmill for 3-h at approximately 60–70% of maximum oxygen consumption. As expected, acute exercise reduced glycemia and insulinemia, and increased insulin tolerance. The activity of AMPK-ACC, but not of IR-Akt, pathway was increased in the liver and skeletal muscle of trained mice. In an apparent contrast to the reduced insulinemia, glucose-stimulated insulin secretion was increased in isolated islets of these mice. However, insulin clearance was increased after acute exercise and was accompanied by increased expression of the insulin-degrading enzyme (IDE), in the liver and skeletal muscle. Finally, C2C12, but not HEPG2 cells, incubated at different concentrations of 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) for 3-h, showed increased expression of IDE. In conclusion, acute exercise increases insulin clearance, probably due to an augmentation of IDE expression in the liver and skeletal muscle. The elevated IDE expression, in the skeletal muscle, seems to be mediated by activation of AMPK-ACC pathway, in response to exercise. We believe that the increase in the IDE expression, comprise a safety measure to maintain glycemia at or close to physiological levels, turning physical exercise more effective and safe. PMID:27467214

  4. Macropinocytosis is decreased in diabetic mouse macrophages and is regulated by AMPK

    PubMed Central

    Guest, Christopher B; Chakour, Kenneth S; Freund, Gregory G

    2008-01-01

    Background Macrophages (MΦs) utilize macropinocytosis to integrate immune and metabolic signals in order to initiate an effective immune response. Diabetes is characterized by metabolic abnormalities and altered immune function. Here we examine the influence of diabetes on macropinocytosis in primary mouse macrophages and in an in vitro diabetes model. Results The data demonstrate that peritoneal MΦs from diabetic (db/db) mice had reduced macropinocytosis when compared to MΦs from non-diabetic (db/+) mice. Additionally, MΦs cultured in hyperglycemic conditions were less adept at macropinocytosis than those cultured in low glucose. Notably, AMP-activated protein kinase (AMPK) activity was decreased in MΦs cultured in hyperglycemic conditions. Activation of AMPK with leptin or 5-aminoimidazole-4-carboxamide-1-β-riboside (AICAR) increased macropinocytosis and inhibition of AMPK with compound C decreased macropinocytosis. Conclusion Taken together, these findings indicate that MΦs from diabetic mice have decreased macropinocytosis. This decrease appears dependent on reduced AMPK activity. These results demonstrate a previously unrealized role for AMPK in MΦs and suggest that increasing AMPK activity in diabetic MΦs could improve innate immunity and decrease susceptibility to infection. PMID:18667079

  5. AMPK in the small intestine in normal and pathophysiological conditions.

    PubMed

    Harmel, Elodie; Grenier, Emilie; Bendjoudi Ouadda, Ali; El Chebly, Mounib; Ziv, Ehud; Beaulieu, Jean François; Sané, Alain; Spahis, Schohraya; Laville, Martine; Levy, Emile

    2014-03-01

    The role of AMPK in regulating energy storage and depletion remains unexplored in the intestine. This study will to define its status, composition, regulation and lipid function, as well as to examine the impact of insulin resistance and type 2 diabetes on intestinal AMPK activation, insulin sensitivity, and lipid metabolism. Caco-2/15 cells and Psammomys obesus (P. obesus) animal models were experimented. We showed the predominance of AMPKα1 and the prevalence of α1/β2/γ1 heterotrimer in Caco-2/15 cells. The activation of AMPK by 5-aminoimidazole-4-carboxamide ribonucleoside and metformin resulted in increased phospho(p)-ACC. However, the down-regulation of p-AMPK by compound C and high glucose lowered p-ACC without affecting 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Administration of metformin to P. obesus with insulin resistance and type 2 diabetes led to 1) an up-regulation of intestinal AMPK signaling pathway typified by ascending p-AMPKα(-Thr172); 2) a reduction in ACC activity; 3) an elevation of carnitine palmitoyltransferase 1; 4) a trend of increase in insulin sensitivity portrayed by augmentation of p-Akt and phospho-glycogen synthetase kinase 3β; 5) a reduced phosphorylation of p38-MAPK and ERK1/2; and 6) a decrease in diabetic dyslipidemia following lowering of intracellular events that govern lipoprotein assembly. These data suggest that AMPK fulfills key functions in metabolic processes in the small intestine.

  6. AMP-activated protein kinase regulates the assembly of epithelial tight junctions

    PubMed Central

    Zhang, Li; Li, Ji; Young, Lawrence H.; Caplan, Michael J.

    2006-01-01

    AMP activated protein kinase (AMPK), a sensor of cellular energy status in all eukaryotic cells, is activated by LKB1-dependent phosphorylation. Recent studies indicate that activated LKB1 induces polarity in epithelial cells and that this polarization is accompanied by the formation of tight junction structures. We wished to determine whether AMPK also contributes to the assembly of tight junctions in the epithelial cell polarization process. We found that AMPK is activated during calcium-induced tight junction assembly. Activation of AMPK by 5-aminoimidazole-4-carboxamide ribonucleoside facilitates tight junction assembly under conditions of normal extracellular Ca2+ concentrations and initiates tight junction assembly in the absence of Ca2+ as revealed by the relocation of zonula occludens 1, the establishment of transepithelial electrical resistance, and the paracellular flux assay. Expression of a dominant negative AMPK construct inhibits tight junction assembly in MDCK cells, and this defect in tight junction assembly can be partially ameliorated by rapamycin. These results suggest that AMPK plays a role in the regulation of tight junction assembly. PMID:17088526

  7. AMP-activated protein kinase regulates the assembly of epithelial tight junctions.

    PubMed

    Zhang, Li; Li, Ji; Young, Lawrence H; Caplan, Michael J

    2006-11-14

    AMP activated protein kinase (AMPK), a sensor of cellular energy status in all eukaryotic cells, is activated by LKB1-dependent phosphorylation. Recent studies indicate that activated LKB1 induces polarity in epithelial cells and that this polarization is accompanied by the formation of tight junction structures. We wished to determine whether AMPK also contributes to the assembly of tight junctions in the epithelial cell polarization process. We found that AMPK is activated during calcium-induced tight junction assembly. Activation of AMPK by 5-aminoimidazole-4-carboxamide ribonucleoside facilitates tight junction assembly under conditions of normal extracellular Ca2+ concentrations and initiates tight junction assembly in the absence of Ca2+ as revealed by the relocation of zonula occludens 1, the establishment of transepithelial electrical resistance, and the paracellular flux assay. Expression of a dominant negative AMPK construct inhibits tight junction assembly in MDCK cells, and this defect in tight junction assembly can be partially ameliorated by rapamycin. These results suggest that AMPK plays a role in the regulation of tight junction assembly. PMID:17088526

  8. Zirconium-doped magnetic microspheres for the selective enrichment of cis-diol-containing ribonucleosides.

    PubMed

    Fan, Hua; Chen, Peihong; Wang, Chaozhan; Wei, Yinmao

    2016-05-27

    Zirconium-doped magnetic microspheres (Zr-Fe3O4) for the selective enrichment of cis-diol-containing biomolecules were easily synthesized via a one-step hydrothermal method. Characterization of the microspheres revealed that zirconium was successfully doped into the lattice of Fe3O4 at a doping level of 4.0 at%. Zr-Fe3O4 possessed good magnetic properties and high specificity towards cis-diol molecules, as shown using 28 compounds. For ribonucleosides, the adsorbent not only has favorable anti-interferential abilities but also has a high adsorption capacity up to 159.4μmol/g. As an example of a real application, four ribonucleosides in urine were efficiently enriched and detected via magnetic solid-phase extraction coupled with high-performance liquid chromatography. Under the optimized extraction conditions, the detection limits were determined to be between 0.005 and 0.017μg/mL, and the linearities ranged from 0.02 to 5.00μg/mL (R≥0.996) for these analytes. The accuracy of the analytical method was examined by studying the relative recoveries of the analytes in real urine samples, with recoveries varying from 77.8% to 119.6% (RSDs<10.6%, n=6). The results indicate that Zr-Fe3O4 is a suitable adsorbent for the analysis of cis-diol-containing biomolecules in practical applications. PMID:27130580

  9. Conformational analysis of a quinolonic ribonucleoside with anti-HSV-1 activity

    NASA Astrophysics Data System (ADS)

    Yoneda, Julliane D.; Velloso, Marcia Helena R.; Leal, Kátia Z.; Azeredo, Rodrigo B. de V.; Sugiura, Makiko; Albuquerque, Magaly G.; Santos, Fernanda da C.; Souza, Maria Cecília B. V. de; Cunha, Anna Claudia; Seidl, Peter R.; Alencastro, Ricardo B. de; Ferreira, Vitor F.

    2011-01-01

    The infections caused by the Herpes Simplex Virus are one of the most common sources of diseases in adults and several natural nucleoside analogues are currently used in the treatment of these infections. In vitro tests of a series of quinolonic ribonucleosides derivatives synthesized by part of our group indicated that some of them have antiviral activity against HSV-1. The conformational analysis of bioactive compounds is extremely important in order to better understand their chemical structures and biological activity. In this work, we have carried out a nuclear relaxation NMR study of 6-Me ribonucleoside derivative in order to determine if the syn or anti conformation is preferential. The NMR analysis permits the determination of inter-atomic distances by using techniques which are based on nuclear relaxation and related phenomena. Those techniques are non-selective longitudinal or spin-lattice relaxation rates and NULL pulse sequence, which allow the determination of distances between pairs of hydrogen atoms. The results of NMR studies were compared with those obtained by molecular modeling.

  10. Design, Synthesis, and Antiviral Activity of Novel Ribonucleosides of 1,2,3-Triazolylbenzyl-aminophosphonates.

    PubMed

    Ouahrouch, Abdelaaziz; Taourirte, Moha; Schols, Dominique; Snoeck, Robert; Andrei, Graciela; Engels, Joachim W; Lazrek, Hassan B

    2016-01-01

    A novel series of ribonucleosides of 1,2,3-triazolylbenzyl-aminophosphonates was synthesized through the Kabachnik-Fields reaction using I2 as catalyst followed by copper-catalyzed cycloaddition of the azide-alkyne reaction (CuAAC). All structures of the newly prepared compounds were characterized by (1) H NMR, (13) C NMR, and HRMS spectra. The structures of 2e, 2f, 3d, and 3g were further confirmed by X-ray diffraction analysis. These compounds were tested against various strains of DNA and RNA viruses; compounds 4b and 4c showed a modest inhibitory activity against respiratory syncytial virus (RSV) and compound 4h displayed modest inhibitory activity against Coxsackie virus B4. PMID:26575425

  11. Combined Treatment of MCF-7 Cells with AICAR and Methotrexate, Arrests Cell Cycle and Reverses Warburg Metabolism through AMP-Activated Protein Kinase (AMPK) and FOXO1.

    PubMed

    Fodor, Tamás; Szántó, Magdolna; Abdul-Rahman, Omar; Nagy, Lilla; Dér, Ádám; Kiss, Borbála; Bai, Peter

    2016-01-01

    Cancer cells are characterized by metabolic alterations, namely, depressed mitochondrial oxidation, enhanced glycolysis and pentose phosphate shunt flux to support rapid cell growth, which is called the Warburg effect. In our study we assessed the metabolic consequences of a joint treatment of MCF-7 breast cancer cells with AICAR, an inducer of AMP-activated kinase (AMPK) jointly with methotrexate (MTX), a folate-analog antimetabolite that blunts de novo nucleotide synthesis. MCF7 cells, a model of breast cancer cells, were resistant to the individual application of AICAR or MTX, however combined treatment of AICAR and MTX reduced cell proliferation. Prolonged joint application of AICAR and MTX induced AMPK and consequently enhanced mitochondrial oxidation and reduced the rate of glycolysis. These metabolic changes suggest an anti-Warburg rearrangement of metabolism that led to the block of the G1/S and the G2/M transition slowing down cell cycle. The slowdown of cell proliferation was abolished when mitotropic transcription factors, PGC-1α, PGC-1β or FOXO1 were silenced. In human breast cancers higher expression of AMPKα and FOXO1 extended survival. AICAR and MTX exerts similar additive antiproliferative effect on other breast cancer cell lines, such as SKBR and 4T1 cells, too. Our data not only underline the importance of Warburg metabolism in breast cancer cells but nominate the AICAR+MTX combination as a potential cytostatic regime blunting Warburg metabolism. Furthermore, we suggest the targeting of AMPK and FOXO1 to combat breast cancer.

  12. Combined Treatment of MCF-7 Cells with AICAR and Methotrexate, Arrests Cell Cycle and Reverses Warburg Metabolism through AMP-Activated Protein Kinase (AMPK) and FOXO1

    PubMed Central

    Fodor, Tamás; Szántó, Magdolna; Abdul-Rahman, Omar; Nagy, Lilla; Dér, Ádám; Kiss, Borbála; Bai, Peter

    2016-01-01

    Cancer cells are characterized by metabolic alterations, namely, depressed mitochondrial oxidation, enhanced glycolysis and pentose phosphate shunt flux to support rapid cell growth, which is called the Warburg effect. In our study we assessed the metabolic consequences of a joint treatment of MCF-7 breast cancer cells with AICAR, an inducer of AMP-activated kinase (AMPK) jointly with methotrexate (MTX), a folate-analog antimetabolite that blunts de novo nucleotide synthesis. MCF7 cells, a model of breast cancer cells, were resistant to the individual application of AICAR or MTX, however combined treatment of AICAR and MTX reduced cell proliferation. Prolonged joint application of AICAR and MTX induced AMPK and consequently enhanced mitochondrial oxidation and reduced the rate of glycolysis. These metabolic changes suggest an anti-Warburg rearrangement of metabolism that led to the block of the G1/S and the G2/M transition slowing down cell cycle. The slowdown of cell proliferation was abolished when mitotropic transcription factors, PGC-1α, PGC-1β or FOXO1 were silenced. In human breast cancers higher expression of AMPKα and FOXO1 extended survival. AICAR and MTX exerts similar additive antiproliferative effect on other breast cancer cell lines, such as SKBR and 4T1 cells, too. Our data not only underline the importance of Warburg metabolism in breast cancer cells but nominate the AICAR+MTX combination as a potential cytostatic regime blunting Warburg metabolism. Furthermore, we suggest the targeting of AMPK and FOXO1 to combat breast cancer. PMID:26919657

  13. Muscle-specific AMPK β1β2-null mice display a myopathy due to loss of capillary density in nonpostural muscles.

    PubMed

    Thomas, Melissa M; Wang, David C; D'Souza, Donna M; Krause, Matthew P; Layne, Andrew S; Criswell, David S; O'Neill, Hayley M; Connor, Michael K; Anderson, Judy E; Kemp, Bruce E; Steinberg, Gregory R; Hawke, Thomas J

    2014-05-01

    AMP-activated protein kinase (AMPK) is a master regulator of metabolism. While muscle-specific AMPK β1β2 double-knockout (β1β2M-KO) mice display alterations in metabolic and mitochondrial capacity, their severe exercise intolerance suggested a secondary contributor to the observed phenotype. We find that tibialis anterior (TA), but not soleus, muscles of sedentary β1β2M-KO mice display a significant myopathy (decreased myofiber areas, increased split and necrotic myofibers, and increased centrally nucleated myofibers. A mitochondrial- and fiber-type-specific etiology to the myopathy was ruled out. However, β1β2M-KO TA muscles displayed significant (P<0.05) increases in platelet aggregation and apoptosis within myofibers and surrounding interstitium (P<0.05). These changes correlated with a 45% decrease in capillary density (P<0.05). We hypothesized that the β1β2M-KO myopathy in resting muscle resulted from impaired AMPK-nNOSμ signaling, causing increased platelet aggregation, impaired vasodilation, and, ultimately, ischemic injury. Consistent with this hypothesis, AMPK-specific phosphorylation (Ser1446) of nNOSμ was decreased in β1β2M-KO compared to wild-type (WT) mice. The AMPK-nNOSμ relationship was further demonstrated by administration of 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR) to β1β2-MKO muscles and C2C12 myotubes. AICAR significantly increased nNOSμ phosphorylation and nitric oxide production (P<0.05) within minutes of administration in WT muscles and C2C12 myotubes but not in β1β2M-KO muscles. These findings highlight the importance of the AMPK-nNOSμ pathway in resting skeletal muscle.

  14. Adiponectin promotes hyaluronan synthesis along with increases in hyaluronan synthase 2 transcripts through an AMP-activated protein kinase/peroxisome proliferator-activated receptor-{alpha}-dependent pathway in human dermal fibroblasts

    SciTech Connect

    Yamane, Takumi; Kobayashi-Hattori, Kazuo; Oishi, Yuichi

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Adiponectin promotes hyaluronan synthesis along with an increase in HAS2 transcripts. Black-Right-Pointing-Pointer Adiponectin also increases the phosphorylation of AMPK. Black-Right-Pointing-Pointer A pharmacological activator of AMPK increases mRNA levels of PPAR{alpha} and HAS2. Black-Right-Pointing-Pointer Adiponectin-induced HAS2 mRNA expression is blocked by a PPAR{alpha} antagonist. Black-Right-Pointing-Pointer Adiponectin promotes hyaluronan synthesis via an AMPK/PPAR{alpha}-dependent pathway. -- Abstract: Although adipocytokines affect the functions of skin, little information is available on the effect of adiponectin on the skin. In this study, we investigated the effect of adiponectin on hyaluronan synthesis and its regulatory mechanisms in human dermal fibroblasts. Adiponectin promoted hyaluronan synthesis along with an increase in the mRNA levels of hyaluronan synthase 2 (HAS2), which plays a primary role in hyaluronan synthesis. Adiponectin also increased the phosphorylation of AMP-activated protein kinase (AMPK). A pharmacological activator of AMPK, 5-aminoimidazole-4-carboxamide-1{beta}-ribofuranoside (AICAR), increased mRNA levels of peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}), which enhances the expression of HAS2 mRNA. In addition, AICAR increased the mRNA levels of HAS2. Adiponectin-induced HAS2 mRNA expression was blocked by GW6471, a PPAR{alpha} antagonist, in a concentration-dependent manner. These results show that adiponectin promotes hyaluronan synthesis along with increases in HAS2 transcripts through an AMPK/PPAR{alpha}-dependent pathway in human dermal fibroblasts. Thus, our study suggests that adiponectin may be beneficial for retaining moisture in the skin, anti-inflammatory activity, and the treatment of a variety of cutaneous diseases.

  15. TBC1D1 reduces palmitate oxidation by inhibiting β-HAD activity in skeletal muscle.

    PubMed

    Maher, A C; McFarlan, J; Lally, J; Snook, L A; Bonen, A

    2014-11-01

    In skeletal muscle the Rab-GTPase-activating protein TBC1D1 has been implicated in the regulation of fatty acid oxidation by an unknown mechanism. We determined whether TBC1D1 altered fatty acid utilization via changes in protein-mediated fatty acid transport and/or selected enzymes regulating mitochondrial fatty acid oxidation. We also determined the effects of TBC1D1 on glucose transport and oxidation. Electrotransfection of mouse soleus muscles with TBC1D1 cDNA increased TBC1D1 protein after 2 wk (P<0.05), without altering its paralog AS160. TBC1D1 overexpression decreased basal palmitate oxidation (-22%) while blunting 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)-stimulated palmitate oxidation (-18%). There was a tendency to increase fatty acid esterification (+10 nmol·g(-1)·60 min(-1), P=0.07), which reflected the reduction in fatty acid oxidation (-12 nmol·g(-1)·60 min(-1)). Concomitantly, basal (+21%) and AICAR-stimulated glucose oxidation (+8%) were increased in TBC1D1-transfected muscles relative to their respective controls (P<0.05), independent of changes in GLUT4 and glucose transport. The reductions in TBC1D1-mediated fatty acid oxidation could not be attributed to changes in the transporter FAT/CD36, muscle mitochondrial content, CPT1 expression or the expression and phosphorylation of AS160, acetyl-CoA carboxylase, or AMPK. However, TBC1D1 overexpression reduced β-HAD enzyme activity (-18%, P<0.05). In conclusion, TBC1D1-mediated reduction of muscle fatty acid oxidation appears to occur via inhibition of β-HAD activity.

  16. AMPK Signaling Involvement for the Repression of the IL-1β-Induced Group IIA Secretory Phospholipase A2 Expression in VSMCs

    PubMed Central

    El Hadri, Khadija; Denoyelle, Chantal; Ravaux, Lucas; Viollet, Benoit; Foretz, Marc; Friguet, Bertrand; Rouis, Mustapha; Raymondjean, Michel

    2015-01-01

    Secretory Phospholipase A2 of type IIA (sPLA2 IIA) plays a crucial role in the production of lipid mediators by amplifying the neointimal inflammatory context of the vascular smooth muscle cells (VSMCs), especially during atherogenesis. Phenformin, a biguanide family member, by its anti-inflammatory properties presents potential for promoting beneficial effects upon vascular cells, however its impact upon the IL-1β-induced sPLA2 gene expression has not been deeply investigated so far. The present study was designed to determine the relationship between phenformin coupling AMP-activated protein kinase (AMPK) function and the molecular mechanism by which the sPLA2 IIA expression was modulated in VSMCs. Here we find that 5-aminoimidazole-4-carboxamide-1-β-D-ribonucleotide (AICAR) treatment strongly repressed IL-1β-induced sPLA2 expression at least at the transcriptional level. Our study reveals that phenformin elicited a dose-dependent inhibition of the sPLA2 IIA expression and transient overexpression experiments of constitutively active AMPK demonstrate clearly that AMPK signaling is involved in the transcriptional inhibition of sPLA2-IIA gene expression. Furthermore, although the expression of the transcriptional repressor B-cell lymphoma-6 protein (BCL-6) was markedly enhanced by phenformin and AICAR, the repression of sPLA2 gene occurs through a mechanism independent of BCL-6 DNA binding site. In addition we show that activation of AMPK limits IL-1β-induced NF-κB pathway activation. Our results indicate that BCL-6, once activated by AMPK, functions as a competitor of the IL-1β induced NF-κB transcription complex. Our findings provide insights on a new anti-inflammatory pathway linking phenformin, AMPK and molecular control of sPLA2 IIA gene expression in VSMCs. PMID:26162096

  17. Synthesis and Characterization of AICAR and DOX Conjugated Multifunctional Nanoparticles as a Platform for Synergistic Inhibition of Cancer Cell Growth.

    PubMed

    Daglioglu, Cenk; Okutucu, Burcu

    2016-04-20

    The success of cancer treatment depends on the response to chemotherapeutic agents. However, malignancies often acquire resistance to drugs if they are used frequently. Combination therapy involving both a chemotherapeutic agent and molecularly targeted therapy may have the ability to retain and enhance therapeutic efficacy. Here, we addressed this issue by examining the efficacy of a novel therapeutic strategy that combines AICAR and DOX within a multifunctional platform. In this context, we reported the bottom-up synthesis of Fe3O4@SiO2(FITC)-FA/AICAR/DOX multifunctional nanoparticles aiming to neutralize survivin (BIRC5) to potentiate the efficacy of DOX against chemoresistance. The structure of nanoparticles was characterized by dynamic light scattering (DLS), zeta-potential measurement, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and electron microscopy (SEM and STEM with EDX) techniques. Cellular uptake and cytotoxicity experiments demonstrated preferentially targeted delivery of nanoparticles and an efficient reduction of cancer cell viability in five different tumor-derived cell lines (A549, HCT-116, HeLa, Jurkat, and MIA PaCa-2). These results indicate that the multifunctional nanoparticle system possesses high inhibitory drug association and sustained cytotoxic effect with good biocompatibility. This novel approach which combines AICAR and DOX within a single platform might be promising as an antitumor treatment for cancer. PMID:26996194

  18. Contraction and AICAR Stimulate IL-6 Vesicle Depletion From Skeletal Muscle Fibers In Vivo

    PubMed Central

    Lauritzen, Hans P.M.M.; Brandauer, Josef; Schjerling, Peter; Koh, Ho-Jin; Treebak, Jonas T.; Hirshman, Michael F.; Galbo, Henrik; Goodyear, Laurie J.

    2013-01-01

    Recent studies suggest that interleukin 6 (IL-6) is released from contracting skeletal muscles; however, the cellular origin, secretion kinetics, and signaling mechanisms regulating IL-6 secretion are unknown. To address these questions, we developed imaging methodology to study IL-6 in fixed mouse muscle fibers and in live animals in vivo. Using confocal imaging to visualize endogenous IL-6 protein in fixed muscle fibers, we found IL-6 in small vesicle structures distributed throughout the fibers under basal (resting) conditions. To determine the kinetics of IL-6 secretion, intact quadriceps muscles were transfected with enhanced green fluorescent protein (EGFP)-tagged IL-6 (IL-6-EGFP), and 5 days later anesthetized mice were imaged before and after muscle contractions in situ. Contractions decreased IL-6-EGFP–containing vesicles and protein by 62% (P < 0.05), occurring rapidly and progressively over 25 min of contraction. However, contraction-mediated IL-6-EGFP reduction was normal in muscle-specific AMP-activated protein kinase (AMPK) α2-inactive transgenic mice. In contrast, the AMPK activator AICAR decreased IL-6-EGFP vesicles, an effect that was inhibited in the transgenic mice. In conclusion, resting skeletal muscles contain IL-6–positive vesicles that are expressed throughout myofibers. Contractions stimulate the rapid reduction of IL-6 in myofibers, occurring through an AMPKα2-independent mechanism. This novel imaging methodology clearly establishes IL-6 as a contraction-stimulated myokine and can be used to characterize the secretion kinetics of other putative myokines. PMID:23761105

  19. Ribonucleoside labeling with Os(VI): a methodological approach to evaluation of RNA methylation by HPLC-ICP-MS.

    PubMed

    Wrobel, Katarzyna; Rodríguez Flores, Crescencio; Chan, Qilin; Wrobel, Kazimierz

    2010-02-01

    Covalent modifications of nucleobases are thought to play an important role in regulating the functions of DNA and various cellular RNA types. Perhaps the best characterized is DNA methylation on cytosine (methyl tag attached to carbon 5 position) and such modification has also been detected in stable and long-lived RNA molecules. In this work, we propose a novel procedure enabling very sensitive quantification of methylcytidine and other ribonucleosides, based on reversed phase liquid chromatography with inductively coupled plasma mass spectrometry (ICP-MS) detection. The procedure relies on labeling ribose residues with osmium, by formation of a ternary complex between cis-diol ribose groups, hexavalent osmium (K(2)OsO(2)(OH)(4)) and tetramethylethylenediamine (TEMED). The derivatization reaction was carried out with 50 : 1 molar excess of Os to ribonucleoside, pH 4, for 2 h at room temperature. The structures of Os-labeled cytidine and methylcytidine were confirmed by electrospray ionization mass spectrometry. The separation of Os-labeled cytidine (C), uridine (U), 5-methylcytidine (5mC) and guanosine (G) was achieved on C18 column (Gemini, 150 × 3 mm, 5 μm) with isocratic elution (0.05% triethylamine + 6 mmol L(-1) ammonium acetate, pH 4.4: methanol (85 : 15)) and a total flow rate 0.6 mL min(-1). The column effluent was on-line introduced to ICP-MS (a model 7500 ce, Agilent Technologies) for specific detection at (189)Os. Calibration was performed within the concentration range 0-200 nmol L(-1) of each ribonucleoside and the analytical figures of merit were evaluated. For 100 μL injection, the detection limits for C, U, 5mC, G were 24, 38, 21 and 28 pmol L(-1), respectively. While introducing Os(vi)-TEMED to the column, it eluted in the dead volume and the detection limit for osmium was 20 pmol L(-1). The results obtained in this work might be helpful in the analysis of RNA digests, providing quantitative data on the ribonucleoside composition and

  20. AMP-activated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD.

    PubMed

    Brandauer, Josef; Andersen, Marianne A; Kellezi, Holti; Risis, Steve; Frøsig, Christian; Vienberg, Sara G; Treebak, Jonas T

    2015-01-01

    The mitochondrial protein deacetylase sirtuin (SIRT) 3 may mediate exercise training-induced increases in mitochondrial biogenesis and improvements in reactive oxygen species (ROS) handling. We determined the requirement of AMP-activated protein kinase (AMPK) for exercise training-induced increases in skeletal muscle abundance of SIRT3 and other mitochondrial proteins. Exercise training for 6.5 weeks increased SIRT3 (p < 0.01) and superoxide dismutase 2 (MnSOD; p < 0.05) protein abundance in quadriceps muscle of wild-type (WT; n = 13-15), but not AMPK α2 kinase dead (KD; n = 12-13) mice. We also observed a strong trend for increased MnSOD abundance in exercise-trained skeletal muscle of healthy humans (p = 0.051; n = 6). To further elucidate a role for AMPK in mediating these effects, we treated WT (n = 7-8) and AMPK α2 KD (n = 7-9) mice with 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR). Four weeks of daily AICAR injections (500 mg/kg) resulted in AMPK-dependent increases in SIRT3 (p < 0.05) and MnSOD (p < 0.01) in WT, but not AMPK α2 KD mice. We also tested the effect of repeated AICAR treatment on mitochondrial protein levels in mice lacking the transcriptional coactivator peroxisome proliferator-activated receptor γ-coactivator 1α (PGC-1α KO; n = 9-10). Skeletal muscle SIRT3 and MnSOD protein abundance was reduced in sedentary PGC-1α KO mice (p < 0.01) and AICAR-induced increases in SIRT3 and MnSOD protein abundance was only observed in WT mice (p < 0.05). Finally, the acetylation status of SIRT3 target lysine residues on MnSOD (K122) or oligomycin-sensitivity conferring protein (OSCP; K139) was not altered in either mouse or human skeletal muscle in response to acute exercise. We propose an important role for AMPK in regulating mitochondrial function and ROS handling in skeletal muscle in response to exercise training. PMID:25852572

  1. AMP-activated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD

    PubMed Central

    Brandauer, Josef; Andersen, Marianne A.; Kellezi, Holti; Risis, Steve; Frøsig, Christian; Vienberg, Sara G.; Treebak, Jonas T.

    2015-01-01

    The mitochondrial protein deacetylase sirtuin (SIRT) 3 may mediate exercise training-induced increases in mitochondrial biogenesis and improvements in reactive oxygen species (ROS) handling. We determined the requirement of AMP-activated protein kinase (AMPK) for exercise training-induced increases in skeletal muscle abundance of SIRT3 and other mitochondrial proteins. Exercise training for 6.5 weeks increased SIRT3 (p < 0.01) and superoxide dismutase 2 (MnSOD; p < 0.05) protein abundance in quadriceps muscle of wild-type (WT; n = 13–15), but not AMPK α2 kinase dead (KD; n = 12–13) mice. We also observed a strong trend for increased MnSOD abundance in exercise-trained skeletal muscle of healthy humans (p = 0.051; n = 6). To further elucidate a role for AMPK in mediating these effects, we treated WT (n = 7–8) and AMPK α2 KD (n = 7–9) mice with 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR). Four weeks of daily AICAR injections (500 mg/kg) resulted in AMPK-dependent increases in SIRT3 (p < 0.05) and MnSOD (p < 0.01) in WT, but not AMPK α2 KD mice. We also tested the effect of repeated AICAR treatment on mitochondrial protein levels in mice lacking the transcriptional coactivator peroxisome proliferator-activated receptor γ-coactivator 1α (PGC-1α KO; n = 9–10). Skeletal muscle SIRT3 and MnSOD protein abundance was reduced in sedentary PGC-1α KO mice (p < 0.01) and AICAR-induced increases in SIRT3 and MnSOD protein abundance was only observed in WT mice (p < 0.05). Finally, the acetylation status of SIRT3 target lysine residues on MnSOD (K122) or oligomycin-sensitivity conferring protein (OSCP; K139) was not altered in either mouse or human skeletal muscle in response to acute exercise. We propose an important role for AMPK in regulating mitochondrial function and ROS handling in skeletal muscle in response to exercise training. PMID:25852572

  2. AMP-Activated Kinase (AMPK) Activation by AICAR in Human White Adipocytes Derived from Pericardial White Adipose Tissue Stem Cells Induces a Partial Beige-Like Phenotype.

    PubMed

    Abdul-Rahman, Omar; Kristóf, Endre; Doan-Xuan, Quang-Minh; Vida, András; Nagy, Lilla; Horváth, Ambrus; Simon, József; Maros, Tamás; Szentkirályi, István; Palotás, Lehel; Debreceni, Tamás; Csizmadia, Péter; Szerafin, Tamás; Fodor, Tamás; Szántó, Magdolna; Tóth, Attila; Kiss, Borbála; Bacsó, Zsolt; Bai, Péter

    2016-01-01

    Beige adipocytes are special cells situated in the white adipose tissue. Beige adipocytes, lacking thermogenic cues, morphologically look quite similar to regular white adipocytes, but with a markedly different response to adrenalin. White adipocytes respond to adrenergic stimuli by enhancing lipolysis, while in beige adipocytes adrenalin induces mitochondrial biogenesis too. A key step in the differentiation and function of beige adipocytes is the deacetylation of peroxisome proliferator-activated receptor (PPARγ) by SIRT1 and the consequent mitochondrial biogenesis. AMP-activated protein kinase (AMPK) is an upstream activator of SIRT1, therefore we set out to investigate the role of AMPK in beige adipocyte differentiation using human adipose-derived mesenchymal stem cells (hADMSCs) from pericardial adipose tissue. hADMSCs were differentiated to white and beige adipocytes and the differentiation medium of the white adipocytes was supplemented with 100 μM [(2R,3S,4R,5R)-5-(4-Carbamoyl-5-aminoimidazol-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate (AICAR), a known activator of AMPK. The activation of AMPK with AICAR led to the appearance of beige-like morphological properties in differentiated white adipocytes. Namely, smaller lipid droplets appeared in AICAR-treated white adipocytes in a similar fashion as in beige cells. Moreover, in AICAR-treated white adipocytes the mitochondrial network was more fused than in white adipocytes; a fused mitochondrial system was characteristic to beige adipocytes. Despite the morphological similarities between AICAR-treated white adipocytes and beige cells, functionally AICAR-treated white adipocytes were similar to white adipocytes. We were unable to detect increases in basal or cAMP-induced oxygen consumption rate (a marker of mitochondrial biogenesis) when comparing control and AICAR-treated white adipocytes. Similarly, markers of beige adipocytes such as TBX1, UCP1, CIDEA, PRDM16 and TMEM26 remained the same when

  3. AMP-Activated Kinase (AMPK) Activation by AICAR in Human White Adipocytes Derived from Pericardial White Adipose Tissue Stem Cells Induces a Partial Beige-Like Phenotype

    PubMed Central

    Abdul-Rahman, Omar; Kristóf, Endre; Doan-Xuan, Quang-Minh; Vida, András; Nagy, Lilla; Horváth, Ambrus; Simon, József; Maros, Tamás; Szentkirályi, István; Palotás, Lehel; Debreceni, Tamás; Csizmadia, Péter; Szerafin, Tamás; Fodor, Tamás; Szántó, Magdolna; Tóth, Attila; Kiss, Borbála; Bacsó, Zsolt; Bai, Péter

    2016-01-01

    Beige adipocytes are special cells situated in the white adipose tissue. Beige adipocytes, lacking thermogenic cues, morphologically look quite similar to regular white adipocytes, but with a markedly different response to adrenalin. White adipocytes respond to adrenergic stimuli by enhancing lipolysis, while in beige adipocytes adrenalin induces mitochondrial biogenesis too. A key step in the differentiation and function of beige adipocytes is the deacetylation of peroxisome proliferator-activated receptor (PPARγ) by SIRT1 and the consequent mitochondrial biogenesis. AMP-activated protein kinase (AMPK) is an upstream activator of SIRT1, therefore we set out to investigate the role of AMPK in beige adipocyte differentiation using human adipose-derived mesenchymal stem cells (hADMSCs) from pericardial adipose tissue. hADMSCs were differentiated to white and beige adipocytes and the differentiation medium of the white adipocytes was supplemented with 100 μM [(2R,3S,4R,5R)-5-(4-Carbamoyl-5-aminoimidazol-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate (AICAR), a known activator of AMPK. The activation of AMPK with AICAR led to the appearance of beige-like morphological properties in differentiated white adipocytes. Namely, smaller lipid droplets appeared in AICAR-treated white adipocytes in a similar fashion as in beige cells. Moreover, in AICAR-treated white adipocytes the mitochondrial network was more fused than in white adipocytes; a fused mitochondrial system was characteristic to beige adipocytes. Despite the morphological similarities between AICAR-treated white adipocytes and beige cells, functionally AICAR-treated white adipocytes were similar to white adipocytes. We were unable to detect increases in basal or cAMP-induced oxygen consumption rate (a marker of mitochondrial biogenesis) when comparing control and AICAR-treated white adipocytes. Similarly, markers of beige adipocytes such as TBX1, UCP1, CIDEA, PRDM16 and TMEM26 remained the same when

  4. Characterization of the three-dimensional free energy manifold for the uracil ribonucleoside from asynchronous replica exchange simulations.

    PubMed

    Radak, Brian K; Romanus, Melissa; Lee, Tai-Sung; Chen, Haoyuan; Huang, Ming; Treikalis, Antons; Balasubramanian, Vivekanandan; Jha, Shantenu; York, Darrin M

    2015-02-10

    Replica exchange molecular dynamics has emerged as a powerful tool for efficiently sampling free energy landscapes for conformational and chemical transitions. However, daunting challenges remain in efficiently getting such simulations to scale to the very large number of replicas required to address problems in state spaces beyond two dimensions. The development of enabling technology to carry out such simulations is in its infancy, and thus it remains an open question as to which applications demand extension into higher dimensions. In the present work, we explore this problem space by applying asynchronous Hamiltonian replica exchange molecular dynamics with a combined quantum mechanical/molecular mechanical potential to explore the conformational space for a simple ribonucleoside. This is done using a newly developed software framework capable of executing >3,000 replicas with only enough resources to run 2,000 simultaneously. This may not be possible with traditional synchronous replica exchange approaches. Our results demonstrate 1.) the necessity of high dimensional sampling simulations for biological systems, even as simple as a single ribonucleoside, and 2.) the utility of asynchronous exchange protocols in managing simultaneous resource requirements expected in high dimensional sampling simulations. It is expected that more complicated systems will only increase in computational demand and complexity, and thus the reported asynchronous approach may be increasingly beneficial in order to make such applications available to a broad range of computational scientists. PMID:26580900

  5. Doping control analysis of 46 polar drugs in horse plasma and urine using a 'dilute-and-shoot' ultra high performance liquid chromatography-high resolution mass spectrometry approach.

    PubMed

    Kwok, Wai Him; Choi, Timmy L S; Kwok, Karen Y; Chan, George H M; Wong, Jenny K Y; Wan, Terence S M

    2016-06-17

    The high sensitivity of ultra high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC-HRMS) allows the identification of many prohibited substances without pre-concentration, leading to the development of simple and fast 'dilute-and-shoot' methods for doping control for human and equine sports. While the detection of polar drugs in plasma and urine is difficult using liquid-liquid or solid-phase extraction as these substances are poorly extracted, the 'dilute-and-shoot' approach is plausible. This paper describes a 'dilute-and-shoot' UHPLC-HRMS screening method to detect 46 polar drugs in equine urine and plasma, including some angiotensin-converting enzyme (ACE) inhibitors, sympathomimetics, anti-epileptics, hemostatics, the new doping agent 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), as well as two threshold substances, namely dimethyl sulfoxide and theobromine. For plasma, the sample (200μL) was protein precipitated using trichloroacetic acid, and the resulting supernatant was diluted using Buffer A with an overall dilution factor of 3. For urine, the sample (20μL) was simply diluted 50-fold with Buffer A. The diluted plasma or urine sample was then analysed using a UHPLC-HRMS system in full-scan ESI mode. The assay was validated for qualitative identification purpose. This straightforward and reliable approach carried out in combination with other screening procedures has increased the efficiency of doping control analysis in the laboratory. Moreover, since the UHPLC-HRMS data were acquired in full-scan mode, the method could theoretically accommodate an unlimited number of existing and new doping agents, and would allow a retrospectively search for drugs that have not been targeted at the time of analysis. PMID:27180888

  6. A Novel Function for the NTN Hydrolase Fold Demonstrated by the Structure of an Archeal Inosine Monophosphate Cyclohydrolase†,‡

    PubMed Central

    Kang, You-Na; Tran, Anh; White, Robert H.; Ealick, Steven E.

    2008-01-01

    Inosine 5′-monophosphate (IMP) cyclohydrolase catalyzes the cyclization of 5-formaminoimidazole-4-carboxamide ribonucleotide (FAICAR) to IMP in the final step of de novo purine biosynthesis. Two major types of this enzyme have been discovered to date: PurH in Bacteria and Eukarya, and PurO in Archaea. The structure of the MTH1020 gene product from Methanothermobacter thermoautotrophicus was previously solved without functional annotation but shows high amino acid sequence similarity to other PurOs. We determined the crystal structure of the MTH1020 gene product in complex with either IMP or 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) at 2.0 Å and 2.6 Å resolution, respectively. Based on the sequence analysis, ligand-bound structures, and biochemical data, MTH1020 is confirmed as an archaeal IMP cyclohydrolase, thus designated as MthPurO. MthPurO has a four-layered αββα core structure, showing an N-terminal nucleophile (NTN) hydrolase fold. The active site is located at the deep pocket between two central β-sheets and contains residues strictly conserved within PurOs. Comparisons of the two types of IMP cyclohydrolase, PurO and PurH, revealed that there are no similarities in sequence, structure, or the active site architecture, suggesting that they are evolutionarily not related to each other. The MjR31K mutant of PurO from Methanocaldococcus jannaschii showed 76% decreased activity and MjE102Q mutation completely abolished enzymatic activity, suggesting that these highly conserved residues play critical roles in catalysis. Interestingly, green fluorescent protein (GFP), which has no structural homology to either PurO or PurH but catalyzes a similar intramolecular cyclohydrolase reaction required for chromophore maturation, utilizes Arg96 and Glu222 in a mechanism analogous to that of PurO. PMID:17407260

  7. Phyllostachys edulis extract induces apoptosis signaling in osteosarcoma cells, associated with AMPK activation

    PubMed Central

    Chou, Chi-Wen; Cheng, Ya-Wen; Tsai, Chung-Hung

    2014-01-01

    Objective Bamboo is distributed worldwide, and its different parts are used as foods or as a traditional herb. Recently, antitumoral effects of bamboo extracts on several tumors have been increasingly reported; however, antitumoral activity of bamboo extracts on osteosarcoma remains unclear. In the present study, we investigated effects of an aqueous Phyllostachys edulis leaf extract (PEE) on osteosarcoma cells and the underlying mechanism of inhibition. Methods The growth of human osteosarcoma cell lines 143B and MG-63 and lung fibroblast MRC-5 cells was determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Apoptosis was demonstrated using TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay and flow cytometric analysis. Phosphorylation and protein levels were determined by immunoblotting. Results After treatment with PEE, viability of 143B and MG-63 cells was dose-dependently reduced to 36.3%±1.6% of control values, which were similar to AICAR (5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside) treatments. In parallel, ratios of apoptotic cells and cells in the sub-G1 phase were significantly increased. Further investigation showed that PEE treatments led to activation of caspase cascades and changes of apoptotic mediators Bcl2, Bax, and p53. Consistently, our results revealed that PEE activated adenosine monophosphate-activated protein kinase (AMPK) signaling, and the AMPK activation was associated with the induction of apoptotic signaling. Conclusion Our results indicated that PEE suppressed the growth of 143B and MG-63 cells but moderately affected MRC-5 cells. PEE-induced apoptosis may attribute to AMPK activation and the following activation of apoptotic signaling cascades. These findings revealed that PEE possesses antitumoral activity on human osteosarcoma cells by manipulating AMPK signaling, suggesting that PEE alone or combined with regular antitumor drugs may be beneficial as osteosarcoma

  8. N-cadherin coordinates AMP kinase-mediated lung vascular repair.

    PubMed

    Jian, Ming-Yuan; Liu, Yanping; Li, Qian; Wolkowicz, Paul; Alexeyev, Mikhail; Zmijewski, Jaroslaw; Creighton, Judy

    2016-01-01

    Injury to the pulmonary circulation compromises endothelial barrier function and increases lung edema. Resolution of lung damage involves restoring barrier integrity, a process requiring reestablishment of endothelial cell-cell adhesions. However, mechanisms underlying repair in lung endothelium are poorly understood. In pulmonary microvascular endothelium, AMP kinase α1 (AMPKα1) stimulation enhances recovery of the endothelial barrier after LPS-induced vascular damage. AMPKα1 colocalizes to a discrete membrane compartment with the adhesion protein neuronal cadherin (N-cadherin). This study sought to determine N-cadherin's role in the repair process. Short-hairpin RNA against full-length N-cadherin or a C-terminally truncated N-cadherin, designed to disrupt the cadherin's interactions with intracellular proteins, were expressed in lung endothelium. Disruption of N-cadherin's intracellular domain caused translocation of AMPK away from the membrane and attenuated AMPK-mediated restoration of barrier function in LPS-treated endothelium. AMPK activity measurements indicated that lower basal AMPK activity in cells expressing the truncated N-cadherin compared with controls. Moreover, the AMPK stimulator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) failed to increase AMPK activity in cells expressing the modified N-cadherin, indicating uncoupling of a functional association between AMPK and the cadherin. Isolated lung studies confirmed a physiologic role for this pathway in vivo. AMPK activation reversed LPS-induced increase in permeability, whereas N-cadherin inhibition hindered AMPK-mediated repair. Thus N-cadherin coordinates the vascular protective actions of AMPK through a functional link with the kinase. This study provides insight into intrinsic repair mechanisms in the lung and supports AMPK stimulation as a modality for treating vascular disease.

  9. AMP-activated protein kinase (AMPK) regulates the insulin-induced activation of the nitric oxide synthase in human platelets.

    PubMed

    Fleming, Ingrid; Schulz, Christian; Fichtlscherer, Birgit; Kemp, Bruce E; Fisslthaler, Beate; Busse, Rudi

    2003-11-01

    Little is known about the signaling cascades that eventually regulate the activity of the endothelial nitric oxide synthase (eNOS) in platelets. Here, we investigated the effects of insulin on the phosphorylation and activation of eNOS in washed human platelets and in endothelial cells. Insulin activated the protein kinase Akt in cultured endothelial cells and increased the phosphorylation of eNOS on Ser(1177) but failed to increase endothelial cyclic GMP levels or to elicit the relaxation of endothelium-intact porcine coronary arteries. In platelets, insulin also elicited the activation of Akt as well as the phosphorylation of eNOS and initiated NO production which was associated with increased cyclic GMP levels and the inhibition of thrombin-induced aggregation. The insulin-induced inhibition of aggregation was accompanied by a decreased Ca(2+) response to thrombin and was also prevented by N(omega) nitro-L-arginine. In platelets, but not in endothelial cells, insulin induced the activation of the AMP-activated protein kinase (AMPK), a metabolic stress-sensing kinase which was sensitive to the phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin and the AMPK inhibitor iodotubercidin. Moreover, the insulin-mediated inhibition of thrombin-induced aggregation was prevented by iodotubercidin. Insulin-independent activation of the AMPK using 5-aminoimidazole-4-carboxamide ribonucleoside, increased platelet eNOS phosphorylation, increased cyclic GMP levels and attenuated platelet aggregation. These results highlight the differences in the signal transduction cascade activated by insulin in endothelial cells and platelets, and demonstrate that insulin stimulates the formation of NO in human platelets, in the absence of an increase in Ca(2+), by acti-vating PI3-K and AMPK which phosphorylates eNOS on Ser(1177).

  10. Berberine Improves Kidney Function in Diabetic Mice via AMPK Activation

    PubMed Central

    Zhao, Long; Sun, Li-Na; Nie, Hui-Bin; Wang, Xue-Ling; Guan, Guang-Ju

    2014-01-01

    Diabetic nephropathy is a major cause of morbidity and mortality in diabetic patients. Effective therapies to prevent the development of this disease are required. Berberine (BBR) has several preventive effects on diabetes and its complications. However, the molecular mechanism of BBR on kidney function in diabetes is not well defined. Here, we reported that activation of AMP-activated protein kinase (AMPK) is required for BBR-induced improvement of kidney function in vivo. AMPK phosphorylation and activity, productions of reactive oxygen species (ROS), kidney function including serum blood urea nitrogen (BUN), creatinine clearance (Ccr), and urinary protein excretion, morphology of glomerulus were determined in vitro or in vivo. Exposure of cultured human glomerulus mesangial cells (HGMCs) to BBR time- or dose-dependently activates AMPK by increasing the thr172 phosphorylation and its activities. Inhibition of LKB1 by siRNA or mutant abolished BBR-induced AMPK activation. Incubation of cells with high glucose (HG, 30 mM) markedly induced the oxidative stress of HGMCs, which were abolished by 5-aminoimidazole-4-carboxamide ribonucleoside, AMPK gene overexpression or BBR. Importantly, the effects induced by BBR were bypassed by AMPK siRNA transfection in HG-treated HGMCs. In animal studies, streptozotocin-induced hyperglycemia dramatically promoted glomerulosclerosis and impaired kidney function by increasing serum BUN, urinary protein excretion, and decreasing Ccr, as well as increased oxidative stress. Administration of BBR remarkably improved kidney function in wildtype mice but not in AMPKα2-deficient mice. We conclude that AMPK activation is required for BBR to improve kidney function in diabetic mice. PMID:25409232

  11. δ-Opioid receptors stimulate the metabolic sensor AMP-activated protein kinase through coincident signaling with G(q/11)-coupled receptors.

    PubMed

    Olianas, Maria C; Dedoni, Simona; Olianas, Alessandra; Onali, Pierluigi

    2012-02-01

    AMP-activated protein kinase (AMPK) and δ-opioid receptors (DORs) are both involved in controlling cell survival, energy metabolism, and food intake, but little is known on the interaction between these two signaling molecules. Here we show that activation of human DORs stably expressed in Chinese hamster ovary (CHO) cells increased AMPK activity and AMPK phosphorylation on Thr172. DOR-induced AMPK phosphorylation was prevented by pertussis toxin, reduced by protein kinase A (PKA) activators, and unaffected by PKA, transforming growth factor-β-activated kinase 1, mitogen-activated protein kinase, and protein kinase C inhibitors. Conversely, the DOR effect was reduced by Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK) inhibition, apyrase treatment, G(q/11) antagonism, and blockade of P2 purinergic receptors. Apyrase treatment also depressed DOR stimulation of intracellular Ca(2+) concentration, whereas P2 receptor antagonism blocked DOR stimulation of inositol phosphate accumulation. In SH-SY5Y neuroblastoma cells and primary olfactory bulb neurons, DOR activation failed to affect AMPK phosphorylation per se but potentiated the stimulation by either muscarinic agonists or 2-methyl-thio-ADP. Sequestration of G protein βγ subunits (Gβγ) blocked the DOR potentiation of AMPK phosphorylation induced by oxotremorine-M. In CHO cells, the AMPK activator 5-aminoimidazole-4-carboxamide1-β-D-ribonucleoside stimulated AMPK phosphorylation and glucose uptake, whereas pharmacological inhibition of AMPK, expression of a dominant-negative mutant of AMPKα1, and P2Y receptor blockade reduced DOR-stimulated glucose uptake. The data indicate that in different cell systems, DOR activation up-regulates AMPK through a Gβγ-dependent synergistic interaction with G(q/11)-coupled receptors, potentiating Ca(2+) release and CaMKKβ-dependent AMPK phosphorylation. In CHO cells, this coincident signaling mechanism is involved in DOR-induced glucose uptake. PMID:22031472

  12. Comprehensive profiling of ribonucleosides modification by affinity zirconium oxide-silica composite monolithic column online solid-phase microextraction - Mass spectrometry analysis.

    PubMed

    Jiang, Han-Peng; Chu, Jie-Mei; Lan, Meng-Dan; Liu, Ping; Yang, Na; Zheng, Fang; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-09-01

    More than 140 modified ribonucleosides have been identified in RNA. Determination of endogenous modified ribonucleosides in biological fluids may serve as non-invasive disease diagnostic strategy. However, detection of the modified ribonucleosides in biological fluids is challenging, especially for the low abundant modified ribonucleosides due to the serious matrix interferences of biological fluids. Here, we developed a facile preparation strategy and successfully synthesized zirconium oxide-silica (ZrO2/SiO2) composite capillary monolithic column that exhibited excellent performance for the selective enrichment of cis-diol-containing compounds. Compared with the boronate-based affinity monolith, the ZrO2/SiO2 monolith showed ∼2 orders of magnitude higher extraction capacity and can be used under physiological pH (pH 6.5-7.5). Using the prepared ZrO2/SiO2 composite monolith as the trapping column and reversed-phase C18 column as the analytical column, we further established an online solid-phase microextraction (SPME) in combination with liquid chromatography-mass spectrometry (online SPME-LC-MS/MS) analysis for the comprehensive profiling of ribonucleosides modification in human urine. Our results showed that 68 cis-diol-containing ribosylated compounds were identified in human urine, which is, to the best of our knowledge, the highest numbers of cis-diol-containing compounds were determined in a single analysis. It is worth noting that four modified ribonucleosides were discovered in the human urine for the first time. In addition, the quantification results from the pooled urine samples showed that compared to healthy controls, the contents of sixteen ribose conjugates in the urine of gastric cancer, eleven in esophagus cancer and seven in lymphoma increased more than two folds. Among these ribose conjugates, four ribose conjugates increased more than two folds in both gastric cancer and esophagus cancer; three ribose conjugates increased more than two

  13. Comprehensive profiling of ribonucleosides modification by affinity zirconium oxide-silica composite monolithic column online solid-phase microextraction - Mass spectrometry analysis.

    PubMed

    Jiang, Han-Peng; Chu, Jie-Mei; Lan, Meng-Dan; Liu, Ping; Yang, Na; Zheng, Fang; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-09-01

    More than 140 modified ribonucleosides have been identified in RNA. Determination of endogenous modified ribonucleosides in biological fluids may serve as non-invasive disease diagnostic strategy. However, detection of the modified ribonucleosides in biological fluids is challenging, especially for the low abundant modified ribonucleosides due to the serious matrix interferences of biological fluids. Here, we developed a facile preparation strategy and successfully synthesized zirconium oxide-silica (ZrO2/SiO2) composite capillary monolithic column that exhibited excellent performance for the selective enrichment of cis-diol-containing compounds. Compared with the boronate-based affinity monolith, the ZrO2/SiO2 monolith showed ∼2 orders of magnitude higher extraction capacity and can be used under physiological pH (pH 6.5-7.5). Using the prepared ZrO2/SiO2 composite monolith as the trapping column and reversed-phase C18 column as the analytical column, we further established an online solid-phase microextraction (SPME) in combination with liquid chromatography-mass spectrometry (online SPME-LC-MS/MS) analysis for the comprehensive profiling of ribonucleosides modification in human urine. Our results showed that 68 cis-diol-containing ribosylated compounds were identified in human urine, which is, to the best of our knowledge, the highest numbers of cis-diol-containing compounds were determined in a single analysis. It is worth noting that four modified ribonucleosides were discovered in the human urine for the first time. In addition, the quantification results from the pooled urine samples showed that compared to healthy controls, the contents of sixteen ribose conjugates in the urine of gastric cancer, eleven in esophagus cancer and seven in lymphoma increased more than two folds. Among these ribose conjugates, four ribose conjugates increased more than two folds in both gastric cancer and esophagus cancer; three ribose conjugates increased more than two

  14. Activated AMPK inhibits PPAR-{alpha} and PPAR-{gamma} transcriptional activity in hepatoma cells.

    PubMed

    Sozio, Margaret S; Lu, Changyue; Zeng, Yan; Liangpunsakul, Suthat; Crabb, David W

    2011-10-01

    AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-α (PPAR-α) are critical regulators of short-term and long-term fatty acid oxidation, respectively. We examined whether the activities of these molecules were coordinately regulated. H4IIEC3 cells were transfected with PPAR-α and PPAR-γ expression plasmids and a peroxisome-proliferator-response element (PPRE) luciferase reporter plasmid. The cells were treated with PPAR agonists (WY-14,643 and rosiglitazone), AMPK activators 5-aminoimidazole-4-carboxamide riboside (AICAR) and metformin, and the AMPK inhibitor compound C. Both AICAR and metformin decreased basal and WY-14,643-stimulated PPAR-α activity; compound C increased agonist-stimulated reporter activity and partially reversed the effect of the AMPK activators. Similar effects on PPAR-γ were seen, with both AICAR and metformin inhibiting PPRE reporter activity. Compound C increased basal PPAR-γ activity and rosiglitazone-stimulated activity. In contrast, retinoic acid receptor-α (RAR-α), another nuclear receptor that dimerizes with retinoid X receptor (RXR), was largely unaffected by the AMPK activators. Compound C modestly increased AM580 (an RAR agonist)-stimulated activity. The AMPK activators did not affect PPAR-α binding to DNA, and there was no consistent correlation between effects of the AMPK activators and inhibitor on PPAR and the nuclear localization of AMPK-α subunits. Expression of either a constitutively active or dominant negative AMPK-α inhibited basal and WY-14,643-stimulated PPAR-α activity and basal and rosiglitazone-stimulated PPAR-γ activity. We concluded that the AMPK activators AICAR and metformin inhibited transcriptional activities of PPAR-α and PPAR-γ, whereas inhibition of AMPK with compound C activated both PPARs. The effects of AMPK do not appear to be mediated through effects on RXR or on PPAR/RXR binding to DNA. These effects are independent of kinase activity and instead appear to

  15. Design, Synthesis, and Antiviral Activity of Novel Ribonucleosides of 1,2,3‐Triazolylbenzyl‐aminophosphonates

    PubMed Central

    Ouahrouch, Abdelaaziz; Taourirte, Moha; Schols, Dominique; Snoeck, Robert; Andrei, Graciela; Lazrek, Hassan B.

    2015-01-01

    A novel series of ribonucleosides of 1,2,3‐triazolylbenzyl‐aminophosphonates was synthesized through the Kabachnik–Fields reaction using I2 as catalyst followed by copper‐catalyzed cycloaddition of the azide–alkyne reaction (CuAAC). All structures of the newly prepared compounds were characterized by 1H NMR, 13C NMR, and HRMS spectra. The structures of 2e, 2f, 3d, and 3g were further confirmed by X‐ray diffraction analysis. These compounds were tested against various strains of DNA and RNA viruses; compounds 4b and 4c showed a modest inhibitory activity against respiratory syncytial virus (RSV) and compound 4h displayed modest inhibitory activity against Coxsackie virus B4. PMID:26575425

  16. LPS inhibits caspase 3-dependent apoptosis in RAW264.7 macrophages induced by the AMPK activator AICAR

    SciTech Connect

    Russe, Otto Quintus Möser, Christine V. Kynast, Katharina L. King, Tanya S. Olbrich, Katrin Grösch, Sabine Geisslinger, Gerd Niederberger, Ellen

    2014-05-09

    Highlights: • AMPK-activation induces caspase 3-dependent apoptosis in macrophages. • Apoptosis is associated with decreased mTOR and increased p21 levels. • All effects can be significantly inhibited by the TLR4 agonist lipopolysaccharide. - Abstract: AMP-activated kinase is a cellular energy sensor which is activated in stages of increased ATP consumption. Its activation has been associated with a number of beneficial effects such as decreasing inflammatory processes and the disease progress of diabetes and obesity, respectively. Furthermore, AMPK activation has been linked with induction of cell cycle arrest and apoptosis in cancer and vascular cells, indicating that it might have a therapeutic impact for the treatment of cancer and atherosclerosis. However, the impact of AMPK on the proliferation of macrophages, which also play a key role in the formation of atherosclerotic plaques and in inflammatory processes, has not been focused so far. We have assessed the influence of AICAR- and metformin-induced AMPK activation on cell viability of macrophages with and without inflammatory stimulation, respectively. In cells without inflammatory stimulation, we found a strong induction of caspase 3-dependent apoptosis associated with decreased mTOR levels and increased expression of p21. Interestingly, these effects could be inhibited by co-stimulation with bacterial lipopolysaccharide (LPS) but not by other proinflammatory cytokines suggesting that AICAR induces apoptosis via AMPK in a TLR4-pathway dependent manner. In conclusion, our results revealed that AMPK activation is not only associated with positive effects but might also contribute to risk factors by disturbing important features of macrophages. The fact that LPS is able to restore AMPK-associated apoptosis might indicate an important role of TLR4 agonists in preventing unfavorable cell death of immune cells.

  17. Combinatorial therapeutic activation with heparin and AICAR stimulates additive effects on utrophin A expression in dystrophic muscles.

    PubMed

    Péladeau, Christine; Ahmed, Aatika; Amirouche, Adel; Crawford Parks, Tara E; Bronicki, Lucas M; Ljubicic, Vladimir; Renaud, Jean-Marc; Jasmin, Bernard J

    2016-01-01

    Upregulation of utrophin A is an attractive therapeutic strategy for treating Duchenne muscular dystrophy (DMD). Over the years, several studies revealed that utrophin A is regulated by multiple transcriptional and post-transcriptional mechanisms, and that pharmacological modulation of these pathways stimulates utrophin A expression in dystrophic muscle. In particular, we recently showed that activation of p38 signaling causes an increase in the levels of utrophin A mRNAs and protein by decreasing the functional availability of the destabilizing RNA-binding protein called K-homology splicing regulatory protein, thereby resulting in increases in the stability of existing mRNAs. Here, we treated 6-week-old mdx mice for 4 weeks with the clinically used anticoagulant drug heparin known to activate p38 mitogen-activated protein kinase, and determined the impact of this pharmacological intervention on the dystrophic phenotype. Our results show that heparin treatment of mdx mice caused a significant ∼1.5- to 3-fold increase in utrophin A expression in diaphragm, extensor digitorum longus and tibialis anterior (TA) muscles. In agreement with these findings, heparin-treated diaphragm and TA muscle fibers showed an accumulation of utrophin A and β-dystroglycan along their sarcolemma and displayed improved morphology and structural integrity. Moreover, combinatorial drug treatment using both heparin and 5-amino-4-imidazolecarboxamide riboside (AICAR), the latter targeting 5' adenosine monophosphate-activated protein kinase and the transcriptional activation of utrophin A, caused an additive effect on utrophin A expression in dystrophic muscle. These findings establish that heparin is a relevant therapeutic agent for treating DMD, and illustrate that combinatorial treatment of heparin with AICAR may serve as an effective strategy to further increase utrophin A expression in dystrophic muscle via activation of distinct signaling pathways.

  18. AMPK regulation of the growth of cultured human keratinocytes

    SciTech Connect

    Saha, Asish K. . E-mail: aksaha@bu.edu; Persons, Kelly; Safer, Joshua D.; Luo Zhijun; Holick, Michael F.; Ruderman, Neil B.

    2006-10-20

    AMP kinase (AMPK) is a fuel sensing enzyme that responds to cellular energy depletion by increasing processes that generate ATP and inhibiting others that require ATP but are not acutely necessary for survival. In the present study, we examined the relationship between AMPK activation and the growth (proliferation) of cultured human keratinocytes and assessed whether the inhibition of keratinocyte growth by vitamin D involves AMPK activation. In addition, we explored whether the inhibition of keratinocyte proliferation as they approach confluence could be AMPK-related. Keratinocytes were incubated for 12 h with the AMPK activator, 5-aminoimidazole-4-carboxamide-1-{beta}-D-ribofuranoside (AICAR). At concentrations of 10{sup -4} and 10{sup -3} M, AICAR inhibited keratinocyte growth by 50% and 95%, respectively, based on measurements of thymidine incorporation into DNA. It also increased AMPK and acetyl CoA carboxylase phosphorylation (P-AMPK and P-ACC) and decreased the concentration of malonyl CoA confirming that AMPK activation had occurred. Incubation with the thiazolidinedione, troglitazone (10{sup -6} M) caused similar alterations in P-AMPK, P-ACC, and cell growth. In contrast, the well known inhibition of keratinocyte growth by 1,25-dihydroxyvitamin D{sub 3} (10{sup -7} and 10{sup -6} M) was not associated with changes in P-AMPK or P-ACC. Like most cells, the growth of keratinocytes diminished as they approached confluence. Thus, it was of note that we found a progressive increase in P-AMPK (1.5- to 2-fold, p < 0.05) as keratinocytes grown in control medium went from 25% to 100% confluence. In conclusion, the data are consistent with the hypothesis that activation of AMPK acts as a signal to diminish the proliferation of cultured keratinocytes as they approach confluence. They also suggest that AMPK activators, such as AICAR and troglitazone, inhibit keratinocyte growth and that the inhibition of cell growth by 1,25-dihydroxyvitamin D{sub 3} is AMPK-independent.

  19. Stable isotopically-enriched ribonucleosides: synthesis and use in studies of furnose, N-glycoside and hydroxymethyl group conformation

    SciTech Connect

    Kline, P.C.; Serianni, A.S.

    1986-05-01

    (1'-/sup 13/C)- and (2'-/sup 13/C)-enriched ribonucleosides (adenosine, cytidine, uridine) (99 atom-% /sup 13/C) have been synthesized in millimole quantities. /sup 1/H (300 MHz) and /sup 13/C (75 MHz) NMR spectra have been obtained from which /sup 13/C-/sup 1/H and /sup 13/C-/sup 13/C spin couplings have been measured and studied in terms of preferred furanose and N-glycoside conformation. Using a recently-reported chemical method to stereoselectively deuterate hydroxymethyl groups of sugars adenosine, cytidine and uridine were synthesized with chiral C5' hydroxymethyl groups, permitting unequivocal stereochemical assignment of the NMR signals of these protons. From these assignments the conformational properties of the exocyclic groups were assessed based on /sup 1/H-/sup 1/H spin coupling. A theoretical (computational) analysis of the use of /sup 1/H-/sup 1/H internuclear distances to assess N-glycoside conformation in purine and pyrimidine nucleosides was conducted. DESERT (Deuterium Substitution Effects on Proton Relaxation Times) experiments using (1'-/sup 2/H)2,2'-anhydrouridine and uridine have been conducted to test the validity of these theoretical considerations.

  20. Novel Nucleolipids of Pyrimidine β-D-Ribonucleosides: Combinatorial Synthesis, Spectroscopic Characterization, and Cytostatic/Cytotoxic Activities.

    PubMed

    Knies, Christine; Hammerbacher, Katharina; Bonaterra, Gabriel A; Kinscherf, Ralf; Rosemeyer, Helmut

    2016-02-01

    Four series of nucleolipids with either uridine, 5-methyluridine, 5-fluorouridine, and 6-azauridine as β-D-ribonucleoside component have been prepared in a combinatorial (not parallel!) manner (see Formulae). All compounds have been characterized by elemental analyses, ESI mass spectrometry as well as by (1) H-, and (13) C-NMR, and UV spectroscopy. A selection of eight nucleolipids with different lipophilizing moieties, based on earlier findings, as well as of 5-fluorouridine as control were first tested on their cytotoxic effect towards PMA-differentiated human THP-1 macrophages. Those compounds which did not exhibit a significant inhibitory effect on the survival of the macrophages were next tested on their cytostatic/cytotoxic effect towards the human astrocytoma/oligodendroglioma GOS-3 cells as well as against the rat malignant neuroectodermal BT4Ca cell line. Additionally, induction of apoptosis of the cell lines was evaluated. It turned out that particularly a combined lipophilization of the nucleosides by an 2',3'-O-ethyl levulinate residue plus a farnesyl moiety at N(3) of the pyrimidine moiety of the corresponding nucleolipids leads to an active compound with the highest probability. PMID:26880429

  1. Novel Nucleolipids of Pyrimidine β-D-Ribonucleosides: Combinatorial Synthesis, Spectroscopic Characterization, and Cytostatic/Cytotoxic Activities.

    PubMed

    Knies, Christine; Hammerbacher, Katharina; Bonaterra, Gabriel A; Kinscherf, Ralf; Rosemeyer, Helmut

    2016-02-01

    Four series of nucleolipids with either uridine, 5-methyluridine, 5-fluorouridine, and 6-azauridine as β-D-ribonucleoside component have been prepared in a combinatorial (not parallel!) manner (see Formulae). All compounds have been characterized by elemental analyses, ESI mass spectrometry as well as by (1) H-, and (13) C-NMR, and UV spectroscopy. A selection of eight nucleolipids with different lipophilizing moieties, based on earlier findings, as well as of 5-fluorouridine as control were first tested on their cytotoxic effect towards PMA-differentiated human THP-1 macrophages. Those compounds which did not exhibit a significant inhibitory effect on the survival of the macrophages were next tested on their cytostatic/cytotoxic effect towards the human astrocytoma/oligodendroglioma GOS-3 cells as well as against the rat malignant neuroectodermal BT4Ca cell line. Additionally, induction of apoptosis of the cell lines was evaluated. It turned out that particularly a combined lipophilization of the nucleosides by an 2',3'-O-ethyl levulinate residue plus a farnesyl moiety at N(3) of the pyrimidine moiety of the corresponding nucleolipids leads to an active compound with the highest probability.

  2. Molecular modeling studies of 1,4-dihydro-4-oxoquinoline ribonucleosides with anti-HSV-1 activity

    NASA Astrophysics Data System (ADS)

    Yoneda, Julliane Diniz; Albuquerque, Magaly Girão; Leal, Kátia Zaccur; Seidl, Peter Rudolf; de Alencastro, Ricardo Bicca

    2011-12-01

    Eight human herpes viruses ( e.g., herpes simplex, varicella-zoster, Epstein-Barr, cytomegalovirus, Kaposi's sarcoma) are responsible for several diseases from sub-clinic manifestations to fatal infections, mostly in immunocompromised patients. The major limitations of the currently available antiviral drug therapy are drug resistance, host toxicity, and narrow spectrum of activity. However, some non-nucleoside 1,4-dihydro-4-oxoquinoline derivatives ( e.g., PNU-183792) [4] shows broad spectrum antiviral activity. We have developed molecular modeling studies, including molecular docking and molecular dynamics simulations, based on a model proposed by Liu and co-workers [14] in order to understand the mechanism of action of a 6-chloro substituted 1,4-dihydro-4-oxoquinoline ribonucleoside, synthesized by the synthetic group, which showed anti-HSV-1 activity [9]. The molecular docking simulations confirmed the Liu's model showing that the ligand needs to dislocate template residues from the active site in order to interact with the viral DNA polymerase enzyme, reinforcing that the interaction with the Val823 residue is pivotal for the inhibitory activity of non-nucleoside 1,4-dihydro-4-oxoquinoline derivatives, such as PNU-183792, with the HSV-1. The molecular dynamics simulations showed that the 6-chloro-benzyl group of PNU-183792 maintains its interaction with residues of the HSV-1 DNA polymerase hydrophobic pocket, considered important according to the Liu's model, and also showed that the methyl group bounded to the nitrogen atom from PNU-183792 is probably contributing to a push-pull effect with the carbonyl group.

  3. Structure-activity relationship of heterobase-modified 2'-C-methyl ribonucleosides as inhibitors of hepatitis C virus RNA replication.

    PubMed

    Eldrup, Anne B; Prhavc, Marija; Brooks, Jennifer; Bhat, Balkrishen; Prakash, Thazha P; Song, Quanlai; Bera, Sanjib; Bhat, Neelima; Dande, Prasad; Cook, P Dan; Bennett, C Frank; Carroll, Steven S; Ball, Richard G; Bosserman, Michele; Burlein, Christine; Colwell, Lawrence F; Fay, John F; Flores, Osvaldo A; Getty, Krista; LaFemina, Robert L; Leone, Joseph; MacCoss, Malcolm; McMasters, Daniel R; Tomassini, Joanne E; Von Langen, Derek; Wolanski, Bohdan; Olsen, David B

    2004-10-01

    Hepatitis C virus infection constitutes a significant health problem in need of more effective therapies. We have recently identified 2'-C-methyladenosine and 2'-C-methylguanosine as potent nucleoside inhibitors of HCV RNA replication in vitro. However, both of these compounds suffered from significant limitations. 2'-C-Methyladenosine was found to be susceptible to enzymatic conversions by adenosine deaminase and purine nucleoside phosphorylase, and it displayed limited oral bioavailability in the rat. 2'-C-Methylguanosine, on the other hand, was neither efficiently taken up in cells nor phosphorylated well. As part of an attempt to address these limitations, we now report upon the synthesis and evaluation of a series of heterobase-modified 2'-C-methyl ribonucleosides. The structure-activity relationship within this series of nucleosides reveals 4-amino-7-(2-C-methyl-beta-d-ribofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine and 4-amino-5-fluoro-7-(2-C-methyl-beta-d-ribofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine as potent and noncytotoxic inhibitors of HCV RNA replication. Both 4-amino-7-(2-C-methyl-beta-d-ribofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine and 4-amino-5-fluoro-7-(2-C-methyl-beta-d-ribofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine display improved enzymatic stability profiles as compared to that of 2'-C-methyladenosine. Consistent with these observations, the most potent compound, 4-amino-5-fluoro-7H-pyrrolo[2,3-d]pyrimidine ribonucleoside, is orally bioavailable in the rat. Together, the potency of the 2'-C-methyl-4-amino-pyrrolo[2,3-d]pyrimidine ribonucleosides and their improved pharmacokinetic properties relative to that of 2'-C-methyladenosine suggests that this class of compounds may have clinical utility. PMID:15456273

  4. Beta-hydroxyphosphonate ribonucleoside analogues derived from 4-substituted-1,2,3-triazoles as IMP/GMP mimics: synthesis and biological evaluation

    PubMed Central

    Nguyen Van, Tai; Hospital, Audrey; Lionne, Corinne; Jordheim, Lars P; Dumontet, Charles; Périgaud, Christian; Chaloin, Laurent

    2016-01-01

    Summary A series of seventeen β-hydroxyphosphonate ribonucleoside analogues containing 4-substituted-1,2,3-triazoles was synthesized and fully characterized. Such compounds were designed as potential inhibitors of the cytosolic 5’-nucleotidase II (cN-II), an enzyme involved in the regulation of purine nucleotide pools. NMR and molecular modelling studies showed that a few derivatives adopted similar structural features to IMP or GMP. Five derivatives were identified as modest inhibitors with 53 to 64% of cN-II inhibition at 1 mM. PMID:27559400

  5. Nitric oxide stress and activation of AMP-activated protein kinase impair β-cell sarcoendoplasmic reticulum calcium ATPase 2b activity and protein stability

    PubMed Central

    Tong, X; Kono, T; Evans-Molina, C

    2015-01-01

    The sarcoendoplasmic reticulum Ca2+ ATPase 2b (SERCA2b) pump maintains a steep Ca2+ concentration gradient between the cytosol and ER lumen in the pancreatic β-cell, and the integrity of this gradient has a central role in regulated insulin production and secretion, maintenance of ER function and β-cell survival. We have previously demonstrated loss of β-cell SERCA2b expression under diabetic conditions. To define the mechanisms underlying this, INS-1 cells and rat islets were treated with the proinflammatory cytokine interleukin-1β (IL-1β) combined with or without cycloheximide or actinomycin D. IL-1β treatment led to increased inducible nitric oxide synthase (iNOS) gene and protein expression, which occurred concurrently with the activation of AMP-activated protein kinase (AMPK). IL-1β led to decreased SERCA2b mRNA and protein expression, whereas time-course experiments revealed a reduction in protein half-life with no change in mRNA stability. Moreover, SERCA2b protein but not mRNA levels were rescued by treatment with the NOS inhibitor l-NMMA (NG-monomethyl l-arginine), whereas the NO donor SNAP (S-nitroso-N-acetyl-d,l-penicillamine) and the AMPK activator AICAR (5-aminoimidazole-4-carboxamide ribonucleotide) recapitulated the effects of IL-1β on SERCA2b protein stability. Similarly, IL-1β-induced reductions in SERCA2b expression were rescued by pharmacological inhibition of AMPK with compound C or by transduction of a dominant-negative form of AMPK, whereas β-cell death was prevented in parallel. Finally, to determine a functional relationship between NO and AMPK signaling and SERCA2b activity, fura-2/AM (fura-2-acetoxymethylester) Ca2+ imaging experiments were performed in INS-1 cells. Consistent with observed changes in SERCA2b expression, IL-1β, SNAP and AICAR increased cytosolic Ca2+ and decreased ER Ca2+ levels, suggesting congruent modulation of SERCA activity under these conditions. In aggregate, these results show that SERCA2b protein

  6. Luminal fructose inhibits rat intestinal sodium-phosphate cotransporter gene expression and phosphate uptake24

    PubMed Central

    Kirchner, Séverine; Muduli, Anjali; Casirola, Donatella; Prum, Kannitha; Douard, Véronique; Ferraris, Ronaldo P

    2008-01-01

    Background While searching by microarray for sugar-responsive genes, we inadvertently discovered that sodium-phosphate cotransporter 2B (NaPi-2b) mRNA concentrations were much lower in fructose-perfused than in glucose-perfused intestines of neonatal rats. Changes in NaPi-2b mRNA abundance by sugars were accompanied by similar changes in NaPi-2b protein abundance and in rates of inorganic phosphate (Pi) uptake. Objective We tested the hypothesis that luminal fructose regulates NaPi-2b. Design We perfused into the intestine fructose, glucose, and non-metabolizable or poorly transported glucose analogs as well as phlorizin. Results NaPi-2b mRNA concentrations and Pi uptake rates in fructose-perfused intestines were ≈30% of those in glucose and its analogs. NaPi-2b inhibition by fructose is specific because the mRNA abundance and activity of the fructose transporter GLUT5 (glucose transporter 5) increased with fructose perfusion, whereas those of other transporters were independent of the perfusate. Plasma Pi after 4 h of perfusion was independent of the perfusate, probably because normal kidneys can maintain normophosphatemia. Inhibiting glucose-6-phosphatase, another fructose-responsive gene, with tungstate or vanadate nonspecifically inhibited NaPi-2b mRNA expression and Pi uptake in both glucose- or fructose-perfused intestines. The AMP kinase (AMPK)–activator AICAR (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside) enhanced and the fatty acid synthase–AMPK inhibitor C75 (3-carboxy-4-octyl-2-methylene-butyrolactone trans-4-carboxy-5-octyl-3-methylenebutyrolactone) prevented fructose inhibition of NaPi-2b but had no effect on expression of other transporters. NaPi-2b expression decreased markedly with age and was inhibited by fructose in all age groups. Conclusions Energy levels in enterocytes may play a role in NaPi-2b inhibition by luminal fructose. Consumption of fructose that supplies ≈10% of caloric intake by Americans clearly affects absorption of

  7. From gene engineering to gene modulation and manipulation: can we prevent or detect gene doping in sports?

    PubMed

    Fischetto, Giuseppe; Bermon, Stéphane

    2013-10-01

    During the last 2 decades, progress in deciphering the human gene map as well as the discovery of specific defective genes encoding particular proteins in some serious human diseases have resulted in attempts to treat sick patients with gene therapy. There has been considerable focus on human recombinant proteins which were gene-engineered and produced in vitro (insulin, growth hormone, insulin-like growth factor-1, erythropoietin). Unfortunately, these substances and methods also became improper tools for unscrupulous athletes. Biomedical research has focused on the possible direct insertion of gene material into the body, in order to replace some defective genes in vivo and/or to promote long-lasting endogenous synthesis of deficient proteins. Theoretically, diabetes, anaemia, muscular dystrophies, immune deficiency, cardiovascular diseases and numerous other illnesses could benefit from such innovative biomedical research, though much work remains to be done. Considering recent findings linking specific genotypes and physical performance, it is tempting to submit the young athletic population to genetic screening or, alternatively, to artificial gene expression modulation. Much research is already being conducted in order to achieve a safe transfer of genetic material to humans. This is of critical importance since uncontrolled production of the specifically coded protein, with serious secondary adverse effects (polycythaemia, acute cardiovascular problems, cancer, etc.), could occur. Other unpredictable reactions (immunogenicity of vectors or DNA-vector complex, autoimmune anaemia, production of wild genetic material) also remain possible at the individual level. Some new substances (myostatin blockers or anti-myostatin antibodies), although not gene material, might represent a useful and well-tolerated treatment to prevent progression of muscular dystrophies. Similarly, other molecules, in the roles of gene or metabolic activators [5-aminoimidazole-4

  8. Competition of nucleoside transport inhibitors with binding of 6-[(4-nitrobenzyl)-mercapto]purine ribonucleoside to intact erythrocytes and ghost membranes from different species.

    PubMed

    Ogbunude, P O; Baer, H P

    1990-04-01

    The potency of nucleoside transport inhibitors, including 6-[(4-nitrobenzyl)-mercapto]purine ribonucleoside (NBMPR), dilazep, mioflazine and its derivatives soluflazine and R57974 as inhibitors of the binding of [3H(G)]NBMPR to intact erythrocytes and respective ghost membranes from human, mouse and hamster was determined. There was no close agreement between the IC50 profiles for the different inhibitors when comparing values obtained for intact cells and membranes from each species, and there was no consistent profile of differences when considering individual drugs and comparing their actions in the three species. Present data also were compared with potency values obtained previously with the same drugs directly in nucleoside transport inhibition studies with erythrocytes from the same species as well as with [3H(G)]NBMPR binding studies in isolated liver and lung membranes from hamster. The overall conclusion from this and previous studies is that the evaluation of relative potencies in screening of potential nucleoside transport inhibitors is best carried out at the level actual nucleoside transport studies in intact cells, since [3H(G)]NBMPR binding studies yield discrepant data. PMID:2322305

  9. Biochemical Characterization of the Active Anti-Hepatitis C Virus Metabolites of 2,6-Diaminopurine Ribonucleoside Prodrug Compared to Sofosbuvir and BMS-986094.

    PubMed

    Ehteshami, Maryam; Tao, Sijia; Ozturk, Tugba; Zhou, Longhu; Cho, Jong Hyun; Zhang, Hongwang; Amiralaei, Sheida; Shelton, Jadd R; Lu, Xiao; Khalil, Ahmed; Domaoal, Robert A; Stanton, Richard A; Suesserman, Justin E; Lin, Biing; Lee, Sam S; Amblard, Franck; Whitaker, Tony; Coats, Steven J; Schinazi, Raymond F

    2016-08-01

    Ribonucleoside analog inhibitors (rNAI) target the hepatitis C virus (HCV) RNA-dependent RNA polymerase nonstructural protein 5B (NS5B) and cause RNA chain termination. Here, we expand our studies on β-d-2'-C-methyl-2,6-diaminopurine-ribonucleotide (DAPN) phosphoramidate prodrug 1 (PD1) as a novel investigational inhibitor of HCV. DAPN-PD1 is metabolized intracellularly into two distinct bioactive nucleoside triphosphate (TP) analogs. The first metabolite, 2'-C-methyl-GTP, is a well-characterized inhibitor of NS5B polymerase, whereas the second metabolite, 2'-C-methyl-DAPN-TP, behaves as an adenosine base analog. In vitro assays suggest that both metabolites are inhibitors of NS5B-mediated RNA polymerization. Additional factors, such as rNAI-TP incorporation efficiencies, intracellular rNAI-TP levels, and competition with natural ribonucleotides, were examined in order to further characterize the potential role of each nucleotide metabolite in vivo Finally, we found that although both 2'-C-methyl-GTP and 2'-C-methyl-DAPN-TP were weak substrates for human mitochondrial RNA (mtRNA) polymerase (POLRMT) in vitro, DAPN-PD1 did not cause off-target inhibition of mtRNA transcription in Huh-7 cells. In contrast, administration of BMS-986094, which also generates 2'-C-methyl-GTP and previously has been associated with toxicity in humans, caused detectable inhibition of mtRNA transcription. Metabolism of BMS-986094 in Huh-7 cells leads to 87-fold higher levels of intracellular 2'-C-methyl-GTP than DAPN-PD1. Collectively, our data characterize DAPN-PD1 as a novel and potent antiviral agent that combines the delivery of two active metabolites. PMID:27216050

  10. Inactivation of the Lactobacillus leichmannii ribonucleoside triphosphate reductase by 2'-chloro-2'-deoxyuridine 5'-triphosphate: stoichiometry of inactivation, site of inactivation, and mechanism of the protein chromophore formation

    SciTech Connect

    Ashley, G.W.; Harris, G.; Stubbe, J.A.

    1988-06-14

    The ribonucleoside triphosphate reductase (RTPR) of Lactobacillus leichmannii is inactivated by the substrate analogue 2'-chloro-2'-deoxyuridine 5'-triphosphate (ClUTP). Inactivation is due to alkylation by 2-methylene-3(2H)-furanone, a decomposition product of the enzymic product 3'-keto-2'-deoxyuridine triphosphate. The former has been unambiguously identified as 2-((ethylthio)methyl)-3(2H)-furanone, an ethanethiol trapped adduct, which is identical by /sup 1/H NMR spectroscopy with material synthesized chemically. Subsequent to rapid inactivation, a slow process occurs that results in formation of a new protein-associated chromophore absorbing maximally near 320 nm. The terminal stages of the inactivation have now been investigated in detail. The alkylation and inactivation stoichiometries were studied as a function of the ratio of ClUTP to enzyme. The amount of labeling of RTPR increased with increasing ClUTP concentration up to the maximum of approximately 4 labels/RTPR, yet the degree of inactivation did not increase proportionally. This suggests that (1) RTPR may be inactivated by alkylation of a single site and (2) decomposition of 3'-keto-dUTP is not necessarily enzyme catalyzed. The formation of the new protein chromophore was also monitored during inactivation and found to reach its full extent upon the first alkylation . Thus, out of four alkylation sites, only one appears capable of undergoing the subsequent reaction to form the new chromophore. Model studies suggest that the new chromophore is due to addition of an amino group to the 5-position of enzyme-bound furanone, followed by ring opening and tautomerization to give a ..beta..-aminoenone structure.

  11. Treatment Combining X-Irradiation and a Ribonucleoside Anticancer Drug, TAS106, Effectively Suppresses the Growth of Tumor Cells Transplanted in Mice

    SciTech Connect

    Yasui, Hironobu; Inanami, Osamu; Asanuma, Taketoshi; Iizuka, Daisuke; Nakajima, Takayuki; Kon, Yasuhiro; Matsuda, Akira; Kuwabara, Mikinori . E-mail: kuwabara@vetmed.hokudai.ac.jp

    2007-05-01

    Purpose: To examine the in vivo antitumor efficacy of X-irradiation combined with administration of a ribonucleoside anticancer drug, 1-(3-C-ethynyl-{beta}-D-ribo-pentofuranosyl)cytosine (TAS106, ECyd), to tumor cell-transplanted mice. Methods and Materials: Colon26 murine rectum adenocarcinoma cells and MKN45 human gastric adenocarcinoma cells were inoculated into the footpad in BALB/c mice and severe combined immunodeficient mice, respectively. They were treated with a relatively low dose of X-irradiation (2 Gy) and low amounts of TAS106 (0.1 mg/kg and 0.5 mg/kg). The tumor growth was monitored by measuring the tumor volume from Day 5 to Day 16 for Colon26 and from Day 7 to Day 20 for MKN45. Histologic analyses for proliferative and apoptotic cells in the tumors were performed using Ki-67 immunohistochemical and terminal deoxynucleotidyl transferase-mediated nick end labeling staining. The expression of survivin, a key molecule related to tumor survival, was assessed by quantitative polymerase chain reaction and immunohistochemical analysis. Results: When X-irradiation and TAS106 treatment were combined, significant inhibition of tumor growth was observed in both types of tumors compared with mice treated with X-irradiation or TAS106 alone. Marked inhibition of tumor growth was observed in half of the mice that received the combined treatment three times at 2-day intervals. Parallel to these phenomena, the suppression of survivin expression and appearance of Ki-67-negative and apoptotic cells were observed. Conclusions: X-irradiation and TAS106 effectively suppress tumor growth in mice. The inhibition of survivin expression by TAS106 is thought to mainly contribute to the suppression of the tumor growth.

  12. sup 13 C-enriched ribonucleosides: Synthesis and application of sup 13 C- sup 1 H and sup 13 C- sup 13 C spin-coupling constants to assess furanose and N-glycoside bond conformations

    SciTech Connect

    Kline, P.C.; Serianni, A.S. )

    1990-09-26

    Adenosine (1), cytidine (2), guanosine (3), and uridine (4) have been prepared chemically with {sup 13}C enrichment (99 atom %) at C1{prime} and C2{prime} of the ribose ring. Reliable synthetic protocols have been developed to permit access to millimole quantities of labeled ribonucleosides required for structural studies of stable isotopically labeled oligonucleotides and for in vivo metabolism studies. High-resolution {sup 1}H and {sup 13}C NMR spectra of the enriched ribonucleosides have been obtained, and {sup 13}C-{sup 13}C and {sup 13}C-{sup 1}H spin-coupling constants have been measured for pathways within the {beta}-D-ribofuranose ring and across the N-glycoside bond. Related couplings were determined in methyl {alpha}- and {beta}-D-riboruanosides (5,6), and in two conformationally constrained nucleosides, 2,2{prime}-anhydro-(1-{beta}-D-arabinofuranosyl)uracil (7) and 2{prime},3{prime}-O-isopropylidene-2,5{prime}-O-cyclouridine (8). The latter data were used to construct a crude Karplus curve for the {sup 13}C-C-N-{sup 13}C coupling pathway across the N-glycoside bond in 1-4. {sup 1}H-{sup 1}H, {sup 13}C-{sup 1}H, and {sup 13}C-{sup 13}C coupling data are used to evaluate current models describing the conformational dynamics of 1-4 in aqueous solution.

  13. Practical silyl protection of ribonucleosides.

    PubMed

    Blaisdell, Thomas P; Lee, Sunggi; Kasaplar, Pinar; Sun, Xixi; Tan, Kian L

    2013-09-20

    Herein we report the site-selective silylation of the ribonucelosides. The method enables a simple and efficient procedure for accessing suitably protected monomers for automated RNA synthesis. Switching to the opposite enantiomer of the catalyst allows for the selective silylation of the 3'-hydroxyl, which could be used in the synthesis of unnatural RNA or for the analoging of ribonucelosides. Lastly, the procedure was extended to ribavirin a potent antiviral therapeutic.

  14. Mycobacterial RNA isolation optimized for non-coding RNA: high fidelity isolation of 5S rRNA from Mycobacterium bovis BCG reveals novel post-transcriptional processing and a complete spectrum of modified ribonucleosides

    PubMed Central

    Hia, Fabian; Chionh, Yok Hian; Pang, Yan Ling Joy; DeMott, Michael S.; McBee, Megan E.; Dedon, Peter C.

    2015-01-01

    A major challenge in the study of mycobacterial RNA biology is the lack of a comprehensive RNA isolation method that overcomes the unusual cell wall to faithfully yield the full spectrum of non-coding RNA (ncRNA) species. Here, we describe a simple and robust procedure optimized for the isolation of total ncRNA, including 5S, 16S and 23S ribosomal RNA (rRNA) and tRNA, from mycobacteria, using Mycobacterium bovis BCG to illustrate the method. Based on a combination of mechanical disruption and liquid and solid-phase technologies, the method produces all major species of ncRNA in high yield and with high integrity, enabling direct chemical and sequence analysis of the ncRNA species. The reproducibility of the method with BCG was evident in bioanalyzer electrophoretic analysis of isolated RNA, which revealed quantitatively significant differences in the ncRNA profiles of exponentially growing and non-replicating hypoxic bacilli. The method also overcame an historical inconsistency in 5S rRNA isolation, with direct sequencing revealing a novel post-transcriptional processing of 5S rRNA to its functional form and with chemical analysis revealing seven post-transcriptional ribonucleoside modifications in the 5S rRNA. This optimized RNA isolation procedure thus provides a means to more rigorously explore the biology of ncRNA species in mycobacteria. PMID:25539917

  15. Mycobacterial RNA isolation optimized for non-coding RNA: high fidelity isolation of 5S rRNA from Mycobacterium bovis BCG reveals novel post-transcriptional processing and a complete spectrum of modified ribonucleosides.

    PubMed

    Hia, Fabian; Chionh, Yok Hian; Pang, Yan Ling Joy; DeMott, Michael S; McBee, Megan E; Dedon, Peter C

    2015-03-11

    A major challenge in the study of mycobacterial RNA biology is the lack of a comprehensive RNA isolation method that overcomes the unusual cell wall to faithfully yield the full spectrum of non-coding RNA (ncRNA) species. Here, we describe a simple and robust procedure optimized for the isolation of total ncRNA, including 5S, 16S and 23S ribosomal RNA (rRNA) and tRNA, from mycobacteria, using Mycobacterium bovis BCG to illustrate the method. Based on a combination of mechanical disruption and liquid and solid-phase technologies, the method produces all major species of ncRNA in high yield and with high integrity, enabling direct chemical and sequence analysis of the ncRNA species. The reproducibility of the method with BCG was evident in bioanalyzer electrophoretic analysis of isolated RNA, which revealed quantitatively significant differences in the ncRNA profiles of exponentially growing and non-replicating hypoxic bacilli. The method also overcame an historical inconsistency in 5S rRNA isolation, with direct sequencing revealing a novel post-transcriptional processing of 5S rRNA to its functional form and with chemical analysis revealing seven post-transcriptional ribonucleoside modifications in the 5S rRNA. This optimized RNA isolation procedure thus provides a means to more rigorously explore the biology of ncRNA species in mycobacteria.

  16. 4-Pyridone-3-carboxamide-1-β-D-ribonucleoside triphosphate (4PyTP), a novel NAD metabolite accumulating in erythrocytes of uremic children: a biomarker for a toxic NAD analogue in other tissues?

    PubMed

    Synesiou, Elena; Fairbanks, Lynnette D; Simmonds, H Anne; Slominska, Ewa M; Smolenski, Ryszard T; Carrey, Elizabeth A

    2011-06-01

    We have identified a novel nucleotide, 4-pyridone 3/5-carboxamide ribonucleoside triphosphate (4PyTP), which accumulates in human erythrocytes during renal failure. Using plasma and erythrocyte extracts obtained from children with chronic renal failure we show that the concentration of 4PyTP is increased, as well as other soluble NAD(+) metabolites (nicotinamide, N(1)-methylnicotinamide and 4Py-riboside) and the major nicotinamide metabolite N(1)-methyl-2-pyridone-5-carboxamide (2PY), with increasing degrees of renal failure. We noted that 2PY concentration was highest in the plasma of haemodialysis patients, while 4PyTP was highest in erythrocytes of children undergoing peritoneal dialysis: its concentration correlated closely with 4Py-riboside, an authentic precursor of 4PyTP, in the plasma. In the dialysis patients, GTP concentration was elevated: similar accumulation was noted previously, as a paradoxical effect in erythrocytes during treatment with immunosuppressants such as ribavirin and mycophenolate mofetil, which deplete GTP through inhibition of IMP dehydrogenase in nucleated cells such as lymphocytes. We predict that 4Py-riboside and 4Py-nucleotides bind to this enzyme and alter its activity. The enzymes that regenerate NAD(+) from nicotinamide riboside also convert the drugs tiazofurin and benzamide riboside into NAD(+) analogues that inhibit IMP dehydrogenase more effectively than the related ribosides: we therefore propose that the accumulation of 4PyTP in erythrocytes during renal failure is a marker for the accumulation of a related toxic NAD(+) analogue that inhibits IMP dehydrogenase in other cells. PMID:22069723

  17. Inactivation of the ribonucleoside triphosphate reductase from Lactobacillus leichmannii by 2 prime -chloro-2 prime -deoxyuridine 5 prime -triphosphate: A 3 prime -2 prime hydrogen transfer during the formation of 3 prime -keto-2 prime -deoxyuridine 5 prime -triphosphate

    SciTech Connect

    Ashley, G.W.; Harris, G.; Stubbe, J. )

    1988-10-04

    The ribonucleoside triphosphate reductase of Lactobacillus leichmannii converts the substrate analogue 2{prime}-chloro-2{prime}-deoxyuridine 5{prime}-triphosphate (C1UTP) into a mixture of 2{prime}-deoxyuridine triphosphate (dUTP) and the unstable product 3{prime}-keto-2{prime}-deoxyuridine triphosphate (3{prime}-keto-dUTP). This ketone can be trapped by reduction with NaBH{sub 4}, producing a 4:1 mixture of xylo-dUTP and dUTP. When (3{prime}-{sup 3}H)C1UTP is treated with enzyme in the presence of NaBH{sub 4}, the isomeric deoxyuridines isolated after alkaline phosphatase treatment retained 15% of the {sup 3}H in C1UTP. Degradation of these isomeric nucleosides has established the location of the {sup 3}H in 3{prime}-keto-dUTP as predominantly 2{prime}(S). The xylo-dU had 98.6% of its label at the 2{prime}(S) position and 1.5% at 2{prime}(R). The isolated dU had 89.6% of its label at 2{prime}(S) and 1.4% at 2{prime}(R), with the remaining 9% label inferred to be at the 3{prime}-carbon, this resulting from the direct enzymic production of dUTP. These results are consistent with enzymic production of a 1:1,000 mixture of dUTP and 3{prime}-keto-dUTP, where the 3{prime}-hydrogen of C1UTP is retained at 3{prime} during production of dUTP and is transferred to 2{prime}(S) during production of 3{prime}-keto-dUTP. The implications of these results and the unique role of the cofactor adenosylcobalamin are discussed in terms of reductase being a model for the B{sub 12}-dependent rearrangement reactions.

  18. Recognition of the bacterial alarmone ZMP through long-distance association of two RNA sub-domains

    PubMed Central

    Jones, Christopher P.; Ferré-D’Amaré, Adrian R.

    2016-01-01

    The bacterial alarmone 5-aminoimidazole-4-carboxamide riboside 5'-triphosphate (ZTP), derived from the monophosphorylated purine precursor ZMP, accumulates during folate starvation. ZTP regulates genes involved in purine and folate metabolism through a cognate riboswitch. The linker connecting this riboswitch’s two sub-domains varies in length by over 100 nucleotides. We report the co-crystal structure of the Fusobacterium ulcerans riboswitch bound to ZMP, which spans the two sub-domains whose interface also comprises a pseudoknot and ribose zipper. The riboswitch recognizes the carboxamide oxygen of ZMP through an unprecedented inner-sphere coordination with a Mg2+ ion. We demonstrate that the affinity of the riboswitch for ZMP is modulated by the linker length. Notably, ZMP can bind to the two sub-domains together even when synthesized as separate RNAs. The ZTP riboswitch demonstrates how specific small-molecule binding can drive association of distant non-coding RNA domains to regulate gene expression. PMID:26280533

  19. Site-specific regulatory interaction between spinach leaf sucrose-phosphate synthase and 14-3-3 proteins

    NASA Technical Reports Server (NTRS)

    Toroser, D.; Athwal, G. S.; Huber, S. C.; Davies, E. (Principal Investigator)

    1998-01-01

    We report an Mg2+-dependent interaction between spinach leaf sucrose-phosphate synthase (SPS) and endogenous 14-3-3 proteins, as evidenced by co-elution during gel filtration and co-immunoprecipitation. The content of 14-3-3s associated with an SPS immunoprecipitate was inversely related to activity, and was specifically reduced when tissue was pretreated with 5-aminoimidazole-4-carboxamide riboside, suggesting metabolite control in vivo. A synthetic phosphopeptide based on Ser-229 was shown by surface plasmon resonance to bind a recombinant plant 14-3-3, and addition of the phosphorylated SPS-229 peptide was found to stimulate the SPS activity of an SPS:14-3-3 complex. Taken together, the results suggest a regulatory interaction of 14-3-3 proteins with Ser-229 of SPS.

  20. Two-step Ligand Binding in a (βα)8 Barrel Enzyme

    PubMed Central

    Söderholm, Annika; Guo, Xiaohu; Newton, Matilda S.; Evans, Gary B.; Näsvall, Joakim; Patrick, Wayne M.; Selmer, Maria

    2015-01-01

    HisA is a (βα)8 barrel enzyme that catalyzes the Amadori rearrangement of N′-[(5′-phosphoribosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (ProFAR) to N′-((5′-phosphoribulosyl) formimino)-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) in the histidine biosynthesis pathway, and it is a paradigm for the study of enzyme evolution. Still, its exact catalytic mechanism has remained unclear. Here, we present crystal structures of wild type Salmonella enterica HisA (SeHisA) in its apo-state and of mutants D7N and D7N/D176A in complex with two different conformations of the labile substrate ProFAR, which was structurally visualized for the first time. Site-directed mutagenesis and kinetics demonstrated that Asp-7 acts as the catalytic base, and Asp-176 acts as the catalytic acid. The SeHisA structures with ProFAR display two different states of the long loops on the catalytic face of the structure and demonstrate that initial binding of ProFAR to the active site is independent of loop interactions. When the long loops enclose the substrate, ProFAR adopts an extended conformation where its non-reacting half is in a product-like conformation. This change is associated with shifts in a hydrogen bond network including His-47, Asp-129, Thr-171, and Ser-202, all shown to be functionally important. The closed conformation structure is highly similar to the bifunctional HisA homologue PriA in complex with PRFAR, thus proving that structure and mechanism are conserved between HisA and PriA. This study clarifies the mechanistic cycle of HisA and provides a striking example of how an enzyme and its substrate can undergo coordinated conformational changes before catalysis. PMID:26294764

  1. Identification of a New Ribonucleoside Inhibitor of Ebola Virus Replication

    PubMed Central

    Reynard, Olivier; Nguyen, Xuan-Nhi; Alazard-Dany, Nathalie; Barateau, Véronique; Cimarelli, Andrea; Volchkov, Viktor E.

    2015-01-01

    The current outbreak of Ebola virus (EBOV) in West Africa has claimed the lives of more than 15,000 people and highlights an urgent need for therapeutics capable of preventing virus replication. In this study we screened known nucleoside analogues for their ability to interfere with EBOV replication. Among them, the cytidine analogue β-d-N4-hydroxycytidine (NHC) demonstrated potent inhibitory activities against EBOV replication and spread at non-cytotoxic concentrations. Thus, NHC constitutes an interesting candidate for the development of a suitable drug treatment against EBOV. PMID:26633464

  2. Cyclosporine and methotrexate-related pharmacogenomic predictors of acute graft-versus-host disease.

    PubMed

    Laverdière, Isabelle; Guillemette, Chantal; Tamouza, Ryad; Loiseau, Pascale; Peffault de Latour, Regis; Robin, Marie; Couture, Félix; Filion, Alain; Lalancette, Marc; Tourancheau, Alan; Charron, Dominique; Socié, Gérard; Lévesque, Éric

    2015-02-01

    Effective immunosuppression is mandatory to prevent graft-versus-host disease and to achieve a successful clinical outcome of hematopoietic stem cell transplantation. Here we tested whether germline single nucleotide polymorphisms in 20 candidate genes related to methotrexate and cyclosporine metabolism and activity influence the incidence of graft-versus-host disease in patients who undergo stem cell transplantation for hematologic disorders. Recipient genetic status of the adenosine triphosphate-binding cassette sub-family C1 and adenosine triphosphate-binding cassette sub-family C2 transporters, 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/ inosine monophosphate cyclohydrolase within the methotrexate pathway, and nuclear factor of activated T cells (cytoplasmic 1) loci exhibit a remarkable influence on severe acute graft-versus-host disease prevalence. Indeed, an increased risk of acute graft-versus-host disease was observed in association with single nucleotide polymorphisms located in 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (hazard ratio=3.04; P=0.002), nuclear factor of activated T cells (cytoplasmic 1) (hazard ratio=2.69; P=0.004), adenosine triphosphate-binding cassette sub-family C2 (hazard ratio=3.53; P=0.0018) and adenosine triphosphate-binding cassette sub-family C1 (hazard ratio=3.67; P=0.0005). While donor single nucleotide polymorphisms of dihydrofolate reductase and solute carrier family 19 (member 1) genes are associated with a reduced risk of acute graft-versus-host disease (hazard ratio=0.32-0.41; P=0.0009-0.008), those of nuclear factor of activated T cells (cytoplasmic 2) are found to increase such risk (hazard ratio=3.85; P=0.0004). None of the tested single nucleotide polymorphisms was associated with the occurrence of chronic graft-versus-host disease. In conclusion, by targeting drug-related biologically relevant genes, this work emphasizes the potential role of

  3. Metabolite Regulation of Nuclear Localization of Carbohydrate-response Element-binding Protein (ChREBP): ROLE OF AMP AS AN ALLOSTERIC INHIBITOR.

    PubMed

    Sato, Shogo; Jung, Hunmin; Nakagawa, Tsutomu; Pawlosky, Robert; Takeshima, Tomomi; Lee, Wan-Ru; Sakiyama, Haruhiko; Laxman, Sunil; Wynn, R Max; Tu, Benjamin P; MacMillan, John B; De Brabander, Jef K; Veech, Richard L; Uyeda, Kosaku

    2016-05-13

    The carbohydrate-response element-binding protein (ChREBP) is a glucose-responsive transcription factor that plays an essential role in converting excess carbohydrate to fat storage in the liver. In response to glucose levels, ChREBP is regulated by nuclear/cytosol trafficking via interaction with 14-3-3 proteins, CRM-1 (exportin-1 or XPO-1), or importins. Nuclear localization of ChREBP was rapidly inhibited when incubated in branched-chain α-ketoacids, saturated and unsaturated fatty acids, or 5-aminoimidazole-4-carboxamide ribonucleotide. Here, we discovered that protein-free extracts of high fat-fed livers contained, in addition to ketone bodies, a new metabolite, identified as AMP, which specifically activates the interaction between ChREBP and 14-3-3. The crystal structure showed that AMP binds directly to the N terminus of ChREBP-α2 helix. Our results suggest that AMP inhibits the nuclear localization of ChREBP through an allosteric activation of ChREBP/14-3-3 interactions and not by activation of AMPK. AMP and ketone bodies together can therefore inhibit lipogenesis by restricting localization of ChREBP to the cytoplasm during periods of ketosis. PMID:26984404

  4. Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: a mechanism including AMPKα1/SIRT1[S

    PubMed Central

    Dong, Jing; Zhang, Xian; Zhang, Lei; Bian, Hui-Xi; Xu, Na; Bao, Bin; Liu, Jian

    2014-01-01

    Adipose tissue macrophage (ATM) plays a central role in obesity-associated inflammation and insulin resistance. Quercetin, a dietary flavonoid, possesses anti-inflammation and anti-insulin resistance properties. However, it is unclear whether quercetin can alleviate high-fat diet (HFD)-induced ATM infiltration and inflammation in mice. In this study, 5-week-old C57BL/6 mice were fed low-fat diet, HFD, or HFD with 0.l% quercetin for 12 weeks, respectively. Dietary quercetin reduced HFD-induced body weight gain and improved insulin sensitivity and glucose intolerance in mice. Meanwhile, dietary quercetin enhanced glucose transporter 4 translocation and protein kinase B signal in epididymis adipose tissues (EATs), suggesting that it heightened glucose uptake in adipose tissues. Histological and real-time PCR analysis revealed that quercetin attenuated mast cell and macrophage infiltration into EATs in HFD-fed mice. Dietary quercetin also modified the phenotype ratio of M1/M2 macrophages, lowered the levels of proinflammatory cytokines, and enhanced adenosine monophosphate-activated protein kinase (AMPK) α1 phosphorylation and silent information regulator 1 (SIRT1) expression in EATs. Further, using AMPK activator 5-aminoimidazole-4-carboxamide-1-β4-ribofuranoside and inhibitor Compound C, we found that quercetin inhibited polarization and inflammation of mouse bone marrow-derived macrophages through an AMPKα1/SIRT1-mediated mechanism. In conclusion, dietary quercetin might suppress ATM infiltration and inflammation through the AMPKα1/SIRT1 pathway in HFD-fed mice PMID:24465016

  5. Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes.

    PubMed

    Lone, Jameel; Choi, Jae Heon; Kim, Sang Woo; Yun, Jong Won

    2016-01-01

    Recent advances have been made in the understanding of pharmacological and dietary agents that contribute to browning of white adipose tissue in order to combat obesity by promoting energy expenditure. Here, we show that curcumin induces browning of 3T3-L1 and primary white adipocytes via enhanced expression of brown fat-specific genes. Curcumin-induced browning in white adipocytes was investigated by determining expression levels of brown adipocyte-specific genes/proteins by real-time reverse transcriptase polymerase chain reaction, immunoblot analysis and immunocytochemical staining. Curcumin increased mitochondrial biogenesis, as evidenced by transmission electronic microscopic detection and enhanced expression of proteins involved in fat oxidation. Cucurmin also increased protein levels of hormone-sensitive lipase and p-acyl-CoA carboxylase, suggesting its possible role in augmentation of lipolysis and suppression of lipogenesis. Increased expression of UCP1 and other brown adipocyte-specific markers was possibly mediated by curcumin-induced activation of AMP-activated protein kinase (AMPK) based on the fact that inhibition of AMPK by dorsomorphin abolished expression of PRDM16, UCP1 and peroxisome proliferator-activated receptor gamma co-activator 1-alpha while the activator 5-Aminoimidazole-4-carboxamide ribonucleotide elevated expression of these brown marker proteins. Our findings suggest that curcumin plays a dual modulatory role in inhibition of adipogenesis as well as induction of the brown fat-like phenotype and thus may have potential therapeutic implications for treatment of obesity.

  6. Design, synthesis and biological evaluation of 6-substituted pyrrolo[2,3-d]pyrimidines as dual inhibitors of TS and AICARFTase and as potential antitumor agents.

    PubMed

    Liu, Yi; Li, Meng; Zhang, Hongying; Yuan, Jiangsong; Zhang, Congying; Zhang, Kai; Guo, Huicai; Zhao, Lijuan; Du, Yumin; Wang, Lei; Ren, Leiming

    2016-06-10

    A new series of 2-amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidines, with an isosteric replacement of the side chain amide moiety to a sulfur atom, were designed and synthesized as multitargeted antifolates as well as potential antitumor agents. Starting from previously synthesized 2-amino-4-oxo-pyrrolo[2,3-d]pyrimidin-6-yl-acetic acid, a reduction by lithium triethylborohydride and successive mesylation afforded the key mesylate. Nucleophilic substitution by mercaptoacetic or mercaptopropionic acid methyl esters, followed by hydrolysis and condensation with pyridinyl-methylamines provided the nonclassical compounds 1-6, whereas condensation with glutamic acid diethyl ester hydrochloride and saponification afforded the classical analogs 7-8. All target compounds exhibited inhibitory activities toward KB, SW620 and A549 tumor cell lines. The most potent compounds of this series, 7 and 8, are better inhibitors against A549 cells than methotrexate (MTX) and pemetrexed (PMX). Nucleoside protection assays establish compound 8 a dual inhibitor of thymidylate synthase (TS) and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase (AICARFTase) targeting both de novo thymidylate and purine nucleotide biosynthesis, which is further verified by the molecular modeling studies. Analogous to PMX, target compound 8 alternates the cell cycle of SW620 cells with S-phase accumulation and induces apoptosis, leading to cell death. PMID:27017552

  7. Studies on the π-π stacking features of imidazole units present in a series of 5-amino-1-alkylimidazole-4-carboxamides

    NASA Astrophysics Data System (ADS)

    Ray, Sibdas; Das, Aniruddha

    2015-06-01

    Reaction of 2-ethoxymethyleneamino-2-cyanoacetamide with primary alkyl amines in acetonitrile solvent affords 1-substituted-5-aminoimidazole-4-carboxamides. Single crystal X-ray diffraction studies of these imidazole compounds show that there are both anti-parallel and syn-parallel π-π stackings between two imidazole units in parallel-displaced (PD) conformations and the distance between two π-π stacked imidazole units depends mainly on the anti/ syn-parallel nature and to some extent on the alkyl group attached to N-1 of imidazole; molecules with anti-parallel PD-stacking arrangements of the imidazole units have got vertical π-π stacking distance short enough to impart stabilization whereas the imidazole unit having syn-parallel stacking arrangement have got much larger π-π stacking distances. DFT studies on a pair of anti-parallel imidazole units of such an AICA lead to curves for 'π-π stacking stabilization energy vs. π-π stacking distance' which have got similarity with the 'Morse potential energy diagram for a diatomic molecule' and this affords to find out a minimum π-π stacking distance corresponding to the maximum stacking stabilization energy between the pair of imidazole units. On the other hand, a DFT calculation based curve for 'π-π stacking stabilization energy vs. π-π stacking distance' of a pair of syn-parallel imidazole units is shown to have an exponential nature.

  8. VASP Increases Hepatic Fatty Acid Oxidation by Activating AMPK in Mice

    PubMed Central

    Tateya, Sanshiro; Rizzo-De Leon, Norma; Handa, Priya; Cheng, Andrew M.; Morgan-Stevenson, Vicki; Ogimoto, Kayoko; Kanter, Jenny E.; Bornfeldt, Karin E.; Daum, Guenter; Clowes, Alexander W.; Chait, Alan; Kim, Francis

    2013-01-01

    Activation of AMP-activated protein kinase (AMPK) signaling reduces hepatic steatosis and hepatic insulin resistance; however, its regulatory mechanisms are not fully understood. In this study, we sought to determine whether vasodilator-stimulated phosphoprotein (VASP) signaling improves lipid metabolism in the liver and, if so, whether VASP’s effects are mediated by AMPK. We show that disruption of VASP results in significant hepatic steatosis as a result of significant impairment of fatty acid oxidation, VLDL-triglyceride (TG) secretion, and AMPK signaling. Overexpression of VASP in hepatocytes increased AMPK phosphorylation and fatty acid oxidation and reduced hepatocyte TG accumulation; however, these responses were suppressed in the presence of an AMPK inhibitor. Restoration of AMPK phosphorylation by administration of 5-aminoimidazole-4-carboxamide riboside in Vasp−/− mice reduced hepatic steatosis and normalized fatty acid oxidation and VLDL-TG secretion. Activation of VASP by the phosphodiesterase-5 inhibitor, sildenafil, in db/db mice reduced hepatic steatosis and increased phosphorylated (p-)AMPK and p-acetyl CoA carboxylase. In Vasp−/− mice, however, sildendafil treatment did not increase p-AMPK or reduce hepatic TG content. These studies identify a role of VASP to enhance hepatic fatty acid oxidation by activating AMPK and to promote VLDL-TG secretion from the liver. PMID:23349495

  9. Chemo-enzymatic synthesis of 2'-O-methoxyethyl ribonucleosides using a phosphodiesterase from Serratia marcescens.

    PubMed

    Marais, Guy; Ghisalba, Oreste

    2005-02-01

    An enzyme able to cleave the 3',5'-phosphate ring of 2'-methoxyethyl cyclic nucleotides (3',5'-cyclic nucleotide phosphodiesterase, EC 3.1.4.17) from Serratia marcescens DSM 30121 was used to deprotect the cyclic phosphate nucleotides after chemical alkylation. The process yielded 2'-O-alkylated nucleosides used as building blocks of antisense oligonucleotides for subsequent potential applications in therapeutics (antisense oligonucleotide synthesis) and diagnostics. The phosphodiesterase from the Gram-negative enteric bacterium S. marcescens was selected on account of the broad substrate range and high activity of the enzyme. The protein was purified by heat-treatment of the crude cell-free extract, followed by column chromatography (gel filtration). It was characterised and showed optimal activity at a broad pH range (pH 6.8-9.4, with a peak at ca. pH 8.5) and at a temperature of 60-65 degrees C. No metal ions were required for activity, although Ba2+ was an activator. Conversion of 2'-O-methoxyethyl cAMP into the corresponding nucleoside derivative on a multi-gram scale was successfully performed in two steps, using the S. marcescens enzyme in conjunction with a commercially available alkaline phosphatase from Escherichia coli.

  10. Correlation between ribonucleoside-diphosphate reductase and three replication proteins in Escherichia coli

    PubMed Central

    2010-01-01

    Background There has long been evidence supporting the idea that RNR and the dNTP-synthesizing complex must be closely linked to the replication complex or replisome. We contributed to this body of evidence in proposing the hypothesis of the replication hyperstructure. A recently published work called this postulate into question, reporting that NrdB is evenly distributed throughout the cytoplasm. Consequently we were interested in the localization of RNR protein and its relationship with other replication proteins. Results We tagged NrdB protein with 3×FLAG epitope and detected its subcellular location by immunofluorescence microscopy. We found that this protein is located in nucleoid-associated clusters, that the number of foci correlates with the number of replication forks at any cell age, and that after the replication process ends the number of cells containing NrdB foci decreases. We show that the number of NrdB foci is very similar to the number of SeqA, DnaB, and DnaX foci, both in the whole culture and in different cell cycle periods. In addition, interfoci distances between NrdB and three replication proteins are similar to the distances between two replication protein foci. Conclusions NrdB is present in nucleoid-associated clusters during the replication period. These clusters disappear after replication ends. The number of these clusters is closely related to the number of replication forks and the number of three replication protein clusters in any cell cycle period. Therefore we conclude that NrdB protein, and most likely RNR protein, is closely linked to the replication proteins or replisome at the replication fork. These results clearly support the replication hyperstructure model. PMID:20102606

  11. AMPK Agonist AICAR Improves Cognition and Motor Coordination in Young and Aged Mice

    ERIC Educational Resources Information Center

    Kobilo, Tali; Guerrieri, Davide; Zhang, Yongqing; Collica, Sarah C.; Becker, Kevin G.; van Praag, Henriette

    2014-01-01

    Normal aging can result in a decline of memory and muscle function. Exercise may prevent or delay these changes. However, aging-associated frailty can preclude physical activity. In young sedentary animals, pharmacological activation of AMP-activated protein kinase (AMPK), a transcriptional regulator important for muscle physiology, enhanced…

  12. Activation of AMP-Activated Protein Kinase Prevents TGF-β1–Induced Epithelial-Mesenchymal Transition and Myofibroblast Activation

    PubMed Central

    Thakur, Sachin; Viswanadhapalli, Suryavathi; Kopp, Jeffrey B.; Shi, Qian; Barnes, Jeffrey L.; Block, Karen; Gorin, Yves; Abboud, Hanna E.

    2016-01-01

    Transforming growth factor (TGF)-β contributes to tubulointerstitial fibrosis. We investigated the mechanism by which TGF-β exerts its profibrotic effects and specifically the role of AMP-activated protein kinase (AMPK) in kidney tubular epithelial cells and interstitial fibroblasts. In proximal tubular epithelial cells, TGF-β1 treatment causes a decrease in AMPK phosphorylation and activation together with increased fibronectin and α-smooth muscle actin expression and decreased in E-cadherin. TGF-β1 causes similar changes in interstitial fibroblasts. Activation of AMPK with 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside, metformin, or overexpression of constitutively active AMPK markedly attenuated TGF-β1 functions. Conversely, inhibition of AMPK with adenine 9-β-d-arabinofuranoside or siRNA-mediated knockdown of AMPK (official name PRKAA1) mimicked the effect of TGF-β1 and enhanced basal and TGF-β1–induced phenotypic changes. Importantly, we found that tuberin contributed to the protective effects of AMPK and that TGF-β1 promoted cell injury by blocking AMPK-mediated tuberin phosphorylation and activation. In the kidney cortex of TGF-β transgenic mice, the significant decrease in AMPK phosphorylation and tuberin phosphorylation on its AMPK-dependent activating site was associated with an increase in mesenchymal markers and a decrease in E-cadherin. Collectively, the data indicate that TGF-β exerts its profibrotic action in vitro and in vivo via inactivation of AMPK. AMPK and tuberin activation prevent tubulointerstitial injury induced by TGF-β. Activators of AMPK provide potential therapeutic strategy to prevent kidney fibrosis and progressive kidney disease. PMID:26071397

  13. Colocalization and Sequential Enzyme Activity in Aqueous Biphasic Systems: Experiments and Modeling.

    PubMed

    Davis, Bradley W; Aumiller, William M; Hashemian, Negar; An, Songon; Armaou, Antonios; Keating, Christine D

    2015-11-17

    Subcellular compartmentalization of biomolecules and their reactions is common in biology and provides a general strategy for improving and/or controlling kinetics in metabolic pathways that contain multiple sequential enzymes. Enzymes can be colocalized in multiprotein complexes, on scaffolds or inside subcellular organelles. Liquid organelles formed by intracellular phase coexistence could provide an additional means of sequential enzyme colocalization. Here we use experiment and computation to explore the kinetic consequences of sequential enzyme compartmentalization into model liquid organelles in a crowded polymer solution. Two proteins of the de novo purine biosynthesis pathway, ASL (adenylosuccinate lyase, Step 8) and ATIC (5-aminoimidazole-4-carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase, Steps 9 and 10), were studied in a polyethylene glycol/dextran aqueous two-phase system. Dextran-rich phase droplets served as model liquid compartments for enzyme colocalization. In this system, which lacks any specific binding interactions between the phase-forming polymers and the enzymes, we did not observe significant rate enhancements from colocalization for the overall reaction under our experimental conditions. The experimental results were used to adapt a mathematical model to quantitatively describe the kinetics. The mathematical model was then used to explore additional, experimentally inaccessible conditions to predict when increased local concentrations of enzymes and substrates can (or cannot) be expected to yield increased rates of product formation. Our findings indicate that colocalization within these simplified model liquid organelles can lead to enhanced metabolic rates under some conditions, but that very strong partitioning into the phase that serves as the compartment is necessary. In vivo, this could be provided by specific binding affinities between components of the liquid compartment and the molecules to be

  14. AMP-activated Protein Kinase Suppresses Biosynthesis of Glucosylceramide by Reducing Intracellular Sugar Nucleotides*

    PubMed Central

    Ishibashi, Yohei; Hirabayashi, Yoshio

    2015-01-01

    The membrane glycolipid glucosylceramide (GlcCer) plays a critical role in cellular homeostasis. Its intracellular levels are thought to be tightly regulated. How cells regulate GlcCer levels remains to be clarified. AMP-activated protein kinase (AMPK), which is a crucial cellular energy sensor, regulates glucose and lipid metabolism to maintain energy homeostasis. Here, we investigated whether AMPK affects GlcCer metabolism. AMPK activators (5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside and metformin) decreased intracellular GlcCer levels and synthase activity in mouse fibroblasts. AMPK inhibitors or AMPK siRNA reversed these effects, suggesting that GlcCer synthesis is negatively regulated by an AMPK-dependent mechanism. Although AMPK did not affect the phosphorylation or expression of GlcCer synthase, the amount of UDP-glucose, an activated form of glucose required for GlcCer synthesis, decreased under AMPK-activating conditions. Importantly, the UDP-glucose pyrophosphatase Nudt14, which degrades UDP-glucose, generating UMP and glucose 1-phosphate, was phosphorylated and activated by AMPK. On the other hand, suppression of Nudt14 by siRNA had little effect on UDP-glucose levels, indicating that mammalian cells have an alternative UDP-glucose pyrophosphatase that mainly contributes to the reduction of UDP-glucose under AMPK-activating conditions. Because AMPK activators are capable of reducing GlcCer levels in cells from Gaucher disease patients, our findings suggest that reducing GlcCer through AMPK activation may lead to a new strategy for treating diseases caused by abnormal accumulation of GlcCer. PMID:26048992

  15. Sestrin2 Silencing Exacerbates Cerebral Ischemia/Reperfusion Injury by Decreasing Mitochondrial Biogenesis through the AMPK/PGC-1α Pathway in Rats.

    PubMed

    Li, Lingyu; Xiao, Lina; Hou, Yanghao; He, Qi; Zhu, Jin; Li, Yixin; Wu, Jingxian; Zhao, Jing; Yu, Shanshan; Zhao, Yong

    2016-01-01

    Sestrin2 (Sesn2) exerts neuroprotective properties in some neurodegenerative diseases. However, the role of Sesn2 in stroke is unclear. The AMP-activated protein kinase/peroxisome proliferator-activated receptor γ coactivator-1α (AMPK/PGC-1α) pathway plays an important role in regulating mitochondrial biogenesis, which helps prevent cerebral ischemia/reperfusion (I/R) injury. Here, we aimed to determine whether Sesn2 alleviated I/R damage by regulating mitochondrial biogenesis through the AMPK/PGC-1α signaling pathway. To be able to test this, Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 1 h with Sesn2 silencing. At 24 h after reperfusion, we found that neurological deficits were exacerbated, infarct volume was enlarged, and oxidative stress and neuronal damage were greater in the Sesn2 siRNA group than in the MCAO group. To explore protective mechanisms, an AMPK activator was used. Expression levels of Sesn2, p-AMPK, PGC-1α, NRF-1, TFAM, SOD2, and UCP2 were significantly increased following cerebral I/R. However, upregulation of these proteins was prevented by Sesn2 small interfering RNA (siRNA). In contrast, activation of AMPK with 5'-aminoimidazole-4-carboxamide riboside weakened the effects of Sesn2 siRNA. These results suggest that Sesn2 silencing may suppress mitochondrial biogenesis, reduce mitochondrial biological activity, and finally aggravate cerebral I/R injury through inhibiting the AMPK/PGC-1α pathway. PMID:27453548

  16. AMPK activation protects from neuronal dysfunction and vulnerability across nematode, cellular and mouse models of Huntington's disease

    PubMed Central

    Vázquez-Manrique, Rafael P.; Farina, Francesca; Cambon, Karine; Dolores Sequedo, María; Parker, Alex J.; Millán, José María; Weiss, Andreas; Déglon, Nicole; Neri, Christian

    2016-01-01

    The adenosine monophosphate activated kinase protein (AMPK) is an evolutionary-conserved protein important for cell survival and organismal longevity through the modulation of energy homeostasis. Several studies suggested that AMPK activation may improve energy metabolism and protein clearance in the brains of patients with vascular injury or neurodegenerative disease. However, in Huntington's disease (HD), AMPK may be activated in the striatum of HD mice at a late, post-symptomatic phase of the disease, and high-dose regiments of the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleotide may worsen neuropathological and behavioural phenotypes. Here, we revisited the role of AMPK in HD using models that recapitulate the early features of the disease, including Caenorhabditis elegans neuron dysfunction before cell death and mouse striatal cell vulnerability. Genetic and pharmacological manipulation of aak-2/AMPKα shows that AMPK activation protects C. elegans neurons from the dysfunction induced by human exon-1 huntingtin (Htt) expression, in a daf-16/forkhead box O-dependent manner. Similarly, AMPK activation using genetic manipulation and low-dose metformin treatment protects mouse striatal cells expressing full-length mutant Htt (mHtt), counteracting their vulnerability to stress, with reduction of soluble mHtt levels by metformin and compensation of cytotoxicity by AMPKα1. Furthermore, AMPK protection is active in the mouse brain as delivery of gain-of-function AMPK-γ1 to mouse striata slows down the neurodegenerative effects of mHtt. Collectively, these data highlight the importance of considering the dynamic of HD for assessing the therapeutic potential of stress-response targets in the disease. We postulate that AMPK activation is a compensatory response and valid approach for protecting dysfunctional and vulnerable neurons in HD. PMID:26681807

  17. Carcinogenicity of the antineoplastic agent, 5-(3,3-dimethyl-1-triazeno)-imidazole-4-carboxamide, and its metabolites in rats.

    PubMed

    Beal, D D; Skibba, J L; Croft, W A; Cohen, S M; Bryan, G T

    1975-04-01

    Chronic oral administration of the antineoplastic agent, 5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide (NSC-45388, DTIC), induced predominantly thymic and mammary tumors as demonstrated previously. Male and female Sprague-Dawley and female Buffalo rats were susceptible to the carcinogenicity of DTIC. A 50% incidence of mammary adenocarcinomas was induced in males within 18 weeks. Type of tumor and tumor incidence were dose dependent. Single and multiple intraperitoneal injections of DTIC did not alter organ specificity. DTIC-induced thymic lymphosarcomas and mammary adenocarcinomas were transplantable. Tissue distribution studies revealed no correlation between uptake of DTIC by a given tissue and its susceptibility to carcinogenicity. Metabolites of DTIC were tested for carcinogenic activity. Animals administered 5-diazoimidazole-4-carboxamide orally, intraperitoneally, or intragastrically developed low incidences of thymic, stomach, bladder, or mammary tumors. A low incidence of mammary tumors developed in rats fed 2-azahypoxanthine. A variety of tumors, including several ependymoblastomas, were induced in rats that received 5-aminoimidazole-4-carboxamide orally. 5-(3-Methyl-1-triazeno)imidazole-4-carboxamide (MTIC), when fed or given in single or multiple intraperitoneal injections, induced a high incidence of mammary adenofibromas and a low incidence of uterine leiomyosarcomas. Control rats had low incidences of mammary adenocarcinomas and adenofibromas after 52 weeks. These data show that the carcinogenic properties of DTIC resemble those of carcinogenic N-nitroso compounds, hydrazine, azo, and azoxy-alkanes and aryltriazenes and thus suggest similar mechanism(s) of action. These data also indicate that MTIC is involved in the induction of mammary adenofibromas and uterine leiomyosarcomas by DTIC.

  18. Expression of thiamin biosynthetic genes (thiCOGE) and production of symbiotic terminal oxidase cbb3 in Rhizobium etli.

    PubMed Central

    Miranda-Ríos, J; Morera, C; Taboada, H; Dávalos, A; Encarnación, S; Mora, J; Soberón, M

    1997-01-01

    between expression of thiC and production of the cbb3 terminal oxidase. This is consistent with the proposition that a purine-related metabolite, 5-aminoimidazole-4-carboxamide ribonucleotide, is a negative effector of the production of the symbiotic terminal oxidase cbb3 in R. etli. PMID:9371431

  19. Okadaic acid-induced, naringin-sensitive phosphorylation of glycine N-methyltransferase in isolated rat hepatocytes.

    PubMed Central

    Møller, Michael T N; Samari, Hamid R; Fengsrud, Monica; Strømhaug, Per E; øStvold, Anne C; Seglen, Per O

    2003-01-01

    Glycine N-methyltransferase (GNMT) is an abundant cytosolic enzyme that catalyses the methylation of glycine into sarcosine, coupled with conversion of the methyl donor, S -adenosylmethionine (AdoMet), into S -adenosylhomocysteine (AdoHcy). GNMT is believed to play a role in monitoring the AdoMet/AdoHcy ratio, and hence the cellular methylation capacity, but regulation of the enzyme itself is not well understood. In the present study, treatment of isolated rat hepatocytes with the protein phosphatase inhibitor okadaic acid, was found to induce an overphosphorylation of GNMT, as shown by proteomic analysis. The analysis comprised two-dimensional gel electrophoretic separation of (32)P-labelled phosphoproteins and identification of individual protein spots by matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry. The identity of GNMT was verified by N-terminal Edman sequencing of tryptic peptides. Chromatographic separation of proteolytic peptides and (32)P-labelled amino acids suggested that GNMT was phosphorylated within a limited region, and only at serine residues. GNMT phosphorylation could be suppressed by naringin, an okadaic acid-antagonistic flavonoid. To assess the possible functional role of GNMT phosphorylation, the effect of okadaic acid on hepatocytic AdoMet and AdoHcy levels was examined, using HPLC separation for metabolite analysis. Surprisingly, okadaic acid was found to have no effect on the basal levels of AdoMet or AdoHcy. An accelerated AdoMet-AdoHcy flux, induced by the addition of methionine (1 mM), was likewise unaffected by okadaic acid. 5-Aminoimidazole-4-carboxamide riboside, an activator of the hepatocytic AMP-activated protein kinase, similarly induced GNMT phosphorylation without affecting AdoMet and AdoHcy levels. Activation of cAMP-dependent protein kinase by dibutyryl-cAMP, reported to cause GNMT phosphorylation under cell-free conditions, also had little effect on hepatocytic AdoMet and AdoHcy levels

  20. Synthesis and antiviral evaluation of 2'-C-methyl analogues of 5-alkynyl- and 6-alkylfurano- and pyrrolo[2,3-d]pyrimidine ribonucleosides.

    PubMed

    Januszczyk, Piotr; Fogt, Joanna; Boryski, Jerzy; Izawa, Kunisuke; Onishi, Tomoyuki; Neyts, Johan; De Clercq, Erik

    2009-05-01

    A series of novel 2'-C-methylribonucleosides, involving 5-iodo and 5-alkynyl uridine analogues as well as related bicyclic furano- and pyrrolo[2,3-d]pyrimidinone compounds, has been synthesized and evaluated for their inhibitory effect on replication of the hepatitis C virus (HCV). The new nucleoside analogues did not show meaningful anti-HCV activity. PMID:20183611

  1. Investigating the intermediates in the reaction of ribonucleoside triphosphate reductase from Lactobacillus leichmannii : An application of HF EPR-RFQ technology

    NASA Astrophysics Data System (ADS)

    Manzerova, Julia; Krymov, Vladimir; Gerfen, Gary J.

    2011-12-01

    In this investigation high-frequency electron paramagnetic resonance spectroscopy (HFEPR) in conjunction with innovative rapid freeze-quench (RFQ) technology is employed to study the exchange-coupled thiyl radical-cob(II)alamin system in ribonucleotide reductase from a prokaryote Lactobacillus leichmannii. The size of the exchange coupling ( Jex) and the values of the thiyl radical g tensor are refined, while confirming the previously determined (Gerfen et al. (1996) [20]) distance between the paramagnets. Conclusions relevant to ribonucleotide reductase catalysis and the architecture of the active site are presented. A key part of this work has been the development of a unique RFQ apparatus for the preparation of millisecond quench time RFQ samples which can be packed into small (0.5 mm ID) sample tubes used for CW and pulsed HFEPR - lack of this ability has heretofore precluded such studies. The technology is compatible with a broad range of spectroscopic techniques and can be readily adopted by other laboratories.

  2. PAR-CLIP (Photoactivatable Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation): a step-by-step protocol to the transcriptome-wide identification of binding sites of RNA-binding proteins.

    PubMed

    Spitzer, Jessica; Hafner, Markus; Landthaler, Markus; Ascano, Manuel; Farazi, Thalia; Wardle, Greg; Nusbaum, Jeff; Khorshid, Mohsen; Burger, Lukas; Zavolan, Mihaela; Tuschl, Thomas

    2014-01-01

    We recently developed a protocol for the transcriptome-wide isolation of RNA recognition elements readily applicable to any protein or ribonucleoprotein complex directly contacting RNA (including RNA helicases, polymerases, or nucleases) expressed in cell culture models either naturally or ectopically (Hafner et al., 2010). Briefly, immunoprecipitation of the RNA-binding protein of interest is followed by isolation of the crosslinked and coimmunoprecipitated RNA. In the course of lysate preparation and immunoprecipitation, the mRNAs are partially degraded using Ribonuclease T1. The isolated crosslinked RNA fragments are converted into a cDNA library and deep-sequenced using Solexa technology (see Explanatory Chapter: Next Generation Sequencing). By introducing photoreactive nucleosides that generate characteristic sequence changes upon crosslinking (see below), our protocol allows one to separate RNA segments bound by the protein of interest from the background un-crosslinked RNAs.

  3. PAR-CLIP (Photoactivatable Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation): a Step-By-Step Protocol to the Transcriptome-Wide Identification of Binding Sites of RNA-Binding Proteins

    PubMed Central

    Spitzer, Jessica; Hafner, Markus; Landthaler, Markus; Ascano, Manuel; Farazi, Thalia; Wardle, Greg; Nusbaum, Jeff; Khorshid, Mohsen; Burger, Lukas; Zavolan, Mihaela; Tuschl, Thomas

    2014-01-01

    We recently developed a protocol for the transcriptome-wide isolation of RNA recognition elements readily applicable to any protein or ribonucleoprotein complex directly contacting RNA (including RNA helicases, polymerases, or nucleases) expressed in cell culture models either naturally or ectopically (Hafner et al., 2010). Briefly, immunoprecipitation of the RNA-binding protein of interest is followed by isolation of the crosslinked and coimmunoprecipitated RNA. In the course of lysate preparation and immunoprecipitation, the mRNAs are partially degraded using Ribonu-clease T1. The isolated crosslinked RNA fragments are converted into a cDNA library and deep-sequenced using Solexa technology (see Explanatory Chapter: Next Generation Sequencing). By introducing photoreactive nucleosides that generate characteristic sequence changes upon crosslinking (see below), our protocol allows one to separate RNA segments bound by the protein of interest from the background un-crosslinked RNAs. PMID:24581442

  4. A modular approach to aryl-C-ribonucleosides via the allylic substitution and ring-closing metathesis sequence. a stereocontrolled synthesis of all four α-/β- and D-/L-C-nucleoside stereoisomers.

    PubMed

    Štambaský, Jan; Kapras, Vojtěch; Štefko, Martin; Kysilka, Ondřej; Hocek, Michal; Malkov, Andrei V; Kočovský, Pavel

    2011-10-01

    Iridium(I)-catalyzed allylation of the enantiopure monoprotected copper(I) alkoxide, generated from (S)-5a, with the enantiopure allylic carbonates (R)-9a,b has been developed as the key step in a new approach to C-nucleoside analogues. The anomeric center was thus constructed via a stereocontrolled formation of the C-O rather than C-C bond with retention of configuration. The resulting bisallyl ethers 15a,b (≥90% de and >99% ee) were converted into C-ribosides 29a,b via the Ru-catalyzed ring-closing metathesis, followed by a diastereoselective dihydroxylation catalyzed by OsO(4) or RuO(4) and deprotection. Variation of the absolute configuration of the starting segments 5a and 9a,b allowed a stereocontrolled synthesis of all four α/β-D/L-combinations.

  5. Synergistic anti-tumor activity of acadesine (AICAR) in combination with the anti-CD20 monoclonal antibody rituximab in in vivo and in vitro models of mantle cell lymphoma

    PubMed Central

    Montraveta, Arnau; Xargay-Torrent, Sílvia; López-Guerra, Mónica; Rosich, Laia; Pérez-Galán, Patricia; Salaverria, Itziar; Beà, Silvia; Kalko, Susana G.; de Frias, Mercè; Campàs, Clara; Roué, Gaël; Colomer, Dolors

    2014-01-01

    Mantle cell lymphoma (MCL) is considered one of the most challenging lymphoma, with limited responses to current therapies. Acadesine, a nucleoside analogue has shown antitumoral effects in different preclinical cancer models as well as in a recent phase I/II clinical trial conducted in patients with chronic lymphocytic leukemia. Here we observed that acadesine exerted a selective antitumoral activity in the majority of MCL cell lines and primary MCL samples, independently of adverse cytogenetic factors. Moreover, acadesine was highly synergistic, both in vitro and in vivo, with the anti-CD20 monoclonal antibody rituximab, commonly used in combination therapy for MCL. Gene expression profiling analysis in harvested tumors suggested that acadesine modulates immune response, actin cytoskeleton organization and metal binding, pointing out a substantial impact on metabolic processes by the nucleoside analog. Rituximab also induced changes on metal binding and immune responses. The combination of both drugs enhanced the gene signature corresponding to each single agent, showing an enrichment of genes involved in inflammation, metabolic stress, apoptosis and proliferation. These effects could be important as aberrant apoptotic and proinflammatory pathways play a significant role in the pathogenesis of MCL. In summary, our results suggest that acadesine exerts a cytotoxic effect in MCL in combination with rituximab, by decreasing the proliferative and survival signatures of the disease, thus supporting the clinical examination of this strategy in MCL patients. PMID:24519895

  6. Chronic activation of central AMPK attenuates glucose-stimulated insulin secretion and exacerbates hepatic insulin resistance in diabetic rats.

    PubMed

    Park, Sunmin; Kim, Da Sol; Kang, Suna; Shin, Bae Keun

    2014-09-01

    We investigated the effects of chronic AMP-activated kinase (AMPK) activation in the hypothalamus on energy and glucose metabolism in 90% pancreatectomized diabetic rats. Diabetic rats fed a high fat diet were divided into 3 groups and intracerebroventricular (ICV) administered with one of the following: 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR, AMPK activator; 80 μg/day), AICAR+compound C (AMPK inhibitor; 6.2 μg/day), or an artificial cerebrospinal fluid (control) by means of osmotic pumps for 4 weeks. In the hypothalamus, central AICAR activated the phosphorylation of AMPK whereas adding compound C suppressed the activation. AICAR increased body weight and epididymal and retroperitoneal fat mass by increasing energy intake for the first 2 weeks and decreasing energy expenditure, whereas compound C reversed the AICAR effect on energy metabolism. Indirect calorimetry revealed that ICV-AICAR decreased carbohydrate oxidation, but not fat oxidation, compared to the control. During euglycemic hyperinsulinemic clamp, central AICAR increased hepatic glucose output at hyperinsulinemic states. ICV-AICAR increased expressions of hepatic genes involved in fatty acid synthesis and decreased expression of hepatic genes related to thermogenesis whereas compound C nullified the AICAR effect. Insulin secretion in the first and second phases decreased in AICAR-treated rats at hyperglycemic clamp, but compound C nullified the decrease. However, central AICAR did not alter β-cell mass via its proliferation or apoptosis. In conclusion, chronic hypothalamic AMPK activation impaired energy metabolism and glucose homeostasis by increasing food intake, increasing hepatic glucose output and decreasing insulin secretion in diabetic rats. The impairment of energy and glucose homeostasis by AMPK activation was nullified by an AMPK inhibitor.

  7. Furano- and pyrrolo [2,3-d] pyrimidine nucleosides and their 5'-O-triphospates: synthesis and enzymatic activity.

    PubMed

    Alexandrova, L A; Ivanov, M A; Victorova, L S; Kukhanova, M K

    2007-01-01

    A series of bicyclic [2,3-d]furano- and pyrrolopyrimidine ribonucleosides were synthesized and converted chemically into corresponding 5'-O-triphosphates. Substrate properties of the triphosphates toward some RNA and DNA polymerases are reported. PMID:18058541

  8. Chemical synthesis of oligoribonucleotides containing 2-aminopurine: substrates for the investigation of ribozyme function

    NASA Technical Reports Server (NTRS)

    Doudna, J. A.; Szostak, J. W.; Rich, A.; Usman, N.

    1990-01-01

    The chemical synthesis of a fully protected ribonucleoside phosphoramidite, containing 2-aminopurine as the base component, and its incorporation into short oligoribonucleotides as substrates for an engineered ribozyme from Tetrahymena is described.

  9. Permanent or reversible conjugation of 2′-O- or 5′-O-aminooxymethylated nucleosides with functional groups as a convenient and efficient approach to the modification of RNA and DNA sequences

    PubMed Central

    Cieślak, Jacek; Grajkowski, Andrzej; Ausín, Cristina; Gapeev, Alexei; Beaucage, Serge L.

    2012-01-01

    2′-O-Aminooxymethyl ribonucleosides are prepared from their 3′,5′-disilylated 2′-O-phthalimidooxymethyl derivatives by treatment with NH4F in MeOH. The reaction of these novel ribonucleosides with 1-pyrenecarboxaldehyde results in the efficient formation of stable and yet reversible ribonucleoside 2′-conjugates in yields of 69–82%. Indeed, exposure of these conjugates to 0.5 M tetra-n-butylammonium fluoride (TBAF) in THF results in the cleavage of their iminoether functions to give the native ribonucleosides along with the innocuous nitrile side product. Conversely, the reaction of 5-cholesten-3-one or dansyl chloride with 2′-O-aminooxymethyl uridine provides permanent uridine 2′-conjugates, which are left essentially intact upon treatment with TBAF. Alternatively, 5′-O-aminooxymethyl thymidine is prepared by hydrazinolysis of its 3′-O-levulinyl-5′-O-phthalimidooxymethyl precursor. Pyrenylation of 5′-O-aminooxymethyl thymidine and the sensitivity of the 5′-conjugate to TBAF further exemplify the usefulness of this nucleoside for modifying DNA sequences either permanently or reversibly. Although the versatility and uniqueness of 2′-O-aminooxymethyl ribonucleosides in the preparation of modified RNA sequences is demonstrated by the single or double incorporation of a reversible pyrenylated uridine 2′-conjugate into an RNA sequence, the conjugation of 2′-O-aminooxymethyl ribonucleosides with aldehydes, including those generated from their acetals, provides reversible 2′-O-protected ribonucleosides for potential applications in the solid-phase synthesis of native RNA sequences. The synthesis of a chimeric polyuridylic acid is presented as an exemplary model. PMID:22067450

  10. Serine hydroxymethyltransferase: a key player connecting purine, folate and methionine metabolism in Saccharomyces cerevisiae.

    PubMed

    Saint-Marc, Christelle; Hürlimann, Hans C; Daignan-Fornier, Bertrand; Pinson, Benoît

    2015-11-01

    Previous genetic analyses showed phenotypic interactions between 5-amino-4-imidazole carboxamide ribonucleotide 5'-phosphate (AICAR) produced from the purine and histidine pathways and methionine biosynthesis. Here, we revisited the effect of AICAR on methionine requirement due to AICAR accumulation in the presence of the fau1 mutation invalidating folinic acid remobilization. We found that this methionine auxotrophy could be suppressed by overexpression of the methionine synthase Met6 or by deletion of the serine hydroxymethyltransferase gene SHM2. We propose that in a fau1 background, AICAR, by stimulating the transcriptional expression of SHM2, leads to a folinic acid accumulation inhibiting methionine synthesis by Met6. In addition, we uncovered a new methionine auxotrophy for the ade3 bas1 double mutant that can be rescued by overexpressing the SHM2 gene. We propose that methionine auxotrophy in this mutant is the result of a competition for 5,10-methylenetetrahydrofolate between methionine and deoxythymidine monophosphate synthesis. Altogether, our data show intricate genetic interactions between one-carbon units, purine and methionine metabolism through fine-tuning of serine hydroxymethyltransferase by AICAR and the transcription factor Bas1.

  11. Quantitative analysis of tRNA modifications by HPLC-coupled mass spectrometry

    PubMed Central

    Su, Dan; Chan, Clement T.Y.; Gu, Chen; Lim, Kok Seong; Chionh, Yok Hian; McBee, Megan E.; Russell, Brandon S.; Babu, I. Ramesh; Begley, Thomas J.; Dedon, Peter C.

    2015-01-01

    Post-transcriptional modification of RNA is an important determinant of RNA quality control, translational efficiency, RNA-protein interactions, and stress response. This is illustrated by the observation of toxicant-specific changes in the spectrum of tRNA modifications in a stress response mechanism involving selective translation of codon-biased mRNA for critical proteins. To facilitate systems-level studies of RNA modifications, we developed a liquid chromatography-coupled mass spectrometry (LC-MS) technique for the quantitative analysis of modified ribonucleosides in tRNA or other RNA species. The protocol includes tRNA purification by HPLC, enzymatic hydrolysis, reversed-phase HPLC resolution of the ribonucleosides, and identification and quantification of individual ribonucleosides by LC-MS using dynamic multiple reaction monitoring. This approach enables quantification of modified ribonucleosides in several micrograms of tRNA, or other RNA, in a 15-minute LC-MS run. By comparison, traditional methods for detecting modified ribonucleosides are labor and time intensive, require larger RNA quantities, are modification-specific, or require radioactive labeling. PMID:24625781

  12. Aminoimidazole Carboxamide Ribotide Exerts Opposing Effects on Thiamine Synthesis in Salmonella enterica

    PubMed Central

    Bazurto, Jannell V.; Heitman, Nicholas J.

    2015-01-01

    ABSTRACT In Salmonella enterica, the thiamine biosynthetic intermediate 5-aminoimidazole ribotide (AIR) can be synthesized de novo independently of the early purine biosynthetic reactions. This secondary route to AIR synthesis is dependent on (i) 5-amino-4-imidazolecarboxamide ribotide (AICAR) accumulation, (ii) a functional phosphoribosylaminoimidazole-succinocarboxamide (SAICAR) synthetase (PurC; EC 6.3.2.6), and (iii) methionine and lysine in the growth medium. Studies presented here show that AICAR is a direct precursor to AIR in vivo. PurC-dependent conversion of AICAR to AIR was recreated in vitro. Physiological studies showed that exogenous nutrients (e.g., methionine and lysine) antagonize the inhibitory effects of AICAR on the ThiC reaction and decreased the cellular thiamine requirement. Finally, genetic results identified multiple loci that impacted the effect of AICAR on thiamine synthesis and implicated cellular aspartate levels in AICAR-dependent AIR synthesis. Together, the data here clarify the mechanism that allows conditional growth of a strain lacking the first five biosynthetic enzymes, and they provide additional insights into the complexity of the metabolic network and its plasticity. IMPORTANCE In bacteria, the pyrimidine moiety of thiamine is derived from aminoimidazole ribotide (AIR), an intermediate in purine biosynthesis. A previous study described conditions under which AIR synthesis is independent of purine biosynthesis. This work is an extension of that previous study and describes a new synthetic pathway to thiamine that depends on a novel thiamine precursor and a secondary activity of the biosynthetic enzyme PurC. These findings provide mechanistic details of redundancy in the synthesis of a metabolite that is essential for nucleotide and coenzyme biosynthesis. Metabolic modifications that allow the new pathway to function or enhance it are also described. PMID:26100042

  13. Automated Solid-Phase Synthesis of RNA Oligonucleotides Containing a Non-bridging Phosphorodithioate Linkage via Phosphorothioamidites

    PubMed Central

    Frederiksen, John K.; Piccirilli, Joseph A.

    2012-01-01

    This work describes a general method for the synthesis of oligoribonucleotides containing a site-specific non-bridging phosphorodithioate linkage via automated solid-phase synthesis using 5′-O-DMTr-2′-O-TBS-ribonucleoside 3′-N,N-dimethyl-S-(2,4-dichlorobenzyl) phosphorothioamidites (2a–2d). The 3′-phosphorothioamidites (2a–2d) can be conveniently prepared in good yields (86–99%) via a one-pot reaction from the corresponding 5′-O-DMTr-2′-O-TBS-ribonucleosides (1a–1d). PMID:23050987

  14. Endurance Factors Improve Hippocampal Neurogenesis and Spatial Memory in Mice

    ERIC Educational Resources Information Center

    Kobilo, Tali; Yuan, Chunyan; van Praag, Henriette

    2011-01-01

    Physical activity improves learning and hippocampal neurogenesis. It is unknown whether compounds that increase endurance in muscle also enhance cognition. We investigated the effects of endurance factors, peroxisome proliferator-activated receptor [delta] agonist GW501516 and AICAR, activator of AMP-activated protein kinase on memory and…

  15. The hypotensive effect of acute and chronic AMP-activated protein kinase activation in normal and hyperlipidemic mice

    PubMed Central

    Greig, Fiona H.; Ewart, Marie-Ann; McNaughton, Eilidh; Cooney, Josephine; Spickett, Corinne M.; Kennedy, Simon

    2015-01-01

    AMP-activated protein kinase (AMPK) is present in the arterial wall and is activated in response to cellular stressors that raise AMP relative to ADP/ATP. Activation of AMPK in vivo lowers blood pressure but the influence of hyperlipidemia on this response has not been studied. ApoE−/− mice on high fat diet for 6 weeks and age-matched controls were treated with the AMPK activator, AICAR daily for two weeks. Under anesthesia, the carotid artery was cannulated for blood pressure measurements. Aortic tissue was removed for in vitro functional experiments and AMPK activity was measured in artery homogenates by Western blotting. ApoE−/− mice had significantly raised mean arterial pressure; chronic AICAR treatment normalized this but had no effect in normolipidemic mice, whereas acute administration of AICAR lowered mean arterial pressure in both groups. Chronic AICAR treatment increased phosphorylation of AMPK and its downstream target acetyl-CoA carboxylase in normolipidemic but not ApoE−/− mice. In aortic rings, AMPK activation induced vasodilation and an anticontractile effect, which was attenuated in ApoE−/− mice. This study demonstrates that hyperlipidemia dysregulates the AMPK pathway in the arterial wall but this effect can be reversed by AMPK activation, possibly through improving vessel compliance. PMID:26196300

  16. Synthesis of pppGpN type dinucleotide derivatives: the 5' end sequence of some RNAs.

    PubMed Central

    Simoncsits, A; Tomasz, J; Allende, J E

    1975-01-01

    A rapid and simple synthesis of pppGpN type /N equals C, U or A/ diribonucleotide derivatives is described by coupling guanosine 2', 3'-cyclic phosphate 5'-triphosphate with the appropriate ribonucleoside in the presence of ribonuclease T-1. PMID:1091917

  17. Synthesis of pppGpN type dinucleotide derivatives: the 5' end sequence of some RNAs.

    PubMed

    Simoncsits, A; Tomasz, J; Allende, J E

    1975-02-01

    A rapid and simple synthesis of pppGpN type /N equals C, U or A/ diribonucleotide derivatives is described by coupling guanosine 2', 3'-cyclic phosphate 5'-triphosphate with the appropriate ribonucleoside in the presence of ribonuclease T-1.

  18. New hypoxanthine nucleosides with RNA antiviral activity.

    PubMed

    Nair, V; Ussery, M A

    1992-08-01

    A series of novel C-2 functionalized hypoxanthine and purine ribonucleosides have been synthesized and evaluated against exotic RNA viruses of the family or genus alpha, arena, flavi, and rhabdo. Both specific and broad-spectrum antiviral activities were discovered but only with hypoxanthine nucleosides. PMID:1444325

  19. Metal Oxide-Based Selective Enrichment Combined with Stable Isotope Labeling-Mass Spectrometry Analysis for Profiling of Ribose Conjugates.

    PubMed

    Chu, Jie-Mei; Qi, Chu-Bo; Huang, Yun-Qing; Jiang, Han-Peng; Hao, Yan-Hong; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-07-21

    Some modified ribonucleosides in biological fluids have been evaluated as cancer-related metabolites. Detection of endogenous modified ribonucleosides in biological fluids may serve as a noninvasive cancers diagnostic method. However, determination of modified ribonucleosides is still challenging because of their low abundance and serious matrix interferences in biological fluids. Here, we developed a novel strategy for comprehensive profiling of ribose conjugates from biological fluids using metal oxide-based dispersive solid-phase extraction (DSPE) followed with in vitro stable isotope labeling and double neutral loss scan-mass spectrometry analysis (DSPE-SIL-LC-DNLS-MS). Cerium dioxide (CeO2) was used to selectively recognize and capture ribose conjugates from complex biological samples under basic environment. The enriched ribose conjugates were subsequently labeled with a pair of isotope labeling reagents (acetone and acetone-d6). The glucosidic bond of acetone labeled ribose conjugates is readily ruptured, and the generated ribose that carries an isotope tag can be lost as a neutral fragment under collision induced dissociation (CID). Since the light (acetone) and heavy (acetone-d6) labeled compounds have the same chemical structures and can generate different neutral loss fragments (NL 172 and 178 Da), it is therefore highly convenient to profile ribose conjugates by double neutral loss scan mode in mass spectrometry analysis. In this respect, the light and heavy labeled compounds were ionized at the same condition but recorded separately on MS spectra, which can significantly improve the detection specificity and facilitate the identification of ribose conjugates. Using the developed DSPE-SIL-LC-DNLS-MS strategy, we profiled the ribose conjugates in human urine, and 49 ribose conjugates were readily identified, among which 7 ribose conjugates exhibited significant contents change between healthy controls and lymphoma patients. The DSPE

  20. Controls of Nuclear Factor-Kappa B Signaling Activity by 5’-AMP-Activated Protein Kinase Activation With Examples in Human Bladder Cancer Cells

    PubMed Central

    Kim, Jin

    2016-01-01

    Generally, both lipopolysaccharide (LPS)- and hypoxia-induced nuclear factor kappa B (NF-κB) effects are alleviated through differential posttranslational modification of NF-κB phosphorylation after pretreatment with 5´-AMP-activated protein kinase (AMPK) activators such as 5´-aminoimidazole-4-carboxamide ribonucleotide (AICAR) or the hypoglycemic agent metformin. We found that AICAR or metformin acts as a regulator of LPS/NF-κB-or hypoxia/NF-κB-mediated cyclooxygenase induction by an AMPK-dependent mechanism with interactions between p65-NF-κB phosphorylation and acetylation, including in a human bladder cancer cell line (T24). In summary, we highlighted the regulatory interactions of AMPK activity on NF-κB induction, particularly in posttranslational phosphorylation and acetylation of NF-κB under inflammatory conditions or hypoxia environment. PMID:27706018

  1. Combined pharmacological activation of AMPK and PPARδ potentiates the effects of exercise in trained mice.

    PubMed

    Manio, Mark Christian C; Inoue, Kazuo; Fujitani, Mina; Matsumura, Shigenobu; Fushiki, Tohru

    2016-03-01

    The combined activation of the cellular energy sensor AMP-activated protein kinase (AMPK) and the nuclear transcription factor peroxisome proliferator-activated receptor delta (PPARδ) has been demonstrated to improve endurance and muscle function by mimicking the effects of exercise training. However, their combined pharmacological activation with exercise training has not been explored. Balb/c mice were trained on a treadmill and administered both the AMPK activator AICAR and the PPARδ agonist GW0742 for 4 weeks. AICAR treatment potentiated endurance, but the combination of AICAR and GW0742 further potentiated endurance and increased all running parameters significantly relative to exercised and nonexercised groups (138-179% and 355% increase in running time, respectively). Despite the lack of change in basal whole-body metabolism, a significant shift to fat as the main energy source with a decline in carbohydrate utilization was observed upon indirect calorimetry analysis at the period near exhaustion. Increased energy substrates before exercise, and elevated muscle nonesterified fatty acids (NEFA) and elevated muscle glycogen at exhaustion were observed together with increased PDK4 mRNA expression. Citrate synthase activity was elevated in AICAR-treated groups, while PGC-1α protein level tended to be increased in GW0742-treated groups. At exhaustion, Pgc1a was robustly upregulated together with Pdk4, Cd36, and Lpl in the muscle. A robust upregulation of Pgc1a and a downregulation in Chrebp were observed in the liver. Our data show that combined pharmacological activation of AMPK and PPARδ potentiates endurance in trained mice by transcriptional changes in muscle and liver, increased available energy substrates, delayed hypoglycemia through glycogen sparing accompanied by increased NEFA availability, and improved substrate shift from carbohydrate to fat. PMID:26997622

  2. Combination therapy that targets secondary pulmonary changes after abdominal trauma.

    PubMed

    Davis, K A; Fabian, T C; Ragsdale, D N; Trenthem, L L; Croce, M A; Proctor, K G

    2001-06-01

    After abdominal trauma, the lung is susceptible to secondary injury caused by acute neutrophil (PMN) sequestration and alveolar capillary membrane disruption. Adenosine is an endogenous anti-inflammatory metabolite that decreases PMN activation. AICAR ([5-amino-1-[beta-D-ribofuranosyl]imidazole-4-carboxamide]riboside) is the prototype of a novel class of anti-inflammatory drugs that increase endogenous adenosine. After trauma, AICAR administration has been shown to decrease secondary lung injury in models of hemorrhagic shock with delayed lipopolysaccharide challenge and pulmonary contusion. However, early suppression of PMN activation could worsen outcomes after penetrating abdominal trauma. We hypothesized that, after penetrating abdominal trauma, the ideal resuscitation strategy would involve early, short-lived suppression of PMN activation to minimize secondary lung injury, followed by later enhancement of PMN chemotaxis and phagocytosis [using granulocyte colony-stimulating factor (G-CSF)] to lessen late septic complications. G-CSF has not been shown to potentiate PMN mediated pulmonary reperfusion injury. Swine were subjected to cecal ligation/incision and hemorrhagic shock (trauma), followed by resuscitation with shed blood, crystalloid, and either G-CSF, a combination of G-CSF and AICAR, or 0.9% normal saline. At 72 h, bronchoalveolar lavage (BAL) leukocyte counts and protein concentration were determined, and lung tissue analysed for myeloperoxidase (MPO, a measure of PMN infiltration) and microscopic pathology. Analysis of BALs revealed a significant increase protein concentrations and in white blood cell and PMN infiltration (P< 0.05) following trauma. These acute changes were not exacerbated by G-CSF, but were reversed by combined AICAR + G-CSF, which implicates a physiologic role for adenosine. This suggests that combination therapy may have beneficial effects on the lung after trauma.

  3. The 5’-AMP-Activated Protein Kinase (AMPK) Is Involved in the Augmentation of Antioxidant Defenses in Cryopreserved Chicken Sperm

    PubMed Central

    Nguyen, Thi Mong Diep; Seigneurin, François; Froment, Pascal; Combarnous, Yves; Blesbois, Elisabeth

    2015-01-01

    Semen cryopreservation is a unique tool for the management of animal genetic diversity. However, the freeze-thaw process causes biochemical and physical alterations which make difficult the restoration of sperm energy-dependent functions needed for fertilization. 5’-AMP activated protein kinase (AMPK) is a key sensor and regulator of intracellular energy metabolism. Mitochondria functions are known to be severely affected during sperm cryopreservation with deleterious oxidative and peroxidative effects leading to cell integrity and functions damages. The aim of this study was thus to examine the role of AMPK on the peroxidation/antioxidant enzymes defense system in frozen-thawed sperm and its consequences on sperm functions. Chicken semen was diluted in media supplemented with or without AMPK activators (AICAR or Metformin [MET]) or inhibitor (Compound C [CC]) and then cryopreserved. AMPKα phosphorylation, antioxidant enzymes activities, mitochondrial potential, ATP, citrate, viability, acrosome reaction ability (AR) and various motility parameters were negatively affected by the freeze-thaw process while reactive oxygen species (ROS) production, lipid peroxidation (LPO) and lactate concentration were dramatically increased. AICAR partially restored superoxide dismutase (SOD), Glutathione Peroxidase (GPx) and Glutathione Reductase (GR), increased ATP, citrate, and lactate concentration and subsequently decreased the ROS and LPO (malondialdehyde) in frozen-thawed semen. Motility parameters were increased (i.e., + 23% for motility, + 34% for rapid sperm) as well as AR (+ 100%). MET had similar effects as AICAR except that catalase activity was restored and that ATP and mitochondrial potential were further decreased. CC showed effects opposite to AICAR on SOD, ROS, LPO and AR and motility parameters. Taken together, our results strongly suggest that, upon freeze-thaw process, AMPK stimulated intracellular anti-oxidative defense enzymes through ATP regulation, thus

  4. Aerobic Exercise and Pharmacological Treatments Counteract Cachexia by Modulating Autophagy in Colon Cancer.

    PubMed

    Pigna, Eva; Berardi, Emanuele; Aulino, Paola; Rizzuto, Emanuele; Zampieri, Sandra; Carraro, Ugo; Kern, Helmut; Merigliano, Stefano; Gruppo, Mario; Mericskay, Mathias; Li, Zhenlin; Rocchi, Marco; Barone, Rosario; Macaluso, Filippo; Di Felice, Valentina; Adamo, Sergio; Coletti, Dario; Moresi, Viviana

    2016-01-01

    Recent studies have correlated physical activity with a better prognosis in cachectic patients, although the underlying mechanisms are not yet understood. In order to identify the pathways involved in the physical activity-mediated rescue of skeletal muscle mass and function, we investigated the effects of voluntary exercise on cachexia in colon carcinoma (C26)-bearing mice. Voluntary exercise prevented loss of muscle mass and function, ultimately increasing survival of C26-bearing mice. We found that the autophagic flux is overloaded in skeletal muscle of both colon carcinoma murine models and patients, but not in running C26-bearing mice, thus suggesting that exercise may release the autophagic flux and ultimately rescue muscle homeostasis. Treatment of C26-bearing mice with either AICAR or rapamycin, two drugs that trigger the autophagic flux, also rescued muscle mass and prevented atrogene induction. Similar effects were reproduced on myotubes in vitro, which displayed atrophy following exposure to C26-conditioned medium, a phenomenon that was rescued by AICAR or rapamycin treatment and relies on autophagosome-lysosome fusion (inhibited by chloroquine). Since AICAR, rapamycin and exercise equally affect the autophagic system and counteract cachexia, we believe autophagy-triggering drugs may be exploited to treat cachexia in conditions in which exercise cannot be prescribed. PMID:27244599

  5. Aerobic Exercise and Pharmacological Treatments Counteract Cachexia by Modulating Autophagy in Colon Cancer

    PubMed Central

    Pigna, Eva; Berardi, Emanuele; Aulino, Paola; Rizzuto, Emanuele; Zampieri, Sandra; Carraro, Ugo; Kern, Helmut; Merigliano, Stefano; Gruppo, Mario; Mericskay, Mathias; Li, Zhenlin; Rocchi, Marco; Barone, Rosario; Macaluso, Filippo; Di Felice, Valentina; Adamo, Sergio; Coletti, Dario; Moresi, Viviana

    2016-01-01

    Recent studies have correlated physical activity with a better prognosis in cachectic patients, although the underlying mechanisms are not yet understood. In order to identify the pathways involved in the physical activity-mediated rescue of skeletal muscle mass and function, we investigated the effects of voluntary exercise on cachexia in colon carcinoma (C26)-bearing mice. Voluntary exercise prevented loss of muscle mass and function, ultimately increasing survival of C26-bearing mice. We found that the autophagic flux is overloaded in skeletal muscle of both colon carcinoma murine models and patients, but not in running C26-bearing mice, thus suggesting that exercise may release the autophagic flux and ultimately rescue muscle homeostasis. Treatment of C26-bearing mice with either AICAR or rapamycin, two drugs that trigger the autophagic flux, also rescued muscle mass and prevented atrogene induction. Similar effects were reproduced on myotubes in vitro, which displayed atrophy following exposure to C26-conditioned medium, a phenomenon that was rescued by AICAR or rapamycin treatment and relies on autophagosome-lysosome fusion (inhibited by chloroquine). Since AICAR, rapamycin and exercise equally affect the autophagic system and counteract cachexia, we believe autophagy-triggering drugs may be exploited to treat cachexia in conditions in which exercise cannot be prescribed. PMID:27244599

  6. AMPK activation regulates apoptosis, adipogenesis, and lipolysis by eIF2{alpha} in adipocytes

    SciTech Connect

    Dagon, Yossi; Avraham, Yosefa; Berry, Elliot M. . E-mail: Berry@md.huji.ac.il

    2006-02-03

    AMP-activated protein kinase (AMPK) is a metabolic master switch regulating glucose and lipid metabolism. Recently, AMPK has been implicated in the control of adipose tissue content. Yet, the nature of this action is controversial. We examined the effect on F442a adipocytes of the AMPK activator-AICAR. Activation of AMPK induced dose-dependent apoptotic cell death, inhibition of lipolysis, and downregulatation key adipogenic genes, such as peroxisome proliferator-activated receptor (PPAR{gamma}) and CCAAT/enhancer-binding protein alpha (C/EBP{alpha}). We have identified the {alpha}-subunit of the eukaryotic initiation factor-2 (eIF2{alpha}) as a target gene which is phosphorylated following AICAR treatment. Such phosphorylation is one of the best-characterized mechanisms for downregulating protein synthesis. 2-Aminopurine (2-AP), an inhibitor of eIF2{alpha} kinases, could overcome the apoptotic effect of AICAR, abolishing the reduction of PPAR{gamma} and C/EBP{alpha} and the lipolytic properties of AMPK. Thus, AMPK may diminish adiposity via reduction of fat cell number through eIF2{alpha}-dependent translation shutdown.

  7. In vivo stimulation of AMP-activated protein kinase enhanced tubuloglomerular feedback but reduced tubular sodium transport during high dietary NaCl intake.

    PubMed

    Huang, Dan Yang; Gao, Huanhuan; Boini, Krishna M; Osswald, Hartmut; Nürnberg, Bernd; Lang, Florian

    2010-06-01

    AMP-activated protein kinase (AMPK) is expressed in the apical membrane of cortical thick ascending limb, distal, and collecting tubules as well as macula densa cells of the kidneys. AMPK is an active modulator of epithelial Na(+) channels, Na(+)-2Cl(-)-K(+) cotransporter, and the ATP-dependent potassium channel. The present experiments explored whether AMPK participates in the regulation of tubuloglomerular feedback (TGF) and renal tubular sodium handling. To this end, renal clearance and micropuncture experiments were performed in anesthetized rats. Under normal NaCl diet, neither TGF response nor renal fluid and sodium excretion were altered by pharmacological activation of AMPK in vivo. However, under high NaCl diet, the TGF response was significantly enhanced after intravenous or intratubular application of the AMPK activator AICAR. Moreover, AICAR application significantly increased fractional delivery of fluid and sodium to the end of the proximal tubule. High dietary NaCl intake increased the renal transcript levels encoding the AMPK-alpha1 subunit, while it decreased the expression of AMPK-beta1 and AMPK-gamma2 subunits. Immunoblots revealed that high dietary NaCl intake reduced renal expression of activated AMPK by about three times compared to normal NaCl diet whereas additional AICAR application increased AMPK activity. Our results suggest that AMPK regulates tubuloglomerular balance as well as tubular transport upon change of renal work load.

  8. Complex coordinated extracellular metabolism: Acid phosphatases activate diluted human leukocyte proteins to generate energy flow as NADPH from purine nucleotide ribose

    PubMed Central

    Hibbs, John B.; Vavrin, Zdenek; Cox, James E.

    2016-01-01

    Complex metabolism is thought to occur exclusively in the crowded intracellular environment. Here we report that diluted enzymes from lysed human leukocytes produce extracellular energy. Our findings involve two pathways: the purine nucleotide catabolic pathway and the pentose phosphate pathway, which function together to generate energy as NADPH. Glucose6P fuel for NADPH production is generated from structural ribose of purine ribonucleoside monophosphates, ADP, and ADP-ribose. NADPH drives glutathione reductase to reduce an oxidized glutathione disulfide-glutathione redox couple. Acid phosphatases initiate ribose5P salvage from purine ribonucleoside monophosphates, and transaldolase controls the direction of carbon chain flow through the nonoxidative branch of the pentose phosphate pathway. These metabolic control points are regulated by pH. Biologically, this energy conserving metabolism could function in perturbed extracellular spaces. PMID:26895212

  9. Complex coordinated extracellular metabolism: Acid phosphatases activate diluted human leukocyte proteins to generate energy flow as NADPH from purine nucleotide ribose.

    PubMed

    Hibbs, John B; Vavrin, Zdenek; Cox, James E

    2016-08-01

    Complex metabolism is thought to occur exclusively in the crowded intracellular environment. Here we report that diluted enzymes from lysed human leukocytes produce extracellular energy. Our findings involve two pathways: the purine nucleotide catabolic pathway and the pentose phosphate pathway, which function together to generate energy as NADPH. Glucose6P fuel for NADPH production is generated from structural ribose of purine ribonucleoside monophosphates, ADP, and ADP-ribose. NADPH drives glutathione reductase to reduce an oxidized glutathione disulfide-glutathione redox couple. Acid phosphatases initiate ribose5P salvage from purine ribonucleoside monophosphates, and transaldolase controls the direction of carbon chain flow through the nonoxidative branch of the pentose phosphate pathway. These metabolic control points are regulated by pH. Biologically, this energy conserving metabolism could function in perturbed extracellular spaces.

  10. Initiation and elongation of polyribonucleotide chains on rat ventral-prostate chromatin transcribed by homologous ribonucleic acid polymerase B.

    PubMed Central

    Thomas, P; Davies, P; Griffiths, K

    1977-01-01

    The characteristics of initiation of RNA synthesis and the elongation of RNA chains on rat ventral-prostate chromatin by RNA polymerase B were investigated by two methods. 1. Initiation was carried out under low-salt conditions with three ribonucleoside triphosphates, and elongation was begun in the absence of reinitiation by the addition of the fourth ribonucleoside triphosphate and increasing the salt concentration. 2. Stable initiation complexes were formed by preincubation of enzyme with template at 37 degrees C, elongation was started by the addition of all four ribonucleoside triphosphates and reinitiation or spurious RNA synthesis was prevented by rifamycin AF/013. The latter method gave more reliable results. The dependence of those parameters on the androgenic status of the animal was studied. During the first 24h after castration, elongation was mainly affected, whereas after 72h a smaller number of initiation sites for RNA polymerase B on chromatin was evident. Considerable diurnal variations in the various parameters were observed. Changes in the relative concentrations of the chromatin-associated proteins were also observed after castration. In the rat ventral-prostate gland androgenic steroids may not only influence one stage of the transcriptional process, but may affect many factors involved in the control of gene expression. PMID:562164

  11. Chronic stress-induced memory deficits are reversed by regular exercise via AMPK-mediated BDNF induction.

    PubMed

    Kim, D-M; Leem, Y-H

    2016-06-01

    Chronic stress has a detrimental effect on neurological insults, psychiatric deficits, and cognitive impairment. In the current study, chronic stress was shown to impair learning and memory functions, in addition to reducing in hippocampal Adenosine monophosphate-activated protein kinase (AMPK) activity. Similar reductions were also observed for brain-derived neurotrophic factor (BDNF), synaptophysin, and post-synaptic density-95 (PSD-95) levels, all of which was counter-regulated by a regime of regular and prolonged exercise. A 21-day restraint stress regimen (6 h/day) produced learning and memory deficits, including reduced alternation in the Y-maze and decreased memory retention in the water maze test. These effects were reversed post-administration by a 3-week regime of treadmill running (19 m/min, 1 h/day, 6 days/week). In hippocampal primary culture, phosphorylated-AMPK (phospho-AMPK) and BDNF levels were enhanced in a dose-dependent manner by 5-amimoimidazole-4-carboxamide riboside (AICAR) treatment, and AICAR-treated increase was blocked by Compound C. A 7-day period of AICAR intraperitoneal injections enhanced alternation in the Y-maze test and reduced escape latency in water maze test, along with enhanced phospho-AMPK and BDNF levels in the hippocampus. The intraperitoneal injection of Compound C every 4 days during exercise intervention diminished exercise-induced enhancement of memory improvement during the water maze test in chronically stressed mice. Also, chronic stress reduced hippocampal neurogenesis (lower Ki-67- and doublecortin-positive cells) and mRNA levels of BDNF, synaptophysin, and PSD-95. Our results suggest that regular and prolonged exercise can alleviate chronic stress-induced hippocampal-dependent memory deficits. Hippocampal AMPK-engaged BDNF induction is at least in part required for exercise-induced protection against chronic stress. PMID:26975895

  12. AMP-activated protein kinase regulates nicotinamide phosphoribosyl transferase expression in skeletal muscle

    PubMed Central

    Brandauer, Josef; Vienberg, Sara G; Andersen, Marianne A; Ringholm, Stine; Risis, Steve; Larsen, Per S; Kristensen, Jonas M; Frøsig, Christian; Leick, Lotte; Fentz, Joachim; Jørgensen, Sebastian; Kiens, Bente; Wojtaszewski, Jørgen F P; Richter, Erik A; Zierath, Juleen R; Goodyear, Laurie J; Pilegaard, Henriette; Treebak, Jonas T

    2013-01-01

    Deacetylases such as sirtuins (SIRTs) convert NAD to nicotinamide (NAM). Nicotinamide phosphoribosyl transferase (Nampt) is the rate-limiting enzyme in the NAD salvage pathway responsible for converting NAM to NAD to maintain cellular redox state. Activation of AMP-activated protein kinase (AMPK) increases SIRT activity by elevating NAD levels. As NAM directly inhibits SIRTs, increased Nampt activation or expression could be a metabolic stress response. Evidence suggests that AMPK regulates Nampt mRNA content, but whether repeated AMPK activation is necessary for increasing Nampt protein levels is unknown. To this end, we assessed whether exercise training- or 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide (AICAR)-mediated increases in skeletal muscle Nampt abundance are AMPK dependent. One-legged knee-extensor exercise training in humans increased Nampt protein by 16% (P < 0.05) in the trained, but not the untrained leg. Moreover, increases in Nampt mRNA following acute exercise or AICAR treatment (P < 0.05 for both) were maintained in mouse skeletal muscle lacking a functional AMPK α2 subunit. Nampt protein was reduced in skeletal muscle of sedentary AMPK α2 kinase dead (KD), but 6.5 weeks of endurance exercise training increased skeletal muscle Nampt protein to a similar extent in both wild-type (WT) (24%) and AMPK α2 KD (18%) mice. In contrast, 4 weeks of daily AICAR treatment increased Nampt protein in skeletal muscle in WT mice (27%), but this effect did not occur in AMPK α2 KD mice. In conclusion, functional α2-containing AMPK heterotrimers are required for elevation of skeletal muscle Nampt protein, but not mRNA induction. These findings suggest AMPK plays a post-translational role in the regulation of skeletal muscle Nampt protein abundance, and further indicate that the regulation of cellular energy charge and nutrient sensing is mechanistically related. PMID:23918774

  13. Acute activation of AMP-activated protein kinase prevents H2O2-induced premature senescence in primary human keratinocytes.

    PubMed

    Ido, Yasuo; Duranton, Albert; Lan, Fan; Cacicedo, Jose M; Chen, Tai C; Breton, Lionel; Ruderman, Neil B

    2012-01-01

    We investigated the effects of AMPK on H(2)O(2)-induced premature senescence in primary human keratinocytes. Incubation with 50 µM H(2)O(2) for 2 h resulted in premature senescence with characteristic increases in senescence-associated ß-galactosidase (SA-gal) staining 3 days later and no changes in AMPK or p38 MAPK activity. The increase in SA-gal staining was preceded by increases in both p53 phosphorylation (S15) (1 h) and transactivation (6 h) and the abundance of the cyclin inhibitor p21(CIP1) (16 h). Incubation with AICAR or resveratrol, both of which activated AMPK, prevented the H(2)O(2)-induced increases in both SA-Gal staining and p21 abundance. In addition, AICAR diminished the increase in p53 transactivation. The decreases in SA-Gal expression induced by resveratrol and AICAR were prevented by the pharmacological AMPK inhibitor Compound C, expression of a DN-AMPK or AMPK knock-down with shRNA. Likewise, both knockdown of AMPK and expression of DN-AMPK were sufficient to induce senescence, even in the absence of exogenous H(2)O(2). As reported by others, we found that AMPK activation by itself increased p53 phosphorylation at S15 in embryonic fibroblasts (MEF), whereas under the same conditions it decreased p53 phosphorylation in the keratinocytes, human aortic endothelial cells, and human HT1080 fibrosarcoma cells. In conclusion, the results indicate that H(2)O(2) at low concentrations causes premature senescence in human keratinocytes by activating p53-p21(CIP1) signaling and that these effects can be prevented by acute AMPK activation and enhanced by AMPK downregulation. They also suggest that this action of AMPK may be cell or context-specific. PMID:22514710

  14. Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells

    PubMed Central

    Kanazawa, Ippei; Yamaguchi, Toru; Yano, Shozo; Yamauchi, Mika; Yamamoto, Masahiro; Sugimoto, Toshitsugu

    2007-01-01

    Background Adiponectin is a key mediator of the metabolic syndrome that is caused by visceral fat accumulation. Adiponectin and its receptors are known to be expressed in osteoblasts, but their actions with regard to bone metabolism are still unclear. In this study, we investigated the effects of adiponectin on the proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells. Results Adiponectin receptor type 1 (AdipoR1) mRNA was detected in the cells by RT-PCR. The adenosine monophosphate-activated protein kinase (AMP kinase) was phosphorylated by both adiponectin and a pharmacological AMP kinase activator, 5-amino-imidazole-4-carboxamide-riboside (AICAR), in the cells. AdipoR1 small interfering RNA (siRNA) transfection potently knocked down the receptor mRNA, and the effect of this knockdown persisted for as long as 10 days after the transfection. The transfected cells showed decreased expressions of type I collagen and osteocalcin mRNA, as determined by real-time PCR, and reduced ALP activity and mineralization, as determined by von Kossa and Alizarin red stainings. In contrast, AMP kinase activation by AICAR (0.01–0.5 mM) in wild-type MC3T3-E1 cells augmented their proliferation, differentiation, and mineralization. BrdU assay showed that the addition of adiponectin (0.01–1.0 μg/ml) also promoted their proliferation. Osterix, but not Runx-2, appeared to be involved in these processes because AdipoR1 siRNA transfection and AICAR treatments suppressed and enhanced osterix mRNA expression, respectively. Conclusion Taken together, this study suggests that adiponectin stimulates the proliferation, differentiation, and mineralization of osteoblasts via the AdipoR1 and AMP kinase signaling pathways in autocrine and/or paracrine fashions. PMID:18047638

  15. Chronic stress-induced memory deficits are reversed by regular exercise via AMPK-mediated BDNF induction.

    PubMed

    Kim, D-M; Leem, Y-H

    2016-06-01

    Chronic stress has a detrimental effect on neurological insults, psychiatric deficits, and cognitive impairment. In the current study, chronic stress was shown to impair learning and memory functions, in addition to reducing in hippocampal Adenosine monophosphate-activated protein kinase (AMPK) activity. Similar reductions were also observed for brain-derived neurotrophic factor (BDNF), synaptophysin, and post-synaptic density-95 (PSD-95) levels, all of which was counter-regulated by a regime of regular and prolonged exercise. A 21-day restraint stress regimen (6 h/day) produced learning and memory deficits, including reduced alternation in the Y-maze and decreased memory retention in the water maze test. These effects were reversed post-administration by a 3-week regime of treadmill running (19 m/min, 1 h/day, 6 days/week). In hippocampal primary culture, phosphorylated-AMPK (phospho-AMPK) and BDNF levels were enhanced in a dose-dependent manner by 5-amimoimidazole-4-carboxamide riboside (AICAR) treatment, and AICAR-treated increase was blocked by Compound C. A 7-day period of AICAR intraperitoneal injections enhanced alternation in the Y-maze test and reduced escape latency in water maze test, along with enhanced phospho-AMPK and BDNF levels in the hippocampus. The intraperitoneal injection of Compound C every 4 days during exercise intervention diminished exercise-induced enhancement of memory improvement during the water maze test in chronically stressed mice. Also, chronic stress reduced hippocampal neurogenesis (lower Ki-67- and doublecortin-positive cells) and mRNA levels of BDNF, synaptophysin, and PSD-95. Our results suggest that regular and prolonged exercise can alleviate chronic stress-induced hippocampal-dependent memory deficits. Hippocampal AMPK-engaged BDNF induction is at least in part required for exercise-induced protection against chronic stress.

  16. {sup 13}C-enrichment at carbons 8 and 2 of uric acid after {sup 13}C-labeled folate dose in man

    SciTech Connect

    Baggott, Joseph E.; Gorman, Gregory S.; Morgan, Sarah L.; Tamura, Tsunenobu . E-mail: tamurat@uab.edu

    2007-09-21

    To evaluate folate-dependent carbon incorporation into the purine ring, we measured {sup 13}C-enrichment independently at C{sub 2} and C{sub 8} of urinary uric acid (the final catabolite of purines) in a healthy male after an independent oral dose of [6RS]-5-[{sup 13}C]-formyltetrahydrofolate ([6RS]-5-H{sup 13}CO-H{sub 4}folate) or 10-H{sup 13}CO-7,8-dihydrofolate (10-H{sup 13}CO-H{sub 2}folate). The C{sub 2} position was {sup 13}C-enriched more than C{sub 8} after [6RS]-5-H{sup 13}CO-H{sub 4}folate, and C{sub 2} was exclusively enriched after 10-H{sup 13}CO-H{sub 2}folate. The enrichment of C{sub 2} was greater from [6RS]-5-H{sup 13}CO-H{sub 4}folate than 10-H{sup 13}CO-H{sub 2}folate using equimolar bioactive doses. Our data suggest that formyl C of [6RS]-10-H{sup 13}CO-H{sub 4}folate was not equally utilized by glycinamide ribotide transformylase (enriches C{sub 8}) and aminoimidazolecarboxamide ribotide (AICAR) transformylase (enriches C{sub 2}), and the formyl C of 10-H{sup 13}CO-H{sub 2}folate was exclusively used by AICAR transformylase. 10-HCO-H{sub 2}folate may function in vivo as the predominant substrate for AICAR transformylase in humans.

  17. {sup 13}C-{sup 1}H and {sup 13}C-{sup 13}C spin couplings in [2`-{sup 13}C]2`-deoxyribonucleosides: Correlations with molecular structure

    SciTech Connect

    Bandyopadhyay, T.; Stripe, W.A.; Carmichael, I.; Serianni, A.S.; Wu, J.

    1997-02-19

    2`-Deoxyribonucleosides (2`-deoxyadenosine (1), 2`-depoxycytidine (2), thymidine (3)) singly enriched with {sup 13}C at C2` have been prepared and used to obtain one-, two-, and three-bond {sup 13}C-{sup 1}H and {sup 13}C-{sup 13}C spin-coupling constants involving C2`. Spin couplings in 1-3 involving C1` and C2`are also compared to corresponding values in ribonucleosides in order to assess the effects of nucleoside structure and conformation on J values within the furanose ring. {sup 1}J{sub C2`,H2`R} and {sup 1}J{sub C2`,H2`S} in 1-3 and {sup 1}J{sub C2`,H2`} in ribonucleosides depend on C-H bond orientation: {sup 1}J{sub C1`,H1`} in 1-3 and in ribonucleosides exhibits a similar dependence. The latter couplings appear to be essentially unaffected by N-glycoside torsion. {sup 1}J{sub CC} values depend on the number and distribution of electronegative substituents on the C-C fragment. A modified projection curve is proposed to aid in the interpretation of {sup 2}J{sub C2`,H1`} values; the presence of N substitution at C1` caused a shift to more negative couplings relative to the O-substituted analog. In contrast, {sup 2}J{sub C1`,H2`} is essentially unaffected by the same change in the electronegative substituent at C1`. {sup 2}J{sub CC} values within the furanose ring are determined buy two coupling pathways; in one case (i.e., {sup 2}J{sub C1`,C3`}), the observed coupling is shown to be the algebraic sum of the two couplings arising from each pathway. 41 refs., 4 figs., 2 tabs.

  18. Essential constituents of the 3'-phosphoesterase domain of bacterial DNA ligase D, a nonhomologous end-joining enzyme.

    PubMed

    Zhu, Hui; Wang, Li Kai; Shuman, Stewart

    2005-10-01

    DNA ligase D (LigD) catalyzes end-healing and end-sealing steps during nonhomologous end joining in bacteria. Pseudomonas aeruginosa LigD consists of a central ATP-dependent ligase domain fused to a C-terminal polymerase domain and an N-terminal 3'-phosphoesterase (PE) module. The PE domain catalyzes manganese-dependent phosphodiesterase and phosphomonoesterase reactions at a duplex primer-template with a short 3'-ribonucleotide tract. The phosphodiesterase, which cleaves a 3'-terminal diribonucleotide to yield a primer strand with a ribonucleoside 3'-PO4 terminus, requires the vicinal 2'-OH of the penultimate ribose. The phosphomonoesterase converts the terminal ribonucleoside 3'-PO4 to a 3'-OH. Here we show that the PE domain has a 3'-phosphatase activity on an all-DNA primer-template, signifying that the phosphomonoesterase reaction does not depend on a 2'-OH. The distinctions between the phosphodiesterase and phosphomonoesterase activities are underscored by the results of alanine-scanning, limited proteolysis, and deletion analysis, which show that the two reactions depend on overlapping but nonidentical ensembles of protein functional groups, including: (i) side chains essential for both ribonuclease and phosphatase activity (His-42, His-48, Asp-50, Arg-52, His-84, and Tyr-88); (ii) side chains important for 3'-phosphatase activity but not for 3' ribonucleoside removal (Arg-14, Asp-15, Glu-21, Gln-40, and Glu-82); and (iii) side chains required selectively for the 3'-ribonuclease (Lys-66 and Arg-76). These constellations of critical residues are unique to LigD-like proteins, which we propose comprise a new bifunctional phosphoesterase family.

  19. Substrate specificity and structure-function analysis of the 3'-phosphoesterase component of the bacterial NHEJ protein, DNA ligase D.

    PubMed

    Zhu, Hui; Shuman, Stewart

    2006-05-19

    DNA ligase D (LigD) performs end remodeling and end sealing reactions during nonhomologous end joining in bacteria. Pseudomonas aeruginosa LigD consists of a central ATP-dependent ligase domain fused to a C-terminal polymerase domain and an N-terminal phosphoesterase (PE) module. The PE domain catalyzes manganese-dependent phosphodiesterase and phosphomonoesterase reactions at the 3' end of the primer strand of a primer-template. The phosphodiesterase cleaves a 3'-terminal diribonucleotide to yield a primer strand with a ribonucleoside 3'-PO4 terminus. The phosphomonoesterase converts a terminal ribonucleoside 3'-PO4 or deoxyribonucleoside 3'-PO4 of a primer-template to a 3'-OH. Here we report that the phosphodiesterase and phosphomonoesterase activities are both dependent on the presence and length of the 5' single-strand tail of the primer-template substrate. Although the phosphodiesterase activity is strictly dependent on the 2'-OH of the penultimate ribose, it is indifferent to a 2'-OH versus a2'-H on the terminal nucleoside. Incision at the ribonucleotide linkage is suppressed when the 2'-OH is moved by 1 nucleotide in the 5' direction, suggesting that LigD is an exoribonuclease that cleaves the 3'-terminal phosphodiester. We report the effects of conservative amino acid substitutions at residues: (i) His42, His48, Asp50, Arg52, His84, and Tyr88, which are essential for both the ribonuclease and 3'-phosphatase activities; (ii) Arg14, Asp15, Glu21, and Glu82, which are critical for 3'-phosphatase activity but not 3'-ribonucleoside removal; and (iii) at Lys66 and Arg76, which participate selectively in the 3'-ribonuclease reaction. The results suggest roles for individual functional groups in metal binding and/or phosphoesterase chemistry.

  20. Cellular toxicity of nicotinamide metabolites.

    PubMed

    Rutkowski, Bolesław; Rutkowski, Przemysław; Słomińska, Ewa; Smolenski, Ryszard T; Swierczyński, Julian

    2012-01-01

    There are almost 100 different substances called uremic toxins. Nicotinamide derivatives are known as new family of uremic toxins. These uremic compounds play a role in an increased oxidative stress and disturbances in cellular repair processes by inhibiting poly (ADP-ribose) polymerase activity. New members of this family were discovered and described. Their toxic properties were a subject of recent studies. This study evaluated the concentration of 4-pyridone-3-carboxamid-1-β-ribonucleoside-triphosphate (4PYTP) and 4-pyridone-3-carboxamid-1-β-ribonucleoside-monophosphate (4PYMP) in erythrocytes of patients with chronic renal failure. Serum and red blood cells were collected from chronic renal failure patients on conservative treatment, those treated with hemodialysis, and at different times from those who underwent kidney transplantation. Healthy volunteers served as a control group. Nicotinamide metabolites were determined using liquid chromatography with mass spectrometry based on originally discovered and described method. Three novel compounds were described: 4-pyridone-3-carboxamid-1-β-ribonucleoside (4PYR), 4PYMP, and 4PYTP. 4PYR concentration was elevated in the serum, whereas 4PYMP and 4PYTP concentrations were augmented in erythrocytes of dialysis patients. Interestingly, concentrations of these compounds were less elevated during the treatment with erythropoietin-stimulating agents (ESAs). After successful kidney transplantation, concentrations of 4PYR and 4PYMP normalized according to the graft function, whereas that of 4PYTP was still elevated. During the incubation of erythrocytes in the presence of 4PYR, concentration of 4PYMP rose very rapidly while that of 4PYTP increased slowly. Therefore, we hypothesized that 4PYR, as a toxic compound, was actively absorbed by erythrocytes and metabolized to the 4PYMP and 4PYTP, which may interfere with function and life span of these cells. PMID:22200423

  1. Synergistic reduction of HIV-1 infectivity by 5-azacytidine and inhibitors of ribonucleotide reductase.

    PubMed

    Rawson, Jonathan M O; Roth, Megan E; Xie, Jiashu; Daly, Michele B; Clouser, Christine L; Landman, Sean R; Reilly, Cavan S; Bonnac, Laurent; Kim, Baek; Patterson, Steven E; Mansky, Louis M

    2016-06-01

    Although many compounds have been approved for the treatment of human immunodeficiency type-1 (HIV-1) infection, additional anti-HIV-1 drugs (particularly those belonging to new drug classes) are still needed due to issues such as long-term drug-associated toxicities, transmission of drug-resistant variants, and development of multi-class resistance. Lethal mutagenesis represents an antiviral strategy that has not yet been clinically translated for HIV-1 and is based on the use of small molecules to induce excessive levels of deleterious mutations within the viral genome. Here, we show that 5-azacytidine (5-aza-C), a ribonucleoside analog that induces the lethal mutagenesis of HIV-1, and multiple inhibitors of the enzyme ribonucleotide reductase (RNR) interact in a synergistic fashion to more effectively reduce the infectivity of HIV-1. In these drug combinations, RNR inhibitors failed to significantly inhibit the conversion of 5-aza-C to 5-aza-2'-deoxycytidine, suggesting that 5-aza-C acts primarily as a deoxyribonucleoside even in the presence of RNR inhibitors. The mechanism of antiviral synergy was further investigated for the combination of 5-aza-C and one specific RNR inhibitor, resveratrol, as this combination improved the selectivity index of 5-aza-C to the greatest extent. Antiviral synergy was found to be primarily due to the reduced accumulation of reverse transcription products rather than the enhancement of viral mutagenesis. To our knowledge, these observations represent the first demonstration of antiretroviral synergy between a ribonucleoside analog and RNR inhibitors, and encourage the development of additional ribonucleoside analogs and RNR inhibitors with improved antiretroviral activity. PMID:27117260

  2. Microbial Transformation of Antibiotics: Phosphorylation of Clindamycin by Streptomyces coelicolor Müller1

    PubMed Central

    Coats, John H.; Argoudelis, Alexander D.

    1971-01-01

    Addition of clindamycin to whole-cell cultures of Streptomyces coelicolor Müller resulted in the loss of in vitro activity against organisms sensitive to clindamycin. Incubation of such culture filtrates with alkaline phosphatase generated a biologically active material identified as clindamycin. Fermentation broths containing inactivated clindamycin yielded clindamycin 3-phosphate, the structure of which was established by physical-chemical and enzymatic studies. Clindamycin was phosphorylated by lysates and partially purified enzyme preparations from S. coelicolor Müller. These reactions require a ribonucleoside triphosphate and Mg2+. The product of the cell-free reactions was identified as clindamycin 3-phosphate. PMID:5166238

  3. New synthetic routes to synthons suitable for 2'-O-allyloligoribonucleotide assembly.

    PubMed Central

    Sproat, B S; Iribarren, A M; Garcia, R G; Beijer, B

    1991-01-01

    New synthetic routes have been devised for the high yield preparation of protected 2'-O-allylribonucleoside-3'-O-phosphoramidites, exemplified by the ribonucleosides guanosine and 2,6-diaminopurine riboside (2-aminoadenosine). Key features are the use of versatile intermediates and an easy allylation step. The development of a novel synthon based on 2'-O-allyl-2,6-diaminopurine riboside enables short 2'-O-allyl-oligoribonucleotide probes to be synthesized with adenine replaced by 2-aminoadenine. Thus very stable hybrids with complementary RNA target sequences can be formed due to the formation of the three hydrogen bond 2-amino A.U base pairs. PMID:1708121

  4. Sequence-specific 1H, 13C and 15N assignments of the phosphoesterase (PE) domain of Pseudomonas aeruginosa DNA ligase D (LigD)

    PubMed Central

    Dutta, Kaushik; Natarajan, Aswin; Nair, Pravin A.; Shuman, Stewart; Ghose, Ranajeet

    2014-01-01

    DNA ligase D (LigD), consisting of polymerase, ligase and phosphoesterase domains, is the essential catalyst of the bacterial non-homologous end-joining pathway of DNA double-strand break repair. The phosphoesterase (PE) module performs manganese-dependent 3’-phosphomonoesterase and 3’-ribonucleoside resection reactions that heal broken ends in preparation for sealing. LigD PE exemplifies a structurally and mechanistically unique class of DNA end-processing enzymes. Here, we present the resonance assignments of the PE domain of Pseudomonas aeruginosa LigD comprising the N-terminal 177 residues. PMID:21213076

  5. Formation and Abundance of 5-Hydroxymethylcytosine in RNA

    PubMed Central

    Huber, Sabrina M; van Delft, Pieter; Mendil, Lee; Bachman, Martin; Smollett, Katherine; Werner, Finn; Miska, Eric A; Balasubramanian, Shankar

    2015-01-01

    RNA methylation is emerging as a regulatory RNA modification that could have important roles in the control and coordination of gene transcription and protein translation. Herein, we describe an in vivo isotope-tracing methodology to demonstrate that the ribonucleoside 5-methylcytidine (m5C) is subject to oxidative processing in mammals, forming 5-hydroxymethylcytidine (hm5C) and 5-formylcytidine (f5C). Furthermore, we have identified hm5C in total RNA from all three domains of life and in polyA-enriched RNA fractions from mammalian cells. This suggests m5C oxidation is a conserved process that could have critical regulatory functions inside cells. PMID:25676849

  6. Adiponectin Lowers Glucose Production by Increasing SOGA

    PubMed Central

    Cowerd, Rachael B.; Asmar, Melissa M.; Alderman, J. McKee; Alderman, Elizabeth A.; Garland, Alaina L.; Busby, Walker H.; Bodnar, Wanda M.; Rusyn, Ivan; Medoff, Benjamin D.; Tisch, Roland; Mayer-Davis, Elizabeth; Swenberg, James A.; Zeisel, Steven H.; Combs, Terry P.

    2010-01-01

    Adiponectin is a hormone that lowers glucose production by increasing liver insulin sensitivity. Insulin blocks the generation of biochemical intermediates for glucose production by inhibiting autophagy. However, autophagy is stimulated by an essential mediator of adiponectin action, AMPK. This deadlock led to our hypothesis that adiponectin inhibits autophagy through a novel mediator. Mass spectrometry revealed a novel protein that we call suppressor of glucose by autophagy (SOGA) in adiponectin-treated hepatoma cells. Adiponectin increased SOGA in hepatocytes, and siRNA knockdown of SOGA blocked adiponectin inhibition of glucose production. Furthermore, knockdown of SOGA increased late autophagosome and lysosome staining and the secretion of valine, an amino acid that cannot be synthesized or metabolized by liver cells, suggesting that SOGA inhibits autophagy. SOGA decreased in response to AICAR, an activator of AMPK, and LY294002, an inhibitor of the insulin signaling intermediate, PI3K. AICAR reduction of SOGA was blocked by adiponectin; however, adiponectin did not increase SOGA during PI3K inhibition, suggesting that adiponectin increases SOGA through the insulin signaling pathway. SOGA contains an internal signal peptide that enables the secretion of a circulating fragment of SOGA, providing a surrogate marker for intracellular SOGA levels. Circulating SOGA increased in parallel with adiponectin and insulin activity in both humans and mice. These results suggest that adiponectin-mediated increases in SOGA contribute to the inhibition of glucose production. PMID:20813965

  7. Trafficking of drug candidates relevant for sports drug testing: detection of non-approved therapeutics categorized as anabolic and gene doping agents in products distributed via the Internet.

    PubMed

    Thevis, Mario; Geyer, Hans; Thomas, Andreas; Schänzer, Wilhelm

    2011-05-01

    Identifying the use of non-approved drugs by cheating athletes has been a great challenge for doping control laboratories. This is due to the additional complexities associated with identifying relatively unknown and uncharacterized compounds and their metabolites as opposed to known and well-studied therapeutics. In 2010, the prohibited drug candidates and gene doping substances AICAR and GW1516, together with the selective androgen receptor modulator (SARM) MK-2866 were obtained by the Cologne Doping Control Laboratory from Internet suppliers and their structure, quantity, and formulation elucidated. All three compounds proved authentic as determined by liquid chromatography-high resolution/high accuracy (tandem) mass spectrometry and comparison to reference material. While AICAR was provided as a colourless powder in 100 mg aliquots, GW1516 was obtained as an orange/yellow suspension in water/glycerol (150 mg/ml), and MK-2866 (25 mg/ml) was shipped dissolved in polyethylene glycol (PEG) 300. In all cases, the quantified amounts were considerably lower than indicated on the label. The substances were delivered via courier, with packaging identifying them as containing 'amino acids' and 'green tea extract', arguably to circumvent customs control. Although all of the substances were declared 'for research only', their potential misuse in illicit performance-enhancement cannot be excluded; moreover sports drug testing authorities should be aware of the facile availability of black market copies of these drug candidates.

  8. Mild caloric restriction reduces blood pressure and activates endothelial AMPK-PI3K-Akt-eNOS pathway in obese Zucker rats.

    PubMed

    García-Prieto, C F; Pulido-Olmo, H; Ruiz-Hurtado, G; Gil-Ortega, M; Aranguez, I; Rubio, M A; Ruiz-Gayo, M; Somoza, B; Fernández-Alfonso, M S

    2015-01-01

    Genetic obesity models exhibit endothelial dysfunction associated to adenosine monophosphate-activated protein kinase (AMPK) dysregulation. This study aims to assess if mild short-term caloric restriction (CR) restores endothelial AMPK activity leading to an improvement in endothelial function. Twelve-week old Zucker lean and obese (fa/fa) male rats had access to standard chow either ad libitum (AL, n=8) or 80% of AL (CR, n=8) for two weeks. Systolic blood pressure was significantly higher in fa/fa AL rats versus lean AL animals, but was normalized by CR. Endothelium-dependent relaxation to acetylcholine (ACh, 10(-9) to 10(-4) M) was reduced in fa/fa AL compared to control lean AL rats (p<0.001), and restored by CR. The AMPK activator AICAR (10(-5) to 8·10(-3) M) elicited a lower relaxation in fa/fa AL rings that was normalized by CR (p<0.001). Inhibition of PI3K (wortmannin, 10(-7) M), Akt (triciribine, 10(-5) M), or eNOS (L-NAME, 10(-4) M) markedly reduced AICAR-induced relaxation in lean AL, but not in fa/fa AL rats. These inhibitions were restored by CR in Zucker fa/fa rings. These data show that mild short-term CR improves endothelial function and lowers blood pressure in obesity due to the activation of the AMPK-PI3K-Akt-eNOS pathway. PMID:25530153

  9. Chronic intermittent hypoxia induces cardiac hypertrophy by impairing autophagy through the adenosine 5'-monophosphate-activated protein kinase pathway.

    PubMed

    Xie, Sheng; Deng, Yan; Pan, Yue-Ying; Ren, Jie; Jin, Meng; Wang, Yu; Wang, Zhi-Hua; Zhu, Die; Guo, Xue-Ling; Yuan, Xiao; Shang, Jin; Liu, Hui-Guo

    2016-09-15

    Autophagy is tightly regulated to maintain cardiac homeostasis. Impaired autophagy is closely associated with pathological cardiac hypertrophy. However, the relationship between autophagy and cardiac hypertrophy induced by chronic intermittent hypoxia (CIH) is not known. In the present study, we measured autophagy-related genes and autophagosomes during 10 weeks of CIH in rats, and 6 days in H9C2 cardiomyocytes, and showed that autophagy was impaired. This conclusion was confirmed by the autophagy flux assay. We detected significant hypertrophic changes in myocardium with impaired autophagy. Rapamycin, an autophagy enhancer, attenuated the cardiac hypertrophy induced by CIH. Moreover, silencing autophagy-related gene 5 (ATG5) exerted the opposite effect. The role of adenosine monophosphate-activated protein kinase (AMPK) in regulating autophagy under CIH was confirmed using AICAR to upregulate this enzyme and restore autophagy flux. Restoring autophagy by AICAR or rapamycin significantly reversed the hypertrophic changes in cardiomyocytes. To investigate the mechanism of autophagy impairment, we compared phospho (p)-AMPK, p-Akt, cathepsin D, and NFAT3 levels, along with calcineurin activity, between sham and CIH groups. CIH activated calcineurin, and inhibited AMPK and AMPK-mediated autophagy in an Akt- and NFAT3-independent manner. Collectively, these data demonstrated that impaired autophagy induced by CIH through the AMPK pathway contributed to cardiac hypertrophy. PMID:27412517

  10. Chronic intermittent hypoxia induces cardiac hypertrophy by impairing autophagy through the adenosine 5'-monophosphate-activated protein kinase pathway.

    PubMed

    Xie, Sheng; Deng, Yan; Pan, Yue-Ying; Ren, Jie; Jin, Meng; Wang, Yu; Wang, Zhi-Hua; Zhu, Die; Guo, Xue-Ling; Yuan, Xiao; Shang, Jin; Liu, Hui-Guo

    2016-09-15

    Autophagy is tightly regulated to maintain cardiac homeostasis. Impaired autophagy is closely associated with pathological cardiac hypertrophy. However, the relationship between autophagy and cardiac hypertrophy induced by chronic intermittent hypoxia (CIH) is not known. In the present study, we measured autophagy-related genes and autophagosomes during 10 weeks of CIH in rats, and 6 days in H9C2 cardiomyocytes, and showed that autophagy was impaired. This conclusion was confirmed by the autophagy flux assay. We detected significant hypertrophic changes in myocardium with impaired autophagy. Rapamycin, an autophagy enhancer, attenuated the cardiac hypertrophy induced by CIH. Moreover, silencing autophagy-related gene 5 (ATG5) exerted the opposite effect. The role of adenosine monophosphate-activated protein kinase (AMPK) in regulating autophagy under CIH was confirmed using AICAR to upregulate this enzyme and restore autophagy flux. Restoring autophagy by AICAR or rapamycin significantly reversed the hypertrophic changes in cardiomyocytes. To investigate the mechanism of autophagy impairment, we compared phospho (p)-AMPK, p-Akt, cathepsin D, and NFAT3 levels, along with calcineurin activity, between sham and CIH groups. CIH activated calcineurin, and inhibited AMPK and AMPK-mediated autophagy in an Akt- and NFAT3-independent manner. Collectively, these data demonstrated that impaired autophagy induced by CIH through the AMPK pathway contributed to cardiac hypertrophy.

  11. Synthesis of nucleoside 3'-(S-alkyl phosphorothioates) and their use as substrates for nucleases.

    PubMed

    Saba, D; Dekker, C A

    1981-09-15

    The synthesis of cytidine, uridine, guanosine, and adenosine 3'-(S-methyl phosphorothioates) by treatment of the 2',5'-di-O-(4-methoxytetrahydropyran-4-yl)ribonucleosides with 2-(methylthio 4H-1,3,2-benzodioxaphosphorin 2-oxide is described. These nucleotide analogues are stable compounds both in the solid state and the neutral aqueous solution. All four of these compounds are degraded by RNase T2 to the parent nucleotides and methanethiol. In addition, cytidine and uridine 3'-(S-methyl phosphorothioates) are substrates for bovine pancreatic ribonuclease and guanosine 3'-(S-methyl phosphorothioate) is a substrate for RNase T1 and RNase U1. When used in conjunction with a chromophore-producing reagent, nucleoside 3'-(S-methyl phosphorothioates) provide a means for direct kinetic measurement of ribonuclease activity over a wide pH range (pH 2-9). The reactivities of these substrates with ribonucleases are compared to the reactivities of other synthetic substrates as well as a number of natural substrates. The utility of ribonucleoside 3'-(S-methyl phosphorothioates) as substrates for the assay of ribonucleases is discussed. PMID:6271188

  12. Structure-catalytic activity relationships of dicyclohexylcarboxamidine analogs in phosphorylation and alkylation of nucleosides by a two-step phosphorylating agent, 2-methylthio-4H-1,3,2-benzodioxaphosphorin 2-oxide (MTBO).

    PubMed

    Eto, M; Kawasaki, S

    1986-01-01

    Adenosine borate complex was phosphorylated and o-hydroxybenzylated by 2-methylthio-4H-1,3,2-benzodioxaphosphorin 2-oxide (MTBO) in the presence of 4-morpholine-N,N'-dicyclohexylcarboxamidine (MDC) at first to give 1-(o-hydroxybenzyl)adenosine derivative followed by the rearrangement of the benzyl group to the N-6 amino group to give N6-(o-hydroxybenzyl)adenosine 5'-S-methyl phosphorothiolate. More than 20 analogs of MDC were examined for their catalytic activity in phosphorylation and o-hydroxybenzylation of ribonucleoside by MTBO. Dicyclohexylformamidine (DCF) and n-alkylamino analogs of MDC had no effect on the o-hydroxybenzylation of ribonucleoside by MTBO, but had great effect on the phosphorylation. Dialkylamino and cyclic imino analogs of MDC had high catalytic activities to the both reaction. The dicyclohexylcarboxamidine structure of MDC gave the catalytic ability for phosphorylation by MTBO, while the morpholine moiety had great effect on the selectivity of o-hydroxybenzylation by MTBO. PMID:3562278

  13. Deoxyribonucleotide synthesis and DNA polymerase activity in plant cells (Vicia faba and Glycine max).

    PubMed

    Hovemann, B; Follmann, H

    1979-01-26

    Enzymes of deoxyribonucleotide and DNA biosynthesis, which are little known in plants, were studied in root tips of germinating broad beans (Vicia faba) and in fast-growing cultures of soybean cells (Glycine max). The plant cells contain a ribonucleoside 5'-diphosphate reductase which is detected in vitro only during a limited period of growth, viz. 30--32 h after inhibition of Vicia seeds, and between the second and third day after inoculation of soybean cultures. In both species ribonucleotide reductase activity precedes maximum DNA synthesis. The reductases could be precipitated with ammonium sulfate but were not purified further due to the extremely low enzyme content of the plant extracts. Therefore the reductive pathway of deoxyribotide formation was also established in Vicia root tips by efficient labeling of the plant DNA with a ribonucleoside, [5-3H]cytidine, which reaches a maximum at the same time as the reductase activity measured in vitro. Cycloheximide inhibits this process, indicating the need for de novo enzyme induction. In contrast, DNA polymerase is present in the tissue throughout the entire development and rises only 2-fold in activity during the S phase. The soluble polymerases were partially characterized in both legume species and were found very similar to the DNA polymerase of pea seedlings. Ribonucleotide reductase is more likely a limiting component of DNA formation during the plant cell cycle than DNA polymerase.

  14. A multidimensional platform for the purification of non-coding RNA species

    PubMed Central

    Chionh, Yok Hian; Ho, Chia-Hua; Pruksakorn, Dumnoensun; Ramesh Babu, I.; Ng, Chee Sheng; Hia, Fabian; McBee, Megan E.; Su, Dan; Pang, Yan Ling Joy; Gu, Chen; Dong, Hongping; Prestwich, Erin G.; Shi, Pei-Yong; Preiser, Peter Rainer; Alonso, Sylvie; Dedon, Peter C.

    2013-01-01

    A renewed interest in non-coding RNA (ncRNA) has led to the discovery of novel RNA species and post-transcriptional ribonucleoside modifications, and an emerging appreciation for the role of ncRNA in RNA epigenetics. Although much can be learned by amplification-based analysis of ncRNA sequence and quantity, there is a significant need for direct analysis of RNA, which has led to numerous methods for purification of specific ncRNA molecules. However, no single method allows purification of the full range of cellular ncRNA species. To this end, we developed a multidimensional chromatographic platform to resolve, isolate and quantify all canonical ncRNAs in a single sample of cells or tissue, as well as novel ncRNA species. The applicability of the platform is demonstrated in analyses of ncRNA from bacteria, human cells and plasmodium-infected reticulocytes, as well as a viral RNA genome. Among the many potential applications of this platform are a system-level analysis of the dozens of modified ribonucleosides in ncRNA, characterization of novel long ncRNA species, enhanced detection of rare transcript variants and analysis of viral genomes. PMID:23907385

  15. Facile preparation of biocompatible sulfhydryl cotton fiber-based sorbents by "thiol-ene" click chemistry for biological analysis.

    PubMed

    He, Xiao-Mei; Zhu, Gang-Tian; Zhu, Yuan-Yuan; Chen, Xi; Zhang, Zheng; Wang, Shao-Ting; Yuan, Bi-Feng; Feng, Yu-Qi

    2014-10-22

    Sulfhydryl cotton fiber (SCF) has been widely used as adsorbent for a variety of metal ions since 1971. Thanks to the abundant thiols on SCF, in this study, we reported a universal method for the facile preparation of SCF-based materials using "thiol-ene" click chemistry for the first time. With the proposed method, two types of SCF-based materials, phenylboronic acid grafted sulfhydryl cotton fiber (SCF-PBA) and zirconium phosphonate-modified sulfhydryl cotton fiber (SCF-pVPA-Zr(4+)), were successfully prepared. The grafted functional groups onto the thiol group of SCF were demonstrated by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX). The prepared fibrous materials exhibited excellent fiber strength, good stability in aqueous or nonaqueous solutions, and great biocompatibility. Moreover, we developed filter-free in-pipet-tip SPE using these SCF-based materials as adsorbent for the enrichment of ribonucleosides, glycopeptides and phosphopeptides. Our results showed that SCF-PBA adsorbent can selectively capture ribonucleosides and glycopeptides from complex biological samples. And SCF-pVPA-Zr(4+) adsorbent exhibited high selectivity and capacity in the enrichment of phosphopeptides from the digestion mixture of β-casein and bovine serum albumin (BSA), as well as human serum and nonfat milk digest. Generally, the preparation strategy can be a universal method for the synthesis of other functionalized cotton-based adsorbents with special requirement in microscale biological analysis.

  16. Initiation of DNA replication at the primary origin of bacteriophage T7 by purified proteins: requirement for T7 RNA polymerase.

    PubMed Central

    Romano, L J; Tamanoi, F; Richardson, C C

    1981-01-01

    The primary origin of bacteriophage T7 DNA replication is located 15% of the distance from the left end of the T7 DNA molecule. This intergenic segment is A + T-rich, contains a single gene 4 protein recognition site, and is preceded by two tandem promoters for T7 RNA polymerase [RNA nucleotidyltransferase (DNA-directed), EC 2.7.7.6]. Analysis by electron microscopy shows that T7 DNA polymerase [DNA nucleotidyltransferase (DNA-directed), EC 2.7.7.7] and gene 4 protein initiate DNA synthesis at randomly located nicks on duplex DNA to produce branched molecules. However, upon the addition of T7 RNA polymerase and ribonucleoside triphosphates 14% of the product molecules have replication bubbles, all of which are located near the primary origin observed in vivo; no such initiation occurs on T7 deletion mutant LG37 DNA, which lacks the primary origin. We have also studied initiation by using plasmids into which fragments of T7 DNA have been inserted. DNA synthesis on these templates is also dependent on the presence of T7 RNA polymerase and ribonucleoside triphosphates. DNA synthesis is specific for plasmids containing the primary origin, provided they are first converted to linear forms. PMID:6945573

  17. Crystallization and preliminary X-ray study of Vibrio cholerae uridine phosphorylase in complex with 6-methyluracil

    PubMed Central

    Prokofev, Igor I.; Lashkov, Alexander A.; Gabdulkhakov, Azat G.; Dontsova, Mariya V.; Seregina, Tatyana A.; Mironov, Alexander S.; Betzel, Christian; Mikhailov, Al’bert M.

    2014-01-01

    Uridine phosphorylase catalyzes the phosphorolysis of ribonucleosides, with the nitrogenous base and ribose 1-phosphate as products. Additionally, it catalyzes the reverse reaction of the synthesis of ribonucleosides from ribose 1-phosphate and a nitrogenous base. However, the enzyme does not catalyze the synthesis of nucleosides when the substrate is a nitrogenous base substituted at the 6-­position, such as 6-methyluracil (6-MU). In order to explain this fact, it is essential to investigate the three-dimensional structure of the complex of 6-MU with uridine phosphorylase. 6-MU is a pharmaceutical agent that improves tissue nutrition and enhances cell regeneration by normalization of nucleotide exchange in humans. 6-MU is used for the treatment of diseases of the gastrointestinal tract, including infectious diseases. Here, procedures to obtain the uridine phosphorylase from the pathogenic bacterium Vibrio cholerae (VchUPh), purification of this enzyme, crystallization of the complex of VchUPh with 6-MU, and X-ray data collection and preliminary X-ray analysis of the VchUPh–6-MU complex at atomic resolution are reported. PMID:24419619

  18. RNase H and postreplication repair protect cells from ribonucleotides incorporated in DNA.

    PubMed

    Lazzaro, Federico; Novarina, Daniele; Amara, Flavio; Watt, Danielle L; Stone, Jana E; Costanzo, Vincenzo; Burgers, Peter M; Kunkel, Thomas A; Plevani, Paolo; Muzi-Falconi, Marco

    2012-01-13

    The chemical identity and integrity of the genome is challenged by the incorporation of ribonucleoside triphosphates (rNTPs) in place of deoxyribonucleoside triphosphates (dNTPs) during replication. Misincorporation is limited by the selectivity of DNA replicases. We show that accumulation of ribonucleoside monophosphates (rNMPs) in the genome causes replication stress and has toxic consequences, particularly in the absence of RNase H1 and RNase H2, which remove rNMPs. We demonstrate that postreplication repair (PRR) pathways-MMS2-dependent template switch and Pol ζ-dependent bypass-are crucial for tolerating the presence of rNMPs in the chromosomes; indeed, we show that Pol ζ efficiently replicates over 1-4 rNMPs. Moreover, cells lacking RNase H accumulate mono- and polyubiquitylated PCNA and have a constitutively activated PRR. Our findings describe a crucial function for RNase H1, RNase H2, template switch, and translesion DNA synthesis in overcoming rNTPs misincorporated during DNA replication, and may be relevant for the pathogenesis of Aicardi-Goutières syndrome. PMID:22244334

  19. A procedure for the isolation and determination of deoxyribose derivatives

    PubMed Central

    Pestell, R. Q. W.; Woodland, H. R.

    1972-01-01

    A method of determining deoxyribose derivatives in biological material is described. It has high sensitivity, and is particularly useful in that it can be applied to a large range of tissues for which the other available assays are unsuitable. This is because the method is applicable to complex mixtures of nucleotides in which such substances as ribonucleotides are present in very large excess over deoxyribonucleotides, and it is not necessary to equilibrate the nucleotide-precursor pool with radioactive phosphate. The method has mainly been developed with the object of determining deoxyribonucleoside triphosphates, but it can be used to assay ribonucleoside triphosphates, as well as the mono- and diphosphates of both types of nucleoside. The procedure used involves three basic techniques: (1) periodate oxidation and methylamine-induced cleavage of the sugar ring to destroy 2′- and 3′-unsubstituted ribonucleosides; (2) column chromatography to separate the deoxyribonucleotides from each other and from other substances, such as the products of the periodate oxidation; (3) fluorimetric determination of deoxyribose after labilization of the pyrimidine–glycosidic bond by bromination of the heterocyclic ring. Each of these three procedures can be used independently, in conjunction with other analytical procedures. PMID:4342491

  20. Induction of mitochondrial uncoupling enhances VEGF₁₂₀ but reduces MCP-1 release in mature 3T3-L1 adipocytes: possible regulatory mechanism through endogenous ER stress and AMPK-related pathways.

    PubMed

    Miyokawa-Gorin, Kaoru; Takahashi, Kazuto; Handa, Keiko; Kitahara, Atsuko; Sumitani, Yoshikazu; Katsuta, Hidenori; Tanaka, Toshiaki; Nishida, Susumu; Yoshimoto, Katsuhiko; Ohno, Hideki; Ishida, Hitoshi

    2012-03-01

    Although white adipocytes contain a larger number of mitochondria per cytoplasmic volume, adipocyte mitochondrial uncoupling to reduce the efficiency of ATP production on cellular function including secretory regulation of bioactive molecules such as VEGF and MCP-1 remains to be elucidated. Here we induce mitochondrial uncoupling under hypoxia-independent conditions in mature 3T3-L1 adipocytes using a metabolic uncoupler, dinitrophenol (DNP). MCP-1 release was significantly decreased by 26% (p<0.01) in 24h DNP (30 μmol/L)-treated adipocytes compared to control cells. In contrast, secreted VEGF(120) lacking a heparin-binding domain was markedly increased 2.0-fold (p<0.01). CHOP content in these cells also were augmented (p<0.01), but no significant increase of endogenous oxidative stress was observed. Treatment with thapsigargin, which can induce exogenous endoplasmic reticulum (ER) stress, clearly attenuated MCP-1 release (p<0.01), but exhibited no effects on VEGF(120) secretion. On the other hand, exogenous H(2)O(2) amplified both MCP-1 and VEGF(120) secretion (p<0.05). In addition, under chronic activation of AMPK by AICAR, MCP-1 release was significantly diminished (p<0.05) but VEGF(120) secretion was increased (p<0.01). JNK phosphorylation in mature adipocytes was decreased by treatment with either DNP or AICAR (p<0.01). Enhanced VEGF(120) secretion with either DNP or AICAR was markedly suppressed by PI3K inhibitor LY294002 (p<0.01). Thus, induced mitochondrial uncoupling in adipocytes can reduce MCP-1 release through induction of endogenous ER stress and by reduced JNK activities via chronic activation of AMPK. Under this condition, VEGF(120) secretion was increased through PI3K-dependent pathways, which were chronically activated by AMPK, and not through ER stress. Because the decrease of MCP-1 secretion under mitochondrial uncoupling might attenuate chronic low-grade inflammation by suppressing macrophages recruitment to adipose tissue, clarification of the

  1. Metal ion mediated nucleobase recognition by the ZTP riboswitch

    PubMed Central

    Trausch, Jeremiah J.; Marcano-Velázquez, Joan G.; Matyjasik, Michal M.; Batey, Robert T.

    2015-01-01

    SUMMARY The ZTP riboswitch is a widespread family of regulatory RNAs that upregulate de novo purine synthesis in response to increased intracellular levels of ZTP or ZMP (AICAR). As an important intermediate in purine biosynthesis, ZMP also serves as a proxy for the concentration of 10-formyltetrahydrofolate, a key component of one carbon metabolism. Here we report the structure of the ZTP riboswitch bound to ZMP at a resolution of 1.80 Å. The RNA contains two subdomains brought together through a long-range pseudoknot further stabilized through helix-helix packing. ZMP is bound at the subdomain interface of the RNA through a set of interactions with the ligand's base, ribose sugar and phosphate moieties. Unique to nucleobase recognition by RNAs, the Z base is inner sphere coordinated to a magnesium cation bound by two backbone phosphates. This interaction, along with steric hindrance by the backbone, imparts specificity over related analogs such as ATP/AMP. PMID:26144884

  2. Cerulenin-mediated apoptosis is involved in adenine metabolic pathway

    SciTech Connect

    Chung, Kyung-Sook; Sun, Nam-Kyu; Lee, Seung-Hee; Lee, Hyun-Jee; Choi, Shin-Jung; Kim, Sun-Kyung; Song, Ju-Hyun; Jang, Young-Joo; Song, Kyung-Bin; Yoo, Hyang-Sook; Simon, Julian . E-mail: jsimon@fhcrc.org; Won, Misun . E-mail: misun@kribb.re.kr

    2006-10-27

    Cerulenin, a fatty acid synthase (FAS) inhibitor, induces apoptosis of variety of tumor cells. To elucidate mode of action by cerulenin, we employed the proteomics approach using Schizosaccharomyces pombe. The differential protein expression profile of S. pombe revealed that cerulenin modulated the expressions of proteins involved in stresses and metabolism, including both ade10 and adk1 proteins. The nutrient supplementation assay demonstrated that cerulenin affected enzymatic steps transferring a phosphoribosyl group. This result suggests that cerulenin accumulates AMP and p-ribosyl-s-amino-imidazole carboxamide (AICAR) and reduces other necessary nucleotides, which induces feedback inhibition of enzymes and the transcriptional regulation of related genes in de novo and salvage adenine metabolic pathway. Furthermore, the deregulation of adenine nucleotide synthesis may interfere ribonucleotide reductase and cause defects in cell cycle progression and chromosome segregation. In conclusion, cerulenin induces apoptosis through deregulation of adenine nucleotide biosynthesis resulting in nuclear division defects in S. pombe.

  3. Running-Induced Systemic Cathepsin B Secretion Is Associated with Memory Function.

    PubMed

    Moon, Hyo Youl; Becke, Andreas; Berron, David; Becker, Benjamin; Sah, Nirnath; Benoni, Galit; Janke, Emma; Lubejko, Susan T; Greig, Nigel H; Mattison, Julie A; Duzel, Emrah; van Praag, Henriette

    2016-08-01

    Peripheral processes that mediate beneficial effects of exercise on the brain remain sparsely explored. Here, we show that a muscle secretory factor, cathepsin B (CTSB) protein, is important for the cognitive and neurogenic benefits of running. Proteomic analysis revealed elevated levels of CTSB in conditioned medium derived from skeletal muscle cell cultures treated with AMP-kinase agonist AICAR. Consistently, running increased CTSB levels in mouse gastrocnemius muscle and plasma. Furthermore, recombinant CTSB application enhanced expression of brain-derived neurotrophic factor (BDNF) and doublecortin (DCX) in adult hippocampal progenitor cells through a mechanism dependent on the multifunctional protein P11. In vivo, in CTSB knockout (KO) mice, running did not enhance adult hippocampal neurogenesis and spatial memory function. Interestingly, in Rhesus monkeys and humans, treadmill exercise elevated CTSB in plasma. In humans, changes in CTSB levels correlated with fitness and hippocampus-dependent memory function. Our findings suggest CTSB as a mediator of effects of exercise on cognition.

  4. Plasticity in the purine-thiamine metabolic network of Salmonella.

    PubMed

    Bazurto, Jannell V; Downs, Diana M

    2011-02-01

    In Salmonella enterica, 5-aminoimidazole ribonucleotide (AIR) is the precursor of the 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) pyrophosphate moiety of thiamine and the last intermediate in the common HMP/purine biosynthetic pathway. AIR is synthesized de novo via five reactions catalyzed by the purF, -D, -T, -G, and -I gene products. In vivo genetic analysis demonstrated that in the absence of these gene products AIR can be generated if (i) methionine and lysine are in the growth medium, (ii) PurC is functional, and (iii) 5-amino-4-imidazolecarboxamide ribotide (AICAR) has accumulated. This study provides evidence that the five steps of the common HMP/purine biosynthetic pathway can be bypassed in the synthesis of AIR and thus demonstrates that thiamine synthesis can be uncoupled from the early purine biosynthetic pathway in bacteria.

  5. Running-Induced Systemic Cathepsin B Secretion Is Associated with Memory Function.

    PubMed

    Moon, Hyo Youl; Becke, Andreas; Berron, David; Becker, Benjamin; Sah, Nirnath; Benoni, Galit; Janke, Emma; Lubejko, Susan T; Greig, Nigel H; Mattison, Julie A; Duzel, Emrah; van Praag, Henriette

    2016-08-01

    Peripheral processes that mediate beneficial effects of exercise on the brain remain sparsely explored. Here, we show that a muscle secretory factor, cathepsin B (CTSB) protein, is important for the cognitive and neurogenic benefits of running. Proteomic analysis revealed elevated levels of CTSB in conditioned medium derived from skeletal muscle cell cultures treated with AMP-kinase agonist AICAR. Consistently, running increased CTSB levels in mouse gastrocnemius muscle and plasma. Furthermore, recombinant CTSB application enhanced expression of brain-derived neurotrophic factor (BDNF) and doublecortin (DCX) in adult hippocampal progenitor cells through a mechanism dependent on the multifunctional protein P11. In vivo, in CTSB knockout (KO) mice, running did not enhance adult hippocampal neurogenesis and spatial memory function. Interestingly, in Rhesus monkeys and humans, treadmill exercise elevated CTSB in plasma. In humans, changes in CTSB levels correlated with fitness and hippocampus-dependent memory function. Our findings suggest CTSB as a mediator of effects of exercise on cognition. PMID:27345423

  6. Structure-based design, synthesis, evaluation, and crystal structures of transition state analogue inhibitors of inosine monophosphate cyclohydrolase.

    PubMed

    Xu, Lan; Chong, Youhoon; Hwang, Inkyu; D'Onofrio, Anthony; Amore, Kristen; Beardsley, G Peter; Li, Chenglong; Olson, Arthur J; Boger, Dale L; Wilson, Ian A

    2007-04-27

    The inosine monophosphate cyclohydrolase (IMPCH) component (residues 1-199) of the bifunctional enzyme aminoimidazole-4-carboxamide ribonucleotide transformylase (AICAR Tfase, residues 200-593)/IMPCH (ATIC) catalyzes the final step in the de novo purine biosynthesis pathway that produces IMP. As a potential target for antineoplastic intervention, we designed IMPCH inhibitors, 1,5-dihydroimidazo[4,5-c][1,2,6]thiadiazin-4(3H)-one 2,2-dioxide (heterocycle, 1), the corresponding nucleoside (2), and the nucleoside monophosphate (nucleotide) (3), as mimics of the tetrahedral intermediate in the cyclization reaction. All compounds are competitive inhibitors against IMPCH (K(i) values = 0.13-0.23 microm) with the simple heterocycle 1 exhibiting the most potent inhibition (K(i) = 0.13 microm). Crystal structures of bifunctional ATIC in complex with nucleoside 2 and nucleotide 3 revealed IMPCH binding modes similar to that of the IMPCH feedback inhibitor, xanthosine 5'-monophosphate. Surprisingly, the simpler heterocycle 1 had a completely different IMPCH binding mode and was relocated to the phosphate binding pocket that was identified from previous xanthosine 5'-monophosphate structures. The aromatic imidazole ring interacts with a helix dipole, similar to the interaction with the phosphate moiety of 3. The crystal structures not only revealed the mechanism of inhibition of these compounds, but they now serve as a platform for future inhibitor improvements. Importantly, the nucleoside-complexed structure supports the notion that inhibitors lacking a negatively charged phosphate can still inhibit IMPCH activity with comparable potency to phosphate-containing inhibitors. Provocatively, the nucleotide inhibitor 3 also binds to the AICAR Tfase domain of ATIC, which now provides a lead compound for the design of inhibitors that simultaneously target both active sites of this bifunctional enzyme.

  7. Hypoxia promotes drug resistance in osteosarcoma cells via activating AMP-activated protein kinase (AMPK) signaling

    PubMed Central

    Zhao, Changfu; Zhang, Qiao; Yu, Tao; Sun, Shudong; Wang, Wenjun; Liu, Guangyao

    2016-01-01

    Purpose Drug resistance has been recognized to be a major obstacle to the chemotherapy for osteosarcoma. And the potential importance of hypoxia as a target to reverse drug resistance in osteosarcoma has been indicated, though the mechanism underlining such role is not clarified. The present study aims to investigate the role of hypoxia in the drug resistance in osteosarcoma cells via activating AMP-activated protein kinase (AMPK) signaling. Experimental design We investigated the promotion of the resistance to doxorubicin of osteosarcoma MG-63 and U2-os cells in vitro, and then determined the role of hypoxia-inducible factor-1 (HIF-1)α and HIF-1β, the activation and regulatory role of AMPK in the osteosarcoma U2-os cells which were treated with doxorubicin under hypoxia. Results It was demonstrated that hypoxia significantly reduced the sensitivity of MG-63 and U2-os cells to doxorubicin, indicating an inhibited viability reduction and a reduced apoptosis promotion. And such reduced sensitivity was not associated with HIF-1α, though it was promoted by hypoxia in U2-os cells. Interestingly, the AMPK signaling was significantly promoted by hypoxia in the doxorubicin-treated U2-os cells, with a marked upregulation of phosphorylated AMPK (Thr 172) and phosphorylated acetyl-CoA carboxylase (ACC) (Ser 79), which were sensitive to the AMPK activator, AICAR and the AMPK inhibitor, Compound C. Moreover, the promoted AMPK activity by AICAR or the downregulated AMPK activity by Compound C significantly reduced or promoted the sensitivity of U2-os cells to doxorubicin. Conclusion The present study confirmed the AMPK signaling activation in the doxorubicin-treated osteosarcoma cells, in response to hypoxia, and the chemical upregulation or downregulation of AMPK signaling reduced or increased the chemo-sensitivity of osteosarcoma U2-os cells in vitro. Our study implies that AMPK inhibition might be a effective strategy to sensitize osteocarcoma cells to chemotherapy. PMID

  8. AMP-activated protein kinase attenuates oxLDL uptake in macrophages through PP2A/NF-κB/LOX-1 pathway.

    PubMed

    Chen, Bo; Li, Jin; Zhu, Haibo

    2016-10-01

    The differentiation of macrophages into lipid-laden foam cells is a hallmark in early-stage atherosclerosis. The developmental role of adenosine monophosphate-activated protein kinase (AMPK) in a transformation of foam cells, especially in macrophage cholesterol uptake that remains undetermined. Here we demonstrate that AMPK activation in response to IMM-H007 or AICAR resulted in a decrease in macrophage cholesterol uptake and thus inhibited foam cell formation in macrophages mediated by oxidized low-density lipoprotein (oxLDL). This functional change was caused by a downregulation of mRNA and protein expression of LOX-1 but not other scavenger receptors, including scavenger receptor-A (SR-A), CD36 and scavenger receptor-BI (SR-BI). The expression of LOX-1 was regulated by AMPK activation induced decreased phosphorylation of nuclear transcription factor NF-κB, since siRNA interference or dominant negative AMPK overexpression significantly promotes Ser536 dephosphorylation of NF-κB p65 and thus increases LOX-1 expression. Moreover, pharmacological AMPK activation was shown to promote protein phosphatase 2A (PP2A) activity and the specific PP2A inhibitor, okadaic acid, could prevent the effects of IMM-H007 or AICAR on NF-κB and LOX-1. In vivo, pharmacological AMPK activation reduced the lesion size of atherosclerosis and the expression of LOX-1 in aortas in apolipoprotein E-deficient mice. Our current findings suggest a novel mechanism of LOX-1 regulation by AMPK to attenuate macrophage oxLDL uptake and atherosclerosis. PMID:26297684

  9. Effects of alpha-lipoic acid on chemerin secretion in 3T3-L1 and human adipocytes.

    PubMed

    Prieto-Hontoria, Pedro L; Pérez-Matute, Patricia; Fernández-Galilea, Marta; López-Yoldi, Miguel; Sinal, Christopher J; Martínez, J Alfredo; Moreno-Aliaga, María J

    2016-03-01

    Chemerin is a novel adipokine associated with obesity and insulin resistance. α-Lipoic acid (α-LA) has shown beneficial properties on diabetes and obesity. The aim of this study was to examine the effects of α-LA on chemerin production in adipocytes in absence or presence of TNF-α, insulin and AICAR. The potential signaling pathways involved in α-LA effects on chemerin were also analyzed. α-LA actions on chemerin were tested in differentiated 3T3-L1 adipocytes and in some cases in human subcutaneous and omental adipocytes. Chemerin mRNA levels were measured by RT-PCR and the amount of chemerin secreted to culture media was determined by ELISA. α-LA induced a concentration-dependent inhibition on both chemerin secretion and mRNA levels in 3T3-L1 adipocytes. The AMPK activator AICAR and the PI3K inhibitor LY294002 dramatically abrogated both chemerin secretion and gene expression, and further potentiated the inhibitory effect of α-LA on chemerin secretion. Insulin was able to partially reverse the inhibitory action of α-LA on chemerin secretion. α-LA also reduced basal chemerin secretion in both subcutaneous and omental adipocytes from overweight/obese subjects. Moreover, α-LA was able to abolish the stimulatory effects of the pro-inflammatory cytokine TNF-α on chemerin secretion. Our data demonstrated the ability of α-LA to inhibit chemerin production, an adipokine associated to obesity and metabolic syndrome, suggesting that the reduction of chemerin could contribute to the antiobesity/antidiabetic properties described for α-LA.

  10. Polysaccharide from Fuzi likely protects against starvation-induced cytotoxicity in H9c2 cells by increasing autophagy through activation of the AMPK/mTOR pathway.

    PubMed

    Liao, Li-Zhen; Chen, Yan-Ling; Lu, Li-He; Zhao, Yong-Hua; Guo, Hua-Lei; Wu, Wei-Kang

    2013-01-01

    There is increasing evidence that starvation induces autophagy, which may be protective during starvation, in an AMPK-dependent manner. Polysaccharides from Fuzi (FPS) reportedly have protective effects on nutrition-limited livers. The present study was designed to determine whether FPS protected H9c2 cells against starvation-induced cytotoxicity using an AMPK/mTOR-dependent mechanism. H9c2 cells were incubated in serum and glucose starvation media for 12 hours to establish a cell injury model. 3-Methyladenine (3MA, an autophagy inhibitor) was used to identify the exact role of autophagy in starvation. Cells were incubated with different FPS concentrations, and the cell injury levels, autophagy activity and AMPK/mTOR phosphorylation were measured. Adenine 9-β-D-arabinofuranoside (Ara-A, an AMPK inhibitor) and 5-amino-4-imidazole-carboxamide riboside (AICAR, an AMPK activator) were used to identify whether the AMPK/mTOR pathway was involved in FPS-mediated cardioprotection. We demonstrated that starvation decreased cell viability in a time-dependent manner, and 3MA-induced autophagy inhibition aggravated the reduced cell viability. FPS treatment attenuated the cell viability decrement and the starvation-induced decline in the mitochondrial membrane potential (MMP), and autophagy; also, the AMPK/mTOR pathways were activated during treatment. Ara-A treatment abolished the protective effect of FPS, while AICAR treatment had a similar effect to FPS. We conclude that autophagy attenuates starvation-induced cardiomyocyte death, and FPS increases autophagy activity to protect against starvation-induced cytotoxicity in H9c2 cells, likely through AMPK/mTOR pathway activation.

  11. Effects of alpha-lipoic acid on chemerin secretion in 3T3-L1 and human adipocytes.

    PubMed

    Prieto-Hontoria, Pedro L; Pérez-Matute, Patricia; Fernández-Galilea, Marta; López-Yoldi, Miguel; Sinal, Christopher J; Martínez, J Alfredo; Moreno-Aliaga, María J

    2016-03-01

    Chemerin is a novel adipokine associated with obesity and insulin resistance. α-Lipoic acid (α-LA) has shown beneficial properties on diabetes and obesity. The aim of this study was to examine the effects of α-LA on chemerin production in adipocytes in absence or presence of TNF-α, insulin and AICAR. The potential signaling pathways involved in α-LA effects on chemerin were also analyzed. α-LA actions on chemerin were tested in differentiated 3T3-L1 adipocytes and in some cases in human subcutaneous and omental adipocytes. Chemerin mRNA levels were measured by RT-PCR and the amount of chemerin secreted to culture media was determined by ELISA. α-LA induced a concentration-dependent inhibition on both chemerin secretion and mRNA levels in 3T3-L1 adipocytes. The AMPK activator AICAR and the PI3K inhibitor LY294002 dramatically abrogated both chemerin secretion and gene expression, and further potentiated the inhibitory effect of α-LA on chemerin secretion. Insulin was able to partially reverse the inhibitory action of α-LA on chemerin secretion. α-LA also reduced basal chemerin secretion in both subcutaneous and omental adipocytes from overweight/obese subjects. Moreover, α-LA was able to abolish the stimulatory effects of the pro-inflammatory cytokine TNF-α on chemerin secretion. Our data demonstrated the ability of α-LA to inhibit chemerin production, an adipokine associated to obesity and metabolic syndrome, suggesting that the reduction of chemerin could contribute to the antiobesity/antidiabetic properties described for α-LA. PMID:26721419

  12. AMP-activated protein kinase attenuates oxLDL uptake in macrophages through PP2A/NF-κB/LOX-1 pathway.

    PubMed

    Chen, Bo; Li, Jin; Zhu, Haibo

    2016-10-01

    The differentiation of macrophages into lipid-laden foam cells is a hallmark in early-stage atherosclerosis. The developmental role of adenosine monophosphate-activated protein kinase (AMPK) in a transformation of foam cells, especially in macrophage cholesterol uptake that remains undetermined. Here we demonstrate that AMPK activation in response to IMM-H007 or AICAR resulted in a decrease in macrophage cholesterol uptake and thus inhibited foam cell formation in macrophages mediated by oxidized low-density lipoprotein (oxLDL). This functional change was caused by a downregulation of mRNA and protein expression of LOX-1 but not other scavenger receptors, including scavenger receptor-A (SR-A), CD36 and scavenger receptor-BI (SR-BI). The expression of LOX-1 was regulated by AMPK activation induced decreased phosphorylation of nuclear transcription factor NF-κB, since siRNA interference or dominant negative AMPK overexpression significantly promotes Ser536 dephosphorylation of NF-κB p65 and thus increases LOX-1 expression. Moreover, pharmacological AMPK activation was shown to promote protein phosphatase 2A (PP2A) activity and the specific PP2A inhibitor, okadaic acid, could prevent the effects of IMM-H007 or AICAR on NF-κB and LOX-1. In vivo, pharmacological AMPK activation reduced the lesion size of atherosclerosis and the expression of LOX-1 in aortas in apolipoprotein E-deficient mice. Our current findings suggest a novel mechanism of LOX-1 regulation by AMPK to attenuate macrophage oxLDL uptake and atherosclerosis.

  13. Activation of AMPK inhibits cervical cancer cell growth through AKT/FOXO3a/FOXM1 signaling cascade

    PubMed Central

    2013-01-01

    Background Although advanced-stage cervical cancer can benefit from current treatments, approximately 30% patients may fail after definitive treatment eventually. Therefore, exploring alternative molecular therapeutic approaches is imperatively needed for this disease. We have recently shown that activation of AMP-activated protein kinase (AMPK), a metabolic sensor, hampers cervical cancer cell growth through blocking the Wnt/β-catenin signaling activity. Here, we report that activated AMPK (p-AMPK) also inhibits cervical cancer cell growth by counteracting FOXM1 function. Methods Effect of the activation of AMPK on FOXM1 expression was examined by hypoxia and glucose deprivation, as well as pharmacological AMPK activators such as A23187, AICAR and metformin. RT Q-PCR and Western blot analysis were employed to investigate the activities of AMPK, FOXM1 and AKT/FOXO3a signaling. Results Consistent with our previous findings, the activation of AMPK by either AMPK activators such as AICAR, A23187, metformin, glucose deprivation or hypoxia significantly inhibited the cervical cancer cell growth. Importantly, we found that activated AMPK activity was concomitantly associated with the reduction of both the mRNA and protein levels of FOXM1. Mechanistically, we showed that activated AMPK was able to reduce AKT mediated phosphorylation of p-FOXO3a (Ser253). Interestingly, activated AMPK could not cause any significant changes in FOXM1 in cervical cancer cells in which endogenous FOXO3a levels were knocked down using siRNAs, suggesting that FOXO3a is involved in the suppression of FOXM1. Conclusion Taken together, our results suggest the activated AMPK impedes cervical cancer cell growth through reducing the expression of FOXM1. PMID:23819460

  14. Na,K-ATPase activity in mouse muscle is regulated by AMPK and PGC-1α.

    PubMed

    Ingwersen, Maria S; Kristensen, Michael; Pilegaard, Henriette; Wojtaszewski, Jørgen F P; Richter, Erik A; Juel, Carsten

    2011-07-01

    Na,K-ATPase activity, which is crucial for skeletal muscle function, undergoes acute and long-term regulation in response to muscle activity. The aim of the present study was to test the hypothesis that AMP kinase (AMPK) and the transcriptional coactivator PGC-1α are underlying factors in long-term regulation of Na,K-ATPase isoform (α,β and PLM) abundance and Na(+) affinity. Repeated treatment of mice with the AMPK activator AICAR decreased total PLM protein content but increased PLM phosphorylation, whereas the number of α- and β-subunits remained unchanged. The K(m) for Na(+) stimulation of Na,K-ATPase was reduced (higher affinity) after AICAR treatment. PLM abundance was increased in AMPK kinase-dead mice compared with control mice, but PLM phosphorylation and Na,K-ATPase Na(+) affinity remained unchanged. Na,K-ATPase activity and subunit distribution were also measured in mice with different degrees of PGC-1α expression. Protein abundances of α1 and α2 were reduced in PGC-1α +/- and -/- mice, and the β(1)/β(2) ratio was increased with PGC-1α overexpression (TG mice). PLM protein abundance was decreased in TG mice, but phosphorylation status was unchanged. Na,K-ATPase V (max) was decreased in PCG-1α TG and KO mice. Experimentally in vitro induced phosphorylation of PLM increased Na,K-ATPase Na(+) affinity, confirming that PLM phosphorylation is important for Na,K-ATPase function. In conclusion, both AMPK and PGC-1α regulate PLM abundance, AMPK regulates PLM phosphorylation and PGC-1α expression influences Na,K-ATPase α(1) and α(2) content and β(1)/β(2) isoform ratio. Phosphorylation of the Na,K-ATPase subunit PLM is an important regulatory mechanism.

  15. Structure-Based Design, Synthesis, Evaluation And Crystal Structures of Transition State Analogue Inhibitors of Inosine Monophosphate Cyclohydrolase

    SciTech Connect

    Xu, L.; Chong, Y.; Hwang, I.; D'Onofrio, A.; Amore, K.; Beardsley, G.P.; Li, C.; Olson, A.J.; Boger, D.L.; Wilson, I.A.; /Skaggs Inst. Chem. Biol. /Scripps Res. Inst. /Yale U.

    2007-07-13

    The inosine monophosphate cyclohydrolase (IMPCH) component (residues 1-199) of the bifunctional enzyme aminoimidazole-4-carboxamide ribonucleotide transformylase (AICAR Tfase, residues 200-593)/IMPCH (ATIC) catalyzes the final step in the de novo purine biosynthesis pathway that produces IMP. As a potential target for antineoplastic intervention, we designed IMPCH inhibitors, 1,5-dihydroimidazo[4,5-c][1,2,6]thiadiazin-4(3H)-one 2,2-dioxide (heterocycle, 1), the corresponding nucleoside (2), and the nucleoside monophosphate (nucleotide) (3), as mimics of the tetrahedral intermediate in the cyclization reaction. All compounds are competitive inhibitors against IMPCH (K(i) values = 0.13-0.23 microm) with the simple heterocycle 1 exhibiting the most potent inhibition (K(i) = 0.13 microm). Crystal structures of bifunctional ATIC in complex with nucleoside 2 and nucleotide 3 revealed IMPCH binding modes similar to that of the IMPCH feedback inhibitor, xanthosine 5'-monophosphate. Surprisingly, the simpler heterocycle 1 had a completely different IMPCH binding mode and was relocated to the phosphate binding pocket that was identified from previous xanthosine 5'-monophosphate structures. The aromatic imidazole ring interacts with a helix dipole, similar to the interaction with the phosphate moiety of 3. The crystal structures not only revealed the mechanism of inhibition of these compounds, but they now serve as a platform for future inhibitor improvements. Importantly, the nucleoside-complexed structure supports the notion that inhibitors lacking a negatively charged phosphate can still inhibit IMPCH activity with comparable potency to phosphate-containing inhibitors. Provocatively, the nucleotide inhibitor 3 also binds to the AICAR Tfase domain of ATIC, which now provides a lead compound for the design of inhibitors that simultaneously target both active sites of this bifunctional enzyme.

  16. Palmitate alters the rhythmic expression of molecular clock genes and orexigenic neuropeptide Y mRNA levels within immortalized, hypothalamic neurons.

    PubMed

    Fick, Laura J; Fick, Gordon H; Belsham, Denise D

    2011-09-30

    The control of energy homeostasis within the hypothalamus is under the regulated control of homeostatic hormones, nutrients and the expression of neuropeptides that alter feeding behavior. Elevated levels of palmitate, a predominant saturated fatty acid in diet and fatty acid biosynthesis, alter cellular function. For instance, a key mechanism involved in the development of insulin resistance is lipotoxicity, through increased circulating saturated fatty acids. Although many studies have begun to determine the underlying mechanisms of lipotoxicity in peripheral tissues, little is known about the effects of excess lipids in the brain. To determine these mechanisms we used an immortalized, clonal, hypothalamic cell line, mHypoE-44, to demonstrate that palmitate directly alters the expression of molecular clock components, by increasing Bmal1 and Clock, or by decreasing Per2, and Rev-erbα, their mRNA levels and altering their rhythmic period within individual neurons. We found that these neurons endogenously express the orexigenic neuropeptides NPY and AgRP, thus we determined that palmitate administration alters the mRNA expression of these neuropeptides as well. Palmitate treatment causes a significant increase in NPY mRNA levels and significantly alters the phase of rhythmic expression. We explored the link between AMPK and the expression of neuropeptide Y using the AMPK inhibitor compound C and the AMP analog AICAR. AMPK inhibition decreased NPY mRNA. AICAR also elevated basal NPY, but prevented the palmitate-mediated increase in NPY mRNA levels. We postulate that this palmitate-mediated increase in NPY and AgRP synthesis may initiate a detrimental positive feedback loop leading to increased energy consumption.

  17. Ovarian tumor-initiating cells display a flexible metabolism

    SciTech Connect

    Anderson, Angela S.; Roberts, Paul C.; Frisard, Madlyn I.; Hulver, Matthew W.; Schmelz, Eva M.

    2014-10-15

    An altered metabolism during ovarian cancer progression allows for increased macromolecular synthesis and unrestrained growth. However, the metabolic phenotype of cancer stem or tumor-initiating cells, small tumor cell populations that are able to recapitulate the original tumor, has not been well characterized. In the present study, we compared the metabolic phenotype of the stem cell enriched cell variant, MOSE-L{sub FFLv} (TIC), derived from mouse ovarian surface epithelial (MOSE) cells, to their parental (MOSE-L) and benign precursor (MOSE-E) cells. TICs exhibit a decrease in glucose and fatty acid oxidation with a concomitant increase in lactate secretion. In contrast to MOSE-L cells, TICs can increase their rate of glycolysis to overcome the inhibition of ATP synthase by oligomycin and can increase their oxygen consumption rate to maintain proton motive force when uncoupled, similar to the benign MOSE-E cells. TICs have an increased survival rate under limiting conditions as well as an increased survival rate when treated with AICAR, but exhibit a higher sensitivity to metformin than MOSE-E and MOSE-L cells. Together, our data show that TICs have a distinct metabolic profile that may render them flexible to adapt to the specific conditions of their microenvironment. By better understanding their metabolic phenotype and external environmental conditions that support their survival, treatment interventions can be designed to extend current therapy regimens to eradicate TICs. - Highlights: • Ovarian cancer TICs exhibit a decreased glucose and fatty acid oxidation. • TICs are more glycolytic and have highly active mitochondria. • TICs are more resistant to AICAR but not metformin. • A flexible metabolism allows TICs to adapt to their microenvironment. • This flexibility requires development of specific drugs targeting TIC-specific changes to prevent recurrent TIC outgrowth.

  18. Preparation of a disulfide-linked precipitative soluble support for solution-phase synthesis of trimeric oligodeoxyribonucleotide 3´-(2-chlorophenylphosphate) building blocks

    PubMed Central

    Molina, Alejandro Gimenez; Virta, Pasi; Lönnberg, Harri

    2015-01-01

    Summary The preparation of a disulfide-tethered precipitative soluble support and its use for solution-phase synthesis of trimeric oligodeoxyribonucleotide 3´-(2-chlorophenylphosphate) building blocks is described. To obtain the building blocks, N-acyl protected 2´-deoxy-5´-O-(4,4´-dimethoxytrityl)ribonucleosides were phosphorylated with bis(benzotriazol-1-yl) 2-chlorophenyl phosphate. The “outdated” phosphotriester strategy, based on coupling of PV building blocks in conjunction with quantitative precipitation of the oligodeoxyribonucleotide with MeOH is applied. Subsequent release of the resulting phosphate and base-protected oligodeoxyribonucleotide trimer 3’-pTpdCBzpdGibu-5’ as its 3’-(2-chlorophenyl phosphate) was achieved by reductive cleavage of the disulfide bond. PMID:26664575

  19. Solution phase synthesis of short oligoribonucleotides on a precipitative tetrapodal support

    PubMed Central

    Gimenez Molina, Alejandro; Jabgunde, Amit M; Virta, Pasi

    2014-01-01

    Summary An effective method for the synthesis of short oligoribonucleotides in solution has been elaborated. Novel 2'-O-(2-cyanoethyl)-5'-O-(1-methoxy-1-methylethyl) protected ribonucleoside 3'-phosphoramidites have been prepared and their usefulness as building blocks in RNA synthesis on a soluble support has been demonstrated. As a proof of concept, a pentameric oligoribonucleotide, 3'-UUGCA-5', has been prepared on a precipitative tetrapodal tetrakis(4-azidomethylphenyl)pentaerythritol support. The 3'-terminal nucleoside was coupled to the support as a 3'-O-(4-pentynoyl) derivative by Cu(I) promoted 1,3-dipolar cycloaddition. Couplings were carried out with 1.5 equiv of the building block. In each coupling cycle, the small molecular reagents and byproducts were removed by two quantitative precipitations from MeOH, one after oxidation and the second after the 5'-deprotection. After completion of the chain assembly, treatment with triethylamine, ammonia and TBAF released the pentamer in high yields. PMID:25298795

  20. DNA polymerases engineered by directed evolution to incorporate non-standard nucleotides

    PubMed Central

    Laos, Roberto; Thomson, J. Michael; Benner, Steven A.

    2014-01-01

    DNA polymerases have evolved for billions of years to accept natural nucleoside triphosphate substrates with high fidelity and to exclude closely related structures, such as the analogous ribonucleoside triphosphates. However, polymerases that can accept unnatural nucleoside triphosphates are desired for many applications in biotechnology. The focus of this review is on non-standard nucleotides that expand the genetic “alphabet.” This review focuses on experiments that, by directed evolution, have created variants of DNA polymerases that are better able to accept unnatural nucleotides. In many cases, an analysis of past evolution of these polymerases (as inferred by examining multiple sequence alignments) can help explain some of the mutations delivered by directed evolution. PMID:25400626

  1. Conformation of dCDP Bound to Protein R1 of Escherichia coli Ribonucleotide Reductase

    NASA Astrophysics Data System (ADS)

    Allard, P.; Kuprin, S.; Ehrenberg, A.

    1994-03-01

    Deoxycytidine 5‧-diphosphate (dCDP) is a product and competitive inhibitor of ribonucleoside-diphosphate reductase (EC 1.17.4.1) from Escherichia coli. Its conformation in the enzyme-bound state is of importance for understanding the reaction mechanism. Free and bound dCDP are in fast exchange and the transferred nuclear Overhauser effect in two-dimensional 1H NMR was used to obtain information about interproton distances within bound dCDP. The results are consistent with a model of dCDP with the base in anti conformation and the sugar in S-type puckering, when bound either to the complete enzyme complex or to the large protein subunit alone.

  2. Re-utilization of pyrimidine nucleotides during rat liver regeneration.

    PubMed Central

    Nikolov, E N; Dabeva, M D

    1985-01-01

    The changes in the specific radioactivities of the pool of total acid-soluble uridine nucleotides and of uridine and cytidine components of total cellular and nuclear RNA were monitored in regenerating rat liver for 12 days after partial hepatectomy. Evidence is presented for the re-utilization of pyrimidine nucleotides derived from cytoplasmic RNA degradation for the synthesis of new RNA. The extent of recycling was assessed and the true rate of rRNA turnover determined more accurately. The reutilization of the uridine components of RNA was 7.0%/day during the proliferative and 3.2%/day during the post-proliferative phase, whereas that of the cytidine nucleotides was more pronounced (9.6%/day and 18.1%/day respectively). The results reveal the existence of partial compartmentalization of pyrimidine ribonucleoside triphosphate pools in the nucleus and cytoplasm of rat liver cells. PMID:2408609

  3. Structural determinants for the inhibitory ligands of orotidine-5′-monophosphate decarboxylase

    SciTech Connect

    Meza-Avina, Maria Elena; Wei, Lianhu; Liu, Yan; Poduch, Ewa; Bello, Angelica M.; Mishra, Ram K.; Pai, Emil F.; Kotra, Lakshmi P.

    2010-06-14

    In recent years, orotidine-5{prime}-monophosphate decarboxylase (ODCase) has gained renewed attention as a drug target. As a part of continuing efforts to design novel inhibitors of ODCase, we undertook a comprehensive study of potent, structurally diverse ligands of ODCase and analyzed their structural interactions in the active site of ODCase. These ligands comprise of pyrazole or pyrimidine nucleotides including the mononucleotide derivatives of pyrazofurin, barbiturate ribonucleoside, and 5-cyanouridine, as well as, in a computational approach, 1,4-dihydropyridine-based non-nucleoside inhibitors such as nifedipine and nimodipine. All these ligands bind in the active site of ODCase exhibiting distinct interactions paving the way to design novel inhibitors against this interesting enzyme. We propose an empirical model for the ligand structure for rational modifications in new drug design and potentially new lead structures.

  4. Synthesis of 5'-O-DMT-2'-O-TBS Mononucleosides Using an Organic Catalyst.

    PubMed

    Lee, Sunggi; Blaisdell, Thomas P; Kasaplar, Pinar; Sun, Xixi; Tan, Kian L

    2014-06-24

    This unit describes a highly effective method to produce 5'-O-DMT-2'-O-TBS mononucleosides selectively using a small organic catalyst. This methodology avoids the tedious protection/deprotection strategy necessary to differentiate the 2'- and 3'-hydroxyl groups in a ribonucleoside. The catalyst was synthesized in two steps, starting from the condensation of valinol and cyclopentyl aldehyde, followed by anionic addition of N-methylimidazole. Ring closure of the amino alcohol with N,N-dimethylformamide dimethyl acetal in methanol furnishes the catalyst. All four 2'-O-TBS protected mono-nucleosides, U, A(Bz), G(Ib), and C(Ac), were produced in a single step using 10 to 20 mol% of the catalyst at room temperature with excellent yields and selectivity. Further transformation to phosphoramidite demonstrates the utility of this protocol in the preparation of monomers useful for automated synthesis of RNA.

  5. Occurrence of Flavonoids and Nucleosides in Agricultural Soils

    PubMed Central

    Phillips, D. A.; Joseph, C. M.; Hirsch, P. R.

    1997-01-01

    An ecologically relevant soil extraction procedure separated two types of molecules important for bacteria: flavonoids and small hydrophilic organic compounds. Two flavonoids, identified previously as inducers of nodulation genes in Rhizobium meliloti, were detected in rhizosphere soil from alfalfa (Medicago sativa L.). In addition, biologically significant quantities (micromoles per kilogram) of ribonucleosides and deoxyribonucleosides were found in all soils tested. Long-term wheat (Triticum aestivum L.) plots that had received manure contained elevated amounts of nucleosides, and in a separate experiment, the presence of legumes in a wheat-cropping sequence increased soil nucleosides. Intact bacterial cells accounted for less than 1% of the free nucleosides detected. These results suggest new testable hypotheses for molecular ecologists and differ from those obtained with older, harsher techniques. PMID:16535739

  6. Separation of modified nucleic acid constituents by micellar electrokinetic capillary chromatography.

    PubMed

    Row, K H; Griest, W H; Maskarinec, M P

    1987-11-13

    Micellar electrokinetic capillary chromatography offers a high-resolution microanalytical technique useful for adducted and modified nucleic acid constituents. A mixture of 14 normal and modified deoxyribonucleosides, deoxyribomononucleotides, a ribonucleoside and a pyrimidine can be resolved in less than 40 min using 10 kV of separating voltage, 0.075 M sodium dodecylsulfate micelles in phosphate-borate buffer, and a 68.5 cm X 60 micron I.D. fused-silica column. Efficiencies up to 370,000 theoretical plates (540,000 plates/m) are achieved, but are highly dependent on solute concentration. The limit of detection for 2'-deoxyguanosine under high-resolution conditions is ca. 18 pg at a signal-to-noise ratio of 4, but the very small injection volumes (ca. 1.5 nl) limit the minimum detectable sample solution concentration to ca. 42 nmol/ml. PMID:3693481

  7. Chemical Mutagenesis of an Emissive RNA Alphabet.

    PubMed

    Rovira, Alexander R; Fin, Andrea; Tor, Yitzhak

    2015-11-25

    An evolved fluorescent ribonucleoside alphabet comprising isomorphic purine ((tz)A, (tz)G) and pyrimidine ((tz)U, (tz)C) analogues, all derived from isothiazolo[4,3-d]pyrimidine as a common heterocyclic core, is described. Structural and biochemical analyses illustrate that the nucleosides, particularly the C-nucleosidic purine analogues, are faithful isomorphic and isofunctional surrogates of their natural counterparts and show improved features when compared to an RNA alphabet derived from thieno[3,4-d]-pyrimidine. The restoration of the nitrogen in a position equivalent to the purines' N7 leads to "isofunctional" behavior, as illustrated by the ability of adenosine deaminase to deaminate (tz)A as effectively as adenosine, the native substrate. PMID:26523462

  8. Biosynthesis of the pyrimidine moiety of thiamine. A new route of pyrimidine biosynthesis involving purine intermediates

    PubMed Central

    Newell, P. C.; Tucker, R. G.

    1968-01-01

    1. The pattern of distribution on the purine pathway of mutants of Salmonella typhimurium LT2 that had the double growth requirement for a purine plus the pyrimidine moiety of thiamine (ath mutants) indicated that purines and the pyrimidine moiety of thiamine share the early part of their biosynthetic pathways, and that 4-aminoimidazole ribonucleotide (AIR) is the last common intermediate. Two mutants that at first appeared anomalous were further investigated and found not to affect this deduction. 2. The ribonucleoside form of AIR (AIRs) satisfied the requirements both for a purine and for the pyrimidine moiety of thiamine of an ath mutant. 3. Methionine was required for the conversion of AIR into the pyrimidine moiety. 4. Radioactive AIRs was converted into radioactive pyrimidine moiety by an ath mutant without significant dilution of specific radioactivity. 5. Possible mechanisms for pyrimidine-moiety biosynthesis from AIR are discussed. PMID:4889364

  9. A new automated method to analyze urinary 8-hydroxydeoxyguanosine by a high-performance liquid chromatography-electrochemical detector system.

    PubMed

    Kasai, Hiroshi

    2003-06-01

    A new method was developed to analyze urinary 8-hydroxydeoxyguanosine (8-OH-dG) by high-performance liquid chromatography (HPLC) coupled to an electrochemical detector (ECD). This method is unique because (i) urine is first fractionated by anion exchange chromatography (polystyrene-type resin with quaternary ammonium group, sulfate form) before analysis by reverse phase chromatography; and (ii) the 8-OH-dG fraction in the first HPLC is precisely and automatically collected based on the added ribonucleoside 8-hydroxyguanosine marker peak, which elutes 4-5 min earlier. Up to 1,000 human urine samples can be continuously analyzed with high accuracy within a few months. This method will be useful for studies in radiotherapy, molecular epidemiology, risk assessment, and health promotion.

  10. Identification of the RNA recognition element of the RBPMS family of RNA-binding proteins and their transcriptome-wide mRNA targets.

    PubMed

    Farazi, Thalia A; Leonhardt, Carl S; Mukherjee, Neelanjan; Mihailovic, Aleksandra; Li, Song; Max, Klaas E A; Meyer, Cindy; Yamaji, Masashi; Cekan, Pavol; Jacobs, Nicholas C; Gerstberger, Stefanie; Bognanni, Claudia; Larsson, Erik; Ohler, Uwe; Tuschl, Thomas

    2014-07-01

    Recent studies implicated the RNA-binding protein with multiple splicing (RBPMS) family of proteins in oocyte, retinal ganglion cell, heart, and gastrointestinal smooth muscle development. These RNA-binding proteins contain a single RNA recognition motif (RRM), and their targets and molecular function have not yet been identified. We defined transcriptome-wide RNA targets using photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) in HEK293 cells, revealing exonic mature and intronic pre-mRNA binding sites, in agreement with the nuclear and cytoplasmic localization of the proteins. Computational and biochemical approaches defined the RNA recognition element (RRE) as a tandem CAC trinucleotide motif separated by a variable spacer region. Similar to other mRNA-binding proteins, RBPMS family of proteins relocalized to cytoplasmic stress granules under oxidative stress conditions suggestive of a support function for mRNA localization in large and/or multinucleated cells where it is preferentially expressed.

  11. Purine metabolism in mesophyll protoplasts of tobacco (Nicotiana tabacum) leaves.

    PubMed Central

    Barankiewicz, J; Paszkowski, J

    1980-01-01

    The overall metabolism of purines was studied in tobacco (Nicotiana tabacum) mesophyll protoplasts. Metabolic pathways were studied by measuring the conversion of radioactive adenine, adenosine, hypoxanthine and guanine into purine ribonucleotides, ribonucleosides, bases and nucleic acid constituents. Adenine was extensively deaminated to hypoxanthine, whereupon it was also converted into AMP and incorporated into nucleic acids. Adenosine was mainly hydrolysed to adenine. Inosinate formed from hypoxanthine was converted into AMP and GMP, which were then catabolized to adenine and guanosine respectively. Guanine was mainly deaminated to xanthine and also incorporated into nucleic acids via GTP. Increased RNA synthesis in the protoplasts resulted in enhanced incorporation of adenine and guanine, but not of hypoxanthine and adenosine, into the nucleic acid fraction. The overall pattern of purine-nucleotide metabolic pathways in protoplasts of tobacco leaf mesophyll is proposed. PMID:6154458

  12. Chemical synthesis of a biologically active natural tRNA with its minor bases.

    PubMed Central

    Gasparutto, D; Livache, T; Bazin, H; Duplaa, A M; Guy, A; Khorlin, A; Molko, D; Roget, A; Téoule, R

    1992-01-01

    The complete chemical synthesis of an E. coli tRNA(Ala) with its specific minor nucleosides, dihydrouridine, ribothymidine and pseudouridine, is reported. The method makes use of protected 2'-O-tertiobutyldimethylsilyl-ribonucleoside-3'-O-(2-cyanoethyl-N- ethyl-N- methyl)phosphoramidites. The exocyclic amino functions of the bases were protected by the phenoxyacetyl group for purines and acetyl for cytosine. The assembling has been performed on a silica support with coupling yield better than 98% within 2 min of condensation. Triethylamine tris-hydrofluoride allowed a clean and complete deprotection of the tBDMS groups. The synthetic tRNA(Ala) has been transcribed into cDNA by reverse transcriptase and sequenced. With E. coli alanyl-tRNA synthetase the alanyl acceptance activity and kcat/Km were 672 pmol/A260 and 6 x 10(4)M-1s-1, respectively. Images PMID:1383941

  13. Synthesis of 5′-O-DMT-2′-O-TBS mononucleosides using an organic catalyst

    PubMed Central

    Lee, Sunggi; Blaisdell, Thomas P.; Kasaplar, Pinar; Sun, Xixi

    2014-01-01

    This unit describes a highly effective method to produce 5′-O-DMT-2′-O-TBS mononucleosides selectively using a small organic catalyst. This methodology avoids the tedious protection/deprotection strategy necessary to differentiate the 2′- and 3′-hydroxyl groups in a ribonucleoside. The catalyst was synthesized in two steps starting from the condensation of valinol and cyclopentyl aldehyde, followed by anionic addition of N-methylimidazole. Ring closure of the amino alcohol with N,N-dimethylformamide dimethyl acetal in methanol furnishes the catalyst. All four 2′-O-TBS protected mono-nucleosides, U, ABz, GIb, and CAc, were produced in a single step using 10 to 20 mol% of the catalyst at room temperature with excellent yields and selectivity. Further transformation to phosphoramidite demonstrates the utility of this protocol toward the preparation of monomers useful for automated synthesis of RNA. PMID:24961720

  14. 5-Azacytidine Enhances the Mutagenesis of HIV-1 by Reduction to 5-Aza-2′-Deoxycytidine

    PubMed Central

    Rawson, Jonathan M. O.; Daly, Michele B.; Xie, Jiashu; Clouser, Christine L.; Landman, Sean R.; Reilly, Cavan S.; Bonnac, Laurent; Kim, Baek; Patterson, Steven E.

    2016-01-01

    5-Azacytidine (5-aza-C) is a ribonucleoside analog that induces the lethal mutagenesis of human immunodeficiency virus type 1 (HIV-1) by causing predominantly G-to-C transversions during reverse transcription. 5-Aza-C could potentially act primarily as a ribonucleotide (5-aza-CTP) or as a deoxyribonucleotide (5-aza-2′-deoxycytidine triphosphate [5-aza-dCTP]) during reverse transcription. In order to determine the primary form of 5-aza-C that is active against HIV-1, Illumina sequencing was performed using proviral DNA from cells treated with 5-aza-C or 5-aza-dC. 5-Aza-C and 5-aza-dC were found to induce highly similar patterns of mutation in HIV-1 in terms of the types of mutations observed, the magnitudes of effects, and the distributions of mutations at individual sequence positions. Further, 5-aza-dCTP was detected by liquid chromatography–tandem mass spectrometry in cells treated with 5-aza-C, demonstrating that 5-aza-C was a substrate for ribonucleotide reductase. Notably, levels of 5-aza-dCTP were similar in cells treated with equivalent effective concentrations of 5-aza-C or 5-aza-dC. Lastly, HIV-1 reverse transcriptase was found to incorporate 5-aza-CTP in vitro at least 10,000-fold less efficiently than 5-aza-dCTP. Taken together, these data support the model that 5-aza-C enhances the mutagenesis of HIV-1 primarily after reduction to 5-aza-dC, which can then be incorporated during reverse transcription and lead to G-to-C hypermutation. These findings may have important implications for the design of new ribonucleoside analogs directed against retroviruses. PMID:26833151

  15. Location of the redox-active thiols of ribonucleotide reductase: sequences similarity between the Escherichia coli and Lactobacillus leichmannii enzymes

    SciTech Connect

    Lin, A.N.I.; Ashley, G.W.; Stubbe, J.

    1987-11-03

    The redox-active thiols of Escherichia coli ribonucleoside diphosphate reductase and of Lactobacillus leichmannii ribonucleoside triphosphate reductase have been located by a procedure involving (1) prereduction of enzyme with dithiothreitol, (2) specific oxidation of the redox-active thiols by treatment with substrate in the absence of exogenous reductant, (3) alkylation of other thiols with iodoacetamide, and (4) reduction of the disulfides with dithiothreitol and alkylation with (1-/sup 14/C)iodoacetamide. The dithiothreitol-reduce E. coli B1 subunit is able to convert 3 equiv of CDP to dCDP and is labeled with 5.4 equiv of /sup 14/C. Sequencing of tryptic peptides shows that 2.8 equiv of /sup 14/C is on cysteines-752 and -757 at the C-terminus of B1, while 1.0-1.5 equiv of /sup 14/C is on cysteines-222 and -227. It thus appears that two sets of redox-active dithiols are involved in substrate reduction. The L. leichmannii reductase is able to convert 1.1 equiv of CTP to dCTP and is labeled with 2.1 equiv of /sup 14/C. Sequencing of tryptic peptides shows that 1.4 equiv of /sup 14/C is located on the two cysteines of C-E-G-G-A-C-P-I-K. This peptide shows remarkable and unexpected similarity to the thiol-containing region of the C-terminal peptide of E. coli B1, C-E-S-G-A-C-K-I.

  16. Bifunctional homodimeric triokinase/FMN cyclase: contribution of protein domains to the activities of the human enzyme and molecular dynamics simulation of domain movements.

    PubMed

    Rodrigues, Joaquim Rui; Couto, Ana; Cabezas, Alicia; Pinto, Rosa María; Ribeiro, João Meireles; Canales, José; Costas, María Jesús; Cameselle, José Carlos

    2014-04-11

    Mammalian triokinase, which phosphorylates exogenous dihydroxyacetone and fructose-derived glyceraldehyde, is neither molecularly identified nor firmly associated to an encoding gene. Human FMN cyclase, which splits FAD and other ribonucleoside diphosphate-X compounds to ribonucleoside monophosphate and cyclic X-phosphodiester, is identical to a DAK-encoded dihydroxyacetone kinase. This bifunctional protein was identified as triokinase. It was modeled as a homodimer of two-domain (K and L) subunits. Active centers lie between K1 and L2 or K2 and L1: dihydroxyacetone binds K and ATP binds L in different subunits too distant (≈ 14 Å) for phosphoryl transfer. FAD docked to the ATP site with ribityl 4'-OH in a possible near-attack conformation for cyclase activity. Reciprocal inhibition between kinase and cyclase reactants confirmed substrate site locations. The differential roles of protein domains were supported by their individual expression: K was inactive, and L displayed cyclase but not kinase activity. The importance of domain mobility for the kinase activity of dimeric triokinase was highlighted by molecular dynamics simulations: ATP approached dihydroxyacetone at distances below 5 Å in near-attack conformation. Based upon structure, docking, and molecular dynamics simulations, relevant residues were mutated to alanine, and kcat and Km were assayed whenever kinase and/or cyclase activity was conserved. The results supported the roles of Thr(112) (hydrogen bonding of ATP adenine to K in the closed active center), His(221) (covalent anchoring of dihydroxyacetone to K), Asp(401) and Asp(403) (metal coordination to L), and Asp(556) (hydrogen bonding of ATP or FAD ribose to L domain). Interestingly, the His(221) point mutant acted specifically as a cyclase without kinase activity.

  17. Bifunctional Homodimeric Triokinase/FMN Cyclase

    PubMed Central

    Rodrigues, Joaquim Rui; Couto, Ana; Cabezas, Alicia; Pinto, Rosa María; Ribeiro, João Meireles; Canales, José; Costas, María Jesús; Cameselle, José Carlos

    2014-01-01

    Mammalian triokinase, which phosphorylates exogenous dihydroxyacetone and fructose-derived glyceraldehyde, is neither molecularly identified nor firmly associated to an encoding gene. Human FMN cyclase, which splits FAD and other ribonucleoside diphosphate-X compounds to ribonucleoside monophosphate and cyclic X-phosphodiester, is identical to a DAK-encoded dihydroxyacetone kinase. This bifunctional protein was identified as triokinase. It was modeled as a homodimer of two-domain (K and L) subunits. Active centers lie between K1 and L2 or K2 and L1: dihydroxyacetone binds K and ATP binds L in different subunits too distant (≈14 Å) for phosphoryl transfer. FAD docked to the ATP site with ribityl 4′-OH in a possible near-attack conformation for cyclase activity. Reciprocal inhibition between kinase and cyclase reactants confirmed substrate site locations. The differential roles of protein domains were supported by their individual expression: K was inactive, and L displayed cyclase but not kinase activity. The importance of domain mobility for the kinase activity of dimeric triokinase was highlighted by molecular dynamics simulations: ATP approached dihydroxyacetone at distances below 5 Å in near-attack conformation. Based upon structure, docking, and molecular dynamics simulations, relevant residues were mutated to alanine, and kcat and Km were assayed whenever kinase and/or cyclase activity was conserved. The results supported the roles of Thr112 (hydrogen bonding of ATP adenine to K in the closed active center), His221 (covalent anchoring of dihydroxyacetone to K), Asp401 and Asp403 (metal coordination to L), and Asp556 (hydrogen bonding of ATP or FAD ribose to L domain). Interestingly, the His221 point mutant acted specifically as a cyclase without kinase activity. PMID:24569995

  18. Distribution of purine nucleotides in uremic fluids and tissues.

    PubMed

    Rutkowski, Bolesław; Rutkowski, Przemysław; Słomińska, Ewa; Swierczyński, Julian

    2010-09-01

    There are almost 100 different substances called uremic toxins. In this study, we analyze all findings concerning the new family of uremic compounds--nicotinamide end products: N-methyl-2-pyridone-5-carboxamide (Met2PY), N-methyl-4-pyridone-5-carboxamide, newly described 4-pyridone-3-carboxamide-1-beta-D-ribonucleoside (4PYR) and 4-pyridone-3-carboxamide-1-beta-D-ribonucleoside triphosphate (4PYTP). After few years of studies, we have found that these substances have higher plasma concentration in patients with chronic renal failure (CRF) in comparison with the healthy population. We noted a 40-fold increase in plasma 4PYR concentration in patients with CRF. This increment correlates significantly with the decline of kidney function measured as an increase of serum creatinine concentration and decrease of estimated glomerular filtration rate. Tested compounds are present and measurable in physiological fluids and tissues. We found higher saliva Met2PY concentration in patients with CRF in comparison with controls. Saliva Met2PY correlated negatively with estimated glomerular filtration rate and positively with serum creatinine concentration. One-third of studied group had higher concentration of Met2PY in the saliva than in plasma, and this segment of patients may be called as "good excretors." In rats with experimental CRF, we found that both Met2PY and N-methyl-4-pyridone-5-carboxamide accumulated in selected tissues. We also demonstrated formation of 4PYTP in intact human erythrocytes during incubation with the precursor 4PYR. Incubation with 4PYR leads to lowering concentration of adenosine-5'-triphosphate. 4PYTP formation may be a way to remove 4PYR from the circulation and save adenosine-5'-triphosphate depletion. Summarizing, end products of the nicotinamide family are members of uremic toxins; however, exact pathophysiological role of these compounds in the development of uremic syndrome needs further studies. PMID:20797575

  19. Polyethyleneimine-grafted boronate affinity materials for selective enrichment of cis-diol-containing compounds.

    PubMed

    Xue, Yun; Shi, Wenjun; Zhu, Bangjie; Gu, Xue; Wang, Yan; Yan, Chao

    2015-08-01

    Polyethyleneimine (PEI)-grafted and 3-acrylamidophenylboronic acid (AAPBA)-functionalized SiO2 boronate affinity materials were synthesized for the selective enrichment of cis-diol-containing compounds. Characterization results of scanning electron microscopy, Fourier transform infrared spectroscopy, elemental analysis, zeta potential, and X-ray photoelectron spectroscopy indicated the successful fabrication of SiO2@PEI-AAPBA materials. Chromatographic separation of test mixtures reveals that SiO2@PEI-AAPBA has high selective enrichment ability for cis-diol-containing compounds. The binding pH between SiO2@PEI-AAPBA and catechol was found to be as low as pH 4.5, while that between SiO2@PEI-AAPBA and adenosine was only ~7.5. This difference might be attributed to the strong electrostatic repulsion between the solid phase and analytes at a low pH. Furthermore, a diphasic separation column was fabricated based on boronate affinity chromatography, C18-reversed-phase chromatography and applied in pressurized capillary electrochromatography (pCEC). Results showed that four polar nucleosides could be well captured by the boronate affinity chromatography (BAC) section and separated by reversed phase pCEC. Finally, SiO2@PEI600-AAPBA-based solid-phase extraction technology was applied to the purification of ribonucleosides in real urine samples, and results of UHPLC-MS/MS revealed that the intensities of the extracted ions (a neutral mass loss of m/z 132.04 Da) of the ribonucleosides were significantly enhanced after the enrichment. PMID:26048816

  20. PARP-1 promotes autophagy via the AMPK/mTOR pathway in CNE-2 human nasopharyngeal carcinoma cells following ionizing radiation, while inhibition of autophagy contributes to the radiation sensitization of CNE-2 cells

    PubMed Central

    CHEN, ZE-TAN; ZHAO, WEI; QU, SONG; LI, LING; LU, XIAO-DI; SU, FANG; LIANG, ZHONG-GUO; GUO, SI-YAN; ZHU, XIAO-DONG

    2015-01-01

    It was previously reported that poly-(adenosine diphosphate-ribose) polymerase-1 (PARP-1) regulated ionizing radiation (IR)-induced autophagy in CNE-2 human nasopharyngeal carcinoma cells. The present study aimed to investigate whether PARP-1-mediated IR-induced autophagy occurred via activation of the liver kinase B1 (LKB1)/adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway in CNE-2 cells. In addition, the effect of PARP-1 and AMPK inhibition on the radiation sensitization of CNE-2 cells was investigated. CNE-2 cells were treated with 10 Gy IR in the presence or absence of the AMPK activator 5-amino-1-β-D-ribofuranosyl-1H-imidazole-4-carboxamide (AICAR). In addition, IR-treated CNE-2 cells were transfected with lentivirus-delivered small-hairpin RNA or treated with the AMPK inhibitor Compound C. Western blot analysis was used to assess the protein expression of PARP-1, phosphorylated (p)-AMPK, microtubule-associated protein 1 light chain 3 (LC3)-II and p-P70S6K. Cell viability and clone formation assays were performed to determine the effect of PARP-1 silencing and AMPK inhibition on the radiation sensitization of CNE-2 cells. The results showed that IR promoted PARP-1, p-AMPK and LC3-II protein expression as well as decreased p-P70S6K expression compared with that of the untreated cells. In addition, AICAR increased the expression of p-AMPK and LC3-II as well as decreased p-P70S6K expression compared with that of the IR-only group; however, AICAR did not increase PARP-1 expression. Furthermore, PARP-1 gene silencing decreased the expression of PARP-1, p-AMPK and LC3-II as well as increased p-P70S6K expression. Compound C decreased p-AMPK and LC3-II expression as well as increased p-P70S6K expression; however, Compound C did not increase PARP-1 expression. Western blot analysis detected limited expression of p-LKB1 in all treatment groups. Cell viability and clone formation assays revealed that PARP-1 or

  1. Effects of short-chain acyl-CoA dehydrogenase on cardiomyocyte apoptosis.

    PubMed

    Zeng, Zhenhua; Huang, Qiuju; Shu, Zhaohui; Liu, Peiqing; Chen, Shaorui; Pan, Xuediao; Zang, Linquan; Zhou, Sigui

    2016-07-01

    Short-chain acyl-CoA dehydrogenase (SCAD), a key enzyme of fatty acid β-oxidation, plays an important role in cardiac hypertrophy. However, its effect on the cardiomyocyte apoptosis remains unknown. We aimed to determine the role of SCAD in tert-butyl hydroperoxide (tBHP)-induced cardiomyocyte apoptosis. The mRNA and protein expression of SCAD were significantly down-regulated in the cardiomyocyte apoptosis model. Inhibition of SCAD with siRNA-1186 significantly decreased SCAD expression, enzyme activity and ATP content, but obviously increased the content of free fatty acids. Meanwhile, SCAD siRNA treatment triggered the same apoptosis as cardiomyocytes treated with tBHP, such as the increase in cell apoptotic rate, the activation of caspase3 and the decrease in the Bcl-2/Bax ratio, which showed that SCAD may play an important role in primary cardiomyocyte apoptosis. The changes of phosphonate AMP-activated protein kinase α (p-AMPKα) and Peroxisome proliferator-activated receptor α (PPARα) in cardiomyocyte apoptosis were consistent with that of SCAD. Furthermore, PPARα activator fenofibrate and AMPKα activator AICAR treatment significantly increased the expression of SCAD and inhibited cardiomyocyte apoptosis. In conclusion, for the first time our findings directly demonstrated that SCAD may be as a new target to prevent cardiomyocyte apoptosis through the AMPK/PPARα/SCAD signal pathways. PMID:26989860

  2. AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation.

    PubMed

    Zhang, Ya-Lin; Guo, Huiling; Zhang, Chen-Song; Lin, Shu-Yong; Yin, Zhenyu; Peng, Yongying; Luo, Hui; Shi, Yuzhe; Lian, Guili; Zhang, Cixiong; Li, Mengqi; Ye, Zhiyun; Ye, Jing; Han, Jiahuai; Li, Peng; Wu, Jia-Wei; Lin, Sheng-Cai

    2013-10-01

    The AMP-activated protein kinase (AMPK) is a master regulator of metabolic homeostasis by sensing cellular energy status. AMPK is mainly activated via phosphorylation by LKB1 when cellular AMP/ADP levels are increased. However, how AMP/ADP brings about AMPK phosphorylation remains unclear. Here, we show that it is AMP, but not ADP, that drives AXIN to directly tether LKB1 to phosphorylate AMPK. The complex formation of AXIN-AMPK-LKB1 is greatly enhanced in glucose-starved or AICAR-treated cells and in cell-free systems supplemented with exogenous AMP. Depletion of AXIN abrogated starvation-induced AMPK-LKB1 colocalization. Importantly, adenovirus-based knockdown of AXIN in the mouse liver impaired AMPK activation and caused exacerbated fatty liver after starvation, underscoring an essential role of AXIN in AMPK activation. These findings demonstrate an initiating role of AMP and demonstrate that AXIN directly transmits AMP binding of AMPK to its activation by LKB1, uncovering the mechanistic route for AMP to elicit AMPK activation by LKB1.

  3. Combined activation of the energy and cellular-defense pathways may explain the potent anti-senescence activity of methylene blue.

    PubMed

    Atamna, Hani; Atamna, Wafa; Al-Eyd, Ghaith; Shanower, Gregory; Dhahbi, Joseph M

    2015-12-01

    Methylene blue (MB) delays cellular senescence, induces complex-IV, and activates Keap1/Nrf2; however, the molecular link of these effects to MB is unclear. Since MB is redox-active, we investigated its effect on the NAD/NADH ratio in IMR90 cells. The transient increase in NAD/NADH observed in MB-treated cells triggered an investigation of the energy regulator AMPK. MB induced AMPK phosphorylation in a transient pattern, which was followed by the induction of PGC1α and SURF1: both are inducers of mitochondrial and complex-IV biogenesis. Subsequently MB-treated cells exhibited >100% increase in complex-IV activity and a 28% decline in cellular oxidants. The telomeres erosion rate was also significantly lower in MB-treated cells. A previous research suggested that the pattern of AMPK activation (i.e., chronic or transient) determines the AMPK effect on cell senescence. We identified that the anti-senescence activity of MB (transient activator) was 8-times higher than that of AICAR (chronic activator). Since MB lacked an effect on cell cycle, an MB-dependent change to cell cycle is unlikely to contribute to the anti-senescence activity. The current findings in conjunction with the activation of Keap1/Nrf2 suggest a synchronized activation of the energy and cellular defense pathways as a possible key factor in MB's potent anti-senescence activity.

  4. Contraction stimulates muscle glucose uptake independent of atypical PKC.

    PubMed

    Yu, Haiyan; Fujii, Nobuharu L; Toyoda, Taro; An, Ding; Farese, Robert V; Leitges, Michael; Hirshman, Michael F; Mul, Joram D; Goodyear, Laurie J

    2015-11-01

    Exercise increases skeletal muscle glucose uptake, but the underlying mechanisms are only partially understood. The atypical protein kinase C (PKC) isoforms λ and ζ (PKC-λ/ζ) have been shown to be necessary for insulin-, AICAR-, and metformin-stimulated glucose uptake in skeletal muscle, but not for treadmill exercise-stimulated muscle glucose uptake. To investigate if PKC-λ/ζ activity is required for contraction-stimulated muscle glucose uptake, we used mice with tibialis anterior muscle-specific overexpression of an empty vector (WT), wild-type PKC-ζ (PKC-ζ(WT)), or an enzymatically inactive T410A-PKC-ζ mutant (PKC-ζ(T410A)). We also studied skeletal muscle-specific PKC-λ knockout (MλKO) mice. Basal glucose uptake was similar between WT, PKC-ζ(WT), and PKC-ζ(T410A) tibialis anterior muscles. In contrast, in situ contraction-stimulated glucose uptake was increased in PKC-ζ(T410A) tibialis anterior muscles compared to WT or PKC-ζ(WT) tibialis anterior muscles. Furthermore, in vitro contraction-stimulated glucose uptake was greater in soleus muscles of MλKO mice than WT controls. Thus, loss of PKC-λ/ζ activity increases contraction-stimulated muscle glucose uptake. These data clearly demonstrate that PKC-λζ activity is not necessary for contraction-stimulated glucose uptake.

  5. Lkb1 deletion promotes ectopic lipid accumulation in muscle progenitor cells and mature muscles.

    PubMed

    Shan, Tizhong; Zhang, Pengpeng; Bi, Pengpeng; Kuang, Shihuan

    2015-05-01

    Excessive intramyocellular triglycerides (muscle lipids) are associated with reduced contractile function, insulin resistance, and Type 2 diabetes, but what governs lipid accumulation in muscle is unclear. Here we report a role of Lkb1 in regulating lipid metabolism in muscle stem cells and their descendent mature muscles. We used Myod(Cre) and Lkb1(flox/flox) mice to specifically delete Lkb1 in myogenic cells including stem and differentiated cells, and examined the lipid accumulation and gene expression of myoblasts cultured from muscle stem cells (satellite cells). Genetic deletion of Lkb1 in myogenic progenitors led to elevated expression of lipogenic genes and ectopic lipid accumulation in proliferating myoblasts. Interestingly, the Lkb1-deficient myoblasts differentiated into adipocyte-like cells upon adipogenic induction. However, these adipocyte-like cells maintained myogenic gene expression with reduced ability to form myotubes efficiently. Activation of AMPK by AICAR prevented ectopic lipid formation in the Lkb1-null myoblasts. Notably, Lkb1-deficient muscles accumulated excessive lipids in vivo in response to high-fat diet feeding. These results demonstrate that Lkb1 acts through AMPK to limit lipid deposition in muscle stem cells and their derivative mature muscles, and point to the possibility of controlling muscle lipid content using AMPK activating drugs.

  6. Mogrol Derived from Siraitia grosvenorii Mogrosides Suppresses 3T3-L1 Adipocyte Differentiation by Reducing cAMP-Response Element-Binding Protein Phosphorylation and Increasing AMP-Activated Protein Kinase Phosphorylation.

    PubMed

    Harada, Naoki; Ishihara, Mikako; Horiuchi, Hiroko; Ito, Yuta; Tabata, Hiromitsu; Suzuki, Yasushi A; Nakano, Yoshihisa; Yamaji, Ryoichi; Inui, Hiroshi

    2016-01-01

    This study investigated the effects of mogrol, an aglycone of mogrosides from Siraitia grosvenorii, on adipogenesis in 3T3-L1 preadipocytes. Mogrol, but not mogrosides, suppressed triglyceride accumulation by affecting early (days 0-2) and late (days 4-8), but not middle (days 2-4), differentiation stages. At the late stage, mogrol increased AMP-activated protein kinase (AMPK) phosphorylation and reduced glycerol-3-phosphate dehydrogenase activity. At the early stage, mogrol promoted AMPK phosphorylation, inhibited the induction of CCAAT/enhancer-binding protein β (C/EBPβ; a master regulator of adipogenesis), and reduced 3T3-L1 cell contents (e.g., clonal expansion). In addition, mogrol, but not the AMPK activator AICAR, suppressed the phosphorylation and activity of the cAMP response element-binding protein (CREB), which regulates C/EBPβ expression. These results indicated that mogrol suppressed adipogenesis by reducing CREB activation in the initial stage of cell differentiation and by activating AMPK signaling in both the early and late stages of this process. PMID:27583359

  7. Coinjection of CCK and leptin reduces food intake via increased CART/TRH and reduced AMPK phosphorylation in the hypothalamus.

    PubMed

    Akieda-Asai, Sayaka; Poleni, Paul-Emile; Date, Yukari

    2014-06-01

    CCK and leptin are anorectic hormones produced in the small intestine and white adipose tissue, respectively. Investigating how these hormones act together as an integrated anorectic signal is important for elucidating the mechanisms by which energy balance is maintained. We found here that coadministration of subthreshold CCK and leptin, which individually have no effect on feeding, dramatically reduced food intake in rats. Phosphorylation of AMP-activated protein kinase (AMPK) in the hypothalamus significantly decreased after coinjection of CCK and leptin. In addition, coadministration of these hormones significantly increased mRNA levels of anorectic cocaine- and amphetamine-regulated transcript (CART) and thyrotropin-releasing hormone (TRH) in the hypothalamus. The interactive effect of CCK and leptin on food intake was abolished by intracerebroventricular preadministration of the AMPK activator AICAR or anti-CART/anti-TRH antibodies. These findings indicate that coinjection of CCK and leptin reduces food intake via reduced AMPK phosphorylation and increased CART/TRH in the hypothalamus. Furthermore, by using midbrain-transected rats, we investigated the role of the neural pathway from the hindbrain to the hypothalamus in the interaction of CCK and leptin to reduce food intake. Food intake reduction induced by coinjection of CCK and leptin was blocked in midbrain-transected rats. Therefore, the neural pathway from hindbrain to hypothalamus plays an important role in transmitting the anorectic signals provided by coinjection of CCK and leptin. Our findings give further insight into the mechanisms of feeding and energy balance.

  8. AMP-Activated Protein Kinase Regulates Oxidative Metabolism in Caenorhabditis elegans through the NHR-49 and MDT-15 Transcriptional Regulators.

    PubMed

    Moreno-Arriola, Elizabeth; El Hafidi, Mohammed; Ortega-Cuéllar, Daniel; Carvajal, Karla

    2016-01-01

    Cellular energy regulation relies on complex signaling pathways that respond to fuel availability and metabolic demands. Dysregulation of these networks is implicated in the development of human metabolic diseases such as obesity and metabolic syndrome. In Caenorhabditis elegans the AMP-activated protein kinase, AAK, has been associated with longevity and stress resistance; nevertheless its precise role in energy metabolism remains elusive. In the present study, we find an evolutionary conserved role of AAK in oxidative metabolism. Similar to mammals, AAK is activated by AICAR and metformin and leads to increased glycolytic and oxidative metabolic fluxes evidenced by an increase in lactate levels and mitochondrial oxygen consumption and a decrease in total fatty acids and lipid storage, whereas augmented glucose availability has the opposite effects. We found that these changes were largely dependent on the catalytic subunit AAK-2, since the aak-2 null strain lost the observed metabolic actions. Further results demonstrate that the effects due to AAK activation are associated to SBP-1 and NHR-49 transcriptional factors and MDT-15 transcriptional co-activator, suggesting a regulatory pathway that controls oxidative metabolism. Our findings establish C. elegans as a tractable model system to dissect the relationship between distinct molecules that play a critical role in the regulation of energy metabolism in human metabolic diseases.

  9. Combined activation of the energy and cellular-defense pathways may explain the potent anti-senescence activity of methylene blue

    PubMed Central

    Atamna, Hani; Atamna, Wafa; Al-Eyd, Ghaith; Shanower, Gregory; Dhahbi, Joseph M.

    2015-01-01

    Methylene blue (MB) delays cellular senescence, induces complex-IV, and activates Keap1/Nrf2; however, the molecular link of these effects to MB is unclear. Since MB is redox-active, we investigated its effect on the NAD/NADH ratio in IMR90 cells. The transient increase in NAD/NADH observed in MB-treated cells triggered an investigation of the energy regulator AMPK. MB induced AMPK phosphorylation in a transient pattern, which was followed by the induction of PGC1α and SURF1: both are inducers of mitochondrial and complex-IV biogenesis. Subsequently MB-treated cells exhibited >100% increase in complex-IV activity and a 28% decline in cellular oxidants. The telomeres erosion rate was also significantly lower in MB-treated cells. A previous research suggested that the pattern of AMPK activation (i.e., chronic or transient) determines the AMPK effect on cell senescence. We identified that the anti-senescence activity of MB (transient activator) was 8-times higher than that of AICAR (chronic activator). Since MB lacked an effect on cell cycle, an MB-dependent change to cell cycle is unlikely to contribute to the anti-senescence activity. The current findings in conjunction with the activation of Keap1/Nrf2 suggest a synchronized activation of the energy and cellular defense pathways as a possible key factor in MB's potent anti-senescence activity. PMID:26386875

  10. Depletion of p18/LAMTOR1 promotes cell survival via activation of p27(kip1) -dependent autophagy under starvation.

    PubMed

    Zada, Sahib; Noh, Hae Sook; Baek, Seon Mi; Ha, Ji Hye; Hahm, Jong Ryeal; Kim, Deok Ryong

    2015-11-01

    The MAPK and mTOR signal pathways in endosomes or lysosomes play a crucial role in cell survival and death. They are also closely associated with autophagy, a catabolic process highly regulated under various cellular stress or nutrient deprivation. Recently we have isolated a protein, named p18/LAMTOR1, that specifically regulates the ERK or mTOR pathway in lysosomes. p18/LAMTOR1 also interacts with p27(kip1) . Here we examined how p18/LAMTOR1 plays a role in autophagy under nutrient deprivation. The p18(+/+) MEF cells were more susceptible to cell death under starvation or in the presence of AICAR in comparison with p18(-/-) MEF cells. Cleavage of caspase-3 was increased in p18(+/+) MEF cells under starvation, and phosphorylation at the threonine 198 of p27(kip1) was highly elevated in starved p18(-/-) MEF cells. Furthermore, LC3-II formation and other autophagy-associated proteins were largely increased in p18-deficient cells, and suppression of p27(kip1) expression in p18(-/-) MEF cells mitigated starvation-induced cell death. These data suggest that ablation of p18/LAMTOR1 suppresses starvation-induced cell death by stimulating autophagy through modulation of p27(kip1) activity.

  11. AMPK Suppresses Connexin43 Expression in the Bladder and Ameliorates Voiding Dysfunction in Cyclophosphamide-induced Mouse Cystitis

    PubMed Central

    Zhang, Xiling; Yao, Jian; Gao, Kun; Chi, Yuan; Mitsui, Takahiko; Ihara, Tatsuya; Sawada, Norifumi; Kamiyama, Manabu; Fan, Jianglin; Takeda, Masayuki

    2016-01-01

    Bladder voiding dysfunction is closely related to local oxidation, inflammation, and enhanced channel activities. Given that the AMP-activated protein kinase (AMPK) has anti-oxidative, anti-inflammatory and channel-inhibiting properties, we examined whether and how AMPK affected bladder activity. AMPK activation in rat bladder smooth muscle cells (BSMCs) using three different AMPK agonists resulted in a decrease in connexin43 (Cx43) expression and function, which was associated with reduced CREB phosphorylation, Cx43 promoter activity and mRNA expression, but not Cx43 degradation. Downregulation of CREB with siRNA increased Cx43 expression. A functional analysis revealed that AMPK weakened BSMC contraction and bladder capacity. AMPK also counteracted the IL-1β- and TNFα-induced increase in Cx43 in BSMCs. In vivo administration of the AMPK agonist AICAR attenuated cyclophosphamide-initiated bladder oxidation, inflammation, Cx43 expression and voiding dysfunction. Further analysis comparing the responses of the wild-type (Cx43+/+) and heterozygous (Cx43+/−) Cx43 mice to cyclophosphamide revealed that the Cx43+/− mice retained a relatively normal micturition pattern compared to the Cx43+/+ mice. Taken together, our results indicate that AMPK inhibits Cx43 in BSMCs and improves bladder activity under pathological conditions. We propose that strategies that target AMPK can be developed as novel therapeutic approaches for treating bladder dysfunction. PMID:26806558

  12. Deficiency in adiponectin exaggerates cigarette smoking exposure-induced cardiac contractile dysfunction: Role of autophagy.

    PubMed

    Hu, Nan; Yang, Lifang; Dong, Maolong; Ren, Jun; Zhang, Yingmei

    2015-10-01

    Second hand smoke is an independent risk factor for cardiovascular disease. Adiponectin (APN), an adipose-derived adipokine, has been shown to offer cardioprotective effect through an AMPK-dependent manner. This study was designed to evaluate the impact of adiponectin deficiency on second hand smoke-induced cardiac pathology and underlying mechanisms using a mouse model of side-stream smoke exposure. Adult wild-type (WT) and adiponectin knockout (APNKO) mice were placed in a chamber exposed to cigarette smoke for 1 hour daily for 40 days. Echocardiographic, cardiomyocyte function, and intracellular Ca2+ handling were evaluated. Autophagy and apoptosis were examined using western blot. 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) staining was used to evaluate reactive oxygen species (ROS) generation. Masson trichrome staining was employed to measure interstitial fibrosis. Our data revealed that adiponectin deficiency provoked smoke exposure-induced cardiomyopathy (compromised fractional shortening, disrupted cardiomyocyte function and intracellular Ca2+ homeostasis, apoptosis and ROS generation). In addition, these detrimental effects of side-stream smoke were accompanied by defective autophagolysosome formation, the effect of which was exacerbated by adiponectin deficiency. Blocking autophagolysosome formation using bafilomycin A1 (BafA1) negated the cardioprotective effect of rapamycin against smoke extract. Induction of autophagy using rapamycin and AMPKα activation using AICAR rescued against smoke extract-induced myopathic anomalies in APNKO mice. Our data suggest that adiponectin serves as an indispensable cardioprotective factor against side-stream smoke exposure-induced myopathic changes possibly through facilitating autophagolysosome formation. PMID:26276084

  13. UPR in palmitate-treated pancreatic beta-cells is not affected by altering oxidation of the fatty acid

    PubMed Central

    2011-01-01

    Background Elevated levels of lipids are detrimental for beta-cell function and mass. One of the mechanisms of how fatty acids induce apoptosis is development of the unfolded protein response (UPR). It is still far from understood how fatty acids activate the UPR, however. Methods We examined how palmitate-induced activation of the UPR was affected by altering the metabolism of the fatty acid in insulin-secreting INS-1E and MIN6 cell lines and intact human islets. To increase oxidation, we used low glucose (5.5 mM) or AICAR; and to reduce oxidation, we used high glucose (25 mM) or etomoxir. UPR was measured after 3, 24 and 48 hours of palmitate treatment. Results Modulation of palmitate oxidation by either glucose or the pharmacological agents did not affect palmitate-induced UPR activation. Conclusion Our finding suggests that other factors than oxidation of palmitate play a role in the activation of UPR in fatty acid-treated beta-cells. PMID:21978671

  14. Mogrol Derived from Siraitia grosvenorii Mogrosides Suppresses 3T3-L1 Adipocyte Differentiation by Reducing cAMP-Response Element-Binding Protein Phosphorylation and Increasing AMP-Activated Protein Kinase Phosphorylation

    PubMed Central

    Harada, Naoki; Ishihara, Mikako; Horiuchi, Hiroko; Ito, Yuta; Tabata, Hiromitsu; Suzuki, Yasushi A.; Nakano, Yoshihisa; Yamaji, Ryoichi; Inui, Hiroshi

    2016-01-01

    This study investigated the effects of mogrol, an aglycone of mogrosides from Siraitia grosvenorii, on adipogenesis in 3T3-L1 preadipocytes. Mogrol, but not mogrosides, suppressed triglyceride accumulation by affecting early (days 0–2) and late (days 4–8), but not middle (days 2–4), differentiation stages. At the late stage, mogrol increased AMP-activated protein kinase (AMPK) phosphorylation and reduced glycerol-3-phosphate dehydrogenase activity. At the early stage, mogrol promoted AMPK phosphorylation, inhibited the induction of CCAAT/enhancer-binding protein β (C/EBPβ; a master regulator of adipogenesis), and reduced 3T3-L1 cell contents (e.g., clonal expansion). In addition, mogrol, but not the AMPK activator AICAR, suppressed the phosphorylation and activity of the cAMP response element-binding protein (CREB), which regulates C/EBPβ expression. These results indicated that mogrol suppressed adipogenesis by reducing CREB activation in the initial stage of cell differentiation and by activating AMPK signaling in both the early and late stages of this process. PMID:27583359

  15. Veratri Nigri Rhizoma et Radix (Veratrum nigrum L.) and Its Constituent Jervine Prevent Adipogenesis via Activation of the LKB1-AMPKα-ACC Axis In Vivo and In Vitro

    PubMed Central

    Park, Jinbong; Jeon, Yong-Deok; Kim, Hye-Lin; Kim, Dae-Seung; Han, Yo-Han; Jung, Yunu; Youn, Dong-Hyun; Kang, JongWook; Yoon, Daeyeon; Jeong, Mi-Young; Lee, Jong-Hyun; Hong, Seung-Heon; Lee, Junhee; Um, Jae-Young

    2016-01-01

    This study was performed in order to investigate the antiobese effects of the ethanolic extract of Veratri Nigri Rhizoma et Radix (VN), a herb with limited usage, due to its toxicology. An HPLC analysis identified jervine as a constituent of VN. By an Oil Red O assay and a Real-Time RT-PCR assay, VN showed higher antiadipogenic effects than jervine. In high-fat diet- (HFD-) induced obese C57BL/6J mice, VN administration suppressed body weight gain. The levels of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT-enhancer-binding protein alpha (C/EBPα), adipocyte fatty-acid-binding protein (aP2), adiponectin, resistin, and LIPIN1 were suppressed by VN, while SIRT1 was upregulated. Furthermore, VN activated phosphorylation of the liver kinase B1- (LKB1-) AMP-activated protein kinase alpha- (AMPKα-) acetyl CoA carboxylase (ACC) axis. Further investigation of cotreatment of VN with the AMPK agonist AICAR or AMPK inhibitor Compound C showed that VN can activate the phosphorylation of AMPKα in compensation to the inhibition of Compound C. In conclusion, VN shows antiobesity effects in HFD-induced obese C57BL/6J mice. In 3T3-L1 adipocytes, VN has antiadipogenic features, which is due to activating the LKB1-AMPKα-ACC axis. These results suggest that VN has a potential benefit in preventing obesity. PMID:27143989

  16. Activation of AMPK/MnSOD signaling mediates anti-apoptotic effect of hepatitis B virus in hepatoma cells

    PubMed Central

    Li, Lei; Hong, Hong-Hai; Chen, Shi-Ping; Ma, Cai-Qi; Liu, Han-Yan; Yao, Ya-Chao

    2016-01-01

    AIM: To investigate the anti-apoptotic capability of the hepatitis B virus (HBV) in the HepG2 hepatoma cell line and the underlying mechanisms. METHODS: Cell viability and apoptosis were measured by MTT assay and flow cytometry, respectively. Targeted knockdown of manganese superoxide dismutase (MnSOD), AMP-activated protein kinase (AMPK) and hepatitis B virus X protein (HBx) genes as well as AMPK agonist AICAR and antagonist compound C were employed to determine the correlations of expression of these genes. RESULTS: HBV markedly protected the hepatoma cells from growth suppression and cell death in the condition of serum deprivation. A decrease of superoxide anion production accompanied with an increase of MnSOD expression and activity was found in HepG2.215 cells. Moreover, AMPK activation contributed to the up-regulation of MnSOD. HBx protein was identified to induce the expression of AMPK and MnSOD. CONCLUSION: Our results suggest that HBV suppresses mitochondrial superoxide level and exerts an anti-apoptotic effect by activating AMPK/MnSOD signaling pathway, which may provide a novel pharmacological strategy to prevent HCC. PMID:27158203

  17. In vivo correction of COX deficiency by activation of the AMPK/PGC-1α axis.

    PubMed

    Viscomi, Carlo; Bottani, Emanuela; Civiletto, Gabriele; Cerutti, Raffaele; Moggio, Maurizio; Fagiolari, Gigliola; Schon, Eric A; Lamperti, Costanza; Zeviani, Massimo

    2011-07-01

    Increased mitochondrial biogenesis by activation of PPAR- or AMPK/PGC-1α-dependent homeostatic pathways has been proposed as a treatment for mitochondrial disease. We tested this hypothesis on three recombinant mouse models characterized by defective cytochrome c-oxidase (COX) activity: a knockout (KO) mouse for Surf1, a knockout/knockin mouse for Sco2, and a muscle-restricted KO mouse for Cox15. First, we demonstrated that double-recombinant animals overexpressing PGC-1α in skeletal muscle on a Surf1 KO background showed robust induction of mitochondrial biogenesis and increase of mitochondrial respiratory chain activities, including COX. No such effect was obtained by treating both Surf1(-/-) and Cox15(-/-) mice with the pan-PPAR agonist bezafibrate, which instead showed adverse effects in either model. Contrariwise, treatment with the AMPK agonist AICAR led to partial correction of COX deficiency in all three models, and, importantly, significant motor improvement up to normal in the Sco2(KO/KI) mouse. These results open new perspectives for therapy of mitochondrial disease. PMID:21723506

  18. Orphan nuclear receptor SHP regulates iron metabolism through inhibition of BMP6-mediated hepcidin expression

    PubMed Central

    Kim, Don-Kyu; Kim, Yong-Hoon; Jung, Yoon Seok; Kim, Ki-Sun; Jeong, Jae-Ho; Lee, Yong-Soo; Yuk, Jae-Min; Oh, Byung-Chul; Choy, Hyon E.; Dooley, Steven; Muckenthaler, Martina U.; Lee, Chul-Ho; Choi, Hueng-Sik

    2016-01-01

    Small heterodimer partner (SHP) is a transcriptional corepressor regulating diverse metabolic processes. Here, we show that SHP acts as an intrinsic negative regulator of iron homeostasis. SHP-deficient mice maintained on a high-iron diet showed increased serum hepcidin levels, decreased expression of the iron exporter ferroportin as well as iron accumulation compared to WT mice. Conversely, overexpression of either SHP or AMP-activated protein kinase (AMPK), a metabolic sensor inducing SHP expression, suppressed BMP6-induced hepcidin expression. In addition, an inhibitory effect of AMPK activators metformin and AICAR on BMP6-mediated hepcidin gene expression was significantly attenuated by ablation of SHP expression. Interestingly, SHP physically interacted with SMAD1 and suppressed BMP6-mediated recruitment of the SMAD complex to the hepcidin gene promoter by inhibiting the formation of SMAD1 and SMAD4 complex. Finally, overexpression of SHP and metformin treatment of BMP6 stimulated mice substantially restored hepcidin expression and serum iron to baseline levels. These results reveal a previously unrecognized role for SHP in the transcriptional control of iron homeostasis. PMID:27688041

  19. AMP-Activated Protein Kinase Regulates Oxidative Metabolism in Caenorhabditis elegans through the NHR-49 and MDT-15 Transcriptional Regulators

    PubMed Central

    Moreno-Arriola, Elizabeth; EL Hafidi, Mohammed; Ortega-Cuéllar, Daniel; Carvajal, Karla

    2016-01-01

    Cellular energy regulation relies on complex signaling pathways that respond to fuel availability and metabolic demands. Dysregulation of these networks is implicated in the development of human metabolic diseases such as obesity and metabolic syndrome. In Caenorhabditis elegans the AMP-activated protein kinase, AAK, has been associated with longevity and stress resistance; nevertheless its precise role in energy metabolism remains elusive. In the present study, we find an evolutionary conserved role of AAK in oxidative metabolism. Similar to mammals, AAK is activated by AICAR and metformin and leads to increased glycolytic and oxidative metabolic fluxes evidenced by an increase in lactate levels and mitochondrial oxygen consumption and a decrease in total fatty acids and lipid storage, whereas augmented glucose availability has the opposite effects. We found that these changes were largely dependent on the catalytic subunit AAK-2, since the aak-2 null strain lost the observed metabolic actions. Further results demonstrate that the effects due to AAK activation are associated to SBP-1 and NHR-49 transcriptional factors and MDT-15 transcriptional co-activator, suggesting a regulatory pathway that controls oxidative metabolism. Our findings establish C. elegans as a tractable model system to dissect the relationship between distinct molecules that play a critical role in the regulation of energy metabolism in human metabolic diseases. PMID:26824904

  20. α-Lipoic Acids Promote the Protein Synthesis of C2C12 Myotubes by the TLR2/PI3K Signaling Pathway.

    PubMed

    Jing, Yuanyuan; Cai, Xingcai; Xu, Yaqiong; Zhu, Canjun; Wang, Lina; Wang, Songbo; Zhu, Xiaotong; Gao, Ping; Zhang, Yongliang; Jiang, Qingyan; Shu, Gang

    2016-03-01

    Skeletal muscle protein turnover is regulated by endocrine hormones, nutrients, and inflammation. α-Lipoic acid (ALA) plays an important role in energy homeostasis. Therefore, the aim of this study was to investigate the effects of ALA on protein synthesis in skeletal muscles and reveal the underlying mechanism. ALA (25 μM) significantly increased the protein synthesis and phosphorylation of Akt, mTOR, and S6 in C2C12 myotubes with attenuated phosphorylation of AMPK, Ikkα/β, and eIF2α. Intraperitoneal injection of 50 mg/kg ALA also produced the same results in mouse gastrocnemius. Both the PI3K (LY294002) and mTOR (rapamycin) inhibitors abolished the effects of ALA on protein synthesis in the C2C12 myotubes. However, AICAR (AMPK agonist) failed to block the activation of mTOR and S6 by ALA. ALA increased TLR2 and MyD88 mRNA expression in the C2C12 myotubes. TLR2 knockdown by siRNA almost eliminated the effects of ALA on protein synthesis and the Akt/mTOR pathway in the C2C12 myotubes. Immunoprecipitation data showed that ALA enhanced the p85 subunit of PI3K binding to MyD88. These findings indicate that ALA induces protein synthesis and the PI3K/Akt signaling pathway by TLR2.

  1. AMP-Activated Protein Kinase Regulates Oxidative Metabolism in Caenorhabditis elegans through the NHR-49 and MDT-15 Transcriptional Regulators.

    PubMed

    Moreno-Arriola, Elizabeth; El Hafidi, Mohammed; Ortega-Cuéllar, Daniel; Carvajal, Karla

    2016-01-01

    Cellular energy regulation relies on complex signaling pathways that respond to fuel availability and metabolic demands. Dysregulation of these networks is implicated in the development of human metabolic diseases such as obesity and metabolic syndrome. In Caenorhabditis elegans the AMP-activated protein kinase, AAK, has been associated with longevity and stress resistance; nevertheless its precise role in energy metabolism remains elusive. In the present study, we find an evolutionary conserved role of AAK in oxidative metabolism. Similar to mammals, AAK is activated by AICAR and metformin and leads to increased glycolytic and oxidative metabolic fluxes evidenced by an increase in lactate levels and mitochondrial oxygen consumption and a decrease in total fatty acids and lipid storage, whereas augmented glucose availability has the opposite effects. We found that these changes were largely dependent on the catalytic subunit AAK-2, since the aak-2 null strain lost the observed metabolic actions. Further results demonstrate that the effects due to AAK activation are associated to SBP-1 and NHR-49 transcriptional factors and MDT-15 transcriptional co-activator, suggesting a regulatory pathway that controls oxidative metabolism. Our findings establish C. elegans as a tractable model system to dissect the relationship between distinct molecules that play a critical role in the regulation of energy metabolism in human metabolic diseases. PMID:26824904

  2. Metformin synergizes 5-fluorouracil, epirubicin, and cyclophosphamide (FEC) combination therapy through impairing intracellular ATP production and DNA repair in breast cancer stem cells.

    PubMed

    Soo, Jaslyn Sian-Siu; Ng, Char-Hong; Tan, Si Hoey; Malik, Rozita Abdul; Teh, Yew-Ching; Tan, Boon-Shing; Ho, Gwo-Fuang; See, Mee-Hoong; Taib, Nur Aishah Mohd; Yip, Cheng-Har; Chung, Felicia Fei-Lei; Hii, Ling-Wei; Teo, Soo-Hwang; Leong, Chee-Onn

    2015-10-01

    Metformin, an AMPK activator, has been reported to improve pathological response to chemotherapy in diabetic breast cancer patients. To date, its mechanism of action in cancer, especially in cancer stem cells (CSCs) have not been fully elucidated. In this study, we demonstrated that metformin, but not other AMPK activators (e.g. AICAR and A-769662), synergizes 5-fluouracil, epirubicin, and cyclophosphamide (FEC) combination chemotherapy in non-stem breast cancer cells and breast cancer stem cells. We show that this occurs through an AMPK-dependent mechanism in parental breast cancer cell lines. In contrast, the synergistic effects of metformin and FEC occurred in an AMPK-independent mechanism in breast CSCs. Further analyses revealed that metformin accelerated glucose consumption and lactate production more severely in the breast CSCs but the production of intracellular ATP was severely hampered, leading to a severe energy crisis and impairs the ability of CSCs to repair FEC-induced DNA damage. Indeed, addition of extracellular ATP completely abrogated the synergistic effects of metformin on FEC sensitivity in breast CSCs. In conclusion, our results suggest that metformin synergizes FEC sensitivity through distinct mechanism in parental breast cancer cell lines and CSCs, thus providing further evidence for the clinical relevance of metformin for the treatment of cancers. PMID:26276035

  3. Tumor suppressor gene ING3 induces cardiomyocyte hypertrophy via inhibition of AMPK and activation of p38 MAPK signaling.

    PubMed

    Wang, Jiaojiao; Liu, Zhiping; Feng, Xiaojun; Gao, Si; Xu, Suowen; Liu, Peiqing

    2014-11-15

    Cardiac hypertrophy, an adaptive growth process that occurs in response to various pathophysiological stimuli, constitutes an important risk factor for the development of heart failure. However, the molecular mechanisms that regulate this cardiac growth response are not completely understood. Here we revealed that ING3 (inhibitor of growth family, member 3), a type II tumor suppressor, plays a critical role in the regulation of cardiac hypertrophy. ING3 expression was present in relatively high abundance in the heart, and was prominently upregulated in hypertrophic agonists angiotensin II (Ang II), phenylephrine (PE), or isoproterenol (ISO)-stimulated cardiomyocytes and in hearts of rat undergoing abdominal aortic constriction (AAC) surgery. In cardiomyocytes, overexpression of ING3 caused an increase in ANP, BNP and β-MHC mRNA levels and cell surface area, while depletion of ING3 attenuated PE-induced cardiomyocyte hypertrophy. Mechanistically, we have demonstrated that overexpression of ING3 could inactivate the AMPK and activate the canonical p38 MAPK signaling. Remarkably, AMPK agonist AICAR or p38 MAPK inhibitor SB203580 abrogated ING3-induced hypertrophic response in cardiomyocytes. In summary, our data disclose a novel role of ING3 as an inducer of pathological cardiac hypertrophy, suggesting that silencing of ING3 may be explored as a potential therapeutic target in preventing cardiac hypertrophy.

  4. Investigation of Pokemon-regulated proteins in hepatocellular carcinoma using mass spectrometry-based multiplex quantitative proteomics.

    PubMed

    Bi, Xin; Jin, Yibao; Gao, Xiang; Liu, Feng; Gao, Dan; Jiang, Yuyang; Liu, Hongxia

    2013-01-01

    Pokemon is a transcription regulator involved in embryonic development, cellular differentiation and oncogenesis. It is aberrantly overexpressed in multiple human cancers including Hepatocellular carcinoma (HCC) and is considered as a promising biomarker for HCC. In this work, the isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics strategy was used to investigate the proteomic profile associated with Pokemon in human HCC cell line QGY7703 and human hepatocyte line HL7702. Samples were labeled with four-plex iTRAQ reagents followed by two-dimensional liquid chromatography coupled with tandem mass spectrometry analysis. A total of 24 differentially expressed proteins were selected as significant. Nine proteins were potentially up-regulated by Pokemon while 15 proteins were potentially down-regulated and many proteins were previously identified as potential biomarkers for HCC. Gene ontology (GO) term enrichment revealed that the listed proteins were mainly involved in DNA metabolism and biosynthesis process. The changes of glucose-6-phosphate 1-dehydrogenase (G6PD, up-regulated) and ribonucleoside-diphosphate reductase large sub-unit (RIM1, down-regulated) were validated by Western blotting analysis and denoted as Pokemon's function of oncogenesis. We also found that Pokemon potentially repressed the expression of highly clustered proteins (MCM3, MCM5, MCM6, MCM7) which played key roles in promoting DNA replication. Altogether, our results may help better understand the role of Pokemon in HCC and promote the clinical applications. PMID:24261083

  5. Structural basis underlying CAC RNA recognition by the RRM domain of dimeric RNA-binding protein RBPMS

    PubMed Central

    Teplova, Marianna; Farazi, Thalia A.; Tuschl, Thomas; Patel, Dinshaw J.

    2015-01-01

    RNA-binding protein with multiple splicing (designated RBPMS) is a higher vertebrate mRNA-binding protein containing a single RNA recognition motif (RRM). RBPMS has been shown to be involved in mRNA transport, localization and stability, with key roles in axon guidance, smooth muscle plasticity, as well as regulation of cancer cell proliferation and migration. We report on structure-function studies of the RRM domain of RBPMS bound to a CAC-containing single-stranded RNA. These results provide insights into potential topologies of complexes formed by the RBPMS RRM domain and the tandem CAC repeat binding sites as detected by photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation. These studies establish that the RRM domain of RBPMS forms a symmetrical dimer in the free state, with each monomer binding sequence-specifically to all three nucleotides of a CAC segment in the RNA bound state. Structure-guided mutations within the dimerization and RNA-binding interfaces of RBPMS RRM on RNA complex formation resulted in both disruption of dimerization and a decrease in RNA-binding affinity as observed by size exclusion chromatography and isothermal titration calorimetry. As anticipated from biochemical binding studies, over-expression of dimerization or RNA-binding mutants of Flag-HA-tagged RBPMS were no longer able to track with stress granules in HEK293 cells, thereby documenting the deleterious effects of such mutations in vivo. PMID:26347403

  6. Nucleolipids of Canonical Purine ß‐d‐Ribo‐Nucleosides: Synthesis and Cytostatic/Cytotoxic Activities Toward Human and Rat Glioblastoma Cells

    PubMed Central

    Knies, Christine; Hammerbacher, Katharina; Kinscherf, Ralf

    2015-01-01

    Abstract We report on the synthesis of two series of canonical purine ß‐d‐ribonucleoside nucleolipids derived from inosine and adenosine, which have been characterized by elemental analyses, electrospray ionization mass spectrometry (ESI MS) as well as by 1H and 13C NMR, and pH‐dependent UV/Vis spectroscopy. A selection of the novel nucleolipids with different lipophilic moieties were first tested on their cytotoxic effect toward human macrophages. Compounds without a significant inhibitory effect on the viability of the macrophages were tested on their cytostatic/cytotoxic effect toward human astrocytoma/oligodendroglioma GOS‐3 cells as well as against the rat malignant neuroectodermal BT4Ca cell line. In order to additionally investigate the potential molecular mechanisms involved in the cytotoxic effects of the derivatives on GOS‐3 or BT4Ca cells, we evaluated the induction of apoptosis and observed the particular activity of the nucleolipid ethyl 3‐{4‐hydroxymethyl‐2‐methyl‐6‐[6‐oxo‐1‐(3,7,11‐trimethyl‐dodeca‐2,6,10‐trienyl)‐1,6‐dihydro‐purin‐9‐yl]‐tetrahydro‐furo[3,4‐d][1,3]dioxol‐2‐yl}propionate (8 c) toward both human and rat glioblastoma cell lines in vitro. PMID:27308225

  7. Determination of phosphate in soil extracts in the field: A green chemistry enzymatic method.

    PubMed

    Campbell, Ellen R; Warsko, Kayla; Davidson, Anna-Marie; Bill Campbell, Wilbur H

    2015-01-01

    Measurement of ortho-phosphate in soil extracts usually involves sending dried samples of soil to a laboratory for analysis and waiting several weeks for the results. Phosphate determination methods often involve use of strong acids, heavy metals, and organic dyes. To overcome limitations of this approach, we have developed a phosphate determination method which can be carried out in the field to obtain results on the spot. This new method uses: •Small volumes.•An enzymatic reaction.•Green chemistry. First, the soil sample is extracted with deionized water and filtered. Next, an aliquot of the soil extract (0.5 mL) is transferred to a disposable cuvette, containing 0.5 mL of reaction mixture [200 mM HEPES, pH 7.6, 20 mM MgCl2, with 80 nmol 2-amino-6-mercapto-7-methylpurine ribonucleoside (MESG) and 1 unit of recombinant purine nucleoside phosphorylase (PNP; EC 2.4.2.1)], mixed, and incubated for 10 min at field temperature. Absorbance of the completed reaction is measured at 360 nm in open-source, portable photometer linked by bluetooth to a smartphone. The phosphate and phosphorus content of the soil is determined by comparison of its absorbance at 360 nm to a previously prepared standard phosphate curve, which is stored in the smartphone app. PMID:26150991

  8. 2´-deoxy-5,6-dihydro-5-azacytidine - a less toxic alternative of 2´-deoxy-5-azacytidine: a comparative study of hypomethylating potential.

    PubMed

    Matoušová, Marika; Votruba, Ivan; Otmar, Miroslav; Tloušťová, Eva; Günterová, Jana; Mertlíková-Kaiserová, Helena

    2011-06-01

    Restoration of transcriptionally silenced genes by means of methyltransferases inhibitors plays a crucial role in the current therapy of myelodysplastic syndromes and certain types of leukemias. A comparative study of hypomethylating activities of a series of 5-azacytidine nucleosides: 5-azacytidine (AC), 2'-deoxy-5-azacytidine (DAC) and its α-anomer (α-DAC), 5,6-dihydro-5-azacytidine (DHAC), 2'-deoxy-5,6-dihydro-5-azacytidine (DHDAC, KP-1212) and its α-anomer (α-DHDAC), and of a 2-pyrimidone ribonucleoside (zebularine) was conducted. Methylation-specific PCR was employed to detect the efficiency of individual agents on cyclin-dependent kinase inhibitor 2B and thrombospondin-1 hypermethylated gene loci. Overall changes in DNA methylation level were quantified by direct estimation of 5-methyl-2'-deoxycytidine-5'-monophosphate by HPLC using digested genomic DNA. Flow cytometric analysis of cell cycle progression and apoptotic markers was used to determine cytotoxicity of the compounds. mRNA expression was measured using qRT-PCR. 2'-deoxy-5,6-dihydro-5-azacytidine was found to be less cytotoxic and more stable than 2'-deoxy-5-azacytidine at the doses that induce comparable DNA hypomethylation and gene reactivation. This makes it a valuable tool for epigenetic research and worth further investigations to elucidate its possible therapeutic potential.

  9. In-Depth Analysis of the Interaction of HIV-1 with Cellular microRNA Biogenesis and Effector Mechanisms

    PubMed Central

    Whisnant, Adam W.; Bogerd, Hal P.; Flores, Omar; Ho, Phong; Powers, Jason G.; Sharova, Natalia; Stevenson, Mario; Chen, Chin-Ho; Cullen, Bryan R.

    2013-01-01

    ABSTRACT The question of how HIV-1 interfaces with cellular microRNA (miRNA) biogenesis and effector mechanisms has been highly controversial. Here, we first used deep sequencing of small RNAs present in two different infected cell lines (TZM-bl and C8166) and two types of primary human cells (CD4+ peripheral blood mononuclear cells [PBMCs] and macrophages) to unequivocally demonstrate that HIV-1 does not encode any viral miRNAs. Perhaps surprisingly, we also observed that infection of T cells by HIV-1 has only a modest effect on the expression of cellular miRNAs at early times after infection. Comprehensive analysis of miRNA binding to the HIV-1 genome using the photoactivatable ribonucleoside-induced cross-linking and immunoprecipitation (PAR-CLIP) technique revealed several binding sites for cellular miRNAs, a subset of which were shown to be capable of mediating miRNA-mediated repression of gene expression. However, the main finding from this analysis is that HIV-1 transcripts are largely refractory to miRNA binding, most probably due to extensive viral RNA secondary structure. Together, these data demonstrate that HIV-1 neither encodes viral miRNAs nor strongly influences cellular miRNA expression, at least early after infection, and imply that HIV-1 transcripts have evolved to avoid inhibition by preexisting cellular miRNAs by adopting extensive RNA secondary structures that occlude most potential miRNA binding sites. PMID:23592263

  10. Synthesis of 2'-modified nucleotides and their incorporation into hammerhead ribozymes.

    PubMed Central

    Beigelman, L; Karpeisky, A; Matulic-Adamic, J; Haeberli, P; Sweedler, D; Usman, N

    1995-01-01

    Several 2'-modified ribonucleoside phosphoramidites have been prepared for structure-activity studies of the hammerhead ribozyme. The aim of these studies was to design and synthesize catalytically active and nuclease-resistant ribozymes. Synthetic schemes for stereoselective synthesis of the R isomer of 2'-deoxy-2'-C-allyl uridine and cytidine phosphoramidites, based on the Keck allylation procedure, were developed. Protection of the 2'-amino group in 2'-deoxy-2'-aminouridine was optimized and a method for the convenient preparation of 5'-O-dimethoxytrityl-2'-deoxy-2'-phthalimidouridine 3'-O-(2-cyanoethyl-N,N-diisopropylphosphoramidite) was developed. During the attempted preparation of the 2'-O-t-butyldimethylsilyl-3'-O-phosphoramidite of arabinouridine a reversed regioselectivity in the silylation reaction, compared with the published procedure, was observed, as well as the unexpected formation of the 2,2'-anhydronucleoside. A possible mechanism for this cyclization is proposed. The synthesis of 2'-deoxy-2'-methylene and 2'-deoxy-2'-difluoromethylene uridine phosphoramidites is described. Based on a '5-ribose' model for essential 2'-hydroxyls in the hammerhead ribozyme these 2'-modified monomers were incorporated at positions U4 and/or U7 of the catalytic core. A number of these ribozymes had almost wild-type catalytic activity and improved stability in human serum, compared with an all-RNA molecule. PMID:7501467

  11. [New furano- and pyrrolo[2,3-d]pyrimidine nucleosides and their 5'-triphosphates: synthesis and biological properties].

    PubMed

    Ivanov, M A; Ivanov, A V; Krasnitskaia, I A; Smirnova, O A; Karpenko, I L; Belanov, E F; Prasolov, V S; Tunitskaia, V L; Aleksandrova, L A

    2008-01-01

    Bicyclic furano[2,3-d]pyrimidine ribonucleosides were synthesized by Pd(0)- and CuI-catalyzed coupling of 5-iodouridine with terminal alkynes. The treatment of the resulting nucleosides with ammonia or methylamine solution in aqueous alcohol resulted in pyrrolo- and N(7)-methylpyrrolo[2,3-d]pyrimidine nucleosides. 5'-O-Triphosphates of bicyclic nucleosides were obtained by the treatment of the nucleosides with POCl3 in the presence of a "proton sponge." The 5'-O-triphosphates are not substrates for HCV RNA-dependent RNA polymerase, but are effective substrates for HCV RNA helicase/NTPase and did not inhibit ATP hydrolysis. Only 3-(beta-D-ribofuranosyl)-6-decyl-2,3-dihydrofuro-[2,3-d]pyrimidin-2-one showed a moderate anti-HCV activity in the HCV replicon system and efficiently inhibited replication of bovine viral diarrhea virus (BVDV) in KCT-cells, other compounds being inactive. None of the compounds were cytotoxic within the tested range of concentrations. PMID:19060941

  12. Bayesian hidden Markov models to identify RNA-protein interaction sites in PAR-CLIP.

    PubMed

    Yun, Jonghyun; Wang, Tao; Xiao, Guanghua

    2014-06-01

    The photoactivatable ribonucleoside enhanced cross-linking immunoprecipitation (PAR-CLIP) has been increasingly used for the global mapping of RNA-protein interaction sites. There are two key features of the PAR-CLIP experiments: The sequence read tags are likely to form an enriched peak around each RNA-protein interaction site; and the cross-linking procedure is likely to introduce a specific mutation in each sequence read tag at the interaction site. Several ad hoc methods have been developed to identify the RNA-protein interaction sites using either sequence read counts or mutation counts alone; however, rigorous statistical methods for analyzing PAR-CLIP are still lacking. In this article, we propose an integrative model to establish a joint distribution of observed read and mutation counts. To pinpoint the interaction sites at single base-pair resolution, we developed a novel modeling approach that adopts non-homogeneous hidden Markov models to incorporate the nucleotide sequence at each genomic location. Both simulation studies and data application showed that our method outperforms the ad hoc methods, and provides reliable inferences for the RNA-protein binding sites from PAR-CLIP data. PMID:24571656

  13. Structural insights to the metal specificity of an archaeal member of the LigD 3′-phosphoesterase DNA repair enzyme family

    PubMed Central

    Das, Ushati; Smith, Paul; Shuman, Stewart

    2012-01-01

    LigD 3′-phosphoesterase (PE) enzymes perform end-healing reactions at DNA breaks. Here we characterize the 3′-ribonucleoside-resecting activity of Candidatus Korarchaeum PE. CkoPE prefers a single-stranded substrate versus a primer–template. Activity is abolished by vanadate (10 mM), but is less sensitive to phosphate (IC50 50 mM) or chloride (IC50 150 mM). The metal requirement is satisfied by manganese, cobalt, copper or cadmium, but not magnesium, calcium, nickel or zinc. Insights to CkoPE metal specificity were gained by solving new 1.5 Å crystal structures of CkoPE in complexes with Co2+ and Zn2+. His9, His15 and Asp17 coordinate cobalt in an octahedral complex that includes a phosphate anion, which is in turn coordinated by Arg19 and His51. The cobalt and phosphate positions and the atomic contacts in the active site are virtually identical to those in the CkoPE·Mn2+ structure. By contrast, Zn2+ binds in the active site in a tetrahedral complex, wherein the position, orientation and atomic contacts of the phosphate are shifted and its interaction with His51 is lost. We conclude that: (i) PE selectively binds to ‘soft’ metals in either productive or non-productive modes and (ii) PE catalysis depends acutely on proper metal and scissile phosphate geometry. PMID:21965539

  14. RNA-binding protein hnRNPLL regulates mRNA splicing and stability during B-cell to plasma-cell differentiation

    PubMed Central

    Chang, Xing; Li, Bin; Rao, Anjana

    2015-01-01

    Posttranscriptional regulation is a major mechanism to rewire transcriptomes during differentiation. Heterogeneous nuclear RNA-binding protein LL (hnRNPLL) is specifically induced in terminally differentiated lymphocytes, including effector T cells and plasma cells. To study the molecular functions of hnRNPLL at a genome-wide level, we identified hnRNPLL RNA targets and binding sites in plasma cells through integrated Photoactivatable-Ribonucleoside-Enhanced Cross-Linking and Immunoprecipitation (PAR-CLIP) and RNA sequencing. hnRNPLL preferentially recognizes CA dinucleotide-containing sequences in introns and 3′ untranslated regions (UTRs), promotes exon inclusion or exclusion in a context-dependent manner, and stabilizes mRNA when associated with 3′ UTRs. During differentiation of primary B cells to plasma cells, hnRNPLL mediates a genome-wide switch of RNA processing, resulting in loss of B-cell lymphoma 6 (Bcl6) expression and increased Ig production—both hallmarks of plasma-cell maturation. Our data identify previously unknown functions of hnRNPLL in B-cell to plasma-cell differentiation and demonstrate that the RNA-binding protein hnRNPLL has a critical role in tuning transcriptomes of terminally differentiating B lymphocytes. PMID:25825742

  15. Topoisomerase 1-dependent deletions initiated by incision at ribonucleotides are biased to the non-transcribed strand of a highly activated reporter

    PubMed Central

    Cho, Jang-Eun; Kim, Nayun; Jinks-Robertson, Sue

    2015-01-01

    DNA polymerases incorporate ribonucleoside monophosphates (rNMPs) into genomic DNA at a low level and such rNMPs are efficiently removed in an error-free manner by ribonuclease (RNase) H2. In the absence of RNase H2 in budding yeast, persistent rNMPs give rise to short deletions via a mutagenic process initiated by Topoisomerase 1 (Top1). We examined the activity of a 2-bp, rNMP-dependent deletion hotspot [the (TG)2 hotspot] when on the transcribed or non-transcribed strand (TS or NTS, respectively) of a reporter placed in both orientations near a strong origin of replication. Under low-transcription conditions, hotspot activity depended on whether the (TG)2 sequence was part of the newly synthesized leading or lagging strand of replication. In agreement with an earlier study, deletions occurred at a much higher rate when (TG)2 was on the nascent leading strand. Under high-transcription conditions, however, hotspot activity was not dependent on replication direction, but rather on whether the (TG)2 sequence was on the TS or NTS of the reporter. Deletion rates were several orders of magnitude higher when (TG)2 was on the NTS. These results highlight the complex interplay between replication and transcription in regulating Top1-dependent genetic instability. PMID:26271994

  16. The pivotal role of uridine-cytidine kinases in pyrimidine metabolism and activation of cytotoxic nucleoside analogues in neuroblastoma.

    PubMed

    van Kuilenburg, André B P; Meinsma, Rutger

    2016-09-01

    Uridine-cytidine kinase (UCK) catalyzes the phosphorylation of uridine and cytidine as well as the pharmacological activation of several cytotoxic pyrimidine ribonucleoside analogues. In this study, we investigated the functional role of two isoforms of UCK in neuroblastoma cell lines. Analysis of mRNA coding for UCK1 and UCK2 showed that UCK2 is the most abundantly expressed UCK in a panel of neuroblastoma cell lines. Transient and stable overexpression of UCK2 in neuroblastoma cells increased the metabolism of uridine and cytidine as well as the cytotoxicity of 3-deazauridine. Knockdown of endogenous UCK2 as well as overexpression of UCK1 resulted in decreased metabolism of uridine and cytidine and protected the neuroblastoma cells from 3-deazauridine-induced toxicity. Subcellular localization studies showed that UCK1-GFP and UCK2-GFP were localized in the cell nucleus and cytosol, respectively. However, co-expression of UCK1 with UCK2 resulted in a nuclear localization of UCK2 instead of its normal cytosolic localization, thereby impairing its normal function. The physical association of UCK1 and UCK2 was further demonstrated through pull-down analysis using his-tagged UCK. The discovery that UCK2 is highly expressed in neuroblastoma opens the possibility for selectively targeting neuroblastoma cells using UCK2-dependent pyrimidine analogues, while sparing normal tissues. PMID:27239701

  17. In Vitro Synthesis of Rous Sarcoma Virus-Specific RNA is Catalyzed by a DNA-Dependent RNA Polymerase

    PubMed Central

    Rymo, L.; Parsons, J. T.; Coffin, J. M.; Weissmann, C.

    1974-01-01

    Synthesis of Rous sarcoma virus RNA was examined in vitro with a new assay for radioactive virus-specific RNA. Nuclei from infected and uninfected cells were incubated with ribonucleoside [α-32P]triphosphates, Mn++, Mg++ and (NH4)2SO4. Incorporation into total and viral RNA proceeded with similar kinetics for up to 25 min at 37°. About 0.5% of the RNA synthesized by the infected system was scored as virus-specific, compared to 0.03% of the RNA from the uninfected system and 0.005% of the RNA synthesized by monkey kidney cell nuclei. Preincubation with DNase or actinomycin D completely suppressed total and virus-specific RNA synthesis. α-Amanitin, a specific inhibitor of eukaryotic RNA polymerase II, completely inhibited virus-specific RNA synthesis, while reducing total RNA synthesis by only 50%. We conclude that tumor virus-specific RNA is synthesized on a DNA template, most probably by the host's RNA polymerase II. PMID:4368801

  18. Reticulocyte RNA-Dependent RNA Polymerase

    PubMed Central

    Downey, Kathleen M.; Byrnes, John J.; Jurmark, Bonnie S.; So, Antero G.

    1973-01-01

    A cytoplasmic, microsomal bound RNA-dependent RNA polymerase has been purified 2500-fold from rabbit reticulocyte lysates. The synthesis of RNA with the purified enzyme is absolutely dependent on the addition of an RNA template. The best template is hemoglobin messenger RNA, while bacteriophage RNA and poly(A,G) are less active, and DNA is completely inactive as a template. With poly(A,G) as a template, only UTP and CTP are incorporated into polynucleotide chains, indicating that the RNA polymerase is an RNA replicase and not a terminal transferase. With messenger RNA as a template, all four ribonucleoside triphosphates are required for maximal activity. The RNA-dependent RNA polymerase reaction is extremely sensitive to low concentrations of heme, rifamycin AF/013, and ribonuclease and resistant to actinomycin D and DNase. The discovery of RNA-directed RNA synthesis in reticulocytes offers an additional site for control of gene expression in mammalian cells and provides a possible mechanism for amplification of the expression of specific genes. PMID:4519633

  19. Separation and Partial Characterization of Two Ribonucleic Acid Polymerases from Pea Seedlings 1

    PubMed Central

    Glicklich, Daniel; Jendrisak, Jerome J.; Becker, Wayne M.

    1974-01-01

    Two DNA-dependent RNA polymerases (ribonucleoside triphosphate:RNA nucleotidyl transferase, EC 2.7.7.6) have been isolated from pea (Pisum sativum) seedlings. The enzymes were solubilized by sonication in high salt buffer and were separated by chromatography on diethylaminoethyl cellulose using a linear salt gradient. Polymerase I eluted at 0.10 m (NH4)2SO4, accounted for about 10% of the recovered activity and was completely insensitive to α-amanitin. Polymerase II eluted at 0.14 m (NH4)2SO4, accounted for the remaining 90% of recovered activity and was strongly inhibited by α-amanitin. Both enzymes preferred denatured to native DNA as template, both showed an absolute requirement of divalent cation, and both were sensitive to the ionic strength of the assay medium. The developing pea seedling seems a promising system for studies of possible changes in relative activities and roles of multiple RNA polymerases during eukaryotic development. PMID:16658887

  20. Identification of Epstein-Barr Virus Replication Proteins in Burkitt's Lymphoma Cells.

    PubMed

    Traylen, Chris; Ramasubramanyan, Sharada; Zuo, Jianmin; Rowe, Martin; Almohammad, Rajaei; Heesom, Kate; Sweet, Steve M M; Matthews, David A; Sinclair, Alison J

    2015-01-01

    The working model to describe the mechanisms used to replicate the cancer-associated virus Epstein-Barr virus (EBV) is partly derived from comparisons with other members of the Herpes virus family. Many genes within the EBV genome are homologous across the herpes virus family. Published transcriptome data for the EBV genome during its lytic replication cycle show extensive transcription, but the identification of the proteins is limited. We have taken a global proteomics approach to identify viral proteins that are expressed during the EBV lytic replication cycle. We combined an enrichment method to isolate cells undergoing EBV lytic replication with SILAC-labeling coupled to mass-spectrometry and identified viral and host proteins expressed during the OPEN ACCESS Pathogens 2015, 4 740 EBV lytic replication cycle. Amongst the most frequently identified viral proteins are two components of the DNA replication machinery, the single strand DNA binding protein BALF2, DNA polymerase accessory protein BMRF1 and both subunits of the viral ribonucleoside-diphosphate reductase enzyme (BORF2 and BaRF1). An additional 42 EBV lytic cycle proteins were also detected. This provides proteomic identification for many EBV lytic replication cycle proteins and also identifies post-translational modifications. PMID:26529022

  1. Nucleolipids of Canonical Purine ß-d-Ribo-Nucleosides: Synthesis and Cytostatic/Cytotoxic Activities Toward Human and Rat Glioblastoma Cells.

    PubMed

    Knies, Christine; Hammerbacher, Katharina; Bonaterra, Gabriel A; Kinscherf, Ralf; Rosemeyer, Helmut

    2016-04-01

    We report on the synthesis of two series of canonical purine ß-d-ribonucleoside nucleolipids derived from inosine and adenosine, which have been characterized by elemental analyses, electrospray ionization mass spectrometry (ESI MS) as well as by (1)H and (13)C NMR, and pH-dependent UV/Vis spectroscopy. A selection of the novel nucleolipids with different lipophilic moieties were first tested on their cytotoxic effect toward human macrophages. Compounds without a significant inhibitory effect on the viability of the macrophages were tested on their cytostatic/cytotoxic effect toward human astrocytoma/oligodendroglioma GOS-3 cells as well as against the rat malignant neuroectodermal BT4Ca cell line. In order to additionally investigate the potential molecular mechanisms involved in the cytotoxic effects of the derivatives on GOS-3 or BT4Ca cells, we evaluated the induction of apoptosis and observed the particular activity of the nucleolipid ethyl 3-{4-hydroxymethyl-2-methyl-6-[6-oxo-1-(3,7,11-trimethyl-dodeca-2,6,10-trienyl)-1,6-dihydro-purin-9-yl]-tetrahydro-furo[3,4-d][1,3]dioxol-2-yl}propionate (8 c) toward both human and rat glioblastoma cell lines in vitro. PMID:27308225

  2. PAR-CLIP analysis uncovers AUF1 impact on target RNA fate and genome integrity

    PubMed Central

    Yoon, Je-Hyun; De, Supriyo; Srikantan, Subramanya; Abdelmohsen, Kotb; Grammatikakis, Ioannis; Kim, Jiyoung; Kim, Kyoung Mi; Noh, Ji Heon; White, Elizabeth J.F.; Martindale, Jennifer L.; Yang, Xiaoling; Kang, Min-Ju; Wood, William H.; Hooten, Nicole Noren; Evans, Michele K.; Becker, Kevin G.; Tripathi, Vidisha; Prasanth, Kannanganattu V.; Wilson, Gerald M.; Tuschl, Thomas; Ingolia, Nicholas T.; Hafner, Markus; Gorospe, Myriam

    2015-01-01

    Post-transcriptional gene regulation is robustly regulated by RNA-binding proteins (RBPs). Here we describe the collection of RNAs regulated by AUF1 (AU-binding factor 1), an RBP linked to cancer, inflammation and aging. Photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) analysis reveals that AUF1 primarily recognizes U-/GU-rich sequences in mRNAs and noncoding RNAs and influences target transcript fate in three main directions. First, AUF1 lowers the steady-state levels of numerous target RNAs, including long noncoding RNA NEAT1, in turn affecting the organization of nuclear paraspeckles. Second, AUF1 does not change the abundance of many target RNAs, but ribosome profiling reveals that AUF1 promotes the translation of numerous mRNAs in this group. Third, AUF1 unexpectedly enhances the steady-state levels of several target mRNAs encoding DNA-maintenance proteins. Through its actions on target RNAs, AUF1 preserves genomic integrity, in agreement with the AUF1-elicited prevention of premature cellular senescence. PMID:25366541

  3. A tale of two sequences: microRNA-target chimeric reads.

    PubMed

    Broughton, James P; Pasquinelli, Amy E

    2016-04-04

    In animals, a functional interaction between a microRNA (miRNA) and its target RNA requires only partial base pairing. The limited number of base pair interactions required for miRNA targeting provides miRNAs with broad regulatory potential and also makes target prediction challenging. Computational approaches to target prediction have focused on identifying miRNA target sites based on known sequence features that are important for canonical targeting and may miss non-canonical targets. Current state-of-the-art experimental approaches, such as CLIP-seq (cross-linking immunoprecipitation with sequencing), PAR-CLIP (photoactivatable-ribonucleoside-enhanced CLIP), and iCLIP (individual-nucleotide resolution CLIP), require inference of which miRNA is bound at each site. Recently, the development of methods to ligate miRNAs to their target RNAs during the preparation of sequencing libraries has provided a new tool for the identification of miRNA target sites. The chimeric, or hybrid, miRNA-target reads that are produced by these methods unambiguously identify the miRNA bound at a specific target site. The information provided by these chimeric reads has revealed extensive non-canonical interactions between miRNAs and their target mRNAs, and identified many novel interactions between miRNAs and noncoding RNAs.

  4. RNA folding and the origins of catalytic activity in the hairpin ribozyme.

    PubMed

    Wilson, Timothy J; Nahas, Michelle; Araki, Lisa; Harusawa, Shinya; Ha, Taekjip; Lilley, David M J

    2007-01-01

    The nucleolytic ribozymes catalyse site-specific phosphodiester cleavage and ligation transesterification reactions in RNA. The hairpin ribozyme folds to generate an intimate loop-loop interaction to create the local environment in which catalysis can proceed. We have studied the ion-induced folding using single-molecule FRET experiments, showing that the four-way helical junction accelerates the folding 500-fold by introducing a discrete intermediate that juxtaposes the loops. Using FRET we can observe individual hairpin ribozyme molecules as they undergo multiple cycles of cleavage and ligation, and measure the rates of the internal reactions, free of uncertainties in the contributions of docking and substrate dissociation processes. On average, the cleaved ribozyme undergoes several docking-undocking events before a ligation reaction occurs. On the basis of these experiments, we have explored the role of the nucleobases G8 and A38 in the catalysis. Both cleavage and ligation reactions are pH dependent, corresponding to the titration of a group with pKa=6.2. We have used a novel ribonucleoside in which these bases are replaced by imidazole to investigate the role of acid-base catalysis in this ribozyme. We observe significant rates of cleavage and ligation, and a bell-shaped pH dependence for both.

  5. NMR spectroscopic properties (1H at 500 MHz) of deuterated* ribonucleotide-dimers ApU*, GpC*, partially deuterated 2'-deoxyribonucleotide-dimers d(TpA*), d(ApT*), d(GpC*) and their comparison with natural counterparts (1H-NMR window).

    PubMed

    Földesi, A; Nilson, F P; Glemarec, C; Gioeli, C; Chattopadhyaya, J

    1993-02-01

    Pure 1'#,2',3',4'#,5',5''-2H6-ribonucleoside derivatives 10-14, 1'#,2',2'',3',4'#,5',5''-2H7-2'-deoxynucleoside blocks 15-18 and their natural-abundance counterparts were used to assemble partially deuterated ribonucleotide-dimers (* indicates deuteration at 1'#,2',3',4'#,5',5''(2H6)): ApU* 21, GpC* 22 and partially deuterated 2'-deoxyribonucleotide-dimers d(TpA*) 23, d(ApT*) 25, d(GpC*) 26 (* indicates deuteration at 1'#,2',2'',3',4'#,5',5''(2H7)) according to the procedure described by Földesi et al. (Tetrahedron, in press). These five partially deuterated oligonucleotides were subsequently compared with their corresponding natural-abundance counterparts by 500 MHz 1H-NMR spectroscopy to evaluate the actual NMR simplifications achieved in the non-deuterated part (1H-NMR window) as a result of specific deuterium incorporation. Detailed one-dimensional 1H-NMR (500 MHz), two-dimensional correlation spectra (DQF-COSY and TOCSY) and deuterium isotope effect on the chemical shifts of oligonucleotides have been presented.

  6. Purification and characterization of an active human immunodeficiency virus type 1 RNase H domain.

    PubMed Central

    Smith, J S; Roth, M J

    1993-01-01

    We have expressed and purified from Escherichia coli a human immunodeficiency virus type 1 (HIV-1) RNase H domain consisting of amino acids 400 to 560 of reverse transcriptase with either an N- or C-terminal polyhistidine tag. The native protease cleavage site of HIV-1 reverse transcriptase is between amino acids 440 and 441. Purification on Ni(2+)-nitrilotriacetate agarose resulted in a highly active RNase H domain dependent on MnCl2 rather than MgCl2. Activity was unambiguously attributed to the purified proteins by an in situ RNase H gel assay. Residues 400 to 426, which include a stretch of tryptophans, did not contribute to RNase H activity, and the polyhistidine tag was essential for activity. Despite the requirement for a histidine tag, the recombinant RNase H proteins retained characteristics of the wild-type heterodimer, as determined by examining activity in the presence of several known inhibitors of HIV-1 RNase H, including ribonucleoside vanadyl complexes, dAMP, and a monoclonal antibody. Importantly, the isolated RNase H domain produced the same specific cleavage in tRNA(3Lys) removal as HIV-1 heterodimer, leaving the 3'-rA (adenosine 5' phosphate) residue of a model tRNA attached to the adjacent U5 sequence. This HIV-1 RNase H domain sedimented as a monomer in a glycerol gradient. Images PMID:7685407

  7. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase.

    PubMed

    Ping, Xiao-Li; Sun, Bao-Fa; Wang, Lu; Xiao, Wen; Yang, Xin; Wang, Wen-Jia; Adhikari, Samir; Shi, Yue; Lv, Ying; Chen, Yu-Sheng; Zhao, Xu; Li, Ang; Yang, Ying; Dahal, Ujwal; Lou, Xiao-Min; Liu, Xi; Huang, Jun; Yuan, Wei-Ping; Zhu, Xiao-Fan; Cheng, Tao; Zhao, Yong-Liang; Wang, Xinquan; Rendtlew Danielsen, Jannie M; Liu, Feng; Yang, Yun-Gui

    2014-02-01

    The methyltransferase like 3 (METTL3)-containing methyltransferase complex catalyzes the N6-methyladenosine (m6A) formation, a novel epitranscriptomic marker; however, the nature of this complex remains largely unknown. Here we report two new components of the human m6A methyltransferase complex, Wilms' tumor 1-associating protein (WTAP) and methyltransferase like 14 (METTL14). WTAP interacts with METTL3 and METTL14, and is required for their localization into nuclear speckles enriched with pre-mRNA processing factors and for catalytic activity of the m6A methyltransferase in vivo. The majority of RNAs bound by WTAP and METTL3 in vivo represent mRNAs containing the consensus m6A motif. In the absence of WTAP, the RNA-binding capability of METTL3 is strongly reduced, suggesting that WTAP may function to regulate recruitment of the m6A methyltransferase complex to mRNA targets. Furthermore, transcriptomic analyses in combination with photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) illustrate that WTAP and METTL3 regulate expression and alternative splicing of genes involved in transcription and RNA processing. Morpholino-mediated knockdown targeting WTAP and/or METTL3 in zebrafish embryos caused tissue differentiation defects and increased apoptosis. These findings provide strong evidence that WTAP may function as a regulatory subunit in the m6A methyltransferase complex and play a critical role in epitranscriptomic regulation of RNA metabolism. PMID:24407421

  8. Isolation and characterization of rabbit anti-m3 2,2,7G antibodies.

    PubMed

    Luhrmann, R; Appel, B; Bringmann, P; Rinke, J; Reuter, R; Rothe, S; Bald, R

    1982-11-25

    Antibodies specific for intact 2,2,7-trimethylguanosine (m3 2,2,7G) were induced by immunization of rabbits with a nucleoside-human serum albumen (HSA) conjugate. Competition radioimmunoassay showed that the antibody distinguishes well between intact m3 2,2,7G and its alkali-hydrolysed form (m3 2,2,7G*). Antibody specificity is largely dependent on the presence of all three methyl groups in m3 2,2,7G: none of the less extensively methylated nucleosides m7G, m2G and m2 2,2G is able to compete efficiently with the homologous hapten. Little or no competition was observed with m1G, m1A, m6A, m5U and each of the four unmodified ribonucleosides. Binding studies with nucleoplasmic RNAs from Ehrlich ascites cells suggest that the antibody reacts specifically with the m3 2,2,7G-containing cap structure of the small nuclear U-RNAs (U-snRNAs). Thus the antibody should be a valuable tool for studying the role of the 5'-terminal regions of the U-snRNAs of eucaryotic cells. PMID:7155893

  9. Simultaneous Quantification of Methylated Cytidine and Adenosine in Cellular and Tissue RNA by Nano-Flow Liquid Chromatography-Tandem Mass Spectrometry Coupled with the Stable Isotope-dilution Method

    PubMed Central

    Fu, Lijuan; Amato, Nicolas J.; Wang, Pengcheng; McGowan, Sara J.; Niedernhofer, Laura J.; Wang, Yinsheng

    2016-01-01

    The rising interest in understanding the functions, regulation and maintenance of the epitranscriptome calls for robust and accurate analytical methods for the identification and quantification of post-transcriptionally modified nucleosides in RNA. Mono-methylations of cytidine and adenosine are common post-transcriptional modifications in RNA. Herein, we developed an LC-MS/MS/MS coupled with the stable isotope-dilution method for the sensitive and accurate quantifications of 5-methylcytidine (m5C), 2′-O-methylcytidine (Cm), N6-methyladenosine (m6A) and 2′-O-methyladenosine (Am) in RNA isolated from mammalian cells and tissues. Our results showed that the distributions of the four methylated nucleosides are tissue-specific. In addition, the 2′-O-methylated ribonucleosides (Cm and Am) are present at higher levels than the corresponding methylated nucleobase products (m5C and m6A) in total RNA isolated from mouse brain, pancreas and spleen, but not mouse heart. We also found that the levels of m5C, Cm and Am are significantly lower (by 6.5-43 fold) in mRNA than in total RNA isolated from HEK293T cells, whereas the level of m6A was slightly higher (by 1.6 fold) in mRNA than in total RNA. The availability of this analytical method, in combination with genetic manipulation, may facilitate the future discovery of proteins involved in the maintenance and regulation of these RNA modifications. PMID:26158405

  10. Investigation of Pokemon-regulated proteins in hepatocellular carcinoma using mass spectrometry-based multiplex quantitative proteomics.

    PubMed

    Bi, Xin; Jin, Yibao; Gao, Xiang; Liu, Feng; Gao, Dan; Jiang, Yuyang; Liu, Hongxia

    2013-01-01

    Pokemon is a transcription regulator involved in embryonic development, cellular differentiation and oncogenesis. It is aberrantly overexpressed in multiple human cancers including Hepatocellular carcinoma (HCC) and is considered as a promising biomarker for HCC. In this work, the isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics strategy was used to investigate the proteomic profile associated with Pokemon in human HCC cell line QGY7703 and human hepatocyte line HL7702. Samples were labeled with four-plex iTRAQ reagents followed by two-dimensional liquid chromatography coupled with tandem mass spectrometry analysis. A total of 24 differentially expressed proteins were selected as significant. Nine proteins were potentially up-regulated by Pokemon while 15 proteins were potentially down-regulated and many proteins were previously identified as potential biomarkers for HCC. Gene ontology (GO) term enrichment revealed that the listed proteins were mainly involved in DNA metabolism and biosynthesis process. The changes of glucose-6-phosphate 1-dehydrogenase (G6PD, up-regulated) and ribonucleoside-diphosphate reductase large sub-unit (RIM1, down-regulated) were validated by Western blotting analysis and denoted as Pokemon's function of oncogenesis. We also found that Pokemon potentially repressed the expression of highly clustered proteins (MCM3, MCM5, MCM6, MCM7) which played key roles in promoting DNA replication. Altogether, our results may help better understand the role of Pokemon in HCC and promote the clinical applications.

  11. Nucleoside adducts are formed by cooperative reaction of acetaldehyde and alcohols: possible mechanism for the role of ethanol in carcinogenesis.

    PubMed

    Fraenkel-Conrat, H; Singer, B

    1988-06-01

    The exocyclic amino groups of ribonucleosides and deoxyribonucleosides react rapidly at ambient temperature with acetaldehyde and alcohols to yield mixed acetals [--NH--CH(CH3)OR]. Nucleotides and nucleoside di- and triphosphates also react. Depending on the nucleoside used and on the relative amounts of aldehyde, alcohol, and water, preparative reactions reach equilibrium with yields up to 75% in a few hours. The structures have been confirmed by fast atom bombardment MS and proton NMR. Half-lives at 37 degrees C have been determined, and maximum stability is in the pH range of 7.5-9.5. In the absence of alcohol, acetaldehyde-nucleoside adducts could be isolated at 4 degrees C, but these were too unstable to characterize except for their UV spectra, also at 4 degrees C. Ethanol is often present in human blood and tissues, and acetaldehyde is its initial metabolic product, as well as being formed by many other metabolic processes. Both chemicals have separately been implicated in carcinogenic and other cytopathologic processes, but no cooperative mechanism has been proposed. The reactions reported here are of biological concern because they also occur in dilute aqueous solution. These findings supply a mechanism by which ethanol can be covalently bound to nucleic acids under physiological conditions.

  12. Effect of deoxyribonucleosides on the hypersensitivity of human peripheral blood lymphocytes to UV-B and UV-C irradiation.

    PubMed

    Green, M H; Waugh, A P; Lowe, J E; Harcourt, S A; Cole, J; Arlett, C F

    1994-07-01

    We have previously shown that non-cycling (unstimulated) human lymphocytes from normal donors show extreme hypersensitivity to UV-B irradiation, and are killed by an excisable lesion which is not a pyrimidine dimer or 6-4 photoproduct. In this paper we show that addition of the 4 deoxyribonucleosides to the medium, each at 10(-5) M, substantially increased the survival of non-cycling normal human T-lymphocytes following UV-B irradiation and substantially reduced the frequency of excision-related strand breaks in human mononuclear cells. Addition of ribonucleosides to the medium did not enhance excision-break rejoining. The survival of fibroblasts, of cycling T-lymphocytes and of unstimulated xeroderma pigmentosum T-lymphocytes was not enhanced by deoxyribonucleosides. This suggests that the hypersensitivity is due to reduced rejoining of excision breaks as a consequence of low intracellular deoxyribonucleotide pools and that it can be redressed by supplementation of the medium with deoxyribonucleosides or upregulation of ribonucleotide reductase following mitogen stimulation. We suggest that UV-B forms an additional DNA lesion which is not a pyrimidine dimer or 6-4 photoproduct, which is relatively common, and at which incision is particularly efficient. In fibroblasts, repair of this lesion is completed with high efficiency, whereas in normal unstimulated T-lymphocytes, rapid incision exacerbates the effects of the reduced rate of strand rejoining and leads to cell death. PMID:7517007

  13. Transcriptome-wide identification of in vivo interactions between RNAs and RNA-binding proteins by RIP and PAR-CLIP assays.

    PubMed

    González-Buendía, Edgar; Saldaña-Meyer, Ricardo; Meier, Karin; Recillas-Targa, Félix

    2015-01-01

    Comprehensive genomic and computational studies in the era of high-throughput sequencing revealed that the major proportion of the human genome is transcribed. This novel insight confronted the scientific community with new questions concerning the expanded role of RNA, especially noncoding RNA (ncRNA), in cellular pathways. In recent years, there has been mounting evidence that ncRNAs and RNA binding proteins (RBPs) are involved in a wide range of biological processes, such as developmental transitions, cell differentiation, stress response, genome organization, and regulation of gene expression. In particular, in the chromatin field long noncoding RNAs (lncRNAs) have drawn increasing attention to their function in epigenetic regulation due to the fact that they were found to interact with multiple chromatin regulators and modifiers. Recently, techniques to study the extent of RNA-protein interactions have been developed in many research laboratories. Here we describe protocols for RNA Immunoprecipitation-Sequencing (RIP-Seq) and Photoactivatable-Ribonucleoside-Enhanced Cross-linking and Immunoprecipitation combined with deep sequencing (PAR-CLIP-Seq) to identify RNA targets of RNA-binding proteins (RBPs) on a transcriptome-wide level, discussing advantages and drawbacks.

  14. Reconstitution of CPSF active in polyadenylation: recognition of the polyadenylation signal by WDR33.

    PubMed

    Schönemann, Lars; Kühn, Uwe; Martin, Georges; Schäfer, Peter; Gruber, Andreas R; Keller, Walter; Zavolan, Mihaela; Wahle, Elmar

    2014-11-01

    Cleavage and polyadenylation specificity factor (CPSF) is the central component of the 3' processing machinery for polyadenylated mRNAs in metazoans: CPSF recognizes the polyadenylation signal AAUAAA, providing sequence specificity in both pre-mRNA cleavage and polyadenylation, and catalyzes pre-mRNA cleavage. Here we show that of the seven polypeptides that have been proposed to constitute CPSF, only four (CPSF160, CPSF30, hFip1, and WDR33) are necessary and sufficient to reconstitute a CPSF subcomplex active in AAUAAA-dependent polyadenylation, whereas CPSF100, CPSF73, and symplekin are dispensable. WDR33 is required for binding of reconstituted CPSF to AAUAAA-containing RNA and can be specifically UV cross-linked to such RNAs, as can CPSF30. Transcriptome-wide identification of WDR33 targets by photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation (PAR-CLIP) showed that WDR33 binds in and very close to the AAUAAA signal in vivo with high specificity. Thus, our data indicate that the large CPSF subunit participating in recognition of the polyadenylation signal is WDR33 and not CPSF160, as suggested by previous studies.

  15. Long-term study of an infection with ranaviruses in a group of edible frogs (Pelophylax kl. esculentus) and partial characterization of two viruses based on four genomic regions.

    PubMed

    Stöhr, Anke C; Hoffmann, Alexandra; Papp, Tibor; Robert, Nadia; Pruvost, Nicolas B M; Reyer, Heinz-Ulrich; Marschang, Rachel E

    2013-08-01

    Several edible frogs (Pelophylax kl. esculentus) collected into a single group from various ponds in Europe died suddenly with reddening of the skin (legs, abdomen) and haemorrhages in the gastrointestinal tract. Ranavirus was detected in some of the dead frogs using PCR, and virus was also isolated in cell culture. Over the following 3 years, another two outbreaks occurred with low to high mortality in between asymptomatic periods. In the first 2 years, the same ranavirus was detected repeatedly, but a new ranavirus was isolated in association with the second mass-mortality event. The two different ranaviruses were characterized based on nucleotide sequences from four genomic regions, namely, major capsid protein, DNA polymerase, ribonucleoside diphosphate reductase alpha and beta subunit genes. The sequences showed slight variations to each other or GenBank entries and both clustered to the Rana esculenta virus (REV-like) clade in the phylogenetic analysis. Furthermore, a quiescent infection was demonstrated in two individuals. By comparing samples taken before and after transport and caging in groups it was possible to identify the pond of origin and a ranavirus was detected for the first time in wild amphibians in Germany.

  16. Repositioning of a cyclin-dependent kinase inhibitor GW8510 as a ribonucleotide reductase M2 inhibitor to treat human colorectal cancer.

    PubMed

    Hsieh, Y-Y; Chou, C-J; Lo, H-L; Yang, P-M

    2016-01-01

    Colorectal cancer (CRC) is the second leading cause of cancer-related death in males and females in the world. It is of immediate importance to develop novel therapeutics. Human ribonucleotide reductase (RRM1/RRM2) has an essential role in converting ribonucleoside diphosphate to 2'-deoxyribonucleoside diphosphate to maintain the homeostasis of nucleotide pools. RRM2 is a prognostic biomarker and predicts poor survival of CRC. In addition, increased RRM2 activity is associated with malignant transformation and tumor cell growth. Bioinformatics analyses show that RRM2 was overexpressed in CRC and might be an attractive target for treating CRC. Therefore, we attempted to search novel RRM2 inhibitors by using a gene expression signature-based approach, connectivity MAP (CMAP). The result predicted GW8510, a cyclin-dependent kinase inhibitor, as a potential RRM2 inhibitor. Western blot analysis indicated that GW8510 inhibited RRM2 expression through promoting its proteasomal degradation. In addition, GW8510 induced autophagic cell death. In addition, the sensitivities of CRC cells to GW8510 were associated with the levels of RRM2 and endogenous autophagic flux. Taken together, our study indicates that GW8510 could be a potential anti-CRC agent through targeting RRM2. PMID:27551518

  17. Highly Predictive Reprogramming of tRNA Modifications Is Linked to Selective Expression of Codon-Biased Genes

    PubMed Central

    2016-01-01

    Cells respond to stress by controlling gene expression at several levels, with little known about the role of translation. Here, we demonstrate a coordinated translational stress response system involving stress-specific reprogramming of tRNA wobble modifications that leads to selective translation of codon-biased mRNAs representing different classes of critical response proteins. In budding yeast exposed to four oxidants and five alkylating agents, tRNA modification patterns accurately distinguished among chemically similar stressors, with 14 modified ribonucleosides forming the basis for a data-driven model that predicts toxicant chemistry with >80% sensitivity and specificity. tRNA modification subpatterns also distinguish SN1 from SN2 alkylating agents, with SN2-induced increases in m3C in tRNA mechanistically linked to selective translation of threonine-rich membrane proteins from genes enriched with ACC and ACT degenerate codons for threonine. These results establish tRNA modifications as predictive biomarkers of exposure and illustrate a novel regulatory mechanism for translational control of cell stress response. PMID:25772370

  18. Incorporation of Mevalonic Acid into Ribosylzeatin in Tobacco Callus Ribonucleic Acid Preparations 1

    PubMed Central

    Murai, Norimoto; Armstrong, Donald J.; Skoog, Folke

    1975-01-01

    The incorporation of 14C-2-mevalonic acid into transfer RNA and ribosomal RNA (high molecular weight RNA) in rapidly growing, cytokinin-dependent tobacco (Nicotiana tabacum var. Wisconsin No. 38) callus cultures has been investigated. Approximately 40% of the label incorporated into transfer RNA was present in a ribonucleoside with chromatographic properties identical to those of cis-ribosylzeatin. The remainder of the label in the transfer RNA appears to be nonspecific incorporation resulting from degradation and metabolism of 14C-2-mevalonic acid by the tobacco callus tissue. Although the total radioactivity incorporated into ribosomal RNA was roughly the same as in transfer RNA, the specific radioactivity of the transfer RNA was about four times higher than that of the ribosomal RNA, and the ribosomal RNA labeling could be distinguished from the cytokinin labeling observed in transfer RNA. The distributions of the 14C-2-mevalonic acid label and cytokinin activity in tobacco callus transfer RNA fractionated by benzoylated diethylaminoethylcellulose chromatography indicate that at least two cytokinin-containing transfer RNA species are present in this tissue. PMID:16659180

  19. A DNA enzyme that cleaves RNA

    NASA Technical Reports Server (NTRS)

    Breaker, R. R.; Joyce, G. F.; Hoyce, G. F. (Principal Investigator)

    1994-01-01

    BACKGROUND: Several types of RNA enzymes (ribozymes) have been identified in biological systems and generated in the laboratory. Considering the variety of known RNA enzymes and the similarity of DNA and RNA, it is reasonable to imagine that DNA might be able to function as an enzyme as well. No such DNA enzyme has been found in nature, however. We set out to identify a metal-dependent DNA enzyme using in vitro selection methodology. RESULTS: Beginning with a population of 10(14) DNAs containing 50 random nucleotides, we carried out five successive rounds of selective amplification, enriching for individuals that best promote the Pb(2+)-dependent cleavage of a target ribonucleoside 3'-O-P bond embedded within an otherwise all-DNA sequence. By the fifth round, the population as a whole carried out this reaction at a rate of 0.2 min-1. Based on the sequence of 20 individuals isolated from this population, we designed a simplified version of the catalytic domain that operates in an intermolecular context with a turnover rate of 1 min-1. This rate is about 10(5)-fold increased compared to the uncatalyzed reaction. CONCLUSIONS: Using in vitro selection techniques, we obtained a DNA enzyme that catalyzes the Pb(2+)-dependent cleavage of an RNA phosphoester in a reaction that proceeds with rapid turnover. The catalytic rate compares favorably to that of known RNA enzymes. We expect that other examples of DNA enzymes will soon be forthcoming.

  20. Highly Sensitive Nuclease Assays Based on Chemically Modified DNA or RNA

    PubMed Central

    Sato, Shinobu; Takenaka, Shigeori

    2014-01-01

    Nucleolytic enzymes are associated with various diseases, and several methods have been developed for their detection. DNase expression is modulated in such diseases as acute myocardial infarction, transient myocardial ischemia, oral cancer, stomach cancer, and malignant lymphoma, and DNase I is used in cystic fibroma therapy. RNase is used to treat mesothelial cancer because of its antiproliferative, cytotoxic, and antineoplastic activities. Angiogenin, an angiogenic factor, is a member of the RNase A family. Angiogenin inhibitors are being developed as anticancer drugs. In this review, we describe fluorometric and electrochemical techniques for detecting DNase and RNase in disease. Oligonucleotides having fluorescence resonance energy transfer (FRET)-causing chromophores are non-fluorescent by themselves, yet become fluorescent upon cleavage by DNase or RNase. These oligonucleotides serve as a powerful tool to detect activities of these enzymes and provide a basis for drug discovery. In electrochemical techniques, ferrocenyl oligonucleotides with or without a ribonucleoside unit are used for the detection of RNase or DNase. This technique has been used to monitor blood or serum samples in several diseases associated with DNase and RNase and is unaffected by interferents in these sample types. PMID:25019631

  1. Determination of phosphate in soil extracts in the field: A green chemistry enzymatic method

    PubMed Central

    Campbell, Ellen R.; Warsko, Kayla; Davidson, Anna-Marie; (Bill) Campbell, Wilbur H.

    2015-01-01

    Measurement of ortho-phosphate in soil extracts usually involves sending dried samples of soil to a laboratory for analysis and waiting several weeks for the results. Phosphate determination methods often involve use of strong acids, heavy metals, and organic dyes. To overcome limitations of this approach, we have developed a phosphate determination method which can be carried out in the field to obtain results on the spot. This new method uses: • Small volumes. • An enzymatic reaction. • Green chemistry. First, the soil sample is extracted with deionized water and filtered. Next, an aliquot of the soil extract (0.5 mL) is transferred to a disposable cuvette, containing 0.5 mL of reaction mixture [200 mM HEPES, pH 7.6, 20 mM MgCl2, with 80 nmol 2-amino-6-mercapto-7-methylpurine ribonucleoside (MESG) and 1 unit of recombinant purine nucleoside phosphorylase (PNP; EC 2.4.2.1)], mixed, and incubated for 10 min at field temperature. Absorbance of the completed reaction is measured at 360 nm in open-source, portable photometer linked by bluetooth to a smartphone. The phosphate and phosphorus content of the soil is determined by comparison of its absorbance at 360 nm to a previously prepared standard phosphate curve, which is stored in the smartphone app. PMID:26150991

  2. Determination of phosphate in soil extracts in the field: A green chemistry enzymatic method.

    PubMed

    Campbell, Ellen R; Warsko, Kayla; Davidson, Anna-Marie; Bill Campbell, Wilbur H

    2015-01-01

    Measurement of ortho-phosphate in soil extracts usually involves sending dried samples of soil to a laboratory for analysis and waiting several weeks for the results. Phosphate determination methods often involve use of strong acids, heavy metals, and organic dyes. To overcome limitations of this approach, we have developed a phosphate determination method which can be carried out in the field to obtain results on the spot. This new method uses: •Small volumes.•An enzymatic reaction.•Green chemistry. First, the soil sample is extracted with deionized water and filtered. Next, an aliquot of the soil extract (0.5 mL) is transferred to a disposable cuvette, containing 0.5 mL of reaction mixture [200 mM HEPES, pH 7.6, 20 mM MgCl2, with 80 nmol 2-amino-6-mercapto-7-methylpurine ribonucleoside (MESG) and 1 unit of recombinant purine nucleoside phosphorylase (PNP; EC 2.4.2.1)], mixed, and incubated for 10 min at field temperature. Absorbance of the completed reaction is measured at 360 nm in open-source, portable photometer linked by bluetooth to a smartphone. The phosphate and phosphorus content of the soil is determined by comparison of its absorbance at 360 nm to a previously prepared standard phosphate curve, which is stored in the smartphone app.

  3. Modulation of adenosine signaling prevents scopolamine-induced cognitive impairment in zebrafish.

    PubMed

    Bortolotto, Josiane Woutheres; Melo, Gabriela Madalena de; Cognato, Giana de Paula; Vianna, Mônica Ryff Moreira; Bonan, Carla Denise

    2015-02-01

    Adenosine, a purine ribonucleoside, exhibits neuromodulatory and neuroprotective effects in the brain and is involved in memory formation and cognitive function. Adenosine signaling is mediated by adenosine receptors (A1, A2A, A2B, and A3); in turn, nucleotide and nucleoside-metabolizing enzymes and adenosine transporters regulate its levels. Scopolamine, a muscarinic cholinergic receptor antagonist, has profound amnesic effects in a variety of learning paradigms and has been used to induce cognitive deficits in animal models. This study investigated the effects of acute exposure to caffeine (a non-selective antagonist of adenosine receptors A1 and A2A), ZM 241385 (adenosine receptor A2A antagonist), DPCPX (adenosine receptor A1 antagonist), dipyridamole (inhibitor of nucleoside transporters) and EHNA (inhibitor of adenosine deaminase) in a model of pharmacological cognitive impairment induced by scopolamine in adult zebrafish. Caffeine, ZM 241385, DPCPX, dipyridamole, and EHNA were acutely administered independently via i.p. in zebrafish, followed by exposure to scopolamine dissolved in tank water (200μM). These compounds prevented the scopolamine-induced amnesia without impacting locomotor activity or social interaction. Together, these data support the hypothesis that adenosine signaling may modulate memory processing, suggesting that these compounds present a potential preventive strategy against cognitive impairment.

  4. Mechanical stretch activates mammalian target of rapamycin and AMP-activated protein kinase pathways in skeletal muscle cells.

    PubMed

    Nakai, Naoya; Kawano, Fuminori; Nakata, Ken

    2015-08-01

    Cellular protein synthesis is believed to be antagonistically regulated by mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) signaling pathways. In the present study, we examined the relationship between mTOR/p70 S6 kinase (p70S6K) and AMPK in response to mechanical stretch. C2C12 myoblasts were grown on a silicone elastomer chamber to confluence and further cultured in differentiation medium for 4 days to form multinucleated myotubes. Cells were subjected to 15% cyclic uniaxial stretch for 4 h at a frequency of 1 Hz. Phosphorylation of p70S6K at threonine 389 and AMPK at threonine 172 of the catalytic α subunit were concomitantly increased by mechanical stretch. Stimulation of the mTOR pathway by adding leucine and insulin increased the phosphorylation of p70S6K without inactivation of AMPK. In contrast, addition of compound C, a pharmacological inhibitor of AMPK, increased the phosphorylation of p70S6K in stretched cells. Activation of AMPK by the addition of 5-amino-4-imidazolecarboxamide ribonucleoside reduced the phosphorylation of p70S6K in response to mechanical stretch. In conclusion, crosstalk between mTOR and AMPK signaling was not tightly regulated in response to physiological stimuli, such as mechanical stress and/or nutrients. However, pharmacological modulation of AMPK influenced the mTOR/p70S6K signaling pathway. PMID:25971373

  5. Rbfox3 Controls the Biogenesis of a Subset of MicroRNAs

    PubMed Central

    Kim, Kee K.; Yang, Yanqin; Zhu, Jun; Adelstein, Robert S.; Kawamoto, Sachiyo

    2014-01-01

    RNA-binding proteins (RBPs) regulate numerous aspects of gene expression, thus identification of endogenous targets of RBPs is important for understanding their functions in cells. Here we identified transcriptome-wide targets of Rbfox3 in neuronally differentiated P19 cells and mouse brain using Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP). Although Rbfox3 is known to regulate pre-mRNA splicing through binding to the UGCAUG motif, PAR-CLIP analysis revealed diverse Rbfox3 targets including primary-microRNAs (pri-miRNAs) which lack the UGCAUG motif. Induced expression and depletion of Rbfox3 led to changes in the expression levels of a subset of PAR-CLIP-detected miRNAs. In vitro analyses revealed that Rbfox3 functions as a positive and a negative regulator at the stage of pri-miRNA processing to precursor-miRNA. Rbfox3 binds directly to pri-miRNAs and regulates the recruitment of the microprocessor complex to pri-miRNAs. Our study proposes a novel function for Rbfox3 in miRNA biogenesis. PMID:25240799

  6. Structure and Dynamics of Replication-Mutation Systems

    NASA Astrophysics Data System (ADS)

    Schuster, Peter

    1987-03-01

    The kinetic equations of polynucleotide replication can be brought into fairly simple form provided certain environmental conditions are fulfilled. Two flow reactors, the continuously stirred tank reactor (CSTR) and a special dialysis reactor are particularly suitable for the analysis of replication kinetics. An experimental setup to study the chemical reaction network of RNA synthesis was derived from the bacteriophage Qβ. It consists of a virus specific RNA polymerase, Qβ replicase, the activated ribonucleosides GTP, ATP, CTP and UTP as well as a template suitable for replication. The ordinary differential equations for replication and mutation under the conditions of the flow reactors were analysed by the qualitative methods of bifurcation theory as well as by numerical integration. The various kinetic equations are classified according to their dynamical properties: we distinguish "quasilinear systems" which have uniquely stable point attractors and "nonlinear systems" with inherent nonlinearities which lead to multiple steady states, Hopf bifuractions, Feigenbaum-like sequences and chaotic dynamics for certain parameter ranges. Some examples which are relevant in molecular evolution and population genetics are discussed in detail.

  7. Pervasive and dynamic protein binding sites of the mRNA transcriptome in Saccharomyces cerevisiae

    PubMed Central

    2013-01-01

    Background Protein-RNA interactions are integral components of nearly every aspect of biology, including regulation of gene expression, assembly of cellular architectures, and pathogenesis of human diseases. However, studies in the past few decades have only uncovered a small fraction of the vast landscape of the protein-RNA interactome in any organism, and even less is known about the dynamics of protein-RNA interactions under changing developmental and environmental conditions. Results Here, we describe the gPAR-CLIP (global photoactivatable-ribonucleoside-enhanced crosslinking and immunopurification) approach for capturing regions of the untranslated, polyadenylated transcriptome bound by RNA-binding proteins (RBPs) in budding yeast. We report over 13,000 RBP crosslinking sites in untranslated regions (UTRs) covering 72% of protein-coding transcripts encoded in the genome, confirming 3' UTRs as major sites for RBP interaction. Comparative genomic analyses reveal that RBP crosslinking sites are highly conserved, and RNA folding predictions indicate that secondary structural elements are constrained by protein binding and may serve as generalizable modes of RNA recognition. Finally, 38% of 3' UTR crosslinking sites show changes in RBP occupancy upon glucose or nitrogen deprivation, with major impacts on metabolic pathways as well as mitochondrial and ribosomal gene expression. Conclusions Our study offers an unprecedented view of the pervasiveness and dynamics of protein-RNA interactions in vivo. PMID:23409723

  8. Structural and functional characterization of a novel phosphatase from the Arabidopsis thaliana gene locus At1g05000

    PubMed Central

    Aceti, David J.; Bitto, Eduard; Yakunin, Alexander F.; Proudfoot, Michael; Bingman, Craig A.; Frederick, Ronnie O.; Sreenath, Hassan K.; Vojtik, Frank C.; Wrobel, Russell L.; Fox, Brian G.; Markley, John L.; Phillips, George N.

    2015-01-01

    The crystal structure of the protein product of the gene locus At1g05000, a hypothetical protein from A. thaliana, was determined by the multiple-wavelength anomalous diffraction method and was refined to an R factor of 20.4% (Rfree = 24.9%) at 3.3 Å. The protein adopts the α/β fold found in cysteine phosphatases, a superfamily of phosphatases that possess a catalytic cysteine and form a covalent thiol-phosphate intermediate during the catalytic cycle. In At1g05000, the analogous cysteine (Cys150) is located at the bottom of a positively-charged pocket formed by residues that include the conserved arginine (Arg156) of the signature active site motif, HCxxGxxRT. Of 74 model phosphatase substrates tested, purified recombinant At1g05000 showed highest activity toward polyphosphate (poly-P12–13) and deoxyribo- and ribonucleoside triphosphates, and less activity toward phosphoenolpyruvate, phosphotyrosine, phosphotyrosine-containing peptides, and phosphatidyl inositols. Divalent metal cations were not required for activity and had little effect on the reaction. PMID:18433060

  9. Ribonuclease H activities associated with viral reverse transcriptases are endonucleases.

    PubMed Central

    Krug, M S; Berger, S L

    1989-01-01

    A series of test substrates have been synthesized to establish the effect of termini on the putative exoribonuclease H activity of reverse transcriptase. Recombinant reverse transcriptase from human immunodeficiency virus, natural enzyme from avian myeloblastosis virus, and a known endonuclease, Escherichia coli ribonuclease H, cleaved relaxed, circular, covalently closed plasmids in which 770 consecutive residues of one strand were ribonucleotides. The avian enzyme also deadenylated capped globin mRNA with a covalently attached oligo(dT) tail at the 3' end. These results resolve a long-standing controversy--that the viral enzymes are obligatory exonucleases in vitro, based on their failure to cleave certain substrates for E. coli ribonuclease H, including circular poly(A).linear poly(T) and ribonucleotide-substituted supercoiled plasmids, but resemble endonucleases in vivo, based on their ability to degrade RNA in complex DNA.RNA hybrids. The data strongly suggest that the viral enzymes are endonucleases with exquisite sensitivity to the conformation of heteroduplexes. Inhibition of viral, but not cellular, ribonuclease H with ribonucleoside-vanadyl complexes further distinguishes these enzymes. Images PMID:2471188

  10. Synthesis of protein in host-free reticulate bodies of Chlamydia psittaci and Chlamydia trachomatis

    SciTech Connect

    Hatch, T.P.; Miceli, M.; Silverman, J.A.

    1985-06-01

    Synthesis of protein by the obligate intracellular parasitic bacteria Chlamydia psittaci (6BC) and Chlamydia trachomatis (serovar L2) isolated from host cells (host-free chlamydiae) was demonstrated for the first time. Incorporation of (/sup 35/S)methionine and (/sup 35/S)cysteine into trichloroacetic acid-precipitable material by reticulate bodies of chlamydiae persisted for 2 h and was dependent upon a exogenous source of ATP, an ATP-regenerating system, and potassium or sodium ions. Magnesium ions and amino acids stimulated synthesis; chloramphenicol, rifampin, oligomycin, and carbonyl cyanide p-trifluoromethoxyphenylhydrazone (a proton ionophore) inhibited incorporation. Ribonucleoside triphosphates (other than ATP) had little stimulatory effect. The optimum pH for host-free synthesis was between 7.0 and 7.5. The molecular weights of proteins synthesized by host-free reticulate bodies closely resembled the molecular weights of proteins synthesized by reticulate bodies in an intracellular environment, and included outer membrane proteins. Elementary bodies of chlamydiae were unable to synthesize protein even when incubated in the presence of 10 mM dithiothreitol, a reducing agent which converted the highly disulfide bond cross-linked major outer membrane protein to monomeric form.

  11. Computer Simulations Reveal Substrate Specificity of Glycosidic Bond Cleavage in Native and Mutant Human Purine Nucleoside Phosphorylase.

    PubMed

    Isaksen, Geir Villy; Hopmann, Kathrin Helen; Åqvist, Johan; Brandsdal, Bjørn Olav

    2016-04-12

    Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of purine ribonucleosides and 2'-deoxyribonucleosides, yielding the purine base and (2'-deoxy)ribose 1-phosphate as products. While this enzyme has been extensively studied, several questions with respect to the catalytic mechanism have remained largely unanswered. The role of the phosphate and key amino acid residues in the catalytic reaction as well as the purine ring protonation state is elucidated using density functional theory calculations and extensive empirical valence bond (EVB) simulations. Free energy surfaces for adenosine, inosine, and guanosine are fitted to ab initio data and yield quantitative agreement with experimental data when the surfaces are used to model the corresponding enzymatic reactions. The cognate substrates 6-aminopurines (inosine and guanosine) interact with PNP through extensive hydrogen bonding, but the substrate specificity is found to be a direct result of the electrostatic preorganization energy along the reaction coordinate. Asn243 has previously been identified as a key residue providing substrate specificity. Mutation of Asn243 to Asp has dramatic effects on the substrate specificity, making 6-amino- and 6-oxopurines equally good as substrates. The principal effect of this particular mutation is the change in the electrostatic preorganization energy between the native enzyme and the Asn243Asp mutant, clearly favoring adenosine over inosine and guanosine. Thus, the EVB simulations show that this particular mutation affects the electrostatic preorganization of the active site, which in turn can explain the substrate specificity. PMID:26985580

  12. RNA initiation with dinucleoside monophosphates during transcription of bacteriophage T4 DNA with RNA polymerase of Escherichia coli.

    PubMed

    Hoffman, D J; Niyogi, S K

    1973-02-01

    The effects of dinucleoside monophosphates on the transcription of phage T4 DNA by E. coli RNA polymerase have been examined at various concentrations of the sigma subunit and extremely low concentration of ribonucleoside triphosphate. The following conclusions were reached: (i) Labeled specific dinucleoside monophosphates are incorporated as chain initiators. (ii) When the ratio of sigma factor to core enzyme is small, there is a general stimulation by most 5'-guanosyl dinucleoside monophosphates. (iii) When the ratio is increased or holoenzyme is present, ApU, CpA, UpA, and GpU are the most effective stimulators. (iv) At high concentrations of sigma factor, only certain adenosine-containing dinucleoside monophosphates (ApU, CpA, UpA, and ApA) stimulate the reaction. (v) Competition hybridization studies indicate that the RNAs stimulated by dinucleoside monophosphates (ApU, CpA, UpA, and GpU) are of the T4 "early" type. (vi) Studies involving both combinations of stimulatory dinucleoside monophosphates and competitive effects of these compounds on chain initiation by ATP and GTP suggest that the stimulatory dinucleoside monophosphates act as chain initiators and may recognize part of a continuous sequence in a promoter region. Studies based on the incorporation of (3)H-labeled stimulatory dinucleoside monophosphates support the above conclusions.

  13. Mixture models and wavelet transforms reveal high confidence RNA-protein interaction sites in MOV10 PAR-CLIP data.

    PubMed

    Sievers, Cem; Schlumpf, Tommy; Sawarkar, Ritwick; Comoglio, Federico; Paro, Renato

    2012-11-01

    The Photo-Activatable Ribonucleoside-enhanced CrossLinking and ImmunoPrecipitation (PAR-CLIP) method was recently developed for global identification of RNAs interacting with proteins. The strength of this versatile method results from induction of specific T to C transitions at sites of interaction. However, current analytical tools do not distinguish between non-experimentally and experimentally induced transitions. Furthermore, geometric properties at potential binding sites are not taken into account. To surmount these shortcomings, we developed a two-step algorithm consisting of a non-parametric two-component mixture model and a wavelet-based peak calling procedure. Our algorithm can reduce the number of false positives up to 24% thereby identifying high confidence interaction sites. We successfully employed this approach in conjunction with a modified PAR-CLIP protocol to study the functional role of nuclear Moloney leukemia virus 10, a putative RNA helicase interacting with Argonaute2 and Polycomb. Our method, available as the R package wavClusteR, is generally applicable to any substitution-based inference problem in genomics. PMID:22844102

  14. Repositioning of a cyclin-dependent kinase inhibitor GW8510 as a ribonucleotide reductase M2 inhibitor to treat human colorectal cancer

    PubMed Central

    Hsieh, Y-Y; Chou, C-J; Lo, H-L; Yang, P-M

    2016-01-01

    Colorectal cancer (CRC) is the second leading cause of cancer-related death in males and females in the world. It is of immediate importance to develop novel therapeutics. Human ribonucleotide reductase (RRM1/RRM2) has an essential role in converting ribonucleoside diphosphate to 2′-deoxyribonucleoside diphosphate to maintain the homeostasis of nucleotide pools. RRM2 is a prognostic biomarker and predicts poor survival of CRC. In addition, increased RRM2 activity is associated with malignant transformation and tumor cell growth. Bioinformatics analyses show that RRM2 was overexpressed in CRC and might be an attractive target for treating CRC. Therefore, we attempted to search novel RRM2 inhibitors by using a gene expression signature-based approach, connectivity MAP (CMAP). The result predicted GW8510, a cyclin-dependent kinase inhibitor, as a potential RRM2 inhibitor. Western blot analysis indicated that GW8510 inhibited RRM2 expression through promoting its proteasomal degradation. In addition, GW8510 induced autophagic cell death. In addition, the sensitivities of CRC cells to GW8510 were associated with the levels of RRM2 and endogenous autophagic flux. Taken together, our study indicates that GW8510 could be a potential anti-CRC agent through targeting RRM2. PMID:27551518

  15. Transcription is Associated with Z-DNA Formation in Metabolically Active Permeabilized Mammalian Cell Nuclei

    NASA Astrophysics Data System (ADS)

    Wittig, Burghardt; Dorbic, Tomislav; Rich, Alexander

    1991-03-01

    Mammalian cells have been encapsulated in agarose microbeads, and from these cells metabolically active permeabilized nuclei were prepared. Previously, we showed that biotin-labeled monoclonal antibodies against Z-DNA can be diffused into the nuclei and, over a specific concentration range, they will bind to Z-DNA within the nucleus in a concentration-independent manner. By using radiolabeled streptavidin, we showed that the amount of Z-DNA antibody bound is related to the torsional strain of the DNA in the nucleus. Relaxation of the DNA results in a decrease of Z-DNA formation, whereas increasing torsional strain through inhibiting topoisomerase I results in increased Z-DNA formation. Here we measure the influence of RNA transcription and DNA replication. Transcription is associated with a substantial increase in the binding of anti-Z-DNA antibodies, paralleling the increased level of RNA synthesized as the level of ribonucleoside triphosphate in the medium is increased. DNA replication yields smaller increases in the binding of Z-DNA antibodies. Stopping RNA transcription with inhibitors results in a large loss of Z-DNA antibody binding, whereas only a small decrease is associated with inhibition of DNA replication.

  16. The range and specificity of antinuclear antibodies in systematic lupus erythematosus*

    PubMed Central

    Alarcón-Segovia, D.; Fishbein, Eugenia; Alcalá, Hilda; Olguín-Palacios, Eugenia; Estrada-Parra, S.

    1970-01-01

    Antibodies to nine calf thymus nuclear antigens were sought by complement fixation methods in twenty-four sera from sixteen patients with systemic lupus erythematosus. These antigens included whole nuclei, native and heat denatured DNA, particulate and soluble nucleoprotein and Sm antigen. Soluble antigens were also tested by tanned red-cell agglutination tests. A wide variation in the presence and titres of antibodies to these various antigens was found in the sera studied even when from the same patient but at different times. To further test the range and specificity of antinuclear antibodies in SLE, nineteen ribonucleosides, nucleotides and monophosphoric dinucleotides were coupled to human serum albumin and used as antigens in precipitin studies. A wide variation of reactivity was also found in each serum. Exquisite specificity became apparent, capable of reacting with a nucleoside but not with the corresponding nucleotide or vice versa, with a dinucleotide but not with the nucleotides or nucleosides which it contained, with a given dinucleotide but not with the opposite sequence. Antinuclear antibodies in systemic lupus are, therefore, markedly heterogeneous. Those to a `single' antigen such as DNA may be directed to antigenic sites which may variously be at the bases, single or in sequence, at the site of union of base and sugar–phosphate moiety, at the backbone of deoxyribophosphate or actually dependent on the secondary structure. PMID:4097823

  17. CTCF regulates the human p53 gene through direct interaction with its natural antisense transcript, Wrap53

    PubMed Central

    Saldaña-Meyer, Ricardo; González-Buendía, Edgar; Guerrero, Georgina; Narendra, Varun; Bonasio, Roberto; Recillas-Targa, Félix; Reinberg, Danny

    2014-01-01

    The multifunctional CCCTC-binding factor (CTCF) protein exhibits a broad range of functions, including that of insulator and higher-order chromatin organizer. We found that CTCF comprises a previously unrecognized region that is necessary and sufficient to bind RNA (RNA-binding region [RBR]) and is distinct from its DNA-binding domain. Depletion of cellular CTCF led to a decrease in not only levels of p53 mRNA, as expected, but also those of Wrap53 RNA, an antisense transcript originated from the p53 locus. PAR-CLIP-seq (photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation [PAR-CLIP] combined with deep sequencing) analyses indicate that CTCF binds a multitude of transcripts genome-wide as well as to Wrap53 RNA. Apart from its established role at the p53 promoter, CTCF regulates p53 expression through its physical interaction with Wrap53 RNA. Cells harboring a CTCF mutant in its RBR exhibit a defective p53 response to DNA damage. Moreover, the RBR facilitates CTCF multimerization in an RNA-dependent manner, which may bear directly on its role in establishing higher-order chromatin structures in vivo. PMID:24696455

  18. RNA structure and scalar coupling constants

    SciTech Connect

    Tinoco, I. Jr.; Cai, Z.; Hines, J.V.; Landry, S.M.; SantaLucia, J. Jr.; Shen, L.X.; Varani, G.

    1994-12-01

    Signs and magnitudes of scalar coupling constants-spin-spin splittings-comprise a very large amount of data that can be used to establish the conformations of RNA molecules. Proton-proton and proton-phosphorus splittings have been used the most, but the availability of {sup 13}C-and {sup 15}N-labeled molecules allow many more coupling constants to be used for determining conformation. We will systematically consider the torsion angles that characterize a nucleotide unit and the coupling constants that depend on the values of these torsion angles. Karplus-type equations have been established relating many three-bond coupling constants to torsion angles. However, one- and two-bond coupling constants can also depend on conformation. Serianni and coworkers measured carbon-proton coupling constants in ribonucleosides and have calculated their values as a function of conformation. The signs of two-bond coupling can be very useful because it is easier to measure a sign than an accurate magnitude.

  19. Vibrational Stark Effect Probes for Nucleic Acids

    PubMed Central

    Silverman, Lisa N.; Pitzer, Michael E.; Ankomah, Peter O.; Boxer, Steven G.; Fenlon, Edward E.

    2008-01-01

    The vibrational Stark effect (VSE) has proven to be an effective method for the study of electric fields in proteins via the use of infrared probes. In order to explore the use of VSE in nucleic acids, the Stark spectroscopy of nine structurally diverse nucleosides was investigated. These nucleosides contained nitrile or azide probes in positions that correspond to both the major and minor grooves of DNA. The nitrile probes showed better characteristics and exhibited absorption frequencies over a broad range; i.e., from 2253 cm−1 for 2′-O-cyanoethyl ribonucleosides 8 and 9 to 2102 cm−1 for a 13C-labeled 5-thiocyanatomethyl-2’-deoxyuridine 3c. The largest Stark tuning rate observed was |Δµ| = 1.1 cm−1/(MV/cm) for both 5-cyano-2′-deoxyuridine 1 and N2-nitrile-2′-deoxyguanosine 7. The latter is a particularly attractive probe because of its high extinction coefficient (ε = 412 M−1cm−1) and ease of incorporation into oligomers. PMID:17877390

  20. Hydroxyurea-resistant vaccinia virus: overproduction of ribonucleotide reductase

    SciTech Connect

    Slabaugh, M.B.; Mathews, C.K.

    1986-11-01

    Repeated passage of vaccinia virus in increasing concentrations of hydroxyurea followed by plaque purification resulted in the isolation of variants capable of growth in 5 mM hydroxyurea, a drug concentration which inhibited the reproduction of wild-type vaccinia virus 1000-fold. Analyses of viral protein synthesis by using (/sup 35/S)methionine pulse-labeling at intervals throughout the infection cycle revealed that all isolates overproduced a 34,000-molecular-weight (MW) early polypeptide. Measurement of ribonucleoside-diphosphate reductase activity after infection indicated that 4- to 10-fold more activity was induced by hydroxyurea-resistant viruses than by the wild-type virus. A two-step partial purification resulted in a substantial enrichment for the 34,000-MW protein from extracts of wild-type and hydroxyurea-resistant-virus-infected, but not mock-infected, cells. In the presence of the drug, the isolates incorporated (/sup 3/H)thymidine into DNA earlier and a rate substantially greater than that of the wild type, although the onset of DNA synthesis was delayed in both cases. The drug resistance trait was markedly unstable in all isolates. In the absence of selective pressure, plaque-purified isolated readily segregated progeny that displayed a wide range of resistance phenotypes. The results of this study indicate that vaccinia virus encodes a subunit of ribonucleotide reductase which is 34,000-MW early protein whose overproduction confers hydroxyurea resistance on reproducing viruses.

  1. AMPK Reverses the Mesenchymal Phenotype of Cancer Cells by Targeting the Akt-MDM2-Foxo3a Signaling Axis

    PubMed Central

    Chou, Chih-Chien; Lee, Kuen-Haur; Lai, I-Lu; Wang, Dasheng; Mo, Xiaokui; Kulp, Samuel K.; Shapiro, Charles L.; Chen, Ching-Shih

    2014-01-01

    In cancer cells, the epithelial-mesenchymal transition (EMT) confers the ability to invade basement membranes and metastasize to distant sites, establishing it as an appealing target for therapeutic intervention. Here, we report a novel function of the master metabolic kinase AMPK in suppressing EMT by modulating the Akt-MDM2-Foxo3 signaling axis. This mechanistic link was supported by the effects of siRNA-mediated knockdown and pharmacological activation of AMPK on epithelial and mesenchymal markers in established breast and prostate cancer cells. Exposure of cells to OSU-53, a novel allosteric AMPK activator, as well as metformin and AICAR, was sufficient to reverse their mesenchymal phenotype. These effects were abrogated by AMPK silencing. Phenotypic changes were mediated by Foxo3a activation, insofar as silencing or overexpressing Foxo3a mimicked the effects of AMPK silencing or OSU-53 treatment on EMT, respectively. Mechanistically, Foxo3a activation led to the transactivation of the E-cadherin gene and repression of genes encoding EMT-inducing transcription factors. OSU-53 activated Foxo3a through two Akt-dependent pathways, one at the level of nuclear localization by blocking Akt- and IKKβ-mediated phosphorylation, and a second at the level of protein stabilization via cytoplasmic sequestration of MDM2, an E3 ligase responsible for Foxo3a degradation. The suppressive effects of OSU-53 on EMT had therapeutic implications illustrated by its ability to block invasive phenotypes in vitro and metastatic properties in vivo. Overall, our work illuminates a mechanism of EMT regulation in cancer cells mediated by AMPK, along with preclinical evidence supporting a tractable therapeutic strategy to reverse mesenchymal phenotypes associated with invasion and metastasis. PMID:24994714

  2. AMPK reverses the mesenchymal phenotype of cancer cells by targeting the Akt-MDM2-Foxo3a signaling axis.

    PubMed

    Chou, Chih-Chien; Lee, Kuen-Haur; Lai, I-Lu; Wang, Dasheng; Mo, Xiaokui; Kulp, Samuel K; Shapiro, Charles L; Chen, Ching-Shih

    2014-09-01

    In cancer cells, the epithelial-mesenchymal transition (EMT) confers the ability to invade basement membranes and metastasize to distant sites, establishing it as an appealing target for therapeutic intervention. Here, we report a novel function of the master metabolic kinase AMPK in suppressing EMT by modulating the Akt-MDM2-Foxo3 signaling axis. This mechanistic link was supported by the effects of siRNA-mediated knockdown and pharmacologic activation of AMPK on epithelial and mesenchymal markers in established breast and prostate cancer cells. Exposure of cells to OSU-53, a novel allosteric AMPK activator, as well as metformin and AICAR, was sufficient to reverse their mesenchymal phenotype. These effects were abrogated by AMPK silencing. Phenotypic changes were mediated by Foxo3a activation, insofar as silencing or overexpressing Foxo3a mimicked the effects of AMPK silencing or OSU-53 treatment on EMT, respectively. Mechanistically, Foxo3a activation led to the transactivation of the E-cadherin gene and repression of genes encoding EMT-inducing transcription factors. OSU-53 activated Foxo3a through two Akt-dependent pathways, one at the level of nuclear localization by blocking Akt- and IKKβ-mediated phosphorylation, and a second at the level of protein stabilization via cytoplasmic sequestration of MDM2, an E3 ligase responsible for Foxo3a degradation. The suppressive effects of OSU-53 on EMT had therapeutic implications illustrated by its ability to block invasive phenotypes in vitro and metastatic properties in vivo. Overall, our work illuminates a mechanism of EMT regulation in cancer cells mediated by AMPK, along with preclinical evidence supporting a tractable therapeutic strategy to reverse mesenchymal phenotypes associated with invasion and metastasis.

  3. Ampelopsin protects endothelial cells from hyperglycemia-induced oxidative damage by inducing autophagy via the AMPK signaling pathway.

    PubMed

    Liang, Xinyu; Zhang, Ting; Shi, Linying; Kang, Chao; Wan, Jing; Zhou, Yong; Zhu, Jundong; Mi, Mantian

    2015-01-01

    Diabetic angiopathy is a major diabetes-specific complication that often begins with endothelial dysfunction induced by hyperglycemia; however, the pathological mechanisms of this progression remain unclear. Ampelopsin is a natural flavonol that has strong antioxidant activity, but little information is available regarding its antidiabetic effect. This study focused on the effect of ampelopsin on hyperglycemia-induced oxidative damage and the underlying mechanism of this effect in human umbilical vein endothelial cells (HUVECs). We found that hyperglycemia impaired autophagy in HUVECs through the inhibition of AMP-activated protein kinase (AMPK), which directly led to endothelial cell damage. Ampelopsin significantly attenuated the detrimental effect of hyperglycemia-induced cell dysfunction in a concentration-dependent manner in HUVECs. Ampelopsin significantly upregulated LC3-II, Beclin1, and Atg5 protein levels but downregulated p62 protein levels in HUVECs. Transmission electron microscopy and confocal microscopy indicated that ampelopsin notably induced autophagosomes and LC3-II dots, respectively. Additionally, the autophagy-specific inhibitor 3-MA, as well as Atg5 and Beclin1 siRNA pretreatment, markedly attenuated ampelopsin-induced autophagy, which subsequently abolished the protective effect of ampelopsin against hyperglycemia in HUVECs. Moreover, ampelopsin also increased AMPK activity and inhibited mTOR (mammalian target of rapamycin) complex activation. Ampelopsin-induced autophagy was attenuated by the AMPK antagonist compound C but strengthened by the AMPK agonist AICAR (5-minoimidazole-4-carboxamide ribonucleotide). Furthermore, AMPK siRNA transfection eliminated ampelopsin's alleviation of cell injury induced by hyperglycemia. The protective effect of ampelopsin against hyperglycemia-induced cell damage, which functions by targeting autophagy via AMPK activation, makes it a promising pharmacological treatment for type-2 diabetes.

  4. Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression.

    PubMed Central

    da Silva Xavier, Gabriela; Leclerc, Isabelle; Varadi, Aniko; Tsuboi, Takashi; Moule, S Kelly; Rutter, Guy A

    2003-01-01

    AMP-activated protein kinase (AMPK) has recently been implicated in the control of preproinsulin gene expression in pancreatic islet beta-cells [da Silva Xavier, Leclerc, Salt, Doiron, Hardie, Kahn and Rutter (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 4023-4028]. Using pharmacological and molecular strategies to regulate AMPK activity in rat islets and clonal MIN6 beta-cells, we show here that the effects of AMPK are exerted largely upstream of insulin release. Thus forced increases in AMPK activity achieved pharmacologically with 5-amino-4-imidazolecarboxamide riboside (AICAR), or by adenoviral overexpression of a truncated, constitutively active form of the enzyme (AMPK alpha 1.T(172)D), blocked glucose-stimulated insulin secretion. In MIN6 cells, activation of AMPK suppressed glucose metabolism, as assessed by changes in total, cytosolic or mitochondrial [ATP] and NAD(P)H, and reduced increases in intracellular [Ca(2+)] caused by either glucose or tolbutamide. By contrast, inactivation of AMPK by expression of a dominant-negative form of the enzyme mutated in the catalytic site (AMPK alpha 1.D(157)A) did not affect glucose-stimulated increases in [ATP], NAD(P)H or intracellular [Ca(2+)], but led to the unregulated release of insulin. These results indicate that inhibition of AMPK by glucose is essential for the activation of insulin secretion by the sugar, and may contribute to the transcriptional stimulation of the preproinsulin gene. Modulation of AMPK activity in the beta-cell may thus represent a novel therapeutic strategy for the treatment of type 2 diabetes mellitus. PMID:12589707

  5. AMPK Activation Prevents and Reverses Drug-Induced Mitochondrial and Hepatocyte Injury by Promoting Mitochondrial Fusion and Function

    PubMed Central

    Taniane, Caitlin; Farrell, Geoffrey; Arias, Irwin M.; Lippincott-Schwartz, Jennifer; Fu, Dong

    2016-01-01

    Mitochondrial damage is the major factor underlying drug-induced liver disease but whether conditions that thwart mitochondrial injury can prevent or reverse drug-induced liver damage is unclear. A key molecule regulating mitochondria quality control is AMP activated kinase (AMPK). When activated, AMPK causes mitochondria to elongate/fuse and proliferate, with mitochondria now producing more ATP and less reactive oxygen species. Autophagy is also triggered, a process capable of removing damaged/defective mitochondria. To explore whether AMPK activation could potentially prevent or reverse the effects of drug-induced mitochondrial and hepatocellular damage, we added an AMPK activator to collagen sandwich cultures of rat and human hepatocytes exposed to the hepatotoxic drugs, acetaminophen or diclofenac. In the absence of AMPK activation, the drugs caused hepatocytes to lose polarized morphology and have significantly decreased ATP levels and viability. At the subcellular level, mitochondria underwent fragmentation and had decreased membrane potential due to decreased expression of the mitochondrial fusion proteins Mfn1, 2 and/or Opa1. Adding AICAR, a specific AMPK activator, at the time of drug exposure prevented and reversed these effects. The mitochondria became highly fused and ATP production increased, and hepatocytes maintained polarized morphology. In exploring the mechanism responsible for this preventive and reversal effect, we found that AMPK activation prevented drug-mediated decreases in Mfn1, 2 and Opa1. AMPK activation also stimulated autophagy/mitophagy, most significantly in acetaminophen-treated cells. These results suggest that activation of AMPK prevents/reverses drug-induced mitochondrial and hepatocellular damage through regulation of mitochondrial fusion and autophagy, making it a potentially valuable approach for treatment of drug-induced liver injury. PMID:27792760

  6. Pretreatment of rats with increased bioavailable berberine attenuates cerebral ischemia-reperfusion injury via down regulation of adenosine-5'monophosphate kinase activity.

    PubMed

    Chen, Weijia; Wei, Shengnan; Yu, Yang; Xue, Huan; Yao, Fan; Zhang, Ming; Xiao, Jun; Hatch, Grant M; Chen, Li

    2016-05-15

    Berberine (BBR) exhibits multiple beneficial biological effects. However, poor bioavailability of BBR has limited its clinical application. We previously demonstrated that solid dispersion of BBR with sodium caprate (HGSD) remarkably improves its bioavailability. We examined whether this increased bioavailability of BBR could protect the brain from ischemia-reperfusion (IR) induced injury. Rats treated with HGSD, SC and saline for 7 days then subjected to cerebral ischemia reperfusion by middle cerebral artery occlusion for 2h followed 12h reperfusion. Neurological deficit scores, infarct size, SOD, MDA and NO levels were examined. P-AMPK, Bax, cleaved-Caspase-3 in brain was determined. To further probe for the mechanism of beneficial effect of HGSD, PC12 cells were incubated with serum from control or HGSD pretreated animals, incubated with 300μM H2O2 to induce apoptosis. Caspase-3 activity and cell apoptosis was evaluated. HGSD pretreatment significantly attenuated neurological deficit scores, reduced infarct size, increased SOD and decreased MDA and NO after cerebral IR injury compared to controls. Meanwhile, HGSD pretreatment significantly reduced expression of p-AMPK, Bax, cleaved-Caspase-3 after cerebral IR injury. Sodium caprate (100mg/kg/d) pretreatment alone did not exhibit any of these beneficial effects. PC12 cell apoptosis was attenuated when cells were cultured with HGSD serum compared to control. The presence of AMPK activator (AICAR) attenuated whereas AMPK inhibitor (Compound C) augmented the protective effect of HGSD serum on PC12 cell apoptosis.The results indicate that HGSD-pretreatment of rats protects the brain from ischemia-reperfusion injury and the mechanism is due to its anti-apoptotic effect mediated by decreased activation of AMPK. PMID:26957053

  7. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    SciTech Connect

    Chang, Cheng-Yi; Kuan, Yu-Hsiang; Ou, Yen-Chuan; Li, Jian-Ri; Wu, Chih-Cheng; Pan, Pin-Ho; Chen, Wen-Ying; Huang, Hsuan-Yi; Chen, Chun-Jung

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  8. Corepressor SMRT promotes oxidative phosphorylation in adipose tissue and protects against diet-induced obesity and insulin resistance.

    PubMed

    Fang, Sungsoon; Suh, Jae Myoung; Atkins, Annette R; Hong, Suk-Hyun; Leblanc, Mathias; Nofsinger, Russell R; Yu, Ruth T; Downes, Michael; Evans, Ronald M

    2011-02-22

    The ligand-dependent competing actions of nuclear receptor (NR)-associated transcriptional corepressor and coactivator complexes allow for the precise regulation of NR-dependent gene expression in response to both temporal and environmental cues. Here we report the mouse model termed silencing mediator of retinoid and thyroid hormone receptors (SMRT)(mRID1) in which targeted disruption of the first receptor interaction domain (RID) of the nuclear corepressor SMRT disrupts interactions with a subset of NRs and leads to diet-induced superobesity associated with a depressed respiratory exchange ratio, decreased ambulatory activity, and insulin resistance. Although apparently normal when chow fed, SMRT(mRID1) mice develop multiple metabolic dysfunctions when challenged by a high-fat diet, manifested by marked lipid accumulation in white and brown adipose tissue and the liver. The increased weight gain of SMRT(mRID1) mice on a high-fat diet occurs predominantly in fat with adipocyte hypertrophy evident in both visceral and s.c. depots. Importantly, increased inflammatory gene expression was detected only in the visceral depots. SMRT(mRID1) mice are both insulin-insensitive and refractory to the glucose-lowering effects of TZD and AICAR. Increased serum cholesterol and triglyceride levels were observed, accompanied by increased leptin and decreased adiponectin levels. Aberrant storage of lipids in the liver occurred as triglycerides and cholesterol significantly compromised hepatic function. Lipid accumulation in brown adipose tissue was associated with reduced thermogenic capacity and mitochondrial biogenesis. Collectively, these studies highlight the essential role of NR corepressors in maintaining metabolic homeostasis and describe an essential role for SMRT in regulating the progression, severity, and therapeutic outcome of metabolic diseases.

  9. Pharmacological activation of AMPK ameliorates perivascular adipose/endothelial dysfunction in a manner interdependent on AMPK and SIRT1.

    PubMed

    Sun, Yan; Li, Jia; Xiao, Na; Wang, Meng; Kou, Junping; Qi, Lianwen; Huang, Fang; Liu, Baolin; Liu, Kang

    2014-11-01

    Adipose and endothelial dysfunction is tightly associated with cardiovascular diseases in obesity and insulin resistance. Because perivascular adipose tissue (PVAT) surrounds vessels directly and influences vessel functions through paracrine effect, and AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) show similarities in modulation of metabolic pathway, we hypothesized that activation of AMPK and SIRT1 in PVAT might regulate the endothelial function in pathological settings. Thus, in this study, we focused on the regulation of AMPK and SIRT1 activities implicated in adipocytokine expression and endothelial homeostasis under inflammatory conditions by using salicylate, metformin, AICA riboside (AICAR) and resveratrol as AMPK activating agents. We prepared conditioned medium (CM) by stimulating PVAT with palmitic acid (PA) and observed the effects of AMPK activating agents on adipocytokine expression and vessel vasodilation in rats. Moreover, we explored the effects of resveratrol and metformin in fructose-fed rats. We observed that PA stimulation induced inflammation and dysregulation of adipocytokine expression accompanied with reduced AMPK activity and SIRT1 abundance in PVAT. AMPK activating agents inhibited NF-κB p65 phosphorylation and suppressed gene expression of pro-inflammatory adipocytokines, and upregulated adiponectin and PPARγ expression in PVAT in an AMPK/SIRT1-interdependent manner. Meanwhile, CM stimulation impaired endothelium-dependent vasodilation in response to acetylcholine (ACh). Pretreatment of CM with AMPK-activating agents enhanced eNOS phosphorylation in the aorta and restored the loss of endothelium-dependent vasodilation, whereas this action was abolished by co-treatment with AMPK inhibitor compound C or SIRT1 inhibitor nicotinamide. Long-term fructose-feeding in rats induced dysregulation of adipocytokine expression in PVAT and the loss of endothelium-dependent vasodilation, whereas these alterations were reversed by oral

  10. Turn up the power –pharmacological activation of mitochondrial biogenesis in mouse models

    PubMed Central

    Komen, J C; Thorburn, D R

    2014-01-01

    The oxidative phosphorylation (OXPHOS) system in mitochondria is responsible for the generation of the majority of cellular energy in the form of ATP. Patients with genetic OXPHOS disorders form the largest group of inborn errors of metabolism. Unfortunately, there is still a lack of efficient therapies for these disorders other than management of symptoms. Developing therapies has been complicated because, although the total group of OXPHOS patients is relatively large, there is enormous clinical and genetic heterogeneity within this patient population. Thus there has been a lot of interest in generating relevant mouse models for the different kinds of OXPHOS disorders. The most common treatment strategies tested in these mouse models have aimed to up-regulate mitochondrial biogenesis, in order to increase the residual OXPHOS activity present in affected animals and thereby to ameliorate the energy deficiency. Drugs such as bezafibrate, resveratrol and AICAR target the master regulator of mitochondrial biogenesis PGC-1α either directly or indirectly to manipulate mitochondrial metabolism. This review will summarize the outcome of preclinical treatment trials with these drugs in mouse models of OXPHOS disorders and discuss similar treatments in a number of mouse models of common diseases in which pathology is closely linked to mitochondrial dysfunction. In the majority of these studies the pharmacological activation of the PGC-1α axis shows true potential as therapy; however, other effects besides mitochondrial biogenesis may be contributing to this as well. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24102298

  11. Rac-mediated actin remodeling and myosin II are involved in KATP channel trafficking in pancreatic β-cells

    PubMed Central

    Han, Young-Eun; Lim, Ajin; Park, Sun-Hyun; Chang, Sunghoe; Lee, Suk-Ho; Ho, Won-Kyung

    2015-01-01

    AMP-activated protein kinase (AMPK) is a metabolic sensor activated during metabolic stress and it regulates various enzymes and cellular processes to maintain metabolic homeostasis. We previously reported that activation of AMPK by glucose deprivation (GD) and leptin increases KATP currents by increasing the surface levels of KATP channel proteins in pancreatic β-cells. Here, we show that the signaling mechanisms that mediate actin cytoskeleton remodeling are closely associated with AMPK-induced KATP channel trafficking. Using F-actin staining with Alexa 633-conjugated phalloidin, we observed that dense cortical actin filaments present in INS-1 cells cultured in 11 mM glucose were disrupted by GD or leptin treatment. These changes were blocked by inhibiting AMPK using compound C or siAMPK and mimicked by activating AMPK using AICAR, indicating that cytoskeletal remodeling induced by GD or leptin was mediated by AMPK signaling. AMPK activation led to the activation of Rac GTPase and the phosphorylation of myosin regulatory light chain (MRLC). AMPK-dependent actin remodeling induced by GD or leptin was abolished by the inhibition of Rac with a Rac inhibitor (NSC23766), siRac1 or siRac2, and by inhibition of myosin II with a myosin ATPase inhibitor (blebbistatin). Immunocytochemistry, surface biotinylation and electrophysiological analyses of KATP channel activity and membrane potentials revealed that AMPK-dependent KATP channel trafficking to the plasma membrane was also inhibited by NSC23766 or blebbistatin. Taken together, these results indicate that AMPK/Rac-dependent cytoskeletal remodeling associated with myosin II motor function promotes the translocation of KATP channels to the plasma membrane in pancreatic β-cells. PMID:26471000

  12. Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis

    SciTech Connect

    Wang, Bing Wang, Xin-bao; Chen, Li-yu; Huang, Ling; Dong, Rui-zen

    2013-07-19

    Highlights: •Belinostat activates AMPK in cultured pancreatic cancer cells. •Activation of AMPK is important for belinostat-induced cytotoxic effects. •ROS and TAK1 are involved in belinostat-induced AMPK activation. •AMPK activation mediates mTOR inhibition by belinostat. -- Abstract: Pancreatic cancer accounts for more than 250,000 deaths worldwide each year. Recent studies have shown that belinostat, a novel pan histone deacetylases inhibitor (HDACi) induces apoptosis and growth inhibition in pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In the current study, we found that AMP-activated protein kinase (AMPK) activation was required for belinostat-induced apoptosis and anti-proliferation in PANC-1 pancreatic cancer cells. A significant AMPK activation was induced by belinostat in PANC-1 cells. Inhibition of AMPK by RNAi knockdown or dominant negative (DN) mutation significantly inhibited belinostat-induced apoptosis in PANC-1 cells. Reversely, AMPK activator AICAR and A-769662 exerted strong cytotoxicity in PANC-1 cells. Belinostat promoted reactive oxygen species (ROS) production in PANC-1 cells, increased ROS induced transforming growth factor-β-activating kinase 1 (TAK1)/AMPK association to activate AMPK. Meanwhile, anti-oxidants N-Acetyl-Cysteine (NAC) and MnTBAP as well as TAK1 shRNA knockdown suppressed belinostat-induced AMPK activation and PANC-1 cell apoptosis. In conclusion, we propose that belinostat-induced apoptosis and growth inhibition require the activation of ROS-TAK1-AMPK signaling axis in cultured pancreatic cancer cells.

  13. Activation of AMP-activated Protein Kinase Regulates Hippocampal Neuronal pH by Recruiting Na+/H+ Exchanger NHE5 to the Cell Surface*

    PubMed Central

    Jinadasa, Tushare; Szabó, Elöd Z.; Numata, Masayuki; Orlowski, John

    2014-01-01

    Strict regulation of intra- and extracellular pH is an important determinant of nervous system function as many voltage-, ligand-, and H+-gated cationic channels are exquisitely sensitive to transient fluctuations in pH elicited by neural activity and pathophysiologic events such as hypoxia-ischemia and seizures. Multiple Na+/H+ exchangers (NHEs) are implicated in maintenance of neural pH homeostasis. However, aside from the ubiquitous NHE1 isoform, their relative contributions are poorly understood. NHE5 is of particular interest as it is preferentially expressed in brain relative to other tissues. In hippocampal neurons, NHE5 regulates steady-state cytoplasmic pH, but intriguingly the bulk of the transporter is stored in intracellular vesicles. Here, we show that NHE5 is a direct target for phosphorylation by the AMP-activated protein kinase (AMPK), a key sensor and regulator of cellular energy homeostasis in response to metabolic stresses. In NHE5-transfected non-neuronal cells, activation of AMPK by the AMP mimetic AICAR or by antimycin A, which blocks aerobic respiration and causes acidification, increased cell surface accumulation and activity of NHE5, and elevated intracellular pH. These effects were effectively blocked by the AMPK antagonist compound C, the NHE inhibitor HOE694, and mutation of a predicted AMPK recognition motif in the NHE5 C terminus. This regulatory pathway was also functional in primary hippocampal neurons, where AMPK activation of NHE5 protected the cells from sustained antimycin A-induced acidification. These data reveal a unique role for AMPK and NHE5 in regulating the pH homeostasis of hippocampal neurons during metabolic stress. PMID:24936055

  14. AMPK reverses the mesenchymal phenotype of cancer cells by targeting the Akt-MDM2-Foxo3a signaling axis.

    PubMed

    Chou, Chih-Chien; Lee, Kuen-Haur; Lai, I-Lu; Wang, Dasheng; Mo, Xiaokui; Kulp, Samuel K; Shapiro, Charles L; Chen, Ching-Shih

    2014-09-01

    In cancer cells, the epithelial-mesenchymal transition (EMT) confers the ability to invade basement membranes and metastasize to distant sites, establishing it as an appealing target for therapeutic intervention. Here, we report a novel function of the master metabolic kinase AMPK in suppressing EMT by modulating the Akt-MDM2-Foxo3 signaling axis. This mechanistic link was supported by the effects of siRNA-mediated knockdown and pharmacologic activation of AMPK on epithelial and mesenchymal markers in established breast and prostate cancer cells. Exposure of cells to OSU-53, a novel allosteric AMPK activator, as well as metformin and AICAR, was sufficient to reverse their mesenchymal phenotype. These effects were abrogated by AMPK silencing. Phenotypic changes were mediated by Foxo3a activation, insofar as silencing or overexpressing Foxo3a mimicked the effects of AMPK silencing or OSU-53 treatment on EMT, respectively. Mechanistically, Foxo3a activation led to the transactivation of the E-cadherin gene and repression of genes encoding EMT-inducing transcription factors. OSU-53 activated Foxo3a through two Akt-dependent pathways, one at the level of nuclear localization by blocking Akt- and IKKβ-mediated phosphorylation, and a second at the level of protein stabilization via cytoplasmic sequestration of MDM2, an E3 ligase responsible for Foxo3a degradation. The suppressive effects of OSU-53 on EMT had therapeutic implications illustrated by its ability to block invasive phenotypes in vitro and metastatic properties in vivo. Overall, our work illuminates a mechanism of EMT regulation in cancer cells mediated by AMPK, along with preclinical evidence supporting a tractable therapeutic strategy to reverse mesenchymal phenotypes associated with invasion and metastasis. PMID:24994714

  15. Epigallocatechin Gallate Reduces Slow-Twitch Muscle Fiber Formation and Mitochondrial Biosynthesis in C2C12 Cells by Repressing AMPK Activity and PGC-1α Expression.

    PubMed

    Wang, Lina; Wang, Zhen; Yang, Kelin; Shu, Gang; Wang, Songbo; Gao, Ping; Zhu, Xiaotong; Xi, Qianyun; Zhang, Yongliang; Jiang, Qingyan

    2016-08-31

    Epigallocatechin gallate (EGCG) is a major active compound in green tea polyphenols. EGCG acts as an antioxidant to prevent the cell damage caused by free radicals and their derivatives. In skeletal muscle, exercise causes the accumulation of intracellular reactive oxygen species (ROS) and promotes the formation of slow-type muscle fiber. To determine whether EGCG, as a ROS scavenger, has any effect on skeletal muscle fiber type, we applied different concentrations (0, 5, 25, and 50 μM) of EGCG in the culture medium of differentiated C2C12 cells for 2 days. The fiber-type composition, mitochondrial biogenesis-related gene expression, antioxidant and glucose metabolism enzyme activity, and ROS levels in C2C12 cells were then detected. According to our results, 5 μM EGCG significantly decreased the cellular activity of SDH, 25 μM EGCG significantly downregulated the MyHC I, PGC-1α, NRF-1, and p-AMPK levels and SDH activity while enhancing the CAT and GSH-Px activity and decreasing the intracellular ROS levels, and 50 μM EGCG significantly downregulated MyHC I, PGC-1α, and NRF-1 expression and HK and SDH activity while increasing LDH activity. Furthermore, 300 μM H2O2 and 0.5 mM AMPK agonist (AICAR) improved the expression of MyHC I, PGC-1α, and p-AMPK, which were all reversed by 25 μM EGCG. In conclusion, the effect of EGCG on C2C12 cells may occur through the reduction of the ROS level, thereby decreasing both AMPK activity and PGC-1α expression and eventually reducing slow-twitch muscle fiber formation and mitochondrial biosynthesis. PMID:27420899

  16. G9a Inhibition Induces Autophagic Cell Death via AMPK/mTOR Pathway in Bladder Transitional Cell Carcinoma.

    PubMed

    Li, Feng; Zeng, Jin; Gao, Yang; Guan, Zhenfeng; Ma, Zhenkun; Shi, Qi; Du, Chong; Jia, Jing; Xu, Shan; Wang, Xinyang; Chang, Luke; He, Dalin; Guo, Peng

    2015-01-01

    G9a has been reported to highly express in bladder transitional cell carcinoma (TCC) and G9a inhibition significantly attenuates cell proliferation, but the underlying mechanism is not fully understood. The present study aimed at examining the potential role of autophagy in the anti-proliferation effect of G9a inhibition on TCC T24 and UMUC-3 cell lines in vitro. We found that both pharmaceutical and genetical G9a inhibition significantly attenuated cell proliferation by MTT assay, Brdu incorporation assay and colony formation assay. G9a inhibition induced autophagy like morphology as determined by transmission electron microscope and LC-3 fluorescence assay. In addition, autophagy flux was induced by G9a inhibition in TCC cells, as determined by p62 turnover assay and LC-3 turnover assay. The autophagy induced positively contributed to the inhibition of cell proliferation because the growth attenuation capacity of G9a inhibition was reversed by autophagy inhibitors 3-MA. Mechanically, AMPK/mTOR pathway was identified to be involved in the regulation of G9a inhibition induced autophagy. Intensively activating mTOR by Rheb overexpression attenuated autophagy and autophagic cell death induced by G9a inhibition. In addition, pre-inhibiting AMPK by Compound C attenuated autophagy together with the anti-proliferation effect induced by G9a inhibition while pre-activating AMPK by AICAR enhanced them. In conclusion, our results indicate that G9a inhibition induces autophagy through activating AMPK/mTOR pathway and the autophagy induced positively contributes to the inhibition of cell proliferation in TCC cells. These findings shed some light on the functional role of G9a in cell metabolism and suggest that G9a might be a therapeutic target in bladder TCC in the future. PMID:26397365

  17. AMPK and PKA interaction in the regulation of survival of liver cancer cells subjected to glucose starvation

    PubMed Central

    Ferretti, Anabela C.; Tonucci, Facundo M.; Hidalgo, Florencia; Almada, Evangelina; Larocca, Maria C.; Favre, Cristián

    2016-01-01

    The signaling pathways that govern survival response in hepatic cancer cells subjected to nutritional restriction have not been clarified yet. In this study we showed that liver cancer cells undergoing glucose deprivation both arrested in G0/G1 and died mainly by apoptosis. Treatment with the AMPK activator AICAR phenocopied the effect of glucose deprivation on cell survival, whereas AMPK silencing in HepG2/C3A, HuH-7 or SK-Hep-1 cells blocked the cell cycle arrest and the increase in apoptotic death induced by glucose starvation. Both AMPK and PKA were promptly activated after glucose withdrawal. PKA signaling had a dual role during glucose starvation: whereas it elicited an early decreased in cell viability, it later improved this parameter. We detected AMPK phosphorylation (AMPKα(Ser173)) by PKA, which was increased in glucose starved cells and was associated with diminution of AMPK activation. To better explore this inhibitory effect, we constructed a hepatocarcinoma derived cell line which stably expressed an AMPK mutant lacking that PKA phosphorylation site: AMPKα1(S173C). Expression of this mutant significantly decreased viability in cells undergoing glucose starvation. Furthermore, after 36 h of glucose deprivation, the index of AMPKα1(S173C) apoptotic cells doubled the apoptotic index observed in control cells. Two main remarks arise: 1. AMPK is the central signaling kinase in the scenario of cell cycle arrest and death induced by glucose starvation in hepatic cancer cells; 2. PKA phosphorylation of Ser173 comes out as a strong control point that limits the antitumor effects of AMPK in this situation. PMID:26894973

  18. Intact LKB1 activity is required for survival of dormant ovarian cancer spheroids

    PubMed Central

    Peart, Teresa; Valdes, Yudith Ramos; Correa, Rohann J. M.; Fazio, Elena; Bertrand, Monique; McGee, Jacob; Préfontaine, Michel; Sugimoto, Akira; DiMattia, Gabriel E.; Shepherd, Trevor G.

    2015-01-01

    Metastatic epithelial ovarian cancer (EOC) cells can form multicellular spheroids while in suspension and disperse directly throughout the peritoneum to seed secondary lesions. There is growing evidence that EOC spheroids are key mediators of metastasis, and they use specific intracellular signalling pathways to control cancer cell growth and metabolism for increased survival. Our laboratory discovered that AKT signalling is reduced during spheroid formation leading to cellular quiescence and autophagy, and these may be defining features of tumour cell dormancy. To further define the phenotype of EOC spheroids, we have initiated studies of the Liver kinase B1 (LKB1)-5′-AMP-activated protein kinase (AMPK) pathway as a master controller of the metabolic stress response. We demonstrate that activity of AMPK and its upstream kinase LKB1 are increased in quiescent EOC spheroids as compared with proliferating adherent EOC cells. We also show elevated AMPK activity in spheroids isolated directly from patient ascites. Functional studies reveal that treatment with the AMP mimetic AICAR or allosteric AMPK activator A-769662 led to a cytostatic response in proliferative adherent ovarian cancer cells, but they fail to elicit an effect in spheroids. Targeted knockdown of STK11 by RNAi to reduce LKB1 expression led to reduced viability and increased sensitivity to carboplatin treatment in spheroids only, a phenomenon which was AMPK-independent. Thus, our results demonstrate a direct impact of altered LKB1-AMPK signalling function in EOC. In addition, this is the first evidence in cancer cells demonstrating a pro-survival function for LKB1, a kinase traditionally thought to act as a tumour suppressor. PMID:26068970

  19. Biochemical Evaluation of the Inhibition Properties of Favipiravir and 2'-C-Methyl-Cytidine Triphosphates against Human and Mouse Norovirus RNA Polymerases.

    PubMed

    Jin, Zhinan; Tucker, Kathryn; Lin, Xiaoyan; Kao, C Cheng; Shaw, Ken; Tan, Hua; Symons, Julian; Behera, Ishani; Rajwanshi, Vivek K; Dyatkina, Natalia; Wang, Guangyi; Beigelman, Leo; Deval, Jerome

    2015-12-01

    Norovirus (NoV) is a positive-sense single-stranded RNA virus that causes acute gastroenteritis and is responsible for 200,000 deaths per year worldwide. No effective vaccine or treatment is available. Recent studies have shown that the nucleoside analogs favipiravir (T-705) and 2'-C-methyl-cytidine (2CM-C) inhibit NoV replication in vitro and in animal models, but their precise mechanism of action is unknown. We evaluated the molecular interactions between nucleoside triphosphates and NoV RNA-dependent RNA polymerase (NoVpol), the enzyme responsible for replication and transcription of NoV genomic RNA. We found that T-705 ribonucleoside triphosphate (RTP) and 2CM-C triphosphate (2CM-CTP) equally inhibited human and mouse NoVpol activities at concentrations resulting in 50% of maximum inhibition (IC50s) in the low micromolar range. 2CM-CTP inhibited the viral polymerases by competing directly with natural CTP during primer elongation, whereas T-705 RTP competed mostly with ATP and GTP at the initiation and elongation steps. Incorporation of 2CM-CTP into viral RNA blocked subsequent RNA synthesis, whereas T-705 RTP did not cause immediate chain termination of NoVpol. 2CM-CTP and T-705 RTP displayed low levels of enzyme selectivity, as they were both recognized as substrates by human mitochondrial RNA polymerase. The level of discrimination by the human enzyme was increased with a novel analog of T-705 RTP containing a 2'-C-methyl substitution. Collectively, our data suggest that 2CM-C inhibits replication of NoV by acting as a classic chain terminator, while T-705 may inhibit the virus by multiple mechanisms of action. Understanding the precise mechanism of action of anti-NoV compounds could provide a rational basis for optimizing their inhibition potencies and selectivities.

  20. Adenosine Kinase: Exploitation for Therapeutic Gain

    PubMed Central

    2013-01-01

    Adenosine kinase (ADK; EC 2.7.1.20) is an evolutionarily conserved phosphotransferase that converts the purine ribonucleoside adenosine into 5′-adenosine-monophosphate. This enzymatic reaction plays a fundamental role in determining the tone of adenosine, which fulfills essential functions as a homeostatic and metabolic regulator in all living systems. Adenosine not only activates specific signaling pathways by activation of four types of adenosine receptors but it is also a primordial metabolite and regulator of biochemical enzyme reactions that couple to bioenergetic and epigenetic functions. By regulating adenosine, ADK can thus be identified as an upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. Consequently, ADK emerges as a rational therapeutic target, and adenosine-regulating drugs have been tested extensively. In recent attempts to improve specificity of treatment, localized therapies have been developed to augment adenosine signaling at sites of injury or pathology; those approaches include transplantation of stem cells with deletions of ADK or the use of gene therapy vectors to downregulate ADK expression. More recently, the first human mutations in ADK have been described, and novel findings suggest an unexpected role of ADK in a wider range of pathologies. ADK-regulating strategies thus represent innovative therapeutic opportunities to reconstruct network homeostasis in a multitude of conditions. This review will provide a comprehensive overview of the genetics, biochemistry, and pharmacology of ADK and will then focus on pathologies and therapeutic interventions. Challenges to translate ADK-based therapies into clinical use will be discussed critically. PMID:23592612

  1. Live-Cell Bioorthogonal Chemical Imaging: Stimulated Raman Scattering Microscopy of Vibrational Probes.

    PubMed

    Wei, Lu; Hu, Fanghao; Chen, Zhixing; Shen, Yihui; Zhang, Luyuan; Min, Wei

    2016-08-16

    Innovations in light microscopy have tremendously revolutionized the way researchers study biological systems with subcellular resolution. In particular, fluorescence microscopy with the expanding choices of fluorescent probes has provided a comprehensive toolkit to tag and visualize various molecules of interest with exquisite specificity and high sensitivity. Although fluorescence microscopy is currently the method of choice for cellular imaging, it faces fundamental limitations for studying the vast number of small biomolecules. This is because common fluorescent labels, which are relatively bulky, could introduce considerable perturbation to or even completely alter the native functions of vital small biomolecules. Hence, despite their immense functional importance, these small biomolecules remain largely undetectable by fluorescence microscopy. To address this challenge, a bioorthogonal chemical imaging platform has recently been introduced. By coupling stimulated Raman scattering (SRS) microscopy, an emerging nonlinear Raman microscopy technique, with tiny and Raman-active vibrational probes (e.g., alkynes and stable isotopes), bioorthogonal chemical imaging exhibits superb sensitivity, specificity, and biocompatibility for imaging small biomolecules in live systems. In this Account, we review recent technical achievements for visualizing a broad spectrum of small biomolecules, including ribonucleosides and deoxyribonucleosides, amino acids, fatty acids, choline, glucose, cholesterol, and small-molecule drugs in live biological systems ranging from individual cells to animal tissues and model organisms. Importantly, this platform is compatible with live-cell biology, thus allowing real-time imaging of small-molecule dynamics. Moreover, we discuss further chemical and spectroscopic strategies for multicolor bioorthogonal chemical imaging, a valuable technique in the era of "omics". As a unique tool for biological discovery, this platform has been applied to

  2. Thermodynamics and kinetics of inhibitor binding to human equilibrative nucleoside transporter subtype-1.

    PubMed

    Rehan, Shahid; Ashok, Yashwanth; Nanekar, Rahul; Jaakola, Veli-Pekka

    2015-12-15

    Many nucleoside transport inhibitors are in clinical use as anti-cancer, vasodilator and cardioprotective drugs. However, little is known about the binding energetics of these inhibitors to nucleoside transporters (NTs) due to their low endogenous expression levels and difficulties in the biophysical characterization of purified protein with ligands. Here, we present kinetics and thermodynamic analyses of inhibitor binding to the human equilibrative nucleoside transporter-1 (hENT1), also known as SLC29A1. Using a radioligand binding assay, we obtained equilibrium binding and kinetic rate constants of well-known NT inhibitors--[(3)H]nitrobenzylmercaptopurine ribonucleoside ([(3)H]NBMPR), dilazep, and dipyridamole--and the native permeant, adenosine, to hENT1. We observed that the equilibrium binding affinities for all inhibitors decreased whereas, the kinetic rate constants increased with increasing temperature. Furthermore, we found that binding is enthalpy driven and thus, an exothermic reaction, implying that the transporter does not discriminate between its inhibitors and substrates thermodynamically. This predominantly enthalpy-driven binding by four chemically distinct ligands suggests that the transporter may not tolerate diversity in the type of interactions that lead to high affinity binding. Consistent with this, the measured activation energy of [(3)H]NBMPR association was relatively large (20 kcal mol(-1)) suggesting a conformational change upon inhibitor binding. For all three inhibitors the enthalpy (ΔH°) and entropy (ΔS°) contributions to the reaction energetics were determined by van't Hoff analysis to be roughly similar (25-75% ΔG°). Gains in enthalpy with increasing polar surface area of inhibitors suggest that the binding is favored by electrostatic or polar interactions between the ligands and the transporter.

  3. 2'-O-aminopropyl ribonucleotides: a zwitterionic modification that enhances the exonuclease resistance and biological activity of antisense oligonucleotides.

    PubMed

    Griffey, R H; Monia, B P; Cummins, L L; Freier, S; Greig, M J; Guinosso, C J; Lesnik, E; Manalili, S M; Mohan, V; Owens, S; Ross, B R; Sasmor, H; Wancewicz, E; Weiler, K; Wheeler, P D; Cook, P D

    1996-12-20

    Oligonucleotides containing 2'-O-aminopropyl-substituted RNA have been synthesized. The 2'-O-(aminopropyl)adenosine (APA), 2'-O-(aminopropyl)cytidine (APC), 2'-O-(aminopropyl)-guanosine (APG), and 2'-O-(aminopropyl)uridine (APU) have been prepared in high yield from the ribonucleoside, protected, and incorporated into an oligonucleotide using conventional phosphoramidite chemistry. Molecular dynamics studies of a dinucleotide in water demonstrates that a short alkylamine located off the 2'-oxygen of ribonucleotides alters the sugar pucker of the nucleoside but does not form a tight ion pair with the proximate phosphate. A 5-mer with the sequence ACTUC has been characterized using NMR. As predicted from the modeling results, the sugar pucker of the APU moiety is shifted toward a C3'-endo geometry. In addition, the primary amine rotates freely and is not bound electrostatically to any phosphate group, as evidenced by the different sign of the NOE between sugar proton resonances and the signals from the propylamine chain. Incorporation of aminopropyl nucleoside residues into point-substituted and fully modified oligomers does not decrease the affinity for complementary RNA compared to 2'-O-alkyl substituents of the same length. However, two APU residues placed at the 3'-terminus of an oligomer gives a 100-fold increase in resistance to exonuclease degradation, which is greater than observed for phosphorothioate oligomers. These structural and biophysical characteristics make the 2'-O-aminopropyl group a leading choice for incorporation into antisense therapeutics. A 20-mer phosphorothioate oligonucleotide capped with two phosphodiester aminopropyl nucleotides targeted against C-raf mRNA has been transfected into cells via electroporation. This oligonucleotide has 5-10-fold greater activity than the control phosphorothioate for reducing the abundance of C-raf mRNA and protein.

  4. Induction of gadd153 mRNA by nutrient deprivation is overcome by glutamine.

    PubMed Central

    Huang, Q; Lau, S S; Monks, T J

    1999-01-01

    The growth arrest and DNA damage-inducible (gadd) genes are co-ordinately activated by a variety of genotoxic agents and/or growth-cessation signals. The regulation of gadd153 mRNA was investigated in renal proximal tubular epithelial cells (LLC-PK1) cultured in a nutrient- and serum-deprived medium. The addition of glutamine alone to LLC-PK1 cells cultured in Earl's balanced salt solution (EBSS) is sufficient to suppress gadd153 mRNA expression, and the removal of only glutamine from Dulbecco's modified Eagle's medium (DMEM) is also sufficient to induce gadd153 mRNA expression. Consistent with these findings, the inhibition of glutamine utilization with acivicin and 6-diazo-5-oxo-l-norleucine (DON) in cells grown in a glutamine-containing medium effectively induces gadd153 expression. Glutamine can be used as an energy source in cultured mammalian cells. However, it is unlikely that deficits in cellular energy stores (ATP) are coupled to gadd153 mRNA expression, because concentrations of ATP, UTP and GTP are all elevated in EBSS-exposed cells, and the addition of alpha-oxoglutarate to cells grown in EBSS has no effect on gadd153 mRNA expression. In contrast, concentrations of CTP decline substantially in EBSS and glutamine-deprived DMEM-cultured cells. Glutamine also serves as a precursor for the synthesis of protein and DNA. The addition of glutamine to cells grown in EBSS partly restores CTP concentrations. The addition of pyrimidine ribonucleosides (cytidine and uridine) to LLC-PK1 cells also restores CTP concentrations, in a manner commensurate with their relative abilities to overcome gadd153 expression. Finally, glutamine does not completely suppress DNA damage-induced gadd153 expression, suggesting that multiple signalling pathways lead to the expression of gadd153 mRNA under conditions of nutrient deprivation and DNA damage. PMID:10377266

  5. DIS3 shapes the RNA polymerase II transcriptome in humans by degrading a variety of unwanted transcripts.

    PubMed

    Szczepińska, Teresa; Kalisiak, Katarzyna; Tomecki, Rafal; Labno, Anna; Borowski, Lukasz S; Kulinski, Tomasz M; Adamska, Dorota; Kosinska, Joanna; Dziembowski, Andrzej

    2015-11-01

    Human DIS3, the nuclear catalytic subunit of the exosome complex, contains exonucleolytic and endonucleolytic active domains. To identify DIS3 targets genome-wide, we combined comprehensive transcriptomic analyses of engineered HEK293 cells that expressed mutant DIS3, with Photoactivatable Ribonucleoside-Enhanced Cross-Linking and Immunoprecipitation (PAR-CLIP) experiments. In cells expressing DIS3 with both catalytic sites mutated, RNAs originating from unannotated genomic regions increased ∼2.5-fold, covering ∼70% of the genome and allowing for thousands of novel transcripts to be discovered. Previously described pervasive transcription products, such as Promoter Upstream Transcripts (PROMPTs), accumulated robustly upon DIS3 dysfunction, representing a significant fraction of PAR-CLIP reads. We have also detected relatively long putative premature RNA polymerase II termination products of protein-coding genes whose levels in DIS3 mutant cells can exceed the mature mRNAs, indicating that production of such truncated RNA is a common phenomenon. In addition, we found DIS3 to be involved in controlling the formation of paraspeckles, nuclear bodies that are organized around NEAT1 lncRNA, whose short form was overexpressed in cells with mutated DIS3. Moreover, the DIS3 mutations resulted in misregulation of expression of ∼50% of transcribed protein-coding genes, probably as a secondary effect of accumulation of various noncoding RNA species. Finally, cells expressing mutant DIS3 accumulated snoRNA precursors, which correlated with a strong PAR-CLIP signal, indicating that DIS3 is the main snoRNA-processing enzyme. EXOSC10 (RRP6) instead controls the levels of the mature snoRNAs. Overall, we show that DIS3 has a major nucleoplasmic function in shaping the human RNA polymerase II transcriptome.

  6. DIS3 shapes the RNA polymerase II transcriptome in humans by degrading a variety of unwanted transcripts

    PubMed Central

    Szczepińska, Teresa; Kalisiak, Katarzyna; Tomecki, Rafal; Labno, Anna; Borowski, Lukasz S.; Kulinski, Tomasz M.; Adamska, Dorota; Kosinska, Joanna; Dziembowski, Andrzej

    2015-01-01

    Human DIS3, the nuclear catalytic subunit of the exosome complex, contains exonucleolytic and endonucleolytic active domains. To identify DIS3 targets genome-wide, we combined comprehensive transcriptomic analyses of engineered HEK293 cells that expressed mutant DIS3, with Photoactivatable Ribonucleoside-Enhanced Cross-Linking and Immunoprecipitation (PAR-CLIP) experiments. In cells expressing DIS3 with both catalytic sites mutated, RNAs originating from unannotated genomic regions increased ∼2.5-fold, covering ∼70% of the genome and allowing for thousands of novel transcripts to be discovered. Previously described pervasive transcription products, such as Promoter Upstream Transcripts (PROMPTs), accumulated robustly upon DIS3 dysfunction, representing a significant fraction of PAR-CLIP reads. We have also detected relatively long putative premature RNA polymerase II termination products of protein-coding genes whose levels in DIS3 mutant cells can exceed the mature mRNAs, indicating that production of such truncated RNA is a common phenomenon. In addition, we found DIS3 to be involved in controlling the formation of paraspeckles, nuclear bodies that are organized around NEAT1 lncRNA, whose short form was overexpressed in cells with mutated DIS3. Moreover, the DIS3 mutations resulted in misregulation of expression of ∼50% of transcribed protein-coding genes, probably as a secondary effect of accumulation of various noncoding RNA species. Finally, cells expressing mutant DIS3 accumulated snoRNA precursors, which correlated with a strong PAR-CLIP signal, indicating that DIS3 is the main snoRNA-processing enzyme. EXOSC10 (RRP6) instead controls the levels of the mature snoRNAs. Overall, we show that DIS3 has a major nucleoplasmic function in shaping the human RNA polymerase II transcriptome. PMID:26294688

  7. Tailoring the properties of supramolecular gels

    NASA Astrophysics Data System (ADS)

    Buerkle, Lauren

    Supramolecular gels created from low molecular weight species (gelators) have gathered wide attention over the past few decades on account of their highly ordered assembly and ability to respond to external stimuli. These properties make such gels highly promising candidates for a diverse range of applications including biomaterials, viscosity modifiers, sensors, and liquid crystalline materials. We have focused on the design and tailoring of guanosine (the ribonucleoside of the nucleobase guanine) hydrogels. It is well known that in an aqueous environment, guanosine forms circular hydrogen-bonded quartets around a monovalent metal ion, most commonly potassium. These quartets then stack to form high-aspect ratio fibers that entangle and branch to form gels. Despite facile gel formation, crystallization of the guanosine molecules out of the gel is a common occurrence that leads to gel collapse within hours of fabrication. In addition, guanosine and related gelators often require a high potassium concentration or acidic pH to gel, which presents limited practical use in our target application of tissue engineering. We have focused on the modification and analysis of guanosine gels via an additive and/or a change in chemical structure to inhibit crystallization and promote gelation at physiological salt concentrations. Additionally, initial cell culture experiments suggest that these gel materials show great potential as an easily accessible and inexpensive tissue engineering scaffold. We also examined the potential for supramolecular gels for use in personal care formulations as electrolyte-resistant rheology modifiers for aqueous systems. Sugar-based gels fit the necessary criteria; however, many of these molecules also crystallize from the gel over time. We achieved lifetime stabilization again via a mixing approach and examined the resulting properties of the stabilized gels.

  8. Phylogeny and differentiation of reptilian and amphibian ranaviruses detected in Europe.

    PubMed

    Stöhr, Anke C; López-Bueno, Alberto; Blahak, Silvia; Caeiro, Maria F; Rosa, Gonçalo M; Alves de Matos, António Pedro; Martel, An; Alejo, Alí; Marschang, Rachel E

    2015-01-01

    Ranaviruses in amphibians and fish are considered emerging pathogens and several isolates have been extensively characterized in different studies. Ranaviruses have also been detected in reptiles with increasing frequency, but the role of reptilian hosts is still unclear and only limited sequence data has been provided. In this study, we characterized a number of ranaviruses detected in wild and captive animals in Europe based on sequence data from six genomic regions (major capsid protein (MCP), DNA polymerase (DNApol), ribonucleoside diphosphate reductase alpha and beta subunit-like proteins (RNR-α and -β), viral homolog of the alpha subunit of eukaryotic initiation factor 2, eIF-2α (vIF-2α) genes and microsatellite region). A total of ten different isolates from reptiles (tortoises, lizards, and a snake) and four ranaviruses from amphibians (anurans, urodeles) were included in the study. Furthermore, the complete genome sequences of three reptilian isolates were determined and a new PCR for rapid classification of the different variants of the genomic arrangement was developed. All ranaviruses showed slight variations on the partial nucleotide sequences from the different genomic regions (92.6-100%). Some very similar isolates could be distinguished by the size of the band from the microsatellite region. Three of the lizard isolates had a truncated vIF-2α gene; the other ranaviruses had full-length genes. In the phylogenetic analyses of concatenated sequences from different genes (3223 nt/10287 aa), the reptilian ranaviruses were often more closely related to amphibian ranaviruses than to each other, and most clustered together with previously detected ranaviruses from the same geographic region of origin. Comparative analyses show that among the closely related amphibian-like ranaviruses (ALRVs) described to date, three recently split and independently evolving distinct genetic groups can be distinguished. These findings underline the wide host range of

  9. The PARA-suite: PAR-CLIP specific sequence read simulation and processing

    PubMed Central

    Kloetgen, Andreas; Borkhardt, Arndt; Hoell, Jessica I.

    2016-01-01

    Background Next-generation sequencing technologies have profoundly impacted biology over recent years. Experimental protocols, such as photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation (PAR-CLIP), which identifies protein–RNA interactions on a genome-wide scale, commonly employ deep sequencing. With PAR-CLIP, the incorporation of photoactivatable nucleosides into nascent transcripts leads to high rates of specific nucleotide conversions during reverse transcription. So far, the specific properties of PAR-CLIP-derived sequencing reads have not been assessed in depth. Methods We here compared PAR-CLIP sequencing reads to regular transcriptome sequencing reads (RNA-Seq) to identify distinctive properties that are relevant for reference-based read alignment of PAR-CLIP datasets. We developed a set of freely available tools for PAR-CLIP data analysis, called the PAR-CLIP analyzer suite (PARA-suite). The PARA-suite includes error model inference, PAR-CLIP read simulation based on PAR-CLIP specific properties, a full read alignment pipeline with a modified Burrows–Wheeler Aligner algorithm and CLIP read clustering for binding site detection. Results We show that differences in the error profiles of PAR-CLIP reads relative to regular transcriptome sequencing reads (RNA-Seq) make a distinct processing advantageous. We examine the alignment accuracy of commonly applied read aligners on 10 simulated PAR-CLIP datasets using different parameter settings and identified the most accurate setup among those read aligners. We demonstrate the performance of the PARA-suite in conjunction with different binding site detection algorithms on several real PAR-CLIP and HITS-CLIP datasets. Our processing pipeline allowed the improvement of both alignment and binding site detection accuracy. Availability The PARA-suite toolkit and the PARA-suite aligner are available at https://github.com/akloetgen/PARA-suite and https

  10. The role of sequence context, nucleotide pool balance and stress in 2′-deoxynucleotide misincorporation in viral, bacterial and mammalian RNA

    PubMed Central

    Wang, Jin; Dong, Hongping; Chionh, Yok Hian; McBee, Megan E.; Sirirungruang, Sasilada; Cunningham, Richard P.; Shi, Pei-Yong; Dedon, Peter C.

    2016-01-01

    The misincorporation of 2′-deoxyribonucleotides (dNs) into RNA has important implications for the function of non-coding RNAs, the translational fidelity of coding RNAs and the mutagenic evolution of viral RNA genomes. However, quantitative appreciation for the degree to which dN misincorporation occurs is limited by the lack of analytical tools. Here, we report a method to hydrolyze RNA to release 2′-deoxyribonucleotide-ribonucleotide pairs (dNrN) that are then quantified by chromatography-coupled mass spectrometry (LC-MS). Using this platform, we found misincorporated dNs occurring at 1 per 103 to 105 ribonucleotide (nt) in mRNA, rRNAs and tRNA in human cells, Escherichia coli, Saccharomyces cerevisiae and, most abundantly, in the RNA genome of dengue virus. The frequency of dNs varied widely among organisms and sequence contexts, and partly reflected the in vitro discrimination efficiencies of different RNA polymerases against 2′-deoxyribonucleoside 5′-triphosphates (dNTPs). Further, we demonstrate a strong link between dN frequencies in RNA and the balance of dNTPs and ribonucleoside 5′-triphosphates (rNTPs) in the cellular pool, with significant stress-induced variation of dN incorporation. Potential implications of dNs in RNA are discussed, including the possibilities of dN incorporation in RNA as a contributing factor in viral evolution and human disease, and as a host immune defense mechanism against viral infections. PMID:27365049

  11. The roles of the conserved pyrimidine bases in hammerhead ribozyme catalysis: evidence for a magnesium ion-binding site.

    PubMed Central

    Murray, J B; Adams, C J; Arnold, J R; Stockley, P G

    1995-01-01

    We report details of the synthesis and characterization of oligoribonucleotides containing 4-thiouridine or 2-pyrimidinone ribonucleoside (4HC). We have used these probes to examine the roles of the conserved pyrimidines in the central core of the hammerhead ribozyme. The effects on catalysis of singly-substituted hammerhead ribozyme and substrate strands were quantified in multiple-turnover reactions. Various effects were observed on kcat. and Km, with up to a 7-fold decrease and a 3-fold increase respectively. For substitutions with 4HC at positions 3 or 17, catalytic activity in single turnover reactions can be increased up to 8-fold equivalent to 40% of wild-type activity, by increasing the concentration of the Mg2+ cofactor, implying that these substitutions had a deleterious effect on Mg2+ binding. Calculations of the change in the apparent free energy of binding for variants at positions 3, 4 or 17 are each consistent with deletion of a single hydrogen-bond to an uncharged group in the ribozyme. The cytidine 5' to the scissile phosphate had not previously been thought to play a direct role in catalysis, however, removal of the exocyclic amino group decreased kcat. 4-fold. Recently, the crystal structures of a hammerhead ribozyme bound to either a non-cleavable 2'-deoxy substrate strand or a ribo-substrate strand have been reported. The kinetic properties of the variants described here are consistent with several key interactions seen in the crystals, in particular they provide experimental support for the assignment of the proposed catalytically active magnesium ion-binding site. PMID:7487885

  12. A clickable UTP analog for the posttranscriptional chemical labeling and imaging of RNA.

    PubMed

    Sawant, Anupam A; Mukherjee, Progya P; Jangid, Rahul K; Galande, Sanjeev; Srivatsan, Seergazhi G

    2016-06-28

    The development of robust tools and practical RNA labeling strategies that would facilitate the biophysical analysis of RNA in both cell-free and cellular systems will have profound implications in the discovery of new RNA diagnostic tools and therapeutic strategies. In this context, we describe the development of a new alkyne-modified UTP analog, 5-(1,7-octadinyl)uridine triphosphate (ODUTP), which serves as an efficient substrate for the introduction of a clickable alkyne label into RNA transcripts by bacteriophage T7 RNA polymerase and mammalian cellular RNA polymerases. The ODU-labeled RNA is effectively used by reverse transcriptase to produce cDNA, a property which could be utilized in expanding the chemical space of a RNA library in the aptamer selection scheme. Further, the alkyne label on RNA provides a convenient tool for the posttranscriptional chemical functionalization with a variety of biophysical tags (fluorescent, affinity, amino acid and sugar) by using alkyne-azide cycloaddition reaction. Importantly, the ability of endogenous RNA polymerases to specifically incorporate ODUTP into cellular RNA transcripts enabled the visualization of newly transcribing RNA in cells by microscopy using click reactions. In addition to a clickable alkyne group, ODU contains a Raman scattering label (internal disubstituted alkyne), which exhibits characteristic Raman shifts that fall in the Raman-silent region of cells. Our results indicate that an ODU label could potentially facilitate two-channel visualization of RNA in cells by using click chemistry and Raman spectroscopy. Taken together, ODU represents a multipurpose ribonucleoside tool, which is expected to provide new avenues to study RNA in cell-free and cellular systems. PMID:27173127

  13. Identification and characterization of genes required for compensatory growth in Drosophila.

    PubMed

    Gerhold, Abigail R; Richter, Daniel J; Yu, Albert S; Hariharan, Iswar K

    2011-12-01

    To maintain tissue homeostasis, some organs are able to replace dying cells with additional proliferation of surviving cells. Such proliferation can be localized (e.g., a regeneration blastema) or diffuse (compensatory growth). The relationship between such growth and the growth that occurs during development has not been characterized in detail. Drosophila melanogaster larval imaginal discs can recover from extensive damage, producing normally sized adult organs. Here we describe a system using genetic mosaics to screen for recessive mutations that impair compensatory growth. By generating clones of cells that carry a temperature-sensitive cell-lethal mutation, we conditionally ablate patches of tissue in the imaginal disc and assess the ability of the surviving sister clones to replace the lost tissue. We have used this system together with a modified whole-genome resequencing (WGS) strategy to identify several mutations that selectively compromise compensatory growth. We find specific alleles of bunched (bun) and Ribonucleoside diphosphate reductase large subunit (RnrL) reduce compensatory growth in the imaginal disc. Other genes identified in the screen, including two alleles of Topoisomerase 3-alpha (Top3α), while also required for developmental growth, appear to have an enhanced requirement during compensatory growth. Compensatory growth occurs at a higher rate than normal growth and may therefore have features in common with some types of overgrowth. Indeed, the RnrL allele identified compromises both these types of altered growth and mammalian ribonucleotide reductase and topoisomerases are targets of anticancer drugs. Finally, the approach we describe is applicable to the study of compensatory growth in diverse tissues in Drosophila.

  14. Imitating Prebiotic Homochirality on Earth

    NASA Astrophysics Data System (ADS)

    Breslow, Ronald; Levine, Mindy; Cheng, Zhan-Ling

    2010-02-01

    We show how the amino acids needed on prebiotic earth in their homochiral L form can be produced by a reaction of L-alpha-methyl amino acids—that have been identified in the Murchison meteorite—with alpha-keto acids under credible prebiotic conditions. When they are simply heated together they perform a process of decarboxylative transamination but with almost no chiral transfer, and that in the wrong direction, producing D-amino acids from the L-alpha-methyl amino acids. With copper ion a square planar complex with two of the reaction intermediates is formed, and now there is the desired L to L transformation, producing small enantioexcesses of the normal L-amino acids. We also show how these can be amplified, not by making more of the L form but by increasing its concentration in water solution. The process can start with a miniscule excess and in one step generate water solutions with L/D ratios in the over 90% region. Kinetic processes can exceed the results from equilibria. We have also examined such amplifications with ribonucleosides, and have shown that initial modest excesses of the D-nucleosides can be amplified to afford water solutions with D to L ratios in the high 90’s. We have shown that the homochiral compound has two effects on the solubility of the racemate. On one hand it decreases the solubility of the racemate by its role in the solubility product, as a theoretical equation predicts. On the other hand, it increases the solubility of the racemate by changing the nature of the solvent, acting as a cosolvent with the water. This explains why the amplification, while large, is not as large as the simple theoretical equation predicts. Thus when credible examples are produced where small enantioexcesses of D-ribose are created under credible prebiotic conditions, the prerequisites for the RNA world will have been exemplified.

  15. Hydroxyurea inhibits the transactivation of the HIV-long-terminal repeat (LTR) promoter

    PubMed Central

    Calzado, M A; Macho, A; Lucena, C; Muñoz, E

    2000-01-01

    HIV-1 gene expression is regulated by the promoter/enhancer located within the U3 region of the proviral 5′ LTR that contains multiple potential cis-acting regulatory sites. Here we describe that the inhibitor of the cellular ribonucleoside reductase, hydroxyurea (HU), inhibited phorbol myristate acetate- or tumour necrosis factor-alpha-induced HIV-1-LTR transactivation in both lymphoid and non-lymphoid cells in a dose-dependent manner within the first 6 h of treatment, with a 50% inhibitory concentration of 0·5 mm. This inhibition was found to be specific for the HIV-1-LTR since transactivation of either an AP-1-dependent promoter or the CD69 gene promoter was not affected by the presence of HU. Moreover, gel-shift assays in 5.1 cells showed that HU prevented the binding of the NF-κB to the κB sites located in the HIV-1-LTR region, but it did not affect the binding of both the AP-1 and the Sp-1 transcription factors. By Western blots and cell cycle analyses we detected that HU induced a rapid dephosphorylation of the pRB, the product of the retinoblastoma tumour suppressor gene, and the cell cycle arrest was evident after 24 h of treatment. Thus, HU inhibits HIV-1 promoter activity by a novel pathway that implies an inhibition of the NF-κB binding to the LTR promoter. The present study suggests that HU may be useful as a potential therapeutic approach for inhibition of HIV-1 replication through different pathways. PMID:10792382

  16. Expression, purification, crystallization and preliminary diffraction data characterization of Escherichia coli ribonuclease II (RNase II)

    SciTech Connect

    McVey, Colin E.; Amblar, Mónica; Barbas, Ana; Cairrão, Fátima; Coelho, Ricardo; Romão, Célia; Arraiano, Cecília M.; Carrondo, Maria A.; Frazão, Carlos

    2006-07-01

    Diffraction data from E. coli RNase II crystals of wild type and of an inactive mutant and its SeMet-derivative form were obtained to 2.44 and 2.74 Å resolution, providing a set of preliminary phases. An improved purification protocol allowed higher reproducibility in the crystallization of the mutant form. RNA degradation is important in the post-transcriptional control of gene expression. The processing, degradation and quality control of RNA is performed by many different classes of ribonucleases. Ribonuclease II (RNase II) is a 643-amino-acid enzyme that degrades single-stranded RNA from its 3′-end, releasing ribonucleoside 5′-monophosphates. RNase II was expressed both as the wild type and as a D209N mutant form. The latter was also produced as an SeMet derivative. The various protein forms were crystallized using the vapour-diffusion method. Wild-type RNase II was crystallized in two crystal forms, both of which belonged to space group P2{sub 1}. X-ray diffraction data were collected to 2.44 and 2.75 Å resolution, with unit-cell parameters a = 56.8, b = 125.7, c = 66.2 Å, β = 111.9° and a = 119.6, b = 57.2, c = 121.2 Å, β = 99.7°, respectively. The RNase II D209N mutant gave crystals that belonged to space group P6{sub 5}, with unit-cell parameters a = b = 86.3, c = 279.2 Å, and diffracted to 2.74 Å. Diffraction data from the mutant and its SeMet derivative enabled the determination of a partial Se-atom substructure by SIRAS.

  17. Transcriptional Analysis of the Conjugal Transfer Genes of Rickettsia bellii RML 369-C

    PubMed Central

    Heu, Chan C.; Kurtti, Timothy J.; Nelson, Curtis M.; Munderloh, Ulrike G.

    2015-01-01

    Rickettsia bellii is an obligate intracellular bacterium that is one of the few rickettsiae that encode a complete set of conjugative transfer (tra) genes involved in bacterial conjugation and has been shown to exhibit pili-like structures. The reductive genomes of rickettsiae beg the question whether the tra genes are nonfunctional or functioning to enhance the genetic plasticity and biology of rickettsiae. We characterized the transcriptional dynamics of R. bellii tra genes in comparison to genes transcribed stably and above the background level to understand when and at what levels the tra genes are active or whether the tra genes are degenerative. We determined that the best reference genes, out of 10 tested, were methionyl tRNA ligase (metG) or a combination of metG and ribonucleoside diphosphate reductase 2 subunit beta (nrdF), using statistical algorithms from two different programs: Normfinder and BestKeeper. To validate the use of metG with other rickettsial genes exhibiting variable transcriptional patterns we examined its use with sca2 and rickA, genes involved in actin based motility. Both were shown to be up-regulated at different times of replication in Vero cells, showing variable and stable transcription levels of rickA and sca2, respectively. traATi was up-regulated at 72 hours post inoculation in the tick cell line ISE6, but showed no apparent changes in the monkey cell line Vero and mouse cell line L929. The transcription of tra genes was positively correlated with one another and up-regulated from 12 to 72 hours post inoculation (HPI) when compared to RBE_0422 (an inactivated transposase-derivative found within the tra cluster). Thus, the up-regulation of the tra genes indicated that the integrity and activity of each gene were intact and may facilitate the search for the optimal conditions necessary to demonstrate conjugation in rickettsiae. PMID:26352829

  18. TRAP-5' stem loop interaction increases the efficiency of transcription termination in the Bacillus subtilis trpEDCFBA operon leader region.

    PubMed

    McGraw, Adam P; Bevilacqua, Philip C; Babitzke, Paul

    2007-11-01

    TRAP regulates expression of the Bacillus subtilis trpEDCFBA operon by a transcription attenuation mechanism in which tryptophan-activated TRAP binds to 11 (G/U)AG repeats in the nascent trp leader transcript. Bound TRAP blocks formation of an antiterminator structure and allows formation of an overlapping intrinsic terminator upstream of the trp operon structural genes. A 5' stem-loop (5'SL) structure located upstream of the triplet repeat region also interacts with TRAP. TRAP-5'SL RNA interaction participates in the transcription attenuation mechanism by preferentially increasing the affinity of TRAP for the nascent trp leader transcript during the early stages of transcription, when only a few triplet repeats have been synthesized. Footprinting assays indicated that the 5'SL contacts TRAP through two discrete groups of single-stranded nucleotides that lie in the hairpin loop and in an internal loop. Filter binding and in vivo expression assays of 5'SL mutants established that G7, A8, and A9 from the internal loop, and A19 and G20 from the hairpin loop are critical for proper 5'SL function. These nucleotides are conserved among certain other 5'SL-containing organisms. Single-round transcription results indicated that the 5'SL increases the termination efficiency when transcription is fast; however, the influence of the 5'SL was lost when transcription was slowed by reducing the ribonucleoside triphosphate concentration. Since there is a limited amount of time for TRAP to bind to the nascent transcript and promote termination, our data suggest that the contribution of TRAP-5'SL interaction increases the rate of TRAP binding, which, in turn, increases the efficiency of transcription termination. PMID:17881743

  19. Imbalanced deoxyribonucleoside triphosphate pools and spontaneous mutation rates determined during dCMP deaminase-defective bacteriophage T4 infections.

    PubMed

    Sargent, R G; Mathews, C K

    1987-04-25

    DNA precursor imbalances are known to be mutagenic in both eukaryotic and prokaryotic systems. Almost certainly, such mutagenesis involves competition between correctly and incorrectly base-paired precursors at replication sites. Since other factors may be involved, it is important to identify specific mutations induced by specific pool imbalances. Using bacteriophage T4, we have developed a system for such analysis. We prepare double mutants of T4; one mutation affects a phage-coded enzyme of deoxyribonucleoside triphosphate (dNTP) metabolism, while the second is an rII mutation known to revert along a specific pathway. We determine dNTP pools in infection by such a mutant and measure both the spontaneous reversion rate of the rII mutation and, in some cases, the nucleotide sequence at the mutant site. In this paper we analyze mutations induced by a deficiency of T4-encoded deoxycytidylate deaminase. This causes pools of 5-hydroxymethyl-dCTP to expand some 30-fold, while dTTP pools contract. This specifically stimulates AT-to-GC reversion. One of the four AT-to-GC reverters tested, rIIUV215, increases its reversion rate at least 1000-fold under these pool-imbalance conditions, while the other mutants tested show increases of only about 10-fold. Therefore, factors other than dNTP competition, including local DNA sequence environment, must be invoked to fully explain mechanisms of dNTP pool imbalance-induced mutagenesis. We discuss models for this, and we also report unexpected effects of the dCMP deaminase deficiency upon pools of ribonucleoside triphosphates. PMID:3553179

  20. Phylogeny and Differentiation of Reptilian and Amphibian Ranaviruses Detected in Europe

    PubMed Central

    Stöhr, Anke C.; López-Bueno, Alberto; Blahak, Silvia; Caeiro, Maria F.; Rosa, Gonçalo M.; Alves de Matos, António Pedro; Martel, An; Alejo, Alí; Marschang, Rachel E.

    2015-01-01

    Ranaviruses in amphibians and fish are considered emerging pathogens and several isolates have been extensively characterized in different studies. Ranaviruses have also been detected in reptiles with increasing frequency, but the role of reptilian hosts is still unclear and only limited sequence data has been provided. In this study, we characterized a number of ranaviruses detected in wild and captive animals in Europe based on sequence data from six genomic regions (major capsid protein (MCP), DNA polymerase (DNApol), ribonucleoside diphosphate reductase alpha and beta subunit-like proteins (RNR-α and -β), viral homolog of the alpha subunit of eukaryotic initiation factor 2, eIF-2α (vIF-2α) genes and microsatellite region). A total of ten different isolates from reptiles (tortoises, lizards, and a snake) and four ranaviruses from amphibians (anurans, urodeles) were included in the study. Furthermore, the complete genome sequences of three reptilian isolates were determined and a new PCR for rapid classification of the different variants of the genomic arrangement was developed. All ranaviruses showed slight variations on the partial nucleotide sequences from the different genomic regions (92.6–100%). Some very similar isolates could be distinguished by the size of the band from the microsatellite region. Three of the lizard isolates had a truncated vIF-2α gene; the other ranaviruses had full-length genes. In the phylogenetic analyses of concatenated sequences from different genes (3223 nt/10287 aa), the reptilian ranaviruses were often more closely related to amphibian ranaviruses than to each other, and most clustered together with previously detected ranaviruses from the same geographic region of origin. Comparative analyses show that among the closely related amphibian-like ranaviruses (ALRVs) described to date, three recently split and independently evolving distinct genetic groups can be distinguished. These findings underline the wide host range of

  1. Phylogeny and differentiation of reptilian and amphibian ranaviruses detected in Europe.

    PubMed

    Stöhr, Anke C; López-Bueno, Alberto; Blahak, Silvia; Caeiro, Maria F; Rosa, Gonçalo M; Alves de Matos, António Pedro; Martel, An; Alejo, Alí; Marschang, Rachel E

    2015-01-01

    Ranaviruses in amphibians and fish are considered emerging pathogens and several isolates have been extensively characterized in different studies. Ranaviruses have also been detected in reptiles with increasing frequency, but the role of reptilian hosts is still unclear and only limited sequence data has been provided. In this study, we characterized a number of ranaviruses detected in wild and captive animals in Europe based on sequence data from six genomic regions (major capsid protein (MCP), DNA polymerase (DNApol), ribonucleoside diphosphate reductase alpha and beta subunit-like proteins (RNR-α and -β), viral homolog of the alpha subunit of eukaryotic initiation factor 2, eIF-2α (vIF-2α) genes and microsatellite region). A total of ten different isolates from reptiles (tortoises, lizards, and a snake) and four ranaviruses from amphibians (anurans, urodeles) were included in the study. Furthermore, the complete genome sequences of three reptilian isolates were determined and a new PCR for rapid classification of the different variants of the genomic arrangement was developed. All ranaviruses showed slight variations on the partial nucleotide sequences from the different genomic regions (92.6-100%). Some very similar isolates could be distinguished by the size of the band from the microsatellite region. Three of the lizard isolates had a truncated vIF-2α gene; the other ranaviruses had full-length genes. In the phylogenetic analyses of concatenated sequences from different genes (3223 nt/10287 aa), the reptilian ranaviruses were often more closely related to amphibian ranaviruses than to each other, and most clustered together with previously detected ranaviruses from the same geographic region of origin. Comparative analyses show that among the closely related amphibian-like ranaviruses (ALRVs) described to date, three recently split and independently evolving distinct genetic groups can be distinguished. These findings underline the wide host range of

  2. Biochemical Evaluation of the Inhibition Properties of Favipiravir and 2′-C-Methyl-Cytidine Triphosphates against Human and Mouse Norovirus RNA Polymerases

    PubMed Central

    Tucker, Kathryn; Lin, Xiaoyan; Kao, C. Cheng; Shaw, Ken; Tan, Hua; Symons, Julian; Behera, Ishani; Rajwanshi, Vivek K.; Dyatkina, Natalia; Wang, Guangyi; Beigelman, Leo

    2015-01-01

    Norovirus (NoV) is a positive-sense single-stranded RNA virus that causes acute gastroenteritis and is responsible for 200,000 deaths per year worldwide. No effective vaccine or treatment is available. Recent studies have shown that the nucleoside analogs favipiravir (T-705) and 2′-C-methyl-cytidine (2CM-C) inhibit NoV replication in vitro and in animal models, but their precise mechanism of action is unknown. We evaluated the molecular interactions between nucleoside triphosphates and NoV RNA-dependent RNA polymerase (NoVpol), the enzyme responsible for replication and transcription of NoV genomic RNA. We found that T-705 ribonucleoside triphosphate (RTP) and 2CM-C triphosphate (2CM-CTP) equally inhibited human and mouse NoVpol activities at concentrations resulting in 50% of maximum inhibition (IC50s) in the low micromolar range. 2CM-CTP inhibited the viral polymerases by competing directly with natural CTP during primer elongation, whereas T-705 RTP competed mostly with ATP and GTP at the initiation and elongation steps. Incorporation of 2CM-CTP into viral RNA blocked subsequent RNA synthesis, whereas T-705 RTP did not cause immediate chain termination of NoVpol. 2CM-CTP and T-705 RTP displayed low levels of enzyme selectivity, as they were both recognized as substrates by human mitochondrial RNA polymerase. The level of discrimination by the human enzyme was increased with a novel analog of T-705 RTP containing a 2′-C-methyl substitution. Collectively, our data suggest that 2CM-C inhibits replication of NoV by acting as a classic chain terminator, while T-705 may inhibit the virus by multiple mechanisms of action. Understanding the precise mechanism of action of anti-NoV compounds could provide a rational basis for optimizing their inhibition potencies and selectivities. PMID:26392512

  3. A Nano-Chip-LC/MS n Based Strategy for Characterization of Modified Nucleosides Using Reduced Porous Graphitic Carbon as a Stationary Phase

    NASA Astrophysics Data System (ADS)

    Giessing, Anders Michael Bernth; Scott, Lincoln Greyson; Kirpekar, Finn

    2011-07-01

    LC/MS analysis of ribonucleosides is traditionally performed by reverse phase chromatography on silica based C18 type stationary phases using MS compatible buffers and methanol or acetonitrile gradients. Due to the hydrophilic and polar nature of nucleosides, down-scaling C18 analytical methods to a two-column nano-flow setup is inherently difficult. We present a nano-chip LC/MS ion-trap strategy for routine characterization of RNA nucleosides in the fmol range. Nucleosides were analyzed in positive ion mode by reverse phase chromatography using a 75 μ × 150 mm, 5 μ particle porous graphitic carbon (PGC) chip with an integrated 9 mm, 160 nL trapping column. Nucleosides were separated using a formic acid/acetonitrile gradient. The method was able to separate isobaric nucleosides as well as nucleosides with isotopic overlap to allow unambiguous MS n identification on a low resolution ion-trap. Synthesis of 5-hydroxycytidine (oh5C) was achieved from 5-hydroxyuracil in a novel three-step enzymatic process. When operated in its native state using formic acid/acetonitrile, PGC oxidized oh5C to its corresponding glycols and formic acid conjugates. Reduction of the PGC stationary phase was achieved by flushing the chip with 2.5 mM oxalic acid and adding 1 mM oxalic acid to the online solvents. Analyzed under reduced chromatographic conditions oh5C was readily identified by its MH+ m/z 260 and MSn fragmentation pattern. This investigation is, to our knowledge, the first instance where oxalic acid has been used as an online reducing agent for LC/MS. The method was subsequently used for complete characterization of nucleosides found in tRNAs using both PGC and C18 chips.

  4. Lethal Mutagenesis of Poliovirus Mediated by a Mutagenic Pyrimidine Analogue▿

    PubMed Central

    Graci, Jason D.; Harki, Daniel A.; Korneeva, Victoria S.; Edathil, Jocelyn P.; Too, Kathleen; Franco, David; Smidansky, Eric D.; Paul, Aniko V.; Peterson, Blake R.; Brown, Daniel M.; Loakes, David; Cameron, Craig E.

    2007-01-01

    Lethal mutagenesis is the mechanism of action of ribavirin against poliovirus (PV) and numerous other RNA viruses. However, there is still considerable debate regarding the mechanism of action of ribavirin against a variety of RNA viruses. Here we show by using T7 RNA polymerase-mediated production of PV genomic RNA, PV polymerase-catalyzed primer extension, and cell-free PV synthesis that a pyrimidine ribonucleoside triphosphate analogue (rPTP) with ambiguous base-pairing capacity is an efficient mutagen of the PV genome. The in vitro incorporation properties of rPTP are superior to ribavirin triphosphate. We observed a log-linear relationship between virus titer reduction and the number of rPMP molecules incorporated. A PV genome encoding a high-fidelity polymerase was more sensitive to rPMP incorporation, consistent with diminished mutational robustness of high-fidelity PV. The nucleoside (rP) did not exhibit antiviral activity in cell culture, owing to the inability of rP to be converted to rPMP by cellular nucleotide kinases. rP was also a poor substrate for herpes simplex virus thymidine kinase. The block to nucleoside phosphorylation could be bypassed by treatment with the P nucleobase, which exhibited both antiviral activity and mutagenesis, presumably a reflection of rP nucleotide formation by a nucleotide salvage pathway. These studies provide additional support for lethal mutagenesis as an antiviral strategy, suggest that rPMP prodrugs may be highly efficacious antiviral agents, and provide a new tool to determine the sensitivity of RNA virus genomes to mutagenesis as well as interrogation of the impact of mutational load on the population dynamics of these viruses. PMID:17686844

  5. 227 Views of RNA: Is RNA Unique in Its Chemical Isomer Space?

    PubMed Central

    Meringer, Markus; Goodwin, Jay

    2015-01-01

    Abstract Ribonucleic acid (RNA) is one of the two nucleic acids used by extant biochemistry and plays a central role as the intermediary carrier of genetic information in transcription and translation. If RNA was involved in the origin of life, it should have a facile prebiotic synthesis. A wide variety of such syntheses have been explored. However, to date no one-pot reaction has been shown capable of yielding RNA monomers from likely prebiotically abundant starting materials, though this does not rule out the possibility that simpler, more easily prebiotically accessible nucleic acids may have preceded RNA. Given structural constraints, such as the ability to form complementary base pairs and a linear covalent polymer, a variety of structural isomers of RNA could potentially function as genetic platforms. By using structure-generation software, all the potential structural isomers of the ribosides (BC5H9O4, where B is nucleobase), as well as a set of simpler minimal analogues derived from them, that can potentially serve as monomeric building blocks of nucleic acid–like molecules are enumerated. Molecules are selected based on their likely stability under biochemically relevant conditions (e.g., moderate pH and temperature) and the presence of at least two functional groups allowing the monomers to be incorporated into linear polymers. The resulting structures are then evaluated by using molecular descriptors typically applied in quantitative structure–property relationship (QSPR) studies and predicted physicochemical properties. Several databases have been queried to determine whether any of the computed isomers had been synthesized previously. Very few of the molecules that emerge from this structure set have been previously described. We conclude that ribonucleosides may have competed with a multitude of alternative structures whose potential proto-biochemical roles and abiotic syntheses remain to be explored. Key Words: Evolution—Chemical evolution

  6. Mixed backbone antisense oligonucleotides: design, biochemical and biological properties of oligonucleotides containing 2'-5'-ribo- and 3'-5'-deoxyribonucleotide segments.

    PubMed Central

    Kandimalla, E R; Manning, A; Zhao, Q; Shaw, D R; Byrn, R A; Sasisekharan, V; Agrawal, S

    1997-01-01

    We have designed and synthesized mixed backbone oligonucleotides (MBOs) containing 2'-5'-ribo- and 3'-5'-deoxyribonucleotide segments. Thermal melting studies of the phosphodiester MBOs (three 2'-5'linkages at each end) with the complementary 3'-5'-DNA and -RNA target strands suggest that 2'-5'-ribonucleoside incorporation into 3'-5'-oligodeoxyribonucleotides reduces binding to the target strands compared with an all 3'-5'-oligodeoxyribonucleotide of the same sequence and length. Increasing the number of 2'-5'linkages (from six to nine) further reduces binding to the DNA target strand more than the RNA target strand [Kandimalla,E.R. and Agrawal,S. (1996)Nucleic Acids Symp. Ser., 35, 125-126]. Phosphorothioate (PS) analogs of MBOs destabilize the duplex with the DNA target strand more than the duplex with the RNA target strand. Circular dichroism studies indicate that the duplexes of MBOs with the DNA and RNA target strands have spectral characteristics of both A- and B-type conformations. Compared with the control oligonucleotide, MBOs exhibit moderately higher stability against snake venom phosphodiesterase, S1 nuclease and in fetal calf serum. Although 2'-5'modification does not evoke RNase H activity, this modification does not effect the RNase H activation property of the 3'-5'-deoxyribonucleotide segment adjacent to the modification. In vitro studies with MBOs suggest that they have lesser effects on cell proliferation, clotting prolongation and hemolytic complement lysis than do control PS oligodeoxyribonucleotides. PS analogs of MBOs show HIV-1 inhibition comparable with that of a control PS oligodeoxyribonucleotide with all 3'-5'linkages. The current results suggest that a limited number of 2'-5'linkages could be used in conjunction with PS oligonucleotides to further modulate the properties of antisense oligonucleotides as therapeutic agents. PMID:9016567

  7. Docking of anti-HIV-1 oxoquinoline-acylhydrazone derivatives as potential HSV-1 DNA polymerase inhibitors

    NASA Astrophysics Data System (ADS)

    Yoneda, Julliane Diniz; Albuquerque, Magaly Girão; Leal, Kátia Zaccur; Santos, Fernanda da Costa; Batalha, Pedro Netto; Brozeguini, Leonardo; Seidl, Peter R.; de Alencastro, Ricardo Bicca; Cunha, Anna Cláudia; de Souza, Maria Cecília B. V.; Ferreira, Vitor F.; Giongo, Viveca A.; Cirne-Santos, Cláudio; Paixão, Izabel C. P.

    2014-09-01

    Although there are many antiviral drugs available for the treatment of herpes simplex virus (HSV) infections, still the synthesis of new anti-HSV candidates is an important strategy to be pursued, due to the emergency of resistant HSV strains mainly in human immunodeficiency virus (HIV) co-infected patients. Some 1,4-dihydro-4-oxoquinolines, such as PNU-183792 (1), show a broad spectrum antiviral activity against human herpes viruses, inhibiting the viral DNA polymerase (POL) without affecting the human POLs. Thus, on an ongoing antiviral research project, our group has synthesized ribonucleosides containing the 1,4-dihydro-4-oxoquinoline (quinolone) heterocyclic moiety, such as the 6-Cl derivative (2), which is a dual antiviral agent (HSV-1 and HIV-1). Molecular dynamics simulations of the complexes of 1 and 2 with the HSV-1 POL suggest that structural modifications of 2 should increase its experimental anti-HSV-1 activity, since its ribosyl and carboxyl groups are highly hydrophilic to interact with a hydrophobic pocket of this enzyme. Therefore, in this work, comparative molecular docking simulations of 1 and three new synthesized oxoquinoline-acylhydrazone HIV-1 inhibitors (3-5), which do not contain those hydrophilic groups, were carried out, in order to access these modifications in the proposition of new potential anti-HSV-1 agents, but maintaining the anti-HIV-1 activity. Among the docked compounds, the oxoquinoline-acylhydrazone 3 is the best candidate for an anti-HSV-1 agent, and, in addition, it showed anti-HIV-1 activity (EC50 = 3.4 ± 0.3 μM). Compounds 2 and 3 were used as templates in the design of four new oxoquinoline-acylhydrazones (6-9) as potential anti-HSV-1 agents to increase the antiviral activity of 2. Among the docked compounds, oxoquinoline-acylhydrazone 7 was selected as the best candidate for further development of dual anti-HIV/HSV activity.

  8. Reparameterization of RNA chi Torsion Parameters for the AMBER Force Field and Comparison to NMR Spectra for Cytidine and Uridine.

    PubMed

    Yildirim, Ilyas; Stern, Harry A; Kennedy, Scott D; Tubbs, Jason D; Turner, Douglas H

    2010-05-11

    A reparameterization of the torsional parameters for the glycosidic dihedral angle, chi, for the AMBER99 force field in RNA nucleosides is used to provide a modified force field, AMBER99chi. Molecular dynamics simulations of cytidine, uridine, adenosine, and guanosine in aqueous solution using the AMBER99 and AMBER99chi force fields are compared with NMR results. For each nucleoside and force field, 10 individual molecular dynamics simulations of 30 ns each were run. For cytidine with AMBER99chi force field, each molecular dynamics simulation time was extended to 120 ns for convergence purposes. Nuclear magnetic resonance (NMR) spectroscopy, including one-dimensional (1D) (1)H, steady-state 1D (1)H nuclear Overhauser effect (NOE), and transient 1D (1)H NOE, was used to determine the sugar puckering and preferred base orientation with respect to the ribose of cytidine and uridine. The AMBER99 force field overestimates the population of syn conformations of the base orientation and of C2'-endo sugar puckering of the pyrimidines, while the AMBER99chi force field's predictions are more consistent with NMR results. Moreover, the AMBER99 force field prefers high anti conformations with glycosidic dihedral angles around 310 degrees for the base orientation of purines. The AMBER99chi force field prefers anti conformations around 185 degrees , which is more consistent with the quantum mechanical calculations and known 3D structures of folded ribonucleic acids (RNAs). Evidently, the AMBER99chi force field predicts the structural characteristics of ribonucleosides better than the AMBER99 force field and should improve structural and thermodynamic predictions of RNA structures.

  9. 227 Views of RNA: Is RNA Unique in Its Chemical Isomer Space?

    PubMed

    Cleaves, H James; Meringer, Markus; Goodwin, Jay

    2015-07-01

    Ribonucleic acid (RNA) is one of the two nucleic acids used by extant biochemistry and plays a central role as the intermediary carrier of genetic information in transcription and translation. If RNA was involved in the origin of life, it should have a facile prebiotic synthesis. A wide variety of such syntheses have been explored. However, to date no one-pot reaction has been shown capable of yielding RNA monomers from likely prebiotically abundant starting materials, though this does not rule out the possibility that simpler, more easily prebiotically accessible nucleic acids may have preceded RNA. Given structural constraints, such as the ability to form complementary base pairs and a linear covalent polymer, a variety of structural isomers of RNA could potentially function as genetic platforms. By using structure-generation software, all the potential structural isomers of the ribosides (BC5H9O4, where B is nucleobase), as well as a set of simpler minimal analogues derived from them, that can potentially serve as monomeric building blocks of nucleic acid-like molecules are enumerated. Molecules are selected based on their likely stability under biochemically relevant conditions (e.g., moderate pH and temperature) and the presence of at least two functional groups allowing the monomers to be incorporated into linear polymers. The resulting structures are then evaluated by using molecular descriptors typically applied in quantitative structure-property relationship (QSPR) studies and predicted physicochemical properties. Several databases have been queried to determine whether any of the computed isomers had been synthesized previously. Very few of the molecules that emerge from this structure set have been previously described. We conclude that ribonucleosides may have competed with a multitude of alternative structures whose potential proto-biochemical roles and abiotic syntheses remain to be explored.

  10. Toll-like receptor 4 knockout alleviates paraquat-induced cardiomyocyte contractile dysfunction through an autophagy-dependent mechanism.

    PubMed

    Wang, Shuyi; Zhu, Xiaoling; Xiong, Lize; Zhang, Yingmei; Ren, Jun

    2016-08-22

    Paraquat, a quarternary nitrogen herbicide, is a toxic prooxidant leading to multi-organ failure including the heart although the underlying mechanism remains poorly understood. This study was designed to examine the role of the innate proinflammatory mediator toll-like receptor 4 (TLR4) in paraquat-induced cardiac contractile anomalies and the underlying mechanisms involved with a focus on autophagy, a conservative machinery governing protein and organelle degradation and recycling for cardiac homeostasis. Wild-type (WT) and TLR4 knockout (TLR4(-/-)) mice were challenged with paraquat (45mg/kg, i.p.) for 48h. Paraquat challenge did not affect mRNA levels of TLR2, TLR4 and TLR9 in WT mice nor did paraquat treatment alter TREM-1 levels. Paraquat challenge elicited cardiac mechanical defects including compromised cardiomyocyte contractile function, intracellular Ca(2+) handling, and overt autophagy as manifested by increased LC3BII-to-LC3BI ratio, Atg5, Atg7 and p62 levels. Interestingly, TLR4 knockout significantly attenuated paraquat-induced cardiac contractile and intracellular Ca(2+) derangement as well as alterations of autophagy markers. Paraquat-elicited changes in cardiac autophagy markers (LC3BII, LC3BII-to-LC3BI ratio and p62) were augmented by lysosomal inhibition using bafilomycin A1 in WT mice. TLR4 knockout significantly attenuated or negated paraquat-elicited increase in LC3BII, LC3BII-to-LC3BI ratio and p62 levels in the presence of lysosomal inhibition. In addition, paraquat challenge promoted phosphorylation of AMPK while suppressing the phosphorylation of mTOR and ULK1 (the autophagy inhibitory Ser(757)), the effects of which were significantly attenuated by TLR4 ablation. In vitro study revealed that AMPK activation using AICAR or mTOR inhibition using rapamycin effectively negated the beneficial cardiomyocyte mechanical effects of TLR4 inhibition (CLI-095) against paraquat toxicity, supporting a permissive role for AMPK-mTOR in TLR4 inhibition

  11. Cilostazol Modulates Autophagic Degradation of β-Amyloid Peptide via SIRT1-Coupled LKB1/AMPKα Signaling in Neuronal Cells.

    PubMed

    Park, So Youn; Lee, Hye Rin; Lee, Won Suk; Shin, Hwa Kyoung; Kim, Hye Young; Hong, Ki Whan; Kim, Chi Dae

    2016-01-01

    A neuroprotective role of autophagy mediates the degradation of β-amyloid peptide (Aβ) in Alzheimer's disease (AD). The previous study showed cilostazol modulates autophagy by increasing beclin1, Atg5 and LC3-II expressions, and depletes intracellular Aβ accumulation. This study elucidated the mechanisms through which cilostazol modulates the autophagic degradation of Aβ in neurons. In N2a cells, cilostazol (10-30 μM), significantly increased the expression of P-AMPKα (Thr 172) and downstream P-ACC (acetyl-CoA carboxylase) (Ser 79) as did resveratrol (SIRT1 activator), or AICAR (AMPK activator), which were blocked by KT5720, compound C (AMPK inhibitor), or sirtinol. Furthermore, phosphorylated-mTOR (Ser 2448) and phosphorylated-P70S6K (Thr 389) expressions were suppressed, and LC3-II levels were elevated in association with decreased P62/Sqstm1 by cilostazol. Cilostazol increased cathepsin B activity and decreased p62/SQSTM 1, consequently decreased accumulation of Aβ1-42 in the activated N2aSwe cells, and these results were blocked by sirtinol, compound C and bafilomycin A1 (autophagosome blocker), suggesting enhanced autophagosome formation by cilostazol. In SIRT1 gene-silenced N2a cells, cilostazol failed to increase the expressions of P-LKB1 (Ser 428) and P-AMPKα, which contrasted with its effect in negative control cells transfected with scrambled siRNA duplex. Further, N2a cells transfected with expression vectors encoding pcDNA SIRT1 showed increased P-AMPKα expression, which mimicked the effect of cilostazol in N2a cells; suggesting cilostazol-stimulated expressions of P-LKB1 and P-AMPKα were SIRT1-dependent. Unlike their effects in N2a cells, in HeLa cells, which lack LKB1, cilostazol and resveratrol did not elevate SIRT1 or P-AMPKα expression, indicating cilostazol and resveratrol-stimulated expressions of SIRT1 and P-AMPKα are LKB1-dependent. In conclusion, cilostazol upregulates autophagy by activating SIRT1-coupled P-LKB1/P-AMPKα and

  12. Cilostazol Modulates Autophagic Degradation of β-Amyloid Peptide via SIRT1-Coupled LKB1/AMPKα Signaling in Neuronal Cells

    PubMed Central

    Lee, Won Suk; Shin, Hwa Kyoung; Kim, Hye Young; Hong, Ki Whan; Kim, Chi Dae

    2016-01-01

    A neuroprotective role of autophagy mediates the degradation of β-amyloid peptide (Aβ) in Alzheimer’s disease (AD). The previous study showed cilostazol modulates autophagy by increasing beclin1, Atg5 and LC3-II expressions, and depletes intracellular Aβ accumulation. This study elucidated the mechanisms through which cilostazol modulates the autophagic degradation of Aβ in neurons. In N2a cells, cilostazol (10–30 μM), significantly increased the expression of P-AMPKα (Thr 172) and downstream P-ACC (acetyl-CoA carboxylase) (Ser 79) as did resveratrol (SIRT1 activator), or AICAR (AMPK activator), which were blocked by KT5720, compound C (AMPK inhibitor), or sirtinol. Furthermore, phosphorylated-mTOR (Ser 2448) and phosphorylated-P70S6K (Thr 389) expressions were suppressed, and LC3-II levels were elevated in association with decreased P62/Sqstm1 by cilostazol. Cilostazol increased cathepsin B activity and decreased p62/SQSTM 1, consequently decreased accumulation of Aβ1–42 in the activated N2aSwe cells, and these results were blocked by sirtinol, compound C and bafilomycin A1 (autophagosome blocker), suggesting enhanced autophagosome formation by cilostazol. In SIRT1 gene-silenced N2a cells, cilostazol failed to increase the expressions of P-LKB1 (Ser 428) and P-AMPKα, which contrasted with its effect in negative control cells transfected with scrambled siRNA duplex. Further, N2a cells transfected with expression vectors encoding pcDNA SIRT1 showed increased P-AMPKα expression, which mimicked the effect of cilostazol in N2a cells; suggesting cilostazol-stimulated expressions of P-LKB1 and P-AMPKα were SIRT1-dependent. Unlike their effects in N2a cells, in HeLa cells, which lack LKB1, cilostazol and resveratrol did not elevate SIRT1 or P-AMPKα expression, indicating cilostazol and resveratrol-stimulated expressions of SIRT1 and P-AMPKα are LKB1-dependent. In conclusion, cilostazol upregulates autophagy by activating SIRT1-coupled P-LKB1/P-AMPKα and

  13. Use of human stem cell derived cardiomyocytes to examine sunitinib mediated cardiotoxicity and electrophysiological alterations

    SciTech Connect

    Cohen, J.D.; Babiarz, J.E.; Abrams, R.M.; Guo, L.; Kameoka, S.; Chiao, E.; Taunton, J.; Kolaja, K.L.

    2011-11-15

    Sunitinib, an oral tyrosine kinase inhibitor approved to treat advanced renal cell carcinoma and gastrointestinal stroma tumor, is associated with clinical cardiac toxicity. Although the precise mechanism of sunitinib cardiotoxicity is not known, both the key metabolic energy regulator, AMP-activated protein kinase (AMPK), and ribosomal S 6 kinase (RSK) have been hypothesized as causative, albeit based on rodent models. To study the mechanism of sunitinib-mediated cardiotoxicity in a human model, induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) having electrophysiological and contractile properties of native cardiac tissue were investigated. Sunitinib was cardiotoxic in a dose-dependent manner with an IC{sub 50} in the low micromolar range, observed by a loss of cellular ATP, an increase in oxidized glutathione, and induction of apoptosis in iPSC-CMs. Pretreatment of iPSC-CMs with AMPK activators AICAR or metformin, increased the phosphorylation of pAMPK-T172 and pACC-S79, but only marginally attenuated sunitinib mediated cell death. Furthermore, additional inhibitors of AMPK were not directly cytotoxic to iPSC-CMs up to 250 {mu}M concentrations. Inhibition of RSK with a highly specific, irreversible, small molecule inhibitor (RSK-FMK-MEA) did not induce cytotoxicity in iPSC-CMs below 250 {mu}M. Extensive electrophysiological analysis of sunitinib and RSK-FMK-MEA mediated conduction effects were performed. Taken together, these findings suggest that inhibition of AMPK and RSK are not a major component of sunitinib-induced cardiotoxicity. Although the exact mechanism of cardiotoxicity of sunitinib is not known, it is likely due to inhibition of multiple kinases simultaneously. These data highlight the utility of human iPSC-CMs in investigating the potential molecular mechanisms underlying drug-induced cardiotoxicity. -- Highlights: Black-Right-Pointing-Pointer Cytoxic effect of sunitinib on human stem cell derived cardiomyocytes Black

  14. Toll-like receptor 4 knockout alleviates paraquat-induced cardiomyocyte contractile dysfunction through an autophagy-dependent mechanism.

    PubMed

    Wang, Shuyi; Zhu, Xiaoling; Xiong, Lize; Zhang, Yingmei; Ren, Jun

    2016-08-22

    Paraquat, a quarternary nitrogen herbicide, is a toxic prooxidant leading to multi-organ failure including the heart although the underlying mechanism remains poorly understood. This study was designed to examine the role of the innate proinflammatory mediator toll-like receptor 4 (TLR4) in paraquat-induced cardiac contractile anomalies and the underlying mechanisms involved with a focus on autophagy, a conservative machinery governing protein and organelle degradation and recycling for cardiac homeostasis. Wild-type (WT) and TLR4 knockout (TLR4(-/-)) mice were challenged with paraquat (45mg/kg, i.p.) for 48h. Paraquat challenge did not affect mRNA levels of TLR2, TLR4 and TLR9 in WT mice nor did paraquat treatment alter TREM-1 levels. Paraquat challenge elicited cardiac mechanical defects including compromised cardiomyocyte contractile function, intracellular Ca(2+) handling, and overt autophagy as manifested by increased LC3BII-to-LC3BI ratio, Atg5, Atg7 and p62 levels. Interestingly, TLR4 knockout significantly attenuated paraquat-induced cardiac contractile and intracellular Ca(2+) derangement as well as alterations of autophagy markers. Paraquat-elicited changes in cardiac autophagy markers (LC3BII, LC3BII-to-LC3BI ratio and p62) were augmented by lysosomal inhibition using bafilomycin A1 in WT mice. TLR4 knockout significantly attenuated or negated paraquat-elicited increase in LC3BII, LC3BII-to-LC3BI ratio and p62 levels in the presence of lysosomal inhibition. In addition, paraquat challenge promoted phosphorylation of AMPK while suppressing the phosphorylation of mTOR and ULK1 (the autophagy inhibitory Ser(757)), the effects of which were significantly attenuated by TLR4 ablation. In vitro study revealed that AMPK activation using AICAR or mTOR inhibition using rapamycin effectively negated the beneficial cardiomyocyte mechanical effects of TLR4 inhibition (CLI-095) against paraquat toxicity, supporting a permissive role for AMPK-mTOR in TLR4 inhibition

  15. Vascular O-GlcNAcylation augments reactivity to constrictor stimuli by prolonging phosphorylated levels of the myosin light chain.

    PubMed

    Lima, V V; Lobato, N S; Filgueira, F P; Webb, R C; Tostes, R C; Giachini, F R

    2014-10-01

    O-GlcNAcylation is a modification that alters the function of numerous proteins. We hypothesized that augmented O-GlcNAcylation levels enhance myosin light chain kinase (MLCK) and reduce myosin light chain phosphatase (MLCP) activity, leading to increased vascular contractile responsiveness. The vascular responses were measured by isometric force displacement. Thoracic aorta and vascular smooth muscle cells (VSMCs) from rats were incubated with vehicle or with PugNAc, which increases O-GlcNAcylation. In addition, we determined whether proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation. PugNAc enhanced phenylephrine (PE) responses in rat aortas (maximal effect, 14.2 ± 2 vs 7.9 ± 1 mN for vehicle, n=7). Treatment with an MLCP inhibitor (calyculin A) augmented vascular responses to PE (13.4 ± 2 mN) and abolished the differences in PE-response between the groups. The effect of PugNAc was not observed when vessels were preincubated with ML-9, an MLCK inhibitor (7.3 ± 2 vs 7.5 ± 2 mN for vehicle, n=5). Furthermore, our data showed that differences in the PE-induced contractile response between the groups were abolished by the activator of AMP-activated protein kinase (AICAR; 6.1 ± 2 vs 7.4 ± 2 mN for vehicle, n=5). PugNAc increased phosphorylation of myosin phosphatase target subunit 1 (MYPT-1) and protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17), which are involved in RhoA/Rho-kinase-mediated inhibition of myosin phosphatase activity. PugNAc incubation produced a time-dependent increase in vascular phosphorylation of myosin light chain and decreased phosphorylation levels of AMP-activated protein kinase, which decreased the affinity of MLCK for Ca(2+)/calmodulin. Our data suggest that proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation, favoring vascular contraction. PMID:25140811

  16. Visfatin is expressed in human granulosa cells: regulation by metformin through AMPK/SIRT1 pathways and its role in steroidogenesis.

    PubMed

    Reverchon, Maxime; Cornuau, Marion; Cloix, Lucie; Ramé, Christelle; Guerif, Fabrice; Royère, Dominique; Dupont, Joëlle

    2013-05-01

    Visfatin is a cytokine hormone and an enzyme involved in metabolic (obesity, type II diabetes) and immune disorders. Some data suggest a role of visfatin in ovarian function. Here, we identified visfatin in human follicles and investigated the molecular mechanisms involved in the regulation of its expression in response to insulin sensitizers, metformin (MetF) and rosiglitazone, in primary human granulosa cells (hGCs) and in a human ovarian granulosa-like tumour cell line (KGN). We also studied the effects of human recombinant visfatin (RhVisf) on steroid production and on the activation of various signalling pathways. By RT-PCR, immunoblotting and immunohistochemistry, we showed that visfatin is expressed not only in hGCs and KGN cells, but also in human cumulus cells and oocytes. In hGCs and KGN cells, MetF increased visfatin mRNA in a dose-dependent manner (0.1, 1 and 10 mM), and rosiglitazone increased visfatin mRNA expression (only at 10 μM) after treatments for 24 h, whereas both reduced it after 48 h of incubation. This regulation was confirmed at the protein level for the MetF treatment only. Using the compound C and Aicar, inhibitor and activator of AMP-activated protein kinase (AMPK), respectively, and Sirtinol, an inhibitor of sirtuin-1 (SIRT1), we observed that these MetF effects on visfatin expression were mediated through the AMPK/SIRT1 signalling pathways. RhVisf (10 ng/ml) significantly increased insulin-like growth factor-1 (IGF-1) (10 nM)- but not FSH (10 nM)-induced secretion of progesterone and estradiol as determined by radioimmunoassay and IGF-1-induced thymidine incorporation in hGCs and KGN cells. Finally, rhVisf rapidly activates the mitogen-activated protein kinase pathway via ERK1/2, P38 and Akt phosphorylation under basal conditions in primary hGC cells. In conclusion, visfatin is present in ovarian human follicles, and in hGCs and KGN cells, visfatin increases IGF-1-induced steroidogenesis and cell proliferation and MetF regulates

  17. Vascular O-GlcNAcylation augments reactivity to constrictor stimuli by prolonging phosphorylated levels of the myosin light chain.

    PubMed

    Lima, V V; Lobato, N S; Filgueira, F P; Webb, R C; Tostes, R C; Giachini, F R

    2014-10-01

    O-GlcNAcylation is a modification that alters the function of numerous proteins. We hypothesized that augmented O-GlcNAcylation levels enhance myosin light chain kinase (MLCK) and reduce myosin light chain phosphatase (MLCP) activity, leading to increased vascular contractile responsiveness. The vascular responses were measured by isometric force displacement. Thoracic aorta and vascular smooth muscle cells (VSMCs) from rats were incubated with vehicle or with PugNAc, which increases O-GlcNAcylation. In addition, we determined whether proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation. PugNAc enhanced phenylephrine (PE) responses in rat aortas (maximal effect, 14.2 ± 2 vs 7.9 ± 1 mN for vehicle, n=7). Treatment with an MLCP inhibitor (calyculin A) augmented vascular responses to PE (13.4 ± 2 mN) and abolished the differences in PE-response between the groups. The effect of PugNAc was not observed when vessels were preincubated with ML-9, an MLCK inhibitor (7.3 ± 2 vs 7.5 ± 2 mN for vehicle, n=5). Furthermore, our data showed that differences in the PE-induced contractile response between the groups were abolished by the activator of AMP-activated protein kinase (AICAR; 6.1 ± 2 vs 7.4 ± 2 mN for vehicle, n=5). PugNAc increased phosphorylation of myosin phosphatase target subunit 1 (MYPT-1) and protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17), which are involved in RhoA/Rho-kinase-mediated inhibition of myosin phosphatase activity. PugNAc incubation produced a time-dependent increase in vascular phosphorylation of myosin light chain and decreased phosphorylation levels of AMP-activated protein kinase, which decreased the affinity of MLCK for Ca(2+)/calmodulin. Our data suggest that proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation, favoring vascular contraction.

  18. Vascular O-GlcNAcylation augments reactivity to constrictor stimuli by prolonging phosphorylated levels of the myosin light chain

    PubMed Central

    Lima, V.V.; Lobato, N.S.; Filgueira, F.P.; Webb, R.C.; Tostes, R.C.; Giachini, F.R.

    2014-01-01

    O-GlcNAcylation is a modification that alters the function of numerous proteins. We hypothesized that augmented O-GlcNAcylation levels enhance myosin light chain kinase (MLCK) and reduce myosin light chain phosphatase (MLCP) activity, leading to increased vascular contractile responsiveness. The vascular responses were measured by isometric force displacement. Thoracic aorta and vascular smooth muscle cells (VSMCs) from rats were incubated with vehicle or with PugNAc, which increases O-GlcNAcylation. In addition, we determined whether proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation. PugNAc enhanced phenylephrine (PE) responses in rat aortas (maximal effect, 14.2±2 vs 7.9±1 mN for vehicle, n=7). Treatment with an MLCP inhibitor (calyculin A) augmented vascular responses to PE (13.4±2 mN) and abolished the differences in PE-response between the groups. The effect of PugNAc was not observed when vessels were preincubated with ML-9, an MLCK inhibitor (7.3±2 vs 7.5±2 mN for vehicle, n=5). Furthermore, our data showed that differences in the PE-induced contractile response between the groups were abolished by the activator of AMP-activated protein kinase (AICAR; 6.1±2 vs 7.4±2 mN for vehicle, n=5). PugNAc increased phosphorylation of myosin phosphatase target subunit 1 (MYPT-1) and protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17), which are involved in RhoA/Rho-kinase-mediated inhibition of myosin phosphatase activity. PugNAc incubation produced a time-dependent increase in vascular phosphorylation of myosin light chain and decreased phosphorylation levels of AMP-activated protein kinase, which decreased the affinity of MLCK for Ca2+/calmodulin. Our data suggest that proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation, favoring vascular contraction. PMID:25140811

  19. Beta-adrenergic stimulation of skeletal muscle HSL can be overridden by AMPK signaling.

    PubMed

    Watt, Matthew J; Steinberg, Gregory R; Chan, Stanley; Garnham, Andrew; Kemp, Bruce E; Febbraio, Mark A

    2004-09-01

    Hormone-sensitive lipase (HSL), an important regulatory enzyme for triacylglycerol hydrolysis within skeletal muscle, is controlled by beta-adrenergic signaling as well as intrinsic factors related to contraction and energy turnover. In the current study, we tested the capacity of 5'AMP-activated protein kinase (AMPK) to suppress beta-adrenergic stimulation of HSL activity. Eight male subjects completed 60 min of cycle exercise at 70% VO2 peak on two occasions: either with normal (CON) or low (LG) pre-exercise muscle glycogen content, which is known to enhance exercise-induced AMPK activity. Muscle samples were obtained before and immediately after exercise. Pre-exercise glycogen averaged 375 +/- 35 and 163 +/- 27 mmol x kg(-1) dm for CON and LG, respectively. AMPK alpha-2 was not different between trials at rest and was increased (3.7-fold, P<0.05) by exercise during LG only. HSL activity did not differ between trials at rest and increased (0 min: 1.67 +/- 0.13; 60 min: 2.60 +/- 0.26 mmol x min(-1) x kg(-1) dm) in CON. The exercise-induced increase in HSL activity was attenuated by AMPK alpha-2 activation in LG. The attenuated HSL activity during LG occurred despite higher plasma epinephrine levels (60 min: CON, 1.96 +/- 0.29 vs LG, 4.25 +/- 0.60 nM, P<0.05) compared with CON. Despite the attenuated HSL activity in LG, IMTG was decreased by exercise (0 min: 27.1 +/- 2.0; 60 min: 22.5 +/- 2.0 mmol x kg(-1) dm, P<0.05), whereas no net reduction occurred in CON. To confirm the apparent effect of AMPK on HSL activity, we performed experiments in muscle cell culture. The epineprine-induced increase in HSL activity was totally attenuated (P<0.05) by AICAR administration in L6 myotubes. These data provide new evidence indicating that AMPK is a major regulator of skeletal muscle HSL activity that can override beta-adrenergic stimulation. However, the increased IMTG degradation in LG suggests factors other than HSL activity are important for IMTG degradation.

  20. Role of arginine 293 and glutamine 288 in communication between catalytic and allosteric sites in yeast ribonucleotide reductase.

    PubMed

    Ahmad, Md Faiz; Kaushal, Prem Singh; Wan, Qun; Wijerathna, Sanath R; An, Xiuxiang; Huang, Mingxia; Dealwis, Chris Godfrey

    2012-06-22

    Ribonucleotide reductases (RRs) catalyze the rate-limiting step of de novo deoxynucleotide (dNTP) synthesis. Eukaryotic RRs consist of two proteins, RR1 (α) that contains the catalytic site and RR2 (β) that houses a diferric-tyrosyl radical essential for ribonucleoside diphosphate reduction. Biochemical analysis has been combined with isothermal titration calorimetry (ITC), X-ray crystallography and yeast genetics to elucidate the roles of two loop 2 mutations R293A and Q288A in Saccharomyces cerevisiae RR1 (ScRR1). These mutations, R293A and Q288A, cause lethality and severe S phase defects, respectively, in cells that use ScRR1 as the sole source of RR1 activity. Compared to the wild-type enzyme activity, R293A and Q288A mutants show 4% and 15%, respectively, for ADP reduction, whereas they are 20% and 23%, respectively, for CDP reduction. ITC data showed that R293A ScRR1 is unable to bind ADP and binds CDP with 2-fold lower affinity compared to wild-type ScRR1. With the Q288A ScRR1 mutant, there is a 6-fold loss of affinity for ADP binding and a 2-fold loss of affinity for CDP compared to the wild type. X-ray structures of R293A ScRR1 complexed with dGTP and AMPPNP-CDP [AMPPNP, adenosine 5-(β,γ-imido)triphosphate tetralithium salt] reveal that ADP is not bound at the catalytic site, and CDP binds farther from the catalytic site compared to wild type. Our in vivo functional analyses demonstrated that R293A cannot support mitotic growth, whereas Q288A can, albeit with a severe S phase defect. Taken together, our structure, activity, ITC and in vivo data reveal that the arginine 293 and glutamine 288 residues of ScRR1 are crucial in facilitating ADP and CDP substrate selection.

  1. Mapping the Transcriptome-Wide Landscape of RBP Binding Sites Using gPAR-CLIP-seq: Bioinformatic Analysis.

    PubMed

    Freeberg, Mallory A; Kim, John K

    2016-01-01

    Protein-RNA interactions are integral components of posttranscriptional gene regulatory processes including mRNA processing and assembly of cellular architectures. Dysregulation of RNA-binding protein (RBP) expression or disruptions in RBP-RNA interactions underlie a variety of human pathologies and genetic diseases including cancer and neurodegenerative diseases (reviewed in (Cooper et al., Cell 136(4):777-793, 2009; Darnell, Cancer Res Treat 42(3):125-129, 2010; Lukong et al., Trends Genet 24 (8):416-425, 2008)). Recent studies have uncovered only a small proportion of the extensive RBP-RNA interactome in any organism (Baltz et al., Mol Cell 46(5):674-690, 2012; Castello et al., Cell 149(6):1393-1406, 2012; Freeberg et al., Genome Biol 14(2):R13, 2013; Hogan et al., PLoS Biol 6(10):e255, 2008; Mitchell et al., Nat Struct Mol Biol 20(1):127-133, 2013; Tsvetanova et al. PLoS One 5(9): pii: e12671, 2010; Schueler et al., Genome Biol 15(1):R15, 2014; Silverman et al., Genome Biol 15(1):R3, 2014). To expand our understanding of how RBP-RNA interactions govern RNA-related processes, we developed gPAR-CLIP-seq (global photoactivatable-ribonucleoside-enhanced cross-linking and precipitation followed by deep sequencing) for capturing and sequencing all regions of the Saccharomyces cerevisiae transcriptome bound by RBPs (Freeberg et al., Genome Biol 14(2):R13, 2013). This chapter describes a pipeline for bioinformatic analysis of gPAR-CLIP-seq data. The first half of this pipeline can be implemented by running locally installed programs or by running the programs using the Galaxy platform (Blankenberg et al., Curr Protoc Mol Biol. Chapter 19:Unit 19 10 11-21, 2010; Giardine et al., Genome Res 15 (10):1451-1455, 2005; Goecks et al., Genome Biol 11(8):R86, 2010). The second half of this pipeline can be implemented by user-generated code in any language using the pseudocode provided as a template. PMID:26483018

  2. Diadenosine 5',5'''-P1, P4-tetraphosphate alpha, beta-phosphorylase from yeast supports nucleoside diphosphate-phosphate exchange.

    PubMed

    Guranowski, A; Blanquet, S

    1986-05-01

    Homogeneous diadenosine 5',5'''-P1,P4-tetraphosphate alpha, beta-phosphorylase (Ap4A-phosphorylase), the enzyme recently found in yeast (Guranowski, A., and Blanquet, S. (1985) J. Biol. Chem. 260, 3542-3547) catalyzes an exchange reaction between the beta-phosphate of nucleoside diphosphate (NDP) and orthophosphate from the medium (Pi). The common purine and pyrimidine ribonucleoside diphosphates as well as ADP analogs modified either in aglycone, sugar, or at the anhydride bond beta-position are substrates. The Km and rate values for the NDP-Pi exchange reaction were estimated at pH optima. These optima are 6.5 for UDP, 7.0 for ADP or CDP, and 8.0 for GDP. In the presence of 10 mM K2HPO4, 0.1 mM EDTA, and 100 mM Hepes/KOH (pH 7.0), the Km for ADP is 0.7 mM with a rate constant at saturating ADP of 96 s-1. The Km value for orthophosphate is 2 mM. In the NDP-Pi exchange reaction, phosphate can be substituted with arsenate and apparent arsenolysis of NDPs yields corresponding nucleoside monophosphates. The same pH optimum of 6.5 is found for arsenolysis of ADP, GDP, and CDP. Whereas the Ap4A phosphorylase sulfhydryl groups are essential for catalyzing the Ap4A phosphorolysis, the NDP-Pi exchange reactions, and the arsenolysis of NDPs, the divalent metal ions (Mg2+, Mn2+, Ca2+, Co2+, and Cd2+), which had been shown to be essential cofactors of the former reaction, are not required for the two latter ones. Used at concentrations which are optimum for Ap4A phosphorolysis, the cations (particularly Mg2+ and Cd2+) inhibit the NDP-Pi exchange and the arsenolysis of NDPs. Interestingly, the Ap4A phosphorylase exhibits higher specificity for adenosine 5'-phosphosulfate (APS) than for any other NDP tested. The V/Km ratio is almost 5-fold higher with APS than with ADP. However, in the presence of orthophosphate, the APS is irreversibly converted to ADP. Thus, the enzyme displays a property already attributed to ADP-sulfurylase (EC 2.7.7.5), (Grunberg-Manago, M., Del Campillo

  3. The progene hypothesis: the nucleoprotein world and how life began.

    PubMed

    Altstein, Anatoly D

    2015-01-01

    In this article, I review the results of studies on the origin of life distinct from the popular RNA world hypothesis. The alternate scenario postulates the origin of the first bimolecular genetic system (a polynucleotide gene and a polypeptide processive polymerase) with simultaneous replication and translation and includes the following key features: 1. The bimolecular genetic system emerges not from mononucleotides and monoamino acids, but from progenes, namely, trinucleotides aminoacylated on 3'-end by a non-random amino acid (NpNpNp ~ pX ~ Aa, where N--deoxyribo- or ribonucleoside, p--phosphate, X--a bifunctional agent, for example ribose, Aa--amino acid, ~ macroerge bond). Progenes are used as substrates for simultaneous synthesis of a polynucleotide and a polypeptide. Growth of the system is controlled by the growing polypeptide, and the bimolecular genetic system emerges as an extremely rare event. The first living being (virus-like organism protoviroid, Protoviroidum primum) arises and reproduces in prebiotic liposome-like structures using progenes. A population of protoviroids possessing the genetic system evolves in accordance with the Darwinian principle. Early evolution from protoviroid world to protocell world is shortly described. 2. The progene forming mechanism (NpNp + Np ~ pX ~ Aa) makes it possible to explain the emergence of the prebiotic physicochemical group genetic code, as well as the selection of organic compounds for the future genetic system from the racemic environment. 3. The protoviroid is reproduced on a progene basis via replicative transcription-translation (RTT, the first molecular genetic process) that is similar to its modern counterparts. Nothing is required for the emergence and reproduction of the protoviroid except for progenes and conditions for their formation. 4. The general scheme of early evolution is as follows: prebiotic world → protoviroid (nucleoprotein) world → protocell (DNA-RNA-protein) world → LUCA

  4. The Relative Reactivity of Deoxyribose and Ribose: Did DNA Come Before RNA?

    NASA Technical Reports Server (NTRS)

    Dworkin, Jason P.; Miller, Stanley L.

    1995-01-01

    If it is assumed that there was a precursor to the ribose-phosphate backbone of RNA in the preRNA world (such as peptide nucleic acid), then the entry of various sugars into the genetic material may be related to the stability and non-enzymatic reactivity of the aldose. The rate of decomposition of 2-deoxyribose has been determined to be 1/3 that of ribose. In addition we have measured the amount of free aldehyde by H-1 and C-13 NMR and find that it has approximately 0.15% free aldehyde compared to 0.05% for ribose at 25 C. This suggests that deoxyribose would be significantly more reactive with early bases in the absence of enzymes. This is confirmed by urazole and deoxyribose reacting to form the deoxynucleoside 45 times faster as 25 C than urazole reacts with ribose to form the Ribonucleoside. Urazole is a potential precursor of uracil and is a plausible prebiotic compound which reacts with aldoses to form nucleosides. Thus the non-enzymatic reactivity of deoxyribose would favor its early use over ribose until enzymes could change the relative reactivities. Most of the reasons that RNA is presumed to have come before DNA are extrapolations back from contemporary metabolism (e.g. the abundance of ribose based coenzymes, the biosynthesis of histidine, deoxyribonucleotides are synthesized from ribonucleotides, etc.). It is very difficult to reconstruct biochemical pathways much before the last common ancestor, and it is even more difficult to do more than guess at the biochemistry of very early self-replicating systems. Thus we believe that these reasons are not compelling and that the non-enzymatic chemistry may be more important than enzymatic pathways for constructing the earliest of biochemical pathways. While the RNA world has been discussed at great length, there has not been an exploration of the transition out of the RNA world. We have constructed many possible schemes of genetic takeover events from preRNA to modern DNA, RNA, protein system which could

  5. Molecular Characterization of Organelle-Type Nudix Hydrolases in Arabidopsis1[W

    PubMed Central

    Ogawa, Takahisa; Yoshimura, Kazuya; Miyake, Hiroe; Ishikawa, Kazuya; Ito, Daisuke; Tanabe, Noriaki; Shigeoka, Shigeru

    2008-01-01

    Nudix (for nucleoside diphosphates linked to some moiety X) hydrolases act to hydrolyze ribonucleoside and deoxyribonucleoside triphosphates, nucleotide sugars, coenzymes, or dinucleoside polyphosphates. Arabidopsis (Arabidopsis thaliana) contains 27 genes encoding Nudix hydrolase homologues (AtNUDX1 to -27) with a predicted distribution in the cytosol, mitochondria, and chloroplasts. Previously, cytosolic Nudix hydrolases (AtNUDX1 to -11 and -25) were characterized. Here, we conducted a characterization of organelle-type AtNUDX proteins (AtNUDX12 to -24, -26, and -27). AtNUDX14 showed pyrophosphohydrolase activity toward both ADP-ribose and ADP-glucose, although its Km value was approximately 100-fold lower for ADP-ribose (13.0 ± 0.7 μm) than for ADP-glucose (1,235 ± 65 μm). AtNUDX15 hydrolyzed not only reduced coenzyme A (118.7 ± 3.4 μm) but also a wide range of its derivatives. AtNUDX19 showed pyrophosphohydrolase activity toward both NADH (335.3 ± 5.4 μm) and NADPH (36.9 ± 3.5 μm). AtNUDX23 had flavin adenine dinucleotide pyrophosphohydrolase activity (9.1 ± 0.9 μm). Both AtNUDX26 and AtNUDX27 hydrolyzed diadenosine polyphosphates (n = 4–5). A confocal microscopic analysis using a green fluorescent protein fusion protein showed that AtNUDX15 is distributed in mitochondria and AtNUDX14 -19, -23, -26, and -27 are distributed in chloroplasts. These AtNUDX mRNAs were detected ubiquitously in various Arabidopsis tissues. The T-DNA insertion mutants of AtNUDX13, -14, -15, -19, -20, -21, -25, -26, and -27 did not exhibit any phenotypical differences under normal growth conditions. These results suggest that Nudix hydrolases in Arabidopsis control a variety of metabolites and are pertinent to a wide range of physiological processes. PMID:18815383

  6. Role of Arginine 293 and Glutamine 288 in Communication between Catalytic and Allosteric Sites in Yeast Ribonucleotide Reductase

    SciTech Connect

    Ahmad, Md. Faiz; Kaushal, Prem Singh; Wan, Qun; Wijerathna, Sanath R.; An, Xiuxiang; Huang, Mingxia; Dealwis, Chris Godfrey

    2012-11-01

    Ribonucleotide reductases (RRs) catalyze the rate-limiting step of de novo deoxynucleotide (dNTP) synthesis. Eukaryotic RRs consist of two proteins, RR1 ({alpha}) that contains the catalytic site and RR2 ({beta}) that houses a diferric-tyrosyl radical essential for ribonucleoside diphosphate reduction. Biochemical analysis has been combined with isothermal titration calorimetry (ITC), X-ray crystallography and yeast genetics to elucidate the roles of two loop 2 mutations R293A and Q288A in Saccharomyces cerevisiae RR1 (ScRR1). These mutations, R293A and Q288A, cause lethality and severe S phase defects, respectively, in cells that use ScRR1 as the sole source of RR1 activity. Compared to the wild-type enzyme activity, R293A and Q288A mutants show 4% and 15%, respectively, for ADP reduction, whereas they are 20% and 23%, respectively, for CDP reduction. ITC data showed that R293A ScRR1 is unable to bind ADP and binds CDP with 2-fold lower affinity compared to wild-type ScRR1. With the Q288A ScRR1 mutant, there is a 6-fold loss of affinity for ADP binding and a 2-fold loss of affinity for CDP compared to the wild type. X-ray structures of R293A ScRR1 complexed with dGTP and AMPPNP-CDP [AMPPNP, adenosine 5-({beta},{gamma}-imido)triphosphate tetralithium salt] reveal that ADP is not bound at the catalytic site, and CDP binds farther from the catalytic site compared to wild type. Our in vivo functional analyses demonstrated that R293A cannot support mitotic growth, whereas Q288A can, albeit with a severe S phase defect. Taken together, our structure, activity, ITC and in vivo data reveal that the arginine 293 and glutamine 288 residues of ScRR1 are crucial in facilitating ADP and CDP substrate selection.

  7. The progene hypothesis: the nucleoprotein world and how life began.

    PubMed

    Altstein, Anatoly D

    2015-11-26

    In this article, I review the results of studies on the origin of life distinct from the popular RNA world hypothesis. The alternate scenario postulates the origin of the first bimolecular genetic system (a polynucleotide gene and a polypeptide processive polymerase) with simultaneous replication and translation and includes the following key features: 1. The bimolecular genetic system emerges not from mononucleotides and monoamino acids, but from progenes, namely, trinucleotides aminoacylated on 3'-end by a non-random amino acid (NpNpNp ~ pX ~ Aa, where N--deoxyribo- or ribonucleoside, p--phosphate, X--a bifunctional agent, for example ribose, Aa--amino acid, ~ macroerge bond). Progenes are used as substrates for simultaneous synthesis of a polynucleotide and a polypeptide. Growth of the system is controlled by the growing polypeptide, and the bimolecular genetic system emerges as an extremely rare event. The first living being (virus-like organism protoviroid, Protoviroidum primum) arises and reproduces in prebiotic liposome-like structures using progenes. A population of protoviroids possessing the genetic system evolves in accordance with the Darwinian principle. Early evolution from protoviroid world to protocell world is shortly described. 2. The progene forming mechanism (NpNp + Np ~ pX ~ Aa) makes it possible to explain the emergence of the prebiotic physicochemical group genetic code, as well as the selection of organic compounds for the future genetic system from the racemic environment. 3. The protoviroid is reproduced on a progene basis via replicative transcription-translation (RTT, the first molecular genetic process) that is similar to its modern counterparts. Nothing is required for the emergence and reproduction of the protoviroid except for progenes and conditions for their formation. 4. The general scheme of early evolution is as follows: prebiotic world → protoviroid (nucleoprotein) world → protocell (DNA-RNA-protein) world → LUCA

  8. Purification of glutamate dehydrogenase isoenzymes and characterization of their substrate specificities.

    PubMed

    Osuji, Godson O; Braithwaite, Cleantis; Fordjour, Kusi; Madu, Wenceslaus C; Beyene, Asefa; Roberts, Paul S; Wright, Victor

    2003-02-01

    Glutamate dehydrogenase (GDH) isoenzymes were purified from control, and ribonucleoside triphosphate (NTP)-treated peanut seedlings. GDH purification was by preparative-scale, free solution isoelectric focusing, followed by native PAGE, and the cryoelectrophoretic elution of the isoenzymes from the gel. SDS-PAGE of the purified GDH isoenzymes, followed by either silver staining of the gel, or western analysis using anti-GDH antibody, gave identical GDH polypeptide (a, alpha, and b) bands, thus, confirming the purity of the isoenzymes. The substrate specificities in the aminating activity of the GDH isoenzymes, or disaggregated polypeptides were determined by photometry, but the substrate specificities in the RNA synthesis activity were determined in cocktails containing 0.06-0.8 mM of each of UTP, ATP, GTP, and CTP, 0-100.0 mM NH4Cl, 0-50.0 mM alpha-ketoglutaratr (alpha-KG), 0-0.2 mM NADH, 0-10.0 mM CaCl2 5 units of DNase 1, antibiotics, and approximately 5 microg pure GDH isoenzymes or polypeptides at pH 8.0, and overnight at 16 degrees C. The GDH polypeptides were active only in amination reaction, but the GDH isoenzymes were active in both amination and RNA synthesis. Whereas, NADH, NH4Cl and alpha-KG served as the substrates for the amination reaction, and as modulators in the RNA synthetic reaction, ATP, GTP, UTP, and CTP served as substrates for theisoenzymes in RNA synthesis reaction. The product RNA was up to 2 microg microg(-1) GDH, and consisted of RNA species in the size ranges of 26, 16, and 5 S rRNAs. DNAse 1 in the assay cocktail ruled out transcription as the mechanism of the RNA synthesis. Addition of [alpha-32P] NTP led to the production of labeled RNA, thus confirming the specificity of NTPs as substrates, and that the RNA was not pre-existing in the reaction cocktail.

  9. Mw Spectroscopy Coupled with Ultrafast UV Laser Vaporization: {RIBOSE} Found in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Cocinero, Emilio J.; Ecija, Patricia; Basterretxea, Francisco J.; Fernandez, Jose A.; Castano, Fernando; Lesarri, Alberto; Grabow, Jens-Uwe

    2012-06-01

    Sugars are aldoses or ketoses with multiple hydroxy groups which have been elusive to spectroscopic studies. Here we report a rotational study of the aldopentose ribose. According to any standard textbook aldopentoses can exhibit either linear forms, cyclic five-membered (furanose) structures or six-membered (pyranose) rings, occurring either as α- or β- anomers depending on the orientation of the hydroxy group at C-1 (anomeric carbon). β-Furanose is predominant in ribonucleosides, RNA, ATP and other biochemically relevant derivatives, but is β-furanose the native form also of free ribose? Recent condensed-phase X-ray and older NMR studies delivered conflicting results. In order to solve this question we conducted a microwave study on D-ribose that, owing to ultrafast UV laser vaporization, has become the first C-5 sugar observed with rotational resolution. The spectrum revealed six conformations of free ribose, preferentially adopting β-pyranose chairs as well as higher-energy α-pyranose forms. The method also allowed for unambiguous distinction between different orientations of the hydroxy groups, which stabilize the structures by cooperative hydrogen-bond networks. No evidence was observed of the α-/β-furanoses or linear forms found in the biochemical derivatives. i) D. Šišak, L. B. McCusker, G. Zandomeneghi, B. H. Meier, D. Bläser, R. Boese, W. B. Schweizer, R. Gylmour and J. D. Dunitz Angew. Chem. Int. Ed. 49, 4503, 2010. ii) W. Saenger Angew. Chem. Int. Ed. 49, 6487, 2010. i) M. Rudrum, and D. F. Shaw, J. Chem. Soc. 52, 1965. ii) R. U. Lemieux and J. D. Stevens Can. J. Chem. 44, 249, 1966. iii) E. Breitmaier and U. Hollstein Org. Magn. Reson. 8, 573, 1976. E. J. Cocinero, A. Lesarri, P. Écija, F. J. Basterretxea, J. U. Grabow, J. A. Fernández and F. Castaño Angew. Chem. Int. Ed. in press: DOI: 10.1002/anie.201107973, 2012.

  10. Escherichia coli Fis and DnaA proteins bind specifically to the nrd promoter region and affect expression of an nrd-lac fusion.

    PubMed Central

    Augustin, L B; Jacobson, B A; Fuchs, J A

    1994-01-01

    The Escherichia coli nrd operon contains the genes encoding the two subunits of ribonucleoside diphosphate reductase. The regulation of the nrd operon has been observed to be very complex. The specific binding of two proteins to the nrd regulatory region and expression of mutant nrd-lac fusions that do not bind these proteins are described. A partially purified protein from an E. coli cell extract was previously shown to bind to the promoter region and to regulate transcription of the nrd operon (C. K. Tuggle and J. A. Fuchs, J. Bacteriol. 172:1711-1718, 1990). We have purified this protein to homogeneity by affinity chromatography and identified it as the E. coli factor for inversion stimulation (Fis). Cu-phenanthroline footprinting experiments showed that Fis binds to a site centered 156 bp upstream of the start of nrd transcription. Mutants with deletion and site-directed mutations that do not bind Fis at this site have two- to threefold-lower expression of an nrd-lac fusion. The previously reported negative regulatory nature of this site (C. K. Tuggle and J. A. Fuchs, J. Bacteriol. 172:1711-1718, 1990) was found to be due to a change in polarity in the vectors used to construct promoter fusions. Two nine-base sequences with homology to the DnaA consensus binding sequence are located immediately upstream of the nrd putative -35 RNA polymerase binding site. Binding of DnaA to these sequences on DNA fragments containing the nrd promoter region was confirmed by in vitro Cu-phenanthroline footprinting. Footprinting experiments on fragments with each as well as both of the mutated 9-mers suggests cooperativity between the two sites in binding DnaA. Assay of in vivo expression from wild-type and DnaA box-mutated nrd promoter fragments fused to lacZ on single-copy plasmids indicates a positive effect of DnaA binding on expression of nrd. Images PMID:8288532

  11. The Crystal Structure of a Cardiovirus RNA-Dependent RNA Polymerase Reveals an Unusual Conformation of the Polymerase Active Site

    PubMed Central

    Vives-Adrian, Laia; Lujan, Celia; Oliva, Baldo; van der Linden, Lonneke; Selisko, Barbara; Coutard, Bruno; Canard, Bruno; van Kuppeveld, Frank J. M.

    2014-01-01

    ABSTRACT Encephalomyocarditis virus (EMCV) is a member of the Cardiovirus genus within the large Picornaviridae family, which includes a number of important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for viral genome replication. In this study, we report the X-ray structures of two different crystal forms of the EMCV RdRp determined at 2.8- and 2.15-Å resolution. The in vitro elongation and VPg uridylylation activities of the purified enzyme have also been demonstrated. Although the overall structure of EMCV 3Dpol is shown to be similar to that of the known RdRps of other members of the Picornaviridae family, structural comparisons show a large reorganization of the active-site cavity in one of the crystal forms. The rearrangement affects mainly motif A, where the conserved residue Asp240, involved in ribonucleoside triphosphate (rNTP) selection, and its neighbor residue, Phe239, move about 10 Å from their expected positions within the ribose binding pocket toward the entrance of the rNTP tunnel. This altered conformation of motif A is stabilized by a cation-π interaction established between the aromatic ring of Phe239 and the side chain of Lys56 within the finger domain. Other contacts, involving Phe239 and different residues of motif F, are also observed. The movement of motif A is connected with important conformational changes in the finger region flanked by residues 54 to 63, harboring Lys56, and in the polymerase N terminus. The structures determined in this work provide essential information for studies on the cardiovirus RNA replication process and may have important implications for the development of new antivirals targeting the altered conformation of motif A. IMPORTANCE The Picornaviridae family is one of the largest virus families known, including many important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for picornavirus genome replication and a validated

  12. Preferential uptake of ribose by primitive cells might explain why RNA was favored over its analogs

    NASA Astrophysics Data System (ADS)

    Pohorille, Andrew; Wei, Chenyu

    perme-ation, even though it is non-negligibly populated in aqueous solution. The differences in free energy barrier between ribose and arabinose or xylose are due to stronger, highly cooperative, intramolecular interactions between consecutive exocyclic hydroxyl groups, which are stable in non-polar media, but rare in water. Most recently, we extended calculations of permeations to ribonucleosides and their anomers. We determined that, in contrast to sugars, permeation of membranes to these species is nearly identical. This is because sugars of nucleotides exist in the furanose rather than pyranose form. In this form intermolecular interactions between hydroxyl groups are not nearly as efficient for sterical reasons. Our results contribute to the discussion about autotrophic vs. heterotrophic origins of life. Chemical reactions inside protobiological vesicle required supply of organic material from the environment. What was the inventory of organics that must have been delivered to primitive cells is still being debated. According to the autotrophic hypothesis, ancestors of cells pro-duced complex organic molecules from simple substrates. In contrast, the heterotrophic model implies that protocells were able to utilize complex organics delivered from external sources. A possibility of sufficiently efficient uptake of molecules needed to build biopolymers provides an important argument supporting the heterotrophic hypothesis [3]. Viewed in the context of the "RNA world" hypothesis [4], which states that RNA molecules were the first biological poly-mers and acted as both catalysts of biochemical reactions and information storage systems, our results demonstrate that, in the absence of sophisticated mechanisms available to contemporary organisms for achieving selectivity during synthesis and transmembrane transport, preferential uptake of ribose by primitive cells might have provided a kinetic mechanism that favored its selective incorporation into nucleic acids and

  13. Mitochondrial biogenesis: pharmacological approaches.

    PubMed

    Valero, Teresa

    2014-01-01

    neurodevelopmental disorders. In the context of neural differentiation, Martine Uittenbogaard and Anne Chiaramello (Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, USA) [7] thoroughly describe the implication of mitochondrial biogenesis on neuronal differentiation, its timing, its regulation by specific signaling pathways and new potential therapeutic strategies. The maintenance of mitochondrial homeostasis is crucial for neuronal development. A mitochondrial dynamic balance is necessary between mitochondrial fusion, fission and quality control systems and mitochondrial biogenesis. Concerning the signaling pathways leading to mitochondrial biogenesis this review highlights the implication of different regulators such as AMPK, SIRT1, PGC-1α, NRF1, NRF2, Tfam, etc. on the specific case of neuronal development, providing examples of diseases in which these pathways are altered and transgenic mouse models lacking these regulators. A common hallmark of several neurodegenerative diseases (Huntington´s Disease, Alzheimer´s Disease and Parkinson´s Disease) is the impaired function or expression of PGC-1α, the master regulator of mitochondrial biogenesis. Among the promising strategies to ameliorate mitochondrial-based diseases these authors highlight the induction of PGC-1α via activation of PPAR receptors (rosiglitazone, bezafibrate) or modulating its activity by AMPK (AICAR, metformin, resveratrol) or SIRT1 (SRT1720 and several isoflavone-derived compounds). This article also presents a review of the current animal and cellular models useful to study mitochondriogenesis. Although it is known that many neurodegenerative and neurodevelopmental diseases are originated in mitochondria, the regulation of mitochondrial biogenesis has never been extensively studied. (ABSTRACT TRUNCATED)

  14. Mitochondrial biogenesis: pharmacological approaches.

    PubMed

    Valero, Teresa

    2014-01-01

    neurodevelopmental disorders. In the context of neural differentiation, Martine Uittenbogaard and Anne Chiaramello (Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, USA) [7] thoroughly describe the implication of mitochondrial biogenesis on neuronal differentiation, its timing, its regulation by specific signaling pathways and new potential therapeutic strategies. The maintenance of mitochondrial homeostasis is crucial for neuronal development. A mitochondrial dynamic balance is necessary between mitochondrial fusion, fission and quality control systems and mitochondrial biogenesis. Concerning the signaling pathways leading to mitochondrial biogenesis this review highlights the implication of different regulators such as AMPK, SIRT1, PGC-1α, NRF1, NRF2, Tfam, etc. on the specific case of neuronal development, providing examples of diseases in which these pathways are altered and transgenic mouse models lacking these regulators. A common hallmark of several neurodegenerative diseases (Huntington´s Disease, Alzheimer´s Disease and Parkinson´s Disease) is the impaired function or expression of PGC-1α, the master regulator of mitochondrial biogenesis. Among the promising strategies to ameliorate mitochondrial-based diseases these authors highlight the induction of PGC-1α via activation of PPAR receptors (rosiglitazone, bezafibrate) or modulating its activity by AMPK (AICAR, metformin, resveratrol) or SIRT1 (SRT1720 and several isoflavone-derived compounds). This article also presents a review of the current animal and cellular models useful to study mitochondriogenesis. Although it is known that many neurodegenerative and neurodevelopmental diseases are originated in mitochondria, the regulation of mitochondrial biogenesis has never been extensively studied. (ABSTRACT TRUNCATED) PMID:24606795