Science.gov

Sample records for 5-aminolevulinic acid dehydratase

  1. In situ assay for 5-aminolevulinate dehydratase and application to the study of a catabolite repression-resistant Saccharomyces cerevisiae mutant.

    PubMed

    Borralho, L M; Panek, A D; Malamud, D R; Sanders, H K; Mattoon, J R

    1983-10-01

    To facilitate the study of the effects of carbon catabolite repression and mutations on 5-aminolevulinate dehydratase (EC 4.2.1.24) from Saccharomyces cerevisiae, a sensitive in situ assay was developed, using cells permeabilized by five cycles of freezing and thawing. Enzymatic activity was measured by colorimetric determination of porphobilinogen with a modified Ehrlich reagent. For normal strains, porphobilinogen production was linear for 15 min, and the reaction rate was directly proportional to the permeabilized cell concentration up to 20 mg (dry weight) per ml. The reaction exhibited Michaelis-Menten-type kinetics, and an apparent Km of 2.6 mM was obtained for 5-aminolevulinic acid. This value is only slightly higher than the value of 1.8 mM obtained for the enzyme assayed in cell extracts. The in situ assay was used to assess catabolite repression-dependent changes in 5-aminolevulinate dehydratase during batch culture on glucose medium. In normal S. cerevisiae cells, the enzyme is strongly repressed as long as glucose is present in the medium. In contrast, a strain bearing the hex2-3 mutation exhibits derepressed levels of enzyme activity during growth on glucose. Synthesis of cytochromes by this strain is also resistant to catabolite repression. Similar studies employing a strain containing the glc1 mutation, which enhances porphyrin accumulation, did not reveal any significant phenotypic change in catabolite regulation of 5-aminolevulinate dehydratase. PMID:6352674

  2. Microbial production and applications of 5-aminolevulinic acid.

    PubMed

    Liu, Shuli; Zhang, Guangming; Li, Xiangkun; Zhang, Jie

    2014-09-01

    5-Aminolevulinic acid (ALA), an important intermediate in tetrapyrrole biosynthesis in organisms, has been widely applied in many fields, such as medicine, agriculture, and the food industry, due to its biochemical characteristics. Research efforts supporting the microbial production of ALA have received increasing interest due to its dominant advantages over chemical synthesis, including higher yields, lesser pollutant emissions, and a lesser monetary cost. ALA synthesis using photosynthetic bacteria (PSB) is a promising approach in various microbial synthesis methods. In this review, recent advances on the microbial production of ALA with an emphasis on PSB are summarized, the key enzymes in the biosynthesis pathway (especially the relationship between key enzymes and key genes) are detailed, regulation strategies are described, and the significant influencing factors on the ALA biosynthesis and application of ALA are outlined. Furthermore, the eco-friendly perspective involving the combination of wastewater treatment and microbial production of ALA is conceived. PMID:25022665

  3. Intraoperative 5-aminolevulinic acid-induced fluorescence in primary central nervous system lymphoma.

    PubMed

    Grossman, Rachel; Nossek, Erez; Shimony, Nir; Raz, Michal; Ram, Zvi

    2014-01-01

    The authors report a case of primary CNS lymphoma located in the floor of the fourth ventricle that showed intense fluorescence after preoperative administration of 5-aminolevulinic acid. The authors believe that this is the first demonstration of a 5-aminolevulinic acid-induced fluorescence pattern in primary CNS lymphoma. PMID:24138204

  4. 5-Aminolevulinic acid regulates the inflammatory response and alloimmune reaction.

    PubMed

    Fujino, Masayuki; Nishio, Yoshiaki; Ito, Hidenori; Tanaka, Tohru; Li, Xiao-Kang

    2016-08-01

    5-Aminolevulinic acid (5-ALA) is a naturally occurring amino acid and precursor of heme and protoporphyrin IX (PpIX). Exogenously administrated 5-ALA increases the accumulation of PpIX in tumor cells specifically due to the compromised metabolism of 5-ALA to heme in mitochondria. PpIX emits red fluorescence by the irradiation of blue light and the formation of reactive oxygen species and singlet oxygen. Thus, performing a photodynamic diagnosis (PDD) and photodynamic therapy (PDT) using 5-ALA have given rise to a new strategy for tumor diagnosis and therapy. In addition to the field of tumor therapy, 5-ALA has been implicated in the treatment of inflammatory disease, autoimmune disease and transplantation due to the anti-inflammation and immunoregulation properties that are elicited with the expression of heme oxygenase (HO)-1, an inducible enzyme that catalyzes the rate-limiting step in the oxidative degradation of heme to free iron, biliverdin and carbon monoxide (CO), in combination with sodium ferrous citrate (SFC), because an inhibitor of HO-1 abolishes the effects of 5-ALA. Furthermore, NF-E2-related factor 2 (Nrf2), mitogen-activated protein kinase (MAPK), and heme are involved in the HO-1 expression. Biliverdin and CO are also known to have anti-apoptotic, anti-inflammatory and immunoregulatory functions. We herein review the current use of 5-ALA in inflammatory diseases, transplantation medicine, and tumor therapy. PMID:26643355

  5. Pleiotropic effects of 5-aminolevulinic acid in mouse brain.

    PubMed

    Lavandera, Jimena; Rodríguez, Jorge; Ruspini, Silvina; Meiss, Roberto; Zuccoli, Johanna Romina; Martínez, María Del Carmen; Gerez, Esther; Batlle, Alcira; Buzaleh, Ana María

    2016-08-01

    5-Aminolevulinic acid (ALA) seems to be responsible for the neuropsychiatric manifestations of acute intermittent porphyria (AIP). Our aim was to study the effect of ALA on the different metabolic pathways in the mouse brain to enhance our knowledge about the action of this heme precursor on the central nervous system. Heme metabolism, the cholinergic system, the defense enzyme system, and nitric oxide metabolism were evaluated in the encephalon of CF-1 mice receiving a single (40 mg/kg body mass) or multiple doses of ALA (40 mg/kg, every 48 h for 14 days). We subsequently found ALA accumulation in the encephalon of the mice. ALA also altered the brain cholinergic system. After one dose of ALA, a decrease in superoxide dismutase activity and a reduction in glutathione levels were detected, whereas malondialdehyde levels and catalase activity were increased. Heme oxygenase was also increased as an antioxidant response to protect the encephalon against injury. All nitric oxide synthase isoforms were induced by ALA, these changes were more significant for the inducible isoform in glial cells. In conclusion, ALA affected several metabolic pathways in mouse encephalon. Data indicate that a rapid response to oxidative stress was developed; however, with long-term intoxication, the redox balance was probably restored, thereby minimizing oxidative damage. PMID:27472495

  6. Photodynamic inactivation of Klebsiella pneumoniae biofilms and planktonic cells by 5-aminolevulinic acid and 5-aminolevulinic acid methyl ester.

    PubMed

    Liu, Chengcheng; Zhou, Yingli; Wang, Li; Han, Lei; Lei, Jin'e; Ishaq, Hafiz Muhammad; Nair, Sean P; Xu, Jiru

    2016-04-01

    The treatment of Klebsiella pneumoniae, particularly extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae, is currently a great challenge. Photodynamic antimicrobial chemotherapy is a promising approach for killing antibiotic-resistant bacteria. The aim of this study was to evaluate the capacity of 5-aminolevulinic acid (5-ALA) and its derivative 5-ALA methyl ester (MAL) in the presence of white light to cause photodynamic inactivation (PDI) of K. pneumoniae planktonic and biofilm cells. In the presence of white light, 5-ALA and MAL inactivated planktonic cells in a concentration-dependent manner. Biofilms were also sensitive to 5-ALA and MAL-mediated PDI. The mechanisms by which 5-ALA and MAL caused PDI of ESBL-producing K. pneumonia were also investigated. Exposure of K. pneumonia to light in the presence of either 5-ALA or MAL induced cleavage of genomic DNA and the rapid release of intracellular biopolymers. Intensely denatured cytoplasmic contents and aggregated ribosomes were also detected by transmission electron microscopy. Scanning electron microscopy showed that PDI of biofilms caused aggregated bacteria to detach and that the bacterial cell envelope was damaged. This study provides insights into 5-ALA and MAL-mediated PDI of ESBL-producing K. pneumoniae. PMID:26886586

  7. Binding of /sup 14/C-5-aminolevulinic acid to a stromal protein from developing pea chloroplasts

    SciTech Connect

    Thayer, S.S.; Castelfranco, P.A.; Wilkinson, J.; Benson, G.

    1987-04-01

    /sup 14/-5-Aminolevulinic acid (/sup 14/C-ALA) binds to a stromal protein with an apparent molecular weight of 42-43 KD on LDS and non-denaturing gels. The reaction is rapid. Binding is inhibited by sulfhydryl reagents, mM concentrations of levulinic, dihydroxy heptanoic acids and gabaculine, 10 ..mu..M N-methylprotoporphyrin. Dicarboxilic acids, such as deltaKG, Glu, OAA, do not inhibit. Chloramphenicol, ATP, protoporphyrin, anoxia, light, darkness have no effect. The product, once formed, is stable to treatment with 5% conc. HCl in cold acetone. It can be chased in a second incubation with unlabeled ALA, but not with levulinic acid. No activity was detected in the subplastidic membrane fractions. Western blot analysis failed to reveal any homology between the labeled protein and either cytochrome for ALA dehydratase. This ALA-binding protein was not formed in chloroplasts isolated from fully expanded pea leaves. Therefore, it is deemed likely to participate in ALA metabolism during chloroplast development.

  8. 5-aminolevulinic acid in photodynamic diagnosis and therapy of urological malignancies

    NASA Astrophysics Data System (ADS)

    Nelius, Thomas; de Riese, Werner T. W.

    2003-06-01

    Completeness and certainty of tumor detection are very important issues in clinical oncology. Recent technological developments in ultrasound, radiologic and magnetic resonance imaging diagnostics are very promising, but could not improve the detection rate of early stage malignancies. One of the most promising new approaches is the use of 5-aminolevulinic acid, a potent photosensitizer, in photodynamic diagnosis and therapy. 5-aminolevulinic acid is meanwhile a well-established tool in the photodynamic diagnosis of bladder cancer. It has been shown to improve the sensitivity of detection of superficial tumors and carcinoma in situ, which enables to reduce the risk of tumor recurrence related to undetected lesions or incomplete transurethral resection of the primary lesions. The use of 5-aminolevulinic acid is steadily expanding in diagnostics of urological malignancies. First clinical results are now reported in detection of urethral and ureteral lesions as well as in urine fluorescence cytology. Furthermore, due to the selective accumulation in transitional cell carcinoma of the bladder, 5-aminolevulinic acid may be an ideal candidate for photodynamic therapy in superficial bladder cancer. Summarizing the data of multiple clinical trials, 5-aminolevulinic acid is a promising agent in photodynamic diagnostics and treatment of superficial bladder cancer.

  9. Rhodobacter sphaeroides mutants which accumulate 5-aminolevulinic acid under aerobic and dark conditions.

    PubMed

    Nishikawa, S; Watanabe, K; Tanaka, T; Miyachi, N; Hotta, Y; Murooka, Y

    1999-01-01

    The photosynthetic bacterium Rhodobacter sphaeroides accumulates 5-aminolevulinic acid (ALA), which is a precursor in tetrapyrrole biosynthesis, under light illumination and upon addition of levulinic acid as an inhibitor of ALA dehydratase. To generate an industrial strain which produces ALA in the absence of light, we sequentially mutated R. sphaeroides CR-286 using N-methyl-N'-nitro-N-nitrosoguanidine (NTG). The mutant strains were screened by cultivating in the absence of light and assayed for ALA by the Ehrlich reaction in a 96-well microtiter plate. The mutant strain CR-386, derived from R. sphaeroides CR-286, was selected as a mutant that exhibited significant ALA accumulation. While CR-286 required light illumination for ALA production, CR-386 was able to accumulate 1.5 mM ALA in the presence of 50 mM glucose, 60 mM glycine, 15 mM levulinic acid and 1.0% (w/v) yeast extract under conditions of agitation in the absence of light. The mutant strain CR-450, derived from strain CR-386, was selected further as a mutant that exhibited significant ALA accumulation but no accumulation of aminoacetone, analogue of ALA. CR-450 accumulated 3.8 mM ALA under the same conditions. In the presence of 50 mM glucose, 60 mM glycine, 5 mM levulinic acid and 1.0% (w/v) yeast extract, the mutant strain CR-520, derived from strain CR-450, and strain CR-606, derived from strain CR-520, accumulated 8.1 mM and 11.2 mM ALA, respectively. In batch fermentation, the strain CR-606 accumulated 20 mM ALA over 18 h after the addition of glycine, levulinic acid, glucose and yeast extract. PMID:16232557

  10. Dual pH-responsive 5-aminolevulinic acid pseudopolyrotaxane prodrug micelles for enhanced photodynamic therapy.

    PubMed

    Tong, Hongxin; Wang, Yin; Li, Huan; Jin, Qiao; Ji, Jian

    2016-03-11

    Novel 5-aminolevulinic acid (ALA) pseudopolyrotaxane prodrug micelles with dual pH-responsive properties were prepared by the host-guest interaction of α-cyclodextrin (α-CD) and poly(ethylene glycol) (PEG). The micelles exhibited pH dependent cellular uptake and pH-sensitive ALA release, enabling enhanced photodynamic therapy. PMID:26882232

  11. The 5-aminolevulinic acid-induced porphyrin biosynthesis in benign and malignant cells of the skin.

    PubMed

    Lang, K; Bolsen, K; Stahl, W; Ruzicka, T; Sies, H; Lehmann, P; Fritsch, C

    2001-12-01

    In fluorescence diagnosis and photodynamic therapy of neoplastic tissues 5-aminolevulinic acid is used to synthesize endogenous porphyrins as photosensitizers. The efficacy of neoplastic tissues to fluorescence diagnosis and photodynamic therapy is thought to be dependent on the total level of intralesional formed porphyrins. The available profiles of porphyrin metabolites in normal and in neoplastic cell lines after administration of 5-aminolevulinic acid vary considerably. Thus, this is the first in-vitro study which compares the porphyrin biosynthesis in normal skin cells (HaCaT, fibroblasts) with melanoma cells (Bro, SKMel-23, SKMel-28). After incubation with 1 mM 5-aminolevulinic acid, kinetics of porphyrin levels and metabolites were determined in the cells and the corresponding supernatants. Exogenous 5-aminolevulinic acid induced porphyrin formation in all cells with maximum values after an incubation period of 16-36 h. Increase of porphyrin levels varied from 10- to 80-fold (SKMel-28>HaCaT>fibroblasts>SKMel-23>Bro) with minimum 1.5 times higher levels of porphyrins in the supernatants than in the cells. In cells and supernatants protoporphyrin and coproporphyrin were the predominantly formed porphyrin metabolites. Metastatic melanoma cells (SKMel-23, SKMel-28) accumulated much higher porphyrin levels than primary melanoma cells (Bro). In conclusion, by optimizing the treatment modalities, especially the light source, topical photodynamic therapy (PDT) could become a treatment alternative of melanoma metastases in progressive disease. PMID:11748002

  12. Photofrin and 5-aminolevulinic acid permeation through oral mucosa in vitro

    NASA Astrophysics Data System (ADS)

    Flock, Stephen T.; Alleman, Anthony; Lehman, Paul; Blevins, Steve; Stone, Angie; Fink, Louis; Dinehart, Scott; Stern, Scott J.

    1994-07-01

    Photofrin and 5-aminolevulinic acid are photosensitizers that show promise in the photodynamic treatment of cancer, port-wine stains, atherosclerosis and viral lesions. Photofrin is a mixture of porphyrins which, upon the absorption of light, become temporarily cytotoxic. One side-effect associated with the use of Photofrin is long-term cutaneous photosensitivity. It is possible that topical application of this photosensitizing dye will ameliorate such a side-effect. Another way to avoid the cutaneous photosensitivity in photodynamic therapy is to use 5- aminolevulinic acid, which is a porphyrin precursor that causes an increase in the synthesis and concentration of the photosensitizer protoporphyrin IX. 5-aminolevulinic acid is usually applied topically, and so minimizes cutaneous photosensitivity while maximizing the local protoporphyrin concentration. There are a host of disorders in oral mucosa that are potentially treatable by photodynamic therapy. However, since stratum corneum presents an impermeable barrier to many pharmaceuticals, it is not clear that topical application of the photosensitizer will result in a clinically relevant tissue concentration. We have therefore studied the permeation behavior of Photofrin and 5-aminolevulinic acid by applying them to the surface of ex vivo oral mucosa tissue positioned by a Franz diffusion cell. In order to increase the permeability of the photosensitizer across the stratum corneum, we studied the effects of four different drug carriers: phosphate buffered saline, dimethylsulfoxide, ethanol and Azone with isopropyl alcohol.

  13. Isolation and characterization of a new mutant of Saccharomyces cerevisiae with altered synthesis of 5-aminolevulinic acid.

    PubMed Central

    Carvajal, E; Panek, A D; Mattoon, J R

    1990-01-01

    A new gene, RHM1, required for normal production of 5-aminolevulinic acid by Saccharomyces cerevisiae, was identified by a novel screening method. Ethyl methanesulfonate treatment of a fluorescent porphyric strain bearing the pop3-1 mutation produced nonfluorescent or weakly fluorescent mutants with defects in early stages of tetrapyrrole biosynthesis. Class I mutants defective in synthesis of 5-aminolevulinate regained fluorescence when grown on medium supplemented with 5-aminolevulinate, whereas class II mutants altered in later biosynthetic steps did not. Among six recessive class I mutants, at least three complementation groups were found. One mutant contained an allele of HEM1, the structural gene for 5-aminolevulinate synthase, and two mutants contained alleles of the regulatory gene CYC4. The remaining mutants contained genes complementary to both hem1 and cyc4. Mutant strain DA3-RS3/68 contained mutant gene rhm1, which segregated independently of hem1 and cyc4 during meiosis. 5-Aminolevulinate synthase activity of the rhm1 mutant was 35 to 40% of that of the parental pop3-1 strain, whereas intracellular 5-aminolevulinate concentration was only 3 to 4% of the parental value. Transformation of an rhm1 strain with a multicopy plasmid containing the cloned HEM1 gene restored normal levels of 5-aminolevulinate synthase activity, but intracellular 5-aminolevulinate was increased to only 9 to 10% of normal. We concluded that RHM1 could control either targeting of 5-aminolevulinate synthase to the mitochondrial matrix or the activity of the enzyme in vivo. PMID:2188943

  14. Optimization of Biomass and 5-Aminolevulinic Acid Production by Rhodobacter sphaeroides ATCC17023 via Response Surface Methodology.

    PubMed

    Liu, Shuli; Zhang, Guangming; Li, Jianzheng; Li, Xiangkun; Zhang, Jie

    2016-06-01

    Microbial 5-aminolevulinic acid (ALA) produced from wastewater is considered as potential renewable energy. However, many hurdles are needed to be overcome such as the regulation of key influencing factors on ALA yield. Biomass and ALA production by Rhodobacter sphaeroides was optimized using response surface methodology. The culturing medium was artificial volatile fatty acids wastewater. Three additives were optimized, namely succinate and glycine that are precursors of ALA biosynthesis, and D-glucose that is an inhibitor of ALA dehydratase. The optimal conditions were achieved by analyzing the response surface plots. Statistical analysis showed that succinate at 8.56 mmol/L, glycine at 5.06 mmol/L, and D-glucose at 7.82 mmol/L were the best conditions. Under these optimal conditions, the highest biomass production and ALA yield of 3.55 g/L and 5.49 mg/g-biomass were achieved. Subsequent verification experiments at optimal values had the maximum biomass production of 3.41 ± 0.002 g/L and ALA yield of 5.78 ± 0.08 mg/g-biomass. PMID:26875086

  15. Influence of precursors and inhibitor on the production of extracellular 5-aminolevulinic acid and biomass by Rhodopseudomonas palustris KG31.

    PubMed

    Saikeur, Angkana; Choorit, Wanna; Prasertsan, Poonsuk; Kantachote, Duangporn; Sasaki, Ken

    2009-05-01

    5-Aminolevulinic acid (ALA) and the biomass of photosynthetic bacteria, Rhodopseudomonas palustris KG31, have very high potential for development and exploitation as bioherbicide and biofertilizer respectively. In this work, the effects of two precursors and an inhibitor of aminolevulinic dehydratase (ALAD) added to the VFA culture medium on the production of ALA and biomass were investigated. The experimental runs were carried out according to a Box-Behnken design. The precursors were added to the medium at the beginning of cultivation, while the inhibitor was added after 24 h. Statistical analysis indicated that levulinic acid (LA) has a positive effect on ALA production while glycine has a negative effect on biomass production. In order to enhance both ALA and biomass products, the most suitable medium was VFA medium supplemented with 3.0 mM glycine and 10 mM LA, giving ALA and biomass of 182.91 microM and 3.1 gDCW/l within 54 h. PMID:19420716

  16. Evidence that isolated developing chloroplasts are capable of synthesizing chlorophyll b from 5-aminolevulinic acid

    SciTech Connect

    Huang, Laiqiang; Hoffman, N.E. )

    1990-09-01

    Developing chloroplasts isolated from cucumber (Cucumis sativus L. var Beit Alpha) cotyledons are capable of incorporating ({sup 14}C)5-aminolevulinic acid into chlorophyll (Chl) b and Chl a when incubated under photosynthetic illumination. Thin layer chromatography and high pressure liquid chromatography were employed to analyze the pigments. The specific radioactivity in Chl a was over three times higher than that found in Chl b. Both Chl a and b synthesizing activities in organello decayed rapidly at approximately the same rate. We conclude that concomitant synthesis of Chl a/b-binding apoprotein is not required for Chl b synthesis.

  17. Production of 5-aminolevulinic acid by cell free multi-enzyme catalysis.

    PubMed

    Meng, Qinglong; Zhang, Yanfei; Ju, Xiaozhi; Ma, Chunling; Ma, Hongwu; Chen, Jiuzhou; Zheng, Ping; Sun, Jibin; Zhu, Jun; Ma, Yanhe; Zhao, Xueming; Chen, Tao

    2016-05-20

    5-Aminolevulinic acid (ALA) is the precursor for the biosynthesis of tetrapyrroles and has broad agricultural and medical applications. Currently ALA is mainly produced by chemical synthesis and microbial fermentation. Cell free multi-enzyme catalysis is a promising method for producing high value chemicals. Here we reported our work on developing a cell free process for ALA production using thermostable enzymes. Cheap substrates (succinate and glycine) were used for ALA synthesis by two enzymes: 5-aminolevulinic acid synthase (ALAS) from Laceyella sacchari (LS-ALAS) and succinyl-CoA synthase (Suc) from Escherichia coli. ATP was regenerated by polyphosphate kinase (Ppk) using polyphosphate as the substrate. Succinate was added into the reaction system in a fed-batch mode to avoid its inhibition effect on Suc. After reaction for 160min, ALA concentration was increased to 5.4mM. This is the first reported work on developing the cell free process for ALA production. Through further process and enzyme optimization the cell free process could be an effective and economic way for ALA production. PMID:27012885

  18. Enhanced 5-aminolevulinic acid-gold nanoparticle conjugate-based photodynamic therapy using pulse laser

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Yao, Cuiping; Wang, Jing; Chang, Zhennan; Zhang, Zhenxi

    2016-02-01

    The low bioavailability is a crucial limitation for the application of 5-aminolevulinic acid (ALA) in theranostics. In this research, 5-aminolevulinic acid and gold nanoparticle conjugates (ALA-GNPs) were synthesized to improve the bioavailability of ALA and to investigate the impact of ALA photodynamic therapy (ALA-PDT) in Hela cells. A 532 nm pulse laser and light-emitting diode (central wavelengths 502 nm) were jointly used as light sources in PDT research. The results show a 532 nm pulse laser can control ALA release from ALA-GNPs by adjusting the pulse laser dose. This laser control release may be attributed to the heat generation from GNPs under pulse laser irradiation, which indicates accurately adjusting the pulse laser dose to control the drug release in the cell interior can be considered as a new cellular surgery modality. Furthermore, the PDT results in Hela cells indicate the enhancement of ALA release by pulse laser before PDT can promote the efficacy of cell eradication in the light-emitting diode PDT (LED-PDT). This laser mediated drug release system can provide a new online therapy approach in PDT and it can be utilized in the optical monitor technologies based individual theranostics.

  19. Recent advances in photodynamic diagnosis of gastric cancer using 5-aminolevulinic acid

    PubMed Central

    Koizumi, Noriaki; Harada, Yoshinori; Minamikawa, Takeo; Tanaka, Hideo; Otsuji, Eigo; Takamatsu, Tetsuro

    2016-01-01

    Photodynamic diagnosis based on 5-aminolevulinic acid-induced protoporphyrin IX has been clinically applied in many fields based upon its evidenced efficacy and adequate safety. In order to establish a personalized medicine approach for treating gastric cancer patients, rapid intraoperative detection of malignant lesions has become important. Feasibility of photodynamic diagnosis using 5-aminolevulinic acid for gastric cancer patients has been investigated, especially for the detection of peritoneal dissemination and lymph node metastasis. This method enables intraoperative real-time fluorescence detection of peritoneal dissemination, exhibiting higher sensitivity than white light observation without histopathological examination. The method also enables detection of metastatic foci within excised lymph nodes, exhibiting a diagnostic accuracy comparable to that of a current molecular diagnostics technique. Although several complicating issues still need to be resolved, such as the effect of tissue autofluorescence and the insufficient depth penetration of excitation light, this simple and rapid method has the potential to become a useful diagnostic tool for gastric cancer, as well as urinary bladder cancer and glioma. PMID:26811665

  20. Novel multifunctional acyloxyalkyl ester prodrugs of 5-aminolevulinic acid display improved anticancer activity dependent on photoactivation

    NASA Astrophysics Data System (ADS)

    Berkovitch, G.; Nudelman, A.; Ehenberg, B.; Rephaeli, A.; Malik, Z.

    2009-06-01

    New approaches to PDT using multifunctional 5-aminolevulinic acid (ALA) based prodrugs activating mutual routes of toxicity are described. We investigated the mutual anti-cancer activity of ALA prodrugs which upon metabolic hydrolysis by unspecific esterases release ALA, formaldehyde or acetaldehye and the histone deacetylase inhibitor (HDACI) butyric acid. The most potent prodrug in this study was butyryloxyethyl 5-amino-4-oxopentanoate (AN-233) that stimulated a rapid biosynthesis of protoporphyrin IX (PpIX) in human glioblastoma U-251 cells and generated an efficient photodynamic destruction. AN-233 induced a considerable high level of intracellular ROS in the cells following light irradiation, reduction of mitochondrial activity, dissipation of the mitochondrial membrane potential resulting in necrotic and apoptotic cell death. The main advantage of AN-233 over ALA stems from its ability to induce photodamage at a significantly lower dose than ALA.

  1. Review of dermatology use of 5-aminolevulinic acid photodynamic therapy in China from 1997 to 2013

    NASA Astrophysics Data System (ADS)

    Wang, Peiru; Zhang, Guolong; Wang, Xiuli

    2015-07-01

    The prodrug 5-aminolevulinic acid (ALA) and its ester derivatives have been used in photodynamic therapy (PDT) in dermatology worldwide. In China, ALA-PDT was first used to treat urethral condylomata acuminata and non-melanoma skin cancers in 1997. A powder formulation of ALA hydrochloride was approved by the Chinese Food and Drug Administration for the treatment of condylomata acuminata in 2007. Large successful experience of treating condylomatas was accumulated compared with Western countries. Meanwhile, numerous clinical studies as well as off-label use of ALAPDT have been carried out in China. To reflect the progress of ALA-PDT in China, several major Chinese and English databases were searched and published data were reviewed in this article.

  2. To what extent will 5-aminolevulinic acid change the face of malignant glioma surgery?

    PubMed

    Díez Valle, Ricardo; Tejada Solis, Sonia

    2015-01-01

    Glioma surgery is an essential part of glioma management; however, fully achieving the goal of surgery has been uncommon. The goal of surgery is 'maximal safe resection' with the accepted target for maximal being complete resection of the contrast-enhancing tumor. This ideal result was obtained in less than 30% of cases in centers of excellence until a few years ago. The development of fluorescence-guided surgery using 5-aminolevulinic acid has initiated a radical change. Over the past 5 years, various groups have published rates of complete resection of the enhancing tumor that exceed 80%. In the coming years, as the use of the technology expands, complete resection should become a common, predictable result at many centers. Consequently, adjuvant therapies that benefit from resection could play a bigger role, resection could be incorporated as a variable in randomized trials and distant recurrence might become a more common problem. PMID:26118538

  3. 5-aminolevulinic acid guidance during awake craniotomy to maximise extent of safe resection of glioblastoma multiforme.

    PubMed

    Corns, Robert; Mukherjee, Soumya; Johansen, Anja; Sivakumar, Gnanamurthy

    2015-01-01

    Overall survival for patients with glioblastoma multiforme (GBM) has been consistently shown to improve when the surgeon achieves a gross total resection of the tumour. It has also been demonstrated that surgical adjuncts such as 5-aminolevulinic acid (5-ALA) fluorescence--which delineates malignant tumour tissue--normal brain tissue margin seen using violet-blue excitation under an operating microscope--helps achieve this. We describe the case of a patient with recurrent left frontal GBM encroaching on Broca's area (eloquent brain). Gross total resection of the tumour was achieved by combining two techniques, awake resection to prevent damage to eloquent brain and 5-ALA fluorescence guidance to maximise the extent of tumour resection.This technique led to gross total resection of all T1-enhancing tumour with the avoidance of neurological deficit. The authors recommend this technique in patients when awake surgery can be tolerated and gross total resection is the aim of surgery. PMID:26177997

  4. Optical spectroscopy by 5-aminolevulinic acid hexylester induced photodynamic treatment in rat bladder cancer

    NASA Astrophysics Data System (ADS)

    Larsen, Eivind L. P.; Randeberg, Lise L.; Gederaas, Odrun A.; Arum, Carl-Jørgen; Krokan, Hans E.; Hjelme, Dag R.; Svaasand, Lars O.

    2006-02-01

    Photodynamic therapy (PDT) is a treatment modality which has been shown to be effective for both malignant and non-malignant diseases. New photosensitizers such as 5-aminolevulinic acid hexylester (hALA) may increase the efficiency of PDT. Monitoring of the tissue response provides important information for optimizing factors such as drug and light dose for this treatment modality. Optical spectroscopy may be suited for this task. To test the efficacy of hALA induced PDT, a study on rats with a superficial bladder cancer model, in which a bladder cancer cell line (AY-27) is instilled, will be performed. Preliminary studies have included a PDT feasibility study on rats, fluorescence spectroscopy on AY-27 cell suspensions, and optical reflection and fluorescence spectroscopy in rat bladders in vivo. The results from the preliminary studies are promising, and the study on hALA induced PDT treatment of bladder cancer will be continued.

  5. Fluorescence-guided resections and photodynamic therapy for malignant gliomas using 5-aminolevulinic acid

    NASA Astrophysics Data System (ADS)

    Stepp, Herbert G.; Beck, Tobias; Beyer, Wolfgang; Pongratz, Thomas; Sroka, Ronald; Baumgartner, Reinhold; Stummer, Walter; Olzowy, Bernhard; Mehrkens, Jan H.; Tonn, Joerg C.; Reulen, Hans J.

    2005-04-01

    Oral application of 20 mg/kg bw of 5-aminolevulinic acid results in a highly specific accumulation of fluorescent and phototoxic Protoporphyrin IX in malignant glioma tissue. Surgical removal with fluorescence guidance is studied in a phase III clinical trial, adjuvant Photodynamic Therapy (PDT) to the surgical cavity is in phase II and for interstitial PDT of recurrent gliomas, a phase I/II study has started. Fluorescence guided resections have been shown to be safe and effective in augmenting neurosurgical removal of malignant gliomas in 52 consecutive patients. Intra-operative fluorescence spectroscopy showed statistically significant higher sensitizer accumulation in vital brain tumor versus the infiltration zone and in the infiltration zone versus adjacent normal brain, which contained very little PPIX. This is promisingly exploited for PDT - both to the surgical cavity by surface irradiation and for stereotactically guided interstitial irradiation.

  6. Photodynamic therapy using 5-aminolevulinic acid-induced photosensitization: current clinical status

    NASA Astrophysics Data System (ADS)

    Marcus, Stuart L.; Golub, Allyn L.; Shulman, D. Geoffrey

    1995-03-01

    Photodynamic therapy using 5-aminolevulinic acid-induced photosensitization (ALA PDT) via endogenous protoporphyrin IX (PpIX) synthesis has been reported as efficacious, using topical formulations, in the treatment of a variety of dermatologic diseases including superficial basal cell carcinoma, Bowen's disease, and actinic (solar) keratoses. Application of ALA PDT to the detection and treatment of both malignant and non-malignant diseases of internal organs has recently been reported. Local internal application of ALA has been used for the detection, via PpIX fluorescence, of pathological conditions of the human urinary bladder and for selective endometrial ablation in animal model systems. Systemic, oral administration of ALA has been used for ALA PDT of superficial head and neck cancer and of colorectal cancer. This paper reviews the current clinical status of ALA PDT.

  7. Utilization of 5-aminolevulinic acid in the photodynamic therapy of tumors: biochemical and photobiological aspects

    NASA Astrophysics Data System (ADS)

    Pottier, Roy H.; Kennedy, James C.

    1994-03-01

    Inherent in both plants and animals is the natural porphyrin, Protoporphyrin IX (Pp). Although Pp does not appear to have any intrinsic biological activity, it is a potent natural photosensitizer. When activated with ultraviolet or visible light, this photosensitizer can induce significant photodynamic effects on tissues, cells, subcellular elements, and macromolecules via the production of singlet oxygen. The biosynthesis of endogenous Pp is under strict enzymatic control. It is possible to bypass a rate controlling step and induce large, transient concentrations of Pp by the addition of exogenous 5-aminolevulinic acid (ALA). ALA may be administered systemically or topically. Much larger amounts of Pp are produced in certain types of tumor tissue than in adjacent normal tissue. Topically applied ALA can be used to treat a variety of skin lesions, including actinic keratosis, basal cell carcinomas and psoriasis.

  8. Photodynamic diagnosis (PDD) of bladder cancer with intravesical 5-aminolevulinic-acid-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Grimbergen, Matthijs C. M.; Jonges, T. G. N.; Lock, M. Tycho W.; van Swol, Christiaan F. P.; Boon, Tom A.; van Moorselaar, R. Jeroen A.

    2001-05-01

    Flat urothelial lesions as well as small papillary tumors are easily missed during transurethral resection (TUR). PDD is based on the detection of protoporphyrin-IX induced fluorescence after topical administration of 5- aminolevulinic acid (ALA). We report on our initial clinical results of 130 procedures in 98 patients. Two hours prior to TUR 1.5 g ALA dissolved in 50 ml 1.4% NaHCO3 solution was installed intravesically. For fluorescence excitation a blue light source (375-440 nm, Karl Storz) was used. In total 478 biopsies (2-9 per patient) were taken from fluorescent and nonfluorescent areas. Normal nonfluorescent bladder urothelium was blue, whereas cancer epithelium developed a brilliant red fluorescence. During white light cystoscopy, 143 bladder tumors were found. Sixty-three additional tumors were detected because of their positive fluorescence. The overall sensitivity of fluorescence cystoscopy (98%) was greater than that of white light cystoscopy (69%). Their specificities were 51% and 80% respectively.

  9. Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid.

    PubMed

    Feng, Lili; Zhang, Ya; Fu, Jing; Mao, Yufeng; Chen, Tao; Zhao, Xueming; Wang, Zhiwen

    2016-06-01

    5-Aminolevulinic acid (5-ALA) has recently attracted attention for its potential applications in the fields of medicine and agriculture. In this study, Corynebacterium glutamicum was firstly engineered for 5-ALA production via the C4 pathway. HemA encoding 5-aminolevulinic acid synthase from Rhodobacter sphaeroides was codon optimized and expressed in C. glutamicum ATCC13032, resulting in accumulation of 5-ALA. Deletion of all known genes responsible for the formation of acetate and lactate further enhanced production of 5-ALA. Overexpression of ppc gene encoding phoenolpyruvate carboxylase resulted in an accumulation of 5-ALA up to 2.06 ± 0.05 g/L. Furthermore, deletion of high-molecular-weight penicillin-binding proteins (HMW-PBPs) genes pbp1a, pbp1b, and pbp2b led to an increase in 5-ALA production of 13.53%, 29.47%, and 22.22%, respectively. Finally, 5-ALA production was enhanced to 3.14 ± 0.02 g/L in shake flask by heterologously expressing rhtA encoding threonine/homoserine exporter, and 86.77% of supplemented glycine was channeled toward 5-ALA production in shake flask. The engineered C. glutamicum ALA7 strain produced 7.53 g/L 5-ALA in a 5 L bioreactor. This study demonstrated the potential utility of C. glutamicum as a platform for metabolic production of 5-ALA. Change of cell permeability by metabolic engineering HMW-PBPs may provide a new strategy for biochemicals production in Corynebacterium glutamicum. Biotechnol. Bioeng. 2016;113: 1284-1293. © 2015 Wiley Periodicals, Inc. PMID:26616115

  10. Physiological and metabolic effects of 5-aminolevulinic acid for mitigating salinity stress in creeping bentgrass.

    PubMed

    Yang, Zhimin; Chang, Zuoliang; Sun, Lihong; Yu, Jingjin; Huang, Bingru

    2014-01-01

    The objectives of this study were to determine whether foliar application of a chlorophyll precursor, 5-aminolevulinic acid (ALA), could mitigate salinity stress damages in perennial grass species by regulating photosynthetic activities, ion content, antioxidant metabolism, or metabolite accumulation. A salinity-sensitive perennial grass species, creeping bentgrass (Agrostis stolonifera), was irrigated daily with 200 mM NaCl for 28 d, which were foliar sprayed with water or ALA (0.5 mg L-1) weekly during the experiment in growth chamber. Foliar application of ALA was effective in mitigating physiological damage resulting from salinity stress, as manifested by increased turf quality, shoot growth rate, leaf relative water content, chlorophyll content, net photosynthetic rate, stomatal conductance and transpiration rate. Foliar application of ALA also alleviated membrane damages, as shown by lower membrane electrolyte leakage and lipid peroxidation, which was associated with increases in the activities of antioxidant enzymes. Leaf content of Na+ was reduced and the ratio of K+/Na+ was increased with ALA application under salinity stress. The positive effects of ALA for salinity tolerance were also associated with the accumulation of organic acids (α-ketoglutaric acid, succinic acid, and malic acid), amino acids (alanine, 5-oxoproline, aspartic acid, and γ -aminobutyric acid), and sugars (glucose, fructose, galactose, lyxose, allose, xylose, sucrose, and maltose). ALA-mitigation of physiological damages by salinity could be due to suppression of Na+ accumulation and enhanced physiological and metabolic activities related to photosynthesis, respiration, osmotic regulation, and antioxidant defense. PMID:25551443

  11. Physiological and Metabolic Effects of 5-Aminolevulinic Acid for Mitigating Salinity Stress in Creeping Bentgrass

    PubMed Central

    Yang, Zhimin; Chang, Zuoliang; Sun, Lihong; Yu, Jingjin; Huang, Bingru

    2014-01-01

    The objectives of this study were to determine whether foliar application of a chlorophyll precursor, 5-aminolevulinic acid (ALA), could mitigate salinity stress damages in perennial grass species by regulating photosynthetic activities, ion content, antioxidant metabolism, or metabolite accumulation. A salinity-sensitive perennial grass species, creeping bentgrass (Agrostis stolonifera), was irrigated daily with 200 mM NaCl for 28 d, which were foliar sprayed with water or ALA (0.5 mg L−1) weekly during the experiment in growth chamber. Foliar application of ALA was effective in mitigating physiological damage resulting from salinity stress, as manifested by increased turf quality, shoot growth rate, leaf relative water content, chlorophyll content, net photosynthetic rate, stomatal conductance and transpiration rate. Foliar application of ALA also alleviated membrane damages, as shown by lower membrane electrolyte leakage and lipid peroxidation, which was associated with increases in the activities of antioxidant enzymes. Leaf content of Na+ was reduced and the ratio of K+/Na+ was increased with ALA application under salinity stress. The positive effects of ALA for salinity tolerance were also associated with the accumulation of organic acids (α-ketoglutaric acid, succinic acid, and malic acid), amino acids (alanine, 5-oxoproline, aspartic acid, and γ -aminobutyric acid), and sugars (glucose, fructose, galactose, lyxose, allose, xylose, sucrose, and maltose). ALA-mitigation of physiological damages by salinity could be due to suppression of Na+ accumulation and enhanced physiological and metabolic activities related to photosynthesis, respiration, osmotic regulation, and antioxidant defense. PMID:25551443

  12. Regulation of the hemA gene during 5-aminolevulinic acid formation in Pseudomonas aeruginosa.

    PubMed Central

    Hungerer, C; Troup, B; Römling, U; Jahn, D

    1995-01-01

    The general tetrapyrrole precursor 5-aminolevulinic acid is formed in bacteria via two different biosynthetic pathways. Members of the alpha group of the proteobacteria use 5-aminolevulinic acid synthase for the condensation of succinyl-coenzyme A and glycine, while other bacteria utilize a two-step pathway from aminoacylated tRNA(Glu). The tRNA-dependent pathway, involving the enzymes glutamyl-tRNA reductase (encoded by hemA) and glutamate-1-semialdehyde-2,1-aminomutase (encoded by hemL), was demonstrated to be used by Pseudomonas aeruginosa, Pseudomonas putida, Pseudomonas stutzeri, Comamonas testosteroni, Azotobacter vinelandii, and Acinetobacter calcoaceticus. To study the regulation of the pathway, the glutamyl-tRNA reductase gene (hemA) from P. aeruginosa was cloned by complementation of an Escherichia coli hemA mutant. The hemA gene was mapped to the SpeI A fragment and the DpnIL fragment of the P. aeruginosa chromosome corresponding to min 24.1 to 26.8. The cloned hemA gene, coding for a protein of 423 amino acids with a calculated molecular mass of 46,234 Da, forms an operon with the gene for protein release factor 1 (prf1). This translational factor mediates the termination of the protein chain at the ribosome at amber and ochre codons. Since the cloned hemA gene did not possess one of the appropriate stop codons, an autoregulatory mechanism such as that postulated for the enterobacterial system was ruled out. Three open reading frames of unknown function transcribed in the opposite direction to the hemA gene were found. hemM/orf1 and orf2 were found to be homologous to open reading frames located in the 5' region of enterobacterial hemA genes. Utilization of both transcription start sites was changed in a P. aeruginosa mutant missing the oxygen regulator Anr (Fnr analog), indicating the involvement of the transcription factor in hemA expression. DNA sequences homologous to one half of an Anr binding site were detected at one of the determined

  13. Tunable phosphatase-sensitive stable prodrugs of 5-aminolevulinic acid for tumor fluorescence photodetection.

    PubMed

    Babič, Andrej; Herceg, Viktorija; Ateb, Imène; Allémann, Eric; Lange, Norbert

    2016-08-10

    5-Aminolevulinic acid (5-ALA) has been at the forefront of small molecule based fluorescence-guided tumor resection and photodynamic therapy. 5-ALA and two of its esters received marketing authorization but suffer from several major limitations, namely low stability and poor pharmacokinetic profile. Here, we present a new class of 5-ALA derivatives aiming at the stabilization of 5-ALA by incorporating a phosphatase sensitive group, with or without self-cleavable linker. Compared to 5-ALA hexyl ester (5-ALA-Hex), these compounds display an excellent stability under acidic, basic and physiological conditions. The activation and conversion into the 5-ALA is controlled and can be structure-tailored. The prodrugs display reduced acute toxicity compared to 5-ALA-Hex with superior dose response profiles of protoporphyrin IX synthesis and fluorescence intensity in human glioblastoma cells in vitro. Clinically relevant fluorescence kinetics in vivo shown in U87MG glioblastoma spheroid tumor model in chick embryos provide a solid basis for their further development and translation to clinical fluorescence guided tumor resection and photodynamic therapy. PMID:27235981

  14. Clinical applications of 5-aminolevulinic acid-mediated fluorescence for gastric cancer

    PubMed Central

    Namikawa, Tsutomu; Yatabe, Tomoaki; Inoue, Keiji; Shuin, Taro; Hanazaki, Kazuhiro

    2015-01-01

    5-aminolevulinic acid (ALA) is a naturally occurring amino acid that is a protoporphyrin IX (PpIX) precursor and a next-generation photosensitive substance. After exogenous administration of ALA, PpIX specifically accumulates in cancer cells owing to the impaired metabolism of ALA to PpIX in mitochondria, which results in a red fluorescence following irradiation with blue light and the formation of singlet oxygen. Fluorescence navigation by photodynamic diagnosis (PDD) using ALA provides good visualization and detection of gastric cancer lesions and is a potentially valuable diagnostic tool for gastric cancer for evaluating both the surgical resection margins and extension of the lesion. Furthermore, PDD using ALA might be used to detect peritoneal metastases during preoperative staging laparoscopy, where it could provide useful information for the selection of a therapeutic approach. Another promising application for this modality is in the evaluation of lymph node metastases. Photodynamic therapy (PDT) using ALA to cause selective damage based on the accumulation of a photosensitizer in malignant tissue is expected to be a non-invasive endoscopic treatment for superficial early gastric cancer. ALA has the potential to be used not only as a diagnostic agent but also as a therapeutic drug, resulting in a new strategy for cancer diagnosis and therapy. Here, we review the current use of PDD and PDT in gastric cancer and evaluate its future potential beyond conventional modalities combined with a light energy upconverter, a light-emitting diode and near-infrared rays as light sources. PMID:26269666

  15. Alternative Routes for the Synthesis of 5-Aminolevulinic Acid in Maize Leaves 1

    PubMed Central

    Harel, Eitan; Ne'Eman, Emma

    1983-01-01

    Intact plastids from greening maize (Zea mays L.) leaves converted [14C]glutamate and [14C]2-ketoglutarate (KG) to [14C]5-aminolevulinic acid (ALA). Glutamate appeared to be the immediate precursor of ALA, while KG was first converted to glutamate, as shown by the effect of various inhibitors of amino acid metabolism. Plastids from greening leaves contained markedly higher activity as compared with etioplasts or chloroplasts. The synthesis of ALA by intact plastids was light dependent. The enzyme system resides in the stroma of plastids or may be lightly bound to membranes. The solubilized system showed maximal activity around pH 7.9 and required Mg2+, ATP, and NADPH although dependence on the latter was not clear-cut. A relatively high level of activity could be extracted from etioplasts. Maximal activity was obtained from plastids of leaves which had been illuminated for 90 minutes, after which activity declined sharply. The enzyme system solubilized from plastids also catalyzed the conversion of putative glutamate 1-semialdehyde to ALA in a reaction which was not dependent on the addition of an amino donor. The system in maize greatly resembled the one which had been reported from barley. It is suggested that this system is the one responsible for the biosynthesis of ALA destined for chlorophyll formation. PMID:16663121

  16. Fluorescence photodetection of head and neck cancer following topical or systemic application of 5-aminolevulinic acid

    NASA Astrophysics Data System (ADS)

    Leunig, Andreas; Rick, Kai; Stepp, Herbert G.; Gutmann, Ralph; Goetz, Alwin E.; Baumgartner, Reinhold; Feyh, Jens

    1996-12-01

    The aim of photodynamic diagnosis is the complete visualization of all neoplastic lesions in a tumorous organ after topical or systemic application of a tumor selective photosensitizer. In this investigation we performed quantitative fluorescence measurements following topical and systemic application of 5-aminolevulinic acid to head and neck tumors. We investigated 15 patients with neoplastic lesions of the oral cavity and 5 patients with carcinoma of the larynx after rinsing a 0.4 percent-5-ALA solution or inhalation 5 percent-5-ALA. One patient was given 5-ALA systemically p.o. in a concentration of 10mg/kg b.w. Time course and type of porphyrin accumulation were analyzed in neoplastic and surrounding normal tissue by measuring emission spectra of ALA-induced protoporphyrin IX fluorescence at regular intervals for up to 3 hours following 15 minutes of continuous rinsing of a 0.4 percent- ALA-solution, 1 hour of continuous inhalation and 3 hours after p.o. application. After excitation with violet light of a high pressure xenon arc lamp, fluorescence images in the red spectral range from the tumor tissue and the corresponding macroscopic visible tumor were recorded with a CCD-camera. A quantitative analysis of the fluorescence contrast in neoplastic and surrounding tissue was performed using an optical multichannel analyzer.

  17. Effect of 5-aminolevulinic acid on kinetics of protoporphyrin IX production in CHO cells.

    PubMed

    Wołuń-Cholewa, M; Warchoł, W

    2004-01-01

    5-aminolevulinic acid (ALA) is utilized in a photodynamic therapy as a compound capable of augmenting intracellular pool of protoporphyrin IX (PpIX), which exhibits properties of a photosensitizer. The studies were aimed at monitoring accumulation of endogenous protoporphyrin IX in CHO cells under effect of various concentrations of ALA in culture medium and following removal of the compound from the culture medium. Cell content of PpIX was determined following incubation of the cells for 72 h in a culture medium containing different concentration of ALA. Moreover, the cells were preincubated for 2 h in ALA at various concentrations and separated from the compound by medium change and their PpIX content was monitored following incubation. PpIX content was defined by a fluorescent technique under the confocal microscope. In the course of continuous incubation of cells with ALA, biphasic alterations were noted in cellular PpIX concentration. Removal of ALA from the incubation medium resulted at first in a decrease in PpIX content in cells, which was followed by an evidently augmented accumulation of the compound in the cells. The results suggested that in the case of CHO cells, exogenous ALA was not an exclusive source of PpIX synthesis and that alterations in enzyme activities were responsible for production of PpIX. PMID:15253138

  18. Comparison of 5-Aminolevulinic Acid Photodynamic Therapy and Clobetasol Propionate in Treatment of Vulvar Lichen Sclerosus.

    PubMed

    Shi, Lei; Miao, Fei; Zhang, Ling-Lin; Zhang, Guo-Long; Wang, Pei-Ru; Ji, Jie; Wang, Xiao-Jie; Huang, Zheng; Wang, Hong-Wei; Wang, Xiu-Li

    2016-06-15

    The aim of this study was to evaluate the effectiveness of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) for the treatment of vulvar lichen sclerosus (VLS) and compare its effectiveness with that of clobetasol propionate. Four sessions of topical photodynamic therapy (PDT) were administered at 2-week intervals (n = 20). Clobetasol propionate (0.05%) was used daily for 8 weeks (n = 20). The rate of complete response in the PDT group (14/20) was double that of the clobetasol propionate group (7/20) (p < 0.05, 2 = 4.912). Horizontal visual analogue scores indicated that PDT was more effective than clobetasol propionate. Pain intensity numeric rating scale values for PDT were between 3.05 and 4.45. One month after the final session of PDT, only one patient relapsed and all 7 patients in clobetasol propionate group relapsed. ALA-PDT is a well-tolerated and effective option for the treatment of VLS. PMID:26775671

  19. Comparison of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy.

    PubMed

    Fang, Yi-Ping; Tsai, Yi-Hung; Wu, Pao-Chu; Huang, Yaw-Bin

    2008-05-22

    Topical photodynamic therapy (PDT) with 5-aminolevulinic acid (ALA) is an alternative therapy for many non-melanoma skin cancers. The major limitation of this therapy, however, is the low permeability of ALA through the stratum corneum (SC) of the skin. The objective of the present work was to characterize ethosomes containing ALA and to enhance the skin production of protoporphyrin IX (PpIX), compared to traditional liposomes. Results showed that the average particle sizes of the ethosomes were less than those of liposomes. Moreover, the entrapment efficiency of ALA in the ethosome formulations was 8-66% depending on the surfactant added. The particle size of the ethosomes was still approximately <200 nm after 32 days of storage. An in vivo animal study observed the presence of PpIX in the skin by confocal laser scanning microscopy (CLSM). The results indicated that the penetration ability of ethosomes was greater than that of liposomes. The enhancements of all the formulations were ranging from 11- to 15-fold in contrast to that of control (ALA in an aqueous solution) in terms of PpIX intensity. In addition, colorimetry detected no erythema in the irradiated skin. The results demonstrated that the enhancement ratio of ethosome formulations did not significantly differ between the non-irradiated and irradiated groups except for PE/CH/SS, which may have been due to a photobleaching effect of the PDT-irradiation process. PMID:18325699

  20. Physicochemical characterisation of a novel thermogelling formulation for percutaneous penetration of 5-aminolevulinic acid.

    PubMed

    Grüning, Nadja; Müller-Goymann, Christel Charlotte

    2008-06-01

    The present contribution was dedicated to the development and characterisation of a semisolid formulation of 5-aminolevulinic acid (5-ALA), appropriate for the diagnosis and treatment of actinic keratosis in photodynamic therapy. To achieve sufficiently high concentrations of the polar substance within the living epithelium after topical application, the semisolid base was enriched with penetration enhancers. A semisolid liquid crystalline system for drug delivering was the formulation of choice. It was composed of isopropyl alcohol, dimethyl isosorbide, medium chain triglycerides, water, and Pluronic F 127 as a polyoxyethylene-polyoxypropylene surface-active block copolymer. Rheometrical investigations were performed in the oscillatory mode and showed a thermo reversible gelification behaviour of the formulation, which therefore was denoted Thermogel. Permeation studies through human stratum corneum revealed higher permeation coefficients for 5-ALA from the Thermogel than from different German Pharmacopoeia creams. For example a 7.5-fold increase in comparison with Basiscreme DAC, and a 19.5-fold increase compared to water containing hydrophilic ointment. With respect to Dolgit(R) Mikrogel, the permeation coefficient from the Thermogel was 6.4-fold higher. These results were in accordance with those of differential scanning calorimetry measurements. Thermogel disclosed the strongest interactions with stratum corneum lipids. PMID:17828744

  1. Role of 5-aminolevulinic acid-conjugated gold nanoparticles for photodynamic therapy of cancer

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenxi; Wang, Sijia; Xu, Hao; Wang, Bo; Yao, Cuiping

    2015-05-01

    There are three possible mechanisms for 5-aminolevulinic acid (5-ALA) conjugated gold nanoparticles (GNPs) through electrostatic bonding for photodynamic therapy (PDT) of cancer: GNPs delivery function, singlet oxygen generation (SOG) by GNPs irradiated by light, and surface resonance enhancement (SRE) of SOG. Figuring out the exact mechanism is important for further clinical treatment. 5-ALA-GNPs and human chronic myeloid leukemia K562 cells were used to study delivery function and SOG by GNPs. The SRE of SOG enabled by GNPs was explored by protoporphyrin IX (PpIX)-GNPs conjugate through electrostatic bonding. Cell experiments show that the GNPs can improve the efficiency of PDT, which is due to the vehicle effect of GNPs. PpIX-GNPs conjugate experiments demonstrated that SOG can be improved about 2.5 times over PpIX alone. The experiments and theoretical results show that the local field enhancement (LFE) via localized surface plasmon resonance (LSPR) of GNPs is the major role; the LFE was dependent on the irradiation wavelength and the GNP's size. The LFE increased with an increase of the GNP size (2R ≤50 nm). However, the LSPR function of the GNPs was not found in cell experiments. Our study shows that in 5-ALA-conjugated GNPs PDT, the delivery function of GNPs is the major role.

  2. Sonodynamic therapy using 5-aminolevulinic acid enhances the efficacy of bleomycin.

    PubMed

    Osaki, Tomohiro; Ono, Misato; Uto, Yoshihiro; Ishizuka, Masahiro; Tanaka, Tohru; Yamanaka, Nobuyasu; Kurahashi, Tsukasa; Azuma, Kazuo; Murahata, Yusuke; Tsuka, Takeshi; Ito, Norihiko; Imagawa, Tomohiro; Okamoto, Yoshiharu

    2016-04-01

    Sonodynamic therapy (SDT) kills tumor cells through the synergistic effects of ultrasound and a sonosensitizer agent. We examined whether 5-aminolevulinic acid (5-ALA)-based SDT at 1 or 3 MHz could enhance the cytotoxicity of bleomycin (BLM) toward mouse mammary tumor cells both in vitro and in vivo. At 1 MHz, cell viability in the 5-ALA-based SDT group at 1, 2, and 3 W/cm(2) was 34.30%, 50.90%, and 60.16%, respectively. Cell viability in the 5-ALA-based SDT+BLM group at 1, 2, and 3 W/cm(2) was 0.09%, 0.32%, and 0.17%, respectively. In contrast, at 3 MHz, 5-ALA-based SDT+BLM did not show pronounced cytotoxicity. In the in vivo study, 5-ALA-based SDT+BLM was significantly more cytotoxic than 5-ALA-based SDT at 1 MHz and 3 MHz. These findings suggest that the mechanism of tumor shrinkage induced by 5-ALA-based SDT+BLM might involve not only direct cell killing, but also vascular shutdown. Thus, we show here that 5-ALA-based SDT enhances the efficacy of BLM both in vitro and in vivo. PMID:26799128

  3. Off-label photodynamic therapy for recalcitrant facial flat warts using topical 5-aminolevulinic acid.

    PubMed

    Yang, Ya-Li; Sang, Junjun; Liao, Ning-Xin; Wei, Fang; Liao, Wanqin; Chen, Jiang-Han

    2016-07-01

    The facial flat wart (verruca plana) is one of the most common reasons for dermatology and primary care visits. Although there are many therapeutic modalities, no single therapy has been proven to be completely curative. Case reports and uncontrolled studies suggested that photodynamic therapy (PDT) with topical 5-aminolevulinic acid (ALA) can effectively treat recalcitrant facial flat warts. A total of 12 patients with recalcitrant facial flat warts were enrolled in the study. ALA gel (10 %) was applied topically to lesions and incubated for 3 h. The lesions were irradiated by an LED light of 630 ± 10 nm at dose levels of 60-100 mW/cm. Clinical assessment was conducted before and after every treatment for up to 24 weeks. Among the ten patients completing three sessions of ALA-PDT, five had complete lesions clearance, and the other five patients were significantly improved. At the 24-week follow-up, the average effective rate was 88.8 %, with no recurrences. No significant side effects were reported. A low-dose topical ALA-PDT regimen using 10 % ALA, 3 h incubation, and a red light source for three treatment sessions are suggested as the optimal scheme for the treatment of recalcitrant flat warts on the face in Chinese patients. Superior efficacy is found in elevated or active period lesions with mild side effects. PMID:27059226

  4. Plasma protoporphyrin IX following administration of 5-aminolevulinic acid as a potential tumor marker

    PubMed Central

    OTA, URARA; FUKUHARA, HIDEO; ISHIZUKA, MASAHIRO; ABE, FUMINORI; KAWADA, CHIAKI; TAMURA, KENJI; TANAKA, TOHRU; INOUE, KEIJI; OGURA, SHUN-ICHIRO; SHUIN, TARO

    2015-01-01

    Exogenously administered 5-aminolevulinic acid (ALA) is metabolized to protoporphyrin IX (PpIX), which specifically accumulates in cancer cells and emits red fluorescence by blue light irradiation. These phenomena are applied for the intraoperative diagnosis of cancer. Based on the fact that accumulated PpIX in cancer cells is exported extracellularly via the ATP-binding cassette transporter G2, we hypothesized that the measurement of plasma PpIX concentrations could be applied as a tumor marker for cancer screening. In the present study, the use of plasma samples from bladder cancer patients were evaluated as a tumor marker. ALA, 1.0 g, was orally administered to bladder cancer patients and healthy adults. The plasma concentration of PpIX was measured using a high-performance liquid chromatography system. The plasma PpIX concentration following ALA administration was significantly higher in bladder cancer patients than that in the healthy adults, suggesting the effectiveness of plasma PpIX analysis following ALA administration for cancer screening. Additionally, 4 h after ALA administration, plasma PpIX showed high sensitivity (94.4%) and high specificity (80.0%). PMID:26171183

  5. Photodynamic effects on nasopharyngeal carcinoma (NPC) cells with 5-aminolevulinic acid or its hexyl ester.

    PubMed

    Wu, R W K; Chu, E S M; Yow, C M N; Chen, J Y

    2006-10-01

    Nasopharyngeal carcinoma (NPC) is a prevalent cancer in Hong Kong and southern China. To explore a new modality of NPC treatment, 5-aminolevulinic acid (ALA) or its hexyl ester (ALA-H) mediated photodynamic therapy (PDT) was studied in vitro. The results show that NPC cells are sensitive to both ALA and ALA-H mediated PDT. However, ALA-H PDT is much more effective at cell inactivation than ALA-PDT, due to a higher efficiency of ALA-H on producing endogenous protoporphyrin (PpIX) in cells. Both apoptosis and necrosis are involved in cell death, but apoptosis plays a major role under the short time incubation of drugs. ALA and ALA-H mediated PDT not only destroy the cells directly, but also inhibit the expression of matrix metalloproteinase-2 (MMP2) in cells, a maker for tumor metastasis. The ALA-H shows promising PDT results on NPC in vitro; therefore it is worth investigating further in vivo for NPC treatment. PMID:16442708

  6. 5-Aminolevulinic Acid Photodynamic Therapy combined with CO2 laser therapy in treatment of laryngeal papilloma: Case report.

    PubMed

    Zhang, Yunjie; Yang, Yuguang; Zou, Xianbiao; Huang, Zheng

    2016-06-01

    This article describes the case of 5-Aminolevulinic Acid Photodynamic Therapy (ALA-PDT) via self-retaining laryngoscope under general anesthesia combined with CO2 Laser Therapy in the treatment of three patients with juvenile laryngeal papilloma. Laryngeal papilloma Clinically, it features rapid growth, multi-focus, frequent recurrence and possibility of spreading to the lower respiratory tract. ALA-PDT via self-retaining laryngoscope under general anesthesia combined with CO2 Laser Therapy is safe and effective for clearing laryngeal papilloma, laryngeal papilloma was fully removed from the three patients, with no recurrence during the 6-24 months of follow-up medical examination. 5-Aminolevulinic Acid Photodynamic Therapy (ALA-PDT) via self-retaining laryngoscope under general anesthesia combined with CO2 Laser can be used for treating laryngeal papilloma. PMID:27045601

  7. Hydrokolloid occlusive dressings for photodynamic therapy (PDT) of cutaneous lesions with endogenous porphyrins induced by 5-aminolevulinic acid

    NASA Astrophysics Data System (ADS)

    Gahlen, Johannes; Stern, Josef; Herfarth, Christian

    1995-03-01

    Protoporphyrin (Pp IX) is the final intermediate product before haem and can be stimulated to a phototoxic reaction with light. The presence of 5-aminolevulinic acid can increase the intracellular biosynthesis of Pp IX in certain types of tumor cells. The photosensitizing concentrations of Pp IX make laser light induced fluorescence diagnostics (LIFD) and photodynamic therapy possible. A topical application of a 5-aminolevulinic acid solution requires a waterproof occlusive dressing for several hours. We developed a simple technique for a practical preparation for PDT using a hydrocolloid dressing. The normal surrounding skin can be spared. We present our first therapeutic experience with a case of cutaneous breast cancer in a 65-year-old female patient. Six hours after topical application of 10% isotonic 5- aminolevulinic acid under the hydrocolloid dressing PDT was performed (Ar-Dye Laser, 630 nm wavelength). Twenty four hours after PDT a superficial tumor necrosis could be observed with a maximum depth of tumor necrosis of 2 - 3 mm. The surrounding normal skin was without any inflammation.

  8. 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway.

    PubMed

    Ramzi, Ahmad Bazli; Hyeon, Jeong Eun; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok

    2015-12-01

    ALA (5-aminolevulinic acid) is an important intermediate in the synthesis of tetrapyrroles and the use of ALA has been gradually increasing in many fields, including medicine and agriculture. In this study, improved biological production of ALA in Corynebacterium glutamicum was achieved by overexpressing glutamate-initiated C5 pathway. For this purpose, copies of the glutamyl t-RNA reductase HemA from several bacteria were mutated by site-directed mutagenesis of which a HemA version from Salmonella typhimurium exhibited the highest ALA production. Cultivation of the HemA-expressing strain produced approximately 204 mg/L of ALA, while co-expression with HemL (glutamate-1-semialdehyde aminotransferase) increased ALA concentration to 457 mg/L, representing 11.6- and 25.9-fold increases over the control strain (17 mg/L of ALA). Further effects of metabolic perturbation were investigated, leading to penicillin addition that further improves ALA production to 584 mg/L. In an optimized flask fermentation, engineered C. glutamicum strains expressing the HemA and hemAL operon produced up to 1.1 and 2.2g/L ALA, respectively, under glutamate-producing conditions. The final yields represent 10.7- and 22.0-fold increases over the control strain (0.1g/L of ALA). From these findings, ALA biosynthesis from glucose was successfully demonstrated and this study is the first to report ALA overproduction in C. glutamicum via metabolic engineering. PMID:26453466

  9. Photodynamic therapy of urethral condylomata acuminata using topically 5-aminolevulinic acid

    NASA Astrophysics Data System (ADS)

    Wang, Xiuli; Wang, Hongwei; Wang, Haishan; Xu, Shizheng; Liao, Kanghuang; Hillemanns, Peter

    2005-07-01

    Background Electrocoagulation and laser evaporation for urethral condylomata acuminata have high recurrence rates and can be associated with urethral malformations. Objective To investigate the effect of photodynamic therapy (PDT) with topical 5-aminolevulinic acid (ALA) on urethral condylomata acuminata and to examine the histological changes in lesions of condylomata acuminata after ALA-PDT. Methods One hundred and sixty-four urethral condylomata patients were given topical ALA followed by intraurethral PDT through a cylindrical fiber. Among the cases, 16 penile and vulval condylomatous lesions in 11 patients were treated with topical ALA-PDT at same time. After the treatment, biopsy specimens were collected from the 16 penile and vulval lesions. The histological changes were then evaluated by light microscope and electron microscope. Results The complete response rate for urethral condylomata by topical ALA-PDT was 95.12% and the recurrence rate was 5.13% after 6 to 24 months follow-up. Keratinocytes in middle and upper layers of the epidermis with marked vacuolation and some necrocytosis were detected one and three hours after PDT. Necrosis in all layers of the epidermis was noted five hours after PDT by microscopy. In electron microscopy of kerationcytes, distinct ultrastructural abnormalities of mitochondrion, endoplasmic reticulum and membrane damage were observed. Apoptotic bodies were detected three hours after PDT and a large number of the keratinocytes exhibited necrosis five hours after PDT by electron microscope. Conclusions Results suggests that topical ALA-PDT is a simple, effective, relatively safe, less recurrent and comparatively well tolerated treatment for urethral condylomata acuminata. The mechanisms might be that ALA-PDT could trigger apoptotic process and necrosis in the HPV infected keratinocytes. Key words:

  10. Rapid stabilisation of atherosclerotic plaque with 5-aminolevulinic acid-mediated sonodynamic therapy.

    PubMed

    Li, Zhitao; Sun, Xin; Guo, Shuyuan; Wang, Liping; Wang, Tengyu; Peng, Chenghai; Wang, Wei; Tian, Zhen; Zhao, Ruibo; Cao, Wenwu; Tian, Ye

    2015-10-01

    5-Aminolevulinic acid-mediated sonodynamic therapy (ALA-SDT) effectively induces the apoptosis of atherogenic macrophages, but whether it can stabilise atherosclerotic plaque in vivo is unclear. Here, we used an animal model to evaluate the effects of ALA-SDT on plaque stabilisation. Sixty rabbits were induced atherosclerotic plaques in the femoral artery with a combination of silastic tube placement with atherogenic diet, and randomly assigned into control (n = 12) and SDT (n = 48) groups. In the SDT group, after intravenous injected with ALA (60 mg/kg) animals underwent the treatment of ultrasound with intensities of 0.75, 1.00, 1.50 and 2.00 W/cm(²) (n = 12 for each intensity). Seven days after the treatment, the plaque disruption assay was performed to test plaque stability. We found that ALA-SDT with ultrasound intensity of 1.5 W/cm(²) showed the strongest efficacy to stabilise plaques. Under this condition, the frequency of plaque disruption decreased by 88% (p<0.01), positive area of macrophages reduced by 94% (p<0.001) and percentage content of lipids dropped by 60% (p < 0.001), while percentage content of collagens increased by 127% (p<0.001). We also found that the plaque stabilisation by ALA-SDT was associated with increased macrophage apoptosis and apoptotic cell clearance. Moreover, ALA-SDT decreased the contents and activities of matrix metalloproteinase-2,9 and increased the levels of tissue inhibitors of matrix metalloproteinase-1,2 in plaques. Our studies demonstrate that ALA-SDT promotes plaque stabilisation by inducing macrophage elimination and inhibiting matrix degradation. This method might be a promising regimen for atherosclerosis therapy. PMID:26179778

  11. [Effect of 5-aminolevulinic acid on photosynthetic characteristics of tomato seedlings under NaCl stress].

    PubMed

    Zhao, Yan-Yan; Yan, Fei; Hu, Li-Pan; Zhou, Xiao-Ting; Zou, Zhi-Rong

    2014-10-01

    In this research, the possibility of exogenous application of 5-aminolevulinic acid (ALA) on photosynthetic characteristics of tomato seedlings under NaCl stress was investigated. Five leaves seedlings of tomato (Solanum lycopersicum cv. Jinpeng No. 1) were used as starting materials, applied with 50 mg · L(-1) ALA by foliage spray or 10 mg · L(-1) ALA by root soaking to study the changes in their photosynthesis and fluorescence parameters under 100 mmol · L(-1) NaCl. The result showed that, photosynthetic gas exchange parameters (net photosynthetic rate P,, stomata conductance g(s), intercellular CO2 concentration Ci, transpiration Tr) and chlorophyll fluorescence parameters (Fv'/Fm', Fm', ΦPS II, ETR, qP, Pc) were severely reduced under NaCl treatment and ALA application by foliage spray or root soaking with proper concentrations exerted positive influences on tomato seedlings under salt stress, while there were some differences between foliage spray and root soaking in the influence on chlorophyll content, photosynthesis and chlorophyll fluorescence. Both foliage spray with 50 mg · L(-1) ALA and root soaking with 10 mg L(-1) ALA significantly increased Pn, Ci, g(s) and Tr of tomato seedlings under NaCl stress, alleviated photosynthetic inhibition. Root application of ALA had a better effect on the chlorophyll content than foliage application. However, the photosynthetic parameters showed that foliage application of ALA had a better effect than root application, and both treatments had no difference in the influence on chlorophyll fluorescence parameters of tomato seedlings. It could be deduced that the regulating effect of ALA on enhancing salt tolerance of tomato seedlings is attributed to its effect on improving chlorophyll biosynthesis and metabolism, increasing stomatal conductance and reducing stomatal limitation, thus, enhancing the photosynthetic capacity and PS II photochemical efficiency of tomato leaves under NaCl stress. PMID:25796901

  12. 5-Aminolevulinic Acid-Induced Protoporphyrin IX Fluorescence in Meningioma: Qualitative and Quantitative Measurements In Vivo

    PubMed Central

    Valdes, Pablo A.; Bekelis, Kimon; Harris, Brent T.; Wilson, Brian C.; Leblond, Frederic; Kim, Anthony; Simmons, Nathan E.; Erkmen, Kadir; Paulsen, Keith D.; Roberts, David W.

    2014-01-01

    BACKGROUND The use of 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence has shown promise as a surgical adjunct for maximizing the extent of surgical resection in gliomas. To date, the clinical utility of 5-ALA in meningiomas is not fully understood, with most descriptive studies using qualitative approaches to 5-ALA-PpIX. OBJECTIVE To assess the diagnostic performance of 5-ALA-PpIX fluorescence during surgical resection of meningioma. METHODS ALA was administered to 15 patients with meningioma undergoing PpIX fluorescence-guided surgery at our institution. At various points during the procedure, the surgeon performed qualitative, visual assessments of fluorescence by using the surgical microscope, followed by a quantitative fluorescence measurement by using an intra-operative probe. Specimens were collected at each point for subsequent neuropathological analysis. Clustered data analysis of variance was used to ascertain a difference between groups, and receiver operating characteristic analyses were performed to assess diagnostic capabilities. RESULTS Red-pink fluorescence was observed in 80% (12/15) of patients, with visible fluorescence generally demonstrating a strong, homogenous character. Quantitative fluorescence measured diagnostically significant PpIX concentrations (CPpIx) in both visibly and nonvisibly fluorescent tissues, with significantly higher CPpIx in both visibly fluorescent (P < .001) and tumor tissue (P = .002). Receiver operating characteristic analyses also showed diagnostic accuracies up to 90% for differentiating tumor from normal dura. CONCLUSION ALA-induced PpIX fluorescence guidance is a potential and promising adjunct in accurately detecting neoplastic tissue during meningioma resective surgery. These results suggest a broader reach for PpIX as a biomarker for meningiomas than was previously noted in the literature. PMID:23887194

  13. Alleviation of salt-induced oxidative damage by 5-aminolevulinic acid in wheat seedlings

    NASA Astrophysics Data System (ADS)

    Genişel, Mucip; Erdal, Serkan

    2016-04-01

    The aim of this study was to elucidate how 5-aminolevulinic acid (ALA), the precursor of chlorophyll compounds, affects the defence mechanisms of wheat seedlings induced by salt stress. To determine the possible stimulative effects of ALA against salinity, 11-day old wheat seedlings were sprayed with ALA at two different concentrations (10 and 20 mg.l-1) and then stressed by exposure to salt (150 mM NaCl). The salt stress led to significant changes in the antioxidant activity. While guaiacol peroxidase activity decreased, the activities of superoxide dismutase, catalase, and ascorbate peroxidase markedly increased under salt stress. Compared to the salt stress alone, the application of ALA beforehand further increased the activity of these enzymes. This study is the first time the effects of ALA have been monitored with regard to protein content and the isoenzyme profiles of the antioxidant enzymes. Although the salt stress reduced both the soluble protein content and protein band intensities, pre-treating with ALA significantly mitigated these stress-induced reductions. The data for the isoenzyme profiles of the antioxidant enzymes paralleled that of the ALA-induced increases in antioxidant activity. As a consequence of the high antioxidant activity in the seedlings pre-treated with ALA, the stress-induced elevations in the reactive oxygen species, superoxide anion, and hydrogen peroxide contents and lipid peroxidation levels were markedly diminished. Taken together, this data demonstrated that pre-treating with ALA confers resistance to salt stress by modulating the protein synthesis and antioxidant activity in wheat seedlings.

  14. Intra-operative visualization of brain tumors with 5-aminolevulinic acid-induced fluorescence.

    PubMed

    Widhalm, Georg

    2014-01-01

    Precise histopathological diagnosis of brain tumors is essential for the correct patient management. Furthermore, complete resection of brain tumors is associated with an improved patient prognosis. However, histopathological undergrading and incomplete tumor removal are not uncommon, especially due to insufficient intra-operative visualization of brain tumor tissue. The fluorescent dye 5-aminolevulinic acid (5-ALA) is currently applied for fluorescence-guided resections of high-grade gliomas. The value of 5-ALA-induced protoporphyrin (PpIX) fluorescence for intra-operative visualization of other tumors than high-grade gliomas remains unclear. Within the frame of this thesis, we found a significantly higher rate of complete resections of our high-grade gliomas as compared to control cases by using the newly established 5-ALA fluorescence technology at our department. Additionally, we showed that MRI spectroscopy-based chemical shift imaging (CSI) is capable to identify intratumoral high-grade glioma areas (= anaplastic foci) during navigation guided resections to avoid histopathological undergrading. However, the accuracy of navigation systems with integrated pre-operative imaging data such as CSI declines during resections due to intra-operative brainshift. In two further studies, we found that 5-ALA induced PpIX fluorescence is capable as a novel intra-operative marker to detect anaplastic foci within initially suspected low-grade gliomas independent of brainshift. Finally, we showed that the application of 5-ALA is also of relevance in needle biopsies for intra-operative identification of representative brain tumor tissue. These data indicate that 5-ALA is not only of major importance for resection of high-grade gliomas, but also for intra-operative visualization of anaplastic foci as well as representative brain tumor tissue in needle biopsies unaffected by brainshift. Consequently, this new technique might become a novel standard in brain tumor surgery that

  15. 5-Aminolevulinic Acid-Based Sonodynamic Therapy Induces the Apoptosis of Osteosarcoma in Mice

    PubMed Central

    Li, Yongning; Zhou, Qi; Hu, Zheng; Yang, Bin; Li, Qingsong; Wang, Jianhua; Zheng, Jinhua; Cao, Wenwu

    2015-01-01

    Objective Sonodynamic therapy (SDT) is promising for treatment of cancer, but its effect on osteosarcoma is unclear. This study examined the effect of 5-Aminolevulinic Acid (5-ALA)-based SDT on the growth of implanted osteosarcoma and their potential mechanisms in vivo and in vitro. Methods The dose and metabolism of 5-ALA and ultrasound periods were optimized in a mouse model of induced osteosarcoma and in UMR-106 cells. The effects of ALA-SDT on the proliferation and apoptosis of UMR-106 cells and the growth of implanted osteosarcoma were examined. The levels of mitochondrial membrane potential (ΔψM), ROS production, BcL-2, Bax, p53 and caspase 3 expression in UMR-106 cells were determined. Results Treatment with 5-ALA for eight hours was optimal for ALA-SDT in the mouse tumor model and treatment with 2 mM 5-ALA for 6 hours and ultrasound (1.0 MHz 2.0 W/cm2) for 7 min were optimal for UMR-106 cells. SDT, but not 5-ALA, alone inhibited the growth of implanted osteosarcoma in mice (P<0.01) and reduced the viability of UMR-106 cells (p<0.05). ALA-SDT further reduced the tumor volumes and viability of UMR-106 cells (p<0.01 for both). Pre-treatment with 5-ALA significantly enhanced the SDT-mediated apoptosis (p<0.01) and morphological changes. Furthermore, ALA-SDT significantly reduced the levels of ΔψM, but increased levels of ROS in UMR-106 cells (p<0.05 or p<0.01 vs. the Control or the Ultrasound). Moreover, ALA-SDT inhibited the proliferation of osteosarcoma cells and BcL-2 expression, but increased levels of Bax, p53 and caspase 3 expression in the implanted osteosarcoma tissues (p<0.05 or p<0.01 vs. the Control or the Ultrasound). Conclusions The ALA-SDT significantly inhibited osteosarcoma growth in vivo and reduced UMR-106 cell survival by inducing osteosarcoma cell apoptosis through the ROS-related mitochondrial pathway. PMID:26161801

  16. Involvement of Singlet Oxygen in 5-Aminolevulinic Acid-Induced Photodynamic Damage of Cucumber (Cucumis sativus L.) Chloroplasts 1

    PubMed Central

    Chakraborty, Niranjan; Tripathy, Baishnab Charan

    1992-01-01

    Cucumber (Cucumis sativus L., cv Poinsette) plants were sprayed with 20 millimolar 5-aminolevulinic acid and then incubated in the dark for 14 hours. The intact chloroplasts were isolated from the above plants in the dark and were exposed to weak light (250 micromoles per square meter per second). Within 30 minutes, photosystem II activity was reduced by 50%. The singlet oxygen (1O2) scavengers, histidine and sodium azide (NaN3) significantly protected against the damage caused to photosystem II. The hydroxyl radical scavenger formate failed to protect the thylakoid membranes. The production of 1O2 monitored as N,N-dimethyl p-nitrosoaniline bleaching increased as a function of light exposure time of treated chloroplasts and was abolished by the 1O2 quencher, NaN3. Membrane lipid peroxidation monitored as malondialdehyde production was also significantly reduced when chloroplasts were illuminated in the presence of NaN3 and histidine. Protochlorophyllide was the most abundant pigment accumulated in intact chloroplasts isolated from 5-aminolevulinic acid-treated plants and was probably acting as type II photosensitizer. PMID:16668650

  17. Transport properties and association behaviour of the zwitterionic drug 5-aminolevulinic acid in water. A precision conductometric study.

    PubMed

    Merclin, Nadia; Beronius, Per

    2004-02-01

    The behavior of the hydrochloride salt of 5-aminolevulinic acid (ALA-HCl) with respect to transport properties and dissociation in aqueous solution at 25 degrees C has been studied using precision conductometry within the concentration range 0.24-5.17mM. The conductivity data are interpreted according to elaborated conductance theory. The carboxyl group appears to be, in practice, undissociated. The dissociation constant, K(a), of the NH(3)(+) form of the amino acid molecules is determined to 6.78x10(-5) (molarity scale); pK(a)=4.17. The limiting molar conductivity of the ALA-H(+) ion, lambda(0)=33.5cm(2)Omega(-1)mol(-1); electric mobility u=3.47x10(-4)cm(2)V(-1)s(-1), is close to the electric mobilites of the acetate and benzoic ions. PMID:14757508

  18. Topical versus systemic 5-aminolevulinic acid administration for photodynamic therapy of the colon in B10.RBP mice

    NASA Astrophysics Data System (ADS)

    Gil, Maciej; Woszczynski, Marek; Regula, Jaroslaw; MacRobert, Alexander J.; Butruk, Eugeniusz; Bown, Stephen G.

    1999-07-01

    5-aminolevulinic acid (5-ALA) is an interesting photosensitizing substance for photodynamic therapy (PDT), successfully applied topically for urological malignancy. In gastroenterology it has proven efficacy for treatment of some GI neoplasms after systemic administration. This study was aimed at investigating the possibility of topical 5-ALA administration also for the PDT of gut cancer in a mice model. 5-ALA solution at different concentrations (5%, 1.5%, and 0.5%) was instilled in the colon of mice, which was later removed and examined by fluorescence microscopy. The results of fluorescence studies were compared with those obtained in a control group treated with 5-ALA given systematically. Satisfactory epithelial fluorescence levels and good selectivity between gut layers were obtained after intracolonic 5-ALA instillation. However, mean fluorescence intensity was higher after systemic drug applications. Our results suggest that 5-ALA may probably be used topically for the PDT of some gut neoplasms.

  19. The heme precursor 5-aminolevulinic acid disrupts the Warburg effect in tumor cells and induces caspase-dependent apoptosis.

    PubMed

    Sugiyama, Yuta; Hagiya, Yuichiro; Nakajima, Motowo; Ishizuka, Masahiro; Tanaka, Tohru; Ogura, Shun-Ichiro

    2014-03-01

    Our previous study demonstrated that 5-aminolevulinic acid (ALA) administered to mice stimulates oxidative phosphorylation by upregulation of the mitochondrial respiratory chain complex IV enzyme cytochrome c oxidase (COX). The present study investigated whether ALA disrupts the Warburg effect, which represents a shift in ATP generation from oxidative phosphorylation to glycolysis, protecting tumor cells against oxidative stress-mediated apoptosis. The human lung carcinoma cell line A549 exposed to ALA exhibited enhanced oxidative phosphorylation, which was indicated by an increase in COX protein expression and oxygen consumption. Furthermore, ALA suppressed glycolysis-mediated acidosis. This normalization of the ATP metabolic pathways significantly increased the generation of superoxide anion radical (O2•-) and the functional expression of active caspase-3, leading to caspase-dependent apoptosis. These data demonstrate that ALA inhibits the Warburg effect and induces cancer cell death. Use of this endogenous compound might constitute a novel approach to cancer therapy. PMID:24366173

  20. Photodynamic Therapy Using Systemic Administration of 5-Aminolevulinic Acid and a 410-nm Wavelength Light-Emitting Diode for Methicillin-Resistant Staphylococcus aureus-Infected Ulcers in Mice

    PubMed Central

    Morimoto, Kuniyuki; Ozawa, Toshiyuki; Awazu, Kunio; Ito, Nobuhisa; Honda, Norihiro; Matsumoto, Sohkichi; Tsuruta, Daisuke

    2014-01-01

    Bacterial resistance to antibiotics has become a worldwide problem. One potential alternative for bacterial control is photodynamic therapy. 5-aminolevulinic acid is a natural precursor of the photosensitizer protoporphyrin IX. Relatively little is known about the antibacterial efficacy of photodynamic therapy using the systemic administration of 5-aminolevulinic acid; a few reports have shown that 5-aminolevulinic acid exerts photodynamic effects on methicillin-resistant Staphylococcus aureus (MRSA) in vitro. In this study, we evaluated the effectiveness of photodynamic therapy using 5-aminolevulinic acid and a 410-nm wavelength light-emitting diode in vitro and in vivo for the treatment of MRSA. We found that 5-aminolevulinic acid photodynamic therapy with the light-emitting diode had an in-vitro bactericidal effect on MRSA. In vivo, protoporphyrin IX successfully accumulated in MRSA on ulcer surfaces after intraperitoneal administration of 5-aminolevulinic acid to mice. Furthermore, 5-aminolevulinic acid photodynamic therapy accelerated wound healing and decreased bacterial counts on ulcer surfaces; in contrast, vancomycin treatment did not accelerate wound healing. Our findings indicate that 5-aminolevulinic acid photodynamic therapy may be a new treatment option for MRSA-infected wounds. PMID:25140800

  1. Effect of 5-aminolevulinic acid on erythropoiesis: A preclinical in vitro characterization for the treatment of congenital sideroblastic anemia

    SciTech Connect

    Fujiwara, Tohru; Takahashi, Kiwamu; Okitsu, Yoko; Fukuhara, Noriko; Onishi, Yasushi; Ishizawa, Kenichi; Ichinohasama, Ryo; Nakamura, Yukio; Nakajima, Motowo; Tanaka, Tohru; Harigae, Hideo

    2014-11-07

    Highlights: • Treatment with ALA induces erythroid differentiation of K562 cells. • Transportation of ALA into erythroid cells occurs predominantly via SLC36A1. • ALA restores defects in ALAS2 in human iPS cell-derived erythroblasts. • ALA may represent a novel therapeutic option for CSA caused by ALAS2 mutations. - Abstract: Congenital sideroblastic anemia (CSA) is a hereditary disorder characterized by microcytic anemia and bone marrow sideroblasts. The most common form of CSA is attributed to mutations in the X-linked gene 5-aminolevulinic acid synthase 2 (ALAS2). ALAS2 is a mitochondrial enzyme, which utilizes glycine and succinyl-CoA to form 5-aminolevulinic acid (ALA), a crucial precursor in heme synthesis. Therefore, ALA supplementation could be an effective therapeutic strategy to restore heme synthesis in CSA caused by ALAS2 defects. In a preclinical study, we examined the effects of ALA in human erythroid cells, including K562 cells and human induced pluripotent stem cell-derived erythroid progenitor (HiDEP) cells. ALA treatment resulted in significant dose-dependent accumulation of heme in the K562 cell line. Concomitantly, the treatment substantially induced erythroid differentiation as assessed using benzidine staining. Quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis confirmed significant upregulation of heme-regulated genes, such as the globin genes [hemoglobin alpha (HBA) and hemoglobin gamma (HBG)] and the heme oxygenase 1 (HMOX1) gene, in K562 cells. Next, to investigate the mechanism by which ALA is transported into erythroid cells, quantitative RT-PCR analysis was performed on previously identified ALA transporters, including solute carrier family 15 (oligopeptide transporter), member (SLC15A) 1, SLC15A2, solute carrier family 36 (proton/amino acid symporter), member (SLC36A1), and solute carrier family 6 (neurotransmitter transporter), member 13 (SLC6A13). Our analysis revealed that SLC36A1 was abundantly

  2. Clearance of protoporphyrin IX from mouse skin after topical application of 5-aminolevulinic acid and its methyl ester

    NASA Astrophysics Data System (ADS)

    Juzenas, Petras; Sorensen, Roar; Iani, Vladimir; Moan, Johan

    1999-02-01

    The clearance of protoporphyrin IX (PpIX) from the skin of hairless BALB/c mice after topical application of 5- aminolevulinic acid (ALA) and its methyl ester (ALA-Me) was investigated. Creams containing 2 or 20% of ALA or ALA-Me were topically applied on spots of approximately 1 cm2 for 12 hours. The PpIX fluorescence was detected by the means of a Perkin Elmer LS50B luminescence spectrometer equipped with a fiber-optic probe. The emission spectrum was identical with that of cell-bound PpIX. After 12 hours application of ALA and ALA-Me similar amounts of PpIX were found. After creme removal the ALA-induced PpIX fluorescence decayed with a half-life of about 20 hours (20% ALA cream). The ALA-Me-induced PpIX was faster cleared from the skin than ALA-induced PpIX, and had a half-life of about 7 hours (20% ALA-Me cream).

  3. Formation of protoporphyrin IX in mouse skin after topical application of 5-aminolevulinic acid and its methyl esther

    NASA Astrophysics Data System (ADS)

    Sorensen, Roar; Juzenas, Petras; Iani, Vladimir; Moan, Johan

    1999-02-01

    Normal skin of nude mice (Balb/c) was treated topically with 5-aminolevulinic acid (ALA) and its methyl ester (ALA-Me) for 24 hours. Approximately 0.1 gram of freshly prepared cream was applied to a spot of 1 cm2 on the flank of the mice, which was then covered with a transparent dressing. The ALA induced protoporphyrin IX (PpIX) was studied by means of a noninvasive fiber-optic fluorescence probe connected to a luminescence spectrometer. The excitation wavelength was 407 nm, and the emission wavelength was 637 nm. For the first hour a slight lag in PpIX production was observed for the mice treated with ALA-Me compared to the mice treated with ALA. After approximately 12 hours the ALA and the ALA-Me treated mice showed the same PpIX fluorescence intensity. From 12 hours until 24 hours the PpIX fluorescence intensity decreased for both treatment modalities, even though ALA and ALA-Me were continuously present. At 24 hours ALA-Me-treated mice had less than half the amount of PpIX in their skin compared with ALA- treated mice.

  4. Prospective study of topical 5-aminolevulinic acid photodynamic therapy for the treatment of severe adolescent acne in Chinese patients.

    PubMed

    Ma, Ying; Liu, Ye; Wang, Qianqian; Ren, Jie; Xiang, Leihong

    2015-05-01

    Acne vulgaris is one of the most common skin diseases in adolescents. In the present study, we aimed to evaluate the effectiveness and safety of topical 5-aminolevulinic acid (ALA)-mediated photodynamic therapy (PDT) for the treatment of severe acne in Chinese adolescent patients. Twenty-one Chinese adolescent patients aged 12-18 years with Pillsbury III-IV severe facial acne were treated with three courses of ALA-PDT. A 5% ALA lotion was applied topically for 60 min followed by irradiation with light-emitting diode light at 633 nm with a light intensity of 75-80 mW/cm(2) and a light dose of 90-96 J/cm(2) . Clinical assessment was conducted before and after each treatment, and at each follow-up session. The total effective rates were 85.71%, 90.48%, and 95.23% after the three PDT sessions, and at the 4- and 8-week follow ups, respectively. ALA-PDT is an effective treatment for severe adolescent acne vulgaris, and is associated with mild and reversible side-effects. PMID:25772520

  5. [Photodynamic diagnosis and therapy of neoplasms of the facial skin after topical administration of 5-aminolevulinic acid].

    PubMed

    Lang, S; Baumgartner, R; Struck, R; Leunig, A; Gutmann, R; Feyh, J

    1995-02-01

    Topical application of 5-aminolevulinic acid (5-ALA) is a useful instrument for photodynamic diagnosis and therapy of skin tumours. Diagnostic fluorescence imaging after laser light irradiation (410 nm) revealed a high, tumour-specific fluorescence even in tumour areas not apparent prior to this examination technique. This demonstrates the possibility of photodynamic diagnosis to detect skin tumours. In the therapeutic group 8 patients with 6 solar keratoses and 12 basal cell carcinomas underwent laser light irradiation using a wavelength of 635 nm (dosage 100 J/cm2) 6 hours after topical application of 5-ALA in W/O emulsion. 2-12 hours after laser application we observed reddened tumour tissue with mild oedema, subsequently followed by a crust and epithelised within 4-6 weeks. 2 months after PDT a complete response was observed for all solar keratoses and for 10 of 12 basal cell carcinomas. Photodynamic therapy following topical application of 5-ALA may be an alternative treatment modality for skin tumours. PMID:7710611

  6. 5-Aminolevulinic Acid-Mediated Sonodynamic Therapy Inhibits RIPK1/RIPK3-Dependent Necroptosis in THP-1-Derived Foam Cells

    PubMed Central

    Tian, Fang; Yao, Jianting; Yan, Meng; Sun, Xin; Wang, Wei; Gao, Weiwei; Tian, Zhen; Guo, Shuyuan; Dong, Zengxiang; Li, Bicheng; Gao, Tielei; Shan, Peng; Liu, Bing; Wang, Haiyang; Cheng, Jiali; Gao, Qianping; Zhang, Zhiguo; Cao, Wenwu; Tian, Ye

    2016-01-01

    Necroptosis, or programmed necrosis, contributes to the formation of necrotic cores in atherosclerotic plaque in animal models. However, whether inhibition of necroptosis ameliorates atherosclerosis is largely unknown. In this study, we demonstrated that necroptosis occurred in clinical atherosclerotic samples, suggesting that it may also play an important role in human atherosclerosis. We established an in vitro necroptotic model in which necroptosis was induced in THP-1-derived foam cells by serum deprivation. With this model, we demonstrated that 5-aminolevulinic acid-mediated sonodynamic therapy (ALA-SDT) inhibited necroptosis while promoting apoptosis. ALA-SDT activated the caspase-3 and caspase-8 pathways in foam cells, which is responsible for the switch from necroptosis to apoptosis. The inhibition of either caspase-8 or caspase-3 abolished the anti-necroptotic effect of ALA-SDT. In addition, we found that caspase-3 activation peaked 4 hours after ALA-SDT treatment, 2 hours earlier than maximal caspase-8activation. Taken together, our data indicate that ALA-SDT mediates the switch from necroptosis to apoptosis by activating the caspase-3 and caspase-8 pathways and may improve the prognosis of atherosclerosis. PMID:26911899

  7. Development and ex vivo evaluation of 5-aminolevulinic acid-loaded niosomal formulations for topical photodynamic therapy.

    PubMed

    Bragagni, Marco; Scozzafava, Andrea; Mastrolorenzo, Antonio; Supuran, Claudiu T; Mura, Paola

    2015-10-15

    The objective of this study was the development of a niosomal formulation for improving skin permeation and penetration of 5-aminolevulinic acid (ALA) in the treatment of skin malignancies by photodynamic therapy (PDT). Different niosomal dispersions were prepared, using two different preparation methods. The effect of addition to a classic formulation, consisting in an equimolar Span 60-cholesterol mixture, of two different edge activators, dicethyl-phosphate (DCP) and sodium cholate (SC), and of the presence of ethanol on the vesicle properties and stability was evaluated. Selected formulations were loaded with the drug and evaluated for physicochemical and stability properties and encapsulation efficiency. Classic and elastic DCP-containing niosomes were the only formulations able to effectively incorporate the drug without instability problems. Ex vivo permeation and penetration studies through excised human skin showed that both the niosomal formulations were significantly more effective in improving ALA skin delivery than the simple aqueous drug solution commonly used in clinical practice, allowing, respectively, an increase of about 80 and 40% of the drug permeated amount and of about 100 and 50% of the drug retained into the skin. These results lead to consider the developed formulations potentially useful for improving ALA bioavailability and therapeutic effectiveness in skin malignancies treatment by topical PDT. PMID:26283280

  8. 5-Aminolevulinic Acid-Protoporphyrin IX Fluorescence-Guided Surgery of High-Grade Gliomas: A Systematic Review.

    PubMed

    Guyotat, Jacques; Pallud, Johan; Armoiry, Xavier; Pavlov, Vladislav; Metellus, Philippe

    2016-01-01

    The current first-line treatment of malignant gliomas consists in surgical resection (if possible) as large as possible. The existing tools don't permit to identify the limits of tumor infiltration, which goes beyond the zone of contrast enhancement on MRI. The fluorescence-guided malignant gliomas surgery was started 15 years ago and had become a standard of care in many countries. The technique is based on fluorescent molecule revelation using the filters, positioned within the surgical microscope. The fluorophore, protoporphyrin IX (PpIX), is converted in tumoral cells from 5-aminolevulinic acid (5-ALA), given orally before surgery. Many studies have shown that the ratio of gross total resections was higher if the fluorescence technique was used. The fluorescence signal intensity is correlated to the cell density and the PpIX concentration. The current method has a very high specificity but still lower sensibility, particularly regarding the zones with poor tumoral infiltration. This book reviews the principles of the technique and the results (extent of resection and survival). PMID:26508406

  9. Rheological characterization and permeation behavior of poloxamer 407-based systems containing 5-aminolevulinic acid for potential application in photodynamic therapy.

    PubMed

    van Hemelrijck, Carlos; Müller-Goymann, Christel C

    2012-11-01

    Topical application of 5-aminolevulinic acid (ALA) in photodynamic therapy is of great interest because of avoiding systemic side effects with such an easy way of application. However, due to ALA's high polarity its dermal bioavailability is rather limited and thus, permeation enhancement of this active is of major interest in research. In a previous study, a semisolid poloxamer 407-based (POX), five-component system ("thermogel") was developed for permeation enhancement of ALA across isolated human stratum corneum. In the present study, five-component systems of systematically varied compositions were investigated both rheologically and in terms of permeation enhancement. The five-component systems contained water, a fixed combination of 1:1 of isopropyl alcohol (IPA) and dimethyl isosorbide (DMIS) and a fixed ratio of 4:1 of POX to propylene glycol dicaprylocaprate (MIG). Rheological characterization showed that complex viscosity depended on IPA/DMIS and POX/MIG content. The gelation temperature (GT) was strongly influenced by interactions between MIG, IPA and DMIS. Regarding permeation behavior, several systems showing better permeation fluxes than the original "thermogel" were identified. Surprisingly, permeation flux did not inversely correlate with the complex viscosity, showing that permeation behavior may depend on a variety of further physicochemical characteristics including individual composition and microstructure of the respective formulation. PMID:22898092

  10. 5-aminolevulinic acid for quantitative seek-and-treat of high-grade dysplasia in Barrett's esophagus cellular models

    NASA Astrophysics Data System (ADS)

    Yeh, Shu-Chi Allison; Ling, Celine S. N.; Andrews, David W.; Patterson, Michael S.; Diamond, Kevin R.; Hayward, Joseph E.; Armstrong, David; Fang, Qiyin

    2015-02-01

    High-grade dysplasia (HGD) in Barrett's esophagus (BE) poses increased risk for developing esophageal adenocarcinoma. To date, early detection and treatment of HGD regions are still challenging due to the sampling error from tissue biopsy and relocation error during the treatment after histopathological analysis. In this study, CP-A (metaplasia) and CP-B (HGD) cell lines were used to investigate the "seek-and-treat" potential using 5-aminolevulinic acid-induced protoporphyrin IX (PpIX). The photodynamic therapy photosensitizer then provides both a phototoxic effect and additional image contrast for automatic detection and real-time laser treatment. Complementary to our studies on automatic classification, this work focused on characterizing subcellular irradiation and the potential phototoxicity on both metaplasia and HGD. The treatment results showed that the HGD cells are less viable than metaplastic cells due to more PpIX production at earlier times. Also, due to mitochondrial localization of PpIX, a better killing effect was achieved by involving mitochondria or whole cells compared with just nucleus irradiation in the detected region. With the additional toxicity given by PpIX and potential morphological/textural differences for pattern recognition, this cellular platform serves as a platform to further investigate real-time "seek-and-treat" strategies in three-dimensional models for improving early detection and treatment of BE.

  11. Needle-free injection of 5-aminolevulinic acid in photodynamic therapy for the treatment of condylomata acuminata

    PubMed Central

    LI, XIULI; WANG, XIUXIU; GU, JUNYING; MA, YUE’E; LIU, ZHIYU; SHI, YULING

    2013-01-01

    The external application of 5-aminolevulinic acid (ALA) in photodynamic therapy (PDT) results in a shallow penetration depth in thick or extensive condylomata acuminata (CA) lesions, thus demonstrating a poor therapeutic effect for those patients. To compare the efficacy of needle-free injection with external application of ALA in PDT for the treatment of CA, 160 CA patients with thick or extensive warts received ALA-PDT by means of external application or needle-free injection of ALA, respectively. The complete response (CR) rate and recurrence rate in the two groups were analyzed. The CR rate after the first treatment in the needle-free injection group (68.8%) was significantly higher compared with that in the external application group (52.5%; P=0.035). The recurrence rates in the needle-free injection group and external application group were 4.1 and 15.4%, respectively (P=0.022). The needle-free injection of ALA increases the therapeutic effect of PDT for CA patients with thick or extensive lesions. It shortens the treatment time and reduces the recurrence rate, and has great potential in the treatment of CA. PMID:23935753

  12. Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes.

    PubMed Central

    Neidle, E L; Kaplan, S

    1993-01-01

    The nucleotide sequences of the Rhodobacter sphaeroides hemA and hemT genes, encoding 5-aminolevulinic acid (ALA) synthase isozymes, were determined. ALA synthase catalyzes the condensation of glycine and succinyl coenzyme A, the first and rate-limiting step in tetrapyrrole biosynthesis. The hemA and hemT structural gene sequences were 65% identical to each other, and the deduced HemA and HemT polypeptide sequences were 53% identical, with an additional 16% of aligned amino acids being similar. HemA and HemT were homologous to all characterized ALA synthases, including two human ALA synthase isozymes. In addition, they were evolutionarily related to 7-keto-8-aminopelargonic acid synthetase (BioF) and 2-amino-3-ketobutyrate coenzyme A ligase (Kbl), enzymes which catalyze similar reactions. Two hemA transcripts were identified, both expressed under photosynthetic conditions at levels approximately three times higher than those found under aerobic conditions. A single transcriptional start point was identified for both transcripts, and a consensus sequence at this location indicated that an Fnr-like protein may be involved in the transcriptional regulation of hemA. Transcription of hemT was not detected in wild-type cells under the physiological growth conditions tested. In a mutant strain in which the hemA gene had been inactivated, however, hemT was expressed. In this mutant, hemT transcripts were characterized by Northern (RNA) hybridization, primer extension, and ribonuclease protection techniques. A small open reading frame of unknown function was identified upstream of, and transcribed in the same direction as, hemA. Images PMID:8468290

  13. In Vivo Curative and Protective Potential of Orally Administered 5-Aminolevulinic Acid plus Ferrous Ion against Malaria

    PubMed Central

    Suzuki, Shigeo; Hikosaka, Kenji; Balogun, Emmanuel O.; Komatsuya, Keisuke; Niikura, Mamoru; Kobayashi, Fumie; Takahashi, Kiwamu; Tanaka, Tohru; Nakajima, Motowo

    2015-01-01

    5-Aminolevulinic acid (ALA) is a naturally occurring amino acid present in diverse organisms and a precursor of heme biosynthesis. ALA is commercially available as a component of cosmetics, dietary supplements, and pharmaceuticals for cancer diagnosis and therapy. Recent reports demonstrated that the combination of ALA and ferrous ion (Fe2+) inhibits the in vitro growth of the human malaria parasite Plasmodium falciparum. To further explore the potential application of ALA and ferrous ion as a combined antimalarial drug for treatment of human malaria, we conducted an in vivo efficacy evaluation. Female C57BL/6J mice were infected with the lethal strain of rodent malaria parasite Plasmodium yoelii 17XL and orally administered ALA plus sodium ferrous citrate (ALA/SFC) as a once-daily treatment. Parasitemia was monitored in the infected mice, and elimination of the parasites was confirmed using diagnostic PCR. Treatment of P. yoelii 17XL-infected mice with ALA/SFC provided curative efficacy in 60% of the mice treated with ALA/SFC at 600/300 mg/kg of body weight; no mice survived when treated with vehicle alone. Interestingly, the cured mice were protected from homologous rechallenge, even when reinfection was attempted more than 230 days after the initial recovery, indicating long-lasting resistance to reinfection with the same parasite. Moreover, parasite-specific antibodies against reported vaccine candidate antigens were found and persisted in the sera of the cured mice. These findings provide clear evidence that ALA/SFC is effective in an experimental animal model of malaria and may facilitate the development of a new class of antimalarial drug. PMID:26324278

  14. Effect of continuous and multiple doses of 5-aminolevulinic acid on protoporphyrin IX concentrations in the rat uterus.

    PubMed

    Roy, B N; Van Vugt, D A; Weagle, G E; Pottier, R H; Reid, R L

    1997-11-01

    The objective of the present study was to determine if the concentration of protoporphyrin IX (PpIX) in the rat endometrium could be increased by administering 5-aminolevulinic acid (ALA) in multiple doses or by continuous infusion. The effect of pH, temperature and time in solution on the stability of ALA were also investigated. Estrogen-filled silastic capsules were implanted subcutaneously into ovary intact female rats (200-225 g) (n = 66). On the third day of hormonal priming, ALA (10 mg or 25 mg) dissolved in saline and adjusted to a pH of 5-5.5 was administered intrauterine either as a single bolus or as two injections 3 hours apart (n = 10). A fifth group of rats was infused with 25 mg ALA over a 12 hour period using an osmotic minipump (n = 6). In a second experiment, ALA (25 mg) was injected immediately after being dissolved in saline (pH 2) (n = 16) or after incubation at 37 degrees C for 12 hour (pH 2) (n = 7). PpIX was then extracted from the endometrium and myometrium using a 1:1 methanol/perchloric acid solution and quantified spectrofluorometrically. A dose-response relationship was observed between 10 and 25 mg of ALA and endometrial PpIX concentrations. However, no differences in endometrial PpIX concentrations were detected between rats administered ALA either as a single bolus or as two doses. Continuous infusion of 25 mg of ALA resulted in statistically lower endometrial PpIX concentrations compared to 25 mg ALA injected either as a single bolus or as two injections. Neither pH, temperature, nor time in solution affected ALA-induced PpIX accumulation. We conclude that the simplest way of achieving the highest PpIX concentration in the rat endometrium in vivo is to administer a bolus injection of 25 mg of ALA. PMID:9440319

  15. Nitric Oxide Mediates 5-Aminolevulinic Acid-Induced Antioxidant Defense in Leaves of Elymus nutans Griseb. Exposed to Chilling Stress

    PubMed Central

    Fu, Juanjuan; Chu, Xitong; Sun, Yongfang; Miao, Yanjun; Xu, Yuefei; Hu, Tianming

    2015-01-01

    Nitric oxide (NO) and 5-aminolevulinic acid (ALA) are both extremely important signalling molecules employed by plants to control many aspects of physiology. In the present study, the role of NO in ALA-induced antioxidant defense in leaves of two sources of Elymus nutans Griseb. (Damxung, DX and Zhengdao, ZD) was investigated. Chilling stress enhanced electrolyte leakage, accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide radical in two E. nutans, which were substantially alleviated by exogenous ALA and NO application. Pretreatment with NO scavenger PTIO or NOS inhibitor L-NNA alone and in combination with ALA induced enhancements in electrolyte leakage and the accumulation of MDA, H2O2 and superoxide radical in leaves of DX and ZD exposed to chilling stress, indicating that the inhibition of NO biosynthesis reduced the chilling resistance of E. nutans and the ALA-enhanced chilling resistance. Further analyses showed that ALA and NO enhanced antioxidant defense and activated plasma membrane (PM) H+-ATPase and decreased the accumulation of ROS induced by chilling stress. A pronounced increase in nitric oxide synthase (NOS) activity and NO release by exogenous ALA treatment was found in chilling-resistant DX plants exposed to chilling stress, while only a little increase was observed in chilling-sensitive ZD. Furthermore, inhibition of NO accumulation by PTIO or L-NNA blocked the protective effect of exogenous ALA, while both exogenous NO treatment and inhibition of endogenous NO accumulation did not induce ALA production. These results suggested that NO might be a downstream signal mediating ALA-induced chilling resistance in E. nutans. PMID:26151364

  16. Regulation of Cadmium-Induced Proteomic and Metabolic Changes by 5-Aminolevulinic Acid in Leaves of Brassica napus L.

    PubMed Central

    Ali, Basharat; Gill, Rafaqat A.; Yang, Su; Gill, Muhammad B.; Farooq, Muhammad A.; Liu, Dan; Daud, Muhammad K.; Ali, Shafaqat; Zhou, Weijun

    2015-01-01

    It is evident from previous reports that 5-aminolevulinic acid (ALA), like other known plant growth regulators, is effective in countering the injurious effects of heavy metal-stress in oilseed rape (Brassica napus L.). The present study was carried out to explore the capability of ALA to improve cadmium (Cd2+) tolerance in B. napus through physiological, molecular, and proteomic analytical approaches. Results showed that application of ALA helped the plants to adjust Cd2+-induced metabolic and photosynthetic fluorescence changes in the leaves of B. napus under Cd2+ stress. The data revealed that ALA treatment enhanced the gene expressions of antioxidant enzyme activities substantially and could increase the expression to a certain degree under Cd2+ stress conditions. In the present study, 34 protein spots were identified that differentially regulated due to Cd2+ and/or ALA treatments. Among them, 18 proteins were significantly regulated by ALA, including the proteins associated with stress related, carbohydrate metabolism, catalysis, dehydration of damaged protein, CO2 assimilation/photosynthesis and protein synthesis/regulation. From these 18 ALA-regulated proteins, 12 proteins were significantly down-regulated and 6 proteins were up-regulated. Interestingly, it was observed that ALA-induced the up-regulation of dihydrolipoyl dehydrogenase, light harvesting complex photo-system II subunit 6 and 30S ribosomal proteins in the presence of Cd2+ stress. In addition, it was also observed that ALA-induced the down-regulation in thioredoxin-like protein, 2, 3-bisphosphoglycerate, proteasome and thiamine thiazole synthase proteins under Cd2+ stress. Taken together, the present study sheds light on molecular mechanisms involved in ALA-induced Cd2+ tolerance in B. napus leaves and suggests a more active involvement of ALA in plant physiological processes than previously proposed. PMID:25909456

  17. Outcomes after combined use of intraoperative MRI and 5-aminolevulinic acid in high-grade glioma surgery

    PubMed Central

    Schatlo, Bawarjan; Fandino, Javier; Smoll, Nicolas R.; Wetzel, Oliver; Remonda, Luca; Marbacher, Serge; Perrig, Wolfgang; Landolt, Hans; Fathi, Ali-Reza

    2015-01-01

    Background Previous studies have shown the individual benefits of 5-aminolevulinic acid (5-ALA) and intraoperative (i)MRI in enhancing survival for patients with high-grade glioma. In this retrospective study, we compare rates of progression-free and overall survival between patients who underwent surgical resection with the combination of 5-ALA and iMRI and a control group without iMRI. Methods In 200 consecutive patients with high-grade gliomas, we recorded age, sex, World Health Organization tumor grade, and pre- and postoperative Karnofsky performance status (good ≥80 and poor <80). A 0.15-Tesla magnet was used for iMRI; all patients operated on with iMRI received 5-ALA. Overall and progression-free survival rates were compared using multivariable regression analysis. Results Median overall survival was 13.8 months in the non-iMRI group and 17.9 months in the iMRI group (P = .043). However, on identifying confounding variables (ie, KPS and resection status) in this univariate analysis, we then adjusted for these confounders in multivariate analysis and eliminated this distinction in overall survival (hazard ratio: 1.23, P = .34, 95% CI: 0.81, 1.86). Although 5-ALA enhanced the achievement of gross total resection (odds ratio: 3.19, P = .01, 95% CI: 1.28, 7.93), it offered no effect on overall or progression-free survival when adjusted for resection status. Conclusions Gross total resection is the key surgical variable that influences progression and survival in patients with high-grade glioma and more likely when surgical adjuncts, such as iMRI in combination with 5-ALA, are used to enhance resection. PMID:25858636

  18. 5-Aminolevulinic acid-mediated sonodynamic therapy reverses macrophage and dendritic cell passivity in murine melanoma xenografts.

    PubMed

    Wang, Shan; Hu, Zheng; Wang, Xiaolong; Gu, Chuanwen; Gao, Zhongxiuzi; Cao, Wenwu; Zheng, Jinhua

    2014-09-01

    Sonodynamic therapy (SDT) uses a combination of sonosensitizing drugs and low-intensity therapeutic ultrasound to cause apoptosis and autophagy of tumor cells. However, its effects on the tumor microenvironment, especially on the immune state, remain unknown. In this study, we investigated the transformation of macrophages and dendritic cells (DCs) in the tumor microenvironment during 5-aminolevulinic acid (5-ALA)-mediated SDT in mice transplanted with B16F10 melanomas. Tumor growth and mouse weight were measured. Hematoxylin-eosin staining was used to evaluate tumor morphology to quantify the anti-tumor efficacy of 5-ALA-mediated SDT. We investigated anti-tumor immunity in the tumor microenvironment by immunocytochemical staining of CD68, CD163, CD80, CD86, tumor necrosis factor α (TNF-α), interleukin 10 (IL-10) and interferon γ (IFN-γ). Tumor growth was restrained by 5-ALA-mediated SDT in B16F10 melanoma-bearing mice. CD68 levels increased and CD163 decreased, indicating that M2 macrophages were converted to the M1 phenotype in the tumor. The increase in CD80 and CD86 showed that DCs in the tumor microenvironment tend to mature after SDT treatment. The cytokines INF-γ, TNF-α and IL-10 significantly increased in SDT. Application of low-intensity therapeutic ultrasound alone also led to similar trends in our study, but combined treatment with 5-ALA yielded a change. The original stabilized immune state in the tumor microenvironment can be interrupted by low-intensity therapeutic ultrasound combined with 5-ALA, which enhanced the pro-inflammatory response and reversed the passive properties of macrophages and dendritic cells. PMID:25023114

  19. Comparative split-face study of 5-aminolevulinic acid photodynamic therapy with intense pulsed light for photorejuvenation of Asian skin.

    PubMed

    Kosaka, Sachiko; Yasumoto, Minako; Akilov, Oleg E; Hasan, Tayyaba; Kawana, Seiji

    2010-12-01

    Photodynamic therapy (PDT) with 5-aminolevulinic acid (ALA) (ALA-PDT) using intense pulsed light (IPL) as a light source (IPL-ALA-PDT) has been used for photorejuvenation, but it is unclear if this protocol can be applied to darker skin types. We performed this study to assess our IPL-ALA-PDT protocol for photorejuvenation in Asian skin. To determine an appropriate dose, ALA ointment (0-20%) was applied to the upper arm of five healthy volunteers and the fluorescence intensity (FI) was measured using a spectrofluorometer. Non-linear regression analysis of FI 2 h after ALA application with global fitting gave a typical sigmoid dose-response curve with R² = 0.9705 and saturation after 5% ALA. The entire faces of 16 Japanese women with photodamage were then treated with IPL (500-670 and 870-1400 nm, 23-30 J/cm²) 2 h after application of 5% ALA to one side of the face. Three treatments were delivered at 4-week intervals with follow-up visits. Comparative analysis of photorejuvenation showed noticeable improvements on both sides of the face, although the reduction in the photoaging score from baseline did not differ significantly between the two sides in all subjects. Despite this finding, 75% of the patients felt that the IPL-ALA-PDT-treated side of the face showed greater improvement than the IPL-treated side. However, all IPL-ALA-PDT-treated sides showed adverse effects such as erythema and pain. Therefore, we conclude that the IPL-ALA-PDT protocol requires optimization for photorejuvenation in Asians. PMID:21083701

  20. Clearance of protoporphyrin IX induced by 5-aminolevulinic acid from WiDr human colon carcinoma cells

    NASA Astrophysics Data System (ADS)

    Juzeniene, Asta; Kaliszewski, Miron; Bugaj, Andrzej; Moan, Johan

    2009-06-01

    5-aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) is the most widely practiced form of PDT in dermatology. One of the advantages of ALA-PDT is that undesirable photosensitization lasts only for 24-48 h. In order to optimize ALA-PDT it is necessary to understand the mechanisms controlling intracellular PpIX clearance (efflux and transformation into heme) in order to decrease protoporphyrin IX (PpIX) clearance rates in the early stages of its production. The aim of this study was to investigate the factors controlling the clearance of intracellular PpIX. Fluorescence spectroscopy was used to study PpIX kinetics in WiDr cells initially treated with ALA. The clearance rate of PpIX in WiDr cells was faster after application of a low concentration of ALA (0.1 mM) than after application of high concentration of ALA (1 mM). PpIX was cleared faster from cells which initially were seeded at low densities than cells seeded at higher densities. The presence of the iron chelator deferoxamine reduced the clearance rate of PpIX, while the presence of ferrous sulfate acted oppositely. The decay rate of PpIX in WiDr cells was faster at higher temperature than at lower. The ferrochelatase activity at pH 7.2 was significantly greater than that at pH 6.7. ALA concentration, application time, cell density, temperature, pH, intracellular iron content, intracellular amount and localization of PpIX are factors controlling PpIX clearance.

  1. Efficacy of a Complex of 5-Aminolevulinic Acid and Glycyl-Histidyl-Lysine Peptide on Hair Growth

    PubMed Central

    Sim, Hyun Bo; Jang, Yong Hyun; Lee, Seok-Jong; Kim, Do Won; Yim, Soon-Ho

    2016-01-01

    Background Pattern hair loss is a very common problem. Although effective therapeutics for the treatment of pattern hair loss have been used, novel therapeutic modalities are still required to enhance hair growth. Objective We investigated the efficacy and safety of a complex (ALAVAX) of 5-aminolevulinic acid (5-ALA) and glycyl-histidyl-lysine (GHK) peptide for the treatment of pattern hair loss. Methods Forty-five patients with male pattern hair loss were treated with ALAVAX 100 mg/ml (group A), ALAVAX 50 mg/ml (group B) or placebo (group C) once a day for 6 months. Total hair count, hair length, hair thickness, patient's assessment and adverse events were evaluated at month 1, 3, and 6. Results An increase in hair count for 6 months was 52.6 (p<0.05) in group A, 71.5 (p<0.05) in group B, and 9.6 in group C. The ratio of changes in hair count between group B (2.38) and group C (1.21) at 6 months showed a statistically significant difference (p<0.05). The proportion above good satisfaction was higher in group A (26.7%) than in the other groups (group B: 14.3%, group C: 7.1%). There was no statistically significant difference in hair length and hair thickness among 3 groups at 6 months. There was no adverse event in 3 groups. Conclusion Our study showed that a complex of 5-ALA and GHK peptide may be considered as one of the complementary agents for the treatment of male pattern hair loss. PMID:27489425

  2. A LC–MS/MS method for the specific, sensitive, and simultaneous quantification of 5-aminolevulinic acid and porphobilinogen

    PubMed Central

    Zhang, Jinglan; Yasuda, Makiko; Desnick, Robert J.; Balwani, Manisha; Bishop, David; Yu, Chunli

    2012-01-01

    Accurate determinations of 5-aminolevulinic acid (ALA) and porphobilinogen (PBG) in physiologic fluids are required for the diagnosis and therapeutic monitoring of acute porphyrias. Current colorimetric methods are insensitive and over-estimate ALA and PBG due to poor specificity, while LC–MS/MS methods increase sensitivity, but have limited matrices. An LC–MS/MS method was developed to simultaneously determine ALA and PBG concentrations in fluids or tissues which were solid phase extracted, butanol derivatized, and quantitated by selective reaction monitoring using 13C5, 15N-ALA and 2,4-13C2-PBG internal standards. ALA was separated from interfering compounds on a reverse phase C8-column. For ALA and PBG, the matrix effects (87.3–105%) and process efficiencies (77.6–97.8% and 37.2–41.6%, respectively) were acceptable in plasma and urine matrices. The assay was highly sensitive for ALA and PBG (LLOQ = 0.05 µM with 25 µL urine or 100 µL plasma), and required ~4 h from extraction to results. ALA and PBG accuracy ranged from 88.2 to 110% (n = 10); intra- and inter-assay coefficients of variations were <10% for urine and plasma. In clinical applications, patients with mutation-confirmed acute porphyrias had normal to slightly increased urinary ALA and PBG levels when asymptomatic, and high levels during acute attacks, which decreased with hemin therapy. In AIP mice, baseline ALA and PBG levels in urine, plasma, and liver were increased after phenobarbital induction 28-/63-, 42-/266-, and 13-/316-fold, respectively. This LC–MS/MS method is rapid, specific, highly sensitive, accurate, and simultaneously measures ALA and PBG in urine, plasma, and tissues permitting porphyria clinical diagnoses, therapeutic monitoring, and research. PMID:21783436

  3. Photobleaching-based method to individualize irradiation time during interstitial 5-aminolevulinic acid photodynamic therapy.

    PubMed

    Hennig, Georg; Stepp, Herbert; Johansson, Ann

    2011-09-01

    Interstitial photodynamic therapy (iPDT) is being investigated for the treatment of high-grade human brain malignancies. In recent clinical studies, fluorescence monitoring during iPDT of glioblastoma multiforme has revealed patient-specific accumulation of photosensitizer (aminolevulinic acid (ALA) induced protoporphyrin IX, PpIX) and its photobleaching kinetics. As photosensitizer degradation, also referred to as photobleaching, and tissue damage are caused by the same underlying processes, the photobleaching kinetics might provide a tool for real-time treatment supervision. Here, we show with computer simulations that varying optical properties have a strong influence on the irradiation time required to fully bleach the photosensitizer. We propose a method to potentially determine the time point during iPDT, when the photosensitizer within the target volume has been largely photobleached. Simulations show that it is possible to determine this time point by continuously monitoring the ratio of the fluorescence intensities at two time points during irradiation. We show that this method works for a large range of optical properties, different photobleaching rates and varying inter-fibre distances. In conclusion, the relative fluorescence method offers the potential to individualize irradiation times to consume the photosensitizer within the target tissue during iPDT. PMID:21864802

  4. Safety and Efficacy of 5-Aminolevulinic Acid for High Grade Glioma in Usual Clinical Practice: A Prospective Cohort Study

    PubMed Central

    Teixidor, Pilar; Vidal, Xavier; Montané, Eva

    2016-01-01

    Background During the last decade, the use of 5-aminolevulinic acid (5-ALA) has been steadily increasing in neurosurgery. The study's main objectives were to prospectively evaluate the effectiveness and safety of 5-ALA when used in clinical practice setting on high-grade gliomas’ patients. Methods National, multicenter and prospective observational study. Inclusion criteria: authorized conditions of use of 5-ALA. Exclusion criteria: contraindication to 5-ALA, inoperable or partial resected tumors, pregnancy and children. Epidemiological, clinical, laboratory, radiological, and safety data were collected. Effectiveness was assessed using complete resection of the tumor, and progression-free and overall survival probabilities. Results Between May 2010 and September 2014, 85 patients treated with 5-ALA were included, and 77 were suitable for the effectiveness analysis. Complete resection was achieved in 41 patients (54%). Surgeons considered suboptimal the fluorescence of 5-ALA in 40% of the patients assessed. The median duration of follow-up was 12.3 months. The progression-free survival probability at 6 months was 58%. The median duration overall survival was 14.2 months. Progression tumor risk factors were grade of glioma, age and resection degree; and death risk factors were grade of glioma and gender. No severe adverse effects were reported. At one month after surgery, new or increased neurological morbidity was 6.5%. Hepatic enzymes were frequently increased within the first month after surgery; however, they subsequently normalized, and this was found to have no clinical significance. Conclusion In clinical practice, the 5-ALA showed a good safety profile, but the benefits related to 5-ALA have not been yet clearly shown. The improved differentiation expected by fluorescence between normal and tumor cerebral tissue was suboptimal in a relevant number of patients; in addition, the expected higher degree of resection was lower than in clinical trials as well as

  5. In Vitro Comparison of Hypericin and 5-Aminolevulinic Acid-Derived Protoporphyrin IX for Photodynamic Inactivation of Medulloblastoma Cells

    PubMed Central

    Ritz, Rainer; Scheidle, Christian; Noell, Susan; Roser, Florian; Schenk, Martin; Dietz, Klaus; Strauss, Wolfgang S. L.

    2012-01-01

    Background Hypericin (HYP) is a naturally occurring photosensitizer. Cellular uptake and photodynamic inactivation after incubation with this photosensitizer have neither been examined in medulloblastoma cells in vitro, nor compared with 5-aminolevulinic acid-derived protoporphyrin IX (5-ALA-derived PpIX). Methods In 3 medulloblastoma cell lines (D283 Med, Daoy, and D341 Med) the time- and concentration-dependent intracellular accumulation of HYP and 5-ALA-derived PpIX was analyzed by fluorescence microscopy (FM) and FACS. Photocytotoxicity was measured after illumination at 595 nm (HYP) and 635 nm (5-ALA-derived PpIX) in D283 Med cells and compared to U373 MG glioma cells. Results All medulloblastoma cell lines exhibited concentration- and time-dependent uptake of HYP. Incubation with HYP up to 10 µM resulted in a rapid increase in fluorescence intensity, which peaked between 2 and 4 hours. 5-ALA-derived PpIX accumulation increased in D283 Med cells by 22% over baseline after 5-ALA incubation up to 1.2 mM. Photocytotoxicity of 5-ALA-derived PpIX was higher in D283 Med medulloblastoma compared to U373MG glioma. The [lethal dose (light dose that is required to reduce cell survival to 50% of control)] of 5-ALA-derived PpIX was 3.8 J/cm2 in D283 Med cells versus 5.7 J/cm2 in U373MG glioma cells. Photocytotoxicity of HYP in D283 Med cells was determined at 2.5 µM after an incubation time of 2 h and an illumination wavelength of 595 nm. The value was 0.47 J/cm2. Conclusion By its 5-fold increase in fluorescence over autofluorescence levels HYP has excellent properties for tumor visualization in medulloblastomas. The high photocytotoxicity of HYP, compared to 5-ALA-derived PpIX, is convincingly demonstrated by its 8- to 13-fold lower . Therefore HYP might be a promising molecule for intraoperative visualization and photodynamic treatment of medulloblastomas. PMID:23251668

  6. Treating cutaneous squamous cell carcinoma using 5-aminolevulinic acid polylactic-co-glycolic acid nanoparticle-mediated photodynamic therapy in a mouse model

    PubMed Central

    Wang, Xiaojie; Shi, Lei; Tu, Qingfeng; Wang, Hongwei; Zhang, Haiyan; Wang, Peiru; Zhang, Linglin; Huang, Zheng; Zhao, Feng; Luan, Hansen; Wang, Xiuli

    2015-01-01

    Background Squamous cell carcinoma (SCC) is a common skin cancer, and its treatment is still difficult. The aim of this study was to evaluate the effectiveness of nanoparticle (NP)-assisted 5-aminolevulinic acid (ALA) delivery for topical photodynamic therapy (PDT) of cutaneous SCC. Materials and methods Ultraviolet-induced cutaneous SCCs were established in hairless mice. ALA-loaded polylactic-co-glycolic acid (PLGA) NPs were prepared and characterized. The kinetics of ALA PLGA NP-induced protoporphyrin IX fluorescence in SCCs, therapeutic efficacy of ALA NP-mediated PDT, and immune responses were examined. Results PLGA NPs enhanced protoporphyrin IX production in SCC. ALA PLGA NP-mediated topical PDT was more effective than free ALA of the same concentration in treating cutaneous SCC. Conclusion PLGA NPs provide a promising strategy for delivering ALA in topical PDT of cutaneous SCC. PMID:25609949

  7. Insulin-Like Growth Factor-2 Is Induced Following 5-Aminolevulinic Acid-Mediated Photodynamic Therapy in SW620 Human Colon Cancer Cell Line

    PubMed Central

    Woźniak, Marta; Duś-Szachniewicz, Kamila; Ziółkowski, Piotr

    2015-01-01

    The IGF system is a family of polypeptide growth factors, which plays a significant role in the development and growth of many cells. Dysregulation of insulin-like growth factors and their pathway components has been connected with essential tumor properties, such as tumor cell proliferation, antiapoptotic properties, invasive behavior and chemotherapy resistance. However, the effects of photodynamic therapy (PDT), one of the cancer treatment methods for the regulation of the IGF signaling pathway, are still unclear. The aim of this study was to investigate the expression of IGF-2 after 5-aminolevulinic acid (5-ALA)-mediated-PDT in SW620 human colorectal cancer cells with evaluation of cell proliferation and apoptosis and to determine the effects of PDT on the IGF-2 receptor (IGF-2R), IGF-2 binding protein-1 (IGF-2BP-1) and the proapoptotic protein, BAX. Cells were treated with 5-aminolevulinic acid and its methyl ester. Changes of the expression and concentration of IGF-2 before and after treatment were assayed by immunocytochemistry, Western blot and ELISA. We found that IGF-2 was significantly overexpressed in the SW620 cell line, while its receptor and binding protein-1 were not significantly changed. Within this study, we would like to suggest that IGF-2 contributes to the effects of PDT and that its expression will influence post-PDT efficacy. PMID:26445041

  8. 5-Aminolevulinic Acid-based Photodynamic Intense Pulsed Light Therapy Shows Better Effects in the Treatment of Skin Photoaging in Asian Skin

    PubMed Central

    Xiang, Leihong Flora; Gold, Michael H.

    2010-01-01

    Objective: To investigate the effects of photodynamic intense pulsed light therapy on skin photoaging in Asian skin. Methods: This was a prospective, single-blinded, controlled, clinical trial with 40 patients enrolled. The enrolled patients applied 5% 5-aminolevulinic acid on the left side of the face while a placebo was applied on the right side of the face. After a one-hour incubation, the patients received intense pulsed light therapy. After four treatment cycles, the pH values, transepidermal water loss of the dermis of the forehead and canthus skin, as well as the moisture capacity of stratum corneum and the global score of photoaging were assessed. Results: The pH value of forehead and canthus skin, moisture capacity of stratum corneum, and the dermis of forehead and canthus skin of the photodynamic intense pulsed light therapy treated sides were significantly higher than those of the control sides in all of the patients. The photoaging score decreased after the therapy on both sides, with the photodynamic intense pulsed light therapy treated sides decreasing more than the control sides (P<0.01). Conclusion: 5-aminolevulinic acid photodynamic intense pulsed light therapy showed better effects in the treatment of skin photoaging compared to intense pulsed light therapy alone. PMID:20725543

  9. Insulin-Like Growth Factor-2 Is Induced Following 5-Aminolevulinic Acid-Mediated Photodynamic Therapy in SW620 Human Colon Cancer Cell Line.

    PubMed

    Woźniak, Marta; Duś-Szachniewicz, Kamila; Ziółkowski, Piotr

    2015-01-01

    The IGF system is a family of polypeptide growth factors, which plays a significant role in the development and growth of many cells. Dysregulation of insulin-like growth factors and their pathway components has been connected with essential tumor properties, such as tumor cell proliferation, antiapoptotic properties, invasive behavior and chemotherapy resistance. However, the effects of photodynamic therapy (PDT), one of the cancer treatment methods for the regulation of the IGF signaling pathway, are still unclear. The aim of this study was to investigate the expression of IGF-2 after 5-aminolevulinic acid (5-ALA)-mediated-PDT in SW620 human colorectal cancer cells with evaluation of cell proliferation and apoptosis and to determine the effects of PDT on the IGF-2 receptor (IGF-2R), IGF-2 binding protein-1 (IGF-2BP-1) and the proapoptotic protein, BAX. Cells were treated with 5-aminolevulinic acid and its methyl ester. Changes of the expression and concentration of IGF-2 before and after treatment were assayed by immunocytochemistry, Western blot and ELISA. We found that IGF-2 was significantly overexpressed in the SW620 cell line, while its receptor and binding protein-1 were not significantly changed. Within this study, we would like to suggest that IGF-2 contributes to the effects of PDT and that its expression will influence post-PDT efficacy. PMID:26445041

  10. Generation of reactive oxygen species from 5-aminolevulinic acid and Glutamate in cooperation with excited CdSe/ZnS QDs

    NASA Astrophysics Data System (ADS)

    Duong, Hong Dinh; Lee, Jee Won; Rhee, Jong Il

    2014-08-01

    CdSe/ZnS quantum dots (QDs) can be joined in the reductive pathway involving the electron transfer to an acceptor or in the oxidative pathway involving the hole transfer to a donor. They were exploited in the oxidation reactions of 5-aminolevulinic acid (ALA) and glutamate (GLU) for the generation of reactive oxygen species (ROS) such as hydroxyl radical (HO●) and superoxide anion (O2 ● -). Fast and highly efficient oxidation reactions of ALA to produce HO● and of GLU to produce O2 ●- were observed in the cooperation of mercaptopropionic acid (MPA)-capped CdSe/ZnS QDs under LED irradiation. Fluorescence spectroscopy and electron spin resonance (ESR) spectroscopy were used to evaluate the generation of different forms of ROS. Confocal fluorescent microscopic images of the size and morphology of HeLa cells confirmed the ROS generation from ALA or GLU in cooperation with CdSe/ZnS QDs under LED irradiation.

  11. Bi-functional prodrugs of 5-aminolevulinic acid and butyric acid increase erythropoiesis in anemic mice in an erythropoietin-independent manner.

    PubMed

    Rephaeli, Ada; Tarasenko, Nataly; Fibach, Eitan; Rozic, Gabriela; Lubin, Ido; Lipovetsky, Julia; Furman, Svetlana; Malik, Zvi; Nudelman, Abraham

    2016-08-25

    Anemia is a major cause of morbidity and mortality worldwide resulting from a wide variety of pathological conditions. In severe cases it is treated by blood transfusions or injection of erythroid stimulating agents, e.g., erythropoietin (Epo), which can be associated with serious adverse effects. Therefore, there is a need to develop new treatment modalities. We recently reported that treatment of erythroleukemic cells with the novel the bi-functional prodrugs of 5-aminolevulinic acid (ALA) and butyric acid (BA), AN233 and AN908, enhanced hemoglobin (Hb) synthesis to a substantially higher level than did ALA and BA individually or their mixture. Herein, we describe that these prodrugs when given orally to mice induced histone deacetylase inhibition in the kidneys, bone marrow and spleen, thus, indicating good penetrability to the tissues. In mice where anemia was chemically induced, treatment with the prodrugs increased the Hb, the number of red blood cells (RBCs) and the percentage of reticulocytes to normal levels. The prodrugs had no adverse effects even after repeated treatment at 100-200mg/kg for 50days. The lack of increased levels of Epo in the blood of mice that were treated with the prodrugs suggests that AN233 and AN908 affected the Hb and RBC levels in an Epo-independent manner. Taken together with our previous studies, we propose that the prodrugs increase globin expression by BA inhibition of histone deacetylase and elevation heme synthesis by ALA. These results support an Epo-independent approach for treating anemia with these prodrugs. PMID:27283485

  12. A Pilot Cost-Effectiveness Analysis of Treatments in Newly Diagnosed High-Grade Gliomas: The Example of 5-Aminolevulinic Acid Compared With White-Light Surgery

    PubMed Central

    Alves, Marta; Castel-Branco, Marta; Stummer, Walter

    2015-01-01

    BACKGROUND: High-grade gliomas are aggressive, incurable tumors characterized by extensive diffuse invasion of the normal brain parenchyma. Novel therapies at best prolong survival; their costs are formidable and benefit is marginal. Economic restrictions thus require knowledge of the cost-effectiveness of treatments. Here, we show the cost-effectiveness of enhanced resections in malignant glioma surgery using a well-characterized tool for intraoperative tumor visualization, 5-aminolevulinic acid (5-ALA). OBJECTIVE: To evaluate the cost-effectiveness of 5-ALA fluorescence-guided neurosurgery compared with white-light surgery in adult patients with newly diagnosed high-grade glioma, adopting the perspective of the Portuguese National Health Service. METHODS: We used a Markov model (cohort simulation). Transition probabilities were estimated with the use of data from 1 randomized clinical trial and 1 noninterventional prospective study. Utility values and resource use were obtained from published literature and expert opinion. Unit costs were taken from official Portuguese reimbursement lists (2012 values). The health outcomes considered were quality-adjusted life-years, life-years, and progression-free life-years. Extensive 1-way and probabilistic sensitivity analyses were performed. RESULTS: The incremental cost-effectiveness ratios are below €10 000 in all evaluated outcomes, being around €9100 per quality-adjusted life-year gained, €6700 per life-year gained, and €8800 per progression-free life-year gained. The probability of 5-ALA fluorescence-guided surgery cost-effectiveness at a threshold of €20000 is 96.0% for quality-adjusted life-year, 99.6% for life-year, and 98.8% for progression-free life-year. CONCLUSION: 5-ALA fluorescence-guided surgery appears to be cost-effective in newly diagnosed high-grade gliomas compared with white-light surgery. This example demonstrates cost-effectiveness analyses for malignant glioma surgery to be feasible on

  13. Combination of 5-aminolevulinic acid and ferrous ion reduces plasma glucose and hemoglobin A1c levels in Zucker diabetic fatty rats.

    PubMed

    Hara, Takeshi; Koda, Aya; Nozawa, Naoko; Ota, Urara; Kondo, Hikaru; Nakagawa, Hitoshi; Kamiya, Atsuko; Miyashita, Kazutoshi; Itoh, Hiroshi; Nakajima, Motowo; Tanaka, Tohru

    2016-06-01

    Mitochondrial dysfunction is associated with type 2 diabetes mellitus (T2DM). 5-Aminolevulinic acid (ALA), a natural amino acid produced only in the mitochondria, is a precursor of heme. Cytochromes that contain heme play an important role in aerobic energy metabolism. Thus, ALA may help reduce T2DM-associated hyperglycemia. In this study, we investigated the effect of ALA combined with sodium ferrous citrate (SFC) on hyperglycemia in Zucker diabetic fatty (ZDF) rats. We found that the gavage administration of ALA combined with SFC (ALA/SFC) for 6 weeks reduced plasma glucose and hemoglobin A1c (HbA1c) levels in rats without affecting plasma insulin levels. The glucose-lowering effect depended on the amount of ALA/SFC administered per day. Furthermore, the glucose tolerance was also significantly improved by ALA/SFC administration. Although food intake was slightly reduced in the rats administered ALA/SFC, there was no effect on their body weight. Importantly, ALA/SFC administration induced heme oxygenase-1 (HO-1) expression in white adipose tissue and liver, and the induced expression levels of HO-1 correlated with the glucose-lowering effects of ALA/SFC. Taken together, these results suggest that ALA combined with ferrous ion is effective in reducing hyperglycemia of T2DM without affecting plasma insulin levels. HO-1 induction may be involved in the mechanisms underlying the glucose-lowering effect of ALA/SFC. PMID:27239432

  14. Topical glycerol monooleate/propylene glycol formulations enhance 5-aminolevulinic acid in vitro skin delivery and in vivo protophorphyrin IX accumulation in hairless mouse skin.

    PubMed

    Steluti, Regilene; De Rosa, Fernanda Scarmato; Collett, John; Tedesco, Antônio Cláudio; Bentley, Maria Vitória Lopes Badra

    2005-08-01

    Photodynamic therapy (PDT), a potential therapy for cancer treatment, utilizes exogenously applied or endogenously formed photosensitizers, further activated by light in an appropriate wavelength and dose to induce cell death through free radical formation. 5-Aminolevulinic acid (5-ALA) is a pro-drug which can be converted to the effective photosensitizer, protoporphyrin IX (PpIX). However, the use of 5-ALA in PDT is limited by the low penetration capacity of this highly hydrophilic molecule into appropriate skin layers. In the present study, we propose to increase 5-ALA penetration by using formulations containing glycerol monooleate (GMO), an interesting and useful component of pharmaceutical formulations. Propylene glycol solutions containing different concentrations of GMO significantly increased the in vitro skin permeation/retention of 5-ALA in comparison to control solutions. In vivo studies also showed increased PpIX accumulation in mouse hairless skin, after the use of topical 5-ALA formulations containing GMO in a concentration-dependent manner. The results show that skin 5-ALA penetration and PpIX accumulation, important factors for the success of topical 5-ALA-PDT in skin cancer, are optimized by GMO/propylene glycol formulations. PMID:15996585

  15. eEF1A1 binds and enriches protoporphyrin IX in cancer cells in 5-aminolevulinic acid based photodynamic therapy

    PubMed Central

    Fan, Zhichao; Cui, Xiaojun; Wei, Dan; Liu, Wei; Li, Buhong; He, Hao; Ye, Huamao; Zhu, Naishuo; Wei, Xunbin

    2016-01-01

    Photodynamic therapy (PDT) with protoporphyrin IX (PpIX), which is endogenously derived from 5-aminolevulinic acid (5-ALA) or its derivatives, is a promising modality for the treatment of both pre-malignant and malignant lesions. However, the mechanisms of how ALA-induced PpIX selectively accumulated in the tumors are not fully elucidated. Here we discovered that eukaryotic translation elongation factor 1 alpha 1 (eEF1A1) interacted with PpIX (with an affinity constant of 2.96 × 106 M−1). Microscopy imaging showed that ALA-induced PpIX was co-localized with eEF1A1 in cancer cells. eEF1A1 was found to enrich ALA-induced PpIX in cells by competitively blocking the downstream bioavailability of PpIX. Taken together, our study discovered eEF1A1 as a novel photosensitizer binding protein, which may play an essential role in the enrichment of ALA-induced PpIX in cancer cells during PDT. These suggested eEF1A1 as a molecular marker to predict the selectivity and efficiency of 5-ALA based PDT in cancer therapy. PMID:27150264

  16. Preferential accumulation of 5-aminolevulinic acid-induced protoporphyrin IX in breast cancer: a comprehensive study on six breast cell lines with varying phenotypes

    NASA Astrophysics Data System (ADS)

    Millon, Stacy R.; Ostrander, Julie H.; Yazdanfar, Siavash; Brown, J. Quincy; Bender, Janelle E.; Rajeha, Anita; Ramanujam, Nirmala

    2010-01-01

    We describe the potential of 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence as a source of contrast for margin detection in commonly diagnosed breast cancer subtypes. Fluorescence intensity of PpIX in untreated and ALA-treated normal mammary epithelial and breast cancer cell lines of varying estrogen receptor expression were quantitatively imaged with confocal microscopy. Percentage change in fluorescence intensity integrated over 610-700 nm (attributed to PpIX) of posttreated compared to pretreated cells showed statistically significant differences between four breast cancer and two normal mammary epithelial cell lines. However, a direct comparison of post-treatment PpIX fluorescence intensities showed no differences between breast cancer and normal mammary epithelial cell lines due to confounding effects by endogenous fluorescence from flavin adenine dinucleotide (FAD). Clinically, it is impractical to obtain pre- and post-treatment images. Thus, spectral imaging was demonstrated as a means to remove the effects of endogenous FAD fluorescence allowing for discrimination between post-treatment PpIX fluorescence of four breast cancer and two normal mammary epithelial cell lines. Fluorescence spectral imaging of ALA-treated breast cancer cells showed preferential PpIX accumulation regardless of malignant phenotype and suggests a useful contrast mechanism for discrimination of residual cancer at the surface of breast tumor margins.

  17. eEF1A1 binds and enriches protoporphyrin IX in cancer cells in 5-aminolevulinic acid based photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Fan, Zhichao; Cui, Xiaojun; Wei, Dan; Liu, Wei; Li, Buhong; He, Hao; Ye, Huamao; Zhu, Naishuo; Wei, Xunbin

    2016-05-01

    Photodynamic therapy (PDT) with protoporphyrin IX (PpIX), which is endogenously derived from 5-aminolevulinic acid (5-ALA) or its derivatives, is a promising modality for the treatment of both pre-malignant and malignant lesions. However, the mechanisms of how ALA-induced PpIX selectively accumulated in the tumors are not fully elucidated. Here we discovered that eukaryotic translation elongation factor 1 alpha 1 (eEF1A1) interacted with PpIX (with an affinity constant of 2.96 × 106 M‑1). Microscopy imaging showed that ALA-induced PpIX was co-localized with eEF1A1 in cancer cells. eEF1A1 was found to enrich ALA-induced PpIX in cells by competitively blocking the downstream bioavailability of PpIX. Taken together, our study discovered eEF1A1 as a novel photosensitizer binding protein, which may play an essential role in the enrichment of ALA-induced PpIX in cancer cells during PDT. These suggested eEF1A1 as a molecular marker to predict the selectivity and efficiency of 5-ALA based PDT in cancer therapy.

  18. Wavelength-dependent in-vitro and in-vivo photodynamic effects after sensitization with 5-aminolevulinic acid induced protoporphyrin IX

    NASA Astrophysics Data System (ADS)

    Szeimies, Rolf-Markus; Abels, Christoph; Fritsch, Clemens; Steinbach, Pia; Baeumler, Wolfgang; Messmann, Helmut; Goetz, Alwin E.; Goerz, Guenter; Landthaler, Michael

    1996-01-01

    Photodynamic therapy (PDT) with topically applied 5-aminolevulinic acid (ALA) is of growing interest, in particular in dermatology. Due to the fact that PDT with intravenously administered Photofrin is the only clinically approved sensitizer so far and is performed at a wavelength of 630 nm, this wavelength is also used in most experimental and clinical trials with ALA. In this study influence of irradiation with coherent light from a tunable dye laser at different wavelengths ranging from 625 to 649 nm was investigated. In in vitro experiments HaCaT immortalized human keratinocytes were sensitized with 30 (mu) g/ml ALA for 24 hrs. By determination of cell viability with the MTT test, best cell-killing effects were observed following irradiation at 635 nm. In an in vivo setting using an amelanotic melanoma (A-Mel-3) grown subcutaneously in Syrian Golden hamsters, these results were confirmed: tumor growth determined by measuring tumor volume increase after 28 days was less pronounced in animals treated with 100 mg/kg ALA i.v. and irradiated 2.5 hrs. later at 635 nm, as compared to animals receiving an equal dose and irradiated at 630 nm. This observation in vitro is probably due to large amounts of photosensitizing protoporphyrin IX (PP) localized in cell membranes which is visualized by confocal laser scanning microscopy (CLSM) and determined by HPLC analysis. These results suggest that in ALA-PDT when a coherent light source is used probably better results are achieved irradiating at 635 nm.

  19. Characterization of a pseudo ternary phase diagram of poloxamer 407 systems for potential application of 5-aminolevulinic acid in photodynamic therapy.

    PubMed

    van Hemelrijck, Carlos; Müller-Goymann, Christel C

    2011-11-28

    A poloxamer 407 (POX) gel containing dimethyl isosorbide (DMIS), isopropyl alcohol (IPA), propylene glycol dicaprylocaprate (MIG) and water has been suggested in a previous study for permeation enhancement of 5-aminolevulinic acid (ALA) across isolated human stratum corneum. The purpose of this study was to characterize other formulations coming from the same pseudo ternary phase diagram as the "Thermogel" in order to find out which of them show appropriate characteristics to be used as a vehicle for ALA since it could be shown that variation of the ingredients' content had an influence on the permeation rate. A pseudo ternary phase diagram was developed with water, a fixed combination of 1:1 of IPA and DMIS and a fixed ratio of 4:1 POX to MIG. The systems were categorized according to their consistencies and ringing gel characteristics with special emphasis on appropriate formulations for dermal application. Polarizing microscopy enabled a clear differentiation between isotropic and anisotropic systems. Wide angle X-ray diffraction analyzes confirmed that anisotropy was due to crystalline POX. Furthermore both methods showed that IPA/DMIS was an inferior solvent mixture for POX related to water. PMID:21925581

  20. Synergism of herbicide toxicity by 5-aminolevulinic acid is related to physiological and ultra-structural disorders in crickweed (Malachium aquaticum L.).

    PubMed

    Xu, Ling; Zhang, Wenfang; Ali, Basharat; Islam, Faisal; Zhu, Jinwen; Zhou, Weijun

    2015-11-01

    Selection of effective herbicides to control weeds has been one of the major objectives of scientists. This study determines the differential tolerance or susceptibility of crickweed (Malachium aquaticum L.) to various concentration combinations of 5-aminolevulinic acid (ALA) (1, 10 and 100mg/L) and propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino)benzoate (ZJ0273) (100, 200, and 500mg/L). ALA was applied as pre- and post-treatment alone or in combination with ZJ0273. Results showed that ZJ0273 stress alone imposed negative effects on M. aquaticum seedling's growth, net photosynthetic rates and SPAD values, and the rate of decline was consistently increased with the increase in ZJ0273 concentration. The ZJ0273 treatment showed a gradual decrease in the activities of antioxidant enzymes peroxidase (POD), superoxide dismutase (SOD), and ascorbate peroxidase (APX), and increase in the accumulation of malondialdehyde (MDA). Changes in chloroplast swelling, increased number of plastoglobuli, disruption of thylakoid, disintegrated mitochondria and turbid nucleoplasm were noticed. Moreover, SDS-PAGE analysis of total proteins revealed that herbicide stress in the leaves was associated with the decrease or disappearance of some protein bands. Further, two-dimensional gel electrophoresis (2-DE) results showed that proteins in different spots were classified into three types for M. aquaticum. These results indicate that the combined treatment of ALA and ZJ0273 synergizes the herbicide toxicity which is different from its independent effects on M. aquaticum and thus, could improve weed control efficacy. PMID:26615151

  1. eEF1A1 binds and enriches protoporphyrin IX in cancer cells in 5-aminolevulinic acid based photodynamic therapy.

    PubMed

    Fan, Zhichao; Cui, Xiaojun; Wei, Dan; Liu, Wei; Li, Buhong; He, Hao; Ye, Huamao; Zhu, Naishuo; Wei, Xunbin

    2016-01-01

    Photodynamic therapy (PDT) with protoporphyrin IX (PpIX), which is endogenously derived from 5-aminolevulinic acid (5-ALA) or its derivatives, is a promising modality for the treatment of both pre-malignant and malignant lesions. However, the mechanisms of how ALA-induced PpIX selectively accumulated in the tumors are not fully elucidated. Here we discovered that eukaryotic translation elongation factor 1 alpha 1 (eEF1A1) interacted with PpIX (with an affinity constant of 2.96 × 10(6) M(-1)). Microscopy imaging showed that ALA-induced PpIX was co-localized with eEF1A1 in cancer cells. eEF1A1 was found to enrich ALA-induced PpIX in cells by competitively blocking the downstream bioavailability of PpIX. Taken together, our study discovered eEF1A1 as a novel photosensitizer binding protein, which may play an essential role in the enrichment of ALA-induced PpIX in cancer cells during PDT. These suggested eEF1A1 as a molecular marker to predict the selectivity and efficiency of 5-ALA based PDT in cancer therapy. PMID:27150264

  2. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen.

    PubMed

    Phung, Thu-Ha; Jung, Sunyo

    2015-04-01

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, Fv/Fm, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H2O2 production and greater increases in H2O2-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. PMID:25735982

  3. Heterologous expression of glutamyl-tRNA reductase gene in Rhodobacter sphaeroides O.U.001 to enhance 5-aminolevulinic acid production

    PubMed Central

    Kars, Gökhan; Alparslan, Ümmühan

    2014-01-01

    The pathways for synthesis of 5-aminolevulinic acid (5-ALA) use either succinyl-CoA and glycine (C-4 pathway), or glutamate (C-5 pathway). Although Rhodobacter sphaeroides synthesizes 5-ALA through the C-4 pathway, it also has the genes coding for the enzymes of the C-5 pathway, except for glutamyl-tRNA reductase. The glutamyl-tRNA reductase gene was cloned from Rhodospirillum rubrum and expressed in R. sphaeroides; thus, the C-5 pathway was enabled to function upon assembling all the required genes. Consequently, a new and unique bacterial strain producing more 5-ALA was developed. Biohydrogen was also produced in the same bioprocess within a biorefinery approach using sugar beet molasses as substrate. The amount of 5-ALA produced by the modified strain was 25.9 mg/g dry cell weight (DCW), whereas the wild-type strain produced 12.4 mg/g DCW. In addition, the amount of H2 generated by the modified and wild-type cells, respectively, was 0.92 L/L culture and 1.05 L/L culture. PMID:26740781

  4. Alleviation of Lead Toxicity by 5-Aminolevulinic Acid Is Related to Elevated Growth, Photosynthesis, and Suppressed Ultrastructural Damages in Oilseed Rape

    PubMed Central

    Tian, Tian; Qin, Yebo; Gill, Rafaqat A.; Ali, Shafaqat

    2014-01-01

    Lead (Pb) is a widely spread pollutant and leads to diverse morphological and structural changes in the plants. In this study, alleviating role of 5-aminolevulinic acid (ALA) in oilseed rape (Brassica napus L.) was investigated with or without foliar application of ALA (25 mg L−1) in hydroponic environment under different Pb levels (0, 100, and 400 µM). Outcomes stated that plant morphology and photosynthetic attributes were reduced under the application of Pb alone. However, ALA application significantly increased the plant growth and photosynthetic parameters under Pb toxicity. Moreover, ALA also lowered the Pb concentration in shoots and roots under Pb toxicity. The microscopic studies depicted that exogenously applied ALA ameliorated the Pb stress and significantly improved the cell ultrastructures. After application of ALA under Pb stress, mesophyll cell had well-developed nucleus and chloroplast having a number of starch granules. Moreover, micrographs illustrated that root tip cell contained well-developed nucleus, a number of mitochondria, and golgi bodies. These results proposed that under 15-day Pb-induced stress, ALA improved the plant growth, chlorophyll content, photosynthetic parameters, and ultrastructural modifications in leaf mesophyll and root tip cells of the B. napus plants. PMID:24683549

  5. 5-aminolevulinic acid-mediated photodynamic therapy of intraepithelial neoplasia and human papillomavirus of the uterine cervix--a new experimental approach.

    PubMed

    Wierrani, F; Kubin, A; Jindra, R; Henry, M; Gharehbaghi, K; Grin, W; Söltz-Szötz, J; Alth, G; Grünberger, W

    1999-01-01

    The aim of this study was to treat patients for ectocervical dysplasia [cervical intraepithelial neoplasia (CIN) grades 1 and 2] and associated human papilloma virus (HPV) infections with photodynamic therapy (PDT). In 20 patients, 5-aminolevulinic acid (5-ALA, 12% w/v) was applied topically with a cervical cap 8 h prior to illumination. A thermal light source (150 W halogen lamp) emitting a broadband red light (total energy: 100 J/cm2, fluence rate: 90 mW/cm2) was used for superficial illumination of the portio. In addition, an Nd:YAG pumped dye laser (652 nm) was used to illuminate the cervical canal (total energy: 50 J/cm2, fluence rate: 300 mW/cm2). Preliminary results of follow-ups at 1, 3, 6, and 9 months posttherapy showed a cytological improvement in the grading of the PAP smears in 19 patients and the eradication of cervical HPV in 80%. These results demonstrate that ectocervical dysplasia and associated HPV infections can be treated by PDT. PMID:10403907

  6. Mitochondrial and endoplasmic reticulum stress-induced apoptotic pathways are activated by 5-aminolevulinic acid-based photodynamic therapy in HL60 leukemia cells.

    PubMed

    Grebenová, Dana; Kuzelová, Katerina; Smetana, Karel; Pluskalová, Michaela; Cajthamlová, Hana; Marinov, Iuri; Fuchs, Ota; Soucek, Josef; Jarolím, Petr; Hrkal, Zbynek

    2003-02-01

    We studied the mechanism of the cytotoxic effects of 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT; induction with 1 mM ALA for 4 h followed by a blue light dose of 18 J/cm(2)) on the human promyelocytic leukemia cell line HL60 using biochemical and electron microscopy methods. The disruption of mitochondrial membrane potential, deltapsi(m), was paralleled by a decrease in ATP level, unmasking of the mitochondrial antigen 7A6, release of cytochrome c into the cytoplasm, activation of caspases 9 and 3 and cleavage of poly(ADP-ribose) polymerase (PARP). This was followed by DNA fragmentation. These data suggest that ALA-PDT activates the mitochondrial apoptotic pathway. The level of endoplasmic reticulum Ca(2+)-binding chaperones ERp57 and ERp72 and of anti-apoptotic proteins Bcl-2 and Bcl-x(L) was decreased whereas that of Ca(2+)-binding protein calmodulin and the stress protein HSP60 was elevated following ALA-PDT. Inhibition of the initiator caspase 9, execution caspase 3 and Ca(2+)-dependent protease m-calpain, did not prevent DNA fragmentation. We conclude that, in our in vitro model, ALA-based photodynamic treatment initiates several signaling processes in HL60 cells that lead to rapidly progressing apoptosis, which is followed by slow necrosis. Two apoptotic processes proceed in parallel, one representing the mitochondrial pathway, the other involving disruption of calcium homeostasis and activation of the endoplasmic reticulum stress-mediated pathway. PMID:12633980

  7. The role of 5-aminolevulinic acid in enhancing surgery for high-grade glioma, its current boundaries, and future perspectives: A systematic review.

    PubMed

    Mansouri, Alireza; Mansouri, Sheila; Hachem, Laureen D; Klironomos, George; Vogelbaum, Michael A; Bernstein, Mark; Zadeh, Gelareh

    2016-08-15

    5-Aminolevulinic acid (5-ALA) has been approved as an intraoperative adjunct in glioma surgery in Europe, but not North America. A systematic review was conducted to assess the evidence regarding 5-ALA as a surgical adjunct. The MEDLINE, EMBASE, and CENTRAL databases were searched, using terms relevant to "5-ALA" and "high-grade gliomas." Included studies were based on adults aged ≥18 years who underwent surgical resection/biopsy. No language or date limitations were used. Forty-three studies (1830 patients) were identified. Thirty-six were coordinated by European countries, 2 were in the United States, and none were in Canada. One was randomized, 28 were prospective, and 14 were retrospective. Twenty-six studies assessed the utility of 5-ALA as a diagnostic tool, 24 assessed its influence on the extent of resection (EOR), 9 assessed survival, and 22 reported adverse events. 5-ALA had high sensitivity and positive predictive value, whereas its specificity increased with additional adjuncts. The EOR increased with 5-ALA, but only progression-free survival was significantly influenced. Reporting of adverse events was not systematic. The use of 5-ALA improved tumor visualization and thus enabled a greater EOR and perhaps increased survival. However, additional adjuncts may be necessary for maximizing the specificity of resection and patient safety. Additional parameters, such as patient quality of life and health economic analyses, would be informative. Thus, additional systematic collection of prospective evidence may be necessary for the global incorporation of this potentially valuable surgical adjunct into routine practice. Cancer 2016;122:2469-78. © 2016 American Cancer Society. PMID:27183272

  8. Topical delivery of 5-aminolevulinic acid-encapsulated ethosomes in a hyperproliferative skin animal model using the CLSM technique to evaluate the penetration behavior.

    PubMed

    Fang, Yi-Ping; Huang, Yaw-Bin; Wu, Pao-Chu; Tsai, Yi-Hung

    2009-11-01

    Psoriasis, an inflammatory skin disease, exhibits recurring itching, soreness, and cracked and bleeding skin. Currently, the topical delivery of 5-aminolevulinic acid-photodynamic therapy (ALA-PDT) is an optional treatment for psoriasis which provides long-term therapeutic effects, is non-toxic and enjoys better compliance with patients. However, the precursor of ALA is hydrophilic, and thus its ability to penetrate the skin is limited. Also, little research has provided a platform to investigate the penetration behavior in disordered skin. We employed a highly potent ethosomal carrier (phosphatidylethanolamine; PE) to investigate the penetration behavior of ALA and the recovery of skin in a hyperproliferative murine model. We found that the application of ethosomes produced a significant increase in cumulative amounts of 5-26-fold in normal and hyperproliferative murine skin samples when compared to an ALA aqueous solution; and the ALA aqueous solution appeared less precise in terms of the penetration mode in hyperproliferative murine skin. After the ethosomes had been applied, the protoporphyrin IX (PpIX) intensity increased about 3.64-fold compared with that of the ALA aqueous solution, and the penetration depth reached 30-80 microm. The results demonstrated that the ethosomal carrier significantly improved the delivery of ALA and the formation of PpIX in both normal and hyperproliferative murine skin samples, and the expression level of tumor necrosis factor (TNF)-alpha was reduced after the ALA-ethosomes were applied to treat hyperproliferative murine skin. Furthermore, the results of present study encourage more investigations on the mechanism of the interaction with ethosomes and hyperproliferative murine skin. PMID:19660544

  9. Histopathological implications of ventricle wall 5-aminolevulinic acid-induced fluorescence in the absence of tumor involvement on magnetic resonance images.

    PubMed

    Moon, Ju Hyung; Kim, Se Hoon; Shim, Jin-Kyoung; Roh, Tae-Hoon; Sung, Kyoung Su; Lee, Ji-Hyun; Park, Junseong; Choi, Junjeong; Kim, Eui-Hyun; Kim, Sun Ho; Kang, Seok-Gu; Chang, Jong Hee

    2016-08-01

    During 5-aminolevulinic acid (ALA)-guided glioblastoma multiforme (GBM) surgery, we encountered fluorescence in ventricular walls that lacked enhancement on magnetic resonance (MR) images and were free of macroscopic invasion of tumor cells. However, the meaning of ventricular wall fluorescence during 5-ALA-guided surgery is still unknown. The aim of this study was to investigate the relationship between intraoperative 5-ALA fluorescence and histopathological findings of ventricular walls free of enhancement on MR images. Nineteen patients with newly diagnosed GBM located near the lateral ventricle underwent 5‑ALA fluorescence‑guided surgery. During the surgery, the ventricle wall was opened and investigated with the aid of a surgical microscope equipped with optical filters to examine 5‑ALA fluorescence of the ventricular wall. Twenty‑five ventricular wall tissues that were apparently free of tumor involvement by MR imaging and macroscopic observation were obtained during surgery. Among the 19 cases with brightly fluorescing tumor masses, 11 patients (57.9%) exhibited 5‑ALA‑induced fluorescence in the ventricular wall. Of the 25 ventricular wall samples, 11 exhibited 5‑ALA‑induced fluorescence; upon pathologic examination, tumors were present in 5 samples (45.5%), but the remaining 6 (54.5%) were free of tumor cells. A pathologic examination revealed no tumor cells in the 14 samples that lacked 5‑ALA‑induced fluorescence. Our data suggest the possibility that glioma cells exhibiting 5‑ALA fluorescence are present in the ventricle wall, despite no signs of tumor involvement in MR images. Further investigation of non‑tumor cells from tissues with 5‑ALA fluorescence is needed to understand the nature of this unexpected ventricular wall fluorescence. PMID:27374931

  10. Impact of 5-aminolevulinic acid with iron supplementation on exercise efficiency and home-based walking training achievement in older women

    PubMed Central

    Masuki, Shizue; Morita, Atsumi; Kamijo, Yoshi-ichiro; Ikegawa, Shigeki; Kataoka, Yufuko; Ogawa, Yu; Sumiyoshi, Eri; Takahashi, Kiwamu; Tanaka, Tohru; Nakajima, Motowo

    2015-01-01

    A reduction in exercise efficiency with aging limits daily living activities. We examined whether 5-aminolevulinic acid (ALA) with sodium ferrous citrate (SFC) increased exercise efficiency and voluntary achievement of interval walking training (IWT) in older women. Ten women [65 ± 3(SD) yr] who had performed IWT for >12 mo and were currently performing IWT participated in this study. The study was conducted in a placebo-controlled, double-blind crossover design. All subjects underwent two trials for 7 days each in which they performed IWT with ALA+SFC (100 and 115 mg/day, respectively) or placebo supplement intake (CNT), intermittently with a 2-wk washout period. Before and after each trial, subjects underwent a graded cycling test at 27.0°C atmospheric temperature and 50% relative humidity, and oxygen consumption rate, carbon dioxide production rate, and lactate concentration in plasma were measured. Furthermore, for the first 6 days of each trial, exercise intensity for IWT was measured by accelerometry. We found that, in the ALA+SFC trial, oxygen consumption rate and carbon dioxide production rate during graded cycling decreased by 12% (P < 0.001) and 11% (P = 0.001) at every workload, respectively, accompanied by a 16% reduction in lactate concentration in plasma (P < 0.001), although all remained unchanged in the CNT trial (P > 0.2). All of the reductions were significantly greater in the ALA+SFC than the CNT trial (P < 0.05). Furthermore, the training days, impulse, and time at fast walking were 42% (P = 0.028), 102% (P = 0.027), and 69% (P = 0.039) higher during the ALA+SFC than the CNT intake period, respectively. Thus ALA+SFC supplementation augmented exercise efficiency and thereby improved IWT achievement in older women. PMID:26514619

  11. Perturbed porphyrin biosynthesis contributes to differential herbicidal symptoms in photodynamically stressed rice (Oryza sativa) treated with 5-aminolevulinic acid and oxyfluorfen.

    PubMed

    Phung, Thu-Ha; Jung, Sunyo

    2014-11-01

    This paper focuses on the molecular mechanism of deregulated porphyrin biosynthesis in rice plants under photodynamic stress imposed by an exogenous supply of 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). Plants treated with 5 mM ALA or 50 µM OF exhibited differential herbicidal symptoms as characterized by white and brown necrosis, respectively, with substantial increases in cellular leakage and malondialdehyde production. Protoporphyrin IX accumulated to higher levels after 1 day of ALA and OF treatment, whereas it decreased to the control level after 2 days of ALA treatment. Plants responded to OF by greatly decreasing the levels of Mg-protoporphyrin IX (MgProto IX), MgProto IX methyl ester, and protochlorophyllide to levels lower than control, whereas their levels drastically increased 1 day after ALA treatment and then disappeared 2 days after the treatment. Enzyme activity and transcript levels of HEMA1, GSA and ALAD for ALA synthesis greatly decreased in ALA- and OF-treated plants. Transcript levels of PPO1, CHLH, CHLI, and PORB genes involving Mg-porphyrin synthesis continuously decreased in ALA- and OF-treated plants, with greater decreases in ALA-treated plants. By contrast, up-regulation of FC2 and HO2 genes in Fe-porphyrin branch was noticeable in ALA and OF-treated plants 1 day and 2 days after the treatments, respectively. Decreased transcript levels of nuclear-encoded genes Lhcb1, Lhcb6, and RbcS were accompanied by disappearance of MgProto IX in ALA- and OF-treated plants after 2 days of the treatments. Under photodynamic stress imposed by ALA and OF, tight control of porphyrin biosynthesis prevents accumulation of toxic metabolic intermediates not only by down-regulation of their biosynthesis but also by photodynamic degradation. The up-regulation of FC2 and HO2 also appears to compensate for the photodynamic stress-induced damage. PMID:25454526

  12. Impact of 5-aminolevulinic acid with iron supplementation on exercise efficiency and home-based walking training achievement in older women.

    PubMed

    Masuki, Shizue; Morita, Atsumi; Kamijo, Yoshi-ichiro; Ikegawa, Shigeki; Kataoka, Yufuko; Ogawa, Yu; Sumiyoshi, Eri; Takahashi, Kiwamu; Tanaka, Tohru; Nakajima, Motowo; Nose, Hiroshi

    2016-01-01

    A reduction in exercise efficiency with aging limits daily living activities. We examined whether 5-aminolevulinic acid (ALA) with sodium ferrous citrate (SFC) increased exercise efficiency and voluntary achievement of interval walking training (IWT) in older women. Ten women [65 ± 3(SD) yr] who had performed IWT for >12 mo and were currently performing IWT participated in this study. The study was conducted in a placebo-controlled, double-blind crossover design. All subjects underwent two trials for 7 days each in which they performed IWT with ALA+SFC (100 and 115 mg/day, respectively) or placebo supplement intake (CNT), intermittently with a 2-wk washout period. Before and after each trial, subjects underwent a graded cycling test at 27.0 °C atmospheric temperature and 50% relative humidity, and oxygen consumption rate, carbon dioxide production rate, and lactate concentration in plasma were measured. Furthermore, for the first 6 days of each trial, exercise intensity for IWT was measured by accelerometry. We found that, in the ALA+SFC trial, oxygen consumption rate and carbon dioxide production rate during graded cycling decreased by 12% (P < 0.001) and 11% (P = 0.001) at every workload, respectively, accompanied by a 16% reduction in lactate concentration in plasma (P < 0.001), although all remained unchanged in the CNT trial (P > 0.2). All of the reductions were significantly greater in the ALA+SFC than the CNT trial (P < 0.05). Furthermore, the training days, impulse, and time at fast walking were 42% (P = 0.028), 102% (P = 0.027), and 69% (P = 0.039) higher during the ALA+SFC than the CNT intake period, respectively. Thus ALA+SFC supplementation augmented exercise efficiency and thereby improved IWT achievement in older women. PMID:26514619

  13. Oil components modulate the skin delivery of 5-aminolevulinic acid and its ester prodrug from oil-in-water and water-in-oil nanoemulsions

    PubMed Central

    Zhang, Li-Wen; Al-Suwayeh, Saleh A; Hung, Chi-Feng; Chen, Chih-Chieh; Fang, Jia-You

    2011-01-01

    The study evaluated the potential of nanoemulsions for the topical delivery of 5-aminolevulinic acid (ALA) and methyl ALA (mALA). The drugs were incorporated in oil-in-water (O/W) and water-in-oil (W/O) formulations obtained by using soybean oil or squalene as the oil phase. The droplet size, zeta potential, and environmental polarity of the nanocarriers were assessed as physicochemical properties. The O/W and W/O emulsions showed diameters of 216–256 and 18–125 nm, which, respectively, were within the range of submicron- and nano-sized dispersions. In vitro diffusion experiments using Franz-type cells and porcine skin were performed. Nude mice were used, and skin fluorescence derived from protoporphyrin IX was documented by confocal laser scanning microscopy (CLSM). The loading of ALA or mALA into the emulsions resulted in slower release across cellulose membranes. The release rate and skin flux of topical drug application were adjusted by changing the type of nanocarrier, the soybean oil O/W systems showing the highest skin permeation. This formulation increased ALA flux via porcine skin to 180 nmol/cm2/h, which was 2.6-fold that of the aqueous control. The CLSM results showed that soybean oil systems promoted mALA permeation to deeper layers of the skin from ∼100 μm to ∼140 μm, which would be beneficial for treating subepidermal and subcutaneous lesions. Drug permeation from W/O systems did not surpass that from the aqueous solution. An in vivo dermal irritation test indicated that the emulsions were safe for topical administration of ALA and mALA. PMID:21556344

  14. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen

    SciTech Connect

    Phung, Thu-Ha; Jung, Sunyo

    2015-04-03

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, F{sub v}/F{sub m}, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H{sub 2}O{sub 2} production and greater increases in H{sub 2}O{sub 2}-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. - Highlights: • We employ two different types of photodynamic stress, white and brown necrosis. • We examine molecular mechanisms of antioxidative and detoxification systems. • ALA and OF develop differential actions of antioxidant and detoxification systems. • Coordinated mechanism of antioxidants and detoxification works against toxic ROS. • Detoxification system plays critical roles in protection against photodynamic stress.

  15. Enhancement of 5-aminolevulinic-acid-induced photodynamic therapy using light-dose fractionation and iron-chelating agents

    NASA Astrophysics Data System (ADS)

    Curnow, Alison; Postle-Hacon, Matthew J.; MacRobert, Alexander J.; Bown, Stephen G.

    1998-05-01

    Preliminary clinical studies of 5-aminolaevulinic acid (ALA) induced photodynamic therapy (PDT) with the maximum tolerated oral dose (60 mg/kg), currently appear to only produce limited amounts of necrosis. We have studied ways of increasing this effect without increasing the drug dose. In normal, female, Wistar rats we have found it possible to increase the area of necrosis produced in the colon substantially by simply interrupting the light dose (25 J, 635 nm, 100 mW) for a short period of time, while all other variables are kept constant. It is possible to cause up to four times more necrosis with a dose of 200 mg/kg ALA i.v. by introducing a single 150 second interval which splits the light dose into two fractions after 5 J has been delivered. We have found these parameters to be optimal for this dose. Likewise, in the same model, the effect of the iron chelating agent, CP94, was also investigated and we have found it possible to produce three times the area of necrosis with the simultaneous administration of 100 mg/kg CP94 i.v. and 50 mg/kg ALA i.v. We have therefore shown, that it is possible to significantly increase the effects of ALA induced PDT without increasing the administered dose of ALA by utilizing these techniques.

  16. 5-Aminolevulinic Acid Thins Pear Fruits by Inhibiting Pollen Tube Growth via Ca2+-ATPase-Mediated Ca2+ Efflux

    PubMed Central

    An, Yuyan; Li, Jie; Duan, Chunhui; Liu, Longbo; Sun, Yongping; Cao, Rongxiang; Wang, Liangju

    2016-01-01

    Chemical fruit thinning has become a popular practice in modern fruit orchards for achieving high quality fruits, reducing costs of hand thinning and promoting return bloom. However, most of the suggested chemical thinners are often concerned for their detrimental effects and environmental problems. 5-Aminolevulic acid (ALA) is a natural, nontoxic, biodegradable, and environment-friendly plant growth regulator. One of its outstanding roles is improving plant photosynthesis and fruit quality. Here, results showed that applying 100–200 mg/L ALA at full bloom stage significantly reduced pear fruit set. Both in vivo and in vitro studies showed that ALA significantly inhibited pollen germination and tube growth. ALA decreased not only cytosolic Ca2+ concentration ([Ca2+]cyt) but also “tip-focused” [Ca2+]cyt gradient, indicating that ALA inhibited pollen tube growth by down-regulating calcium signaling. ALA drastically enhanced pollen Ca2+-ATPase activity, suggesting that ALA-induced decrease of calcium signaling probably resulted from activating calcium pump. The significant negative correlations between Ca2+-ATPase activity and pollen germination or pollen tube length further demonstrated the critical role of calcium pump in ALA's negative effect on pollen germination. Taken together, our results suggest that ALA at low concentrations is a potential biochemical thinner, and it inhibits pollen germination and tube growth via Ca2+ efflux by activating Ca2+-ATPase, thereby thinning fruits by preventing fertilization. PMID:26904082

  17. Interstitial photodynamic therapy of canine prostate with meso-tetra-(m-hydroxyphenyl) chlorin and 5-aminolevulinic acid: a preliminary study

    NASA Astrophysics Data System (ADS)

    Chang, Shi-Chung; Buonaccorsi, Giovanni A.; MacRobert, Alexander J.; Bown, Stephen G.

    1996-01-01

    Photodynamic therapy (PDT) is proved to have potential for managing various malignancies. We investigated tissue biodistribution and photodynamic effects on a canine model in vivo using second generation photosensitizers, meso-tetra(m-hydroxyphenyl)chlorin (mTHPC) and 5-aminolaevulinic acid (ALA) to evaluate the feasibility and possible future application of PDT on the prostate. Using fluorescence microscopy, the optimal sensitization time of the prostate was between 24 - 72 hours with mTHPC and, 3 hours with ALA. After optimum time of sensitization, prostates of mature beagle were treated with laser at various sites by placing fiber interstitially under the guidance of transrectal ultrasound. The light dose for each treatment site was 100 J (100 mW for 1,000 seconds at the wavelength of 650 and 630 nm, respectively). With mTHPC, single laser fiber was able to induce organ confined PDT lesion as large as 20 by 18 by 18 mm in size. However, the PDT lesion with ALA was negligible 3 days after treatment. Physical distress manifested as urinary retention, poor appetite and body weigh loss, was more prominent with increasing number of treatment sites as a result of extensive prostatic swelling and urethral damages. However, these problems usually alleviated spontaneously 7 to 10 days after PDT. The characteristic histological changes were hemorrhagic necrosis and glandular destruction with preservation of interlobular collagen fibers. Urethral damage seen at the early stage healed by regeneration of urothelium in 4 weeks. We conclude that interstitial PDT with mTHPC is technically possible to produce extensive glandular necrosis in the normal prostate which heals safely and does not change the prostatic architecture. ALA, although it seems promising for bladder tumors, is much less effective than mTHPC on the prostate. With mTHPC, it might have the potential for treating prostate cancers localized in the periphery of the gland.

  18. In vitro study of cell death with 5-aminolevulinic acid based photodynamic therapy to improve the efficiency of cancer treatment

    NASA Astrophysics Data System (ADS)

    Firdous, S.; Nawaz, M.; Ikram, M.; Ahmed, M.

    2012-03-01

    Photodynamic therapy (PDT) is a kind of photochemo therapeutic treatment that exerts its effect mainly through the induction of cell death. Distinct types of cell death may be elicited by different PDT regimes. In this study, efforts are underway to optimize PDT protocols for improved efficacy and combination of all three PDT mechanisms involved in the different human carcinomas cell narcosis. Our in vitro cell culture experiments with 5-aminolevulanic acid (ALA) a clinically approved photiosensitizer (PS) and 635 nm laser light have yielded promising results, as follow: (1) (human cervical cancer (HeLa) cell line incubated, for 18 h, with 30 μg/ml of 5-ALA, treated with laser light dose of 50 J/cm2 can produce 85% of cell killing (2) human larynx carcinoma (Hep2c) cell line incubated, for 7 h, with 55 μg/ml of 5-ALA, treated with laser light dose of 85 J/cm2 can produce 75% of cell killing (3) human liver cancer (HepG2) cell line incubated, for 22-48 h, with 262 μg/ml of 5-ALA, treated with laser light dose of 120 J/cm2 can produce 95% of cell killing (4) human muscle cancer (RD) cell line incubated, for 47 h, with 250 μg/ml of 5-ALA, treated with laser light dose of 80 J/cm2 can produce 76% of cell killing (5) Human embryonic kidney (HEK293T) cell line incu-bated, for 18 h, with 400 μg/ml of 5-ALA, treated with laser light dose of 40 J/cm2 can produce 82% of cell killing confirming the efficacy of photodynamic therapy.

  19. Evaluating the efficacy and safety of a novel endoscopic fluorescence imaging modality using oral 5-aminolevulinic acid for colorectal tumors

    PubMed Central

    Tsuruki, Eriko So; Saito, Yutaka; Abe, Seiichiro; Takamaru, Hiroyuki; Yamada, Masayoshi; Sakamoto, Taku; Nakajima, Takeshi; Matsuda, Takahisa; Sekine, Shigeki; Taniguchi, Hirokazu

    2016-01-01

    Background and study aims: Five-aminolevulinic acid (5-ALA) is being increasingly used for photodynamic diagnosis and therapy of various types of tumors including brain, urologic, and other neoplasias. The use of 5-ALA to treat Barrett’s carcinomas has been documented, but its clinical effectiveness for diagnosis of gastrointestinal tumors, particularly early cancers, remains unknown. Patients and methods: The aim of our feasibility study was to evaluate the visibility of colorectal tumors using endoscopic fluorescence imaging (EFI) after oral administration of 5-ALA. The lesions identified by direct visualization and by the spectrums produced using EFI modality with 5-ALA were compared to the clinicopathologic features of resected specimens. Results: Twenty-three patients with a total of 27 known colorectal lesions were enrolled in the study. The median tumor size was 30 mm (range 10 – 75). Eleven of the lesions were flat or depressed lesions and 16 were sessile. Red fluorescence was observed in 22 out of 27 lesions. Red fluorescence was negative in 4 out of 11 flat or depressed lesions. In comparison with histopathologic findings, the rates of red fluorescence visibility were 62.5 % in low-grade intraepithelial neoplasia, 77.8 % in high-grade neoplasia, and 100 % in submucosal carcinoma. Red fluorescence visibility increased with the degree of dysplasia. There were no significant adverse events identified in this study. Conclusions: This feasibility study using EFI with 5-ALA demonstrated high visibility of superficial colorectal neoplasia. EFI with 5-ALA appears to be a novel, safe technique for improving real-time colorectal tumor imaging. PMID:26793782

  20. Clinical efficacy of 5-aminolevulinic acid photodynamic therapy in the treatment of moderate to severe facial acne vulgaris

    PubMed Central

    CHEN, XIANGQI; SONG, HONGTAO; CHEN, SHENGPING; ZHANG, JING; NIU, GAOXIANG; LIU, XIANGNONG

    2015-01-01

    Acne vulgaris is considered as a therapeutic challenge in terms of managing ongoing symptoms and preventing scar formation. Although there are many available treatments for alleviating acne, therapies for resistant or moderate-to-severe forms have been limited to systemic agents that are accompanied by potentially severe side-effects. While, aminolevulinic acid (ALA) photodynamic therapy (PDT) has increasingly been used as a simple and safe therapeutic option of acne vulgaris, the clinical efficacy requires confirmation in further studies. The aim of this study was to investigate the efficacy and safety of 5-ALA-PDT in the treatment of moderate-to-severe facial acne vulgaris. A total of 50 patients with moderate-to-severe facial acne were enrolled in the study and randomly divided equally into a therapy group and a control group. In the therapy group, the patients were treated with 5% 5-ALA for 1.5 h, followed by three 20-min doses of infrared radiation once a week; in the control group, the patients were treated with three 20 min doses of infrared radiation without 5-ALA once a week. Both treatments lasted for 3 weeks. The clinical efficacy was determined by evaluating acne lesion counts at weeks 0, 2, 4 and 6. Total efficacy rate (TER) was the primary endpoint of the study, and was defined as the proportion of the patients whose treatment effectiveness evaluation was cured (≥90% of skin lesions improved) and excellent (60–89% improvement). Adverse effects were recorded throughout the study. The study was completed by 24 patients in the therapy group and 23 patients in the control group. The numbers of acne lesions significantly decreased. The TER of the therapy group was significantly higher than that of the control group at weeks 4 and 6. Adverse effects were observed in 12 patients of the therapy group and 2 patients of the control group. In the therapy group the most common adverse effect was a burning sensation (n=7), followed by transient

  1. Comparative study of two routes of administration of 5-aminolevulinic acid (oral and intratumoral via) and their effect on the accumulation of PpIX in tissues in murine model of breast cancer

    NASA Astrophysics Data System (ADS)

    González-Agüero, G.; Ramón-Gallegos, E.

    2012-10-01

    Protoporphyrin IX (PpIX) is a photosensitizer synthesized from 5-aminolevulinic acid (ALA) that has been used in photodynamic therapy (PDT) as a promising treatment for many types of cancer. In this work it was quantified the accumulation of PpIX in tumors and in different tissues of female mice (nu/nu) inoculated with breast cancer cells. Two routes of administration of ALA: gastric probe and intratumoral injection were used to find optimum time of accumulation and the via that induce the higher quantity of PpIX to improve the efficiency of PDT. The results show that the accumulation of PpIX using the intratumoral via is two times bigger than the oral via in tumors at 8 h of treatment. The concentrations obtained in the different tissues are not physiologically significant.

  2. Photodynamic therapy of human skin tumors using topical application of 5-aminolevulinic acid, dimethylsulfoxide (DMSO), and edetic acid disodium salt (EDTA)

    NASA Astrophysics Data System (ADS)

    Orenstein, Arie; Kostenich, Gennady; Tsur, H.; Roitman, Leonid; Ehrenberg, Benjamin; Malik, Zvi

    1995-01-01

    The results of photodynamic therapy (PDT) in 48 patients bearing basal cell carcinoma (BCC) and 7 patients with squamous cell carcinoma (SCC) of the skin are described. Five- aminolevulinic acid (5-ALA) was applied topically in two formulations. The first formulation contained 20% of 5-ALA in a base cream, and the second formulation (5-ALA composite cream), contained an additional 2% of dimethylsulfoxide (DMSO) and 2% of edetic acid disodium salt (EDTA). The creams were left on the skin for 2 - 5 hours. Production of protoporphyrin (PP) was measured in situ by a laser-induced fluorescence (LIF) method. The results of fluorescence measurement clearly indicate that PP accumulation in tumors induced by the 5-ALA composite cream was markedly higher than that induced by the 5-ALA cream. The tumors were light-irradiated (600 - 720 nm) after 4 - 5 hours of cream applications, using the light delivery system Versa-Light by a light dose of 100 J/cm2. The clinically superficial BCC tumors were highly responsive to PDT; the overall result in BCC patients was an 85.4% complete response. Histological examination showed an initial edematous reaction, followed by necrosis and complete disappearance of the tumor. The superficial SCC tumors showed a 100% complete response after PDT. The ulcerated nodular SCC showed partial responses.

  3. Evolutinoary Consideration on 5-Aminolevulinate Synthase in Nature

    NASA Astrophysics Data System (ADS)

    Oh-Hama, Tamiko

    1997-08-01

    5-Aminolevulinic acid (ALA), a universal precursor of tetrapyrrole compounds can be synthesized by two pathways: the C5 (glutamate) pathway and ALA synthase. From the phylogenetic distribution it is shown that distribution of ALA synthase is restricted to the α subclass of purple bacteria in prokaryotes, and further distributed to mitochondria of eukaryotes. The monophyletic origin of bacterial and eukaryotic ALA synthase is shown by sequence analysis of the enzyme. Evolution of ALA synthase in the α subclass of purple bacteria is discussed in relation to the energy-generating and biosynthetic devices in subclasses of this bacteria.

  4. The Value of 5-Aminolevulinic Acid in Low-grade Gliomas and High-grade Gliomas Lacking Glioblastoma Imaging Features: An Analysis Based on Fluorescence, Magnetic Resonance Imaging, 18F-Fluoroethyl Tyrosine Positron Emission Tomography, and Tumor Molecular Factors

    PubMed Central

    Jaber, Mohammed; Wölfer, Johannes; Ewelt, Christian; Holling, Markus; Hasselblatt, Martin; Niederstadt, Thomas; Zoubi, Tarek; Weckesser, Matthias

    2015-01-01

    BACKGROUND: Approximately 20% of grade II and most grade III gliomas fluoresce after 5-aminolevulinic acid (5-ALA) application. Conversely, approximately 30% of nonenhancing gliomas are actually high grade. OBJECTIVE: The aim of this study was to identify preoperative factors (ie, age, enhancement, 18F-fluoroethyl tyrosine positron emission tomography [18F-FET PET] uptake ratios) for predicting fluorescence in gliomas without typical glioblastomas imaging features and to determine whether fluorescence will allow prediction of tumor grade or molecular characteristics. METHODS: Patients harboring gliomas without typical glioblastoma imaging features were given 5-ALA. Fluorescence was recorded intraoperatively, and biopsy specimens collected from fluorescing tissue. World Health Organization (WHO) grade, Ki-67/MIB-1 index, IDH1 (R132H) mutation status, O6-methylguanine DNA methyltransferase (MGMT) promoter methylation status, and 1p/19q co-deletion status were assessed. Predictive factors for fluorescence were derived from preoperative magnetic resonance imaging and 18F-FET PET. Classification and regression tree analysis and receiver-operating-characteristic curves were generated for defining predictors. RESULTS: Of 166 tumors, 82 were diagnosed as WHO grade II, 76 as grade III, and 8 as glioblastomas grade IV. Contrast enhancement, tumor volume, and 18F-FET PET uptake ratio >1.85 predicted fluorescence. Fluorescence correlated with WHO grade (P < .001) and Ki-67/MIB-1 index (P < .001), but not with MGMT promoter methylation status, IDH1 mutation status, or 1p19q co-deletion status. The Ki-67/MIB-1 index in fluorescing grade III gliomas was higher than in nonfluorescing tumors, whereas in fluorescing and nonfluorescing grade II tumors, no differences were noted. CONCLUSION: Age, tumor volume, and 18F-FET PET uptake are factors predicting 5-ALA-induced fluorescence in gliomas without typical glioblastoma imaging features. Fluorescence was associated with an increased

  5. {Delta}-Aminolevulinic acid dehydratase: A sensitive indicator of lead exposure in broiler chicks: (Gallus domesticus)

    SciTech Connect

    Bakalli, R.I.; Pesti, G.M.; Konjufca, V.

    1995-12-01

    Delta-aminolevulinic acid dehydratase, EC 4.2.1.24 (ALAD) is one of the enzymes participating in heme synthesis. The study reported in this paper was designed to determine the activity of erythrocyte ALAD anbd the relationship between this enzyme and tissue lead levels in chickens, during Pb intake and after withdrawing Bv from the feed. 20 refs., 3 tabs.

  6. The application of 5-aminolevulinic acid in the treatment of precancerous lesions, skin cancer, and a new approach to the control of therapy

    NASA Astrophysics Data System (ADS)

    Kulas, Zbigniew; Bereś-Pawlik, Elżbieta; Bieniek, Andrzej; Matusiak, Łukasz

    2009-02-01

    The aim of our work was to determine a therapeutic effect of photodynamic therapy (PDT). Twenty five patients with the Bowen's disease, actinic keratosis and basal cell carcinoma (superficial, nodular) were examined. They were treated with photosensitizer - aminolevulinic acid (metabolized in protoporphyrin IX), and the new red light source built of high-power diodes. A new method, based on numerical analysis of fluorescence imaging of tissues, was proposed as a way for controlling therapy.

  7. Photodynamic Therapy (PDT) using intratumoral injection of the 5- aminolevulinic acid (5-ALA) for the treatment of eye cancer in cattle

    NASA Astrophysics Data System (ADS)

    Hage, Raduan; Mancilha, Geraldo; Zângaro, Renato A.; Munin, Egberto; Plapler, Hélio

    2007-02-01

    A six-year old Holstein cow with an eye cancer (ocular squamous cell carcinoma) involving the third eyelid and conjunctiva was submitted to photodynamic therapy using intratumoral 20% aminolevulinic acid (5-ALA - Aldrich Chemical Company, Milwaukee, USA) and a light emitting diode (LED - VET LED - MMOptics (R)) with wavelength between 600 and 700 nm, 2 cm diameter circular light beam, power of 150 mW, light dose of 50 J/cm2 as a source of irradiation. Fifteen days after the experimental procedure we observed about 50% tumor reduction and complete remission after 3 months. Relapse was not observed up to 12 months after the treatment. Although the study only includes one animal not allowing definite conclusions, it indicates that PDT represents a safe and technically feasible approach in the treatment of eye cancer in cattle.

  8. A prospective Phase II clinical trial of 5-aminolevulinic acid to assess the correlation of intraoperative fluorescence intensity and degree of histologic cellularity during resection of high-grade gliomas.

    PubMed

    Lau, Darryl; Hervey-Jumper, Shawn L; Chang, Susan; Molinaro, Annette M; McDermott, Michael W; Phillips, Joanna J; Berger, Mitchel S

    2016-05-01

    OBJECT There is evidence that 5-aminolevulinic acid (ALA) facilitates greater extent of resection and improves 6-month progression-free survival in patients with high-grade gliomas. But there remains a paucity of studies that have examined whether the intensity of ALA fluorescence correlates with tumor cellularity. Therefore, a Phase II clinical trial was undertaken to examine the correlation of intensity of ALA fluorescence with the degree of tumor cellularity. METHODS A single-center, prospective, single-arm, open-label Phase II clinical trial of ALA fluorescence-guided resection of high-grade gliomas (Grade III and IV) was held over a 43-month period (August 2010 to February 2014). ALA was administered at a dose of 20 mg/kg body weight. Intraoperative biopsies from resection cavities were collected. The biopsies were graded on a 4-point scale (0 to 3) based on ALA fluorescence intensity by the surgeon and independently based on tumor cellularity by a neuropathologist. The primary outcome of interest was the correlation of ALA fluorescence intensity to tumor cellularity. The secondary outcome of interest was ALA adverse events. Sensitivities, specificities, positive predictive values (PPVs), negative predictive values (NPVs), and Spearman correlation coefficients were calculated. RESULTS A total of 211 biopsies from 59 patients were included. Mean age was 53.3 years and 59.5% were male. The majority of biopsies were glioblastoma (GBM) (79.7%). Slightly more than half (52.5%) of all tumors were recurrent. ALA intensity of 3 correlated with presence of tumor 97.4% (PPV) of the time. However, absence of ALA fluorescence (intensity 0) correlated with the absence of tumor only 37.7% (NPV) of the time. For all tumor types, GBM, Grade III gliomas, and recurrent tumors, ALA intensity 3 correlated strongly with cellularity Grade 3; Spearman correlation coefficients (r) were 0.65, 0.66, 0.65, and 0.62, respectively. The specificity and PPV of ALA intensity 3 correlating

  9. Effects of zinc, copper, and lead toxicity on. cap alpha. -aminolevulinic acid dehydratase activity. [Rats

    SciTech Connect

    Shafiq-ur-Rehman

    1984-07-01

    The distribution of lead, zinc and copper in the human environment has been recognized as a major toxicological factor. Lead ions have been shown to inhibit the activity of delta-aminolevulinic acid dehydratase (delta-ALAD), which is involved in the biosynthesis of heme. Copper also has its inhibitory effect on delta-ALAD activity. A study has shown that the delta-ALAD was activated by zinc ions at physiological concentrations. In view of these reports, it was considered worthwhile to study the poisoning effects of lead, zinc and copper on delta-ALAD activity along with the concentrations of these metal ions in the blood. A possible role of Zn/sup + +/, Cu/sup + +/, and Pb/sup + +/ interaction and their influence on delta-ALAD has been explored in the present paper.

  10. Delta-aminolevulinic acid dehydratase: Inhibition in ducks dosed with lead shot

    USGS Publications Warehouse

    Finley, M.T.; Dieter, M.P.; Locke, L.N.

    1976-01-01

    Lead concentration in blood and erythrocyte delta-aminolevulinic acid dehydratase (ALAD) activity was measured in mallard ducks dosed with one all-lead shot or one lead-iron combination shot. For 2 weeks after dosage, lead in blood of ducks given an all-lead shot was fourfold higher than in those dosed with lead-iron shot. At 3 and 4 weeks, the differences in lead residues were directly proportional to lead content of the shots. ALAD activities measured at these intervals were inversely correlated (P < 0.01) with the concentration of lead in the blood, suggesting that biochemical responses to the two types of shot were dependent upon the quantity of lead present.

  11. Effect of triethyl lead chloride on delta-aminolevulinic acid dehydratase

    SciTech Connect

    Bondy, S.C.

    1986-01-01

    The effect of various organic metal compounds on delta-aminolevulinic acid dehydratase (ALAD, porphobilinogen synthetase) activity has been studied. Various organic tin and lead compounds have little effect on this enzyme. However, triethyl lead chloride has a potency similar to that of inorganic lead nitrate in inhibiting ALAD both for in vitro study and after in vivo dosing. Liver and blood ALAD have a similar sensitivity to lead compounds, which is reduced in the presence of zinc. Trimethyl lead chloride inhibits ALAD in vitro to a lesser extent. The results suggest that amphiphilic organic lead compounds may directly inhibit ALAD without prior degradation to inorganic lead. The diffusibility and persistence of triethyl lead combine to make it an especially hazardous lead compound.

  12. delta. -aminolevulinic acid dehydratase deficiency can cause. delta. -aminolevulinate auxotrophy in Escherichia coli

    SciTech Connect

    O'Neill, G.P.; Michelsen, U.; Soll, D. ); Thorbjarnardottir, S.; Palsson, S.; Eggertsson, G. )

    1991-01-01

    Ethylmethane sulfonate-induced mutants of several Escherichia coli strains that required {delta}-aminolevulinic acid (ALA) for growth were isolated by penicillin enrichment or by selection for respiratory-defective strains resistant to the aminoglycoside antibiotic kanamycin. Three classes of mutants were obtained. Two-thirds of the strains were mutants in hemA. Representative of a third of the mutations was the hem-201 mutation. This mutation was mapped to min 8.6 to 8.7. Complementation of the auxotrophic phenotype by wild-type DNA from the corresponding phage 8F10 allowed the isolation of the gene. DNA sequence analysis revealed that the hem-201 gene encoded ALA dehydratase and was similar to a known hemB gene of E. coli. Complementation studies of hem-201 and hemB1 mutant strains with various hem-201 gene subfragments showed that hem-201 and the previously reported hemB1 mutation are in the same gene and that no other gene is required to complement the hem-201 mutant. ALA-forming activity from glutamate could not be detected by in vitro or in vivo assays. Extracts of hem-201 cells had drastically reduce ALA dehydratase levels, while cells transformed with the plasmid-encoded wild-type gene possessed highly elevated enzyme levels. The ALA requirement for growth, the lack of any ALA-forming enzymatic activity, and greatly reduced ALA dehydratase activity of the hem-201 strain suggest that a diffusible product of an enzyme in the heme biosynthetic pathway after ALA formation is involved in positive regulation of ALA biosynthesis. Analysis of another class of ALA-requiring mutants showed that the auxotrophy of the hem-205 mutant could be relieved by either methionine or cysteine and that the mutation maps in the cysG gene, which encodes uroporphyrinogen III methylase. The properties of these nonleaky ALA-requiring strains suggest that ALA is involved more extensively in E. coli intermediary metabolism than has been appreciated to date.

  13. Hereditary Tyrosinemia and the Heme Biosynthetic Pathway. PROFOUND INHIBITION OF δ-AMINOLEVULINIC ACID DEHYDRATASE ACTIVITY BY SUCCINYLACETONE

    PubMed Central

    Sassa, Shigeru; Kappas, Attallah

    1983-01-01

    Succinylacetone (4,6-dioxoheptanoic acid) is an abnormal metabolite produced in patients with hereditary tyrosinemia as a consequence of an inherited deficiency of fumarylacetoacetate hydrolase. It is known that patients with this hereditary disease excrete excessive amounts of δ-aminolevulinic acid (ALA) in urine and that certain patients have an accompanying clinical syndrome resembling that of acute intermittent porphyria (AIP). In order to elucidate the relation of succinylacetone to the heme biosynthetic pathway, we have examined the effects of this metabolite on the cellular heme content of cultured avian hepatocytes and on the activity of purified ALA dehydratase from normal human erythrocytes and from mouse and bovine liver. Our data indicate that succinylacetone is an extremely potent competitive inhibitor of ALA dehydratase in human as well as in animal tissues. By using purified preparations of the enzyme from human erythrocytes and mouse and bovine liver, an inhibitor constant ranging from 2 × 10-7 M to 3 × 10-7 M was obtained. In cultured hepatocytes, succinylacetone also inhibited ALA dehydratase activity, decreased the cellular content of heme and cytochrome P-450, and greatly potentiated the induction response of ALA synthase to drugs such as phenobarbital, chemicals such as allylisopropylacetamide and 3,5-dicarbethoxy-1,4-dihydrocollidine, and natural steroids such as etiocholanolone. Four patients with hereditary tyrosinemia have been studied and all were found to have greatly depressed levels of erythrocyte ALA dehydratase activity and elevated concentrations of this inhibitor in urine. These findings indicate that tyrosinemia is a disorder of special pharmacogenetic interest because succinylacetone, an abnormal product of the tyrosine metabolic pathway, resulting from the primary gene defect of the disease, profoundly inhibits heme biosynthesis in normal cells through a blockade at the ALA dehydratase level, leading to clinical and metabolic

  14. Association between delta-aminolevulinic acid dehydratase polymorphism and placental lead levels.

    PubMed

    Kayaaltı, Zeliha; Sert, Selda; Kaya-Akyüzlü, Dilek; Söylemez, Esma; Söylemezoğlu, Tülin

    2016-01-01

    Lead inhibits the delta-aminolevulinic acid dehydratase (ALAD) activity and results in neurotoxic aminolevulinic acid accumulation in the blood. During pregnancy, lead in the maternal blood can easily cross the placenta. The aim of this study was to determine whether the maternal ALAD G177C polymorphism (rs1800435) was related to the placental lead levels. The study population comprised 97 blood samples taken from mothers to investigate ALAD G177C polymorphism and their placentas to measure lead levels. ALAD G177C polymorphism was detected by standard polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) technique and atomic absorption spectrometry (AAS) equipped with a graphite furnace and Zeeman background correction system was used for lead determination. The median placental lead levels for ALAD1-1, ALAD1-2 and ALAD2-2 genotypes were 7.54 μg/kg, 11.78 μg/kg and 18.53 μg/kg, respectively. Statistically significant association was found between the maternal ALAD G177C polymorphism and placental lead levels (p<0.05). This study suggested that maternal ALAD G177C polymorphism was associated with placental lead levels. PMID:26701682

  15. Aminolevulinic acid-dehydratase activity in green sunfish: An indicator of lead bioavailability in suspended sediments

    SciTech Connect

    Caldwell, C.; Steingraeber, M.

    1995-12-31

    Green sunfish (Lepomis cyanellus, 6-32 g) were exposed for 28 days to suspended sediments and sediments not in suspension (bedded). Blood was collected for aminolevulinic acid-dehydratase activity (ALA-D), hemoglobin and blood lead concentrations, and whole body lead concentrations. Results of the metal analysis of filtered and unfiltered water from both suspended and bedded sediment tests revealed that the majority of the metal was associated with particulate matter in suspension. Fish subjected to suspended sediments (0.2, 1.6, and 21.9 ug/g lead, dry weight) had significantly reduced ALA-D and hemoglobin concentrations than fish in bedded sediments. However, there was no significant correlation between lead concentrations in suspended sediments and ALA-D activity. In addition, there were no significant correlations between ALA-D activity and hemoglobin concentrations. Whole body analysis and blood lead concentrations were not good indicators of lead exposure in sediment tests having relatively low concentrations of lead.

  16. Structure and functional characterization of a bile aciddehydratase BaiE in secondary bile acid synthesis.

    PubMed

    Bhowmik, Shiva; Chiu, Hsien-Po; Jones, David H; Chiu, Hsiu-Ju; Miller, Mitchell D; Xu, Qingping; Farr, Carol L; Ridlon, Jason M; Wells, James E; Elsliger, Marc-André; Wilson, Ian A; Hylemon, Phillip B; Lesley, Scott A

    2016-03-01

    Conversion of the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) to the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA) is performed by a few species of intestinal bacteria in the genus Clostridium through a multistep biochemical pathway that removes a 7α-hydroxyl group. The rate-determining enzyme in this pathway is bile acid 7α-dehydratase (baiE). In this study, crystal structures of apo-BaiE and its putative product-bound [3-oxo-Δ(4,6) -lithocholyl-Coenzyme A (CoA)] complex are reported. BaiE is a trimer with a twisted α + β barrel fold with similarity to the Nuclear Transport Factor 2 (NTF2) superfamily. Tyr30, Asp35, and His83 form a catalytic triad that is conserved across this family. Site-directed mutagenesis of BaiE from Clostridium scindens VPI 12708 confirm that these residues are essential for catalysis and also the importance of other conserved residues, Tyr54 and Arg146, which are involved in substrate binding and affect catalytic turnover. Steady-state kinetic studies reveal that the BaiE homologs are able to turn over 3-oxo-Δ(4) -bile acid and CoA-conjugated 3-oxo-Δ(4) -bile acid substrates with comparable efficiency questioning the role of CoA-conjugation in the bile acid metabolism pathway. PMID:26650892

  17. Expression of dehydratase domains from a polyunsaturated fatty acid synthase increases the production of fatty acids in Escherichia coli.

    PubMed

    Oyola-Robles, Delise; Rullán-Lind, Carlos; Carballeira, Néstor M; Baerga-Ortiz, Abel

    2014-02-01

    Increasing the production of fatty acids by microbial fermentation remains an important step toward the generation of biodiesel and other portable liquid fuels. In this work, we report an Escherichia coli strain engineered to overexpress a fragment consisting of four dehydratase domains from the polyunsaturated fatty acid (PUFA) synthase enzyme complex from the deep-sea bacterium, Photobacterium profundum. The DH1-DH2-UMA enzyme fragment was excised from its natural context within a multi-enzyme PKS and expressed as a stand-alone protein. Fatty acids were extracted from the cell pellet, esterified with methanol and quantified by GC-MS analysis. Results show that the E. coli strain expressing the DH tetradomain fragment was capable of producing up to a 5-fold increase (80.31 mg total FA/L culture) in total fatty acids over the negative control strain lacking the recombinant enzyme. The enhancement in production was observed across the board for all the fatty acids that are typically made by E. coli. The overexpression of the DH tetradomain did not affect E. coli cell growth, thus showing that the observed enhancement in fatty acid production was not a result of effects associated with cell density. The observed enhancement was more pronounced at lower temperatures (3.8-fold at 16 °C, 3.5-fold at 22 °C and 1.5-fold at 30 °C) and supplementation of the media with 0.4% glycerol did not result in an increase in fatty acid production. All these results taken together suggest that either the dehydration of fatty acid intermediates are a limiting step in the E. coli fatty acid biosynthesis machinery, or that the recombinant dehydratase domains used in this study are also capable of catalyzing thioester hydrolysis of the final products. The enzyme in this report is a new tool which could be incorporated into other existing strategies aimed at improving fatty acid production in bacterial fermentations toward accessible biodiesel precursors. PMID:24411456

  18. Expression of dehydratase domains from a polyunsaturated fatty acid synthase increases the production of fatty acids in Escherichia coli

    PubMed Central

    Oyola-Robles, Delise; Rullán-Lind, Carlos; Carballeira, Néstor M.; Baerga-Ortiz, Abel

    2014-01-01

    Increasing the production of fatty acids by microbial fermentation remains an important step towards the generation of biodiesel and other portable liquid fuels. In this work, we report an Escherichia coli strain engineered to overexpress a fragment consisting of four dehydratase domains from the polyunsaturated fatty acid (PUFA) synthase enzyme complex from the deep-sea bacterium, Photobacterium profundum. The DH1-DH2-UMA enzyme fragment was excised from its natural context within a multi-enzyme PKS and expressed as a stand-alone protein. Fatty acids were extracted from the cell pellet, esterified with methanol and quantified by GC-MS analysis. Results show that the E. coli strain expressing the DH tetradomain fragment was capable of producing up to a 5-fold increase (80.31 mg total FA/L culture) in total fatty acids over the negative control strain lacking the recombinant enzyme. The enhancement in production was observed across the board for all the fatty acids that are typically made by E. coli. The overexpression of the DH tetradomain did not affect E. coli cell growth, thus showing that the observed enhancement in fatty acid production was not a result of effects associated with cell density. The observed enhancement was more pronounced at lower temperatures (3.8-fold at 16 °C, 3.5-fold at 22 °C and 1.5-fold at 30 °C) and supplementation of the media with 0.4% glycerol did not result in an increase in fatty acid production. All these results taken together suggest that either the dehydration of fatty acid intermediates are a limiting step in the E. coli fatty acid biosynthesis machinery, or that the recombinant dehydratase domains used in this study are also capable of catalyzing thioester hydrolysis of the final products. The enzyme in this report is a new tool which could be incorporated into other existing strategies aimed at improving fatty acid production in bacterial fermentations towards accessible biodiesel precursors. PMID:24411456

  19. Direct Assay of δ-Aminolevulinic Acid Dehydratase in Heme Biosynthesis for the Detection of Porphyrias by Tandem Mass Spectrometry

    PubMed Central

    Choiniere, John R.; Scott, C. Ronald; Gelb, Michael H.; Tureček, František

    2010-01-01

    We report a new assay of human δ-aminolevulinic acid dehydratase (ALAD), an enzyme converting δ-aminolevulinic acid (ALA) into porphobilinogen. The assay is developed for use in the clinical diagnosis of δ-aminolevulinic acid dehydratase-deficient porphyria, a rare enzymatic deficiency of the heme biosynthetic pathway. The assay involves the incubation of erythrocyte lysate with the natural substrate, ALA, followed by quantitative in situ conversion of porphobilinogen to its butyramide, and liquid-liquid extraction into a mass spectrometer-friendly solvent. Quantitation of the butyrylated porphobilinogen is done by electrospray ionization tandem mass spectrometry, using a deuterium labeled internal standard. The assay stays well within the range wherein ALAD activity is linear with time. The Km of ALAD for ALA was measured as 333 μM, and the Vmax was 19.3 μM/hr. Average enzyme activity among a random sample of 36 anonymous individuals was 277 μmol/L erythrocyte lysate/hour with a standard deviation of 90 μmol/L erythrocyte lysate/hour. The tandem mass spectrometric assay should easily detect the enzyme deficiency, which causes a reduction of activity by 95–99%. The assay shows good reproducibility, low background, requires a simple workup, and uses a commercially available substrate. PMID:20583792

  20. Aminolevulinic acid dehydratase activity in American dippers (Cinclus mexicanus) from a metal-impacted stream.

    PubMed

    Strom, Sean M; Ramsdell, Howard S; Archuleta, Andrew S

    2002-01-01

    Blood samples collected from adult and nestling American dippers (Cinclus mexicanus) along the Arkansas River (CO, USA), a stream impacted by discharges from historical mining operations, and a reference stream were analyzed for lead concentration and delta-aminolevulinic acid dehydratase (ALAD) activity. Median ALAD activities of adult and nestling dippers from the Arkansas River were found to be significantly different from median ALAD activities of reference adults and nestlings (p = 0.002 and p = 0.028). Median ALAD activity for adult dippers from the Arkansas River was more than 50% lower relative to reference adults and activity approached a level close to 50% lower in nestlings from the same site. Median blood lead concentrations from adult (range 15.4-386.0 ppb) and nestling (range 12.1-323.0 ppb) dippers from the Arkansas River were found to be significantly different from median blood lead concentrations of reference adult (range 4.2-29.6 ppb) and nestling (range 4.2-8.2 ppb) dippers (p < 0.001 and p = 0.011). The median hematocrit level in adult dippers did not vary between sites (p = 0.73), whereas the median hematocrit level of nestling dippers from the reference site was significantly lower compared to Arkansas River nestlings (p = 0.042). Blood lead concentration in both adult and nestling dippers was found to be significantly correlated with invertebrate lead concentration (r = 0.81, p < 0.001 and r = 0.62, p = 0.01, respectively). Highly significant negative correlations were observed between blood lead concentration and ALAD activity in both adult and nestling dippers (r = -0.86, p < 0.001 and r = -0.84, p < 0.001, respectively). This study suggests that dippers (both adults and nestlings) from the Arkansas River have significantly lower ALAD activity and significantly higher blood lead concentrations compared to reference values. The measurement of ALAD activity may be a sensitive and accurate biomarker for environmental lead exposure in dippers

  1. Delta-aminolevulinic acid dehydratase enzyme activity in blood, brain, and liver of lead-dosed ducks

    USGS Publications Warehouse

    Dieter, M.P.; Finley, M.T.

    1979-01-01

    Mallard ducks were dosed with a single shotgun pellet (ca. 200 mg lead). After 1 month there was about 1 ppm lead in blood, 2.5 in liver, and 0.5 in brain. Lead-induced inhibition of delta-aminolevulinic acid dehydratase enzyme in blood and cerebellum was much greater than in cerebral hemisphere or liver and was strongly correlated with the lead concentration in these tissues. The cerebellar portion of the brain was more sensitive to delta-aminolevulinic acid dehydratase enzyme inhibition by lead than were the other tissues examined. There was also a greater increase in the glial cell marker enzyme, butyrylcholinesterase, in cerebellum than in cerebral hemisphere, suggesting that nonregenerating neuronal cells were destroyed by lead and replaced by glial cells in that portion of the brain. Even partial loss of cerebellar tissue is severely debilitating in waterfowl, because functions critical to survival such as visual, auditory, motor, and reflex responses are integrated at this brain center.

  2. Campylobacter jejuni fatty acid synthase II: Structural and functional analysis of [beta]-hydroxyacyl-ACP dehydratase (FabZ)

    SciTech Connect

    Kirkpatrick, Andrew S.; Yokoyama, Takeshi; Choi, Kyoung-Jae; Yeo, Hye-Jeong

    2009-08-14

    Fatty acid biosynthesis is crucial for all living cells. In contrast to higher organisms, bacteria use a type II fatty acid synthase (FAS II) composed of a series of individual proteins, making FAS II enzymes excellent targets for antibiotics discovery. The {beta}-hydroxyacyl-ACP dehydratase (FabZ) catalyzes an essential step in the FAS II pathway. Here, we report the structure of Campylobacter jejuni FabZ (CjFabZ), showing a hexamer both in crystals and solution, with each protomer adopting the characteristic hot dog fold. Together with biochemical analysis of CjFabZ, we define the first functional FAS II enzyme from this pathogen, and provide a framework for investigation on roles of FAS II in C. jejuni virulence

  3. Delta-aminolevulinic acid dehydratase (ALAD) polymorphism in lead exposed Bangladeshi children and its effect on urinary aminolevulinic acid (ALA)

    SciTech Connect

    Tasmin, Saira; Furusawa, Hana; Ahmad, Sk. Akhtar; Watanabe, Chiho

    2015-01-15

    Background and objective: Lead has long been recognized as a harmful environmental pollutant. People in developing countries like Bangladesh still have a higher risk of lead exposure. Previous research has suggested that the delta-aminolevulinic acid dehydratase (ALAD) genotype can modify lead toxicity and individual susceptibility. As children are more susceptible to lead-induced toxicity, this study investigated whether the ALAD genotype influenced urinary excretion of delta-aminolevulinic acid (U-ALA) among children exposed to environmental lead in Bangladesh. Methods: Subjects were elementary schoolchildren from a semi-urban industrialized area in Bangladesh. A total of 222 children were studied. Blood and urine were collected to determine ALAD genotypes, blood lead levels and urinary aminolevulinic acid (U-ALA). Results: The mean BPb level was 9.7 µg/dl for the study children. BPb was significantly positively correlated with hemoglobin (p<0.01). In total, allele frequency for ALAD 1 and 2 was 0.83 and 0.17 respectively. The mean U-ALA concentration was lower in ALAD1-2/2-2 carriers than ALAD1-1 carriers for boys (p=0.001). But for girls, U-ALA did not differ significantly by genotype (p=0.26). When U-ALA was compared by genotype at the same exposure level in a multiple linear regression analysis, boys who were ALAD1-2/2-2 carriers still had a lower level of U-ALA compared to ALAD1-1carriers. Conclusion: This study provides information about the influence of ALAD polymorphism and its association with U-ALA in Bangladeshi children. Our results indicate that the ALAD1-2/2-2 genotype may have a protective effect in terms of U-ALA for environmentally lead exposed boys. - Highlights: • High blood lead level for the environmentally exposed schoolchildren. • BPb was significantly correlated with U-ALA and Hb. • Effect of ALAD genotype on U-ALA is differed by sex. • Lower U-ALA in ALAD2 than ALAD1 carriers only for boys at same exposure.

  4. Metals control activity and expression of the heme biosynthesis enzyme delta-aminolevulinic acid dehydratase in Bradyrhizobium japonicum.

    PubMed Central

    Chauhan, S; Titus, D E; O'Brian, M R

    1997-01-01

    The heme biosynthesis enzyme delta-aminolevulinic acid dehydratase (ALAD) requires magnesium or zinc for activity, depending on the organism, and the heme moiety contains iron. Thus, metals are important for heme formation in at least two different ways. Bradyrhizobium japonicum ALAD* is an engineered derivative of wild-type ALAD that requires Zn2+ for activity rather than Mg2+ (S. Chauhan and M. R. O'Brian, J. Biol. Chem. 270:19823-19827, 1995). The pH optimum for ALAD* activity was over 3.5 units lower than for that of the wild-type enzyme, and ALAD* activity was inhibited by lead and cadmium, as reported for the zinc-containing dehydratases of animals. In addition, ALAD* was significantly more thermostable than ALAD; the temperature optima are 50 and 37 degrees C, respectively. These observations strongly suggest that the metal contributes to both catalysis and structure, and this conclusion may be extrapolated to ALADs in general. Although iron did not affect the activity of the preformed protein, enzyme assays and immunoblot analysis demonstrated that the iron concentration in which the cells were grown had a strong positive effect on ALAD activity and the protein level. RNase protection analysis showed that the transcript quantity of hemB, the gene encoding ALAD, was iron dependent; thus, iron regulates hemB at the mRNA level. Induction of hemB mRNA in response to iron was rapid, suggesting that the factor(s) needed to mediate iron control was present in iron-limited cells and did not need to be synthesized de novo. ALAD protein levels and enzyme activities were similar in cells of the wild type and a heme-defective strain, indicating that control by iron is not an indirect effect of the cellular heme status. We conclude that the heme biosynthetic pathway is coordinated with cellular iron levels and that this control may prevent the accumulation of toxic porphyrin intermediates. PMID:9287008

  5. The effects of lead on delta-aminolevulinic acid dehydratase activity, growth, hemoglobin content, and reproduction in Daphnia magna.

    PubMed

    Berglind, R; Dave, G; Sjöbeck, M L

    1985-04-01

    The effects of continuous exposure to lead for various periods and recovery in clean water on delta-aminolevulinic acid dehydratase (ALA-D) activity, hemoglobin content, growth, and reproduction were studied in Daphnia magna. Steady-state inhibition of ALA-D activity was reached within 2 days in 16, 64, and 256 micrograms Pb liter-1, but restoration in clean water was prolonged in relation to previous exposure. In spite of the inhibition of ALA-D activity hemoglobin content increased after 2 days in 16 and 24 micrograms Pb liter-1. Furthermore, hemoglobin content in previously exposed animals increased during recovery in clean water. Maximum hemoglobin content (2.9 times control value) was found after 2 days recovery of animals exposed to 64 micrograms Pb liter-1. These findings suggest that some enzyme(s) other than ALA-D in the biosynthetic pathway of hemoglobin formation is (are) more sensitive to lead. Growth, in contrast to reproduction, was stimulated by low concentrations of lead (less than 64 micrograms Pb liter-1), although in 256 micrograms Pb liter-1 growth was also significantly impaired. After 19 days the 16 and 50% reproductive impairment concentrations were less than or equal to 1 and 10 micrograms Pb liter-1, respectively. PMID:3987601

  6. Effects of lead on delta-aminolevulinic acid dehydratase activity, growth, hemoglobin content, and reproduction in Daphnia magna

    SciTech Connect

    Berglind, R.; Dave, G.; Sjoebeck, M.L.

    1985-04-01

    The effects of continuous exposure to lead for various periods and recovery in clean water on delta-aminolevulinic acid dehydratase (ALA-D) activity, hemoglobin content, growth, and reproduction were studied in Daphnia magna. Steady-state inhibition of ALA-D activity was reached within 2 days in 16, 64, and 256 micrograms Pb liter-1, but restoration in clean water was prolonged in relation to previous exposure. In spite of the inhibition of ALA-D activity hemoglobin content increased after 2 days in 16 and 24 micrograms Pb liter-1. Furthermore, hemoglobin content in previously exposed animals increased during recovery in clean water. Maximum hemoglobin content (2.9 times control value) was found after 2 days recovery of animals exposed to 64 micrograms Pb liter-1. These findings suggest that some enzyme(s) other than ALA-D in the biosynthetic pathway of hemoglobin formation is (are) more sensitive to lead. Growth, in contrast to reproduction, was stimulated by low concentrations of lead (less than 64 micrograms Pb liter-1), although in 256 micrograms Pb liter-1 growth was also significantly impaired. After 19 days the 16 and 50% reproductive impairment concentrations were less than or equal to 1 and 10 micrograms Pb liter-1, respectively.

  7. Relationships between blood lead concentration and aminolevulinic acid dehydratase in alcoholics and workers industrially exposed to lead

    SciTech Connect

    Bortoli, A.; Fazzin, G.; Marin, V.; Trabuio, G.; Zotti, S.

    1986-07-01

    Blood lead concentration (Pb-B), aminolevulinic acid dehydratase (ALAD), and gamma-GT were measured in 265 workers industrially exposed to lead and in 184 patients with liver disease resulting from alcohol consumption. The first group was divided according to alcohol use, i.e., nondrinkers, moderate drinkers, and heavy drinkers. The second group was divided according to the following criteria: hepatopatic without cirrhosis, hepatopatic with compensated cirrhosis, and hepatopatic with decompensated cirrhosis. Heavy drinkers who were industrially exposed had the highest Pb-B (40.4 +/- 14.6 micrograms/dl) and the lowest ALAD (22.2 +/- 9.1 U/L). The correlations between Pb-B and ALAD show no significant change with the increase of Pb-B. In the alcoholic group, 76 patients with alcoholic liver disease without cirrhosis had the highest Pb-B (40.3-9.1 micrograms/dl) and ALAD the lowest (18.6 +/- 7.7 U/L). The negative correlation between Pb-B and log ALAD disappeared completely in individuals with Pb-B that exceeded 50 micrograms/dl, independent from the seriousness of illness.

  8. Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis.

    PubMed Central

    Ilag, L L; Kumar, A M; Söll, D

    1994-01-01

    5-Aminolevulinic acid (ALA) is the universal precursor of tetrapyrroles, such as chlorophyll and heme. The major control of chlorophyll biosynthesis is at the step of ALA formation. In the chloroplasts of plants, as in Escherichia coli, ALA is derived from the glutamate of Glu-tRNA via the two-step C5 pathway. The first enzyme, Glu-tRNA reductase, catalyzes the reduction of Glu-tRNA to glutamate 1-semialdehyde with the release of intact tRNA. The second enzyme, glutamate 1-semialdehyde 2,1-aminomutase, converts glutamate 1-semialdehyde to ALA. To further examine ALA formation in plants, we isolated Arabidopsis genes that encode the enzymes of the C5 pathway via functional complementation of mutations in the corresponding genes of E. coli. The Glu-tRNA reductase gene was designated HEMA and the glutamate 1-semialdehyde 2,1-aminomutase gene, GSA1. Each gene contains two short introns (149 and 241 nucleotides for HEMA, 153 and 86 nucleotides for GSA1). The deduced amino acid sequence of the HEMA protein predicts a protein of 60 kD with substantial similarity (30 to 47% identity) to sequences derived from the known hemA genes from microorganisms that make ALA by the C5 pathway. Purified Arabidopsis HEMA protein has Glu-tRNA reductase activity. The GSA1 gene encodes a 50-kD protein whose deduced amino acid sequence shows extensive homology (55 to 78% identity) with glutamate 1-semialdehyde 2,1-aminomutase proteins from other species. RNA gel blot analyses indicated that transcripts for both genes are found in root, leaf, stem, and flower tissues and that their levels are dramatically elevated by light. Thus, light may regulate ALA, and hence chlorophyll formation, by exerting coordinated transcriptional control over both enzymes of the C5 pathway. PMID:7908550

  9. Effects of Delta-Aminolevulinic Acid Dehydratase Polymorphisms on Susceptibility to Lead in Han Subjects from Southwestern China

    PubMed Central

    Yang, Yuelin; Wu, Jin; Sun, Pin

    2012-01-01

    This study is to determine the distribution of the delta-aminolevulinic acid dehydratase (ALAD) polymorphism among Han subjects of the Chinese population and to study whether the polymorphism in the ALAD gene modifies the toxicity of lead in lead-exposed workers. For this purpose we conducted a cross-sectional study on 156 Chinese workers who were exposed to lead in lead-acid battery and electric-flex manufacturing plants. The authors found that the allele frequencies of ALAD1 and ALAD2 were 0.9679 and 0.0321, respectively. Workers with the ALAD 1-1 genotype were associated with higher blood lead levels than those with the ALAD 1-2 genotype. Blood and urine lead levels were much higher in storage battery workers than in cable workers. The self-conscious symptom survey showed that the incidences of debilitation, amnesia and dreaminess were much higher in those had more than five years of tenure or contact with lead on the job within the ALAD 1-1 genotype subgroup. Laboratory examinations showed that serum iron and zinc levels in workers’ with the ALAD 1-2 genotype were higher than those with the ALAD 1-1 genotype, especially in storage-battery workers. Correlation analysis indicated that the blood lead level negatively correlated with serum calcium, iron and zinc level. The data of this study suggest that the ALAD gene polymorphism and serum ion levels may modify the kinetics of lead in blood. Therefore, the authors recommend that an adequate intake of dietary calcium, iron, and zinc or the calcium, iron, and zinc supplementation should be prescribed to Chinese lead exposed workers. PMID:22851944

  10. Effects of delta-aminolevulinic acid dehydratase polymorphisms on susceptibility to lead in Han subjects from southwestern China.

    PubMed

    Yang, Yuelin; Wu, Jin; Sun, Pin

    2012-07-01

    This study is to determine the distribution of the delta-aminolevulinic acid dehydratase (ALAD) polymorphism among Han subjects of the Chinese population and to study whether the polymorphism in the ALAD gene modifies the toxicity of lead in lead-exposed workers. For this purpose we conducted a cross-sectional study on 156 Chinese workers who were exposed to lead in lead-acid battery and electric-flex manufacturing plants. The authors found that the allele frequencies of ALAD1 and ALAD2 were 0.9679 and 0.0321, respectively. Workers with the ALAD 1-1 genotype were associated with higher blood lead levels than those with the ALAD 1-2 genotype. Blood and urine lead levels were much higher in storage battery workers than in cable workers. The self-conscious symptom survey showed that the incidences of debilitation, amnesia and dreaminess were much higher in those had more than five years of tenure or contact with lead on the job within the ALAD 1-1 genotype subgroup. Laboratory examinations showed that serum iron and zinc levels in workers' with the ALAD 1-2 genotype were higher than those with the ALAD 1-1 genotype, especially in storage-battery workers. Correlation analysis indicated that the blood lead level negatively correlated with serum calcium, iron and zinc level. The data of this study suggest that the ALAD gene polymorphism and serum ion levels may modify the kinetics of lead in blood. Therefore, the authors recommend that an adequate intake of dietary calcium, iron, and zinc or the calcium, iron, and zinc supplementation should be prescribed to Chinese lead exposed workers. PMID:22851944

  11. Inhibition of erythrocytes δ-aminolevulinic acid dehydratase (ALAD) activity in fish from waters affected by lead smelters

    USGS Publications Warehouse

    Schmitt, Christopher J.; Caldwell, Colleen A.; Olsen, Bill; Serdar, Dave; Coffey, Mike

    2002-01-01

    We assessed the effects on fish of lead (Pb) released to streamsby smelters located in Trail, BC (Canada), E. Helena, MT, Herculaneum, MO, and Glover, MO. Fish were collected by electrofishing from sites located downstream of smelters and from reference sites. Blood from each fish was analyzed for δ-aminolevulinic acid dehydratase (ALAD) activity and hemoglobin (Hb), and samples of blood, liver, or carcass were analyzed for Pb, zinc (Zn), or both. Fish collected downstreamof all four smelters sites had elevated Pb concentrations, decreased ALAD activity, or both relative to their respectivereference sites. At E. Helena, fish from the downstream site also had lower Hb concentrations than fish from upstream. Differences among taxa were also apparent. Consistent with previous studies, ALAD activity in catostomids (Pisces: Catostomidae-northern hog sucker,Hypentelium nigricans;river carpsucker, Carpiodes carpio; largescale sucker, Catostomus macrocheilus; and mountain sucker, C. platyrhynchus) seemed more sensitive to Pb-induced ALADinhibition than the salmonids (Pisces: Salmonidae-rainbow trout,Oncorhynchus mykiss; brook trout,Salvelinus fontinalis) or common carp (Cyprinus carpio). Some of these differences may have resulted from differential accumulation of Zn, which was not measured at all sites. We detected noALAD activity in channel catfish (Ictaluruspunctatus) from either site on the Mississippi River at Herculaneum, MO. Our findings confirmed that Pb is releasedto aquatic ecosystems by smelters and accumulated by fish, andwe documented potentially adverse effects of Pb in fish. We recommend that Zn be measured along with Pb when ALAD activityis used as a biomarker and the collection of at least 10 fish ofa species at each site to facilitate statistical analysis.

  12. In Silico Structure Prediction of Human Fatty Acid Synthase–Dehydratase: A Plausible Model for Understanding Active Site Interactions

    PubMed Central

    John, Arun; Umashankar, Vetrivel; Samdani, A.; Sangeetha, Manoharan; Krishnakumar, Subramanian; Deepa, Perinkulam Ravi

    2016-01-01

    Fatty acid synthase (FASN, UniProt ID: P49327) is a multienzyme dimer complex that plays a critical role in lipogenesis. Consequently, this lipogenic enzyme has gained tremendous biomedical importance. The role of FASN and its inhibition is being extensively researched in several clinical conditions, such as cancers, obesity, and diabetes. X-ray crystallographic structures of some of its domains, such as β-ketoacyl synthase, acetyl transacylase, malonyl transacylase, enoyl reductase, β-ketoacyl reductase, and thioesterase, (TE) are already reported. Here, we have attempted an in silico elucidation of the uncrystallized dehydratase (DH) catalytic domain of human FASN. This theoretical model for DH domain was predicted using comparative modeling methods. Different stand-alone tools and servers were used to validate and check the reliability of the predicted models, which suggested it to be a highly plausible model. The stereochemical analysis showed 92.0% residues in favorable region of Ramachandran plot. The initial physiological substrate β-hydroxybutyryl group was docked into active site of DH domain using Glide. The molecular dynamics simulations carried out for 20 ns in apo and holo states indicated the stability and accuracy of the predicted structure in solvated condition. The predicted model provided useful biochemical insights into the substrate–active site binding mechanisms. This model was then used for identifying potential FASN inhibitors using high-throughput virtual screening of the National Cancer Institute database of chemical ligands. The inhibitory efficacy of the top hit ligands was validated by performing molecular dynamics simulation for 20 ns, where in the ligand NSC71039 exhibited good enzyme inhibition characteristics and exhibited dose-dependent anticancer cytotoxicity in retinoblastoma cancer cells in vitro. PMID:27559295

  13. In Silico Structure Prediction of Human Fatty Acid Synthase-Dehydratase: A Plausible Model for Understanding Active Site Interactions.

    PubMed

    John, Arun; Umashankar, Vetrivel; Samdani, A; Sangeetha, Manoharan; Krishnakumar, Subramanian; Deepa, Perinkulam Ravi

    2016-01-01

    Fatty acid synthase (FASN, UniProt ID: P49327) is a multienzyme dimer complex that plays a critical role in lipogenesis. Consequently, this lipogenic enzyme has gained tremendous biomedical importance. The role of FASN and its inhibition is being extensively researched in several clinical conditions, such as cancers, obesity, and diabetes. X-ray crystallographic structures of some of its domains, such as β-ketoacyl synthase, acetyl transacylase, malonyl transacylase, enoyl reductase, β-ketoacyl reductase, and thioesterase, (TE) are already reported. Here, we have attempted an in silico elucidation of the uncrystallized dehydratase (DH) catalytic domain of human FASN. This theoretical model for DH domain was predicted using comparative modeling methods. Different stand-alone tools and servers were used to validate and check the reliability of the predicted models, which suggested it to be a highly plausible model. The stereochemical analysis showed 92.0% residues in favorable region of Ramachandran plot. The initial physiological substrate β-hydroxybutyryl group was docked into active site of DH domain using Glide. The molecular dynamics simulations carried out for 20 ns in apo and holo states indicated the stability and accuracy of the predicted structure in solvated condition. The predicted model provided useful biochemical insights into the substrate-active site binding mechanisms. This model was then used for identifying potential FASN inhibitors using high-throughput virtual screening of the National Cancer Institute database of chemical ligands. The inhibitory efficacy of the top hit ligands was validated by performing molecular dynamics simulation for 20 ns, where in the ligand NSC71039 exhibited good enzyme inhibition characteristics and exhibited dose-dependent anticancer cytotoxicity in retinoblastoma cancer cells in vitro. PMID:27559295

  14. A Formulation Study of 5-Aminolevulinic Encapsulated in DPPC Liposomes in Melanoma Treatment

    PubMed Central

    Lin, Ming-Wei; Huang, Yaw-Bin; Chen, Chun-Lin; Wu, Pao-Chu; Chou, Chien-Ying; Wu, Ping-Ching; Hung, Shih-Ya

    2016-01-01

    Photodynamic therapy (PDT) is a widely used technique for epithelial skin cancer treatment. 5-aminolevulinic acid (5-ALA) is a drug currently used for PDT and is a hydrophilic molecule at its physiological pH, and this limits its capacity to cross the stratum corneum of skin. Since skin penetration is a key factor in the efficacy of topical 5-ALA-mediated PDT, numerous strategies have been proposed to improve skin penetration. Yet this problem is still ongoing. The results of a previous study showed a low rate of 5-ALA encapsulated in liposomes (5.7%) that were 400 nm in size. In the present study, we used 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes as vehicles and tested their delivery efficacy of 5-ALA-medicated PDT both in vitro and in vivo. Our data shows that 5-ALA encapsulated in 0.1 or 0.5% DPPC liposomes (5-ALA/DPPC) had a better encapsulated rate (15~16%) and were smaller in size (84~89 nm). We found the 5-ALA/DPPC formulation reduced cell viability, mitochondria membrane potential, and enhanced intracellular ROS accumulation as compared to 5-ALA alone in melanoma cells. Furthermore, the 5-ALA/DPPC formulation also had better skin penetration ability as compared to the 5-ALA in our ex vivo data by assaying 5-ALA converted into protoporphyrin IX (PpIX) in the skin of the mice that were experimented on. In melanoma xenograft models, 5-ALA/DPPC enhanced PpIX accumulation only in tumor tissue but not normal skin. In conclusion, we found DPPC liposomes to be good carriers for 5-ALA delivery and believe that they may prove useful in 5-ALA-mediated PDT in the future. PMID:27429584

  15. Evolution of cyclizing 5-aminolevulinate synthases in the biosynthesis of actinomycete secondary metabolites: outcomes for genetic screening techniques

    PubMed Central

    Petříčková, Kateřina; Chroňáková, Alica; Zelenka, Tomáš; Chrudimský, Tomáš; Pospíšil, Stanislav; Petříček, Miroslav; Krištůfek, Václav

    2015-01-01

    A combined approach, comprising PCR screening and genome mining, was used to unravel the diversity and phylogeny of genes encoding 5-aminolevulinic acid synthases (ALASs, hemA gene products) in streptomycetes-related strains. In actinomycetes, these genes were believed to be directly connected with the production of secondary metabolites carrying the C5N unit, 2-amino-3-hydroxycyclopent-2-enone, with biological activities making them attractive for future use in medicine and agriculture. Unlike “classical” primary metabolism ALAS, the C5N unit-forming cyclizing ALAS (cALAS) catalyses intramolecular cyclization of nascent 5-aminolevulinate. Specific amino acid sequence changes can be traced by comparison of “classical” ALASs against cALASs. PCR screening revealed 226 hemA gene-carrying strains from 1,500 tested, with 87% putatively encoding cALAS. Phylogenetic analysis of the hemA homologs revealed strain clustering according to putative type of metabolic product, which could be used to select producers of specific C5N compound classes. Supporting information was acquired through analysis of actinomycete genomic sequence data available in GenBank and further genetic or metabolic characterization of selected strains. Comparison of 16S rRNA taxonomic identification and BOX-PCR profiles provided evidence for numerous horizontal gene transfers of biosynthetic genes or gene clusters within actinomycete populations and even from non-actinomycete organisms. Our results underline the importance of environmental and evolutionary data in the design of efficient techniques for identification of novel producers. PMID:26300877

  16. delta-Aminolevulinic acid dehydratase activity, urinary delta-aminolevulinic acid concentration and zinc protoporphyrin level among people with low level of lead exposure.

    PubMed

    Wang, Qi; Zhao, Huan-hu; Chen, Jian-wei; Hao, Qiao-ling; Gu, Kang-ding; Zhu, Ye-xiang; Zhou, Yi-kai; Ye, Lin-xiang

    2010-01-01

    To evaluate the relationship of delta-aminolevulinic acid dehydratase (ALAD) activity, urinary delta-aminolevulinic acid (ALAU) level and blood zinc protoporphyrin (ZPP) concentration to low blood lead (PbB) levels, these biomarkers were determined for all subjects enrolled from a rural area of southeast China where people had low levels of exposure to lead. The mean values of PbB, ALAD, ALAU and ZPP were 67.11 microg/L (SD: 1.654, range: 10.90-514.04), 339.66 nmol ml(-1)h(-1) (1.419, 78.33-793.13), 20.64 microg/L (1.603, 2.00-326.00), and 0.14 micromol/L (3.437, 0.01-2.26), respectively. ALAD was inversely associated with low levels of PbB. ZPP was inversely related to low levels of PbB but positively related to relatively higher levels of PbB. Alcohol drinking contributed to low ALAD in men. Women had higher ZPP than men. ALAU had no significant association with PbB. In conclusion, ALAD possibly has a non-linear relation with low to moderate levels of PbB. At moderate levels of PbB, ZPP increases with increasing levels of PbB. ALAU is not suitable as an indicator for low levels of lead exposure. PMID:19733117

  17. Quantitative and qualitative 5-aminolevulinic acid–induced protoporphyrin IX fluorescence in skull base meningiomas

    PubMed Central

    Bekelis, Kimon; Valdés, Pablo A.; Erkmen, Kadir; Leblond, Frederic; Kim, Anthony; Wilson, Brian C.; Harris, Brent T.; Paulsen, Keith D.; Roberts, David W.

    2011-01-01

    Object Complete resection of skull base meningiomas provides patients with the best chance for a cure; however, surgery is frequently difficult given the proximity of lesions to vital structures, such as cranial nerves, major vessels, and venous sinuses. Accurate discrimination between tumor and normal tissue is crucial for optimal tumor resection. Qualitative assessment of protoporphyrin IX (PpIX) fluorescence following the exogenous administration of 5-aminolevulinic acid (ALA) has demonstrated utility in malignant glioma resection but limited use in meningiomas. Here the authors demonstrate the use of ALA-induced PpIX fluorescence guidance in resecting a skull base meningioma and elaborate on the advantages and disadvantages provided by both quantitative and qualitative fluorescence methodologies in skull base meningioma resection. Methods A 52-year-old patient with a sphenoid wing WHO Grade I meningioma underwent tumor resection as part of an institutional review board–approved prospective study of fluorescence-guided resection. A surgical microscope modified for fluorescence imaging was used for the qualitative assessment of visible fluorescence, and an intraoperative probe for in situ fluorescence detection was utilized for quantitative measurements of PpIX. The authors assessed the detection capabilities of both the qualitative and quantitative fluorescence approaches. Results The patient harboring a sphenoid wing meningioma with intraorbital extension underwent radical resection of the tumor with both visibly and nonvisibly fluorescent regions. The patient underwent a complete resection without any complications. Some areas of the tumor demonstrated visible fluorescence. The quantitative probe detected neoplastic tissue better than the qualitative modified surgical microscope. The intraoperative probe was particularly useful in areas that did not reveal visible fluorescence, and tissue from these areas was confirmed as tumor following histopathological

  18. [Activity of 5-aminolevulinate synthase in rat liver during degradation of cytochrome P-450 caused by administration of cadmium chloride].

    PubMed

    Kaliman, P A; Inshina, N N

    2003-01-01

    The 5-aminolevulinate synthase, tryptophan-2,3-dioxygenase activities and cytochrome P-450 content in the rat liver was studied in different terms after CdCl2 administration and after administration of metal salt against a background of 2-hours action of alpha-tocopherol. The lowering of activity of 5-aminolevulinate synthase in 2 h with the consequent increase of the enzyme activity in 6 h and 24 h was detected. The holoenzyme activity and heme saturation of tryptophan-2,3-dioxygenase increased 6 h after CdCl2 administration. The holoenzyme activity and the total activity of tryptophan-2,3-dioxygenase rised in 24 h. The level of cytochrome P-450 lowered. Preliminary administration of alpha-tocopherol prevented changes of studied parameters 24 h after CdCl2 administration. The relationship between decrease of cytochrome P-450 level and 5-aminolevulinate synthase activation are discussed. PMID:14577179

  19. Catalytically active alkaline molten globular enzyme: Effect of pH and temperature on the structural integrity of 5-aminolevulinate synthase.

    PubMed

    Stojanovski, Bosko M; Breydo, Leonid; Hunter, Gregory A; Uversky, Vladimir N; Ferreira, Gloria C

    2014-12-01

    5-Aminolevulinate synthase (ALAS), a pyridoxal-5'phosphate (PLP)-dependent enzyme, catalyzes the first step of heme biosynthesis in mammals. Circular dichroism (CD) and fluorescence spectroscopies were used to examine the effects of pH (1.0-3.0 and 7.5-10.5) and temperature (20 and 37°C) on the structural integrity of ALAS. The secondary structure, as deduced from far-UV CD, is mostly resilient to pH and temperature changes. Partial unfolding was observed at pH2.0, but further decreasing pH resulted in acid-induced refolding of the secondary structure to nearly native levels. The tertiary structure rigidity, monitored by near-UV CD, is lost under acidic and specific alkaline conditions (pH10.5 and pH9.5/37°C), where ALAS populates a molten globule state. As the enzyme becomes less structured with increased alkalinity, the chiral environment of the internal aldimine is also modified, with a shift from a 420nm to 330nm dichroic band. Under acidic conditions, the PLP cofactor dissociates from ALAS. Reaction with 8-anilino-1-naphthalenesulfonic acid corroborates increased exposure of hydrophobic clusters in the alkaline and acidic molten globules, although the reaction is more pronounced with the latter. Furthermore, quenching the intrinsic fluorescence of ALAS with acrylamide at pH1.0 and 9.5 yielded subtly different dynamic quenching constants. The alkaline molten globule state of ALAS is catalytically active (pH9.5/37°C), although the kcat value is significantly decreased. Finally, the binding of 5-aminolevulinate restricts conformational fluctuations in the alkaline molten globule. Overall, our findings prove how the structural plasticity of ALAS contributes to reaching a functional enzyme. PMID:25240868

  20. Responses to hexyl 5-aminolevulinate-induced photodynamic treatment in rat bladder cancer model

    NASA Astrophysics Data System (ADS)

    Arum, Carl-Jørgen; Gederas, Odrun; Larsen, Eivind; Randeberg, Lise; Zhao, Chun-Mei

    2010-02-01

    OBJECTIVES: In this study, we evaluated histologically the effects of hexyl 5-aminolevulinateinduced photodynamic treatment in the AY-27 tumor cell induced rat bladder cancer model. MATERIAL & METHODS: The animals (fischer-344 female rats) were divided into 2 groups, half of which were orthotopically implanted with 400,000 syngeniec AY-27 urothelia1 rat bladder cancer cells and half sham implanted. 14 days post implantation 6 rats from each group were treated with hexyl 5-aminolevulinate-induced photodynamic treatment (8mM HAL and light fluence of 20 J/cm2). Additional groups of animals were only given HAL instillation, only light treatment, or no treatment. All animals were sacrificed 7 days after the PDT/only HAL/only light or no treatment. Each bladder was removed, embedded in paraffin and stained with hematoxylin, eosin, and saferin for histological evaluation at high magnification for features of tissue damage by a pathologist blinded to the sample source. RESULTS: In all animals that were AY-27 implanted and not given complete PDT treatment, viable tumors were found in the bladder mucosa and wall. In the animals treated with complete HAL-PDT only 3 of 6 animals had viable tumor. In the 3 animals with viable tumor it was significantly reduced in volume compared to the untreated animals. It was also noted that in the PDT treated animals there was a significantly increased inflammatory response (lymphocytic and mononuclear cell infiltration) in the peri-tumor area compared to implanted animals without complete HAL-PDT. CONCLUSION: Our results suggest that hexyl 5-aminolevulinate-induced photodynamic treatment in a rat bladder cancer model involves both direct effects on cell death (necrosis and apoptosis) and indirect effects to evoke the host immune-response, together contributing to tumor eradication.

  1. Dissection of the erythroid-specific transcriptional promoter used by the gene encoding aminolevulinic acid dehydratase (ALAD)

    SciTech Connect

    Bishop, T.R.; Schaffer, T.; Pien, B.

    1994-09-01

    The gene encoding delta-aminolevulinate dehydratase (ALAD), the second enzyme of the heme biosynthetic pathway, exists as a single gene in most mammalian genomes and we have sequenced over 12 kb from overlapping lambda clones containing the murine ALAD gene. The gene has a dual promoter driving expression of two different first exons; exon1A is expressed in all tissues and exon1B only in erythroid cells, where heme production is induced to exceptionally high levels for hemoglobin synthesis. Erythroid-specific expression of the ALAD gene is presumably accomplished by using the exon1B promoter which we hypothesize is responsive to erythroid-specific transcriptional activators. In order to test this, we have used gel mobility shift assays and DNase footprint analyses to dissect and identify the critical upstream regulatory elements. Nuclear extracts, prepared from murine erythroleukemia cells (MELC), human chronic myelogenous leukemia cell line (K562) and human fibroblast cell line (HeLa), were used as sources of proteins to analyze DNA binding sites in the ALAD erythroid-specific promoter from -307 to +1. In this region, there are three potential GATA1 sites, two CACCC boxes, a CCAAT box and a GGTGG box. NF-E2 sites were explored by using in vitro translation products of cloned p18 and p45, the two heterologous components of NF-E2, and successfully gel-shifted a 29 bp double-stranded oligo found at 2.6 kb in front of the ALAD gene. Thus, the ALAD gene utilizes both a housekeeping and a tissue-specific promoter.

  2. Delta-aminolevulinic acid dehydratase activity (ALA-D) in red mullet (Mullus barbatus) from Mediterranean waters as biomarker of lead exposure.

    PubMed

    Fernández, B; Martínez-Gómez, C; Benedicto, J

    2015-05-01

    The enzyme delta-aminolevulinic acid dehydratase (ALA-D) has been investigated as biomarker of lead (Pb) exposure in red mullet (Mullus barbatus) from the Spanish continental shelf. Concentrations of Pb and Zn in muscle and organosomatic indices were also measured to explore causality. Blood ALA-D assay conditions were optimized; the optimum pH for this species has been set to 6.5. Results showed that ALA-D activity ranged from 3.2 to 16.9 nmol PBGmin(-1)mg(-1). No significant differences on ALA-D levels between genders have been detected. ALA-D Baseline level and Background Assessment Criteria (BAC) for this species have been set to 9.1 and 6.6 nmol PBGmin(-1)mg(-1), respectively. There have been detected significant differences on ALA-D activity levels among areas, though the markedly low levels of Pb measured in fish muscle seemed not to be able to produce a relevant suppression on ALA-D. In spite of this, a weak inverse relationship detected between ALA-D and Pb concentrations pointed out the potential of this biomarker in red mullet to reflect Pb bioavailability in marine environment. Nevertheless, subsequent research on ALA-D in marine fish species is recommended to be limited to areas where environmental Pb is effectively accumulated by fish. PMID:25706085

  3. Lead burden and psychiatric symptoms and the modifying influence of the delta-aminolevulinic acid dehydratase (ALAD) polymorphism: the VA Normative Aging Study.

    PubMed

    Rajan, Pradeep; Kelsey, Karl T; Schwartz, Joel D; Bellinger, David C; Weuve, Jennifer; Sparrow, David; Spiro, Avron; Smith, Thomas J; Nie, Huiling; Hu, Howard; Wright, Robert O

    2007-12-15

    The authors evaluated the association between lead burden and psychiatric symptoms and its potential modification by a delta-aminolevulinic acid dehydratase (ALAD) polymorphism. Lead measurements in blood or bone and self-reported ratings on the Brief Symptom Inventory from 1991 to 2002 were available for 1,075 US men participating in the Department of Veterans Affairs (VA) Normative Aging Study. The authors estimated the prevalence odds ratio for the association between interquartile-range lead and abnormal symptom score, adjusting for potential confounders. An interquartile increment in tibia lead (14 microg/g) was associated with 21% higher odds of somatization (95% confidence interval of the odds ratio: 1.01, 1.46). An interquartile increment in patella lead (20 microg/g) corresponded to a 23% increase in the odds of global distress (95% confidence interval of the odds ratio: 1.02, 1.47). An interquartile increment in blood lead (2.8 microg/dl) was associated with 14% higher odds of hostility (95% confidence interval of the odds ratio: 1.02, 1.27). In all other analyses, lead was nonsignificantly associated with psychiatric symptoms. The adverse association of lead with abnormal mood scores was generally stronger among ALAD 1-1 carriers than 1-2/2-2 carriers, particularly regarding phobic anxiety symptoms (p(interaction) = 0.004). These results augment evidence of a deleterious association between lead and psychiatric symptoms. PMID:17823382

  4. A delta-aminolevulinic acid dehydratase (ALAD) polymorphism may modify the relationship of low-level lead exposure to uricemia and renal function: the normative aging study.

    PubMed Central

    Wu, Ming-Tsang; Kelsey, Karl; Schwartz, Joel; Sparrow, David; Weiss, Scott; Hu, Howard

    2003-01-01

    In this study we investigated whether a known delta-aminolevulinic acid dehydratase (ALAD) exon 4 polymorphism has a modifying effect on the association of blood or bone lead level with uricemia and indices of renal function among middle-aged and elderly men. We performed a cross-sectional study of subjects who participated between 1991 and 1995 in the Department of Veterans Affairs Normative Aging Study. Information on blood lead levels, bone lead levels (measured by K-shell X-ray fluorescence), serum uric acid, serum creatinine, estimated creatinine clearance, and ALAD polymorphism status was available in 709 subjects. Regression models were constructed to examine the relationships of serum uric acid, serum creatinine, and estimated creatinine clearance to blood or bone lead level, stratified by genotype. We also adjusted for age, body mass index, blood pressure, smoking, alcohol consumption, and ingestion of analgesic medications (n = 638). Of the 709 subjects, 7 (1%) and 107 (15%) were homozygous and heterozygous for the variant (ALAD-2) allele, respectively. The mean (range) serum uric acid and creatinine levels were 6.5 (2.9-10.6) and 1.2 (0.6-2.5) mg/dL. No significant differences were found in serum uric acid, serum creatinine, or estimated creatinine clearance by ALAD genotype. However, after adjusting for other potential confounders, we found a significant linear relationship between serum uric acid and patella bone lead (p = 0.040) among the ALAD 1-2/2-2 genotype individuals above a threshold patellar lead level of 15 micro g/g. In contrast, among the wild-type (ALAD 1-1) individuals, there was a suggestion of a significant linear relationship of serum uric acid with patella bone lead (p = 0.141), but only after a threshold of 101 micro g/g. There was evidence of a significant (p = 0.025) interaction of tibia lead with genotype (ALAD 1-1 vs. ALAD 1-2/2-2) regarding serum creatinine as an outcome, but in the same linear regression model tibia lead alone

  5. Erythroid 5-aminolevulinate synthase mediates the upregulation of membrane band 3 protein expression by iron.

    PubMed

    Huang, Qianchuan; Li, Jinying; Feng, Weihua; Xu, Yanqun; Huang, Zhenxia; Lv, Shuqing; Zhou, Hong; Gao, Lei

    2010-03-01

    Iron deficiency leads to abnormal expression and function of band 3 protein in erythrocytes, but the underlying mechanisms remain elusive. The mRNA of erythroid-specific 5-aminolevulinate synthase (eALAS) contains an iron response element and the eALAS protein is an important mediator of iron utilization by erythrocytes. In this study, we investigated the effect of short hairpin RNA (shRNA) mediated silencing of eALAS on the expression of band 3 protein induced by iron. By real-time RT-PCR and Western blot we showed that at mRNA and protein level iron-induced expression of band 3 protein was lower in eALAS-shRNA transfected K562 cells than in control cells. Of note, the lowest expression was detected in K562 cells cultured in iron deficiency condition (p < 0.01). Thus either iron deficiency or depletion of eALAS could suppress the expression of erythroid band 3 protein. These results demonstrated for the first time that iron and the iron-regulatory system regulate the expression of the erythrocyte membrane proteins. PMID:20087844

  6. Immunocytochemical studies on the localization of 5-aminolevulinate synthase in rat liver.

    PubMed

    Rohde, M; Srivastava, G; Rylatt, D B; Bundesen, P; Zamattia, J; Crane, D I; May, B K

    1990-08-01

    The localization of 5-aminolevulinate synthase (ALAS) in hepatocytes of untreated and porphyrinogenic drug-treated rats has been examined by an immunocytochemical approach using a monoclonal antibody and protein A-gold labeling. Gold particles representing antigenic sites for ALAS were observed in the mitochondria and cytoplasm of untreated and drug-treated cells. Quantitative analysis of the labeling density showed that levels of ALAS increased significantly in both of these cellular compartments following drug treatment. Evidence that the detected cytoplasmic form of ALAS represents the precursor of the enzyme was obtained from immunoblotting experiments. The direct detection of cytosolic ALAS in vivo rules out the possibility that enzyme activity previously detected in the cytosol fraction resulted from mitochondrial leakage during cell fractionation. The results indicate that the cytosolic accumulation of ALAS is not a consequence of the inability of mitochondria to accommodate more enzyme. However, the molecular basis for this cytosolic accumulation is not known. The studies also established that the mitochondrial enzyme is predominantly, if not exclusively, associated with the matrix side of the inner mitochondrial membrane. PMID:2369125

  7. Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L

    PubMed Central

    Rodríguez, AA; Stella, AM; Storni, MM; Zulpa, G; Zaccaro, MC

    2006-01-01

    Salt stress is one of the most serious factors limiting the productivity of rice, the staple diet in many countries. Gibberellic acid has been reported to reduce NaCl-induced growth inhibition in some plants including rice. Most paddy soils have a natural population of Cyanobacteria, prokaryotic photosynthethic microorganisms, which synthesize and liberate plant growth regulators such as gibberellins that could exert a natural beneficial effect on salt stressed rice plants. The aim of this work was to evaluate the effect of the cyanobacterium Scytonema hofmanni extracellular products on the growth of rice seedlings inhibited by NaCl and to compare it with the effect of the gibberellic acid in the same stress condition. Growth (length and weight of the seedlings) and biochemical parameters (5-aminolevulinate dehydratase activity, total free porphyrin and pigments content) were evaluated. Salt exposure negatively affected all parameters measured, with the exception of chlorophyll. Chlrorophyll concentrations nearly doubled upon exposure to high salt. Gibberellic acid counteracted the effect of salt on the length and dry weight of the shoot, and on carotenoid and chlorophyll b contents. Extracellular products nullified the salt effect on shoot dry weight and carotenoid content; partially counteracted the effect on shoot length (from 54% to 38% decrease), root dry weight (from 59% to 41% decrease) and total free porphyrin (from 31 to 13% decrease); reduced by 35% the salt increase of chlorophyll a; had no effect on root length and chlorophyll b. Gibberellic acid and extracellular products increased 5-aminolevulinate dehydratase activity over the control without salt. When coincident with high salinity, exposure to either EP or GA3, resulted in a reversal of shoot-related responses to salt stress. We propose that Scytonema hofmanni extracellular products may counteract altered hormone homeostasis of rice seedlings under salt stress by producing gibberellin-like plant

  8. The protective effect of delta-aminolevulinic acid dehydratase 1-2 and 2-2 isozymes against blood lead with higher hematologic parameters.

    PubMed

    Kim, Hee-Seon; Lee, Sung-Soo; Lee, Gap-Soo; Hwangbo, Young; Ahn, Kyu-Dong; Lee, Byung-Kook

    2004-04-01

    Previous studies have suggested that delta-aminolevulinic acid dehydratase (ALAD) types 1-2 or 2-2 are protective against the toxicity of blood lead (PbB) when zinc protoporphyrin (ZPP) levels are low because of differential binding of lead in erythrocytes. The hypothesis is that subjects with the ALAD 1-1 genotype are more susceptible to lead exposure with impaired hematologic synthesis and therefore that iron nutrition is more important in those with the ALAD 1-1 genotype. The purpose of this study was to prove the protective effect of ALAD 1-2/2-2 against PbB with higher hematologic parameters. Data on 1,219 male workers from eight lead-using factories in the Republic of Korea were examined in this cross-sectional study. Blood samples were evaluated for PbB, ZPP, hemoglobin (Hb), and serum iron (SFe) concentrations and ALAD genotypes. The overall prevalence of the ALAD 1-2/2-2 genotype was 9.3%, which was associated with lower log ZPP (p < 0.001) and higher Hb (p = 0.014) levels. For the subjects with normal iron status (SFe levels > 60 micro g/dL), those with the ALAD 1-1 genotype were more likely to be anemic (adjusted odds ratio of 5.2; 95% confidence interval, 1.2-22.6) than those with ALAD 1-2/2-2. The study confirms the protective effects of ALAD 1-2/2-2 polymorphisms against PbB on hematologic pathways. In order to promote health and to minimize the toxicity of lead exposure more effectively, the nutritional management of iron in Korean workers should take both their ALAD genotypes and occupational lead exposures into account. PMID:15064157

  9. Interaction of blood lead and delta-aminolevulinic acid dehydratase genotype on markers of heme synthesis and sperm production in lead smelter workers.

    PubMed

    Alexander, B H; Checkoway, H; Costa-Mallen, P; Faustman, E M; Woods, J S; Kelsey, K T; van Netten, C; Costa, L G

    1998-04-01

    The gene that encodes gamma-aminolevulinic acid dehydratase (ALAD) has a polymorphism that may modify lead toxicokinetics and ultimately influence individual susceptibility to lead poisoning. To evaluate the effect of the ALAD polymorphism on lead-mediated outcomes, a cross-sectional study of male employees from a lead-zinc smelter compared associations between blood lead concentration and markers of heme synthesis and semen quality with respect to ALAD genotype. Male employees were recruited via postal questionnaire to donate blood and urine for analysis of blood lead, zinc protoporphyrin (ZPP), urinary coproporphyrin (CPU), and ALAD genotype, and semen samples for semen analysis. Of the 134 workers who had ALAD genotypes completed, 114 (85%) were ALAD1-1 (ALAD1) and 20 (15%) were ALAD1-2 (ALAD2). The mean blood lead concentrations for ALAD1 and ALAD2 were 23.1 and 28.4 microg/dl (p = 0.08), respectively. ZPP/heme ratios were higher in ALAD1 workers (68.6 vs. 57.8 micromol/ml; p = 0.14), and the slope of the blood lead ZPP linear relationship was greater for ALAD1 (2.83 vs. 1.50, p = 0.06). No linear relationship between CPU and blood lead concentration was observed for either ALAD1 or ALAD2. The associations of blood lead concentration with ZPP, CPU, sperm count, and sperm concentration were more evident in workers with the ALAD1 genotype and blood lead concentrations >/= 40 microg/dl. The ALAD genetic polymorphism appears to modify the association between blood lead concentration and ZPP. However, consistent modification of effects were not found for CPU, sperm count, or sperm concentration. PMID:9495797

  10. 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene

    SciTech Connect

    Van Der Werf, M.J.; Zeikus, J.G. |

    1996-10-01

    The Rhodobacter sphaeroides hemA gene codes for 5-aminolevulinate (ALA) synthase. This enzyme catalyzes the pyridoxal phosphate-dependent condensation of succinyl coenzyme A and glycine-forming ALA. The R. sphaeroides hemA gene in the pUC18/19 vector system was transformed into Escherichia coli. The effects of both genetic and physiological factors on the expression of ALA synthase and the production of ALA were studied. ALA synthase activity levels were maximal when hemA had the same transcription direction as the lac promoter. The distance between the lac promoter and hemA affected the expression of ALA synthase on different growth substrates. The E. coli host strain used had an enormous effect on the ALA synthase activity level and on the production of ALA, with E. coli DH1 being best suited. The ALA synthase activity level was also dependent on the carbon source. Succinate, L-malate, fumarate, and L-aspartate gave the highest levels of ALA synthase activity, while the use of lactose as a carbon source resulted in a repression of ALA synthase. After growth on succinate, ALA synthase represented {approx}5% of total cellular protein. The ALA synthase activity level was also dependent on the pH of the medium, with maximal activity occurring at pH 6.5. ALA production by whole cells was limited by the availability of glycine, and the addition of 2 g of glycine per liter to the growth medium increased the production of ALA fivefold, to 2.25 mM. In recombinant E. coli extracts, up to 22 mM ALA was produced from succinate, glycine, and ATP. 58 refs., 4 figs., 7 tabs.

  11. Fractionated PDT with 5-aminolevulinic acid: effective, cost effective, and patient friendly

    NASA Astrophysics Data System (ADS)

    de Vijlder, Hannah C.; Middelburg, Tom A.; de Bruijn, Henriette S.; Robinson, Dominic J.; Neumann, H. A. Martino; de Haas, Ellen R. M.

    2009-06-01

    PDT with ALA and MAL is established as a relatively effective treatment for non-melanoma skin cancer and premalignancies. PDT is often repeated, because a single treatment gives poor long term results. Preclinical studies showed that ALA-PDT applying a fractionated illumination scheme with a small first light fraction and a second larger light fraction separated by a dark interval of two hours resulted in a significant increase in efficacy. Whereas the efficacy was not enhanced by fractionating MAL-PDT, indicating that ALA-PDT mechanism is not the same as MAL-PDT mechanism. The increase in efficacy using fractionated PDT was confirmed clinically. A randomized comparative clinical study comparing fractionated ALA-PDT versus non-fractionated ALA-PDT in the treatment of superficial basal cell carcinoma showed a significant higher response rate in the lesions treated with fractionated ALA-PDT after a follow-up of one year ( p<0.002, log-rank test). The five year follow-up is studied at moment. So far the complete response in the group treated with fractionated ALA-PDT seems to be only a few percentages lower compared to the one year follow-up. Besides the gain in response rate, fractionated ALA PDT is cost effective. ALA gel is less expensive than the commercially available MAL (Metvix) and moreover fractionated ALA-PDT takes one treatment day, instead of two treatment days using the Metvix treatment protocol (two MAL-PDT treatments separated by one week), both reducing direct and indirect costs and the burden to the patient.

  12. Chitosan-based mucoadhesive films containing 5-aminolevulinic acid for buccal cancer's treatment.

    PubMed

    Costa, Irina dos Santos Miranda; Abranches, Renata Pereira; Garcia, Maria Teresa Junqueira; Pierre, Maria Bernadete Riemma

    2014-11-01

    Photodynamic therapy (PDT) is a relatively new method to treat various kinds of tumors, including those of the oral cavity. The topical 5-ALA-PDT treatment for tumors of the oral mucosa is preferred, since when administered systemically, there is a general photosensitization drawback in the patient. However, 5-ALA is a hydrophilic molecule and its penetration and retention is limited by topical route, including oral mucosa. We propose a topical delivery system of chitosan-based mucoadhesive film, aiming to promote greater retention of 5-ALA in tissue. The chitosan (CHT) films (4% w/w) were prepared using the solvent evaporation/casting technique. They were tested without 5-ALA resulting in permeability to water vapor (W.V.P=2.15-8.54 g mm/(h cm(2)Pa) swelling ∼300.0% (±10.5) at 4 h or 24 h and in vitro residence time >24 h for all tests. CHT films containing 10.0% (w/w) 5-ALA have resulted in average weight of 0.22 g and thickness of 0.608 mm as suitable characteristics for oral application. In the presence of CHT films both in vitro permeation and retention of 5-ALA (1.0% or 10.0%) were increased. However, 10.0% 5-ALA presented highest values of permeation and retention (∼4 and 17 times respectively, compared to propylene glycol vehicle). On the other hand, in vitro mucoadhesion of CHT films was decreased (18.2-fold and 3.1-fold) by 5-ALA addition (1.0% or 10.0% respectively). However, CHT film containing 10.0% of 5-ALA can be a potential delivery system for topical use in the treatment of tumors of the oral cavity using PDT because it favored the retention of 5-ALA in this tissue and has shown convenient mucoadhesion. PMID:25190225

  13. Increased brain edema following 5-aminolevulinic acid mediated photodynamic in normal and tumor bearing rats

    NASA Astrophysics Data System (ADS)

    Hirschberg, Henry; Angell-Petersen, Even; Spetalen, Signe; Mathews, Marlon; Madsen, Steen J.

    2007-02-01

    Introduction: Failure of treatment for high grade gliomas is usually due to local recurrence at the site of surgical resection indicating that a more aggressive form of local therapy, such as PDT, could be of benefit. PDT causes damage to both tumor cells as well as cerebral blood vessels leading to degradation of the blood brain barrier with subsequent increase of brain edema. The increase in brain edema following ALA-PDT was evaluated in terms of animal survival, histopatological changes in normal brain and tumor tissue and MRI scanning. The effect of steroid treatment, to reduce post-treatment PDT induced edema, was also examined. Methods:Tumors were established in the brains of inbred BD-IX and Fisher rats. At various times following tumor induction the animals were injected with ALA ip. and four hours later light treatment at escalating fluences and fluence rates were given. Nontumor bearing control animals were also exposed to ALA-PDT in a similar manner to evaluate damage to normal brain and degree of blood brain barrier (BBB) disruption. Results: Despite a very low level of PpIX production in normal brain, with a 200:1 tumor to normal tissue selectivity ratio measured at a distance of 2 mm from the tumor border, many animals succumbed shortly after treatment. A total radiant energy of 54 J to non-tumor bearing animals resulted in 50% mortality within 5 days of treatment. Treatment of tumor bearing animals with moderate fluence levels produced similar brain edema compared to higher fluence levels. ALA PDT in nontumor bearing animals produced edema that was light dose dependent. PDT appeared to open the BBB for a period of 24-48 hrs after which it was restored. The addition of post operative steroid treatment reduced the incident of post treatment morbidity and mortality. Conclusions: T2 and contrast enhanced T1 MRI scanning proved to be a highly effective and non-evasive modality in following the development of the edema reaction and the degree and time course of BBB dysfunction thus allowing the use of fewer animals.

  14. Lead accumulation and depression of delta-aminolevulinic acid dehydratase (ALAD) in young birds fed automotive waste oil

    USGS Publications Warehouse

    Eastin, W.C., Jr.; Hoffman, D.J.; O'Leary, C.T.

    1983-01-01

    The effects of a 3-week dietary exposure to automotive waste crankcase oil (WCO) were examined in 1-week-old mallard (Anas platyrhynchos) ducklings and pheasant (Phasianus colchicus) chicks. Treatment groups consisted of birds exposed to 0.5, 1.5, or 4.5% WCO, to 4.5% clean crankcase oil (CCO), or untreated controls. In both species, red blood cell ALAD activity was significantly inhibited after one week by 50 to 60% in the 0.5% WCO group and by 85 to 90% in the 4.5% WCO group due to the presence of lead. Growth, hematocrit, and hemoglobin were not significantly affected at the end of three weeks. Plasma aspartate aminotransferase (AST) activity was higher in mallards after three weeks of ingesting either 4.5% WCO or 4.5% CCO, suggesting an oil-related effect due to components other than lead. Treatment had no effect on plasma concentration of uric acid, glucose, triglycerides, total protein, or cholesterol. Lead analysis showed the WCO to contain 4,200 ppm Pb and the CCO to contain 2 ppm. Tissues of mallards were examined for accumulation of lead and the order of accumulation at the end of three weeks was kidney > liver > blood ~ brain.

  15. Characterization of recombinantly expressed dihydroxy-acid dehydratase from Sulfobus solfataricus-A key enzyme for the conversion of carbohydrates into chemicals.

    PubMed

    Carsten, Jörg M; Schmidt, Anja; Sieber, Volker

    2015-10-10

    Dihydroxyacid dehydratases (DHADs) are excellent biocatalysts for the defunctionalization of biomass. Here, we report on the recombinant production of DHAD from Sulfolobus solfataricus (SsDHAD) in E. coli and its characterization with special focus on activity toward non-natural substrates, thermo-stability, thermo-inactivation kinetics and activation capabilities and its application within multi-step cascades for chemicals production. Using a simple heat treatment of cell lysate as major purification step we achieved a specific activity of 4.4 units per gram cell mass toward the substrate d-gluconate. The optimal temperature and pH value for this reaction are 77°C and pH 6.2. The inhibitory concentration (IC50, 50% residual activity) of different alcohols was determined to be 15% (v/v) for ethanol, 4.5% (v/v) for butanol and 4% (v/v) for isobutanol. Besides d-gluconate and the natural substrate 2,3-dihydroxyisovalerate (DHIV) SsDHAD is able to convert the C3-sugar-acid d-glycerate to pyruvate, a reaction, which does not occur in natural metabolic pathways, with a specific activity of 10.7±0.4mU/mg. The specific activity of the enzyme can be increased 3-fold by incubation with 2-mercaptoethanol. The activation has no impact on temperature dependence, but modulates the thermo-inactivation tolerance at 50°C. The total turnover numbers for all of the three reactions was found to be 35.5×10(3)±1.0×10(3) for the conversion of d-gluconate to 2-keto-3-deoxygluconate (KDG), 28.2×10(3)±0.8×10(3) for DHIV to 2-ketovalerate (KIV) and 943±0.28×10(2) for d-glycerate to pyruvate. With activated SsDHAD these values could be further increased 5- and 4-fold for the d-gluconate and d-glycerate conversion, respectively. PMID:26102631

  16. Effects of light irradiation upon photodynamic therapy based on 5-aminolevulinic acid–gold nanoparticle conjugates in K562 cells via singlet oxygen generation

    PubMed Central

    Xu, Hao; Liu, Chen; Mei, Jiansheng; Yao, Cuiping; Wang, Sijia; Wang, Jing; Li, Zheng; Zhang, Zhenxi

    2012-01-01

    Purpose As a precursor of the potent photosensitizer protoporphyrin IX (PpIX), 5-aminolevulinic acid (5-ALA), was conjugated onto cationic gold nanoparticles (GNPs) to improve the efficacy of photodynamic therapy (PDT). Methods Cationic GNPs reduced by branched polyethyleneimine and 5-ALA were conjugated onto the cationic GNPs by creating an electrostatic interaction at physiological pH. The efficacy of ALA-GNP conjugates in PDT was investigated under irradiation with a mercury lamp (central wavelength of 395 nm) and three types of light-emitting diode arrays (central wavelengths of 399, 502, and 621 nm, respectively). The impacts of GNPs on PDT were then analyzed by measuring the intracellular PpIX levels in K562 cells and the singlet oxygen yield of PpIX under irradiation. Results The 2 mM ALA-GNP conjugates showed greater cytotoxicity against K562 cells than ALA alone. Light-emitting diode (505 nm) irradiation of the conjugates caused a level of K562 cell destruction similar to that with irradiation by a mercury lamp, although it had no adverse effects on drug-free control cells. These results may be attributed to the singlet oxygen yield of PpIX, which can be enhanced by GNPs. Conclusion Under irradiation with a suitable light source, ALA-GNP conjugates can effectively destroy K562 cells. The technique offers a new strategy of PDT. PMID:23055721

  17. High light inhibits chlorophyll biosynthesis at the level of 5-aminolevulinate synthesis during de-etiolation in cucumber (Cucumis sativus) cotyledons.

    PubMed

    Aarti, D; Tanaka, R; Ito, H; Tanaka, A

    2007-01-01

    Using the vascular plant Cucumis sativus (cucumber) as a model, we studied the effects of high (intense and excess) light upon chlorophyll biosynthesis during de-etiolation. When illuminated with high light (1500-1600 microE/m2/s), etiolated cucumber cotyledons failed to synthesize chlorophyll entirely. However, upon transfer to low light conditions (40-45 microE/m2/s), chlorophyll biosynthesis and subsequent accumulation resumed following an initial 2-12 h delay. Duration of high light treatment negatively correlated with chlorophyll biosynthetic activity. Specifically, we found that high light severely inhibited 5-aminolevulinic acid (ALA) synthesis. This effect partly could be because of the decrease in protein level of glutamyl-tRNA reductase (GluTR) observed. Protein level of glutamate-1-semialdehyde (GSA-AT) remained unchanged. It was also found that high light did not suppress HEMA 1 expression. Therefore, we speculated that this significant inhibition of ALA synthesis might have occurred mainly because of concomitant inactivation of GluTR and/or inhibition of complex formation between GluTR and GSA-AT. Our further observation that both methyl viologen and rose bengal similarly inhibit ALA synthesis under low light conditions suggested that reactive oxygen species (ROS) could be responsible for the inhibition of ALA synthesis in cotyledons exposed to high light conditions. PMID:16922603

  18. An extreme-halophile archaebacterium possesses the interlock type of prephenate dehydratase characteristic of the Gram-positive eubacteria

    NASA Technical Reports Server (NTRS)

    Jensen, R. A.; d'Amato, T. A.; Hochstein, L. I.

    1988-01-01

    The focal point of phenylalanine biosynthesis is a dehydratase reaction which in different organisms may be prephenate dehydratase, arogenate dehydratase, or cyclohexadienyl dehydratase. Gram-positive, Gram-negative, and cyanobacterial divisions of the eubacterial kingdom exhibit different dehydratase patterns. A new extreme-halophile isolate, which grows on defined medium and is tentatively designated as Halobacterium vallismortis CH-1, possesses the interlock type of prephenate dehydratase present in Gram-positive bacteria. In addition to the conventional sensitivity to feedback inhibition by L-phenylalanine, the phenomenon of metabolic interlock was exemplified by the sensitivity of prephenate dehydratase to allosteric effects produced by extra-pathway (remote) effectors. Thus, L-tryptophan inhibited activity while L-tyrosine, L-methionine, L-leucine and L-isoleucine activated the enzyme. L-Isoleucine and L-phenylalanine were effective at micromolar levels; other effectors operated at mM levels. A regulatory mutant selected for resistance to growth inhibition caused by beta-2-thienylalanine possessed an altered prephenate dehydratase in which a phenomenon of disproportionately low activity at low enzyme concentration was abolished. Inhibition by L-tryptophan was also lost, and activation by allosteric activators was diminished. Not only was sensitivity to feedback inhibition by L-phenylalanine lost, but the mutant enzyme was now activated by this amino acid (a mutation type previously observed in Bacillus subtilis). It remains to be seen whether this type of prephenate dehydratase will prove to be characteristic of all archaebacteria or of some archaebacterial subgroup cluster.

  19. Asn-150 of Murine Erythroid 5-Aminolevulinate Synthase Modulates the Catalytic Balance between the Rates of the Reversible Reaction.

    PubMed

    Stojanovski, Bosko M; Ferreira, Gloria C

    2015-12-25

    5-Aminolevulinate synthase (ALAS) catalyzes the first step in mammalian heme biosynthesis, the pyridoxal 5'-phosphate (PLP)-dependent and reversible reaction between glycine and succinyl-CoA to generate CoA, CO2, and 5-aminolevulinate (ALA). Apart from coordinating the positioning of succinyl-CoA, Rhodobacter capsulatus ALAS Asn-85 has a proposed role in regulating the opening of an active site channel. Here, we constructed a library of murine erythroid ALAS variants with substitutions at the position occupied by the analogous bacterial asparagine, screened for ALAS function, and characterized the catalytic properties of the N150H and N150F variants. Quinonoid intermediate formation occurred with a significantly reduced rate for either the N150H- or N150F-catalyzed condensation of glycine with succinyl-CoA during a single turnover. The introduced mutations caused modifications in the ALAS active site such that the resulting variants tipped the balance between the forward- and reverse-catalyzed reactions. Although wild-type ALAS catalyzes the conversion of ALA into the quinonoid intermediate at a rate 6.3-fold slower than the formation of the same quinonoid intermediate from glycine and succinyl-CoA, the N150F variant catalyzes the forward reaction at a mere 1.2-fold faster rate than that of the reverse reaction, and the N150H variant reverses the rate values with a 1.7-fold faster rate for the reverse reaction than that for the forward reaction. We conclude that the evolutionary selection of Asn-150 was significant for optimizing the forward enzymatic reaction at the expense of the reverse, thus ensuring that ALA is predominantly available for heme biosynthesis. PMID:26511319

  20. Human Erythroid 5-Aminolevulinate Synthase Mutations Associated with X-Linked Protoporphyria Disrupt the Conformational Equilibrium and Enhance Product Release.

    PubMed

    Fratz, Erica J; Clayton, Jerome; Hunter, Gregory A; Ducamp, Sarah; Breydo, Leonid; Uversky, Vladimir N; Deybach, Jean-Charles; Gouya, Laurent; Puy, Hervé; Ferreira, Gloria C

    2015-09-15

    Regulation of 5-aminolevulinate synthase (ALAS) is at the origin of balanced heme production in mammals. Mutations in the C-terminal region of human erythroid-specific ALAS (hALAS2) are associated with X-linked protoporphyria (XLPP), a disease characterized by extreme photosensitivity, with elevated blood concentrations of free protoporphyrin IX and zinc protoporphyrin. To investigate the molecular basis for this disease, recombinant hALAS2 and variants of the enzyme harboring the gain-of-function XLPP mutations were constructed, purified, and analyzed kinetically, spectroscopically, and thermodynamically. Enhanced activities of the XLPP variants resulted from increases in the rate at which the product 5-aminolevulinate (ALA) was released from the enzyme. Circular dichroism spectroscopy revealed that the XLPP mutations altered the microenvironment of the pyridoxal 5'-phosphate cofactor, which underwent further and specific alterations upon succinyl-CoA binding. Transient kinetic analyses of the variant-catalyzed reactions and protein fluorescence quenching upon binding of ALA to the XLPP variants demonstrated that the protein conformational transition step associated with product release was predominantly affected. Of relevance is the fact that XLPP could also be modeled in cell culture. We propose that (1) the XLPP mutations destabilize the succinyl-CoA-induced hALAS2 closed conformation and thus accelerate ALA release, (2) the extended C-terminus of wild-type mammalian ALAS2 provides a regulatory role that allows for allosteric modulation of activity, thereby controlling the rate of erythroid heme biosynthesis, and (3) this control is disrupted in XLPP, resulting in porphyrin accumulation. PMID:26300302

  1. Propanediol utilization genes (pdu) of Salmonella typhimurium: three genes for the propanediol dehydratase.

    PubMed Central

    Bobik, T A; Xu, Y; Jeter, R M; Otto, K E; Roth, J R

    1997-01-01

    The propanediol utilization (pdu) operon of Salmonella typhimurium encodes proteins required for the catabolism of propanediol, including a coenzyme B12-dependent propanediol dehydratase. A clone that expresses propanediol dehydratase activity was isolated from a Salmonella genomic library. DNA sequence analysis showed that the clone included part of the pduF gene, the pduABCDE genes, and a long partial open reading frame (ORF1). The clone included 3.9 kbp of pdu DNA which had not been previously sequenced. Complementation and expression studies with subclones constructed via PCR showed that three genes (pduCDE) are necessary and sufficient for propanediol dehydratase activity. The function of ORF1 was not determined. Analyses showed that the S. typhimurium propanediol dehydratase was related to coenzyme B12-dependent glycerol dehydratases from Citrobacter freundii and Klebsiella pneumoniae. Unexpectedly, the S. typhimurium propanediol dehydratase was found to be 98% identical in amino acid sequence to the Klebsiella oxytoca propanediol dehydratase; this is a much higher identity than expected, given the relationship between these organisms. DNA sequence analyses also supported previous studies indicating that the pdu operon was inherited along with the adjacent cobalamin biosynthesis operon by a single horizontal gene transfer. PMID:9352910

  2. Murine erythroid 5-aminolevulinate synthase: Truncation of a disordered N-terminal extension is not detrimental for catalysis.

    PubMed

    Stojanovski, Bosko M; Breydo, Leonid; Uversky, Vladimir N; Ferreira, Gloria C

    2016-05-01

    5-Aminolevulinate synthase (ALAS), a pyridoxal 5'-phosphate (PLP)-dependent homodimeric enzyme, catalyzes the initial step of heme biosynthesis in non-plant eukaryotes. The precursor form of the enzyme is translated in the cytosol, and upon mitochondrial import, the N-terminal targeting presequence is proteolytically cleaved to generate mature ALAS. In bone marrow-derived erythroid cells, a mitochondrial- and site-specific endoprotease of yet unknown primary structure, produces a protein shorter than mature erythroid ALAS (ALAS2) found in peripheral blood erythroid cells. This truncated ALAS2 lacks the presequence and the N-terminal sequence (corresponding to ~7 KDa molecular mass) present in ALAS2 from peripheral blood erythroid cells. How the truncation affects the structural topology and catalytic properties of ALAS2 is presently not known. To address this question, we created a recombinant, truncated, murine ALAS2 (ΔmALAS2) devoid of the cleavable N-terminal region and examined its catalytic and biophysical properties. The N-terminal truncation of mALAS2 did not significantly affect the organization of the secondary structure, but a subtle reduction in the rigidity of the tertiary structure was noted. Furthermore, thermal denaturation studies revealed a decrease of 4.3°C in the Tm value of ΔmALAS2, implicating lower thermal stability. While the kcat of ΔmALAS2 is slightly increased over that of the wild-type enzyme, the slowest step in the ΔmALAS2-catalyzed reaction remains dominated by ALA release. Importantly, intrinsic disorder algorithms imply that the N-terminal region of mALAS2 is highly disordered, and thus susceptible to proteolysis. We propose that the N-terminal truncation offers a cell-specific ALAS2 regulatory mechanism without hindering heme synthesis. PMID:26854603

  3. δ-Aminolevulinic acid dehydratase single nucleotide polymorphism 2 (ALAD2) and peptide transporter 2*2 haplotype (hPEPT2*2) differently influence neurobehavior in low-level lead exposed children.

    PubMed

    Sobin, Christina; Flores-Montoya, Mayra Gisel; Gutierrez, Marisela; Parisi, Natali; Schaub, Tanner

    2015-01-01

    Delta-aminolevulinic acid dehydratase single nucleotide polymorphism 2 (ALAD2) and peptide transporter haplotype 2*2 (hPEPT2*2) through different pathways can increase brain levels of delta-aminolevulinic acid and are associated with higher blood lead burden in young children. Past child and adult findings regarding ALAD2 and neurobehavior have been inconsistent, and the possible association of hPEPT2*2 and neurobehavior has not yet been examined. Mean blood lead level (BLL), genotype, and neurobehavioral function (fine motor dexterity, working memory, visual attention and short-term memory) were assessed in 206 males and 215 females ages 5.1-11.8years. Ninety-six percent of children had BLLs<5.0μg/dl. After adjusting for covariates (sex, age and mother's level of education) and sibling exclusion (N=252), generalized linear mixed model analyses showed opposite effects for the ALAD2 and hPEPT2*2 genetic variants. Significant effects for ALAD2 were observed only as interactions with BLL and the results suggested that ALAD2 was neuroprotective. As BLL increased, ALAD2 was associated with enhanced visual attention and enhanced working memory (fewer commission errors). Independent of BLL, hPEPT2*2 predicted poorer motor dexterity and poorer working memory (more commission errors). BLL alone predicted poorer working memory from increased omission errors. The findings provided further substantiation that (independent of the genetic variants examined) lowest-level lead exposure disrupted early neurobehavioral function, and suggested that common genetic variants alter the neurotoxic potential of low-level lead. ALAD2 and hPEPT2*2 may be valuable markers of risk, and indicate novel mechanisms of lead-induced neurotoxicity. Longitudinal studies are needed to examine long-term influences of these genetic variants on neurobehavior. PMID:25514583

  4. Characterization and mutagenesis of two novel iron-sulphur cluster pentonate dehydratases.

    PubMed

    Andberg, Martina; Aro-Kärkkäinen, Niina; Carlson, Paul; Oja, Merja; Bozonnet, Sophie; Toivari, Mervi; Hakulinen, Nina; O'Donohue, Michael; Penttilä, Merja; Koivula, Anu

    2016-09-01

    We describe here the identification and characterization of two novel enzymes belonging to the IlvD/EDD protein family, the D-xylonate dehydratase from Caulobacter crescentus, Cc XyDHT, (EC 4.2.1.82), and the L-arabonate dehydratase from Rhizobium leguminosarum bv. trifolii, Rl ArDHT (EC 4.2.1.25), that produce the corresponding 2-keto-3-deoxy-sugar acids. There is only a very limited amount of characterization data available on pentonate dehydratases, even though the enzymes from these oxidative pathways have potential applications with plant biomass pentose sugars. The two bacterial enzymes share 41 % amino acid sequence identity and were expressed and purified from Escherichia coli as homotetrameric proteins. Both dehydratases were shown to accept pentonate and hexonate sugar acids as their substrates and require Mg(2+) for their activity. Cc XyDHT displayed the highest activity on D-xylonate and D-gluconate, while Rl ArDHT functioned best on D-fuconate, L-arabonate and D-galactonate. The configuration of the OH groups at C2 and C3 position of the sugar acid were shown to be critical, and the C4 configuration also contributed substantially to the substrate recognition. The two enzymes were also shown to contain an iron-sulphur [Fe-S] cluster. Our phylogenetic analysis and mutagenesis studies demonstrated that the three conserved cysteine residues in the aldonic acid dehydratase group of IlvD/EDD family members, those of C60, C128 and C201 in Cc XyDHT, and of C59, C127 and C200 in Rl ArDHT, are needed for coordination of the [Fe-S] cluster. The iron-sulphur cluster was shown to be crucial for the catalytic activity (kcat) but not for the substrate binding (Km) of the two pentonate dehydratases. PMID:27102126

  5. Delta-aminolevulinic Acid dehydratase genotype and its relationship with blood lead and zinc protoporphyrin levels in lead-exposed children living in a smelter community in northern Mexico.

    PubMed

    Mijares, I A; López, P; Rosado, J L; Cebrián, A; Vera-Aguilar, E; Alatorre, J; Quintanilla-Vega, M B; García, A E Rojas; Stoltzfus, R J; Cebrián, M E; García-Vargas, G G

    2006-01-01

    The implications of delta-aminolevulinic acid dehydratase (ALAD) polymorphism for lead kinetics and toxicity have been mainly studied in occupationally exposed adults. Therefore, our purpose was to evaluate the distribution of ALAD genotype and its association with biomarkers of exposure (PbB levels) and effect (Blood ZPP) among children living in a smelter community in Mexico. We recruited 569 children from nine elementary schools close to a smelter site. PbB was determined by electrothermal atomic absorption spectrometry. A polymerase chain reaction (PCR)-based protocol was used for ALAD genotyping. Zinc protoporphyrin (ZPP) in blood was measured by direct fluorometry. Most children (93.15%) were homozygous for ALAD (1-1), 6.67% were heterozygous for ALAD for (1-2), and one child was homozygous for ALAD (2-2). There was an increased proportion of ALAD (1-2/2-2) genotype with respect to PbB levels. The ZPP geometric mean was slightly higher in ALAD (1-1) genotype children (63.48 mu mol ZPP/mol Hb) than in those having the ALAD-2 genotype (58.22 mu mol ZPP/mol Hb; p = 0.051). Linear and quadratic models showed significant relationships between ZPP and PbB. A significant increase in the odds ratio (OR) for the effect of lead exposure on ZPP levels was observed for ALAD (1-1) children having PbB values above 20 mu g/dL, as compared to those having PbB levels below 10 mu g/dL (OR = 2.95, 95% CI = 1.45-5.97; p = 0.003), whereas no significant increases were observed for the ALAD (1-2/2-2) children. In summary, our results suggest that heme biosynthesis was less affected in ALAD (1-2/2-2) lead-exposed children than in those carrying the ALAD (1-1) genotype. PMID:20021040

  6. Differential reduction in soluble and membrane-bound c-type cytochrome contents in a Paracoccus denitrificans mutant partially deficient in 5-aminolevulinate synthase activity.

    PubMed Central

    Page, M D; Ferguson, S J

    1994-01-01

    A mutant of Paracoccus denitrificans, DP104, unable to grow anaerobically with nitrate as the terminal electron acceptor or aerobically with methanol as the electron donor and staining negatively in the dimethylphenylene diamine oxidation (Nadi) test, was isolated by transposon Tn5::phoA mutagenesis. P. denitrificans DP104 grown aerobically with succinate or choline had very low levels (2 to 3% of the wild-type levels) of spectroscopically detectable soluble c-type cytochromes. In contrast, membrane cytochromes of the a, b, and c types were present at 50% of the levels found in the wild type. The apo form of cytochrome c550, at an approximately 1:1 molar ratio with the holo form, was found in the periplasm of DP104. The TnphoA element was shown to be inserted immediately upstream of the translational start of hemA, the gene coding for 5-aminolevulinate synthase, which was sequenced. Low-level expression of this gene, driven off an incidental promoter provided by TnphoA-cointegrated suicide vector DNA, is the basis of the phenotype which could be complemented by the addition of 5-aminolevulinate to growth media. Disruption of the hemA gene generated a P. denitrificans strain auxotrophic for 5-aminolevulinate, establishing that there is no hemA-independent pathway of heme synthesis in this organism. The differential deficiency in periplasmic c-type cytochromes relative to membrane cytochromes in DP104 is suggested to arise from unequal competition for the restricted supply of heme which results from the effects of the transposon insertion. Images PMID:7928952

  7. Differential accumulation and organ-specific metabolism of 5-aminolevulinic acid between cancer cells and normal epithelial and stromal cells

    NASA Astrophysics Data System (ADS)

    Krieg, Rene C.; Rauch, Joachim; Seidl, Juergen; Stepp, Herbert G.; Messmann, Helmut; Knuechel, Ruth

    2001-01-01

    To optimize conditions of photodynamic therapy (PDT) with ALA induced protoporphyrin IX (PPIX), topography of accumulation and metabolism of PPIX were analyzed in vitro. Adenocarcinoma cell lines, urothelial carcinoma cell lines, and a normal fibroblast cell line were cultured in plateau phase. ALA-induced PPIX accumulation, porphobilinogendeaminase-, ferrochelatase- activity, intracellular iron content, transferrin receptor expression and PPIX localization were determined using standard techniques. PBG activity as well as PPIX content were found higher in adenocarcinoma cells than in urothelial cells. Urothelial cell lines showed significant alterations in FC values in contrast to similar levels of FC in adenocarcinoma cell lines overall. Well differentiated cells showed higher iron content than lower differentiated cells. Transferrin receptor expression was found independent of PPIX content and intracellular iron content. In HT29, PPIX localizes mostly in the cell membrane, in SW480 and CaCo2 in mitochondria, and in urothelial cells mainly in cytosol. Data presented encourage the systematic and organ- related analysis of PPIX metabolism, since significant differences have been found between urothelial tumor cells and adenocarcinoma cells which may demand different strategies of therapy optimization and combination therapy regimens.

  8. The effects of visual fluorescence marking induced by 5-aminolevulinic acid for endoscopic diagnosis of urinary bladder cancer

    NASA Astrophysics Data System (ADS)

    Daniltchenko, Dmitri I.; Koenig, Frank; Schnorr, Dietmar; Valdman, Alexander; Al-Shukri, Salman; Loening, Stefan A.

    2003-10-01

    During cystoscopy procedure, fluorescence diagnostics induced by 5-ALA improves visual detection of the bladder cancer. Macroscopic ALA-fluorescence allows visualizing of small flat tumors, carcinoma in situ, true neoplasm margins and dysplasias of the bladder. Following ALA instillation, cystoscopy has been performed under both standard and blue light illumination. Totally, 153 biopsies have been carried out at 53 patients with suspicion of bladder cancer. The results were compared to ALA-fluorescence data. In 13% of the patients, bladder cancer and dysplasia were found out in addition, due to red fluorescence. The sensitivity and specificity of ALA-fluorescence technique aggregated 96% and 52% respectively. The sensitivity and specificity of 5-ALA-fluorescent detection exceeded standard endoscopy under white light on 20%. The new method does not exclude a false positive and a false negative fluorescent luminescence. The ALA-based fluorescence detection system enhances the diagnosis of malignant/dysplastic bladder lesions significantly.

  9. Photodynamic therapy (PDT) and photodiagnosis (PD) using endogenous photosensitization induced by 5-aminolevulinic acid (ALA): current clinical and development status

    NASA Astrophysics Data System (ADS)

    Marcus, Stuart L.; Sobel, Russel S.; Golub, Allyn L.; Carroll, Ronald L.; Lundahl, Scott L.; Shulman, D. Geoffrey

    1996-04-01

    Exogenous provision of ALA to many tissues results in the accumulation of sufficient quantities of the endogenous photosensitizer protoporphyrin IX, (PpIX), to produce a photodynamic effect. Therefore, ALA may be considered the only current PDT agent in clinical development which is a biochemical precursor of a photosensitizer. Topical ALA application, followed by exposure to activating light (ALA PDT), has been reported effective for the treatment of a variety of dermatologic diseases including cutaneous T-cell lymphoma, superficial basal cell carcinoma, Bowen's disease, and actinic (solar) keratoses, and is also being examined for treatment of acne and hirsutism. PpIX induced by ALA application also may serve as a fluorescence detection marker for photodiagnosis (PD) of malignant and pre- malignant conditions of the urinary bladder and other organs. Local internal application of ALA has also been used for selective endometrial ablation in animal model systems and is beginning to be examined in human clinical studies. Systemic, oral administration of ALA has been used for ALA PDT of superficial head and neck cancer, various gastrointestinal cancers, and the condition known as Barrett's esophagus. This brief paper reviews the current clinical and development status of ALA PDT.

  10. Structure and function of a decarboxylating Agrobacterium tumefaciens keto-deoxy-d-galactarate dehydratase.

    PubMed

    Taberman, Helena; Andberg, Martina; Parkkinen, Tarja; Jänis, Janne; Penttilä, Merja; Hakulinen, Nina; Koivula, Anu; Rouvinen, Juha

    2014-12-30

    Agrobacterium tumefaciens (At) strain C58 contains an oxidative enzyme pathway that can function on both d-glucuronic and d-galacturonic acid. The corresponding gene coding for At keto-deoxy-d-galactarate (KDG) dehydratase is located in the same gene cluster as those coding for uronate dehydrogenase (At Udh) and galactarolactone cycloisomerase (At Gci) which we have previously characterized. Here, we present the kinetic characterization and crystal structure of At KDG dehydratase, which catalyzes the next step, the decarboxylating hydrolyase reaction of KDG to produce α-ketoglutaric semialdehyde (α-KGSA) and carbon dioxide. The crystal structures of At KDG dehydratase and its complexes with pyruvate and 2-oxoadipic acid, two substrate analogues, were determined to 1.7 Å, 1.5 Å, and 2.1 Å resolution, respectively. Furthermore, mass spectrometry was used to confirm reaction end-products. The results lead us to propose a structure-based mechanism for At KDG dehydratase, suggesting that while the enzyme belongs to the Class I aldolase protein family, it does not follow a typical retro-aldol condensation mechanism. PMID:25454257

  11. Cloning, functional analysis and expression of a scytalone dehydratase gene ( SCD1) involved in melanin biosynthesis of the phytopathogenic fungus Bipolaris oryzae.

    PubMed

    Kihara, Junichi; Moriwaki, Akihiro; Ueno, Makoto; Tokunaga, Toshiko; Arase, Sakae; Honda, Yuichi

    2004-04-01

    Scytalone dehydratase is involved in the production of fungal dihydroxynaphthalene melanin. We isolated and characterized SCD1, a gene encoding scytalone dehydratase, from the phytopathogenic fungus Bipolaris oryzae. Sequence analysis showed that SCD1 encodes a putative protein that has 185 amino acids, a molecular weight of 21 kDa and 51-75% sequence identity to other fungal scytalone dehydratases. Targeted disruption of SCD1 showed that this gene is necessary for melanin biosynthesis in B. oryzae. Northern blot analysis showed that SCD1 transcripts are specifically enhanced by near-ultraviolet (300-400 nm) radiation. PMID:14716498

  12. Deletion of a dehydratase important for intracellular growth and cording renders rough Mycobacterium abscessus avirulent.

    PubMed

    Halloum, Iman; Carrère-Kremer, Séverine; Blaise, Mickael; Viljoen, Albertus; Bernut, Audrey; Le Moigne, Vincent; Vilchèze, Catherine; Guérardel, Yann; Lutfalla, Georges; Herrmann, Jean-Louis; Jacobs, William R; Kremer, Laurent

    2016-07-19

    Mycobacterium abscessus (Mabs) is a rapidly growing Mycobacterium and an emerging pathogen in humans. Transitioning from a smooth (S) high-glycopeptidolipid (GPL) producer to a rough (R) low-GPL producer is associated with increased virulence in zebrafish, which involves the formation of massive serpentine cords, abscesses, and rapid larval death. Generating a cord-deficient Mabs mutant would allow us to address the contribution of cording in the physiopathological signs of the R variant. Herein, a deletion mutant of MAB_4780, encoding a dehydratase, distinct from the β-hydroxyacyl-ACP dehydratase HadABC complex, was constructed in the R morphotype. This mutant exhibited an alteration of the mycolic acid composition and a pronounced defect in cording. This correlated with an extremely attenuated phenotype not only in wild-type but also in immunocompromised zebrafish embryos lacking either macrophages or neutrophils. The abolition of granuloma formation in embryos infected with the dehydratase mutant was associated with a failure to replicate in macrophages, presumably due to limited inhibition of the phagolysosomal fusion. Overall, these results indicate that MAB_4780 is required for Mabs to successfully establish acute and lethal infections. Therefore, targeting MAB_4780 may represent an attractive antivirulence strategy to control Mabs infections, refractory to most standard chemotherapeutic interventions. The combination of a dehydratase assay with a high-resolution crystal structure of MAB_4780 opens the way to identify such specific inhibitors. PMID:27385830

  13. Diol Dehydratase-Reactivase Is Essential for Recycling of Coenzyme B12 in Diol Dehydratase.

    PubMed

    Toraya, Tetsuo; Tanokuchi, Aya; Yamasaki, Ai; Nakamura, Takehiro; Ogura, Kenichi; Tobimatsu, Takamasa

    2016-01-12

    Holoenzymes of adenosylcobalamin-dependent diol and glycerol dehydratases undergo mechanism-based inactivation by glycerol and O2 inactivation in the absence of substrate, which accompanies irreversible cleavage of the coenzyme Co-C bond. The inactivated holodiol dehydratase and the inactive enzyme·cyanocobalamin complex were (re)activated by incubation with NADH, ATP, and Mg(2+) (or Mn(2+)) in crude extracts of Klebsiella oxytoca, suggesting the presence of a reactivating system in the extract. The reducing system with NADH could be replaced by FMNH2. When inactivated holoenzyme or the enzyme·cyanocobalamin complex, a model of inactivated holoenzyme, was incubated with purified recombinant diol dehydratase-reactivase (DD-R) and an ATP:cob(I)alamin adenosyltransferase in the presence of FMNH2, ATP, and Mg(2+), diol dehydratase activity was restored. Among the three adenosyltransferases (PduO, EutT, and CobA) of this bacterium, PduO and CobA were much more efficient for the reactivation than EutT, although PduO showed the lowest adenosyltransfease activity toward free cob(I)alamin. These results suggest that (1) diol dehydratase activity is maintained through coenzyme recycling by a reactivating system for diol dehydratase composed of DD-R, PduO adenosyltransferase, and a reducing system, (2) the releasing factor DD-R is essential for the recycling of adenosycobalamin, a tightly bound, prosthetic group-type coenzyme, and (3) PduO is a specific adenosylating enzyme for the DD reactivation, whereas CobA and EutT exert their effects through free synthesized coenzyme. Although FMNH2 was mainly used as a reductant in this study, a natural reducing system might consist of PduS cobalamin reductase and NADH. PMID:26704729

  14. Stereoselectivity and stereospecificity of the alpha,beta-dihydroxyacid dehydratase from Salmonella typhimurium.

    PubMed

    Armstrong, F B; Muller, U S; Reary, J B; Whitehouse, D; Croute, D H

    1977-07-21

    1. In addition to the known 2R,3R- and 2R, 3S-2,3-dihydroxy-3-methylpentanoic acids (DHI), the 1S,3S- and sS,DR-isomers were prepared. 2S-2,3-Dihydroxy-3-methylbutanoic acid (DHV) was also prepared in addition to the known 2R-isomer. 2. The six dihydroxy acids were examined for their ability to promote the growth of isoleucine-valine (ilv)-requiring strains of Salmonella typhimurium and to serve as substrates for the alpha,beta-dihydroxyacid dehydratase of the same organism. 3. Only 2R,3R-2,3-dihydroxy-3-methylpentanoic and 2R-2,3-dihydroxy-3-methylbutanoic acids supported growth of the ilv strains of S. typhimurium. 4. alpha,beta-Dihydroxyacid dehydratase utilized the three isomers with the 2R-configuration as substrates but not those with the 2S-configuration. 5. In an additional growth study that utilized the 3R- and 3S-isomers of 3-methyl-2-oxopentanoic acid, the alpha-keto acid analogue of isoleucine, only the 3S-isomer supported growth. 6. It is concluded that the mechanism of action of the dehydratase is stereospecific in that the proton that is attached to C-3 of the substrate occupies the same steriochemical position as the departing hydroxyl group (Fig. 6). PMID:328058

  15. Tissue responses to hexyl 5-aminolevulinate-induced photodynamic treatment in syngeneic orthotopic rat bladder cancer model: possible pathways of action

    NASA Astrophysics Data System (ADS)

    Arum, Carl-Jørgen; Gederaas, Odrun A.; Larsen, Eivind L. P.; Randeberg, Lise L.; Hjelde, Astrid; Krokan, Hans E.; Svaasand, Lars O.; Chen, Duan; Zhao, Chun-Mei

    2011-02-01

    Orthotopic bladder cancer model in rats mimics human bladder cancer with respect to urothelial tumorigenesis and progression. Utilizing this model at pT1 (superficial stage), we analyze the tissue responses to hexyl 5-aminolevulinate-induced photodynamic therapy (HAL-PDT). In comparison to untreated rats, HAL-PDT causes little change in tumor-free rat bladder but induces inflammatory changes with increased lymphocytes and mononuclear cell infiltration in rat bladders with tumor. Immunohistochemistry reveals that HAL-PDT is without effect on proliferating cell nuclear antigen expression within the tumor and increases caspase-3 expression in both normal urothelium and the tumor. Transmission electron microscopy reveals severe mitochondrial damage, formations of apoptotic bodies, vacuoles, and lipofuscin bodies, but no microvillus-formed niches in HAL-PDT-treated bladder cancer rats. Bioinformatics analysis of the gene expression profile indicates an activation of T-cell receptor signaling pathway in bladder cancer rats without PDT. HAL-PDT increases the expression of CD3 and CD45RA in the tumor (determined by immunohistochemistry). We suggest that pathways of action of HAL-PDT may include, at least, activations of mitochondrial apoptosis and autophagy, breakdown of cancer stem cell niches, and importantly, enhancement of T-cell activation.

  16. Pen and Pal Are Nucleotide-Sugar Dehydratases That Convert UDP-GlcNAc to UDP-6-Deoxy-d-GlcNAc-5,6-ene and Then to UDP-4-Keto-6-deoxy-l-AltNAc for CMP-Pseudaminic Acid Synthesis in Bacillus thuringiensis*♦

    PubMed Central

    Li, Zi; Hwang, Soyoun; Ericson, Jaime; Bowler, Kyle; Bar-Peled, Maor

    2015-01-01

    CMP-pseudaminic acid is a precursor required for the O-glycosylation of flagellin in some pathogenic Gram-negative bacteria, a process known to be critical in bacterial motility and infection. However, little is known about flagellin glycosylation in Gram-positive bacteria. Here, we identified and functionally characterized an operon, named Bti_pse, in Bacillus thuringiensis israelensis ATCC 35646, which encodes seven different enzymes that together convert UDP-GlcNAc to CMP-pseudaminic acid. In contrast, Gram-negative bacteria complete this reaction with six enzymes. The first enzyme, which we named Pen, converts UDP-d-GlcNAc to an uncommon UDP-sugar, UDP-6-deoxy-d-GlcNAc-5,6-ene. Pen contains strongly bound NADP+ and has distinct UDP-GlcNAc 4-oxidase, 5,6-dehydratase, and 4-reductase activities. The second enzyme, which we named Pal, converts UDP-6-deoxy-d-GlcNAc-5,6-ene to UDP-4-keto-6-deoxy-l-AltNAc. Pal is NAD+-dependent and has distinct UDP-6-deoxy-d-GlcNAc-5,6-ene 4-oxidase, 5,6-reductase, and 5-epimerase activities. We also show here using NMR spectroscopy and mass spectrometry that in B. thuringiensis, the enzymatic product of Pen and Pal, UDP-4-keto-6-deoxy-l-AltNAc, is converted to CMP-pseudaminic acid by the sequential activities of a C4″-transaminase (Pam), a 4-N-acetyltransferase (Pdi), a UDP-hydrolase (Phy), an enzyme (Ppa) that adds phosphoenolpyruvate to form pseudaminic acid, and finally a cytidylyltransferase that condenses CTP to generate CMP-pseudaminic acid. Knowledge of the distinct dehydratase-like enzymes Pen and Pal and their role in CMP-pseudaminic acid biosynthesis in Gram-positive bacteria provides a foundation to investigate the role of pseudaminic acid and flagellin glycosylation in Bacillus and their involvement in bacterial motility and pathogenicity. PMID:25414257

  17. Short Communication Molecular cloning and expression pattern of the porcine 5-aminolevulinate synthase 1 (ALAS1) gene and its association with reproductive traits.

    PubMed

    Liu, L Q; Li, F E; Deng, C Y

    2016-01-01

    5-Aminolevulinate synthase 1 (ALAS1) is the first enzyme in the heme biosynthetic pathway and is upregulated in follicular tissue during the early stages of ovulation. In this study, we isolated the complete coding sequence of the porcine ALAS1 gene and its 2-9 intron sequence, identified a single nucleotide polymorphism (SNP; T/C) in intron 9, and developed a PCR-MspI-restriction fragment length polymorphism genotyping assay. Association of the SNP with litter size was assessed in two populations [purebred Large White and the experimental synthetic (DIV) line]. Statistical analysis demonstrated that for total number of piglets born (TNB) in all parities, pigs with the CC genotype had an additional 0.68 and 0.74 piglets compared to the TC and TT animals (P < 0.05) in the DIV line, respectively. Purebred Large White sows inheriting the CC and TC genotypes gave birth to an additional 0.96 and 0.70 piglets compared to the TT animals (P < 0.05) in all parities, respectively. In addition, for TNB in all parities, a significant additive effect of 0.48 ± 0.23 and 0.37 ± 0.17 piglets/ litter was detected in sows of both populations (P < 0.05), respectively. The highest levels of ALAS1 gene expression were observed in isolated ovarian granulosa cells 2 and 12 h after stimulation with pregnant mare serum gonadotropin human chorionic gonadotropin, which represents the time of follicular development and ovulation, respectively. Therefore, the ALAS1 gene was significantly associated with litter size in two populations and could be a useful molecular marker for the selection of increasing litter size in pigs. PMID:26910002

  18. Structure and Mechanism of the tRNA-Dependent Lantibiotic Dehydratase NisB

    PubMed Central

    Ortega, Manuel A.; Hao, Yue; Zhang, Qi; Walker, Mark C.; van der Donk, Wilfred A.; Nair, Satish K.

    2015-01-01

    The lantibiotic nisin is an antimicrobial peptide that is widely used as a food preservative to combat food-borne pathogens1. Nisin contains dehydroalanine and dehydrobutyrine residues that are formed via dehydration of Ser/Thr by the lantibiotic dehydratase NisB2. Recent biochemical studies revealed that NisB glutamylates Ser/Thr side chains as part of the dehydration process3. However, the molecular mechanism by which NisB utilizes glutamate to catalyze dehydration remains unresolved. Here we show that this process involves glutamyl-tRNAGlu to activate Ser/Thr residues. In addition, the 2.9 Å crystal structure of NisB in complex with its substrate peptide NisA reveals the presence of two separate domains that catalyze the Ser/Thr glutamylation and glutamate elimination steps. The co-crystal structure also provides the first insights into substrate recognition by lantibiotic dehydratases. Our findings demonstrate a non-anticipated role for aminoacyl-tRNA in the formation of dehydroamino acids in lantibiotics, and serve as a basis for the functional characterization of the many lantibiotic-like dehydratases involved in the biosynthesis of other classes of natural products. PMID:25363770

  19. Structure and mechanism of the tRNA-dependent lantibiotic dehydratase NisB.

    PubMed

    Ortega, Manuel A; Hao, Yue; Zhang, Qi; Walker, Mark C; van der Donk, Wilfred A; Nair, Satish K

    2015-01-22

    Lantibiotics are a class of peptide antibiotics that contain one or more thioether bonds. The lantibiotic nisin is an antimicrobial peptide that is widely used as a food preservative to combat food-borne pathogens. Nisin contains dehydroalanine and dehydrobutyrine residues that are formed by the dehydration of Ser/Thr by the lantibiotic dehydratase NisB (ref. 2). Recent biochemical studies revealed that NisB glutamylates Ser/Thr side chains as part of the dehydration process. However, the molecular mechanism by which NisB uses glutamate to catalyse dehydration remains unresolved. Here we show that this process involves glutamyl-tRNA(Glu) to activate Ser/Thr residues. In addition, the 2.9-Å crystal structure of NisB in complex with its substrate peptide NisA reveals the presence of two separate domains that catalyse the Ser/Thr glutamylation and glutamate elimination steps. The co-crystal structure also provides insights into substrate recognition by lantibiotic dehydratases. Our findings demonstrate an unexpected role for aminoacyl-tRNA in the formation of dehydroamino acids in lantibiotics, and serve as a basis for the functional characterization of the many lantibiotic-like dehydratases involved in the biosynthesis of other classes of natural products. PMID:25363770

  20. Performance, 5-aminolevulinic acid (ALA) yield and microbial population dynamics in a photobioreactor system treating soybean wastewater: Effect of hydraulic retention time (HRT) and organic loading rate (OLR).

    PubMed

    Liu, Shuli; Zhang, Guangming; Zhang, Jie; Li, Xiangkun; Li, Jianzheng

    2016-06-01

    Effects of hydraulic retention time (HRT) and influent organic loading rate (OLR) were investigated in a photobioreactor containing PNSB (Rhodobacter sphaeroides)-chemoheterotrophic bacteria to treat soybean wastewater. Pollutants removal, biomass production and ALA yield in different phases were investigated in together with functional microbial population dynamics. The results showed that proper HRT and OLR increased the photobioreactor performance including pollutants removal, biomass and ALA productions. 89.5% COD, 90.6% TN and 91.2% TP removals were achieved as well as the highest biomass production of 2655mg/L and ALA yield of 7.40mg/g-biomass under the optimal HRT of 60h and OLR of 2.48g/L/d. In addition, HRT and OLR have important impacts on PNSB and total bacteria dynamics. PMID:26818577

  1. Complementary use of optical coherence tomography and 5-aminolevulinic acid induced fluorescent spectroscopy for diagnosis of neoplastic processes in cervix and vulva

    NASA Astrophysics Data System (ADS)

    Sapozhnikova, Veronika V.; Shakhova, Natalia M.; Kamensky, Vladislav A.; Kuranov, Roman V.; Loshenov, Victor B.; Petrova, Svetlana A.

    2003-07-01

    A new approach to improving the diagnostic value of optical methods is suggested, which is based on a complementary investigation of different optical parameters of biotissues. The aim of this paper is comparative study of the feasibility of two optical methods - fluorescence spectroscopy and optical coherence tomography - for visualization of borders of neoplastic processes in the uterine cervix and vulva. Fluorescence spectroscopy is based on the detection of biochemical and optical coherence tomography on backscattering properties in norm and pathological changes of tissues. By means of these optical methods changes in biochemical and morphological properties of tissues were investigated. A parallel analysis of these two optical methods and histology from the center of tumors and their optical borders was made. Thirteen female patients with neoplastic changes in uterine cervix and vulva were enrolled in this study. The borders of the tumor determined by optical methods (fluorescence spectroscopy and optical coherence tomography) are coinciding with the biopsy proved ones. In addition, OCT and fluorescence borders of tumor in the uterine cervix and vulva exceeds colposcopically detectable borders, the averaging difference 2 mm. In future optical methods would considerably enhance diagnostic accuracy of conventional methods used in oncogynecology.

  2. Cloning, nucleotide sequence, and expression of the Escherichia coli gene encoding carnitine dehydratase.

    PubMed Central

    Eichler, K; Schunck, W H; Kleber, H P; Mandrand-Berthelot, M A

    1994-01-01

    Carnitine dehydratase from Escherichia coli O44 K74 is an inducible enzyme detectable in cells grown anaerobically in the presence of L-(-)-carnitine or crotonobetaine. The purified enzyme catalyzes the dehydration of L-(-)-carnitine to crotonobetaine (H. Jung, K. Jung, and H.-P. Kleber, Biochim. Biophys. Acta 1003:270-276, 1989). The caiB gene, encoding carnitine dehydratase, was isolated by oligonucleotide screening from a genomic library of E. coli O44 K74. The caiB gene is 1,215 bp long, and it encodes a protein of 405 amino acids with a predicted M(r) of 45,074. The identity of the gene product was first assessed by its comigration in sodium dodecyl sulfate-polyacrylamide gels with the purified enzyme after overexpression in the pT7 system and by its enzymatic activity. Moreover, the N-terminal amino acid sequence of the purified protein was found to be identical to that predicted from the gene sequence. Northern (RNA) analysis showed that caiB is likely to be cotranscribed with at least one other gene. This other gene could be the gene encoding a 47-kDa protein, which was overexpressed upstream of caiB. Images PMID:8188598

  3. Identification and characterization of coenzyme B12-dependent glycerol dehydratase- and diol dehydratase-encoding genes from metagenomic DNA libraries derived from enrichment cultures.

    PubMed

    Knietsch, Anja; Bowien, Susanne; Whited, Gregg; Gottschalk, Gerhard; Daniel, Rolf

    2003-06-01

    To isolate genes encoding coenzyme B(12)-dependent glycerol and diol dehydratases, metagenomic libraries from three different environmental samples were constructed after allowing growth of the dehydratase-containing microorganisms present for 48 h with glycerol under anaerobic conditions. The libraries were searched for the targeted genes by an activity screen, which was based on complementation of a constructed dehydratase-negative Escherichia coli strain. In this way, two positive E. coli clones out of 560,000 tested clones were obtained. In addition, screening was performed by colony hybridization with dehydratase-specific DNA fragments as probes. The screening of 158,000 E. coli clones by this method yielded five positive clones. Two of the plasmids (pAK6 and pAK8) recovered from the seven positive clones contained genes identical to those encoding the glycerol dehydratase of Citrobacter freundii and were not studied further. The remaining five plasmids (pAK2 to -5 and pAK7) contained two complete and three incomplete dehydratase-encoding gene regions, which were similar to the corresponding regions of enteric bacteria. Three (pAK2, -3, and -7) coded for glycerol dehydratases and two (pAK4 and -5) coded for diol dehydratases. We were able to perform high-level production and purification of three of these dehydratases. The glycerol dehydratases purified from E. coli Bl21/pAK2.1 and E. coli Bl21/pAK7.1 and the complemented hybrid diol dehydratase purified from E. coli Bl21/pAK5.1 were subject to suicide inactivation by glycerol and were cross-reactivated by the reactivation factor (DhaFG) for the glycerol dehydratase of C. freundii. The activities of the three environmentally derived dehydratases and that of glycerol dehydratase of C. freundii with glycerol or 1,2-propanediol as the substrate were inhibited in the presence of the glycerol fermentation product 1,3-propanediol. Taking the catalytic efficiency, stability against inactivation by glycerol, and

  4. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity.

    PubMed

    Macomber, Lee; Imlay, James A

    2009-05-19

    Excess copper is poisonous to all forms of life, and copper overloading is responsible for several human pathologic processes. The primary mechanisms of toxicity are unknown. In this study, mutants of Escherichia coli that lack copper homeostatic systems (copA cueO cus) were used to identify intracellular targets and to test the hypothesis that toxicity involves the action of reactive oxygen species. Low micromolar levels of copper were sufficient to inhibit the growth of both WT and mutant strains. The addition of branched-chain amino acids restored growth, indicating that copper blocks their biosynthesis. Indeed, copper treatment rapidly inactivated isopropylmalate dehydratase, an iron-sulfur cluster enzyme in this pathway. Other enzymes in this iron-sulfur dehydratase family were similarly affected. Inactivation did not require oxygen, in vivo or with purified enzyme. Damage occurred concomitant with the displacement of iron atoms from the solvent-exposed cluster, suggesting that Cu(I) damages these proteins by liganding to the coordinating sulfur atoms. Copper efflux by dedicated export systems, chelation by glutathione, and cluster repair by assembly systems all enhance the resistance of cells to this metal. PMID:19416816

  5. Crystal structure of 4-hydroxybutyryl-CoA dehydratase: radical catalysis involving a [4Fe-4S] cluster and flavin.

    PubMed

    Martins, Berta M; Dobbek, Holger; Cinkaya, Irfan; Buckel, Wolfgang; Messerschmidt, Albrecht

    2004-11-01

    Dehydratases catalyze the breakage of a carbon-oxygen bond leading to unsaturated products via the elimination of water. The 1.6-A resolution crystal structure of 4-hydroxybutyryl-CoA dehydratase from the gamma-aminobutyrate-fermenting Clostridium aminobutyricum represents a new class of dehydratases with an unprecedented active site architecture. A [4Fe-4S](2+) cluster, coordinated by three cysteine and one histidine residues, is located 7 A from the Re-side of a flavin adenine dinucleotide (FAD) moiety. The structure provides insight into the function of these ubiquitous prosthetic groups in the chemically nonfacile, radical-mediated dehydration of 4-hydroxybutyryl-CoA. The substrate can be bound between the [4Fe-4S](2+) cluster and the FAD with both cofactors contributing to its radical activation and catalytic conversion. Our results raise interesting questions regarding the mechanism of acyl-CoA dehydrogenases, which are involved in fatty acid oxidation, and address the divergent evolution of the ancestral common gene. PMID:15496473

  6. Discovery of Function in the Enolase Superfamily: d-Mannonate and d-Gluconate Dehydratases in the d-Mannonate Dehydratase Subgroup

    PubMed Central

    2015-01-01

    The continued increase in the size of the protein sequence databases as a result of advances in genome sequencing technology is overwhelming the ability to perform experimental characterization of function. Consequently, functions are assigned to the vast majority of proteins via automated, homology-based methods, with the result that as many as 50% are incorrectly annotated or unannotated (Schnoes et al. PLoS Comput. Biol.2009, 5 (12), e100060520011109). This manuscript describes a study of the d-mannonate dehydratase (ManD) subgroup of the enolase superfamily (ENS) to investigate how function diverges as sequence diverges. Previously, one member of the subgroup had been experimentally characterized as ManD [dehydration of d-mannonate to 2-keto-3-deoxy-d-mannonate (equivalently, 2-keto-3-deoxy-d-gluconate)]. In this study, 42 additional members were characterized to sample sequence–function space in the ManD subgroup. These were found to differ in both catalytic efficiency and substrate specificity: (1) high efficiency (kcat/KM = 103 to 104 M–1 s–1) for dehydration of d-mannonate, (2) low efficiency (kcat/KM = 101 to 102 M–1 s–1) for dehydration of d-mannonate and/or D-gluconate, and 3) no-activity with either d-mannonate or d-gluconate (or any other acid sugar tested). Thus, the ManD subgroup is not isofunctional and includes d-gluconate dehydratases (GlcDs) that are divergent from the GlcDs that have been characterized in the mandelate racemase subgroup of the ENS (Lamble et al. FEBS Lett.2004, 576, 133–13615474024) (Ahmed et al. Biochem. J.2005, 390, 529–54015869466). These observations signal caution for functional assignment based on sequence homology and lay the foundation for the studies of the physiological functions of the GlcDs and the promiscuous ManDs/GlcDs. PMID:24697546

  7. Identification and Expression of the Genes Encoding a Reactivating Factor for Adenosylcobalamin-Dependent Glycerol Dehydratase

    PubMed Central

    Tobimatsu, Takamasa; Kajiura, Hideki; Yunoki, Michio; Azuma, Muneaki; Toraya, Tetsuo

    1999-01-01

    Adenosylcobalamin-dependent glycerol dehydratase undergoes inactivation by glycerol, the physiological substrate, during catalysis. In permeabilized cells of Klebsiella pneumoniae, the inactivated enzyme is reactivated in the presence of ATP, Mg2+, and adenosylcobalamin. We identified the two open reading frames as the genes for a reactivating factor for glycerol dehydratase and designated them gdrA and gdrB. The reactivation of the inactivated glycerol dehydratase by the gene products was confirmed in permeabilized recombinant Escherichia coli cells coexpressing GdrA and GdrB proteins with glycerol dehydratase. PMID:10383983

  8. X-ray structure of linalool dehydratase/isomerase from Castellaniella defragrans reveals enzymatic alkene synthesis.

    PubMed

    Weidenweber, Sina; Marmulla, Robert; Ermler, Ulrich; Harder, Jens

    2016-05-01

    Linalool dehydratase/isomerase (Ldi), an enzyme of terpene degradation in Castellaniella defragrans, isomerizes the primary monoterpene alcohol geraniol into the tertiary alcohol (S)-linalool and dehydrates (S)-linalool to the alkene β-myrcene. Here we report on the crystal structures of Ldi with and without terpene substrates, revealing a cofactor-free homopentameric enzyme. The substrates were embedded inside a hydrophobic channel between two monomers of the (α,α)6 barrel fold class and flanked by three clusters of polar residues involved in acid-base catalysis. The detailed view into the active site will guide future biotechnological applications of Ldi, in particular, for industrial butadiene and isoprene production from renewable sources. PMID:27062179

  9. Extended-X-ray-absorption-fine-structure investigations of zinc in 5-aminolaevulinate dehydratase.

    PubMed Central

    Hasnain, S S; Wardell, E M; Garner, C D; Schlösser, M; Beyersmann, D

    1985-01-01

    The zinc co-ordination in 5-aminolaevulinate dehydratase (5-aminolaevulinate hydro-lyase, EC 4.2.1.24) was investigated by recording and interpreting the extended X-ray-absorption fine structure (e.x.a.f.s.) associated with the zinc K-edge. The enzyme has a molecular mass of 280 000 Da and consists of eight subunits of 35 000 Da each; the samples studied contained approx. 1 g-atom of zinc/mol of subunit. Four forms of the enzyme were investigated and details of the zinc environment were elucidated, as follows. In the native enzyme, zinc is considered to be co-ordinated to three sulphur atoms at 0.228(2)nm [2.28(2)A] and a lower-Z atom at 0.192(5)nm [1.92(5)A] (if nitrogen) or 0.189(5)nm [1.89(5)A] (if oxygen). Reaction of the enzyme with the inhibitor 2-bromo-3-(imidazol-5-yl)propionic acid produced significant changes in the e.x.a.f.s., the nature of which are consistent with co-ordination by about three sulphur atoms at 0.222(2)nm [2.22(2)A], a nitrogen atom at 0.193(5)nm [1.93(5)A] and a nitrogen atom from the inhibitor at 0.214(5)nm [2.14(5)A]. Inactivation of the enzyme by air-oxidation of essential thiol groups and binding of the substrate produce slight changes in the e.x.a.f.s. consistent with slight re-arrangement of ligands with additional lighter ligands (nitrogen or oxygen). These results, when combined with previous findings, are taken to indicate that zinc has a structural rather than a direct catalytic role in 5-aminolaevulinate dehydratase. PMID:4062868

  10. Daylight photodynamic therapy with 1.5% 3-butenyl 5-aminolevulinate gel as a convenient, effective and safe therapy in acne treatment: A double-blind randomized controlled trial.

    PubMed

    Kwon, Hyuck Hoon; Moon, Ki Rang; Park, Seon Yong; Yoon, Ji Young; Suh, Dae Hun; Lee, Jee Bum

    2016-05-01

    While daylight photodynamic therapy (PDT) is a simpler and more tolerable treatment procedure for both clinicians and patients, it has never been applied for acne treatment. In this study, we evaluated efficacy, safety and histological changes of facial acne after application of the novel variant of 5-aminolevulinate (ALA)-ester, 1.5% 3-butenyl ALA-bu gel, using daylight only as the potential visible light source. Forty-six acne patients were randomly assigned to either ALA-bu or vehicle application group in a double-blind fashion. Both groups applied the allocated gel to facial acne lesions every other day for 12 weeks. At the final 12 week, both inflammatory and non-inflammatory acne lesions had decreased significantly by 58.0% and 34.1% in the ALA-bu group, respectively. Only a few patients expressed mild adverse effects. In the histopathological analysis, attenuated inflammatory cell infiltrations were observed and immunostaining intensities for interleukin-8, interleukin-1β, matrix metalloproteinase-9 and phosphorylated nuclear factor-κB were reduced concomitantly. Changes of their mRNA expression demonstrated comparable patterns. In conclusion, this ambulatory PDT was effective, very well tolerated and convenient for treating inflammatory acne lesions. Experimental results correlated well with clinical results. This novel regimen would provide a viable option for acne therapy. PMID:26660491

  11. Crystal structure of substrate free form of glycerol dehydratase

    SciTech Connect

    Liao, Der-Ing; Dotson, Garry; Turner, Jr., Ivan; Reiss, Lisa; Emptage, Mark

    2010-03-08

    Glycerol dehydratase (GDH) and diol dehydratase (DDH) are highly homologous isofunctional enzymes that catalyze the elimination of water from glycerol and 1,2-propanediol (1,2-PD) to the corresponding aldehyde via a coenzyme B{sub 12}-dependent radical mechanism. The crystal structure of substrate free form of GDH in complex with cobalamin and K{sup +} has been determined at 2.5 {angstrom} resolution. Its overall fold and the subunit assembly closely resemble those of DDH. Comparison of this structure and the DDH structure, available only in substrate bound form, shows the expected change of the coordination of the essential K{sup +} from hexacoordinate to heptacoordinate with the displacement of a single coordinated water by the substrate diol. In addition, there appears to be an increase in the rigidity of the K{sup +} coordination (as measured by lower B values) upon the binding of the substrate. Structural analysis of the locations of conserved residues among various GDH and DDH sequences has aided in identification of residues potentially important for substrate preference or specificity of protein-protein interactions.

  12. Crystallization and X-ray diffraction analysis of an l-arabinonate dehydratase from Rhizobium leguminosarum bv. trifolii and a d-xylonate dehydratase from Caulobacter crescentus

    PubMed Central

    Rahman, Mohammad Mubinur; Andberg, Martina; Koivula, Anu; Rouvinen, Juha; Hakulinen, Nina

    2016-01-01

    l-Arabinonate dehydratase (EC 4.2.1.25) and d-xylonate dehydratase (EC 4.2.1.82) are two enzymes that are involved in a nonphosphorylative oxidation pathway of pentose sugars. l-Arabinonate dehydratase converts l-arabinonate into 2-dehydro-3-deoxy-l-arabinonate, and d-xylonate dehydratase catalyzes the dehydration of d-xylonate to 2-dehydro-3-deoxy-d-xylonate. l-Arabinonate and d-xylonate dehydratases belong to the IlvD/EDD family, together with 6-phosphogluconate dehydratases and dihydroxyacid dehydratases. No crystal structure of any l-arabinonate or d-xylonate dehydratase is available in the PDB. In this study, recombinant l-arabinonate dehydratase from Rhizobium leguminosarum bv. trifolii (RlArDHT) and d-xylonate dehydratase from Caulobacter crescentus (CcXyDHT) were heterologously expressed in Escherichia coli and purified by the use of affinity chromatography followed by gel-filtration chromatography. The purified proteins were crystallized using the hanging-drop vapour-diffusion method at 293 K. Crystals of RlArDHT that diffracted to 2.40 Å resolution were obtained using sodium formate as a precipitating agent. They belonged to space group P21, with unit-cell parameters a = 106.07, b = 208.61, c = 147.09 Å, β = 90.43°. Eight RlArDHT molecules (two tetramers) in the asymmetric unit give a V M value of 3.2 Å3 Da−1 and a solvent content of 62%. Crystals of CcXyDHT that diffracted to 2.66 Å resolution were obtained using sodium formate and polyethylene glycol 3350. They belonged to space group C2, with unit-cell parameters a = 270.42, b = 236.13, c = 65.17 Å, β = 97.38°. Four CcXyDHT molecules (a tetramer) in the asymmetric unit give a V M value of 4.0 Å3 Da−1 and a solvent content of 69%. PMID:27487924

  13. Crystallization and X-ray diffraction analysis of an L-arabinonate dehydratase from Rhizobium leguminosarum bv. trifolii and a D-xylonate dehydratase from Caulobacter crescentus.

    PubMed

    Rahman, Mohammad Mubinur; Andberg, Martina; Koivula, Anu; Rouvinen, Juha; Hakulinen, Nina

    2016-08-01

    L-Arabinonate dehydratase (EC 4.2.1.25) and D-xylonate dehydratase (EC 4.2.1.82) are two enzymes that are involved in a nonphosphorylative oxidation pathway of pentose sugars. L-Arabinonate dehydratase converts L-arabinonate into 2-dehydro-3-deoxy-L-arabinonate, and D-xylonate dehydratase catalyzes the dehydration of D-xylonate to 2-dehydro-3-deoxy-D-xylonate. L-Arabinonate and D-xylonate dehydratases belong to the IlvD/EDD family, together with 6-phosphogluconate dehydratases and dihydroxyacid dehydratases. No crystal structure of any L-arabinonate or D-xylonate dehydratase is available in the PDB. In this study, recombinant L-arabinonate dehydratase from Rhizobium leguminosarum bv. trifolii (RlArDHT) and D-xylonate dehydratase from Caulobacter crescentus (CcXyDHT) were heterologously expressed in Escherichia coli and purified by the use of affinity chromatography followed by gel-filtration chromatography. The purified proteins were crystallized using the hanging-drop vapour-diffusion method at 293 K. Crystals of RlArDHT that diffracted to 2.40 Å resolution were obtained using sodium formate as a precipitating agent. They belonged to space group P21, with unit-cell parameters a = 106.07, b = 208.61, c = 147.09 Å, β = 90.43°. Eight RlArDHT molecules (two tetramers) in the asymmetric unit give a VM value of 3.2 Å(3) Da(-1) and a solvent content of 62%. Crystals of CcXyDHT that diffracted to 2.66 Å resolution were obtained using sodium formate and polyethylene glycol 3350. They belonged to space group C2, with unit-cell parameters a = 270.42, b = 236.13, c = 65.17 Å, β = 97.38°. Four CcXyDHT molecules (a tetramer) in the asymmetric unit give a VM value of 4.0 Å(3) Da(-1) and a solvent content of 69%. PMID:27487924

  14. Purification, crystallization and preliminary X-ray diffraction analysis of a novel keto-deoxy-d-galactarate (KDG) dehydratase from Agrobacterium tumefaciens

    PubMed Central

    Taberman, Helena; Andberg, Martina; Parkkinen, Tarja; Richard, Peter; Hakulinen, Nina; Koivula, Anu; Rouvinen, Juha

    2014-01-01

    d-Galacturonic acid is the main component of pectin. It could be used to produce affordable renewable fuels, chemicals and materials through biotechnical conversion. Keto-deoxy-d-galactarate (KDG) dehydratase is an enzyme in the oxidative pathway of d-galacturonic acid in Agrobacterium tumefaciens (At). It converts 3-deoxy-2-keto-l-threo-hexarate to α-ketoglutaric semialdehyde. At KDG dehydratase was crystallized by the hanging-drop vapour-diffusion method. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 169.1, b = 117.8, c = 74.3 Å, β = 112.4° and an asymmetric unit of four monomers. X-ray diffraction data were collected to 1.9 Å resolution using synchrotron radiation. The three-dimensional structure of At KDG dehydratase will provide valuable information on the function of the enzyme and will allow it to be engineered for biorefinery-based applications. PMID:24419616

  15. Evolution of Enzymatic Activities in the Enolase Superfamily: Galactarate Dehydratase III from Agrobacterium tumefaciens C58

    PubMed Central

    2015-01-01

    The genome of Agrobacterium tumefaciens C58 encodes 12 members of the enolase superfamily (ENS), eight of which are members of the mandelate racemase (MR) subgroup and, therefore, likely to be acid sugar dehydratases. Using a library of 77 acid sugars for high-throughput screening, one protein (UniProt entry A9CG74; locus tag Atu4196) showed activity with both m-galactarate and d-galacturonate. Two families of galactarate dehydratases had been discovered previously in the ENS, GalrD/TalrD [Yew, W. S., et al. (2007) Biochemistry46, 9564–9577] and GalrD-II [Rakus, J. F., et al. (2009) Biochemistry48, 11546–11558]; these have different active site acid/base catalysis and have no activity with d-galacturonate. A9CG74 dehydrates m-galactarate to form 2-keto-3-deoxy-galactarate but does not dehydrate d-galacturonate as expected. Instead, when A9CG74 is incubated with d-galacturonate, 3-deoxy-d-xylo-hexarate or 3-deoxy-d-lyxo-hexarate is formed. In this reaction, instead of abstracting the C5 proton α to the carboxylate group, the expected reaction for a member of the ENS, the enzyme apparently abstracts the proton α to the aldehyde group to form 3-deoxy-d-threo-hexulosuronate that undergoes a 1,2-hydride shift similar to the benzylic acid rearrangement to form the observed product. A. tumefaciens C58 does not utilize m-galactarate as a carbon source under the conditions tested in this study, although it does utilize d-galacturonate, which is a likely precursor to m-galactarate. The gene encoding A9CG74 and several genome proximal genes were upregulated with d-galacturonate as the carbon source. One of these, a member of the dihydrodipicolinate synthase superfamily, catalyzes the dehydration and subsequent decarboxylation of 2-keto-3-deoxy-d-galactarate to α-ketoglutarate semialdehyde, thereby providing a pathway for the conversion of m-galactarate to α-ketoglutarate semialdehyde. PMID:24926996

  16. Evolution of enzymatic activities in the enolase superfamily: galactarate dehydratase III from Agrobacterium tumefaciens C58.

    PubMed

    Groninger-Poe, Fiona P; Bouvier, Jason T; Vetting, Matthew W; Kalyanaraman, Chakrapani; Kumar, Ritesh; Almo, Steven C; Jacobson, Matthew P; Gerlt, John A

    2014-07-01

    The genome of Agrobacterium tumefaciens C58 encodes 12 members of the enolase superfamily (ENS), eight of which are members of the mandelate racemase (MR) subgroup and, therefore, likely to be acid sugar dehydratases. Using a library of 77 acid sugars for high-throughput screening, one protein (UniProt entry A9CG74; locus tag Atu4196) showed activity with both m-galactarate and d-galacturonate. Two families of galactarate dehydratases had been discovered previously in the ENS, GalrD/TalrD [Yew, W. S., et al. (2007) Biochemistry 46, 9564-9577] and GalrD-II [Rakus, J. F., et al. (2009) Biochemistry 48, 11546-11558]; these have different active site acid/base catalysis and have no activity with d-galacturonate. A9CG74 dehydrates m-galactarate to form 2-keto-3-deoxy-galactarate but does not dehydrate d-galacturonate as expected. Instead, when A9CG74 is incubated with d-galacturonate, 3-deoxy-d-xylo-hexarate or 3-deoxy-d-lyxo-hexarate is formed. In this reaction, instead of abstracting the C5 proton α to the carboxylate group, the expected reaction for a member of the ENS, the enzyme apparently abstracts the proton α to the aldehyde group to form 3-deoxy-d-threo-hexulosuronate that undergoes a 1,2-hydride shift similar to the benzylic acid rearrangement to form the observed product. A. tumefaciens C58 does not utilize m-galactarate as a carbon source under the conditions tested in this study, although it does utilize d-galacturonate, which is a likely precursor to m-galactarate. The gene encoding A9CG74 and several genome proximal genes were upregulated with d-galacturonate as the carbon source. One of these, a member of the dihydrodipicolinate synthase superfamily, catalyzes the dehydration and subsequent decarboxylation of 2-keto-3-deoxy-d-galactarate to α-ketoglutarate semialdehyde, thereby providing a pathway for the conversion of m-galactarate to α-ketoglutarate semialdehyde. PMID:24926996

  17. Dehydratase mediated 1-propanol production in metabolically engineered Escherichia coli

    PubMed Central

    2011-01-01

    Background With the increasing consumption of fossil fuels, the question of meeting the global energy demand is of great importance in the near future. As an effective solution, production of higher alcohols from renewable sources by microorganisms has been proposed to address both energy crisis and environmental concerns. Higher alcohols contain more than two carbon atoms and have better physiochemical properties than ethanol as fuel substitutes. Results We designed a novel 1-propanol metabolic pathway by expanding the well-known 1,2-propanediol pathway with two more enzymatic steps catalyzed by a 1,2-propanediol dehydratase and an alcohol dehydrogenase. In order to engineer the pathway into E. coli, we evaluated the activities of eight different methylglyoxal synthases which play crucial roles in shunting carbon flux from glycolysis towards 1-propanol biosynthesis, as well as two secondary alcohol dehydrogenases of different origins that reduce both methylglyoxal and hydroxyacetone. It is evident from our results that the most active enzymes are the methylglyoxal synthase from Bacillus subtilis and the secondary alcohol dehydrogenase from Klebsiella pneumoniae, encoded by mgsA and budC respectively. With the expression of these two genes and the E. coli ydjG encoding methylglyoxal reductase, we achieved the production of 1,2-propanediol at 0.8 g/L in shake flask experiments. We then characterized the catalytic efficiency of three different diol dehydratases on 1,2-propanediol and identified the optimal one as the 1,2-propanediol dehydratase from Klebsiella oxytoca, encoded by the operon ppdABC. Co-expressing this enzyme with the above 1,2-propanediol pathway in wild type E. coli resulted in the production of 1-propanol at a titer of 0.25 g/L. Conclusions We have successfully established a new pathway for 1-propanol production by shunting the carbon flux from glycolysis. To our knowledge, it is the first time that this pathway has been utilized to produce 1

  18. Dual gene defects involving delta-aminolaevulinate dehydratase and coproporphyrinogen oxidase in a porphyria patient.

    PubMed

    Akagi, Reiko; Inoue, Rikako; Muranaka, Shikibu; Tahara, Tsuyoshi; Taketani, Shigeru; Anderson, Karl E; Phillips, John D; Sassa, Shigeru

    2006-01-01

    Summary A Caucasian male had symptoms of acute porphyria, with increases in urinary delta-aminolaevulinic acid (ALA), porphobilinogen (PBG) and coproporphyrin that were consistent with hereditary coproporphyria (HCP). However, a greater than expected increase in ALA, compared with PBG, and a substantial increase in erythrocyte zinc protoporphyrin, suggested additional ALA dehydratase (ALAD) deficiency. Nucleotide sequence analysis of coproporphyrinogen oxidase (CPO) cDNA of the patient, but not of the parents, revealed a novel nucleotide transition G835-->C, resulting in an amino acid change, G279R. The mutant CPO protein expressed in Escherichia coli was unstable, and produced about 5% of activity compared with the wild-type CPO. Erythrocyte ALAD activity was 32% of normal in the proband. Nucleotide sequence analysis of cloned ALAD cDNAs from the patient revealed a C36-->G base transition (F12L amino acid change). The F12L ALAD mutation, which was found in the mother and a brother, was previously described, and is known to lack any enzyme activity. This patient thus represents the first case of porphyria where both CPO and ALAD deficiencies were demonstrated at the molecular level. PMID:16398658

  19. Hydrogen transfer in catalysis by adenosylcobalamin-dependent diol dehydratase.

    PubMed

    Moore, K W; Bachovchin, W W; Gunter, J B; Richards, J H

    1979-06-26

    Studies [bachovchin, W. W., et al. (1978) Biochemistry 17, 2218] of the mechanism of inactivation of adenosylcobalamin-dependent diol dehydratase have led to the development of a general method to describe the kinetics of a reaction pathway containing a reservoir of mobile hydrogen. Analysis by this method of catalytic rate measurements for mixtures of 1,2-propanediol and 1,1-dideuterio-1,2-propanediol supports a mechanism involving an intermediate with three equivalent hydrogens, in which hydrogen transfer from this intermediate to product is the major rate-contributing step. Other results using tritium as a trace label [essenberg, M. K., et al. (1971) J. Am. Chem. Soc. 93, 1242] are considered in light of these deuterium isotope studies. PMID:383139

  20. Crystallization and preliminary X-ray diffraction analysis of prephenate dehydratase from Mycobacterium tuberculosis H37Rv

    SciTech Connect

    Vivan, Ana Luiza; Dias, Márcio Vinícius Bertacini; Azevedo, Walter Filgueira Jr de; Basso, Luiz Augusto Santos, Diógenes Santiago

    2006-04-01

    The M. tuberculosis prephenate dehydratase was cloned, expressed, purified, crystallized by the hanging-drop vapour-diffusion method, and a complete data set collected to 3.2 Å resolution using synchrotron radiation. These results should pave the way for the three-dimensional structure determination of the enzyme and provide a framework on which to base the rational design of chemotherapeutic agents to treat tuberculosis. Tuberculosis remains the leading cause of mortality arising from a bacterial pathogen (Mycobacterium tuberculosis). There is an urgent need for the development of new antimycobacterial agents. The aromatic amino-acid pathway is essential for the survival of this pathogen and represents a target for structure-based drug design. Accordingly, the M. tuberculosis prephenate dehydratase has been cloned, expressed, purified and crystallized by the hanging-drop vapour-diffusion method using PEG 400 as a precipitant. The crystal belongs to the orthorhombic space group I222 or I2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 98.26, b = 133.22, c = 225.01 Å, and contains four molecules in the asymmetric unit. A complete data set was collected to 3.2 Å resolution using a synchrotron-radiation source.

  1. Cloning, Expression, Mutagenesis Library Construction of Glycerol Dehydratase, and Binding Mode Simulation of Its Reactivase with Ligands.

    PubMed

    Jiang, Wei; Li, Wenjun; Hong, Yan; Wang, Shizhen; Fang, Baishan

    2016-02-01

    The production of 1, 3-propanediol (1, 3-PD) and 3-hydroxypropionaldehyde (3-HPA) by enzyme reaction has been a hot field, and glycerol dehydratase (GDHt) is the key and rate-limiting enzyme involved in their biosynthesis. The gldABC gene encoding GDHt was cloned from Klebsiella pneumoniae, and the activity of the corresponding proteins expressed extracellularly and intracellularly was 6.8 and 3.2 U/mg, respectively, about six and three times higher than that of the wild strain. The change of amino acids for the β subunit can adjust the length of the Co-N bond and affect the homolysis rate of the Co-C bond to change GDHt activity. The expression plasmid, pET-32a-gldAC (containing no gldB which encodes the β subunit of GDHt), was constructed to build the mutagenesis library to improve the GDHt activity. The binding models of glycerol dehydratase reactivation factor (GDHtR) with ATP, CTP, or GTP were simulated by semi-flexible docking, respectively, and there was almost no difference between them. This research provided the basis for studying the quantitative structure-activity relationships between GDHtR and its ligands, as well as searching inexpensive ligands to replace ATP. These results and methods are of great use in economical and highly efficient production of 3-HPA and 1, 3-PD by the enzyme method. PMID:26547853

  2. The structure of (3R)-hydroxyacyl-acyl carrier protein dehydratase (FabZ) from Pseudomonas aeruginosa.

    PubMed

    Kimber, Matthew S; Martin, Fernando; Lu, Yingjie; Houston, Simon; Vedadi, Masoud; Dharamsi, Akil; Fiebig, Klaus M; Schmid, Molly; Rock, Charles O

    2004-12-10

    Type II fatty acid biosynthesis systems are essential for membrane formation in bacteria, making the constituent proteins of this pathway attractive targets for antibacterial drug discovery. The third step in the elongation cycle of the type II fatty acid biosynthesis is catalyzed by beta-hydroxyacyl-(acyl carrier protein) (ACP) dehydratase. There are two isoforms. FabZ, which catalyzes the dehydration of (3R)-hydroxyacyl-ACP to trans-2-acyl-ACP, is a universally expressed component of the bacterial type II system. FabA, the second isoform, as has more limited distribution in nature and, in addition to dehydration, also carries out the isomerization of trans-2- to cis-3-decenoyl-ACP as an essential step in unsaturated fatty acid biosynthesis. We report the structure of FabZ from the important human pathogen Pseudomonas aeruginosa at 2.5 A of resolution. PaFabZ is a hexamer (trimer of dimers) with the His/Glu catalytic dyad located within a deep, narrow tunnel formed at the dimer interface. Site-directed mutagenesis experiments showed that the obvious differences in the active site residues that distinguish the FabA and FabZ subfamilies of dehydratases do not account for the unique ability of FabA to catalyze isomerization. Because the catalytic machinery of the two enzymes is practically indistinguishable, the structural differences observed in the shape of the substrate binding channels of FabA and FabZ lead us to hypothesize that the different shapes of the tunnels control the conformation and positioning of the bound substrate, allowing FabA, but not FabZ, to catalyze the isomerization reaction. PMID:15371447

  3. Structural investigation of inhibitor designs targeting 3-dehydroquinate dehydratase from the shikimate pathway of Mycobacterium tuberculosis

    SciTech Connect

    Dias, Marcio V.B.; Snee, William C.; Bromfield, Karen M.; Payne, Richard J.; Palaninathan, Satheesh K.; Ciulli, Alessio; Howard, Nigel I.; Abell, Chris; Sacchettini, James C.; Blundell, Tom L.

    2011-09-06

    The shikimate pathway is essential in Mycobacterium tuberculosis and its absence from humans makes the enzymes of this pathway potential drug targets. In the present paper, we provide structural insights into ligand and inhibitor binding to 3-dehydroquinate dehydratase (dehydroquinase) from M. tuberculosis (MtDHQase), the third enzyme of the shikimate pathway. The enzyme has been crystallized in complex with its reaction product, 3-dehydroshikimate, and with six different competitive inhibitors. The inhibitor 2,3-anhydroquinate mimics the flattened enol/enolate reaction intermediate and serves as an anchor molecule for four of the inhibitors investigated. MtDHQase also forms a complex with citrazinic acid, a planar analogue of the reaction product. The structure of MtDHQase in complex with a 2,3-anhydroquinate moiety attached to a biaryl group shows that this group extends to an active-site subpocket inducing significant structural rearrangement. The flexible extensions of inhibitors designed to form {pi}-stacking interactions with the catalytic Tyr{sup 24} have been investigated. The high-resolution crystal structures of the MtDHQase complexes provide structural evidence for the role of the loop residues 19-24 in MtDHQase ligand binding and catalytic mechanism and provide a rationale for the design and efficacy of inhibitors.

  4. Oxidative Profile and δ-Aminolevulinate Dehydratase Activity in Healthy Pregnant Women with Iron Supplementation.

    PubMed

    De Lucca, Leidiane; Rodrigues, Fabiane; Jantsch, Letícia B; Neme, Walter S; Gallarreta, Francisco M P; Gonçalves, Thissiane L

    2016-01-01

    An oxidative burst occurs during pregnancy due to the large consumption of oxygen in the tissues and an increase in metabolic demands in response to maternal physiological changes and fetal growth. This study aimed to determine the oxidative profile and activity of δ-aminolevulinate dehydratase (δ-ALA-D) in pregnant women who received iron supplementation. Oxidative stress parameters were evaluated in 25 pregnant women with iron supplementation, 25 pregnant women without supplementation and 25 non-pregnant women. The following oxidative stress parameters were evaluated: thiobarbituric acid reactive substances (TBARS), protein thiol groups (P-SH), non-protein thiol levels (NP-SH), vitamin C levels, catalase and δ-ALA-D activity. Markers of oxidative stress and cell damage, such as TBARS in plasma were significantly higher in pregnant women without supplementation. Levels of P-SH, NP-SH and δ-ALA-D activity were significantly lower in pregnant women without supplementation compared to non-pregnant and pregnant women with supplementation, while vitamin C levels were significantly lower in pregnant women without supplementation when compared to non-pregnant women. The increase in the generation of oxidative species and decrease of antioxidants suggest the loss of physiological oxidative balance during normal pregnancy, which was not observed in pregnant women with iron supplementation, suggesting a protective effect of iron against oxidative damage. PMID:27153075

  5. Oxidative Profile and δ-Aminolevulinate Dehydratase Activity in Healthy Pregnant Women with Iron Supplementation

    PubMed Central

    De Lucca, Leidiane; Rodrigues, Fabiane; Jantsch, Letícia B.; Neme, Walter S.; Gallarreta, Francisco M. P.; Gonçalves, Thissiane L.

    2016-01-01

    An oxidative burst occurs during pregnancy due to the large consumption of oxygen in the tissues and an increase in metabolic demands in response to maternal physiological changes and fetal growth. This study aimed to determine the oxidative profile and activity of δ-aminolevulinate dehydratase (δ-ALA-D) in pregnant women who received iron supplementation. Oxidative stress parameters were evaluated in 25 pregnant women with iron supplementation, 25 pregnant women without supplementation and 25 non-pregnant women. The following oxidative stress parameters were evaluated: thiobarbituric acid reactive substances (TBARS), protein thiol groups (P-SH), non-protein thiol levels (NP-SH), vitamin C levels, catalase and δ-ALA-D activity. Markers of oxidative stress and cell damage, such as TBARS in plasma were significantly higher in pregnant women without supplementation. Levels of P-SH, NP-SH and δ-ALA-D activity were significantly lower in pregnant women without supplementation compared to non-pregnant and pregnant women with supplementation, while vitamin C levels were significantly lower in pregnant women without supplementation when compared to non-pregnant women. The increase in the generation of oxidative species and decrease of antioxidants suggest the loss of physiological oxidative balance during normal pregnancy, which was not observed in pregnant women with iron supplementation, suggesting a protective effect of iron against oxidative damage. PMID:27153075

  6. Covalent Modification of the Mycobacterium tuberculosis FAS-II Dehydratase by Isoxyl and Thiacetazone

    PubMed Central

    2015-01-01

    Isoxyl (ISO) and thiacetazone (TAC) are two antitubercular prodrugs formerly used in the clinical treatment of tuberculosis. Although both prodrugs have recently been shown to kill Mycobacterium tuberculosis through the inhibition of the dehydration step of the type II fatty acid synthase pathway, their detailed mechanism of inhibition, the precise number of enzymes involved in their activation, and the nature of their activated forms remained unknown. This paper demonstrates that both ISO and TAC specifically and covalently react with a cysteine residue (Cys61) of the HadA subunit of the dehydratase, thereby inhibiting HadAB activity. The results unveil for the first time the nature of the active forms of ISO and TAC and explain the basis for the structure–activity relationship of and resistance to these thiourea prodrugs. The results further indicate that the flavin-containing monooxygenase EthA is most likely the only enzyme required for the activation of ISO and TAC in mycobacteria. PMID:25897434

  7. Insights into the Mechanism of Type I Dehydroquinate Dehydratases from Structures of Reaction Intermediates

    SciTech Connect

    Light, Samuel H.; Minasov, George; Shuvalova, Ludmilla; Duban, Mark-Eugene; Caffrey, Michael; Anderson, Wayne F.; Lavie, Arnon

    2012-02-27

    The biosynthetic shikimate pathway consists of seven enzymes that catalyze sequential reactions to generate chorismate, a critical branch point in the synthesis of the aromatic amino acids. The third enzyme in the pathway, dehydroquinate dehydratase (DHQD), catalyzes the dehydration of 3-dehydroquinate to 3-dehydroshikimate. We present three crystal structures of the type I DHQD from the intestinal pathogens Clostridium difficile and Salmonella enterica. Structures of the enzyme with substrate and covalent pre- and post-dehydration reaction intermediates provide snapshots of successive steps along the type I DHQD-catalyzed reaction coordinate. These structures reveal that the position of the substrate within the active site does not appreciably change upon Schiff base formation. The intermediate state structures reveal a reaction state-dependent behavior of His-143 in which the residue adopts a conformation proximal to the site of catalytic dehydration only when the leaving group is present. We speculate that His-143 is likely to assume differing catalytic roles in each of its observed conformations. One conformation of His-143 positions the residue for the formation/hydrolysis of the covalent Schiff base intermediates, whereas the other conformation positions the residue for a role in the catalytic dehydration event. The fact that the shikimate pathway is absent from humans makes the enzymes of the pathway potential targets for the development of non-toxic antimicrobials. The structures and mechanistic insight presented here may inform the design of type I DHQD enzyme inhibitors.

  8. Evolution of Enzymatic Activities int he Enolase Superfamily: L-Talarate/Galactarate Dehydratase from Salmonella typhimurium LT2

    SciTech Connect

    Yew,W.; Fedorov, A.; Fedorov, E.; Almo, S.; Gerlt, J.

    2007-01-01

    We assigned L-talarate dehydratase (TalrD) and galactarate dehydratase (GalrD) functions to a group of orthologous proteins in the mechanistically diverse enolase superfamily, focusing our characterization on the protein encoded by the Salmonella typhimurium LT2 genome (GI:16766982; STM3697). Like the homologous mandelate racemase, L-fuconate dehydratase, and D-tartrate dehydratase, the active site of TalrD/GalrD contains a general acid/base Lys 197 at the end of the second {beta}-strand in the ({beta}/{alpha}){sub 7}{beta}-barrel domain, Asp 226, Glu 252, and Glu 278 as ligands for the essential Mg{sup 2+} at the ends of the third, fourth, and fifth {sup {beta}}-strands, a general acid/base His 328-Asp 301 dyad at the ends of the seventh and sixth {beta}-strands, and an electrophilic Glu 348 at the end of the eighth {beta}-strand. We discovered the function of STM3697 by screening a library of acid sugars; it catalyzes the efficient dehydration of both L-talarate (k{sub cat} = 2.1 s{sup -1}, k{sub cat}/K{sub m} = 9.1 x 10{sup 3} M{sup -1} s{sup -1}) and galactarate (k{sub cat} = 3.5 s{sup -1}, k{sub cat}/K{sub m} = 1.1 x 10{sup 4} M{sup -1} s{sup -1}). Because L-talarate is a previously unknown metabolite, we demonstrated that S. typhimurium LT2 can utilize L-talarate as carbon source. Insertional disruption of the gene encoding STM3697 abolishes this phenotype; this disruption also diminishes, but does not eliminate, the ability of the organism to utilize galactarate as carbon source. The dehydration of L-talarate is accompanied by competing epimerization to galactarate; little epimerization to L-talarate is observed in the dehydration of galactarate. On the basis of (1) structures of the wild type enzyme complexed with L-lyxarohydroxamate, an analogue of the enolate intermediate, and of the K197A mutant complexed with L-glucarate, a substrate for exchange of the {alpha}-proton, and (2) incorporation of solvent deuterium into galactarate in competition with

  9. A Conserved Surface Loop in Type I Dehydroquinate Dehydratases Positions an Active Site Arginine and Functions in Substrate Binding

    SciTech Connect

    Light, Samuel H.; Minasov, George; Shuvalova, Ludmilla; Peterson, Scott N.; Caffrey, Michael; Anderson, Wayne F.; Lavie, Arnon

    2012-04-18

    Dehydroquinate dehydratase (DHQD) catalyzes the third step in the biosynthetic shikimate pathway. We present three crystal structures of the Salmonella enterica type I DHQD that address the functionality of a surface loop that is observed to close over the active site following substrate binding. Two wild-type structures with differing loop conformations and kinetic and structural studies of a mutant provide evidence of both direct and indirect mechanisms of involvement of the loop in substrate binding. In addition to allowing amino acid side chains to establish a direct interaction with the substrate, closure of the loop necessitates a conformational change of a key active site arginine, which in turn positions the substrate productively. The absence of DHQD in humans and its essentiality in many pathogenic bacteria make the enzyme a target for the development of nontoxic antimicrobials. The structures and ligand binding insights presented here may inform the design of novel type I DHQD inhibiting molecules.

  10. The Aspergillus fumigatus Dihydroxyacid Dehydratase Ilv3A/IlvC Is Required for Full Virulence

    PubMed Central

    Oliver, Jason D.; Kaye, Sarah J.; Tuckwell, Danny; Johns, Anna E.; Macdonald, Darel A.; Livermore, Joanne; Warn, Peter A.; Birch, Mike; Bromley, Michael J.

    2012-01-01

    Dihydroxyacid dehydratase (DHAD) is a key enzyme in the branched-chain amino acid biosynthetic pathway that exists in a variety of organisms, including fungi, plants and bacteria, but not humans. In this study we identified four putative DHAD genes from the filamentous fungus Aspergillus fumigatus by homology to Saccharomyces cerevisiae ILV3. Two of these genes, AFUA_2G14210 and AFUA_1G03550, initially designated AfIlv3A and AfIlv3B for this study, clustered in the same group as S. cerevisiae ILV3 following phylogenetic analysis. To investigate the functions of these genes, AfIlv3A and AfIlv3B were knocked out in A. fumigatus. Deletion of AfIlv3B gave no apparent phenotype whereas the Δilv3A strain required supplementation with isoleucine and valine for growth. Thus, AfIlv3A is required for branched-chain amino acid synthesis in A. fumigatus. A recombinant AfIlv3A protein derived from AFUA_2G14210 was shown to have DHAD activity in an in vitro assay, confirming that AfIlv3A is a DHAD. In addition we show that mutants lacking AfIlv3A and ilv3B exhibit reduced levels of virulence in murine infection models, emphasising the importance of branched-chain amino acid biosynthesis in fungal infections, and hence the potential of targeting this pathway with antifungal agents. Here we propose that AfIlv3A/AFUA_2G2410 be named ilvC. PMID:23028460

  11. Crystal structure of aldoxime dehydratase and its catalytic mechanism involved in carbon-nitrogen triple-bond synthesis.

    PubMed

    Nomura, Junpei; Hashimoto, Hiroshi; Ohta, Takehiro; Hashimoto, Yoshiteru; Wada, Koichi; Naruta, Yoshinori; Oinuma, Ken-Ichi; Kobayashi, Michihiko

    2013-02-19

    Aldoxime dehydratase (OxdA), which is a unique heme protein, catalyzes the dehydration of an aldoxime to a nitrile even in the presence of water in the reaction mixture. Unlike the utilization of H(2)O(2) or O(2) as a mediator of catalysis by other heme-containing enzymes (e.g., P450), OxdA is notable for the direct binding of a substrate to the heme iron. Here, we determined the crystal structure of OxdA. We then constructed OxdA mutants in which each of the polar amino acids lying within ∼6 Å of the iron atom of the heme was converted to alanine. Among the purified mutant OxdAs, S219A had completely lost and R178A exhibited a reduction in the activity. Together with this finding, the crystal structural analysis of OxdA and spectroscopic and electrostatic potential analyses of the wild-type and mutant OxdAs suggest that S219 plays a key role in the catalysis, forming a hydrogen bond with the substrate. Based on the spatial arrangement of the OxdA active site and the results of a series of mutagenesis experiments, we propose the detailed catalytic mechanism of general aldoxime dehydratases: (i) S219 stabilizes the hydroxy group of the substrate to increase its basicity; (ii) H320 acts as an acid-base catalyst; and (iii) R178 stabilizes the heme, and would donate a proton to and accept one from H320. PMID:23382199

  12. The Cryptic dsdA Gene Encodes a Functional D-Serine Dehydratase in Pseudomonas aeruginosa PAO1.

    PubMed

    Li, Guoqing; Lu, Chung-Dar

    2016-06-01

    D-Serine, an important neurotransmitter, also contributes to bacterial adaptation and virulence in humans. It was reported that Pseudomonas aeruginosa PAO1 can grow on D-serine as the sole nitrogen source, and growth was severely reduced in the dadA mutant devoid of the D-alanine dehydrogenase with broad substrate specificity. In this study, the dsdA gene (PA3357) encoding a putative D-serine dehydratase was subjected to further characterization. Growth on D-serine as the sole source of nitrogen was retained in the ∆dsdA mutant and was abolished completely in the ∆dadA and ∆dadA-∆dsdA mutants. However, when complemented by dsdA on a plasmid, the double mutant was able to grow on D-serine as the sole source of carbon and nitrogen, supporting the proposed biochemical function of DsdA in the conversion of D-serine into pyruvate and ammonia. Among D- and L-amino acids tested, only D-serine and D-threonine could serve as the substrates of DsdA, and the Km of DsdA with D-serine was calculated to be 330 μM. Comparative genomics revealed that this cryptic dsdA gene was highly conserved in strains of P. aeruginosa, and that most strains of Pseudomonas putida possess putative dsdCAX genes encoding a transcriptional regulator DsdC and a D-serine transporter DsdX as in enteric bacteria. In conclusion, this study supports the presence of a cryptic dsdA gene encoding a functional D-serine dehydratase in P. aeruginosa, and the absence of dsdA expression in response to exogenous D-serine might be due to the loss of regulatory elements for gene activation during evolution. PMID:26957519

  13. Evolution of Enzymatic Activities in the Enolase Superfamily: L-Fuconate Dehydratase from Xanthomonas campestris

    SciTech Connect

    Yew,W.; Fedorov, A.; Fedorov, E.; Rakus, J.; Pierce, R.; Almo, S.; Gerlt, J.

    2006-01-01

    Many members of the mechanistically diverse enolase superfamily have unknown functions. In this report the authors use both genome (operon) context and screening of a library of acid sugars to assign the L-fuconate dehydratase (FucD) function to a member of the mandelate racemase (MR) subgroup of the superfamily encoded by the Xanthomonas campestris pv. campestris str. ATCC 33913 genome (GI: 21233491). Orthologues of FucD are found in both bacteria and eukaryotes, the latter including the rTS beta protein in Homo sapiens that has been implicated in regulating thymidylate synthase activity. As suggested by sequence alignments and confirmed by high-resolution structures in the presence of active site ligands, FucD and MR share the same active site motif of functional groups: three carboxylate ligands for the essential Mg2+ located at the ends of th third, fourth, and fifth-strands in the (/)7-barrel domain (Asp 248, Glu 274, and Glu 301, respectively), a Lys-x-Lys motif at the end of the second-strand (Lys 218 and Lys 220), a His-Asp dyad at the end of the seventh and sixth-strands (His 351 and Asp 324, respectively), and a Glue at the end of the eighth-strand (Glu 382). The mechanism of the FucD reaction involves initial abstraction of the 2-proton by Lys 220, acid catalysis of the vinylogous-elimination of the 3-OH group by His 351, and stereospecific ketonization of the resulting 2-keto-3-deoxy-L-fuconate product. Screening of the library of acid sugars revealed substrate and functional promiscuity: In addition to L-fuconate, FucD also catalyzes the dehydration of L-galactonate, D-arabinonate, D-altronate, L-talonate, and D-ribonate. The dehydrations of L-fuconate, L-galactonate, and D-arabinonate are initiated by abstraction of the 2-protons by Lys 220. The dehydrations of L-talonate and D-ribonate are initiated by abstraction of the 2-protons by His 351; however, protonation of the enediolate intermediates by the conjugate acid of Lys 220 yields L

  14. Evolution of Enzymatic Activities in the Enolase Superfamily: D-Tartrate Dehydratase from Bradyrhizobium japonicum

    SciTech Connect

    Yew,W.; Fedorov, A.; Fedorov, E.; Wood, B.; Almo, S.; Gerlt, J.

    2006-01-01

    We focus on the assignment of function to and elucidation of structure-function relationships for a member of the mechanistically diverse enolase superfamily encoded by the Bradyrhizobium japonicum genome (bll6730; GI:27381841). As suggested by sequence alignments, the active site contains the same functional groups found in the active site of mandelate racemase (MR) that catalyzes a 1,1-proton transfer reaction: two acid/base catalysts, Lys 184 at the end of the second {beta}-strand, and a His 322-Asp 292 dyad at the ends of the seventh and sixth -strands, respectively, as well as ligands for an essential Mg{sup 2+}, Asp 213, Glu 239, and Glu 265 at the ends of the third, fourth, and fifth {beta}-strands, respectively. We screened a library of 46 acid sugars and discovered that only D-tartrate is dehydrated, yielding oxaloacetate as product. The kinetic constants (k{sub cat} = 7.3 s{sup -1}; k{sub cat}/K{sub M} = 8.5 x 10{sup 4} M{sup -1} s{sup -1}) are consistent with assignment of the D-tartrate dehydratase (TarD) function. The kinetic phenotypes of mutants as well as the structures of liganded complexes are consistent with a mechanism in which Lys 184 initiates the reaction by abstraction of the {alpha}-proton to generate a Mg{sup 2+}-stabilized enediolate intermediate, and the vinylogous -elimination of the 3-OH group is general acid-catalyzed by the His 322, accomplishing the anti-elimination of water. The replacement of the leaving group by solvent-derived hydrogen is stereorandom, suggesting that the enol tautomer of oxaloacetate is the product; this expectation was confirmed by its observation by {sup 1}H NMR spectroscopy. Thus, the TarD-catalyzed reaction is a 'simple' extension of the two-step reaction catalyzed by MR: base-catalyzed proton abstraction to generate a Mg{sup 2+}-stabilized enediolate intermediate followed by acid-catalyzed decomposition of that intermediate to yield the product.

  15. Evolution of Enzymatic Activities in the Enolase Superfamily: L-Rhamnonate Dehydratase

    SciTech Connect

    Rakus,J.; Fedorov, A.; Fedorov, E.; Glaner, M.; Hubbard, B.; Delli, J.; Babbitt, P.; Almo, S.; Gerlt, J.

    2008-01-01

    The l-rhamnonate dehydratase (RhamD) function was assigned to a previously uncharacterized family in the mechanistically diverse enolase superfamily that is encoded by the genome of Escherichia coli K-12. We screened a library of acid sugars to discover that the enzyme displays a promiscuous substrate specificity: l-rhamnonate (6-deoxy-l-mannonate) has the 'best' kinetic constants, with l-mannonate, l-lyxonate, and d-gulonate dehydrated less efficiently. Crystal structures of the RhamDs from both E. coli K-12 and Salmonella typhimurium LT2 (95% sequence identity) were obtained in the presence of Mg2+; the structure of the RhamD from S. typhimurium was also obtained in the presence of 3-deoxy-l-rhamnonate (obtained by reduction of the product with NaBH4). Like other members of the enolase superfamily, RhamD contains an N-terminal a + {beta} capping domain and a C-terminal ({beta}/a)7{beta}-barrel (modified TIM-barrel) catalytic domain with the active site located at the interface between the two domains. In contrast to other members, the specificity-determining '20s loop' in the capping domain is extended in length and the '50s loop' is truncated. The ligands for the Mg2+ are Asp 226, Glu 252 and Glu 280 located at the ends of the third, fourth and fifth {beta}-strands, respectively. The active site of RhamD contains a His 329-Asp 302 dyad at the ends of the seventh and sixth {beta}-strands, respectively, with His 329 positioned to function as the general base responsible for abstraction of the C2 proton of l-rhamnonate to form a Mg2+-stabilized enediolate intermediate. However, the active site does not contain other acid/base catalysts that have been implicated in the reactions catalyzed by other members of the MR subgroup of the enolase superfamily. Based on the structure of the liganded complex, His 329 also is expected to function as the general acid that both facilitates departure of the 3-OH group in a syn-dehydration reaction and delivers a proton to carbon-3

  16. Improved diagnosis and therapy of superficial transitional cell carcinoma (TCC) of the urinary bladder by 5-aminolevulinic-acid (5-ALA)-induced protoporphyrin IX (PPIX) fluorescence: a prospective study in 100 patients

    NASA Astrophysics Data System (ADS)

    Kuntz, Rainer M.; Ruecker, Frank

    2001-05-01

    The prognosis of superficial bladder cancer is strongly related to a high recurrence rate and the presence of concomitant plane tumor lesions such as severe dysplasia or carcinoma in situ. They are frequently overlooked on white light cystoscopy. Furthermore, the traditional transurethral tumor resection of superficial bladder tumor is frequently incomplete. This prospective study aimed to evaluate whether or not 5-ALA induced PPIX fluorescence cystoscopy could increase the detection of superficial bladder tumors and/or plane carcinoma in situ invisible on white light cystoscopy. 100 patients with superficial TCC of the urinary bladder underwent cystoscopy under white light and under blue fluorescence light. 2 hours (1-4 hours) prior to cystoscopy 50 ml 3 percent 5-ALA-solution were intravesically instilled into the empty bladder. All lesions visible on white light cystoscopy were compared with fluorescence findings and, vice versa, all fluorescence findings were compared with white light cystoscopy findings. All lesions visible under white light, and all lesions only visible under 5-ALA induced fluorescence were resected/biopsied and histologically examined.

  17. RNAi Suppression of Arogenate Dehydratase1 Reveals That Phenylalanine Is Synthesized Predominantly via the Arogenate Pathway in Petunia Petals[C][W

    PubMed Central

    Maeda, Hiroshi; Shasany, Ajit K; Schnepp, Jennifer; Orlova, Irina; Taguchi, Goro; Cooper, Bruce R.; Rhodes, David; Pichersky, Eran; Dudareva, Natalia

    2010-01-01

    l-Phe, a protein building block and precursor of numerous phenolic compounds, is synthesized from prephenate via an arogenate and/or phenylpyruvate route in which arogenate dehydratase (ADT) or prephenate dehydratase, respectively, plays a key role. Here, we used Petunia hybrida flowers, which are rich in Phe-derived volatiles, to determine the biosynthetic routes involved in Phe formation in planta. Of the three identified petunia ADTs, expression of ADT1 was the highest in petunia petals and positively correlated with endogenous Phe levels throughout flower development. ADT1 showed strict substrate specificity toward arogenate, although with the lowest catalytic efficiency among the three ADTs. ADT1 suppression via RNA interference in petunia petals significantly reduced ADT activity, levels of Phe, and downstream phenylpropanoid/benzenoid volatiles. Unexpectedly, arogenate levels were unaltered, while shikimate and Trp levels were decreased in transgenic petals. Stable isotope labeling experiments showed that ADT1 suppression led to downregulation of carbon flux toward shikimic acid. However, an exogenous supply of shikimate bypassed this negative regulation and resulted in elevated arogenate accumulation. Feeding with shikimate also led to prephenate and phenylpyruvate accumulation and a partial recovery of the reduced Phe level in transgenic petals, suggesting that the phenylpyruvate route can also operate in planta. These results provide genetic evidence that Phe is synthesized predominantly via arogenate in petunia petals and uncover a novel posttranscriptional regulation of the shikimate pathway. PMID:20215586

  18. Dihydroxyacid dehydratase is important for gametophyte development and disruption causes increased susceptibility to salinity stress in Arabidopsis.

    PubMed

    Zhang, Chun; Pang, Qiuying; Jiang, Luguang; Wang, Shoucai; Yan, Xiufeng; Chen, Sixue; He, Yan

    2015-02-01

    Dihydroxyacid dehydratase (DHAD) catalyses a key step in the branched-chain amino acid (BCAA) biosynthetic pathway that exists in numerous organisms, including bacteria, fungi, and plants, but not humans. In Arabidopsis thaliana, DHAD is encoded by a single gene (AT3G23940), but its biological function in controlling plant development remains uncharacterized. In this study, we showed that DHAD is highly expressed in most vegetative and reproductive tissues. It is an essential gene, and complete disruption caused partial sterility in both male and female gametophyte phases. In addition, reduced expression of DHAD in knockdown mutants resulted in a reduction in the accumulation of all three BCAAs in roots and, as a consequence, led to a shorter root phenotype, which could be restored by an exogenous supplement of free BCAAs. Interestingly, the knockdown mutants became hypersensitive to salt stress, not to heavy metal stress, implying that BCAAs may act as osmolytes in salt tolerance. This would be the second amino acid shown to confer such a function in addition to the well-documented proline. Our results provide evidence that BCAA biosynthesis plays important roles in gametophyte and root development, and BCAA homeostasis contributes to the adaptation of Arabidopsis to salinity stress. PMID:25399005

  19. Structural Studies of FlaA1 from Helicobacter Pylori Reveal the Mechanism for Inverting 4,6-dehydratase Activity

    SciTech Connect

    Ishiyama,N.; Creuzenet, C.; Miller, W.; Demendi, M.; Anderson, E.; Harauz, G.; Lam, J.; Berghuis, A.

    2006-01-01

    FlaA1 from the human pathogen Helicobacter pylori is an enzyme involved in saccharide biosynthesis that has been shown to be essential for pathogenicity. Here we present five crystal structures of FlaA1 in the presence of substrate, inhibitors, and bound cofactor, with resolutions ranging from 2.8 to 1.9 {angstrom}. These structures reveal that the enzyme is a novel member of the short-chain dehydrogenase/reductase superfamily. Additional electron microscopy studies show the enzyme to possess a hexameric doughnut-shaped quaternary structure. NMR analyses of 'real time' enzyme-substrate reactions indicate that FlaA1 is a UDP-GlcNAc-inverting 4,6-dehydratase, suggesting that the enzyme catalyzes the first step in the biosynthetic pathway of a pseudaminic acid derivative, which is implicated in protein glycosylation. Guided by evidence from site-directed mutagenesis and computational simulations, a three-step reaction mechanism is proposed that involves Lys-133 functioning as both a catalytic acid and base.

  20. Glycerol Dehydratases: Biochemical Structures, Catalytic Mechanisms, and Industrial Applications in 1,3-Propanediol Production by Naturally Occurring and Genetically Engineered Bacterial Strains.

    PubMed

    Liu, Jian-Zhong; Xu, Wu; Chistoserdov, Andrei; Bajpai, Rakesh K

    2016-07-01

    To date, two types of glycerol dehydratases have been reported: coenzyme B12-dependent and coenzyme B12-independent glycerol dehydratases. The three-dimensional structure of the former is a dimer of αβγ heterotrimer, while that of the latter is a homodimer. Their mechanisms of reaction are typically enzymatic radical catalysis. Functional radical in both the glycerol dehydratases is the adenosyl radical. However, the adenosyl radical in the former originates from coenzyme B12 by homolytic cleavage, and that in the latter from S-adenosyl-methionine. Until some years ago, Clostridium butyricum VPI 1718 was the only microorganism known to possess B12-independent glycerol dehydratase, but since then, several other bacteria with this unique capability have been identified. This article focuses on the glycerol dehydratases and on 1,3-propanediol production from glycerol by naturally occurring and genetically engineered bacterial strains containing glycerol dehydratase. PMID:27033090

  1. Structure of Glycerol Dehydratase Reactivase: A New Type of Molecular Chaperone

    SciTech Connect

    Liao, Der-Ing; Reiss, Lisa; Turner, Jr., Ivan; Dotson, Garry

    2010-03-08

    The function of glycerol dehydratase (GDH) reactivase is to remove damaged coenzyme B{sub 12} from GDH that has suffered mechanism-based inactivation. The structure of GDH reactivase from Klebsiella pneumoniae was determined at 2.4 {angstrom} resolution by the single isomorphous replacement with anomalous signal (SIR/AS) method. Each tetramer contains two elongated 63 kDa {alpha} subunits and two globular 14 kDa {beta} subunits. The {alpha} subunit contains structural features resembling both GroEL and Hsp70 groups of chaperones, and it appears chaperone like in its interactions with ATP. The fold of the {beta} subunit resembles that of the {beta} subunit of glycerol dehydratase, except that it lacks some coenzyme B12 binding elements. A hypothesis for the reactivation mechanism of reactivase is proposed based on these structural features.

  2. Cloning, expression, and characterization of coenzyme-B12-dependent diol dehydratase from Lactobacillus diolivorans.

    PubMed

    Wei, Xuqin; Meng, Xiaolei; Chen, Yunlai; Wei, Yutuo; Du, Liqin; Huang, Ribo

    2014-01-01

    The three gldCDE genes from Lactobacillus diolivorans, that encode the three subunits of the glycerol dehydratase, were cloned and the proteins were co-expressed in soluble form in Escherichia coli with added sorbitol and betaine hydrochloride. The purified enzyme exists as a heterohexamer (α2β2γ2) structure with a native molecular mass of 210 kDa. It requires coenzyme B12 for catalytic activity and is subject to suicide inactivation by glycerol during catalysis. The enzyme had maximum activity at pH 8.6 and 37 °C. The apparent K m values for coenzyme B12, 1,2-ethanediol, 1,2-propanediol, and glycerol were 1.5 μM, 10.5 mM, 1.3 mM, and 5.8 mM, respectively. Together, these results indicated that the three genes gldCDE encoding the proteins make up a coenzyme B12-dependent diol dehydratase and not a glycerol dehydratase. PMID:24078133

  3. A unique cis-3-hydroxy-l-proline dehydratase in the enolase superfamily.

    PubMed

    Zhang, Xinshuai; Kumar, Ritesh; Vetting, Matthew W; Zhao, Suwen; Jacobson, Matthew P; Almo, Steven C; Gerlt, John A

    2015-02-01

    The genome of Labrenzia aggregata IAM 12614 encodes an uncharacterized member of the muconate lactonizing enzyme (MLE) subgroup of the enolase superfamily (UniProt ID A0NXQ8 ). The gene encoding A0NXQ8 is located between genes that encode members of the proline racemase superfamily, 4R-hydroxyproline 2-epimerase (UniProt ID A0NXQ7 ; 4HypE) and trans-3-hydroxy-l-proline dehydratase (UniProt ID A0NXQ9 ; t3LHypD). A0NXQ8 was screened with a library of proline analogues; two reactions were observed with cis-3-hydroxy-l-proline (c3LHyp), competing 2-epimerization to trans-3-hydroxy-d-proline (1,1-proton transfer) and dehydration to Δ(1)-pyrroline-2-carboxylate (β-elimination; c3LHyp dehydratase), with eventual total dehydration. The genome context encoding A0NXQ8 both (1) confirms its novel c3LHyp dehydratase function and (2) provides evidence for metabolic pathways that allow L. aggregata to utilize several isomeric 3- and 4-hydroxyprolines as sole carbon sources. PMID:25608448

  4. Identification of a small protein domain present in all plant lineages that confers high prephenate dehydratase activity.

    PubMed

    El-Azaz, Jorge; de la Torre, Fernando; Ávila, Concepción; Cánovas, Francisco M

    2016-07-01

    l-Phenylalanine serves as a building block for the biosynthesis of proteins, but also as a precursor for a wide range of plant-derived compounds essential for plants and animals. Plants can synthesize Phe within the plastids using arogenate as a precursor; however, an alternative pathway using phenylpyruvate as an intermediate, described for most microorganisms, has recently been proposed. The functionality of this pathway requires the existence of enzymes with prephenate dehydratase (PDT) activity (EC 4.2.1.51) in plants. Using phylogenetic studies, functional complementation assays in yeast and biochemical analysis, we have identified the enzymes displaying PDT activity in Pinus pinaster. Through sequence alignment comparisons and site-directed mutagenesis we have identified a 22-amino acid region conferring PDT activity (PAC domain) and a single Ala314 residue critical to trigger this activity. Our results demonstrate that all plant clades include PAC domain-containing ADTs, suggesting that the PDT activity, and thus the ability to synthesize Phe using phenylpyruvate as an intermediate, has been preserved throughout the evolution of plants. Moreover, this pathway together with the arogenate pathway gives plants a broad and versatile capacity to synthesize Phe and its derived compounds. PAC domain-containing enzymes are also present in green and red algae, and glaucophytes, the three emerging clades following the primary endosymbiont event resulting in the acquisition of plastids in eukaryotes. The evolutionary prokaryotic origin of this domain is discussed. PMID:27125254

  5. Structures of Open (R) and Close (T) States of Prephenate Dehydratase (PDT) - Implication of Allosteric Regulation by L-Phenylalanine

    PubMed Central

    Tan, Kemin; Li, Hui; Zhang, Rongguang; Gu, Minyi; Clancy, Shonda T.; Joachimiak, Andrzej

    2011-01-01

    The enzyme prephenate dehydratase (PDT) converts prephenate to phenylpyruvate in L-phenylalanine biosynthesis. PDT is allosterically regulated by L-Phe and other amino acids. We report the first crystal structures of PDT from Staphylococcus aureus in a relaxed (R) state and PDT from Chlorobium tepidum in a tense (T) state. The two enzymes show low sequence identity (27.3%) but the same prototypic architecture and domain organization. Both enzymes are tetramers (dimer of dimers) in crystal and solution while a PDT dimer can be regarded as a basic catalytic unit. The N-terminal PDT domain consists of two similar subdomains with a cleft in between, which hosts the highly conserved active site. In one PDT dimer two clefts are aligned to form an extended active site across the dimer interface. Similarly at the interface two ACT regulatory domains create two highly conserved pockets. Upon binding of the L-Phe inside the pockets, PDT transits from an open to a closed conformation. PMID:18171624

  6. Complementation of the pha2 yeast mutant suggests functional differences for arogenate dehydratases from Arabidopsis thaliana.

    PubMed

    Bross, Crystal D; Corea, Oliver R A; Kaldis, Angelo; Menassa, Rima; Bernards, Mark A; Kohalmi, Susanne E

    2011-08-01

    The final steps of phenylalanine (Phe) biosynthesis in bacteria, fungi and plants can occur via phenylpyruvate or arogenate intermediates. These routes are determined by the presence of prephenate dehydratase (PDT, EC4.2.1.51), which forms phenylpyruvate from prephenate, or arogenate dehydratase (ADT, EC4.2.1.91), which forms phenylalanine directly from arogenate. We compared sequences from select yeast species to those of Arabidopsis thaliana. The in silico analysis showed that plant ADTs and yeast PDTs share many common features allowing them to act as dehydratase/decarboxylases. However, plant and yeast sequences clearly group independently conferring distinct substrate specificities. Complementation of the Saccharomyces cerevisiae pha2 mutant, which lacks PDT activity and cannot grow in the absence of exogenous Phe, was used to test the PDT activity of A. thaliana ADTs in vivo. Previous biochemical characterization showed that all six AtADTs had high catalytic activity with arogenate as a substrate, while AtADT1, AtADT2 and AtADT6 also had limited activity with prephenate. Consistent with these results, the complementation test showed AtADT2 readily recovered the pha2 phenotype after ∼6 days growth at 30 °C, while AtADT1 required ∼13 days to show visible growth. By contrast, AtADT6 (lowest PDT activity) and AtADT3-5 (no PDT activity) were unable to recover the phenotype. These results suggest that only AtADT1 and AtADT2, but not the other four ADTs from Arabidopsis, have functional PDT activity in vivo, showing that there are two functional distinct groups. We hypothesize that plant ADTs have evolved to use the arogenate route for Phe synthesis while keeping some residual PDT activity. PMID:21388819

  7. The reaction mechanism for dehydration process catalyzed by type I dehydroquinate dehydratase from Gram-negative Salmonella enterica

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Li, Ze-Sheng

    2012-01-01

    The fundamental reaction mechanism for the dehydration process catalyzed by type I dehydroquinate dehydratase from Gram-negative Salmonella enterica has been studied by density functional theory calculations. The results indicate that the dehydration process undergoes a two-step cis-elimination mechanism, which is different from the previously proposed one. The catalytic roles of both the highly conserved residue His143 and the Schiff base formed between the substrate and Lys170 have also been elucidated. The structural and mechanistic insight presented here may direct the design of type I dehydroquinate dehydratase enzyme inhibitors as non-toxic antimicrobials, anti-fungals, and herbicides.

  8. Redesign of coenzyme B(12) dependent diol dehydratase to be resistant to the mechanism-based inactivation by glycerol and act on longer chain 1,2-diols.

    PubMed

    Yamanishi, Mamoru; Kinoshita, Koichiro; Fukuoka, Masaki; Saito, Takuya; Tanokuchi, Aya; Ikeda, Yuuki; Obayashi, Hirokazu; Mori, Koichi; Shibata, Naoki; Tobimatsu, Takamasa; Toraya, Tetsuo

    2012-03-01

    Coenzyme B(12) dependent diol dehydratase undergoes mechanism-based inactivation by glycerol, accompanying the irreversible cleavage of the coenzyme Co-C bond. Bachovchin et al. [Biochemistry16, 1082-1092 (1977)] reported that glycerol bound in the G(S) conformation, in which the pro-S-CH(2) OH group is oriented to the hydrogen-abstracting site, primarily contributes to the inactivation reaction. To understand the mechanism of inactivation by glycerol, we analyzed the X-ray structure of diol dehydratase complexed with cyanocobalamin and glycerol. Glycerol is bound to the active site preferentially in the same conformation as that of (S)-1,2-propanediol, i.e. in the G(S) conformation, with its 3-OH group hydrogen bonded to Serα301, but not to nearby Glnα336. k(inact) of the Sα301A, Qα336A and Sα301A/Qα336A mutants with glycerol was much smaller than that of the wild-type enzyme. k(cat) /k(inact) showed that the Sα301A and Qα336A mutants are substantially more resistant to glycerol inactivation than the wild-type enzyme, suggesting that Serα301 and Glnα336 are directly or indirectly involved in the inactivation. The degree of preference for (S)-1,2-propanediol decreased on these mutations. The substrate activities towards longer chain 1,2-diols significantly increased on the Sα301A/Qα336A double mutation, probably because these amino acid substitutions yield more space for accommodating a longer alkyl group on C3 of 1,2-diols. Database Structural data are available in the Protein Data Bank under the accession number 3AUJ. Structured digital abstract • Diol dehydrase gamma subunit, Diol dehydrase beta subunit and Diol dehydrase alpha subunit physically interact by X-ray crystallography (View interaction). PMID:22221669

  9. Mechanism of action of adenosylcobalamin: glycerol and other substrate analogues as substrates and inactivators for propanediol dehydratase--kinetics, stereospecificity, and mechanism.

    PubMed

    Bachovchin, W W; Eagar, R G; Moore, K W; Richards, J H

    1977-03-22

    A number of vicinal diols were found to react with propanediol dehydratase, typically resulting in the conversion of enzyme-bound adenosylcobalamin to cob(II)alamin and formation of aldehyde or ketone derives from substrate. Moreover, all are capable of effecting the irreversible inactivation of the enzyme. The kinetics and mechanism of product formation and inactivation were investigated. Glycerol, found to be a very good substrate for diol dehydratase as well as a potent inactivator, atypically, did not induce cob(II)alamin formation to any detectable extent. With glycerol, the inactivation process was accompanied by conversion of enzyme-bound adenosylcobalamin to an alkyl or thiol cobalamin, probably by substitution of an amino acid chain near the active site for the 5'-deoxy-5'-adenosyl ligand on the cobalamin. The inactivation reaction with glycerol as the inactivator exhibits a deuterium isotope effect of 14, strongly implicating hydrogen transfer as an important step in the mechanism of inactivation. The isotope effect on the rate of product formation was found to be 8.0. Experiments with isotopically substituted glycerols indicate that diol dehydrase distinguishes between "R" and "S" binding conformations, the enzyme-(R)-glycerol complex being predominately responsible for the product-forming reaction, while the enzyme-(S)-glycerol complex results primarily in the activation reaction. Mechanistic implications are discussed. A method for removing enzyme-bound hydroxycobalamin that is nondestructive to the enzyme and a technique for measuring the binding constants of (R)- and (S)-1,2-propanediols are presented. PMID:321014

  10. Loss-of-Function Ferrochelatase and Gain-of-Function Erythroid-Specific 5-Aminolevulinate Synthase Mutations Causing Erythropoietic Protoporphyria and X-Linked Protoporphyria in North American Patients Reveal Novel Mutations and a High Prevalence of X-Linked Protoporphyria

    PubMed Central

    Balwani, Manisha; Doheny, Dana; Bishop, David F; Nazarenko, Irina; Yasuda, Makiko; Dailey, Harry A; Anderson, Karl E; Bissell, D Montgomery; Bloomer, Joseph; Bonkovsky, Herbert L; Phillips, John D; Liu, Lawrence; Desnick, Robert J

    2013-01-01

    Erythropoietic protoporphyria (EPP) and X-linked protoporphyria (XLP) are inborn errors of heme biosynthesis with the same phenotype but resulting from autosomal recessive loss-of-function mutations in the ferrochelatase (FECH) gene and gain-of-function mutations in the X-linked erythroid-specific 5-aminolevulinate synthase (ALAS2) gene, respectively. The EPP phenotype is characterized by acute, painful, cutaneous photosensitivity and elevated erythrocyte protoporphyrin levels. We report the FECH and ALAS2 mutations in 155 unrelated North American patients with the EPP phenotype. FECH sequencing and dosage analyses identified 140 patients with EPP: 134 with one loss-of-function allele and the common IVS3-48T>C low expression allele, three with two loss-of-function mutations and three with one loss-of-function mutation and two low expression alleles. There were 48 previously reported and 23 novel FECH mutations. The remaining 15 probands had ALAS2 gain-of-function mutations causing XLP: 13 with the previously reported deletion, c.1706_1709delAGTG, and two with novel mutations, c.1734delG and c.1642C>T(p.Q548X). Notably, XLP represented ~10% of EPP phenotype patients in North America, two to five times more than in Western Europe. XLP males had twofold higher erythrocyte protoporphyrin levels than EPP patients, predisposing to more severe photosensitivity and liver disease. Identification of XLP patients permits accurate diagnosis and counseling of at-risk relatives and asymptomatic heterozygotes. PMID:23364466

  11. Mechanism of action of adenosylcobalamin: hydrogen transfer in the inactivation of diol dehydratase by glycerol.

    PubMed

    Bachovchin, W W; Moore, K W; Richards, J H

    1978-05-30

    We have investigated the kinetic characteristics of the inactivation of the adenosylcobalamin-dependent enzyme propanediol dehydratase by glycerol, (RS)-1,1-dideuterioglycerol, (R)-1,1-dideuterioglycerol, and perdeuterioglycerol in the presence of 1,2-propanediol and 1,1-dideuterio-1,2-propanediol. The results imply that hydrogen (or deuterium) attached to C-1 of 1,2-propanediol participates in the inactivation process and contributes to the expression of a kinetic isotope effect on the rate of inactivation. The mechanism for this inactivation must involve the cofactor as an intermediate hydrogen carrier, presumably in the form of 5'-deoxyadenosine. Moreover, a mechanism involving a rate-determining transfer of hydrogen from an intermediate containing three equivalent hydrogens quantitatively accounts for all of the results. When diol dehydratase holoenzyme is inactivated by [1-3H]glycerol, 5'-deoxyadenosine which is enriched in tritium by a factor of 2.1 over that in glycerol can be isolated from the reaction mixture. PMID:667021

  12. Purification, crystallization and preliminary crystallographic analysis of Arabidopsis thaliana imidazoleglycerol-phosphate dehydratase

    SciTech Connect

    Glynn, Steven E.; Baker, Patrick J.; Sedelnikova, Svetlana E.; Levy, Colin W.; Rodgers, H. Fiona; Blank, Jutta; Hawkes, Timothy R.; Rice, David W.

    2005-08-01

    Imidazoleglycerol-phosphate dehydratase from A. thaliana has been overexpressed, purified and crystallized and data have been collected to 3 Å resolution. Imidazoleglycerol-phosphate dehydratase catalyses the sixth step of the histidine-biosynthesis pathway in plants and microorganisms and has been identified as a possible target for the development of novel herbicides. Arabidopsis thaliana IGPD has been cloned and overexpressed in Escherichia coli, purified and subsequently crystallized in the presence of manganese. Under these conditions, the inactive trimeric form of the metal-free enzyme is assembled into a fully active species consisting of a 24-mer exhibiting 432 symmetry. X-ray diffraction data have been collected to 3.0 Å resolution from a single crystal at 293 K. The crystal belongs to space group R3, with approximate unit-cell parameters a = b = 157.9, c = 480.0 Å, α = β = 90, γ = 120° and with either 16 or 24 subunits in the asymmetric unit. A full structure determination is under way in order to provide insights into the mode of subunit assembly and to initiate a programme of rational herbicide design.

  13. Inducibility and some properties of the threonine dehydratase of sheep liver

    PubMed Central

    Doonan, Shawn; Koerner, Diona H.; Schmutzler, Wolfgang; Vernon, Charles A.

    1974-01-01

    The threonine dehydratase extracted from sheep liver is in an essentially inactive form, referred to here as the precursor, but can be activated by incubation at high temperature in alkaline solution. A method for purification of the activated enzyme to a state approaching homogeneity has been devised. The activated enzyme catalyses the deamination of serine but rapidly loses activity during the process. The enzyme inactivated by incubation with serine can be reactivated under the same conditions as those described for the precursor, the kinetic parameters being the same in both cases. Individual sheep livers differ widely in their content of threonine dehydratase, and the possible role of dietary factors in this variability has been examined. The average amount of the enzyme in the livers of sheep fed on high-plant-protein diets did not differ significantly from that in livers obtained from slaughterhouses, but was higher than that in livers from animals fed only on grass or normal concentrates. Large increases in enzyme concentration were, however, obtained when sheep were injected intraperitoneally with a protein hydrolysate. The enzyme from the livers of these sheep could be purified by the same technique and to the same specific activity as the enzyme from the livers of control sheep. PMID:4468820

  14. The arogenate dehydratase gene family: towards understanding differential regulation of carbon flux through phenylalanine into primary versus secondary metabolic pathways.

    PubMed

    Corea, Oliver R A; Bedgar, Diana L; Davin, Laurence B; Lewis, Norman G

    2012-10-01

    Phe is formed from arogenate in planta through the action of arogenate dehydratase (ADT), and there are six ADT isoenzymes in the "model" vascular plant species Arabidopsis thaliana. This raised the possibility that specific ADTs may be differentially regulated so as to control Phe biosynthesis for protein synthesis vs its much more massive deployment for phenylpropanoid metabolism. In our previous reverse genetics study using 25 single/multiple ADT knockout (KO) lines, a subset of these knockouts was differentially reduced in their lignin contents. In the current investigation, it was hypothesized that Phe pool sizes might correlate well with reduction in lignin contents in the affected KO lines. The free amino acid contents of these KO lines were thus comprehensively analyzed in stem, leaf and root tissues, over a growth/developmental time course from 3 to 8 weeks until senescence. The data obtained were then compared to, and contrasted with, the differential extent of lignin deposition occurring in the various lines. Relative changes in pool sizes were also analyzed by performing a pairwise confirmatory factor analysis for Phe:Tyr, Phe:Trp and Tyr:Trp, following determination of the deviation from the mean for Phe, Tyr and Trp in each plant line. It was found that the Phe pool sizes measured were differentially reduced only in lignin-deficient lines, and in tissues and at time points where lignin biosynthesis was constitutively highly active (in wild type lines) under the growth conditions employed. In contrast, this trend was not evident across all ADT KO lines, possibly due to maintenance of Phe pools by non-targeted isoenzymes, or by feedback mechanisms known to be in place. PMID:22818526

  15. Association between δ-aminolevulinate dehydratase G177C polymorphism and blood lead levels in brain tumor patients

    PubMed Central

    TAHA, MAHMOUD MOSTAFA; GABER, OSAMA ABD EL AZIZ; SABBAH, NORHAN ABDALLA; ABD ELAZEM, ABD ALLAH S

    2015-01-01

    As the δ-aminolevulinic acid dehydratase (ALAD) G177C polymorphism affects the toxicokinetics of lead in the body, and the corresponding exposure to lead may increase the risk of adult brain tumors, we hypothesize that there is a possible association of the ALAD G177C genotype and the risk of brain tumors in human. Therefore, the aim of the present study was to clarify the role of the ALAD enzyme gene polymorphism at position G177C in the pathogenesis of brain tumors and its correlation to lead exposure. The ALAD gene polymorphism at position G177C was genotyped using the polymerase chain reaction with restriction fragment length polymorphism method and measured the blood lead level by atomic absorption in 81 brain tumor patients and compared the results with 81 controls. The frequency of the GC genotype (ALAD1-2) was significantly increased in primary brain tumor patients compared to the control group. The genotype frequency of ALAD2 (ALAD1-2 and ALAD2-2) was significantly higher in the meningioma patients but was not significant in glioma patients. There was no significant difference in the number of patients and blood lead level when compared with the control. There was a significant increase when compared to ALAD1 regarding a mean value of the lead level. The genotyping of the ALAD G177C polymorphism in the present study revealed a significant association between ALAD2 and brain tumors. The ALAD G177C polymorphism may modify the lead kinetics in the blood, is associated with higher blood lead burden and may provide a biomarker of neurotoxic risk. PMID:26623039

  16. Dual Fatty Acid Elongase Complex Interactions in Arabidopsis.

    PubMed

    Morineau, Céline; Gissot, Lionel; Bellec, Yannick; Hematy, Kian; Tellier, Frédérique; Renne, Charlotte; Haslam, Richard; Beaudoin, Frédéric; Napier, Johnathan; Faure, Jean-Denis

    2016-01-01

    Very long chain fatty acids (VLCFAs) are involved in plant development and particularly in several cellular processes such as membrane trafficking, cell division and cell differentiation. However, the precise role of VLCFAs in these different cellular processes is still poorly understood in plants. In order to identify new factors associated with the biosynthesis or function of VLCFAs, a yeast multicopy suppressor screen was carried out in a yeast mutant strain defective for fatty acid elongation. Loss of function of the elongase 3 hydroxyacyl-CoA dehydratase PHS1 in yeast and PASTICCINO2 in plants prevents growth and induces cytokinesis defects. PROTEIN TYROSIN PHOSPHATASE-LIKE (PTPLA) previously characterized as an inactive dehydratase was able to restore yeast phs1 growth and VLCFAs elongation but not the plant pas2-1 defects. PTPLA interacted with elongase subunits in the Endoplasmic Reticulum (ER) and its absence induced the accumulation of 3-hydroxyacyl-CoA as expected from a dehydratase involved in fatty acid (FA) elongation. However, loss of PTPLA function increased VLCFA levels, an effect that was dependent on the presence of PAS2 indicating that PTPLA activity repressed FA elongation. The two dehydratases have specific expression profiles in the root with PAS2, mostly restricted to the endodermis, while PTPLA was confined in the vascular tissue and pericycle cells. Comparative ectopic expression of PTPLA and PAS2 in their respective domains confirmed the existence of two independent elongase complexes based on PAS2 or PTPLA dehydratase that are functionally interacting. PMID:27583779

  17. Molecular cloning with a pMEA300-derived shuttle vector and characterization of the Amycolatopsis methanolica prephenate dehydratase gene.

    PubMed Central

    Vrijbloed, J W; van Hylckama Vlieg, J; van der Put, N M; Hessels, G I; Dijkhuizen, L

    1995-01-01

    An efficient restriction barrier for methylated DNA in the actinomycete Amycolatopsis methanolica could be avoided by using a nonmethylating Escherichia coli strain for DNA isolations. The A. methanolica prephenate dehydratase gene was cloned from a gene bank in a pMEA300-derived shuttle vector in E. coli and characterized. PMID:7592448

  18. Substrate-Induced Radical Formation in 4-Hydroxybutyryl Coenzyme A Dehydratase from Clostridium aminobutyricum

    PubMed Central

    Zhang, Jin; Friedrich, Peter; Pierik, Antonio J.; Martins, Berta M.

    2014-01-01

    4-Hydroxybutyryl-coenzyme A (CoA) dehydratase (4HBD) from Clostridium aminobutyricum catalyzes the reversible dehydration of 4-hydroxybutyryl-CoA to crotonyl-CoA and the irreversible isomerization of vinylacetyl-CoA to crotonyl-CoA. 4HBD is an oxygen-sensitive homotetrameric enzyme with one [4Fe-4S]2+ cluster and one flavin adenine dinucleotide (FAD) in each subunit. Upon the addition of crotonyl-CoA or the analogues butyryl-CoA, acetyl-CoA, and CoA, UV-visible light and electron paramagnetic resonance (EPR) spectroscopy revealed an internal one-electron transfer to FAD and the [4Fe-4S]2+ cluster prior to hydration. We describe an active recombinant 4HBD and variants produced in Escherichia coli. The variants of the cluster ligands (H292C [histidine at position 292 is replaced by cysteine], H292E, C99A, C103A, and C299A) had no measurable dehydratase activity and were composed of monomers, dimers, and tetramers. Variants of other potential catalytic residues were composed only of tetramers and exhibited either no measurable (E257Q, E455Q, and Y296W) hydratase activity or <1% (Y296F and T190V) dehydratase activity. The E455Q variant but not the Y296F or E257Q variant displayed the same spectral changes as the wild-type enzyme after the addition of crotonyl-CoA but at a much lower rate. The results suggest that upon the addition of a substrate, Y296 is deprotonated by E455 and reduces FAD to FADH·, aided by protonation from E257 via T190. In contrast to FADH·, the tyrosyl radical could not be detected by EPR spectroscopy. FADH· appears to initiate the radical dehydration via an allylic ketyl radical that was proposed 19 years ago. The mode of radical generation in 4HBD is without precedent in anaerobic radical chemistry. It differs largely from that in enzymes, which use coenzyme B12, S-adenosylmethionine, ATP-driven electron transfer, or flavin-based electron bifurcation for this purpose. PMID:25452282

  19. Cobalamin-dependent dehydratases and a deaminase: radical catalysis and reactivating chaperones.

    PubMed

    Toraya, Tetsuo

    2014-02-15

    Adenosylcobalamin, a coenzyme form of vitamin B12, is an organometallic compound that participates in about ten enzymatic reactions. These enzymes catalyze chemically challenging reactions by using a highly reactive primary carbon radical that is derived from homolysis of the coenzyme Co-C bond. Among them, diol dehydratases and ethanolamine ammonia-lyase have been most extensively studied to establish the general mechanism of adenosylcobalamin-assisted enzymatic catalysis and radical-catalyzed reactions. Another important point is that adenosylcobalamin-dependent radical enzymes are prone to mechanism-based irreversible inactivation during catalysis and have their own chaperones for the maintenance of catalytic activities. This review will highlight biochemical, structural, and computational studies with special emphases on radical catalysis and reactivating chaperones of these enzymes. PMID:24269950

  20. Heterologous expression, purification, and properties of diol dehydratase, an adenosylcobalamin-dependent enzyme of Klebsiella oxytoca.

    PubMed

    Tobimatsu, T; Sakai, T; Hashida, Y; Mizoguchi, N; Miyoshi, S; Toraya, T

    1997-11-01

    Recombinant adenosylcobalamin-dependent diol dehydratase of Klebsiella oxytoca overexpressed in Escherichia coli was purified to homogeneity. The enzyme has a low solubility and was extracted from the crude membrane fraction with 1% Brij 35 in a high recovery. Subsequent chromatography on DEAE-cellulose resulted in 4.9-fold purification of the enzyme in an overall yield of 65%. The enzyme thus obtained showed specific activity comparable to that of the wild-type enzyme of K. oxytoca. The apparent molecular weight determined by nondenaturing gel electrophoresis on a gradient gel was 220,000. The enzyme consists of equimolar amounts of the three subunits with apparent Mr of 60,000 (alpha), 30,000 (beta), and 19,000 (gamma). Therefore, the subunit structure of the enzyme is most likely alpha2beta2gamma2. The recombinant enzyme was also separated into components F and S upon DEAE-cellulose chromatography in the absence of substrate. Components F and S were identified as the beta subunit and alpha2gamma2 complex, respectively. Apparent Km for adenosylcobalamin, 1,2-propanediol, glycerol, and 1,2-ethanediol were 0.83 microM, 0.08 mM, 0.73 mM, and 0.56 mM, respectively. The three genes encoding the subunits of diol dehydratase were overexpressed individually or in various combinations in Escherichia coli. The alpha and gamma subunits mutually required each other for correct folding forming the soluble, active alpha2gamma2 complex (component S). Expression of the beta subunit in a soluble, active form (component F) was promoted by coexpression with both the alpha and gamma subunits, probably by coexistence with component S. These lines of evidence indicate that each subunit mutually affects the folding of the others in this heterooligomer enzyme. PMID:9344474

  1. Structure of EvaA: a paradigm for sugar 2,3-dehydratases.

    PubMed

    Kubiak, Rachel L; Thoden, James B; Holden, Hazel M

    2013-03-26

    Unusual deoxysugars found appended to natural products often provide or enhance the pharmacokinetic activities of the parent compound. The preferred carbohydrate donors for the biosynthesis of such glycosylated natural products are the dTDP-linked sugars. Many of the biologically relevant dTDP-deoxysugars are constructed around the 2,6-dideoxyhexoses or the 2,3(4),6-trideoxyhexoses. A key step in the biosynthesis of these sugars is the removal of the hexose C-2' hydroxyl group and the oxidation of the C-3' hydroxyl group to a carbonyl moiety. Enzymes that catalyze these reactions are referred to as 2,3-dehydratases and have been, for the most part, largely uncharacterized. Here we report the first structural analysis of a sugar 2,3-dehydratase. For this investigation, the enzyme, EvaA, was cloned from Amycolatopsis orientalis, and the structure was solved and refined to a nominal resolution of 1.7 Å. On the basis of the resulting model, it is clear that EvaA belongs to the large Nudix hydrolase superfamily and is most similar to GDP-mannose hydrolase. Each subunit of the EvaA dimer folds into two domains that clearly arose via gene duplication. Two dTDP-sugar binding pockets, A and B, are present in each EvaA subunit. On the basis of site-directed mutagenesis experiments and activity assays, it appears that pocket A functions as the active site and pocket B is simply a remnant left behind from the gene duplication event. As 2,3-dehydration is crucial for the biosynthesis of many unusual deoxysugars, this investigation provides key structural insight into this widely conserved reaction. PMID:23473392

  2. β-Hydroxyacyl-acyl Carrier Protein Dehydratase (FabZ) from Francisella tularensis and Yersinia pestis: Structure Determination, Enzymatic Characterization, and Cross-Inhibition Studies.

    PubMed

    McGillick, Brian E; Kumaran, Desigan; Vieni, Casey; Swaminathan, Subramanyam

    2016-02-23

    The bacterial system for fatty acid biosynthesis (FAS) contains several enzymes whose sequence and structure are highly conserved across a vast array of pathogens. This, coupled with their low homology and difference in organization compared to the equivalent system in humans, makes the FAS pathway an excellent target for antimicrobial drug development. To this end, we have cloned, expressed, and purified the β-hydroxyacyl-acyl carrier protein dehydratase (FabZ) from both Francisella tularensis (FtFabZ) and Yersinia pestis (YpFabZ). We also solved the crystal structures and performed an enzymatic characterization of both enzymes and several mutant forms of YpFabZ. Additionally, we have discovered two novel inhibitors of FabZ, mangostin and stictic acid, which show similar potencies against both YpFabZ and FtFabZ. Lastly, we selected several compounds from the literature that have been shown to be active against single homologues of FabZ and tested them against both YpFabZ and FtFabZ. These results have revealed clues as to which scaffolds are likely to lead to broad-spectrum antimicrobials targeted against FabZ as well as modifications to existing FabZ inhibitors that may improve potency. PMID:26818694

  3. The Effect of Multiple Sequential Light Sources to Activate Aminolevulinic Acid in the Treatment of Actinic Keratoses: A Retrospective Study

    PubMed Central

    Goldman, Mitchel P.; Fabi, Sabrina G.; Guiha, Isabella

    2014-01-01

    There is a lack of research regarding the sequential use of multiple light sources for topical 5-aminolevulinic acid activation in photodynamic therapy for actinic keratosis. This study evaluated 5-aminolevulinic acid-photodynamic therapy for actinic keratosis using blue light combined with red light, pulsed dye laser, and/or intense pulsed light in a retrospective fashion. Field-directed 5-aminolevulinic acid-photodynamic therapy was performed with blue light only, blue light + pulsed dye laser, blue light + intense pulsed light, blue light + pulsed dye laser + intense pulsed light, or blue light + red light + pulsed dye laser + intense pulsed light for nonhyperkeratotic actinic keratoses of face, scalp, or upper trunk. Blue light + intense pulsed light + pulsed dye laser produced greater patient-reported improvement in actinic keratoses than blue light or blue light + intense pulsed light and greater subject-reported improvement in overall skin quality than blue light + intense pulsed light. The addition of red light led to no further benefit in either outcome measure. Photodynamic therapy with multiple, sequential laser and light sources led to greater patient-graded improvement in actinic keratoses than that with a single light source (blue light), without significant differences in post-treatment adverse events. However, the small, widely disparate number of patients between groups and follow-up times between patients, as well as retrospective assessments based on subjective patient recall, severely limit the significance of these findings. Nevertheless, the results raise interesting questions regarding the use of multiple light and laser sources for photodynamic therapy of actinic keratoses and warrant further research with a prospective, randomized, controlled study. PMID:25276272

  4. Mechanism and stereospecificity of a fully saturating polyketide synthase module: nanchangmycin synthase module 2 and its dehydratase domain.

    PubMed

    Guo, Xun; Liu, Tiangang; Valenzano, Chiara R; Deng, Zixin; Cane, David E

    2010-10-27

    Recombinant nanchangmycin synthase module 2 (NANS module 2), with the thioesterase domain from the 6-deoxyerythronolide B synthase (DEBS TE) appended to the C-terminus, was cloned and expressed in Escherichia coli. Incubation of NANS module 2+TE with (±)-2-methyl-3-keto-butyryl-N-acetylcysteamine thioester (1), the SNAC analog of the natural ACP-bound substrate, with methylmalonyl-CoA (MM-CoA) in the absence of NADPH gave 3,5,6-trimethyl-4-hydroxypyrone (2), identified by direct comparison with synthetic 2 by radio-TLC-phosphorimaging and LC-ESI(+)-MS-MS. The reaction showed k(cat) 0.5 ± 0.1 min(-1) and K(m)(1) 19 ± 5 mM at 0.5 mM MM-CoA and k(cat)(app) 0.26 ± 0.02 min(-1) and K(m)(MM-CoA) 0.11 ± 0.02 mM at 8 mM 1. Incubation in the presence of NADPH generated the fully saturated triketide chain elongation product as a 5:3 mixture of (2S,4R)-2,4-dimethyl-5-ketohexanoic acid (3a) and the diastereomeric (2S,4S)-3b. The structure and stereochemistry of each product was established by comparison with synthetic 3a and 3b by a combination of radio-TLC-phosphorimaging and LC-ESI(-)-MS-MS, as well as chiral capillary GC-MS analysis of the corresponding methyl esters 3a-Me and 3b-Me. The recombinant dehydratase domain from NANS module 2, NANS DH2, was shown to catalyze the formation of an (E)-double bond by syn-dehydration of the ACP-bound substrate anti-(2R,3R,4S,5R)-2,4-dimethyl-3,5-dihydroxyheptanoyl-ACP6 (4), generated in situ by incubation of (2S,3R)-2-methyl-3-hydroxypentanoyl-SNAC (5), methylmalonyl-CoA, and NADPH with the recombinant [KS6][AT6] didomain and ACP6 from DEBS module 6 along with the ketoreductase from the tylactone synthase module 1 (TYLS KR1). These results also indirectly establish the stereochemistry of the reactions catalyzed by the KR and enoylreductase (ER) domains of NANS module 2. PMID:20925339

  5. Structure and tRNA Specificity of MibB, a Lantibiotic Dehydratase from Actinobacteria Involved in NAI-107 Biosynthesis.

    PubMed

    Ortega, Manuel A; Hao, Yue; Walker, Mark C; Donadio, Stefano; Sosio, Margherita; Nair, Satish K; van der Donk, Wilfred A

    2016-03-17

    Class I lantibiotic dehydratases dehydrate selected Ser/Thr residues of a precursor peptide. Recent studies demonstrated the requirement of glutamyl-tRNA(Glu) for Ser/Thr activation by one of these enzymes (NisB) from the Firmicute Lactococcus lactis. However, the generality of glutamyl-tRNA(Glu) usage and the tRNA specificity of lantibiotic dehydratases have not been established. Here we report the 2.7-Å resolution crystal structure, along with the glutamyl-tRNA(Glu) utilization of MibB, a lantibiotic dehydratase from the Actinobacterium Microbispora sp. 107891 involved in the biosynthesis of the clinical candidate NAI-107. Biochemical assays revealed nucleotides A73 and U72 within the tRNA(Glu) acceptor stem to be important for MibB glutamyl-tRNA(Glu) usage. Using this knowledge, an expression system for the production of NAI-107 analogs in Escherichia coli was developed, overcoming the inability of MibB to utilize E. coli tRNA(Glu). Our work provides evidence for a common tRNA(Glu)-dependent dehydration mechanism, paving the way for the characterization of lantibiotics from various phyla. PMID:26877024

  6. Structure and stereospecificity of the dehydratase domain from the terminal module of the rifamycin polyketide synthase

    PubMed Central

    Gay, Darren; You, Young-Ok; Keatinge-Clay, Adrian; Cane, David E.

    2014-01-01

    RifDH10, the dehydratase domain from the terminal module of the rifamycin polyketide synthase, catalyzed the stereospecific syn dehydration of the model substrate (2S,3S)-2-methyl-3-hydroxypentanoyl-RifACP10, resulting in exclusive formation of (E)-2-methyl-2-pentenoyl-RifACP10. RifDH10 did not dehydrate any of the other three diastereomeric, RifACP10-bound, diketide thioester substrates. On the other hand, when EryACP6, from the sixth module of the erythromycin polyketide synthase, was substituted for RifACP10, RifDH10 stereospecifically dehydrated only (2R,3R)-2-methyl-3-hydroxypentanoyl-EryACP6 to give exclusively (E)-2-methyl-2-pentenoyl-EryACP6, with no detectable dehydration of any of the other three diastereomeric, EryACP6-bound, diketides. An identical alteration in substrate diastereospecificity was observed for the corresponding N-acetylcysteamine or pantetheine thioester analogues, regardless of acyl chain length or substitution pattern. Incubation of (2RS)-2-methyl-3-ketopentanoyl-RifACP10 with the didomain reductase-dehydratase RifKR10-RifDH10 yielded (E)-2-methyl-2-pentenoyl-RifACP10, the expected product of syn dehydration of (2S,3S)-2-methyl-3-hydroxypentanoyl-RifACP10, while incubation with the corresponding EryACP6-bound substrate, (2RS)-2-methyl-3-ketopentanoyl-EryACP6, gave only the reduction product (2S,3S)-2-methyl-3-hydroxypentanoyl-EryACP6 with no detectable dehydration. These results establish the intrinsic syn dehydration stereochemistry and substrate diastereoselectivity of RifDH10 and highlight the critical role of the natural RifACP10 domain in chaperoning the proper recognition and processing of the natural ACP-bound undecaketide substrate. The 1.82 Å-resolution structure of RifDH10 revealed the atomic resolution details of the active site and allowed modeling of the syn-dehydration of the (2S,3S)-2-methyl-3-hydroxyacyl-RifACP10 substrate. These results suggest that generation of the characteristic cis double bond of the rifamycins

  7. GDP-Mannose-4,6-Dehydratase Is a Cytosolic Partner of Tankyrase 1 That Inhibits Its Poly(ADP-Ribose) Polymerase Activity

    PubMed Central

    Bisht, Kamlesh K.; Dudognon, Charles; Chang, William G.; Sokol, Ethan S.; Ramirez, Alejandro

    2012-01-01

    Tankyrase 1 is a poly(ADP-ribose) polymerase (PARP) that participates in a broad range of cellular activities due to interaction with multiple binding partners. Tankyrase 1 recognizes a linear six-amino-acid degenerate motif and, hence, has hundreds of potential target proteins. Binding of partner proteins to tankyrase 1 usually results in their poly(ADP-ribosyl)ation (PARsylation) and can lead to ubiquitylation and proteasomal degradation. However, it is not known how tankyrase 1 PARP activity is regulated. Here we identify GDP-mannose 4,6-dehydratase (GMD) as a binding partner of tankyrase 1. GMD is a cytosolic protein required for the first step of fucose synthesis. We show that GMD is complexed to tankyrase 1 in the cytosol throughout interphase, but its association with tankyrase 1 is reduced upon entry into mitosis, when tankyrase 1 binds to its other partners TRF1 (at telomeres) and NuMA (at spindle poles). In contrast to other binding partners, GMD is not PARsylated by tankyrase 1. Indeed, we show that GMD inhibits tankyrase 1 PARP activity in vitro, dependent on the GMD tankyrase 1 binding motif. In vivo, depletion of GMD led to degradation of tankyrase 1, dependent on the catalytic PARP activity of tankyrase 1. We speculate that association of tankyrase 1 with GMD in the cytosol sequesters tankyrase 1 in an inactive stable form that can be tapped by other target proteins as needed. PMID:22645305

  8. Liver δ-aminolevulinate dehydratase activity is inhibited by neonicotinoids and restored by antioxidant agents.

    PubMed

    Sauer, Elisa; Moro, Angela M; Brucker, Natália; Nascimento, Sabrina; Gauer, Bruna; Fracasso, Rafael; Gioda, Adriana; Beck, Ruy; Moreira, José C F; Eifler-Lima, Vera Lucia; Garcia, Solange Cristina

    2014-11-01

    Neonicotinoids represent the most used class of insecticides worldwide, and their precursor, imidacloprid, is the most widely marketed. The aim of this study was to evaluate the effect of imidacloprid on the activity of hepatic δ-aminolevulinate dehydratase (δ-ALA-D), protective effect of potential antioxidants against this potential effect and presence of chemical elements in the constitution of this pesticide. We observed that δ-ALA-D activity was significantly inhibited by imidacloprid at all concentrations tested in a dose-dependent manner. The IC50 value was obtained and used to evaluate the restoration of the enzymatic activity. δ-ALA-D inhibition was completely restored by addition of dithiotreitol (DTT) and partly by ZnCl2, demonstrating that the inhibition occurs by oxidation of thiol groups and by displacement of the Zn (II), which can be explained by the presence of chemical elements found in the constitution of pesticides. Reduced glutathione (GSH) had the best antioxidant effect against to δ-ALA-D inhibition caused by imidacloprid, followed by curcumin and resveratrol. It is well known that inhibition of the enzyme δ-ALA-D may result in accumulation of its neurotoxic substrate (δ-ALA), in this line, our results suggest that further studies are needed to investigate the possible neurotoxicity induced by neonicotinoids and the involvement of antioxidants in cases of poisoning by neonicotinoids. PMID:25402564

  9. Liver δ-Aminolevulinate Dehydratase Activity is Inhibited by Neonicotinoids and Restored by Antioxidant Agents

    PubMed Central

    Sauer, Elisa; Moro, Angela M.; Brucker, Natália; Nascimento, Sabrina; Gauer, Bruna; Fracasso, Rafael; Gioda, Adriana; Beck, Ruy; Moreira, José C. F.; Eifler-Lima, Vera Lucia; Garcia, Solange Cristina

    2014-01-01

    Neonicotinoids represent the most used class of insecticides worldwide, and their precursor, imidacloprid, is the most widely marketed. The aim of this study was to evaluate the effect of imidacloprid on the activity of hepatic δ-aminolevulinate dehydratase (δ-ALA-D), protective effect of potential antioxidants against this potential effect and presence of chemical elements in the constitution of this pesticide. We observed that δ-ALA-D activity was significantly inhibited by imidacloprid at all concentrations tested in a dose-dependent manner. The IC50 value was obtained and used to evaluate the restoration of the enzymatic activity. δ-ALA-D inhibition was completely restored by addition of dithiotreitol (DTT) and partly by ZnCl2, demonstrating that the inhibition occurs by oxidation of thiol groups and by displacement of the Zn (II), which can be explained by the presence of chemical elements found in the constitution of pesticides. Reduced glutathione (GSH) had the best antioxidant effect against to δ-ALA-D inhibition caused by imidacloprid, followed by curcumin and resveratrol. It is well known that inhibition of the enzyme δ-ALA-D may result in accumulation of its neurotoxic substrate (δ-ALA), in this line, our results suggest that further studies are needed to investigate the possible neurotoxicity induced by neonicotinoids and the involvement of antioxidants in cases of poisoning by neonicotinoids. PMID:25402564

  10. Identification of Polyketide Inhibitors Targeting 3-Dehydroquinate Dehydratase in the Shikimate Pathway of Enterococcus faecalis

    PubMed Central

    Hernandez-Valladares, Maria; Go, Maybelle Kho; Tung, Alvin; Aguda, Adeleke H.; Robinson, Robert C.; Yew, Wen Shan

    2014-01-01

    Due to the emergence of resistance toward current antibiotics, there is a pressing need to develop the next generation of antibiotics as therapeutics against infectious and opportunistic diseases of microbial origins. The shikimate pathway is exclusive to microbes, plants and fungi, and hence is an attractive and logical target for development of antimicrobial therapeutics. The Gram-positive commensal microbe, Enterococcus faecalis, is a major human pathogen associated with nosocomial infections and resistance to vancomycin, the “drug of last resort”. Here, we report the identification of several polyketide-based inhibitors against the E. faecalis shikimate pathway enzyme, 3-dehydroquinate dehydratase (DHQase). In particular, marein, a flavonoid polyketide, both inhibited DHQase and retarded the growth of Enterococcus faecalis. The purification, crystallization and structural resolution of recombinant DHQase from E. faecalis (at 2.2 Å resolution) are also reported. This study provides a route in the development of polyketide-based antimicrobial inhibitors targeting the shikimate pathway of the human pathogen E. faecalis. PMID:25072253

  11. Molecular basis for the inhibition of β-hydroxyacyl-ACP dehydratase HadAB complex from Mycobacterium tuberculosis by flavonoid inhibitors.

    PubMed

    Dong, Yu; Qiu, Xiaodi; Shaw, Neil; Xu, Yueyang; Sun, Yuna; Li, Xuemei; Li, Jun; Rao, Zihe

    2015-07-01

    Dehydration is one of the key steps in the biosynthesis of mycolic acids and is vital to the growth of Mycobacterium tuberculosis (Mtb). Consequently, stalling dehydration cures tuberculosis (TB). Clinically used anti-TB drugs like thiacetazone (TAC) and isoxyl (ISO) as well as flavonoids inhibit the enzyme activity of the β-hydroxyacyl-ACP dehydratase HadAB complex. How this inhibition is exerted, has remained an enigma for years. Here, we describe the first crystal structures of the MtbHadAB complex bound with flavonoid inhibitor butein, 2',4,4'-trihydroxychalcone or fisetin. Despite sharing no sequence identity from Blast, HadA and HadB adopt a very similar hotdog fold. HadA forms a tight dimer with HadB in which the proteins are sitting side-by-side, but are oriented anti-parallel. While HadB contributes the catalytically critical His-Asp dyad, HadA binds the fatty acid substrate in a long channel. The atypical double hotdog fold with a single active site formed by MtbHadAB gives rise to a long, narrow cavity that vertically traverses the fatty acid binding channel. At the base of this cavity lies Cys61, which upon mutation to Ser confers drug-resistance in TB patients. We show that inhibitors bind in this cavity and protrude into the substrate binding channel. Thus, inhibitors of MtbHadAB exert their effect by occluding substrate from the active site. The unveiling of this mechanism of inhibition paves the way for accelerating development of next generation of anti-TB drugs. PMID:26081470

  12. Expression of a bacterial 3-dehydroshikimate dehydratase reduces lignin content and improves biomass saccharification efficiency.

    PubMed

    Eudes, Aymerick; Sathitsuksanoh, Noppadon; Baidoo, Edward E K; George, Anthe; Liang, Yan; Yang, Fan; Singh, Seema; Keasling, Jay D; Simmons, Blake A; Loqué, Dominique

    2015-12-01

    Lignin confers recalcitrance to plant biomass used as feedstocks in agro-processing industries or as source of renewable sugars for the production of bioproducts. The metabolic steps for the synthesis of lignin building blocks belong to the shikimate and phenylpropanoid pathways. Genetic engineering efforts to reduce lignin content typically employ gene knockout or gene silencing techniques to constitutively repress one of these metabolic pathways. Recently, new strategies have emerged offering better spatiotemporal control of lignin deposition, including the expression of enzymes that interfere with the normal process for cell wall lignification. In this study, we report that expression of a 3-dehydroshikimate dehydratase (QsuB from Corynebacterium glutamicum) reduces lignin deposition in Arabidopsis cell walls. QsuB was targeted to the plastids to convert 3-dehydroshikimate - an intermediate of the shikimate pathway - into protocatechuate. Compared to wild-type plants, lines expressing QsuB contain higher amounts of protocatechuate, p-coumarate, p-coumaraldehyde and p-coumaryl alcohol, and lower amounts of coniferaldehyde, coniferyl alcohol, sinapaldehyde and sinapyl alcohol. 2D-NMR spectroscopy and pyrolysis-gas chromatography/mass spectrometry (pyro-GC/MS) reveal an increase of p-hydroxyphenyl units and a reduction of guaiacyl units in the lignin of QsuB lines. Size-exclusion chromatography indicates a lower degree of lignin polymerization in the transgenic lines. Therefore, our data show that the expression of QsuB primarily affects the lignin biosynthetic pathway. Finally, biomass from these lines exhibits more than a twofold improvement in saccharification efficiency. We conclude that the expression of QsuB in plants, in combination with specific promoters, is a promising gain-of-function strategy for spatiotemporal reduction of lignin in plant biomass. PMID:25583257

  13. Arogenate Dehydratase Isoenzymes Profoundly and Differentially Modulate Carbon Flux into Lignins*

    PubMed Central

    Corea, Oliver R. A.; Ki, Chanyoung; Cardenas, Claudia L.; Kim, Sung-Jin; Brewer, Sarah E.; Patten, Ann M.; Davin, Laurence B.; Lewis, Norman G.

    2012-01-01

    How carbon flux differentially occurs in vascular plants following photosynthesis for protein formation, phenylpropanoid metabolism (i.e. lignins), and other metabolic processes is not well understood. Our previous discovery/deduction that a six-membered arogenate dehydratase (ADT1–6) gene family encodes the final step in Phe biosynthesis in Arabidopsis thaliana raised the fascinating question whether individual ADT isoenzymes (or combinations thereof) differentially modulated carbon flux to lignins, proteins, etc. If so, unlike all other lignin pathway manipulations that target cell wall/cytosolic processes, this would be the first example of a plastid (chloroplast)-associated metabolic process influencing cell wall formation. Homozygous T-DNA insertion lines were thus obtained for five of the six ADTs and used to generate double, triple, and quadruple knockouts (KOs) in different combinations. The various mutants so obtained gave phenotypes with profound but distinct reductions in lignin amounts, encompassing a range spanning from near wild type levels to reductions of up to ∼68%. In the various KOs, there were also marked changes in guaiacyl:syringyl ratios ranging from ∼3:1 to 1:1, respectively; these changes were attributed to differential carbon flux into vascular bundles versus that into fiber cells. Laser microscope dissection/pyrolysis GC/MS, histochemical staining/lignin analyses, and pADT::GUS localization indicated that ADT5 preferentially affects carbon flux into the vascular bundles, whereas the adt3456 knock-out additionally greatly reduced carbon flux into fiber cells. This plastid-localized metabolic step can thus profoundly differentially affect carbon flux into lignins in distinct anatomical regions and provides incisive new insight into different factors affecting guaiacyl:syringyl ratios and lignin primary structure. PMID:22311980

  14. Expression of a bacterial 3-dehydroshikimate dehydratase reduces lignin content and improves biomass saccharification efficiency

    DOE PAGESBeta

    Eudes, Aymerick; Sathitsuksanoh, Noppadon; Baidoo, Edward E. K.; George, Anthe; Liang, Yan; Yang, Fan; Singh, Seema; Keasling, Jay D.; Simmons, Blake A.; Loqué, Dominique

    2015-01-13

    Lignin confers recalcitrance to plant biomass used as feedstocks in agro-processing industries or as source of renewable sugars for the production of bioproducts. The metabolic steps for the synthesis of lignin building blocks belong to the shikimate and phenylpropanoid pathways. Genetic engineering efforts to reduce lignin content typically employ gene knockout or gene silencing techniques to constitutively repress one of these metabolic pathways. Recently, new strategies have emerged offering better spatiotemporal control of lignin deposition, including the expression of enzymes that interfere with the normal process for cell wall lignification. In this study, we report that expression of a 3-dehydroshikimatemore » dehydratase (QsuB from Corynebacterium glutamicum) reduces lignin deposition in Arabidopsis cell walls. QsuB was targeted to the plastids to convert 3-dehydroshikimate – an intermediate of the shikimate pathway – into protocatechuate. Compared to wild-type plants, lines expressing QsuB contain higher amounts of protocatechuate, p-coumarate, p-coumaraldehyde and p-coumaryl alcohol, and lower amounts of coniferaldehyde, coniferyl alcohol, sinapaldehyde and sinapyl alcohol. 2D-NMR spectroscopy and pyrolysis-gas chromatography/mass spectrometry (pyro-GC/MS) reveal an increase of p-hydroxyphenyl units and a reduction of guaiacyl units in the lignin of QsuB lines. Size-exclusion chromatography indicates a lower degree of lignin polymerization in the transgenic lines. Therefore, our data show that the expression of QsuB primarily affects the lignin biosynthetic pathway. Finally, biomass from these lines exhibits more than a twofold improvement in saccharification efficiency. We conclude that the expression of QsuB in plants, in combination with specific promoters, is a promising gain-of-function strategy for spatiotemporal reduction of lignin in plant biomass.« less

  15. Expression of a bacterial 3-dehydroshikimate dehydratase reduces lignin content and improves biomass saccharification efficiency

    SciTech Connect

    Eudes, Aymerick; Sathitsuksanoh, Noppadon; Baidoo, Edward E. K.; George, Anthe; Liang, Yan; Yang, Fan; Singh, Seema; Keasling, Jay D.; Simmons, Blake A.; Loqué, Dominique

    2015-01-13

    Lignin confers recalcitrance to plant biomass used as feedstocks in agro-processing industries or as source of renewable sugars for the production of bioproducts. The metabolic steps for the synthesis of lignin building blocks belong to the shikimate and phenylpropanoid pathways. Genetic engineering efforts to reduce lignin content typically employ gene knockout or gene silencing techniques to constitutively repress one of these metabolic pathways. Recently, new strategies have emerged offering better spatiotemporal control of lignin deposition, including the expression of enzymes that interfere with the normal process for cell wall lignification. In this study, we report that expression of a 3-dehydroshikimate dehydratase (QsuB from Corynebacterium glutamicum) reduces lignin deposition in Arabidopsis cell walls. QsuB was targeted to the plastids to convert 3-dehydroshikimate – an intermediate of the shikimate pathway – into protocatechuate. Compared to wild-type plants, lines expressing QsuB contain higher amounts of protocatechuate, p-coumarate, p-coumaraldehyde and p-coumaryl alcohol, and lower amounts of coniferaldehyde, coniferyl alcohol, sinapaldehyde and sinapyl alcohol. 2D-NMR spectroscopy and pyrolysis-gas chromatography/mass spectrometry (pyro-GC/MS) reveal an increase of p-hydroxyphenyl units and a reduction of guaiacyl units in the lignin of QsuB lines. Size-exclusion chromatography indicates a lower degree of lignin polymerization in the transgenic lines. Therefore, our data show that the expression of QsuB primarily affects the lignin biosynthetic pathway. Finally, biomass from these lines exhibits more than a twofold improvement in saccharification efficiency. We conclude that the expression of QsuB in plants, in combination with specific promoters, is a promising gain-of-function strategy for spatiotemporal reduction of lignin in plant biomass.

  16. Arogenate dehydratase isoenzymes profoundly and differentially modulate carbon flux into lignins.

    PubMed

    Corea, Oliver R A; Ki, Chanyoung; Cardenas, Claudia L; Kim, Sung-Jin; Brewer, Sarah E; Patten, Ann M; Davin, Laurence B; Lewis, Norman G

    2012-03-30

    How carbon flux differentially occurs in vascular plants following photosynthesis for protein formation, phenylpropanoid metabolism (i.e. lignins), and other metabolic processes is not well understood. Our previous discovery/deduction that a six-membered arogenate dehydratase (ADT1-6) gene family encodes the final step in Phe biosynthesis in Arabidopsis thaliana raised the fascinating question whether individual ADT isoenzymes (or combinations thereof) differentially modulated carbon flux to lignins, proteins, etc. If so, unlike all other lignin pathway manipulations that target cell wall/cytosolic processes, this would be the first example of a plastid (chloroplast)-associated metabolic process influencing cell wall formation. Homozygous T-DNA insertion lines were thus obtained for five of the six ADTs and used to generate double, triple, and quadruple knockouts (KOs) in different combinations. The various mutants so obtained gave phenotypes with profound but distinct reductions in lignin amounts, encompassing a range spanning from near wild type levels to reductions of up to ∼68%. In the various KOs, there were also marked changes in guaiacyl:syringyl ratios ranging from ∼3:1 to 1:1, respectively; these changes were attributed to differential carbon flux into vascular bundles versus that into fiber cells. Laser microscope dissection/pyrolysis GC/MS, histochemical staining/lignin analyses, and pADT::GUS localization indicated that ADT5 preferentially affects carbon flux into the vascular bundles, whereas the adt3456 knock-out additionally greatly reduced carbon flux into fiber cells. This plastid-localized metabolic step can thus profoundly differentially affect carbon flux into lignins in distinct anatomical regions and provides incisive new insight into different factors affecting guaiacyl:syringyl ratios and lignin primary structure. PMID:22311980

  17. Use of differential dye-ligand chromatography with affinity elution for enzyme purification: 6-phosphogluconate dehydratase from Zymomonas mobilis.

    PubMed

    Scopes, R K; Griffiths-Smith, K

    1984-02-01

    Using differential dye-ligand chromatography and affinity elution with a substrate analog, 6-phosphogluconate dehydratase (EC 4.2.1.12) has been isolated from extracts of Zymomonas mobilis in a one-step procedure with 50% recovery. The specific activity of freshly isolated enzyme was 245 units mg-1. The enzyme contains iron, and it is rapidly inactivated in oxidizing conditions. It is inhibited by glycerophosphates, most strongly by the D-alpha-isomer which structurally corresponds to half of the substrate molecule. PMID:6326623

  18. An unusual dehydratase acting on glycerate and a ketoreducatse stereoselectively reducing α-ketone in polyketide starter unit biosynthesis.

    PubMed

    He, Hai-Yan; Yuan, Hua; Tang, Man-Cheng; Tang, Gong-Li

    2014-10-13

    Polyketide synthases (PKSs) usually employ a ketoreductase (KR) to catalyze the reduction of a β-keto group, followed by a dehydratase (DH) that drives the dehydration to form a double bond between the α- and β-carbon atoms. Herein, a DH*-KR* involved in FR901464 biosynthesis was characterized: DH* acts on glyceryl-S-acyl carrier protein (ACP) to yield ACP-linked pyruvate; subsequently KR* reduces α-ketone that yields L-lactyl-S-ACP as starter unit for polyketide biosynthesis. Genetic and biochemical evidence was found to support a similar pathway that is involved in the biosynthesis of lankacidins. These results not only identified new PKS domains acting on different substrates, but also provided additional options for engineering the PKS starter pathway or biocatalysis. PMID:25160004

  19. Crystallization and preliminary X-ray analysis of molecular chaperone-like diol dehydratase-reactivating factor in ADP-bound and nucleotide-free forms

    SciTech Connect

    Mori, Koichi; Hieda, Naoki; Yamanishi, Mamoru; Shibata, Naoki; Toraya, Tetsuo

    2005-06-01

    The molecular chaperone-like reactivating factor for adenosylcobalamin (coenzyme B{sub 12}) dependent diol dehydratase was crystallized in ADP-bound and nucleotide-free forms. Preliminary X-ray analysis indicated that crystals are orthorhombic and diffract to 2.0 Å. Adenosylcobalamin (coenzyme B{sub 12}) dependent diol dehydratase (EC 4.2.1.28) catalyzes the conversion of 1,2-diols and glycerol to the corresponding aldehydes. It undergoes mechanism-based inactivation by glycerol. The diol dehydratase-reactivating factor (DDR) reactivates the inactivated holoenzymes in the presence of adenosylcobalamin, ATP and Mg{sup 2+} by mediating the release of a damaged cofactor. This molecular chaperone-like factor was overexpressed in Escherichia coli, purified and crystallized in the ADP-bound and nucleotide-free forms by the sandwich-drop vapour-diffusion method. The crystals of the ADP-bound form belong to the orthorhombic system, with space group P2{sub 1}2{sub 1}2{sub 1} and unit-cell parameters a = 83.26, b = 84.60, c = 280.09 Å, and diffract to 2.0 Å. In the absence of nucleotide, DDR crystals were orthorhombic, with space group P2{sub 1}2{sub 1}2{sub 1} and unit-cell parameters a = 81.92, b = 85.37, c = 296.99 Å and diffract to 3.0 Å. Crystals of both forms were suitable for structural analysis.

  20. Mutagenic and chemical analyses provide new insight into enzyme activation and mechanism of the type 2 iron-sulfur l-serine dehydratase from Legionella pneumophila.

    PubMed

    Xu, Xiao Lan; Grant, Gregory A

    2016-04-15

    The crystal structure of the Type 2 l-serine dehydratase from Legionella pneumophila (lpLSD), revealed a "tail-in-mouth" configuration where the C-terminal residue acts as an intrinsic competitive inhibitor. This pre-catalytic structure undergoes an activation step prior to catalytic turnover. Mutagenic analysis of residues at or near the active site cleft is consistent with stabilization of substrate binding by many of the same residues that interact with the C-terminal cysteine and highlight the critical role of certain tail residues in activity. pH-rate profiles show that a residue with pK of 5.9 must be deprotonated and a residue with a pK of 8.5 must be protonated for activity. This supports an earlier suggestion that His 61 is the likely catalytic base. An additional residue with a pK of 8.5-9 increases cooperativity when it is deprotonated. This investigation also demonstrates that the Fe-S dehydratases convert the enamine/imine intermediates of the catalytic reaction to products on the enzyme prior to release. This is in contrast to pyridoxyl 5' phosphate based dehydratases that release an enamine/imine intermediate into solution, which then hydrolyzes to produce the ketoamine product. PMID:26971469

  1. Effects of lead shot ingestion on delta-aminolevulinic acid dehydratase activity, hemoglobin concentration, and serum chemistry in bald eagles

    USGS Publications Warehouse

    Hoffman, D.J.; Pattee, O.H.; Wiemeyer, Stanley N.; Mulhern, B.

    1981-01-01

    Lead shot ingestion by bald eagles (Haliaeetus leucocephalus) is considered to be widespread and has been implicated in the death of eagles in nature. It was recently demonstrated under experimental conditions that ingestion of as few as 10 lead shot resulted in death within 12 to 20 days. In the present study hematological responses to lead toxicity including red blood cell ALAD activity, hemoglobin concentration and 23 different blood serum chemistries were examined in five captive bald eagles that were unsuitable for rehabilitation and release. Eagles were dosed by force-feeding with 10 lead shot; they were redosed if regurgitation occurred. Red blood cell ALAD activity was inhibited by nearly 80% within 24 hours when mean blood lead concentration had increased to 0.8 parts per million (ppm). By the end of 1 week there was a significant decrease (20-25%) in hematocrit and hemoglobin, and the mean blood lead concentration was over 3 ppm. Within as little as 1-2 weeks after dosing, significant elevations in serum creatinine and serum alanine aminotransferase occurred, as well as a significant decrease in the ratio of serum aspartic aminotransferase to serum alanine aminotransferase. The mean blood lead concentration was over 5 ppm by the end of 2 weeks. These changes in serum chemistry may be indicative of kidney and liver alterations.

  2. Identification and characterization of GDP-d-mannose 4,6-dehydratase and GDP-l-fucose snthetase in a GDP-l-fucose biosynthetic gene cluster from Helicobacter pylori.

    PubMed

    Wu, B; Zhang, Y; Wang, P G

    2001-07-13

    In this study two open reading frames, namely HP0044 and HP0045 from H. pylori, were cloned and overexpressed in E. coli. The two recombinant proteins were demonstrated to have GDP-d-mannose 4,6-dehydratase (GMD) and GDP-l-fucose synthetase (GFS) activities, respectively. The recombinant GMD was a tetramer and had an optimum pH of 6.5. Exogenous NADP(+) was essential for its activity. The K(m) and K(cat) for GDP-d-mannose were 117.3 microM and 0.27 s(-1), respectively. The recombinant GFS was a homodimer with an optimum pH of 8.0. The K(m) and K(cat) for GDP-4-keto-6-deoxy-d-mannose were 64.08 microM and 0.75 s(-1), respectively. It can use both NADPH and NADH, but less efficient with the latter. Amino acid sequence alignment and phylogenetic analysis showed that H. pylori GFS was highly homologous to the GFS of E. coli O111 and both of them were located on a separate phylogenetic branch from other GFS. The unique clustering and origin of the two genes were also discussed. PMID:11444851

  3. Structure-based virtual screening as a tool for the identification of novel inhibitors against Mycobacterium tuberculosis 3-dehydroquinate dehydratase.

    PubMed

    Petersen, Guilherme O; Saxena, Shalini; Renuka, Janupally; Soni, Vijay; Yogeeswari, Perumal; Santos, Diogenes S; Bizarro, Cristiano V; Sriram, Dharmarajan

    2015-07-01

    3-Dehydroquinate dehydratase (DHQase), the third enzyme of the shikimate pathway, catalyzes the reversible reaction of 3-dehydroquinate into 3-dehydroshikimate. The aim of the present study was to identify new drug-like molecules as inhibitors for Mycobacterium tuberculosis DHQase employing structure-based pharmacophore modeling technique using an in house database consisting of about 2500 small molecules. Further the pharmacophore models were validated using enrichment calculations, and finally three models were employed for high-throughput virtual screening and docking to identify novel small molecules as DHQase inhibitors. Five compounds were identified, out of which, one molecule (Lead 1) showed 58% inhibition at 50μ M concentration in the Mtb DHQase assay. Chemical derivatives of the Lead 1 when tested evolved top two hits with IC50s of 17.1 and 31.5 μM as well as MIC values of 25 and 6.25 μg/mL respectively and no cytotoxicity up to 100 μM concentration. PMID:26043661

  4. Anaemia, Serum Iron Concentrations and δ-Aminolevulinate Dehydratase Activity in Laying Hens Infected Naturally by Salmonella Gallinarum.

    PubMed

    Machado, A C; Boiago, M M; do Carmo, G M; Bottari, N B; Araujo, D N; Giuriatti, J; Morsch, V M; Schetinger, M R C; Casagrande, R A; Wisser, C S; Stefani, L M; Alves, M S; Da Silva, A S

    2016-07-01

    The aim of this study was to evaluate anaemia, serum iron concentrations and δ-aminolevulinate dehydratase (ALA-D) activity in laying hens infected naturally by Salmonella Gallinarum and having severe hepatic lesions. Liver and serum samples were collected from 27 laying hens (20 infected and seven uninfected). The δ-ALA-D activity, haematocrit and serum iron concentrations were evaluated. There were significant decreases in δ-ALA-D activity, haematocrit and serum iron concentrations (P <0.01) in birds infected by S. Gallinarum when compared with uninfected birds. There was a positive correlation (P <0.001) between serum iron concentration, haematocrit (r(2) = 0.82) and δ-ALA-D activity (r(2) = 0.75). A positive correlation was also observed between δ-ALA-D activity and haematocrit (r(2) = 0.78; P <0.01). Liver samples showed moderate focal coagulative necrosis associated with infiltration of lymphoplasmacytic cells, macrophages and heterophils. The anaemia in the infected hens may be related to reduction in δ-ALA-D activity and serum iron concentrations, since both are important for haemopoiesis. PMID:27262503

  5. A protein with an inactive pterin-4a-carbinolamine dehydratase domain is required for Rubisco biogenesis in plants.

    PubMed

    Feiz, Leila; Williams-Carrier, Rosalind; Belcher, Susan; Montano, Monica; Barkan, Alice; Stern, David B

    2014-12-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) plays a critical role in sustaining life by catalysis of carbon fixation in the Calvin-Benson pathway. Incomplete knowledge of the assembly pathway of chloroplast Rubisco has hampered efforts to fully delineate the enzyme's properties, or seek improved catalytic characteristics via directed evolution. Here we report that a Mu transposon insertion in the Zea mays (maize) gene encoding a chloroplast dimerization co-factor of hepatocyte nuclear factor 1 (DCoH)/pterin-4α-carbinolamine dehydratases (PCD)-like protein is the causative mutation in a seedling-lethal, Rubisco-deficient mutant named Rubisco accumulation factor 2 (raf2-1). In raf2 mutants newly synthesized Rubisco large subunit accumulates in a high-molecular weight complex, the formation of which requires a specific chaperonin 60-kDa isoform. Analogous observations had been made previously with maize mutants lacking the Rubisco biogenesis proteins RAF1 and BSD2. Chemical cross-linking of maize leaves followed by immunoprecipitation with antibodies to RAF2, RAF1 or BSD2 demonstrated co-immunoprecipitation of each with Rubisco small subunit, and to a lesser extent, co-immunoprecipitation with Rubisco large subunit. We propose that RAF2, RAF1 and BSD2 form transient complexes with the Rubisco small subunit, which in turn assembles with the large subunit as it is released from chaperonins. PMID:25279696

  6. Are delta-aminolevulinate dehydratase inhibition and metal concentrations additional factors for the age-related cognitive decline?

    PubMed

    Baierle, Marília; Charão, Mariele F; Göethel, Gabriela; Barth, Anelise; Fracasso, Rafael; Bubols, Guilherme; Sauer, Elisa; Campanharo, Sarah C; Rocha, Rafael C C; Saint'Pierre, Tatiana D; Bordignon, Suelen; Zibetti, Murilo; Trentini, Clarissa M; Avila, Daiana S; Gioda, Adriana; Garcia, Solange C

    2014-01-01

    Aging is often accompanied by cognitive impairments and influenced by oxidative status and chemical imbalances. Thus, this study was conducted to examine whether age-related cognitive deficit is associated with oxidative damage, especially with inhibition of the enzyme delta-aminolevulinate dehydratase (ALA-D), as well as to verify the influence of some metals in the enzyme activity and cognitive performance. Blood ALA-D activity, essential (Fe, Zn, Cu, Se) and non-essential metals (Pb, Cd, Hg, As, Cr, Ni, V) were measured in 50 elderly and 20 healthy young subjects. Cognitive function was assessed by tests from Consortium to Establish a Registry for Alzheimer's Disease (CERAD) battery and other. The elderly group presented decreased ALA-D activity compared to the young group. The index of ALA-D reactivation was similar to both study groups, but negatively associated with metals. The mean levels of essential metals were within the reference values, while the most toxic metals were above them in both groups. Cognitive function impairments were observed in elderly group and were associated with decreased ALA-D activity, with lower levels of Se and higher levels of toxic metals (Hg and V). Results suggest that the reduced ALA-D activity in elderly can be an additional factor involved in cognitive decline, since its inhibition throughout life could lead to accumulation of the neurotoxic compound ALA. Toxic metals were found to contribute to cognitive decline and also to influence ALA-D reactivation. PMID:25329536

  7. Crystal Structures Reveal that the Reaction Mechanism of Imidazoleglycerol-Phosphate Dehydratase Is Controlled by Switching Mn(II) Coordination

    PubMed Central

    Bisson, Claudine; Britton, K. Linda; Sedelnikova, Svetlana E.; Rodgers, H. Fiona; Eadsforth, Thomas C.; Viner, Russell C.; Hawkes, Tim R.; Baker, Patrick J.; Rice, David W.

    2015-01-01

    Summary Imidazoleglycerol-phosphate dehydratase (IGPD) catalyzes the Mn(II)-dependent dehydration of imidazoleglycerol phosphate (IGP) to 3-(1H-imidazol-4-yl)-2-oxopropyl dihydrogen phosphate during biosynthesis of histidine. As part of a program of herbicide design, we have determined a series of high-resolution crystal structures of an inactive mutant of IGPD2 from Arabidopsis thaliana in complex with IGP. The structures represent snapshots of the enzyme trapped at different stages of the catalytic cycle and show how substrate binding triggers a switch in the coordination state of an active site Mn(II) between six- and five-coordinate species. This switch is critical to prime the active site for catalysis, by facilitating the formation of a high-energy imidazolate intermediate. This work not only provides evidence for the molecular processes that dominate catalysis in IGPD, but also describes how the manipulation of metal coordination can be linked to discrete steps in catalysis, demonstrating one way that metalloenzymes exploit the unique properties of metal ions to diversify their chemistry. PMID:26095028

  8. The Hotdog fold: wrapping up a superfamily of thioesterases and dehydratases

    PubMed Central

    Dillon, Shane C; Bateman, Alex

    2004-01-01

    Background The Hotdog fold was initially identified in the structure of Escherichia coli FabA and subsequently in 4-hydroxybenzoyl-CoA thioesterase from Pseudomonas sp. strain CBS. Since that time structural determinations have shown a number of other apparently unrelated proteins also share the Hotdog fold. Results Using sequence analysis we unify a large superfamily of HotDog domains. Membership includes numerous prokaryotic, archaeal and eukaryotic proteins involved in several related, but distinct, catalytic activities, from metabolic roles such as thioester hydrolysis in fatty acid metabolism, to degradation of phenylacetic acid and the environmental pollutant 4-chlorobenzoate. The superfamily also includes FapR, a non-catalytic bacterial homologue that is involved in transcriptional regulation of fatty acid biosynthesis. We have defined 17 subfamilies, with some characterisation. Operon analysis has revealed numerous HotDog domain-containing proteins to be fusion proteins, where two genes, once separate but adjacent open-reading frames, have been fused into one open-reading frame to give a protein with two functional domains. Finally we have generated a Hidden Markov Model library from our analysis, which can be used as a tool for predicting the occurrence of HotDog domains in any protein sequence. Conclusions The HotDog domain is both an ancient and ubiquitous motif, with members found in the three branches of life. PMID:15307895

  9. Evaluation of Delta-Aminolevulinic Dehydratase Activity, Oxidative Stress Biomarkers, and Vitamin D Levels in Patients with Multiple Sclerosis.

    PubMed

    Polachini, Carla Roberta Nunes; Spanevello, Roselia Maria; Zanini, Daniela; Baldissarelli, Jucimara; Pereira, Luciane Belmonte; Schetinger, Maria Rosa Chitolina; da Cruz, Ivana Beatrice Mânica; Assmann, Charles Elias; Bagatini, Margarete Dulce; Morsch, Vera Maria

    2016-02-01

    Multiple sclerosis (MS) is an autoimmune neurological disorder of unknown etiology. Oxidative stress and alterations in vitamin D levels have been implicated in the pathophysiology of MS. The aim of this study was to investigate δ-aminolevulinate dehydratase (δ-ALA-D) activity as well as the levels of vitamin D, lipid peroxidation levels, carbonyl protein content, DNA damage, superoxide dismutase (SOD) and catalase (CAT) activities, and the vitamin C, vitamin E, and non-protein thiol (NPSH) content in samples from patients with the relapsing-remitting form of MS (RRMS). The study population consisted of 29 RRMS patients and 29 healthy subjects. Twelve milliliters of blood was obtained from each individual and used for biochemical determinations. The results showed that δ-ALA-D and CAT activities were significantly increased, while SOD activity was decreased in the whole blood of RRMS patients compared to the control group (P < 0.05). In addition, we observed a significant increase in lipid peroxidation, carbonyl protein levels in serum and damaged DNA in leucocytes in RRMS patients compared with the control group (P < 0.05). Nonetheless, the levels of vitamin C, vitamin E, NPSH, and vitamin D were significantly decreased in RRMS patients in relation to the healthy individuals (P < 0.05). In conclusion, our results suggested that the increase in δ-ALA-D activity may be related to the inflammatory and immune process in MS in an attempt to maintain the cellular metabolism and reduce oxidative stress. Moreover, the alterations in the oxidant/antioxidant balance and lower vitamin D levels may contribute to the pathophysiology of MS. PMID:26690779

  10. Crystal structure of type I 3-dehydroquinate dehydratase of Aquifex aeolicus suggests closing of active site flap is not essential for enzyme action.

    PubMed

    Devi, Aribam Swarmistha; Ebihara, Akio; Kuramitsu, Seiki; Yokoyama, Shigeyuki; Kumarevel, Thirumananseri; Ponnuraj, Karthe

    2013-03-01

    Structural analyses of enzymes involved in biosynthetic pathways that are present in micro-organisms, but absent from mammals (for example Shikimate pathway) are important in developing anti-microbial drugs. Crystal structure of the Shikimate pathway enzyme, type I 3-dehydroquinate dehydratase (3-DHQase) from the hyperthermophilic bacterium Aquifex aeolicus was solved both as an apo form and in complex with a ligand. The complex structure revealed an interesting structural difference when compared to other ligand-bound type I 3-DHQases suggesting that closure of the active site loop is not essential for catalysis. This provides new insights into the catalytic mechanism of type I 3-DHQases. PMID:23396056

  11. Crystallization and preliminary X-ray analysis of molecular chaperone-like diol dehydratase-reactivating factor in ADP-bound and nucleotide-free forms

    PubMed Central

    Mori, Koichi; Hieda, Naoki; Yamanishi, Mamoru; Shibata, Naoki; Toraya, Tetsuo

    2005-01-01

    Adenosylcobalamin (coenzyme B12) dependent diol dehydratase (EC 4.2.1.28) catalyzes the conversion of 1,2-diols and glycerol to the corresponding aldehydes. It undergoes mechanism-based inactivation by glycerol. The diol dehydratase-reactivating factor (DDR) reactivates the inactivated holoenzymes in the presence of adenosylcobalamin, ATP and Mg2+ by mediating the release of a damaged cofactor. This molecular chaperone-like factor was overexpressed in Escherichia coli, purified and crystallized in the ADP-bound and nucleotide-free forms by the sandwich-drop vapour-diffusion method. The crystals of the ADP-bound form belong to the orthorhombic system, with space group P212121 and unit-cell parameters a = 83.26, b = 84.60, c = 280.09 Å, and diffract to 2.0 Å. In the absence of nucleotide, DDR crystals were orthorhombic, with space group P212121 and unit-cell parameters a = 81.92, b = 85.37, c = 296.99 Å and diffract to 3.0 Å. Crystals of both forms were suitable for structural analysis. PMID:16511107

  12. Structure and identification of a pterin dehydratase-like protein as a ribulose-bisphosphate carboxylase/oxygenase (RuBisCO) assembly factor in the α-carboxysome.

    PubMed

    Wheatley, Nicole M; Sundberg, Christopher D; Gidaniyan, Soheil D; Cascio, Duilio; Yeates, Todd O

    2014-03-14

    Carboxysomes are proteinaceous bacterial microcompartments that increase the efficiency of the rate-limiting step in carbon fixation by sequestering reaction substrates. Typically, α-carboxysomes are genetically encoded as a single operon expressing the structural proteins and the encapsulated enzymes of the microcompartment. In addition, depending on phylogeny, as many as 13 other genes are found to co-occur near or within α-carboxysome operons. One of these genes codes for a protein with distant homology to pterin-4α-carbinolamine dehydratase (PCD) enzymes. It is present in all α-carboxysome containing bacteria and has homologs in algae and higher plants. Canonical PCDs play an important role in amino acid hydroxylation, a reaction not associated with carbon fixation. We determined the crystal structure of an α-carboxysome PCD-like protein from the chemoautotrophic bacterium Thiomonas intermedia K12, at 1.3-Å resolution. The protein retains a three-dimensional fold similar to canonical PCDs, although the prominent active site cleft present in PCD enzymes is disrupted in the α-carboxysome PCD-like protein. Using a cell-based complementation assay, we tested the PCD-like proteins from T. intermedia and two additional bacteria, and found no evidence for PCD enzymatic activity. However, we discovered that heterologous co-expression of the PCD-like protein from Halothiobacillus neapolitanus with RuBisCO and GroELS in Escherichia coli increased the amount of soluble, assembled RuBisCO recovered from cell lysates compared with co-expression of RuBisCO with GroELS alone. We conclude that this conserved PCD-like protein, renamed here α-carboxysome RuBisCO assembly factor (or acRAF), is a novel RuBisCO chaperone integral to α-carboxysome function. PMID:24459150

  13. Dehydration of (R)-2-hydroxyacyl-CoA to enoyl-CoA in the fermentation of alpha-amino acids by anaerobic bacteria.

    PubMed

    Kim, Jihoe; Hetzel, Marc; Boiangiu, Clara Dana; Buckel, Wolfgang

    2004-10-01

    Several clostridia and fusobacteria ferment alpha-amino acids via (R)-2-hydroxyacyl-CoA, which is dehydrated to enoyl-CoA by syn-elimination. This reaction is of great mechanistic interest, since the beta-hydrogen, to be eliminated as proton, is not activated (pK 40-50). A mechanism has been proposed, in which one high-energy electron acts as cofactor and transiently reduces the electrophilic thiol ester carbonyl to a nucleophilic ketyl radical anion. The 2-hydroxyacyl-CoA dehydratases are two-component systems composed of an extremely oxygen-sensitive component A, an activator, and component D, the actual dehydratase. Component A, a homodimer with one [4Fe-4S]cluster, transfers an electron to component D, a heterodimer with 1-2 [4Fe-4S]clusters and FMN, concomitant with hydrolysis of two ATP. From component D the electron is further transferred to the substrate, where it facilitates elimination of the hydroxyl group. In the resulting enoxyradical the beta-hydrogen is activated (pK14). After elimination the electron is handed-over to the next incoming substrate without further hydrolysis of ATP. The helix-cluster-helix architecture of component A forms an angle of 105 degrees, which probably opens to 180 degrees upon binding of ATP resembling an archer shooting arrows. Therefore we designated component A as 'Archerase'. Here, we describe 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans, Clostridium symbiosum and Fusobacterium nucleatum, 2-phenyllactate dehydratase from Clostridium sporogenes, 2-hydroxyisocaproyl-CoA dehydratase from Clostridium difficile, and lactyl-CoA dehydratase from Clostridium propionicum. A relative of the 2-hydroxyacyl-CoA dehydratases is benzoyl-CoA reductase from Thauera aromatica. Analogous but unrelated archerases are the iron proteins of nitrogenase and bacterial protochlorophyllide reductase. In anaerobic organisms, which do not oxidize 2-oxo acids, a second energy-driven electron transfer from NADH to ferredoxin, the

  14. Human hereditary hepatic porphyrias.

    PubMed

    Nordmann, Yves; Puy, Hervé

    2002-11-01

    The human hereditary hepatic porphyrias are diseases due to marked deficiencies of enzymes in the heme biosynthetic pathway. Porphyrias can be classified as either hepatic or erythroid, depending on the major production site of porphyrins or their precursors. The pathogenesis of inherited hepatic porphyrias has now been defined at the molecular level. Some gene carriers are vulnerable to a range of exogenous and endogenous factors, which may trigger neuropsychiatric and/or cutaneous symptoms. Early diagnosis is of prime importance since it makes way for counselling. In this article we present an overview of recent advances on hepatic porphyrias: 5-aminolevulinic acid dehydratase deficiency porphyria, acute intermittent porphyria (AIP), porphyria cutanea tarda (PCT), hereditary coproporphyria (HC), and variegate porphyria (VP). PMID:12367763

  15. Treatment options in acute porphyria, porphyria cutanea tarda, and erythropoietic protoporphyria.

    PubMed

    Harper, Pauline; Wahlin, Staffan

    2007-12-01

    The porphyrias are a group of uncommon metabolic diseases caused by enzyme deficiencies within heme biosynthesis that lead to neurotoxic or phototoxic heme precursor accumulation. There are four acute porphyrias characterized by neuropsychiatric symptoms: acute intermittent porphyria, variegate porphyria, hereditary coproporphyria, and 5-aminolevulinic acid dehydratase deficiency porphyria. Treatment includes elimination of any porphyrogenic factor and symptomatic treatment. Carbohydrate and intravenous heme administration constitute specific therapies in the disorders' acute phase. The mainstay treatment in the cutaneous porphyrias is avoidance of sunlight exposure. In porphyria cutanea tarda and the two acute porphyrias with skin manifestations, variegate porphyria and hereditary coproporphyria, care of the vulnerable skin is important. In porphyria cutanea tarda, specific treatment is accomplished by a series of phlebotomies and/or by low-dose chloroquine administration. In erythropoietic protoporphyria, light-protective beta-carotene is prescribed. PMID:18221605

  16. Production of 3-hydroxypropionic acid from glycerol by recombinant Pseudomonas denitrificans.

    PubMed

    Zhou, Shengfang; Catherine, Christy; Rathnasingh, Chelladurai; Somasundar, Ashok; Park, Sunghoon

    2013-12-01

    3-Hydroxypropionic acid (3-HP) can be produced from glycerol through two sequential enzymatic reactions that are catalyzed by a coenzyme B12 -dependent glycerol dehydratase and an NAD(P)(+) -dependent aldehyde dehydrogenase (ALDH), respectively. Pseudomonas denitrificans synthesizes coenzyme B12 under aerobic conditions, where NAD(P)(+) is regenerated efficiently. Hence, it is considered an ideal host for the production of 3-HP from glycerol under aerobic conditions. In this study, recombinant strains of P. denitrificans were developed and their potential for the production of 3-HP from glycerol was evaluated. When the enzymes, glycerol dehydratase (DhaB) and glycerol dehydratase reactivase (GdrAB), of Klebsiella pneumoniae were expressed heterologously, P. denitrificans could produce 3-HP at 37.7 mmol/L with 62% (mol/mol) yield on glycerol. Glucose was required as the carbon and energy sources for cell growth. The overexpression of heterologous ALDH was not essential; however, the titer and yield of 3-HP were improved to 54.7 mmol/L and 67% (mol/mol), respectively, when an ALDH gene (puuC) from K. pneumoniae was overexpressed. One serious drawback hindering the use of P. denitrificans as a recombinant host for 3-HP production is that it oxidizes 3-HP to malonate and utilizes 3-HP as a carbon source for growth. This is the first report on the development and use of recombinant P. denitrificans for 3-HP production from glycerol. PMID:23775313

  17. Structural insights into the substrate stereospecificity of D-threo-3-hydroxyaspartate dehydratase from Delftia sp. HT23: a useful enzyme for the synthesis of optically pure L-threo- and D-erythro-3-hydroxyaspartate.

    PubMed

    Matsumoto, Yu; Yasutake, Yoshiaki; Takeda, Yuki; Tamura, Tomohiro; Yokota, Atsushi; Wada, Masaru

    2015-09-01

    D-threo-3-Hydroxyaspartate dehydratase (D-THA DH) is a fold-type III pyridoxal 5'-phosphate-dependent enzyme, isolated from a soil bacterium of Delftia sp. HT23. It catalyzes the dehydration of D-threo-3-hydroxyaspartate (D-THA) and L-erythro-3-hydroxyaspartate (L-EHA). To elucidate the mechanism of substrate stereospecificity, crystal structures of D-THA DH were determined in complex with various ligands, such as an inhibitor (D-erythro-3-hydroxyaspartate (D-EHA)), a substrate (L-EHA), and the reaction intermediate (2-amino maleic acid). The C (β) -OH of L-EHA occupied a position close to the active-site Mg(2+), clearly indicating a possibility of metal-assisted C (β) -OH elimination from the substrate. In contrast, the C (β) -OH of an inhibitor was bound far from the active-site Mg(2+). This suggests that the substrate specificity of D-THA DH is determined by the orientation of the C (β) -OH at the active site, whose spatial arrangement is compatible with the 3R configuration of 3-hydroxyaspartate. We also report an optically pure synthesis of L-threo-3-hydroxyaspartate (L-THA) and D-EHA, promising intermediates for the synthesis of β-benzyloxyaspartate, by using a purified D-THA DH as a biocatalyst for the resolution of racemic DL-threo-3-hydroxyaspartate (DL-THA) and DL-erythro-3-hydroxyaspartate (DL-EHA). Considering 50 % of the theoretical maximum, efficient yields of L-THA (38.9 %) and D-EHA (48.9 %) as isolated crystals were achieved with >99 % enantiomeric excess (e.e.). The results of nuclear magnetic resonance signals verified the chemical purity of the products. We were directly able to isolate analytically pure compounds by the recrystallization of acidified reaction mixtures (pH 2.0) and thus avoiding the use of environmentally harmful organic solvents for the chromatographic purification. PMID:25715785

  18. Bile acid transformations by Alcaligenes recti.

    PubMed

    Mazumder, I; Mahato, S B

    1993-02-01

    Metabolism of cholic acid, chenodeoxycholic acid, ursodeoxycholic acid, and deoxycholic acid by the grown cells of the bacterium Alcaligenes recti suspended in water was studied. Each isolated metabolite was characterized by the application of various spectroscopic methods. Cholic acid, chenodeoxycholic acid, ursodeoxycholic acid, and deoxycholic acid yielded methylated derivatives 3 alpha-methoxy-7 alpha, 12 alpha-dihydroxy-5 beta-cholanoic acid, 3 alpha-methoxy-7 alpha-hydroxy-5 beta-cholanoic acid, 3 alpha-methoxy-7 beta-hydroxy-5 beta-cholanoic acid, and 3 alpha-methoxy-12 alpha-hydroxy-5 beta-cholanoic acid, respectively. In addition, cholic acid furnished 7 alpha, 12 alpha-dihydroxy-3-oxochol-4-en-24-oic acid; chenodeoxycholic acid gave 7 alpha-hydroxy-3-oxo-5 beta-cholanoic acid and 7 alpha-hydroxy-3-oxochol-4-en-24-oic acid while ursodeoxycholic acid yielded 7 beta-hydroxy-3-oxochol-4-en-24-oic acid and 3-oxochola-4,6-dien-24-oic acid. The formation of various metabolites showed that two competitive enzymic reactions, i.e., selective methylation of the 3 alpha-hydroxy group and dehydrogenation in the A/B rings, were operative. The methylation process was found to be enzymic involving an S-adenosyl-L-methionine (AdoMet)-dependent methyl transferase, and this reaction appeared to be inhibitory to the process of degradation of the ring system. In the other reaction sequence, degradation of the ring system was initiated by dehydrogenation of the 3 alpha-hydroxy group. A 7 beta-dehydratase activity producing the delta 6 double bond was also noticeable in the metabolism of ursodeoxycholic acid. PMID:8484188

  19. 2-Butanol and butanone production in Saccharomyces cerevisiae through combination of a B12 dependent dehydratase and a secondary alcohol dehydrogenase using a TEV-based expression system.

    PubMed

    Ghiaci, Payam; Norbeck, Joakim; Larsson, Christer

    2014-01-01

    2-Butanol and its chemical precursor butanone (methyl ethyl ketone--MEK) are chemicals with potential uses as biofuels and biocommodity chemicals. In order to produce 2-butanol, we have demonstrated the utility of using a TEV-protease based expression system to achieve equimolar expression of the individual subunits of the two protein complexes involved in the B12-dependent dehydratase step (from the pdu-operon of Lactobacillus reuteri), which catalyze the conversion of meso-2,3-butanediol to butanone. We have furthermore identified a NADH dependent secondary alcohol dehydrogenase (Sadh from Gordonia sp.) able to catalyze the subsequent conversion of butanone to 2-butanol. A final concentration of 4±0.2 mg/L 2-butanol and 2±0.1 mg/L of butanone was found. A key factor for the production of 2-butanol was the availability of NADH, which was achieved by growing cells lacking the GPD1 and GPD2 isogenes under anaerobic conditions. PMID:25054226

  20. 2-Butanol and Butanone Production in Saccharomyces cerevisiae through Combination of a B12 Dependent Dehydratase and a Secondary Alcohol Dehydrogenase Using a TEV-Based Expression System

    PubMed Central

    Ghiaci, Payam; Norbeck, Joakim; Larsson, Christer

    2014-01-01

    2-Butanol and its chemical precursor butanone (methyl ethyl ketone – MEK) are chemicals with potential uses as biofuels and biocommodity chemicals. In order to produce 2-butanol, we have demonstrated the utility of using a TEV-protease based expression system to achieve equimolar expression of the individual subunits of the two protein complexes involved in the B12-dependent dehydratase step (from the pdu-operon of Lactobacillus reuterii), which catalyze the conversion of meso-2,3-butanediol to butanone. We have furthermore identified a NADH dependent secondary alcohol dehydrogenase (Sadh from Gordonia sp.) able to catalyze the subsequent conversion of butanone to 2-butanol. A final concentration of 4±0.2 mg/L 2-butanol and 2±0.1 mg/L of butanone was found. A key factor for the production of 2-butanol was the availability of NADH, which was achieved by growing cells lacking the GPD1 and GPD2 isogenes under anaerobic conditions. PMID:25054226

  1. Transcriptional regulation of delta-aminolevulinic acid dehydratase synthesis by oxygen in Bradyrhizobium japonicum and evidence for developmental control of the hemB gene.

    PubMed Central

    Chauhan, S; O'Brian, M R

    1997-01-01

    An increased demand for cytochromes is associated with symbiotic development and microaerobic metabolism in the bacterium Bradyrhizobium japonicum, and evidence suggests that hemB, rather than hemA, is the first essential bacterial heme synthesis gene in symbiosis with soybean. Steady-state levels of mRNA and protein encoded by hemB were strongly and rapidly induced by O2 deprivation as determined by RNase protection and immunoblot analyses, but hemH message was not induced. Oxygen limitation resulted in a greater-than-10-fold increase in the rate of hemB mRNA synthesis as determined by transcriptional runoff experiments, whereas hemH transcription was unaffected by the O2 status. Thus, hemB is a regulated gene in B. japonicum and is transcriptionally controlled by O2. Unlike the expression in parent strain I110, hemB expression was not affected by O2 in the fixJ strain 7360, and O2-limited cultures of the mutant contained quantities of hemB mRNA and protein that were comparable to uninduced levels found in aerobic cells. In addition, spectroscopic analysis of cell extracts showed that increases in b- and c-type cytochromes and the disappearance of cytochrome aa3 in response to microaerobic growth in wild-type cells were not observed in the fixJ mutant. FixJ is a key transcriptional regulator that mediates O2-dependent differentiation in rhizobia, and therefore hemB expression is under developmental control. Furthermore, the data suggest a global control of cytochrome expression and heme biosynthesis in response to the cellular O2 status. PMID:9171420

  2. Delta-aminolevulinic acid dehydratase (δALAD) activity in four free-living bird species exposed to different levels of lead under natural conditions.

    PubMed

    Espín, Silvia; Martínez-López, Emma; Jiménez, Pedro; María-Mojica, Pedro; García-Fernández, Antonio J

    2015-02-01

    The purposes of this study were: (1) to determine the δALAD activity and δALAD ratio in blood of four free-living bird species (Griffon vulture, Eagle owl, Slender-billed gull and Audouin's gull); (2) and to investigate the correlations between δALAD activity/ratio and Pb concentrations in blood samples. A decrease was observed in δALAD activity in Griffon vultures and Eagle owls exposed to Pb. In addition, negative relationships were found between δALAD ratio or δALAD activity and Log blood Pb levels in Griffon vultures and Eagle owls, and these relationships were stronger in areas with the highest Pb exposure. We provide equations that may be helpful to estimate δALAD activity and δALAD ratio using blood Pb concentrations. Regarding gull species, δALAD activity found in the present study may be considered the normal activity in Slender-billed gull and Audouin's gull species, since very low blood Pb concentrations and no correlations were found in these species. Although both δALAD activity and δALAD ratio are sensitive biomarkers of Pb exposure and effect in birds, the use of δALAD ratio may improve the results. Besides, this study provides blood threshold concentrations at which Pb bears effects on δALAD enzyme (5µg/dl in Eagle owl; 8µg/dl in Griffon vulture; and probably >2µg/dl in Slender-billed gull and Audouin's gull). Our findings show that Eagle owl seems to be more sensitive to δALAD enzymatic inhibition by Pb than Griffon vultures. Eagle owls and Griffon vultures exhibited up to 79% and 94% decrease in δALAD activity when blood Pb concentrations exceeded 19 and 30µg/dl, respectively. Regarding the effects related with δALAD inhibition, significant negative correlations were found between δALAD activity and hematocrit in Eagle owls and Griffon vultures, which may be related to compensatory response associated with a decrease in δALAD activity. In addition, an effect on creatine kinase activity and total proteins in plasma was found in Griffon vultures. The significant negative correlations found between δALAD activity and tGSH in Griffon vulture, and between δALAD activity and Log CAT activity in Eagle owls, may be related to a protective response of antioxidant system against reactive oxygen species (ROS). The negative relationship found between δALAD activity and TBARS levels in Griffon vulture is probably related to an induction of lipid peroxidation by ROS that may be generated by δALA accumulation when δALAD activity is depressed. δALAD activity and δALAD ratio in blood are suggested as important nondestructive biomarkers for Pb exposure and effect for future biomonitoring studies in Griffon vulture and Eagle owl. Further studies are recommended to provide new data on Pb concentrations at which δALAD activity is affected in different wild bird species and to elucidate why different species tolerate Pb in different ways. PMID:25569843

  3. Crystal structure of a tetrameric GDP-D-mannose 4,6-dehydratase from a bacterial GDP-D-rhamnose biosynthetic pathway

    SciTech Connect

    Webb, N.A.; Mulichak, A.M.; Lam, J.S.; Rocchetta, H.L.; Garavito, R.M.

    2010-03-08

    D-Rhamnose is a rare 6-deoxy monosaccharide primarily found in the lipopolysaccharide of pathogenic bacteria, where it is involved in host-bacterium interactions and the establishment of infection. The biosynthesis of D-rhamnose proceeds through the conversion of GDP-D-mannose by GDP-D-mannose 4,6-dehydratase (GMD) to GDP-4-keto-6-deoxymannose, which is subsequently reduced to GDP-D-rhamnose by a reductase. We have determined the crystal structure of GMD from Pseudomonas aeruginosa in complex with NADPH and GDP. GMD belongs to the NDP-sugar modifying subfamily of the short-chain dehydrogenase/reductase (SDR) enzymes, all of which exhibit bidomain structures and a conserved catalytic triad (Tyr-XXX-Lys and Ser/Thr). Although most members of this enzyme subfamily display homodimeric structures, this bacterial GMD forms a tetramer in the same fashion as the plant MUR1 from Arabidopsis thaliana. The cofactor binding sites are adjoined across the tetramer interface, which brings the adenosyl phosphate moieties of the adjacent NADPH molecules to within 7 {angstrom} of each other. A short peptide segment (Arg35-Arg43) stretches into the neighboring monomer, making not only protein-protein interactions but also hydrogen bonding interactions with the neighboring cofactor. The interface hydrogen bonds made by the Arg35-Arg43 segment are generally conserved in GMD and MUR1, and the interacting residues are highly conserved among the sequences of bacterial and eukaryotic GMDs. Outside of the Arg35-Arg43 segment, residues involved in tetrameric contacts are also quite conserved across different species. These observations suggest that a tetramer is the preferred, and perhaps functionally relevant, oligomeric state for most bacterial and eukaryotic GMDs.

  4. Dexamethasone alone and in combination with desipramine, phenytoin, valproic acid or levetiracetam interferes with 5-ALA-mediated PpIX production and cellular retention in glioblastoma cells.

    PubMed

    Lawrence, Johnathan E; Steele, Christopher J; Rovin, Richard A; Belton, Robert J; Winn, Robert J

    2016-03-01

    Extent of resection of glioblastoma (GBM) correlates with overall survival. Fluorescence-guided resection (FGR) using 5-aminolevulinic acid (5-ALA) can improve the extent of resection. Unfortunately not all patients given 5-ALA accumulate sufficient quantities of protoporphyrin IX (PpIX) for successful FGR. In this study, we investigated the effects of dexamethasone, desipramine, phenytoin, valproic acid, and levetiracetam on the production and accumulation of PpIX in U87MG cells. All of these drugs, except levetiracetam, reduce the total amount of PpIX produced by GBM cells (p < 0.05). When dexamethasone is mixed with another drug (desipramine, phenytoin, valproic acid or levetiracetam) the amount of PpIX produced is further decreased (p < 0.01). However, when cells are analyzed for PpIX cellular retention, dexamethasone accumulated significantly more PpIX than the vehicle control (p < 0.05). Cellular retention of PpIX was not different from controls in cells treated with dexamethasone plus desipramine, valproic acid or levetiracetam, but was significantly less for dexamethasone plus phenytoin (p < 0.01). These data suggest that medications given before and during surgery may interfere with PpIX accumulation in malignant cells. At this time, levetiracetam appears to be the best medication in its class (anticonvulsants) for patients undergoing 5-ALA-mediated FGR. PMID:26643803

  5. Regulation of ion homeostasis by aminolevulinic acid in salt-stressed wheat seedlings

    NASA Astrophysics Data System (ADS)

    Türk, Hülya; Genişel, Mucip; Erdal, Serkan

    2016-04-01

    Salinity is regarded as a worldwide agricultural threat, as it seriously limits plant development and productivity. Salt stress reduces water uptake in plants by disrupting the osmotic balance of soil solution. In addition, it creates a damaged metabolic process by causing ion imbalance in cells. In this study, we aim to examine the negative effects of 5-aminolevulinic acid (ALA) (20 mg/l) on the ion balance in wheat seedling leaves exposed to salt stress (150 mM). Sodium is known to be highly toxic for plant cells at high concentrations, and is significantly increased by salt stress. However, it can be reduced by combined application of ALA and salt, compared to salt application alone. On the other hand, while the K+/Na+ ratio was reduced by salt stress, ALA application changed this ratio in favor of K+. Manganese, iron, and copper were also able to reduce stress. However, ALA pre-treatment resulted in mineral level increments. Conversely, the stress-induced rise in magnesium, potassium, calcium, phosphorus, zinc, and molybdenum were further improved by ALA application. These data clearly show that ALA has an important regulatory effect of ion balance in wheat leaves.

  6. Delineating Normal from Diseased Brain by Aminolevulinic Acid-Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Stepp, Herbert; Stummer, Walter

    5-Aminolevulinic acid (5-ALA) as a precursor of protoporphyrin IX (PpIX) has been established as an orally applied drug to guide surgical resection of malignant brain tumors by exciting the red fluorescence of PpIX. The accumulation of PpIX in glioblastoma multiforme (GBM) is highly selective and provides excellent contrast to normal brain when using surgical microscopes with appropriately filtered light sources and cameras. The positive predictive value of fluorescent tissue is very high, enabling safe gross total resection of GBM and other brain tumors and improving prognosis of patients. Compared to other intraoperative techniques that have been developed with the aim of increasing the rate of safe gross total resections of malignant gliomas, PpIX fluorescence is considerably simpler, more cost effective, and comparably reliable. We present the basics of 5-ALA-based fluorescence-guided resection, and discuss the clinical results obtained for GBM and the experience with the fluorescence staining of other primary brain tumors and metastases as well as the results for spinal cord tumors. The phototoxicity of PpIX, increasingly used for photodynamic therapy of brain tumors, is mentioned briefly in this chapter.

  7. Aminolevulinic acid (ALA)-assisted photodynamic diagnosis of subclinical and latent HPV infection of external genital region.

    PubMed

    Wang, Hong-Wei; Wang, Xiu-Li; Zhang, Ling-Lin; Guo, Ming-Xia; Huang, Zheng

    2008-12-01

    The relatively high recurrence rate of genital warts can be attributed to the unsuccessful elimination of viruses in areas of subclinical and latent infection. Therefore, the identification and treatment of the subclinical and latent infection is a key to reduce the recurrence. The goal of this study is to investigate the usefulness of 5-aminolevulinic acid (ALA)-assisted in situ fluorescence diagnosis of subclinical lesion and latent HPV infection. A total of 30 patients with histologically confirmed genital warts (condylomata acuminata) were subjected to topical application of ALA, acetic acid test, histopathologic examination and HPV DNA subtyping. Topical application of ALA was performed by applying 20% ALA cream to the lesion plus 2-cm margin for 2h followed by fluorescence examination. Correlations between histopathologic examination, aceto-whitening test, HPV DNA subtyping and fluorescence were examined. All warty lesions and subclinical lesions (n=25) showed red fluorescence and harbored HPV DNA (HPV6 or 11). Latent HPV infections at 0.5-2 cm away from the warty lesion also showed red fluorescence. Nonspecific fluorescence was associated with mucosa, inflammatory infiltration and erosive lesion. ALA-assisted photodynamic diagnosis could be employed for the detection of the lesion and subclinical lesion of genital warts. It is also useful in detecting latent HPV infection. PMID:19356665

  8. Photodynamic therapy with 5-aminoolevulinic acid-induced porphyrins and DMSO/EDTA for basal cell carcinoma

    NASA Astrophysics Data System (ADS)

    Warloe, Trond; Peng, Qian; Heyerdahl, Helen; Moan, Johan; Steen, Harald B.; Giercksky, Karl-Erik

    1995-03-01

    Seven hundred sixty three basal cell carcinomas (BCCs) in 122 patients were treated by photodynamic therapy by 5-aminolevulinic acid (ALA) in cream topically applied, either alone, in combination with dimethyl sulphoxide (DMSO) and ethylenediaminetetraacetic acid disodium salt (EDTA), or with DMSO as a pretreatment. After 3 hours cream exposure 40 - 200 Joules/cm2 of 630 nm laser light was given. Fluorescence imaging of biopsies showed highly improved ALA penetration depth and doubled ALA-induced porphyrin production using DMSO/EDTA. Treatment response was recorded after 3 months. After a single treatment 90% of 393 superficial lesions responded completely, independent of using DMSO/EDTA. In 363 nodulo-ulcerative lesions the complete response rate increased from 67% to above 90% with DMSO/EDTA for lesions less than 2 mm thickness and from 34% to about 50% for lesions thicker than 2 mm. Recurrence rate observed during a follow-up period longer than 12 months was 2 - 5%. PDT of superficial thin BCCs with ALA-induced porphyrins and DMSO/EDTA equals surgery and radiotherapy with respect to cure rate and recurrence. Cosmetic results of ALA-based PDT seemed to be better than those after other therapies. In patients with the nevoid BCC syndrome the complete response rate after PDT was far lower.

  9. Phs1 and the Synthesis of Very Long Chain Fatty Acids Are Required for Ballistospore Formation

    PubMed Central

    Ianiri, Giuseppe; Abhyankar, Ritika; Kihara, Akio; Idnurm, Alexander

    2014-01-01

    The production and dissemination of spores by members of the fungal kingdom is a major reason for the success of this eukaryotic lineage in colonizing most terrestrial ecosystems. Ballistospores are a type of spore produced by basidiomycete fungi, such as the mushrooms and plant pathogenic rusts. These spores are forcefully discharged through a unique liquid-drop fusion mechanism, enabling the aerosolization of these particles that can contribute to plant disease and human allergies. The genes responsible for this process are unknown due to technical challenges in studying many of the fungi that produce ballistospores. Here, we applied newly-developed techniques in a forward genetic screen to identify genes required for ballistospore formation or function in a tractable red yeast, a species of Sporobolomyces. One strain bearing a mutation in the PHS1 gene was identified as a mirror mutant. PHS1 encodes 3-hydroxyacyl-CoA dehydratase required for the third step in very long chain fatty acid biosynthesis. The Sporobolomyces PHS1 gene complements the essential functions of a S. cerevisiae phs1 mutant. The Sporobolomyces phs1 mutant strain has less dehydratase activity and a reduction in very long chain fatty acids compared to wild type. The mutant strain also exhibits sensitivity to cell wall stress agents and loss of shooting due to a delay in ballistospore formation, indicating that the role of Phs1 in spore dissemination may be primarily in cellular integrity. PMID:25148260

  10. Microbial production of vitamin B12 antimetabolites. IV. Isolation and identification of 4-keto-5-amino-6-hydroxyhexanoic acid.

    PubMed

    Perlman, K L; Schömer, U; Williams, T H; Perlman, D

    1981-05-01

    4-Keto-5-amino-6-hydroxyhexanoic acid was isolated from Bacillus cereus 102804 fermentations and found to inhibit the growth of Gram-positive and Gram-negative bacteria, when grown in a chemically defined medium. The mechanism appeared to be the inhibition of delta-aminolevulinic acid dehydratase. The Ki value of 4-keto-5-amino-6-hydroxyhexanoic acid in an enzyme preparation of Propionibacterium shermanii was 0.72 microM. Similar test conditions with 4-keto-5-aminohexanoic acid resulted in Ki of 12.1 microM. In both cases competitive inhibition was found. The structure of 4-keto-5-amino-6-hydroxyhexanoic acid was determined. PMID:6792174

  11. Identification and characterization of trans-3-hydroxy-l-proline dehydratase and Δ1-pyrroline-2-carboxylate reductase involved in trans-3-hydroxy-l-proline metabolism of bacteria

    PubMed Central

    Watanabe, Seiya; Tanimoto, Yoshiaki; Yamauchi, Seiji; Tozawa, Yuzuru; Sawayama, Shigeki; Watanabe, Yasuo

    2014-01-01

    trans-4-Hydroxy-l-proline (T4LHyp) and trans-3-hydroxy-l-proline (T3LHyp) occur mainly in collagen. A few bacteria can convert T4LHyp to α-ketoglutarate, and we previously revealed a hypothetical pathway consisting of four enzymes at the molecular level (J Biol Chem (2007) 282, 6685–6695; J Biol Chem (2012) 287, 32674–32688). Here, we first found that Azospirillum brasilense has the ability to grow not only on T4LHyp but also T3LHyp as a sole carbon source. In A. brasilense cells, T3LHyp dehydratase and NAD(P)H-dependent Δ1-pyrroline-2-carboxylate (Pyr2C) reductase activities were induced by T3LHyp (and d-proline and d-lysine) but not T4LHyp, and no effect of T3LHyp was observed on the expression of T4LHyp metabolizing enzymes: a hypothetical pathway of T3LHyp → Pyr2C → l-proline was proposed. Bacterial T3LHyp dehydratase, encoded to LhpH gene, was homologous with the mammalian enzyme. On the other hand, Pyr2C reductase encoded to LhpI gene was a novel member of ornithine cyclodeaminase/μ-crystallin superfamily, differing from known bacterial protein. Furthermore, the LhpI enzymes of A. brasilense and another bacterium showed several different properties, including substrate and coenzyme specificities. T3LHyp was converted to proline by the purified LhpH and LhpI proteins. Furthermore, disruption of LhpI gene from A. brasilense led to loss of growth on T3LHyp, d-proline and d-lysine, indicating that this gene has dual metabolic functions as a reductase for Pyr2C and Δ1-piperidine-2-carboxylate in these pathways, and that the T3LHyp pathway is not linked to T4LHyp and l-proline metabolism. PMID:24649405

  12. Inhibition of isoleucyl-transfer ribonucleic acid synthetase in Echerichia coli by pseudomonic acid

    PubMed Central

    Hughes, Julia; Mellows, Graham

    1978-01-01

    The mode of action of the antibiotic pseudomonic acid has been studied in Escherichia coli. Pseudomonic acid strongly inhibits protein and RNA synthesis in vivo. The antibiotic had no effect on highly purified DNA-dependent RNA polymerase and showed only a weak inhibitory effect on a poly(U)-directed polyphenylalanine-forming ribosomal preparation. Chloramphenicol reversed inhibition of RNA synthesis in vivo. Pseudomonic acid had little effect on RNA synthesis in a regulatory mutant, E. coli B AS19 RCrel, whereas protein synthesis was strongly inhibited. In pseudomonic acid-treated cells, increased concentrations of ppGpp, pppGpp and ATP were observed, but the GTP pool size decreased, suggesting that inhibition of RNA synthesis is a consequence of the stringent control mechanism imposed by pseudomonic acid-induced deprivation of an amino acid. Of the 20 common amino acids, only isoleucine reversed the inhibitory effect in vivo. The antibiotic was found to be a powerful inhibitor of isoleucyl-tRNA synthetase both in vivo and in vitro. Of seven other tRNA synthetases assayed, only a weak inhibitory effect on phenylalanyl-tRNA synthetase was observed; this presumably accounted for the weak effect on polyphenylalanine formation in a ribosomal preparation. Pseudomonic acid also significantly de-repressed threonine deaminase and transaminase B activity, but not dihydroxyacid dehydratase (isoleucine-biosynthetic enzymes) by decreasing the supply of aminoacylated tRNAIle. Pseudomonic acid is the second naturally occurring inhibitor of bacterial isoleucyl-tRNA synthetase to be discovered, furanomycin being the first. PMID:365175

  13. Combinatorial Effects of Fatty Acid Elongase Enzymes on Nervonic Acid Production in Camelina sativa

    PubMed Central

    Huai, Dongxin; Zhang, Yuanyuan; Zhang, Chunyu; Cahoon, Edgar B.; Zhou, Yongming

    2015-01-01

    Very long chain fatty acids (VLCFAs) with chain lengths of 20 carbons and longer provide feedstocks for various applications; therefore, improvement of VLCFA contents in seeds has become an important goal for oilseed enhancement. VLCFA biosynthesis is controlled by a multi-enzyme protein complex referred to as fatty acid elongase, which is composed of β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD) and enoyl reductase (ECR). KCS has been identified as the rate-limiting enzyme, but little is known about the involvement of other three enzymes in VLCFA production. Here, the combinatorial effects of fatty acid elongase enzymes on VLCFA production were assessed by evaluating the changes in nervonic acid content. A KCS gene from Lunaria annua (LaKCS) and the other three elongase genes from Arabidopsis thaliana were used for the assessment. Five seed-specific expressing constructs, including LaKCS alone, LaKCS with AtKCR, LaKCS with AtHCD, LaKCS with AtECR, and LaKCS with AtKCR and AtHCD, were transformed into Camelina sativa. The nervonic acid content in seed oil increased from null in wild type camelina to 6-12% in LaKCS-expressing lines. However, compared with that from the LaKCS-expressing lines, nervonic acid content in mature seeds from the co-expressing lines with one or two extra elongase genes did not show further increases. Nervonic acid content from LaKCS, AtKCR and AtHCD co-expressing line was significantly higher than that in LaKCS-expressing line during early seed development stage, while the ultimate nervonic acid content was not significantly altered. The results from this study thus provide useful information for future engineering of oilseed crops for higher VLCFA production. PMID:26121034

  14. Combinatorial Effects of Fatty Acid Elongase Enzymes on Nervonic Acid Production in Camelina sativa.

    PubMed

    Huai, Dongxin; Zhang, Yuanyuan; Zhang, Chunyu; Cahoon, Edgar B; Zhou, Yongming

    2015-01-01

    Very long chain fatty acids (VLCFAs) with chain lengths of 20 carbons and longer provide feedstocks for various applications; therefore, improvement of VLCFA contents in seeds has become an important goal for oilseed enhancement. VLCFA biosynthesis is controlled by a multi-enzyme protein complex referred to as fatty acid elongase, which is composed of β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD) and enoyl reductase (ECR). KCS has been identified as the rate-limiting enzyme, but little is known about the involvement of other three enzymes in VLCFA production. Here, the combinatorial effects of fatty acid elongase enzymes on VLCFA production were assessed by evaluating the changes in nervonic acid content. A KCS gene from Lunaria annua (LaKCS) and the other three elongase genes from Arabidopsis thaliana were used for the assessment. Five seed-specific expressing constructs, including LaKCS alone, LaKCS with AtKCR, LaKCS with AtHCD, LaKCS with AtECR, and LaKCS with AtKCR and AtHCD, were transformed into Camelina sativa. The nervonic acid content in seed oil increased from null in wild type camelina to 6-12% in LaKCS-expressing lines. However, compared with that from the LaKCS-expressing lines, nervonic acid content in mature seeds from the co-expressing lines with one or two extra elongase genes did not show further increases. Nervonic acid content from LaKCS, AtKCR and AtHCD co-expressing line was significantly higher than that in LaKCS-expressing line during early seed development stage, while the ultimate nervonic acid content was not significantly altered. The results from this study thus provide useful information for future engineering of oilseed crops for higher VLCFA production. PMID:26121034

  15. Adaptational modification of serine and threonine metabolism in the liver to essential amino acid deficiency in rats.

    PubMed

    Nagao, Kenji; Bannai, Makoto; Seki, Shinobu; Mori, Masato; Takahashi, Michio

    2009-03-01

    It is known that plasma serine and threonine concentrations are elevated in rats chronically fed an essential amino acid deficient diet, but the underlying mechanisms including related gene expressions or serine and threonine concentrations in liver remained to be elucidated. We fed rats lysine or valine deficient diet for 4 weeks and examined the mRNA expressions of serine synthesising (3-phosphoglycerate dehydrogenase, PHGDH) and serine/threonine degrading enzymes (serine dehydratase, SDS) in the liver. Dietary deficiency induced marked elevation of hepatic serine and threonine levels associated with enhancement of PHGDH mRNA expression and repression of SDS mRNA expression. Increases in plasma serine and threonine levels due to essential amino acid deficiency in diet were caused by marked increases in hepatic serine and threonine levels. Proteolytic responses to the amino acid deficiency may be lessened by storing amino radicals as serine and inducing anorexia through elevation of threonine. PMID:18584286

  16. Fluorescence endoscopy with 5-amino levulinic acid (ALA) reduces early recurrence rate in superficial bladder cancer

    NASA Astrophysics Data System (ADS)

    Koenig, Frank; Riedl, Claus R.; Daniltchenko, Dmitri; Schnorr, Dietmar

    2003-06-01

    Purpose: Several investigators have demonstrated an approximately 20% higher tumor detection rate by ALA (5-aminolevulinic acid) based fluorescence endoscopy (AFE) compared to standard white light cystoscopy. These data suggest a reduction of residual and recurrent tumor following fluorescence guided transurethral resection (TUR) of bladder carcinoma. The present study was performed to test this hypothesis. Materials and Methods: In a prospective randomized multi-center study, 2 x 51 patients underwent TUR of bladder tumor(s) either with white light (current standard) or assisted by ALA-induced fluorescence. A 2nd look TUR with AFE was performed 6 weeks after the initial operation. Control cystoscopies were performed 3 and 6 months after initial tumor resection. Results: At 2nd look TUR (6 weeks post op) and at control cystoscopies 3 and 6 months following initial TUR in the white light group residual and/or recurrent carcinoma was detected in 20 of 51, in 24 of 48 and in 28 of 48 patients, respectively, and in the AFE group in 8 of 51, in 10 of 47 and in 17 of 47 patients, respectively. The differences were statistically significant (p=0.005, p=0.002 and p=0.01, respectively). Three patients in the white light and four patients in the AFE group were lost to follow up. Conclusions: AFE is a minimally invasive and inexpensive diagnostic procedure that significantly improves bladder tumor detection rates compared to standard white light endoscopy. In the present study AFE reduced the residual/recurrent tumor rate 6 weeks, 3 and 6 months after initial TUR by 59%, 58% and 38%, respectively.

  17. Stress response of lead-exposed rainbow trout (Oncorhynchus mykiss) during swimming performance and hypoxia challenges

    SciTech Connect

    Phillips, K.A. |; Caldwell, C.A.; Sandheinrich, M.B.

    1995-12-31

    Contaminants often invoke a stress response in aquatic organisms, and may compromise their capacity to respond to secondary stressors. This may reduce growth, reproduction and survival. The authors objectives were to assess the effects of lead and secondary stressors on hematology and blood chemistry of rainbow trout. After a 7 to 8-week aqueous exposure to Pb(100{micro}g/L), rainbow trout were challenged with forced swimming or hypoxia. Lead significantly reduced concentrations of 5-aminolevulinic acid dehydratase (ALAD), but not other constituents in the blood. Lead did not affect the swimming endurance of the fish. Hematocrit, mean cell hemoglobin content, and mean cell volume were significantly lower in Pb-exposed trout following the swimming challenge. Although hypoxia resulted in increased hematocrit and plasma glucose concentrations, there were no significant differences between the Pb and control groups. Hypoxia did not affect plasma chloride concentrations, although concentrations increased in Pb-exposed trout. There was no difference in lactic acid concentrations between Pb-exposed and control fish after forced swimming or hypoxia.

  18. The production of ω-hydroxy palmitic acid using fatty acid metabolism and cofactor optimization in Escherichia coli.

    PubMed

    Sung, Changmin; Jung, Eunok; Choi, Kwon-Young; Bae, Jin-Hyung; Kim, Minsuk; Kim, Joonwon; Kim, Eun-Jung; Kim, Pyoung Il; Kim, Byung-Gee

    2015-08-01

    Hydroxylated fatty acids (HFAs) are used as important precursors for bulk and fine chemicals in the chemical industry. Here, to overproduce long-chain (C16-C18) fatty acids and hydroxy fatty acid, their biosynthetic pathways including thioesterase (Lreu_0335) from Lactobacillus reuteri DSM20016, β-hydroxyacyl-ACP dehydratase (fabZ) from Escherichia coli, and a P450 system (i.e., CYP153A from Marinobacter aquaeolei VT8 and camA/camB from Pseudomonas putida ATCC17453) were overexpressed. Acyl-CoA synthase (fadD) involved in fatty acid degradation by β-oxidation was also deleted in E. coli BW25113. The engineered E. coli FFA4 strain without the P450 system could produce 503.0 mg/l of palmitic (C16) and 508.4 mg/l of stearic (C18) acids, of which the amounts are ca. 1.6- and 2.3-fold higher than those of the wild type. On the other hand, the E. coli HFA4 strain including the P450 system for ω-hydroxylation could produce 211.7 mg/l of ω-hydroxy palmitic acid, which was 42.1 ± 0.1 % of the generated palmitic acid, indicating that the hydroxylation reaction was the rate-determining step for the HFA production. For the maximum production of ω-hydroxy palmitic acid, NADH, i.e., an essential cofactor for P450 reaction, was overproduced by the integration of NAD(+)-dependent formate dehydrogenase (FDH) from Candida boidinii into E. coli chromosome and the deletion of alcohol dehydrogenase (ADH). Finally, the NADH-level-optimized E. coli strain produced 610 mg/l of ω-hydroxy palmitic acid (ω-HPA), which was almost a threefold increase in its yield compared to the same strain without NADH overproduction. PMID:25957153

  19. Deletion of plant-specific sugar residues in plant N-glycans by repression of GDP-D-mannose 4,6-dehydratase and β-1,2-xylosyltransferase genes.

    PubMed

    Matsuo, Kouki; Kagaya, Uiko; Itchoda, Noriko; Tabayashi, Noriko; Matsumura, Takeshi

    2014-10-01

    Production of pharmaceutical glycoproteins, such as therapeutic antibodies and cytokines, in plants has many advantages in safety and reduced costs. However, plant-made glycoproteins have N-glycans with plant-specific sugar residues (core β-1,2-xylose and α-1,3-fucose) and a Lewis a (Le(a)) epitope, Galβ(1-3)[Fucα(1-4)]GlcNAc. Because it is likely that these sugar residues and glycan structures are immunogenic, many attempts have been made to delete them. Previously, we reported the simultaneous deletion of the plant-specific core α-1,3-fucose and α-1,4-fucose residues in Le(a) epitopes by repressing the GDP-D-mannose 4,6-dehydratase (GMD) gene, which is associated with GDP-L-fucose biosynthesis, in Nicotiana benthamiana plants (rGMD plants, renamed to ΔGMD plants) (Matsuo and Matsumura, Plant Biotechnol. J., 9, 264-281, 2011). In the present study, we generated a core β-1,2-xylose residue-repressed transgenic N. benthamiana plant by co-suppression of β-1,2-xylosyltransferase (ΔXylT plant). By crossing ΔGMD and ΔXylT plants, we successfully generated plants in which plant-specific sugar residues were repressed (ΔGMDΔXylT plants). The proportion of N-glycans with deleted plant-specific sugar residues found in total soluble protein from ΔGMDΔXylT plants increased by 82.41%. Recombinant mouse granulocyte/macrophage-colony stimulating factor (mGM-CSF) and human monoclonal immunoglobulin G (hIgG) harboring N-glycans with deleted plant-specific sugar residues were successfully produced in ΔGMDΔXylT plants. Simultaneous repression of the GMD and XylT genes in N. benthamiana is thus very useful for deleting plant-specific sugar residues. PMID:24794851

  20. Clinically important features of porphyrin and heme metabolism and the porphyrias.

    PubMed

    Besur, Siddesh; Hou, Wehong; Schmeltzer, Paul; Bonkovsky, Herbert L

    2014-01-01

    Heme, like chlorophyll, is a primordial molecule and is one of the fundamental pigments of life. Disorders of normal heme synthesis may cause human diseases, including certain anemias (X-linked sideroblastic anemias) and porphyrias. Porphyrias are classified as hepatic and erythropoietic porphyrias based on the organ system in which heme precursors (5-aminolevulinic acid (ALA), porphobilinogen and porphyrins) are chiefly overproduced. The hepatic porphyrias are further subdivided into acute porphyrias and chronic hepatic porphyrias. The acute porphyrias include acute intermittent, hereditary copro-, variegate and ALA dehydratase deficiency porphyria. Chronic hepatic porphyrias include porphyria cutanea tarda and hepatoerythropoietic porphyria. The erythropoietic porphyrias include congenital erythropoietic porphyria (Gűnther's disease) and erythropoietic protoporphyria. In this review, we summarize the key features of normal heme synthesis and its differing regulation in liver versus bone marrow. In both organs, principal regulation is exerted at the level of the first and rate-controlling enzyme, but by different molecules (heme in the liver and iron in the bone marrow). We also describe salient clinical, laboratory and genetic features of the eight types of porphyria. PMID:25372274

  1. Clinically Important Features of Porphyrin and Heme Metabolism and the Porphyrias

    PubMed Central

    Besur, Siddesh; Hou, Weihong; Schmeltzer, Paul; Bonkovsky, Herbert L.

    2014-01-01

    Heme, like chlorophyll, is a primordial molecule and is one of the fundamental pigments of life. Disorders of normal heme synthesis may cause human diseases, including certain anemias (X-linked sideroblastic anemias) and porphyrias. Porphyrias are classified as hepatic and erythropoietic porphyrias based on the organ system in which heme precursors (5-aminolevulinic acid (ALA), porphobilinogen and porphyrins) are chiefly overproduced. The hepatic porphyrias are further subdivided into acute porphyrias and chronic hepatic porphyrias. The acute porphyrias include acute intermittent, hereditary copro-, variegate and ALA dehydratase deficiency porphyria. Chronic hepatic porphyrias include porphyria cutanea tarda and hepatoerythropoietic porphyria. The erythropoietic porphyrias include congenital erythropoietic porphyria (Gűnther’s disease) and erythropoietic protoporphyria. In this review, we summarize the key features of normal heme synthesis and its differing regulation in liver versus bone marrow. In both organs, principal regulation is exerted at the level of the first and rate-controlling enzyme, but by different molecules (heme in the liver and iron in the bone marrow). We also describe salient clinical, laboratory and genetic features of the eight types of porphyria. PMID:25372274

  2. High yield production of D-xylonic acid from D-xylose using engineered Escherichia coli.

    PubMed

    Liu, Huaiwei; Valdehuesa, Kris Niño G; Nisola, Grace M; Ramos, Kristine Rose M; Chung, Wook-Jin

    2012-07-01

    An engineered Escherichia coli was constructed to produce D-xylonic acid, one of the top 30 high-value chemicals identified by US Department of Energy. The native pathway for D-xylose catabolism in E. coli W3110 was blocked by disrupting xylose isomerase (XI) and xylulose kinase (XK) genes. The native pathway for xylonic acid catabolism was also blocked by disrupting two genes both encoding xylonic acid dehydratase (yagE and yjhG). Through the introduction of a D-xylose dehydrogenase from Caulobacter crescentus, a D-xylonic acid producing E. coli was constructed. The recombinant E. coli produced up to 39.2 g L(-1) D-xylonic acid from 40 g L(-1) D-xylose in M9 minimal medium. The average productivity was as high as 1.09 g L(-1) h(-1) and no gluconic acid byproduct was produced. These results suggest that the engineered E. coli has a promising application for the industrial-scale production of D-xylonic acid. PMID:21917451

  3. Envelope Membranes from Spinach Chloroplasts Are a Site of Metabolism of Fatty Acid Hydroperoxides.

    PubMed Central

    Blee, E.; Joyard, J.

    1996-01-01

    Enzymes in envelope membranes from spinach (Spinacia oleracea L.) chloroplasts were found to catalyze the rapid breakdown of fatty acid hydroperoxides. In contrast, no such activities were detected in the stroma or in thylakoids. In preparations of envelope membranes, 9S-hydroperoxy-10(E),12(Z)-octadecadienoic acid, 13S-hydroperoxy-9(Z),11(E)-octadecadienoic acid, or 13S-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid were transformed at almost the same rates (1-2 [mu]mol min-1 mg-1 protein). The products formed were separated by reversed-phase high-pressure liquid chromatography and further characterized by gas chromatography-mass spectrometry. Fatty acid hydroperoxides were cleaved (a) into aldehydes and oxoacid fragments, corresponding to the functioning of a hydroperoxide lyase, (b) into ketols that were spontaneously formed from allene oxide synthesized by a hydroperoxide dehydratase, (c) into hydroxy compounds synthesized enzymatically by a system that has not yet been characterized, and (d) into oxoenes resulting from the hydroperoxidase activity of a lipoxygenase. Chloroplast envelope membranes therefore contain a whole set of enzymes that catalyze the synthesis of a variety of fatty acid derivatives, some of which may act as regulatory molecules. The results presented demonstrate a new role for the plastid envelope within the plant cell. PMID:12226196

  4. Structural genes of glutamate 1-semialdehyde aminotransferase for porphyrin synthesis in a cyanobacterium and Escherichia coli.

    PubMed

    Grimm, B; Bull, A; Breu, V

    1991-01-01

    In bacteria 5-aminolevulinate, the universal precursor in the biosynthesis of the porphyrin nucleus of hemes, chlorophylls and bilins is synthesised by two different pathways: in non-sulphur purple bacteria (Rhodobacter) or Rhizobium 5-aminolevulinate synthase condenses glycine and succinyl-CoA into 5-aminolevulinate as is the case in mammalian cells and yeast. In cyanobacteria, green and purple sulphur bacteria, as in chloroplasts of higher plants and algae a three step pathway converts glutamate into 5-aminolevulinate. The last step is the conversion of glutamate 1-semialdehyde into 5-aminolevulinate. Using a cDNA clone encoding glutamate 1-semialdehyde aminotransferase from barley, genes for this enzyme were cloned from Synechococcus PCC6301 and Escherichia coli and sequenced. The popC gene of E. coli, previously considered to encode 5-aminolevulinate synthase, appears to be a structural gene for glutamate 1-semialdehyde aminotransferase. Domains with identical amino acid sequences comprise 48% of the primary structure of the barley, cyanobacterial and putative E. coli glutamate 1-semialdehyde aminotransferases. The cyanobacterial and barley enzymes share 72% identical residues. The peptide containing a likely pyridoxamine phosphate binding lysine is conserved in all three protein sequences. PMID:1900346

  5. Efficient free fatty acid production in engineered Escherichia coli strains using soybean oligosaccharides as feedstock.

    PubMed

    Wang, Dan; Wu, Hui; Thakker, Chandresh; Beyersdorf, Jared; Bennett, George N; San, Ka-Yiu

    2015-01-01

    To be competitive with current petrochemicals, microbial synthesis of free fatty acids can be made to rely on a variety of renewable resources rather than on food carbon sources, which increase its attraction for governments and companies. Industrial waste soybean meal is an inexpensive feedstock, which contains soluble sugars such as stachyose, raffinose, sucrose, glucose, galactose, and fructose. Free fatty acids were produced in this report by introducing an acyl-ACP carrier protein thioesterase and (3R)-hydroxyacyl-ACP dehydratase into E. coli. Plasmid pRU600 bearing genes involved in raffinose and sucrose metabolism was also transformed into engineered E. coli strains, which allowed more efficient utilization of these two kinds of specific oligosaccharide present in the soybean meal extract. Strain ML103 (pRU600, pXZ18Z) produced ~1.60 and 2.66 g/L of free fatty acids on sucrose and raffinose, respectively. A higher level of 2.92 g/L fatty acids was obtained on sugar mixture. The fatty acid production using hydrolysate obtained from acid or enzyme based hydrolysis was evaluated. Engineered strains just produced ~0.21 g/L of free fatty acids with soybean meal acid hydrolysate. However, a fatty acid production of 2.61 g/L with a high yield of 0.19 g/g total sugar was observed on an enzymatic hydrolysate. The results suggest that complex mixtures of oligosaccharides derived from soybean meal can serve as viable feedstock to produce free fatty acids. Enzymatic hydrolysis acts as a much more efficient treatment than acid hydrolysis to facilitate the transformation of industrial waste from soybean processing to high value added chemicals. PMID:25919701

  6. The intracellular parasite Toxoplasma gondii depends on the synthesis of long chain and very long-chain unsaturated fatty acids not supplied by the host cell

    PubMed Central

    Ramakrishnan, Srinivasan; Docampo, Melissa D.; MacRae, James I.; Ralton, Julie E.; Rupasinghe, Thusitha; McConville, Malcolm J.; Striepen, Boris

    2015-01-01

    SUMMARY Apicomplexa are parasitic protozoa that cause important human diseases including malaria, cryptosporidiosis and toxoplasmosis. The replication of these parasites within their target host cell is dependent on both salvage as well as de novo synthesis of fatty acids. In T. gondii, fatty acid synthesis via the apicoplast-localized FASII is essential for pathogenesis, while the role of two other fatty acid biosynthetic complexes remains unclear. Here we demonstrate that the ER-localized fatty acid elongation (ELO) is essential for parasite growth. Conditional knock-down of the non-redundant hydroxyacyl-CoA dehydratase and enoyl-CoA reductase enzymes in the ELO pathway severely repressed intracellular parasite growth. 13C-glucose and 13C-acetate labeling and comprehensive lipidomic analyses of these mutants showed a selective defect in synthesis of unsaturated long and very long chain fatty acids (LCFAs and VLCFAs) and depletion of phosphatidylinositol and phosphatidylethanolamine species containing unsaturated LCFAs and VLCFAs. This requirement for ELO pathway was by-passed by supplementing the media with specific fatty acids, indicating active, but inefficient import of host fatty acids. Our experiments highlight a gap between the fatty acid needs of the parasite and availability of specific fatty acids in the host cell that the parasite has to close using a dedicated synthesis and modification pathway. PMID:25825226

  7. Involvement of a universal amino acid synthesis impediment in cytoplasmic male sterility in pepper.

    PubMed

    Fang, Xianping; Fu, Hong-Fei; Gong, Zhen-Hui; Chai, Wei-Guo

    2016-01-01

    To explore the mechanisms of pepper (Capsicum annuum L.) cytoplasmic male sterility (CMS), we studied the different maturation processes of sterile and fertile pepper anthers. A paraffin section analysis of the sterile anthers indicated an abnormality of the tapetal layer and an over-vacuolization of the cells. The quantitative proteomics results showed that the expression of histidinol dehydrogenase (HDH), dihydroxy-acid dehydratase (DAD), aspartate aminotransferase (ATAAT), cysteine synthase (CS), delta-1-pyrroline-5-carboxylate synthase (P5CS), and glutamate synthetase (GS) in the amino acid synthesis pathway decreased by more than 1.5-fold. Furthermore, the mRNA and protein expression levels of DAD, ATAAT, CS and P5CS showed a 2- to 16-fold increase in the maintainer line anthers. We also found that most of the amino acid content levels decreased to varying degrees during the anther tapetum period of the sterile line, whereas these levels increased in the maintainer line. The results of our study indicate that during pepper anther development, changes in amino acid synthesis are significant and accompany abnormal tapetum maturity, which is most likely an important cause of male sterility in pepper. PMID:26987793

  8. Involvement of a universal amino acid synthesis impediment in cytoplasmic male sterility in pepper

    PubMed Central

    Fang, Xianping; Fu, Hong-Fei; Gong, Zhen-Hui; Chai, Wei-Guo

    2016-01-01

    To explore the mechanisms of pepper (Capsicum annuum L.) cytoplasmic male sterility (CMS), we studied the different maturation processes of sterile and fertile pepper anthers. A paraffin section analysis of the sterile anthers indicated an abnormality of the tapetal layer and an over-vacuolization of the cells. The quantitative proteomics results showed that the expression of histidinol dehydrogenase (HDH), dihydroxy-acid dehydratase (DAD), aspartate aminotransferase (ATAAT), cysteine synthase (CS), delta-1-pyrroline-5-carboxylate synthase (P5CS), and glutamate synthetase (GS) in the amino acid synthesis pathway decreased by more than 1.5-fold. Furthermore, the mRNA and protein expression levels of DAD, ATAAT, CS and P5CS showed a 2- to 16-fold increase in the maintainer line anthers. We also found that most of the amino acid content levels decreased to varying degrees during the anther tapetum period of the sterile line, whereas these levels increased in the maintainer line. The results of our study indicate that during pepper anther development, changes in amino acid synthesis are significant and accompany abnormal tapetum maturity, which is most likely an important cause of male sterility in pepper. PMID:26987793

  9. Amino acids

    MedlinePlus

    Amino acids are organic compounds that combine to form proteins . Amino acids and proteins are the building blocks of life. When proteins are digested or broken down, amino acids are left. The human body uses amino acids ...

  10. Structural elucidation and genomic scrutiny of the C60-C100 mycolic acids of Segniliparus rotundus.

    PubMed

    Lanéelle, Marie-Antoinette; Eynard, Nathalie; Spina, Lucie; Lemassu, Anne; Laval, Françoise; Huc, Emilie; Etienne, Gilles; Marrakchi, Hedia; Daffé, Mamadou

    2013-01-01

    Mycolic acids, very long-chain α-alkyl, β-hydroxylated fatty acids, occur in the members of the order Corynebacteriales where their chain lengths (C(26)-C(88)) and structural features (oxygen functions, cis or trans double bonds, cyclopropane rings and methyl branches) are genus- and species-specific. The molecular composition and structures of the mycolic acids of two species belonging to the genus Segniliparus were determined by a combination of modern analytical chemical techniques, which include MS and NMR. They consist of mono-ethylenic C(62-)C(64) (α'), di-ethylenic C(77)-C(79) (α) and extremely long-chain mycolic acids (α(+)) ranging from 92 to 98 carbon atoms and containing three unsaturations, cis and/or trans double bonds and/or cyclopropanes. The double bonds in each class of mycolic acids were positioned by oxidative cleavage and exhibit locations similar to those of α- and α'-mycolic acids of mycobacteria. For the ultralong chain α-mycolic acids, the three double bonds were located at equally spaced carbon intervals (C(13)-C(16)), with the methyl branches adjacent to the proximal and distal trans double bonds. Examination of the Segniliparus rotundus genome compared with those of other members of the Corynebacteriales indicated two obvious differences in genes encoding the elongation fatty acid (FAS-II) enzymes involved in the biosynthesis of mycolic acids: the organization of 3-ketoacyl-ACP synthases (KasA and KasB) and (3R)-hydroxyacyl-ACP dehydratases (HadAB/BC), on one hand, and the presence of two copies of the hadB gene encoding the catalytic domain of the latter enzyme type, on the other. This observation is discussed in light of the most recent data accumulated on the biosynthesis of this hallmark of Corynebacteriales. PMID:23154972

  11. Functions of the Clostridium acetobutylicium FabF and FabZ proteins in unsaturated fatty acid biosynthesis

    PubMed Central

    2009-01-01

    Background The original anaerobic unsaturated fatty acid biosynthesis pathway proposed by Goldfine and Bloch was based on in vivo labeling studies in Clostridium butyricum ATCC 6015 (now C. beijerinckii) but to date no dedicated unsaturated fatty acid biosynthetic enzyme has been identified in Clostridia. C. acetobutylicium synthesizes the same species of unsaturated fatty acids as E. coli, but lacks all of the known unsaturated fatty acid synthetic genes identified in E. coli and other bacteria. A possible explanation was that two enzymes of saturated fatty acid synthesis of C. acetobutylicium, FabZ and FabF might also function in the unsaturated arm of the pathway (a FabZ homologue is known to be an unsaturated fatty acid synthetic enzyme in enterococci). Results We report that the FabF homologue located within the fatty acid biosynthetic gene cluster of C. acetobutylicium functions in synthesis of both unsaturated fatty acids and saturated fatty acids. Expression of this protein in E. coli functionally replaced both the FabB and FabF proteins of the host in vivo and replaced E. coli FabB in a defined in vitro fatty acid synthesis system. In contrast the single C. acetobutylicium FabZ homologue, although able to functionally replace E. coli FabZ in vivo and in vitro, was unable to replace FabA, the key dehydratase-isomerase of E. coli unsaturated fatty acid biosynthesis in vivo and lacked isomerase activity in vitro. Conclusion Thus, C. acetobutylicium introduces the double of unsaturated fatty acids by use of a novel and unknown enzyme. PMID:19493359

  12. Metabolic Flux Between Unsaturated and Saturated Fatty Acids is Controlled by the FabA:FabB Ratio in the Fully Reconstituted Fatty Acid Biosynthetic Pathway of E. coli#

    PubMed Central

    Xiao, Xirui; Yu, Xingye; Khosla, Chaitan

    2013-01-01

    The entire fatty acid biosynthetic pathway from Escherichia coli, starting from the acetyl-CoA carboxylase, has been reconstituted in vitro from fourteen purified protein components. Radiotracer analysis verified stoichiometric conversion of acetyl-CoA and NAD(P)H into the free fatty acid product, allowing implementation of a facile spectrophotometric assay for kinetic analysis of this multi-enzyme system. At steady state, a maximum turnover rate of 0.5 s−1 was achieved. Under optimal turnover conditions, the predominant products were C16 and C18 saturated as well as monounsaturated fatty acids. The reconstituted system allowed us to quantitatively interrogate the factors that influence metabolic flux toward unsaturated versus saturated fatty acids. In particular, the concentrations of the dehydratase FabA and the β-ketoacyl synthase FabB were found to be crucial for controlling this property. By altering these variables, the percentage of unsaturated fatty acid produced could be adjusted between 10 and 50% without significantly affecting the maximum turnover rate of the pathway. Our reconstituted system provides a powerful tool to understand and engineer rate-limiting and regulatory steps in this complex and practically significant metabolic pathway. PMID:24147979

  13. Folic Acid

    MedlinePlus

    Folic acid is a B vitamin. It helps the body make healthy new cells. Everyone needs folic acid. For women who may get pregnant, it is really important. Getting enough folic acid before and during pregnancy can prevent major birth ...

  14. Folic Acid

    MedlinePlus

    Folic acid is used to treat or prevent folic acid deficiency. It is a B-complex vitamin needed by ... Folic acid comes in tablets. It usually is taken once a day. Follow the directions on your prescription label ...

  15. Aspartic acid

    MedlinePlus

    ... also called asparaginic acid. Aspartic acid helps every cell in the body work. It plays a role in: Hormone production and release Normal nervous system function Plant sources of aspartic acid include: Legumes such as ...

  16. Combined administration of taurine and meso 2,3-dimercaptosuccinic acid in the treatment of chronic lead intoxication in rats.

    PubMed

    Flora, S J S; Pande, Manisha; Bhadauria, Smrati; Kannan, G M

    2004-04-01

    The present study describes the dose-dependent effect of taurine, an amino acid and a known antioxidant, either alone or in combination with meso 2,3-dimercaptosuccinic acid (DMSA) in the treatment of subchronic lead intoxication in male rats. The effects of these treatments in influencing the lead-induced alterations in haem synthesis, hepatic, renal or brain oxidative stress and lead concentration from soft tissues were investigated. Exposure to lead produced a significant inhibition of blood delta-aminolevulinic acid dehydratase (ALAD) activity, reduction in glutathione (GSH) and an increase in zinc protoporphyrin (ZPP) suggesting an altered haem synthesis pathway. Only DMSA was able to increase the activity of ALAD, while both taurine and DMSA were able to significantly increase GSH level towards normal. Animals treated with taurine significantly reduced the alterations in some of the biochemical parameters indicative of oxidative stress. Thiobarbituric acid reactive substance (TBARS) levels reduced significantly in liver, kidney and red blood cells, while GSH level increased. Activity of superoxide dismutase (SOD) also showed an increase in blood and brain in animals treated with taurine. The data also provided a promising role of taurine during chelation of lead by potentiating the depletion of blood, liver and brain lead compared to DMSA alone. It can thus be concluded from the study that concomitant administration of an antioxidant could play a significant and important role in abating a number of toxic effects of lead when administered along with the thiol chelators. PMID:15171566

  17. Modulation of biosynthesis of photosynthetic pigments and light-harvesting complex in wild-type and gun5 mutant of Arabidopsis thaliana during impaired chloroplast development.

    PubMed

    Pattanayak, Gopal K; Tripathy, Baishnab C

    2016-05-01

    Plants in response to different environmental cues need to modulate the expression of nuclear and chloroplast genomes that are in constant communication. To understand the signals that are responsible for inter-organellar communication, levulinic acid (LA), an inhibitor of 5-aminolevulinic acid dehydratase, was used to suppress the synthesis of pyrrole-derived tetrapyrroles chlorophylls. Although, it does not specifically inhibit carotenoid biosynthesis enzymes, LA reduced the carotenoid contents during photomorphogenesis of etiolated Arabidopsis seedlings. The expression of nuclear genes involved in carotenoid biosynthesis, i.e., geranylgeranyl diphosphate synthase, phytoene synthase, and phytoene desaturase, was downregulated in LA-treated seedlings. Similarly, the transcript abundance of nuclear genes, i.e., Lhcb1, PsbO, and RcbS, coding for chloroplastic proteins was severely attenuated in LA-treated samples. In contrast, LA treatment did not affect the transcript abundance of chalcone synthase, a marker gene for cytoplasm, and β-ATP synthase, a marker gene for mitochondria. This demonstrates the retrograde signaling from chloroplast to nucleus to suppress chloroplastic proteins during impaired chloroplast development. However, under identical conditions in LA-treated tetrapyrrole-deficient gun5 mutant, retrograde signal continued. The tetrapyrrole biosynthesis inhibitor LA suppressed formation of all tetrapyrroles both in WT and gun5. This rules out the role of tetrapyrroles as signaling molecules in WT and gun5. The removal of LA from the Arabidopsis seedlings restored the chlorophyll and carotenoid contents and expression of nuclear genes coding for chloroplastic proteins involved in chloroplast biogenesis. Therefore, LA could be used to modulate chloroplast biogenesis at a desired phase of chloroplast development. PMID:27001427

  18. Engineering a Polyketide Synthase for In Vitro Production of Adipic Acid.

    PubMed

    Hagen, Andrew; Poust, Sean; Rond, Tristan de; Fortman, Jeffrey L; Katz, Leonard; Petzold, Christopher J; Keasling, Jay D

    2016-01-15

    Polyketides have enormous structural diversity, yet polyketide synthases (PKSs) have thus far been engineered to produce only drug candidates or derivatives thereof. Thousands of other molecules, including commodity and specialty chemicals, could be synthesized using PKSs if composing hybrid PKSs from well-characterized parts derived from natural PKSs was more efficient. Here, using modern mass spectrometry techniques as an essential part of the design-build-test cycle, we engineered a chimeric PKS to enable production one of the most widely used commodity chemicals, adipic acid. To accomplish this, we introduced heterologous reductive domains from various PKS clusters into the borrelidin PKS' first extension module, which we previously showed produces a 3-hydroxy-adipoyl intermediate when coincubated with the loading module and a succinyl-CoA starter unit. Acyl-ACP intermediate analysis revealed an unexpected bottleneck at the dehydration step, which was overcome by introduction of a carboxyacyl-processing dehydratase domain. Appending a thioesterase to the hybrid PKS enabled the production of free adipic acid. Using acyl-intermediate based techniques to "debug" PKSs as described here, it should one day be possible to engineer chimeric PKSs to produce a variety of existing commodity and specialty chemicals, as well as thousands of chemicals that are difficult to produce from petroleum feedstocks using traditional synthetic chemistry. PMID:26501439

  19. Acid Rain.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1987-01-01

    Provides some background information on acid deposition. Includes a historical perspective, describes some effects of acid precipitation, and discusses acid rain in the United Kingdom. Contains several experiments that deal with the effects of acid rain on water quality and soil. (TW)

  20. Reversal of Lead-Induced Acute Toxicity by Lipoic Acid with Nutritional Supplements in Male Wistar Rats.

    PubMed

    Shukla, Sangeeta; Sharma, Yamini; Shrivastava, Sadhana

    2016-01-01

    Lead (Pb) is a pleiotropic toxicant. The potential role of oxidative stress injury that is associated with Pb poisoning suggests that antioxidants may enhance the efficacy of treatment designed to mitigate Pb-induced toxicity. The aim of this study is to investigate the comparative ameliorative potential of lipoic acid (LA) alone or in combination with calcium (Ca) and zinc (Zn). Pb acetate (50 mg/kg, intraperitoneally) was administered for 3 d. After 24 h of the last toxicant dose, LA (100 mg/kg, orally [po]) alone or in conjuction with Ca (50 mg/kg, po) and Zn (10 mg/kg, po) was administered for 3 d. Significant alterations in the concentration of urea, uric acid, triglycerides, cholesterol, aspartate amino transferase, alanine amino transferase, lipid peroxidation, and reduced glutathione as well as alterations in enzyme activity of δ-aminolevulinic acid (ALA) dehydratase were observed following acute Pb exposure. These findings were also supported by elevated mean DNA damage and Pb body burden in blood and soft tissues compared to controls (p ≤ 0.05). Three d posttreatment with LA along with Zn and Ca could significantly restore the biochemical parameters and Pb body burden to near-normal status through antioxidant activity or by preventing bioaccumulation of Pb within the blood and tissues of experimental rats. PMID:27481494

  1. Protective effect of rosmarinic acid against oxidative stress biomarkers in liver and kidney of strepotozotocin-induced diabetic rats.

    PubMed

    Mushtaq, Nadia; Schmatz, Roberta; Ahmed, Mushtaq; Pereira, Luciane Belmonte; da Costa, Pauline; Reichert, Karine Paula; Dalenogare, Diéssica; Pelinson, Luana Paula; Vieira, Juliano Marchi; Stefanello, Naiara; de Oliveira, Lizielle Souza; Mulinacci, Nadia; Bellumori, Maria; Morsch, Vera Maria; Schetinger, Maria Rosa

    2015-12-01

    In the present study, we investigated the efficiency of rosmarinic acid (RA) in preventing the alteration of oxidative parameters in the liver and kidney of diabetic rats induced by streptozotocin (STZ). The animals were divided into six groups (n = 8): control, ethanol, RA 10 mg/kg, diabetic, diabetic/ethanol, and diabetic/RA 10 mg/kg. After 3 weeks of treatment, we found that TBARS levels in liver and kidney were significantly increased in the diabetic/saline group and the administration of RA prevented this increase in the liver and kidney (P < 0.05). Diabetes caused a significant decrease in the activity of superoxide dismutase (SOD) and catalase (CAT) in the diabetes/saline group (P < 0.05). However, the treatment with 10 mg/kg RA (antioxidant) prevented this alteration in SOD and CAT activity in the diabetic RA group (P < 0.05). In addition, RA reverses the decrease in ascorbic acid and non-protein-thiol (NPSH) levels in diabetic rats. The treatment with RA also prevented the decrease in the Delta-aminolevulinic acid dehydratase (ALA-D) activity in the liver and kidney of diabetic rats. Furthermore, RA did not have any effect on glycemic levels. These results indicate that RA effectively reduced the oxidative stress induced by STZ, suggesting that RA is a potential candidate for the prevention and treatment of pathological conditions in diabetic models. PMID:26452500

  2. Discovery and Characterization of Bicereucin, an Unusual d-Amino Acid-Containing Mixed Two-Component Lantibiotic.

    PubMed

    Huo, Liujie; van der Donk, Wilfred A

    2016-04-27

    Lantibiotics are a group of ribosomally synthesized and post-translationally modified peptides (RiPPs) exhibiting antimicrobial activity. They are characterized by the presence of the thioether-containing bisamino acids lanthionine and methyllanthionine. Here, we report a two-component lantibiotic from Bacillus cereus SJ1 with unusual structural features that we named bicereucin. Unlike all previous two-component lantibiotics, only one of the two peptides of bicereucin contains a lanthionine. The second peptide lacks any cysteines but contains several d-amino acids. These are installed by the dehydrogenase BsjJB, the activity of which was successfully reconstituted in vitro. The proteolytic removal of the leader peptide was also performed in vitro. Bicereucin displayed synergistic antimicrobial activities against Gram-positive strains including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci as well as hemolytic activity. To illustrate the utility of the enzymes, an analog of the d-amino acid containing opioid dermorphin was successfully produced in E. coli by employing the dehydratase BsjM and the dehydrogenase NpnJA. PMID:27074593

  3. Evaluation of the pharmacological properties of salicylic acid-derivative organoselenium: 2-hydroxy-5-selenocyanatobenzoic acid as an anti-inflammatory and antinociceptive compound.

    PubMed

    Chagas, Pietro Maria; Rosa, Suzan Gonçalves; Sari, Marcel Henrique Marcondes; Oliveira, Carla Elena Sartori; Canto, Rômulo Faria Santos; da Luz, Sônia Cristina Almeida; Braga, Antonio Luiz; Nogueira, Cristina Wayne

    2014-03-01

    The present study evaluated the antinociceptive and anti-inflammatory effects of per oral (p.o.) administration of salicylic acid-derivative organoselenium compounds in chemical models of nociception in mice. The compounds (50 mg/kg; p.o.) were administered 30 and 60 min before the nociceptive behavior and compared to the positive-control, acetylsalicylic acid (ASA; 200 mg/kg; p.o.). In addition, a dose-response curve (25-100 mg/kg) for compounds was carried out in the formalin test. When assessed in the chemical models, acetic acid-induced writhing behavior, formalin and glutamate tests, the compounds showed the following antinociceptive profile 1B>2B>1A>2A, suggesting a chemical structure-dependent relationship. Then, the anti-inflammatory properties and toxicological potential of compound 1B were investigated. Compound 1B, similar to the positive-control, ASA, diminished the edema formation and decreased the myeloperoxidase activity induced by croton oil (2.5%) in the ear tissue. The results also indicate that a single oral administration of 1B caused neither signs of acute toxicity nor those of gastrointestinal injury. The administration of 1B did not alter the water and food intakes, plasma alanine and aspartate aminotransferase activities or urea levels and cerebral or hepatic δ-aminolevulinate dehydratase activity. Salicylic acid-derivative organoseleniums, mainly compound 1B, have been found to be novel compounds with antinociceptive/anti-inflammatory properties; nevertheless, more studies are required to examine their therapeutic potential for pain treatment. PMID:24398148

  4. Salt-stress induced modulation of chlorophyll biosynthesis during de-etiolation of rice seedlings.

    PubMed

    Turan, Satpal; Tripathy, Baishnab C

    2015-03-01

    Chlorophyll biosynthesis in plants is subjected to modulation by various environmental factors. To understand the modulation of the chlorophyll (Chl) biosynthesis during greening process by salt, 100-200 mM NaCl was applied to the roots of etiolated rice seedlings 12 h prior to the transfer to light. Application of 200 mM NaCl to rice seedlings that were grown in light for further 72 h resulted in reduced dry matter production (-58%) and Chl accumulation (-66%). Ionic imbalance due to salinity stress resulted in additional downregulation (41-45%) of seedling dry weight, Chl and carotenoid contents over and above that of similar osmotic stress induced by polyethylene glycol. Downregulation of Chl biosynthesis may be attributed to decreased activities of Chl biosynthetic pathway enzymes, i.e. 5-aminolevulinic acid (ALA) dehydratase (EC-2.4.1.24), porphobilinogen deaminase (EC-4.3.1.8), coproporphyrinogen III oxidase (EC-1.3.3.3), protoporphyrinogen IX oxidase (EC-1.3.3.4), Mg-protoporphyrin IX chelatase (EC-6.6.1.1) and protochlorophyllide oxidoreductase (EC-1.3.33.1). Reduced enzymatic activities were due to downregulation of their protein abundance and/or gene expression in salt-stressed seedlings. The extent of downregulation of ALA biosynthesis nearly matched with that of protochlorophyllide and Chl to prevent the accumulation of highly photosensitive photodynamic tetrapyrroles that generates singlet oxygen under stress conditions. Although, ALA synthesis decreased, the gene/protein expression of glutamyl-tRNA reductase (EC-1.2.1.70) increased suggesting it may play a role in acclimation to salt stress. The similar downregulation of both early and late Chl biosynthesis intermediates in salt-stressed seedlings suggests a regulatory network of genes involved in tetrapyrrole biosynthesis. PMID:25132047

  5. Amino acids

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  6. Mefenamic Acid

    MedlinePlus

    Mefenamic acid is used to relieve mild to moderate pain, including menstrual pain (pain that happens before or during a menstrual period). Mefenamic acid is in a class of medications called NSAIDs. ...

  7. Aminocaproic Acid

    MedlinePlus

    Aminocaproic acid is used to control bleeding that occurs when blood clots are broken down too quickly. This type ... the baby is ready to be born). Aminocaproic acid is also used to control bleeding in the ...

  8. Ascorbic Acid

    MedlinePlus

    Ascorbic acid is used to prevent and treat scurvy, a disease caused by a lack of vitamin C in ... Ascorbic acid comes in extended-release (long-acting) capsules and tablets, lozenges, syrup, chewable tablets, and liquid drops to ...

  9. Acid mucopolysaccharides

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003368.htm Acid mucopolysaccharides To use the sharing features on this page, please enable JavaScript. Acid mucopolysaccharides is a test that measures the amount ...

  10. Ethacrynic Acid

    MedlinePlus

    Ethacrynic acid, a 'water pill,' is used to treat swelling and fluid retention caused by various medical problems. It ... Ethacrynic acid comes as a tablet to take by mouth. It is usually taken once or twice a day ...

  11. Valproic Acid

    MedlinePlus

    Valproic acid is used alone or with other medications to treat certain types of seizures. Valproic acid is also used to treat mania (episodes of ... to relieve headaches that have already begun. Valproic acid is in a class of medications called anticonvulsants. ...

  12. Production of 3-hydroxypropionic acid from glycerol by acid tolerant Escherichia coli.

    PubMed

    Sankaranarayanan, Mugesh; Ashok, Somasundar; Park, Sunghoon

    2014-07-01

    The biological production of 3-hydroxypropionic acid (3-HP) has attracted significant attention because of its industrial importance. The low titer, yield and productivity, all of which are related directly or indirectly to the toxicity of 3-HP, have limited the commercial production of 3-HP. The aim of this study was to identify and select a 3-HP tolerant Escherichia coli strain among nine strains reported to produce various organic acids efficiently at high titer. When transformed with heterologous glycerol dehydratase, reactivase and aldehyde dehydrogenase, all nine E. coli strains produced 3-HP from glycerol but the level of 3-HP production, protein expression and activities of the important enzymes differed significantly according to the strain. Two E. coli strains, W3110 and W, showed higher levels of growth than the others in the presence of 25 g/L 3-HP. In the glycerol fed-batch bioreactor experiments, the recombinant E. coli W produced a high level of 3-HP at 460 ± 10 mM (41.5 ± 1.1 g/L) in 48 h with a yield of 31 % and a productivity of 0.86 ± 0.05 g/L h. In contrast, the recombinant E. coli W3110 produced only 180 ± 8.5 mM 3-HP (15.3 ± 0.8 g/L) in 48 h with a yield and productivity of 26 % and 0.36 ± 0.02 g/L h, respectively. This shows that the tolerance to and the production of 3-HP differ significantly among the well-known, similar strains of E. coli. The titer and productivity obtained with E. coli W were the highest reported thus far for the biological production of 3-HP from glycerol by E. coli. PMID:24788379

  13. Fatty acids - trans fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The data supporting a negative effect of dietary trans fatty acids on cardiovascular disease risk is consistent. The primary dietary sources of trans fatty acids include partially hydrogenated fat and rudiment fat. The adverse effect of trans fatty acids on plasma lipoprotein profiles is consisten...

  14. Efficacy of 2,3-dimercapto-1-propanesulfonic acid (DMPS) and diphenyl diselenide on cadmium induced testicular damage in mice.

    PubMed

    Santos, Francielli W; Zeni, Gilson; Rocha, Joao B T; do Nascimento, Paulo C; Marques, Marieli S; Nogueira, Cristina W

    2005-12-01

    The deleterious effect of acute cadmium-intoxication in mice testes was evaluated. Animals received a single dose of CdCl2 (2.5 or 5 mg/kg, intraperitoneally) and a number of toxicological parameters in mice testes were examined, such as delta-aminolevulinic acid dehydratase (delta-ALA-D) activity, lipid peroxidation, hemoglobin and ascorbic acid contents. Furthermore, the parameters that indicate tissue damage such as plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were also determined. Thus, a possible protective effect of 2,3-dimercapto-1-propane-sulfonic acid (DMPS) and diphenyl diselenide (PhSe)2 were studied. The results demonstrated an inhibition of delta-ALA-D activity, a reduction of ascorbic acid and an increase of lipid peroxidation induced by cadmium, indicating testes damage. Furthermore, we observed an increase of plasma LDH, AST and ALT activities. DMPS (400 mol/kg) and (PhSe)2 (100 micromol/kg) partially protected from the inhibitory effect of 2.5 mg/kg CdCl2 on delta-ALA-D and from the increase of TBARS (thiobarbituric acid reactive species) levels. (PhSe)2 therapy was effective in ameliorate ascorbic acid content when the cadmium dose was 2.5 mg/kg. Treatment with DMPS and (PhSe)2, individually or combined, was inefficient in reducing cadmium-induced plasma LDH and ALT activity increase. The use of combined therapy (DMPS plus (PhSe)2) proved to be efficient in decreasing cadmium levels in testes and in ameliorating plasma AST activity from animals that received the highest dose of cadmium. PMID:16000234

  15. The changes in mycolic acid structures caused by hadC mutation have a dramatic effect on the virulence of Mycobacterium tuberculosis.

    PubMed

    Slama, Nawel; Jamet, Stevie; Frigui, Wafa; Pawlik, Alexandre; Bottai, Daria; Laval, Françoise; Constant, Patricia; Lemassu, Anne; Cam, Kaymeuang; Daffé, Mamadou; Brosch, Roland; Eynard, Nathalie; Quémard, Annaïk

    2016-02-01

    Understanding the molecular strategies used by Mycobacterium tuberculosis to invade and persist within the host is of paramount importance to tackle the tuberculosis pandemic. Comparative genomic surveys have revealed that hadC, encoding a subunit of the HadBC dehydratase, is mutated in the avirulent M. tuberculosis H37Ra strain. We show here that mutation or deletion of hadC affects the biosynthesis of oxygenated mycolic acids, substantially reducing their production level. Additionally, it causes the loss of atypical extra-long mycolic acids, demonstrating the involvement of HadBC in the late elongation steps of mycolic acid biosynthesis. These events have an impact on the morphotype, cording capacity and biofilm growth of the bacilli as well as on their sensitivity to agents such as rifampicin. Furthermore, deletion of hadC leads to a dramatic loss of virulence: an almost 4-log drop of the bacterial load in the lungs and spleens of infected immunodeficient mice. Both its unique function and importance for M. tuberculosis virulence make HadBC an attractive therapeutic target for tuberculosis drug development. PMID:26538472

  16. Acid Deposition

    EPA Science Inventory

    This indicator presents acid deposition trends in the contiguous U.S. from 1989 to 2007. Data are broken down by wet and dry deposition and deposition of nitrogen and sulfur compounds. Acid deposition is particularly damaging to lakes, streams, and forests and the plants and a...

  17. Acid rain

    SciTech Connect

    White, J.C. )

    1988-01-01

    This book presents the proceedings of the third annual conference sponsored by the Acid Rain Information Clearinghouse (ARIC). Topics covered include: Legal aspects of the source-receptor relationship: an energy perspective; Scientific uncertainty, agency inaction, and the courts; and Acid rain: the emerging legal framework.

  18. Acid rain

    SciTech Connect

    Elsworth, S.

    1985-01-01

    This book was written in a concise and readable style for the lay public. It's purpose was to make the public aware of the damage caused by acid rain and to mobilize public opinion to favor the elimination of the causes of acid rain.

  19. Acid rain

    SciTech Connect

    Sweet, W.

    1980-06-20

    Acid precipitation includes not only rain but also acidified snow, hail and frost, as well as sulfur and nitrogen dust. The principal source of acid precipitation is pollution emitted by power plants and smelters. Sulfur and nitrogen compounds contained in the emissions combine with moisture to form droplets with a high acid content - sometimes as acidic as vinegar. When sufficiently concentrated, these acids can kill fish and damage material structures. Under certain circumstances they may reduce crop and forest yields and cause or aggravate respiratory diseases in humans. During the summer, especially, pollutants tend to collect over the Great Lakes in high pressure systems. Since winds typically are westerly and rotate clockwise around high pressure systems, the pollutants gradually are dispersed throughout the eastern part of the continent.

  20. Asparagusic acid.

    PubMed

    Mitchell, Stephen C; Waring, Rosemary H

    2014-01-01

    Asparagusic acid (1,2-dithiolane-4-carboxylic acid) is a simple sulphur-containing 5-membered heterocyclic compound that appears unique to asparagus, though other dithiolane derivatives have been identified in non-food species. This molecule, apparently innocuous toxicologically to man, is the most probable culprit responsible for the curious excretion of odorous urine following asparagus ingestion. The presence of the two adjacent sulphur atoms leads to an enhanced chemical reactivity, endowing it with biological properties including the ability to substitute potentially for α-lipoic acid in α-keto-acid oxidation systems. This brief review collects the scattered data available in the literature concerning asparagusic acid and highlights its properties, intermediary metabolism and exploratory applications. PMID:24099657

  1. [Gastric Acid].

    PubMed

    Ruíz Chávez, R

    1996-01-01

    Gastric acid, a product of parietal cells secretion, full fills multiple biological roles which are absolutely necessary to keep corporal homeostasis. The production of the acid depends upon an effector cellular process represented in the first step by histamine, acetilcholine and gastrin, first messengers of the process. These interact with specific receptors than in sequence activate second messengers -cAMP and the calcium-calmodulin system- which afterwards activate a kinase. An specific protein is then phosphorilated by this enzyme, being the crucial factor that starts the production of acid. Finally, a proton bomb, extrudes the acid towards the gastric lumen. The secretion process mentioned above, is progressive lyactivated in three steps, two of which are stimulators -cephalic and gastric phases- and the other one inhibitor or intestinal phase. These stages are started by mental and neurological phenomena -thought, sight, smell or memory-; by food, drugs or other ingested substances; and by products of digestion. Changes in regulation of acid secretion, in the structure of gastro-duodenal mucosal barrier by a wide spectrum of factors and agents including food, drugs and H. pylori, are the basis of acid-peptic disease, entity in which gastric acid plays a fundamental role. From the therapeutic point of view, so at the theoretical as at the practical levels, t is possible to interfere with the secretion of acid by neutralization of some of the steps of the effector cellular process. An adequate knowledge of the basics related to gastric acid, allows to create strategies for the clinical handling of associated pathology, specifically in relation to peptic acid disease in all of the known clinical forms. PMID:12165790

  2. Acid fog

    SciTech Connect

    Hileman, B.

    1983-03-01

    Fog in areas of southern California previously thought to be pollution-free has been shown to have a pH as low as 1.69. It has been found to be most acidic after smoggy days, suggesting that it forms on the aerosol associated with the previously exiting smog. Studies on Whiteface Mountain in the Adirondacks show that fog water is often 10 times as acidic as rainwater. As a result of their studies, California plans to spend $4 million on acid deposition research in the coming year. (JMT)

  3. Folic acid

    MedlinePlus

    ... in the blood vessel to keep it open. Bipolar disorder. Taking folic acid does not appear to improve the antidepressant effects of lithium in people with bipolar disorder. However, taking folate with the medication valproate improves ...

  4. Mefenamic Acid

    MedlinePlus

    ... as mefenamic acid may cause ulcers, bleeding, or holes in the stomach or intestine. These problems may ... like coffee grounds, blood in the stool, or black and tarry stools.Keep all appointments with your ...

  5. ACID RAIN

    EPA Science Inventory

    Acid precipitation has become one of the major environmental problems of this decade. It is a challenge to scientists throughout the world. Researchers from such diverse disciplines as plant pathology, soil science, bacteriology, meteorology and engineering are investigating diff...

  6. Acid Precipitation

    ERIC Educational Resources Information Center

    Likens, Gene E.

    1976-01-01

    Discusses the fact that the acidity of rain and snow falling on parts of the U.S. and Europe has been rising. The reasons are still not entirely clear and the consequences have yet to be well evaluated. (MLH)

  7. Carnosic acid.

    PubMed

    Birtić, Simona; Dussort, Pierre; Pierre, François-Xavier; Bily, Antoine C; Roller, Marc

    2015-07-01

    Carnosic acid (salvin), which possesses antioxidative and antimicrobial properties, is increasingly exploited within the food, nutritional health and cosmetics industries. Since its first extraction from a Salvia species (∼70 years ago) and its identification (∼50 years ago), numerous articles and patents (∼400) have been published on specific food and medicinal applications of Rosmarinus and Salvia plant extracts abundant in carnosic acid. In contrast, relevant biochemical, physiological or molecular studies in planta have remained rare. In this overview, recent advances in understanding of carnosic acid distribution, biosynthesis, accumulation and role in planta, and its applications are summarised. We also discuss the deficiencies in our understanding of the relevant biochemical processes, and suggest the molecular targets of carnosic acid. Finally, future perspectives and studies related to its potential roles are highlighted. PMID:25639596

  8. Aminocaproic Acid

    MedlinePlus

    Amicar® Oral Solution ... Aminocaproic acid comes as a tablet and a solution (liquid) to take by mouth. It is usually ... it at room temperature and away from excess heat and moisture (not in the bathroom). Throw away ...

  9. Tranexamic Acid

    MedlinePlus

    ... is used to treat heavy bleeding during the menstrual cycle (monthly periods) in women. Tranexamic acid is in ... tablets for more than 5 days in a menstrual cycle or take more than 6 tablets in a ...

  10. Acidic precipitation

    SciTech Connect

    Martin, H.C.

    1987-01-01

    At the International Symposium on Acidic Precipitation, over 400 papers were presented, and nearly 200 of them are included here. They provide an overview of the present state of the art of acid rain research. The Conference focused on atmospheric science (monitoring, source-receptor relationships), aquatic effects (marine eutrophication, lake acidification, impacts on plant and fish populations), and terrestrial effects (forest decline, soil acidification, etc.).

  11. Identification of a Bifunctional UDP-4-keto-pentose/UDP-xylose Synthase in the Plant Pathogenic Bacterium Ralstonia solanacearum Strain GMI1000, a Distinct Member of the 4,6-Dehydratase and Decarboxylase Family*

    PubMed Central

    Gu, Xiaogang; Glushka, John; Yin, Yanbin; Xu, Ying; Denny, Timothy; Smith, James; Jiang, Yingnan; Bar-Peled, Maor

    2010-01-01

    The UDP-sugar interconverting enzymes involved in UDP-GlcA metabolism are well described in eukaryotes but less is known in prokaryotes. Here we identify and characterize a gene (RsU4kpxs) from Ralstonia solanacearum str. GMI1000, which encodes a dual function enzyme not previously described. One activity is to decarboxylate UDP-glucuronic acid to UDP-β-l-threo-pentopyranosyl-4″-ulose in the presence of NAD+. The second activity converts UDP-β-l-threo-pentopyranosyl-4″-ulose and NADH to UDP-xylose and NAD+, albeit at a lower rate. Our data also suggest that following decarboxylation, there is stereospecific protonation at the C5 pro-R position. The identification of the R. solanacearum enzyme enables us to propose that the ancestral enzyme of UDP-xylose synthase and UDP-apiose/UDP-xylose synthase was diverged to two distinct enzymatic activities in early bacteria. This separation gave rise to the current UDP-xylose synthase in animal, fungus, and plant as well as to the plant Uaxs and bacterial ArnA and U4kpxs homologs. PMID:20118241

  12. Heterologous Expression of Aldehyde Dehydrogenase from Saccharomyces cerevisiae in Klebsiella pneumoniae for 3-Hydroxypropionic Acid Production from Glycerol.

    PubMed

    Wang, Kang; Wang, Xi; Ge, Xizhen; Tian, Pingfang

    2012-09-01

    3-Hydroxypropionic acid (3-HP) is a commercially valuable platform compound. Klebsiella pneumoniae has been concerned as an appropriate host for 3-HP production because of its robust capacity to metabolize glycerol. Glycerol conversion to 3-HP in K. pneumoniae comprises two successive reactions: glycerol dehydratase catalyzes glycerol to 3-hydroxypropionaldehyde (3-HPA); aldehyde dehydrogenase catalyzes 3-HPA to 3-HP. Previous studies focusing on inducible expression of aldehyde dehydrogenase have shown defects of high cost of inducer and low catalytic activity due to inclusion body. Here we show a different strategy that a native promoter in the host K. pneumoniae was used to drive the heterologous expression of aldehyde dehydrogenase gene ald4 from Saccharomyces cerevisiae. The 3-HP yield of the recombinant reached a peak of 4.23 g/L at log phase, but it decreased during later period of fermentation. Except the validation of high activity of ald4, particularly, the 3-HP formation was uncovered to be closely coupled with cell division, and the lacking of NAD and ATP at latter fermentation phase became the bottleneck for cell growth and 3-HP accumulation. Furthermore, 3-HP is postulated to be converted to 3-HPA via feedback inhibition or other metabolite via unknown mechanism. Since glycerol dissimilation is a common mechanism in a variety of bacteria, the expression strategy using native promoter and implications may provide significant insight into the metabolic engineering for 3-HP production. PMID:23997342

  13. Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid.

    PubMed

    Stevenson, G; Andrianopoulos, K; Hobbs, M; Reeves, P R

    1996-08-01

    Colanic acid (CA) is an extracellular polysaccharide produced by most Escherichia coli strains as well as by other species of the family Enterobacteriaceae. We have determined the sequence of a 23-kb segment of the E. coli K-12 chromosome which includes the cluster of genes necessary for production of CA. The CA cluster comprises 19 genes. Two other sequenced genes (orf1.3 and galF), which are situated between the CA cluster and the O-antigen cluster, were shown to be unnecessary for CA production. The CA cluster includes genes for synthesis of GDP-L-fucose, one of the precursors of CA, and the gene for one of the enzymes in this pathway (GDP-D-mannose 4,6-dehydratase) was identified by biochemical assay. Six of the inferred proteins show sequence similarity to glycosyl transferases, and two others have sequence similarity to acetyl transferases. Another gene (wzx) is predicted to encode a protein with multiple transmembrane segments and may function in export of the CA repeat unit from the cytoplasm into the periplasm in a process analogous to O-unit export. The first three genes of the cluster are predicted to encode an outer membrane lipoprotein, a phosphatase, and an inner membrane protein with an ATP-binding domain. Since homologs of these genes are found in other extracellular polysaccharide gene clusters, they may have a common function, such as export of polysaccharide from the cell. PMID:8759852

  14. The Non-Essential Mycolic Acid Biosynthesis Genes hadA and hadC Contribute to the Physiology and Fitness of Mycobacterium smegmatis

    PubMed Central

    Jamet, Stevie; Slama, Nawel; Domingues, Joana; Laval, Françoise; Texier, Pauline; Eynard, Nathalie; Quémard, Annaik; Peixoto, Antonio; Lemassu, Anne; Daffé, Mamadou; Cam, Kaymeuang

    2015-01-01

    Gram positive mycobacteria with a high GC content, such as the etiological agent of tuberculosis Mycobacterium tuberculosis, possess an outer membrane mainly composed of mycolic acids (MAs), the so-called mycomembrane, which is essential for the cell. About thirty genes are involved in the biosynthesis of MAs, which include the hadA, hadB and hadC genes that encode the dehydratases Fatty Acid Synthase type II (FAS-II) known to function as the heterodimers HadA-HadB and HadB-HadC. The present study shows that M. smegmatis cells remain viable in the absence of either HadA and HadC or both. Inactivation of HadC has a dramatic effect on the physiology and fitness of the mutant strains whereas that of HadA exacerbates the phenotype of a hadC deletion. The hadC mutants exhibit a novel MA profile, display a distinct colony morphology, are less aggregated, are impaired for sliding motility and biofilm development and are more resistant to detergent. Conversely, the hadC mutants are significantly more susceptible to low- and high-temperature and to selective toxic compounds, including several current anti-tubercular drugs. PMID:26701652

  15. The Multiple DSF-family QS Signals are Synthesized from Carbohydrate and Branched-chain Amino Acids via the FAS Elongation Cycle

    PubMed Central

    Zhou, Lian; Yu, Yonghong; Chen, Xiping; Diab, Abdelgader Abdeen; Ruan, Lifang; He, Jin; Wang, Haihong; He, Ya-Wen

    2015-01-01

    Members of the diffusible signal factor (DSF) family are a novel class of quorum sensing (QS) signals in diverse Gram-negative bacteria. Although previous studies have identified RpfF as a key enzyme for the biosynthesis of DSF family signals, many questions in their biosynthesis remain to be addressed. In this study with the phytopathogen Xanthomonas campestris pv. campestris (Xcc), we show that Xcc produces four DSF-family signals (DSF, BDSF, CDSF and IDSF) during cell culture, and that IDSF is a new functional signal characterized as cis-10-methyl-2-dodecenoic acid. Using a range of defined media, we further demonstrate that Xcc mainly produces BDSF in the presence of carbohydrates; leucine and valine are the primary precursor for DSF biosynthesis; isoleucine is the primary precursor for IDSF biosynthesis. Furthermore, our biochemical analyses show that the key DSF synthase RpfF has both thioesterase and dehydratase activities, and uses 3-hydroxydedecanoyl-ACP as a substrate to produce BDSF. Finally, our results show that the classic fatty acid synthesis elongation cycle is required for the biosynthesis of DSF-family signals. Taken all together, these findings establish a general biosynthetic pathway for the DSF-family quorum sensing signals. PMID:26289160

  16. Salicylic acids

    PubMed Central

    Hayat, Shamsul; Irfan, Mohd; Wani, Arif; Nasser, Alyemeni; Ahmad, Aqil

    2012-01-01

    Salicylic acid is well known phytohormone, emerging recently as a new paradigm of an array of manifestations of growth regulators. The area unleashed yet encompassed the applied agriculture sector to find the roles to strengthen the crops against plethora of abiotic and biotic stresses. The skipped part of integrated picture, however, was the evolutionary insight of salicylic acid to either allow or discard the microbial invasion depending upon various internal factors of two interactants under the prevailing external conditions. The metabolic status that allows the host invasion either as pathogenesis or symbiosis with possible intermediary stages in close systems has been tried to underpin here. PMID:22301975

  17. Folic acid

    MedlinePlus

    ... disease called vitiligo, and an inherited disease called Fragile-X syndrome. It is also used for reducing harmful side ... to blood clots (ischemic stroke). Inherited disease called Fragile-X syndrome.Taking folic acid by mouth does not improve ...

  18. Acid rain

    SciTech Connect

    Not Available

    1984-06-01

    An overview is presented of acid rain and the problems it causes to the environment worldwide. The acidification of lakes and streams is having a dramatic effect on aquatic life. Aluminum, present in virtually all forest soils, leaches out readily under acid conditions and interferes with the gills of all fish, some more seriously than others. There is evidence of major damage to forests in European countries. In the US, the most severe forest damage appears to be in New England, New York's Adirondacks, and the central Appalachians. This small region is part of a larger area of the Northeast and Canada that appears to have more acid rainfall than the rest of the country. It is downwind from major coal burning states, which produce about one quarter of US SO/sub 2/ emissions and one sixth of nitrogen oxide emissions. Uncertainties exist over the causes of forest damage and more research is needed before advocating expensive programs to reduce rain acidity. The President's current budget seeks an expansion of research funds from the current $30 million per year to $120 million.

  19. Formic acid

    Integrated Risk Information System (IRIS)

    Formic acid ; CASRN 64 - 18 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  20. Selenious acid

    Integrated Risk Information System (IRIS)

    Selenious acid ; CASRN 7783 - 00 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  1. Benzoic acid

    Integrated Risk Information System (IRIS)

    Benzoic acid ; CASRN 65 - 85 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  2. Trichloroacetic acid

    Integrated Risk Information System (IRIS)

    Trichloroacetic acid ( TCA ) ; CASRN 76 - 03 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Nonca

  3. Dichloroacetic acid

    Integrated Risk Information System (IRIS)

    Dichloroacetic acid ; CASRN 79 - 43 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  4. Acrylic acid

    Integrated Risk Information System (IRIS)

    Acrylic acid ( CASRN 79 - 10 - 7 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  5. Cacodylic acid

    Integrated Risk Information System (IRIS)

    Cacodylic acid ; CASRN 75 - 60 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  6. Phosphoric acid

    Integrated Risk Information System (IRIS)

    Phosphoric acid ; CASRN 7664 - 38 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  7. Stearic Acid

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) is presented for the chemical, stearic acid. The profile lists the chemical's physical and harmful characteristics, exposure limits, and symptoms of major exposure, for the benefit of teachers and students, who use the chemical in the laboratory.

  8. The Crystal Structure of Burkholderia cenocepacia DfsA Provides Insights into Substrate Recognition and Quorum Sensing Fatty Acid Biosynthesis.

    PubMed

    Spadaro, Francesca; Scoffone, Viola C; Chiarelli, Laurent R; Fumagalli, Marco; Buroni, Silvia; Riccardi, Giovanna; Forneris, Federico

    2016-06-14

    Burkholderia cenocepacia is a major concern among respiratory tract infections in cystic fibrosis patients. This pathogen is particularly difficult to treat because of its high level of resistance to the clinically relevant antimicrobial agents. In B. cenocepacia, the quorum sensing cell-cell communication system is involved in different processes that are important for bacterial virulence, such as biofilm formation and protease and siderophore production. Targeting the enzymes involved in this process represents a promising therapeutic approach. With the aim of finding effective quorum sensing inhibitors, we have determined the three-dimensional structure of B. cenocepacia diffusible factor synthase A, DfsA. This bifunctional crotonase (dehydratase/thioesterase) produces the characteristic quorum sensing molecule of B. cenocepacia, cis-2-dodecenoic acid or BDSF, starting from 3-hydroxydodecanoyl-acyl carrier protein. Unexpectedly, the crystal structure revealed the presence of a lipid molecule in the catalytic site of the enzyme, which was identified as dodecanoic acid. Our biochemical characterization shows that DfsA is able to use dodecanoyl-acyl carrier protein as a substrate, demonstrating that dodecanoic acid, the product of this reaction, is released very slowly from the DfsA active site, therefore acting as a DfsA inhibitor. This molecule shows an unprecedented conformational arrangement inside the DfsA active site. In contrast with previous hypotheses, our data illustrate how DfsA and closely related homologous enzymes can recognize long hydrophobic substrates without large conformational changes or assistance by additional regulator molecules. The elucidation of the substrate binding mode in DfsA provides the starting point for structure-based drug discovery studies targeting B. cenocepacia quorum sensing-assisted virulence. PMID:27198181

  9. Hydroxycarboxylic acids and salts

    DOEpatents

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  10. UDP-Glucuronic Acid Decarboxylases of Bacteroides fragilis and Their Prevalence in Bacteria▿†

    PubMed Central

    Coyne, Michael J.; Fletcher, C. Mark; Reinap, Barbara; Comstock, Laurie E.

    2011-01-01

    Xylose is rarely described as a component of bacterial glycans. UDP-xylose is the nucleotide-activated form necessary for incorporation of xylose into glycans and is synthesized by the decarboxylation of UDP-glucuronic acid (UDP-GlcA). Enzymes with UDP-GlcA decarboxylase activity include those that lead to the formation of UDP-xylose as the end product (Uxs type) and those synthesizing UDP-xylose as an intermediate (ArnA and RsU4kpxs types). In this report, we identify and confirm the activities of two Uxs-type UDP-GlcA decarboxylases of Bacteroides fragilis, designated BfUxs1 and BfUxs2. Bfuxs1 is located in a conserved region of the B. fragilis genome, whereas Bfuxs2 is in the heterogeneous capsular polysaccharide F (PSF) biosynthesis locus. Deletion of either gene separately does not result in the loss of a detectable phenotype, but deletion of both genes abrogates PSF synthesis, strongly suggesting that they are functional paralogs and that the B. fragilis NCTC 9343 PSF repeat unit contains xylose. UDP-GlcA decarboxylases are often annotated incorrectly as NAD-dependent epimerases/dehydratases; therefore, their prevalence in bacteria is underappreciated. Using available structural and mutational data, we devised a sequence pattern to detect bacterial genes encoding UDP-GlcA decarboxylase activity. We identified 826 predicted UDP-GlcA decarboxylase enzymes in diverse bacterial species, with the ArnA and RsU4kpxs types confined largely to proteobacterial species. These data suggest that xylose, or a monosaccharide requiring a UDP-xylose intermediate, is more prevalent in bacterial glycans than previously appreciated. Genes encoding BfUxs1-like enzymes are highly conserved in Bacteroides species, indicating that these abundant intestinal microbes may synthesize a conserved xylose-containing glycan. PMID:21804000

  11. Effects of chlorogenic acid, caffeine, and coffee on behavioral and biochemical parameters of diabetic rats.

    PubMed

    Stefanello, Naiara; Schmatz, Roberta; Pereira, Luciane Belmonte; Rubin, Maribel A; da Rocha, João Batista Teixeira; Facco, Graziela; Pereira, Maria Ester; Mazzanti, Cinthia Melazzo de Andrade; Passamonti, Sabina; Rodrigues, Marília Valvassori; Carvalho, Fabiano Barbosa; da Rosa, Michelle Melgarejo; Gutierres, Jessie Martins; Cardoso, Andréia Machado; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina

    2014-03-01

    Diabetes mellitus (DM) is associated with brain alterations that may contribute to cognitive dysfunctions. Chlorogenic acid (CGA) and caffeine (CA), abundant in coffee (CF), are natural compounds that have showed important actions in the brain. The present study aimed to evaluate the effect of CGA, CA, and CF on acetylcholinesterase (AChE), Na(+), K(+)-ATPase, aminolevulinate dehydratase (δ-ALA-D) activities and TBARS levels from cerebral cortex, as well as memory and anxiety in streptozotocin-induced diabetic rats. Animals were divided into eight groups (n = 5-10): control; control/CGA 5 mg/kg; control/CA 15 mg/kg; control/CF 0.5 g/kg; diabetic; diabetic/CGA 5 mg/kg; diabetic/CA 15 mg/kg; and diabetic/CF 0.5 g/kg. Our results demonstrated an increase in AChE activity and TBARS levels in cerebral cortex, while δ-ALA-D and Na(+), K(+)-ATPase activities were decreased in the diabetic rats when compared to control water group. Furthermore, a memory deficit and an increase in anxiety in diabetic rats were observed. The treatment with CGA and CA prevented the increase in AChE activity in diabetic rats when compared to the diabetic water group. CGA, CA, and CF intake partially prevented cerebral δ-ALA-D and Na(+), K(+)-ATPase activity decrease due to diabetes. Moreover, CGA prevented diabetes-induced TBARS production, improved memory, and decreased anxiety. In conclusion, among the compounds studied CGA proved to be a compound which acts better in the prevention of brain disorders promoted by DM. PMID:24370728

  12. Methylmalonic acid blood test

    MedlinePlus

    ... acid is a substance produced when proteins, called amino acids, in the body break down. The health care ... Cederbaum S, Berry GT. Inborn errors of carbohydrate, ammonia, amino acid, and organic acid metabolism. In: Gleason CA, Devaskar ...

  13. Folic acid - test

    MedlinePlus

    Folic acid is a type of B vitamin. This article discusses the test to measure the amount of folic acid in the blood. ... that may interfere with test results, including folic acid supplements. Drugs that can decrease folic acid measurements ...

  14. Uric acid urine test

    MedlinePlus

    The uric acid urine test measures the level of uric acid in urine. Uric acid level can also be checked using a blood ... help determine the cause of a high uric acid level in the blood. It may also be ...

  15. Methylmalonic acid blood test

    MedlinePlus

    The methylmalonic acid blood test measures the amount of methylmalonic acid in the blood. ... Methylmalonic acid is a substance produced when proteins, called amino acids, in the body break down. The health care ...

  16. Folic Acid and Pregnancy

    MedlinePlus

    ... 5 Things to Know About Zika & Pregnancy Folic Acid and Pregnancy KidsHealth > For Parents > Folic Acid and ... before conception and during early pregnancy . About Folic Acid Folic acid, sometimes called folate, is a B ...

  17. Reduction of Uroporphyrinogen Decarboxylase by Antisense RNA Expression Affects Activities of Other Enzymes Involved in Tetrapyrrole Biosynthesis and Leads to Light-Dependent Necrosis.

    PubMed Central

    Mock, H. P.; Grimm, B.

    1997-01-01

    We introduced a full-length cDNA sequence encoding tobacco (Nicotiana tabacum) uroporphyrinogen III decarboxylase (UROD; EC 4.1.1.37) in reverse orientation under the control of a cauliflower mosaic virus 35S promoter derivative into the tobacco genome to study the effects of deregulated UROD expression on tetrapyrrole biosynthesis. Transformants with reduced UROD activity were characterized by stunted plant growth and necrotic leaf lesions. Antisense RNA expression caused reduced UROD protein levels and reduced activity to 45% of wild type, which was correlated with the accumulation of uroporphyrin(ogen) and with the intensity of necrotic damage. Chlorophyll levels were only slightly reduced (up to 15%), indicating that the plants sustained cellular damage from accumulating photosensitive porphyrins rather than from chlorophyll deficiency. A 16-h light/8-h dark regime at high-light intensity stimulates the formation of leaf necrosis compared with a low-light or a 6-h high-light treatment. Transgenic plants grown at high light also showed inactivation of 5-aminolevulinate dehydratase and porphobilinogen deaminase, whereas the activity of coproporphyrinogen oxidase and the 5-aminolevulinate synthesizing capacity were not altered. We conclude that photooxidation of accumulating uroporphyrin(ogen) leads to the generation of oxygen species, which destabilizes other enzymes in the porphyrin metabolic pathway. This porphyrin-induced necrosis resembles the induction of cell death observed during pathogenesis and air pollution. PMID:12223662

  18. Understanding Acid Rain

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    The term acid rain describes rain, snow, or fog that is more acidic than normal precipitation. To understand what acid rain is, it is first necessary to know what an acid is. Acids can be defined as substances that produce hydrogen ions (H+), when dissolved in water. Scientists indicate how acidic a substance is by a set of numbers called the pH…

  19. New bioactive fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to the new compounds, 7,10-dihydroxy-8(E)-octad...

  20. New Bioactive Fatty Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to new compounds, 7,10-dihydroxy-8(E)-octadecen...

  1. Bioactive Fatty Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxygenated fatty acids are useful as specialty chemicals, plasticizers, and biomedicals. Microbial enzymes convert fatty acids to mono-, di-, and trihydroxy fatty acid products. Among them, Bacillus megaterium ALA2 converted n-6 and n-3 PUFAs to many new oxygenated fatty acids. Linoleic acid was ...

  2. Uric acid test (image)

    MedlinePlus

    Uric acid urine test is performed to check for the amount of uric acid in urine. Urine is collected over a 24 ... testing. The most common reason for measuring uric acid levels is in the diagnosis or treatment of ...

  3. Amino Acid Metabolism Disorders

    MedlinePlus

    ... defects & other health conditions > Amino acid metabolism disorders Amino acid metabolism disorders E-mail to a friend Please ... baby’s newborn screening may include testing for certain amino acid metabolism disorders. These are rare health conditions that ...

  4. Plasma amino acids

    MedlinePlus

    Amino acids blood test ... types of methods used to determine the individual amino acid levels in the blood. ... test is done to measure the level of amino acids in the blood. An increased level of a ...

  5. Stomach acid test

    MedlinePlus

    Gastric acid secretion test ... of the cells in the stomach to release acid. The stomach contents are then removed and analyzed. ... 3.5). These numbers are converted to actual acid production in units of milliequivalents per hour in ...

  6. Azelaic Acid Topical

    MedlinePlus

    Azelaic acid gel is used to clear the bumps, lesions, and swelling caused by rosacea (a skin disease that ... redness, flushing, and pimples on the face). Azelaic acid cream is used to treat acne. Azelaic acid ...

  7. Facts about Folic Acid

    MedlinePlus

    ... Information For... Media Policy Makers Facts About Folic Acid Language: English Español (Spanish) Recommend on Facebook Tweet ... of the baby's brain and spine. About folic acid Folic acid is a B vitamin. Our bodies ...

  8. Acid Lipase Disease

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Acid Lipase Disease Information Page Synonym(s): Cholesterol Ester Storage ... Trials Related NINDS Publications and Information What is Acid Lipase Disease ? Acid lipase disease or deficiency occurs ...

  9. Folic acid - test

    MedlinePlus

    ... folic acid measurements include: Alcohol Aminosalicylic acid Birth control pills Estrogens Tetracyclines Ampicillin Chloramphenicol Erythromycin Methotrexate Penicillin Aminopterin Phenobarbital Phenytoin Drugs to treat malaria

  10. Oxalic acid poisoning

    MedlinePlus

    Symptoms of oxalic acid poisoning include: Abdominal pain Burns and blisters where the acid contacted the skin Collapse Convulsions Mouth pain Shock Throat pain Tremors (unintentional trembling) Vomiting

  11. [Preface for special issue on biobased chemicals (2013)].

    PubMed

    Xing, Jianmin

    2013-10-01

    Biobased chemicals are one of the main missions of bioeconomy. In this special issue, we reviewed the recent progress in the metabolic engineering and fermentation control study on biobased succinic acid, adipic acid, lactic acid, 3-hydroxypropanoic acid, glucaric acid, glycerol, xylitol, higher alcohols and ethylene, recombinant construction for the direct utilization of lignocelluloses, biotransformation of bio-based lactic acid, and salting-out extraction of bio-based chemicals. Some research articles on biobased succinic acid, D-mannitol, malic acid, 5-aminolevulinic acid, 1,3-propanediol, and butanol are also included. PMID:24432650

  12. Acid distribution in phosphoric acid fuel cells

    SciTech Connect

    Okae, I.; Seya, A.; Umemoto, M.

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  13. Responses in whole-body amino acid kinetics to an acute, sub-clinical endotoxin challenge in lambs.

    PubMed

    Hoskin, S O; Bremner, D M; Holtrop, G; Lobley, G E

    2016-02-28

    Some effects of parasitism, endotoxaemia or sepsis can be mitigated by provision of extra protein. Supplemented protein may encompass a metabolic requirement for specific amino acids (AA). The current study investigates a method to identify and quantify the amounts of AA required during inflammation induced by an endotoxin challenge. One of each pair of six twin sheep was infused in the jugular vein for 20 h with either saline (control) or lipopolysaccharide (LPS, 2 ng/kg body weight per min) from Escherichia coli. Between 12 and 20 h a mixture of stable isotope-labelled AA was infused to measure irreversible loss rates. From 16 to 20 h all sheep were supplemented with a mixture of unlabelled AA infused intravenously. Blood samples were taken before the start of infusions, and then continuously over intervals between 14 and 20 h. At 20 h the sheep were euthanised, and liver and kidney samples were taken for measurement of serine-threonine dehydratase (SDH) activity. LPS infusion decreased plasma concentrations of most AA (P<0·05; P<0·10 for leucine and tryptophan), except for phenylalanine (which increased P=0·022) and tyrosine. On the basis of the incremental response to the supplemental AA, arginine, aspartate, cysteine, glutamate, lysine (tendency only), glycine, methionine, proline, serine and threonine were important in the metabolic response to the endotoxaemia. The AA infusion between 16 and 20 h restored the plasma concentrations in the LPS-treated sheep for the majority of AA, except for glutamine, isoleucine, methionine, serine and valine. LPS treatment increased (P<0·02) SDH activity in both liver and kidney. The approach allows quantification of key AA required during challenge situations. PMID:26652711

  14. Production of 3-Hydroxypropionic Acid via the Propionyl-CoA Pathway Using Recombinant Escherichia coli Strains.

    PubMed

    Luo, Hui; Zhou, Dafeng; Liu, Xiaohui; Nie, Zhihua; Quiroga-Sánchez, Diego Leandro; Chang, Yanhong

    2016-01-01

    Our study aimed to produce the commercially promising platform chemical 3-hydroxypropionic acid (3-HP) via the propionyl-CoA pathway in genetically engineered Escherichia coli. Recombinant E. coli Ec-P overexpressing propionyl-CoA dehydrogenase (PACD, encoded by the pacd gene from Candida rugosa) under the T7 promoter produced 1.33 mM of 3-HP in a shake flask culture supplemented with 0.5% propionate. When propionate CoA-transferase (PCT, encoded by the pct gene from Megasphaera elsdenii) and 3-hydroxypropionyl-CoA dehydratase (HPCD, encoded by the hpcd gene from Chloroflexus aurantiacus) were expressed along with PACD, the 3-HP titer of the resulting E. coli Ec-PPH strain was improved by 6-fold. The effect of the cultivation conditions on the 3-HP yield from propionate in the Ec-PPH strain was also investigated. When cultured at 30°C with 1% glucose in addition to propionate, 3-HP production by Ec-PPH increased 2-fold and 12-fold compared to the cultivation at 37°C (4.23 mM) or without glucose (0.68 mM). Deletion of the ygfH gene encoding propionyl-CoA: succinate CoA-transferase from Ec-PPH (resulting in the strain Ec-△Y-PPH) led to increase of 3-HP production in shake flask experiments (15.04 mM), whereas the strain Ec-△Y-PPH with deletion of the prpC gene (encoding methylcitrate synthase in the methylcitrate cycle) produced 17.76 mM of 3-HP. The strain Ec-△Y-△P-PPH with both ygfH and prpC genes deleted produced 24.14 mM of 3-HP, thus showing an 18-fold increase in the 3-HP titer in compare to the strain Ec-P. PMID:27227837

  15. Production of 3-Hydroxypropionic Acid via the Propionyl-CoA Pathway Using Recombinant Escherichia coli Strains

    PubMed Central

    Luo, Hui; Zhou, Dafeng; Liu, Xiaohui; Nie, Zhihua; Quiroga-Sánchez, Diego Leandro; Chang, Yanhong

    2016-01-01

    Our study aimed to produce the commercially promising platform chemical 3-hydroxypropionic acid (3-HP) via the propionyl-CoA pathway in genetically engineered Escherichia coli. Recombinant E. coli Ec-P overexpressing propionyl-CoA dehydrogenase (PACD, encoded by the pacd gene from Candida rugosa) under the T7 promoter produced 1.33 mM of 3-HP in a shake flask culture supplemented with 0.5% propionate. When propionate CoA-transferase (PCT, encoded by the pct gene from Megasphaera elsdenii) and 3-hydroxypropionyl-CoA dehydratase (HPCD, encoded by the hpcd gene from Chloroflexus aurantiacus) were expressed along with PACD, the 3-HP titer of the resulting E. coli Ec-PPH strain was improved by 6-fold. The effect of the cultivation conditions on the 3-HP yield from propionate in the Ec-PPH strain was also investigated. When cultured at 30°C with 1% glucose in addition to propionate, 3-HP production by Ec-PPH increased 2-fold and 12-fold compared to the cultivation at 37°C (4.23 mM) or without glucose (0.68 mM). Deletion of the ygfH gene encoding propionyl-CoA: succinate CoA-transferase from Ec-PPH (resulting in the strain Ec-△Y-PPH) led to increase of 3-HP production in shake flask experiments (15.04 mM), whereas the strain Ec-△Y-PPH with deletion of the prpC gene (encoding methylcitrate synthase in the methylcitrate cycle) produced 17.76 mM of 3-HP. The strain Ec-△Y-△P-PPH with both ygfH and prpC genes deleted produced 24.14 mM of 3-HP, thus showing an 18-fold increase in the 3-HP titer in compare to the strain Ec-P. PMID:27227837

  16. Structural and Functional Characterization of PseC, an Aminotransferase Involved in the Biosynthesis of Pseudaminic Acid, an Essential Flagellar Modification in Helicobacter Pylori

    SciTech Connect

    Schoenhofen,I.; Lunin, V.; Julien, J.; Li, Y.; Ajamian, E.; Matte, A.; Cygler, M.; Brisson, J.; Aubry, A.; et al.

    2006-01-01

    Helicobacter pylori flagellin is heavily glycosylated with the novel sialic acid-like nonulosonate, pseudaminic acid (Pse). The glycosylation process is essential for assembly of functional flagellar filaments and consequent bacterial motility. As motility is a key virulence factor for this and other important pathogens, the Pse biosynthetic pathway offers potential for novel therapeutic targets. From recent NMR analyses, we determined that the conversion of UDP-a-D-GlcNAc to the central intermediate in the pathway, UDP-4-amino-4,6-dideoxy-{beta}-L-AltNAc, proceeds by formation of UDP-2-acetamido-2,6-dideoxy-{beta}-L-arabino-4-hexulose by the dehydratase/epimerase PseB (HP0840) followed with amino transfer by the aminotransferase, PseC (HP0366). The central role of PseC in the H. pylori Pse biosynthetic pathway prompted us to determine crystal structures of the native protein, its complexes with pyridoxal phosphate alone and in combination with the UDP-4-amino-4,6-dideoxy-{beta}-L-AltNAc product, the latter being converted to the external aldimine form in the enzyme's active site. In the binding site, the AltNAc sugar ring adopts a 4C1 chair conformation which is different from the predominant 1C4 form found in solution. The enzyme forms a homodimer where each monomer contributes to the active site, and these structures have permitted the identification of key residues involved in stabilization, and possibly catalysis, of the {beta}-L-arabino intermediate during the amino transfer reaction. The essential role of Lys183 in the catalytic event was confirmed by site-directed mutagenesis. This work presents for the first time a nucleotide-sugar aminotransferase co-crystallized with its natural ligand, and in conjunction with the recent functional characterization of this enzyme, will assist in elucidating the aminotransferase reaction mechanism within the Pse biosynthetic pathway.

  17. Evolution of Mycolic Acid Biosynthesis Genes and Their Regulation during Starvation in Mycobacterium tuberculosis

    PubMed Central

    Jamet, Stevie; Quentin, Yves; Coudray, Coralie; Texier, Pauline; Laval, Françoise; Daffé, Mamadou

    2015-01-01

    ABSTRACT Mycobacterium tuberculosis, the etiological agent of tuberculosis, is a Gram-positive bacterium with a unique cell envelope composed of an essential outer membrane. Mycolic acids, which are very-long-chain (up to C100) fatty acids, are the major components of this mycomembrane. The enzymatic pathways involved in the biosynthesis and transport of mycolates are fairly well documented and are the targets of the major antituberculous drugs. In contrast, only fragmented information is available on the expression and regulation of the biosynthesis genes. In this study, we report that the hadA, hadB, and hadC genes, which code for the mycolate biosynthesis dehydratase enzymes, are coexpressed with three genes that encode proteins of the translational apparatus. Consistent with the well-established control of the translation potential by nutrient availability, starvation leads to downregulation of the hadABC genes along with most of the genes required for the synthesis, modification, and transport of mycolates. The downregulation of a subset of the biosynthesis genes is partially dependent on RelMtb, the key enzyme of the stringent response. We also report the phylogenetic evolution scenario that has shaped the current genetic organization, characterized by the coregulation of the hadABC operon with genes of the translational apparatus and with genes required for the modification of the mycolates. IMPORTANCE Mycobacterium tuberculosis infects one-third of the human population worldwide, and despite the available therapeutic arsenal, it continues to kill millions of people each year. There is therefore an urgent need to identify new targets and develop a better understanding of how the bacterium is adapting itself to host defenses during infection. A prerequisite of this understanding is knowledge of how this adaptive skill has been implanted by evolution. Nutrient scarcity is an environmental condition the bacterium has to cope with during infection. In many

  18. Acid tolerance in amphibians

    SciTech Connect

    Pierce, B.A.

    1985-04-01

    Studies of amphibian acid tolerance provide information about the potential effects of acid deposition on amphibian communities. Amphibians as a group appear to be relatively acid tolerant, with many species suffering increased mortality only below pH 4. However, amphibians exhibit much intraspecific variation in acid tolerance, and some species are sensitive to even low levels of acidity. Furthermore, nonlethal effects, including depression of growth rates and increases in developmental abnormalities, can occur at higher pH.

  19. Importance of fluence rate in photodynamic therapy with ALA-induced PpIX and BPD-MA in a rat bladder tumor model

    NASA Astrophysics Data System (ADS)

    Iinuma, Seiichi; Wagnieres, Georges A.; Schomacker, Kevin T.; Bamberg, Mike; Hasan, Tayyaba

    1995-05-01

    Oxygen dependent phototoxicity was investigated in vivo in an orthotopic rat bladder tumor model. Two photosensitizers, benzoporphyrin derivative monoacid ring A and 5-aminolevulinic acid-induced protoporphyrin IX were studied. For a given cumulative light dose of 30 J/cm2, enhanced tumor destruction was obtained for both photosensitizers by either using a low fluence rate or fractionated light delivery mode. These observations may be attributed to rapid local oxygen consumption during photochemical reactions.

  20. Toxicity of adipic acid.

    PubMed

    Kennedy, Gerald L

    2002-05-01

    Adipic acid has very low acute toxicity in rats with an LD50 > 5000 mg/kg. Adipic acid produced mild to no skin irritation on intact guinea pig skin as a 50% concentration in propylene glycol; it was not a skin sensitizer. Adipic acid caused mild conjunctival irritation in washed rabbit eyes; in unwashed rabbit eyes, there was mild conjunctival irritation, minimal iritis, but no corneal effects. Adipic acid dust may irritate the mucous membranes of the lungs and nose. In a 2-year feeding study, rats fed adipic acid at concentrations up to 5% in the diet exhibited only weight loss. Adipic acid is not genetically active in a wide variety of assay systems. Adipic acid caused no developmental toxicity in mice, rats, rabbits, or hamsters when administered orally. Adipic acid is partially metabolized in humans; the balance is eliminated unchanged in the urine. Adipic acid is slightly to moderately toxic to fish, daphnia, and algae in acute tests. PMID:12024802

  1. Acid Thunder: Acid Rain and Ancient Mesoamerica

    ERIC Educational Resources Information Center

    Kahl, Jonathan D. W.; Berg, Craig A.

    2006-01-01

    Much of Mesoamerica's rich cultural heritage is slowly eroding because of acid rain. Just as water dissolves an Alka-Seltzer tablet, acid rain erodes the limestone surfaces of Mexican archaeological sites at a rate of about one-half millimeter per century (Bravo et al. 2003). A half-millimeter may not seem like much, but at this pace, a few…

  2. Quantity of acid in acid fog

    SciTech Connect

    Deal, W.J.

    1983-07-01

    This communication notes the actual magnitude of the acidity in acidic fog particles and suggests a possible line of inquiry into the health effects of such fog so that it can be determined whether a typical fog is detrimental or beneficial relative to dry air.

  3. [Amino acids in saliva].

    PubMed

    Klinger, G; Gruhn, K

    1984-01-01

    Total amino acids in saliva and free and peptide-bound amino acids from 21 saliva samples were determined. The contents of amino acids was 25 mmol/1; total nitrogen content was 78-80 mmol/1. Amino acids consist of Prolin in 25%. Some patients were examined before and after application of the depot estrogen ethinyl estradiosulfonat, which stimulates the assimilation of protein. After application, amino acids increased and the authors found a shift between the single amino acids. Estrogen medication induced an increase in proteins with the character of collagens. Clinical effects are discussed. (author's modified) PMID:6240853

  4. Hydrochloric acid poisoning

    MedlinePlus

    Hydrochloric acid is a clear, poisonous liquid. It is highly corrosive, which means it immediately causes severe damage, ... discusses poisoning due to swallowing or breathing in hydrochloric acid. This article is for information only. Do NOT ...

  5. Omega-3 Fatty Acids

    MedlinePlus

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount ... the blood in people with very high triglycerides. Omega-3 fatty acids are in a class of medications ...

  6. Omega-6 Fatty Acids

    MedlinePlus

    Omega-6 fatty acids are types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean oils. Other types of omega-6 fatty acids are found in black currant seed, borage seed, ...

  7. Zoledronic Acid Injection

    MedlinePlus

    Zoledronic acid (Reclast) is used to prevent or treat osteoporosis (condition in which the bones become thin and weak ... of life,' end of regular menstrual periods). Zoledronic acid (Reclast) is also used to treat osteoporosis in ...

  8. Aminolevulinic Acid Topical

    MedlinePlus

    Aminolevulinic acid is used in combination with photodynamic therapy (PDT; special blue light) to treat actinic keratoses (small crusty ... skin cancer) of the face or scalp. Aminolevulinic acid is in a class of medications called photosensitizing ...

  9. Acid-fast stain

    MedlinePlus

    The acid-fast stain is a laboratory test that determines if a sample of tissue, blood, or other body ... dye. The slide is then washed with an acid solution and a different stain is applied. Bacteria ...

  10. Uric acid - blood

    MedlinePlus

    Uric acid is a chemical created when the body breaks down substances called purines. Purines are found in some ... dried beans and peas, and beer. Most uric acid dissolves in blood and travels to the kidneys. ...

  11. Hydrochloric acid poisoning

    MedlinePlus

    Hydrochloric acid is a clear, poisonous liquid. It is highly corrosive, which means it immediately causes severe damage, such ... poisoning due to swallowing or breathing in hydrochloric acid. This article is for information only. Do NOT ...

  12. Omega-6 Fatty Acids

    MedlinePlus

    ... types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean ... from studying specific omega-6 fatty acids or plant oils containing omega-6 fatty acids. See the separate ...

  13. Uric Acid Test

    MedlinePlus

    ... limited. Home Visit Global Sites Search Help? Uric Acid Share this page: Was this page helpful? Also known as: Serum Urate; UA Formal name: Uric Acid Related tests: Synovial Fluid Analysis , Kidney Stone Analysis , ...

  14. Acid-fast stain

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003766.htm Acid-fast stain To use the sharing features on this page, please enable JavaScript. The acid-fast stain is a laboratory test that determines ...

  15. Aminocaproic Acid Injection

    MedlinePlus

    Aminocaproic acid injection is used to control bleeding that occurs when blood clots are broken down too quickly. This ... the baby is ready to be born). Aminocaproic acid injection is also used to control bleeding in ...

  16. Deoxycholic Acid Injection

    MedlinePlus

    Deoxycholic acid injection is used to improve the appearance and profile of moderate to severe submental fat ('double chin'; fatty tissue located under the chin). Deoxycholic acid injection is in a class of medications called ...

  17. Methylmalonic Acid Test

    MedlinePlus

    ... limited. Home Visit Global Sites Search Help? Methylmalonic Acid Share this page: Was this page helpful? Also known as: MMA Formal name: Methylmalonic Acid Related tests: Vitamin B12 and Folate , Homocysteine , Intrinsic ...

  18. Fatty acid analogs

    DOEpatents

    Elmaleh, David R.; Livni, Eli

    1985-01-01

    In one aspect, a radioactively labeled analog of a fatty acid which is capable of being taken up by mammalian tissue and which exhibits an in vivo beta-oxidation rate below that with a corresponding radioactively labeled fatty acid.

  19. Boric acid poisoning

    MedlinePlus

    ... boric acid poisoning usually occurs when someone swallows powdered roach-killing products that contain the chemical. Chronic ... vein (IV) Medicines to treat symptoms Note: Activated charcoal does not effectively treat (absorb) boric acid. For ...

  20. Lactic acid test

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003507.htm Lactic acid test To use the sharing features on this page, please enable JavaScript. Lactic acid is mainly produced in muscle cells and red ...

  1. Role of Magnesium Chelatase Activity in the Early Steps of the Tetrapyrrole Biosynthetic Pathway1

    PubMed Central

    Papenbrock, Jutta; Mock, Hans-Peter; Tanaka, Ryouichi; Kruse, Elisabeth; Grimm, Bernhard

    2000-01-01

    Magnesium-protoporphyrin IX chelatase (Mg-chelatase) is located at the branchpoint of tetrapyrrole biosynthesis, at which point protoporphyrin IX is distributed for the synthesis of chlorophyll and heme. We investigated the regulatory contribution of Mg-chelatase to the flow of metabolites. In plants, the enzyme complex consists of three subunits, designated CHL D, CHL I, and CHL H. Transgenic tobacco (Nicotiana tabacum) plants expressing antisense RNA for the Mg-chelatase subunit CHL H were analyzed to elucidate further the role of Mg-chelatase in the distribution of protoporphyrin IX into the branched tetrapyrrolic pathway. The transgenic plants displayed a reduced growth rate and chlorophyll deficiency. Both phenotypical properties were correlated with lower Mg-chelatase activity. Unexpectedly, less protoporphyrin IX and heme accumulated, and a decrease in 5-aminolevulinate (ALA)-synthesizing capacity and ALA dehydratase activity paralleled the progressive reduction in Mg-chelatase activity in the transformants compared with control plants. The reduced activities of the early enzymatic steps corresponded with lower levels of transcripts encoding glutamyl-tRNA reductase and ALA-dehydratase. The decreased expression and activities of early enzymes in the pathway could be explained by a feedback-controlled mechanism in response to lower Mg-chelatase activity. We discuss intercompartmental signaling that synchronizes the activities of the first steps in tetrapyrrolic metabolism with the late steps for the synthesis of end products. PMID:10759511

  2. PRODUCTION OF TRIFLUOROACETIC ACID

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-07-19

    A method is given for the production of improved yields of trifluoroacetic acid. The compound is prepared by oxidizing m-aminobenzotrifluoride with an alkali metal or alkaline earth metal permanganate at a temperature in the range of 80 deg C to 100 deg C while dissolved ln a mixture of water with glacial acetic acid and/or trifluoroacetic acid. Preferably a mixture of water and trifluoroacetic acid ls used as the solvent.

  3. Plant fatty acid hydroxylases

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  4. Quantity of acid in acid fog

    SciTech Connect

    Deal, W.J.

    1983-07-01

    The chemical composition of fog particles has become of considerable interest, because of both the possibility of interpreting atmospheric- chemistry processes in fog particles in terms of the principles of aqueous chemistry and the potential health effects of species present in fog particles. The acidity of fog particles has received wide attention. This communication noted the actual magnitude of the excess acidity in acidic fog particles and suggested a possible line of inquiry into the health effects of such fog so that it can be determined whether a typical fog is detrimental or beneficial relative to dry air. (DP)

  5. The Acid Rain Reader.

    ERIC Educational Resources Information Center

    Stubbs, Harriett S.; And Others

    A topic which is often not sufficiently dealt with in elementary school textbooks is acid rain. This student text is designed to supplement classroom materials on the topic. Discussed are: (1) "Rain"; (2) "Water Cycle"; (3) "Fossil Fuels"; (4) "Air Pollution"; (5) "Superstacks"; (6) "Acid/Neutral/Bases"; (7) "pH Scale"; (8) "Acid Rain"; (9)…

  6. What Is Acid Rain?

    ERIC Educational Resources Information Center

    Likens, Gene E.

    2004-01-01

    Acid rain is the collective term for any type of acidified precipitation: rain, snow, sleet, and hail, as well as the presence of acidifying gases, particles, cloud water, and fog in the atmosphere. The increased acidity, primarily from sulfuric and nitric acids, is generated as a by-product of the combustion of fossil fuels such as coal and oil.…

  7. Acid Rain Study Guide.

    ERIC Educational Resources Information Center

    Hunger, Carolyn; And Others

    Acid rain is a complex, worldwide environmental problem. This study guide is intended to aid teachers of grades 4-12 to help their students understand what acid rain is, why it is a problem, and what possible solutions exist. The document contains specific sections on: (1) the various terms used in conjunction with acid rain (such as acid…

  8. [alpha]-Oxocarboxylic Acids

    ERIC Educational Resources Information Center

    Kerber, Robert C.; Fernando, Marian S.

    2010-01-01

    Several [alpha]-oxocarboxylic acids play key roles in metabolism in plants and animals. However, there are inconsistencies between the structures as commonly portrayed and the reported acid ionization constants, which result because the acids are predominantly hydrated in aqueous solution; that is, the predominant form is RC(OH)[subscript 2]COOH…

  9. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor L.; Brow, Mary Ann D.; Dahlberg, James E.

    2007-12-11

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  10. Amino acid analysis

    NASA Technical Reports Server (NTRS)

    Winitz, M.; Graff, J. (Inventor)

    1974-01-01

    The process and apparatus for qualitative and quantitative analysis of the amino acid content of a biological sample are presented. The sample is deposited on a cation exchange resin and then is washed with suitable solvents. The amino acids and various cations and organic material with a basic function remain on the resin. The resin is eluted with an acid eluant, and the eluate containing the amino acids is transferred to a reaction vessel where the eluant is removed. Final analysis of the purified acylated amino acid esters is accomplished by gas-liquid chromatographic techniques.

  11. Editorial: Acid precipitation

    SciTech Connect

    1995-09-01

    This editorial focuses on acid rain and the history of public and governmental response to acid rain. Comments on a book by Gwineth Howell `Acid Rain and Acid Waters` are included. The editor feels that Howells has provide a service to the environmental scientific community, with a textbook useful to a range of people, as well as a call for decision makers to learn from the acid rain issue and use it as a model for more sweeping global environmental issues. A balance is needed among several parameters such as level of evidence, probability that the evidence will lead to a specific direction and the cost to the global community. 1 tab.

  12. Cleavage of nucleic acids

    SciTech Connect

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow; Mary Ann D.; Dahlberg, James E.

    2010-11-09

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  13. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2000-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  14. Nucleic acid detection assays

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James E.

    2005-04-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  15. Nucleic acid detection compositions

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James L.

    2008-08-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  16. Helicobacter pylori rocF Is Required for Arginase Activity and Acid Protection In Vitro but Is Not Essential for Colonization of Mice or for Urease Activity

    PubMed Central

    McGee, David J.; Radcliff, Fiona J.; Mendz, George L.; Ferrero, Richard L.; Mobley, Harry L. T.

    1999-01-01

    Arginase of the Helicobacter pylori urea cycle hydrolyzes l-arginine to l-ornithine and urea. H. pylori urease hydrolyzes urea to carbon dioxide and ammonium, which neutralizes acid. Both enzymes are involved in H. pylori nitrogen metabolism. The roles of arginase in the physiology of H. pylori were investigated in vitro and in vivo, since arginase in H. pylori is metabolically upstream of urease and urease is known to be required for colonization of animal models by the bacterium. The H. pylori gene hp1399, which is orthologous to the Bacillus subtilis rocF gene encoding arginase, was cloned, and isogenic allelic exchange mutants of three H. pylori strains were made by using two different constructs: 236-2 and rocF::aphA3. In contrast to wild-type (WT) strains, all rocF mutants were devoid of arginase activity and had diminished serine dehydratase activity, an enzyme activity which generates ammonium. Compared with WT strain 26695 of H. pylori, the rocF::aphA3 mutant was ∼1,000-fold more sensitive to acid exposure. The acid sensitivity of the rocF::aphA3 mutant was not reversed by the addition of l-arginine, in contrast to the WT, and yielded a ∼10,000-fold difference in viability. Urease activity was similar in both strains and both survived acid exposure equally well when exogenous urea was added, indicating that rocF is not required for urease activity in vitro. Finally, H. pylori mouse-adapted strain SS1 and the 236-2 rocF isogenic mutant colonized mice equally well: 8 of 9 versus 9 of 11 mice, respectively. However, the rocF::aphA3 mutant of strain SS1 had moderately reduced colonization (4 of 10 mice). The geometric mean levels of H. pylori recovered from these mice (in log10 CFU) were 6.1, 5.5, and 4.1, respectively. Thus, H. pylori rocF is required for arginase activity and is crucial for acid protection in vitro but is not essential for in vivo colonization of mice or for urease activity. PMID:10572136

  17. Acidic Ionic Liquids.

    PubMed

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition. PMID:27175515

  18. Nucleic acid detection kits

    DOEpatents

    Hall, Jeff G.; Lyamichev, Victor I.; Mast, Andrea L.; Brow, Mary Ann; Kwiatkowski, Robert W.; Vavra, Stephanie H.

    2005-03-29

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of nucleic acid from various viruses in a sample.

  19. Demospongic Acids Revisited

    PubMed Central

    Kornprobst, Jean-Michel; Barnathan, Gilles

    2010-01-01

    The well-known fatty acids with a Δ5,9 unsaturation system were designated for a long period as demospongic acids, taking into account that they originally occurred in marine Demospongia sponges. However, such acids have also been observed in various marine sources with a large range of chain-lengths (C16–C32) and from some terrestrial plants with short acyl chains (C18–C19). Finally, the Δ5,9 fatty acids appear to be a particular type of non-methylene-interrupted fatty acids (NMA FAs). This article reviews the occurrence of these particular fatty acids in marine and terrestrial organisms and shows the biosynthetic connections between Δ5,9 fatty acids and other NMI FAs. PMID:21116406

  20. Process for the preparation of lactic acid and glyceric acid

    DOEpatents

    Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI

    2008-12-02

    Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.

  1. Microorganisms for producing organic acids

    SciTech Connect

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  2. Acid-Base Homeostasis

    PubMed Central

    Nakhoul, Nazih; Hering-Smith, Kathleen S.

    2015-01-01

    Acid-base homeostasis and pH regulation are critical for both normal physiology and cell metabolism and function. The importance of this regulation is evidenced by a variety of physiologic derangements that occur when plasma pH is either high or low. The kidneys have the predominant role in regulating the systemic bicarbonate concentration and hence, the metabolic component of acid-base balance. This function of the kidneys has two components: reabsorption of virtually all of the filtered HCO3− and production of new bicarbonate to replace that consumed by normal or pathologic acids. This production or generation of new HCO3− is done by net acid excretion. Under normal conditions, approximately one-third to one-half of net acid excretion by the kidneys is in the form of titratable acid. The other one-half to two-thirds is the excretion of ammonium. The capacity to excrete ammonium under conditions of acid loads is quantitatively much greater than the capacity to increase titratable acid. Multiple, often redundant pathways and processes exist to regulate these renal functions. Derangements in acid-base homeostasis, however, are common in clinical medicine and can often be related to the systems involved in acid-base transport in the kidneys. PMID:26597304

  3. Citric Acid Alternative to Nitric Acid Passivation

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L. (Compiler)

    2013-01-01

    The Ground Systems Development and Operations GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the purpose of this project is to demonstratevalidate citric acid as a passivation agent for stainless steel. Successful completion of this project will result in citric acid being qualified for use as an environmentally preferable alternative to nitric acid for passivation of stainless steel alloys in NASA and DoD applications.

  4. USGS Tracks Acid Rain

    USGS Publications Warehouse

    Gordon, John D.; Nilles, Mark A.; Schroder, LeRoy J.

    1995-01-01

    The U.S. Geological Survey (USGS) has been actively studying acid rain for the past 15 years. When scientists learned that acid rain could harm fish, fear of damage to our natural environment from acid rain concerned the American public. Research by USGS scientists and other groups began to show that the processes resulting in acid rain are very complex. Scientists were puzzled by the fact that in some cases it was difficult to demonstrate that the pollution from automobiles and factories was causing streams or lakes to become more acidic. Further experiments showed how the natural ability of many soils to neutralize acids would reduce the effects of acid rain in some locations--at least as long as the neutralizing ability lasted (Young, 1991). The USGS has played a key role in establishing and maintaining the only nationwide network of acid rain monitoring stations. This program is called the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Each week, at approximately 220 NADP/NTN sites across the country, rain and snow samples are collected for analysis. NADP/NTN site in Montana. The USGS supports about 72 of these sites. The information gained from monitoring the chemistry of our nation's rain and snow is important for testing the results of pollution control laws on acid rain.

  5. Recovery of organic acids

    DOEpatents

    Verser, Dan W.; Eggeman, Timothy J.

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  6. Recovery of organic acids

    SciTech Connect

    Verser, Dan W.; Eggeman, Timothy J.

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  7. THIN-LAYER SEPARATION OF CITRIC ACID CYCLE INTERMEDIATES, LACTIC ACID, AND THE AMINO ACID TAURINE

    EPA Science Inventory

    This paper describes a two-dimensional mixed-layer method for separating citric acid cycle intermediates, lactic acid and the amino acid taurine. The method cleanly separates all citric acid cycle intermediates tested, excepting citric acid and isocitric acid. The solvents are in...

  8. Recent advances in the prevention and treatment of skin cancer using photodynamic therapy

    PubMed Central

    Zhao, Baozhong; He, Yu-Ying

    2011-01-01

    Photodynamic therapy (PDT) is a noninvasive procedure that involves a photosensitizing drug and its subsequent activation by light to produce reactive oxygen species that specifically destroy target cells. Recently, PDT has been widely used in treating non-melanoma skin malignancies, the most common cancer in the USA, with superior cosmetic outcomes compared with conventional therapies. The topical ‘photosensitizers’ commonly used are 5-aminolevulinic acid (ALA) and its esterified derivative methyl 5-aminolevulinate, which are precursors of the endogenous photosensitizer protoporphyrin IX. After treatment with ALA or methyl 5-aminolevulinate, protoporphyrin IX preferentially accumulates in the lesion area of various skin diseases, which allows not only PDT treatment but also fluorescence diagnosis with ALA-induced porphyrins. Susceptible lesions include various forms of non-melanoma skin cancer such as actinic keratosis, basal cell carcinoma and squamous cell carcinoma. The most recent and promising developments in PDT include the discovery of new photosensitizers, the exploitation of new drug delivery systems and the combination of other modalities, which will all contribute to increasing PDT therapeutic efficacy and improving outcome. This article summarizes the main principles of PDT and its current clinical use in the management of non-melanoma skin cancers, as well as recent developments and possible future research directions. PMID:21080805

  9. Toxicology of Perfluoroalkyl acids

    EPA Science Inventory

    The Perfluoroalkyl acids(PFAAs) area a family of organic chemicals consisting of a perflurinated carbon backbone (4-12in length) and a acidic functional moiety (Carboxylate or sulfonate). These compounds have excellent surface-tension reducing properties and have numerous industr...

  10. Toxicology of Perfluoroalkyl Acids*

    EPA Science Inventory

    The perfluoroalkyl acids (PFAAs) are a family of organic chemicals consisting of a perfluorinated carbon backbone (4-12 in length) and an acidic functional moiety (carboxylate or sulfonate). These compounds are chemically stable, have excellent surface-tension reducing properties...

  11. Lead-acid cell

    SciTech Connect

    Hradcovsky, R.J.; Kozak, O.R.

    1980-12-09

    A lead-acid storage battery is described that has a lead negative electrode, a lead dioxide positive electrode and a sulfuric acid electrolyte having an organic catalyst dissolved therein which prevents dissolution of the electrodes into lead sulfate whereby in the course of discharge, the lead dioxide is reduced to lead oxide and the lead is oxidized.

  12. Proteins and Amino Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the most abundant substances in living organisms and cells. All proteins are constructed from the same twenty amino acids that are linked together by covalent bonds. Shorter chains of two or more amino acids can be linked by covalent bonds to form polypeptides. There are twenty amino...

  13. EFFECTS OF ACID PRECIPITATION

    EPA Science Inventory

    Recent reviews of available data indicate that precipitation in a large region of North America is highly acidic when its pH is compared with the expected pH value of 5.65 for pure rain water in equilibrium with CO2. A growing body of evidence suggests that acid rain is responsib...

  14. Bile acid transporters

    PubMed Central

    Dawson, Paul A.; Lan, Tian; Rao, Anuradha

    2009-01-01

    In liver and intestine, transporters play a critical role in maintaining the enterohepatic circulation and bile acid homeostasis. Over the past two decades, there has been significant progress toward identifying the individual membrane transporters and unraveling their complex regulation. In the liver, bile acids are efficiently transported across the sinusoidal membrane by the Na+ taurocholate cotransporting polypeptide with assistance by members of the organic anion transporting polypeptide family. The bile acids are then secreted in an ATP-dependent fashion across the canalicular membrane by the bile salt export pump. Following their movement with bile into the lumen of the small intestine, bile acids are almost quantitatively reclaimed in the ileum by the apical sodium-dependent bile acid transporter. The bile acids are shuttled across the enterocyte to the basolateral membrane and effluxed into the portal circulation by the recently indentified heteromeric organic solute transporter, OSTα-OSTβ. In addition to the hepatocyte and enterocyte, subgroups of these bile acid transporters are expressed by the biliary, renal, and colonic epithelium where they contribute to maintaining bile acid homeostasis and play important cytoprotective roles. This article will review our current understanding of the physiological role and regulation of these important carriers. PMID:19498215

  15. Fats and fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The absolute fat requirement of the human species is the amount of essential fatty acids needed to maintain optimal fatty acid composition of all tissues and normal eicosanoid synthesis. At most, this requirement is no more than about 5% of an adequate energy intake. However, fat accounts for appro...

  16. Analysis of Organic Acids.

    ERIC Educational Resources Information Center

    Griswold, John R.; Rauner, Richard A.

    1990-01-01

    Presented are the procedures and a discussion of the results for an experiment in which students select unknown carboxylic acids, determine their melting points, and investigate their solubility behavior in water and ethanol. A table of selected carboxylic acids is included. (CW)

  17. EXPOSURES TO ACIDIC AEROSOLS

    EPA Science Inventory

    Ambient monitoring of acid aerosol in four U.S. cities and in a rural region of southern Ontario clearly show distinct periods of strong acidity. easurements made in Kingston, TN, and Stuebenville, OH, resulted in 24-hr H+ ion concentrations exceeding 100 nmole/m3 more than 10 ti...

  18. Mutant fatty acid desaturase

    DOEpatents

    Shanklin, John; Cahoon, Edgar B.

    2004-02-03

    The present invention relates to a method for producing mutants of a fatty acid desaturase having a substantially increased activity towards fatty acid substrates with chains containing fewer than 18 carbons relative to an unmutagenized precursor desaturase having an 18 carbon atom chain length substrate specificity. The method involves inducing one or more mutations in the nucleic acid sequence encoding the precursor desaturase, transforming the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby selecting for recipient cells which have received and which express a mutant fatty acid desaturase with an elevated specificity for fatty acid substrates having chain lengths of less than 18 carbon atoms. A variety of mutants having 16 or fewer carbon atom chain length substrate specificities are produced by this method. Mutant desaturases produced by this method can be introduced via expression vectors into prokaryotic and eukaryotic cells and can also be used in the production of transgenic plants which may be used to produce specific fatty acid products.

  19. Omega-3 Fatty Acids

    MedlinePlus

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount of triglycerides (a fat-like ... people with very high triglycerides. Omega-3 fatty acids are in a class of medications called antilipemic ...

  20. Salicylic Acid Topical

    MedlinePlus

    Propa pH® Peel-Off Acne Mask ... pimples and skin blemishes in people who have acne. Topical salicylic acid is also used to treat ... medications called keratolytic agents. Topical salicylic acid treats acne by reducing swelling and redness and unplugging blocked ...

  1. Amino Acid Crossword Puzzle

    ERIC Educational Resources Information Center

    Sims, Paul A.

    2011-01-01

    Learning the 20 standard amino acids is an essential component of an introductory course in biochemistry. Later in the course, the students study metabolism and learn about various catabolic and anabolic pathways involving amino acids. Learning new material or concepts often is easier if one can connect the new material to what one already knows;…

  2. Trans Fatty Acids

    NASA Astrophysics Data System (ADS)

    Doyle, Ellin

    1997-09-01

    Fats and their various fatty acid components seem to be a perennial concern of nutritionists and persons concerned with healthful diets. Advice on the consumption of saturated, polyunsaturated, monounsaturated, and total fat bombards us from magazines and newspapers. One of the newer players in this field is the group of trans fatty acids found predominantly in partially hydrogenated fats such as margarines and cooking fats. The controversy concerning dietary trans fatty acids was recently addressed in an American Heart Association (AHA) science advisory (1) and in a position paper from the American Society of Clinical Nutrition/American Institute of Nutrition (ASCN/AIN) (2). Both reports emphasize that the best preventive strategy for reducing risk for cardiovascular disease and some types of cancer is a reduction in total and saturated fats in the diet, but a reduction in the intake of trans fatty acids was also recommended. Although the actual health effects of trans fatty acids remain uncertain, experimental evidence indicates that consumption of trans fatty acids adversely affects serum lipid levels. Since elevated levels of serum cholesterol and triacylglycerols are associated with increased risk of cardiovascular disease, it follows that intake of trans fatty acids should be minimized.

  3. Sulfuric Acid on Europa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain.

    This image is based on data gathered by Galileo's near infrared mapping spectrometer.

    Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks.

    Galileo, launched in 1989, has been orbiting Jupiter and its moons since December 1995. JPL manages the Galileo mission for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  4. Strongly Acidic Auxin Indole-3-Methanesulfonic Acid

    PubMed Central

    Cohen, Jerry D.; Baldi, Bruce G.; Bialek, Krystyna

    1985-01-01

    A radiochemical synthesis is described for [14C]indole-3-methanesulfonic acid (IMS), a strongly acidic auxin analog. Techniques were developed for fractionation and purification of IMS using normal and reverse phase chromatography. In addition, the utility of both Fourier transform infrared spectrometry and fast atom bombardment mass spectrometry for analysis of IMS has been demonstrated. IMS was shown to be an active auxin, stimulating soybean hypocotyl elongation, bean first internode curvature, and ethylene production. IMS uptake by thin sections of soybean hypocotyl was essentially independent of solution pH and, when applied at a 100 micromolar concentration, IMS exhibited a basipetal polarity in its transport in both corn coleoptile and soybean hypocotyl sections. [14C]IMS should, therefore, be a useful compound to study fundamental processes related to the movement of auxins in plant tissues and organelles. PMID:16664007

  5. Understanding acid rain

    SciTech Connect

    Budiansky, S.

    1981-06-01

    The complexities of the phenomenon of acid rain are described. Many factors, including meteorology, geology, chemistry, and biology, all play parts. Varying weather, varying soils, the presence of other pollutants and species differences all act to blur the connections between industrial emissions, acid rain, and environmental damage. Some experts believe that the greatest pH shock to lakes occurs during snow melt and runoff in the spring; others believe that much of the plant damage ascribed to acid rain is actually due to the effects of ozone. Much work needs to be done in the area of sampling. Historical data are lacking and sampling methods are not sufficiently accurate. (JMT)

  6. WASTE ACID DETOXIFICATION AND RECLAMATION

    EPA Science Inventory

    This Environmental Security Technology Certification Program (ESTCP) project demonstrated the Waste Acid Detoxification and Reclamation (WADR) systems ability to recover waste electropolish acid solutions generated during the manufacturing of gun-tubes, and reuse the clean acid. ...

  7. Disorders of Amino Acid Metabolism

    MedlinePlus

    ... Aspiration Syndrome Additional Content Medical News Disorders of Amino Acid Metabolism By Lee M. Sanders, MD, MPH NOTE: ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism Amino acids are ...

  8. Acid soldering flux poisoning

    MedlinePlus

    The harmful substances in soldering fluxes are called hydrocarbons. They include: Ammonium chloride Rosin Hydrochloric acid Zinc ... Lee DC. Hydrocarbons. In: Marx JA, Hockberger RS, Walls RM, et ... Rosen's Emergency Medicine: Concepts and Clinical Practice . 8th ...

  9. Aminolevulinic Acid Topical

    MedlinePlus

    ... in combination with photodynamic therapy (PDT; special blue light) to treat actinic keratoses (small crusty or scaly ... photosensitizing agents. When aminolevulinic acid is activated by light, it damages the cells of actinic keratosis lesions.

  10. Difficult Decisions: Acid Rain.

    ERIC Educational Resources Information Center

    Miller, John A.; Slesnick, Irwin L.

    1989-01-01

    Discusses some of the contributing factors and chemical reactions involved in the production of acid rain, its effects, and political issues pertaining to who should pay for the clean up. Supplies questions for consideration and discussion. (RT)

  11. Uric acid - urine

    MedlinePlus

    ... to filter fluids and waste normally (chronic glomerulonephritis ) Lead poisoning Long-term (chronic) alcohol use Risks There are ... Elsevier Saunders; 2011:chap 28. Read More Gout Lead poisoning Liver disease Polycythemia vera Uric acid - blood Update ...

  12. Amoxicillin and Clavulanic Acid

    MedlinePlus

    ... is used to treat certain infections caused by bacteria, including infections of the ears, lungs, sinus, skin, ... antibiotics. It works by stopping the growth of bacteria. Clavulanic acid is in a class of medications ...

  13. Hydrofluoric acid poisoning

    MedlinePlus

    Chemical Emergencies: Case Definition: Hydrofluoric Acid . Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services; 2005. Goldfrank LR, ed. Goldfrank's Toxicologic Emergencies . 8th ed. New ...

  14. Lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Bullock, Kathryn R.

    Lead/acid batteries are produced in sizes from less than 1 to 3000 Ah for a wide variety of portable, industrial and automotive applications. Designs include Planté, Fauré or pasted, and tubular electrodes. In addition to the traditional designs which are flooded with sulfuric acid, newer 'valve-regulated" designs have the acid immolibized in a silica gel or absorbed in a porous glass separator. Development is ongoing worldwide to increase the specific power, energy and deep discharge cycle life of this commercially successful system to meet the needs of new applications such as electric vehicles, load leveling, and solar energy storage. The operating principles, current status, technical challenges and commercial impact of the lead/acid battery are reviewed.

  15. Citric acid urine test

    MedlinePlus

    ... used to diagnose renal tubular acidosis and evaluate kidney stone disease. ... tubular acidosis and a tendency to form calcium kidney stones. The following may decrease urine citric acid levels: ...

  16. Pantothenic acid and biotin

    MedlinePlus

    ... JavaScript. Pantothenic acid and biotin are types of B vitamins. They are water-soluble, which means that the ... found in foods that are good sources of B vitamins, including the following: Animal proteins Avocado Broccoli, kale, ...

  17. (Acid rain workshop)

    SciTech Connect

    Turner, R.S.

    1990-12-05

    The traveler presented a paper entitled Susceptibility of Asian Ecosystems to Soil-Mediated Acid Rain Damage'' at the Second Workshop on Acid Rain in Asia. The workshop was organized by the Asian Institute of Technology (Bangkok, Thailand), Argonne National Laboratory (Argonne, Illinois), and Resource Management Associates (Madison, Wisconsin) and was sponsored by the US Department of Energy, the United Nations Environment Program, the United Nations Economic and Social Commission for Asia and the Pacific, and the World Bank. Papers presented on the first day discussed how the experience gained with acid rain in North America and Europe might be applied to the Asian situation. Papers describing energy use projections, sulfur emissions, and effects of acid rain in several Asian countries were presented on the second day. The remaining time was allotted to discussion, planning, and writing plans for a future research program.

  18. Stomach acid test

    MedlinePlus

    Gastric acid secretion test ... The test is done after you have not eaten for a while so fluid is all that remains in ... injected into your body. This is done to test the ability of the cells in the stomach ...

  19. Deoxycholic Acid Injection

    MedlinePlus

    ... severe submental fat ('double chin'; fatty tissue located under the chin). Deoxycholic acid injection is in a ... as a liquid to be injected subcutaneously (just under the skin) by a doctor. Your doctor will ...

  20. Amino Acids and Chirality

    NASA Technical Reports Server (NTRS)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.